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Summary 
A method for modeling joints to assess the influence of joints on the dynamic response of truss 

structures has been developed. The analytical models, which are based on experimental joint 
load-deflection behavior, use springs and dampers to simulate joint behavior. An algorithm for 
automatically computing nonlinear coefficients of the analytical models is also presented. The joint 
models are incorporated into a nonlinear finite-element program through use of special nonlinear 
spring, viscous, and friction elements. Next, the effects of nonlinear joint stiffness, such as dead 
band in the joint load-deflection behavior, are studied. Linearization of joint stiffness nonlinearities 
is performed to assess the accuracy of linear analysis in predicting nonlinear response. Viscous 
and friction damping are then used to show the effects of joint damping on global beam and truss 
structure response and equations for predicting the sensitivity of beam deformations to changes in 
joint stiffness are derived. In addition, the frequency sensitivity of a truss structure to- random 
perturbations in joint stiffness is discussed and results are shown which indicate that average joint 
properties may be sufficient for predicting truss response. 

Introduction 

The increased access to space made possible by the NASA Space Transportation System has 
resulted in radically new spacecraft designs. Spacecraft larger than 300 ft in diameter, such as 
the hoop-column antenna (ref. 1) and the Space Station reference configurations (ref. 2), are being 
designed. These spacecraft, shown in figures 1 and 2, make extensive use of truss structures to span 
large distances because trusses provide high stiffness with low mass. Many of these spacecraft require 
accurate dynamic analysis for prediction of loads, stability, shape control, and pointing accuracy. 
The dynamic analysis of truss structures may require detailed modeling to maintain accuracy in the 
analysis. 

Individual truss members are connected to one another through joints. In most civil engineering 
truss structures, joints are typically welded or bolted so that little or no displacement occurs across 
the joint relative to the displacement of the members. For this type of joint, analytical modeling 
assumes either member-to-member rigid or pinned connections. Truss structures proposed for space 
applications have joint designs which permit the erection or deployment of the truss members. Unlike 
civil engineering structures, joint designs for space structures have finite tolerances between mating 
surfaces which permit the joints to rotate or to be latched. Tolerances result in a region of dead 
band where joint motion can occur with near-zero force. Joint dead band is believed to significantly 
affect the response of truss structures and may require detailed modeling to include these effects in 
the overall, or global, analysis. 

Truss structures are often referred to as being "joint dominated" because of the number of joints 
and their influence on overall truss response. The joints influence the dynamic response of trusses in 
two major ways, first by reducing the effective truss stiffness and second by introducing additional 
damping compared with structures for which the members are rigidly connected. To predict the 
influence of joints on truss response, detailed characterization of joint properties will likely be 
necessary. Several publications describe experimental characterizations of joints and modeling of 
jointed structures. 

Built-up structures possess a number of mechanisms to dissipate energy resulting from the 
mechanical interfaces or joints which join structural components together. References 3 to 7 discuss 
a large number of joint tests and analyses to determine the dominant sources of joint damping. At 
low frequencies, there is uniform agreement that Coulomb friction mechanisms on a macroscopic 
level dissipate the majority of the energy. At higher frequencies, Aubert et al. (ref. 7) have identified 
a number of rate-dependent damping mechanisms that dissipate energy. Examples of rate-dependent 
joint damping mechanisms are acoustic radiation, air pumping, viscous damping, and impacting of 
surfaces. Only structures with low-frequency oscillations are considered in this study; thus, only 
Coulomb friction and viscous damping have been included in the analysis herein. 



To obtain analytical models of joints, the damping and the stiffness of the joints should be 
measured from the joint hardware. Reference 8 has used classic load-deflection testing to measure 
joint stiffness. Load-deflection testing can also be used to extract damping information by testing 
at several different loading rates. At high frequencies, the individual load-deflection curves do not 
describe rate-dependent damping mechanisms adequately. Consequently, the authors of references 7 
and 9 have used a modified load-deflection technique called force-state mapping. Force-state maps, 
as shown in figure 3, are produced from a three-dimensional plot of the joint response in which 
force, velocity, and displacement are displayed. Results from references 7 and 9 indicate force-state 
mapping is a viable joint test method even at relatively high frequencies. The joint test method 
used in this study is load-deflection testing. This method was chosen because only low-frequency 
vibrations are considered. 

The majority of existing methods for modeling structures with joints use variations of the 
component synthesis method. Craig presents a good review of state-of-the-art synthesis methods 
in reference 10. For rigid connections, the basic methods presented in references 11 to 15 may 
be employed. However, when the connections are flexible, as is the case in practice, the number 
of viable component synthesis methods is reduced. One method which enables components to be 
connected through flexible joints is referred to as a stiffness coupling procedure (ref. 16). The stiffness 
coupling procedure allows natural vibration modes of components to be combined through a linear 
stiffness matrix. Another method has been proposed (refs. 17 to 20) which exploits Lagrange's 
equations and Lagrange multipliers to allow components to be connected through nonrigid constraint 
relations. In reference 20, a generalization of the Lagrange multiplier method permits the analysis of 
structures connected by nonlinear joints. For structures with only a few joints, this method is feasible. 
However, for structures with many joints, the Lagrange multiplier method requires the solution of 
many additional equations. Thus, component synthesis methods for systems with many nonlinear 
joints do not appear to be any more efficient than finite-element analysis methods. Consequently, 
the present study focuses on developing a finite-element-based analysis for detailed joint modeling 
because of its generality and ease of implementation. 

The objective of this study is to develop a systematic procedure whereby the influence of joints 
on the response of truss structures can be quantitatively determined. This procedure can be broken 
into three areas! First, joint characteristics are determined experimentally. Second, analyses are 
developed which enable joint-dominated structure response to be accurately predicted. Third, 
numerical studies are made of the structure response. Several joint models are developed, and 
model stiffness and damping parameters are determined with an algorithm based on optimization 
techniques. Incorporation of the joint models into global structural analysis is performed with the 
finite-element method. Numerical examples of the transient response of beam and truss structures 
with joints are then presented. The effects of stiffness nonlinearities and viscous and frictional 
damping mechanisms are also studied. Finally, numerical results of linearized joint models are 
compared with full nonlinear results, and the sensitivity of global structure response to variations 
in joint properties is presented. 

Nomenclature 

A cross-sectional area of the beam 

B viscous damping matrix 

C magnitude of joint dead band 

Cj initial joint dead band position 

c viscous damping coefficient 

E Young's modulus of the beam material 

Efi energy dissipated by damping 



F force vector 

Ff friction damping force 

I frequency 

G shear modulus of the beam material 

I moment of inertia of the beam cross section 

K stiffness matrix 

fc spring stiffness of the joint 

^Ul ™Wl ™<p 
spring stiffness of the joints in the axial, lateral, and rotational displacement 

directions 

ku i Kw > k<j> normalized spring stiffness of the joints in the axial, lateral, and rotational 
displacement directions (see eqs. (10)) 

I total beam length 

M mass matrix 

m nodal mass 

N vector of friction forces 

Ns number of time steps 

0 objective function 

t time 

u axial displacement 

w lateral displacement 

X total joint displacement 

P mass density of the beam material 

4> rotational displacement 

</> nodal displacement vector 

i> nodal velocity vector 

'i> nodal acceleration vector 

U! circular frequency 

Uss circular frequency of simply supported beam 

Superscripts 

a, b, c parts of the joint model (see fig. 6) 

Subscripts: 

a, b, c, d nodes of the joint elements and of the beam 

J beam deformations with joints 

R beam deformations without joints 

Analysis 
Analytical joint models should permit joint damping and stiffness behavior to be simulated, but 

should be simple enough so that the model parameters can be identified from test data. The design 
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of truss structure joints can produce eccentricities in the load transmission path which result in 
coupling of axial, bending, torsion, and shear deformations. Thus, complete characterization of joint 
damping and stiffness requires a series of tests which can identify coefficients of fully populated 
damping and stiffness matrices. This task is even further complicated by the fact that many of 
the joint properties are nonlinear, so that linear superposition cannot be used. Assumptions in 
the analysis are required to permit the model parameters to be identified through a limited series 
of tests. The present study uses a nonlinear model for the load-deflection relationship; however, 
coupling between axial, bending, torsion, and shear deflections has been neglected. This simplifying 
assumption results in identification of only the diagonal terms of the joint damping and stiffness 
matrices. 

The joint model development method used herein follows the flowchart of figure 4. Three major 
components of model development are involved. First, choose the form of the joint analysis model 
to be used in the global analysis of the truss structure. Second, design and conduct a series of 
experiments to determine the load-deflection behavior of the joint. The type of experiment depends 
on the form of the chosen analysis model. For example, if no rate-dependent damping is modeled 
in the analysis, only static tests are required. Third, determine coefficients of the analytical model 
which most closely reconstruct the experimental joint behavior. This is usually accomplished through 
minimization of the error between the predicted and the measured response. 

The next three sections discuss the three components of joint model development. An extension 
of the standard anelastic model (ref. 19) is described, followed by a description of experimental tests 
which can be used to characterize joint behavior. Sample experimental data are presented from 
a representative space truss joint, and an algorithm is used to reduce the experimental data into 
coefficients of the joint analytical model. Numerical results from the algorithm are presented for 
both simulated and experimental data. Subsequently, the finite-element program for global analysis 
of beam and truss structures is described. 

Model Selection 

Analytical models for truss structure joints should be of a form which can be incorporated into 
the global structure analysis. This study uses the finite-element method for the global analysis; thus, 
it is only natural that the joint models should be finite elements. Linear springs and linear viscous 
dampers are the simplest joint finite elements. As described previously, a number of nonlinear 
stiffness and damping mechanisms are present in structural joints. Consequently, nonlinear springs 
and dampers have been chosen to model the joint response. 

In reference 21, Lazan presented several models which have been used in material stiffness and 
damping analysis. The Maxwell model consists of a viscous damper in series with a spring. The 
Maxwell model, shown in figure 5, exhibits infinite creep as the frequency of excitation approaches 
zero. The Voight model eliminates the creep problem by placing the spring in parallel with the 
damper. Unfortunately, the Voight model becomes rigid at high frequencies. An anelastic model of 
a Voight unit in series with a spring is also shown in figure 5. This three-parameter model, referred 
to as the standard anelastic model, exhibits none of the limitations of the Voight or Maxwell models. 

Since joints exhibit material damping characteristics as well as macroscopic Coulomb friction, the 
standard anelastic model has been modified as shown in figure 5. The standard anelastic model is 
augmented with a friction-spring unit placed in series with the other elements. The resulting model is 
referred to herein as the modified standard anelastic (MSA) model. Nonlinear response of the MSA 
model can be achieved if some or all of the coefficients are allowed to be functions of displacement, 
velocity, or load, or any combination of these three. Displacement-dependent coefficients have been 
used in this study for the stiffness, friction, and viscous coefficients. 

The MSA model has four nodes, as indicated in figure 6. For each degree of freedom (DOF) a 
different set of coefficients relates the displacement of that degree of freedom to the applied load. 



The MSA model has three components in series, and the total displacement across the joint is 

(Va - V>d) = (tfa - </>{,) + (tfb " $c) + (tfc - $d) (!) 

where V is the nodal displacement vector.  For the planar structures analyzed in this study, three 
degrees of freedom at each node are present and 

For a force F^ applied to the joint model, the displacement across the viscous unit is given by 

where 
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The modified standard anelastic model with constant coefficients (i.e., k^, kb^, k^, c^, and F^) 

results in linear load-deflection relations (with the exception of friction). To allow for more general 
nonlinear load-deflection relations, a polynomial function for each coefficient can be used. Figure 7 
shows the load-deflection shape functions for constant coefficients and variable coefficients. The sum 



of these shape functions describes the total joint displacement. The variable coefficients used in this 
study to permit nonlinear force displacement behavior are 

r=l 

*6 = E*J0(^-^)r_1 
r=l 

r=\ 

Ff=T,FLWb-i>cr-i 

w 

c = Ec^(^_*)r   l 
r=\ 

(3) 

where s, t, u, v, and w are the number of terms in the polynomial and subscript r refers to the rth 
coefficient of the polynomial. 

The modified standard anelastic model with variable coefficients allows general nonlinear behavior 
to be modeled. However, the polynomial expressions used for the stiffness coefficients do not 
adequately account for changes in load-deflection behavior because of joint dead band. Figure 8 
shows a load-deflection response in the presence of dead band C and with initial joint dead band 
position Cj. To model the dead band, the stiffness of each spring is modeled in a piecewise manner, 
such that 

fc = 0 

k =   J2 krtl> ( ^a ~ i>b - "2  + CI ) 

r=l 

c k= ^2kril[tl)a-%l)b + — + CI 

r-l 

r-1 

~-c7<i&o-ifrfr<f-c>N' 
C 

c 

(4) 

where n is the number of terms in the polynomial representing the spring element amplitude- 
dependent stiffness behavior. Equation (4) is a general expression for nonlinear stiffness, including 
a region of zero stiffness (or dead band). 

The modified standard anelastic model permits arbitrary damping and stiffness nonlinearities 
by allowing independent stiffness, friction, and viscous mechanisms to occur. This allows general 
load-deflection behavior, but it requires the use of four nodes in the analysis model. Since the joint 
analysis model is to be incorporated into a global analysis, a joint model with fewer nodes is desired 
to minimize the number of equations in the analysis. A second model with only two nodes that 
uses a spring, a' viscous damper, and a friction damper in parallel could be constructed as shown in 
figure 9. With the nomenclature of figure 9, the displacement across the joint is given by equation (2) 

M^V + B^ + K^ + N^, 
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Nonlinear motion can be modeled with variable coefficients of the form given in equations (3) 

and (4). We can construct a fully linearized two-node model by setting FI = 0 and using constant 
coefficients for c^, and k^. A two-node linear representation of stiffness and damping is the simplest 
model for a joint. The modified standard anelastic model, the nonlinear two-node model, and the 
linear two-node model are summarized in figure 10. 

Several observations can be made about the MSA model. The displacement of a joint for this 
model is both force and rate dependent. The rate dependence results from the viscous unit. Although 
the modified standard anelastic model requires more than two nodes, the additional insight provided 
by independent stiffness, viscous, and friction mechanisms can be useful. The nonlinear two-node 
model is the simplest nonlinear model to include in a global analysis. The two major limitations of 
this model are rigidity at high frequencies and coupled friction, viscous, and stiffness mechanisms. 
The first limitation results from the viscous damper being in parallel with the spring. This limitation 
is acceptable for low-frequency vibrations. The second limitation prevents independent friction, 
viscous, and stiffness mechanisms from occurring. Nevertheless, this model will be used often in 
global structural analysis because it requires only two nodes. The linear two-node model is the 
simplest model one can use to model both stiffness and damping effects of joints. Because the model 
is linear, almost all finite-element programs can use this model in a global structural analysis. In 
addition, it is advantageous to have a linear representation of structures for load analyses and control 
system design. 

Load-Deflection Tests 

Characterization of joint damping and stiffness properties requires both static and dynamic 
testing. Accurate measurement of load-deflection behavior requires precise instrumentation and 
experimental setups. Test data for this study have been acquired with the Instron Model 1350 
Dynamic Test System and the MTS Systems Corp. closed-loop materials test system for load- 
deflection testing. General capabilities of Instron and MTS machines include force or displacement 
control, internal load and displacement measuring devices, and programmable force or displacement 
time histories. For joints where dead band is expected, displacement control is desirable because 
the force cannot be servo controlled with zero stiffness. Classic load-deflection hysteresis loops are 
measured under either sinusoidally controlled applied displacement or load. The circular frequency 
to can be used to change the rate of applied displacement or load. 

Tests should be performed at near-zero frequency (quasi-static) and at several higher frequencies. 
The quasi-static tests permit rate-independent stiffness and friction measurements without the 
complication of rate-dependent damping. Tests at selected higher frequencies can be used to 
determine rate-dependent mechanisms such as viscous and impact damping. Reference 7 presents 
an excellent discussion on instrumentation requirements and data acquisition systems and should be 
studied before joint testing is undertaken.   As mentioned previously, the load-deflection testing 



technique presented herein is mainly applicable at low frequencies, where the rate-dependent 
damping mechanisms are not dominant. 

Joints for truss structures are of many different designs. Two typical joints are shown in figure 11. 
A joint of the design shown in figure 11(b) has been tested with the load-deflection procedure for 
the axial degree of freedom. Test data measured at a frequency of 1 Hz are shown in figure 12. 
The nonlinear character of the response is indicated by the joint stiffening or hardening as the 
displacement increases. Also, the stiffness in compression is different from that in tension. The 
pointed ends of the hysteresis loop indicate the presence of friction. These data were obtained at 
higher stress levels than are anticipated for space structures to show the nature of joint nonlinearities. 
For this joint the dead band is negligible. The next section describes an algorithm to reduce the 
data of figure 12 into coefficients of the joint analysis models described earlier. 

Curve-Fit Algorithm 

The least-squares error method is commonly used to identify coefficients of analytical models from 
test data. This method minimizes the error between measured and predicted response quantities. 
Classic least-squares error minimization is applicable only to linear systems. Since the joint models 
have nonlinear equations, a modified least-squares error method was developed based on optimization 
strategy. Numerical results of the algorithm for simulated and experimental data follow. 

The coefficients of equation (2), which describes the displacement of the MSA model for applied 
force vector F^, can be determined by a trial-and-error procedure through use of an optimization 
procedure. The ADS program (ref. 22) is a compilation of optimization procedures which perform 
constrained and unconstrained minimizations. This program has been used as a subroutine for an 
algorithm developed specifically for joint damping and stiffness analysis. The algorithm requires 
an analytical joint model and experimental load-deflection joint data as input. Output from the 
algorithm are analysis model coefficients and the mean-squared error between the experimental data 
and the analysis prediction. 

An unconstrained objective function is used in the algorithm, which minimizes the mean-squared 
error between test and analysis by minimizing the function 

1    N" 

iVs 9=1 

where Ns is the number of time steps, X is the total joint displacement, and subscripts e and a 
refer to experiment and analysis, respectively. Equation (6) is minimized through adjustment of 
the design variables, which are the coefficients of equation (2). Since the objective function O is 
unconstrained, the Davidon-Fletcher-Powell variable metric method is used in conjunction with a 
golden section search method. Both methods are contained in the ADS program. 

In an optimization procedure, a solution strategy must be devised to ensure convergence. This is 
particularly important when the design variables have significantly different effects on the objective 
function. Design variables of the joint models are selected to be stiffness and damping coefficients. 
The stiffness design variables govern the slope of the load-deflection curve, whereas the damping 
design variables govern the area enclosed by the curve. From trial and error, a three-pass solution 
strategy was developed to obtain a converged solution in the curve-fit algorithm. 

The flowchart of figure 13 shows the three-pass solution strategy of the algorithm. Pass 1 is 
made with only stiffness coefficients to obtain the proper slope of the load-deflection curve. The 
damping coefficients are set to zero. Pass 2 sets the stiffness coefficients to the values obtained from 
pass 1 and allows the damping coefficients to be varied. Pass 2 usually produces a good estimate 
of the damping; however, a third pass reduces the objective function further. Pass 3, the third and 
final pass in the solution, uses the stiffness and damping coefficients from passes 1 and 2 as starting 
values. With all coefficients free to be varied, the final solution is achieved. 
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Variable stiffness and damping coefficients of the form given in equation (3) are solved in a manner 
analogous to that described for constant coefficients. The number of design variables is equal to the 
total number of unknown coefficients. For the general nonlinear modified standard anelastic model, 
stiffness, dead band, friction, and viscous coefficients are present. 

The polynomial form used to model nonlinearities can produce local minima of the objective 
function. Optimization methods often converge to one of the local minima when the starting values 
of the design variables are not close to the true minimum. Thus, good estimates of the stiffness and 
damping coefficients are necessary. The algorithm has a preprocessor which estimates the stiffness 
coefficients based on the initial slope of the empirical data. The damping coefficients are estimated 
in the preprocessor through computation of the energy dissipated per cycle in the experimental 
data. The energy dissipation is initially divided equally between the friction and viscous damping 

mechanisms. 
Simulated and experimental data have been curve fit with the algorithm. Figure 14 shows the 

load-deflection response of the modified standard anelastic model with constant coefficients. The 
dashed curve is simulated data computed with the following values: 

fco = 400 lb/in. 

fcj, = 600 lb/in. 

k^ = 800 lb/in. 

F* = 10 lb 

c^p — 2.5 lb-sec/in. 

F^, = 100 sin 2irt lb 

The joint mass has been divided equally at each node with a total joint weight of 1 lb in the 
simulated data. The simulated data were analyzed with the algorithm, which computed the following 

coefficients: 
A$ = 572 lb/in. 

k\ = 511 lb/in. 

jfcc, = 569 lb/in. 

F{ = 11.7 lb 

c^p = 1.16 lb-sec/in. 

A comparison of the simulated and the predicted load-deflection curves in figure 14 shows very 
good agreement. The simulated coefficient values and the predicted coefficient values, however, are 
considerably different. The total response is accurate since it is the combination of coefficients which 
is important and not the individual coefficients. That is, with three springs in series in the modified 
standard anelastic model there is no unique solution for the stiffness coefficients. Thus, the algorithm 
converges to one of the local minima close to the true minimum. 

To study the effects of nonlinearities, simulated nonlinear data were analyzed with the algorithm. 
The simulated data maintained constant damping coefficients, but the stiffness coefficients were 
variable. The coefficient values are 

fc« = 400 + 600\tpa ~ iPb\ + 8000 {ipa - ipb)
2 lb/in. 

k^ = 400 + 600|^b - Vcl + 8000 (V>6 - V>c)2 lb/in. 

k% = 400 + 600|V>C - i>d\ + 8000 {ipc - V>d)2 lb/in. 

4 = 15 lb 
c. = 20 lb-sec/in. 

(7) 



The absolute value of the displacement was used to obtain symmetric tension and compression 
response. The simulated nonlinear data were analyzed with two analysis models. First, the MSA 
model with constant coefficients was used. The response, as shown in figure 15, did not match the 
simulated data accurately. The constant coefficients computed with the algorithm are 

k$ = 667.6 lb/in. 

fcj, = 466.4 lb/in. 

k^, = 656.2 lb/in. 

FJ, = 28.5 lb 

G0 = 2.6 lb-sec/in. 

The second model used to predict the simulated nonlinear data given by equation (7) used the 
MSA model with constant damping coefficients but variable stiffness coefficients of the following 
form: 

Kj, = k% + k^a - i/,b\ + k^ (fa - iPb)
2 

4 = kH + 4^b - tfcl + k% (A - Vc)2 

Kl> = kc
H + kc

2^c - 1>d\ + ^ (V-c - i>d? 

(8) 

The response from use of this model agreed well with the simulated data, as shown in figure 16. The 
coefficients computed with the algorithm are 

fc£ = 462 + 1119|Va - V-fel + 3215 (Va - V>&)2 lb/in. 

k\ = 424 + 1108|^ft - 1>c\ + 3202 (i/>b - V>c)
2 lb/in. 

k^ = 375 + 1100|^c - Vdl + 3228 (i/>c - ipdf lb/in. 

F$ = 6.8 lb 

c^p — 12 lb-sec/in. 

Even though the simulated data were produced by the same model used in the analysis, exact agree- 
ment was not obtained. This is because of the presence of local minima to which the optimization 
algorithm converged. Should the algorithm converge to a local minimum of unacceptable accuracy, 
the solution should be restarted with different estimates for the design variables. 

The algorithm was also used to analyze the test data of figure 12. The test data were modified 
to preserve tension and compression symmetry. The data were analyzed with the modified standard 
anelastic (MSA) model with constant damping coefficients and variable stiffness coefficients of the 
form given in equation (8). The predicted load-deflection curve is compared with the test data in 
figure 17. Again the curve fit is good. The coefficients for these data computed with the algorithm 
are 

k% = 31264 + (4.943 x 106)|Va - </>öl + (1-775 x 108) (Va - ^b? lb/in. 

k§ = 28074 + (3.735 x 106)|^ö -ißc\ + (1-528 x 108) (ij>b - ^c? lb/in. 

fc£ = 26696 + (4.145 x 106)|^c - ißd\ + (1.693 x 108) (ipc - ipd)2 lb/in. 

F{ = 229.7 lb 

c^p = 96 lb-sec/in. 

10 



The ability of the algorithm to reduce experimental data into a set of stiffness and damping 
coefficients for empirical joint models has been shown. The joint analytical model parameters 
identified with the curve-fit algorithm can be included in a global truss structure analysis through 
use of the finite-element method. The next section describes the global analysis used in this study. 

Global Structure Analysis 

A mixed finite-element program for beams and two-dimensional trusses (refs. 23 and 24) has 
been modified to include nonlinear joint properties. An analytical formulation by Reissner (ref. 25) 
for geometrically nonlinear curved beams forms the basis of this program. The program has been 
used because of its availability and ease of modification for inclusion of nonlinear joint elements. 
Several modifications to the program were made to permit modeling of joints, damping, and truss 

configurations. 
The fundamental unknowns of the mixed program are nodal forces, velocities, and displacements. 

Four types of elements have been formulated for use in a finite-element model: beams, springs, viscous 
dampers, and friction dampers. A consistent formulation for each type of element has been used 
to maintain compatibility with the field variables. The beam element formulation is described in 
reference 23; thus, only the joint elements are described herein. 

A one-dimensional spring element with two displacement nodes and one stress node has been 
formulated. A typical two-dimensional joint requires three spring elements to represent the joint 
load-deflection behavior, one element for each degree of freedom. Nonlinear load-deflection response 
of a joint is modeled with displacement-dependent stiffness parameters. The spring element governing 
equations are derived with an energy formulation. Figure 18 shows a typical spring element with 
lumped masses and external loads at the two displacement nodes a and b. With the sign convention 
shown, the constitutive relation for the spring element is defined as 

n 
F = Y, [*W> (tfa - $bY] 

r=l 

where F is the internal spring force vector, k^ is the linear stiffness of the spring for the ^th degree 
of freedom, kr^ (r > 1) are nonlinear stiffness coefficients, and n is the number of terms in the 
polynomial representing the spring element amplitude-dependent stiffness behavior. (For a linear 

spring element, n = 1.) 
The polynomial form of the constitutive relations permits modeling of continuous nonlinear load- 

deflection behavior. However, joint load-deflection response can exhibit a region of dead band where 
essentially no force is required to produce a relative displacement between the joint ends. This dead 
band can be modeled in a piecewise manner. Figure 8 shows load-deflection response in the presence 
of dead band C. In addition, the initial position of the joint is described by the quantity Cj. The 

force transmission of the joint is 

(9) 

(C C 

n , C \r ( C 
F = £ k^ (^ - *b - 2 + °I) (tfa - tf& > "2 - Cj 

r=l 
n / C \r ( C F=   E^Ua-^ + ^+C/J (tßa-^b<-^-Cl 

For generality, equation (9) has been used in the spring element formulation. 
A one-dimensional viscous damper element similar to the spring element formulation has been 

formulated to permit modeling of viscous damping mechanisms. Nonlinear viscous damping has 
been modeled with displacement-dependent viscous parameters. 
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The following energy dissipation term E^ has been added to the total energy functional: 

n 
Ed = J2 Cri> (^o _ ^b) (^a - fPbY 

r=l 

This energy dissipation term reduces to classic linear rate-dependent viscous damping for n — 1. For 
n > 1, nonlinear damping is modeled as being dependent on both velocity and displacement. This 
allows general treatment of nonlinear rate-dependent damping mechanisms. 

A one-dimensional friction element has been formulated to permit modeling of frictional damping 
mechanisms. The energy dissipation term is defined as 

Ed = E FU Wa - ^bY [sgn (j>a ~ k) 
r=l 

This energy dissipation term reduces to classic Coulomb friction for n = 1. For n > 1, amplitude- 
dependent friction can be modeled. 

The governing equations for the entire structure are obtained from assembly of the elemental 
contributions. The structure governing equations given can be integrated in time to solve for the time 
history response of the structure. An explicit half-station central-difference integration technique 
has been used in this study. The disadvantage of explicit integration is the small time-step size 
required for numerical stability. The finite-element analysis program as it currently exists can solve 
for structures with up to 150 degrees of freedom using approximately 200 kilobytes of core memory. 
The next section presents numerical results of the finite-element program for several beam and truss 
structures with linear and nonlinear joints. 

Results and Discussion 

This section presents numerical solutions from the finite-element program to study the effects of 
joints on transient response of beam and truss structures. In addition, eigenvalue analysis has been 
performed to study the sensitivity of the fundamental vibration frequency to changes in linear joint 

stiffness. 
A beam with joints at each end has been analyzed to study the behavior of individual truss 

members. The beam was loaded with a step load such that the frequency and amplitude of vibration 
could be determined from the transient response. Changes in global beam response because of 
changes in joint stiffness characteristics have been investigated and beam response with nonlinear 
joint stiffness has been compared with that with linearized joint stiffness. Viscous and friction 
damping in the joints have been modeled to evaluate global beam damping. 

Also, the transient response of a planar, cantilevered, four-bay truss subjected to a tip step load 
has been modeled to study global truss response. The truss response with nonlinear joint stiffness 
and with linearized joint stiffness is presented. Damping of global truss response resulting from 
friction damping in the joints is also shown. 

In addition, the sensitivity of beam deformations to changes in linear joint stiffness has been 
analyzed. Expressions for beam response with joints have been used to compute sensitivity 
derivatives of beam response to changes in joint stiffness. The sensitivity of the fundamental truss 
frequency has been numerically evaluated by random perturbations in joint stiffness in each of the 
truss structure joints. Thirty-five cases have been analyzed to obtain a limited statistical basis for 
predicting the sensitivity of structural response to perturbations in linear joint stiffness. 

Beam Response 

In order to assess the behavior of individual truss members, a beam with joints at each end 
(shown in fig. 19) has been studied. The beam has homogeneous properties; however, joints attach 
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the beam to the ground. The beam properties represent those of proposed Space Station truss 
members given in reference 2. The beam is a 2-in.-diameter tube with a 0.060-in. wall thickness and 
is 108 in. long. Graphite/epoxy materials with the following properties were used to construct the 
beam: 

E = 40.7 x 106 lb/in2 

G = 7 x 105 lb/in2 

p= 1.132 x 10"4 lb-sec2/in4 

For planar vibrations, three degrees of freedom have been permitted for each node. Each joint consists 
of three spring elements ku, kw, and k^, one in each degree of freedom. Linear joint stiffnesses have 
been normalized with the linear beam stiffness properties such that 

7    _     ku 7    _     kw 7    _     "•</> /1fl-, 
ku'EA/£        kw~ EI/P        k<t>~4EI/i [1U) 

Each joint has a lumped mass of 0.000826 lb-sec2/in. and a rotational inertia of 0.000758 lb-in-sec2. 

Effect of joint stiffness on beam response. The rotational restraint provided by the joint can 
significantly alter the lateral vibration frequency of the beam shown in figure 19. Figure 20 shows 
the effect of joint rotational stiffness k^ on the fundamental beam frequency. (The stiffnesses ku 

and kw have been set to large values to simulate rigid connections to ground in the axial and lateral 
directions.) For k^ = 0, the beam is simply supported (üJ/OJSS — 1.0). As the stiffness increases, 
the frequency of vibration asymptotically approaches the clamped-clamped frequency. This result 
is certainly well understood. However, the slope of the curve of figure 20 gives a great deal of 
insight into the importance of the rotational stiffness. For example, as k^ approaches zero, further 

reductions in k^ because of nonlinearities would have a very small effect. Similarly, as k^ becomes 
very large, hardening nonlinearities would also produce little change. Thus, to study the effect of 
joint nonlinearities on beam response, it is reasonable to choose k\p between 0.3 and 10.0. 

To study nonlinear effects, the beam response to a step load (as indicated in fig. 19) has been 
calculated. The joint rotational stiffness has a hardening nonlinearity defined by 

k^ = 5 x 105 + 5 x 1012 (<^joint)2 in-lb 

where 4>]omt ls the rotational displacement of the joint. The response under a 10-lb load is shown in 

figure 21. For k^ = 1.93 (k^ = 5 x 105 in-lb j the beam response is shown by the solid curve. The 

beam responds at predominantly one frequency (/ = 74.6 Hz), although higher vibration modes have 
been excited, as shown by the slight change in amplitude from peak to peak. The beam response 
with nonlinear joint stiffness is shown by the dashed curve of figure 21. The response with hardening 
joint stiffness has a higher frequency (/ = 81.8 Hz) and a decrease in amplitude compared with the 
response with linear joint stiffness. Nevertheless, the response is nearly sinusoidal, which indicates 
the possibility of linearization. 

The nonlinear effect of dead band is shown in figure 22 for k^ = 5 x 105 in-lb, C = 0.001 rad, 
and Cj — 0 rad. The dashed curve representing the nonlinear response shows a decrease in frequency 
(/ = 64.8 Hz) and an increase in amplitude compared with the linear response. The response remains 
sinusoidal even with the joint dead band. 

Since both hardening stiffness and dead band result in sinusoidal response, it appears that some 
form of linearization is possible. Figure 23 shows the beam response with joint stiffness linearized 
to match the frequency of the nonlinear beam response. Figure 23(a) shows the linearized response 
(k^ = 6.7 x 105 in-lb) agrees with the nonlinear response in frequency, but the amplitude of vibration 
is smaller than the response with hardening joint stiffness. Similarly, figure 23(b) shows the linearized 
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response with k^ = 2Ax 105 in-lb agrees with the nonlinear response in frequency, but the amplitude 
is smaller than the response with the joint dead band. These results indicate that joint nonlinearities 
do result in true nonlinear global response; however, the frequency of vibration can be approximated 
with linear analysis for steady-state vibrations. 

Effect of joint damping on beam response. Joint damping has been modeled with viscous and 
frictional elements in parallel with the rotational spring elements which represent the joint stiffness. 
Figure 24 shows the effect of joint viscous damping (c^ = 300 lb-in-sec/rad) on beam response under 
a 10-lb load. The dashed curve shows the response with the same dead band nonlinearity as used 
in figure 2. The vibration amplitude decays with time and approaches the static equilibrium value 
of displacement. The frequency of vibration also decreases with decreasing amplitude. The solid 
curve of figure 24 shows the response of a beam with c^ — 300 lb-in-sec/rad and with the linearized 
stiffness from figure 23(b). The linearized response predicts the time of the first peak; however, the 
remainder of the response differs considerably from the true nonlinear response because of the dead 
band and the variation of frequency with decaying amplitude. Figure 25 shows the response of a 
beam with frictional damping in the joints (F? = 20 in-lb). The dashed curve shows the response 
of a beam with joint dead band and friction. The vibration amplitude and frequency both decrease 
with time. The solid curve shows the beam response with linearized joint stiffness and F? = 20 in-lb. 
The responses differ in both amplitude and frequency. It is interesting to note that although the 
linearized response contains only friction damping, the decay rate is not linear. This nonlinear decay 
rate may be attributed to the nonproportional nature of friction damping when present only in joints. 

To summarize, it appears nonlinear joint stiffness can have significant effects on beam response. 
For constant vibration amplitudes, such as for steady-state vibrations or for undamped step loading, 
the nonlinear stiffness can be linearized to simulate the frequency of beam vibration with nonlinear 
joints. However, when the peak vibration amplitudes change with time because of damping, the 
frequency of vibration does not remain constant and cannot be linearized. 

Truss Response 

A cantilevered, four-bay truss, shown in figure 26, has been studied. The truss consists of 
16 beam elements with the same properties as those discussed in the Beam Response section. There 
are 32 joints in the truss, 1 at each end of every beam. Both eigenvalue and transient response 
analyses have been performed. 

Effect of joint stiffness on truss response. The stiffness of truss structures is strongly influenced 
by the axial stiffness of the joints. Figure 27 shows the frequency of the lateral bending truss mode 
as the stiffness parameter ku is changed. (The stiffnesses kw and k^ have been set to large values to 

simulate rigid connections in the lateral and rotational directions.) For ku = 0, the truss frequency 
vanishes. As ku increases, the truss frequency increases asymptotically to 35.2 Hz. A value of 
ku = 0.726 has been chosen to study the transient response of the truss. 

The transient response of the truss with an external step load of 10 lb has been simulated. 
As shown in figure 26, the load is applied at the free end. Figure 28 shows the response at the 
point of loading. The solid curve is for a linear axial joint stiffness of ku = 1 X 105 lb/in. The 
response is dominated by one frequency, / = 20.9 Hz. Also shown in figure 28 is a dashed curve 
representing the response with dead band in the joints (ku = 1 x 105 lb/in., C = 0.0015 in., and 
Cj = 0 in.). The response with joint dead band occurs with a lower frequency (/ = 16.0 Hz) 
and a much higher amplitude than the response with linear joint stiffness. Using a lower linearized 
stiffness of ku = 4.9 x 104 lb/in., which takes the dead band into account, one derives the solid curve 
in figure 29. Then, the frequencies of response of both the linearized and the nonlinear response 
agree, although a difference in amplitude exists. Thus, as was the case for the beam, the truss 
response frequency can be simulated with linearized analysis for steady-state vibration. 
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Effect of joint damping on truss response. To evaluate the effect of joint damping on the response 
of the truss, friction elements have been placed in parallel with each joint axial spring element. 
Figure 30 shows the response of the truss with ku = 1 X 105 lb/in., C = 0.0015 in., and Cj = 0 in. 
in each joint. The dashed curve shows the response of the truss without damping. The solid curve, 
shows the response with F? = 15 lb. As is the case for the beam, the frequency of the response with 
nonlinear joint stiffness changes with time as the amplitude decays. 

The degree of frequency shift because of joint dead band is directly related to the amplitude of 
vibration. For large vibration amplitudes, the additional displacement because of joint dead band is 
small, and the total reduction in joint stiffness and structural frequency would be small. For small 
vibration amplitudes, joint dead band can add significantly to the total joint displacement whereby 
the effective joint stiffness is reduced. This effective reduction in joint stiffness may or may not have 
an appreciable effect on global structural response, depending on the sensitivity of the response to 
joint stiffness. The next section contains a discussion of the sensitivity of global beam response to 
changes in joint stiffness. 

Sensitivity of Global Response to Variations in Joint Stiffness 

A beam with joints on each end has been analyzed to determine the sensitivity of beam 
deformations to variations in joint stiffness. Expressions for beam displacements with and without 
joints are presented. These expressions enable the analyst to determine when the joint flexibility 
needs to be modeled. Derivatives of these expressions with respect to the joint stiffness also allow one 
to determine the importance of nonlinearities. A truss structure has also been studied to determine 
the effect of random perturbations of joint stiffness. The axial stiffnesses of 32 joints have been 
perturbed, and the fundamental frequency of the truss was computed for 35 different cases. The 
analysis of a beam with joints is presented first, followed by the truss-joint perturbation study. 

Sensitivity of beam deformation to joint stiffness. Two beams shown in figure 31 have been used to 
determine the sensitivity of beam deformations. The first beam (fig. 31(a)) has two nodes, nodes a 
and d, with displacement and force vectors, represented by ^i? and F^, as follows: 

^R = 

r ua 1 (Pa 
Wa Qa 
<fia 

FR = < 
PA 

Wd Qd 
\4>d > tTd 

where P, Q, and T are the corresponding forces for motions u, w, and 4>. If node d is constrained to 
the ground and external forces are applied only at the free end (as would be the case for a cantilever 
beam), the displacement and force vectors become 

*«-{*?}    '« = {&} 
The deformations of the cantilever beam can be computed with a linear beam stiffness matrix such 
that 

F#a = ^Ra^Ra (11) 
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Equation (11) can be rewritten as 
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Equation (12) relates displacements of the free end of the beam to applied forces. 
A similar expression for beam deformations can be obtained for a beam with two joints at each 

end, as shown in figure 31(b). This beam has four nodes, and the displacement and force vectors are 

i>J Fjb 
Fjc 

If we define nodes a and d to be boundary nodes with displacement tf)j and nodes b and c to be 
internal nodes with displacement ijjj, the internal nodes can be removed through static condensation. 
For 

*? \i>jdj ^ 
i - l^l>jb\ 

the beam deformations are computed by 
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Equation (13) is obtained through use of a linear beam stiffness matrix and springs which represent 
the joints. To remove nodes b and c, equation (13) is rewritten as 

?B KBB_KBl(KIiy1
KIB 

^ 

If node d is constrained to the ground and forces are applied only to node a, 

,I,B _ \^Ja\ T?B _ / FJa 

The deformation of node a can be written as tpja — KJftFja, or 

ipJa = 

£ku+2£ 
EAku 

0 

0 

0 0 

(4£3~k<j,+3£3)kw+2l3k<j, 2£2k4l+£2 

WEIkwkj, 

2£2k4,+£2 

4E/L, 

\EIk$ 

2£k4,+£ 
2EIkj, 

Ja (14) 

where ku, kw, and k^ are defined by equation (10). 
Equations (12) and (14) can be used to determine the change in beam deformations when joints 

are present. If equal loads are applied to the beam without joints and to the beam with joints, 

Ffia = Vja and 

K-Rai'Ra = ^Ja^Ja 

Thus, the displacement amplification with joints is 

^Ja = KJaKRa^Ra 

or 

*l>Ja = 

ku 

o 

+ 
2fc* 

0 

kw       2kj 

+ 2L, 

1>Ra (15) 

For Fja = Ffta, equation (15) may be used to assess the change in beam deformation when joints are 
present. Figure 32 shows the effect of joint stiffness on beam deformations. Figure 32(a) shows the 
change in axial displacement ratio as the joint axial stiffness ku is varied. As ku increases, the axial 
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displacement becomes asymptotic to the displacement of a beam without joints (i.e., UJ/UR = 1). 
The sensitivity of the response to changes in axial joint stiffness is 

dk. 
-ll>Ja = 

k2 0    0 

0 0    0 

0 0   0 

1>Ra (16) 

Equation (16) gives the rate of change in axial displacement for changes in ku. 
Figure 32(b) shows the change in lateral displacement as kw is changed. We obtain this curve 

by letting k^ approach infinity. Thus, the diagonal term reduces to WJ/WR = 1+ \2/kw). The rate 

of change as kw is varied is 
ro 0 0 

dk ^Ja = 
0 

0 

2 
k2 

0 

e 
k2 

0 

*l>Ra (17) 

Figure 32(c) shows the effect of rotational stiffness k^ on beam rotational displacement.   The 

rate of change of beam rotation as kj, is changed is 

dk, 
-i>Ja 

3 
2k2 

0 
I 

2k2 

<p 

1 
2k2 

^Ra (18) 

Equation (15) is useful for determining if the joint flexibility needs to be modeled in a truss structure. 
Above certain threshold values of joint stiffness, the joint deformations can be neglected relative to 
the beam deformations. For values of joint stiffness above these threshold values, only rigid beam- 
to-beam connections are necessary in the analysis of a truss. Equations (16), (17), and (18) may 
be used to determine the sensitivity of the beam deformations to perturbations in joint stiffness. 
These equations are useful for identifying the importance of nonlinearities in joint stiffness. Since 
equations (15), (16), (17), and (18) were obtained by modeling the beam with a single linear beam 
element, these equations should be conservative in the sense that actual beams would be even more 
flexible than those analyzed herein. Thus, if the joint stiffness has a negligible effect when computed 
from equation (15), it will certainly be negligible for actual beams. The next section describes the 
effect of random perturbations in joint stiffness for a truss structure. 

Sensitivity of truss frequency to perturbations in joint stiffness. The truss structure shown in 
figure 26 (without any joint mass) has been analyzed with random perturbations in the axial joint 
stiffness. A value of ku = 0.726 has been used as an average value about which the ^stiffness was 
perturbed. From equation (16), the rate of change of the effective beam stiffness with ku = 0.726 is 

d 
d  ±L = 3.798 

UR 

Thus, the truss response should be quite sensitive to uniform changes in joint stiffness. 
The average axial joint stiffness was randomly perturbed by ±50 percent for each of the 32 truss 

joints. That is, 

0.363 < ku < 1-088 
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For uniform change in axial stiffness, figure 27 indicates that the frequency of the truss will range 
from 16.9 Hz at ku = 0.363 to 24.8 Hz at ~ku = 1.088. The frequency of the truss with an average 
value of joint stiffness of 0.726 is 21.9 Hz. The truss frequency is indeed quite sensitive to uniform 

changes in joint stiffness about ku = 0.726. 
To assess the effect of random changes in joint stiffness, 35 cases were analyzed to determine 

the frequency of the truss with random perturbations of each of the 32 joints. Figure 33 shows the 
results for each of the 35 cases. The fundamental truss frequency has a mean value of 21.2 Hz with 

a standard deviation of 0.81 Hz. 
This moderate variation in frequency shows that the global response may be approximated from 

the average values of joint stiffness. Even with a ±50-percent perturbation in stiffness, the global 
frequency change is small. Thus, in the analysis of large truss structures, using the average value of 
joint stiffness may be adequate to predict global structural behavior. This will greatly reduce the 
analysis and tracking requirements for modeling each joint with differing stiffnesses. 

Conclusions 
This study reports a straightforward method for testing joints to determine stiffness and damping 

coefficients of joint analysis models. The focus of this effort was to obtain finite-element joint models 
which exhibited load-deflection behavior similar to the measured load-deflection behavior of actual 
joints. Experiments were used to determine stiffness and damping nonlinearities typical of joint 
hardware. An algorithm for computing coefficients of analytical joint models based on test data 
was developed which permits analytical models, linear and nonlinear, to be studied such that the 
load-deflection behavior exhibited in the experiments can be simulated. 

Spring, viscous damper, and friction damper elements were formulated and included in an existing 
finite-element computer code. Beams with joints have been loaded and their transient response 
simulated with the finite-element program. The effect of linear and nonlinear joint stiffness on the 
beam vibration frequency and amplitude was then studied. A truss structure with 32 joints has been 
analyzed to study the effect of joints on global response. Expressions for predicting the sensitivity 
of beam deformations to changes in joint stiffness have also been derived. In addition, random 
perturbations have been used to evaluate the effect of changes in joint stiffness on the frequency of 

a truss bending mode. 
Results from the present study indicate joint stiffness nonlinearities produced nonlinear dynamic 

response in beam and truss structures for certain joint stiffnesses. For constant vibration amplitude, 
joint stiffness nonlinearities produced a sinusoidal beam and truss response and the frequency of 
vibration could be simulated with linearized joint stiffness. However, inaccurate amplitudes of 
vibration were predicted with the linearized analysis. Random perturbations of joint stiffness 
produced small changes in global frequency, which indicates the average value of joint stiffness 
may be adequate to predict global structural behavior. Sensitivity analysis of beams with joints has 
also been used to develop equations that show values of joint stiffness exist above which the joint 
flexibility can be neglected in truss structure analysis. The relative stiffness of the joints compared 
with the truss members is a major parameter that determines the need for modeling the joints. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
January 13, 1987 
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Figure 4. Flowchart for empirical joint model development. 
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Figure 5. Empirical joint models for material stiffness and damping analysis. 
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Figure 7. Load-deflection shape functions for constant and variable coefficients. 
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Figure 10. General models for joint simulations. 
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(a) Cluster joint. (b) Clevis joint. 

Figure 11. Typical truss joints for space applications. 
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Figure 12. Joint load-deflection test data measured at frequency of 1 Hz. 
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Figure 13. Three-pass solution strategy used in present study. 
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Figure 14. Load-deflection curve fit with simulated data and constant-coefficient MSA model. 
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Figure 15. Load-deflection curve fit with nonlinear simulated data and constant-coefficient MSA model. 
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Figure 16. Load-deflection curve fit with nonlinear simulated data and variable-coefficient MSA model. 
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Figure 17. Load-deflection curve fit with test data and variable-coefficient MSA model. 
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Figure 19. Built-in beam with end joints. 

'1 

'<D. 

kw§ku\ 
"V XX 

4r 

Frequency 
ratio, 

cd 2 
cd 

SS 

0.1 
i "i i 11 iii      i   i i 1111ii i \ i 1111il 

1.0 10.0 

Rotational stiffness parameter, k 

100.0 

(D 

Figure 20. Effect of joint rotational stiffness on beam frequency. 
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Figure 21. Effect of nonlinear joint stiffness on beam response. 

.05 

.04 

,03 

I1           n           ',           I1            '1           ,\ 
''        II        ',        I1        'I        ,1 

1 '           1 1           ',           1'           II           1 
' '          1 1           ' 1           1 '           1 1          1 
I  '           It           '  1           1  '           II           , 

_ I   '          1   1          '   ,          1   '          1   1          , 
I   '         I   1         '   1         1   '         II         1 
'   '         1   1         '   1         1   '         II         1 
1   '         1    1         '    1         1    '         II         , 
'    '         I    1        '    1        1    '        I    1        , 
1    '        11        '    1       1    '        II        1 

'   1                              " 
1    1                             '   ' 
'     I                           ' 
1      1                          ' 

'       1                         ' 

1         I                       ' 
'         I                       ' 

1                      '          '                      ' 
1                     '           '                     ' 

1                    '   |\  1                    f 1 

I     Ml1     /1 
1    ' 1 p    I 
3     '     i      f 1 

If 11       '        '       [    1 

■1        I      l1       LI 
il   '!   I1    F 

il   '      I1   r 

' 1 p Ikl/ :,<;V ,w w  i   V Wi 
.025      .050      .075      .100 .125 

Time, sec 

Linear 

Nonlinear 

Figure 22. Effect of joint dead band on beam response. 
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(a) For hardening nonlinearity. 

Figure 23. Beam response with linearized joint stiffness. 

Linearized 

Nonlinear 

.05 r 

.04 - 

.03 h 
Lateral 

displacement, 
in- .02 

.01 

Linearized 

Nonlinear 

.025      .050      .075      .100 

Time, sec 

(b) For dead band nonlinearity. 

Figure 23. Concluded. 
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Figure 24. Viscous damped beam response with nonlinear and linearized joint stiffness. 
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Figure 25. Friction damped beam response with nonlinear and linearized joint stiffness. 
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Figure 26. Cantilevered, four-bay truss with joints. 
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Figure 27. Effect of joint axial stiffness on truss frequency. 
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Figure 28. Effect of joint dead band on truss frequency. 
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Figure 29. Truss response with linearized joint stiffness for dead band nonlinearity. 
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Figure 30. Friction damped truss response with nonlinear joint stiffness. 
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Figure 31. Beams used in deformation sensitivity study. 
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Figure 32. Sensitivity of beam deformations to joint stiffness. 
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Figure 33. Sensitivity of truss frequency to random perturbations of joint axial stiffness. 
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