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1    Project Description 

1.1 Introduction 

Quantum semiconductor devices are playing an increasingly important role 
in advanced microelectronic applications, including multiple-state logic and 
memory devices. To model quantum devices, the classical hydrodynamic 
model for semiconductor devices can be extended to include 0(h2) quantum 
corrections. 

These quantum hydrodynamic (QHD) equations have been remarkably 
successful in simulating the effects of electron tunneling through potential 
barriers including single [1, 2] and multiple [3] regions of negative differential 
resistance in the current-voltage curves of resonant tunneling diodes. 

This proposal focused on theoretical and computational investigations of 
the flow of electrons in semiconductor devices based on the quantum hydro- 
dynamic model. The development of efficient, robust numerical methods for 
the QHD model in one and two spatial dimensions was also emphasized. 

1.2 The QHD model 

The QHD model has exactly the same structure [2] as the classical hydrody- 
namic model (electrogasdynamics): 

dn       d  .     , 
- + —(nn,) = 0 (1) 

d                   d                                     dV     mnuj 
(mnwj) +       [Uimnuj     Pij) =    n 

at                 oxi            J        J            dxj        TP 
(2) 

dW       d .   „,         „         ,              dV      (W - -2riT0) 
+       [UiW    UjPij + ft) =    nui 

at      dxi                                            dxi              TW 
(3) 

V- (eW) = e2{ND - NA - n) (4) 

where n is the electron density, u is the velocity, m is the effective electron 
mass, P^ is the stress tensor, V = —erf» is the potential energy. (f> is the electric 
potential, e > 0 is the electronic charge, W is the energy density, q is the 
heat flux, T0 is the temperature of the semiconductor lattice in energy units 
(kß is set equal to 1), e is the dielectric constant, Np is the density of donors, 



and NA is the density of acceptors. Spatial indices i, j equal 1, 2, 3, and 
repeated indices are summed over. The transport equations (l)-(3) express 
conservation of electron number, momentum, and energy, respectively, and 
Eq. (4) is Poisson's equation. The classical collision terms in Eqs. (2) and 
(3) are modeled by the relaxation time approximation, with momentum and 
energy relaxation times rv and TW. The heat flux is specified by Fourier's law 
q = — ftVT, where T is the electron temperature. 

Quantum mechanical effects appear in the stress tensor and the energy 
density. Ref. [2] derives the stress tensor and the energy density for the 0(h ) 
momentum-shifted thermal equilibrium Wigner distribution function [4]: 

^ = -»™, + |^Iog(n)+0(A*) (5) 

W^-nT+^n^-^VHai^+O^). (6) 

Ancona, Iafrate, and Tiersten [5, 6] derived expression (5) for the stress 
tensor. In Ref. [1], Grubin and Kreskovsky formulated a one-dimensional 
version of the QHD equations. 

The expansion parameter in the asymptotic series (5) and (6) is actually 
ft?/8mTl2, where I is a characteristic length scale of the problem [6, 7]. For 
the resonant tunneling diode in section 1.3 with T « T0 = 77 K and / = 
100 Ä, the expansion parameter «s 0.23. 

There are three major advantages of using the quantum hydrodynamic 
model over other methods for simulating quantum semiconductor devices. 
First, the QHD method is much less computationally intensive than the 
Wigner function [8] or density matrix [9] methods, and includes the same 
physics if the expansion parameter h2/8mTl2 is small. Second, the QHD 
equations are expressed in terms of intuitive classical fluid dynamical quanti- 
ties (e.g. density, velocity, and temperature). Third, well-understood classical 
boundary conditions can be imposed in simulating quantum devices. 

1.3    Summary of Results 

In "The Quantum Hydrodynamic Model for Semiconductor Devices" [2], 
the full three-dimensional quantum hydrodynamic model is derived for the 
first time by a moment expansion of the Wigner-Boltzmann equation. The 



QHD conservation laws have the same form as the classical hydrodynamic 
equations, but the energy density and stress tensor have additional quantum 
terms. These quantum terms allow particles to tunnel through potential 
barriers and to build up in potential wells. 

The 3D QHD transport equations are mathematically classified as having 
two Schrödinger modes, two hyperbolic modes, and one parabolic mode. The 
ID steady-state QHD equations are discretized in conservation form using 
the second upwind method. 

Simulations of a resonant tunneling diode are presented which show charge 
buildup in the quantum well and negative differential resistance (NDR) in 
the current-voltage curve. These are the first simulations of the full QHD 
equations to show NDR in the resonant tunneling diode. The computed 
current-voltage curve agrees quantitatively with experimental measurements. 
NDR is interpreted in terms of the time spent by electrons in the quantum 
well. 

The numerical methods and relaxation time models for the QHD model 
are similar to those for the classical hydrodynamic model. I reported this 
related work in "Hydrodynamic and Monte Carlo Simulation of an Electron 
Shock Wave in a One Micrometer n+ -n-n+ Diode" [10] and in "The ENO 
Method for the Hydrodynamic Model for Semiconductor Devices" [11], with 
Joseph Jerome and Chi-Wang Shu. In the first article, hydrodynamic model 
simulations of a steady-state electron shock wave in a one micrometer Si 
semiconductor device at 77 K are compared with a Monte Carlo simulation 
of the Boltzmann equation using the DAMOCLES program. In the second 
article, the ENO method from computational fluid dynamics is applied to the 
hydrodynamic model for semiconductor devices. Numerical simulations of a 
family of steady-state electron shock waves (parametrized by the amount of 
heat conduction) in a submicron semiconductor device are presented, using 
the ENO method. 

In Ref. [12], the classical (CHD) and quantum hydrodynamic equations 
are presented in a unified formulation, and results on mathematical classifi- 
cation, upwind discretization, CHD simulations of an electron shock wave, 
and QHD simulations of NDR in a resonant tunneling diode are summarized. 

The phenomenon of resonant tunneling is simulated and analyzed in the 
QHD model in Ref. [3]. Simulations of a parabolic well resonant tunneling 
diode at 77 K are presented which show multiple regions of negative differ- 
ential resistance (NDR) in the current-voltage curve (see Fig. 1). These are 



Figure 1:   Current density in milliamps/cm2 vs. voltage for the resonant 
tunneling diode at 77 K, showing multiple regions of NDR. 

the first simulations of the QHD equations to show multiple regions of NDR. 
Resonant tunneling (and NDR) depend on the quantum interference of 

electron wavefunctions and therefore on the phases of the wavefunctions. An 
analysis of the QHD equations using a moment expansion of the Wigner- 
Boltzmann equation indicates how phase information is retained in the hy- 
drodynamic equations. 

Bistable hysteresis (see Fig. 2) in the current-voltage curve of a resonant 
tunneling diode is simulated and analyzed in the QHD model in Ref. [13], 
with Zhangxin Chen, Bernardo Cockburn, and Joseph Jerome. These are 
the first simulations of the QHD equations to show hysteresis in the current- 
voltage curve, and confirm that hysteresis is an inherent property of the 
resonant tunneling diode. 

A finite element method for simulation of the time-dependent QHD model 
is also introduced. The finite element method is based on a Runge-Kutta 
discontinuous Galerkin (RKDG) method for the QHD conservation laws and 
a mixed finite element method for Poisson's equation. 



0.05 0.1 0.15 

Voltage 

0.2 

Figure 2: Current density in kiloamps/cm2 vs. voltage for the resonant tun- 
neling diode at 77 K, showing hysteresis. 
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