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1 Introduction 

This report is intended to be a comprehensive survey of publicly available 
information on the Rational Environment1. Its primary purpose is to introduce 
potential users of the system to its capabilities by describing its current features 
and summarizing user experiences. As such, it will also be of interest to students 
and researchers in the area of software development environments. It must be 
emphasized that no formal evaluation of the Environment was conducted as a 
part of this study and that it is not the intent of this report to suggest a methodol- 
ogy for evaluating this, or other, environments. Readers wishing to do so should 
seek guidance from other sources (Lyons and Nissen 1990, Firth et al. 
1987, Lyons and Nissen 1986, Weiderman et al. 1986, Wood et al. 1988). 

The report begins by presenting the historical context in which the Environ- 
ment was developed. So that its use may be more clearly understood by those 
who have never used software development aids of this type, a brief, general dis- 
cussion of programming and project support environments is given as back- 
ground. This is followed by a description of the Environment itself and tools 
which may be added to enhance it. The experiences of several Rational users are 
reported, along with the results of some formal evaluations of the product. A 
final section presents recommendations on how to successfully use the Environ- 
ment and some conclusions regarding its capabilities. 

Historical Perspective 

Understanding the Environment is difficult without understanding the three 
decades of software development that preceded its creation. The first software 
systems were short and simple. These so-called systems hardly qualified as 
such, generally being standalone utilities a few hundred source lines of code 
(SLOC) long designed to sort a list, solve a linear system, or the like; further- 
more, they required little manpower to write and maintain, often being created 
by a single programmer. 

For the sake of brevity, it will often be referred to as "the Environment." 
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Since that time software projects have increased in scope, attempting to per- 
form more complex tasks, growing to hundreds of thousands or millions of 
SLOC, and requiring teams of dozens, if not hundreds, of programmers. Exam- 
ples include operating systems, telephone switching systems, and embedded 
weapons systems. 

Aside from their sheer size, the complexity of these development projects is 
increased by several other factors. Often the software must run on multiproces- 
sors, or on communicating nodes in a network of computers; in such situations, 
deadlock avoidance and asynchronous event handling are often necessary. 
These large systems typically have long lifetimes and frequently thus involve 
extensive error correction and/or addition of features. Finally, some are intended 
from the beginning to run on a variety of platforms, or migrate to other hardware 
in mid-life. As might be expected, many such large-scale software development 
projects have been less than completely successful; Brooks opens The Mythical 
Man Month with an eloquent description of the situation: 

No scene from prehistory is quite so vivid as that of the mortal 
struggles of great beasts in the tar pits. In the mind's eye one sees 
dinosaurs, mammoths, and saber-toothed tigers struggling against 
the grip of the tar. The fiercer the struggle, the more entangling the 
tar, and no beast is so strong or so skillful but that he ultimately 
sinks. 

Large-system programming has over the past decade been such a 
tar pit, and many great and powerful beasts have thrashed in it. 
Most have emerged with running systems—few have met goals, 
schedules, and budgets. Large and small, massive or wiry, team 
after team has become entangled in the tar. No one thing seems to 
cause the difficulty—any particular paw can be pulled away. But 
the accumulation of simultaneous and interacting factors brings 
slower and slower motion. Everyone seems to have been surprised 
by the stickiness of the problem, and it is hard to discern the nature 
of it. But we must try to understand it if we are to solve it.1 

In spite of the understandable reluctance of Government contractors to dis- 
close the degree to which their systems fail to meet specifications, there is evi- 
dence that Government software projects are particularly susceptible to these 
problems. One study evaluated the success of nine software development pro- 
jects performed for the Department of Defense (DoD) (Comptroller General of 
the United States 1979). The value of these contracts was $6.8 million; that total 
expenditure may be broken down as follows: $3.2 million for software that was 
delivered to the Government but never successfully used, $1.95 million for 
software that was never delivered, $1.3 million for poor quality software requir- 
ing extensive modification or ultimate abandonment, $198,000 for software that 
had to be modified before being used, and only $119,000 for software used as 

From (Brooks 1975, p. 4); © 1975 Addison-Wesley, reprinted by permission. 

Chapter 1   Introduction 



delivered. Although small in scope, this study unfortunately seems to be 
representative of software development in general. (Other more recent fiascos 
are noted in (Brown, Earl, and McDermid 1992, p. 8-9)) 

What are the reasons for this sorry state of affairs? Before answering this 
question, it will be useful to separate causes from effects. Of the latter, seven 
stand out (Fisher 1976, p. 2-3). Software does not satisfy user's needs; it is not 
responsive. Software fails; it is unreliable. Software costs to much and the costs 
are unpredictable; it is expensive. Software is difficult to modify; it is unmain- 
tainable. Software is delivered late and without all the specified features; it is 
not timely. Software is difficult to move from one system to another; it is not 
portable. Finally, software consumes too much processor time and memory; it is 
inefficient. 

As noted in (Booch 1987, p. 7-10) and (Devlin 1980, p. 2), however, these are 
symptoms of other more fundamental problems, five of which are described 
below. (1) Organizations responsible for supervision of software development, 
as well as those involved in the development process itself, do not understand 
the implications of good software engineering practice (or the lack thereof) on a 
project. (2) There is a continuing shortage of trained software engineers. 
Indeed, many computer science programs do not even offer courses in software 
engineering. When they do, the courses are often optional and viewed as not 
central to the discipline (Frakes, Fox, and Nejmeh 1991, p. 3). (Refer to (Gibbs 
and Ford 1986) and (Shaw 1986) for further information on this issue.) (3) Von 
Neumann architectures discourage good software engineering practice. 

Conventional programming languages are growing ever more enor- 
mous, but not stronger. Inherent defects at the most basic level 
cause them to be both fat and weak: their primitive word-at-a-time 
style of programming inherited from their common ancestor—the 
von Neumann computer, their close coupling of semantics to state 
transitions, their division of programming into a world of expres- 
sions and a world of statements, their inability to effectively use 
powerful combining forms for building new programs from exist- 
ing ones, and their lack of useful mathematical properties for rea- 
soning about programs.1 

(4) Programmers view their activity as an art and resist using new methodologies 
that would improve their efficiency. Ironically, programming teams that insist on 
replacing last year's system with the latest hardware are quite content to use 
development techniques thirty years old. (5) Organizations consistently underes- 
timate the difficulties associated with and the resources required for the develop- 
ment of large software systems. They add personnel to large projects with a mis- 
guided optimism similar to the belief that if one woman can produce one baby in 
nine months, then nine women can produce one baby in one month. Further- 
more, project leaders who would agree that it is impossible to build a 100-story 

From (Backus 1978, p. 613); © 1978 ACM, reprinted by permission. 
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skyscraper with the same tools and materials used for a two-story townhouse, 
nevertheless ask their developers to create million SLOC applications with the 
same tools they used for those of 1000 SLOC. 

Further discussion of issues related to the creation of large software systems 
may be found in (Newport 1986) and (Wilson 1987). For a more thorough 
exploration of the issues related to large-scale software system development see 
(Brooks 1975, Byrne 1991, Feiler and Smeaton 1988). 

Program Development Environments 

Just as programming languages have evolved, so have tools for software 
development. Originally developers were equiped with no more than assem- 
blers, compilers, linkers, and loaders. Interactive time-sharing systems made 
possible interactive line editors, and then full-screen editors, as well as other 
tools. By 1980 a variety of tools were available on time-sharing systems to sup- 
port the implementation phase of the software life cycle (Barstow, Shrobe, and 
Sandewall 1984,Hünke 1981). That same year, of course, also marked the intro- 
duction of Ada as the DoD language of choice for embedded systems. The 
development tools then available for these systems were still minimal, typically 
including only a compiler, linker, and editor, as well as being poorly integrated. 

The DoD recognized that instituting a standard language was only the first 
step in addressing the software crisis; an Ada programming support environment 
(APSE) to facilitate development of programs in Ada would also be necessary. 
Using discussions from a 1978 workshop (Standish 1978) as initial input, DoD 
followed the Ada model by issuing a series of increasingly more specific APSE 
requirement documents: SANDMAN, PEBBLEMAN (High Order Language 
Working Group 1978, High Order Language Working Group 1979), and STONE- 
MAN (High Order Language Working Group 1980, Buxton and Druffel 1980). 
The STONEMAN APSE, as originally envisioned by DoD, would span the entire 
software life cycle. Furthermore, it was to be an integrated environment; APSE 
tools would not only access the Ada program under development, but would also 
be capable of communicating with other tools in the environment. Finally, the 
APSE was to have an intuitive, easy-to-use interface. 

The STONEMAN model, shown in Figure 1, consists of four layers. Level 0, 
the host hardware and software, is the lowest of these and serves as the founda- 
tion for the other layers. 

Level 1, called the kernel APSE (KAPSE), contains all the facilities neces- 
sary to execute Ada programs. A central feature of the KAPSE is an object data- 
base containing, for example, the APSE tools themselves, other Ada program 
units, test data, and program designs. The KAPSE also includes an Ada run-time 
system and mechanisms for tool intercommunication and database access. 

Level 2 is the minimal APSE (MAPSE); it provides those functions which 
were deemed both necessary and sufficient for Ada program development and 

Chapter 1   Introduction 



User Interface Tool Interface 

Figure 1.  The STONEMAN APSE model (adapted from (Hitchon et al. 1989, p. 4)) 

maintenance. Twelve tools were included in this basic set: compiler, text editor, 
pretty printer, linker, loader, variable cross referencer, static analyzer, dynamic 
analyzer, terminal interface, file manager, simple command interpreter, and 
configuration manager (Sommerville and Morrison 1987). 

Level 3 is Hat full APSE. It extends the MAPSE by providing additional sup- 
port for specific applications or design methodologies. Examples of such exten- 
sions include an Ada-sensitive editor, documentation system, configuration 
management and version control (as distinct from just configuration manage- 
ment), fault reporting system, project management tool, software metrics 
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collectors, support for requirements analysis and system design, automatic pro- 
gram verifiers, and an Ada-based command interpreter (Sommerville and 
Morrison 1987). 

Since the release of STONEMAN, computer-aided software engineering 
(CASE) has grown, both as a research area and as an industry. The commerciali- 
zation of the field has resulted in coverage of all phases of the development pro- 
cess by a vast number of tools; furthermore, techniques for integrating these 
tools in a coherent fashion has become an important field of study (Brown and 
Penedo 1992, Morris, Feiler, and Smith 1991, Wasserman 1990). 

When an amalgam of tools purports to cover two or more phases, the result is 
often referred to by its vendor as an "environment." To clarify what is meant by 
this term and, more specifically, to understand the scope of applicability of the 
Environment, it will be useful to present the SEE taxonomy of Sommerville and 
Morrison.1 

• Teaching and learning environments are intended for use by beginning pro- 
grammers. Their syntax and debugging aids free the novice programmer to 
concentrate on problem solving and program development. The Cornell Pro-. 
gram Synthesizer (Teitelbaum and Reps 1981) is an example of such a sys- 
tem. 

• Nonprofessional environments are designed to support rapid program 
development by users who are not professional programmers. UCSD Pascal 
and the versions of BASIC available on most microcomputers fall into this 
category. 

• Language-oriented environments provide professional programmers with an 
integrated suite of tools for developing software in a particular language. 
"The programmer using the supported language L sees, in effect, an L- 
machine rather than a brand X computer running some operating system 
which includes a compiler for L."2 Smalltalk environments (Deutsch 
1985, Goldberg and Robson 1983,Krasner 1983) are examples of this class. 

• General-purpose environments are intended for professional programmers 
and are language independent. Their tool support for implementation and 
testing is extensive, but that for other phases is typically sparse. The UNIX3 

Programmer's Workbench (Dolotta, Haight, and Mashey 1978, Kernighan and 
Mashey 1981,Mitze 1989) is the prime example of this category. 

The category titles used in this taxonomy are from (Sommerville and Morrison 1987, pp. 27- 
28); © 1987 Addison-Wesley Publishers Limited, reprinted by permission. 
2 From (Sommerville and Morrison 1987, p. 28); © 1987 Addison-Wesley Publishers Limited, 
reprinted by permission. 
3 UNIX is a trademark of X/Open. 
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Software design environments, as the name implies, focus on the design 
phase of the software life cycle. These are typically graphically-oriented 
tools which support a particular design methodology. The AIDES environ- 
ment, PRISM, and the Analyst are examples of this class. 

Integrated project support environments (IPSEs) are the most sophisticated, 
including tools for requirements analysis, design, specification, code develop- 
ment, office automation, and project management. Because they provide 
facilities to support the entire software life cycle, they reach their full poten- 
tial when applied to the development of large software systems. ISTAR is an 
example of this type of environment (Graham and Miller 1988, Stenning 
1986). 

Integrated Project 
Support Environments 

Software Design 
Environments 

General-Purpose 
Environments 

Language-Oriented 
Environments 

Non-Professional 
Environments 

Teaching/Learning 
Environments 

Project 

Small Medium Large Size 

Figure 2. Range of applicability of various types of environments (from (Sommerville 
and Morrison 1987, p. 29); © 1987 Addison-Wesley Publishers Limited, 
reprinted by permission) 
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Using Sommerville's taxonomy, the full APSE is probably best viewed as a 
language-specific IPSE. The relative range of applicability of these environ- 
ments is illustrated in Figure 2. Further information on SEEs is available from a 
number of sources, including (Barstow, Shrobe, and Sandewall 1984, Bennett 
1989, Brown, Earl, and McDermid 1992,Hiinke 1981, Long 1990,Sommerville 
1986). A classification of case technology, including a discussion of the rela- 
tionship of various types of environments to CASE technology in general has 
recently been presented in (Fuggetta 1993). 

How well do such environments address the various phases of the software 
life cycle? Unfortunately, as noted in (Schefström 1990), there is a dichotomy in 
CASE technology. At one end of the spectrum are "back-end" CASE environ- 
ments, such as Interlisp and Smalltalk-80, while at the other are "front-end" 
CASE tools such as Cadre's Teamwork, IDE's Software through Pictures (StP), 
and Rational Rose. The former assist programmers by focusing on implementa- 
tion and testing, while the latter assist project managers with specification and 
design. As will be seen, the basic, unadorned Environment is a back-end tool. 

Front-end and back-end CASE tools are typically not well integrated; the 
resulting gap between tools for the "generals" and tools for the "troops" makes 
it difficult to move from design to implementation. Furthermore, because many 
software development efforts are preceded by business process modeling or 
reengineering (D. Appleton Company 1992), and because the software tools 
which support these activities communicate poorly with front-end CASE tools, 
there is a second tool integration gap. This overall situation is illustrated in Fig- 
ure 3. 

Where does the Environment fit in this taxonomy, and to what degree does it 
suffer from the discontinuities noted above? Schefström, in the same paper 
noted above, stresses the need for a "homogeneous CASE" environment built 
around a "semantically unified internal form" and containing a "design editor", 
"program editor", and "(incremental) compiler/checker".1 He elaborates on the 
Environment's capabilities in the following complimentary yet critical evalua- 
tion. 

The effort that most closely adhered to the original vision of an 
APSE was however the Rational Environment. Starting as a small 
venture capital company, they took the spirit from Stoneman, Inter- 
lisp, Smalltalk, and the language oriented editor approaches, and 
implemented a tightly integrated development environment for 
Ada. Integration, and tailoring for the purpose, was taken very far, 
with a special purpose hardware supporting an operating system 
that is completely dedicated towards production of Ada software. 
The compiler was built to be incremental, and most tools work 
against the internal representation of the programs. 

1 These phrases are from (Schefström 1990, pp. 133,135); © 1990 Cambridge University Press, 
reprinted by permission. 
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Activity Data Reqmts. nesian lmple" Testina Main" 
Modeling       Modeling       Analysis 9 mentation 9 tenance 

Figure 3.   Spectrum of applicability of life cycle tool types (adapted from (Schefströ'm 
1990, p. 132); © 1990 Cambridge University Press, reprinted by permission) 

While almost all other language oriented editors provided syntax 
oriented support, whose importance in a broader perspective can be 
questioned, the Rational environment could provide further ser- 
vices like interactive cross referencing and semantic completion. 
This, together with a number of well integrated services for 
configuration control and documentation support, made Rational be 
an environment that people really liked to work with. The same 
property that made it initially possible to explore the benefits of 
tight integration, was at the same time however a problem. The 
special purpose hardware and proprietary operating system, 
together with the implied major investment, can make many poten- 
tial users hesitate. The Rational environment is however one of the 
few novel environments that has been made a stable product in 
industrial use.1 

In spite of this criticism, the Environment has been used successfully on several 
very large (1,000,000+ SLOC) projects; in that sense it qualifies as an IPSE. 
Furthermore, as will be noted in a subsequent section, Rational has responded to 
this criticism with a significant new product. However, perhaps the true test of 
the effectiveness of the Environment is the degree to which it supports the vari- 
ous phases of the software fife cycle, and at the same time closes the tool 
integration gaps noted above. The remainder of this report will focus on how 
well the Environment meets that test. 

1 From (Schefström 1990, p.  129); © 1990 Cambridge University Press, reprinted by 
permission. 

Chapter 1   Introduction 



2 Description of the Rational 
Environment 

Overview 

Rational refers to its strategy for software engineering with Ada as "Rational 
Control." The four parts of this strategy are (1) the Rational Environment itself, 
(2) the ability to integrate many popular third party CASE tools and development 
aids into the Environment, (3) interfaces for Ada compilers on almost every plat- 
form, and (4) a dedication to customer service. Together, these components 
address a broad spectrum of software development activities, from analysis and 
design, through implementation, to testing and maintenance. How this is accom- 
plished will be discussed in the following sections (Rational 1992 Document D- 
81). 

The product which serves as the cornerstone of Rational Control is the 
Rational Environment. Broadly speaking, the Environment is intended to pro- 
vide, in a highly integrated fashion, tools and capabilities to address all aspects 
of the software life cycle. It is intended to facilitate the development of large- 
scale software systems in Ada. Appropriately, the Environment is itself a large 
Ada system and as such was developed and is maintained using its own facili- 
ties. 

As illustrated in Figure 4, the Environment has a layered structure; at the core 
is the information repository, a database of information on the system under 
development. The next layer is a programmatic interface to this database which 
provides a consistent mode of access to the information. Rational's 
Configuration Management and Version Control (CMVC) uses this interface to 
maintain program consistency and integrity and to facilitate the activities of 
teams of developers working on multiple versions of a large program. The outer 
layer consists of a graphical user interface (GUI) equipped with a suite of tools 
with which the developer interacts. Examples of these tools include Rational's 
Ada language-sensitive editor and debugger and third-party CASE tools such as 
Cadre's Teamwork. Together, the features provided by this layered approach 
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Figure 4.   Logical relationship between environment components (from (Rational 1992 
Document D-81, p. 5)) 
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provide an effective means to produce Ada software (Rational 1992 Document 
D-76). 

The R1000 Software Engineering Server 

The prototype of the Environment was developed during the early 1980s. 
Testing of this prototype convinced its implementors that the then current 
hardware platforms were several orders of magnitude too slow to support the 
type of interactive software development they had envisioned. As a result, 
Rational built a processor specifically designed to support the Environment. The 
current incarnation of this system is the R1000 Model 400. 

Whereas most system designers focus on the implementation of a relatively 
low-level instruction set, the architects of the R1000 concentrated on providing 
hardware features which would speed the development, compilation, and execu- 
tion of Ada programs. This was a formidable task, since Ada requires strong 
type checking across module interfaces. Furthermore, changes to statements and 
data definitions require recompilation of dependent modules to maintain program 
consistency; this can result in cascading recompilation of numerous packages 
and modules. 

The required speed is obtained through parallelism, wide data paths, and 
hardware assists for time-consuming tasks normally implemented in software. 
Whereas conventional processors are able to directly operate on data items of 
types such as byte, integer, and float, the basic data object on the R1000 is a 
128-bit control word. The upper 64 bits of this control word contain an arith- 
metic value while the lower 64 bits contain a pointer to a type descriptor. During 
execution each of these 64-bit fields is routed to a dedicated arithmetic unit. The 
value unit performs the requested operation while the type unit simultaneously 
performs type checking. This allows two common activities, mormally done 
sequentially, to be done concurrently. To speed the transfer of these oversized 
control words, the main memory bus is 128 bits wide. 

Another frequently occurring task is the packing and unpacking of data. This 
is commonly done in software by means of repeated shifts, ANDs, and ORs. 
Another component of the R1000 CPU, the field insertion unit (FIU) provides 
hardware control of this process by inserting or extracting the necessary data and 
pointer fields from the 128-bit control word. To further speed this process, a 
separate 64-bit bus connects the FIU to the value and type arithmetic units; this 
reduces the possibility of contention on the main memory bus. 

A third major architectural enhancement involves the RIOOO's memory sub- 
system. Virtual memory management is traditionally handled by the operating 
system. Hardware support for this activity is generally limited to virtual address 
registers and a translation look-aside buffer which serves as an address cache, 
The R1000, however, performs the administrative tasks associated with page 
swaps and task management using microcoded hardware, thus providing yet 
another significant boost in performance. 
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System reliability was also an important concern in the design of the system 
and a number of steps were taken to address this issue. Proven, off-the-shelf 
peripheral devices were used and the workhorse DEC PDP-11 was incorporated 
as the I/O processor. The number of wired connections is reduced by using 
dense eight-layer circuit boards with foreplane and backplane connections. An 
additional microprocessor is installed on every CPU board to monitor board 
status, These monitor chips gather diagnostic data which is saved on system 
disks for later use. This information is used for quality control during the 
manufacturing phase and for preventive maintenance and fault location after the 
system is installed at a customer site. If an R1000 fails, an attached autodial 
modem calls the factory and transmits information which enables service person- 
nel to bring the appropriate spares with them to the site. Additional general 
information on the R1000 may be obtained from (Rational 1992 Document D- 
80) and (Caruso 1985). R1000 system performance has been addressed in (Lam- 
son 1991). 

The Information Repository 

The Ada Language Reference Manual requires that a certain amount of syn- 
tactic and semantic information generated by an Ada compiler persist beyond 
compilation time. This is necessary, for instance, to enable the compiler to 
enforce the integrity of interfaces when the associated packages and procedures 
are (re)compiled. Much of this information must be obtained in any case, either 
explicitly or implicitly, during the lexical analysis and parsing phases of compi- 
lation. Unfortunately, however, this data is typically discarded after the object 
code is generated and must be reproduced when a module is recompiled. The 
Environment avoids this inefficiency through use of the Descriptive Intermediate 
Attributed Notation for Ada (DIANA). 

DIANA is a intermediate form of Ada programs which has been 
designed to be especially suitable for communication between two 
essential tools—the Front and Back Ends of a compiler—but also 
to be suitable for use by other tools in an Ada support environment. 
DIANA encodes the results of lexical, syntactic, and static seman- 
tic analysis, but it does not include the results of dynamic semantic 
analysis, of optimization, or of code generation.1 

As envisioned by its creators, DIANA is an abstract data type based on the 
mathematical model of attributed trees. It has a number of important properties. 
First, although the terms "abstract syntax tree" and "attributed parse tree" are 
often used in descriptions of DIANA, the notation is representation independent; 
i.e., instances of the the DIANA abstract data type do not necessarily have to be 
implemented using records containing pointers to other records. Second, 
DIANA is based on the formal definition of Ada; specifically, given the DIANA 
representation of an Ada program, it is possible to regenerate the original source 

1 From (Goos et al. 1983, p. 7); © 1978 Springer-Verlag, reprinted by permission. 
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code, except for comments. Finally, DIANA was designed to be both efficiently 
implementable as well as extendable; the existence of the Environment is prob- 
ably the best evidence of the designers success in these respects. Further infor- 
mation on DIANA is available in the reference manual (Goos et al. 1983). 

The information repository of the Environment may be viewed as an object 
database containing Ada programs represented using DIANA. A programmatic 
interface defines the specific operations which may be performed on database 
objects and thus protects them from uncontrolled access. Rational's own CMVC 
is built on top of this interface. The utility of the repository is increased by its 
ability to save objects of other types, including requirements specifications and 
design documents. The advantages to this centralized repository approach are 
several. First, availability of the programmatic interface encourages automation 
of many development activities. Second, the programmatic interface is 
methodology-independent, allowing use of whatever technique is appropriate. 
Third, the repository allows traceability from implementation back to require- 
ments analysis and design; i.e., it is possible to determine which design decision 
motivated the construction of a particular Ada unit. Fourth, a centralized reposi- 
tory promotes consistency and thus aids in quality assurance. Fifth, the transi- 
tion from one life cycle phase to the next is easier because the results of the 
current phase serve as the foundation for the next and are readily available in 
machine readable form. Finally, the standard programmatic interface to a single 
database of project information promotes compatibility with other software 
development tools (Rational 1988 Document TO-1), thus addressing the tool 
integration problem noted earlier. 

Support for Basic Development Activities 

This section will describe how a typical software engineer would use the 
Environment. Like UNIX, the R1000 operating system provides basic security 
functions; a user must supply a user name and a password to gain access to the 
system. Additionally, the system requests a "session name" to uniquely identify 
the current login; multiple sessions are allowed. The user is then presented with 
a screen divided into one or more work areas called "frames;" the default is 
three. Each frame consists of a "major window" and an arbitrary number of 
"command windows," limited, of course, by the frame size. Major windows are 
used to display "images" of "objects" while command windows display com- 
mands for execution. The Environment recognizes several different types of 
objects, including files, Ada units, and libraries. Images of large objects may not 
fit within the window, so the window is actually a viewport presenting a portion 
of the image. Altering the image of an Ada unit, for instance, does not alter the 
underlying object it represents. Objects must be explicitly updated. 

The Environment provides the customary functions to aid in window 
management; users may resize, reposition, or remove windows at their discre- 
tion. Windows themselves are treated as objects and are saved in a special win- 
dow directory. When the Environment creates a new window (as a result of 
some user directive), an entry is created in this directory and the window image 
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is displayed in the least recently used screen frame. Only the image of a window 
is overwritten on the display, not the window object itself. Thus any window 
image may be recalled to the display at a later time. The Environment aids the 
user in managing this process by marking the next window to be replaced with a 
tilde (~) in the window banner and by allowing a window to be "locked" to 
prevent its image from being overwritten. Windows locked in this manner have 
their banners marked by the at sign (@). 

As noted above, each major window has zero or more command windows 
associated with it. An Ada declare block is displayed in each command window 
and users may enter one or more Ada statements into this block. Incomplete 
command fragments may be automatically finished using 1 complete]* and then 
executed using |promote |. All activities, from resizing windows, to invoking the 
compiler, to interacting with the configuration management system may be 
accomplished via interactive execution of Ada statements. (This capability is 
essentially the Ada-based command interpreter noted earlier in the discussion of 
the full APSE.) Often, only a single procedure call is necessary to accomplish a 
given task. 

Various keyboard aids are provided for the convenience of users; frequently 
used commands are bound to function keys to increase developer proficiency. 
Users may customize the keyboard by defining additional command-function key 
bindings. |help] followed by any function key will result in the display of a help 
window describing the task performed by that function key. Further information 
on function keys, commands, and tools may be obtained from the basic opera- 
tions manual (Rational 1988 Product Number 4000-00116) and the user's guide 
(Rational 1988 Product Number 4000-00117). 

The Environment provides an Ada-knowledgeable editor. As indicated ear- 
lier, the editor operates on an object image, not directly on an object. 1 promote 
actually updates the underlying object and exits the editor; 1 enter] accomplishes 
the same function but allows editing to continue. All basic text editing opera- 
tions including entering, deleting, moving, copying, searching, and replacing text 
are available. The real power, however, of the Rational editor is the result of two 
important features, formatting and semanticization. Formatting is accomplished 
using |format| and may be periodically performed during an editing session, even 
prior to the completion of a particular Ada unit. Formatting checks for syntax 
errors, finishes incomplete statements where it can, and where it cannot, supplies 
prompts. Function keys allow the user to walk through the prompts, allowing 
entry of additional code. As part of this process formatting cosmetically restruc- 
tures the program text to conform to previously specified programming standards 
("pretty-printing"). A simple illustration of the effect of formatting is given in 
Figure 5. 

A second important capability is semanticization. As the name indicates, this 
function performs semantic checking; this includes verification of type 

1 This notation refers to a keystroke or selection of a menu option. 
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Before format 

procedure calculate_statistics 
is num_of_points : integer 

After format 

procedure Calculate_Statistics is 
Num_Of_Points : Integer; 

begin 
[statement] 

end Calculate_Statistics; 

Figure 5.   Example of the effect of format 

compatibility, comparing the types of actual parameters with those of formal 
parameters, and detection of undeclared objects. Semanticization may even be 
performed on program fragments. 

The Rational program development model is fundamentally different from 
the conventional model. The conventional model of program development is file 
oriented. A source file is created using an editor and translated by a compiler to 
produce an object file; this object file is then linked to produce an executable file. 
This process carries with it an inherent risk that an out-of-date version of an Ada 
unit will be inadvertently used or that a unit with only cosmetic modifications 
will be recompiled. 

The Rational model avoids these problems by maintaining an Ada unit as a 
single object which exists in one of three states: source, installed, or coded. A 
unit in the source state is editable, but is not guaranteed to be syntactically or 
semantically correct. An installed unit is not editable in the usual sense; only 
certain restricted types of modifications may be performed on it. It is, however, 
syntactically and semantically correct and may be referenced, or "withed," by 
other Ada units. A unit in the coded state also has this consistency and referen- 
ceability, but unlike an installed unit only its specifications may be modified. 
Importantly, this last state is the only one for which machine code is generated. 

From a user perspective, the mechanics of performing these transitions is 
quite simple. Assuming the Ada unit is syntactically and semantically correct, 
successive applications of | promote] will move a unit from the source state to the 
installed state to the coded state, and finally execute it. | demote | will migrate a 
unit in the reverse direction. It is also possible to explicitly move one or more 
units to a particular state. More specifically, there is the capability to promote all 
units in a library to the coded state with a single command, in which case the 
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Environment handles all compilation dependencies and maintains the program's 
overall semantic consistency. 

From a system perspective, transition from the source to the installed state 
requires that the DIANA representation of the Ada unit object be created, while 
transition from the installed to the coded state requires that a machine code 
representation be generated. In conventional terms, these two transitions are 
equivalent to the processing performed by the front and back ends, respectively, 
of a compiler. Importantly, however, the associated DIANA tree and machine 
code are viewed not as separate files, but as information associated with a single 
object. 

An important feature of the Environment is the ability to "browse" through a 
program. While editing or debugging a particular Ada unit a software engineer 
often needs to know a variable's type definition, to determine the purpose of a 
subprogram, or to find other locations where a variable or unit is referenced. 
When using a conventional system this requires searching through one or more 
files using utilities such as grep and find. Using its DIANA-based program 
representation, the Environment provides a much more satisfactory and con- 
venient mechanism for accomplishing such tasks. Moving to the enclosing Ada 
unit is performed using!enclosing|. [other part] allows a developer to move back 
and forth between a unit's specification and body. The definition of a particular 
program structure may be located by first selecting the item of interest, such as a 
variable reference, and then using]define! to display the item's definition. Pro 
gram structures may be easily selected using |object! hi conjunction with the four 
arrow keys; this process is best understood in the context of the DIANA tree 
representation of an Ada unit. Using 1 object! I<—1 moves toward the root, select- 
ing larger and larger program structures, while |object! [—>1 moves away from the 
root, focusing on more and more specific program fragments. |object] [T] and 
object! [T] allow lateral movement to neighboring branches. For example, if the 
second statement of a block is currently selected, then | object! [Q (up the screen) 
will select the first statement while 1 object | [I] (down the screen) will select the 
third. These browsing and selection features are particularly valuable when the 
software system is large and complex. 

The Environment debugger is powerful, yet easy to use. A developer merely 
turns on debugging mode; recompilation is unnecessary. The debugger allows 
execution to proceed until a fault or checkpoint is encountered. Single-step exe- 
cution, establishment and removal of checkpoints, display of variable values, and 
display of the call stack, are all possible. The browsing facility may be used in 
conjunction with the debugger to move back up through the calling sequence and 
locate the source of a problem. Additionally, the debugger keeps a log of user 
interactions which may be saved for later inspection. 

Because conventional systems do not take the syntax and semantics of a pro- 
gram into consideration, a seemingly minor modification to a simple program 
unit may require recompilation of many other units, and of course the modified 
unit itself must be recompiled in its entireity. Many such systems use only time 
stamps to determine system consistency, and so even cosmetic changes 
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involving indenting or comments require unit recompilation. 

The Environment avoids much of this work because programs are represented 
using DIANA trees. Because the Environment manages dependencies at the 
statement level, the impact of a change is greatly reduced. Furthermore, DIANA 
enables incremental compilation of individual statements or declarations, thus 
avoiding recompilation of an entire unit. Specifically, it is possible to incremen- 
tally add, change, or delete statements and declarations without dependencies in 
unit bodies in the installed state and in package specifications in the installed or 
coded state. Comments in any installed or coded unit may be manipulated in any 
fashion. Modifications to declarations with dependencies may still require 
significant recompilation, but even then the system will provide notification of 
the potential impact of the impending change, thus allowing the developer to 
make an informed decision about proceeding any further. 

Subsystems 

As noted earlier, the Environment is written in Ada and is the APSE used for 
its own development and maintenance. As the Environment grew in size, the 
nature of the problems developers encountered differed significantly from those 
arising in smaller projects. Specifically, it became increasingly difficult to limit 
unplanned dependencies between units. This situation, termed "design degrada- 
tion," increased compilation time and the additional program complexity made 
the code difficult to maintain. Furthermore, this complexity was preventing mul- 
tiple development teams from working in parallel, resulting in a loss of produc- 
tivity. Finally, as the project grew to several hundred thousand SLOC, these 
problems slowed development to a crawl and the project entered a "thrashing" 
mode. This phenomenon is not unique to the Environment; anecdotal evidence 
indicates that other large projects have encountered similar problems at approxi- 
mately the same number of SLOC. It became clear that a level of abstraction 
higher than the Ada package was necessary and that tools would have to be pro- 
vided to support this abstraction. Subsystems provided a solution to these prob- 
lems. 

Some discussion of Ada system structure is necessary to understand the sub- 
system concept. Figure 6 shows the topology of a hypothetical Ada system. Ada 
compilation units are represented by nodes having a specification, or "spec," 
(unshaded) and a body (shaded), while arrows represent dependencies (parents 
depend on children). Note that the origin of an arrow is significant; either the 
specification or the body of a unit may depend on the specification of another 
unit. Typically, when a unit is modified, it must be recompiled, along with any 
other units which directly or indirectly depend on it. Figure 6 also illustrates this 
idea by lightly shading the units which must be recompiled as a result of the indi- 
cated modification. Such cascading dependencies often result in lengthy recom- 
pilations. Subsystems help limit the impact of such changes by providing a 
higher level mechanism for grouping Ada units together. 
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Figure 6.   Recompilation required by cascading dependencies 
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Like all other entities, subsystems are treated as objects by the Environment. 
A subsystem object may be thought of as a "superpackage" with many of the 
same attributes and features as a package. Subsystems have specifications (or 
exports) which list the resources (e.g., packages) available for use by other sub- 
systems. Subsystem imports list the other subsystems on which this subsystem 
depends. The implementation portion consists of the actual Ada code imple- 
menting the subsystem's features and resources; it is analogous to a package 
body, but may also contain design documents, test programs, and other related 
material. Finally, a subsystem contains history information recording when the 
subsystem was created, modified, compiled, and released. 

Subsystems have proved to be a powerful mechanism fo addressing problems 
that arise in large Ada system development. Because the Environment provides 
for separate compilation of subsystems, they may serve as "firewalls" which 
limit the scope of a recompilation. If the changes are restricted to a subsystem 
body, then only units in that subsystem will be recompiled. This has the poten- 
tial for reducing compilation time and increasing developer productivity. Sub- 
systems reduce the tight coupling between the various components of a large 
software system, and thus promote the work of parallel development teams. 
Finally, subsystems provide a coarse-grained building block for large system 
design, a benefit which is enhanced through the use of graphical design tools (to 
be discussed later). Further information on the use of subsystems in the context 
of large system development may be found in (Rational 1988 Document 6004). 

Configuration Management and Version Control 

Management of a software development effort is in many respects similar to 
the management of other product development activities. A number of 
managerial and technical issues must be addressed to ensure success, including 
breaking the project into units of manageable size, specifying how these units 
join together, actually completing the units, testing the units individually and as 
a whole, releasing new versions of the product, and coordinating the efforts of 
the development team (Rational 1988 Product Number 4000-00129, p. PM-1). 
Large projects of any variety are inherently complex and require commensurate 
amounts of time, material, and personnel to complete. 

This complexity and the burdens it imposes on a development team have 
already been noted for the case of large software projects. However, two aspects 
of software development efforts make them unique. First, like a hammer on a 
fragile statue, a very localized change may have drastic and unfortunate side 
effects. Stated another way, large software systems seem to be more "brittle" 
than other products of similar size. Perhaps this is why the production of such 
systems is often treated as an art, and why, even after several decades of of 
effort, attempts to impose a discipline on the process have been less than suc- 
cessful. To use the statue analogy, software is too often sculpted instead of 
engineered. 
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A second differentiating aspect of software development is more positive. 
Because computers are unavoidably involved in the process, it is convenient to 
use them to automate the management of a project's complexity. In fact, it is 
possible to use automation to one extent or another to address all of the 
managerial and technical issues noted at the beginning of this section. Brooks 
quite accurately refers to this capability as "an indispensable technology."1 In 
the case of the Environment, the features that actually enable this automation of 
project management tasks are subsystems, which have already been discussed, 
and a set of capabilities collectively termed CMVC. 

Perhaps the most basic function provided by CMVC systems, including 
Rational's, is controlled access to objects. The library terminology typically 
used to describe this access provides an accurate analogy. An object (e.g., an 
Ada unit), like a library book, is "checked out," guaranteeing the user sole 
access to that object. When a developer has completed his modifications, the 
object is then "checked in." Without this capability, multiple users could simul- 
taneously access and modify the same object, possibly overwriting one another's 
work. 

Rational's CMVC, however, goes far beyond this minimal capability. Any 
object managed by CMVC is said to be "controlled" and the Environment asso- 
ciates a "reservation token" with each such object. Checking out the object is 
accomplished by acquiring this token. Information on controlled objects, includ- 
ing the status of the reservation token, is maintained in a "CMVC database;" 
there is one such database for each subsystem. When a user checks out an 
object, modifies it, and checks it back in, the Environment creates a new "gen- 
eration" of the object in the CMVC database (Rational 1988 Product Number 
4000-00129, p. PM-6). Generations are stored as "negative deltas;" i.e., the 
Environment maintains a complete copy of the most recent version of an object, 
while older versions must be reconstructed using the saved differences (deltas) 
between successive generations. 

Associated with each subsystem are one or more Ada "program libraries" 
containing the Ada units belonging to that subsystem. A "configuration" is a 
collection containing one generation of each controlled object in a program 
library. Typically, that particular collection containing the most recent genera- 
tions of all objects is called the "working library." (Brooks refers to this as the 
"playpen." (Brooks 1975, p. 133)) It is from this configuration that developers 
check out objects for modification, compilation, and testing. There must be at 
least one such working library per subsystem. 

When all of the units in a working library compile and developers are 
satisfied with the library's status, a "frozen" copy of the working library may be 
created. This copy, also called a "release," is a complete compiled program 
library. It may be thought of as a "view" or "snapshot" of the current state of 
the project. Rational refers to a succession of such releases generated from a 

1 From (Brooks 1975, p. 133); © 1975 Addison-Wesley, reprinted by permission. 
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particular working view as a "development path." This concept is illustrated in 
Figure 7. 

This situation becomes more complicated when a project involves multiple 
subsystems. The released and working views noted above are "load views" 
containing complete implementations of all subsystem components. However, it 
is not always necessary to have such a full implementation; as an example con- 
sider the following situation. When subsystem SI references (or "imports") 
resources from subsystem S2, then SI requires only interface information about 
S2 in order to compile. This information is provided by a skeletal "spec view" 
of S2 which specifies the resources S2 is willing to share (or "export") to other 
subsystems. Use of this feature on an actual project will be seen in a subsequent 
section. 

Another benefit of Rational 's CMVC is related to the integration of programs 
having multiple subsystems. Although it is generally true that the current release 
of a program is a combination of the current releases of each of its subsystems, it 
is also often necessary to assemble custom releases of the program as well. This 
may be necessary when developing customer-specific versions, or when develop- 
ers want to use older, perhaps more reliable, releases of some subsystems to 
track down problems during testing. This is accomplished by means of "activi- 
ties." An activity may be viewed as a table specifying which release of each 
subsystem to use when creating an executable program. Building a custom ver- 
sion thus involves merely defining a new activity and then directing the Environ- 
ment to assemble the precompiled views specified therein. 

Rational's CMVC has other distinctive features which enhance developer 
productivity. Descriptive text, or "notes," may be associated with every con- 
trolled object to provide additional information. Better project management is 
promoted by the use of "work orders" to assign development tasks. When they 
are used, the Environment automatically logs any CMVC commands executed in 
response to a particular work order (Rational 1988 Product Number 4000-00129, 
p. PM-15). Work orders may also be customized to suit the needs of a particular 
project. 

For an Environment-specific overview of configuration management, see 
(Morgan 1988); more general information may be found in (Dart 1990, Dart 
1992). 

Future of the Rational Environment 

What is the future of the Environment? One of its most serious shortcomings 
has been the proprietary hardware required to support it. Admittedly, this 
hardware may also be viewed as one of the Environment's strengths, and the rea- 
sons behind the development of that hardware have already been presented. 
Nevertheless, increases in microprocessor performance, particularly those with 
reduced instruction set computer (RISC) architectures, coupled with Rational's 
view of itself as first and foremost a provider of software engineering products 
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Figure 7.   A development path (adapted from (Rational 1988 Product Number 4000- 
00129, p. PM-9)) 
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and services, led the company in 1991 to begin development of an "open- 
systems" version of the Environment. Apex, as this new version is called, was 
introduced in August 1993 and is currently available on two RISC platforms: 
IBM RS/6000 and Sun SPARC. 

Apex contains all of the key software engineering features of the 
proprietary-platform version of the Environment. The persistent intermediate 
representation based on DIANA is still the key to its unique functionality. The 
capabilities for syntactic and semantic completion within the editor, hypertext 
browsing of programs, integrated debugging, and CMVC are all present in the 
new product. Moreover, Apex is more than just a port of the Environment to a 
UNIX platform. Several enhancements, including replacement of the R1000 
incremental compilation technique with "optimal recompilation," an improved 
software release mechanism, and support for mixed language programs (e.g., 
Ada and C++), make Apex a true next generation software engineering product. 

Apex is not a closed, proprietary environment built on top of UNIX. When- 
ever possible, Apex developers used capabilites provided by UNIX, the X Win- 
dow System (X), and the Motif window manager. Unlike the R1000 Environ- 
ment, APEX does not include a file system, window manager, mail handler, 
security and accounting facilities, or system administration functions, because 
those features are already supplied by the operating system. It is a true Motif 
application which uses standard Motif menus, dialog boxes, and customization 
options. For example, the Motif text widget was used to construct the Apex Ada 
editor. Furthermore, users may control the appearance of the Apex interface just 
as they do other Motif-conformant applications by assigning their own values to 
the appropriate X resources in their .Xdefaults file. Additionally, all of the 
Apex functionality delivered through Motif is also available through a UNIX 
command line interface, thus allowing programmatic access through the shell. 
Apex CMVC is layered on top of the UNIX Revision Control System (RCS). 
Many of the problems related to managing large projects on multiple RIOOOs 
(Blair 1992) are resolved under Apex through use of the Network File System 
(NFS). This allows large programs formerly split across several machines to be 
logically present in their entirety on each of a team's file servers and worksta- 
tions. 

Like its RIOOO-based predecessor, Apex is a resource intensive application. 
Surprisingly, however, processor speed is not a performance bottleneck. 
"Rational Apex, even on a moderately powerful RS/6000 or SPARC worksta- 
tion, outperforms the Environment on the R1000." (Amos 1993, p. 7) However, 
users must plan to provide sufficient memory; Rational recommends a minimum 
of 32 Mbytes of memory for a single-user workstation. Instead of purchasing 
additional workstations, managers may decide to cut costs by accessing the Apex 
workstation via cheaper X terminals or PC-based X terminal emulators. If one of 
these options is selected, Rational recommends an additional 32 Mbytes of 
memory for each additional user. Disk storage is also an issue. The Apex pro- 
gram itself requires about 150 Mbytes of disk space; to this figure must be added 
whatever space is needed for Ada application development. Rational's rule of 
thumb for estimating this is 1 Kbyte per SLOC; thus a one million SLOC 
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application would require about 1 Gbyte of secondary storage. 

In spite of the many attractive features of Apex, Rational realizes that migra- 
tion of many of its RIOOO-based customers will be dictated by project-related 
and budgetary constraints. Additionally, many of Rational's layered products 
will not be available on Apex until 1994. For those reasons, Rational is continu- 
ing to support and enhance the R1000 product and is providing mechanisms for 
the two systems to run in parallel so that the user transition will be smooth. 

Chapter 2  Description of the Rational Environment 25 



3 Tools to Augment the 
Rational Environment 

This section describes several tools which enhance the functionality of the 
Environment. Some of these tools provide front-end CASE capabilities so that 
the resulting environment covers additional life cycle phases. Not all of these 
tools may be applicable to a particular project; guidance for determining if par- 
ticular tools should be acquired may be obtained from (Zarrella, Smith, and 
Morris 1991). 

Rational Design Facility 

The Rational Design Facility (RDF) is a CASE tool which runs under the 
Environment. It allows project managers to specifiy standards for system design 
and implementation and then provides for the automatic enforcement of those 
standards. Two concepts must be presented to understand the capabilities of the 
design facility: methodologies and program design languages (PDLs); these will 
be discussed before further describing this tool. 

A primary goal of software engineering is to discover better ways to develop 
software. To reach that goal, numerous step-by-step development approaches, or 
"methodologies," have been proposed. There are important differences between 
many of these, e.g., consider object-oriented versus structured methodologies. 
Nevertheless, most methodologies have the following features in common 
(Rational 1989 Product Number 4000-00362, p. 1-1). 

• The software development process is described using a life cycle model, e.g., 
waterfall or spiral. 

• This model is partitioned into life cycle phases, e.g., system analysis, require- 
ments analysis, preliminary design. 

• Design elements are used to reason about the design. 
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• Design standards specify the valid ways in which design elements may be 
used. 

• Implementation standards provide rules governing software creation. 

• Various stages of the development process require production of documents, 
e.g., software requirements specification, interface design document. 

• Finally, the methodology specifies the relationships between these com- 
ponents. 

The second important concept is that of a PDL. A program design is made up 
of design elements, and these elements are specified using a PDL. PDLs are 
more structured than natural languages, but tend to be less structured than actual 
programming languages. Generally, the more structure a PDL has, the easier it is 
to automate various design activities. Some PDLs are graphical in nature; this 
increases their intuitive appeal, but unless accompanied by some sort of support- 
ing text, it is difficult for them to capture the system design in a detailed way. 

The PDL used by the RDF is made up of structured comments termed "anno- 
tations," and various Ada statements called PDL "elements;" a fragment of 
PDL is shown in Figure 8. Although the elements could be any type of Ada 
statement, allowable elements are typically restricted to some subset of Ada. 
This subset typically includes, for instance, package and procedure statements. 
The RDF uses design rules to enforce adherence to this allowable subset; design 
rules may be customized as needed. 

The annotations used in the RDF PDL are denoted syntactically by the con- 
catenation of the Ada comment symbol (—) and the vertical bar (|); this combi- 
nation is the "annotation symbol" (— |). Annotations may be one of two types. 
A "simple annotation" consists of one or more lines of text, each beginning with 
the annotation symbol. A "key word annotation" also begins with the annota- 
tion symbol, but is followed by a key word; this key word must begin with the at 
symbol (@). Keywords may be followed by zero or more arguments. Annota- 
tions of both types may be "attached" to PDL elements merely by placing them 
adjacent to one another. Blank lines serve to "detach" an annotation from an 
element. An individual annotation is terminated by a PDL element, a following 
key word annotation, a blank line, or a blank annotation line. 

A DOD-STD-2167A-compliant design must begin with a system component, 
which is then broken down into zero or more segments. The design process con- 
tinues by expressing these highest level components as hardware configuration 
items (HWCIs) and computer software configuration items (CSCIs). Each CSCI 
must consist of one or more computer software components (CSCs). Each CSC 
is further refined into either additional CSCs or into the atoms of the process, the 
computer software units (CSUs). When using the RDF to design such a system a 
design team first creates a PDL description of each of the high level design com- 
ponents, beginning with the system (root) component and continuing through the 
HWCI/CSCI levels. This high level design is then iteratively refined by 
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@COMPONENT_KIND 
©ID 
©ABBREVIATION 
©DOCUMENT NUMBERS 

CSCI 
5 
CSCT_LSS 
(SRS   => 
PSDD  => 
SDD   => 

©CAPABILITIES 

©EXTERNAL INTERFACES 

©INTERNALINTERFACES 

©INTERFACES USED 

R-02-LSS-47A, 
D-09-LSS-22C, 
D-09-LSS-23B) 

(Initialize_Life_Support_Environment, 
Monitor_Life_Support_Environment, 
Maintain_Li fe_Support_Environment) 
(Life_Support_System_Status_Display, 
Life_Support_System_Controls, 
Li fe_Support_System_Alarm) 
(Central_Hvac_System_Control, 
Compartment_Air_Duct_ControlS, 
Compartment_Biohazard_Detectors, 
Compartment_Pressure_Gauges, 
Compartment_Radiation_Gauges, 
Gompartment_Temperature_Gauges) 
(Backup_Power_Supply_Status_Gauge, 
Bulkhead_Door_ControlS, 
Compartment_Biohazard_Sterilizers, 
External_Radiation_Scarmers) 

©PURPOSE This CSCI is the life support system for the manned 
Mars probe. As such, it both monitors and maintains 
a suitable environment for the probe's crew. 

©STATES     (Startup    (Power_On, Start_Display, Pressurize), 
Automatic  (Monitor_Status, Maintain_Status), 
Manual     (Accept_Input, Alter_Environment), 
Shutdown   (Depressurize, Stop_Display, Power_Off)) 

©ALLOCATION (Capability (Initialize_Life_Support_Environment, 
Monitor_Life_Support_Environment, 
Maintain_Life_Support_Environment)) 
(LSS_Display_Subsystem, 
LSS_Controls_Subsystem, 
LSS_HVAC_Control_Subsystem, 
LSS_Air_Quality_Monitoring_Subsystem, 
LSS_Radiation_Monitoring_Subsystem) 

package Life_Support_System is 
end Life_Support_System; 

©DECOMPOSITION 

Figure 8.   RDF PDL for a hypothetical CSCI 
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producing PDL components for CSCs and CSUs until a detailed design is pro- 
duced. 

Throughout this design process the RDF assists the designer in a number of 
ways. It provides PDL templates for the various design components and prompts 
the designer for the appropriate keyword annotation arguments. These argu- 
ments are then checked for type consistency. | edit 1 opens the library package 
specification containing the PDL for a particular hierarchical component, e.g., a 
CSCI. | PDL complete | is then used to supply the annotations required by the 
current life cycle phase. Annotation arguments are then provided by the user; 
PDL format] may be used to perform syntactic completion of these arguments. 
Finally the Ada portion of the PDL must be entered; |PDL format! may be used 
here as well. The RDF checks for design consistency by verifying that the 
design is a valid hierarchy of components of the appropriate types. Interface 
consistency is also checked by examining the @INTERFACES_USED and the 
@EXTERNAL_INTERFACES annotations in CSCI components. 

One of the most powerful features of the RDF is its document generator. This 
allows construction of hypertext documents which are linked to PDL annota- 
tions, text files, and graphics files. The ability to produce required design docu- 
ments by extracting the appropriate annotations provides a single point of 
maintenance when a document must be revised. Furthermore, any changes in the 
design are immediately reflected in the documentation. Naturally the browsing 
capability of the Environment is quite helpful in this context, allowing traversal 
between PDL and related documents. 

The RDF is a powerful design aid because of its universality and flexibility. 
Designers may customize the design rules and rely on the RDF to automatically 
enforce those rules. Finally, because the PDL is actually a subset of Ada, it is 
always compilable and allows the design to naturally evolve into the implemen- 
tation. Further information on its use may be found in (Rational 1992 Document 
D-79) and (Ripken 1988). 

Rational Insight 

Rational Insight is a front-end CASE tool which addresses the design phase 
of the software life cycle. It may be used to browse software systems residing on 
the Environment, to reverse-engineer such systems, to design a new software 
system, to experiment with alternative designs for existing systems, and to print 
design diagrams for inclusion in system documentation. Insight has a Motif- 
compliant GUI which enhances its usefulness. 

The two primary components of Insight are the Data Manager and the Illus- 
trator. The Data Manager is a server which extracts information about software 
systems; it runs under the Environment on an R1000. The Illustrator, on the 
other hand, is responsible for generating diagrams; it runs as an X application on 
a UNIX workstation. Additionally, to invoke Insight, a user must have a device 
to access the Environment and an X display to open Insight windows. The 
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access device and the display may be part of the same computer system. For 
instance, a user may install the Rational X Interface (RXI) on the same UNIX 
workstation that runs the Illustrator; in this case the workstation monitor serves 
as a local X display. It is also feasible to use a second UNIX workstation, an X 
terminal, or a PC-based X terminal emulator as a remote X display device. 
Finally, it is also possible to run Insight in batch mode without an X display; this 
is convenient when one only wishes to print a diagram. 

Insight is started using the Insight. Invoke command. Arguments to 
this command specify where in the file hierarchy the software system to be 
analyzed is located, on which machine the Illustratior is running, the name of the 
X display, as well as other information. Entering this command followed by 
promote| causes the Insight main window to appear on the X display. At this 
point a user may use the File menu to, for example, select an existing diagram for 
viewing, or to initiate creation of a new diagram file. Other menus provide 
browsing capabilities and permit selection of various tool options. 

As a brief example of the use of Insight, consider the following scenario. A 
developer has started Insight, indicating the appropriate position in the file sys- 
tem as the current object context. Wishing to browse a particular group of sub- 
systems he sets the current "activity" to interf ace_activity, which is 
treated as a relative pathname to the current context. After selecting |File:New 
and interacting with the [File:New| dialog box, a diagram window appears on the 
display. The title bar of this window contains the diagram file name. The win- 
dow itself may be manipulated like that for any other Motif application; it may 
be opened, closed, resized, and moved in the usual ways. Inside the window 
border is the diagram canvas. Horizontal and vertical scrollbars allow position- 
ing the viewport on any portion of the canvas, a necessary feature for large 
diagrams. The diagram itself is made up of icons denoting program objects and 
arcs indicating dependencies among those objects. The icon notation is adapted 
from that specified in (Booch 1987, pp. 55-59). There are different icons (node 
symbols) to represent a subsystem, library, group, main program, subprogram 
specification, subprogram body, generic subprogram, package specification, 
package body, and generic package. In this example the subsystems contained 
in interf ace_activity would be presented as subsystem icons joined by 
dependency arcs. To browse a particular subsystem, the user clicks on the 
corresponding subsystem icon and selects lBrowse:Diagraml. At this point a 
second diagram appears which illustrates the various packages in the selected 
subsystem along with their various dependencies. Using the mouse to select a 
particular package body icon, followed by | Browse :Environment 1 will then 
display the text ofthat Ada package in a separate window. 

Insight has other useful capabilities which allow it to be used as a design aid 
at the beginning of a large development effort as well as a reengineering tool 
throughout the course of a project. A complete discussion of these capabilities is 
beyond the scope of this report; see (Rational 1992 Product Number 4000- 
00676) for further information. 
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Cadre Teamwork 

Cadre Teamwork is an integrated software development system which sup- 
ports the analysis, design, and coding phases of the software life cycle. Team- 
work may be used in a stand-alone mode or in conjunction with a variety of other 
tools and compilers, including the Rational Environment. Of particular interest 
here, however, is that Rational has provided more than just a mere communica- 
tions protocol between the two environments. Rather, Rational has constructed 
an interface integrated into the Environment which allows developers to make a 
smooth transition from use of Teamwork's graphical design aids to Ada source 
code implementation. 

One of Teamwork's aids is Teamwork/SA, an intelligent editing system 
which runs on UNIX workstations. This system is actually made up of three 
tools: a data flow diagram (DFD) editor, a process specification (P-Spec) editor, 
and a data dictionary entry (DDE) editor. 

The DFD editor has the usual mechanisms for interactive creation and 
modification of data flows, data stores, process bubbles, terminators, text, and 
labels. The P-Spec editor is used to produce text describing how input is 
transformed into output by a process. It automatically generates the the title and 
I/O fist from the parent DFD. As DFDs are created, Teamwork/SA automatically 
creates a template DDE for each data flow and data store. Each of these DDEs 
consists of attribute types and definitions which are completed by the user with 
the DDE editor. Teamwork/SA also includes a facility for automatically check- 
ing various aspects of the system specifications, such as errors in syntax and con- 
sistency between DFDs, P-Specs, and DDEs. 

Cadre also provides extensions to Teamwork/SA to facilitate production of 
specifications for real-time systems: these include control specification (C-Spec) 
editors for state transition diagrams, state event matrices, process activation 
tables, and decision tables. Together these enhancements are called 
Teamwork/RT. 

After system specifications have been developed using these tools, the 
Rational-Teamwork interface enables extraction of the information necessary to 
produce the various requirements documents mandated by DOD-STD-2167A, 
e.g., software requirements specification (SRS) and interface requirements 
specification (IRS). Both the SRS and IRS are written in RDF PDL, so that the 
Rational-Teamwork interface actually generates PDL from the annotated 
diagrams produced using Teamwork/SA. Furthermore, access to these diagrams 
may be managed by placing them under the control of CMVC. 

A second aspect of the Rational-Teamwork interface addresses the design 
phase of a project. Teamwork/Ada, also workstation-based, provides an editor 
for creating Ada structure graphs (ASGs). These ASGs are specified using the 
Buhr notation (Buhr 1984) which provides graphical design elements for a 
variety of Ada entities, including packages subprograms, generics, exceptions, 
and tasks. The ASG editor allows opening multiple windows containing 
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different views of the same diagram with changes made in one window immedi- 
ately propagating to the others. This enables ASG modification from simultane- 
ous high-level (zoom out) and detailed (zoom in) perspectives. 

After the design has been specified using the ASG editor, the Ada Source 
Builder is applied to create compilable Ada code skeletons from the ASGs. The 
Rational-Teamwork interface is then used to import these skeletons into the 
Environment for further manipulation by the RDF. 

An alternative to immediately importing the code to the Environment is to 
instead use Cadre's Design Sensitive Editor (DSE). The DSE is similar in spirit 
to the Rational editor in that it is syntax-directed. Unlike the the Rational editor 
it does not perform semantic analysis; however, it is knowledgeable of the ASG 
design on which the code is based and is therefore able to maintain consistency 
between the two. The DSE may be customized to give it a Rational "look-and- 
feel," thus providing a consistent interface to the user. Cadre recommends that 
the DSE be used for further code modification even after it has initially been 
imported to the Environment in order to preserve design-implementation con- 
sistency. Further information on the integration of the Environment and Team- 
work may be found in (Cadre 1991 Application Note C-ANR) and (Rational 
1988 Product Number 4000-00602). Additional descriptions of Teamwork capa- 
bilities may be found in Cadre product brochures (Cadre 1991 Publication C- 
PBTADA, Cadre 1991 Publication C-PBDSE, Cadre 1991 Publication C-PBSA). 

Rational TestMate 

Testmate assists software developers, test developers, and integrators in the 
testing and validation of a software system. It may be used to automate tasks 
associated with unit testing, integration testing, regression testing, and target 
testing. Testmate may also be customized by software toolsmiths to provide 
additional functionality. 

Unit testing (the testing of individual program modules) generally involves 
construction of a driver program to call the module under test (MUT). Stubs for 
any subprograms called by the MUT must also be supplied. The development of 
this additional overhead software, or "scaffolding," (Brooks 1975, p. 148) may 
be sufficiently involved as to require delay of complete module testing until the 
integration phase. Other types of testing may also require such overhead. 

Testmate facilitates the construction and use of this scaffolding using an 
object-oriented approach. The objects manipulated by Testmate during the test- 
ing process include "test cases," "test sets," "test scripts," and "test results." 
Instances of test case objects are implemented using a test case file which con- 
tains all the information associated with a specific test, including a description, 
driver, input files, output files, test context, set up and clean up routines, guide- 
lines for interpretation and logging of results, and time constraints. These test 
case files are created using the Testmate test case editor; there must be one such 
file for each test. Test sets are collections of related test cases; a test case may be 
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a member of multiple test sets. Using information in the test set, Testmate 
automatically generates an executable Ada program called a test script which 
performs all of the tests in the test set. The output obtained from running this 
script is termed a test run file, and includes pass/fail status for each test case, a 
log of the test run, optional information on test coverage, and other information. 
Testmate provides special purpose editors which allow developers to browse this 
output. 

Test results may be analyzed in a number of ways. The user-written driver 
may examine and verify the MUT's output parameters. Alternatively, test case 
output may be directed to a file which is then compared to the correct output. If 
such a file comparison is not possible, the user may provide a routine to examine 
the output file and determine if it is acceptable. Finally, if none of these options 
is feasible, manual inspection is allowed. In the first and third methods listed 
above, the user-supplied code must call the Testmate Ada routine 
Tms . Register_Result to report pass/fail status back to Testmate for 
recording in the test run file. In the second case, Testmate records this result 
automatically. In the last case, Tms . Register_Result must be interac- 
tively invoked. 

Another possible by-product of a test run is test coverage information indicat- 
ing how much of the code was actually exercised in the test. The default is to 
gather coverage information for every test case, but Testmate allows users to 
tailor this data collection capability and restrict data gathering to selected test 
cases, units, directories, or worlds. It is also possible to display the Ada source 
code of the MUT with untested coded segments so marked. 

Testmate also has the ability to display and compare information from multi- 
ple test runs. Regression testing is facilitated by comparing output from two runs 
of the same script. When the output has changed, the version information 
recorded by Testmate allows a developer to track down the source code 
modification causing the output change. Using the Rational Compilation 
Integrator (RCI), it is also possible to migrate tests from the R1000 host to the 
target platform and then use Testmate to repeat the testing there in an automated 
fashion. Finally, as with other Rational tools, Testmate package specifications 
are available to development teams so that they may customize Testmate to meet 
their particular needs. Additional information on the use of Testmate may be 
found in (Rational 1992 Document D-82) and (Rational 1992 Product Number 
4000-00720). 

Other Tools 

Rational provides other products to address various aspects of the develop- 
ment process. To promote the production of high quality documents, Rational 
has provided an interface to the Interleaf TPS desktop publishing system, as des- 
cibed in (Rational 1989 Product Number 4000-00334). At some point in a 
development effort, testing must migrate from the R1000 to the target platform. 
Rational's Target Build Utility (TBU) facilitates this migration process by 
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automating transfer of Ada units to the target and generating the necessary job 
control script to compile and link those units. The TBU is described in (Rational 
1992 Product Number 4000-00375). The RCI addresses this same problem in a 
slightly different manner. It allows control of Ada compilation on a remote tar- 
get machine from within the local host R1000 Environment and helps maintain 
program library consistency between the two platforms. Further information on 
its capabilities may be obtained from the user's manual (Rational 1992 Product 
Number 4000-00500). 

There are other third-party tools which are also well integrated with the 
Environment. Adamat is an Ada code measurement and analysis tool which col- 
lects and analyzes various software metrics; see (Dynamics Research Corpora- 
tion Systems Division 1992) and (Levine, Anderson, and Perkins 1990) for 
further information. 

To facilitate the development of large software systems in the command, con- 
trol, and communications domain, TRW has developed its Universal Network 
Architecture Services (UNAS). UNAS includes reusable Ada software com- 
ponents, as well as tools to assist in the development and instrumentation of Ada 
code (Royce et al. 1991). TRW has further extended the capabilities of UNAS 
through the Software Architect's Lifecycle Environment (SALE), a knowledge- 
based aid which automates various aspects of the design phase of a project 
(Royce and Brown 1991). There are R1000 versions of both UNAS and SALE. 
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4 User Experience 

This section illustrates the effective use of the Environment by presenting 
case studies of its use on four projects: CelsiusTech and FS 2000, Computer Sci- 
ences Corporation and STANFINS-R, IBM and WISCUC, and Statistica and 
SIDPERS-3. Also included are reports of two evaluations by the Software 
Engineering Institute (SEI) and Magnavox Electronic Systems Company. Addi- 
tional users are noted at the end of the section. 

CelsiusTech and FS 20001 

CelsiusTech2 is a major Swedish supplier of defense-related real-time sys- 
tems. Over the fifteen years prior to the initiation of the FS 2000 project dis- 
cussed here, CelsiusTech produced about 25 such systems ranging in size from 
30,000 to 700,000 SLOC. The latter required seven years and about 300 man- 
years to complete. 

Realizing that their existing software engineering methodologies were reach- 
ing the limits of their effectiveness and that future projects would be larger and 
more complicated, CelsiusTech decided to consider use of Ada on the Environ- 
ment as an alternative to their current techniques. Their pilot test of this new 
technology, as well as their first Ada project, was UndC, a mobile command and 
control application for the army; it would be hosted by a DEC MicroVAX 
installed in a van. This project began in August 1985 and had an estimated 
delivery cost of $2.16 million. In spite of their lack of Ada experience and the 
inevitable requests for additional system features, this application was completed 
in December 1986 at a cost of $760,000, roughly one-third of their original esti- 
mate. 

1 The primary sources for this section were (Rational 1991 Document CS-1) and (Bachman and 
Marasco 1992). 
2 Since 1987 this company has changed its name from Philips Electronikindustrier to Bofors to 
NobelTech to CelsiusTech. 
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This positive experience with the Environment led CelsiusTech to use it on 
the then recently awarded FS 2000 contract. FS 2000 is an embedded shipboard 
command, control, and communications application integrated with various 
types of weapons systems. The software would be delivered on ships from five 
different countries, and depending on the configuration, between 150 and 600 
programs are installed on each ship. The complete software package, targeted 
for the Motorola MC68020, consists of about 1.5 million Ada SLOC. 

Delivery of FS 2000 on different ships in a variety of configurations required 
flexibility of design and customization of features. Key aspects of the software 
development process included emphasis on reusability, management of geo- 
graphically separated teams of software engineers, and use of object-oriented 
design. The engineers assigned to this project were fairly well acquainted with 
use of structured programming in a high-level language: however, prior to the 
UndC and FS 2000 projects, they had no experience with Ada, software tools, 
and software development environments. Rational worked with CelsiusTech to 
provide a customized six-week training program which was carried out over a 
three to five month period. Small class size (twelve students) and a substantial 
hands-on component (40 percent of the course) proved to be very effective in 
introducing the development team to the technology they were to use. 

What improvements in productivity resulted from the use of the Environment 
on this project? Using data from previous projects, SLOC per hour increased 
118 percent, from 1.5 to 3.28 for the first ship. CelsiusTech projects an overall 
improvement of 627 percent, to 10.92, on ships 2-5. A natural question, how- 
ever, is how much of the savings in manpower and time is due to use of the 
Environment, how much is due to reuse, and how much is due to use of Ada and 
object-oriented design? According to CelsiusTech, they saved $22.3 million on 
the first ship system, of which $14.6 million was attributed to use of the Environ- 
ment and the remainder due to use of Ada and OOD. On the whole five-ship pro- 
ject they estimate a savings of $187.2 million, with $75.8 million due to reuse, 
$39.9 million to Ada and OOD, and $71.5 million to use of the Environment. 

Computer Sciences Corporation and 
STANFINS-R1 

Computer Sciences Corporation (CSC), founded in 1959, is a large, indepen- 
dent, professional services company. Their business is worldwide in scope, but a 
significant portion of it is with die U.S. Government. 

The Standard Army Financial System (STANFINS), the U.S. Army's 
comprehensive computerized finance system, includes a broad range of account- 
ing capabilities, including accounts receivable, funds receipt, general ledger, 

The primary sources for this section were (Rational 1991 Document CS-3), (Fussichen 1992), 
and (Puttre- and Oppenheim 1989). 
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property accounting, and report generation. It was written in the 1960s using 
COBOL, and the STANFINS Redesign (STANFINS-R) contract, awarded to 
CSC in 1986, also specified COBOL. Although the Army issued a directive in 
late 1986 mandating use of Ada for all systems, CSC expected a waiver of this 
requirement. This expectation, coupled with the perception that Ada was 
appropriate only for embedded weapons systems, led CSC to spend five months 
preparing to use COBOL on this project. Doubting the effectiveness of Ada for 
the development of large-scale information systems and citing the lack of an Ada 
compiler and development tools for MVS, the Army director of finance and 
accounting requested a waiver on two separate occasions (Puttre" and Oppenheim 
1989). The waiver never came and in March 1987 the Army specifically 
directed CSC to use Ada for STANFINS-R. 

STANFINS applications would run on top of IBM's Customer Information 
and Control System (CICS). CICS allows multiple users to concurrently access 
files, resolving issues related to multitasking, record locking, and terminal con- 
trol (Fussichen 1992). CICS would in turn execute on IBM and Amdahl main- 
frames running the MVS operating system. CICS would also access the database 
management system specified in the contract, Datacom/DB. This combination of 
requirements, i.e., the use of Ada and the IBM mainframe target, jeopardized 
CSC's ability to deliver the system on time and within budget, Specifically, they 
were faced with the following serious problems. 

• No major management information systems (MIS) application had been writ- 
ten in Ada in the U.S. at this time; therefore there was a lack of expertise 
both among CSC's MIS staff and in the MIS community in general. 

An Ada execution environment for the target platform was unavailable at the 
beginning of the project, so testing was initially impossible. 

There were no Ada interfaces to CICS, MVS, or Datacom/DB, so these 
would have to be written from scratch. 

• There were no Ada-based CASE tools available for the target platform. 

CSC took several steps to address these issues. First, they discussed 
execution-related problems with the compiler vendor (Intermetrics), who agreed 
to write a new run-time system to provide communication between Ada and 
CICS. Second, they decided to solve problems related to the development phase 
by acquiring the Environment. Reasoning that it would be easier to teach Ada to 
MIS programmers than MIS to Ada programmers, CSC began a recruiting and 
training program. Using Ada expertise from both inside and outside the com- 
pany, CSC introduced its STANFINS team to the principles of software 
engineering and OOD, Ada syntax and semantics, and use of the Environment. 
With the assistance of consultants from Rational, CSC overcame the inability to 
test code on the mainframe by writing software scaffolds to run in the Environ- 
ment which handled functions ultimately to be performed by CICS and 
Datacom/DB on the target. This idea worked so well that even when the host 
Ada environment became available, it was still preferable to test in the 
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Environment. 

Another important issue was related to the size of the system. STANFDSfS-R 
was 2.4 million SLOC when delivered to the Army in May 1991; an additional 
300,000 SLOC was produced for tool support. To deliver that much code and 
meet the contract deadline required production of more than one-half million 
Ada SLOC per year. This would not have been possible without automatic code 
generators. Again with help from Rational, CSC developed screen painters and 
other necessary tools which wrote Ada package specifications and bodies using 
information taken from Army MIS requirements. To perform their tasks 
correctly, these tools accessed a database containing data type definitions for 
more than 2500 data items. (Project management mantained strict control over 
this database and reserved all decisions regarding data typing to themselves; 
allowing the development staff the ability to change type descriptors would have 
resulted in chaos.) Ultimately 76 percent of the Ada code was produced by these 
tools (Fussichen 1992). 

CSC believes that if they had naively substituted Ada for COBOL in their 
development process, there would have been no improvements in productivity. 
Using projections based on Ada industry norms, productivity on the 
STANFINS-R project would have been 1.8 SLOC per hour and the total labor 
costs would have been $48.2 million. Using the Environment, code was pro- 
duced at at rate of 3.7 SLOC per hour and labor costs were $24 million. Finally, 
and perhaps most importantly, CSC met every delivery date specified in the con- 
tract. 

IBM and WISCUC1 

Completing a large application in a timely manner often requires several 
development teams using multiple hardware platforms. This situation immedi- 
ately introduces problems with maintaining consistency and performing system 
tests. This case study describes how one group of developers solved these prob- 
lems. 

The World Wide Military Command and Control System (WWMCCS) is a 
large and complex assembly of hardware, software, and communications subsys- 
tems under development for the U.S. military. A critical component of this 
assembly was a generalized automated message handler (AMH) developed by 
IBM's Federal Systems Company under the WWMCCS Information System 
Common User Contract (WISCUC or WIS). This project began in 1983 and the 
AMH was delivered in 1990. The AMH target hardware included an IBM Sys- 
tem/370 mainframe running MVS/XA and two Series/1 communications proces- 
sors. Additionally, users access the AMH through WISCUC workstations based 
on the IBM 3270/PC. Under the WISCUC, software was developed for all three 
types of hardware, but the mainframe component discussed here consisted of 

The primary source for this section was (Blair 1992). 
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about 300,000 Ada SLOC. 

Software development required five processors. All coding and unit testing, 
as well as part of the component and integration testing, were done on Rational 
RIOOOs; three of these systems were required to provide sufficient disk storage 
for the project. An MVS/XA Software Development Laboratory (SDL) running 
on an IBM 3081 was used for the rest of the component and integration testing. 
Finally, an MVS/XA Testing and Integration Laboratory running on the IBM 
4381 target was used for system testing. This last step was accomplished by 
transferring the Ada source code from the Rationals over a TCP/IP link into 
Software Configuration Library Manager datasets on the target for compilation 
under the Intermetrics Ada Development System. 

The AMH software structure included six major components: four Computer 
Program Configuration Items (CPCIs), global packages, and auxiliary code for 
integration testing. The CPCIs were further broken down into a total of sixteen 
Computer Program Components (CPCs); each of these was implemented as a 
Rational subsystem. Multiple spec and load views of each subsystem were 
required for implementation and testing. There were three types of load views. 
Code in the "released" load view could not be modified. The "master work- 
ing" load view contained code still subject to change, but which would be pro- 
moted to the released view the next time a program baseline (snapshot) was 
created. Finally, there was at least one subsidiary working load view containing 
code still subject to significant modification. 

The source code was distributed across three RIOOOs due to the disk space 
limitation noted earlier. Each R1000 owned a "primary" copy of two of the six 
major software components and "secondary" copies of the other four. A pri- 
mary copy included spec, released, and working views of subsystems for that 
component, while a secondary copy included only spec and released views. 
Therefore developers on a particular system could modify code in only two of 
the six components. This distributed mode of operation required a carefully 
structured procedure, followed once a month, to create a new baseline version of 
the program. 

•   Incorporate necessary changes into the master working view using CMVC. 

Build new spec views, if necessary. 

Recompile the master working view. 

Copy the primary spec views to secondary spec views on other RIOOOs. 

• 

• Freeze the just-compiled master working view using CMVC and make it the 
new released view. 

Copy primary released views to secondary released views on other RIOOOs. 
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• Update all other working views using the new spec views. 

• Update the system activity file to indicate which load view of each subsystem 
to use for subsequent executions. 

Over the course of this project the IBM development staff made several 
significant observations regarding use of the Environment. First, their experi- 
ence verified Rational's claim that the Rational compiler minimized the scope of 
recompilation. Second, use of CMVC in conjunction with separate activity files 
to specify different versions of the program allowed development and testing to 
proceed concurrently. Third, designation of a separate team for version control 
ensured that the previously described procedure was correctly followed and that 
development and testing would not periodically grind to a halt. Finally, lack of 
sufficient disk space on a single R1000 system was a significant disadvantage, 
but one which was accepted due to the other positive features provided by the 
Environment and to the lack of an acceptable Ada development environment on 
the target. 

Statistica and SIDPERS-31 

The original version of the Army's Standard Installation/Division Personnel 
System (SIDPERS) was first deployed in 1973. The original purpose of the sys- 
tem was to assist in personnel management, keeping track of the duty status of 
all active Army personnel. SIDPERS-1, as it is now called, was written in 
COBOL and executed on IBM 360 Model 40 mainframes installed at the base 
and division level. Clerical personnel below those levels had to manually 
prepare and submit their reports for processing on those mainframes. 

As Army requirements increased, additional capabilities were added to 
SIDPERS, including facilities to handle redeployment, casualty reporting, and 
promotions. As might be expected, the target hardware also evolved over time; 
Amdahl and Burroughs equipment was installed and automation was provided 
for lower levels in the organizational hierarchy. Although in many ways the sys- 
tem satisfied the Army's needs, there were problems. The various Army com- 
mands requested numerous modifications to the system and the SIDPERS 
maintenance group was unable to implement them in a timely manner. Unwil- 
ling to wait any longer, the commands authorized their own local customizations 
of the code. Standardization was lost and maintenance costs and personnel 
increased. 

This situation led the Army to initiate development of what will become 
SIDPERS-32. The overall goal of this system is to produce a standard system 
which may be easily extended to accommodate the unique needs of each 

The primary source for this section was (Statistica 1991). 
2 Yes, there was a SIDPERS-2; i 
that, as they say, is another story. 

2 Yes, there was a SIDPERS-2; in fact there was even a SIDPERS-2.5 and a SIDPERS-2.75, but 
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command. Specific objectives to be met by SIDPERS-3 are to: 

• Provide the capability to determine how many qualified personnel are needed 
at each Army site in order to enhance the Army's ability to mobilize and 
deploy its forces. 

• Produce an easy-to-use system which is accessible to users at all levels. 

• 

• 

• 

Provide a communications capability which allows reporting throughout the 
organizational hierarchy. 

Reduce the personnel required to manage the personnel system itself by 
automating manual processes and allowing interactive transactions against 
the personnel database. 

Provide a single source of personnel data, thereby reducing the possibility of 
redundant and inconsistent information. 

•   Improve response time. 

Statistica is a professional services company headquartered in Rockville, 
Maryland. Founded in 1977 and with a 1992 employment of about 400, it is 
younger and smaller than many of the companies with which it must compete. 
Nevertheless, Statistica has been successful, having completed every one of its 
contracts within time and budgetary constraints. Some of the reasons for this 
success include the company's object-oriented approach to Ada software 
engineering and its willingness to use new software development technology, 
including prototyping, reuse, and CASE tools. Importantly, Statisitca has 
adopted the SEI Capability Maturity Model (CMM) (Paulk et al. 1993 Technical 
Report CMU/SEI-93-TR-24, Paulk et al. 1993 Technical Report CMU/SEI-93- 
TR-25) to measure the quality of its software developent process. 

Statistica was selected as the lead contractor on the SIDPERS project; SRA, 
Martin Marietta, and Planning Analysis Corporation were subcontractors. 
Because the Army had not yet selected the target hardware and because there 
was a high liklihood of multiple targets, Statistica chose the Environment as its 
APSE. In addition to four RIOOOs, Statistica equipped its development facility 
with various systems then installed at Army bases: an IBM 4341 mainframe, a 
Sperry 5000, 68 Zenith-248 PCs, two TACCS-E systems, a Unisys B-38, and 
several Everex 386 PCs running UNIX. In such a heterogeneous environment, it 
was obviously in the company's interest to keep developers on the Rational plat- 
form as long as possible. This was facilitated by Rational consultants who 
assisted Statistica in the implementation of a remote procedure call (RPC) capa- 
bility for the Environment. Thus, instead of merely simulating the database tran- 
sactions, testing was able to proceed on the RIOOOs by accessing the actual 
DBMS on the Everex systems. The result was highly portable Ada code. The 
60,000 SLOC demonstration system, roughly 10% of the final product, is opera- 
tional on several platforms, and the man-machine interface has been installed on 
six different targets with negligible technical difficulties. 
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In their appraisal of the Environment, Statistica noted its support for modular- 
ization, the Ada-sensitive editor, incremental compilation, RDF support for 
requirements traceability, provision for host-based testing via RPCs, and the ease 
of porting to the target using the TBU. Statistica had particular praise for 
Rational's technical support. They further emphasized the power and sophistica- 
tion of the environment; subsystems enabled them to break the system into 
manageable pieces having clean interfaces; incremental compilation reduced 
compilation time relative to other APSEs; RDF support for DOD-STD-2167A 
promoted code consistency between developers; use of RPCs allowed more 
debugging to take place on the Rational host, thus uncovering many problems 
prior to actual testing on the target. 

Statistica was candid about some of the disadvantages to using the Environ- 
ment. These included the high system cost, performance degradation with more 
than ten simultaneous users per R1000, the extensive training required to use the 
system effectively, the customization, or "toolsmithing," required to use the 
RDF, TBU, and RPCs, and finally the lack of a graphical design capability. 
Nevertheless, Statistica believes that Rational was the best choice, concluding 
that other APSEs have similar problems, and provide far less functionality than 
the Environment. 

The Software Engineering Institute Evaluation l 

A primary goal of Carnegie Mellon University's Software Engineering Insti- 
tute (SEI), is to critically evaluate state-of-the-art technology for software 
development and disseminate the results. As one means to reach this goal, the 
SEI initiated its Evaluation of Ada Environments (EAE) Project in 1985 with the 
objective of assessing the capabilities of APSEs. The first principal outcome of 
this project was the specification of a methodology for evaluating APSEs (Weid- 
erman et al. 1986). The second major result was the application of this metho- 
dology in a comparative study of three APSEs: the Ada Language System, Ver- 
dix Ada, and DEC Ada (Weiderman et al. 1987). The SEFs efforts in this area 
were continued under the Evaluation of Environments Project. Three major 
results of this project have been the extension of the EAE methodology to 
include SDEs and IPSEs, an evaluation of the ISTARIPSE (Graham and Miller 
1988), and an evaluation of the Environment. 

The SEI assessment of the Environment was conducted in 1988. The 
hardware component of the evalauted system consisted of an R1000 Model 
200-20 with 32 Mbytes of main memory, three disk drives each with an unfor- 
matted capacity of about 670 Mbytes, a 75 ips streaming tape drive, an Ethernet 
interface, and eight Rational terminals. The system software was Release 
D_9_25_l of the Environment; it included the basic operating system, a tiled 
window system for the terminals, language-sensitive editor, compiler, debugger, 

The primary sources for this section were (Feiler, Dart, and Downey 1988) and (Downey, 
Bassman, and Dahlke 1988). 
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CMVC, and support for workorder management. Layered products, such as the 
RDF, TBU, and Rational Network Mail, were not included in the evalaution due 
to their unavailability. The evaluation process included both the application of 
the SEI methodology and additional analysis of unique features of the Environ- 
ment not addressed by the methodology. 

The SEI evaluation methodology includes six categories of experiments, five 
of which were used in the Rational study. These experiments explore in a 
detailed manner the capabilities of an APSE and typically require extensive 
hands-on use of the system.1 The CMVS category includes three experiments, 
the first of which models the system integration and testing phases of a software 
development project. The second experiment builds on the results of the first; it 
involves creation of a model software system, followed by construction of 
several baseline versions representing various stages of progress in the develop- 
ment process. The environment is then tested to determine its ability to recon- 
struct previous versions and to build a composite version using components from 
current and previous versions. The functionality checklists for these two experi- 
ments (Downey, Bassman, and Dahlke 1988, p. 25-26, 39) indicate that the 
environment supported every primary activity in all three areas of interest: ver- 
sion control, configuration control, and product release. 

The last experiment in the CMVS category evaluates an APSE's software 
management policy. The Environment allows project management to specify its 
own policy. Because this experiment was designed to examine an existing pol- 
icy and does not specify a candidate policy, it was omitted from the evaluation. 

The second category contains system management experiments which 
address APSE installation, management of user accounts, and system usage 
accounting support. A few of the capabilities required by these experiments 
were not directly provided by the Environment, but were provided in other ways, 
such as writing a special-purpose procedure. This may have been due to 
differences in SEI experiences with previously tested environments and 
Rational's philosophy of system architecture. In any case, these experiments 
indicated few shortcomings in the Environment's system management capabili- 
ties. Further details of this experiment may be found in (Downey, Bassman, and 
Dahlke 1988, p. 51-73) 

Design and development capabilities are assessed by the third category. Part 
of this section was omitted because the Environment lacked (at that time) graphi- 
cal design tools. This experiment involves entering an Ada program with known 
errors and then evaluating an environment's ability to detect them. The Environ- 
ment provided all but two of the 27 capabilities requested (Downey, Bassman, 
and Dahlke 1988, p. 94-95). 

1 The SEI technical report (Downey, Bassman, and Dahlke 1988), which contains the transcripts 
of the experiments, is 185 pages long; its length reflects the thoroughness of the evaluation. 
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The fourth category consists of a unit testing and debugging experiment. It 
evaluates an APSE's capabilities for code browsing, debugging, regression test- 
ing, and static and dynamic code analysis. At the time these tests were con- 
ducted, the Environment had no tools for these latter types of analyses. The 
Environment debugger fared rather well in this test, and it is important to note 
that some of the requested functionality has since been provided by the Testmate 
product. See (Downey, Bassman, and Dahlke 1988, p. 115-139) for more 
detailed information on the results of this experiment. 

The fifth section assesses the project management capabilities of an APSE in 
four areas: project plan management, plan instantiation, project execution, and 
product management. Because the Environment's capabilities in this area had 
already been tested in the CMVC experiments, this category was omitted from 
the evaluation. 

The final component of the SEI evaluation methodology is the execution of 
the Ada Compiler Evaluation Capability (ACEC) test suite (Hook et al. 1985), 
which was then in a prototype version.1 On this test, the Environment compiler 
was 1.8 times faster than the VMS/VAXSet compiler and 2.1 times faster than 
the UNIX/VADS compiler; the Environment was also somewhat faster than these 
two systems in program execution time. More detailed results from this experi- 
ment may be found in (Downey, Bassman, and Dahlke 1988, p. 141-153), but the 
reader is cautioned that these performance data are no longer representative of 
the performance of the various environments. 

SEI reached several conclusions regarding the Environment. First, although 
their results offer a basis for comparison between the Environment and other sys- 
tems, they cautioned that the standard SEI evaluation methodology did not com- 
pletely characterize the full functionality of the Environment. Next, they con- 
cluded that the Environment "provides a powerful and effective semantics-based 
interaction model."2 Users are thus able to browse Ada code based on its syntax 
and semantics (e.g., intermodule dependencies) and to obtain semantic informa- 
tion about the code (e.g., the amount of recompilation required by a particular 
code modification). Under this model, syntax and semantic errors may be 
detected and corrected incrementally through frequent invocation, from the edi- 
tor, of the parser and semantic analyzer. The use of this intelligent, incremental 
compilation feature, coupled with the dynamic linking capabilities of the 
Environment has the potential to reduce the amount of recompilation required 
after a change. 

Refer to (Wright Research and Development Center 1988 Technical Report AFWAL-TR-88- 
1095) for a more up-to-date description of the ACEC. In July 1993 AJPO announced completion 
of the merger of the ACEC with its United Kingdom counterpart, the Ada Evaluation System 
(AES) (Ada Information Clearinghouse 1993). The new test suite is called the Ada Compiler 
Evaluation System (ACES). 
2 From (Feiler, Dart, and Downey 1988, p. 71); © 1988 SEI, reprinted by permission. 
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The use of DIANA as the underlying program representation was identified 
as the enabling factor in the integration of development and debugging facilities. 
Moreover, effective use of the system does not require knowledge of DIANA. 
The Environment encourages early testing and rapid protyping via mechanisms 
for generation of code for stubs and for incomplete modules. Rational's subsys- 
tem concept supports development of large systems by providing a level of pro- 
gram modularity above the package; this feature helps limit the scope of a 
recompilation. 

Although certain activities, such as a large-scale recompilation or large sys- 
tem test may seriously degrade response time, SEI found that the Environment, 
as a system, was comparable to other widely-used APSEs in terms of compila- 
tion speed and disk utilization. The Environment was described as providing "a 
highly responsive system by deploying smart compilation and dynamic linking 
techniques and through cooperative input from the user to reduce reprocessing 
after changes based on semantic information."1 An important final comment 
noted that because the Environment does not support all phases of the software 
life cycle, other tools must be acquired and integrated with it to provide a com- 
plete software development environment. 

Magnavox Electronic Systems Company and 
AFATDS2 

In early 1990, Magnavox Electronic Systems Company (MESC) conducted 
an evaluation of three candidate development software support environments 
(DSSEs3) for use on the Advanced Field Artillery Tactical Data System 
(AFATDS) project. The DSSE provided by the army was the Army Tactical 
Command and Control System (ATCCS) programming support environment 
(PSE); the evaluation discussed here was motivated by the discovery of serious 
deficiencies in that environment. MESC included the DEC VAX environment in 
its study because they had used that system in the concept evaluation phase 
(CEP) of AFATDS. In spite of its shortcomings, the ATCCS was included in the 
evaluation to serve as a baseline. Finally, at the suggestion of another contrac- 
tor, the Environment was added as a candidate. The actual configurations 
evaluated by MESC are given in Table 1. 

The multi-element component comparison and analysis (MECCA) methodol- 
ogy (Ulvila and Brown 1982) was used in the MESC evaluation. Application of 
the MECCA technique requires development of a hierarchy of weighted evalua- 
tion attributes. This hierarchy may be viewed as a tree, each node of which con- 
tains a weight and a score. For this method to work properly, each parent attri- 
bute must be partitioned into independent subattributes so that some features are 

1 From (Feiler, Dart, and Downey 1988, p. 76); © 1988 SEI, reprinted by permission. 

2 The primary source for this section was (Magnavox Electronic Systems Company 1990). 

3 A DSSE consists of an APSE and the associated host hardware. 

Chapter 4  User Experience 45 



Table 1 
MESC Ada DSSE Tools Evaluation1 

Feature 
Candidate DSSE 

DEC VAX Rational R1000 ATCCS PSE 
CPU(s) VAX 8600, 8650, 8800 R1000 Model 200-10 HP 9000/350 
Operating 
system 

VMS v. 5.22 
Rational Environment 
v. D_10_20_02 

HP-UX v. 6.22 

Project mgmt. 
tools 

VAX Software Project 
Manager v. 1.28 

Rational Work Order2 

Design tools Cadre Teamwork8 

IDE STP8 
Rational RDF v. 6_2_52 

RDF Teamwork 
Interface v. 1_0_02 

Cadre Teamwork8 

IDE STP8 

Mark V Systems Adagen 
Text editors VAXTPU EVE v. 2.02 

DEC LSE v. 2.28 
Rational Editor2 HP-UX vi2 

emacs8 

Document 
support 

DEC Runoff3 
Rational Document 
Formatter v. 10_7_74 

Rational Interleaf 
Interface8 

HP-UX nroff8 

GUI support DECWindows8 Rational RXI v. ß2 Xv. 11.32 

Ada compiler DEC Ada v. 2.02 
Rational Compiler2 HP (Alsys) Ada v. 3.252 

Ada library & 
recompilation 
support 

DEC Ada v. 2.02 Rational Library 
Manager2 

GEC G-ADA 
/HP Ada 300 
ada.make v. 2.02 

Ada linker DEC Ada v. 1.53 Rational Linker2 HP Ada v. 3.252 

Ada debugger DEC Debugger v. 5.03 
Rational Debugger2 HP Ada ada.probe 

v. 3.257 

Static 
analyzers 

DEC SCA v. 2.08 

EVB Software CMT3 

DRC AdaMAT3 

Rational Xref v. 9 1 22 

EVB Software CMT5 

DRC AdaMAT5 

HP Ada ada.xref v. 3.252 

Dynamic 
analyzers 

DEC PCAv. 1.13 Rational Performance 
Analysis Interface5 

Host-target 
integration 
tools 

Rational MC68020 Bare 
CDFv. 5 1 02 

Rational HP-UX CDF5 

Rational TBU v. 9_4_42 

Sys. test tools DEC DTM v. 3.08 

Configuration 
management 
support 

DEC CMS v. 3.03 

Expertware CMF7 

Softool CCC6 

Magnavox MACE3 

Rational CMVC2 HP-UX SCCS7 

HP-UX RCS7 

Expertware CMF7 

Softool CCC6 

1 From (Magnavox Electronic Systems Company 1990, p. 4) 
2 Evaluation based on experiments during DSSE evaluation 
3 Evaluation based on experience during AFATDS CEP 
4 Evaluation based on demonstration by vendor 
5 Evaluation based on information from vendor 
6 Evaluation based on information from other projects or customers 
7 Evaluation based on product documentation 
8 Not Evaluated—tool was unavailable, or time constraints prevented evaluation 
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not scored more than once. The sum of the weights of the child nodes of any 
particular parent must be one. Scores for an attribute must fall between 0 ("use- 
less") and 100 ("ideal"). The scoring process begins by assigning scores to 
each of the leaf nodes in the tree. A score is calculated for each parent by sum- 
ming the weighted values of its children. This continues until the overall score 
associated with the root of the tree is computed. 

MESC used four attributes at the highest level of the MECCA tree. The first 
of these, "system management," was weighted 14% and scored a DSSE in the 
areas of system administration, training, vendor responsiveness, and system per- 
formance. "Project management," the second attribute, was weighted 20% and 
addressed administrative issues related to the software project itself (e.g., 
scheduling, library and file system functionality, and support for quality manage- 
ment). "Technical development" counted 40%, the largest weight of any of the 
four primary attributes, because more manpower would be associated with 
activities in this area than any other. This category evaluated a DSSE's support 
for software engineering, including analysis, design, implementation, testing, 
and documentation. The last category, weighted 26%, was "configuration 
management;" it addresses issues related to version control, change control, and 
building and rebuilding the system. 

MESC took two important steps to reduce subjectivity in the scoring process. 
First, a separate worksheet was used to score each low level attribute. On this 
worksheet each evaluator described his findings (e.g., experimental results, ven- 
dor information, previous customer experience) reported his analysis of these 
findings in a conclusions section, and then finally assigned a score for that attri- 
bute. This standardization of reporting also made this summarization process 
easier. 

Second, several techniques were instituted to standardize the scoring process 
and reduce bias, including: 

• Assigning each DSSE a base score of 50 and then adding points to reflect the 
level of automation provided by that environment for a particular attribute. 

• Assigning additional points (typically 10) for experience with an environ- 
ment during the CEP. This technique was used to reflect reduced risk with 
respect to a particular attribute. Obviously this improved the score of the 
VAX/VMS DSSE. 

• Assigning a score of 100 and then deducting points for deficiencies. 

Occasionally other techniques were used, but all were applied consistently; scor- 
ing strategies were always uniformly applied for all DSSEs in scoring a particu- 
lar attribute. 

The results of the MESC evaluation for the primary attributes are given in 
Table 2. Although all three candidate environments were quite close in the scor- 
ing for system management, VAX/VMS had a slight edge due to the experience 
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Table 2 
MESC Ada DSSE Evaluation Scores1 

Attribute Weight 
Candidate DSSE 

DEC VAX Rational R1000 ATCCS PSE 

System 
Management 0.14 93.78 91.82 89.52 

Project 
Management 0.20 69.91 79.08 59.75 

Technical 
Development 0.40 58.42 68.16 49.69 

Configuration 
Management 0.26 93.93 92.50 87.93 

Total 1.00 74.90 79.98 67.22 
1 Adapted from (Magnavox Electronic Systems Company 1990, p. 30-31) 
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with that system during the AFATDS CEP. The Environment was clearly supe- 
rior to the other two DSSEs in the project management category. The reasons for 
this were as follows. First, the Rational work order facility permitted tracking of 
project tasks by allowing allowing management to associate a work order with 
the modification or correction of a particular Ada unit. 

Second, the Environment outscored the other systems in the consistency 
checks/alerts category because it notifies a developer of the impact of a proposed 
change. When a change would affect many units and require significant recom- 
pilation, then the developer could elect to delay the modification until the next 
major system build. Finally, Rational was the winner in the project reviews and 
walkthroughs section because it allows managers to specify their own coding 
standards and then enforces them automatically. No recompilation is required by 
this feature because syntactic and semantic differences, not time stamps, deter- 
mine a unit's consistency. 

The evaluation for the technical development category was performed by 
transporting the AFATDS CEP Human Interface (HI) software, developed on the 
VAX, to the ATCCS PSE and to the R1000. This allowed quantitative evalua- 
tions of resource requirements and provided hands-on experience with each of 
these systems. The HI code metrics are given in Table 3. 
Resource consumption figures are presented in Table 4. "Parsing" in this con- 
text includes scanning the source code, checking syntax, and entering depen- 
dency information into an Ada library. Although the R1000 parse time is high, 
MESC noted that parsing an entire system would be a rare occurrence (presum- 
ably due to the RIOOO's persistent intermediate representation of the program in 
DIANA). In evaluating R1000 disk space utilization, MESC noted that copies of 
lower-level supporting code would have to be present on each R1000, a situation 
also encountered by IBM (Blair 1992). 

As part of the HI porting experiment, MESC evaluated the various capabili- 
ties of the candidate systems. Some of the features of the R1000 which 
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Table 3 
Code Metrics of HI Source Files1 

Metric Number 

Comment lines 70,500 

Blank lines 53,000 

Non-comment, non-blank lines 90,000 

Non-literal semicolons 43,000 

Total source lines 213,500 
1 From (Magnavox Electronic Systems Com- 
pany 1990, p. 17) 

Table 4 
Performance Comparison for HI Port1 

Metric 
Candidate DSSE 

DEC VAX Rational R1000 ATCCS PSE 

"Parsing" time (hours:minutes) 0:26 3:00 0:302 

Compile time (hours:minutes) 2:24 2:20 15:23 

Library disk space (Kbytes) 19,967 33,608 55,071 
1 From (Magnavox Electronic Systems Company 1990, p. 18) 
2 Time estimated; parsing failed for 2 files (out of about 700). 

distinguished it from the other DSSEs included integration of the editor with the 
pretty printer, ability to semantically browse the code, ability to specify and 
automatically enforce coding standards, the subsystem concept, and ability to 
build composite versions of a system from different subsystem components. A 
summary of this feature comparison is given in Table 5. 

The final primary attribute was configuration management. MESC noted that 
Rational's CMVC was superior with respect to the integration subattribute due to 
its capabilities for building and rebuilding systems. Rational's score was 
reduced by 10 points in each of five subattributes where additional software was 
required to augment CMVC. In spite of this, VAX/VMS beat the R1000 in this 
category by less than 2 points. 

The MESC study recommended that the Environment, augmented with com- 
ponents from the ATCCS PSE, be selected as the AFATDS DSSE. The reasons 
for this were as follows: 

• Rational had the highest overall score (Rational 79.98%, VAX/VMS 74.90%, 
and ATCCS PSE 67.22%). 

• Rational is an Ada language-centered APSE with capabilities unavailable in 
other environments. 
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Table 5 
Summary of Technical Development Features1 

DSSE Tool Tool Feature 
Candidate DSSE 

DEC 
VAX 

Rational 
R1000 

ATCCS 
PSE 

Editor Language sensitive 
Integrated with pretty printer 
Traverses Ada semantic network 

X X 
X 
X 

X2 

Compiler Enforces design, coding standards 
Presents obsolence report 
Recognizes object dependencies 
Integrated with document builder 

X 
X 
X 
X 

X3 

Linker Runtime alternate implementations X 

Library manager Automated compile order 
Automated library recompile 
Sublibraries 
Subsystems 

X 
X 
X 

X 
X 

X 

X4 

X5 

Debugger Source level debugging 
Ada tasking support 

X 
X 

X 
X 

X 

System integration Configure by source files 
Configure by subsystem 
Target build functionality 

X X 
X 
X 

X 

NA6 

1 From (Magnavox Electronic Systems Company 1990, p. 25) 
2 The HP Ada 3.25 pretty printer ada.format is a separate tool. 
3 The HP Ada 3.25 Ada library manager ada.umgr does not detect dependencies 
across multiple program libraries. 
4 This feature is not provided by HP Ada 3.25, but by the G-ADA ada.depend tool. 
5 This feature is not provided by HP Ada 3.25, but by the G-ADA ada.make tool. 
6 This feature is not needed for the PSE, since the development and target 
environments are the same. 

Rational promotes the development of high quality software by supporting 
recognized software engineering principles auch as abstraction and informa- 
tion hiding. 

Rational, augmented by the ATCCS PSE, will provide a scalable software 
development environment capable of attacking large-scale programming pro- 
jects. 

Rational's TBU and RPC provide an integrated host-target environment 
which smooths the transition from development on the host to installation and 
testing on the target. 

Rational allows custom specification and automatic enforcement of coding 
standards. 

Rational's editor and compiler provide for automated collection of software 
metrics and generation of metrics reports. 
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The concluding statements in the MESC report were unequivocal: 

The existing Rational system management, project management, 
technical development, and configuartion management tools may 
be integrated with additional software to create an environment to 
encompass the total software development process. When software 
developers, managers, testers, or other personnel log into this aug- 
mented Rational system, they will be logging into a configuration 
management environment and will perform all functions within this 
environment. Neither alternative provides the possibility of such 
an environment in the forseeable future (Magnavox Electronic Sys- 
tems Company 1990, p. 33). 

Other Users 

Honeywell announced in January 1994 that it will use Rational Apex on Sun 
SPARC workstations to develop the Boeing 777 Airplane Information Manage- 
ment System (AIMS); AIMS is an avionics software application which controls 
both the 777's flight management computer system and its central maintenance 
controls. 

France's national railroad organization, Societe Nationale Chemins de fer 
Francais (SNCF), has selected the Environment as the development platform for 
its Astree project. SNCF plans to equip every train with on-board systems to 
transmit its location, speed, and other operational information to DEC 
VAX/VMS systems in Astree processing centers. These systems will monitor 
train position and performance to ensure passenger safety as well as smooth 
operation. 

Other documented examples of projects using the Environment include the 
Canadian Automated Air Traffic System (CAATS) under development by 
Hughes Aircraft of Canada (The Rational Watch Winter 1992), IBM's Advanced 
Automation System (AAS) contract with the Federal Aviation Administration 
(Taft 1990), development of the NASA space station data management system 
by Lockheed (Suydam 1991), and TRW's Universal Network Architecture Ser- 
vices (UNAS) product (Crafts 1993, Royce et al. 1991). 
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5 Recommendations and 
Conclusions 

Recommendations 

Based on the information gathered in this study, the author gives an 
unqualified positive recommendation for acquisition of the Rational Environ- 
ment if it is to be used on large (100,000+ SLOC) projects. This positive recom- 
mendation can be further extended to the situation where multiple moderate size 
projects are contemplated. If only small systems will be developed, the Environ- 
ment will still be quite helpful in the application sense, but it will probably not 
be cost effective (although Rational Apex pricing may alter this conclusion). If 
the Environment is acquired, the following guidelines should be followed to 
ensure its successful utilization. 

• Adopt a strategic perspective with respect to the software development pro- 
cess. A good starting point for guidance in this respect is (Hefley et al. 1992). 

• Adopt the SEI CMM as a means of improving the organization's develop- 
ment process; plan to reach CMM Level 2 ("repeatable") within a year. 

• Do not view the Environment as a ' 'silver bullet;'' (Brooks 1987) decide on a 
realistic development methodology and use the Environment as a tool to 
implement that methodology. 

• Acquire appropriate layered products, e.g., Insight and Testmate, to cover the 
various phases of the software life cycle specified by the methodology. 

• Plan to use the RXI as the means of accessing the Environment; users will 
find it more functional than the Rational Windows Interface (RWI). 

• If there are sufficient funds, equip each developer with a UNIX workstation 
having a large monitor. If cost is an issue, acquire X terminals or PC-based X 
terminal emulators to run the RXI. 
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• 

• 

Plan to migrate to Rational Apex when the layered tools become available, 
probably in late 1994. 

Acquire the services of Rational consultants for some initial period. 

Use these consultants to train a core group to serve as in-house experts. 

Build further expertise by using the Environment on a small pilot project 
(Brooks 1975, p. 116). 

Use the experience gained in the pilot to identify necessary changes in 
methodology and additional necessary tools. 

Provide formal training on a "just-in-time" basis for additional developers. 
As part of this training require every developer to read The Mythical Man 
Month (Brooks 1975); it is an essential reference for the entire staff. 

Assign a member of the core group to each development team to serve as a 
mentor. 

Assign one or more individuals to handle special tasks, e.g., configuration 
management, testing, and toolsmithing (Brooks 1975, p. 128). 

Document the way the Environment was used to implement the methodology 
so that future projects can build on newly acquired knowledge. 

Conclusions 

The basic Environment provides powerful aids for software development in 
Ada, particularly in the areas of coding, browsing, configuration management, 
and version control. The subsystem concept, which provides a level of abstrac- 
tion above the package, is crucial to the development of very large systems. The 
underlying, DIANA-based intermediate representation is the basis for many of 
the environment's important features, e.g., syntactic completion and semantic 
verification from within the Ada-knowledgeable editor. The DIANA representa- 
tion, along with the object-oriented multistate approach to code translation, helps 
limit the scope of a recompilation. Again, this is particularly useful for large 
projects. 

The Environment is a back-end CASE tool environment; it is critical that it 
be augmented by one or more other tools which address the requirements 
analysis and design phases. Examples of such tools include the RDF, Insight, 
and Teamwork. The RDF, which uses a PDL-based approach to system design, 
is worthy of particular mention. Because this PDL is a subset of Ada, many 
design tasks can be automated, interfaces and other relationships between design 
elements may be automatically verified, and the PDL design itself can naturally 
evolve into the Ada implementation. Either Insight or Teamwork may be used as 
a graphical front-end to the RDF. 
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There are tools which address other aspects of the development process. One 
of the more significant is Rational Testmate, which automates many aspects of 
unit, integration, and regression testing. Testmate manages the complexity asso- 
ciated with developing, running, and maintaining the large numbers of test sets 
required to validate multiple versions of a large software system. Another 
important tool is DRC's Adamat, which gathers data about the actual Ada code 
and uses that information to compute various software metrics. This allows 
measurement and improvement of software quality. Unfortunately, an important 
component which has not yet been provided is an Environment tool which 
addresses business process modeling. 

One of the strongest criticisms of the Environment has been the expensive 
proprietary hardware and operating system required to run it. Rational Apex, an 
implementation of the environment for RISC-based UNIX workstations intro- 
duced in August 1993, answers that criticsm. More than just a direct "port" of 
the environment, Apex takes advantage of underlying UNIX features, e.g., NFS 
and file ownership and security mechanisms. Furthermore, the Apex interface is 
a Motif-compliant application running under the X Window System. Rational's 
supporting tools, e.g., Testmate and Insight, will be available for Apex in 1994. 

A development which could have a favorable influence on the Environment 
and its capabilities is the recently announced merger between Rational and the 
Verdix Corporation (Alexander 1993). Until this merger, the Verdix Ada 
Development System (VADS) APSE (Matthews and Bums 1991) probably 
presented the toughest competition to the Environment in terms of market share 
and technical merit. The VADS APSE is highly functional and it is reasonable to 
assume that many of its best features will ultimately be incorporated into the 
Environment. 

Perhaps the most important advantage of the Environment is the manner in 
which it facilitates the development of large, complex Ada systems. Ada itself 
was designed to support such large system development and experience has 
shown it does so in ways no other language can (Deputy Assistant Secretary of 
the Air Force for Communications, Computers, and Logistics 1991). But even 
so, such projects can overwhelm a development effort when they reach several 
hundred thousand SLOC; the Environment allows developers to break through 
this barrier. Furthermore, even for projects of moderate size (10,000-100,000 
SLOC), the improvements in developer productivity make acquisition of the 
environment an investment rather than an expenditure. The information gath- 
ered in the course of work, which includes interviews with environment users, 
leads to the conclusion that the Rational Environment is preeminent among Ada 
development environments, and arguably also among those available for any 
language. 
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Appendix A 
List of Acronyms 

ACEC Ada Compiler Evaluation Capability 
ACES Ada Compiler Evaluation System 
AEC Army Environmental Center 
AES Ada Evaluation System 
AFATDS Advanced Field Artillery Tactical Data System 
AJPO Ada Joint Program Office 
AMH Automated message handler 
APSE Ada programming support environment 
ASG Ada structure graph 
ATCCS Army Tactical Command and Control System 
CASE Computer aided software engineering 
CEP Concept evaluation phase 
CICS Customer Information and Control System 
CMM Capability Maturity Model 
CMU Carnegie Mellon University 
CMVC Configuration management and version control 
COTS Commercial off-the-shelf 
CPC Computer program component 
CPCI Computer program configuration item 
DBMS Data base management system 
DIANA Descriptive intermediate attributed notation for Ada 
DSE Design sensitive editor 
DSSE Development software support environment 
EAE Evaluation of Ada Environments 
FIU Field insertion unit 
GUI Graphical user interface 
HI Human Interface 
IPSE Integrated project support environment 
ITL Infromation Technology Laboratory 
KAPSE Kernel Ada programming support environment 
LSE Language sensitive editor 
MAPSE Minimal Ada programming support environment 
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MECCA Multi-element component comparison and analysis 
MESC Magnavox Electronic Systems Company 
MIS Management information systems 
MUT Module under test 
NFS Network File System 
OOA Object-oriented analysis 
OOD Object-oriented design 
PDL Program design language 
PSE Programming support environment 
RCI Rational Compilation Integrator 
RCS Revision Control System 
RDF Rational Design Facility 
RISC Reduced instruction set computer 
RPC Remote procedure call 
RWI Rational Windows Interface 
RXI Rational X Interface 
SALE Software Architect's Lifecycle Environment 
SEE Software engineering environment 
SEI Software Engineering Institute 
SIDPERS Standard Installation/Division Personnel System 
SLOC Source lines of code 
STANFINS Standard Financial System 
STANFINS-R       Standard Financial System-Redesign 
StP Software Through Pictures 
STSC Software Technology Support Center 
UNAS Universal Network Architecture Services 
VADS Verdix Ada Development System 
WES Waterways Experiment Station 
WIS WWMCCS Information System 
WISCUC WWMCCS Information System Common User Contract 
WWMMCS World Wide Millitary Comand and Control System 
X X Window System 
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