
AD10424433

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

PB-267 279

Concrete-Polymer Materials USBR-BNL-AEC-OSW Cooperative Program

Bureau of Reclamation, Denver, Colo

19951114 093

Aug 76

-

DISTRIBUTION STATEMENT A

Approved for public released

DTIC QUALITY INSPECTED 5

REC-ERC-76-10

РВ 267 279

CONCRETE-POLYMER MATERIALS

Final Report

(USBR-BNL-AEC-OSW Cooperative Program)

Engineering and Research Center Bureau of Reclamation

August 1976

Acces	on For	1
DTIC	ounced	
By Distrib	ution///-	: lti: 2-95
	vailability	
		Codes d / or

REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

	ECHNICAL REPORT STANDARD TITLE P.
HEIONI HOI	
REC-ERC-76-10	5. REPORT DATE
4. HILE AND SUBTICE	August 1976
Concrete-Polymer Materials Final Report	6. PERFORMING ORGANIZATION CC
(USBR-BNL-AEC-OSW Cooperative Program)	
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.
G. W. DePuy, J. T. Dikeou, W. T. Lockman, and M. C.	
G. W. DePuy, J. T. Dikeou, W. T. Lockman, and M. et	REC-ERC-76-10
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.
Bureau of Reclamation	11. CONTRACT OF GRANT NO.
Engineering and Research Center	
Denver, Colorado 80225	13. TYPE OF REPORT AND PERIOD
	COVERED
2. SPONSORING AGENCY NAME AND ADDRESS	Final
	1 11101
Same	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES	
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the	eclamation. The program began in 1967 and continue on the work performed through June 1972. Test res
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s	on the work performed through June 1967 and continue on the work performed through June 1972. Test res- final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo- tention of PIC and (6) a brief summary of applicat
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record	on the work performed through June 1967 and continue on the work performed through June 1972. Test res- final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo- tention of PIC and (6) a brief summary of applicat
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record	on the work performed through June 1967 and continue on the work performed through June 1972. Test res- final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo- tention of PIC and (6) a brief summary of applicat
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record	on the work performed through June 1967 and continue on the work performed through June 1972. Test res- final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo- tention of PIC and (6) a brief summary of applicat
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record	on the work performed through June 1967 and continue on the work performed through June 1972. Test res- final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo- tention of PIC and (6) a brief summary of applicat
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re- June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	on the work performed through June 1972. Test rest final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo e testing of PIC, and (6) a brief summary of applicat d final data from the testing program. Detailed analyse
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record	eclamation. The program began in 1967 and continue on the work performed through June 1972. Test res final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo e testing of PIC, and (6) a brief summary of applicat d final data from the testing program. Detailed analyse
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	eclamation. The program began in 1967 and continue on the work performed through June 1972. Test res final year of the cooperative program, and include: ss technology development for PIC (polymer-impregn ated temperatures, (4) examination of PIC after expo e testing of PIC, and (6) a brief summary of applicat d final data from the testing program. Detailed analyse
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	rete tests / *polymer concretes / research and dev s / composite materials / polymers / monomers / con
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	rete tests / *polymer concretes / research and dev s / composite materials / polymers / monomers / con
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the s the then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	rete tests / *polymer concretes / research and dev s / *polymer-impregnated concrete / polymers / con
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the site then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and eleva- to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	rete tests / *polymer concretes / research and dev s / *polymer-impregnated concrete / polymer-ce <i>COWRR</i> : 1303.1
The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the site then Office of Saline Water, and the Bureau of Re June 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and elevated to brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included.	rete tests / *polymer concretes / research and dev (s / *polymer-impregnated concrete / polymer-ce <i>COWRR</i> : 1303.1
 The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the site then Office of Saline Water, and the Bureau of ReJune 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and elevate brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / *concrete technology / conc ment / materials engineering / construction material properties / durability b. IDENTIFIERS / *concrete-polymer materials concrete c. COSATI Field/Group 13C 18. DISTRIBUTION STATEMENT Available from the National Technical Information Ser 	rete tests / *polymer concretes / research and dev s / *polymer-impregnated concrete / polymer-ce <i>COWRR</i> : 1303.1 *vice, Operations *vice, Operations * composite materials *vice, Operations * composite materials * composi
 The Bureau of Reclamation and Brookhaven National velopment of concrete-polymer materials under the site then Office of Saline Water, and the Bureau of ReJune 1973. Five topical reports have been published presented were conducted at the Bureau during the work on monomer and composites surveys, (2) process concrete), (3) test results on PIC at ambient and elevate brine at elevated temperatures, (5) nondestructive development. The purpose of this report is to record these data are not included. 17. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS / *concrete technology / concment / materials engineering / construction material properties / durability IDENTIFIERS / *concrete-polymer materials concrete COSATI Field/Group 13C 	rete tests / *polymer concretes / research and dev (s / *polymer-impregnated concrete / polymer-ce <i>COWRR</i> : 1303.1

•

REC-ERC-76-10

CONCRETE-POLYMER MATERIALS

Final Report (USBR-BNL-AEC-OSW Cooperative Program)

by

G. W. DePuy

J. T. Dikeou

W. T. Lockman

M. C. Redmond

August 1976

Concrete and Structural Branch Division of General Research Engineering and Research Center Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF RECLAMATION

i (a)

ACKNOWLEDGMENTS

This is the final report on the cooperative program for the development of concrete-polymer materials conducted jointly by the Bureau of Reclamation and Brookhaven National Laboratory under the sponsorship of the then U. S. Atomic Energy Commission, the then Office of Saline Water, and the Bureau of Reclamation of the U.S. Department of the Interior. The final stages of the program were planned under the direction of G. J. Rotariu of the U. S. Atomic Energy Commission, E. J. Meeks of the Office of Saline Water, B. Manowitz and M. Steinberg of Brookhaven National Laboratory, and H. J. Cohan of the Bureau of Reclamation.

In addition to the authors of this report, Bureau of Reclamation staff members engaged in this work under the general supervision of C. E. Selander include W. C. Cowan, W. G. Smoak, F. E. Causey, L. R. Carpenter, R. W. Spencer, H. C. Riffle, D. O. Arney, U. M. Cash, and G. G. Gore. Also contributing were J. D. Richards, F. L. Smith, and A. N. Colling who provided assistance in concrete mix designs and durability testing; and D. M. Hopkins, E. F. Monk, and C. A. Bechtold who conducted investigations on the deterioration of polymer-impregnated concrete from exposure to brine at higher temperatures.

症

This report was reviewed by J. R. Graham, Chief, Concrete and Structural Branch.

Final editing and preparation of the manuscript for publication was performed by J. M. Tilsley of the Technical Services and Publications Branch.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, sub-contractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

; (x)

CONTENTS

State - they

1111

122123

D.

1 d	ige
Abbreviations	V -
1. Introduction	1
2Monomer survey – polymer-cement concrete studies	1
3. Process technology development - concrete composition ,	1
4: Test results on polymer-impregnated concrete	2 [.]
4.1. (Polymer-impregnated concrete for ambient temperature applications	2
4.1.1 Structural properties	2
4.1.1.1 Flexure	2
4.1.1.2 Shear	2
4.1.1.3 CP test series - strength after longtime loading	2
4.1.2 Durability properties	3
4.1.2.1 Full impregnation	3
4.1.2.2 Partial impregnation	4
4.2 Polymer-impregnated concrete for desalting applications at	
temperatures up to 290°F (143°C)	4
4.2.1 Structural and physical properties	4
4.2.1.1 Compressive stress-strain	4
4.2.1.2 Compressive strength from -10° F (-23° C) to 290°F (143°C)	5
4.2.1.3 Tensile splitting strength from $-10^{\circ}F(-23^{\circ}C)$ to 290°F (143°C)	5
4.2.2 Resistance to hot brine and vapor	5
5. Fundamental studies	5
6. Quality control – nondestructive tests	5
6.1 Ultrasonic pulse velocity	5
6.2 Microwave transmission	6
6.3 Neutron and gamma ray	6
6.4 Comments on other destructive tests	6
6.4.1 Ultrasonic resonant frequency	6
6.4.2 Acoustic impact	7
6.4.3 Neutron radiography	7
6.4.4 Infrared radiography	7
6.4.5 Acoustic emission	· 7
6.4.6 Electrical resistivity and dielectric constant	7
6.4.7 Impact hammer	7
7. Applications development	7
7.4 Pipe applications,	7
7.1.1 Joint USBR/BNL/ACPA program	7
7.1.2 Polymer-impregnated concrete draintile	8

i (c)

CONTENTS (Continued)

Í.

		Page
	7.1.2.1 Resistance to sulfate attack	8
7.2	Precast tunnel supports and linings	8
8." Summary	Precast tunnel supports and linings and conclusions	8
. Bibliograp	hy	9
Appendix l	Memorandum to Chief, Concrete and Structural Branch dated 26, 1974. Examination of polymer-impregnated concrete exposure in brine and vapor at 250°F and 290°F	

TABLES

|--|

i

A. Lother and the Lower

5

1	Furfuryl alcohol polymer-cement concrete, compressive and tensile strength	11
2	Furfuryl alcohol polymer-cement concrete, physical properties	11
3	Furfuryl alcohol polymer-cement concrete, exposure to 5 percent	
	sulfuric acid	12
4	Furfuryl alcohol polymer-cement concrete, freeze and thaw durability	12
5	Strength and physical properties, low-strength concrete impregnated with MMA	13
6	Strength and physical properties, no fines concrete impregnated with MMA	14
7	Strength and physical properties, gap-graded concrete impregnated with MMA	15
8	Strength and physical properties, CP-type concrete impregnated with MMA	16
9	Sealed moist-storage mortar bar expansion, MMA-impregnated and	10
2	unimpregnated alkali-reactive 1- by 1- by 10-inch bars	17
10	Flexure tests of (10-90) polyester-styrene impregnated concrete, 3- by	
	5- by 54-inch beams tested at room temperature	18
11	Flexure tests of unimpregnated 3- by 5- by 54-inch beams, controls	
	for (10-90) polyester-styrene impregnated beams tested at	
	room temperature	18
12	Flexure tests of polyester-styrene impregnated concrete, 3- by 3- by	10
10	16-inch unreinforced bars tested at room temperature	19
13	Flexure tests of unimpregnated concrete 3- by 3- by 16-inch bars, controls for (10-90) polyester-styrene impregnated bars tested	
	at room temperature	19
14	Shear tests, control and (10-90) polyester-styrene impregnated concrete, 3- by 5- by 54-inch beams at room temperature	20
15	Compressive strength of creep test specimens, 3-4½ years under 800 lb/in ²	
	sustained load - CP-test series	21
16	Resistance to sulfate attack – CP-test series	22
17	Resistance to Freezing and Thawing – CP-test series	23
18	Resistance to 5 percent sulfuric acid, polymer-impregnated concrete	24
19	Weight loss after exposure to freezing and thawing	25
20	Compressive strength after exposure to freezing and thawing	25
21	Tensile splitting strength after exposure to freezing and thawing	26

ii

TABLES (Continued)

11.14

		Page
22	Pulse velocity after exposure to freezing and thawing	26
23	Dynamic modulus of elasticity after exposure to freezing and thawing	27
24	Length change after exposure to freezing and thawing	27
25	Weight loss after exposure to 5 percent sulfuric acid	28
26	Compressive strength after exposure to 5 percent sulfuric acid	28
27	Tensile splitting strength after exposure to 5 percent sulfuric acid	29
28	Pulse velocity after exposure to 5 percent sulfuric acid	29
20 29	Dynamic modulus of elasticity after exposure to 5 percent sulfuric acid	30
30	Length change after exposure to 5 percent sulfuric acid	30
31	Resistance to freezing and thawing, partially impregnated concrete –	31
	second test series	51
32	Resistance to sulfate attack, partially impregnated concrete – first test series	32
33	Resistance to sulfate attack, partially impregnated concrete –	33
	second test series	55
34	Resistance to 5 percent sulfuric acid, partially impregnated concrete – second test series	34
35	Resistance to 5 percent sulfuric acid, partially impregnated CP-type	35
	concrete - third test series	55
36	Resistance to 5 percent sulfuric acid, partially impregnated high- entrained air concrete – third test series	36
37	Compressive stress-strain tests of (70-30) MMA-TMPTMA impregnated	
	6 by 12 inch cylinders after 6 months' exposure at -10°F	37
38	Compressive stress-strain tests of (70-30) MMA-TMPTMA impregnated 6- by 12-inch cylinders after 6 months' exposure at 70°F	37
	6. by 12-inch cylinders after 6 months exposure at 70 1 immregnated	
39	Compressive stress-strain tests of (70-30) MMA-TMPTMA impregnated 6- by 12-inch cylinders after 6 months' exposure at 250°F	38
	6- by 12-inch cylinders after 6 months exposure at 250 F immegnated	00
40	6- by 12-inch cylinders after 6 months' exposure at 290°F	38
	6- by 12-inch cylinders after 6 months exposure at 290 r	50
41	Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA	
	impregnated 6- by 12-inch cylinders after 6 months' exposure at - 10°F	39
	-10° F	
42	Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA	
	impregnated 6- by 12-inch cylinders after 6 months' exposure at	39
	70^{5} F	39
43	Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA	
	impregnated 6- by 12-inch cylinders after 6 months' exposure at	40
	250°F	40
44	Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA	
	impregnated 6- by 12-inch cylinders after 6 months' exposure at 290°F.	40
45	Compressive strength after long-term exposure at -10°F	41
46	Effect of exposure time and temperature on compressive strength and	
40	modulus of elasticity of unimpregnated and (70-30) MMA-TMPTMA	
	impregnated concrete 6- by 12-inch cylinders	42
47	Strength and elasticity tests at -10° F of unimpregnated concrete 6-	
••	by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and	
	(60-40) styrene-TMPTMA impregnated cylinders	43
48	Strength and elasticity tests at 70°F of unimpregnated concrete 6-	
τv	by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and	
	(60-40) styrene-TMPTMA impregnated cylinders	43

TABLES (Continued)

		-
49	Strength and elasticity tests at 250°F of unimpregnated concrete 6-	
	by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and	44
	(60-40) styrene-TMPTMA impregnated cylinders	••
50	Strength and elasticity tests at 290°F of unimpregnated concrete 6-	
	by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and	44
	(60-40) styrene-TMPTMA impregnated cylinders	
51	Multitemperature short-term tensile splitting strength, test	45
	temperature -10°F (-23°C)	75
52	Multitemperature short-term tensile splitting strength, test	45
	to more ture $70^{\circ} \mathrm{F}(21^{\circ} \mathrm{C})$	40
53	Multitemperature short-term tensile splitting strength, test	46
	temperature 250°F (121°C)	40
54	Multitemperature short-term tensile splitting strength, test	46
	temperature 290°F (143°C)	40
55	Compressive strength, pulse velocity, specific gravity, and unit weight –	
	polymer-impregnated concrete exposed to brine, brine/vapor, and	
	vapor at 250°F (121°C)	47
56	Compressive strength, pulse velocity, specific gravity, and unit weight –	
	styrene-TMPTMA impregnated concrete exposed to brine, brine/	
	vapor, and vapor at 290°F (143°C)	48
57	Changes in weight, length, and resonant frequency – polymer-	
57	impregnated concrete exposed to brine, brine/vapor, and vapor	
	at 250°F (121°C)	48
58	Changes in weight, length, and resonant frequency – polymer-	
20	impregnated concrete exposed to brine, brine/vapor, and vapor	
	at $290^{\circ} F (143^{\circ} C)$	49
59	Flexural strength after exposure to brine, brine/vapor, and vapor	
	at 250°F (121°C)	50
60	Flexural strength after exposure to brine, brine/vapor, and vapor	
	$+ 200^{\circ} \mathrm{F} (142^{\circ} \mathrm{C})$	50
61	Neutron and gamma ray moisture and density determination	51
62	Resistance to sulfate attack, polymer-impregnated concrete draintile	52
63	SI metric conversion factors	53
u.,		

FIGURES

Figure

1	Schematic diagram of flexure test setup	54
2	Cracking of partially-impregnated expanded shale specimens	54
3	Ultrasonic pulse velocity of 3- by 6-inch (76- by 152-mm) specimens	55
1	Ultrasonic pulse velocity of prestressed bridge deck panels	55
5	Microwave test of polymer-impregnated concrete	56

Page

ABBREVIATIONS

Technical

AN cP Cps C OF VAR. dB °C °F DTA EP-S FA Hz MMA CS PE PE-S PCC PC PIC PMMA R CP	Acrylonitrile Centipoise Cycles per second Coefficient of variation Decibels Degrees Celsius Degrees Fahrenheit Differential thermal analysis Epoxy-styrene Furfuryl alcohol Hertz Methyl methacrylate Monochlorostyrene Polyester Polyester Polyester-styrene Polymer-cement concrete Polymer concrete Polymer concrete Polymer-impregnated concrete Polymethyl methacrylate Radiation-initiated polymerization Standard concrete mix used in concret program:	te-polymer materials development
	cement max. aggregate water/cement ratio slump entrained air compressive strength	5.5 sacks/yd ³ (7.2 sacks/m ³) 3/4-inch (19-mm) 0.51 3-inch (76-mm) 6 percent 5,000 lb/in ² (34.5 MPa)

STD DEV	Standard deviation
S	Styrene
S-TMPTMA	Styrene-Trimethylolpropane trimethacrylate
т	Thermal-catalytic polymerization
ТМРТМА	Trimethylolpropane trimethacrylate

Organizations

ACI	American Concrete Institute
ACPA	American Concrete Pipe Association
BNL	Brookhaven National Laboratory
ERDA	Energy Research and Development Administration
NBS	National Bureau of Standards, U. S. Department of Commerce
USBR	Bureau of Reclamation, U.S. Department of the Interior
WSU	Washington State University

1. INTRODUCTION

Research on concrete-polymer materials under sponsorship of the U.S. Atomic Energy Commission¹ and the Office of Saline Water² was initiated as a cooperative program in 1967 between the Department of Applied Science at BNL (Brookhaven National Laboratory) and the USBR (U.S. Department of Interior's Bureau of Reclamation). Five topical reports have been published on the work performed through June 1972 [1, 2, 3, 4, 5]³. These reports give extensive background, test results, and data analysis on each of the various major tasks in the program.

In February of 1973, the Bureau was advised by the program sponsors that due to curtailment of available funds, work on the cooperative program would be terminated in June 1973. This report presents results of tests performed during the final year of the program, and summarizes the final results of the work done only by the Bureau.

2. MONOMER SURVEY -POLYMER-CEMENT CONCRETE STUDIES

Investigators at WSU (Washington State University) conducted tests [6] to optimize the curing of FA (furfuryl alcohol) monomer in PCC (polymer-cement concrete). Based on test results, eighteen 3-inch (76.2-mm)⁴ diameter by 6-inch (152.4-mm) long test cylinders were prepared by WSU for testing at the Bureau.

The concrete mix for the test cylinders and the control cylinders contained:

Concrete mix	Percent by weight
Aggregate	
3/8 inch to $3/4$ inch	27.4
No. 4 to 3/8 inch	18.3
No. 8 to No. 4	5.0

¹The Divisions of the then Atomic Energy Commission involved in this study are now a part of ERDA (Energy Research and Development Administration).

² The then OSW (Office of Saline Water) is now a part of the OWRT (Office of Water Resource Technology). ³Numbers in brackets refer to the Bibliography at the end of the report.

⁴Research work was done using English units and converted to SI metric in accordance with ASTM Designation E-380-76.

No. 16 to No. 8		5.0
No. 30 to No. 16		8.4
No. 50 to No. 30		8.1
No. 100 to No. 50		5.4
Minus No. 100		1.7
Type II portland cement		13.8
Water		6.9
	Total	100.0

The PCC test cylinders were prepared using the above concrete mix with the addition of 5 percent FA (furfuryl alcohol) and 5 percent calcium chloride (percentages by weight of portland cement).

Test results are reported in tables 1 through 4. Compressive and tensile strengths of PCC and conventional control concrete cylinders are similar (table 1). An increased compressive strength for the cylinders which had been used to determine water absorption probably resulted from the ovendrying at 250°F (121°C).

Data in table 2 indicate that PCC has less water absorption and a slightly higher density than the standard concrete mix (CP).

The PCC cylinders exposed to 5 weight percent sulfuric acid (table 3) underwent less than half the weight loss of the CP-type concrete. The PCC cylinders showed poor durability when exposed to freeze-thaw exposure (table 4).

Although the acid resistance, strength, and physical properties data are perhaps somewhat encouraging, the freeze-thaw performance was disappointing. If the work were to continue, additional studies should be performed to fully evaluate the use of other catalysts, such as aniline hydrochloride with a lesser amount of calcium chloride.

PROCESS TECHNOLOGY DEVELOP-3. MENT - CONCRETE COMPOSITION

Studies to determine the effect of concrete mix design variables on properties of PIC (polymer-impregnated concrete) were extended to include additional variables. Tables 5 through 8 report results of tests for compressive strength, tensile splitting strength, absorption, specific gravity, and polymer loadings for lowstrength, no-fines, gap-graded, and CP-type concrete specimens.

Polymer loadings and compressive strengths of PIC specimens averaged 9.9 percent and 16,500 lb/in² (114 MPa) for the low-strength mix, 6.9 percent and 20,900 lb/in^2 (144 MPa) for the no-fines mix, 6.7 percent and 20,500 lb/in^2 (141 MPa) for the gap-graded mix, and 5.8 percent and 20,400 lb/in^2 (141 MPa) for the CP mix. All the low-strength mix specimens were inadvertently impregnated.

In addition, a series of 3- by 6-inch (76- by 152-mm) cylinders and 1- by 1- by 10-inch (25- by 25- by 254mm) prisms were prepared using a highly alkali-silicareactive aggregate. Specimens were impregnated with MMA (methyl methacrylate) at various ages after casting to study effects of impregnation on alkali reaction. Expansion of unimpregnated and MMA-impregnated bars is given in table 9. The impregnation of the bars apparently curtails the alkali-aggregate reaction.

The unimpregnated bars show a fairly rapid rate of expansion, which is normal for this type of material. The impregnated bars show a similar rate of expansion up to the time of impregnation. At the time of impregnation the bars show a large contraction, which is due to ovendrying. After impregnation, the bars show a small rate of expansion; it is not known at this time if this expansion is solely due to moisture absorption or if it is due in part to a greatly reduced rate of alkaliaggregate reaction. The 3- by 6-inch (76- by 152-mm) cylinders are being stored under conditions of 100 percent relative humidity and are planned to be used at a later time to study effects of alkali-aggregate reaction and impregnation on compressive strength.

4. TEST RESULTS ON POLYMER-IMPREGNATED CONCRETE

4.1 POLYMER-IMPREGNATED CONCRETE FOR AMBIENT TEMPERATURE APPLICATIONS

4.1.1 Structural Properties

4.1.1.1 Flexure.— A computer program was written to analyze/simplify the data and tabulate results of flexure tests. Data were analyzed for flexure tests on ten 3- by 5- by 54-inch (76- by 127- by 1372-mm) beams reinforced with one No. 4 bar, 0.75 inch (19 mm) from the bottom surface. A schematic diagram of the test setup is shown on figure 1.

Five beams were unimpregnated control specimens and five were impregnated with (10-90) polyester-styrene. Tests were run at room temperature. Test results shown in tables 10 and 11, indicate little difference between control and PIC specimens. Early tests of MMA and (60-40) styrene-TMPTMA (trimethylol-propane trimethacrylate) impregnated beams yielded similar results. As reported in the Fifth Topical Report [5], calculations indicate the beams to be underreinforced. Consequently, the test results were more a function of the reinforcing steel than of the concrete. This is also true for the test results shown in tables 10 and 11.

Flexure data were prepared from the tests run during the last reporting period on unreinforced 3- by 3by 16-inch (76- by 76- by 406-mm) bars. Five bars were impregnated with (10-90) polyester-styrene, and five bars were unimpregnated control specimens. Examination of the results in tables 12 and 13 show that the strength parameters of the PIC bars are about 2.62 times greater than those of plain concrete. Also, the flexural modulus of elasticity is greater for PIC, but only by a factor of about 1.14. It is noted also that coefficient of variation is much higher for the PIC bars than for the control bars. During testing it was noted and can be seen from the polymer loading in table 11 that specimen No. 72.144.5 was not fully impregnated. The low strength of this specimen is the principal reason for the high coefficient of variation exhibited by the PIC specimens.

4.1.1.2 Shear.- Five control and five (10-90) polyester-styrene impregnated 3- by 5- by 54-inch (76- by 127- by 1372-mm) beams were tested in shear. Each beam was reinforced with two No. 4 bars. One bar was placed 0.75 in. (19 mm) from the top surface and the other 0.75 in. (19 mm) from the bottom surface. Beams were loaded as shown on figure 1, which is a change from the past load tests of this size beam. In past tests, a flexural rather than a shear-type failure was obtained on PiC specimens. For this reason, the spacing between the top and bottom loads on the specimen at the center was changed from 10 inches (254 mm) to 5 inches (127 mm). Tests on all PIC and control beams, currently being reported upon, failed in shear.

Test results are shown in table 14. Shear values obtained for PIC specimens are approximately 80 percent greater than those of the control specimens. Computations were made to determine the nominal shear stress permissible by the ACI (American Concrete Institute) 318-71 Code. Test values of nominal shear stress were about 4.7 times greater for PIC specimens and 3.7 times greater for control specimens than those allowed for design by the code.

ŝ

4.1.1.3 CP Test Series. - Strength After Longtime Loading. Concretes impregnated with four different monomers and unimpregnated concretes that have been under continuous 800 lb/in² (5.5 MPa) compressive load for 3 to $4 \cdot 1/2$ years were removed from creep tests. Strength determinations on these specimens reveal that the longtime load condition has no apparent effect on strength (table 15). Strengths of control specimens that have never been under load are essentially the same as the cylinders that were under creep tests for several years.

4.1.2 Durability Properties

4.1.2.1 Full Impregnation

(a) CP Test Series

• Resistance to sulfate attack. – Test results on impregnated concrete specimens are reported in table 16.

• Resistance to freezing and thawing. – Test results on impregnated concrete specimens are given in table 17. The MMA specimen (specimen No. BNL-1-3) has been in test longer than any other specimen and shows a weight loss of 2 percent after 14,690 cycles (about 5-2/3 years). The MMA-TMPTMA specimen (CP-4B-3B) remaining in the test has a weight loss of 8 percent after 11,130 cycles. The polyester-styrene specimen (CP-7-3B) has a weight loss of 3.5 percent after 4,210 cycles.

● Resistance to 5 percent sulfuric acid. – After 459 days, most of the impregnated concretes have lost over 25 percent of their original weight in the test, indicating that resistance of these materials is about 2.3 times greater than the unimpregnated material. The unimpregnated control concretes have previously reached 25 percent weight loss at less than 200 days (table 18). Compressive strengths of the impregnated cylinders, after failure in the sulfuric acid solution, averaged over 5,000 lb/in² (34.5 MPa).

• Strength loss after exposure to freezing and thawing and to acid. — A series of tests were performed to develop additional information on the durability of PIC versus unimpregnated concrete and to investigate the feasibility of establishing a quicker cutoff date on running the tests, particularly in view of the time problem in testing various PIC formulations for improvements in durability. The freeze-thaw test and resistance to 5 percent sulfuric acid were selected as the basic durability tests, and the properties measured were: (1) loss in compressive and tensile strength, (2) dynamic modulus of elasticity (resonant frequency), (3) ultrasonic pulse velocity, (4) length change, and (5) weight loss. All durability test specimens were placed in water for 1 week. Initial weight, length, pulse velocity, and dynamic modulus of elasticity measurements were made after the 1-week soaking in water. All measurements during testing were made with moist surface-dry specimens. Initial strength measurements were made with air-dry specimens. In the calculation of test data, no compensation was made for weight loss or reduction in section, and the reported results should be considered as apparent values. Test results are given in table 19 to 30.

The test results indicate that weight loss, compressive strength, pulse velocity, and dynamic modulus of elasticity measurements have some merit (along with some inherent limitations) in evaluating durability.

PIC shows excellent resistance to freezing and thawing compared to conventional concrete. After 1,300 cycles, PIC specimens undergo a slight weight loss of less than 1 percent and retain a compressive strength of about 19,000 lb/in² (131 MPa). Although the PIC samples appear to be in good condition after 1,300 cycles, it is evident that some deterioration or microfracturing has occurred. The deterioration of PIC appears to be best indicated by the moderate losses in compressive strength, pulse velocity, dynamic modulus of elasticity, and to a lesser extent by weight loss. The deterioration of unimpregnated concrete appears to be best indicated by compressive strength, pulse velocity, dynamic modulus of elasticity, and to a lesser extent by weight loss. Since the tensile splitting tests did not show a strength loss, this test does not appear to be a good indication of deterioration for the freeze-thaw test. Length change measurements likewise do not appear a suitable means for evaluating the test.

The PIC specimens showed good resistance to 5 percent sulfuric acid compared to unimpregnated concrete. After 170 days' exposure, PIC specimens had a compressive strength of about 12,000 lb/in² (82.7 MPa) and a weight loss of 3 to 6 percent. The testing of PIC presents some problems in evaluation, thus requiring more adequate evaluation criteria. Acid attack is best indicated by visual examination to determine the onset of attack and the progress of the attack in the initial stages. As the attack progresses, the best criteria appears to be a compressive strength test. This could be accompanied by sectioning of the specimens and visual examination for indications of acid attack in the interior of the specimen. Weight loss of PIC in exposure to acid is likely to be misleading as reaction products tend to be retained in the specimen. Acid resistance of unimpregnated concrete is best indicated by weight loss and compressive strength. Pulse velocity appears to be potentially useful in evaluation of acid exposure on PIC

and unimpregnated concrete, provided that a suitable method is used to overcome the effects of acid on the ends of the specimens.

4.1.2.2 Partial Impregnation. – Partially impregnated concrete is under investigation as a less costly alternative to fully impregnated concrete in applications where durability rather than high strength is required. Tile monomer should effectively seal the surface and performate enough to prevent separation of the impregnated layer and premature failure. In these test series, viscous monomer systems and impregnation under pressure were used. Viscous monomer systems are used because: (1) penetration depths are more easily controlled, (2) voids in the penetrated portion remain filled, and (3) monomer losses due to evaporation and drainage during the time between impregnation and complete polymerization are lower.

The first series of partial impregnation tests used epoxy- and polyster-styrene monomer mixtures. The specimens were impregnated to depths of 1/16, 1/8, and 1/4 inch (1.6, 3.2, and 6.4 mm). Difficulties were encountered in obtaining uniform penetration within the desired closely spaced depths. Work to develop better systems for controlling penetration continues with a second series of tests using polyester-styrene monomer and PMMA [poly(methyl methacrylate)] prepolymer. A third series of tests was started to evaluate the effects that the use of high-pressure steam-cured concrete and high air-entrained concrete might have on the durability of partially impregnated concrete. The third test series originally included lightweight concrete specimens using expanded shale aggregate; however, since these specimens all contained cracks, they were not tested. The cracks evidently occurred during or subsequent to impregnation and polymerization. The cause of the cracks is not known. Two typical specimens are shown on figure 2.

• Resistance to freezing and thawing. – The first test series are complete and the results reported in the Fourth Topical Report [4]. Second test series results are given in table 31. Freeze-thaw tests were not scheduled on third test series specimens.

• Resistance to sulfate attack. — Test results on first and second test series specimens are given in tables 32 and 33. Sulfate resistance tests were not conducted on third test series specimens.

• Resistance to acid attack. — First test series results on resistance to 15 percent hydrochloric acid were reported in the Fifth Topical Report [5]. Test results on resistance to 5 percent sulfuric acid for second and third test series specimens are reported in tables 34, 35, and 36.

4.2 POLYMER-IMPREGNATED CONCRETE FOR DESALTING APPLICATIONS AT TEMPERATURES UP TO 290°F (143°C)

4.2.1 Structural and Physical Properties

4.2.1.1 Compressive Stress-Strain. - Eighty 6- by 12-in (152- x 305-mm) cylinders were tested in compression at various temperatures after 6 month's exposure (tables 37 through 44). Forty specimens were impregnated with (70-30) MMA-TMPTMA, and forty were unimpregnated. Ten of each type were tested at each of the four temperatures. The test temperatures were -10°F (-23°C), 70°F (21°C), 250°F (121°C), and 290°F (143°C). As shown in tables 37 through 44, no significant difference is noticeable in the impregnated specimens at -10°F (-23°C) and 70°F (21°C). However, both the ultimate strength and modulus of elasticity indicate a significant reduction at the higher temperatures. Ultimate strength of plain concrete does not appear to be affected as much by high temperature as polymer-impregnated concrete. Modulus of elasticity does decrease at the higher temperatures. Compressive strength tests were also performed on unimpregnated (60-40) styrene-TMPTMA impregnated, and (70-30) MMA-TMPTMA impregnated concrete following storage for 14 to 17 months at -10°F (-23°C). Results are reported in table 45. Other long-term tests at different temperatures were not performed because the program was terminated.

At the time the specimens were placed in their respective environments, control specimens were tested at the same temperatures. They were maintained in the environment about 24 hours or just long enough to be sure they were at the desired temperature. The average values obtained in the 24-hour and the 6-month tests are given in table 46. Results indicate that the length of exposure at least up to 6 months does not greatly change the ultimate strength or the modulus of elasticity.

4.2.1.2 Compressive Strength From $-10^{\circ}F(-23^{\circ}C)$ to 290°F (143°C).-Twenty-five unimpregnated 6- by 12-inch (152- by 305-mm) cylinders were tested at four temperatures to serve as controls for long-term tests of (70-30) MMA-TMPTMA and (60-40) styrene-TMPTMA impregnated specimens. Ten were tested at -10°F (-23°C) and five each at 70°F (21°C), 250°F (121°C), and 290°F (143°C), see tables 47 through 50. The highest strength was obtained at $-10^{\circ}F$ ($-23^{\circ}C$) and was about 39 percent greater than the lowest strength at 70°F (21°C). It was unexpected to find the lowest strength at 70°F (21°C). However, the strengths at all temperatures except -10° F (-23° C) were virtually the same. At the elevated temperatures, both modulus of elasticity and Poisson's ratio were significantly lower than at either -10° F (-23° C) or 70° F (21° C).

4.2.1.3 Tensile Splitting Strength From $-10^{\circ}F$ (-23°C) to 290°F (143°C).—Data were reduced for tensile splitting tests performed on twenty-five 6- by 12-inch (152- by 305-mm) cylinders impregnated with (60-40) styrene-TMPTMA. Test results are presented in tables 51 through 54. Ten specimens were tested at $-10^{\circ}F$ (-23°C), and five each were tested at 70°F (21°C), 250°F (121°C), and 290°F (143°C). Results indicate no significant difference for the lower three temperatures. However, a significant loss of strength is apparent at the 290°F (143°C) temperature.

4.2.2 Resistance to Hot Brine and Vapor

Styrene-TMPTMA and MMA-TMPTMA PIC specimens were tested after exposure to brine, vapor, and the brine/vapor interface at temperatures of $250^{\circ}F(121^{\circ}C)$ and $290^{\circ}F(143^{\circ}C)$. There was about a 5-month delay between the time the test loops were shut down until the tests were begun.

MMA-TMPTMA specimens exposed to brine and vapor at 290°F (143°C) for 1 year were found to be highly deteriorated and tests for compressive strength were not possible. The other specimens were apparently in good condition. Styrene-TMPTMA and MMA-TMPTMA specimens had about the same compressive strength, 11,500 $1b/in^2$ (79.2 MPa) after 1 year exposure to brine and vapor at 250°F (121°C). Tables 55 and 56 give test results on compressive strength, pulse velocity, unit weight, and specific gravity; tables 57 and 58 give results on resonant frequency, weight change, and length change; and tables 59 and 60 give results on flexural strength tests.

5. FUNDAMENTAL STUDIES

PIC specimens were examined after exposure to brine and vapor at 250° F (121° C) and 290° F (143° C). The results of the examination are given in the appendix.

6. QUALITY CONTROL – NONDESTRUCTIVE TESTS

A variety of nondestructive test methods have been studied for use on PIC. These methods include ultrasonic pulse velocity, ultrasonic resonant frequency, acoustic impact, acoustic emission, neutron radiography, gamma ray and neutron transmission, infrared radiography, microwave transmission, dielectric and electrical resistivity, and impact hammer. Absorption, permeability, specific gravity, and length change measurements might

also be included. Although there is sufficient theoretical basis for each of the various methods, the heterogeneous nature of concrete makes the practical application of any one or a combination of methods extremely difficult. These methods work best with a homogeneous material in which a flaw, defect, or change in composition or uniformity can be readily detected. Concrete consists of a random mixture of aggregate particles of greatly varying size and shape and derived from a variety of different rock types, each of which may range from hard and dense to weathered, porous, and fractured; cement paste which invariably contains fractures; and variable amounts of moisture. The use of a nondestructive test method requires extensive calibration and standardization for a particular concrete mix. Even with careful concrete control practices, the variation between batches of the same mix may present some difficulties. The more practical approach appears to be in good process control to insure uniformity of treatment and testing of selected specimens to verify product quality.

6.1 ULTRASONIC PULSE VELOCITY

Ultrasonic pulse velocity has been extensively investigated for use with conventional concrete. Commercial instruments are readily available. The velocity measurements can detect variations in density and moisture content, the presence of fractures, and also the polymer in PIC, but the interpretation of the measurements is difficult because the velocity is affected by a number of these factors.

A series of tests was made on 3- by 6-inch (76- by 152-mm) cylinders to observe the effects of moisture content and polymer loading on pulse velocity. The results are shown on figure 3. The data show-pulse velocity increases with increased moisture in conventional concrete and with increased polymer loading in PIC. The changes in pulse velocity in general look fairly uniform (with an apparently anomalous exception observed showing a high value of 14,600 ft/s (4450 m/s) for concrete containing 0.7 percent moisture).

Ultrasonic pulse velocity measurements were made on prestressed concrete bridge deck panels No. 9 and 10 before and after drying and after impregnation and polymerization. Panel No. 10 had lower pulse velocities at the undried, dried, and polymerized conditions than panel No. 9 or the 3- by 6-inch (76- by 152-mm) cylinders (fig. 4). According to the weight recorded for the panels, there does not appear to be a significant difference in density and no satisfactory explanation could be made for the lower pulse velocities recorded for panel No. 10. A more comprehensive effort would be required to analyze the variation among the individual specimens and to interpret test results.

6.2 MICROWAVE TRANSMISSION

The NBS (National Bureau of Standards), Boulder, Colo., has an electromagnetic nondestructive test method under development. The apparatus is a microwave transmitter and receiver with a data display. In normal procedure, microwaves are transmitted through a medium and reflected back by interfaces or changes within the medium in a manner somewhat similar to the seismic reflection method used in geophysical exploration. In addition to the back reflection method, the test can also be conducted by direct transmission through the specimen by locating the receiver on the opposite side of the specimen. Microwave transmission is sensitive to abrupt changes in dielectric characteristics and under appropriate conditions can be used to detect layering, voids and cracks, areas of high moisture content, thickness of surface and subsurface layers, texture of surface layer, moisture content, packing density of subsurface layers, thickness of surface and subsurface layers, and buried objects.

The instrument operates over a range of frequencies from 0.1 to 10 GHz (gigahertz) and sweeps continuous wave band widths from 4000 to 8000 MHz (megahertz). The penetration of the material is dependent upon dielectric properties and decreases as the frequency increases. In the normal mode of operation, the analysis of data is based upon wave attenuation.

Samples of water-saturated, air-dry (50 percent relative humidity), oven-dried, and PIC were tested. Test results are shown on figure 5. The test is very sensitive to moisture and shows a small but detectable difference between ovendried and PIC. It should be noted that the ultrasonic pulse velocity and the microwaves show good sensitivity to the presence of moisture. The ultrasonic method shows roughly the same effect for the presence of polymer as for the presence of moisture; whereas, the microwave method shows only a minor effect from the presence of polymer.

The microwave technique is theoretically sound. The electronic components of the apparatus are commercially available, and basic developmental work has been done by NBS. However, there would be significant costs to develop the technique for concrete applications. These expenses include assembling portable and compact equipment and performing the necessary standardization and calibration work.

6.3 NEUTRON AND GAMMA RAY

Neutron and gamma ray measurements were made with a commercial nuclear moisture and density determination apparatus. Moisture determination is made from neutron measurements, and density determination from gamma ray measurements. The instrument was operated in a back reflection mode on a 3-ft by 3-ft by 4-inch (914- by 914- by 102-mm) concrete slab at two locations on the slab. Measurements were made with the concrete in air-dried and ovendried conditions and after surface impregnation and polymerization. The polymer was located at the top surface of the slab, extending into the slab to a depth of approximately 1 inch (25 mm). These measurements are considered very rough and should be considered as only indicative of the test method capability rather than as a precise experiment. The main problems encountered in performing the experiment were:

• The transmitter and receiver were placed directly on the concrete surface. The concrete surface, being relatively rough, quite likely produced some loss of radiation from scattering and a small but undetermined error in readings. This loss could possibly be minimized by supporting the transmitter and receiver a fixed distance from the concrete surface or by changing the mode of operation to direct transmission through the specimen.

• Sometime after the experiment, a defect in an electronic component of the instrument was detected. This may or may not have introduced a source of error in the measurements.

Results of the experiment are shown in table 61. The neutron moisture determinations and gamma ray density determinations show some relationship to the actual condition of the concrete. The calculated values for density and moisture or polymer content are lower than the actual values and probably represent errors in measurement and calibration. The indicated moisture content from neutron measurements for ovendried concrete is attributed to water of hydration in the portland cement which is not free water.

6.4 COMMENTS ON OTHER NONDESTRUCTIVE TESTS

6.4.1 Ultrasonic Resonant Frequency. Standard procedure (ASTM Designation C 215-60) for evaluation of the freeze-thaw test is used to determine dynamic modulus of elasticity. Results are customarily expressed as the square of the resonant frequency or converted to

modulus of elasticity. Polymer impregnation produces an increase in resonant frequency squared of some 30 percent to 60 percent. This method is considered more applicable for durability tests than for determination of product quality or correlation with structural properties.

Acoustic Impact. This is a relatively new 6.4.2 test. Only one company is known to manufacture a specific device for this type of test. The test was originally developed for detecting fractures in rivets and fasteners. The test consists of mechanically striking the test specimen and measuring the time for the shock wave to dampen a predetermined value. A BNL study [5] indicated that the test showed dampening of transmitted signals correlated with polymer loading, but the test showed more promise when used to determine vibration frequencies. This test procedure showed excellent correlation with measurements conducted according to ASTM Designation C 215-60. It was observed that the presence of moisture had no effect on resonant frequency and that polymer impregnation increased the square of resonant frequency by about 40 percent.

6.4.3 Neutron Radiography. Neutron radiography is similar to neutron moisture determination methods, being based upon the selective attenuation of thermal neutrons by hydrogen, except a picture is the end product instead of a dial reading. A BNL study [3] showed that neutron radiographs of PIC are difficult to interpret due to overlapping and extensive shadows to the aggregate particles. The method is potentially useful for observing very large variations in polymer loading within a sample; however, the equipment is expensive and further application of this method is not anticipated.

6.4.4 Infrared Radiography. A device is on the market which produces an image derived from the infrared radiation emitted by an object. The apparatus is fairly sensitive and can detect variations of about 1.8° F (1°C) in surface temperature. A brief test with this apparatus indicated that under ideal conditions polymer-impregnated zones in a concrete specimen could be distinguished from unimpregnated zones; however, unequal heating or cooling of the specimen can easily mask the effects of the polymer.

6.4.5 Acoustic Emission. This is a method in which a transducer "hears" subaudible noise emitted when a material is stressed. The rate and amplitude of the stress waves may be analyzed to determine if a structure is nearing failure. Grids of transducers are used to

locate flaws. This method requires extensive experience with a particular material before it can be used as an analytical tool.

Electrical Resistivity and Dielectric Con-6.4.6 A limited study was made to investigate the stant. suitability of electrical resistivity and dielectric constant measurements as a nondestructive test method [4,5]. However, the dielectric constant and electrical resistivity could not be related to polymer loading in test specimens. A test of nine fully impregnated concrete specimens with polymer loadings of 6.7 to 8.0 weight percent had dielectric constants ranging from 6.56 to 7.23 and resistivities ranging from 46.9 to 69.0 megohmmetres. A set of partially impregnated specimens with polymer loadings of 3.9 to 5.2 weight percent had dielectric constants from 6.87 to 7.18 and resistivities of 50.1 to 56.9 megohm-metres which are within the range of values observed for the fully impregnated specimens.

 $i \in \mathcal{A}$

p

2

Impact Hammer. The impact hammer is a 6.4.7 commercially available device designed primarily for field testing of concrete. The instrument measures hardness by impacting a steel rod against the test surface and observing the rebound. The rebound number is considered indicative of quality; the higher the rebound number, the higher the quality. The instrument has been used to obtain information on the extent of curing in concrete and to delineate sound from unsound zones in concrete structures. Attempts have been made to correlate rebound number with strength, but have not been successful except possibly under carefully controlled experiments with a known concrete mix. The impact hammer tests the surface of the concrete to a depth of about 1 to 2 inches (25 to 51 mm) and is not sensitive to the condition of the concrete in the interior of the specimen. Rebound readings are influenced by surface conditions, orientation of the hammer, coarse aggregate particles immediately below the hammer, size of the specimen, and the restraint placed on the specimen to hold it in place, all of which are not related to quality or strength of the concrete. Impact hammer tests generally show PIC to give a rebound number about 20 to 65 percent greater than unimpregnated concrete [3].

7. APPLICATIONS DEVELOPMENT

7.1 PIPE APPLICATIONS

7.1.1 Joint USBR/BNL/ACPA Program. A report covering work conducted under the joint USBR/ BNL/ACPA (American Concrete Pipe Association) research program has been published [7].

7.1.2 PIC Draintile

7.1.2.1 Resistance to Sulfate Attack.-Westlands PIC Draintile.-Sodium sulfate tests on concrete draintile have reached 1,092 days' exposure. Expansion results at this age still indicate that the epoxy-styreneimpregnated concrete is much more resistant in the accelerated test, but about the same in resistance as the unimpregnated tile in the 10 percent sulfate solution, table 62.

7.2 PRECAST TUNNEL SUPPORTS AND LININGS

A report covering work conducted under the joint Bureau of Reclamation/Bureau of Mines/Department of Transportation research program has been published [8].

8. SUMMARY AND CONCLUSIONS

Test results from the last year of the testing program are briefly summarized as follows:

• Studies of the effect of concrete mix design variables on properties of PIC show compressive strengths of PIC specimens averaged 16,500 lb/in² (114 MPa) for a low-strength mix, 20,900 lb/in² (144 MPa) for a no-fines mix, 20,500 lb/in² (141 MPa) for a gap-graded mix, and 20,400 lb/in² (141 MPa) for the standard CP mix.

and the second

• A preliminary study with concrete and mortar specimens made with a highly alkali-reactive aggregate indicated that polymer impregnation curtails alkaliaggregate reaction.

• Flexure tests were conducted on reinforced and nonreinforced (10-90) polyester-styrene PIC. Calculations showed the reinforced beams were underreinforced and the test results were more a function of the reinforcing steel than the concrete. Flexure tests on nonreinforced beams indicated PIC specimens were 2.6 times stronger than plain concrete.

• Shear tests performed on reinforced beams showed that shear strength of PIC is about 80 percent greater than that of unimpregnated concrete.

• Compressive strength tests on PIC specimens that have been under 800 lb/in^2 (5.5 MPa) compressive load for 3 to 4-1/4 years showed that the long-term load conditions had no apparent effect on strength.

• Long-term durability tests on PIC specimens were continued. Length of exposures ranged upwards to

2,106 days in the accelerated sulfate attack test, 459 days immersion in 5 percent sulfuric acid, and up to 14,690 cycles of freezing and thawing. PIC shows excellent resistance to sulfate attack, freezing, and thawing, and more than twice the resistance to sulfuric acid as conventional concrete. A study was also conducted to investigate the loss of strength in specimens exposed to sulfuric acid, freezing, and thawing.

• Durability tests on partially impregnated concrete generally show improved resistance to freeze-thaw, acid, and sulfate attack when compared to unimpregnated concrete. Some variations in test results were encountered, which may be due to difficulties in obtaining uniform depths of impregnation within relatively shallow impregnation zones.

• Structural properties on PIC for desalting plant applications included compressive stress-strain relationships and tensile splitting strengths at temperatures ranging from -10° F (-23° C) to 290°F (143° C). The compressive strength of (70-30) MMA-TMPTMA PIC remained about the same at -10° F (-23° C) and 70°F (21°C), but showed a decrease at the elevated temperatures. Tensile splitting tests showed that the strength of (60-40) styrene-TMPTMA PIC remained about the same at temperatures from -10° F (-23° C) to 250°F (121°C) but showed some decrease at 290°F (143°C).

• Specimens impregnated with (60-40) styrene-TMPTMA and (70-30) MMA-TMPTMA were exposed up to 2 years in brine and vapor at temperatures of 250°F (171°C) and 290°F (143°C). The (70-30) MMA-TMPTMA specimens disintegrated after 1 years' exposure to brine and vapor at 290°F (143°C) and could not be tested. The (60-40) styrene-TMPTMA appeared to be in good physical condition after 2 years' exposure to brine and vapor at 250°F (121°C) and 290°F (143°C), although loss in strength and expansion of the specimens were measured and recorded. An examination did not reveal any indications of polymer deterioration, and it is believed that the lower strengths and expansion may be the result of a gradual absorption of small amount of moisture.

¢.

Experiences with a variety of nondestructive tests were briefly summarized. These tests included ultrasonic pulse velocity, ultrasonic resonant frequency, acoustic impact, neutron radiography, gamma ray and neutron transmission, infrared radiography, microwave transmission, dielectric and electrical resistivity, and the impact hammer. Further work would be required to develop a suitable method or combination of methods for use with PIC. The more practical approach for quality control would include good process control to insure uniformity of treatment, and destructive type tests of selected specimens to verify product quality. Final reports were published on PIC applications development for concrete pipe and precast tunnel supports and linings [7 and 8]. Field and laboratory testing is continuing on resistance of PIC draintile to sulfate attack.

A study of FA PCC was completed at Washington State University. The tests showed that compared with conventional concrete, the PCC had similar tensile and compressive strengths, somewhat better resistance to acid, and less resistance to freezing and thawing. Further work would be required to improve the system.

Some of the important general conclusions from the total program are:

• PIC has greatly improved structural properties compared to unimpregnated concrete.

• The durability of PIC is greatly superior to that of unimpregnated concrete. PIC shows excellent freezethaw resistance, potentially excellent sulfate attack resistance, and substantial improvement in acid resistance. It appears that PIC could be made to be virtually immune to acid attack by coating the surface with multiple layers of polymer.

• A feasible thermal-catalytic process has been developed for large-scale production of PIC. The process involves drying the concrete, vacuum/pressure impregnation, and polymerization under water.

• Concrete quality and curing conditions are of relatively minor importance in producing good quality PIC. However, it is likely that the best quality and most economical PIC would be produced from good quality, dense concrete.

• MMA, MMA-TMPTMA, and styrene-polyester monomer systems appear promising for PIC applications at normal temperatures. A styrene-TMPTMA monomer system appears promising for PIC in applications under an exposure to brine and vapor at temperatures up to 290°C (143°C), as may be encountered in saline water distillation plants.

• For applications which require good durability rather than high strength, partially impregnated PIC appears to be a less costly alternative to fully impregnated PIC. Further development is required to refine the process for field applications and to determine properties of the material.

• Very promising results have been obtained in the developmental studies on PC (polymer concrete). PC made with a MMA monomer system has structural properties generally comparable to that of PIC and should have much better durability. PC should be substantially less costly to prepare than PIC.

• The limited studies with PCC have not given the desired results. Further work would be required to develop a satisfactory PCC.

9. BIBLIOGRAPHY

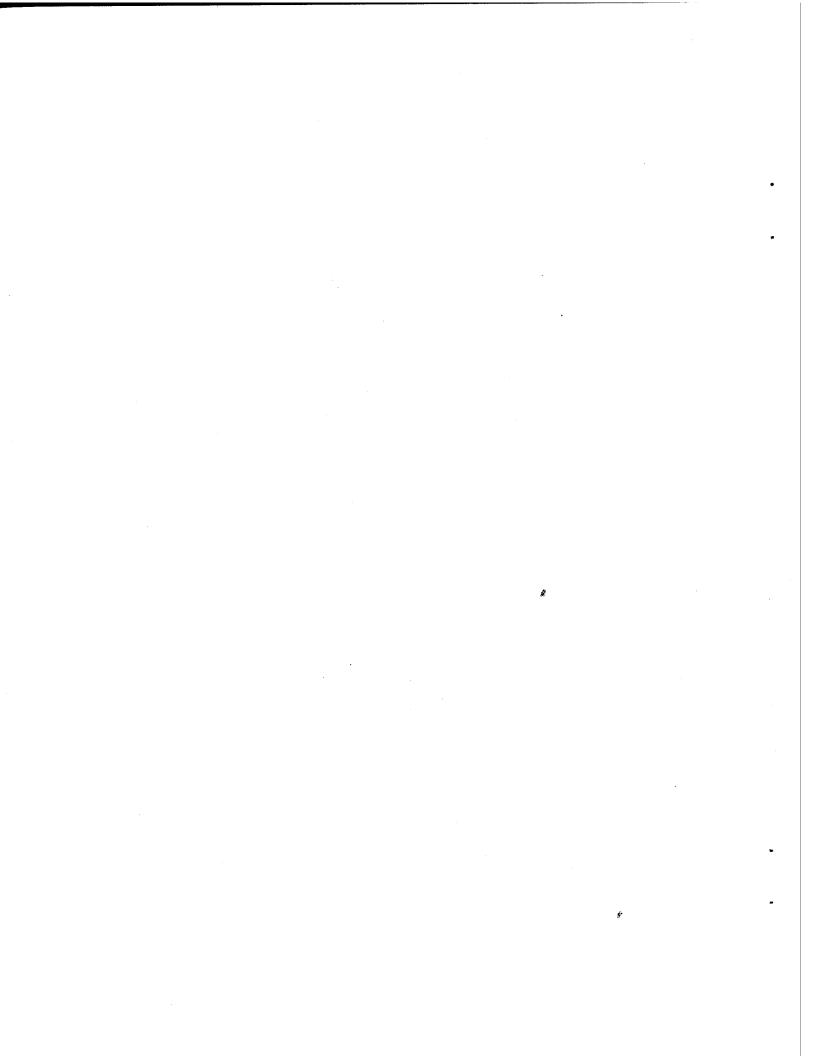
[1] "Concrete-Polymer Materials, First Topical Report," USBR General Report No. 41 and BNL 50134, December 1968.

[2] "Concrete-Polymer Materials, Second Topical Report," USBR REC-OCE-70-1 and BNL 50218 (T-560), December 1969.

[3] "Concrete-Polymer Materials, Third Topical Report," USBR REC-ERC-71-6 and BNL 50275 (T-602), January 1971.

[4] "Concrete-Polymer Materials, Fourth Topical Report," USBR REC-ERC-72-10 and BNL 50328, January 1972.

[5] "Concrete-Polymer Materials, Fifth Topical Report," USBR REC-ERC-73-12 and BNL 50390, December 1973.


[6] R. A. V. Raff, "Polymer Cement Concrete with Furfuryl Alcohol Resins," Washington State University, College of Engineering, Research Report No. 73/20-8-33, April 17, 1973.

[7] W. C. Cowan, and H. C. Riffle, "Investigation of Polymer-Impregnated Concrete Pipe," USBR REC-ERC-74-14, Bureau of Reclamation, Engineering and Research Center, Denver, Colorado, September 1974.

[8] L. R. Carpenter, W. C. Cowan, and R. W. Spencer, "Polymer-Impregnated Concrete Tunnel Support and Lining," USBR REC-ERC-73-23, Bureau of Reclamation, Engineering and Research Center, Denver, Colorado, December 1973.

9

精制に

Table 1.-Furfuryl alcohol polymer-cement concrete, compressive and tensile strength

	Conventiona	l concrete	PC	с
	Specimen	lb/in ²	Specimen	lb/in ²
Tousile culitting strangth	04	470†	4	3801
Tensile splitting strength	05	500	5	410
	06	440	6	500
	Average	470	Average	430
Compressive strength	01	6,200	*1	6,100
Compressive sciengen	02	5,900	2	6,000
	03	6,100	**3	6,000
	Average	6,100	Average	6,000
C	. 07	7,400	7	9,300
Compressive strength (after vacuum water saturation	08	6,800	8	7,500
and ovendrying at 250°F)	09	7,600	9	9,600
	Average	7,200	Average	8,800

3- by 6-inch cylinders.

* Modulus of elasticity = 3.63×10^6 lb/in², Poisson's ratio = 0.17. ** Modulus of elasticity = 3.67×10^6 lb/in², Poisson's ratio = 0.17. † See table 63 to convert to SI metric units.

Table 2.-Furfuryl alcohol polymer-cement concrete, physical properties

	Conventiona	l concrete	PCC	C	
	Specimen	value	Specimen	value	
Water absorption (vacuum saturation),	07	5,99	7	4.95	
percent by dry weight	08	5.89	8	4.99	
percent by dry weight	09	6.47	9	5.06	
	Average	6.12	Average	5.00	
Provide analytic	07	2.415	7	2.430	
Specific gravity	08	2.423	8	2.424	
	09	2.414	9	2.430	
	Average	2.417	Average	2.430	

Preceding page blank '

Dave	Days Conventional concrete percent weight loss					PC percent w	CC reight loss	
exponie		Cylinder No).			Cylinder No)	
	010	011	012	Average	10	11	12	Average
16	(2.96)*	(3.14)	(3.57)	(3.22)	(3.53)	(3.69)	(3.70)	(3.64)
34	(3.29)	(3.35)	(3.49)	(3.38)	(3.38)	(3.96)	(3.90)	(3.82)
49	7.43	7.09	6.88	7.13	2.09	0.40	1.74	1.41
79	15.97	17.27	15.58	16.27	7.24	3.87	5.70	5.60
126	28.96	31.44	30.80	30.40	13.82	8.35	11.22	11.13
148	32,56	36.73	35.39	34.89	17.21	9.90	13.95	13.69

Table 3.-Furfuryl alcohol polymer-cement concrete, exposure to 5 percent sulfuric acid

and the

· · · · · · ·

2

 \ast Values in parentheses are a gain in weight. .

N

Freeze-thaw -			onal concrete weight loss				PCC weight loss	
cycles					Cylinder N	lo	_	
	013	014	015	Average	13	14	15	Average
80	1	1	0.5	1	21	13	7.5	14
180	1.5	4	3.5	3	Cylinder split	31	34	33
280	4	5	3.5	4	•			
380	6	8	10	8				
480	7	8.5	15	10				
580	7	11	31	20				
680	19	18	-	19				
780	23	21		22				
880	80	60		70				

Table 4.-Furfuryl alcohol polymer-cement concrete, freeze and thaw durability

Weight loss of 25 percent is considered failure.

Specimen No. 310	Polymer loading, wt %	Absorption, %	Specific gravity	Compressive strength, lb/in ²	*Tensile strength, lb/in ²
	10.2			16,900†	_
1	10.2			15,400	-
2	9.8	-		16,800	
3	10.1			16,000	· · · _
4	9.3			16,500	
5	9.7	-	-	17,300	
6	9.6	· · · ·		17,300	1,730†
7	10.1	, -		-	1,950
8	9.9	 *		_	
9	10.1	· 🛶		··· —	1,630
10	10.0	1.30	2.28	- .	
11	9.9	1.43	2.27		-
12	10.3	1.31	2.27	-	
Mean	9.9	1.35	2.27	16,500	1,770

Table 5.--Strength and physical properties, low-strength concrete impregnated with MMA

3- by 6-inch cylinders.

MMA = methyl methacrylate, thermal-catalytic polymerization.

* Tensile splitting strength.

Concrete mix data: 290 lbs cement/yd³ Water/cement ratio = 0.90 Slump = 2.7 inches Entrained air = 5.5% gravity, 4.6% pressure Unit weight = 141.8 lbs/ft³

[†] See table 63 to convert to SI metric units.

Specimen No.311–	Polymer loading, wt %	Absorption, %	Specific gravity	Compressive strength, lb/in ²	*Tensile strength lb/in ²
	6.88			18,400†	
1	7.05		-	22,600	
2			_	21,400	-
3	7.03			20,160	-
4	7.20		_	22,100	— .
5	6.63			14,360	
6	6.93			,	1,670
7	6.76				1,120
8	6.79			_	1,780
9	7.11		2.31		´-
10	6.67	0.77	2.31		_
11	7.22	0.89			
12	6.87	0.76	2.32	_	
Mean	6.93	0.81	2.31	20,900	1,520
	0			4,700	
13	0			4,600	-
14	0		-	4,600	-
15	0			4,800	<u></u>
16	0			4,500	
17	0	-		4,700	
18	0				390
19	0			-	360
20	0			· _	350
21	0	-	2.28	_	· _
22	0	6.08	2.26		_
23	0	6.28		- ·	
24	0	5.99	2.28		
Mean	0	6.05	2.27	4,700	370

Table 6.-Strength and physical properties, no fines concrete impregnated with MMA

ł,

iy.

8.

3- by 6-inch cylinders.

MMA = methyl methacrylate, thermal-catalytic polymerization.

* Tensile splitting strength.

Concrete mix data:

1

.

Sand grading: 30% No. 50, 30% No. 30, 20% No. 16, 20% No. 8 (contains no sand finer than No. 50 sieve size) Sand 1,337 lbs/yd3 Gravel 1,610 lbs/yd³ Cement 527 lbs/yd³ Water/cement ratio = 0.47 Slump = 2.5 inches Entrained air = 9.2% gravity, 7.1% pressure Unit weight = 137.9 lbs/ft^3

 \dagger See table 63 to convert to SI metric units.

Specimen No. 312–	Polymer loading, wt %	Absorption, %	Specific gravity	Compressive strength, lb/in ²	*Tensile strength lb/in ²
	<u> </u>			20,800†	
1	6.89		_	19,500	_
2 3 4	6.66		_	18,700	· _
3	6.57	· . —	_	21,800	·
4	6.82	-	_	21,400	
5	6.89			20,800	
6	6.27	• ##**		20,000	1,230
7	6.47				1,240
8	6.34	·			1,750
9	7.02	-			-
10	7.04	0.69	2.33	. —	
11	7.00	0.76	2.33		
12	6.71	1.14	2.33		
Mean	6.72	0.86	2.33	20,500	1,410
				5,100	_
13	0	-		4,900	
14	0	•		4,900	_
15	0	-	-	5,100	·
16	0	_	·	4,900	·
17	0		-	4,800	
18	0	_	-	4,800	330
19	0				330
20	0	-			310
21	0		_		
22	0	5.89	2.31		
23	0	6.43	2.29		
24	0	5.98	2.31		
Mean	0	6.10	2.30	5,000	320

Table 7.--Strength and physical properties, gap-graded concrete impregnated with MMA

3- by 6-inch cylinders.
MMA = methyl methacrylate, thermal-catalytic polymerization.
* Tensile splitting strength.

Concrete mix data:

Aggregate contains no No. 4 to 3/8-inch-size gravel 529 lbs cement/yd³ Water/cement ratio = 0.50 Slump = 2.2 inches Entrained air = 5.9% gravity Unit weight = 142.4 lbs/ft³

[†] See table 63 to convert to SI metric units.

Specimen No. 313A-	Polymer loading, wt %	Absorption, %	Specific gravity	Compressive strength, lb/in ²	*Tensile strength, lb/in ²
	- 00			23,300†	_
1	5.83			20,100	-
2 3 4	5.42	-		18,300	
3	5.88	_	_	18,400	
4	6.03			20,400	
5	6.05	· -		22,100	_
6	5,63	-		22,100	1,690†
7	5.48	-			1,660
8	5.93				1,660
9	5.76	-		<u> </u>	1,000
10	5.84	0.86	2.37		
11	5.90	0.81	2.36	 -	
12	6.07	0.87	2.34 ·		
Mean	5.82	0.85	2.36	20,400	1,670
13	0		_	5,700 †	
13	0			6,000	-
14	0			6,000	-
15	0		-	6,200	_
17	0			6,200	
18	0			5,900	
18	ŏ				420†
20	0	_	_	-	370
20	0		_		390
21 22	0	6.31	2.35		_
22	0	5,98	2.36		-
23 24	0	6.08	2.36	-	
Mean	0	6.12	2.36	6,000	390

Table 8.-Strength and physical properties, CP-type concrete impregnated with MMA

ų,

3- by 6-inch cylinders.
MMA = methyl methacrylate, thermal-catalytic polyermization.
* Tensile splitting strength.
CP-type concrete.
* See table 63 to convert to SI metric units.

		. •		MMA-im	pregnated		
	Unimpregnated % expansion*	5 days after casting, % expansion*			fter casting, ansion*	33 days after casting, % expansion*	
		Net	After impreg- nation	Net	After impreg- nation	Net	After impreg- nation
1	0	0	· · ·	0	_	0	
5		-0.140	0				_
7	0.052	-0.135	0.005	0.062	-		— .
12			-	-0.065	0		
14	0.160	-0.134	0.006	-0.067	-0.002		·
21	0.267	-0.128	0.012	-0.061	0.004		
28	0.363	-0.116	0.024	-0.051	0.014	0.378	·
33	-			<u> </u>	- .	0.213	0
35	0.425	-0.117	0.023	-0.051	0.014	0.209	0.004
42	0.480	-0.113	0.027	-0.049	0.016	0.225	0.012
49	0.580	-0.105	0.035	-0.043	0.022	0.237	0.024
56	0.622	-0.101	0.039	-0.041	0.024	0.240	0.027

Table 9.—Sealed moist-storage mortar bar expansion, MMA-impregnated and unimpregnated alkali-reactive 1- by 1- by 10-inch bars

* Net expansion is based on measurements at 1 day's age after casting. Expansion after impregnation is based on measurement at time of impregnation. Minus sign indicates a contraction.

Ĩ,

SPECIMËN NUMBER	LOADING	ULTIMATE LOAD (LBS.)	OF	FLEXURAL MODULUS (MILLION PSI)	SHEAR AT ULTIMATE (LBS.)	NOMINAL SHEAR STRESS (PSI)
72.142.6 72.142.7 72.142.9 72.142.11 72.142.12	5.80 5.20 5.40 5.80 5.80	6340 [†] 6140 6340 7180 6440	4058† 3930 4058 4595 4122	6.27 <u>†</u> 6.39 4.27 3.39 4.37	3170 [†] 3070 3170 3590 3220	211 [†] 205 11 239 15
MEAN STDDEV C OF VAR.(%)	5.60 .28 5.05	6488 402 6•19	4152 257 6.19	4.94 1.33 26.89	3244 	216 13 6.19

Table 10.-Flexure tests of (10-90) polyester-styrene impregnated concrete,3- by 5- by 54-inch beams tested at room temperature

[†] See table 63 to convert to SI metric units.

Table 11Flexure tests of unimpregnated 3- by 5- by 54-inch beams,
controls for (10-90) polyester-styrene impregnated beams
tested at room temperature

SPECIMEN NUMBER	POLYMER LOADING	ULTIMATE LOAD		MODULUS	AT	NOMINAL SHEAR STRESS
	(WT. %)	(LBS.)			(LBS.)	(PSI)
	.00	6300	4032	4.11	3150+	
71.143.6	.00	6240	3994	3.96	3120	208
72.143.7	.00	5660	3622	4.82	2830	189
		6100	3904	4.71	3050	203
72.143.9 72.143.10.	•00 •00	6160	3942	4.61		205
14 PT A 14	.00	6092	3899	4.44	3046	203
MEAN	.00	253	162	• 38	127	
STD. DEV. C OF VAR. (%)		4.16	4.16	8.59	4.16	4.16

[†] See table 63 to convert to SI metric units.

SPECIMEN NUMBER	POLYMER LOADING	ULTIMATE LOAD	MODULUS OF RUPTURE (PSI)	FLEXURAL MODULUS (MILLION PSI)	SHEAR AT ULTIMATE (LBS.)	NOMINAL SHEAR STRESS (PSI)
72.144.1	5.70	7400	28781	_ 5. 34 [†]	3700 [†]	411
72.144.2	5.50	6700	2606	6.46	3350	372
72.144.3	6.00	6480	2520	5.15	3240	360
72.144.4	5.80	7000	2722	5.98	3500	389
72.144.5	4.70	4180	1626	4.88	2090	232
· · · · · · · · ·				5.56	3176	353
AN	5.54	6352	2470			70
D. DEV. OF VAR.(%)	•50 9•08	1262 19.87		•65 11•61	631 19.87	19.87

Table 12.-Flexure tests of polyester-styrene impregnated concrete, 3- by 3- by 16-inch unreinforced bars tested at room temperature

Table 13Flexure tests of unimpregnated concrete 3- by 3- by 16-inch bars,
controls for (10-90) polyester-styrene impregnated bars
tested at room temperature

SPECIMEN Number	POLYMER LOADING (WT- %)	ULTIMATE LOAD (LBS+)	MODULUS OF RUPTURE (PSI)	FLEXURAL MODULUS (MILLION PSI)	SHEAR AT ULTIMATE (LUS+)	NOMINAL SHEAR STRESS (PSI)
	• 00	2460 t	957	4.76 [†]	1230 †	137†
72.145.1	•00	2460	957	4.56	1230	137
	0.0	2300	894	5.00	1150 _	128
72.145.4	•00	2480	964	4.96	1240	138
72-145.5	.00	2420	941	5.13	1210	1.34
• • •	•00	2424	943	4.88	1212	135
AN DEN	•00	73	28	•22	36	4
ID. DEV. OF VAR.(%)	•00	3.00	3.00	4.57	3.00	3.00

Specimen No.	Polymer loading, wt %	Ultimate load, lbs	Ultimate shear, lbs	Nominal shear stress, lb/in ²	Ultimate moment, in-lb
72.142.1	5.2	23,100 [†]	18,900 [†]	1,480†	47,250†
72.142.2	5.6	19,800	16,200	1,270	40,500
72.142.3	5.6	20,660	16,900	1,325	42,260
72.142.4	5.5	25,600	20,950	1,645	52,360
72.142.5	4.4	24,700	20,210	1,585	50,520
Mean	5.26	22,772	18,632	1,461	46,578
Std Dev	0.508	2,506	2,052	162	5,124
C of Var. (%)	9.66	11.01	11.01	11.07	11.00
72.143.1	0	12,200	9,980	785	24,950
72.143.2	0	11,560	9,460	740	23,650
72.143.3	0	13,300	10,880	885	27,200
72.143.4	Ö	14,100	11,540	905	28,840
72.143.5	0	12,500	10,230	800	25,570
14.175.5	č	,			
Mean	0	12,732	10,418	817	26,042
Std Dev	0	988	809	64.1	2,019
C of Var. (%)	0	7.76	7.76	7.84	7.75

Table 14.--Shear tests, control and (10-90) polyester-styrene impregnated concrete3- by 5- by 54-inch beams at room temperature

3

[†] See table 63 to convert to SI metric units.

Table 15.—Compressive strength of creep test specimens, 3 to 4-1/2 years under 800-lb/in² sustained load – CP test series

Specimen No.	Monomer	Polymer loading, percent by wt	Method of polymerization initiation	Time under 800 lb/in ² load, yrs	After creep test compressive, strength, lb/in ²	Compressive str of companion control cyls never loaded
CP-1A-7A	MMA	5.7	R	4-1/2	21,750 [†]	23,350†
CP-1A-7C	MMA	5.9	R	4-1/2	22,820	
CP-1B-7A	MMA	6.2	T	4-1/2	19,560	20,200
CP-1B-7B	MMA	6.2	T	. 4-1/2	19,670	
CP-2A-7A	S	5.6	R	4-1/2	17,400	16,550
CP-2A-7B	S	6.0	R	4-1/2	16,310	
CP-2B-7B	S	5.1	T	4-1/2	13,480	
CP-2B-7X	S	3.5	T	4-1/2	10,750	
CP-5A-7A	AN	5.7	R	3	16,910	16,340
CP-5A-7B	AN	5.7	R	3	18,110	
CP-5B-7A	AN	4.4	T	3	7,110	7,780
CP-5B-7B	AN	5.4	T	3	7,320	
CP-6A-7A	CS	6.7	R	3	19,740	19,100
CP-6A-7B	CS	6.9	R	3	19,420	
CP-6B-7A	CS	6.2	T	3	15,350	14,930
CP-6B-7B	CS	6.5	T	3	15,630	
CP-0 -7B CP-0 -7C	None None		- -	4-1/3 4-1/3	6,610 6,460	6,440
CP-3A-7A CP-3A-7B	None None	··		4-1/3 4-1/3	6,370 6,140	5,960
CP-3B-7A CP-3B-7B	None None			4-1/3 4-1/3	6,310 5,940	5,980

6- by 12-inch cylinders. Specimens ovendried at 105°C (221°F) prior to impregnation.

R = radiation.

T = thermal-catalytic.

MMA = methyl methacrylate.

S = styrene.

AN = acrylonitrile.

CS = monochlorostyrene. [†] See table 63 to convert to SI metric units.

Specimen No.	Monomer	Polymer loading, wt %	Method of polymerization	Test cycles, days	Net expansion, %
Control	None	-	None	1,486	3/ 0.550
MMA-10	*MMA	6.3	R	2,044	030
S-14	*S	6.2	R	2,109	.016
CP-0-4A	None	-	None	480	<u>3/</u> .502 <u>3</u> /.432
CP-0-4B	None	-	None	480	<u>3</u> / .432
CP-1A-4A	MMA	6.1	R	540	<u>2/</u> .016
CP-1A-4B	MMA	6.6	R	1,853	.024
CP-1B-4A	MMA	6.3	Т	1,853	.028
CP-1B-4R CP-1B-4B	MMA	6.6	Т	1,853	.016
CP-2A-4A	S	5.1	R	1,814	.036
CP-2A-4B	s	5.7	R	1,814	.042
CP-2B-4B	ŝ	4.5	Т	1,814	.042
CP-3A-4A	None	-	R	750	3/ .580
CP-3A-4B	None	-	R	750	<u>3/</u> .580 <u>3</u> /.536
CP-3B-4A	None	-	Т	605	3/ .496
CP-3B-4R CP-3B-4B	None	-	т	605	<u>3</u> / .548
CP-4A-4A	MMA+TMPTMA	6.1	R	360	2/ .004
CP-4A-4B	MMA+TMPTMA	6.5	R	1,679	.020
CP-4B-4A	MMA+TMPTMA	7.4	Т	1,679	.016
CP-4B-4R CP-4B-4B	MMA+TMPTMA	7.2	Т	1,679	.002
CP-5A-4A	AN	5.1	R	540	3/ .462
CP-5A-4B	AN	5.3	R	180	<u>1</u> / .096
CP-5B-4A	AN	5.0	Т	390	<u>1</u> / .150
CP-5B-4B	AN	6.0	Т	1,651	.016
CP-6A-4A	CS	5.1	R	732	<u>3/</u> .466 <u>3/</u> .798
CP-6A-4B	CS	5.8	R	732	
CP-6B-4A	CS	6.3	Т	1,296	.028
CP-6B-4B	CS	6.6	Т	1.296	.024
CP-7-4A	PE-S	6.6	R	595	.010
CP-7-4B	PE-S	6.8	R	595	.000
CP-UA-4A	MMA	7.1	R	752	.024
CP-UA-4B	MMA	6.7	R	752	.020

Table 16.-Resistance to sulfate attack -CP test series

3- by 6-inch specimens, ovendried at $105^{\circ}C$ (221°F) prior to

impregnation.
*Specimens not ovendried.

R = Radiation.

T = Thermal-catalytic.

MMA = Methyl methacrylate.

S = Styrene.

TMPTMA = Trimethylolpropane trimethacrylate. MMA+TMPTMA = MMA + 10 wt % TMPTMA.

AN = Acrylonitrile.

CS = Chlorostyrene. PE-S = (10-90) Polyester-styrene.

1/ Loose insert from specimen deterioration, removed from test.
 2/ Removed from test for display.
 3/ Specimen failed, removed from test.

Specimen No.	Monomer	Polymer Method of loading, polymerization wt %		Number of test cycles	Weight loss, %	
Control	None		None	<u>2/</u> 590	26.5	
BNL-1-3	*MMA	6.7	R	- 14,690	2.0	
CP-0-3A	None	-	None	2/ 490	25.0	
CP-0-3B	None	• •	None	2/ 990	26.0	
CP-1A-3A	MMA	5.9	R	1/ 8,310	9.0	
CP-1A-3B	MMA	5.9	R	3/10,340	12.5	
CP-1B-3A	MMA	6.9	T	1/ 3,650	1.5	
CP-18-38	MMA	6.9	T	$\frac{1}{1}$ / 3,650	2.0	
CP-2A-3A	S	4.8	R	2/ 2,010	25.0	
CP-2A-3A CP-2A-3B	S	4.9	R	7/ 3 260	26.0	
CP-2R-3B	S	4.5	Ť	$\frac{2}{2}$ 6,290	25.0	
CP-2B-3A CP-2B-3B	S	4.3	Ť	$\frac{2}{2}$ 5,740	26.0	
CP-3A-3A	None	-	R	2/ 390	30.0	
CP-3A-3B	None	-	R	$\frac{1}{2}$ / 490	26.0	
CP-3B-3A	None	-	Т	$\frac{1}{2}$ / 440	40.0	
CP-3B-3B	None	-	T	$\frac{2}{2}$ 390 $\frac{2}{2}$ 490 $\frac{2}{2}$ 440 $\frac{2}{2}$ 440	30.0	
CP-4A-3A	MMA+TMPTMA	6.2	R	2/ 3,350	33.0	
CP-4A-3B	MMA+TMPTMA	6.2	R	2/ 7,870	24.5	
CP-4B-3A	MMA+TMPTMA	7.2	Τ.	1/ 1,230	0.5	
CP-4B-3B	MMA+TMPTMA	7.1	Т	- 11,130	8.0	
CP-5A-3A	AN	5.1	R	<u>2</u> / 1,840	25.0	
CP-5A-3B	AN	5.0	R	2/ 1,540	25.0	
CP-5B-3A	AN	5.6	Т	<u>1/2</u> / 9,420	23.0	
CP-5B-3A	AN	5.3	Т	<u>7</u> / 8,710	25.0	
CP-6A-3A	CS	6.3	R	$\frac{2}{2}$,000	25.0	
CP-6A-3B	CS	6.3	R	$\frac{1}{2}$ / 1,800	25.0	
CP-6B-3A	CS	6.3	Т	2/ 4,710	25.0	
CP-6B-3B	CS	6.5	Τ.	2/ 4,610	25.0	
CP-UA-3A	MMA	7.1	R	2/3/ 4,560	>25.0	
CP-UA-3B	MMA	6.9	R	$\frac{2}{3}$ / 4,560	>25.0	
CP-7-3A	PE-S	7.0	R	2/3/ 3,310	>25.0	
CP-7-3B	PE-S	6.9	R	4,210	3.5	

Table 17.-Resistance to freezing and thawing -CP test series

3- by 6-inch cylinders, ovendried at 105°C (221°F) prior to

impregnation.

* Specimen not ovendried prior to impregnation.

R = Radiation.

T = Thermal-catalytic. MMA = Methyl methacrylate.

TMPTMA = Trimethylolpropane trimethacrylate. MMA+TMPTMA = MMA + 10 wt % TMPTMA.

AN = Acrylonitrile.

CS = Chlorostyrene.

PE-S = (10-90) polyester-styrene.

1/ Removed from test. 2/ Failed and removed from tests, weight loss over 25 percent. 3/ Specimen split into two pieces.

11

Table 18.-Resistance to 5 percent sulfuric acid, polymer-impregnated concrete

					Perc	Percent weight loss	SS			Compressive strength. lb/in ²
Monomer	Specimen No.	Polymer loading, wt %	174 days	210 days	252 days	290 days	326 days	423 days	459 days	(after sulfate test failure)
PE-S	CP-7 17A 19B	6.9 6.9	I I	18.5 13.0	17.5 16.3	I I	21.2 18.0	11	¹ 31.9 ¹ 35.0	6,210 [†] 4,840
AMA	CP-UA 19A 19B	7.3 7.1	11	15.4 17.0	13.2 21.3	1 1	15.4 25.4	11	¹ 26.9 30.4	4,360 4,790
PE-S	CP-R 2 22 23 23 23 72 72	6.5 6.6 6.3 6.3 6.3	13.4 12.7 12.8 12.0 13.4 13.4	14.5 14.2 13.4 15.0 16.4		18.7 18.3 18.3 17.3 19.3 20.9		27.9 126.8 126.2 126.2 125.2 128.2 128.3	11111	8,700 6,240 5,910 5,280 6,090
MMA	CP. 4B-15A 4B-15A 4B-15D 5B-11A 5B-11A 5B-14A 5B-15B	6.5 5.6 5.6 5.6 6.3	8.8 14.6 13.1 11.0 11.0 11.1	10.2 18.5 15.9 13.0 14.7	1	13.3 23.5 20.3 16.7 19.3 16.2	1	20.1 131.8 127.8 23.2 127.3		7,470 8,630 - 7,690 7,160
Unimpregnated	CP-DP 76 82	00	1	¹ 33.8 ¹ 32.4	11	11	11	1	1 1	11

3- by 6-inch specimens, ovendried at 110° C (230° F) prior to impregnation. PE-S = (10-90) polyester-styrene. MMA = methyl methacrylate, radiation polymerization.

* Radiation polymerization under water. ¹ Failed, weight loss greater than 25%. [†] See table 63 to convert to SI metric units.

÷

:

	М	MA-impregn	ated concrete	Unimpregnated concrete					
Exposure time, cycles	Cylind	lers	Prisms		Cylinders		Prisms		
	No. of specimens	Weight Ìoss, %	No. of specimens	Weight loss, %	No. of specimens	Weight loss, %	No. of specimens	Weight loss, %	
100	37	(0.1)*	2	0	50	0.3	3	0.7	
200	37	(0.1)	2	0	49	0.8	3	0.9	
300	27	0.3	-		40	1.4	·		
350	8	0.2	2	(0.1)*	4	1.3	3	1.1	
400	27	0.5	_	-	40	2.1	-		
500	32	0.4	2	0	44	2.6	3	1.2	
600	24	0.7			37	4.8		—	
700	29	0.7	2	(0.1)	41	6.1	3	1.7	
800	24	0.8	2	0	29	8.7	3	2.0	
850	5	0.3	2	0	4	5.2	3	1.9	
900	18	0.8	-		19	10.1	—	-	
1000	18	0.7	2	0.1	18	12.5	3	2.7	
1300	15	0.8	2	0.2	8	12.9	3	3.5	

Table 19.-Weight loss after exposure to freezing and thawing

14.4

:

*Percentages in parentheses are a gain in weight. Specimens: cylinders, 3- by 6-inches. prisms, 3- by 3- by 16-inches. MMA = methyl methacrylate.

•

Exposure time, cycles	MMA-impregnated concrete				Unimpregnated concrete				
	No. of	Compressive strength,		Loss in	No. of	Compressive strength,		Loss in	
	specimens	lb/in ²	MPa	strength, %	specimens	lb/in ²	MPa	strength, %	
0	8	21,100	146	<u></u>	12	4300	30		
200	3	21,600	149	0	3	4700	32	0	
500	3	20,300	140	3.8	3	4200	29	2.3	
700	_		_		3	4200	29	2.3	
800	3	15,300	105	27.5	3	3500	24	18.6	
900	3	19,300	133	8.5	3	2900	20	32.6	
1000	3	18,000	124	14.7	3	3000	21	30.2	
1300	3	19,300	133	8.5	2	3200	.22	25.6	

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

Exposure time, cycles	MMA-impregnated concrete				Unimpregnated concrete				
	Tensile No. of splitting strength,			Loss in	No. of	Tensile splitting strength,		Loss in	
	specimens	lb/in ²	MPa	strength, %	specimens	lb/in ²	MPa	strength, %	
0	3	1430	9.9		3	430	3.0		
200	3	1250	8.6	12.6			_	_	
700					3	570	3.9	0 0	
800			-		3	450	3.1	-	
1000	3	1300	9.0	9.1	3	440	3.0	0	
1300	3	1690	11.6	0	1	710	5.3	0	

Table 21Tensile splitting strength after	exposure to freezing and thawing
--	----------------------------------

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

Exposure time, cycles	MMA-impregnated concrete				Unimpregnated concrete				
	No. of	Pulse velocity,		Loss in pulse	No. of	Pulse velocity,		Loss in pulse	
	specimens	ft/s	m/s	velocity, %	specimens	ft/s	m/s	velocity, %	
0	5	18,300	5580		4	15,700	4790		
100	5	16,600	5060	9.3	4	14,000	4270	10.8	
200	5	16,600	5060	9.3	4	14,200	4330	9.6	
350	5	16.600	5060	9.3	4	14,400	4390	8.3	
500	5	15,800	4820	13.7	4	13,900	4240	11.5	
700	5	16,200	4940	11.5	4	13,500	4110	14.0	
850	5	15,900	4850	13.1	4	13,200	4020	15.9	
1000	4	15,600	4750	14.8	4	12,200	3720	22.3	
1300	5	15,600	4750	14.8	4	12,000	3660	23.6	

Table 22.-Pulse velocity after exposure to freezing and thawing

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

÷

	· MI	MA-impregnated	l concrete		Unimpregnated concrete				
Exposure time, cycles	No. of	Modulus of e	lasticity,	%	No. of	Modulus of e	elasticity,	%	
	specimens	10^6 lb/in ²	GPa	change	specimens	10 ⁶ lb/in ²	GPa -	change	
0	2	5.50	3.79		3	5.12	3.53	_	
200	$\frac{1}{2}$	5.41	3.73	-1.6	2	5.20	3.59	+1.6	
350	$\overline{2}$	5.28	3.64	-4.0	3	4.98	3.43	-2.7	
500	1	5.24	3.61	-4.7	3	4.89	3.37	-4.5	
700	2	5.39	3.72	-2.0	3	4.68	3.23	-8.6	
800	2	5.39	3.72	-2.0	. 3	4.61	3.18	-10.0	
850	2	5.24	3.61	-4.7	3	4.62	3.19	-9:8	
1000	$\frac{1}{2}$	5.12	3.53	-6.9	3	4.65	3.21	-9.2	
1300	2	5.13	3.54	-6.7	3	4.64	3.20	-9.5	

Table 23 Dynamic modulus	of elasticit	y after exposure to	freezing and thawing
--------------------------	--------------	---------------------	----------------------

3- by 3- by 16-inch prisms. MMA = methyl methacrylate.

Exposure time, cycles	MMA-impr	egnated concrete	Unimpre	gnated concrete
	No. of specimens	Length change, %	No. of specimens	Length change %
100	2	-0.020	3	+0.002
200	2	0.007	3	+0.005
350	2	-0.018	3	+0.006
500	2	-0.012	3	+0.014
700	2	-0.013	3	+0.017
800	2	0.004	3	+0.023
850	2	0.007	· 3	+0.024
1000	2	0.004	3	+0.032
1300	2	0.000	3	+0.034

Table 24.-Length change after exposure to freezing and thawing

3- by 3- by 16-inch prisms. MMA^e = methyl methacrylate.

	М	MA-impregn	ated concrete			Unimpregna	ted concrete	
F	Cylind	ers	Prisn	ns	Cylind	ers	Prisr	ns
Exposure time, days	No. of specimens	Weight loss, %	No. of specimens	Weight loss, %	No. of specimens	Weight loss, %	No. of specimens	Weight loss, %
7	37	(0.1)*	2	0	44	1.2	3	3.2
14	34	(0.1)			41	4.0		
28	10	(0.3)	2	(0.2)*	9	6.4	3	7.2
20 49	29	(0.8)	2	0	36	6.4	3	11.5
70	11	(1.1)	2	(0.2)	11	10.2	3	13.6
98	20	(0.6)	2	1.5	26	17.5	3	19.7
105	3	2.5			3	20.6		
112	5	(0.2)	2	1.8	4	27.2	3	23.5
120	17	0.6	$\overline{2}$	1.9	18	24.0	3	24.2
120	14	1.0	$\tilde{2}$	4.3	12	33.2	3	30.2
140	5	2.9	2	5.5	4	47.0	3	41.3

Table 25.-Weight loss after exposure to 5 percent sulfuric acid

*Percentages in parentheses are a gain in weight.

Specimens: cylinders, 3- by 6-inches.

prisms, 3- by 3- by 16-inches. MMA = methyl methacrylate.

	N	MA-impregna	ted concret	e	τ	Jnimpregnated	d concrete	
Exposure time, No. of days specimen	No. of	Compressive	strength,	Loss in	No. of	Compressive	e strength,	Loss in
	specimens	lb/in ²	MPa	strength % specij	specimens	lb/in ²	MPa	strength, %
0		21,100	146		12	4,300	30	_
7	3	21,300	147	0	3	4,200	29	2.4
28	3	21,500	148	0	3	4,800	33	0
49	3	19,300	133	8.5	3	4,600	32	0
70	4	20,100	139	4.7	3	4,000	28	7.0
98	- -	20,100	_		3	2,800	19	34.9
105	3	14,700	101	30.3	3	3,900	27	9.3
120	3	15,800	109	25.1	3	2,900	20	32.6
140	3	18,900	130	10.4	3	2,700	19	37.2
140	3	11,800	81	44.1	2	1,500	10	65.1

Table 26.-Compressive strength after exposure to 5 percent sulfuric acid

4

.

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

	м	MA-impregn	ated concr	ete	·	Unimpregna	ted concret	te
Exposure time, days	No. of	Tens	Tensile splitting strength,		No. of	Tens splitting s		Loss in
	specimens	lb/in ²	MPa	strength, %	specimens	lb/in ²	MPa	strength, %
0	3	1,430	9.9		3	430	3.0	
28	2	1,970	13.6	0	2	750	5.2	0
70	3	1,980	13.7	0	3	680	4.7	0
98	_	·		_	3	400	2.8	7.0
120	_			_	3	350	2.4	18.6
140	<u></u>				3	520	3.6	0
170	3	1,630	11.2	0	_	-		-

Table 27.-Tensile splitting strength after exposure to 5 percent sulfuric acid

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

	M	MA-impregn	ated cond	crete	Unimpregnated concrete				
Exposure time,	No, of	Pulse ve	elocity,	Loss in pulse	No. of	Pulse ve	locity,	Loss in puls	
	specimens	ft/s	m/s	velocity, %	specimens	ft/s	m/s	velocity, %	
0	5	18,100	5520	л. 	4	15,000	4570	-	
14	5	17.000	5180	6.1	4	13,300	4050		
28	5	15.600	4750	13.8	4	12,000	3660		
23 49	5	14,100	4300	22.1	4	11,600	3540	22.7	
70	5	10,900	3320	39.8	4	13,000	3960	13.3	
98	5	9,900	3020	45.3	3	12,200	3720	18.6	
120	5	11,400	3470	37.0	4	13,300	4050	11.3	
120	5	11,300	3440	37.6	4	13,600	4150	9.3	
140	5	9,600	2930	47.0	4	12,700	3870	15.3	

Table 28.-Pulse velocity after exposure to 5 percent sulfuric acid

3- by 6-inch cylindrical specimens. MMA = methyl methacrylate.

r	M	MA-impregnated	concrete		Unimpregnated concrete				
Exposure time, days	No. of	Modulus of e	lasticity,	%	No. of	Modulus of e	elasticity,	%	
	specimens	10 ⁶ lb/in ²	GPa	change	specimens	10^6 lb/in^2	GPa	change	
0	2	5.39	3.72		3	4.77	3.29	_	
28	2	5.19	3.58	-3.7	3	4.51	3.10	-5.5	
49	$\tilde{2}$	5.29	3.65	-1.9	3	4.57	3.15	-4.2	
70	1	5.40	3.72	+0.1		_	-	-	
98	1	5,50	3.79	+2.0	3	3.58	2.47	-24.9	
112	ĩ	5.30	3.65	-1.7	3	3.58	2.47	-24.9	
120	2	5.35	3.69	-0.7	3	3,35	2.31	-29.8	
140	$\overline{\tilde{2}}$	5.35	3.69	-0.7	1	3.00	2.07	-37.1	
170	$\frac{1}{2}$	5.17	3.56	-4.1	3	2.47	1.70	-48.2	

Table 29 Dynamic modulus of elasticit	after exposure to 5	percent sulfuric acid
---------------------------------------	---------------------	-----------------------

3- by 3- by 16-inch prisms. MMA = methyl methacrylate.

_	MMA-impr	egnated concrete	Unimpregnated concrete		
Exposure time, days	No. of specimens	Length change, %	No. of specimens	Length change, %	
1.4	2	+0.012	3	+0.004	
14	2	+0.011	3	+0.015	
28	2	+0.002	3	+0.012	
49	2	+0.012	3	+0.017	
70	2	+0.021	3	+0.021	
98	1	+0.015	3	+0.029	
112	1	+0.015	3	+0.016	
120	2	+0.013	3	+0.026	
140 170	2 2	+0.012	3	+0.034	

Table 30.--Length change after exposure to 5 percent sulfuric acid

3- by 3- by 16-inch prisms. MMA = methyl methacrylate.

Specimen No.	Polymer	Nominal penetration depth, in.	Polymer loading, wt %	Water absorption, %	Number of cycles	Weight loss, %
<u></u>			5.2	0.2	4,280	¹ (6.0)* Split
CP-DP-83	PE-S	1/2†	5.3	0.2	4,480	(0.5) Split
CP-DP-95	PE-S	1/2	6.0	0.2	4,400	(0.0) 0421
OD DD 70	PE-S	3/8	4.0	0.3	4,280	¹ (1.0) Split
CP-DP-79			3.5	0.4	4,280	$^{1}(0.5)$ Split
CP-DP-81	PE-S	3/8	. 3.3	0.1	· j	· · ·
CP-DP-80	PE-S	1/4	3.0	0.4	4,080	¹ (2.5) Split
••••	PE-S	1/4	3.0	0.3	3,780	1
CP-DP-93	FE-5	1/7	5.0			
CP-DP-91	PMMA	1/2	5.6	0.2	4,580	0
	PMMA	1/2	4.9	0.3	4,580	6.0
CP-DP-100	PMMA	1/2			2	
CP-DP-74	РММА	3/8	5.3	0.2	4,580	9.0
	PMMA	3/8	4.5	0.5	4,580	21.0
CP-DP-77	E WIWIA	570				
CP-DP-75	РММА	1/4	4.4	0.1	4,580	(2.5)
•		1/4	4.3	0.1	4,580	(3.0)
CP-DP-88	РММА	1/4	-1,0	•	•	• • •
CP-DP-92	Control				2,200	¹ 13.0 Split
CP-DP-92 CP-DP-101	Control		_		2,150	¹ 25.0

Table 31.-Resistance to freezing and thawing, partially impregnated concretesecond test series

*Percentages in parentheses indicate a gain in weight.

3- by 6-inch cylinders ovendried at 104°C (220°F) prior to impregnation.

Radiation-initiated polymerization.

PE-S = 50 percent polyester (Plaskon) plus 50 percent styrene, viscosity 70 cP.

PMMA = PMMA prepolymer, produced by irradiating MMA to a viscosity of 70 cP.

¹ Failed and removed from tests, weight loss over 25 percent. Weight losses reported for specimens failing by splitting include both fragments.

Specimen No.	Monomer	Nominal penetration depth, in.	Test cycles, days	Net expansion, %
CP-DP-49		$\stackrel{0}{}_{0}$ failed	1,167 1,167	0.536 .561
CP-DP-50 CP-DP-20 CP-DP-11	E-S E-S	1/16 [†] 1/16	1,274 1,274	.200 .206
CP-DP-39	E-S	1/8	1,274	.138
CP-DP-12	E-S	1/8	1,274	.098
CP-DP-24	E-S	1/4	1,274	.712
CP-DP-43	E-S	1/4	1,274	.234
CP-DP-22	PE-S	1/16	1,167	.708
CP-DP-15	PE-S	1/16 failed	1,167	.484
CP-DP-2	PE-S	1/8	1,274	.276
CP-DP-34	PE-S	1/8	1,274	.084
CP-DP-9	PE-S	1/4	1,274	.080
CP-DP-26	PE-S	1/4	1,274	.074

Table 32.-Resistance to sulfate attack, partially impregnated concrete-first test series

1 1 Jaw -

3- by 6-inch specimens ovendried at 150°C (302°F) prior to impregnation.
Radiation-initiated polymerization.
EP-S = epoxy-styrene.
PE-S = polyester-styrene.
† See table 63 to convert to SI metric units.

the shore contract

Specimen No.	Polymer	Nominal penetration depth, in.	Polymer loading, wt %	Absorption, wt %	Test cycles, days	Net expansion, percent
CP-DP-60	PE-S	1/12†	5.1	0.3	577	0.006
CP-DP-72	PE-S	1/12	5.2	0.2	577	.006
CP-DP-68	PE-S	3/8	3.3	0.3	577	.010
CP-DP-69	PE-S	3/8	3.4	0.6	577	¹ .056
CP-DP-59	PE-S	1/4	3.1	0.6	577 ⊾	¹ .062
CP-DP-70	PE-S	1/4	2.6	0.8	577	.054
CP-DP-58	PMMA	1/2	5.5	0.3	577	.038
CP-DP-62	PMMA	1/2	6.1	0.2	577	.020
CP-DP-66	PMMA	3/8	4.3	0.4	577	.032
CP-DP-73	PMMA	3/8	4.5	0.4	577	.032
CP-DP-57	PMMA	1/4	4.6	0.2	577	.014
CP-DP-71	PMMA	1/4	4.6	0.1	577	.014
CP-DP-63	None		_		577	.130
CP-DP-67	None			-	577	.120

Table 33.-Resistance to sulfate attack, partially impregnated concretesecond test series

3- by 6-inch specimens ovendried at 104°C (220°F).
PE-S = 50 percent polyester (Plaskon) plus 50 percent styrene, viscosity to 70 cP.
PMMA = PMMA prepolymer, produced by irradiating MMA to a viscosity of 70 cP.
¹ Fine cracks appeared at 60 days.
[†] See table 63 to convert to SI metric units.

	Specimen	Nominal	Polymer		Percent weight loss,				
Monomer	No. CP-DP		loading, wt %	Absorption, wt %	210 days	252 days	326 days	459 days	
PE-S	115	1/2 [†]	5.4	0.1	23.4	¹ 26.8	32.7	41.3	
	118	1/2	5.0	0.2	21.7	¹ 24.9	29.1	36.5	
	96	3/8	3.8	0.4	22.6	¹ 24.6	-29.7	42.9	
	110	3/8	3.9	0.4	22.1	¹ 24.6	30.1	42.7	
	94	1/4	3.2	0.6	22.6	22.6	¹ 27.2	43.9	
	108	1/4	3.0	0.5	20.3	20.4	24.0	¹ 40.0	
РММА	109	1/2	5.0	0.2	20.7	20.0	¹ 25.2	39.7	
	113	1/2	5.2	0.2	21.4	22.3	¹ 29.3	44.7	
	90	3/8	3.3	0.3	22.9	¹ 27.6	35.0	51.4	
	97	3/8	4.5	0.4	24.6	¹ 28.3	38.6	55.1	
	89	1/4	4.1	0.1	19.7	¹ 20.9	¹ 27.0	44.9	
	98	1/4	4.9	0.1	15.7	16.4	21.0	¹ 33.8	
Unimpregnated	76 82	-	0		¹ 33.8 ¹ 32.4			 `	

Table 34.-Resistance to 5 percent sulfuric acid, partially impregnated concretesecond test series

3- by 6-inch specimens ovendried at 104°C (220°F) prior to impregnation.
PE-S = (50-50) polyester (Plaskon) - styrene, viscosity 70 cP.
PMMA = methyl methacrylate prepolymer, produced by irradiating MMA to a viscosity of 70 cP.
Radiation-initiated polymerization.
¹ Failed, weight loss greater than 25%.
[†] See table 63 to convert to SI metric units.

ġ.

	Specimen	Nominal	Polymer	Water	Per	Percent weight loss,		
Monomer	No. 72	penetration depth, in.	loading, wt %	absorption, % dry wt	259 days	318 days	434 day	
DEC	16-7	1/4†	2.5	5.2	9.1	21.0	22.9	
PE-S	8	× 1/4	2.3	5.5	8.6	21.6	¹ 31.7	
	9	1/4	2.2	5.0	8.7	19.7	¹ 41.0	
	4	3/8	4.9	2.6	9.7	16.2	24.6	
	4	3/8	4.6	1.9	10.9	17.8	¹ 25.8	
	5 6	3/8	4.7	2.5	9.4	16.5	¹ 25.3	
	1	1/2	5.7	1.7	12.1	19.3	¹ 28.8	
	1	1/2	5.2	2.1	11.2	17.9	¹ 26.8	
	2 3	1/2	5.8	1.3	10.2	16.2	24.3	
	16-17	1/4	2.3	5,2	12.6	23.9	¹ 44.5	
PMMA	10-17	1/4	3.0	0.8	7.6	13.5	¹ 30.1	
	20	1/4	2.6	3.0	10.2	16.7	¹ 32.1	
		3/8	3.9	2.3	7.5	9.0	18.1	
	11	3/8	3.3	1.7	11.1	17.4	¹ 28.2	
	13 15	3/8	3.7	3.0	11.8	17.9	¹ 46.1	
1	10	1/2	4.1	1.1	6.8	8.0	14.9	
	10	1/2	4.5	1.2	2.5	3.1	13.9	
	12	1/2	4.6	2.1	9.9	15.7	1 25.6	
I la imprograted	17-1	_		6.6	¹ 38.9		_	
Unimpregnated				6.9	15.3	¹ 34.8	-	
	2 3		·	6.7	¹ 33.5			
	4	_	-	6.3	21.7	¹ 37.3		
	5		·	6.9	14.3	¹ 31.6		
	6		_	6.3	¹ 42.5	_		

Table 35.-Resistance to 5 percent sulfuric acid, partially impregnated CP-type concretethird test series

CP-type concrete, 3- by 6-inch specimens ovendried at $110^{\circ}C$ ($230^{\circ}F$). Radiation-initiated polymerization. PE-S = (50-50) polyester-styrene, 40 cP viscosity. PMMA = 20 percent solution of PMMA in methyl methacrylate, 60 cP viscosity.

¹ Failed, weight loss greater than 25%.

	Specimen	Nominal	Polymer	Water	Per	cent weight lo	oss,
Monomer	No. 72	penetration depth, in.	loading, wt %		259 days	318 days	434 days
	45-5	1/4†	4.6	6.4	8.7	15.4	23.4
PE-S		1/4	4.2	6.0	8.5	14.5	20.8
	6 7	1/4	4.7	5.5	8.7	14.4	¹ 28.0
	1	3/8	5.1	4.4	8.5	14.0	. 24.0
	1 2	3/8	4.9	5.3	10.4	18.5	¹ 27.1
	4	3/8	5.1	4.7	9.7	15.4	¹ 23.8
	0	1/2	7.7	0.7	14.5	18.7	1 25.8
	8 9	1/2	7.8	0.6	14.4	21.0	¹ 27.4
	9 10	1/2	8.0	0.7	16.3	¹ 25.1	_
			3.7	7.5	9.2	14.7	¹ 30.4
PMMA	45-20	1/4	3.7	8.2	8.9	10.3	24.6
	21 24	1/4 1/4	3.9	6.4	9.1	13.7	¹ 41.6
	17	3/8	5.5	1.3	7.5	10.7	16.2
	17 18	3/8	5.7	2.4	11.3	17.6	19.2
	18	3/8	5.5	2.4	7.5	8.2	15.2
	12	1/2	7.8	1.9	8.3	10.7	20.7
	12	1/2	7.9	1.4	7.8	10.5	16.4
	15	1/2	8.0	1.7	8.5	11.6	18.5
	AC 1		_	6.2	1	. : 	_
Unimpregnated	46-1			5.7	1	·	-
	2			6.3	¹ 35.7		-
	2 3 5		-	6.4	¹ 55.9		-
	5		_	6.3	¹ 34.4		_

Table 36.-Resistance to 5 percent sulfuric acid, partially impregnated high-entrained air concretethird test series

High-entrained air concrete, CP-type concrete mix adjusted to give 11.2 percent entrained air, 3- by 6-inch specimens ovendried at 110°C (230°F).

Radiation-initiated polymerization.

Radiation-initiated polymenzation.
PE-S = (50-50) polyester-styrene, 40 cP viscosity.
PMMA = 20 percent solution of PMMA in methyl methacrylate, 60 cP viscosity.
¹ Failed, weight loss greater than 25 percent.
[†] See table 63 to convert to SI metric units.

SPECIMEN	POLYMER	ULTIMATE STRENGTH	POISSON S RATIO	ELASTIC	ELASTIC LIMIT	ULTIMATE STRAIN
101021	(WT. %)	(PSI)	••••	(MILLION PSI)	(PSI)	(MICRO IN/IN)
 72.191.4	6.90	17860†	.18	5.70	9000	3360
72.191.5	6.10	19740	.16	6.02	14000	
72.191.12	6.70	18460	.18	6.18	11000	3250
72.191.14	5.90	16840	.20	6.35	11000	3020
72.191.22	7.20	15950	.20	5.85	12000	2900
72.191.23	6.90		.20	5.85	11000	2900
72.191.25	6.70	16690	.19	5.72	12000	3040
72.191.31	6.90	17540	.18	5.76	14000	3300
72.191.38	7.80	17830	.24	5.86	11000	3380
72.191.41	6.70	14750	.21	6.32	8000	3050
EAN		17182	.197	5.961	11300	3162
TD.DEV.	•53	1414	.0209	.2111	1889	201
O OF VA %	7.80	8.23	10.61	3.54	16.71	6.37

Table 37.-Compressive stress-strain tests of (70-30) MMA-TMPTMA impregnated 6- by 12-inch cylinders after 6 months' exposure at -10°F

[†] See table 63 to convert to SI metric units.

A D. Levis

Table 38Compressive stress-strain tests of (70-30) MMA-TM	IPTMA impregnated
6- by 12-inch cylinders after 6 months' exposure a	at 70°F

SPECIMEN NUMBER	POLYMER LOADING	ULTIMATE STRENGTH	POISSON'S RATIO	ELASTIC MODULUS (MILLION	ELASTIC LIMIT	ULTIMATE STRAIN (MICRO
	(WT• %)	(PSI)	ana ang sang sang sang sang sang sang sa	PSI)	(PSI)	IN/IN)
	6.90	17150†	.19	5.78	100001	3380
72.191.1	6.10	18040	.21	6.45	10000	3080
72.191.9		18070	.20	6.18	9000	3260
72.191.18	6.90	16840	.21	5.87	16000	3170
72.191.26	7.10 6.70	16800	.20	5.95	10000	3070
	6.40	17010	.18	5.90		3050
72.191.32	6.60	17050	.19	6.11	10000	3050
72.191.36		15950	.22	5.73	9000	3110
72.191.37	7.50		.19	6.00	9000	2930
72.191.42	6.40	15990	a-4-7			
		16938	.198	5.997	9556	3122
EAN	6.73		.0118 -	.2553	527	132
TD.DEV.	.42 6.26	746 4.39	5.93	4.26	5.52	4.23

			_			
SPECIMEN NUMBER	POLYMER LOADING	ULTIMATE STRENGTH	POISSON'S RATIO	MODULUS	ELASTIC LIMIT	ULTIMATE STRAIN (MICRO IN/IN)
	(WT- %)	(PSI)		PSI)	(PSI)	
72.191.2 72.191.10	6.90 6.40	1344 <u>0</u> † 14470	:22 .20 .20	4.85† 5.26 5.20	8000 [†] 8000 8000	3890 <u>-</u> 3290 3530
72.191.13 72.191.17 72.191.19	6.10 6.50 6.90	15170 14250 13869	.19	4.97 5.04	9000 7000	3100 3340
72.191.20 72.191.30 72.191.33 72.191.33 72.191.34 72.191.40	7.50 6.10 6.70 7.20 6.90	13090 13510 12940 13650 14960	.20 .20 .20 .22 .22	4.80 5.21 5.09 5.17 5.51	8000 7000 6000 8000 9000	3200 3040 3010 3290 3190
MEAN Std.dev. Co of va %	6.73 .45 6.68	13935 75¢ 5.44	.205 .0113 5.54	5.111 .1617 3.16	7800 919 11.78	3288 261 7.95
			والمعالمة والمتعاط المتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد وال			

Table 39.--Compressive stress-strain tests of (70-30) MMA-TMPTMA impregnated6- by 12-inch cylinders after 6 months' exposure at 250°F

いたの時代の五

1

i Firen

inneith - a

大学ない キャー・キ

 $\mathcal{F}_{\mathcal{F}}$

>

[†] See table 63 to convert to SI metric units.

Table 40Compressive stress-strain tests of (70-30) MMA-TMPTMA impre	gnated
6- by 12-inch cylinders after 6 months' exposure at 290°F	
6- by 12-inch cylinders after 6 months exposure at 270 1	

SPECIMEN NUMBER	POLYMER LOADING	ULTIMATE STRENGTH	RATIO	ELASTIC MODULUS (MILLION_	LIMIT	STRAIN (MICRO
	(WT- %)	(PSI)		PSI)	(PSI)	IN/IN)
72.191.3	6.90	10960† 13090	•13 •09		7000† 10000	
72.191.7 72.191.8	6.60 6.70	10930 10610	.11	4.00	7500	2760
72.191.11	7.70	11289				•
72.191.21 72.191.27 72.191.29 72.191.35 72.191.39	6.90 7.20 6.10 6.90 6.70	10680 10820 10869 10310 10360	.08 .20 .17 .09	3.24 4.68 3.81 3.58	7000 6000 7000 8000	3900 2800 3700 3080
MEAN Std.Dev. Co of va %	6.76 .51 7.55	11040 762 6•90	.124 .0474 38.13	3.866 1.6984 43.93		459

[†] See table 63 to convert to SI metric units.

ŝ

38

....

SPECIMEN NUMBER	POLYMER LOADING (WT. %)	ULTIMATE STRENGTH (PSI)	POISSON'S RATIO	ELASTIC MODULUS (MILLION PSI)	ELASTIC LIMIT (PSI)	ULTIMATE
72.262.1 72.262.2 72.262.4 72.262.11	.00 .00 .00 .00 .00	4920† 5220 5480 5040 4560	.17 .16 .18 .19 .21	3.27 [†] 3.00 3.49 3.44 3.17	1600† 1800 1400 1800 1200	2580 1840 2260 2180 2220
72.262.12 72.262.14 72.262.15 72.262.16 72.262.17 72.262.18	.00 .00 .00 .00 .00	546° 502° 5410 534° 5020	.16 .23 .19 .14 .28	3.23 3.58 3.52 3.70 3.61	1600 1600 1400 1600 1400	2090 2320 2340 2330 1980
MEAN STD.DEV. CO OF VA X	- 00 - 00 - 00	5148 291 5.66	.191 .0414 21.68	3.401 .2309 6.79	1540 190 12.32	2214 208 9.38

Table 41.-Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA impregnated 6- by 12-inch cylinders after 6 months' exposure at $-10^{\circ}F$

[†] See table 63 to convert to SI metric units.

 Table 42.—Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA

 impregnated 6- by 12-inch cylinders after 6 months' exposure at 70°F

SPECIMEN NUMBER	POLYMER LOADING (WT. %)	ULTIMATE STRENGTH (PSI)	POISSON'S RATIO	ELASTIC MODULUS (MILLION PSI)	ELASTIC LIMIT (PSI)	ULTIMATE STRAIN (MICRO IN/IN)
73.262.3 73.262.6 73.262.7 73.262.8 73.262.8 73.262.10	.00 .00 .00 .00 .00	4540 † 4400 4660 4420 4510	.21 .15 .17 .19 .29	3.25 [†] 3.28 3.69 3.42 3.37	2400 [†] 1800 1600 1600 2000	2260 2920 2290 2100 2790
73.262.28 73.262.31 73.262.32 73.262.40 73.262.44	.00 .00 .00 .00	4490 4670 5110 4920 4620	.21 .17 .30 .19 .16	3.81 3.74 3.66 3.63 3.52	1400 2000 2000 1600 1800	2440 2300 2330 2380 2340
MEAN STD-DEV. Co of va %	.00 .00 .00	4635 224 4.83	.204 .0515 25.19	3.538 .2101 5.94	1820 290 15.92	2415 250 10.35

100

[†] See table 63 to convert to SI metric units.

SPECIMEN	POLYMER LOADING	ULTIMATE STRENGTH	RATIO	MODULUS	ELASTIC. LIMIT	STRAIN
	(WT- %)	(PSI)	раны фал им а а	PSI)	(PSI)	IN/IN)
72.262.20	.00	4350 1	.16	2.69	1200†	1920
72.262.21	.00	4600	.20	2.88	: 1400	
72.262.22	.00	4630	.13	2.68	1600	
72.262.25	.00	4630	.23	2.81		2130
72.262.26	.00	4560	.19	2.88	120Č	
72.262.27	.00	4620	.10	2.73	1600	2240
72.262.29	.00	4600	.15		1600	-
	.00	4620	.11	2.82	1600	2400
72.262.33	.00	3860	.16	2.84	1200	1960
72.262.35 72.262.36	.00	5200	.10	2.87	1400	2460
ME A N	• 30	4566	. 154	2.784	1420	2240
MEAN	•00	328	.0445		175	249
STD.DEV. Co of va X	.00	7.19	28.84	3.05		11.09

 Table 43.—Compressive stress-strain tests of controls for (70-30) MMA-TMPTMA impregnated 6- by 12-inch cylinders after 6 months' exposure at 250°F

[†] See table 63 to convert to SI metric units.

Table 44Compressive stress-strain tests of controls for (70-30) MMA-	TMPTMA
impregnated 6- by 12-inch cylinders after 6 months' exposure at 29	

SPECIMEN	POLYMER	ULTIMATE	POISSON'S	ELASTIC	ELASTIC	ULTIMATE
NUMBER	LOADING	STRENGTH	RATIO		LIMIT	
				(MILLION		
	(WT• %)	(PSI)		PSI)	(PSI)	IN/IN)
72.262.5	.00	45301	.11	1.87†	1200†	3280
72.262.13	.00	4460	. 12	2.30		2400
72.262.19	.00	4100	.17	2.13		2600
72.262.37	.00	4630	.05	2.59	1100	2440
72.262.38	.00	4280	.19	2.26	1200	2800
72.262.45	.00	4100	.26	3.28		2720
72.262.41	.00	4140	17	2.27		2640
72.262.34	.00	4670	.08	1.71	1200	2600
72.262.30	.00	4140	.07	2.13	1300	2520
72.262.43	.00	4140	.13	2.98	1200	2160
45.4.51					·····	
TEAN	• 00	4318		2.352	1200	2616
TD.DEV.	-00	230	0637	.4339	47	295
CO OF VA X	.00	5.33	47.09	18.45	3.93	11.26

Material	Specimen No., 72.–	Exposure time, months	Compressive strength, lb/in ²
			+
Unimpregnated concrete	263.1	14	5,500†
Olimplegnated concrete	.7	14	5,800
	.9	14	5,700
,	.10	14	5,700
	.11	14	5,600
	201.2	14	17,900
(60-40)	.3	14	17,600
S-TMPTMA impregnated	.5	14	19,500
concrete	.20	14	20,000
	.35	14	19,600
	192.8	17	17,300
(70-30)	.12	17	17,500
MMA-TMPTMA	.12	17	16,300
impregnated concrete		17	• 19,200
	.29 .39	17	17,400

Table 45.--Compressive strength after long-term exposure at $-10^{\circ}F$

6- by 12-inch cylinders. [†] See table 63 to convert to SI metric units.

Task	Tempo °F	erature, °C	Exposure time	Polymer loading, wt %	Ultimate strength, lb/in ²	Modulus of elasticity, 10 ⁶ lb/in ²
	·	<u> </u>		<u>,</u>	· .	.L.
72.191	-10	-23	6 month	6.78	17,180†	5.96†
72.191	-10	-23	24 hour	6.43	18,100	5.94
72.262	-10	-23	6 month	0	5,150	3.40
72.262	-10	-23	24 hour	0	5,960	3.75
				(7)	16,990	6.00
72.191	70	21	6 month	6.73		6.13
72.194	70	21	24 hour	6.46	17,940	3.54
72.262	70	21	6 month	0	4,640	3.40
72.260	70	21	24 ho ur	0	4,280	5.40
72.191	250	121	6 month	6.73	13,940	5.11
72.191	250	121	24 hour	6.36	12,840	5.17
72.262	250	121	6 month	0	4,570	3.05
72.260	250	121	24 hour	0	4,570	2.87
		1.40	(6.76	11,040	3.87
72.191	290	143	6 month	6.40	12,260	4.31
72.194	290	143	24 hour	0	4,320	2.35
72.262	290	143	6 month	0	4,790	2.65
72.260	290	143	24 hour	U	т,170	

Table 46.—Effect of exposure time and temperature on compressive strength and modulus of elasticity of unimpregnated and (70-30) MMA-TMPTMA impregnated concrete 6- by 12-inch cylinders

SPECIMEN	TEMP.	ULTIMATE	POISSON'S RATIO	ELASTIC	FLASTIC	ULTIMATE STRATN_
A UND C				(MILLION		(MICRO
	E.(C)	<u>(PSI)</u>		PSI)	(PST)	<u>IN/IN)</u>
73.260.1	-10(-23)	60001	.19	3.56†	<u>1300†</u>	3000
73.260.2	-10(-23)	5890	.19	3.69	1400	2570
73.260.3	10(-23)_	5960		3.66	1400	2540
73.260.4	-10(-23)	6020	.18	3.97	1500	2130
73.260.5	10(-23)_	6370	.20		1400	2640
	-10(-23)	5930	.17	3.58	1200	2580
73.260.7	-10(-23)	5990	.72	3.58	1400	2740
	-10(-23)_	5730		3.77	2400	2340
73.260.9	-10(-23)	5820	.16	3.73	1300	2180
_73.261.10		5840		3.99	1500	2450
		5956	.189	3.747	1480	2517
MEAN		171	.0202		336	259
STDDEV Coef. VAR.	(%)	2.85	10.67	4.50	22.70	10.30

Table 47.-Strength and elasticity tests at -10°F of unimpregnated concrete 6- by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and (60-40) styrene-TMPTMA impregnated cylinders

ė

[†] See table 63 to convert to SI metric units.

 Table 48.—Strength and elasticity tests at 70°F of unimpregnated concrete 6- by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and (60-40) styrene-TMPTMA impregnated cylinders

SPECIMEN NUMBER	TEMP.	ULTIMATE STRENGTH	POISSON'S RATIO	MODULUS	ELASTIC LIMIT	UI TIMATE STRAIN
	NFG.F(C)	(PSI)		(MILLION PSI)	(PSI)	(MICRO IN/IN)
73.220:11	70(21)	3980†	.21	3.611	130n†	1360
73.260.13	73(21)	4490	.18	3.54	1200	2000
73.240.14	70(21)	3980	.16	3.54	1400	1680
73.240.15	70(21)		.16	3.25	2500	2740
73.240.16	70(21)	4460	.21	3.04	1200	2480
MEAN		4276	.186	3.401	1520	2152
STD. ŘEV.		271	.0237	.2467	554	443
COEF. VAR. (¥.)	6.35	12.74	7.25	36.45	20.58

SPECIMEN TEMP. ULTIMATE POISSON'S ELASTIC ELASTIC ULTIMATE NUMBER STRENGTH RATIO MODULUS LIMIT STRAIN UEG.F(C) (PSI) (MILLION (MILLION (MICRO 73.260.17 250(121) 4630 [†] .16 3.16 [†] 1200 [†] 2220 73.260.18 250(121) 4420 .08 2.55 1600 2400 73.260.21 250(121) 4440 .12 2.86 160n 2060 73.260.22 250(121) 4440 .12 2.867 1400 2500 73.260.22 250(121) 4770 .14 2.90 140n 2600 73.260.22 250(121) 4770 .14 2.90 140n 2500 MEAN 4567 .123 2.867 1450 2320 STD. DEV. 169 .0348 .2492 191 233 COLF. VAR.(%) 3.69 28.16 8.69<							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • • • •	TEMP .	• - ·		MODULUS		STRAIN_
73.260.17 250 (121) 46301 .18 3.101 1600 2400 73.260.18 250 (121) 4420 .08 2.55 1600 2060 73.260.21 250 (121) 4440 .12 2.86 1600 2060 73.260.21 250 (121) 4440 .12 2.86 1600 2600 73.260.22 250 (121) 4770 .14 2.90 1400 2600 MEAN 4567 .123 2.867 1450 2320 STD. NEV. 169 .0348 .2492 191 233		DEG.F(C)	(PSI)			(PSI)	
73.260.18 250(121) 4420 .08 2.55 1600 2400 73.260.18 250(121) 4440 .12 2.86 1600 2060 73.260.21 250(121) 4440 .12 2.86 1400 2600 73.260.22 250(121) 4770 .14 2.90 1400 2600 MEAN 4567 .123 2.867 1450 2320 STD. NEV. 169 .0348 .2492 191 233	73 240 17	250(121)	4630†	.16	3.16†		
73.260.21 250(121) 4440 .12 2.86 1600 2060 73.260.22 250(121) 4770 .14 2.90 1400 2600 MEAN 4567 .123 2.867 1450 2320 STD. NEV. 169 .0348 .2492 191 233				. (18	2.55		
73.260.22 250(121) 4770 .14 2.90 1400 2500 MEAN 4567 .123 2.867 1450 2320 STD. NEV. 169 .0348 .2492 191 233			4440	.12	2.86		
MEAN 4367 .0348 .2492 191 233 STD. NEV. 169 .0348 .2492 191 233				•14	2.90	1400	2500
STD. DEV. 169 .0348 .2492 191 233	445 A M		4567	.123	2.867	1450	
STD: 02V. 8 49 13.21 10.03				.0348	.2492	191	
		(%)		Contraction of the local division of the loc		13.21	10.03

Table 49.—Strength and elasticity tests at 250°F of unimpregnated concrete 6- by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and (60-40) styrene-TMPTMA impregnated cylinders

[†] See table 63 to convert to SI metric units.

 Table 50.—Strength and elasticity tests at 290°F of unimpregnated concrete 6- by 12-inch cylinders, controls for (70-30) MMA-TMPTMA and (60-40) styrene-TMPTMA impregnated cylinders

SPECIMEN	TEMP.	ULTIMATE	POISSON*S RATIO	ELASTIC	ELASTIC LIMIT	ULTIMATE STRAIN
	DEG.F(C)			(MILLION PSI)	(PSI)	(MICRO IN/IN)
73.260.23_	290.(143)	45701		2.74t	<u>2000†</u>	
73.260.24		4300	.10	2.39	1400	2580
73.260.25		4630	.11	2.70	1600_	2660
73.260.26	290(143)	3780	.11	2.65	1800	2000
73.260.27_		4790		2.74	1200	2940
MEAN		4416	.111	2.646	1600	2492
		396	.0067	.1454	316	362
_STDDEV COEF. VAR.(8.96	6.06	5.50	19.76	14.52

Specimen No.	Polymer loading*, wt %	Tensile splitting strength, lb/in ²	Mean, lb/in ²	Standard deviation, lb/in ²
72,208.2	5.6	1,010 [†]		
.5	6.1	1,080		
.9	5.7	970		
.10	5.9	960		
.12	6.2	1,050	1,015**†	59
.12	5.9	930	1,015	
.19	6.2	1,110		
.20	5.9	1,030		
.20	6.2	1,050		
.26	6.2	960		

Table 51.-Multitemperature short-term tensile splitting strength, test temperature -10°F (-23°C)

Monomer is (60-40) S-TMPTMA.
** Design Value = Mean - Standard Deviation = 956.
† See table 63 to convert to SI metric units.

Table 52.—Multitemperature short-term tensile splitting strength, test temperature 70°F (21°C)

Specimen No.	Polymer loading*, wt %	Tensile splitting strength, lb/in ²	Mean, lb/in ²	Standard deviation, lb/in ²
72,208.1	5.9	920†		
.8	6.1	1,010	4 .	
.13	5.9	1,020	940***	119
.18	6.4	1,010		
.22	6.2	740		

* Monomer is (60-40) S-TMPTMA. ** Design Value = Mean - Standard Deviation = 821. † See table 63 to convert to SI metric units.

Specimen No.	Polymer loading*, wt %	Tensile splitting strength, lb/in ²	Mean, lb/in ²	Standard deviation, lb/in ²
72.208.3 .11 .14 .23 .27	5.9 6.0 5.9 6.2 6.4	1,240 [†] 960 960 920 950	1,006**†	132

Table 53.-Multitemperature short-term tensile splitting strength,test temperature 250°F (121°C)

1007

مسالا المستلك الملك الكلامية المناكرية المتناقلية الملك الملك سالالك والمنافعة المناكر المسالية المسالية المسالية

•

* Monomer is (60-40) S-TMPTMA.
** Design Value = Mean - Standard Deviation = 874.
† See table 63 to convert to SI metric units.

Table 54Multitemperature short-term tensile splitting strength	1,
test temperature 290°F (143°C)	

Specimen No.	Polymer loading*, wt %	Tensile splitting strength, lb/in ²	Mean, lb/in ²	Standard deviation, lb/in ²
72.208.6	5.9	560†		
.15	6.2	810		
.16	5.9	920	770** [†]	149+
.24	5.9	680		
.25	6.2	880		

* Monomer is (60-40) S-TMPTMA.
** Design Value = Mean - Standard Deviation = 621.
+ Coefficient of variation is greater than 15%.
* See table 63 to convert to SI metric units.

のでは、「「「」」

8 - .

			1	nitial measurement				Heasurments after exposure		
Exposure condition	Specimen No.	Polymer Loading, wt %	Specific gravity	Pulse velocity ft/s	Unit Weight, 1b/ft ³	Emposure time, yrs	Specific grevity	Pulse relocity ft/e	Compressive strength, lb/in ²	Unit weight, lb/ft ³
(60-40) Styrene-	THPTHA Imprognated	Concrete								
Brine Brine Brine	CP-5 CP-201 CP-211 Average	6.9 6.5 <u>6.2</u> 6.5	2.36 2.37 <u>2.39</u> 2.37	16,205 † 17,050 <u>17,350</u> 16,868	146.74 ¹ 167.38 <u>148.60</u> 167.64	2 2 2 2 2	2.38 2.42 <u>2.44</u> 2.41	14,742 [†] 15,199 <u>14,854</u> 14,932	10,000† 12,320 <u>13,210</u> 11,843	148.12 [†] 150.70 <u>151.74</u> 150.19
Brine-Vapor Brine-Vapor Brine-Vapor	CP-41 CP-209 CP-218 Average	6.3 6.5 <u>6.7</u> 6.5	2.34 2.35 <u>2.35</u> 2.35	16,403 17,665 17,350 17,306	145.87 146.53 <u>148.28</u> 146.90	2 2 2	2.41 2.41 <u>2.41</u> 2.41	14,417 13,808 <u>14,632</u> 14,285	10,570 13,430 <u>10,210</u> 11,403	150.30 150.30 <u>150.19</u> 150.26
Vapor Vapor Vapor	CP-8 CP-213 CP-222 Average	6.8 7.0 <u>7.0</u> 6.9	2.35 2.36 2.36 7.35	17,050 16,475 <u>17,050</u> 16,658	146.55 147.07 147.07 146.90	2 2 2 2	2.41 2.42 <u>2.40</u> 2.41	15,199 14,632 <u>14,632</u> 14,6 <u>32</u>	11,560 11,360 10,930 11,380	149.93 150.45 <u>149.67</u> 150.02
(70-30) HHA-THIPT	NA Impregnated Conc	rete								
Brine Brine Brine Brine Brine Brine Brine	123,85 121,35 123,74 123,66 123,26 123,27 123,20 Average	5.3 5.6 3.8 6.1 6.2 <u>6.4</u> 3.8	2.38 2.41 2.39 2.40 2.37 2.37 <u>2.36</u> 2.38	17,350 16,340 10,620 16,200 15,940 16,700 <u>16,340</u> 16,507	148.71 150.43 148.71 149.21 147.89 <u>147.89</u> <u>147.20</u> 148.35	1 1 1 1 1	2.44 2.46 2.46 2.43 2.43 2.42 <u>2.41</u> 2.44	15,199 14,742 14,967 14,854 14,524 14,524 <u>14,005</u> 14,688	11,890 11,960 10,290 11,000 11,790 11,210 <u>11,070</u> 11,316	151.29 150.17 153.05 152.20 151.29 150.64 <u>150.17</u> 151.82
Brine-Vapor Brine-Vapor Brine-Vapor Brine-Vapor Brine-Vapor Brine-Vapor Brine-Vapor	123.22 123.14 123.66 123.27 123.31 123.11 123.29 Average	5.3 5., 5.8 6.1 6.1 6.2 <u>6.4</u> 3.9	2.41 2.40 2.33 2.37 2.37 2.35 2.34 2.37	16,205 16,340 16,360 16,360 16,620 <u>16,620</u> <u>16,670</u> 16,402	150.22 149.72 149.21 146.70 147.71 146.20 <u>146.03</u> 147.97	1 1 1 1 1	2.47 2.46 2.43 2.42 2.43 2.42 <u>2.42</u> <u>2.42</u> 2.44	14,208 14,106 14,967 14,106 14,208 14,312 <u>14,324</u> 14,347	11,680 12,860 5,600 11,640 11,930 12,250 10,230 10,887	153.97 153.21 152.57 150.79 151.66 150.54 <u>151.04</u> 151.97
Vapor Vapor Vapor Vapor Vapor Vapor Vapor	123.41 123.89 123.71 123.32 123.33 123.55 123.80 Average	5.3 5.3 6.1 6.2 <u>6.2</u> 5.9	2,40 2,42 2,40 2,36 2,35 2,37 <u>2,38</u> 2,38	16,480 16,620 16,480 16,070 16,070 16,340 <u>16,760</u> 16,402	149,72 151.15 149.41 188.40 146,70 147.89 <u>148.40</u> 148.81	1 1 7 1	2.45 2.46 2.43 2.43 2.42 2.42 <u>2.42</u> <u>2.43</u> 2.44	14,524 14,854 15,082 14,417 14,417 14,417 <u>14,742</u> 14,636	12,290 12,040 11,860 10,610 12,290 10,000 <u>11,650</u> 11,507	152.85 153.20 152.57 151.55 150.79 <u>151.30</u> 151.86
Unimpregnated Co	oncrete						• •	14,005	5,210	146.90
Brine Brine Brine	CP-113 CP-120 CP-75 Average	:	2.34 2.33 <u>2.27</u> 2.31	14,200 14,500 <u>14,100</u> 14,266	146.04 144.86 141.39 144.16	2 2 2 2	2.36 2.35 2.32 2.34	13,248 12,650 13,301	5,460 4,460 5,043	146.30 144.59 145.93
Brine-Vapor Brine-Vapor Brine-Vapor	CP-118 CP-126 CP-103 Average	:	2.33 2.35 <u>2.26</u> 2.31	14,900 14,500 <u>14,200</u> - 14,533	145.02 146.37 140.96 144.11	2	2.40 2.40 <u>2.38</u> 2.38	13,608 13,338 <u>12,732</u> 13,293	5,210 4,290 5,000 4,833	149.26 149.21 <u>146.41</u> 148.29
Vapor Vapor Vapor	CP-178 CP-119 CP-81 Average	÷	2.30 2.36 <u>2.31</u> 2.32	14,300 14,300 <u>14,200</u> 14,266	143.34 147.06 <u>144.15</u> 144.85	2 2 2	2,36 2,40 <u>2,38</u> 2,38	13,711 14,005 <u>13,711</u> 13, 8 09	7,790 8,890 <u>6,210</u> 7,630	147.35 149.46 <u>148.06</u> 148.29

Table 55Compressive strength, pulse velocity, specific gravity, and unit weight -	
Polymer-impregnated concrete exposed to brine, brine/vapor, and vapor at 250°F (121°C))

6- by 12-inch cylindrical specimens: Specific gravity and puls +See table 63 to convert to SI matric units. (250°F) test

								Hessurments	after expenses	
Exposure condition	Spucimen No.	Polymer losding, wt %	Specific gravity	<u>itial mensurphasis</u> Pulse velocity ft/s	Unit weight, lb/ft	Emposure time years	Specific gravity	Pulse velocity ft/s	Compressive strength, lb/in ²	Unit weight lb/fc ³
					<u></u>					
(60-40) Styrene-	THPINA Impregnated	Concrete							10,460 *	150.19
				16,760 *	147.071	2	2.41	14,417†	10,820	151.78
rine	05¥-355	6.7	2.36	16.760	149.62	2	2,44	14,312	10,820	151 63
rine	05-2-258	5.7	2.40	16,700	148 60	2 2	2.43 2.43	15,941 14,890	9,790 10,357	151,63 151,20
Irine	05W-356	5.6	2.39	16,900 16,806	148.60	-	2.43	14,890	10,357	191.40
srine.	Average	5.6	2.38	16,800	140.43					
	Ave 84					•	2.41	14,967	11,640	150.08
		6.4	2.37	16,760	147.58	2	2.43	15,561	10,000	151.62
Brine-Vapor	OSW-340	5.9	2.39	16.760	149.11	2	2.43	15 318	11,070	151,41
Brine-Vapor	OSW-333	2.7	1 43	16.620 16.713	150.64	2	2,43	15,318 15,282	10,903	151.41 151.04
Brine-Vap c	05W-236	5.6	2.42	16 211	149.11		2,42	13,202		
	Average	6.0	2.39						10,570	150.64
				17,200	147.89	2	2.42	15,318	9,960	151.26
Vapor	OSV-295	5.9	2.37	17,050	148.60	2	2.42	14,742	9,900	150.40
	054-371	3.9	2.39	17,030	148.40	2	2.42	15,551 15,207	12,710	150.49 150.80
Vapor	OSW-270	5.6	2.39	17,050	148:60	•	2.42	15,207	11,080	120.00
Vepor	Average	5.6 5.8	2,38	17,100	144.34		-			
Unimpregnated C	oncrete						•		6,250	143.84
unampi againera -					145.53	1	2.31	12,815	0,230	144.19
Brine	199.2.1	-	2.34	14,635	144.69	i	2.31	11,883	5,820	144.35
	199.2.2	-	2.32	14,420	144.19	i	2.32	12,815	6,790	144.33
Brine	199.2.3	-	2.31	14,110	194.19	i	2.33	12.331	7,000	145.28
Brine	199.2.4	-	2.31	14.110	144.19	•	2.33	12.331 12.461	6,465	144.41
Brine	Average	_	2.31	14,110	144.65			•		
	VALLET	-					2.31	12,985	7,820	143.76
			2.30	14,525	143.54	1	2,31	13,430	8,070	143.76
Brine-Vapor	199.2.5	•	2.30	14,525	143.04	1		12,569	6,860	146.50
Brine-Vapor	199.2.6	•		14,525	142.69	1	2.35	12,007	6.790	
Brine-Vapor	199.2.7	•	2.29	16 525	143.69	1	2.32	12,985	6,290 7,260	144.4
Brine-Vapor	199.2.8	•	2.30	14,525 14,525	143.69 143.24		2.32	12,992	1,200	
01 2110 - Vapor	Average	-	2,30	14,323						150.47
					146.20	1	2.42	14,208	6,930	146.4
	199.2.9	. .	2.35	14,005		i	2.35	14,524	9,210	
Vapor	199.2.10		2,35	14,420	146.37	1	2.35	13,808	9,000	146.3
Vapor		_	2,31	14,210	144.04		2.34	14.534	8.070	145.53
Vapor	199.2.11	-	5 14	14,210	145.87	1	2.34	14,266	8,070	147.21
Vapor	199.2.12	-	2.24	14.211	145.62		2,30	14,200		
	Average		4.34						the second s	

Table 56.-Compressive strength, pulse velocity, specific gravity, and unit weight-Styrene-TMPTMA impregnated concrete exposed to brine, brine/vapor, and vapor at 290°F (143°C)

See. 10

4

یں۔ ایک

1100

6- by 12-inch cylindrical specimens: Specific gravity and pulse velocity measurements are made at room temperature; compressive strength is made at 143°C (290°P) test temperature. fSes table 63 to convert to SI metric units.

Table 57.-Changes in weight, length, and resonant frequency-Polymer-impregnated concrete exposed to brine, brine/vapor, and vapor at 250°F (121°C)

			Polymer	Weight	Length		Resonant frequency	
Expos		Specimen	loading.	change,	change,	f ²	x 10 ³ cps,	Change
tir	D e	No.	wc %	2	µin /in	Initial	After exposure	percen
(60-40) Sty	vrene-TMPTHA Imp	regnated Concrete						
			6.0	+0.3	+ 276 *	570 1	563 *	- 1.2
rine	6 months	CPE-47, CPI-45 CPE-47, CPI-45	6.0	+0.4	+ 488	570	533	- 6.5
rine	l year	CPE-47, CPI-45	6,0	+1.0	+ 789	570	497	-12.8
rine	2 years	CPB-47, CPI-45	010					
	r 6 months	CPE-55, CPI-48	6.0	+1.0	+ 404	573	480	-16.
rine-Vapo		CPE-55, CPI-48	6.0	+0.8	+ 525	573	456	-20.4
rine-Vapor		CPE-55, CP1-48	6.0	+1.4	+ 714	573	518	- 9.0
rine-Vapo	r 2 years	011-55, 011-00						- 1.3
apor	6 months	CPE-60, CPI-49	6.1	+0.8	+ 290	570	563	- 1.
	1 year	CPE-60, CPI-49	6.1	+1.1	+ 558	570	540	- 5.
apor apor	2 years	CFE-60, CPI-49	6.1	+1.7	+ 819	570	518	- 9.
apor	2 /00.0							
70-30) MM	A-THIPTMA Impregn	ated Concrete						
		124.18, 124.4	5.6	+1.3	+ 704	558	540	- 3.
rine	6 months	124,18, 124.4	5.6	+1.4	+ 951	558	476	-14.
rine	1 year	124.18, 124.4	5.0					
		124.1, 124.21	5.5	+1.6	+ 614	555	533	- 4.
rine-Vapo		124.1, 124.21	5.5	+1.9	+1.015	555	497	-10.
rine-Vapo	r lyear	124.1, 124.21			•			-
	A	124.3, 124.8	5.6	+1.6	+ 703	558	547	- 2.
apor	6 months	124.3, 124.8	5.6	+1.6	+ 987	558	500	-10.
apor	1 year	124.3, 124.0	510					
nimpregne	ted Concrete							
			0006	+2.3	+ 717	397	378	- 0.
rine	6 months	CP-64, CP-44	0006	+1.9	+ 674	397	382	÷ 0.
rine	1 year	CP-64, CP-44	none	+0.9	+ 913	397	360	- 0.
rine	2 years	CP-64, CP-44	noue					- 4.
rine-Vapo:	r 6 months	CPE-41, CPE-42	none	+2.8	+ 706	403	384	- 4.
rine-Vapo		CPE-41. CPE-42*	none	+1.8	+ 488	403	384	+ 3.
ane-Vapor	r 2 years	CPE-41, CPE-42*	none		+ 794	403	416	+ 3.
Lans-vepu						207	413	+ 4.
apor	6 months	CPE-43, CPE-46	none	+2.0	+ 358	397	415	+ 8.
apor	l year	CPE-43, CPE-46	none	+1.9	+ 363	397		+ 0. +19.
apor	2 years	CPE-43, CPE-46	none	+1.3	+ 394	397	476	Ŧ19.

Results are average values of two 4- by 4- by 30-inch specimens. *One bar only (Specimen No. CPE-42). f = frequency'See table 63 to convert to SI metric units.

1.100.11

							Resonant frequency	
Expos		Specimen	Polymer	Weight	Longth change :	f ²	x 10 ³ cps,	Change
tim		No.	loading, wt %	change, Z	pin /in	Initial	After exposure	percent
			<u>.</u>					
(60-40) Styr	rene-iMPTHA Imp	regnated Concrete				·	5651	-13.8
	6 months	106, 119	5,4	+0.5	+ 791†	656 †	532	-18.8
Brine		106, 119	5.4	+0.5	+1,287	656	500	-23.8
Brine	1 year	106, 119	5.4	+0.8	+1,528	656	500	-23.0
Brine	2 years	100, 119	214	•••				-12.8
			5.6	+1.4	+ 694	619	540	
Brine-Vapor		111, 118	5.6	+1.4	+1,255	619	504	-18.6
Bring-Vapor	1 year	111, 118		+1.6	+1,692	619	494	-20.2
Brine-Vapor	2 years	111, 118	5.6	41.0				
				+1.6	+ 719	632	547	-13.4
Vapor	6 months	110, 112	5.6		+1,266	632	518	-18.0
Vapor	1 year	110, 112	5.6	+1.7		632	522	-17.4
Vapor	2 years	110, 112	5.6	+2.1	+1,509	052		
vepor.	- ,							
(70-30) MA-	THPTHA Impresne	ted Concrete						-25.7
			5.8	+2.1	+1,755	555	412	-23.7
Brine	6 months	126.11, 126.12	5.8			555	•	•
Brine	l year	126.11, 126.12	2.0					
				+2.2	+1.687	570	425	-25.4
Brine-Vapor	6 months	126.2, 126.19	5.8			570	-	•
Brine-Vapor	1 year	126.2, 126.19	5,8	•	-			
	•				+1,453	565	467	-15.8
Vapor	6 months	126.16, 124.17	5.7	+1.3	+3.065*	565	348*	-38.9*
Vapor	l year	126.16, 124.17	5.7	•	+3,065*	307	•	
vapor	. ,	•						
Unimpregnat	ed Concrete							-15.3
-				+1,9	+ 612	393	333	
Brine	6 months	200.7, 200.8	none	-1.6	+ 756	393	288	-26.7
Brine	1 year	200.7, 200.8	none	-1.0				
				+1.8	+ 551	403	336	-16.6
Brine-Vepor	6 months	200.9, 200.10	none		+ 663	403	270	-33.0
Brine-Vapor	1 year	200.9, 200.10	TIOTHE	-2.1	+ 005			
at a net t apor					+ 219	403	391	- 3.1
Vapor	6 months	200.11, 200.12	none	-0.9	+ 335	403	406	+ 0.7
Vapor	1 year	200.11, 200.12	none	-2.2	+ 335	403	,	

Table 58.—Changes in weight, length, and resonant frequency— Polymer-impregnated concrete exposed to brine, brine/vapor, and vapor at 290°F (143°C)

1945

> ė 調査の

> > je gr

Results are average values of two 4- by 4- by 30-inch specimens. *One bar only (Specimen No. 124.17). f = frequency See table 63 to convert to SI metric units.

Table 59.—Flexure strength after exposure to brine, brine/vapor, and vapor at 250°F (121°C)

Exposure condition	Specimen No.	Polymer losding, wt %	Ultimate load, lbe	Modulus of rupture, lb/in ²	Exposure time, yrs
(60-40) Styrene	-THPTHA Impregnated	Concrete			
Bilne	CPE-47	6.5	5,100*	956 t	2
Brine	CP1-45	5.4	6 520	1,223	2
Brine	CP1-42	5.1	6,160	1,155	2
	Average	<u>5.1</u> 5.7	5,926	1,111	
Brine-Vapor	CPE-55	6.1	6,340	1,189	2
Brine-Vapor	CPI-48	5.8	6,220	1,166	2
Bring-Vapor	CPI-43	5.0	6,720	1,260	2
At 10g- Tapot	Average	5.6	6,426	1,205	
Vepor	CPE-60	6.4	4,480	840	2
Vapor	CP1-49	5.6	5,160	967	2
Vapor	CP1-44	4.9	5.720 5.120	1.073	2
	Average	4.9 5.6	5,120	960	
(70-30) NHA-THP	TNA Impregnated Con	crete			
Srine	124,18	5.9	7,300	1,369	1
Srine	124.4	5.2	5,800	1,087	1
Brine	124.20	5.5	6.740	1.264	1
	Average	5.5	6,613	1,240	
Arine-Vapor	124.1	5.8	5,960	1,117	1
Brine-Vapor	124.21	5.2	5,840	1,095	1
Arine-Vepor	124.2 Average	3.4	8,200	1,537	•
	174.3	5.9	6,540	1,226	1
Vapor Vapor	124.8	5.2	6,360	1,193	1
Vapor	124.9		5,280	990	1
Vapor	Average	3.4	6,060	1,136	
Unimpregnated G	oncrete				
Arine	CPE-24		3,100	581	2
Brine	CPE-64	-	2,900	544	2
Brine	CPE-44	-	2,640	495 540	2
-	Average	-	2,880	540	
Brine-Vapor	CPE-42	-	3,520	660 611	2
Brine-Vapor	CPE-23	-	3,260	611	2
Brine-Vapor	Average	:	3,390	635	-
	•			885	2
lapor	CPE-43	-	4,720	750	2
Vapor	CPE-25	-	4,000		2
Apor	CPE-46	•	3,840	720	4
	Average	-	4,186	/03	

4- by 4- by 30-inch bars tested at room temperature. the table 63 to convert to 81 metric units.

Table 60.—Flexure strength after exposure to brine, brine/vapor, and vapor at 290°F (143°C)

Exposure condition	Specimen No.	Polymer loading, wt %	Ultimate load, lbs	Modulus of rupture, lb/in ²	Exposure time, yrs
(60-40) Styrene-	TMPTMA Impregnated	Concrete ·			
	106	5.7	5,660 *	1.061 †	2
Brine				918	2
Brine	119	<u>5.2</u> 5.4	4,900	<u>918</u> 989	
	Average	5.4	3,200		
		5.7	5,000	937	2
Brine-Vapor	111	2./	4,560		
Brine-Vapor	118	5.4	4,780	<u>855</u> 896	
	Average	>.0	4,700	•••	
	112	5.6	4,840	907	2
Vapor	110	\$ 7	5,860	1,099	2
Vapor	Average	5.7 5.6	5,860 5,350	1,003	
	-				
Unimpregnated Co	ncrece				
Brine	200.7		3,200	600	1
Brine	200.8	-	3,120	585	1
Brine	200.14	-	3,460	<u>649</u> 611	1
Brine	Average		3,260	611	
	Average		•		
Brine-Vapor	200.9		3,300	619	1
Brine-Vapor	200.10	-	3,000	563	1
Brine-Vapor Brine-Vapor	200.16	-	3,020	<u>566</u> 583	1
Brane-sehor	Average	-	3,106	583	
Vapor	200.11	•	4,340	814	1
Vapor	200.12	•	3,760	705	1
Vapor	200.18	•	4,000	750 756	1
	Average		4,033	756	

1

4- by 4- by 30-inch bars tested at room temperature. † See table 63 to convert to SI metric units.

1.121

i.

ない

i:

· · · · · · · · · · · · · · · · · · ·	<u></u>	·	N	eutron and gamma	a ray measureme	nts
	Gravimetric	measurements	Positic	on No. 1	Positio	on No. 2
Condition of concrete	Density, lb/ft ³	Weight of moisture or polymer, lb/ft ³	Density, lb/ft ³	Weight of moisture of polymer, lb/ft ³	Density, lb/ft ³	Weight of moisture or polymer, lb/ft ³
Air dry Oven dry	146.5 [†] 138.0	8.5 [†] 0	131.5 [†] 122.5	6.0 [†] 1.4	130.0 [†] 117.5	6.2 [†] 1.4
Surface polymerized	139.6	1.6	122.5	4.3	121.0	4.2

Table 61.-Neutron and gamma ray moisture and density determination

[†] See table 63 to convert to SI metric units.

				Imm	ersion test	Accel	erated test
Class of pipe	Monomer	Polymer loading, %	Sample No.	Test day	Expansion %	Test cycle	Expansion %
PQ	None	·	A1	1,092	0.317	361	² 0.536
PQ	None		B1	1,092	.221	- 615	² .500
AQ	None		A2	1,092	.223	300	² .580
AQ	None		B2	1,092	.099	300	² .634
HQ	None	-	A3	1,092	.075	1,092	.036
HQ	None		B3	1,092	.091	1,092	.516
PQ	MMA	7.4	1-5	549	² .538	225	².536
PQ	ES	9.5	1-12	1,092	.226	1,092	.064
AQ	MMA	7.1	2-3	1,092	.328	1,092	¹ .205
AQ	ES	8.6	2-13	1,092	.264	1,092	.160
HQ	MMA	6.6	3-2	1,092	.402	1,092	¹ .366
HQ	ES	5.8	3-19	1,092	.105	1,092	.106

Table 62.-Resistance to sulfate attack, polymer-impregnated concrete draintile

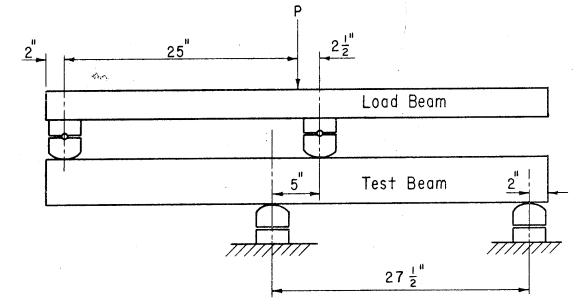
â. State of the

PQ = poor quality

AQ = average quality

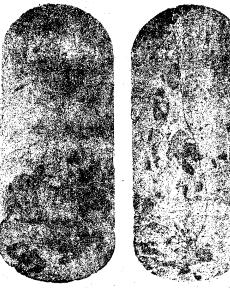
HQ = high quality

MMA = methyl methacrylate

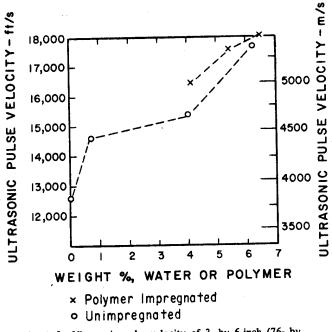

EP-S = epoxy-styrene

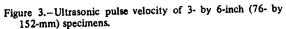
Specimens cut from 4-inch-diameter draintile to approximately 1- by 1- by 6-inch size. Specimens ovendried at 150°C (302°F) prior to impregnation and radiation polymerized. Values for expansion are averages of three specimens, except as noted: ¹ Average net expansion of two specimens — one specimen removed from test for examination. ² Removal from test; expansion exceeded 0.5%. Immersion test = continuous soaking in 10% Na₂SO₄ solution. Accelerated test = soaking in 2.1% Na₂SO₄ solution at 22°C (73°F) and drying at 54°C (130°F); one cycle per day.

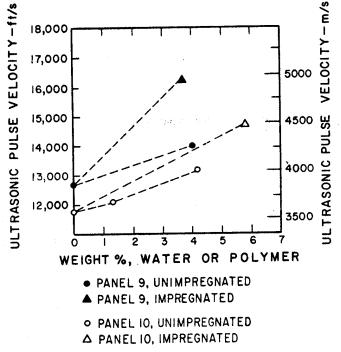
To Convert From	То	Multiply By
inch (in)	millimetre (mm)	25.4000*
inch (in)	metre (m)	0.0254*
pounds/square inch (lb/in ²)	gigapascals (GPa)	6.895×10^{-6}
pounds/square inch (lb/in ²)	megapascals (MPa)	6.895×10^{-3}
degree Fahrenheit (°F)	degree Celcius (°C)	°C = (°F - 32)/1.8
feet/second (ft/s)	metres/second (m/s)	0.3048*
pounds/cubic yard (lb/yd ³)	kilograms/cubic metre (kg/m ³)	0.5933
pounds/cubic foot (lb/ft ³)	kilograms/cubic foot (kg/ft ³)	16.018
pounds (lb)	kilograms (kg)	0.45359
inch-pounds (in-lb)	Newton meter (N ⁻ m)	0.11298
foot (ft)	millimetres (mm)	30.48*
centipoise (cP)	pascal-second (Pa-s)	0.001*
cycles per second (cps)	hertz (hz)	1.00*


Table 63.-SI metric conversion factors

* Exact figure


ţ١.


Figure 1.-Schematic diagram of flexure test setup.



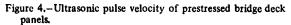

72.65.8 Monomer PMMA partial impregnation, %" depth expanded shale aggregate 72.65.15 Polyester/styrene partial impregnation ½" depth expanded shale aggregate

Figure 2.-Cracking of partially-impregnated expanded shale specimens. (C-8350-1) Photo P801-D-77359

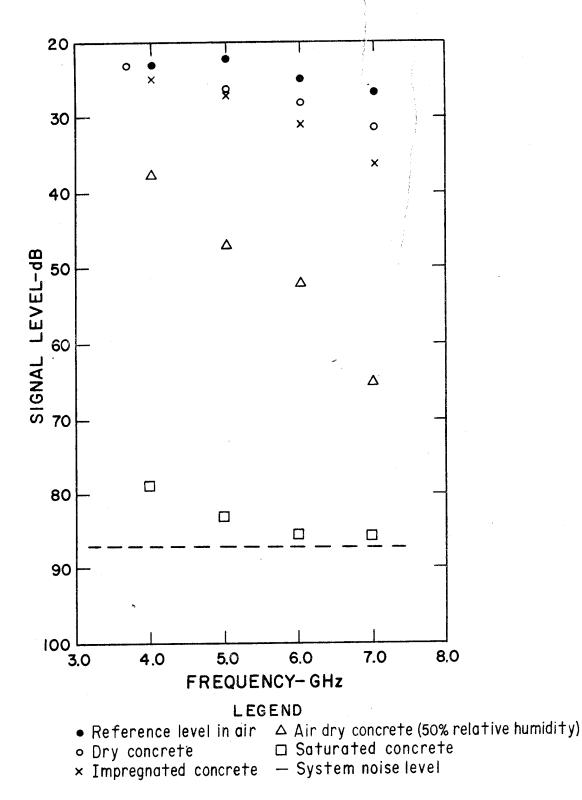


Figure 5.-Microwave test of polymer-impregnated concrete.

APPENDIX

5

MEMORANDUM TO CHIEF, CONCRETE AND STRUCTURAL BRANCH, dated June 26, 1974 "EXAMINATION OF POLYMER-IMPREGNATED CONCRETE AFTER EXPOSURE IN BRINE AND VAPOR AT 250° AND 290°F."

41

-.

OFTIONAL FORM NO. 10 MAY INT EDITION GAS FFMR (41 GFR) 101-11.4 UNITED STATES GOVERNMENT

Memorandum

Memorandum Chief, Concrete and Structural Branch 9Ry. Attention: 1512 Denver, Colorado DATE: June 26, 1974

FROM : Chief, Applied Sciences Branch

то

SUBJECT: Examination and testing of polymer-impregnated concrete after exposure in brine and vapor at 250° F and 290° F

Applied Sciences Referral No. 74-3-6

Investigations by: Physical Sciences and Water Treatment Section, T. E. Backstrom, Head, D. M. Hopkins, E. F. Monk, and C. A. Bechtold, investigators

INTRODUCTION

Concrete specimens were impregnated with 70 percent methyl methacrylate (MMA), 30 percent trimethylopropane trimethacrylate (TMPTMA), and 60 percent styrene - 40 percent TMPTMA. These comonomer impregnated specimens were cured thermal catalytically using alpha tert-butylazo, isobutyro-nitrile, and benzoyl peroxide initiators, respectively. They were then exposed in the brine loop to synthetic sea water concentrates (38,000 and 73,000 ppm) at elevated temperatures. After 1 year, the MMA-TMPTMA specimens exposed at 290° F (with corresponding 38,000-ppm brine, brine-vapor, and vapor environmental conditions) were disaggregated or, as was the case with those exposed to vapor only, deteriorated sufficiently to render compression testing impossible. Specimens of styrene-TMPTMA exposed for 2 years showed no obvious signs of deterioration and a gradual decrease in compressive strength (Figures 1A and 1B).

This report covers the examination and analysis of the concrete paste, embedded polymer, and includes the investigation of other materials related to these two systems.

Following is a list of all specimen samples and related materials examined and the investigation techniques employed:

Specimen and related materials

Exposure

- 1. Type II cement (nonhydrated)
- 2. Hydrated Type II cement

None a. None b. 24 hours in 38,000-ppm brine 290° F vapor, 1 year None

- Concrete paste unimpregnated
 Concrete paste MMA-TMPTMA
 - impregnated

Preceding page blank

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

5.	Concrete paste - MMA-TMPTMA impregnated	290° F brine, 1 year
6.	Concrete paste - MMA-TMPTMA impregnated	250° F vapor, 1 year
7.	Concrete paste - MMA-TMPTMA	290° F vapor, 1 year
8.	impregnated Concrete paste - styrene-TMPTMA	290° F vapor, 2 years
9.	impregnated MMA-TMPTMA standard bar	a. None b. Pypolysate a. 250° F and 290° F vapor,
10.	MMA-TMPTMA polymer fragments	1 year b. 290° F brine, 1 year
	Styrene-TMPTMA polymer fragments TMPTMA monomer	290° F vapor, 2 years None

Investigation Techniques

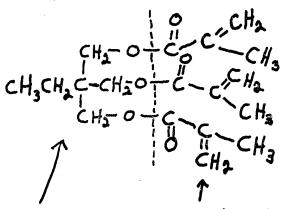
- Examination of the concrete visually, differential thermal analysis (DTA), X-ray diffraction (XRD), and infrared absorption analysis (IR)
- Infrared analysis on the related polymers, monomers, and polymer fragments
- 3. Differential thermal analysis on the related polymers

INVESTIGATION DISCUSSION

Cement paste separated from MMA-TMPTMA and styrene-TMPTMA polymer concrete specimens along with hydrated and nonhydrated Type II cement were examined by XRD and DTA. The major mineral constituents, with the exception of calcium hydroxide, usually detected in hardened portland cement concrete pastes cured at ordinary temperatures were present in similar proportions in all of the concrete pastes analyzed. Sample identification data for calcium hydroxide and calcium carbonate detection are presented in Table 1.

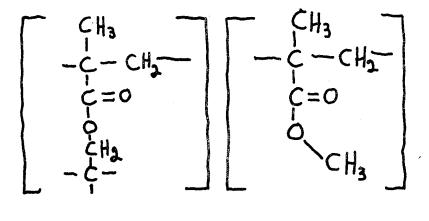
Review of the X-ray diffraction column in Table 1 indicates crystalline calcium hydroxide is not detectable in the concrete pastes analyzed from control and MMA-TMPTMA specimens subjected to brine loop environments at 290° F (Figure 2). X-ray analysis determines only crystalline calcium hydroxide. DTA patterns suggest the calcium hydroxide is still present in the 290° F exposed MMA-TMPTMA specimens but probably in a poorly crystallized or amorphous form (3), as DTA can detect both crystalline and noncrystalline materials. It is not understood why DTA could not detect calcium hydroxide in the unexposed and 250° F vapor exposed MMA-TMPTMA specimens or the control 290° F vapor exposed specimen. While there is still a question of its significance, it

might be noted that two of these three specimens were not exposed to above 250° F environments and the remaining specimen was an unimpregnated control exposed to 290° F vapor.


Trace amounts of calcium carbonate in samples corresponding to the calcium hydroxide data were detected by XRD. DTA analyses indicate calcium carbonate detection in the same samples with the exceptions of Type II nonhydrated cement, 290° F vapor control concrete, and the 290° F brine MMA-TMPTMA concrete. Preparation of suitable standards to determine limits of and interferences with detectability for DTA as well as XRD analyses would be necessary in any additional studies to attempt resolution of these questions.

It is interesting to note, however, that DTA and XRD detected the presence of crystalline calcium hydroxide in the styrene-TMPTMA 290° F 2-year vapor-exposed specimen. This contrasts sharply with the XRD data indicating the absence of crystalline Ca(OH)₂ in 290° F exposures for both control and MMA-TMPTMA impregnated specimens, suggesting styrene-TMPTMA contributes to the retention of crystallinity for Ca(OH)₂.

Comparison of infrared spectra for the standard MMA-TMPTMA polymer bar, polymer fragments dislodged from a 250° F exposed specimen, and the polymer fragments from 290° F exposed specimens indicates exposures up to 250° F have little or no effect on the polymer structure but beyond that, considerable change takes place (Figure 3). Spectrum No. 4 in Figure 3 also indicates the remaining polymer fragments from 290° F exposures could be either a carboxylic acid or an alcoholic derivative, or both. Attempts to dissolve this material in the usual organic solvents were fruitless, suggesting it too was a crosslinked material like its parent, the unexposed MMA-TMPTMA polymer.


DTA patterns were run on samples of the MMA-TMPTMA standard bar and styrene-TMPTMA. (The latter sample was polymer fragments dislodged from one of the exposed styrene-TMPTMA concrete specimens as no standard was provided and time considerations did not permit us to prepare our own. These polymer-concrete specimens were in such obviously good condition that the impregnated polymer was presumably unaltered.) The MMA-TMPTMA sample underwent transition at 280° C whereas the styrene-TMPTMA transition occurred at 425° C (Figure 4), indicating a higher resistance to thermal decomposition for the latter, which is consistent with its brine loop history. Although DTA temperatures for the two polymers' structural change appear extreme when compared with MMA-TMPTMA failure in the 290° F brine loop, consideration must be given to other loop environmental factors such as moisture, concrete matrix, pressure, etc.

The foregoing data obtained from examination of the pure polymer samples and fragments suggested that thermal decomposition of the MMA-TMPTMA had taken place while specimens were being exposed in the 290° F brine loop systems (Figure 5). Decomposition could then be followed or accompanied by chemical attack on the concrete paste by one or several polymer degradation products. Thermal degradation of polymeric materials has been extensively reported (1), and in some cases, their pathways can be reasonably predicted if some consideration is given to the structural formulae of monomeric and resulting polymeric materials involved in their original syntheses. The structural formula for the TMPTMA molecule depicting its functional groups is as follows:

TMP (Trimethylopropane) + 3MMA (Methyl Methacrylate) = TMPTMA

As can be seen from this formula diagram, the three methyl methacrylate portions have the olefin or vinyl functionality enabling them to participate in free radical chain polymerization reactions. In most TMPTMA polymer systems, these three functions are almost completely reacted, leaving only minimal residual vinyl character in the polymer end product. A simplified cross-sectional view of a reacted MMA plus TMPTMA monomer system (the MMA monomer would necessarily react through the MMA radical functionality of the TMPTMA monomer) can be shown as follows:

TMPTMA pendant

MMA pendant

Even in this simplified diagram, it is noticed that the methyl ester portion of the MMA pendant is not altered:

Comparison of this system with that of the styrene-TMPTMA system readily shows that no ester linkages or more specifically, methyl ester linkages, hang freely as the styrene molecule

HC=CH2

0 || -C-O-CH₃

has none. Although the TMPTMA molecule can be considered a bulky tri-ester, it is best considered a substituted tri-alcohol. Many of the reported controlled thermally induced depolymerizations have resulted in producing degradation products closely resembling the original monomeric materials which are the least altered as final polymer pendants. It would be reasonable then to hypothesize that the MMA-TMPTMA polymer would thermally decompose to products a large portion of which would contain methacrylate ester character.

Infrared spectra of the MMA and TMPTMA monomers have a very prominent absorption peak between 1,600 cm⁻¹ and 1,650 cm⁻¹ which is caused by the carbon-carbon double bond or vinyl functional groups (Figure 6). This absorption is present but very minor in the nujol prepared sample spectrum of standard MMA-TMPTMA in Figure 3, indicating that after polymerization the double bond character, as expected, is minimal. This confirms that a high degree of polymerization had been achieved.

A pyrolysis analysis of the MMA-TMPTMA Standard Bar was made to investigate the possibility of high temperature break-down products which could possibly accelerate chemical reaction with the cement paste, especially attacking and enhancing removal of the Ca(OH)₂. IR spectra of pyrolysate (Figure 7) using both ATR (attenuated total reflectance) and gas cell transmission show increased absorption in the 1,600-1,650 cm⁻¹ region. Since ample carbonyl absorption is also present, the reflectance spectrum in particular has, with some interpretive license, character of the acrylate and/or methacrylate families. There is, however, the possibility that the vinyl and carbonyl functions could exist on separate compounds in the condensate and/or gas pyrolysate mixture. Again, additional studies with the aid of possible chromatographic separation techniques would be necessary to resolve such questions.

SUMMARY AND CONCLUSIONS

Exposure of the two polymer impregnated systems, MMA-TMPTMA, styrene-TMPTMA, and control specimens in brine loop environments at 290° F for 1 year is accompanied by loss of crystallinity in the $Ca(OH)_2$ present in the concrete paste. Crystalline $Ca(OH)_2$ is still detected in styrene-TMPTMA concrete paste after 2 years but at significantly lower concentrations. Removal of both crystalline and amorphous forms of $Ca(OH)_2$ from the MMA-TMPTMA system specimens is suspected. There was no significant effect from either polymer system on the other normal mineral composition of the hardened cement paste.

The gross structural change to the MMA-TMPTMA polymer exposed to 290° F loop environments probably is a major factor in the disintegration and deterioration of this polymer concrete. What relationship the Ca(OH)₂ structural change has, if any, to the MMA-TMPTMA polymer and its performance is not known.

Since strict thermal degradation of the MMA-TMPTMA polymer does not begin until about 390° F, as indicated by DTA analyses, the additional environmental factors apparently combine to reduce the reaction temperature to somewhere between 250° F and 290°F.

The thermal degradation of the styrene-TMPTMA does not begin to occur until about 570° F which may account for its superior performance in the loops.

IR analyses of the polymer (MMA-TMPTMA) and its thermal breakdown products suggest, however, that thermal decomposition might provide methacrylate-like degradation products of low molecular weight. The probability of a reaction between any methacrylate compounds and calcium hydroxide in the concrete paste is suspected as the reaction of methyl methacrylate and calcium hydroxide has been demonstrated (2). The extraction of calcium hydroxide in crystalline and noncrystalline forms by another low molecular weight organic ester, ethyl acetoacetate, has also been reported (3). This extraction agent also attacks, though at a slower rate, the lime from calcium silicate hydrate in concrete tobermorite gel.

Any of these suspected calcium compounds formed from reactions with polymer degradation products are highly water soluble making them subject to leaching with consequent increase in the porosity of the concrete. Loss of calcium hydroxide also increases the hydrolysis potential of the calcium silicate hydrates.

We were unable to analyze for any of the suspected organo-calcium salts as no brine solutions from the specimen tests were provided. Additional studies are necessary involving the retention of all specimens and related materials in order to give a more complete analytical appraisal.

L.O. Timbler .

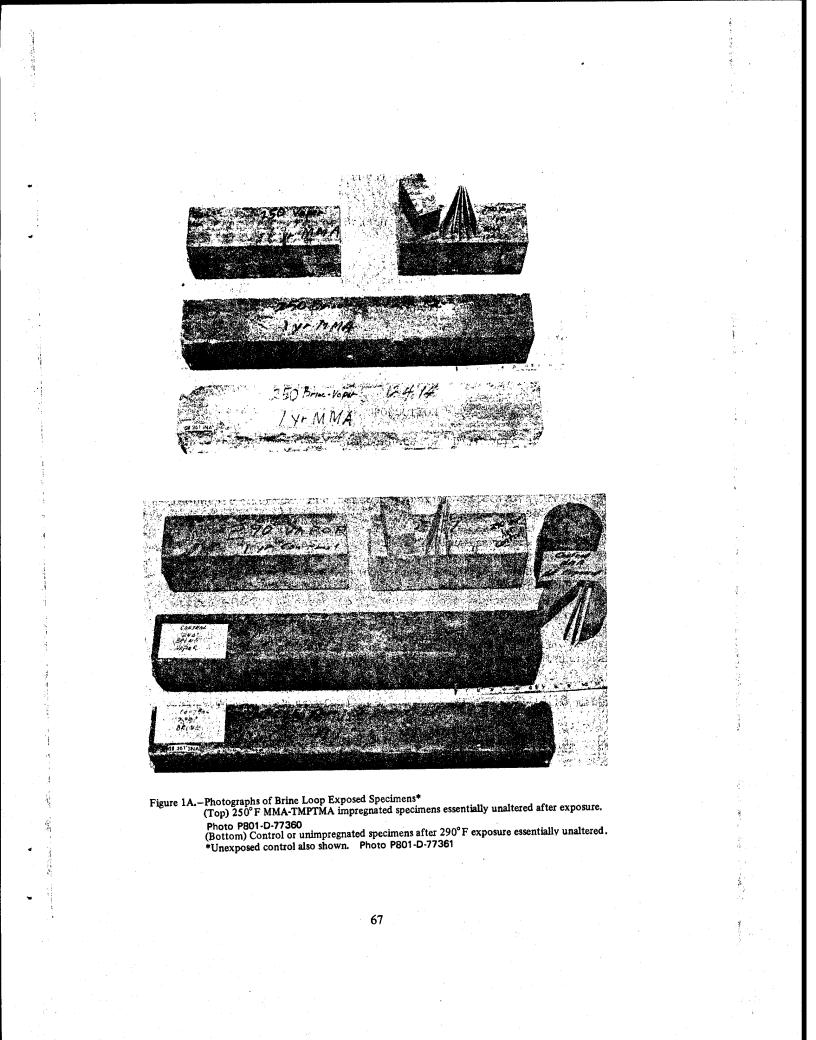
REFERENCES

- Lenz, Robert W., "Organic Chemistry of Synthetic High Polymers," Interscience Publishers, 1967
- Bureau of Reclamation memorandum, Applied Sciences Referral No. 72-3-1, Investigation of the Reaction Between Methyl Methacrylate and Calcium Hydroxide
- Brunauer, S., "Tobermorite Gel The Heart of Concrete," Am. Scientist, March 1962, Vol. 50, No. 1, pp. 210-229.

Enclosures

Copy to: 1520 1521 1523 (3)

Table 1


いたの

DET	CECTION A	AND IDENTI	FIC/	TION OF	F CAI	CIUM HYDE	ROXIDE	
AND	CALCIUM	CARBONATE	IN	CEMENT	AND	CONCRETE	PASTES	
BY XRD AND DTA								

		Ca(OH) ₂		CaCO ₃	
	Specimen designation	XRD	DTA	XRD	DTA
٤.	Cement, Type II (nonhydrated)			x (moderat	- e)
2.	Cement, Type II (hydrated)	x (high)	x	x (trace)	x
3.	Concrete paste control 290° vapor, 1 yr	-	-	x (trace)	-
4.	Concrete paste MMA-TMPTMA (not exposed)	x (moderate)	-	x (trace)	-
5.	Concrete paste MMA-TMPTMA 290° brine 1 year	-	x	x (trace)	•
5.	Concrete paste MMA-TMPTMA 250° vapor 1 year	x (moderate)		x (trace)	x
7.	Concrete paste MMA-TMPTMA 290° vapor 1 year	-	x	x (trace)	x
3.	Concrete paste styrene-TMPTMA 290° vapor 2 years	x (minor)	x	x (trace)	X

Present: x Not detected:

ĩ

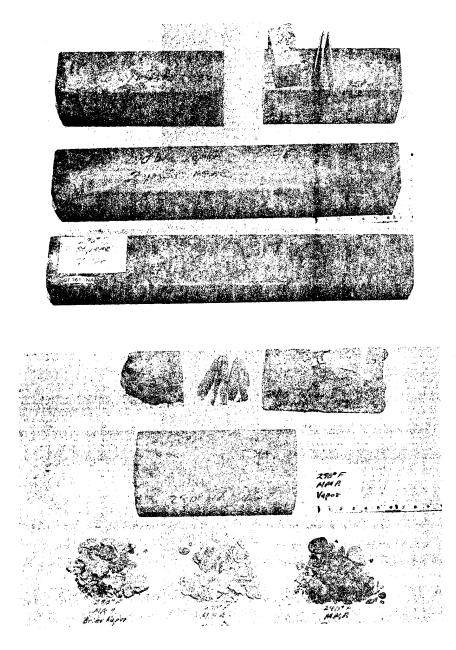
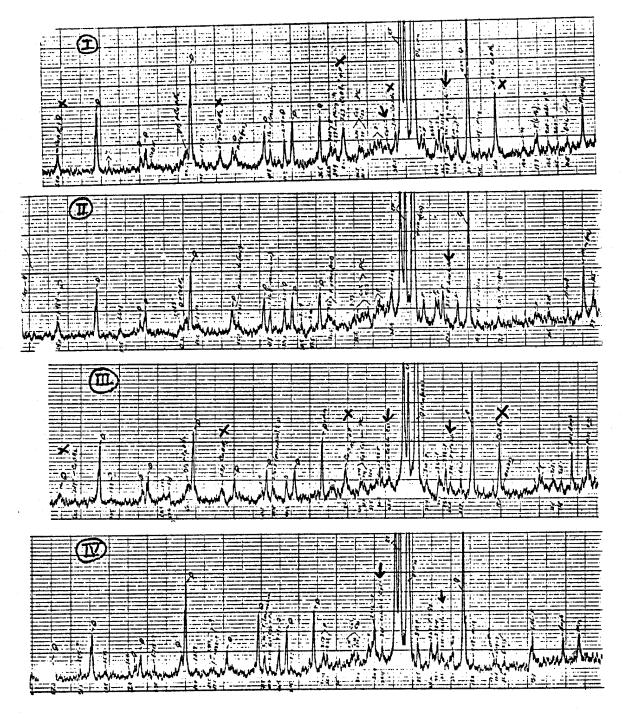



 Figure 1B. - Photographs of Brine Loop Exposed Specimens

 (Top) 290° F exposed styrene-TMPTMA specimens essentially unaltered after 2 years in brine loop.
 Photo P801-D-77362
 (Bottom) MMA-TMPTMA specimens show deterioration and disaggregation after 1 year exposure in brine loop.
 Darker coloration of brine-immersed specimens result from iron-oxide deposit from loop container.

 Photo P801-D-77363

Figure 2(A) X-ray Diffraction Patterns for CA(OH)₂ and CaCO₃ Detection in Concrete Pastes

Figure 2(A) - continued

1. 1. 1. 1. V.

A	
(V)	
	X
A	
t	
N	THE REAL PROPERTY AND THE AND
HI. JAMENAN	Where MI Hussen How WWW Winner
a Attended and an	

Note: X denotes Ca(OH)₂ peaks; I denotes Ca(CO₃) peaks.

ij

Pattern I was run from the paste of specimen No. 4, Table 1; MMA-TMPTMA impregnated, not exposed.

Pattern II represents Specimen No. 3, Table 1; control, 290° F vapor exposed for 1 year.

Pattern III represents Specimen No. 6, Table 1; MMA-TMPTMA impregnated and exposed to 250° F vapor for 1 year.

Pattern IV represents Specimen No. 5, Table 1; MMA-TMPTMA impregnated and exposed to 290° F brine for 1 year.

Pattern V represents Specimen No. 8, Table 1; styrene-TMPTMA impregnated and exposed to 290° F vapor for 2 years.

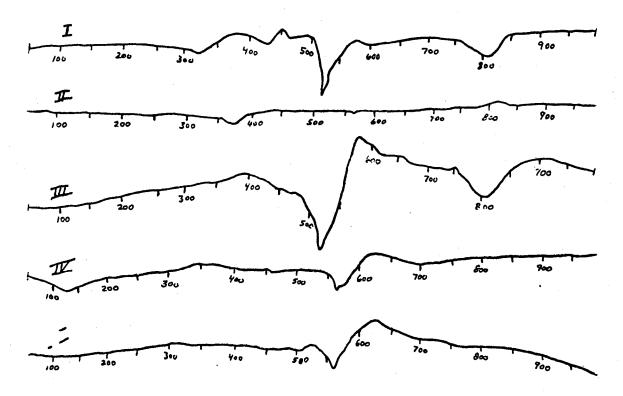


Figure 2(B), DTA Patterns for Ca(OH)₂ and CaCO₃ Detection in Concrete Pastes

1. N. S.

1000

1. Sec. 1.

ŝ

in Alton Alton Alton

2-B-4

1. N. 1944

S.

Patterns presented in Figure 2(B) correspond with specimens analyzed by XRD (Figure 2(A)) and the order of presentation is also the same.

Analytical conditions	Sensitivity (%)	<u>Rate (°C/minute)</u>	
I - Specimen 4	25	10° C	
II - Specimen 3	10	10° C	
III - Specimen 6	25	10° C	
IV - Specimen 5	10	10° C	
V - Specimen 8	10	10° C	

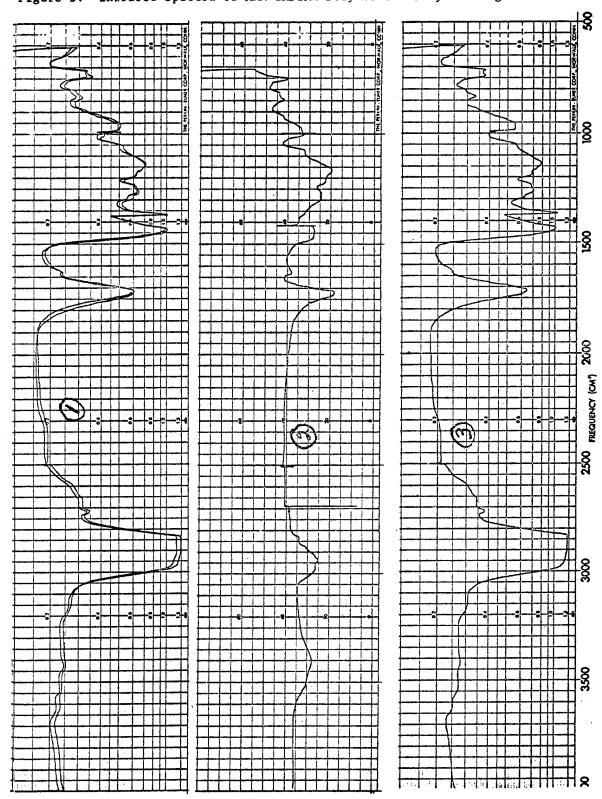
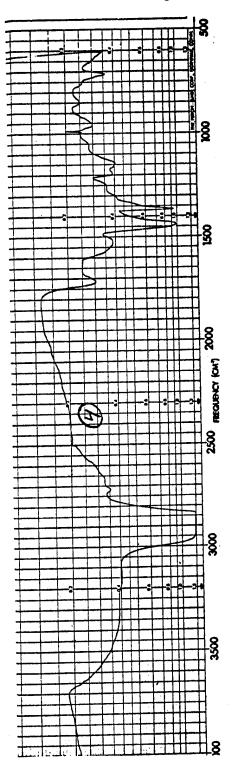
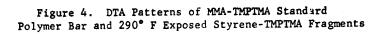



Figure 3. Infrared Spectra of MMA-TMPTMA Polymer and Polymer Fragments.

ŕ.

ģ.

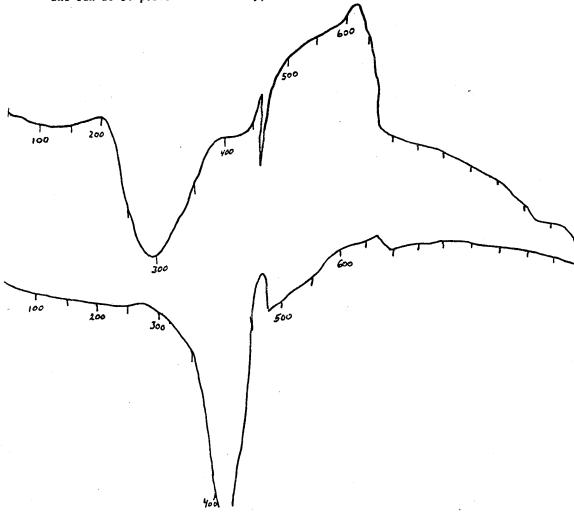
19



Spectrum 1 is of standard polymer bar powder suspended in nujol (mineral oil). Intense peaks near $3,000 \text{ and } 1,500 \text{ cm}^{-1}$ are caused by Nujol C-H absorption. Residual carbon-carbon double bond character is noted by weak peak between 1,600 and 1,650 cm⁻¹.

Increased absorption near Spectrum 2 is of the same polymer bar powder pressed into a KBr pellet. 3,500 cm⁻¹ is caused by KBr absorption of water vapor. Spectrum 3 is nujol mull preparation of MMA-TMPTMA polymer fragment from 250° F vapor l-year exposure. Note similarity to Spectra 1 and 2.

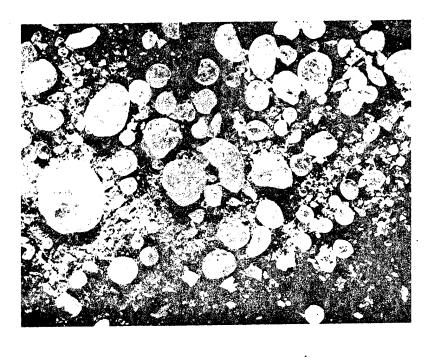
Note Spectrum 4 is of a nujol preparation of polymer fragments from 290° F brine exposed specimens. No substantial hydroxyl character (between 3,000 and 3,500 cm⁻¹) and other spectral differences from Spectra 1, 2, and 3.


. .

MMA-TMPTMA standard bar powder - combined with 1/2 by weight inert material and run at 50 percent sensitivity, rate 10° C/minute.

Ereine South

11-12 (11



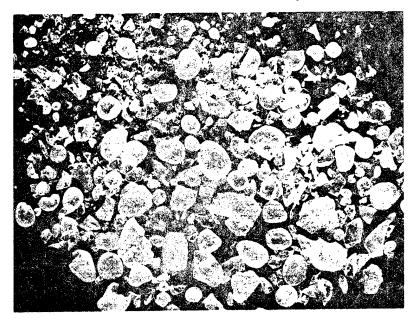

Styrene-TMPTMA polymer fragments powder - run at 25 percent sensitivity, rate 10° C/minute.

Figure 5A. – Photographs of Polymer Fragments Dislodged from Concrete Voids (Top) MMA-TMPTMA fragments from nonexposed specimen. Photo P801-D-77364 (Bottom) MMA-TMPTMA fragments from 250°F vapor specimen exposure. These fragments show no obvious alteration from exposure. Photo P801-D-77365

詞

Figure 5B. - Photographs of Polymer Fragments Dislodged from Concrete Voids

 (Top) 290°F vapor exposed MMA-TMPTMA specimen fragments. They show cracks from exposure. Photo P801-D-77366
 (Bottom) 290°F vapor exposed styrene-TMPTMA specimen fragments. They show no obvious alteration from exposure. Photo P801-D-77367

į.

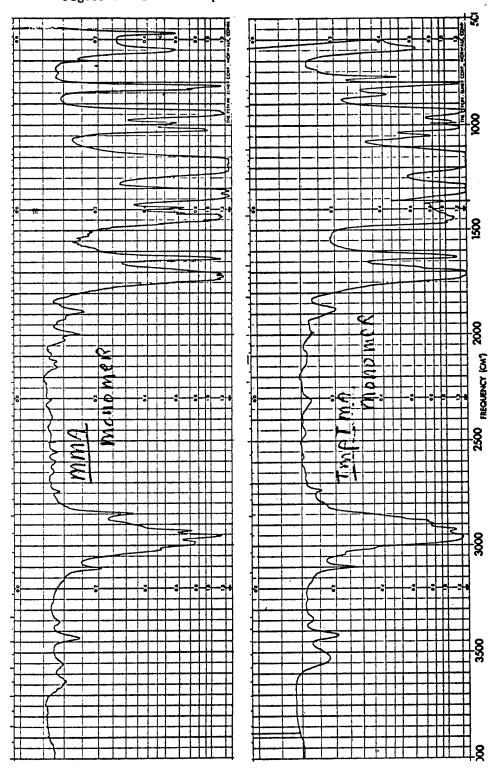


Figure 6. Infrared Spectra of MMA and TMPTMA Monomers

í.

Ë.

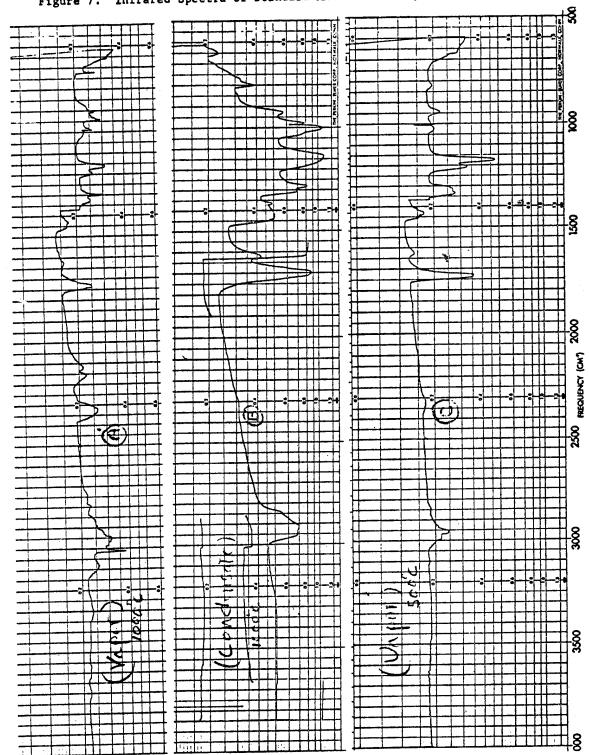
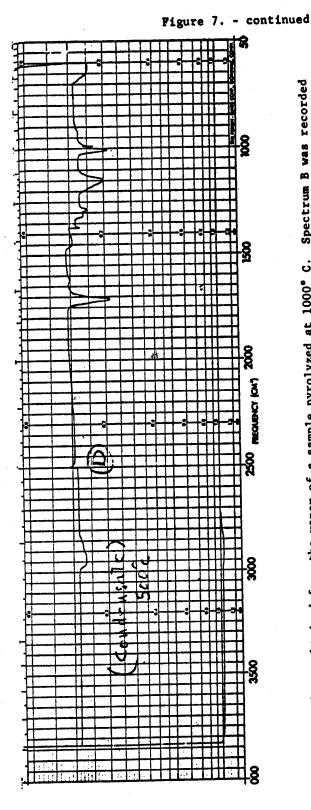



Figure 7. Infrared Spectra of Standard MMA-TMPTMA Polymer Bar Pyrolysates

いたのでの

Spectrum A was obtained from the vapor of a sample pyrolyzed at 1000° C. Spectrum B was recorded on the condensate from the same pyrolysis by Attenuated Total Reflectance (ATR).

Spectrum D was recorded Spectrum C was obtained from the vapor of a sample pyrolyzed at 500° C. on the condensate by IR transmittance.

this is to be expected considering the difference in pyrolysis temperatures. All of the spectra, Although Spectrum A has more low molecular weight gaseous character as compared with Spectrum C, however, denote carbon-carbon double bond character and retention of carbonyl groups which is consistent with Methacrylate monomer character.

GPO 840 - 118

同学時間の時代