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NOMENCLATURE

Aj - material constants for orthotropic materials

Ex,E* - elasticity moduli in x direction

EyE* - elasticity moduli in y direction
y

E - elasticity modulus in z direction
6x,G - shear moduli in x-y plane

xy xy
Gxz - shear modulus in x-z plane

G - shear modulus in y-z plane

a.. - material constants for .orthotropic materials

a - half crack length for the crack in the
first strip

b - half crack length for the crack in the

second strip

c,d - crack tip coordinates in second strip

h,- half width of the first strip

hz - half width of the second strip

- half crack length for the case when the
crack crosses the interface

P10P- crack surface tractions

ui- displacements in x- direction

vi - -displacements in y- direction

w - displacements in z- direction

x,y,z - cartesian coordinate system

x,,y - coordinates for the first strip

x2 ,y - coordinates for the second strip

- material constants defined by equations
(2.15), (3.5) and (3.8)

-ix-



Cxey,.z ,  - components of strain tensor

Yxy,YyzYxz

yl~i- material constants defined in Appendix A
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ABSTRACT

The fracture problem of laminated plates which consist

of bonded orthotropic layers is studied. It is assumed

that the medium contains periodic cracks normal to the bi-

material interfaces and the external loads are applied away

from the crack region. The field equations for an elastic

orthotropic body are transformed to give the displacement

and stress expressions for each layer or str'ip. The un-

known functions in these expressions are found by satisfy-

ing the remaining boundary and continuity conditions. A

system of singular integral equations is obtained from the

mixed boundary conditions. Three cases are. considered:

a) The case of internal cracks

b) The case of broken laminates

c) The case of a crack crossing the interface.

The singular behavior around the crack tip and at the bi-

material interface is studied. It is s0own that the crack

surface displacement derivative has a power singularity for

practical orthotropic materials when the crack touches the

interface, i.e., for case (b). In studying the singular

behavior at the bimaterial interfaces in case (c), it is

found that for some orthotropic material combinations there

is no singularity in the crack surface displacement deriva-

tives and the stresses. In each case the stress intensity



factors are computed for various material combinations

and various crack geometries. The results fdr orthotropic

materials are discussed and are compared with those for

Isotropic materials.

-2-



1. INTRODUCTION

In structural design one of the most important consid-

erations is the fracture of individual components. Al-

though, fracture may not always mean total failure, it is

considered in modern engineering as an important problem

for safe and economic design of structures. It would be

very attractive to develop special types of designs for

which the structural resistance to fatigue crack propaga-

tion is improved. In the aerospace industry, the use of

composite sheet materials with buffer strips parallel to

the main load-carrying laminates seems to be such a design

practice. The process of manufacturing composites gives

the opportunity to improve the structural resistance to

fatigue crack propagation by strengthening the material in

certain directions. The increasing use of composites in

structures generates new problems for the structural de-

signer. Among these problems, we are mainly interested in

the fracture of layered composite materials.

There are two main problems in studying the fracture

of composites: the development of an appropriate failure

criterion and a mathematical model for the calculation of

the related load factor. The failure criterion affects

the course of the analytical work in the sense that it is

the failure criterion which generally determines the phys-

ical quantities that one should compute (such as the stress

-3-



intensity factor, the strain energy release rate, COD,

etc.). There are many failure criteria or theories which

are used to predict failure of structures. In Elastic

Fracture Mechanics where only small scale yielding is al-

lowed, K < KIC is such a criterion. In this case failure

occurs when the calculated value of the stress intensity

factor reaches a critical value, Kic, which can be deter-

mined experimentally as a material property. There are

also other one-parameter failure criteria (such as critical

plastic stress intensity factor Kpc and J integral) which

have been recently proposed tolpredict failure from elas-

tic to fully plastic range. K is a very highly effective

correlation parameter in studying the fatigue crack prop-

agation phenomena. In aerospace structures the basic

problem is the nucleation and propagation of fatigue crack

which may eventually reach a critical size causing cata-

strophic failure. That is why, in this study we focus our

interest to the computation of the stress intensity factors

and in the investigation of the singular behavior of the

stress state around the cracktips.

In studying the fracture problem of composites, a

mathematical model, which will reflect the geometrical and

physical properties of the medium and the real mechanism

of fracture, is needed. Because of mathematical diffi-

culties and the lengthy computation that the analysis

-4-
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L

requires, in the recent studies the geometry and the ma-

terial properties have been considerably simplified. The

problem of a multi-layered isotropic medium, which consists

of many layers and where a crack normal to the interface

can appear, has been treated by Hilton and Sih [1]. In

this problem the geometry is simplified to a single layer

between two dissimilar half-planes where the elastic prop-

erties are averaged. The same problem has been considered

by Bogy [2]. The problem of a broken laminate between two

half planes has been investigated by Ashbaugh [3] and Gupta

[4]. The extension of the problem treated by Hilton and

Sih to orthotropic media has been solved by Arin [5]. The

fracture problem of a composite plate which consists of

parallel load-carrying laminates and buffer strips has re-

cently been solved by Erdogan and Bakioglu [6]. In this

work the load carrying laminates and buffers are consid-

ered to be isotropic and linearly elastic. The orthotropic

case of the problem treated in [3] and [4] has also been

solved by Arin [7].

The objective of this work is to investigate the

fracture problem of composite plates containing periodic

buffer strips. The laminates and buffer strips are assumed

to be linearly elastic and orthotropic. In general, this

is the case in the actual plate and shell structures such

as those, for example, which consist of boron-epoxy

-5-



composites. It is also assumed that the fatigue cracks

may appear and propagate in main laminates, in buffer

strips or in both normal to the interfaces. The external

load is applied to the plate parallel to the strips and

away from the crack region. Three different problems are

studied: the internal crack problem, the case of broken

laminates and the case of a crack crossing the interface.

A general formulation of the problem is given for plane

strain and generalized plane stress cases by the use of

Fourier Integral Transform Technique. The singular be-

havior around ends and at the bimaterial interfaces is

studied. The resulting singular integral equations are

solved numerically and the stress intensity factors are

calculated for various crack geometries and various ma-

terial combinations.

-6-



2. ELASTICITY OF AN ANISOTROPIC ELASTIC BODY

For an anisotropic elastic body, in the absence of

body forces, the equations which relate the field quanti-

ties can be written as follows:

2.1 The Equilibrium Equations

+ + = 0

3y 3z

+ acy+ =~ 0
ax ay 3z

-=+ + o (2.1)
ax ay.az

2.2 Strain-Displacement Relations

x = 2._.av awCx ax a y "" ' 'z :az

3v 3w 3)w au _au + v+yz 2+ y Yxz=- +  
' Yxy -Y- ax

(2.2)

2.3 Stress-Strain Relations

°x cx
oy Cy i,j = 1,6

a zcTyz yz
L Y, A.. = Aj i

xz xxY Yxy (2.3)

-7
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2.4 The Field Equations for an Orthotropic Body

For an orthotropic solid the matrix [Aij] is:

A11  A12  A13  0 0 0

A12  A22  A2 3  0 0 0

A~,~ A13  A 23  A 33  A

~i = 0 0 0 A44 0 0

0 0 0 0 A5 5  0

0 0 0 0 0 A66  (2.4)

Defining the inverse of [Aij by

(aij] = [Ai j ] " I

for orthotropic materials we have:

1 yX Vzx
- 0 0 0

x y Ez

-x y z

aij= 0
E 0 0 0 0

yz

0 0 0 a 0
-xz

0 0 0 0 0
xy

ExVyx E yvxy E yEvzy E zVyz z xz E xvzx

(2.5)

-8-



Substituting (2.2) into (2.3) and using (2.1) and (.2.4),

the stresses and the equilibrium equations can be expressed

in terms of the displacements as follows:

A= All u + A12  4 A13= 11u 12v a 133

A1 + A22 Lv + A23  "

z A 1u + A 2v+A aw

z =A 13  + A23  + A33 z

T z = A44(2Z+ a)

yz 55 ax 3z

T 
=  A (2 ) (2.6)

32u 32u a2u 32v 32wAll * + A66 -= + A55 ; + (A12+A66) 3 + (A13+A55) 3 
= 0

2V + 2 a2V 92V~

A66 3x+ A22 T + A44 a6 + (A12+A66 3+A44) )-
=yz 0

A55 w + w w 63 ( 2 + 4 )a~wv
___ ___ _2W 32U a

2vA55 + A44 -y 
+ A33 5 + (A13+A55) T + (A23+A44) a = 0

(2.7)

2.4.1 Case of Plane Strain

For the plane strain case we have:

u = u(x,y) , v = v(x~y) , w . 0 (2.8)

and from (2.2),

-9-. , .. .. .



3u _ av au 3v

x ' y y " 'xy -- y 3x

z  0 Yyz 0 Yxz 0 (2.9)

Thus, th. stress-displacement relations and the equilib-

rium equations become:

au v
a x =Al a-u + AlEv

= 11 Tx * 12 By

oy A12 3U + A 2
3u 3v

= A13 ( + A2 3

xy A66 (B+ ax

ryz  =0 (2.10)

A U+A U +u(A + -A = 0
11 3x 66 y 12 66) 8xay

66 +A( + A6) -- u = 0 (2.11)

A66 + A22 1 6+ 6 2,ux "(y

2.4.2 Case of Generalized Plane Stress

In this case since =x = z= 0 from (2.3), for

the average stresses and strains we can write:

Cy = [u By

-10-



where

1 1x y
E I a~

x y y y
( v 'xy 1 0 v *i l

EE0

0 0 0 0 G Y

andA1 - v ) (2.12)

a x y xy yx

The equilibrium equations reduce to:

2 U  U- +u + 2v

1 i + A3 3 Y + (A1 2 4 33) a = 0

A33 R + A22 T + (A12 + A33 ) - = 0 (2.13)

Considering the structure of equations (2.11) and (2.13),

the equilibrium equations can be written for plane strain

and generalized plane stress cases in the following form:

32U + 32u + 2V 0
1 +T-57  +8 3 ayax

32v 32v 2u
TX= +  2 T -r + 83 axay = 0 (2.14)

where

A11 A2 2  + A12
12 v_- , 13 -- for plane strain

'6666 6

and

= A! 22  = 12s A 2  A 3  1 + L_ for plane stress.
A33  A33 A33

(2.15)

-11-



s3. DISPLACEMENT AND STRESS FIELDS FOR STRIPS

The two-dimensional composite medium is formed of two

sets of periodically arranged strips having widths 2h, and

2h2 as shown in Figure 1. They are perfectly bonded along

their straight boundaries, and contain symmetrically lo-

cated cracks normal to the interfaces, of length 2a and 2b

respectively. The load is applied away from the crack

region, such that the crack plane is a plane of symmetry.

Using the usual superposition technique, the solution

of the actual traction-free crack problem may be obtained

by superposing the homogeneous uncracked strip solution to

the solution of a cracked strip loaded with self-equilibra-

ting crack surface tractions (see Figure 2). Since we are

interested only in the computation of stress intensity

factors and the singular behavior of the stresses around

crack ends, we will consider only the singular part of the

solution, where the self-equilibrating crack tractions are

the only external forces..

First we will find solutions to (2.14) satisfying

certain boundary conditions of the strips. The combination

of these solutions will be forced to satisfy the remaining

boundary and continuity conditions.

-12-



3.1 Solutions u(a)cx,y), v (a )(X

Assume:

U (a) ~y = 2ff(a,x)cos ay da

V(a) (x~y) = ~.fg(a,x)sin ay da (3.1)
0

Substituting (3.1) into (2.14) we obtain:

d 2f a2 f+ 03a d 0

X - z a'g.- '3 a dfx .0 (3.2)

The solution of.(3.2) can be written as:

f(a,x) =A(a)eSlaX + B(a)e-slax + C(a)e S2ax + D(c)e.-s2ax

g(a~x) = 8 4A(a)eslax- B(a)e-sX +9 84C(a)eza

p(a)e-SzaX (3.3)

where sl and s2 are the roots of

s~ + a 4 s
2 ,+ 85 =0 (3.4)

and
2

83 182 -1. 82
04 51 - 5 T, 06 8 4  085

1 8s~ 1 -l 2i

07 83s 1  8 8 53s2 2

-13-



'From (3.4) we can write

1 w1 , 1wpt2  V(I- 8 4 + a 6)-77

S 2  '3 + 1w 41 8 - 06)/_7

*S3  S 4 = (3.5)

Sand s2 are both real or complex conjugates.

3.2 Solutions u (b) xy , v(b)(x

Assume:

u (b),( x.y) = h(ci,y) sin aix dci

V(b) (x-y) =. 10 X(ci,y) cos aix dci (3.6)

Substituting (3.6) into (2.14) we have:

d2h dt.=

d 21 + 83 dh -c
2
1 0 (3.7)

Solving (3.7) we obtain:

h(ct~y) - E(ci)e5cYPT+ F(ci~e51cy//Os

+ G(ci)eS?.aY//1'5 + H(ci)e-zciY/1',s-

and

I(ci.y) 09 8 E(ci)e51ciy/rO - F(c)e51iy/ /151

-14-



-s2cty//O$ H(c)e520Y/

where

1 0 ' 8/ s 21

10 -TT + (3.8)

A superscript * will be used for the material constants and

unknown functions when the above expressions are used for

the second strip.

If one examines the roots of equation (3.4), he will

realize that there are two types of orthotropic materials.

We will denote the material as type I when s1 and s2 are

real, and as type II when they are complex conjugates. We

will assume, in our analysis, that the materials of both

strips are of type I. Similar analysis can be done for

the remaining combinations.

3.3 The Displacements

For each strip, we can write:

u(x.y) u (a)(xy) + u(b)(xy)

v{x,y) = v(a)(xy) + v(b)(xy)

Noting that;

u(x.y) = - u(-x,y) and v(x,y) = - v(x,-y)

-15-



we will obtain:

For material type 1;

s w1  s2  W and a6~.88~1 are real.

Using the information given above, anid keeping in mind that

u and v vanish when y goes to infinity, for y>O0, the dis-

placement expressions can be written as follows:

u(x.y) - fA()sinh(wllx) + C(a)sinh (w3 ax)]cos ay da

+ ~.[E a -ewiaY/.17+ I~W3IaY/1j sin ax dct

v(x,y) _4 f 7 A(a)cosh(wax o 8Cacsh(w ctx)]sin ay da

r
- ign(w 1)s 9E(a~eWIY~ inw).G(a)O1iIW3aY/J

-cos ax du (3.9)

3.4 The stresses

For generalized plane stress case:

axA=~ + A12cy

Txy A33yxy (3.10)

-16-



Differentiating (3.9) and using (2.12) and (3.10),

the stress expressions can be written as:

7r(l -V * FEaewa/T

ZEXVx ax(x,y) IEae=ilyr- JoLA ~'2

eiWws IY/705]acos ax du + ~C2yA(a)cosh(wacx) + 2y4C (a)

*cosh(w 3ax)Jacos oy da

*2E f[Y5x)E(,) lw 5Oy 6+ y6 G(,)

.e-lw3IaY/ jccos ax do, + C[2y;A(cosh(wcx) + 2y8C(a).

* cosh(w3cix)Jacos ay da

Tr (x,y) [y9A(ci)sinh(w~ax) + 2y10C(a)

sinh(w 3axflctsin ay da + rI [IlE(,)e-whlc'y//v

.+ YlzG(ca)eilwaly/ ' asin ax da (.1

These expressions are valid also for the plane strain case

with the following substitutions:

V yx A 12 /A 1 1  ' xy =A 12/A 2 2 *(EY .A) = /A11

(Ex *A) = 1/A22 *

The elastic material constants yjare defined in Appendix A..

-17-



4. FORMULATION OF THE PROBLEM

The solution of'the problem may be obtained by de-

termining the unknown functions which appear in the dis-

placement and stress expressions, under the following

boundary and continuity conditions:

U1X(h 1 -y) ='au2 (-h2.y)

T XY(l') 3T 2xy(**h2'y)(O < y<=' (4.2a,b)

u1(O.y) =0 Tx(0 ,y) 0 (0 < y <a)(4.3a~b)

u (O.y) =0 T (O,y) 0 (0 < y <o)(4.4a,b)

T 2xy(x 2.,O) =0 ,l1 2<h 2  45ab

v I(xI1 ) 0 ,a<lx 11<h, (4.6a,b)

G2y(x2 %O) --P2(x2) , x21<b

v 2(X 2 90) =0 ,b<1x 2 l<h 2  (4.7a,b)

The conditions (4.3a,b) and (4.4a~b) are'satisfied iden-

tically.

-18-



Using (4.5a,b) we obtain:

Yz*"

G(a) - E(ca) G*(co) -
Y12  IF,

The mixed condition (4.6) gives:

I im fE eW, Iay/V75-/ Y1 -e-IW3 faY/ ISo axda
yLeO+ 0 'Y 5e Y

+ f[2Y7 A(a)cosh(wlOax,) + 2yaC(a)cosh(w3ax1)]acos ay da

-"~ - 2y .Pl(X 1) ,xll<a (4.8a)

and

2 f E(a)co s cxlda 0 a<fxlj<h,YlX1,O0) it Y13 0

(4.8b)

Define,

aVl (XlO)

ax, = (x 1 ) such that O(x l ) = 0 for 1x1l>a.

(4.9)

Differentiating (4.8b) with respect to x1 and taking the

inverse transform, we obtain:

Y1 3aE(a) f o4(xl)sin ax, dxI  . (4.10)

If we now substitute (4.10) into (4.8a) and evaluate

some of the integrals in dlosed form (see Appendix C) we

will end up with the following singular integral equation:
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14 dt + [2y A(a)cosh(wlaxl) +2y8C()cosh(w OA)]ad-a t0x .3

= r(1"-xyvy)
2 -Vx Vv P (Xl -a<xl<a (4.11)

where because of symmetry 4(t) -

Similarly 'defining,

v2(x2,0) 2

ax %dx2 ) such that 0(x2 )  0 for >bx2  
I 2

(4.12)

and using the mixed condition (4.7) by the same procedure

we obtain:

* b () +fE;A (a)cosh(wc x) + 2y8C (c±)coshwax)dc
'Y 4 -b t -x 2  J

2E P P2(x2) -b<x2<b (4.13)
y

The next step is to determine the unknown functions A(a),

C(a), A*(c), C*'(c). This can be done by using the contin-

uity conditions (4.1a,b) and (4.2a,b) and taking the in-

verse transforms. Then we obtain the following system of

linear equations:

2A(a)sinh(wlah,) + 2C(a)sinh(w 3ah,)

+ 2A*(a)sinh(wlzh 2) + 2C*(a)sinh(w3h 2) Rl(c)

207A(a)cosh(wlahl) + 2a8C(a)cosh(w 3ahl)

- 2B7 A*(a)cosh(wlah2) 2B8C*(a)cosh(w3ah2) = R2(c)
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2Yr3A(cx)cosh(w~cih,) + 2y4 tC(ci)cosh(w 3ah1 )

-2) YA*(a)cosh(w ah2  - 2A iy*C*(a)cosh w*ah2)=R(i

2 Y9A(a)sinh(w~ah,) + 2-y10 C(a)sinh (W3ahl),

+ 2y*X A*(a)sinh(w~ah)+ y 0 C(asnwah) R()

(4.14)

Ri(aL) and X . are defined in Appendices B and A respectively.

Solving (4.14) we obtain:

A(a) = Zcosh(w~a 1  [ 92: g2 ) + 2t h2 (ca)

R R3(cz) + R 4 (a) c)I
+~a m21(a) f 2a) 1

C1a fR (a) g C)+R 2 ()(a )
2cosh(w 3a h) ~ a T (a) * f~a h0()1

RP(t) R 4(aL) 1
* 1 (-R 1(a) a )

AC(a) I -R'~- 90(a) + R 2(a) h (a)
2cosh(wah fF2 )a

R3(a) R4 (a) 1
C (a) I~a R+ na (a) + (4.15)(,

2coshw~ah f Fa-21-y



The functions f(a), g(a) etc., used above are given in

Appendix B.

Substituting (4.15) into (4.11) and (4.13) we obtain

the following system of singular integral equations:

0t t+ Jk(xltw*t)dt -(-

-b p1(x!aa<

-b -aV

+ u k 2(x2 t) (t)dt =-24 p y P(x)

-b 2YbE 22+ k

-bx 2 <b (4.16a,b)

where

k 11 (x1,t) I L k( ae

+ k a~c)e(h I t)ab,/ 7W3i dc

* 1( 1 t) I ~ [k3(xa)e-htci~ *

+ k4(x,,a)e h2 ~v~I 3 j dcc
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k21x29 ) = T [k5(x2 'i)e-(h,-t)ai$5/I11

k22 (x2 ,t) = -- k l(x 2 ,i)e(h2t) I /Iw*
14

+ k8 (x a) e (h2t)av/Iw 31 d .(4.17)

The expressions k.(j = 1,8) are given in Appendix *B.

By letting h2 - (or hlI) one can recover the spec-

lal case studied in [5]. For a < hI and b< h2, the in-

tegrands of kernels k. (i,j = 1,2) vanish when a- and are

bounded for all values of a, except when a = .

Around a = 0 the asymptotic behavior of the inte-

grands Ii of the kernels ki is of the following form:

I (a) ' = + O( ) (i,j = 1,2) (4.18)

where the cij's are known constants. In order to obtain

a solution, one should show that the singularity due to

I/c is removable. Consider the following integral:

-a a

+ f I11(Xlpt' )d]
-23-



where c is a positive small number. Using (4.18) for the

first part of the integral, we obtain:

-a -a

+ J'o(l)d + f'IllI(xl,t,ai)di

Making use of the single-valuedness condition[a Cl 1
(t0dt = 0, the unbounded integral dcL drops out,

a fo

leaving only bounded integrals which can be evaluated numer-

ically. Using f 0(t)dt = 0 for the second crack, similarly
-b

one can show that the singularity due to 1/a cancels in

all the integrands I...
J
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5. CASE OF BROKEN LAMINATES

This is the case when one of the cracks touches the

interfaces (i.e., a= h,, or b =h2). The integral equa-

tions (4.16a,b) are still valid but some of the kernels

k are no longer bounded. For example for a = hi k 12'

k 21, k2, are boun ded but ki1 becomes unbounded as x, and

t approach the ends + h I simultaneously. In this case

the integrand 1ll of k11 diverges as a

In order to obtain the proper singularity at the

crack tips and to compute k U numerically, the singular

part, k 115, should be evaluated in closed form. In this

case, the kernel k , can be written as:

k,,(x,,t) = klls(xl,t) + klif(x1 .t)

where k 115 is the singular part and k11f is the bounded

part of k 1.

Following the procedure described in [41 k 115(x1,t)

is obtained as follows:

wrk 1 (x1,st) X 85{ (hlt)/s-Yw + wh2(l~l

+ f h-t)/B7/IWll + !w31h1
86 f[(h 1 -t)/01/LWiI + lW3s1h ]-(.w3x1)2
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-h1 < X1 .t < h 1  (5.1)

The governing singular integral equations become:

+ 1: k 2(-x TIl)(lt + (tdt h ________

h ~ 2Y14Ey p1(X1') -h1<(X1<h

7 f1b *t dt + Ih k (x t)t(t)dt + rb k22 x2 t)o (t)dt

-b tx2 1 hl 21 29 2x

Since in the integral equation (5.2b) the only singular

term is 1 the power of singularity at the end of the

internal crack-in the second layer is still 1/2. But in

(5.2a) we have further singular contribution from the ker-

nel k115 resulting in a power different than 1/2. To fi nd

this singularity power y, we will again use the procedure

described in reference [14].' throwing all the bounded

terms to the right hand side, the singular integral equa-

tioni (5.2a) can be written as follows:

Vh~ x, lls(xlltj(td I 1~1 -<xh 1  (5.3)
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wherp P(xi) is a bounded function for all values of x1 .

The unknown function *(t) can be written as (see [14]):

4(t) - F t (5.4)

S(h 2_t2)y

where F(t) is bounded and Hblder-continuous in the inter-

val Itl<h I , and O<Re(y) <1.

Define the sectionally holomorphic function:

= i lhl dt . l h F(t)eiffY

*(z) 1ji dt = .1 fh-th)(~iYtz dt@(z hl - hl {t-.hl)Y~t+hl)Y(t-z)

Then,

F(-hl)e ti _ _ 
1
_ F(hl )

(Z)1 + q (z)
(2h1 )Ysiniry (z+hl) y  (2hl)Ysinry (z-hi)y 0

(5.5)

where

leo(Z)[< YO < Re (y)

izthlIYO

C and yo are real constants.

Using (5.5), equation (5.3) takes the form:

F(-hl)Cotffy F(hl)cotTry + )85 1w, I  F(hl)

(2hl)JY(hl+x 1 )Y (2hl)y(h-Xl)Y 2 (2hl)Ysin y .I
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[ +xI +iL8)[ , Yh

[Thhxl .Y ~xl(2h, P'sin"r

+'X87 131I F(hl)___+ i
s(2h QYsinwr lw111w31l [ThLhixl + (h, x1P'J

+ Am 1w'1 F(h1 ) + l* + 11

(5.6)

where because of symmetry F(h,) =-F(-h 1).

Multiplying both sides of (5.6) by (h I+X1) and let-

ting x1  h, we obtain the following characteristic

equation:

-2coswr+A~ 1w1! + A8 w1

+ h X 87 4  +X8 ..[W3 Tfa (5.7)

where Xj's are e lastic constants defined in Appendix A.
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This. is the same equation found in [7]. Choosing the or-

thotropic elastic constants close to isotropic constants

numerically we find the same singularity power computed in

[6] and [9]. The characteristic equation (5.7) can be

solved numerically to find y. For practical orthotropic

materials equation (5.7) has only one root between O and 1.

To establish the dependence of y on the material constants

-more accurately, a separate study of equation (5.7) is

needed.
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6. CASE OF A CRACK CROSSING THE INTERFACE

To formulate this problem we will start by using the

crack configuration shown in Figure 3. In this case we

have again an internal crack in the first layer, but two

symmetrically located cracks in the second layer. Using

the symmetry property of *(t), we can write:

bk2xt)*(t)dt = ,k2(xt) - ki2(xi,-t)]o (t)dt(i = 1,2)

and

( fb + i *(t)dt (6.1)

b 2 L 2  x2j

Therefore we can write the governing singular integral

equations, by simply changing the limits of the integrals

-from (O,b) to (c,d) in equations (4.16a,b). Thus,we

obtain:

fa (t) dt + fak I  xt)o(t)dt

-a 1 -a

+ fC[k 2 (xlt) k1 2 (xi,-t) *(t )dt

- ?Yl4 Ey Pl(xl) 1a<x< a

f: + (t)dt + 'ak(x2 )dt
c 2-a
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+ ICk22~t k k2 ( 2 .)(t)dt y -x p(x)

c <X2 < d - (6.2a~b)

By letting a hl and d P2 we obtain the case of a crack

crossing the interface. As in the previous case for a =hI

and d = h 2 all the kernels ki become unbounded when x,,t

approach the ends + h I and x ,t approach the end h2 simul-

taneously. Therefore to study the singular behavior at the

interface and to make the kernels numerically integrable,

the singular parts of the kernels ki must be separated.

The kernels can be written as:

k ii(x1 ) = k.ij (x.,t) + k.j(x,t)

where k US (x.,t) is the singular and kijf(xi t) is the

bounded part. Following the same procedure used in the

previous section the expressions of k1 ~ are found as

fol lows:

+ A7f (h ./Iw3I I + iwilhi

w +lw -

Iwjs~ h 1] 2 _ (w3x1 )
2

-31 -



+ h2-t),IwI+1 3 h
C~h-t)rB*IWl+ IW3 1h1]

2 
- (w3x,)2

+ 95 t (h 2 t,,I w + Iw, 1h,
t~le~lw1 w~lh1J

2 
- (WIx)

(h -tr+ A96 2  ,Iw31+ jw3fhl
96jE ht) r,-*,/I1*13 + IW 3 1h, 1

2 _ (w3xl )2J

A k21s(x 290 A 101{C(h t)7I WI. +wlh

Eh-t) V's1I wi I + I wt Ih21-

+ 02 (h, -t),ra Iw, I4+ lw*3h2

4. A14  (-t) /IwI + I2w*Ih
[(h I-tv /WI + I w*31h2J ~(3X2)2

+A10  (hl-t)v/IwI+ 1w11 2
~r22(2,) 1 [(h2-b /w'+fw hJ-(x)2}

+ 11  (t) /IW + w 2 2

[(hz-t)yr$/IW'3 + Iw*31h ]2 (w *X )2J

* A1 2  0 r,* 1 /I~IIw2  1 X2

E2-t)'$s/w1 + Iw h2]? - (wx2)2

-32-t.rvl1+*



Separating the singular parts, equations (6.2a,b) take the

form:

1 h i [ .x kI s x i t ~

+ fhl Ckl(xt) -klls(x 1 ,tjcpt)dt

4.hk Jh2ttk* (x t)

(1-V X v Y)

214EY, p1 (x1 ) h, 11 x1< h,

and

1T_+ +k 25 xt]4*( t)dt

+ fh I[k21(x2,t) - ls't)(td

-hl

+ J(k2( 2,)+ k 2s(X2 t))(t)dt

(IVxyVyx)
- * E* P2 (x 2  c <X2< h 2.2Y14 y

(6.3a,b)
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where

ki2(xj,t) ki2(x1,t) -ki 2(xi,-t) (i = 1.2)

To find the Proper singularity power 0 at the inter-

face, we will first throw all the bounded terms to the

right hand sides of the equations as it has been done in

the previous case. Then, we obtain the following system

of equations:

-h 1  t- Ix + irk11 (xlIt)] O(t)dt

+ h2 k *(xt)*(t)dt =Q,(x1Y

-h1< X < h1

c f 2 [ 2 t+x 2  + r2 2s 2't )] * t

+ Jh [ 21s(x2,t0(t)dt =Q 2(x2')

c< X 2< h2  (6.4a,b)

where Q1(x1) and Q2(x2) are .bounded functions of xiand x2.
Considering the behavior of *(t) and *(t) at the end

po-ints, we can write:

0(t) F (t)0M z F (t) (6.5a,b)
* (h~~2)

8  ( 2-t)a(t-c)s

Define the following sectionally holoniorphic functions:

-34-



kU(Z)t f2 t) dt (6.6a.b)

From [14] and using (6.5a,b) and (6.6a,b) we have:

*F(-hl)e i  1 . F(h1)

(2hl)8 sirm (z+h1) 5 (2hl)8 sins (z-hl)a + 0o(Z)

= F*(c)ei"r 1 F*(h2) 1 *

(h2-c)
8sirm (z-c)6  (h2-c) 6sin7r (z-h 2 + W

(6.7a,b)

where *o(z) and q,*(z) are bounded functions which around
0 0

ends behave as follows:

CO so o<Re($)Ip(z)i I~h Co

10W I zthuISo

and

0oo So <Re(O)
'Ct-21 '

I*(z)I and

< I EO10< Re(S)iz<1I6o ' < 0 e

C0, Do" Eo, o o o are real constants.

Using (6.7a.b) and following the procedure used in

section 5, equations (6.4a,b) reduce to:

cotr = 0 (6.8)
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and

F(h1) -2cosirI + 1w, I + wt~~

2(h,-) sinir 4 v~ 5

p#I'l lw~lww 8 V

F~h) ' 1 I I1 ri, Twlvii 1

Oro

104 101

+ F-h 2) "9f * Iw I + 1 _ T Iw'
20 6'inT I-csr +A - r.-~ 1
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Iw+l 1 1 1 0

(6.9a,b)

Equation (6.8) gives the expected 6 = 1/2 singularity power

at the crack tip.

(6.9a,b) is a system of homogeneous linear equations

for F(hl) and F*(h 2 ). Since F(hl ) 0 0, F*(h 2 ) 0 0,

8 t 0,1 to solve the system one should equate the determ-

inant of coefficients to zero. Thus,

A() 4cos27O - 2cosnO 4109  ( ' A11

1*

+11 1 + 1 $ 1

r13) (r33 33)'

IWI + X8

[)86 v ) 8J1 1(
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1. 8 + 
11 4  1

" (r 1lr 11 ) (rlr* 3 )11 13)
+ +*1

15 (rlr33) 116 (r 13 r11)

1 3 1 1

+ A 117  * r + L1 18  ( r + l19 *
(r 13r 13) (r 13r33 ) (r33r11)

1 +
120  1 121  =0 (6.10)

(r 3 3r13 )a. (r33r33)a

where

2 2
W1  IW'IIW31 w3r11 = - ' r

rj 3- . r 3 3 =-

, 1 * /
w  

3 * W

'1 " r13  s r33

From the characteristic equation (6.10) we can determine

the singularity power 8. ,Choosing the orthotropic elastic

constants close to isotropic elastic constants, we recover

the singularity power found in [8] and [9]. Equation

(6.10) does not always have a root between 0 and 1. For

some orthotropic material combinations, there is no power

singularity at the interface. In this case one should in-

vestigate the possibility of pure imaginary or complex

roots. Numerical computation shows that there are no pure

imaginary roots or complex roots for which the real part
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is between 0 and 1. On the other hand F(h) and F*(h 2 )

are related through (6.9a) or (6.9b . This is a condition

to be used while obtaining the solution. The absence of

power singularity for some orthotropic material combina-

tions may be very important from the view point of design

applications. Therefore we will study in some detail the

behavior of the crack surface displacement derivatives and

the stresses at the interface.

Let's first investigate the possibility of a weaker

i.e., logarithmic singularity in the crack surface dis-

placement derivatives at the interface. Suppose that the

power singularity 5 at the interface is zero. Define:

i(z = h.. t-z ' = t-z

The behavior of (z) around z = + hl, and of *(z) around

z = h2 can be expressed as:

**(z)= l log(z-h l ) + 0o1(z) near z =h

(z) - log(z+h I ) + 0o2 (z) near z =

( og(z-h 2 ) + O0 3 (z) near z + h2

(6.lla,b,c)

where 00l(Z), 0 2 (z), 0 3 (z) are bounded functions.
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Using (6..lla,b,c), near x =h 1 an'd x= h 2 equations

(6.4a,b) take the following form:*

____h IWi) f~l Isini ini1L-85 2, 86 2 '787 -V 88

+ W 2) 1W. 1A 93 -1v W* I X 42w* 1 9 - T A 96  F, (X1)

(h F w I --- i I - w~ W11 -i
log(h2-,9 x 101~ -i 102 2y' 103- L'- Al04

+ _ Iw* Iw*i Iw*f1 Iw*Il F
246i- 109 2 A7 11 0 -2,r- ill1 2,,-- 11 I- F2(x2),

(6.12a,b)

where F,(x,) and F2(x2) are bounded functions.

In. order that equations (6.12 a,b) be bounded for x,=h,, x,=

h 2, the co efficients of the logarithmic terms must be zero.

Thus:

'L8 [ 86 2~ 87 2 8 2~7

A93* w*1l Iw-!' Iw*I' 0

and
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(h 1) FIw I Iw I Iw x Iwl

7 24 101 2 V- 102- 2 1- 103 2Va,14

S(h2) ,w*,w*I ,w*I' 1
17109 110, ill * 112 =0L240~ 2/, 2v

(6.13a,b)

(6.13a,b) is a system of linear equations for 0(hl) and

0*(h2). Since 0(h) and 0*(h 2 ) are different than zero,

in order to have a solution the determinant of coefficients,

A, must be zero. Numerical computation shows that A 0

and either from equation (6.13a) or (6.13b) we have:

(11

; (h2 )

and using the symmetry condition 0*(h 2 ) = - 4*(-h 2 ), we

obtain:

(hl) 1 (6.14)

*(-h )

Relation (6.14) shows that the surface displacement deriv-

ative is continuous at the interface. This is an important

result which makes the solution of the singular integral

equations easier.

To study the behavior of the stresses, let's first

write their expressions at the interface. By making use of

-4.1-



-- (3.11) and (4.15) we obtain:

WO -~V, V31 ) hhiy h =(~~*nd

a~y) xy~h a h 1Y K3 n 1)(n) 0)dn + fc

Txy -h IC
(6. 15a,b)

where K (n ,y) (j =1.4) are given in Appendix B.

The kernels K.i become unbounded as y--0 +and n+

or n-h 2 respectively. When equation (6.10-) has a root,

i.e. when the functions *(t) and .0*(t) are singular, the.

stresses have the same singularity power as we will see in

the derivation of the stress intensity factors. But it is

necessary to know whether the stresses have & logarithmic

singularity when the crack surface displacement dcrivatives

are bounded. To do that let's first separate the singular

parts of kernels K..* Following the usual proce'dure, we

obtain:

Kl15 y z_-l ., 2 2Yl w'22

13 + (h +n) + (h -)

-Yl2  hl ~ 2+lI hi-
2 2WO + (h +n) 2s 1 y1 wJ+ h
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1I 36[(h _ ) /,/W I ] +Y

+ Z 1 A 0 (yT'83+y4 84)

1 ~(h -~v/W*i
'K 2s(rIy) I (y.3 "89+y4 "90) 2(In) I] y

+ --w (Y3 19g1 4'9~2) 1 I-+

Y11 I WAR- y//y/T
K 3S(Ny) +~ z- z .L

I s Ii as

+ W1Y4 W 3 1 Yl IrOT2

W*y + h( L+(h, -n).~W/wI 2~

+ 1 _ _ _ _

Z Y13"80  [ (h _-n), / I W31)
2+ Y2

FY 3)i 8 +y 0 A 0  E(hn)lS/IWi31 +y

+- (y9"91+Yl0 A92) [( yn / ' I I 2 y

(6.16a,b,C,d)
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Keeping only the singular terms, equations (6.l5a,b) can'

be written as follows:

O(Y) fh 1l(nY)(n)dn + Jh 2 K (nY)O*)dn + A(y)
h C

Jhl IK (ny~ )dl + h2 K (y)O*(ndn + B(y) (6.17a,b)

where A(y) and B(y) are bounded functions.

Define:

Z= fl~--t an *( J12 (t dt

Considering their behavior around ends, we can write:

*(2) = (h1)log(z-h,) 0 (-h )log(z+h) I %z

and

iP (Z *(h )og(z-h) +p(z(6. 18 a.b

where 4(Z) ah4~ tp(z) are bounded functions. Making use
0 0

of (6.18a,b) and (6.14), equations (6.17a,b) become:

o~y) og y 11~3 2 'y 2 l3x8O is-

2'Yl 3X80 10-, (Y3X83+Y4X84) + 1 1W2I Y'90

+ 1 w3!I (x + + C(y)

2Y13 A80 ",
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and

T(y) D(y) (6.19a,b)

where C(y) and D(y) are bounded functions. Equation

(6.1gb) Indicateslthat the shear stress at the interface

is bounded. Since C(y) is bounded and .(h 1 ) t 0, if a(y)

is bounded the coefficient of logy in equation (6.19a)

should be zero. Numerical computation shows that the

above mentioned coefficient is identically zero. Therefore

the normal stress a at the interface is also bounded.

These are important results for orthotropic materials and

may have practical implications in designing with composite

materials.
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7. THE SOLUTION AND THE RESULTS

Since we have mainly three different problems, the

solution will be discussed in three sections.

7.1 Case of Internal Cracks.

In this case we have to solve the system of singular

equations (4.16a,b). Defining x = aK, t = ar for

-a< x, t<a and x2 = aK2, t = br for -b<x 2 , t<b after

normalization, equations (4.16ab) take the form:

10 (T) +

f1 T- f-l1

I ExYyx Pi (KI) - I<Kl< 1
Y14Ey

S dr + a k 1(iT2,T)00(-)dT + b Jk22 2 T)4o(T)&
1- 'K2 2 -l .l

- (1-vxyvx) p (K2) -l<c 2<I (7.la,b)

ZY14Ey

where the index "o" denotes the normalized quantities. To

get the complete solution we need also the single-valued-

ness conditions:

I' I "
0(T)dT 0 and 0o(T)dT 0 (7.2a,b)

Since *o(T) and 4o(T) have a power singularity -1/2 at
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the ends, the solution will be sought in the form:
*

F * F(T)
-o0 = 0 and o(T) 0

where Fo(T) and FO(T) are HWlder continuous in the interval
0 0

1 <T< 1.

Using the method described in [11] we obtain:

j 1 l-1xy 0x

- N * ~(~

-N2Y4Ey
N

FN (Tk+ aIck 0 (2) 0 nl b° r (.

j•i j = o s 2jl 2 ..

i= co N i = 1. . -

N 'y4E; ,(

N0N

Th 2 uknon (C9jFo(T ) +n Fo(T j )  +a bef foun by slvin

Fequati0 anons~(-.)= (7.3a,b,c,d). nti rbe eaemsl n

wereseintecmuainothstesitniyfco.
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The 2N unknowns F ('r.) and F*(T.) can be found by solving
01 03

equations (7.3a,b,c,d). In this problem we are mostly in-

terested in the computation of the stress intensity factors.
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The stress intensity factors may be expressed in terms of

the density functions Fo(T) and Fo(T) as follows:
0 0

For a<h1 : ka = im T7T oy(xlO)
xl-.a

and for b<h 2 : kb = m fTx2 02y(x2,O) (7.4a,b)

Making use of equations (4.16a,b) and-definitions (7.4a,b),

after lengthy algebra (see Appendix D) we obtain:

ka - 2y14 E V"
a - (1vxyvyx) 0

and

kb 2Y4E Fil) (7.5a,b)

xy- yVX .x

The computation is done for generalized plane stress case

only. Results can easily be obtained'for plane strain case

by redefining the elastic material constants. In the per-

turbation problem considered p1 and P2 are constant. As-

suming that there is no constraint in x- direction, p1 and

P2 satisfy the following condition:

p1 E
P2  E;

where E and Ey are the Young's moduli in y direction.
y y

Two material combinations are formed among the follow-

ing three materials.
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1. Ex =55.19( 109 N/m , = 17.0.8 x 109 N/m2

Gxy = 4.82 x 109 N/ , vxy = 0.036

(Ex = 8 x 106 psi) , (Ey 24.75 x 106 psi)

(%y = 0.7 x 106 psi) , (vxy = 0.036)

2. Ex =134.4 x 109 N/r2 
, 1=31.Olx 109 N/m2

Gxy =24.]2x 10 N/m2 , vxy = 0.650

(Ex = 19.5 x 106 psi) , (Ey = 4.5 x 106 psi)

(Gxy =3.5 xi 106 psi) , (v XY 0.650)

3. Ex =154.7 x 10 N/M2 , Ey =155.8x 109 N/m2

Gxy =59.65X 109 N/m2 , = 0.300

(Ex = 22.447 x 1O6 psi) , (Ey = 22.6 x 106 psi)

(xy= 8.655 x 106 psi) (Vxy = 0.300)

As it is seen from the values given above the first two

materials are orthotropic, while the third is isotropic.

The following pairs of materials are used:

Combination I: The first layer is of material 1,

the second of material 2.
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Combination 11: The first layer is of material

3, the second of material 2.

Choosing the same materials and letting a, b, hI or h2 go

to proper limits we recover all the special cases done in

[5), [6], and [10).

Figures 4-12 show some of the calculated results. In

Figures 4 and 5 the stress intensity factors ka are plotted

versus h2/h, for b=0 (there is no crack in the second ma-

terial) and for the two material combinations. For h2 = 0 ,

we recover the solution of colinear cracks imbedded in a

homogeneous material (see [10)). It is important to note

that in the colinear crack problem the material doesn't

have to be isotropic. As h2 +, ka reaches an asymptotic

value which can be found in [5]. For a fixed h2/h, ratio,

ka increases as a/h1 becomes larger.

Figures 6 and 7 show the stress intensity factors kb

for the case a = 0. In this case also, for h1  0, we ob-

tain the solution of colinear cracks. There is a critical

value of (hI/h 2 ) for which the stress intensity factor

starts to decrease as the ratio b/h2 increases. For the

examples done this critical ratio is between 0 and 0.5.

For h1 I- the stress intensity factor kb reaches an asymp-

totic value which also can be found in [5].
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The stress intensity factors ka and kb when both

layers contain cracks, are given in Figures 8-11., kb O

as (b/h2) -1, since the power singularity y is less than

0.5 when the crack in the second material touches the in-

terface. Another interesting result is obtained from the

comparison of isotropic and orthotropic materials. As it

is seen in Figure 12, for the same E and E the stress in-
y y

tensity factor ka for orthotropic materials can be larger

or smaller than the stress intensity factor ka for iso-

tropic materials depending on the other elastic constants.

One can significantly reduce k a by a convenient choice of

the elastic constants. The materials used in the compari-

son are given in Table 1. The dependence of ka on the

materials constants is given in Table 2. Gxy and Gxy are

the most important constants, while keeping E and E con-
y y

stant. To reduce the stress intensity factor ka, it is

sufficient to increase E x Gxy, Vxy or decrease Ex, .Gxys

xy"
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7.2 Case of Broken Laminates

The solution will be obtained by solving equations

(5.2a,,b), with the single-valuednes s conditions,

hi =d 0 and J b 0(t)dt =0 (7.6a,b)

1 -b

Defining again,

h=~ , 1 hl K 1 c for -h 1 <x , It <h

and

t bT2  * 1 = bic f or -< x, t< b

the normalized form of equations (5.2a,b) and(7.6a,b) can

be written as follows:

1 w (K.T I1 . 1 ~cr,~0 rjd 1  hlfk 1 (K1 9Tl)OO(r 1)dr1

.+,,T)* 2b - Y P1(Kl) -l<IC1<l

1 2 l T + If hk o(K )(r)dT+ bf k 0( ,T)4(T )dT 2
IF T22 2 l~21 2'1 l 0 -l K'2)o2 2

2y, 4E7y

oo-id 1 0 an T2ad (7.7a,b,c,d)
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To obtain the solution, we will use the numerical method

described in [11]. Hence, we obtain:

+ -1wj h k 0 jKK i TljJF (Tlj)

N
+ h1  W Tjk01fKIi.ljF T

N
+ b 7rjII F(

(1-v x v y) 0(K
2yl 4 E~ y vI

i ____+ tbk 0  T F (T

~f 2 2 2 i 2 i j 2

N
+ I T )o(~ ,l),Tj

(1-vV )vx OKi I.. r

NN
I w i(Tr1j)F 0(Tlj) =0 and F0  T j) 0.j=l

(7.8a,b,c,d)'

where

(T(T2 LO( 2)

=(1-T')y = T

p(-Y,-Y)(Tj , 1..

Pl Q-)lY(IC 1 *) =0 , 1=
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T , cos N (2j-l) , j = 1. N2N

Ii
K 2 1  COS ' - , i = 1 N-

and w (T1l) are the weights of PN -Y .-Y ) (Z lJ ).

Solving the 2N x 2N system of linear equations one

can find the 2N unknowns Fo(Tlj) and F*( ) But again
0 i o02)

we are interested in the stress intensity factors, which

can be calculated in terms of Fo(Tlj) and Fo{- )

Define:

k a  x 2. ii 2y(x2+h2 )
To 2y (x2

,o)
a 2 2

and

kb = 2i S 02y(x 2 ,0)
2

After some calculation shown in Appendix D, we have:

y. . F
(hl) Y14E*F°(1) y w I V'-5 IwIV's

ka *m + 102
]-xyvyx~snr *IW

Iw 3If37 Iw3 VT1

+ 1 13 1w311w1 * + XI 04 f~jj*

and
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k Y14E F(1)
.V * V F ( (7.9a,b)
xy yx

The results for the case of broken laminates are shown in

Figures 13-16. Again the same material combinations are

used. In Figure 13 the stress intensity factor ka is

plotted versus the ratio h2/h1 for b = 0. When h2 .- ka

has an asymptotic value which can be recovered in [7].

Figure 14 shows the variation of kb with h1/h2, for the

case a = 0. For b # 0, the variation of ka and kb with

b/h2 are given in Figures 15 and 16.

7.3 Case of a Crack Crossing the Interface

In this case the governing singular integral equa-

tions are (6.3a,b). As it was pointed out in Section 6,

the characteristic equation (6.10) does not always give a

singularity power at the bimaterial interface. Therefore,

the numerical solution needs care, and we should solve

equations (6.3a,b) considering the singular and non-,

singular cases at the bimaterial interfaces.

7.3.1 Singular Behavior at the Interface

For the material combination II (isotropic-ortho-

tropic) equation (6.10) has a root between 0 and 1. Using

Newton-Raphson method to solve equation (6.10), we have:

B =.0.04248 .
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We will make use of the following definitions to normalize

equations (6.3a,b), the single-valuedness condition, and

the relation (6.9a):

t = h , 1 = hlK1  for -h1 <t, X1<hI

h2-c h2+c h2-c h2+c
2 r 2 2 2 =  K2 + Tforc<t, x2<h2.

Then, we obtain:

-Jll ) dT1 + hl JllIs(K'.Tl)0o(tl)dT1 +.h h 1
+ -* h 2-c 1l *0

2 Jk1s (KI ST2)Oo(T 2)dT2 + fkl 2fcl"2)00(T2)dT2

( 1 -v x 0

-- 2Y14Ey P((m1)-l<icl<l

(1 ~ ~ ~ ( F (t)dT2
+12 H- 1~C) 2c2L. 0

[7!K +1  T 2 hK21 .hI 1k " )@o(Tz)d +  k20f(12" O(T)dTl

h2- 1 *o 1 k2c[ *0 0*ITd

T . 22s(K2"'2)(2 2 k22f(c2,T2) (2 d 2

-l -1

_ - x p(K) -]<K2<12YI-4Ey 2 )

h=0 and (l)= - h F (1)
%(o l l 0 ho2- a2 Fol

(7.10ab,c,d)
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wh~ere

a csO+A Iwil 1 1
85 T-7-10 ++ 19 8 6  a

+ IwwI 1 w

a2 19 3  94Va,

+w x Iw*31

+9 5 rT W 0196 0 wI~~

Using the numerical method given in [11] equations (7.10

a,b~c,d) further reduce to:

N __0

v Wj(Tj) + rrlk IIi+T1i+ rhk 0 (Is, .Tj F0 lj

N * Fh-C *0 h2-c *0 F
+ I Wj(T 2j) -2 k125(Ki1. 2j) + -2 kl2f(K1 i '2j 10 (T 2j

=-(1-V ,Y V YX p 0( K,) iI ... -
2Y14Ey
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N (T + 1 + IT h2 C k 0
(V wj( 2j) 2JK12h2+c TO 2 22s(21i

J=L T2j+ 2 + --2( c

h2 c C , . N

+ T 22f 2i '2jFo(2j +  wj(T1 j)[hlk 2s(2i'Tlj)

isi

~(1- xvyx)
hlk21f(K2itl)]Fo( lj) = - ... p2(K 2i) i = . N-

2Y1 4Ey

N
hI wj(TJ)F°(TIJ) = 0

j=

and

h1  ahl,= F (1) (7.abcd)

F0 2hc ii 0

where

* For) . Fo(T)
0 ( 1) 0 , o(T) =  0

(I (T2)0 ro. ~ al+r)

-N B6(T 1j) =0 j = 1..

P N (T,18)

PN- 1- (Ki 0 i =I .... N-1

PN(TS" )( 2j) = 0 j =1...N

PN-I(1 )(K2i )  0 1 1,...N-1

w (T1j) and w(T-2j) are the corresponding weights of
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(Tj and PN Gs- )(2)

Solving the 2N x 2N system of linear equations, we

obtain the 2N unknowns Fc (-r ') and F * (T The stress in-

tensity factors can be defined as follows:........

k r ba lmV'Zc-x2) '2y(x2 ,0)

and at the biniaterial interfaces

k lini yo a (hl~)

By making use of definitions (7.12a,b,c) and a-fter lengthy

calculation shown in Appendix D we obtain:

I
2-y14 E -

0lv~ 0

k, X- v i81 lo 8 2 a'l
*x (vxyvyx 26 sin ~'T l 1 1  Y1'2 11w,11

Iwy (Y3'81+Y4'82) - 1w,1 (3' 83+y4' 84)1 F (-1)
*=_ A80 8J

(h2c) [ 1 (y3'89+y4'90) + 11 (Yi'91+Y4192)1 (1

138L8j )
-5g9-



(1x?"C _s_1

(Y9A81+r10A82) , - '3 Fo(-l)

(h280 Yq8 9+ A (F13l 4X0 sJ

+ (h-) 90)8 +Yog) jw~ (y9 91+Y10'92) '~iFl)
)2Y38 I I .1*3

wWL J Pas3

(7.13a,b,c)

Extrapolating the results found from equations (7.lla,b,c,

d) the stress intensity factors kb' kxx' kxy can be com-

puted in a straight-forward manner. The results are shown

in Figures 17-19. Figure 17 shows the variation of kb

with c/h2, for different values -of (h,/h 2  ratio. kb in-

creases as (hI/h 2 ) increases. Figures 18 and 19 show the

variation of kxx and kxy with respect to c/h2 .

7.3.2 Non-Singular Behavior at the Interface

In this case, the characteristic equation (6.10) has

no root and therefore the surface displacement derivatives

are bounded. Since,,as it was shown in Section 6, the dis-

placement derivatives are continuous at the bimaterial in-

terfaces, using the single-valuedness condition to write
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the integrals from 0 to X, equations (6.2a,b) take the form

(see (12)):

j[1+ i4.46G(r)dr + Jk(ris)G(r)dr p(s) 0<s<t (7.10)

where

( (t) (Gct<h1, 0<r<h1)

(t (1-h <t -c) <<

* ) j VEx p1(x1) (O<x1<h,, 0<s<h,)

* ( v * P 2 2) 2

k * (x1,t) (0<x1, t<h' Ocr, s<h1)

+ <x1 <hi, 0<s<h1

k(r~s)=

k1 (x 2 ,t) - ~ + 2~-- 1.
12T 1 X t 2  1 th1, 0<r<h1  j

k,2 (x 2 ,t) (-h2 <x2 , t<-c, h1 <r, s<2,)

with

k *x,) kjxl) kixi-)(j 12



Now we have the governing equations for a crack imbedded

in a non-homogeneous material, obviously with power singu-

larity - at the crack tip. Normalizing equation (7.10)

by means of:

r =Z and s =IK

we obtain:

? I1"" + dGo0(Tl + 24oko(,K)G o(T)dT p 0(K) O<c<1 (7.11)

Equation (7.11) reduces to a set of linear equations

by using the method of collocations (see [11]):

j1l - + nk°(Tj'iC H° ( Ti)  2Np°(ic.) i = ],...N

(7.12)

where

LN]

.Cos [ w..i .

G (T) o(T)

The N unknowns Ho (j) can be found from equation (7.12) in

a straight-forward manner.

Defining the stress intensity factor at the crack

tip as:
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we obtain:

Using the same material for both strips, we recover again

the results of colinear cracks in homogeneous medi.um.,. Fig-

ure 20 shows the variation of kcb with c/h2. k b increases

as h I/h 2 increases.
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8. CONCLUSIONS

The fracture problem of layered orthotropic composite

plates has been studied. The following results have been

Obtained:

1)' Depending on the elastic constants, orthotropic

materials can be classified in two groups: materials of

type I and materials of type II. (A different formulation

is needed for each combination.)

2) The colinear crack solution is the same for homo-

geneous isotropic and orthotropic materials.

3) In the case of an internal crack in the first

layer, the stress intensity factor ka can be reduced si.g-

nificantly by a proper selection of the elastic constants.

4-) For the case of broken laminates there is a sing-

ularity power which can be found from equation (5.7). The

singularity power y varies between 0 and 1 for-different

material combinations.

5) For a crack crossing the interface, the singular

behavior at the interface disappears for some material com-

binations. In this case the crack surface displacement

derivatives are bounded and continuous, and all stresses

are bounded at the bimaterial interfaces.
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9. RECOMMENDATIONS

In the present work, a general formulation of the

fracture problem of layered orthotropic composites with

periodic cracks is given. The formulation is done only

for the case where both materials are of type I. Follow-

ing the same procedure, the problem can also be studied

for orthotropic materials of type II, or for the combina-

tion of type I and type II. The dependence of the singular

behavior at the interface on the elastic constants can also

be investigated.

In our formulation the thickness of the adhesive

bonding the layers has been neglected. The study of the

effect of the adhesive also can be recommended.

A more realistic approach also would be to study the

problem of finite number of strips. But this problem re-

quires lengthy algebra.

There are many other problems to be studied in the

fracture of composites. We hope that our work will have

a small contribution in the study of these problems.

-65-



TABLES

1-2
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Material k

constant a

Ex increases increases

Ex  increases decreases

Gxy increases increases
*xy increases decreases

Gxy increases decreases

Vxy increases increases

xy increases decreases

E and E* are kept constant

Table 2. Dependence of ka on the
elastic constants
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kb/p2I

2.01
1 2

2 b

2h1 2h2

1.5 R P2

b=0 .9 0.8
2

0 1 y~h 2 2
Figure 6. The stress intensity factor kb'for the

crack in buffer strip (Comblnati6n I).
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1.0- b/h=09 0.8 0.7

.75 _ _ _ _ _ _ _ _ _ _ _

0lh
Figure 7. The stress intensity factor kb for the crack

in buffer strip (Combination I)
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k0p1 ~2h, 1  2hl

1.5- 0.8

07

0.5
0.3

1.0
0. 0.2 0.6 b/ h2  10

Figure 8. The stress intensity factor ka for the
case in which both strips contain cracks
(Combination 1).
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2.. 0.7
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Q 02 0.6 b/h 2  1.0
Figure 9. The stress intensity factor kb for the case

in which both strips contain cracks
(Combination I).
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1 2

--2 CI- 2b

0.3

Q2 OBD b/h2 1.0
Figure 10. The stress intensity factor ka for the case

in which both strips contain cracks
(Combination II).
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APPENDIX A

Definitions of the material constants:

A superscript * will be used for the material in the second

strip. The constants 61 (i = 1 ,..,10) and wj (j 1.,4

are given by equations (2.15), (3.5), and (3.8).

____ I =11 1 - IwI+ sign(w3)010

Yxw3610 sign(wl)o9 - L.-sign(w3) 1

Y3 'w, + "yxo7 11l4 Z7 y Y~:

E I v v
*x I xyVyx

/5Y xy

Y6 +x lOv 3  083-0Y

7 y + 0 A4  I A1y307  07Y

Y8 'w 8 vxw 3 +08  x 5  X JY4 7 - 88 3

y9 -l + 07 w1  6 Y -

Y1 0 -I + 8w3  A7  9  9 '2

Iw Il + inw*o 8 Y
= Y igl 1 89  A -l yA 2  *
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. . . . • L ".. ,r . ' r • .. . .......... , . . / .. . 7 . _ - L . . ,

x'9  X 3 7  A24  A10A16 " X9 16

A1 0 =3 x8 2 5  10 17

A11 2 X3Y9  A26  X 12)X16 "X10x18

A 12  '6 "4  A2 7  A 9 Ax2 0  x A3 x16

A13  A5 6  A28 = A919

A14  6y3  A29 = A 12 19 -x 13 x17

A 15  x 607  A30 =A1 3 18 "x 1 2 x20 =0

A16 2 A307  A31 = '11 16  x 9x16

A17 2 '3B7 + X408  "32 11 17

18 = X407  '33  A1.6x 12 - X118

X19 = A308 + ' 508  34 9A22 - X11

A20  X A507  A35  x9A21

A21  A3 - Y3A8 X36 =' - X14 X17 -X212

A22 ' Y307 37 ' X14A18 - X2 2; 1 2 = 0

2

x 23 = 78 X38 = IA15X16 - 07"9
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A39  " A9X23  '54  - 10A23

'40  ' A1 5' 17  '12'23 A 55 A13 ' 23 -"1 5119

A41  - ) 15A18  5 0 A 6  - X3A2o

A42 = "3"16  A57  A )3119

'43 = 3 "17  A58 = Y )4)16 ( 8  Y9)

'44= 3 18  A59 3 " A5116 (Y9  '7)

'45 z'A 10A16  1 1 A16  A60  Y9 (" 4 ) 1 9 -"517
)

"46 A 120 "13A16 61 Y3 7 10 ) 9)

"4 7  -"A 11 l 9  A62 
= A8 (Y3117 + A4X21)

48 "=14" 16 - 1 0" 22  A63 = 9 (Y3108 + x5)

0 2
A49 = "13"22 - "14'20 =0 '64

=  87 NX1  '9 )

x50  A10A 21  A65 = 8 (" 4 ' 23 " a 7'17)

A51 = A14 X19 + A13A21  A 66  A 7 (07A19  Y)L5 2 3 )

2 A - "=52 = 107 ) 15A16 )67 'Y'4)16

A 5 3 =A 15 A20 " 13 7 =0 68 5 16
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69 5 17 4 1

'7 3(07('IO-Xl) 684-81)

'71 "3E*8('1-"9 08 5YY 9 --' 7)]

A72 - 7("A11A5-"3A13) + 8""2'lX)

A73 ' xA21 (X10-A9

A74 = 12A3  10A1 xA4 + s7(A'14X3-A10 3)

A75  9 xA5 - 13A 3 + a 8(X9y3-A 14 x3)

xA76  A 23(Xl0-X9)

A77  07 8('10  -' 5 "3)

A8  8('l 5'3-079)

A79 = 3 A~ a5 ;

A A + A + X +-80 24 25 26 +A 2*7 - 28  .29

A81  - 70  X A71  x A72 + sign(w1 )09(X73 +A 74 + X75)

+ 5~L(X7 6+ X7 7+ A"78) -X- i(X 43 -X5 7+X79)
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A82  " 58  " A59  A A60 + sign(w 1) 9(x61  + X62  t x63)

Y1 11

'--T (X64+ '65+'66) w (67+68+'69)

ia 1 1z

A83  2 ( 70+X71+ 72 ) - Yyz sign(w 3) 10( 73+X74+ 75)

12 12

-y 11 TZ1T ('76+ 77+ 78) + -3 (A 43-x57 +x79)

Y8 82)'86 ='  1 2 38

Y7J.83

84 y ( 58+A59 . 60 ) -Y '"w)1(6 2-3
12 12

..L.T- (X64+X6 +A +X 1 1 5 (?A 7+x68+x

xA85  y7 781
Y13Y]4A80
Y88

A86  71 3YI4 L80

x Y7;83A87 Y 13Y14 '8 0

81 Y8'84
A88 =3Y]4L80

X x-70 - 71 7x 72 sign(w')8(A 73 + 74  A75)

- 144. jW ("76+'774.X78 ) 2 A2 1 4 5 91w* " (A,43-x,57+A79)

x9g0 I 58 -x59 x60 -sign(wl)09() 6 , L2+X3

x ~ ~ ~ 4 - '>11a (. +A +x3

"a 7 "- (A64+ 65+ 66) " A2  (A67+ 68+A69)
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"91 = ('70+71+72) + 3 1gn (w) BO(173+'74+'75)Y12 12

-1$ Y* y

w 4" 6 ' Y * w 76+ 77+' 78) + (143-57+'79)
12 'W3T

192 j (A'8+ 59"+60) + sign(w 3)o 1(61+ 62+'63)
772

* y

+ 17 : TW (X 64 +X65 +A 66) -- T'3 l ('67+168+69)

23 3 3g147,80

T7918

"95T 311,90

Y8192

'97 = " 45 - " 46  - 147 + sign(wl)O 9 (X48 + "50 + '51)

+ v,- Y (X524.5e-55) - - 0 (X42+X56+X57)

I - 131 x 132 - x33 + sign(wl) 9(X34 + X35 + 136)

+ w ("3 9 4 -4 + 44)

J9 =j.L ("45 + 146 + 147)" .J_ sign(w3 )0 10 (X4 8 + A50 + 51)

I1 1 
2 (x52+54+'55) + --1 (142 +X56+X57)

-7- W3
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A100  y~~ 12 31+32+133) - :12 sgw) 10(134+135 136)

22 123 44

yrL Th.T -38"3940 1 T "42"4 4
12 3

102 7 3l8

1103 Ag7 -8

10 T 3I 4X80

105 45- 146- 47 - , sinw 9 (48 50 51~li

X- Ae, Y (152+154+155) "2 1 L ('42+X56+"57)

"106 " 31  ; 32 " 33-sgnw1) 9 (34+135+136)

- ~/--("38"A39+"40) - " 2 -~l- A(-4 2 - 4 3 "44)

x17 (145+46+4) + #i1Si gn(w*)$* 0(X48+X50+X51 )
12 12

* * y* xj
A 1 -r (152+1k54+155) + 1 (142+156+157)

12 1w31 jw 3

1108 y (31+132+133) + Yli Si gw) 1 0 1 34+ 35 13 6)
12 12

* **

~~;11 2("38+X39+X40) + 12 (-X42-X43+X44)

3
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So105Y7
09 = 3y 4 8 0

A1O6Y8

"a' 13y134 80

'107Y7
.111 =y3"480

A .LJI~L OSYSw 1

112 1 3"Y7480

113 85 109 r 93 o0
,

X114"xL85W 1 0 + A -W 1w1 85 ill

Is Ws IX93 X102 _ 1 Wd Ws X95 101

4- ir,4- raw, ho

W**

85 112 , ,o

116 A 86 ,. 1 8109 + -J3 1W187 Vx109

93A x 0 94 x101

A LL lw 1 xAA1 X1~L~L86 x111117 r- 8

87 108 l

- w a ! L x 3 104 - l 1 1 x94 X102

- i i 9 x103 - 8 96xo
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SaA- V S 01

A119  311W1 68A109 - wli ix94 x103

w S

121 /sx, 88 112 -07 96 1 04
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APPENDIX B

Expressions of the functions used in equations (4.14) and

(4.15):

lb~: :e(h2-n)a~a-/Iwl Y1l -(h -n)cxw 71w'3] 0()d

ry 3c Eb
IS-

-l I sign(w)e (jnct'5s3 b(n)dn

Y12 ~

Y1 bIw2-*IeIw*

12 3

jr-gn~3)8oe --



R4() l= lf -a-

- _____fl- e7051
)a II]0T *~

f e

Iw~I

f (C) X2f = ' + '2f()+ ' 26 f3(0') + '7 O)

A28f5(ci) + X29f6(ct)

f1(cs) tanh(w~cth2)tanh(w cth)

=~ ~ ~~w 2ahwi2 tahw h)

f2(a) tanh(w* h )tanh(wah,)

f4(cs) tanh(w* h )tanh wachl)

Ya tanh(w~cah ) a hlh)

=6a tanh(w1 ahl)tanh(w3 ah,)

g) 3 tanh(wclh) + 3 tanh(wach) +. 3 tanh(w3ah,)

h h(a) = 3 4()+ X35f5(c) + A36f6(cs)

m(a) =M c +' "39.f5'0') + X40f 6(c)

n(a) X - 4 tanh(w~ah) x A4 tanh(w cth1) + A44tanh(w3 ihl)
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=0OL A4 5 tanh(w3ah2) 46 tanh(wpch,) + X 47tanh(w I 'h1)

ho (a) A )48f3 (a) + ' 50 f 2(c) + X51f6(a')

111(a) =A 52f3 (a) + ?X54f2 (a) + X 55f6(a)

n 0(a) = 42 tanh(w 3ah2) + A 56 tanh(w 3 ah1) + A 57 tanh(w Iah 1)

= 5 tanh(w~ah) + 5 tanh(wcah) + 2, tanh(w ah1 )

hl(ct) =X 61f 1(at) + X62f2 (0i) + X63 f 5(c)

m,(ct) ' 64f1 (a) + '65f2 (a) + A66f5(aL)

n1a 6 tanh(w* h) + 6 tanh(w*ah ) + A69tanh(w~ah,)

= A 0tanh(wclh2 ) + A71tanh(w1 ah) + ' tn~ ,

h 2(c) A A73f1 (ai) + '74f3(z) + X75f4 lcz)

m2(a ' 76f, (ci) + X771 3(ai) + X78 4 c)

= X4 tanh(wcch) X X5 tanh(wcih) + tanh(w3 ih,)

Expressions of the functions k( O= 1,8) used in Eqs. (4.17):

I Fcosh(wacxi)
k I(x1, c) 2yfct Lohw,,h1  "'7 6() inw)g

/3,Yl yll n a cosh(wfcx,) (
I" WIT n2 (ct) - lwl n2(j cosh w-3 h1 j y8 9g1(ca

+sign(W1) 09h 1(c) + 1 V((c~
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k2(x1,) = 1 cosh(w~cax1  sgign~L L2('1 ~ ) 'a) ~ ~ a 1  '7 I 2y - Y- Sif 3)80 h()TyL3 12 y12102a

12 j cosh(w ax -)

2L m1 M(a) + )3

12 3 3 ii2

= oswax -la sign(w~ l h(a h/a2(c±) m y a

k I cosh(wi ax ) ''

3' 3f(a) LI
Y /~'~ - Y* iW +cosh(w 3cix1)

1n 2(a cohw 3ah)

-gl sign(w,)Bgh1 (a) Y, mi~a) x A2 /s n, ii
Iwl2 w.1I J

k1 cosh(w~ctx1  f Y*
4 =la * osh(w I ahl) 'Y7~ 2 g(c) y ) (t

2YI 3f(0') L 12 12 J U

rvx *- .n(~ Y2 Y 1 A2 / 1o cosh(w3a'x1
B 5 I w* 2 31

12 J2a W31s~~h)Y

**Y
+ *a + A /'

g--- i(a) +~ sign(w*)B* h a * m (a)
2 3 10 -,2 j

12 1

+ S n l(at)

k() 1 ~~Jcosh(wcax 2) 0 gw)8h(i
k5 (x 2 cI = 2y 13 f(ct) c-osh(wljah 2 ) 17' -9 a + sinw, ehoa

+ w mo(a) - n (00 1 c t 2 ) Y8 -g(a)

1 n0(-IF 0 cosh(w3ah2)
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+ sign(w1 )B9 h(a) + 11,Y ~a a

k ~ x I Cosh (iWax 2) (a f " -r Y"sin
2y1 3 ~a) osh~ 1h2  7  90 (a y - in( 3)010ho(a)IY c ohwa, 2 12

1' /y cosh(wa 2

y12 3 3 J OWI h(V3 8h y 12 (%

12 12 I
k os~l") (a sign(w*)O0h (a)

k7 (x)L 2 3fa * *'- Y7 -g0(a)92y~~)cosh(w~ah2)

-* n i- 2 -n()- 2 n(a) + cosh(wctx2) * -(a)
1 1lw11 cosh(W3ah2) 1

-slgn(w*)a;h(a) - A1  Y' Lm(a) na

1C~(a 2 94 1 * 2

10 ~ Y 9(): n0(a)
2y* A + cosh(wcs 2) y* 2

112 sinw $* h (a) + 7 ga +LL-sg+ I 3):1 0ohw~ 2  1 2 YoaJ 12IW3

+ no(a) + g~ (a 11 sg~
312 3a 2)J:1
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K,(n~y) -ij- re- Iwj YuVF Yll e-1w3ay/ cshsialc
1 =2YI3 Jo

1  
-2 12 achsnt

+ I e-(h-nriBI//Iwdl[[ 3 z aY~c)J + sigfl(wl)s9[h (at)2YI3 I
+ Y4hI()Y,3Mcl) + y~m, (a) -. 1~laj12 ~ ~ Y3n 2(a) + y4 n(a)}

+ e- (hs-r)a/Fs/iw3 1 I ~Y~()Y~(a)} .L.L sign(w 3) 10 y3h2(h)

[Y~nZY392 (a)i~i~ I d4c 1

2Y13~~~~a +L sgw)fy~mh2 (a) +h(j

,~r~(c) + y4 l (c) - a

-inw*a h +Iy~h,(a

/07 1 w I 3m (J)

- eh+n)alro-S w * I} {4L {y3g2 (c) + y4 gl(a)]

+ sign(w*)s1  yh2(i
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+- y-h1ci) + yro1/X2

+Y~l~1) ~ 22 }y + W31 Y" (i

K3(~)=~ f1  1e-1wjtay/, e -I 3r sincih sinaidot

+ fy o[e (h In) a 11 5/W I[y 9tanhwah) 2(i).

+ y I tanh(w3zh1 )gl (c)]

+ sign (w 009{ygtanh(wcihi)h(ai)+ +y10 tanh(w3 ah1 )h1 (c)]

+ I/v.... [vtanh(wcihim 2(i)+ +Y10 tanh(w3ihl)m(i)j

- 1 as 9Ytanh(wcihi)n 2(a)

". Yiotanh(w ihi )n (ci)] + e-(hin)cvr/IW31 1 .u[y tafhwci (ai)

+Yiotanh(w 3 ih1 )gi(c)] 12. sign(w )lY tan h(w l~ )h2(i

+ Y10 tanh(w 3 ah1)
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(+ tn~ih ) h) + y j tanh ) n, (a)] s; i' nay dtnhwc~

m W( yitanh(w I )n mi~c~)} f

'Y*11

H y ~i in8tanh(w ich 1 h2,t ++Ylotanh(w clhl)go, gh(l)1

tah~~~h.- () -w- y~tanh(w h )d+yahl ( a h )mnh~ (c)J

+ m I2 (m)+ Y ta nh (wiah m, (a) Yohw tnhio(wcih)}}] ( dc
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APPENbIX C

Evaluation of some Integrals

eJo i bt dt b a>O

f '0 e ~cos bt dt -a+

-az x-cos ax dx 'T 'a

J 'x' sin ax dx 'r T a

L x(oz+xz) sin ax dx 7ri (1 -e

J aoe8%aosh aty dt .,aa

o _y- ag-



APPENDIX D

Derivation of the Stress Intensity Factors

0.1l Case of Internal Cracks:,

The stress intensity factors are defined as:

k a limo(x0 1O

a b r = 2~ li y(~t)(.ab
X2 b

From Eq. (4.16a) we can write:

a ,o2) 14 a 0t dt + ao(,,O) (D.2)ly7r - 'at- al
xy yx

wher c~( 1 10) is a bounded function.

*() F(t) =~ ~ t/

Define the sectionally holomorphic function,,

= ~ dt

From [14) we obtain:

gz) F(-a)e * i/2  F(a) +. p(Z) (0.3)
(2a) (z+a) (2a) 1(z-a} I o

Using (0.3) to evaluate (D.2) and with the definitions

given in (D.la,b) we have:



2y 14E 1 _ Y14k ---. F(a) I- ,Fo(1)
a y xyvyx

and similarly *

2y1 4Ey 1 *b)=- l4Ey *B(l)
b/14 i b. (1V v X) 0

XY YX xy

D;2 Case of Broken Laminates

k =liii 2y(x + h )y (x 0) (A
a ' i,*-2 2 2 C2Y 2

From Eq. (5.2b)

0z(xO 1 4E 1 1k (x t)4(t)dt + c 0 x0 (0.5)

where ,,O = 1 S 29 s2

wher a (x'0)is a bounded function.

(h2.t 2 TY (t-hI )Y(t I+h1 )

Define:

*(Z) = I 1r1 :t)d

then:

O~(Z) =F(-N~e"ly 1 F(h) 1  + ~0(z) .(0.6)
(2h1P'sinity (z+hQ T  (2h,)sinry'(z-hl)y

Using (0.4), (D.5) and (D.6) we obtain:

a -(* * 01ir 161 102 YFkw I lIWyo 1 W T*3 jw 1I



1W3/W brouW 1r-
I '3 t,"I IW3 1 W -I

kb has the same expre -ion as the one we derived in the

previous case.

D.3 Case of a Crack Crossing the Interface

D.3.a Singular Behavior at t-he Interface:

In this case the definitions of the stress intensity

factors are:

kb m l T o c 2y(x,O)XZ+C

and

kxY= lni Y-ly(hlY) .(O.7a,b,c)

From Eq. (6.2b) we can write:

ayTx2,y 1h c (t dt + o (x 0), (D.8)
G_~2 ~ lV* v* ),f t-x2  2y 9( xy yx)

where oy(X2 ,0) is a bounded function.

= F*(t)

(t-c)1(h2-t)a
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(Z fh 2  (t dt F*(c)eiir/ 2  1
71 c t-z (h 2-C)Osinr/2 (z-c);'

F*(h2) 1 0 p* (Z)(D9

Using (D.9) and (D.8), Eq. (D.7a) yields to:

k 2y 4Ey F*(C)/
(I- * (v* ) (h2-c)8

"xyyx

or

kb 0 (v*v*) F0 1

-9xyyx

Separating the singular parts of Eqs. (6.15a,b) we have:

c Jh2s~(fl y)o (n)dn + axy

7y hi

+ f2K4sfc y~*nd 0 ~~Y (D.l0a,b)

where a 0 (y) and T 0 (y) are bounded.

Let: F(t) F2 ~ = ~ r
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then

h'() Jll* dt= F(-h )eirsID F(h1) + (Z

-hi . (2h]Qsiir (rz+h1) (2h )8sin-r$(z-h,)

Using (D.11), (D.9), (D-i0a,b) and the definitions (D.lb,c)

after lengthy algebra we obtain:

xy yx .2 si7A 13 fL}L 12'w (J_j

-.is (Y3'81+Y'4182) 1w (yr3' 83+y4'84)1 Fo-
~ j 8080

________ *, (y3'89+y4'90) 1w: ___________

and

X 2lCos2 T I W[3 1 L

-(y9"81+Y10X82) 1w - (y9'83+Yl0A84) ir.i1o(-i)
IN8 T 8 ~



+(h2 c) [(V 89+y 0 X90) j ( y9'91lYO'92) LwF()

.+ 2- 3, . . .. - ,

'13 X 8o !L i + a1IW*l1 5

D.3.b Non-Singular Behavior at the Interface

kb = 2- 4 T Zx2- a2y(xsO)

The derivation is similar to the one done for the case of

internal cracks. Thus, we have:

k 2Y14E y VY H
kb = .H(1)
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