
Technical Report ITL-95-9
September 1995

US Army Corps
of Engineers
Waterways Experiment
Station

A Study of the Rational Environment

by William A. Ward, Jr.,
University of South Alabama

19951117 062
Approved For Public Release; Distribution Is Unlimited

mcW^2mmQm) d

Prepared for U.S. Army Environmental Center

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

Ö PRINTED ON RECYCLED PAPER

Technical Report ITL-95-9
September 1995

A Study of the Rational Environment
by William A. Ward, Jr.

Faculty Court West 20
School of Computer and Information Sciences
University of South Alabama
Mobile, AL 36688

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Environmental Center
Building E4435, Edgewood Area
Aberdeen Proving Ground, MS 21010

Under Contract No. DACA39-93-K-0016

Monitored by U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

US Army Corps
of Engineers
Waterways Experiment
Station

FOR «FORMATION CONTACT :

PUBLIC AFFAIRS OFFICE

U.S. ARMY ENGINEER

WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD

VCKSBURG, MISSISSIPPI 391SM199

PHONE: (601)634-2502

AREA Of RESERVATION - 2.7 tq ton

Waterways Experiment Station Cataloging-in-Publication Data

Ward, William A.
A study of the rational environment / by William A. Ward, Jr.; prepared for U.S. Army

Environmental Center; monitored by U.S. Army Engineer Waterways Experiment Station.
70 p. : ill.; 28 cm. - (Technical report; ITL-95-9)
Includes bibliographic references.
1. Ada (Computer program language) 2. Software engineering. I. United States. Army.

Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. JH. Information
Technology Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. U.S.
Army "Environmental Center. V. Title. VI. Series: Technical report (U.S. Army Engineer
Waterways Experiment Station); ITL-95-9
TA7 W34 no.ITL-95-9

Acsödsslon FOP •••,,iäs$fS}jj

BT1S 3RA&I
DTIC TAB
Unann.ou5»oed

[j3 -.ia

□- ¥
a "

By ■

Contents

Distribution^

Ava I lab lllty Cfe&sa

Avail and/or

Bist SpsoAl

Preface v

1—Introduction 1

Historical Perspective 1
Program Development Environments 4

2—Description of the Rational Environment 10

Overview 10
The R1000 Software Engineering Server 12
The Information Repository 13
Support for Basic Development Activities 14
Subsystems 18
Configuration Management and Version Control 20
Future of the Rational Environment 22

3—Tools to Augment the Rational Environment 26

Rational Design Facility 26
Rational Insight 29
Cadre Teamwork 31
Rational TestMate 32
Other Tools 33

4—User Experience 35

CelsiusTech and FS 2000 35
Computer Sciences Corporation and STANFINS-R 36
IBM and WISCUC 38
Statistica and SIDPERS-3 40
The Software Engineering Institute Evaluation 42
Magnavox Electronic Systems Company and AFATDS 45
Other Users 51

5—Recommendations and Conclusions 52

Recommendations 52

Conclusions 53

References 55

Appendix A: List of Acronyms Al

Report Documentation Page End

List of Figures

Figure 1. The STONEMAN APSE model 5

Figure 2. Range of applicability of various types of environments 7

Figure 3. Spectrum of applicability of life cycle tool types 9

Figure 4. Logical relationship between environment components 11

Figure 5. Example of the effect of format 16

Figure 6. Recompilation required by cascading dependencies 19

Figure 7. A development path 23

Figure 8. RDF PDL for a hypothetical CSCI 28

List of Tables

Table 1. MESC Ada DSSE Tools Evaluation 46

Table 2. MESC Ada DSSE Evaluation Scores 48

Table 3. Code Metrics of HI Source Files 49

Table 4. Performance Comparison for HI Port 49

Table 5. Summary of Technical Development Features 50

IV

Preface

This report is published in the interest of scientific and technical information
exchange; the ideas and findings contained herein should not be construed as an
official position of the U.S. Army Corps of Engineers. Use of any trademarks in
this report is not intended in any way to infringe on the rights of the trademark
holder.

The author thanks Dr. Windeil F. Ingram for reviewing this report, and Mr.
Jeffrey S. Martell and Mr. Sean S. Kae of Rational for supplying much useful
information on their company's products, as well as providing the author the
opportunity for hands-on use of the Rational Environment. Thanks are also due
to the Rational users who took time to discuss their experiences with the
Rational Environment; Ms. Hilary Allers of TRW Federal Systems Group, Ms.
Jennie Beckley of IBM, Mr. David Kriegman of SRA, and Mr. Bob Schoenborn
of Statistica.

The production of this report was sponsored by the U.S. Army Environmental
Center (AEC) and funded through the U.S. Army Engineer Waterways Experi-
ment Station (WES) Information Technology Laboratory (JTL) under Contract
No. DACW39-93-K-0016 from March 3,1993 to December 31,1993.

Mr. Mark N. Bovelsky was Chief of the Information Management Branch,
AEC, during the preparation of this report. The contract was monitored by Dr.
Windell F. Ingram, Chief, Computer Sciences Division, JTL. Dr. N. Radhakrish-
nan was Director, ITL, Dr. Robert W. Whalin was Director of WES, and COL
Bruce K. Howard, EN, was Commander.

1 Introduction

This report is intended to be a comprehensive survey of publicly available
information on the Rational Environment1. Its primary purpose is to introduce
potential users of the system to its capabilities by describing its current features
and summarizing user experiences. As such, it will also be of interest to students
and researchers in the area of software development environments. It must be
emphasized that no formal evaluation of the Environment was conducted as a
part of this study and that it is not the intent of this report to suggest a methodol-
ogy for evaluating this, or other, environments. Readers wishing to do so should
seek guidance from other sources (Lyons and Nissen 1990, Firth et al.
1987, Lyons and Nissen 1986, Weiderman et al. 1986, Wood et al. 1988).

The report begins by presenting the historical context in which the Environ-
ment was developed. So that its use may be more clearly understood by those
who have never used software development aids of this type, a brief, general dis-
cussion of programming and project support environments is given as back-
ground. This is followed by a description of the Environment itself and tools
which may be added to enhance it. The experiences of several Rational users are
reported, along with the results of some formal evaluations of the product. A
final section presents recommendations on how to successfully use the Environ-
ment and some conclusions regarding its capabilities.

Historical Perspective

Understanding the Environment is difficult without understanding the three
decades of software development that preceded its creation. The first software
systems were short and simple. These so-called systems hardly qualified as
such, generally being standalone utilities a few hundred source lines of code
(SLOC) long designed to sort a list, solve a linear system, or the like; further-
more, they required little manpower to write and maintain, often being created
by a single programmer.

For the sake of brevity, it will often be referred to as "the Environment."

Chapter 1 Introduction

Since that time software projects have increased in scope, attempting to per-
form more complex tasks, growing to hundreds of thousands or millions of
SLOC, and requiring teams of dozens, if not hundreds, of programmers. Exam-
ples include operating systems, telephone switching systems, and embedded
weapons systems.

Aside from their sheer size, the complexity of these development projects is
increased by several other factors. Often the software must run on multiproces-
sors, or on communicating nodes in a network of computers; in such situations,
deadlock avoidance and asynchronous event handling are often necessary.
These large systems typically have long lifetimes and frequently thus involve
extensive error correction and/or addition of features. Finally, some are intended
from the beginning to run on a variety of platforms, or migrate to other hardware
in mid-life. As might be expected, many such large-scale software development
projects have been less than completely successful; Brooks opens The Mythical
Man Month with an eloquent description of the situation:

No scene from prehistory is quite so vivid as that of the mortal
struggles of great beasts in the tar pits. In the mind's eye one sees
dinosaurs, mammoths, and saber-toothed tigers struggling against
the grip of the tar. The fiercer the struggle, the more entangling the
tar, and no beast is so strong or so skillful but that he ultimately
sinks.

Large-system programming has over the past decade been such a
tar pit, and many great and powerful beasts have thrashed in it.
Most have emerged with running systems—few have met goals,
schedules, and budgets. Large and small, massive or wiry, team
after team has become entangled in the tar. No one thing seems to
cause the difficulty—any particular paw can be pulled away. But
the accumulation of simultaneous and interacting factors brings
slower and slower motion. Everyone seems to have been surprised
by the stickiness of the problem, and it is hard to discern the nature
of it. But we must try to understand it if we are to solve it.1

In spite of the understandable reluctance of Government contractors to dis-
close the degree to which their systems fail to meet specifications, there is evi-
dence that Government software projects are particularly susceptible to these
problems. One study evaluated the success of nine software development pro-
jects performed for the Department of Defense (DoD) (Comptroller General of
the United States 1979). The value of these contracts was $6.8 million; that total
expenditure may be broken down as follows: $3.2 million for software that was
delivered to the Government but never successfully used, $1.95 million for
software that was never delivered, $1.3 million for poor quality software requir-
ing extensive modification or ultimate abandonment, $198,000 for software that
had to be modified before being used, and only $119,000 for software used as

From (Brooks 1975, p. 4); © 1975 Addison-Wesley, reprinted by permission.

Chapter 1 Introduction

delivered. Although small in scope, this study unfortunately seems to be
representative of software development in general. (Other more recent fiascos
are noted in (Brown, Earl, and McDermid 1992, p. 8-9))

What are the reasons for this sorry state of affairs? Before answering this
question, it will be useful to separate causes from effects. Of the latter, seven
stand out (Fisher 1976, p. 2-3). Software does not satisfy user's needs; it is not
responsive. Software fails; it is unreliable. Software costs to much and the costs
are unpredictable; it is expensive. Software is difficult to modify; it is unmain-
tainable. Software is delivered late and without all the specified features; it is
not timely. Software is difficult to move from one system to another; it is not
portable. Finally, software consumes too much processor time and memory; it is
inefficient.

As noted in (Booch 1987, p. 7-10) and (Devlin 1980, p. 2), however, these are
symptoms of other more fundamental problems, five of which are described
below. (1) Organizations responsible for supervision of software development,
as well as those involved in the development process itself, do not understand
the implications of good software engineering practice (or the lack thereof) on a
project. (2) There is a continuing shortage of trained software engineers.
Indeed, many computer science programs do not even offer courses in software
engineering. When they do, the courses are often optional and viewed as not
central to the discipline (Frakes, Fox, and Nejmeh 1991, p. 3). (Refer to (Gibbs
and Ford 1986) and (Shaw 1986) for further information on this issue.) (3) Von
Neumann architectures discourage good software engineering practice.

Conventional programming languages are growing ever more enor-
mous, but not stronger. Inherent defects at the most basic level
cause them to be both fat and weak: their primitive word-at-a-time
style of programming inherited from their common ancestor—the
von Neumann computer, their close coupling of semantics to state
transitions, their division of programming into a world of expres-
sions and a world of statements, their inability to effectively use
powerful combining forms for building new programs from exist-
ing ones, and their lack of useful mathematical properties for rea-
soning about programs.1

(4) Programmers view their activity as an art and resist using new methodologies
that would improve their efficiency. Ironically, programming teams that insist on
replacing last year's system with the latest hardware are quite content to use
development techniques thirty years old. (5) Organizations consistently underes-
timate the difficulties associated with and the resources required for the develop-
ment of large software systems. They add personnel to large projects with a mis-
guided optimism similar to the belief that if one woman can produce one baby in
nine months, then nine women can produce one baby in one month. Further-
more, project leaders who would agree that it is impossible to build a 100-story

From (Backus 1978, p. 613); © 1978 ACM, reprinted by permission.

Chapter 1 Introduction

skyscraper with the same tools and materials used for a two-story townhouse,
nevertheless ask their developers to create million SLOC applications with the
same tools they used for those of 1000 SLOC.

Further discussion of issues related to the creation of large software systems
may be found in (Newport 1986) and (Wilson 1987). For a more thorough
exploration of the issues related to large-scale software system development see
(Brooks 1975, Byrne 1991, Feiler and Smeaton 1988).

Program Development Environments

Just as programming languages have evolved, so have tools for software
development. Originally developers were equiped with no more than assem-
blers, compilers, linkers, and loaders. Interactive time-sharing systems made
possible interactive line editors, and then full-screen editors, as well as other
tools. By 1980 a variety of tools were available on time-sharing systems to sup-
port the implementation phase of the software life cycle (Barstow, Shrobe, and
Sandewall 1984,Hünke 1981). That same year, of course, also marked the intro-
duction of Ada as the DoD language of choice for embedded systems. The
development tools then available for these systems were still minimal, typically
including only a compiler, linker, and editor, as well as being poorly integrated.

The DoD recognized that instituting a standard language was only the first
step in addressing the software crisis; an Ada programming support environment
(APSE) to facilitate development of programs in Ada would also be necessary.
Using discussions from a 1978 workshop (Standish 1978) as initial input, DoD
followed the Ada model by issuing a series of increasingly more specific APSE
requirement documents: SANDMAN, PEBBLEMAN (High Order Language
Working Group 1978, High Order Language Working Group 1979), and STONE-
MAN (High Order Language Working Group 1980, Buxton and Druffel 1980).
The STONEMAN APSE, as originally envisioned by DoD, would span the entire
software life cycle. Furthermore, it was to be an integrated environment; APSE
tools would not only access the Ada program under development, but would also
be capable of communicating with other tools in the environment. Finally, the
APSE was to have an intuitive, easy-to-use interface.

The STONEMAN model, shown in Figure 1, consists of four layers. Level 0,
the host hardware and software, is the lowest of these and serves as the founda-
tion for the other layers.

Level 1, called the kernel APSE (KAPSE), contains all the facilities neces-
sary to execute Ada programs. A central feature of the KAPSE is an object data-
base containing, for example, the APSE tools themselves, other Ada program
units, test data, and program designs. The KAPSE also includes an Ada run-time
system and mechanisms for tool intercommunication and database access.

Level 2 is the minimal APSE (MAPSE); it provides those functions which
were deemed both necessary and sufficient for Ada program development and

Chapter 1 Introduction

User Interface Tool Interface

Figure 1. The STONEMAN APSE model (adapted from (Hitchon et al. 1989, p. 4))

maintenance. Twelve tools were included in this basic set: compiler, text editor,
pretty printer, linker, loader, variable cross referencer, static analyzer, dynamic
analyzer, terminal interface, file manager, simple command interpreter, and
configuration manager (Sommerville and Morrison 1987).

Level 3 is Hat full APSE. It extends the MAPSE by providing additional sup-
port for specific applications or design methodologies. Examples of such exten-
sions include an Ada-sensitive editor, documentation system, configuration
management and version control (as distinct from just configuration manage-
ment), fault reporting system, project management tool, software metrics

Chapter 1 Introduction

collectors, support for requirements analysis and system design, automatic pro-
gram verifiers, and an Ada-based command interpreter (Sommerville and
Morrison 1987).

Since the release of STONEMAN, computer-aided software engineering
(CASE) has grown, both as a research area and as an industry. The commerciali-
zation of the field has resulted in coverage of all phases of the development pro-
cess by a vast number of tools; furthermore, techniques for integrating these
tools in a coherent fashion has become an important field of study (Brown and
Penedo 1992, Morris, Feiler, and Smith 1991, Wasserman 1990).

When an amalgam of tools purports to cover two or more phases, the result is
often referred to by its vendor as an "environment." To clarify what is meant by
this term and, more specifically, to understand the scope of applicability of the
Environment, it will be useful to present the SEE taxonomy of Sommerville and
Morrison.1

• Teaching and learning environments are intended for use by beginning pro-
grammers. Their syntax and debugging aids free the novice programmer to
concentrate on problem solving and program development. The Cornell Pro-.
gram Synthesizer (Teitelbaum and Reps 1981) is an example of such a sys-
tem.

• Nonprofessional environments are designed to support rapid program
development by users who are not professional programmers. UCSD Pascal
and the versions of BASIC available on most microcomputers fall into this
category.

• Language-oriented environments provide professional programmers with an
integrated suite of tools for developing software in a particular language.
"The programmer using the supported language L sees, in effect, an L-
machine rather than a brand X computer running some operating system
which includes a compiler for L."2 Smalltalk environments (Deutsch
1985, Goldberg and Robson 1983,Krasner 1983) are examples of this class.

• General-purpose environments are intended for professional programmers
and are language independent. Their tool support for implementation and
testing is extensive, but that for other phases is typically sparse. The UNIX3

Programmer's Workbench (Dolotta, Haight, and Mashey 1978, Kernighan and
Mashey 1981,Mitze 1989) is the prime example of this category.

The category titles used in this taxonomy are from (Sommerville and Morrison 1987, pp. 27-
28); © 1987 Addison-Wesley Publishers Limited, reprinted by permission.
2 From (Sommerville and Morrison 1987, p. 28); © 1987 Addison-Wesley Publishers Limited,
reprinted by permission.
3 UNIX is a trademark of X/Open.

Chapter 1 Introduction

Software design environments, as the name implies, focus on the design
phase of the software life cycle. These are typically graphically-oriented
tools which support a particular design methodology. The AIDES environ-
ment, PRISM, and the Analyst are examples of this class.

Integrated project support environments (IPSEs) are the most sophisticated,
including tools for requirements analysis, design, specification, code develop-
ment, office automation, and project management. Because they provide
facilities to support the entire software life cycle, they reach their full poten-
tial when applied to the development of large software systems. ISTAR is an
example of this type of environment (Graham and Miller 1988, Stenning
1986).

Integrated Project
Support Environments

Software Design
Environments

General-Purpose
Environments

Language-Oriented
Environments

Non-Professional
Environments

Teaching/Learning
Environments

Project

Small Medium Large Size

Figure 2. Range of applicability of various types of environments (from (Sommerville
and Morrison 1987, p. 29); © 1987 Addison-Wesley Publishers Limited,
reprinted by permission)

Chapter 1 Introduction

Using Sommerville's taxonomy, the full APSE is probably best viewed as a
language-specific IPSE. The relative range of applicability of these environ-
ments is illustrated in Figure 2. Further information on SEEs is available from a
number of sources, including (Barstow, Shrobe, and Sandewall 1984, Bennett
1989, Brown, Earl, and McDermid 1992,Hiinke 1981, Long 1990,Sommerville
1986). A classification of case technology, including a discussion of the rela-
tionship of various types of environments to CASE technology in general has
recently been presented in (Fuggetta 1993).

How well do such environments address the various phases of the software
life cycle? Unfortunately, as noted in (Schefström 1990), there is a dichotomy in
CASE technology. At one end of the spectrum are "back-end" CASE environ-
ments, such as Interlisp and Smalltalk-80, while at the other are "front-end"
CASE tools such as Cadre's Teamwork, IDE's Software through Pictures (StP),
and Rational Rose. The former assist programmers by focusing on implementa-
tion and testing, while the latter assist project managers with specification and
design. As will be seen, the basic, unadorned Environment is a back-end tool.

Front-end and back-end CASE tools are typically not well integrated; the
resulting gap between tools for the "generals" and tools for the "troops" makes
it difficult to move from design to implementation. Furthermore, because many
software development efforts are preceded by business process modeling or
reengineering (D. Appleton Company 1992), and because the software tools
which support these activities communicate poorly with front-end CASE tools,
there is a second tool integration gap. This overall situation is illustrated in Fig-
ure 3.

Where does the Environment fit in this taxonomy, and to what degree does it
suffer from the discontinuities noted above? Schefström, in the same paper
noted above, stresses the need for a "homogeneous CASE" environment built
around a "semantically unified internal form" and containing a "design editor",
"program editor", and "(incremental) compiler/checker".1 He elaborates on the
Environment's capabilities in the following complimentary yet critical evalua-
tion.

The effort that most closely adhered to the original vision of an
APSE was however the Rational Environment. Starting as a small
venture capital company, they took the spirit from Stoneman, Inter-
lisp, Smalltalk, and the language oriented editor approaches, and
implemented a tightly integrated development environment for
Ada. Integration, and tailoring for the purpose, was taken very far,
with a special purpose hardware supporting an operating system
that is completely dedicated towards production of Ada software.
The compiler was built to be incremental, and most tools work
against the internal representation of the programs.

1 These phrases are from (Schefström 1990, pp. 133,135); © 1990 Cambridge University Press,
reprinted by permission.

8 Chapter 1 Introduction

Activity Data Reqmts. nesian lmple" Testina Main"
Modeling Modeling Analysis 9 mentation 9 tenance

Figure 3. Spectrum of applicability of life cycle tool types (adapted from (Schefströ'm
1990, p. 132); © 1990 Cambridge University Press, reprinted by permission)

While almost all other language oriented editors provided syntax
oriented support, whose importance in a broader perspective can be
questioned, the Rational environment could provide further ser-
vices like interactive cross referencing and semantic completion.
This, together with a number of well integrated services for
configuration control and documentation support, made Rational be
an environment that people really liked to work with. The same
property that made it initially possible to explore the benefits of
tight integration, was at the same time however a problem. The
special purpose hardware and proprietary operating system,
together with the implied major investment, can make many poten-
tial users hesitate. The Rational environment is however one of the
few novel environments that has been made a stable product in
industrial use.1

In spite of this criticism, the Environment has been used successfully on several
very large (1,000,000+ SLOC) projects; in that sense it qualifies as an IPSE.
Furthermore, as will be noted in a subsequent section, Rational has responded to
this criticism with a significant new product. However, perhaps the true test of
the effectiveness of the Environment is the degree to which it supports the vari-
ous phases of the software fife cycle, and at the same time closes the tool
integration gaps noted above. The remainder of this report will focus on how
well the Environment meets that test.

1 From (Schefström 1990, p. 129); © 1990 Cambridge University Press, reprinted by
permission.

Chapter 1 Introduction

2 Description of the Rational
Environment

Overview

Rational refers to its strategy for software engineering with Ada as "Rational
Control." The four parts of this strategy are (1) the Rational Environment itself,
(2) the ability to integrate many popular third party CASE tools and development
aids into the Environment, (3) interfaces for Ada compilers on almost every plat-
form, and (4) a dedication to customer service. Together, these components
address a broad spectrum of software development activities, from analysis and
design, through implementation, to testing and maintenance. How this is accom-
plished will be discussed in the following sections (Rational 1992 Document D-
81).

The product which serves as the cornerstone of Rational Control is the
Rational Environment. Broadly speaking, the Environment is intended to pro-
vide, in a highly integrated fashion, tools and capabilities to address all aspects
of the software life cycle. It is intended to facilitate the development of large-
scale software systems in Ada. Appropriately, the Environment is itself a large
Ada system and as such was developed and is maintained using its own facili-
ties.

As illustrated in Figure 4, the Environment has a layered structure; at the core
is the information repository, a database of information on the system under
development. The next layer is a programmatic interface to this database which
provides a consistent mode of access to the information. Rational's
Configuration Management and Version Control (CMVC) uses this interface to
maintain program consistency and integrity and to facilitate the activities of
teams of developers working on multiple versions of a large program. The outer
layer consists of a graphical user interface (GUI) equipped with a suite of tools
with which the developer interacts. Examples of these tools include Rational's
Ada language-sensitive editor and debugger and third-party CASE tools such as
Cadre's Teamwork. Together, the features provided by this layered approach

10 Chapter 2 Description of the Rational Environment

Analysis
and

Design

Trace ability

CASE
Tools

Project
Tools

Open IT terfaces

System
Utilities

Network
Resource

Configuration Management
and Version Control

Programmatic
Interface

information
Repository

Editor

Lifecycle
Support

Compiler

Incremental
Changes

Third-Party
Compilation

Systems

Debugger

Interactive
Tools

Figure 4. Logical relationship between environment components (from (Rational 1992
Document D-81, p. 5))

Chapter 2 Description of the Rational Environment 11

provide an effective means to produce Ada software (Rational 1992 Document
D-76).

The R1000 Software Engineering Server

The prototype of the Environment was developed during the early 1980s.
Testing of this prototype convinced its implementors that the then current
hardware platforms were several orders of magnitude too slow to support the
type of interactive software development they had envisioned. As a result,
Rational built a processor specifically designed to support the Environment. The
current incarnation of this system is the R1000 Model 400.

Whereas most system designers focus on the implementation of a relatively
low-level instruction set, the architects of the R1000 concentrated on providing
hardware features which would speed the development, compilation, and execu-
tion of Ada programs. This was a formidable task, since Ada requires strong
type checking across module interfaces. Furthermore, changes to statements and
data definitions require recompilation of dependent modules to maintain program
consistency; this can result in cascading recompilation of numerous packages
and modules.

The required speed is obtained through parallelism, wide data paths, and
hardware assists for time-consuming tasks normally implemented in software.
Whereas conventional processors are able to directly operate on data items of
types such as byte, integer, and float, the basic data object on the R1000 is a
128-bit control word. The upper 64 bits of this control word contain an arith-
metic value while the lower 64 bits contain a pointer to a type descriptor. During
execution each of these 64-bit fields is routed to a dedicated arithmetic unit. The
value unit performs the requested operation while the type unit simultaneously
performs type checking. This allows two common activities, mormally done
sequentially, to be done concurrently. To speed the transfer of these oversized
control words, the main memory bus is 128 bits wide.

Another frequently occurring task is the packing and unpacking of data. This
is commonly done in software by means of repeated shifts, ANDs, and ORs.
Another component of the R1000 CPU, the field insertion unit (FIU) provides
hardware control of this process by inserting or extracting the necessary data and
pointer fields from the 128-bit control word. To further speed this process, a
separate 64-bit bus connects the FIU to the value and type arithmetic units; this
reduces the possibility of contention on the main memory bus.

A third major architectural enhancement involves the RIOOO's memory sub-
system. Virtual memory management is traditionally handled by the operating
system. Hardware support for this activity is generally limited to virtual address
registers and a translation look-aside buffer which serves as an address cache,
The R1000, however, performs the administrative tasks associated with page
swaps and task management using microcoded hardware, thus providing yet
another significant boost in performance.

"12 Chapter 2 Description of the Rational Environment

System reliability was also an important concern in the design of the system
and a number of steps were taken to address this issue. Proven, off-the-shelf
peripheral devices were used and the workhorse DEC PDP-11 was incorporated
as the I/O processor. The number of wired connections is reduced by using
dense eight-layer circuit boards with foreplane and backplane connections. An
additional microprocessor is installed on every CPU board to monitor board
status, These monitor chips gather diagnostic data which is saved on system
disks for later use. This information is used for quality control during the
manufacturing phase and for preventive maintenance and fault location after the
system is installed at a customer site. If an R1000 fails, an attached autodial
modem calls the factory and transmits information which enables service person-
nel to bring the appropriate spares with them to the site. Additional general
information on the R1000 may be obtained from (Rational 1992 Document D-
80) and (Caruso 1985). R1000 system performance has been addressed in (Lam-
son 1991).

The Information Repository

The Ada Language Reference Manual requires that a certain amount of syn-
tactic and semantic information generated by an Ada compiler persist beyond
compilation time. This is necessary, for instance, to enable the compiler to
enforce the integrity of interfaces when the associated packages and procedures
are (re)compiled. Much of this information must be obtained in any case, either
explicitly or implicitly, during the lexical analysis and parsing phases of compi-
lation. Unfortunately, however, this data is typically discarded after the object
code is generated and must be reproduced when a module is recompiled. The
Environment avoids this inefficiency through use of the Descriptive Intermediate
Attributed Notation for Ada (DIANA).

DIANA is a intermediate form of Ada programs which has been
designed to be especially suitable for communication between two
essential tools—the Front and Back Ends of a compiler—but also
to be suitable for use by other tools in an Ada support environment.
DIANA encodes the results of lexical, syntactic, and static seman-
tic analysis, but it does not include the results of dynamic semantic
analysis, of optimization, or of code generation.1

As envisioned by its creators, DIANA is an abstract data type based on the
mathematical model of attributed trees. It has a number of important properties.
First, although the terms "abstract syntax tree" and "attributed parse tree" are
often used in descriptions of DIANA, the notation is representation independent;
i.e., instances of the the DIANA abstract data type do not necessarily have to be
implemented using records containing pointers to other records. Second,
DIANA is based on the formal definition of Ada; specifically, given the DIANA
representation of an Ada program, it is possible to regenerate the original source

1 From (Goos et al. 1983, p. 7); © 1978 Springer-Verlag, reprinted by permission.

Chapter 2 Description of the Rational Environment 13

code, except for comments. Finally, DIANA was designed to be both efficiently
implementable as well as extendable; the existence of the Environment is prob-
ably the best evidence of the designers success in these respects. Further infor-
mation on DIANA is available in the reference manual (Goos et al. 1983).

The information repository of the Environment may be viewed as an object
database containing Ada programs represented using DIANA. A programmatic
interface defines the specific operations which may be performed on database
objects and thus protects them from uncontrolled access. Rational's own CMVC
is built on top of this interface. The utility of the repository is increased by its
ability to save objects of other types, including requirements specifications and
design documents. The advantages to this centralized repository approach are
several. First, availability of the programmatic interface encourages automation
of many development activities. Second, the programmatic interface is
methodology-independent, allowing use of whatever technique is appropriate.
Third, the repository allows traceability from implementation back to require-
ments analysis and design; i.e., it is possible to determine which design decision
motivated the construction of a particular Ada unit. Fourth, a centralized reposi-
tory promotes consistency and thus aids in quality assurance. Fifth, the transi-
tion from one life cycle phase to the next is easier because the results of the
current phase serve as the foundation for the next and are readily available in
machine readable form. Finally, the standard programmatic interface to a single
database of project information promotes compatibility with other software
development tools (Rational 1988 Document TO-1), thus addressing the tool
integration problem noted earlier.

Support for Basic Development Activities

This section will describe how a typical software engineer would use the
Environment. Like UNIX, the R1000 operating system provides basic security
functions; a user must supply a user name and a password to gain access to the
system. Additionally, the system requests a "session name" to uniquely identify
the current login; multiple sessions are allowed. The user is then presented with
a screen divided into one or more work areas called "frames;" the default is
three. Each frame consists of a "major window" and an arbitrary number of
"command windows," limited, of course, by the frame size. Major windows are
used to display "images" of "objects" while command windows display com-
mands for execution. The Environment recognizes several different types of
objects, including files, Ada units, and libraries. Images of large objects may not
fit within the window, so the window is actually a viewport presenting a portion
of the image. Altering the image of an Ada unit, for instance, does not alter the
underlying object it represents. Objects must be explicitly updated.

The Environment provides the customary functions to aid in window
management; users may resize, reposition, or remove windows at their discre-
tion. Windows themselves are treated as objects and are saved in a special win-
dow directory. When the Environment creates a new window (as a result of
some user directive), an entry is created in this directory and the window image

14 Chapter 2 Description of the Rational Environment

is displayed in the least recently used screen frame. Only the image of a window
is overwritten on the display, not the window object itself. Thus any window
image may be recalled to the display at a later time. The Environment aids the
user in managing this process by marking the next window to be replaced with a
tilde (~) in the window banner and by allowing a window to be "locked" to
prevent its image from being overwritten. Windows locked in this manner have
their banners marked by the at sign (@).

As noted above, each major window has zero or more command windows
associated with it. An Ada declare block is displayed in each command window
and users may enter one or more Ada statements into this block. Incomplete
command fragments may be automatically finished using 1 complete]* and then
executed using |promote |. All activities, from resizing windows, to invoking the
compiler, to interacting with the configuration management system may be
accomplished via interactive execution of Ada statements. (This capability is
essentially the Ada-based command interpreter noted earlier in the discussion of
the full APSE.) Often, only a single procedure call is necessary to accomplish a
given task.

Various keyboard aids are provided for the convenience of users; frequently
used commands are bound to function keys to increase developer proficiency.
Users may customize the keyboard by defining additional command-function key
bindings. |help] followed by any function key will result in the display of a help
window describing the task performed by that function key. Further information
on function keys, commands, and tools may be obtained from the basic opera-
tions manual (Rational 1988 Product Number 4000-00116) and the user's guide
(Rational 1988 Product Number 4000-00117).

The Environment provides an Ada-knowledgeable editor. As indicated ear-
lier, the editor operates on an object image, not directly on an object. 1 promote
actually updates the underlying object and exits the editor; 1 enter] accomplishes
the same function but allows editing to continue. All basic text editing opera-
tions including entering, deleting, moving, copying, searching, and replacing text
are available. The real power, however, of the Rational editor is the result of two
important features, formatting and semanticization. Formatting is accomplished
using |format| and may be periodically performed during an editing session, even
prior to the completion of a particular Ada unit. Formatting checks for syntax
errors, finishes incomplete statements where it can, and where it cannot, supplies
prompts. Function keys allow the user to walk through the prompts, allowing
entry of additional code. As part of this process formatting cosmetically restruc-
tures the program text to conform to previously specified programming standards
("pretty-printing"). A simple illustration of the effect of formatting is given in
Figure 5.

A second important capability is semanticization. As the name indicates, this
function performs semantic checking; this includes verification of type

1 This notation refers to a keystroke or selection of a menu option.

Chapter 2 Description of the Rational Environment 15

Before format

procedure calculate_statistics
is num_of_points : integer

After format

procedure Calculate_Statistics is
Num_Of_Points : Integer;

begin
[statement]

end Calculate_Statistics;

Figure 5. Example of the effect of format

compatibility, comparing the types of actual parameters with those of formal
parameters, and detection of undeclared objects. Semanticization may even be
performed on program fragments.

The Rational program development model is fundamentally different from
the conventional model. The conventional model of program development is file
oriented. A source file is created using an editor and translated by a compiler to
produce an object file; this object file is then linked to produce an executable file.
This process carries with it an inherent risk that an out-of-date version of an Ada
unit will be inadvertently used or that a unit with only cosmetic modifications
will be recompiled.

The Rational model avoids these problems by maintaining an Ada unit as a
single object which exists in one of three states: source, installed, or coded. A
unit in the source state is editable, but is not guaranteed to be syntactically or
semantically correct. An installed unit is not editable in the usual sense; only
certain restricted types of modifications may be performed on it. It is, however,
syntactically and semantically correct and may be referenced, or "withed," by
other Ada units. A unit in the coded state also has this consistency and referen-
ceability, but unlike an installed unit only its specifications may be modified.
Importantly, this last state is the only one for which machine code is generated.

From a user perspective, the mechanics of performing these transitions is
quite simple. Assuming the Ada unit is syntactically and semantically correct,
successive applications of | promote] will move a unit from the source state to the
installed state to the coded state, and finally execute it. | demote | will migrate a
unit in the reverse direction. It is also possible to explicitly move one or more
units to a particular state. More specifically, there is the capability to promote all
units in a library to the coded state with a single command, in which case the

16 Chapter 2 Description of the Rational Environment

Environment handles all compilation dependencies and maintains the program's
overall semantic consistency.

From a system perspective, transition from the source to the installed state
requires that the DIANA representation of the Ada unit object be created, while
transition from the installed to the coded state requires that a machine code
representation be generated. In conventional terms, these two transitions are
equivalent to the processing performed by the front and back ends, respectively,
of a compiler. Importantly, however, the associated DIANA tree and machine
code are viewed not as separate files, but as information associated with a single
object.

An important feature of the Environment is the ability to "browse" through a
program. While editing or debugging a particular Ada unit a software engineer
often needs to know a variable's type definition, to determine the purpose of a
subprogram, or to find other locations where a variable or unit is referenced.
When using a conventional system this requires searching through one or more
files using utilities such as grep and find. Using its DIANA-based program
representation, the Environment provides a much more satisfactory and con-
venient mechanism for accomplishing such tasks. Moving to the enclosing Ada
unit is performed using!enclosing|. [other part] allows a developer to move back
and forth between a unit's specification and body. The definition of a particular
program structure may be located by first selecting the item of interest, such as a
variable reference, and then using]define! to display the item's definition. Pro
gram structures may be easily selected using |object! hi conjunction with the four
arrow keys; this process is best understood in the context of the DIANA tree
representation of an Ada unit. Using 1 object! I<—1 moves toward the root, select-
ing larger and larger program structures, while |object! [—>1 moves away from the
root, focusing on more and more specific program fragments. |object] [T] and
object! [T] allow lateral movement to neighboring branches. For example, if the
second statement of a block is currently selected, then | object! [Q (up the screen)
will select the first statement while 1 object | [I] (down the screen) will select the
third. These browsing and selection features are particularly valuable when the
software system is large and complex.

The Environment debugger is powerful, yet easy to use. A developer merely
turns on debugging mode; recompilation is unnecessary. The debugger allows
execution to proceed until a fault or checkpoint is encountered. Single-step exe-
cution, establishment and removal of checkpoints, display of variable values, and
display of the call stack, are all possible. The browsing facility may be used in
conjunction with the debugger to move back up through the calling sequence and
locate the source of a problem. Additionally, the debugger keeps a log of user
interactions which may be saved for later inspection.

Because conventional systems do not take the syntax and semantics of a pro-
gram into consideration, a seemingly minor modification to a simple program
unit may require recompilation of many other units, and of course the modified
unit itself must be recompiled in its entireity. Many such systems use only time
stamps to determine system consistency, and so even cosmetic changes

Chapter 2 Description of the Rational Environment 17

involving indenting or comments require unit recompilation.

The Environment avoids much of this work because programs are represented
using DIANA trees. Because the Environment manages dependencies at the
statement level, the impact of a change is greatly reduced. Furthermore, DIANA
enables incremental compilation of individual statements or declarations, thus
avoiding recompilation of an entire unit. Specifically, it is possible to incremen-
tally add, change, or delete statements and declarations without dependencies in
unit bodies in the installed state and in package specifications in the installed or
coded state. Comments in any installed or coded unit may be manipulated in any
fashion. Modifications to declarations with dependencies may still require
significant recompilation, but even then the system will provide notification of
the potential impact of the impending change, thus allowing the developer to
make an informed decision about proceeding any further.

Subsystems

As noted earlier, the Environment is written in Ada and is the APSE used for
its own development and maintenance. As the Environment grew in size, the
nature of the problems developers encountered differed significantly from those
arising in smaller projects. Specifically, it became increasingly difficult to limit
unplanned dependencies between units. This situation, termed "design degrada-
tion," increased compilation time and the additional program complexity made
the code difficult to maintain. Furthermore, this complexity was preventing mul-
tiple development teams from working in parallel, resulting in a loss of produc-
tivity. Finally, as the project grew to several hundred thousand SLOC, these
problems slowed development to a crawl and the project entered a "thrashing"
mode. This phenomenon is not unique to the Environment; anecdotal evidence
indicates that other large projects have encountered similar problems at approxi-
mately the same number of SLOC. It became clear that a level of abstraction
higher than the Ada package was necessary and that tools would have to be pro-
vided to support this abstraction. Subsystems provided a solution to these prob-
lems.

Some discussion of Ada system structure is necessary to understand the sub-
system concept. Figure 6 shows the topology of a hypothetical Ada system. Ada
compilation units are represented by nodes having a specification, or "spec,"
(unshaded) and a body (shaded), while arrows represent dependencies (parents
depend on children). Note that the origin of an arrow is significant; either the
specification or the body of a unit may depend on the specification of another
unit. Typically, when a unit is modified, it must be recompiled, along with any
other units which directly or indirectly depend on it. Figure 6 also illustrates this
idea by lightly shading the units which must be recompiled as a result of the indi-
cated modification. Such cascading dependencies often result in lengthy recom-
pilations. Subsystems help limit the impact of such changes by providing a
higher level mechanism for grouping Ada units together.

18 Chapter 2 Description of the Rational Environment

Figure 6. Recompilation required by cascading dependencies

Chapter 2 Description of the Rational Environment 19

Like all other entities, subsystems are treated as objects by the Environment.
A subsystem object may be thought of as a "superpackage" with many of the
same attributes and features as a package. Subsystems have specifications (or
exports) which list the resources (e.g., packages) available for use by other sub-
systems. Subsystem imports list the other subsystems on which this subsystem
depends. The implementation portion consists of the actual Ada code imple-
menting the subsystem's features and resources; it is analogous to a package
body, but may also contain design documents, test programs, and other related
material. Finally, a subsystem contains history information recording when the
subsystem was created, modified, compiled, and released.

Subsystems have proved to be a powerful mechanism fo addressing problems
that arise in large Ada system development. Because the Environment provides
for separate compilation of subsystems, they may serve as "firewalls" which
limit the scope of a recompilation. If the changes are restricted to a subsystem
body, then only units in that subsystem will be recompiled. This has the poten-
tial for reducing compilation time and increasing developer productivity. Sub-
systems reduce the tight coupling between the various components of a large
software system, and thus promote the work of parallel development teams.
Finally, subsystems provide a coarse-grained building block for large system
design, a benefit which is enhanced through the use of graphical design tools (to
be discussed later). Further information on the use of subsystems in the context
of large system development may be found in (Rational 1988 Document 6004).

Configuration Management and Version Control

Management of a software development effort is in many respects similar to
the management of other product development activities. A number of
managerial and technical issues must be addressed to ensure success, including
breaking the project into units of manageable size, specifying how these units
join together, actually completing the units, testing the units individually and as
a whole, releasing new versions of the product, and coordinating the efforts of
the development team (Rational 1988 Product Number 4000-00129, p. PM-1).
Large projects of any variety are inherently complex and require commensurate
amounts of time, material, and personnel to complete.

This complexity and the burdens it imposes on a development team have
already been noted for the case of large software projects. However, two aspects
of software development efforts make them unique. First, like a hammer on a
fragile statue, a very localized change may have drastic and unfortunate side
effects. Stated another way, large software systems seem to be more "brittle"
than other products of similar size. Perhaps this is why the production of such
systems is often treated as an art, and why, even after several decades of of
effort, attempts to impose a discipline on the process have been less than suc-
cessful. To use the statue analogy, software is too often sculpted instead of
engineered.

20 Chapter 2 Description of the Rational Environment

A second differentiating aspect of software development is more positive.
Because computers are unavoidably involved in the process, it is convenient to
use them to automate the management of a project's complexity. In fact, it is
possible to use automation to one extent or another to address all of the
managerial and technical issues noted at the beginning of this section. Brooks
quite accurately refers to this capability as "an indispensable technology."1 In
the case of the Environment, the features that actually enable this automation of
project management tasks are subsystems, which have already been discussed,
and a set of capabilities collectively termed CMVC.

Perhaps the most basic function provided by CMVC systems, including
Rational's, is controlled access to objects. The library terminology typically
used to describe this access provides an accurate analogy. An object (e.g., an
Ada unit), like a library book, is "checked out," guaranteeing the user sole
access to that object. When a developer has completed his modifications, the
object is then "checked in." Without this capability, multiple users could simul-
taneously access and modify the same object, possibly overwriting one another's
work.

Rational's CMVC, however, goes far beyond this minimal capability. Any
object managed by CMVC is said to be "controlled" and the Environment asso-
ciates a "reservation token" with each such object. Checking out the object is
accomplished by acquiring this token. Information on controlled objects, includ-
ing the status of the reservation token, is maintained in a "CMVC database;"
there is one such database for each subsystem. When a user checks out an
object, modifies it, and checks it back in, the Environment creates a new "gen-
eration" of the object in the CMVC database (Rational 1988 Product Number
4000-00129, p. PM-6). Generations are stored as "negative deltas;" i.e., the
Environment maintains a complete copy of the most recent version of an object,
while older versions must be reconstructed using the saved differences (deltas)
between successive generations.

Associated with each subsystem are one or more Ada "program libraries"
containing the Ada units belonging to that subsystem. A "configuration" is a
collection containing one generation of each controlled object in a program
library. Typically, that particular collection containing the most recent genera-
tions of all objects is called the "working library." (Brooks refers to this as the
"playpen." (Brooks 1975, p. 133)) It is from this configuration that developers
check out objects for modification, compilation, and testing. There must be at
least one such working library per subsystem.

When all of the units in a working library compile and developers are
satisfied with the library's status, a "frozen" copy of the working library may be
created. This copy, also called a "release," is a complete compiled program
library. It may be thought of as a "view" or "snapshot" of the current state of
the project. Rational refers to a succession of such releases generated from a

1 From (Brooks 1975, p. 133); © 1975 Addison-Wesley, reprinted by permission.

Chapter 2 Description of the Rational Environment 21

particular working view as a "development path." This concept is illustrated in
Figure 7.

This situation becomes more complicated when a project involves multiple
subsystems. The released and working views noted above are "load views"
containing complete implementations of all subsystem components. However, it
is not always necessary to have such a full implementation; as an example con-
sider the following situation. When subsystem SI references (or "imports")
resources from subsystem S2, then SI requires only interface information about
S2 in order to compile. This information is provided by a skeletal "spec view"
of S2 which specifies the resources S2 is willing to share (or "export") to other
subsystems. Use of this feature on an actual project will be seen in a subsequent
section.

Another benefit of Rational 's CMVC is related to the integration of programs
having multiple subsystems. Although it is generally true that the current release
of a program is a combination of the current releases of each of its subsystems, it
is also often necessary to assemble custom releases of the program as well. This
may be necessary when developing customer-specific versions, or when develop-
ers want to use older, perhaps more reliable, releases of some subsystems to
track down problems during testing. This is accomplished by means of "activi-
ties." An activity may be viewed as a table specifying which release of each
subsystem to use when creating an executable program. Building a custom ver-
sion thus involves merely defining a new activity and then directing the Environ-
ment to assemble the precompiled views specified therein.

Rational's CMVC has other distinctive features which enhance developer
productivity. Descriptive text, or "notes," may be associated with every con-
trolled object to provide additional information. Better project management is
promoted by the use of "work orders" to assign development tasks. When they
are used, the Environment automatically logs any CMVC commands executed in
response to a particular work order (Rational 1988 Product Number 4000-00129,
p. PM-15). Work orders may also be customized to suit the needs of a particular
project.

For an Environment-specific overview of configuration management, see
(Morgan 1988); more general information may be found in (Dart 1990, Dart
1992).

Future of the Rational Environment

What is the future of the Environment? One of its most serious shortcomings
has been the proprietary hardware required to support it. Admittedly, this
hardware may also be viewed as one of the Environment's strengths, and the rea-
sons behind the development of that hardware have already been presented.
Nevertheless, increases in microprocessor performance, particularly those with
reduced instruction set computer (RISC) architectures, coupled with Rational's
view of itself as first and foremost a provider of software engineering products

22 Chapter 2 Description of the Rational Environment

Objects Generations

Beta Test View

Release 1

Development
Path

Release 2

Working View

Figure 7. A development path (adapted from (Rational 1988 Product Number 4000-
00129, p. PM-9))

Chapter 2 Description of the Rational Environment 23

and services, led the company in 1991 to begin development of an "open-
systems" version of the Environment. Apex, as this new version is called, was
introduced in August 1993 and is currently available on two RISC platforms:
IBM RS/6000 and Sun SPARC.

Apex contains all of the key software engineering features of the
proprietary-platform version of the Environment. The persistent intermediate
representation based on DIANA is still the key to its unique functionality. The
capabilities for syntactic and semantic completion within the editor, hypertext
browsing of programs, integrated debugging, and CMVC are all present in the
new product. Moreover, Apex is more than just a port of the Environment to a
UNIX platform. Several enhancements, including replacement of the R1000
incremental compilation technique with "optimal recompilation," an improved
software release mechanism, and support for mixed language programs (e.g.,
Ada and C++), make Apex a true next generation software engineering product.

Apex is not a closed, proprietary environment built on top of UNIX. When-
ever possible, Apex developers used capabilites provided by UNIX, the X Win-
dow System (X), and the Motif window manager. Unlike the R1000 Environ-
ment, APEX does not include a file system, window manager, mail handler,
security and accounting facilities, or system administration functions, because
those features are already supplied by the operating system. It is a true Motif
application which uses standard Motif menus, dialog boxes, and customization
options. For example, the Motif text widget was used to construct the Apex Ada
editor. Furthermore, users may control the appearance of the Apex interface just
as they do other Motif-conformant applications by assigning their own values to
the appropriate X resources in their .Xdefaults file. Additionally, all of the
Apex functionality delivered through Motif is also available through a UNIX
command line interface, thus allowing programmatic access through the shell.
Apex CMVC is layered on top of the UNIX Revision Control System (RCS).
Many of the problems related to managing large projects on multiple RIOOOs
(Blair 1992) are resolved under Apex through use of the Network File System
(NFS). This allows large programs formerly split across several machines to be
logically present in their entirety on each of a team's file servers and worksta-
tions.

Like its RIOOO-based predecessor, Apex is a resource intensive application.
Surprisingly, however, processor speed is not a performance bottleneck.
"Rational Apex, even on a moderately powerful RS/6000 or SPARC worksta-
tion, outperforms the Environment on the R1000." (Amos 1993, p. 7) However,
users must plan to provide sufficient memory; Rational recommends a minimum
of 32 Mbytes of memory for a single-user workstation. Instead of purchasing
additional workstations, managers may decide to cut costs by accessing the Apex
workstation via cheaper X terminals or PC-based X terminal emulators. If one of
these options is selected, Rational recommends an additional 32 Mbytes of
memory for each additional user. Disk storage is also an issue. The Apex pro-
gram itself requires about 150 Mbytes of disk space; to this figure must be added
whatever space is needed for Ada application development. Rational's rule of
thumb for estimating this is 1 Kbyte per SLOC; thus a one million SLOC

24 Chapter 2 Description of the Rational Environment

application would require about 1 Gbyte of secondary storage.

In spite of the many attractive features of Apex, Rational realizes that migra-
tion of many of its RIOOO-based customers will be dictated by project-related
and budgetary constraints. Additionally, many of Rational's layered products
will not be available on Apex until 1994. For those reasons, Rational is continu-
ing to support and enhance the R1000 product and is providing mechanisms for
the two systems to run in parallel so that the user transition will be smooth.

Chapter 2 Description of the Rational Environment 25

3 Tools to Augment the
Rational Environment

This section describes several tools which enhance the functionality of the
Environment. Some of these tools provide front-end CASE capabilities so that
the resulting environment covers additional life cycle phases. Not all of these
tools may be applicable to a particular project; guidance for determining if par-
ticular tools should be acquired may be obtained from (Zarrella, Smith, and
Morris 1991).

Rational Design Facility

The Rational Design Facility (RDF) is a CASE tool which runs under the
Environment. It allows project managers to specifiy standards for system design
and implementation and then provides for the automatic enforcement of those
standards. Two concepts must be presented to understand the capabilities of the
design facility: methodologies and program design languages (PDLs); these will
be discussed before further describing this tool.

A primary goal of software engineering is to discover better ways to develop
software. To reach that goal, numerous step-by-step development approaches, or
"methodologies," have been proposed. There are important differences between
many of these, e.g., consider object-oriented versus structured methodologies.
Nevertheless, most methodologies have the following features in common
(Rational 1989 Product Number 4000-00362, p. 1-1).

• The software development process is described using a life cycle model, e.g.,
waterfall or spiral.

• This model is partitioned into life cycle phases, e.g., system analysis, require-
ments analysis, preliminary design.

• Design elements are used to reason about the design.

26 Chapter 3 Tools to Augment the Rational Environment

• Design standards specify the valid ways in which design elements may be
used.

• Implementation standards provide rules governing software creation.

• Various stages of the development process require production of documents,
e.g., software requirements specification, interface design document.

• Finally, the methodology specifies the relationships between these com-
ponents.

The second important concept is that of a PDL. A program design is made up
of design elements, and these elements are specified using a PDL. PDLs are
more structured than natural languages, but tend to be less structured than actual
programming languages. Generally, the more structure a PDL has, the easier it is
to automate various design activities. Some PDLs are graphical in nature; this
increases their intuitive appeal, but unless accompanied by some sort of support-
ing text, it is difficult for them to capture the system design in a detailed way.

The PDL used by the RDF is made up of structured comments termed "anno-
tations," and various Ada statements called PDL "elements;" a fragment of
PDL is shown in Figure 8. Although the elements could be any type of Ada
statement, allowable elements are typically restricted to some subset of Ada.
This subset typically includes, for instance, package and procedure statements.
The RDF uses design rules to enforce adherence to this allowable subset; design
rules may be customized as needed.

The annotations used in the RDF PDL are denoted syntactically by the con-
catenation of the Ada comment symbol (—) and the vertical bar (|); this combi-
nation is the "annotation symbol" (— |). Annotations may be one of two types.
A "simple annotation" consists of one or more lines of text, each beginning with
the annotation symbol. A "key word annotation" also begins with the annota-
tion symbol, but is followed by a key word; this key word must begin with the at
symbol (@). Keywords may be followed by zero or more arguments. Annota-
tions of both types may be "attached" to PDL elements merely by placing them
adjacent to one another. Blank lines serve to "detach" an annotation from an
element. An individual annotation is terminated by a PDL element, a following
key word annotation, a blank line, or a blank annotation line.

A DOD-STD-2167A-compliant design must begin with a system component,
which is then broken down into zero or more segments. The design process con-
tinues by expressing these highest level components as hardware configuration
items (HWCIs) and computer software configuration items (CSCIs). Each CSCI
must consist of one or more computer software components (CSCs). Each CSC
is further refined into either additional CSCs or into the atoms of the process, the
computer software units (CSUs). When using the RDF to design such a system a
design team first creates a PDL description of each of the high level design com-
ponents, beginning with the system (root) component and continuing through the
HWCI/CSCI levels. This high level design is then iteratively refined by

Chapter 3 Tools to Augment the Rational Environment 27

@COMPONENT_KIND
©ID
©ABBREVIATION
©DOCUMENT NUMBERS

CSCI
5
CSCT_LSS
(SRS =>
PSDD =>
SDD =>

©CAPABILITIES

©EXTERNAL INTERFACES

©INTERNALINTERFACES

©INTERFACES USED

R-02-LSS-47A,
D-09-LSS-22C,
D-09-LSS-23B)

(Initialize_Life_Support_Environment,
Monitor_Life_Support_Environment,
Maintain_Li fe_Support_Environment)
(Life_Support_System_Status_Display,
Life_Support_System_Controls,
Li fe_Support_System_Alarm)
(Central_Hvac_System_Control,
Compartment_Air_Duct_ControlS,
Compartment_Biohazard_Detectors,
Compartment_Pressure_Gauges,
Compartment_Radiation_Gauges,
Gompartment_Temperature_Gauges)
(Backup_Power_Supply_Status_Gauge,
Bulkhead_Door_ControlS,
Compartment_Biohazard_Sterilizers,
External_Radiation_Scarmers)

©PURPOSE This CSCI is the life support system for the manned
Mars probe. As such, it both monitors and maintains
a suitable environment for the probe's crew.

©STATES (Startup (Power_On, Start_Display, Pressurize),
Automatic (Monitor_Status, Maintain_Status),
Manual (Accept_Input, Alter_Environment),
Shutdown (Depressurize, Stop_Display, Power_Off))

©ALLOCATION (Capability (Initialize_Life_Support_Environment,
Monitor_Life_Support_Environment,
Maintain_Life_Support_Environment))
(LSS_Display_Subsystem,
LSS_Controls_Subsystem,
LSS_HVAC_Control_Subsystem,
LSS_Air_Quality_Monitoring_Subsystem,
LSS_Radiation_Monitoring_Subsystem)

package Life_Support_System is
end Life_Support_System;

©DECOMPOSITION

Figure 8. RDF PDL for a hypothetical CSCI

28 Chapter 3 Tools to Augment the Rational Environment

producing PDL components for CSCs and CSUs until a detailed design is pro-
duced.

Throughout this design process the RDF assists the designer in a number of
ways. It provides PDL templates for the various design components and prompts
the designer for the appropriate keyword annotation arguments. These argu-
ments are then checked for type consistency. | edit 1 opens the library package
specification containing the PDL for a particular hierarchical component, e.g., a
CSCI. | PDL complete | is then used to supply the annotations required by the
current life cycle phase. Annotation arguments are then provided by the user;
PDL format] may be used to perform syntactic completion of these arguments.
Finally the Ada portion of the PDL must be entered; |PDL format! may be used
here as well. The RDF checks for design consistency by verifying that the
design is a valid hierarchy of components of the appropriate types. Interface
consistency is also checked by examining the @INTERFACES_USED and the
@EXTERNAL_INTERFACES annotations in CSCI components.

One of the most powerful features of the RDF is its document generator. This
allows construction of hypertext documents which are linked to PDL annota-
tions, text files, and graphics files. The ability to produce required design docu-
ments by extracting the appropriate annotations provides a single point of
maintenance when a document must be revised. Furthermore, any changes in the
design are immediately reflected in the documentation. Naturally the browsing
capability of the Environment is quite helpful in this context, allowing traversal
between PDL and related documents.

The RDF is a powerful design aid because of its universality and flexibility.
Designers may customize the design rules and rely on the RDF to automatically
enforce those rules. Finally, because the PDL is actually a subset of Ada, it is
always compilable and allows the design to naturally evolve into the implemen-
tation. Further information on its use may be found in (Rational 1992 Document
D-79) and (Ripken 1988).

Rational Insight

Rational Insight is a front-end CASE tool which addresses the design phase
of the software life cycle. It may be used to browse software systems residing on
the Environment, to reverse-engineer such systems, to design a new software
system, to experiment with alternative designs for existing systems, and to print
design diagrams for inclusion in system documentation. Insight has a Motif-
compliant GUI which enhances its usefulness.

The two primary components of Insight are the Data Manager and the Illus-
trator. The Data Manager is a server which extracts information about software
systems; it runs under the Environment on an R1000. The Illustrator, on the
other hand, is responsible for generating diagrams; it runs as an X application on
a UNIX workstation. Additionally, to invoke Insight, a user must have a device
to access the Environment and an X display to open Insight windows. The

Chapter 3 Tools to Augment the Rational Environment 29

access device and the display may be part of the same computer system. For
instance, a user may install the Rational X Interface (RXI) on the same UNIX
workstation that runs the Illustrator; in this case the workstation monitor serves
as a local X display. It is also feasible to use a second UNIX workstation, an X
terminal, or a PC-based X terminal emulator as a remote X display device.
Finally, it is also possible to run Insight in batch mode without an X display; this
is convenient when one only wishes to print a diagram.

Insight is started using the Insight. Invoke command. Arguments to
this command specify where in the file hierarchy the software system to be
analyzed is located, on which machine the Illustratior is running, the name of the
X display, as well as other information. Entering this command followed by
promote| causes the Insight main window to appear on the X display. At this
point a user may use the File menu to, for example, select an existing diagram for
viewing, or to initiate creation of a new diagram file. Other menus provide
browsing capabilities and permit selection of various tool options.

As a brief example of the use of Insight, consider the following scenario. A
developer has started Insight, indicating the appropriate position in the file sys-
tem as the current object context. Wishing to browse a particular group of sub-
systems he sets the current "activity" to interf ace_activity, which is
treated as a relative pathname to the current context. After selecting |File:New
and interacting with the [File:New| dialog box, a diagram window appears on the
display. The title bar of this window contains the diagram file name. The win-
dow itself may be manipulated like that for any other Motif application; it may
be opened, closed, resized, and moved in the usual ways. Inside the window
border is the diagram canvas. Horizontal and vertical scrollbars allow position-
ing the viewport on any portion of the canvas, a necessary feature for large
diagrams. The diagram itself is made up of icons denoting program objects and
arcs indicating dependencies among those objects. The icon notation is adapted
from that specified in (Booch 1987, pp. 55-59). There are different icons (node
symbols) to represent a subsystem, library, group, main program, subprogram
specification, subprogram body, generic subprogram, package specification,
package body, and generic package. In this example the subsystems contained
in interf ace_activity would be presented as subsystem icons joined by
dependency arcs. To browse a particular subsystem, the user clicks on the
corresponding subsystem icon and selects lBrowse:Diagraml. At this point a
second diagram appears which illustrates the various packages in the selected
subsystem along with their various dependencies. Using the mouse to select a
particular package body icon, followed by | Browse :Environment 1 will then
display the text ofthat Ada package in a separate window.

Insight has other useful capabilities which allow it to be used as a design aid
at the beginning of a large development effort as well as a reengineering tool
throughout the course of a project. A complete discussion of these capabilities is
beyond the scope of this report; see (Rational 1992 Product Number 4000-
00676) for further information.

30 Chapter 3 Tools to Augment the Rational Environment

Cadre Teamwork

Cadre Teamwork is an integrated software development system which sup-
ports the analysis, design, and coding phases of the software life cycle. Team-
work may be used in a stand-alone mode or in conjunction with a variety of other
tools and compilers, including the Rational Environment. Of particular interest
here, however, is that Rational has provided more than just a mere communica-
tions protocol between the two environments. Rather, Rational has constructed
an interface integrated into the Environment which allows developers to make a
smooth transition from use of Teamwork's graphical design aids to Ada source
code implementation.

One of Teamwork's aids is Teamwork/SA, an intelligent editing system
which runs on UNIX workstations. This system is actually made up of three
tools: a data flow diagram (DFD) editor, a process specification (P-Spec) editor,
and a data dictionary entry (DDE) editor.

The DFD editor has the usual mechanisms for interactive creation and
modification of data flows, data stores, process bubbles, terminators, text, and
labels. The P-Spec editor is used to produce text describing how input is
transformed into output by a process. It automatically generates the the title and
I/O fist from the parent DFD. As DFDs are created, Teamwork/SA automatically
creates a template DDE for each data flow and data store. Each of these DDEs
consists of attribute types and definitions which are completed by the user with
the DDE editor. Teamwork/SA also includes a facility for automatically check-
ing various aspects of the system specifications, such as errors in syntax and con-
sistency between DFDs, P-Specs, and DDEs.

Cadre also provides extensions to Teamwork/SA to facilitate production of
specifications for real-time systems: these include control specification (C-Spec)
editors for state transition diagrams, state event matrices, process activation
tables, and decision tables. Together these enhancements are called
Teamwork/RT.

After system specifications have been developed using these tools, the
Rational-Teamwork interface enables extraction of the information necessary to
produce the various requirements documents mandated by DOD-STD-2167A,
e.g., software requirements specification (SRS) and interface requirements
specification (IRS). Both the SRS and IRS are written in RDF PDL, so that the
Rational-Teamwork interface actually generates PDL from the annotated
diagrams produced using Teamwork/SA. Furthermore, access to these diagrams
may be managed by placing them under the control of CMVC.

A second aspect of the Rational-Teamwork interface addresses the design
phase of a project. Teamwork/Ada, also workstation-based, provides an editor
for creating Ada structure graphs (ASGs). These ASGs are specified using the
Buhr notation (Buhr 1984) which provides graphical design elements for a
variety of Ada entities, including packages subprograms, generics, exceptions,
and tasks. The ASG editor allows opening multiple windows containing

Chapter 3 Tools to Augment the Rational Environment 31

different views of the same diagram with changes made in one window immedi-
ately propagating to the others. This enables ASG modification from simultane-
ous high-level (zoom out) and detailed (zoom in) perspectives.

After the design has been specified using the ASG editor, the Ada Source
Builder is applied to create compilable Ada code skeletons from the ASGs. The
Rational-Teamwork interface is then used to import these skeletons into the
Environment for further manipulation by the RDF.

An alternative to immediately importing the code to the Environment is to
instead use Cadre's Design Sensitive Editor (DSE). The DSE is similar in spirit
to the Rational editor in that it is syntax-directed. Unlike the the Rational editor
it does not perform semantic analysis; however, it is knowledgeable of the ASG
design on which the code is based and is therefore able to maintain consistency
between the two. The DSE may be customized to give it a Rational "look-and-
feel," thus providing a consistent interface to the user. Cadre recommends that
the DSE be used for further code modification even after it has initially been
imported to the Environment in order to preserve design-implementation con-
sistency. Further information on the integration of the Environment and Team-
work may be found in (Cadre 1991 Application Note C-ANR) and (Rational
1988 Product Number 4000-00602). Additional descriptions of Teamwork capa-
bilities may be found in Cadre product brochures (Cadre 1991 Publication C-
PBTADA, Cadre 1991 Publication C-PBDSE, Cadre 1991 Publication C-PBSA).

Rational TestMate

Testmate assists software developers, test developers, and integrators in the
testing and validation of a software system. It may be used to automate tasks
associated with unit testing, integration testing, regression testing, and target
testing. Testmate may also be customized by software toolsmiths to provide
additional functionality.

Unit testing (the testing of individual program modules) generally involves
construction of a driver program to call the module under test (MUT). Stubs for
any subprograms called by the MUT must also be supplied. The development of
this additional overhead software, or "scaffolding," (Brooks 1975, p. 148) may
be sufficiently involved as to require delay of complete module testing until the
integration phase. Other types of testing may also require such overhead.

Testmate facilitates the construction and use of this scaffolding using an
object-oriented approach. The objects manipulated by Testmate during the test-
ing process include "test cases," "test sets," "test scripts," and "test results."
Instances of test case objects are implemented using a test case file which con-
tains all the information associated with a specific test, including a description,
driver, input files, output files, test context, set up and clean up routines, guide-
lines for interpretation and logging of results, and time constraints. These test
case files are created using the Testmate test case editor; there must be one such
file for each test. Test sets are collections of related test cases; a test case may be

32 Chapter 3 Tools to Augment the Rational Environment

a member of multiple test sets. Using information in the test set, Testmate
automatically generates an executable Ada program called a test script which
performs all of the tests in the test set. The output obtained from running this
script is termed a test run file, and includes pass/fail status for each test case, a
log of the test run, optional information on test coverage, and other information.
Testmate provides special purpose editors which allow developers to browse this
output.

Test results may be analyzed in a number of ways. The user-written driver
may examine and verify the MUT's output parameters. Alternatively, test case
output may be directed to a file which is then compared to the correct output. If
such a file comparison is not possible, the user may provide a routine to examine
the output file and determine if it is acceptable. Finally, if none of these options
is feasible, manual inspection is allowed. In the first and third methods listed
above, the user-supplied code must call the Testmate Ada routine
Tms . Register_Result to report pass/fail status back to Testmate for
recording in the test run file. In the second case, Testmate records this result
automatically. In the last case, Tms . Register_Result must be interac-
tively invoked.

Another possible by-product of a test run is test coverage information indicat-
ing how much of the code was actually exercised in the test. The default is to
gather coverage information for every test case, but Testmate allows users to
tailor this data collection capability and restrict data gathering to selected test
cases, units, directories, or worlds. It is also possible to display the Ada source
code of the MUT with untested coded segments so marked.

Testmate also has the ability to display and compare information from multi-
ple test runs. Regression testing is facilitated by comparing output from two runs
of the same script. When the output has changed, the version information
recorded by Testmate allows a developer to track down the source code
modification causing the output change. Using the Rational Compilation
Integrator (RCI), it is also possible to migrate tests from the R1000 host to the
target platform and then use Testmate to repeat the testing there in an automated
fashion. Finally, as with other Rational tools, Testmate package specifications
are available to development teams so that they may customize Testmate to meet
their particular needs. Additional information on the use of Testmate may be
found in (Rational 1992 Document D-82) and (Rational 1992 Product Number
4000-00720).

Other Tools

Rational provides other products to address various aspects of the develop-
ment process. To promote the production of high quality documents, Rational
has provided an interface to the Interleaf TPS desktop publishing system, as des-
cibed in (Rational 1989 Product Number 4000-00334). At some point in a
development effort, testing must migrate from the R1000 to the target platform.
Rational's Target Build Utility (TBU) facilitates this migration process by

Chapter 3 Tools to Augment the Rational Environment 33

automating transfer of Ada units to the target and generating the necessary job
control script to compile and link those units. The TBU is described in (Rational
1992 Product Number 4000-00375). The RCI addresses this same problem in a
slightly different manner. It allows control of Ada compilation on a remote tar-
get machine from within the local host R1000 Environment and helps maintain
program library consistency between the two platforms. Further information on
its capabilities may be obtained from the user's manual (Rational 1992 Product
Number 4000-00500).

There are other third-party tools which are also well integrated with the
Environment. Adamat is an Ada code measurement and analysis tool which col-
lects and analyzes various software metrics; see (Dynamics Research Corpora-
tion Systems Division 1992) and (Levine, Anderson, and Perkins 1990) for
further information.

To facilitate the development of large software systems in the command, con-
trol, and communications domain, TRW has developed its Universal Network
Architecture Services (UNAS). UNAS includes reusable Ada software com-
ponents, as well as tools to assist in the development and instrumentation of Ada
code (Royce et al. 1991). TRW has further extended the capabilities of UNAS
through the Software Architect's Lifecycle Environment (SALE), a knowledge-
based aid which automates various aspects of the design phase of a project
(Royce and Brown 1991). There are R1000 versions of both UNAS and SALE.

34 Chapter 3 Tools to Augment the Rational Environment

4 User Experience

This section illustrates the effective use of the Environment by presenting
case studies of its use on four projects: CelsiusTech and FS 2000, Computer Sci-
ences Corporation and STANFINS-R, IBM and WISCUC, and Statistica and
SIDPERS-3. Also included are reports of two evaluations by the Software
Engineering Institute (SEI) and Magnavox Electronic Systems Company. Addi-
tional users are noted at the end of the section.

CelsiusTech and FS 20001

CelsiusTech2 is a major Swedish supplier of defense-related real-time sys-
tems. Over the fifteen years prior to the initiation of the FS 2000 project dis-
cussed here, CelsiusTech produced about 25 such systems ranging in size from
30,000 to 700,000 SLOC. The latter required seven years and about 300 man-
years to complete.

Realizing that their existing software engineering methodologies were reach-
ing the limits of their effectiveness and that future projects would be larger and
more complicated, CelsiusTech decided to consider use of Ada on the Environ-
ment as an alternative to their current techniques. Their pilot test of this new
technology, as well as their first Ada project, was UndC, a mobile command and
control application for the army; it would be hosted by a DEC MicroVAX
installed in a van. This project began in August 1985 and had an estimated
delivery cost of $2.16 million. In spite of their lack of Ada experience and the
inevitable requests for additional system features, this application was completed
in December 1986 at a cost of $760,000, roughly one-third of their original esti-
mate.

1 The primary sources for this section were (Rational 1991 Document CS-1) and (Bachman and
Marasco 1992).
2 Since 1987 this company has changed its name from Philips Electronikindustrier to Bofors to
NobelTech to CelsiusTech.

Chapter 4 User Experience 35

This positive experience with the Environment led CelsiusTech to use it on
the then recently awarded FS 2000 contract. FS 2000 is an embedded shipboard
command, control, and communications application integrated with various
types of weapons systems. The software would be delivered on ships from five
different countries, and depending on the configuration, between 150 and 600
programs are installed on each ship. The complete software package, targeted
for the Motorola MC68020, consists of about 1.5 million Ada SLOC.

Delivery of FS 2000 on different ships in a variety of configurations required
flexibility of design and customization of features. Key aspects of the software
development process included emphasis on reusability, management of geo-
graphically separated teams of software engineers, and use of object-oriented
design. The engineers assigned to this project were fairly well acquainted with
use of structured programming in a high-level language: however, prior to the
UndC and FS 2000 projects, they had no experience with Ada, software tools,
and software development environments. Rational worked with CelsiusTech to
provide a customized six-week training program which was carried out over a
three to five month period. Small class size (twelve students) and a substantial
hands-on component (40 percent of the course) proved to be very effective in
introducing the development team to the technology they were to use.

What improvements in productivity resulted from the use of the Environment
on this project? Using data from previous projects, SLOC per hour increased
118 percent, from 1.5 to 3.28 for the first ship. CelsiusTech projects an overall
improvement of 627 percent, to 10.92, on ships 2-5. A natural question, how-
ever, is how much of the savings in manpower and time is due to use of the
Environment, how much is due to reuse, and how much is due to use of Ada and
object-oriented design? According to CelsiusTech, they saved $22.3 million on
the first ship system, of which $14.6 million was attributed to use of the Environ-
ment and the remainder due to use of Ada and OOD. On the whole five-ship pro-
ject they estimate a savings of $187.2 million, with $75.8 million due to reuse,
$39.9 million to Ada and OOD, and $71.5 million to use of the Environment.

Computer Sciences Corporation and
STANFINS-R1

Computer Sciences Corporation (CSC), founded in 1959, is a large, indepen-
dent, professional services company. Their business is worldwide in scope, but a
significant portion of it is with die U.S. Government.

The Standard Army Financial System (STANFINS), the U.S. Army's
comprehensive computerized finance system, includes a broad range of account-
ing capabilities, including accounts receivable, funds receipt, general ledger,

The primary sources for this section were (Rational 1991 Document CS-3), (Fussichen 1992),
and (Puttre- and Oppenheim 1989).

3° Chapter 4 User Experience

property accounting, and report generation. It was written in the 1960s using
COBOL, and the STANFINS Redesign (STANFINS-R) contract, awarded to
CSC in 1986, also specified COBOL. Although the Army issued a directive in
late 1986 mandating use of Ada for all systems, CSC expected a waiver of this
requirement. This expectation, coupled with the perception that Ada was
appropriate only for embedded weapons systems, led CSC to spend five months
preparing to use COBOL on this project. Doubting the effectiveness of Ada for
the development of large-scale information systems and citing the lack of an Ada
compiler and development tools for MVS, the Army director of finance and
accounting requested a waiver on two separate occasions (Puttre" and Oppenheim
1989). The waiver never came and in March 1987 the Army specifically
directed CSC to use Ada for STANFINS-R.

STANFINS applications would run on top of IBM's Customer Information
and Control System (CICS). CICS allows multiple users to concurrently access
files, resolving issues related to multitasking, record locking, and terminal con-
trol (Fussichen 1992). CICS would in turn execute on IBM and Amdahl main-
frames running the MVS operating system. CICS would also access the database
management system specified in the contract, Datacom/DB. This combination of
requirements, i.e., the use of Ada and the IBM mainframe target, jeopardized
CSC's ability to deliver the system on time and within budget, Specifically, they
were faced with the following serious problems.

• No major management information systems (MIS) application had been writ-
ten in Ada in the U.S. at this time; therefore there was a lack of expertise
both among CSC's MIS staff and in the MIS community in general.

An Ada execution environment for the target platform was unavailable at the
beginning of the project, so testing was initially impossible.

There were no Ada interfaces to CICS, MVS, or Datacom/DB, so these
would have to be written from scratch.

• There were no Ada-based CASE tools available for the target platform.

CSC took several steps to address these issues. First, they discussed
execution-related problems with the compiler vendor (Intermetrics), who agreed
to write a new run-time system to provide communication between Ada and
CICS. Second, they decided to solve problems related to the development phase
by acquiring the Environment. Reasoning that it would be easier to teach Ada to
MIS programmers than MIS to Ada programmers, CSC began a recruiting and
training program. Using Ada expertise from both inside and outside the com-
pany, CSC introduced its STANFINS team to the principles of software
engineering and OOD, Ada syntax and semantics, and use of the Environment.
With the assistance of consultants from Rational, CSC overcame the inability to
test code on the mainframe by writing software scaffolds to run in the Environ-
ment which handled functions ultimately to be performed by CICS and
Datacom/DB on the target. This idea worked so well that even when the host
Ada environment became available, it was still preferable to test in the

Chapter 4 User Experience

•

•

37

Environment.

Another important issue was related to the size of the system. STANFDSfS-R
was 2.4 million SLOC when delivered to the Army in May 1991; an additional
300,000 SLOC was produced for tool support. To deliver that much code and
meet the contract deadline required production of more than one-half million
Ada SLOC per year. This would not have been possible without automatic code
generators. Again with help from Rational, CSC developed screen painters and
other necessary tools which wrote Ada package specifications and bodies using
information taken from Army MIS requirements. To perform their tasks
correctly, these tools accessed a database containing data type definitions for
more than 2500 data items. (Project management mantained strict control over
this database and reserved all decisions regarding data typing to themselves;
allowing the development staff the ability to change type descriptors would have
resulted in chaos.) Ultimately 76 percent of the Ada code was produced by these
tools (Fussichen 1992).

CSC believes that if they had naively substituted Ada for COBOL in their
development process, there would have been no improvements in productivity.
Using projections based on Ada industry norms, productivity on the
STANFINS-R project would have been 1.8 SLOC per hour and the total labor
costs would have been $48.2 million. Using the Environment, code was pro-
duced at at rate of 3.7 SLOC per hour and labor costs were $24 million. Finally,
and perhaps most importantly, CSC met every delivery date specified in the con-
tract.

IBM and WISCUC1

Completing a large application in a timely manner often requires several
development teams using multiple hardware platforms. This situation immedi-
ately introduces problems with maintaining consistency and performing system
tests. This case study describes how one group of developers solved these prob-
lems.

The World Wide Military Command and Control System (WWMCCS) is a
large and complex assembly of hardware, software, and communications subsys-
tems under development for the U.S. military. A critical component of this
assembly was a generalized automated message handler (AMH) developed by
IBM's Federal Systems Company under the WWMCCS Information System
Common User Contract (WISCUC or WIS). This project began in 1983 and the
AMH was delivered in 1990. The AMH target hardware included an IBM Sys-
tem/370 mainframe running MVS/XA and two Series/1 communications proces-
sors. Additionally, users access the AMH through WISCUC workstations based
on the IBM 3270/PC. Under the WISCUC, software was developed for all three
types of hardware, but the mainframe component discussed here consisted of

The primary source for this section was (Blair 1992).

38 Chapter 4 User Experience

about 300,000 Ada SLOC.

Software development required five processors. All coding and unit testing,
as well as part of the component and integration testing, were done on Rational
RIOOOs; three of these systems were required to provide sufficient disk storage
for the project. An MVS/XA Software Development Laboratory (SDL) running
on an IBM 3081 was used for the rest of the component and integration testing.
Finally, an MVS/XA Testing and Integration Laboratory running on the IBM
4381 target was used for system testing. This last step was accomplished by
transferring the Ada source code from the Rationals over a TCP/IP link into
Software Configuration Library Manager datasets on the target for compilation
under the Intermetrics Ada Development System.

The AMH software structure included six major components: four Computer
Program Configuration Items (CPCIs), global packages, and auxiliary code for
integration testing. The CPCIs were further broken down into a total of sixteen
Computer Program Components (CPCs); each of these was implemented as a
Rational subsystem. Multiple spec and load views of each subsystem were
required for implementation and testing. There were three types of load views.
Code in the "released" load view could not be modified. The "master work-
ing" load view contained code still subject to change, but which would be pro-
moted to the released view the next time a program baseline (snapshot) was
created. Finally, there was at least one subsidiary working load view containing
code still subject to significant modification.

The source code was distributed across three RIOOOs due to the disk space
limitation noted earlier. Each R1000 owned a "primary" copy of two of the six
major software components and "secondary" copies of the other four. A pri-
mary copy included spec, released, and working views of subsystems for that
component, while a secondary copy included only spec and released views.
Therefore developers on a particular system could modify code in only two of
the six components. This distributed mode of operation required a carefully
structured procedure, followed once a month, to create a new baseline version of
the program.

• Incorporate necessary changes into the master working view using CMVC.

Build new spec views, if necessary.

Recompile the master working view.

Copy the primary spec views to secondary spec views on other RIOOOs.

•

• Freeze the just-compiled master working view using CMVC and make it the
new released view.

Copy primary released views to secondary released views on other RIOOOs.

Chapter 4 User Experience 39

• Update all other working views using the new spec views.

• Update the system activity file to indicate which load view of each subsystem
to use for subsequent executions.

Over the course of this project the IBM development staff made several
significant observations regarding use of the Environment. First, their experi-
ence verified Rational's claim that the Rational compiler minimized the scope of
recompilation. Second, use of CMVC in conjunction with separate activity files
to specify different versions of the program allowed development and testing to
proceed concurrently. Third, designation of a separate team for version control
ensured that the previously described procedure was correctly followed and that
development and testing would not periodically grind to a halt. Finally, lack of
sufficient disk space on a single R1000 system was a significant disadvantage,
but one which was accepted due to the other positive features provided by the
Environment and to the lack of an acceptable Ada development environment on
the target.

Statistica and SIDPERS-31

The original version of the Army's Standard Installation/Division Personnel
System (SIDPERS) was first deployed in 1973. The original purpose of the sys-
tem was to assist in personnel management, keeping track of the duty status of
all active Army personnel. SIDPERS-1, as it is now called, was written in
COBOL and executed on IBM 360 Model 40 mainframes installed at the base
and division level. Clerical personnel below those levels had to manually
prepare and submit their reports for processing on those mainframes.

As Army requirements increased, additional capabilities were added to
SIDPERS, including facilities to handle redeployment, casualty reporting, and
promotions. As might be expected, the target hardware also evolved over time;
Amdahl and Burroughs equipment was installed and automation was provided
for lower levels in the organizational hierarchy. Although in many ways the sys-
tem satisfied the Army's needs, there were problems. The various Army com-
mands requested numerous modifications to the system and the SIDPERS
maintenance group was unable to implement them in a timely manner. Unwil-
ling to wait any longer, the commands authorized their own local customizations
of the code. Standardization was lost and maintenance costs and personnel
increased.

This situation led the Army to initiate development of what will become
SIDPERS-32. The overall goal of this system is to produce a standard system
which may be easily extended to accommodate the unique needs of each

The primary source for this section was (Statistica 1991).
2 Yes, there was a SIDPERS-2; i
that, as they say, is another story.

2 Yes, there was a SIDPERS-2; in fact there was even a SIDPERS-2.5 and a SIDPERS-2.75, but

40 Chapter 4 User Experience

command. Specific objectives to be met by SIDPERS-3 are to:

• Provide the capability to determine how many qualified personnel are needed
at each Army site in order to enhance the Army's ability to mobilize and
deploy its forces.

• Produce an easy-to-use system which is accessible to users at all levels.

•

•

•

Provide a communications capability which allows reporting throughout the
organizational hierarchy.

Reduce the personnel required to manage the personnel system itself by
automating manual processes and allowing interactive transactions against
the personnel database.

Provide a single source of personnel data, thereby reducing the possibility of
redundant and inconsistent information.

• Improve response time.

Statistica is a professional services company headquartered in Rockville,
Maryland. Founded in 1977 and with a 1992 employment of about 400, it is
younger and smaller than many of the companies with which it must compete.
Nevertheless, Statistica has been successful, having completed every one of its
contracts within time and budgetary constraints. Some of the reasons for this
success include the company's object-oriented approach to Ada software
engineering and its willingness to use new software development technology,
including prototyping, reuse, and CASE tools. Importantly, Statisitca has
adopted the SEI Capability Maturity Model (CMM) (Paulk et al. 1993 Technical
Report CMU/SEI-93-TR-24, Paulk et al. 1993 Technical Report CMU/SEI-93-
TR-25) to measure the quality of its software developent process.

Statistica was selected as the lead contractor on the SIDPERS project; SRA,
Martin Marietta, and Planning Analysis Corporation were subcontractors.
Because the Army had not yet selected the target hardware and because there
was a high liklihood of multiple targets, Statistica chose the Environment as its
APSE. In addition to four RIOOOs, Statistica equipped its development facility
with various systems then installed at Army bases: an IBM 4341 mainframe, a
Sperry 5000, 68 Zenith-248 PCs, two TACCS-E systems, a Unisys B-38, and
several Everex 386 PCs running UNIX. In such a heterogeneous environment, it
was obviously in the company's interest to keep developers on the Rational plat-
form as long as possible. This was facilitated by Rational consultants who
assisted Statistica in the implementation of a remote procedure call (RPC) capa-
bility for the Environment. Thus, instead of merely simulating the database tran-
sactions, testing was able to proceed on the RIOOOs by accessing the actual
DBMS on the Everex systems. The result was highly portable Ada code. The
60,000 SLOC demonstration system, roughly 10% of the final product, is opera-
tional on several platforms, and the man-machine interface has been installed on
six different targets with negligible technical difficulties.

Chapter 4 User Experience 41

In their appraisal of the Environment, Statistica noted its support for modular-
ization, the Ada-sensitive editor, incremental compilation, RDF support for
requirements traceability, provision for host-based testing via RPCs, and the ease
of porting to the target using the TBU. Statistica had particular praise for
Rational's technical support. They further emphasized the power and sophistica-
tion of the environment; subsystems enabled them to break the system into
manageable pieces having clean interfaces; incremental compilation reduced
compilation time relative to other APSEs; RDF support for DOD-STD-2167A
promoted code consistency between developers; use of RPCs allowed more
debugging to take place on the Rational host, thus uncovering many problems
prior to actual testing on the target.

Statistica was candid about some of the disadvantages to using the Environ-
ment. These included the high system cost, performance degradation with more
than ten simultaneous users per R1000, the extensive training required to use the
system effectively, the customization, or "toolsmithing," required to use the
RDF, TBU, and RPCs, and finally the lack of a graphical design capability.
Nevertheless, Statistica believes that Rational was the best choice, concluding
that other APSEs have similar problems, and provide far less functionality than
the Environment.

The Software Engineering Institute Evaluation l

A primary goal of Carnegie Mellon University's Software Engineering Insti-
tute (SEI), is to critically evaluate state-of-the-art technology for software
development and disseminate the results. As one means to reach this goal, the
SEI initiated its Evaluation of Ada Environments (EAE) Project in 1985 with the
objective of assessing the capabilities of APSEs. The first principal outcome of
this project was the specification of a methodology for evaluating APSEs (Weid-
erman et al. 1986). The second major result was the application of this metho-
dology in a comparative study of three APSEs: the Ada Language System, Ver-
dix Ada, and DEC Ada (Weiderman et al. 1987). The SEFs efforts in this area
were continued under the Evaluation of Environments Project. Three major
results of this project have been the extension of the EAE methodology to
include SDEs and IPSEs, an evaluation of the ISTARIPSE (Graham and Miller
1988), and an evaluation of the Environment.

The SEI assessment of the Environment was conducted in 1988. The
hardware component of the evalauted system consisted of an R1000 Model
200-20 with 32 Mbytes of main memory, three disk drives each with an unfor-
matted capacity of about 670 Mbytes, a 75 ips streaming tape drive, an Ethernet
interface, and eight Rational terminals. The system software was Release
D_9_25_l of the Environment; it included the basic operating system, a tiled
window system for the terminals, language-sensitive editor, compiler, debugger,

The primary sources for this section were (Feiler, Dart, and Downey 1988) and (Downey,
Bassman, and Dahlke 1988).

42 Chapter 4 User Experience

CMVC, and support for workorder management. Layered products, such as the
RDF, TBU, and Rational Network Mail, were not included in the evalaution due
to their unavailability. The evaluation process included both the application of
the SEI methodology and additional analysis of unique features of the Environ-
ment not addressed by the methodology.

The SEI evaluation methodology includes six categories of experiments, five
of which were used in the Rational study. These experiments explore in a
detailed manner the capabilities of an APSE and typically require extensive
hands-on use of the system.1 The CMVS category includes three experiments,
the first of which models the system integration and testing phases of a software
development project. The second experiment builds on the results of the first; it
involves creation of a model software system, followed by construction of
several baseline versions representing various stages of progress in the develop-
ment process. The environment is then tested to determine its ability to recon-
struct previous versions and to build a composite version using components from
current and previous versions. The functionality checklists for these two experi-
ments (Downey, Bassman, and Dahlke 1988, p. 25-26, 39) indicate that the
environment supported every primary activity in all three areas of interest: ver-
sion control, configuration control, and product release.

The last experiment in the CMVS category evaluates an APSE's software
management policy. The Environment allows project management to specify its
own policy. Because this experiment was designed to examine an existing pol-
icy and does not specify a candidate policy, it was omitted from the evaluation.

The second category contains system management experiments which
address APSE installation, management of user accounts, and system usage
accounting support. A few of the capabilities required by these experiments
were not directly provided by the Environment, but were provided in other ways,
such as writing a special-purpose procedure. This may have been due to
differences in SEI experiences with previously tested environments and
Rational's philosophy of system architecture. In any case, these experiments
indicated few shortcomings in the Environment's system management capabili-
ties. Further details of this experiment may be found in (Downey, Bassman, and
Dahlke 1988, p. 51-73)

Design and development capabilities are assessed by the third category. Part
of this section was omitted because the Environment lacked (at that time) graphi-
cal design tools. This experiment involves entering an Ada program with known
errors and then evaluating an environment's ability to detect them. The Environ-
ment provided all but two of the 27 capabilities requested (Downey, Bassman,
and Dahlke 1988, p. 94-95).

1 The SEI technical report (Downey, Bassman, and Dahlke 1988), which contains the transcripts
of the experiments, is 185 pages long; its length reflects the thoroughness of the evaluation.

Chapter 4 User Experience 43

The fourth category consists of a unit testing and debugging experiment. It
evaluates an APSE's capabilities for code browsing, debugging, regression test-
ing, and static and dynamic code analysis. At the time these tests were con-
ducted, the Environment had no tools for these latter types of analyses. The
Environment debugger fared rather well in this test, and it is important to note
that some of the requested functionality has since been provided by the Testmate
product. See (Downey, Bassman, and Dahlke 1988, p. 115-139) for more
detailed information on the results of this experiment.

The fifth section assesses the project management capabilities of an APSE in
four areas: project plan management, plan instantiation, project execution, and
product management. Because the Environment's capabilities in this area had
already been tested in the CMVC experiments, this category was omitted from
the evaluation.

The final component of the SEI evaluation methodology is the execution of
the Ada Compiler Evaluation Capability (ACEC) test suite (Hook et al. 1985),
which was then in a prototype version.1 On this test, the Environment compiler
was 1.8 times faster than the VMS/VAXSet compiler and 2.1 times faster than
the UNIX/VADS compiler; the Environment was also somewhat faster than these
two systems in program execution time. More detailed results from this experi-
ment may be found in (Downey, Bassman, and Dahlke 1988, p. 141-153), but the
reader is cautioned that these performance data are no longer representative of
the performance of the various environments.

SEI reached several conclusions regarding the Environment. First, although
their results offer a basis for comparison between the Environment and other sys-
tems, they cautioned that the standard SEI evaluation methodology did not com-
pletely characterize the full functionality of the Environment. Next, they con-
cluded that the Environment "provides a powerful and effective semantics-based
interaction model."2 Users are thus able to browse Ada code based on its syntax
and semantics (e.g., intermodule dependencies) and to obtain semantic informa-
tion about the code (e.g., the amount of recompilation required by a particular
code modification). Under this model, syntax and semantic errors may be
detected and corrected incrementally through frequent invocation, from the edi-
tor, of the parser and semantic analyzer. The use of this intelligent, incremental
compilation feature, coupled with the dynamic linking capabilities of the
Environment has the potential to reduce the amount of recompilation required
after a change.

Refer to (Wright Research and Development Center 1988 Technical Report AFWAL-TR-88-
1095) for a more up-to-date description of the ACEC. In July 1993 AJPO announced completion
of the merger of the ACEC with its United Kingdom counterpart, the Ada Evaluation System
(AES) (Ada Information Clearinghouse 1993). The new test suite is called the Ada Compiler
Evaluation System (ACES).
2 From (Feiler, Dart, and Downey 1988, p. 71); © 1988 SEI, reprinted by permission.

44 Chapter 4 User Experience

The use of DIANA as the underlying program representation was identified
as the enabling factor in the integration of development and debugging facilities.
Moreover, effective use of the system does not require knowledge of DIANA.
The Environment encourages early testing and rapid protyping via mechanisms
for generation of code for stubs and for incomplete modules. Rational's subsys-
tem concept supports development of large systems by providing a level of pro-
gram modularity above the package; this feature helps limit the scope of a
recompilation.

Although certain activities, such as a large-scale recompilation or large sys-
tem test may seriously degrade response time, SEI found that the Environment,
as a system, was comparable to other widely-used APSEs in terms of compila-
tion speed and disk utilization. The Environment was described as providing "a
highly responsive system by deploying smart compilation and dynamic linking
techniques and through cooperative input from the user to reduce reprocessing
after changes based on semantic information."1 An important final comment
noted that because the Environment does not support all phases of the software
life cycle, other tools must be acquired and integrated with it to provide a com-
plete software development environment.

Magnavox Electronic Systems Company and
AFATDS2

In early 1990, Magnavox Electronic Systems Company (MESC) conducted
an evaluation of three candidate development software support environments
(DSSEs3) for use on the Advanced Field Artillery Tactical Data System
(AFATDS) project. The DSSE provided by the army was the Army Tactical
Command and Control System (ATCCS) programming support environment
(PSE); the evaluation discussed here was motivated by the discovery of serious
deficiencies in that environment. MESC included the DEC VAX environment in
its study because they had used that system in the concept evaluation phase
(CEP) of AFATDS. In spite of its shortcomings, the ATCCS was included in the
evaluation to serve as a baseline. Finally, at the suggestion of another contrac-
tor, the Environment was added as a candidate. The actual configurations
evaluated by MESC are given in Table 1.

The multi-element component comparison and analysis (MECCA) methodol-
ogy (Ulvila and Brown 1982) was used in the MESC evaluation. Application of
the MECCA technique requires development of a hierarchy of weighted evalua-
tion attributes. This hierarchy may be viewed as a tree, each node of which con-
tains a weight and a score. For this method to work properly, each parent attri-
bute must be partitioned into independent subattributes so that some features are

1 From (Feiler, Dart, and Downey 1988, p. 76); © 1988 SEI, reprinted by permission.

2 The primary source for this section was (Magnavox Electronic Systems Company 1990).

3 A DSSE consists of an APSE and the associated host hardware.

Chapter 4 User Experience 45

Table 1
MESC Ada DSSE Tools Evaluation1

Feature
Candidate DSSE

DEC VAX Rational R1000 ATCCS PSE
CPU(s) VAX 8600, 8650, 8800 R1000 Model 200-10 HP 9000/350
Operating
system

VMS v. 5.22
Rational Environment
v. D_10_20_02

HP-UX v. 6.22

Project mgmt.
tools

VAX Software Project
Manager v. 1.28

Rational Work Order2

Design tools Cadre Teamwork8

IDE STP8
Rational RDF v. 6_2_52

RDF Teamwork
Interface v. 1_0_02

Cadre Teamwork8

IDE STP8

Mark V Systems Adagen
Text editors VAXTPU EVE v. 2.02

DEC LSE v. 2.28
Rational Editor2 HP-UX vi2

emacs8

Document
support

DEC Runoff3
Rational Document
Formatter v. 10_7_74

Rational Interleaf
Interface8

HP-UX nroff8

GUI support DECWindows8 Rational RXI v. ß2 Xv. 11.32

Ada compiler DEC Ada v. 2.02
Rational Compiler2 HP (Alsys) Ada v. 3.252

Ada library &
recompilation
support

DEC Ada v. 2.02 Rational Library
Manager2

GEC G-ADA
/HP Ada 300
ada.make v. 2.02

Ada linker DEC Ada v. 1.53 Rational Linker2 HP Ada v. 3.252

Ada debugger DEC Debugger v. 5.03
Rational Debugger2 HP Ada ada.probe

v. 3.257

Static
analyzers

DEC SCA v. 2.08

EVB Software CMT3

DRC AdaMAT3

Rational Xref v. 9 1 22

EVB Software CMT5

DRC AdaMAT5

HP Ada ada.xref v. 3.252

Dynamic
analyzers

DEC PCAv. 1.13 Rational Performance
Analysis Interface5

Host-target
integration
tools

Rational MC68020 Bare
CDFv. 5 1 02

Rational HP-UX CDF5

Rational TBU v. 9_4_42

Sys. test tools DEC DTM v. 3.08

Configuration
management
support

DEC CMS v. 3.03

Expertware CMF7

Softool CCC6

Magnavox MACE3

Rational CMVC2 HP-UX SCCS7

HP-UX RCS7

Expertware CMF7

Softool CCC6

1 From (Magnavox Electronic Systems Company 1990, p. 4)
2 Evaluation based on experiments during DSSE evaluation
3 Evaluation based on experience during AFATDS CEP
4 Evaluation based on demonstration by vendor
5 Evaluation based on information from vendor
6 Evaluation based on information from other projects or customers
7 Evaluation based on product documentation
8 Not Evaluated—tool was unavailable, or time constraints prevented evaluation

46 Chapter 4 User Experience

not scored more than once. The sum of the weights of the child nodes of any
particular parent must be one. Scores for an attribute must fall between 0 ("use-
less") and 100 ("ideal"). The scoring process begins by assigning scores to
each of the leaf nodes in the tree. A score is calculated for each parent by sum-
ming the weighted values of its children. This continues until the overall score
associated with the root of the tree is computed.

MESC used four attributes at the highest level of the MECCA tree. The first
of these, "system management," was weighted 14% and scored a DSSE in the
areas of system administration, training, vendor responsiveness, and system per-
formance. "Project management," the second attribute, was weighted 20% and
addressed administrative issues related to the software project itself (e.g.,
scheduling, library and file system functionality, and support for quality manage-
ment). "Technical development" counted 40%, the largest weight of any of the
four primary attributes, because more manpower would be associated with
activities in this area than any other. This category evaluated a DSSE's support
for software engineering, including analysis, design, implementation, testing,
and documentation. The last category, weighted 26%, was "configuration
management;" it addresses issues related to version control, change control, and
building and rebuilding the system.

MESC took two important steps to reduce subjectivity in the scoring process.
First, a separate worksheet was used to score each low level attribute. On this
worksheet each evaluator described his findings (e.g., experimental results, ven-
dor information, previous customer experience) reported his analysis of these
findings in a conclusions section, and then finally assigned a score for that attri-
bute. This standardization of reporting also made this summarization process
easier.

Second, several techniques were instituted to standardize the scoring process
and reduce bias, including:

• Assigning each DSSE a base score of 50 and then adding points to reflect the
level of automation provided by that environment for a particular attribute.

• Assigning additional points (typically 10) for experience with an environ-
ment during the CEP. This technique was used to reflect reduced risk with
respect to a particular attribute. Obviously this improved the score of the
VAX/VMS DSSE.

• Assigning a score of 100 and then deducting points for deficiencies.

Occasionally other techniques were used, but all were applied consistently; scor-
ing strategies were always uniformly applied for all DSSEs in scoring a particu-
lar attribute.

The results of the MESC evaluation for the primary attributes are given in
Table 2. Although all three candidate environments were quite close in the scor-
ing for system management, VAX/VMS had a slight edge due to the experience

Chapter 4 User Experience 47

Table 2
MESC Ada DSSE Evaluation Scores1

Attribute Weight
Candidate DSSE

DEC VAX Rational R1000 ATCCS PSE

System
Management 0.14 93.78 91.82 89.52

Project
Management 0.20 69.91 79.08 59.75

Technical
Development 0.40 58.42 68.16 49.69

Configuration
Management 0.26 93.93 92.50 87.93

Total 1.00 74.90 79.98 67.22
1 Adapted from (Magnavox Electronic Systems Company 1990, p. 30-31)

48

with that system during the AFATDS CEP. The Environment was clearly supe-
rior to the other two DSSEs in the project management category. The reasons for
this were as follows. First, the Rational work order facility permitted tracking of
project tasks by allowing allowing management to associate a work order with
the modification or correction of a particular Ada unit.

Second, the Environment outscored the other systems in the consistency
checks/alerts category because it notifies a developer of the impact of a proposed
change. When a change would affect many units and require significant recom-
pilation, then the developer could elect to delay the modification until the next
major system build. Finally, Rational was the winner in the project reviews and
walkthroughs section because it allows managers to specify their own coding
standards and then enforces them automatically. No recompilation is required by
this feature because syntactic and semantic differences, not time stamps, deter-
mine a unit's consistency.

The evaluation for the technical development category was performed by
transporting the AFATDS CEP Human Interface (HI) software, developed on the
VAX, to the ATCCS PSE and to the R1000. This allowed quantitative evalua-
tions of resource requirements and provided hands-on experience with each of
these systems. The HI code metrics are given in Table 3.
Resource consumption figures are presented in Table 4. "Parsing" in this con-
text includes scanning the source code, checking syntax, and entering depen-
dency information into an Ada library. Although the R1000 parse time is high,
MESC noted that parsing an entire system would be a rare occurrence (presum-
ably due to the RIOOO's persistent intermediate representation of the program in
DIANA). In evaluating R1000 disk space utilization, MESC noted that copies of
lower-level supporting code would have to be present on each R1000, a situation
also encountered by IBM (Blair 1992).

As part of the HI porting experiment, MESC evaluated the various capabili-
ties of the candidate systems. Some of the features of the R1000 which

Chapter 4 User Experience

Table 3
Code Metrics of HI Source Files1

Metric Number

Comment lines 70,500

Blank lines 53,000

Non-comment, non-blank lines 90,000

Non-literal semicolons 43,000

Total source lines 213,500
1 From (Magnavox Electronic Systems Com-
pany 1990, p. 17)

Table 4
Performance Comparison for HI Port1

Metric
Candidate DSSE

DEC VAX Rational R1000 ATCCS PSE

"Parsing" time (hours:minutes) 0:26 3:00 0:302

Compile time (hours:minutes) 2:24 2:20 15:23

Library disk space (Kbytes) 19,967 33,608 55,071
1 From (Magnavox Electronic Systems Company 1990, p. 18)
2 Time estimated; parsing failed for 2 files (out of about 700).

distinguished it from the other DSSEs included integration of the editor with the
pretty printer, ability to semantically browse the code, ability to specify and
automatically enforce coding standards, the subsystem concept, and ability to
build composite versions of a system from different subsystem components. A
summary of this feature comparison is given in Table 5.

The final primary attribute was configuration management. MESC noted that
Rational's CMVC was superior with respect to the integration subattribute due to
its capabilities for building and rebuilding systems. Rational's score was
reduced by 10 points in each of five subattributes where additional software was
required to augment CMVC. In spite of this, VAX/VMS beat the R1000 in this
category by less than 2 points.

The MESC study recommended that the Environment, augmented with com-
ponents from the ATCCS PSE, be selected as the AFATDS DSSE. The reasons
for this were as follows:

• Rational had the highest overall score (Rational 79.98%, VAX/VMS 74.90%,
and ATCCS PSE 67.22%).

• Rational is an Ada language-centered APSE with capabilities unavailable in
other environments.

Chapter 4 User Experience 49

Table 5
Summary of Technical Development Features1

DSSE Tool Tool Feature
Candidate DSSE

DEC
VAX

Rational
R1000

ATCCS
PSE

Editor Language sensitive
Integrated with pretty printer
Traverses Ada semantic network

X X
X
X

X2

Compiler Enforces design, coding standards
Presents obsolence report
Recognizes object dependencies
Integrated with document builder

X
X
X
X

X3

Linker Runtime alternate implementations X

Library manager Automated compile order
Automated library recompile
Sublibraries
Subsystems

X
X
X

X
X

X

X4

X5

Debugger Source level debugging
Ada tasking support

X
X

X
X

X

System integration Configure by source files
Configure by subsystem
Target build functionality

X X
X
X

X

NA6

1 From (Magnavox Electronic Systems Company 1990, p. 25)
2 The HP Ada 3.25 pretty printer ada.format is a separate tool.
3 The HP Ada 3.25 Ada library manager ada.umgr does not detect dependencies
across multiple program libraries.
4 This feature is not provided by HP Ada 3.25, but by the G-ADA ada.depend tool.
5 This feature is not provided by HP Ada 3.25, but by the G-ADA ada.make tool.
6 This feature is not needed for the PSE, since the development and target
environments are the same.

Rational promotes the development of high quality software by supporting
recognized software engineering principles auch as abstraction and informa-
tion hiding.

Rational, augmented by the ATCCS PSE, will provide a scalable software
development environment capable of attacking large-scale programming pro-
jects.

Rational's TBU and RPC provide an integrated host-target environment
which smooths the transition from development on the host to installation and
testing on the target.

Rational allows custom specification and automatic enforcement of coding
standards.

Rational's editor and compiler provide for automated collection of software
metrics and generation of metrics reports.

50 Chapter 4 User Experience

The concluding statements in the MESC report were unequivocal:

The existing Rational system management, project management,
technical development, and configuartion management tools may
be integrated with additional software to create an environment to
encompass the total software development process. When software
developers, managers, testers, or other personnel log into this aug-
mented Rational system, they will be logging into a configuration
management environment and will perform all functions within this
environment. Neither alternative provides the possibility of such
an environment in the forseeable future (Magnavox Electronic Sys-
tems Company 1990, p. 33).

Other Users

Honeywell announced in January 1994 that it will use Rational Apex on Sun
SPARC workstations to develop the Boeing 777 Airplane Information Manage-
ment System (AIMS); AIMS is an avionics software application which controls
both the 777's flight management computer system and its central maintenance
controls.

France's national railroad organization, Societe Nationale Chemins de fer
Francais (SNCF), has selected the Environment as the development platform for
its Astree project. SNCF plans to equip every train with on-board systems to
transmit its location, speed, and other operational information to DEC
VAX/VMS systems in Astree processing centers. These systems will monitor
train position and performance to ensure passenger safety as well as smooth
operation.

Other documented examples of projects using the Environment include the
Canadian Automated Air Traffic System (CAATS) under development by
Hughes Aircraft of Canada (The Rational Watch Winter 1992), IBM's Advanced
Automation System (AAS) contract with the Federal Aviation Administration
(Taft 1990), development of the NASA space station data management system
by Lockheed (Suydam 1991), and TRW's Universal Network Architecture Ser-
vices (UNAS) product (Crafts 1993, Royce et al. 1991).

Chapter 4 User Experience 51

5 Recommendations and
Conclusions

Recommendations

Based on the information gathered in this study, the author gives an
unqualified positive recommendation for acquisition of the Rational Environ-
ment if it is to be used on large (100,000+ SLOC) projects. This positive recom-
mendation can be further extended to the situation where multiple moderate size
projects are contemplated. If only small systems will be developed, the Environ-
ment will still be quite helpful in the application sense, but it will probably not
be cost effective (although Rational Apex pricing may alter this conclusion). If
the Environment is acquired, the following guidelines should be followed to
ensure its successful utilization.

• Adopt a strategic perspective with respect to the software development pro-
cess. A good starting point for guidance in this respect is (Hefley et al. 1992).

• Adopt the SEI CMM as a means of improving the organization's develop-
ment process; plan to reach CMM Level 2 ("repeatable") within a year.

• Do not view the Environment as a ' 'silver bullet;'' (Brooks 1987) decide on a
realistic development methodology and use the Environment as a tool to
implement that methodology.

• Acquire appropriate layered products, e.g., Insight and Testmate, to cover the
various phases of the software life cycle specified by the methodology.

• Plan to use the RXI as the means of accessing the Environment; users will
find it more functional than the Rational Windows Interface (RWI).

• If there are sufficient funds, equip each developer with a UNIX workstation
having a large monitor. If cost is an issue, acquire X terminals or PC-based X
terminal emulators to run the RXI.

^ Chapter 5 Recommendations and Conclusions

•

•

Plan to migrate to Rational Apex when the layered tools become available,
probably in late 1994.

Acquire the services of Rational consultants for some initial period.

Use these consultants to train a core group to serve as in-house experts.

Build further expertise by using the Environment on a small pilot project
(Brooks 1975, p. 116).

Use the experience gained in the pilot to identify necessary changes in
methodology and additional necessary tools.

Provide formal training on a "just-in-time" basis for additional developers.
As part of this training require every developer to read The Mythical Man
Month (Brooks 1975); it is an essential reference for the entire staff.

Assign a member of the core group to each development team to serve as a
mentor.

Assign one or more individuals to handle special tasks, e.g., configuration
management, testing, and toolsmithing (Brooks 1975, p. 128).

Document the way the Environment was used to implement the methodology
so that future projects can build on newly acquired knowledge.

Conclusions

The basic Environment provides powerful aids for software development in
Ada, particularly in the areas of coding, browsing, configuration management,
and version control. The subsystem concept, which provides a level of abstrac-
tion above the package, is crucial to the development of very large systems. The
underlying, DIANA-based intermediate representation is the basis for many of
the environment's important features, e.g., syntactic completion and semantic
verification from within the Ada-knowledgeable editor. The DIANA representa-
tion, along with the object-oriented multistate approach to code translation, helps
limit the scope of a recompilation. Again, this is particularly useful for large
projects.

The Environment is a back-end CASE tool environment; it is critical that it
be augmented by one or more other tools which address the requirements
analysis and design phases. Examples of such tools include the RDF, Insight,
and Teamwork. The RDF, which uses a PDL-based approach to system design,
is worthy of particular mention. Because this PDL is a subset of Ada, many
design tasks can be automated, interfaces and other relationships between design
elements may be automatically verified, and the PDL design itself can naturally
evolve into the Ada implementation. Either Insight or Teamwork may be used as
a graphical front-end to the RDF.

Chapter 5 Recommendations and Conclusions 53

There are tools which address other aspects of the development process. One
of the more significant is Rational Testmate, which automates many aspects of
unit, integration, and regression testing. Testmate manages the complexity asso-
ciated with developing, running, and maintaining the large numbers of test sets
required to validate multiple versions of a large software system. Another
important tool is DRC's Adamat, which gathers data about the actual Ada code
and uses that information to compute various software metrics. This allows
measurement and improvement of software quality. Unfortunately, an important
component which has not yet been provided is an Environment tool which
addresses business process modeling.

One of the strongest criticisms of the Environment has been the expensive
proprietary hardware and operating system required to run it. Rational Apex, an
implementation of the environment for RISC-based UNIX workstations intro-
duced in August 1993, answers that criticsm. More than just a direct "port" of
the environment, Apex takes advantage of underlying UNIX features, e.g., NFS
and file ownership and security mechanisms. Furthermore, the Apex interface is
a Motif-compliant application running under the X Window System. Rational's
supporting tools, e.g., Testmate and Insight, will be available for Apex in 1994.

A development which could have a favorable influence on the Environment
and its capabilities is the recently announced merger between Rational and the
Verdix Corporation (Alexander 1993). Until this merger, the Verdix Ada
Development System (VADS) APSE (Matthews and Bums 1991) probably
presented the toughest competition to the Environment in terms of market share
and technical merit. The VADS APSE is highly functional and it is reasonable to
assume that many of its best features will ultimately be incorporated into the
Environment.

Perhaps the most important advantage of the Environment is the manner in
which it facilitates the development of large, complex Ada systems. Ada itself
was designed to support such large system development and experience has
shown it does so in ways no other language can (Deputy Assistant Secretary of
the Air Force for Communications, Computers, and Logistics 1991). But even
so, such projects can overwhelm a development effort when they reach several
hundred thousand SLOC; the Environment allows developers to break through
this barrier. Furthermore, even for projects of moderate size (10,000-100,000
SLOC), the improvements in developer productivity make acquisition of the
environment an investment rather than an expenditure. The information gath-
ered in the course of work, which includes interviews with environment users,
leads to the conclusion that the Rational Environment is preeminent among Ada
development environments, and arguably also among those available for any
language.

54 Chapter 5 Recommendations and Conclusions

Ada Information Clearinghouse. (May 1993). "Merger of performance-test
suites completed," Ada Information Clearinghouse Newsletter 11(1), 7, 6.

Alexander, R. (Winter 1993). "Q&A: Ralph Alexander, president of Verdix,"
The Rational Watch 3(4), 6-7.

Amos.C. (Summer 1993). "Q&A: Carol Amos, marketing manager, on
Rational Apex,'' The Rational Watch 3(2), 6-8.

Bachman, B. and Marasco, J. (July 1992). "Project results: benefits of OOD on
large systems," Document CS-4, Rational, Santa Clara, California.

Backus, J. (August 1978). "Can programming be liberated fromme von Neu-
mann style? a functional style and its algebra of programs," Communications
of the ACM 21(8), 613-641.

Barstow, D. R., Shrobe, H. E., and Sandewall, E. ed. (1984). Interactive pro-
gramming environments. McGraw-Hill, New York.

Bennett, K. H. ed. (1989). Software engineering environments: research and
practice. Ellis Horwood, Chichester.

Blair, D. J. (November 1992). "Managing Ada using Rational's Configuration
Management/Version Control and IBM's Software Configuration Library
Manager." TRI-Ada '92 Proceedings. C. B. Engle, Jr., ed., Association for
Computing Machinery, New York, 424-431.

Booch, G. (1987). Software engineering with Ada. Benjamin/Cummings,
Menlo Park, California.

Brooks, F. P. (1975). The mythical man-month: essays on software engineering.
Addison-Wesley, Reading, Massachusetts.

 (April 1987). "No silver bullet: essence and accidents of
software engineering," Computer 20(4), 10-19.

References 55

Penedo, M. H. (May 1992). "An annotated bibliography on integration in
software engineering environments," Special Report CMU/SEI-92-SR-8,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pen-
sylvania.

Brown, A. W., Earl, A. N., and McDermid, J. A. (1992). Software engineering
environments: automated support for software engineering. The McGraw-
Hill international series in software engineering, McGraw-Hill, London.

Buhr, R. J. A. (1984). System design with Ada. Prentice-Hall, Englewood
Cliffs, New Jersey.

Buxton, J. N. and Druffel, L. E. (October 1980). "Rationale for STONEMAN."
Fourth International Computer Software and Applications Conference. IEEE
Computer Society, 66-72.

Byrne, W. E. (1991). Software design techniques for large Ada systems. Digital
Press, Bedford, Massachusetts.

Cadre. (March 1991). "Integration of Teamwork/Ada with Rational," Applica-
tion Note C-ANR.

 (December 1991). "Teamwork DSE," Publication C-PBDSE.

 (March 1991). "Teamwork SA," Publication C-PBSA.

 (June 1991). "Teamwork Ada," Publication C-PBTADA.

Caruso, D. (8 July 1985). "Development system breaks productivity barrier,"
Electronics 58(27), 36-40.

Comptroller General of the United States. (9 November 1979). "Contracting for
computer software development-serious problems require management
attention to avoid wasting additional millions," Report FGMSD-80-4, United
States General Accounting Office, Washington, D.C..

Crafts, R.E. (June 1993). "Megaprogramming in practice-TRW's UNAS," Ada
Strategies 7(6), 1-9.

D. Appleton Company. (February 1992). Corporate information management
process improvement methodology for DoD functional managers, Fairfax,
Virginia.

Dart, S. A. (December 1990). "Spectrum of functionality in configuration
management systems," Technical Report CMU/SEI-90-TR-ll, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

(July 1992). "The past, present, and future of configuration
management," Technical Report CMU/SEI-92-TR-8, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

56 References

Dawes, J., Pickett, M. J., and Wearing, A. (1990). Selecting an Ada compilation
system. Ada Companion Series, Cambridge University Press, Cambridge.

Deputy Assistant Secretary of the Air Force for Communications, Computers,
and Logistics. (July 1991). Ada and C++: a business case analysis. U.S.
Department of the Air Force.

Deutsch, L. P. (1985). "Project support in the Smalltalk-80 integrated environ-
ment." Integrated project support environments. J. McDermid, ed., Peter
Peregrinus, London, 124-134.

Devlin, M. T. (1980). "Introducing Ada: problems and potentials," unpublished
report, USAF Satellite Control Facility.

Dolotta, T. A., Haight, R. C, and Mashey, J. R. (July-August 1978). "UMX
time-sharing system: the Programmer's Workbench," The Bell System Techn-
ical Journal 57(6, Part 2).

Downey, G. F., Bassman, M., and Dahlke, C. (September 1988). "Experient
transcripts for the evaluation of the Rational Environment," Technical Report
CMU/SEI-88-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pensylvania.

Dynamics Research Corporation Systems Division. (1992). AdamatAda meas-
urement and analysis tool user manual for the Rational. Dynamics Research
Corporation, Andover, Massachusetts.

Feiler, P. H. and Smeaton, R. (May 1988). "Managing development of very
large systems: implications for integrated environment architectures," Techn-
ical Report CMU/SEI-88-TR-ll, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pensylvania.

Feiler, P. H., Dart, S. A., and Downey, G. F. (September 1988). "Evaluation of
the Rational Environment," Technical Report CMU/SEI-88-TR-15, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

Firth, R.,Mosley, V., Pethia,R., Gold, L.R., and Wood, W. (1987). "A guide to
the classification and assessment of software engineering tools," Technical
Report CMU/SEI-87-TR-10, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, Pensylvania.

Fisher, D. A. (June 1976). "A common programming language for the Depart-
ment of Defense --background and technical requirements," Report P-1191,
Institute for Defense Analyses.

Frakes, W. B., Fox, C. J., and Nejmeh, B. A. (1991). Software engineering in the
UNIX/C environment. Prentice Hall, Englewood Cliffs, New Jersey.

Fuggetta, A. (December 1993). "A classification of CASE technology," Com-
puter 26(12), 25-38.

References 57

Fussichen, K. (November 1992). "Ada and CICS or (yes! Ada can be done on
an IBM mainframe)." TRI-Ada '92 Proceedings. C. B. Engle, Jr., ed., Asso-
ciation for Computing Machinery, New York, 415-422.

Gibbs, N. and Ford, G. (1986). "The challenges of educating the next genera-
tion of software engineers," Technical Memo CMU/SEI-86-TM-7, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: the language and its imple-
mentation. Addison-Wesley, Reading, Massachusetts.

Goos, G., Wulf, W. A., Evans, A. Jr., and Butler, K. J. (1983). DIANA: an inter-
mediate language for Ada. Lecture Notes in Computer Science, Springer-
Verlag, Berlin.

Graham, M. H. and Miller, D. H. (August 1988). "ISTAR evaluation," Techni-
cal Report CMU/SEI-88-TR-3, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pensylvania.

Hefley, W. E., Foreman, J. T, Engle, C. B. Jr., and Goodenough, J. (October
1992). ' 'Ada adoption handbook: a program manager's guide version 2.0,"
Technical Report CMU/SEI-92-TR-29, Software Engineering Institute, Car-
negie Mellon University, Pittsburgh, Pensylvania.

High Order Language Working Group. (July 1978). DoD requirements for the
programming environment for the common high order language, PEBBLE-
MAN. U.S. Department of Defense.

 (January 1979). DoD requirements for the programming
environment for the common high order language, PEBBLEMAN revised.
U.S. Department of Defense.

 (February 1980). DoD requirements for Ada programming sup-
port environments, STONEMAN. U.S. Department of Defense.

Hitchon, C, Judd, M., Pritchett, G., and Thall, R. (30 September 1989). Intro-
duction to CAIS: common Ada programming support environment (APSE)
interface set (MIL-STD-1838A). U.S. Department of Defense.

Hook, A. A., Riccardi, G. A., Vilot, M., and Welke, S. (October 1985). User's
manual for the prototype Ada Compiler Evaluation Capability (ACEC) ver-
sion 1. Institute for Defense Analyses, Alexandria, Virginia.

Hiinke, H. ed. (1981). Software engineering environments. North-Holland,
Amsterdam.

Kernighan, B. W. and Mashey, J. R. (April 1981). "The UNIX programming
environment," Computer 14(4), 25-34.

58 References

Krasner, G. (1983). Smalltalk-80: bits of history, words of advice. Addison-
Wesley, Reading, Massachusetts.

Lamson.M. (16 July 1991). Rational Performance Model. IBM Federal Sector
Division, Boulder, Colorado.

Levine, S., Anderson, J. D., and Perkins, J. A. (March 1990). "Experience using
automated metric frameworks in the review of Ada Source for AFATDS."
Proceedings of the 8th Annual National Conference on Ada Technology.
U.S. Army Communications-Electronics Command, Fort Monmouth, New
Jersey, 597-612.

Long, F. ed. (1990). Software engineering environments: international
workshop on environments. Lecture Notes in Computer Science, Springer-
Verlag, Berlin.

Lyons, T. G. and Nissen, J. C. (1986). Selecting an Ada environment. Ada
Companion Series, Cambridge University Press, Cambridge.

Magnavox Electronic Systems Company. (6 April 1990). Development software
support environment (DSSE) evaluation for Version 1 of the Advanced Field
Artillery Tactical Data System (AFATDS), Fort Wayne, Indiana.

Matthews, E. and Burns, G. (Spring 1991). "VADS APSE: an integrated Ada
programming support environment," Ada Letters 11(3), 61-72.

Mitze, R. W. (1989). "The UNIX system as a software engineering environ-
ment." Software engineering environments: research and practice. K. H.
Bennett, ed., Ellis Horwood, Chichester, 345-358.

Morgan, T. M. (1988). "Configuration management and version control in the
Rational Programming Environment." Ada in Industry: Proceedings of the
1988 Ada-Europe International Conference. S. Heilbrunner, ed., Ada Com-
panion Series, Cambridge University Press, Cambridge.

Morris, E., Feiler, P., and Smith, D. (December 1991). "Case studies in environ-
ment integration," Technical Report CMU/SEI-91-TR-13, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

Newport, J. P. Jr. (28 April 1986). "A growing gap in software," Fortune.

Paulk, M. C, Curtis, B., Chrissis, M. B., and Weber, C. V. (February 1993).
"Capability Maturity Model for software, Version 1.1," Technical Report
CMU/SEI-93-TR-24, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pensylvania.

Paulk, M. C, Weber, C. V, Garcia, S. M., Chrissis, M. B., and Bush, M. (Febru-
ary 1993). "Key practices of the Capability Maturity Model, Version 1.1,"
Technical Report CMU/SEI-93-TR-25, Software Engineering Institute, Car-
negie Mellon University, Pittsburgh, Pensylvania.

References 59

60

Puttre", M. and Oppenheim, J. (27 February 1989). "Army rearms with Ada,"
InformationWEEK, 18.

Rational. (November 1986). "Large-system development and Rational Subsys-
tems," Document 6004, Santa Clara, California.

 (20 May 1988). "Application of the Rational Environment to
lifecycle software development," Document TO-1, Santa Clara, California.

 (July 1987). "Rational Environment basic operations," Product
Number 4000-001116, Santa Clara, California.

.. (November 1987). "Rational Environment user's guide," Pro-
duct Number 4000-00117, Santa Clara, California.

 (August 1988). "Rational Environment reference manual
volume 11: project management," Product Number 4000-00129, Santa Clara,
California.

(1990). "Rational design facility: Rational Teamwork inter-
face," Product Number 4000-00602, Santa Clara, California.

 (19??). "Publishing interface: Interleaf TPS," Product Number
4000-00334, Santa Clara, California.

(September 1989). "Rational design facility: DOD-STD-2167A
user's manual," Product Number 4000-00362, Santa Clara, California.

.. (August 1991). "Case study: foundation for competitiveness
and profitability: FS 2000 System, Rational, and Ada," Document CS-1,
Santa Clara, California.

 (June 1991). "Case study: automated tools and Rational lead to
major success in MIS," Document CS-3, Santa Clara, California.

 (April 1992). "Rational Environment," Document D-76, Santa
Clara, California.

Santa Clara, California.
(April 1992). "Rational design support tools," Document D-79,

.. (April 1992). "Rational R1000 software-engineering server,"
Document D-80, Santa Clara, California.

.. (June 1992). "Rational Control: total lifecycle control of Ada
projects," Document D-81, Santa Clara, California.

 (August 1992). "Rational TestMate," Document D-82, Santa
Clara, California.

References

Rational. (July 1987). "Rational target build Utility user's manual," Product
Number 4000-00375, Santa Clara, California.

(December 1992). "Rational compilation integrator user's
manual," Product Number 4000-00500, Santa Clara, California.

.. (August 1992). "Insight user's manual," Product Number
4000-00676, Santa Clara, California.

 (November 1992). "Testmate user's manual," Product Number
4000-00720, Santa Clara, California.

 (Winter 1992). "Rational chosen for Canadian air traffic control
software," The Rational Watch 2(4), 1-2.

Ripken, K. (1988). "Automated support for design and documentation of large
Ada systems." Proceedings of Milcomp '88 Conference. .

Royce, W. and Brown, D. (March 1991). "Architecting distributed realtime
Ada applications: the Software Architect's Lifecycle Environment."
Proceedings of the Ninth Annual National Conference on Ada Technology.
U.S. Army Communications-Electronics Command, Fort Monmouth, New
Jersey, 174-180.

Royce, W., Blankenship, P., Rusis, E., and Willis, B. (March 1991). "Universal
Network Architecture Services: a portability case study." Proceedings of the
Ninth Annual National Conference on Ada Technology. U.S. Army
Communications-Electronics Command, Fort Monmouth, New Jersey, 181-
187.

Schefström, D. (1990). "Projections from a decade of CASE." Ada: experi-
ences and prospects. Proceedings of the Ada-Europe International Confer-
ence, Cambridge University Press, Cambridge, 125-138.

Shaw, M. (1986). "Education for the future of software engineering," Techni-
cal Memo CMU/SEI-86-TM-5, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pensylvania.

Sommerville, I. ed. (1986). Software engineering environments. Peter Pere-
grinus, London.

Sommerville, I. and Morrison, R. (1987). Software development with Ada.
Addison-Wesley, Wokingham, England.

Standish, T, A. ed. (June 1978). Proceedings of the Irvine workshop on alterna-
tives for the environment, certification, and control of the DoD common high
order language.

Statistica. (1991). "SJDPERS-3," white paper, Rockville, Maryland.

References 61

Stenning, V. (1986). "An introduction to ISTAR." Software engineering
environments. I. Sommerville, ed., Peter Peregrinus, London, 1-22.

Suydam, B. (January 1991). "NASA space station leads way in software
development," Defense Electronics 23(1).

Taft, D. K. (22 January 1990). "IBM getting behind Ada in big way," Govern-
ment Computer News 9(2), 1, 89.

Teitelbaum, T. and Reps, T. (September 1981). "The Cornell Program Syn-
thesizer: a syntax-directed programming environment," Communications of
the ACM 24(9), 563-573.

Ulvila, J. W. and Brown, R. V. (September/October 1982). "Decision analysis
comes of age," Harvard Business Review, 130-141.

Wasserman, A. I. (1990). "Tool integration in software engineering environ-
ments." Software engineering environments: international workshop on
environments. F. Long, ed., Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 137-149.

Weiderman, N., Altaian, N., Borger, M., Klein, M., Landherr, S., Smeaton, R.,
D'Ippolito, R, Kochmar, J., and Sun, A. (1987). "Evaluation of Ada
environments," Technical Report CMU/SEI-87-TR-1, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pensylvania.

Weiderman, N. H., Habermann, A. N., Borger, M., and Klein, M. (December
1986). "A methodology for evaluating environments." Proceedings of the
2nd ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments. Association for Computing
Machinery, New York, 199-207.

Wilson, R. (July 1987). "Ada's influence spreads through defense community,"
Computer Design 26(13), 91-99.

Wood, W., Pethia, R., Gold, L. R, and Firth, R. (April 1988). "A guide to the
assessment of software development methods," Technical Report CMU/SEI-
88-TR-8, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pensylvania.

Wright Research and Development Center. (August 1988). "Ada Compiler
Evaluation Capability (ACEC) technical operating report (TOR) user's
guide," Technical Report AFWAL-TR-88-1095, Wright Patterson AFB,
Ohio.

Zarrella, P., Smith, D., and Morris, E. J. (1991). "Issues in tool acquisition,"
Technical Report CMU/SEI-91-TR-8, Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, Pensylvania.

62
References

Appendix A
List of Acronyms

ACEC Ada Compiler Evaluation Capability
ACES Ada Compiler Evaluation System
AEC Army Environmental Center
AES Ada Evaluation System
AFATDS Advanced Field Artillery Tactical Data System
AJPO Ada Joint Program Office
AMH Automated message handler
APSE Ada programming support environment
ASG Ada structure graph
ATCCS Army Tactical Command and Control System
CASE Computer aided software engineering
CEP Concept evaluation phase
CICS Customer Information and Control System
CMM Capability Maturity Model
CMU Carnegie Mellon University
CMVC Configuration management and version control
COTS Commercial off-the-shelf
CPC Computer program component
CPCI Computer program configuration item
DBMS Data base management system
DIANA Descriptive intermediate attributed notation for Ada
DSE Design sensitive editor
DSSE Development software support environment
EAE Evaluation of Ada Environments
FIU Field insertion unit
GUI Graphical user interface
HI Human Interface
IPSE Integrated project support environment
ITL Infromation Technology Laboratory
KAPSE Kernel Ada programming support environment
LSE Language sensitive editor
MAPSE Minimal Ada programming support environment

Appendix A List of Acronyms A1

MECCA Multi-element component comparison and analysis
MESC Magnavox Electronic Systems Company
MIS Management information systems
MUT Module under test
NFS Network File System
OOA Object-oriented analysis
OOD Object-oriented design
PDL Program design language
PSE Programming support environment
RCI Rational Compilation Integrator
RCS Revision Control System
RDF Rational Design Facility
RISC Reduced instruction set computer
RPC Remote procedure call
RWI Rational Windows Interface
RXI Rational X Interface
SALE Software Architect's Lifecycle Environment
SEE Software engineering environment
SEI Software Engineering Institute
SIDPERS Standard Installation/Division Personnel System
SLOC Source lines of code
STANFINS Standard Financial System
STANFINS-R Standard Financial System-Redesign
StP Software Through Pictures
STSC Software Technology Support Center
UNAS Universal Network Architecture Services
VADS Verdix Ada Development System
WES Waterways Experiment Station
WIS WWMCCS Information System
WISCUC WWMCCS Information System Common User Contract
WWMMCS World Wide Millitary Comand and Control System
X X Window System

A2 Appendix A List of Acronyms

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 074-0188

,lic r.porling burden lor this collodion ol information i. ..«mated to average 1 hour p.r r»pon... including th. lime lor «viewing instruct ions ..arch iog ex ist in0 dat« «o u roe«
h.rina and maintaining the data needed, and completing and reviewing the collection ol information. Send comments regarding this burden est mat. or any other aspecol this
ieclionö, Jorm.'on Cduding suggestion, .or reducing this burden, to Wa.hington H..d,u.„.„^Services , Director.,., for_l?.orma,ion Op.ra .ons and «.■•£. «« •«•■•"•"

Public
gathe

JEr^h* ™^^^^^^ Pr°i.C (0704..,..). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1995

3. REPORT TYPE AND DATES COVERED
Final Report

4. TITLE AND SUBTITLE

A Study of the Rational Environment

6. AUTHOR(S)

William A. Ward, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Faculty Court West 20
School of Computer and Information Sciences
University of South Alabama
Mobile, AL 36688

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Information Technology Laboratory
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Technical Report
USA/CIS-94-TR-02

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Technical Report
ITL-95-9

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report is intended to be a comprehensive survey of publicly available information on the Rational
Environment. Its primary purpose is to introduce potential users of the system to its capabilities by describing
its current features and summarizing user experiences. As such, it will also be of interest to students and
researchers in the area of software development environments. The report begins by presenting the historical
context in which the Rational Environment was developed. So that its use may be more clearly understood by
those who have never used software development aids of this type, a brief general discussion of software
engineering environments (SEEs) is given as background. This is followed by a description of the Environ-
ment itself and tools which may be added to enhance it. The experiences of various Rational users is reported,
followed the results of some formal evaluations of the product. A final section presents recommendations on
how to successfully use the Environment and some conclusions regarding its capabilities.

14. SUBJECT TERMS

Ada, software engineering, software engineering environment, Rational Environment

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES
70

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-1B
298-102

