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QUANTUM CORRECTIONS TO THE THERMODYNAMIC PROPERTIES 

OF LIQUIDS, WITH APPLICATION TO NEON 

By O. K. Rice* 

ABSTRACT 

The quantum correction has been expressed as a deviation T) from RT In Qc, where Qc is the clas- 
sical partition function. Changes in volume, energy, specific heat, etc., caused by quantization can be 
expressed in terms of 77 and certain thermodynamic quantities.  77 itself is expressed in terms of ther- 
modynamic quantities. The equations obtained give for solid neon the same results, within the limits 
of error, as the usual treatment of a Debye solid with the aid of the Grüneisen equation. To apply the 
equation to liquid neon, various thermodynamic quantities have been obtained from known values for ar- 
gon by use of the law of corresponding states. The difference in volume and specific heat of liquid neon 
from the values expected from the law of corresponding states has been computed and found to agree 
reasonably well with the observations. However, the melting point and the AE and AS of fusion are found 
experimentally to be much closer to the classical values than one would expect from the theory. No 
explanation of this discrepancy is apparent. 

***** 

It has frequently been noted that the properties of neon are somewhat out of line with those of the 
other condensed rare gases. These deviations have been ascribed to quantum effects in neon,1 which, 
it is believed, would otherwise obey the law of corresponding states. Quantum effects in the solid are 
easily taken care of with the help of the Debye theory; the liquid presents more of a problem. 

The quantum corrections for a liquid have recently been given in a general form by Mayer and 
Band.2 Their results, however, involve some multiple integrals containing distribution functions and 
second derivatives of the interatomic potential function. Therefore, they are difficult to evaluate, and 
it seems desirable to derive some rougher equations which will be more easily handled. It will be the 
purpose of this paper to express the magnitude of the quantum effects in terms of thermodynamic quan- 
tities which have either been measured or may be approximated from the law of corresponding states, 
and apply the results to neon. 

1.  EQUATION FOR A ONE-PHASE ISOTHERMAL AND ISOBARIC SYSTEM 

We shall express the quantum deviation by means of a quantity 77 defined by the equationt 

In Q = In Qc + Ti (^ 

Here Q is the actual partition function, and Qc is the classical partition function of the system, at the 

*On leave 1946-47 from the University of North Carolina, Chapel Hill, North Carolina. 
tIf T) is very small we may write equation 1 in the form Q = Qc(l + 77), which brings out the signi- 

ficance of T). However, to actually define 77 by this equation would be less convenient for purposes of 
computation than to use equation 1. 
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given temperature T and molal volume V. Qc is found by taking the limiting form of Q for high temper- 
atures, and inserting the actual value of T in this limiting form. In calculating Q, only the thermal ^j 
part of the energy E^- and the zero-point energy Ez are considered. The Helmholtz free energy is there- 
fore given by 

A = -RT InQ + E (2) 

L 

Jes 

or 

H\ 
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where Ep is the potential energy (excluding any potential energy involved in E^. and Ez); that is, ED is 
the value the energy would have at absolute zero with all the atoms at their positions of equilibrium. 
For a solid, the positions of equilibrium form a regular lattice, but this is of course not true for a 
liquid. From equation 1 this may be written 

A =-RTlnQc-RTr!+Ep (3) 

= Ae - RTT? 

In this equation we assume either that Ep is the same for the classical and quantum case if the volume 
remains fixed, or better, that any change is included in r\. Since Ep is the energy after subtracting out 
all thermal and zero-point energy, it would appear that any change in it which could be caused by quan- 
tization could be referred to a change in the average coordination number caused by quantization. Such 
a change could occur in the liquid, but may be included in rj. This, then, eventually becomes merged 
with the assumptions regarding 7] which are later made, in order to estimate it for the liquid. 

The Gibbs free energy F is equal to the Helmholtz free energy if the pressure p = 0, as is essen- 
tially the case for condensed systems around atmospheric pressure. It is to be noted, however, that 
in equation 3 Ac is to be evaluated at the same molal volume as A, not the same pressure. If A is eval- 
uated at zero pressure, Ac must be evaluated at that pressure, Äp, at which the system would have the 
same volume if the classical statistics held. 

Since the pressure is given by 

p = -(8A/8V)T (4) 

and since öp is the pressure the system would have if Qc were the correct partition function, we may 
write 

6p = -(ÖAC/6V)T (5) 

The true pressure being zero, we obtain from equations 3, 4, and 5 

6p = -RT(öJ7/8V)T (6) 

If we let ACIQ be the classical value of A at zero pressure, we have* 

Ac = Ac,o +    f (öAc/6p)T dp = ACj0 +   f (dAc/8V)T (8V/dp)T)C dp 

G '0 

Using equation 5, and integrating, assuming (8V/3p)T    to be constant, 

Ac = Ac,0 ~ (8P/2)2 OV/9p)T>c 

Aside from the assumption that (9V/9p)T c is constant, this equation is exact. If 77 and hence 6p is a 
small quantity, it shows that Ac - Ac g is a small quantity of the second order. Such quantities may 
in general be neglected in the case of the liquid, but may not be entirely negligible for the solid. The 
form of the dependence of Ac - Ac $ on öp is that which is to be expected from the fact that for p = 0, 
the condition of equilibrium is that A be a minimum. 

There will be a first-order effect on the volume of the system. Let Vc be the volume the system 
would have at zero pressure if the classical statistics held, and let V be its actual volume. A classical 
system at volume V would have the pressure öp. To go to zero pressure its volume must change by 
— (9V/öp)rn c öp. We therefore have 

V - Vc = (0V/öp)T;Cöp = -RT(8T?/9V)T (8V/8P)TJC (7) 

There will also be a first-order effect on the energy. We have, in general, for the sum of the 
thermal energy and zero-point energy 

Et + Ez = RT2 d In Q/dT (8) 

*In general, we use a subscript c to designate the classical value of any quantity. 
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At a given volume V therefore 

Et + Ez - Et,c = RT2 [Oln Q/dT)y - (din Qc/9T)y] = RT2(dr,/dT)y (9) 

where Et    is the classical thermal energy at the volume V. As noted above, quantization causes no 
change in E , since any effect is taken care of by rj. However, at volume V the pressure of a classical 
system would, as we have seen, be 5p. Going back to zero pressure, the energy would change by 
-(9E/eV)T c (9V/öp)T C op. Further, at zero pressure we may write (9E/9V)T c = T(9S/9V)T c = 
T(9p/9T)y 'c. Therefore, for fixed zero pressure we may write 

E -Ec = RT2(aT]/dT)v-RT2(Ör7/ÖV)T (dWdT)y^ (©V/Öp)TjC 

= RT2[(ÖT2/ÖT) v + ©u/SV)T (8V/öT)p;C ] (10) 

Provided the differential coefficients are constant, both equations 7 and 10 are exact. 
The quantum contribution to the specific heat, 8CL, can be obtained by differentiating equation 10. 

We note that (9/dT)p = (ö/dT)y + (9V/9T)p (<9/9V)T. This expression is to be applied to the true quan- 
tized system rather than a hypothetical classical one, so the (9V/9T)p, which appears here (without sub- 
script c) is the actual, rather than a classical value. However, the operator, (9/c>T)p, or (d/dT)y and 

(9/9V)-p, applied to a classical expression gives a classical expression. We therefore obtain 

«Cp = 2RT[(Ö?7/<5T)V + (8r,/dV)T (eV/öT)p>c] 

+ RT^tfVöT2^ + (öVöTöV) [(d"/8T)p + (9V/öT)p>c ] (11) 

+ (92T]/9V2)T (9V/9T)p (9V/9T)pjC + (9r)/9V)T (92V/9T2)p)C^ 

In the case of liquid neon, (9V/9T)p and (9V/9T)P)C will be nearly enough alike so it will not be neces- 
sary to distinguish between them. 

2. THE EVALUATION OF THE QUANTUM CORRECTION 

The evaluation of the quantum correction for the solid is very easy if we assume that it obeys the 
Debye specific heat law. In this case we can write the expression for In Q in the form3 

In Q = ln[(T/@)3e] - (3/4O)(0/T)2 + (3/6720)(©/T)4- . . . (12) 

where & is the Debye characteristic temperature. If we break off equation 12 at the second term and 
compare with equation 1, we see that this gives 

T) = -(3/40)e2/3 Qc2/3= -0.1464 Q^2/3 (13) 

In many respects the liquid resembles the solid, and we shall assume that equation 13 holds for 
the liquid as well as the solid. It is true that there is a translational, as vvell as a vibrational, contri- 
bution to the partition function of the liquid, and there may be some complications arising from the pos- 
sibility of a change in coordination number in the liquid, as indicated in the discussion following equation 
3. However, the quantum correction will, in general, be expected to decrease as the partition function 
increases, and in view of the reasonably close similarity between liquid and solid, it would appear that 
equation 13 cannot be too greatly incorrect for the liquid. 

We may now refer to equation 2 to get V in terms of thermodynamic quantities. Since Ac - Ep = 

Ec ~ T^c ~ Ep = Et,c ~ TSC, where Ej. c is the classical thermal energy, we may write from equation 13 

rt = -0.146 e2Et,c/3RTe_2Sc/3R (14) 

Since (9Et>c/ST)v = C„jC and (9SC/9T)V = Cj,;C/T we have 

(Ö?7/9T)V = -(2/3)77Et)C/RT2 (15) 
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We also have 

(dv/dV)T = (2/3)77 | [(8Et;C/eV)T/RT ] - [©Sc/ev)T/R 1 J (16) 

We note that T(5SC/SV)T = (ÖEC/3V)T + p. Substituting this into equation 16, and remembering that Ec = 
E.     + E„ (the zero-point energy does not occur in the classical case) we get 

(Sr7/c7)T = -(2/3)T) [(dEp/dV)/RT] - (2/3) rj [P/RT] (17) 

We will, in general, apply this with p = 0. 
To apply equation 11 we also need the second derivatives. In the final expressions for the second 

derivatives we set p = 0. 

(eVöT2)v= (4/9)7] (Et)C
2/R2T4) -   (2/3)7] (c^/RT2) 

+ (4/3)77(Et!C/RT3) (18) 

dVeVST =  (4/9)77  [Et)C(dEp/dV)/R2T3] 

-(2/3)7j  [(0EtjC/ev)T/RT2] (19) 

(8277/6V2)T =  (4/9)77   [ (dEp/dV)2/R2T2 ] 

-(2/3)77   [ (d2Ep/dV2)/RT ] (20) 

-(2/3)77   [(Öp/ÖV)T/RT] 

equation 19 can be somewhat transformed. Using the relation at zero pressure, 

(6EC/SV)T = (ÖEt)C/eV)T + (dEp/dV) = T(SSC/9V)T = T(Öp/ÖT)VjC 

we have 

öVöV6T = (4/9)r?   [EtjC(dEp/dV)/R2T3 ] + (2/3)77 [(dEp/dV)/RT2] - (2/3)77 [(ÖP/8T)V/RT]       (21) 

3. APPLICATION TO SOLID NEON 

Application of the above results to a Debye solid should yield nothing essentially different from ap- 
plication of the Gruneisen equation,4 

p = F(Et + Ez) -  (dEp/dV), (22) 

where 

r=-@-1d®/dV (23) 

However, by way of illustration, it will be of some interest to apply equations 7 and 11 to solid neon. In 
this case, we shall not use equations 15 or 17 but will go directly to the relation which follows from 
equation 12. 

77= -(3/4O)(0/T)2 + (3/6720) (0/T)4 (24) 

From this we obtain 

We may also write 

(dv/dV)T =r [(6/40)(0/T)2 - (12/672O)(0/T)4 ] (25) 

= -2rr?[l -0.0060 (0/T)2 

(SV/9p)TjC = -(©V/ÖT)T)C/(cVöT)VjC (26) 

(9p/ÖT)y c is readily obtained by differentiating equation 22, taken for the classical case. Since Fand 
dEp/dV are independent of T, this gives 

(Öp/ST)VjC = C„)C r= 3Rr (27) 
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(9V/9T)      may be written in the form p,c 
(SV/öT)p>e = -r-h'1 (einö/öln T)P)C (28) 

Using equations 25 to 28 in equation 7 we obtain 

r(V-Vc) = (2/3) ( öln0/ein T)p;C77[l-O.OO6O(0/T)2] (29) 

If we have a series of substances which obey the law of corresponding states, the value of (ein 0/ein T)P)C 

will be the same for all of them.5 In the case of the rare gases, xenon may be considered as practically 
classical at its melting point. The melting points are very near to corresponding states; hence we may 
take the value of (ein 0/ein T)   given by Murphy and Rice for xenon at its melting point* as the 
(ein0/ein T)p c for neon at its melting point. 

If we set©c equal to the value of 0 at Vc, then it is seen that the left-hand side of equation 29 will 
be (0- ec)/6 v, where 0av may be taken as the mean of 0 and 0C.  0 at the melting point of Ne (or 
rather the temperature of the corresponding point, based on the melting point of xenon, which differs by 
only a few tenths of a degree) may be found by a slight extrapolation in Table V of Murphy and Rice, 
while 0C may be estimated from the results with xenon. We find 

(0 - 0 )/0   , = (59.2 - 65.8)/62.5 = -0.106 (30) 

Evaluating the right-hand side of equation 29, using 0 = 59.2 and T = 24.9 to calculate n, we obtain 

-(2/3) (ein 0/ein T)p>cT] [l - O.OO6O(0/T)2 ] = -0.667 x 0.385 X 0.410 X 0.965 = -0.101 (31) 

This is an excellent check, especially since (ev/ep)T;C will actually vary with volume, but is evaluated 

at Vc. 
The value of T for argon has been taken as 0.18 moles/cc. For neon it can be calculated by multi- 

plying by the inverse ratio of the critical volumes6 according to the law of corresponding states; it 
therefore is 0.325 moles/cc. This gives V - Vc = 0.33 cc/mole. The actual volume of solid neon given 
by Clusius7 is 13.98 cc/mole. If we multiply the volume of solid krypton8 at its melting point by the 
ratio of the critical volumes we get 13.42 cc/mole for Vc. Similarly, from argon9 we get 13.59 cc/mole 
for Vc. The calculated value of V - Vc seems to agree about as well as one might expect. 

We have also evaluated equation 11 for the solid. This requires some further differentiation, in- 
cluding differentiation of equation 28, which brings in the quantity (e2ln 0/öln T 0T)PjC, which has been 
estimated as -0.00405 X (289.8/44.8) from Table II, Murphy and Rice (the ratio in parentheses is the 
ratio of critical temperatures of xenon and neon, taken from Guggenheim). We also have to evaluate 
(eV/öT)p (nonclassical) which is done with the aid of Table V of Murphy and Rice. We have obtained for 
acp at the melting point 2.0 cal/mole/deg. Comparison of Tables II and V of Murphy and Rice shows 
that this is about right. 

4. APPLICATION TO LIQUID NEON 

The checks obtained in Section 3 merely confirm the consistency of the present calculation with that 
of Murphy and Rice. The comparison of experimental and calculated V- Vc may have some significance, 
but again the calculation may be handled equally well by either method. For the case of the liquid, how- 
ever, only the equations of the present paper are available. 

To calculate V - Vc, or better (V - Vc)/Vc, we clearly need, from equations 7, 17, and 26, values 
of Vc, dEp/dV, (ev/eT)p;C  and @p/8T) VjC. To get 6Cp we need also EtjC, C„>c, (e2V/eT2)P)C  and d2E/ 

dV2. These quantities are not known for neon; but they are known or may be readily calculated for argon 
from related quantities.10 Since the quantities appearing in the expressions for (V - Vc)/Vc and <5Cp are, 
except for rj, in a combination which is independent of the substance if the law of corresponding states 
holds, the values for argon should be sufficiently good. The values for the second derivatives show a 
rather sudden change at a molar volume equal to the molar volume at the normal melting point of argon. 
However, the volumes we are interested in are equal to or greater than the normal melting volume, so 
no ambiguity occurs here. The second derivatives can be obtained by differences from the first deriva- 
tives; the values are necessarily rough, but they fortunately do not contribute greatly to 6Cp. d Ep/dV2 

*We will use the calculations based on Murphy's and Rice's Curve II. These calculations do not fit 
the experimental data on neon and xenon perfectly, but they are reasonably good, and they do exactly 
fit the law of corresponding states as extended by Murphy and Rice. 
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is sufficiently small and the terms containing it are sufficiently unimportant that they can be neglected. 
We have yet to consider r\ for neon. This is to be obtained from equation 13. Qc can be obtained 

by comparison with argon. We have previously shown that Qc can be expressed approximately in the 
form10 

Qc = Q§ =[(2e)1/3(T/0) + (27TmkT/h2)1/22-1/6e(a - aQ)j3 (32) 

On going from one substance to another which obeys the law of corresponding states, the two terms in 
the bracket transform in the same way.  (For the transformation of 8 see Murphy and Rice.5 To con- 
vert 9 from argon to neon, we use iQ (argon) = 1.530 and f Q (neon) = 1.405.) Q0 has been calculated 
for argon in connection with the calculations of the article cited, whence Q0 for neon and r\ for neon 
can be obtained as indicated. The various thermodynamic quantities required and j] are listed in Table 
1. 

Table 1. Thermodynamic Quantities for Argon; TJ for Argon and Neon. 

V = 28.02 cc/mole 

T(fusion) = 83.78 °K 

dEp/dV = 50.5 cal/cc 

Et/3RT = 0.7961 

Cy/3R = 0.856 

(öV/öT)p = 0.1178 cc/mole/deg 

(öp/ST)v = 0.556 cal/cc/deg 

(ö2V/ÖT2)p = 0.00165 cc/mole/deg2 

Q0(argon) = 3.681 

TJ (argon) = 0.01080 

i? (neon) = 0.1030 

This table gives the values of the various quantities at the melting temperature and melting volume 
of argon, or, in the case of rj, at the corresponding point for neon. Neon at its melting point (24.55°K), 
or at its corresponding temperature (24.9°K, which is the temperature we have actually used), is 
slightly expanded beyond its corresponding volume. The errors which will be caused by this discrepancy 
are not sufficient to make it worthwhile to perform further calculations. It is easy to find from Refer- 
ence 10 how the various quantities involved change with volume at constant pressure. This should give 
the order of magnitude of the errors involved, and it is found to be of the order of 20% in (V - Vc)/Vc 

and 20% in 5Cp. However, these are probably exaggerations, since the most-affected quantity is ?j, and 
it will be affected considerably less at constant temperature than at constant pressure. 

Use of Table 1 enables us to estimate (V - Vc)/Vc as 0.026.  Figure 2 of Guggenheim's article6 en- 
ables one to estimate (V - Vc)/Vc by comparing the ratio of density to critical density for neon and 
other gases. It appears that neon is about 4 to 5% expanded over what one might expect from the law of 
corresponding states. However, just the points near the melting points near the melting point for neon 
are a little out of line, so 4% expansion is probably the better estimate. Pitzer states that liquid neon 
has a density of about 3% less than that of the "perfect liquid."11 So it appears that the theoretical 
estimate of (V - Vc)/Vc cannot be far out of line. 

6Cp is calculated as 1.53 cal/mole. The specific heat of liquid neon is given7 as 8.64 near the melt- 
ing point, that of argon7 as 10.05 o?12 10.5, that of krypton13 as 10.6, and that of xenon14 as 10.7. 

Therefore, it is obvious that there is reasonably good agreement between the calculated and exper- 
imental values. 
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5. TWO-PHASE SYSTEMS 

We will now consider the effect of the quantum correction on the equilibrium between the solid and 
the liquid. We shall first consider the change in the temperature of melting at zero pressure. At zero 
pressure the Gibbs free energy F is equal to the Helmholtz free energy A. We can consequently use 
equation 3, substituting F for A and Fc for Ac. Fc really corresponds to Ac Q, since we should compare 
classical and quantum F's at the same pressure. The difference between Ac and Ac Q is, as we have 
shown following equation 6, a second-order quantity. It is not entirely negligible for the solid, but is 
not important and may be neglected for our purposes. 

The condition for equilibrium between two phases may be written 

AF = AFC - RT AT; = 0 (33) 

If there were no quantization, equilibrium would occur at a temperature Tc with AFC = 0, while equation 
33 holds at a temperature T where A Fc = 0 + (ÖAFc/öT)p (T - Tc) = ~ASC(T - Tc). Substituting this into 
equation 33 we obtain 

T - Tc = -RT An/ ASC (34) 

Using the values of T) for solid and liquid given in Sections 3 and 4, and taking for ASC the entropy of 
melting of argon, 3.35, we obtain T - Tc = -4.4°. The observed value of T - Tc is about 24.55 - 24.9 = 
-0.35°. The discrepancy is very large and quite surprising, considering the the apparently good results 
obtained with solid and liquid separately. 

We can analyze the situation further by considering AE - AEC and AS - ASC for the fusion process. 
Since the melting temperature is so nearly a corresponding temperature with respect to the melting 
temperature of xenon, say, we can neglect any effect of change in temperature on these quantities. This 
means that we can calculate AE -A Ec by applying equation 10 directly to both solid and liquid at 24.9°K. 
For the solid, we apply the equations of Section 3. For the liquid, we apply the equations of Section 2 and 
the data of Section 4, and convert from argon to neon. We obtain E - Ec = - 54.3 cal/mole for solid argon 
and E - Ec = 18.3 for liquid argon. Thus, 

AE -AEC = -36.0 cal/mole, calc. 

From the heat of krypton,13 we get for the corresponding heat of fusion of neon 83.2 cal/mole, while the 
actual heat of fusion is about 80.1 cal/mole. Thus, 

AE -AEC = -3.1 cal/mole, obs. 

A similar discrepancy occurs for the entropy. We can write 

AS - ASC = (AE - AEC - AA + AAc)/T 

= [(AE-AEC)/TJ+RAJJ 

= -1.45 + 0.61 = -0.84 cal/mole/deg 

The actual value of AS - ASC is around -0.1 cal/mole/deg. 
The results, with AE - AEC and AS -ASC, appear to indicate that the quantum correction for the 

liquid is nearly as great as for the solid. This would seem very strange in itself, but it is still more 
puzzling in the light of the results of Section 5. The calculation for 8Cp may indeed indicate that equa- 
tion 13 gives something of an underestimate of rj; if it were increased by perhaps 30%, a better value 
of Cp would result. On the other hand, it must also be noted that the derivatives of r\ in equation 11 in- 
volve the quantity dEp/dV, which is somewhat indirectly calculated from the data. It does not appear 
likely, however, that this can cause appreciable error. We have 

dEp/dV = (ÖE/9V)T - (9Et/9V)T. 

(dEt/8V)T is certainly negative; therefore dEp/dV should be slightly larger than (6E/eV)T which at zero 
pressure is equal to T(öp/dT) y. Now the value of dEp/dV used is only slightly larger than T(ep/öT) v; 
it seems likely that dEp/dV should be increased rather than decreased, and this would actually increase 
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|lCp| , so that In | would have to be increased less. The use of values at the normal melting temperatures 
and volumes gives a slight overestimate for | ÄCpJ, which might mean that |TJ| should be increased by a 
little more than 30%, but this effect is not very great. 

Another quantity that occurs in the derivatives of T) that is not entirely directly determined experi- 
mentally is Et c. We have also used the calculated, rather than the experimentally determined, value 
of Cv c. However, it does not appear that any possible change in these quantities could clear up the 
discrepancy. 

On the other hand, it appears likely that the discrepancy is too great to be accounted for on the 
basis of deviations from the law of corresponding states. 

Therefore, we are forced to leave the question of the quantum correction for neon in a somewhat 
unsatisfactory state. 

REFERENCES 

1. Pitzer, K. S., J. Chem. Phys. 7:583 (1939). 
2. Mayer, J. E. and W. Band, J. Chem. Phys. 15:3 (1947). 
3. Mayer, J. E. and M. G. Mayer, Statistical Mechanics p. 255, John Wiley and Sons, Inc., 1940., 
4. Rice, O. K., J. Chem. Phys. 12:289 (1944). 
5. Murphy, G. W. and O. K. Rice, J. Chem. Phys. 14:518 (1946). 
6. Guggenheim, E. A., J. Chem. Phys. 13:253 (1945). 
7. Clusius, K., Zeits. physik. Chem. B31:459 (1936). 
8. Clusius, K. and K. Weigand, Zeits. physik. Chem. B46:l (1940). 
9. Rice, O. K., J. Chem. Phys. 14:321 (1946). 

10. Rice, O. K., J. Chem. Phys. 14:324 (1946); see especially Tables V and VI. 
11. Pitzer, K. S., J. Chem. Phys. 7:588 (1939). 
12. Eucken, A. and H. Hanck, Zeits f. physik. Chemie 134:161 (1928). 
13. Clusius, K., A. Krius, and F. Konnertz, Ann. d. Physik. 33:642 (1938). 
14. Clusius, K. and L. Riccoboni, Zeits. f. physik. Chemie B38:81 (1937). 

END OF DOCUMENT 


