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EDITORIAL 

The application of the method of moments (MOM) for the solution of electromagnetic radiation and 
scattering problems represents a fairly mature area of research. The method of moments is widely applied to 
the solution of practical electromagnetics problems. There are still advances to be made in the area, however, 
both in the direct application of the method and manner in which it is used. For example, when MOM is used 
to obtain frequency scan data, the computationally intensive nature of the method is compounded by the 
necessity of solving the problem at multiple frequencies. In the invited first paper of this special issue, Ed Miller 
provides a good review of the work that has been done in the area of application of model-based parameter 
estimation (MBPE) to integral equation methods, which may be used to reduce the number of different 
frequencies required for which the problem mustbe solved. He also provides some speculations about the types 
of other things that may be done using MBPE and how these relate to MOM solutions. Two other closely related 
papers by Ed on MBPE will appear in the ACES Newsletter. 

There are a total of 14 papers in the special issue. The second paper of the issue continues the MBPE 
theme and illustrates its application to a mechanical deformation study of an antenna. The next two papers 
present hybrid techniques employing MOM which seek to extend the range of usefulness of the method to higher 
frequencies. Although it might come as a surprise to some, the very low-frequency range also presents 
problems, and three papers address the improvement of the solution accuracy of the method of moments for 
low-frequency problems. Scattering by bodies having anisotropic impedance boundary conditions is then 
considered in two papers. Several of the papers in the special issue involve the use of triangular patch models 
and one of these addresses the problem of improving the model by using a parametric mapping of the vector 
basis functions on curved patches. One paper considers an alternative procedure for avoiding the interior 
resonance problem associated with the use of the electric field integral equation. Two other papers address 
problems involving complex boundary conditions including thin wire chiral structures and weakly nonlinear 
coatings on dielectric cylinders. The final paper of the issue illustrates the application of MOM to simulation 
of complex multilayer configurations for MMIC and microstrip antennas. 
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Allen W. Glisson was born in Meridian, Mississippi, on June 26,1951. He received the B.S., M.S., and 
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and bodies of revolution with surface integral equation formulations. He has also served as a consultant to 
several different industrial organizations in the area of numerical modeling in electromagnetics. 

Dr. Glisson is a member of the Sigma Xi Research Society and the Honor Societies Tau Beta Pi, Phi 
Kappa Phi, and Eta Kappa Nu. He is a Senior Member of the IEEE and is a member of four professional societies 
within the IEEE, amember of Commission B of the International Union of Radio Science, and amember of the 
Applied Computational Electromagnetics Society. He was a U.S. delegate to the 22nd, 23rd, and 24th General 
Assemblies of URSI. Dr. Glisson has received a best paper award from the SUMMA Foundation and twice 
received a citation for excellence in refereeingfrom the American Geophysical Union. Since 1984, he has served 
as the Associate Editor for Book Reviews and Abstracts for the IEEE Antennas and Progagation Society 
Magazine. Dr. Glisson has also recently served as an Associate Editor for Radio Science and as the secretary 
of Commission B of the U.S. National Committee of URSI. 
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MODEL-BASED PARAMETER ESTIMATION IN 
ELECTROMAGNETICS: 

Ill-Applications to EM Integral Equations 

E. K. Miller 
3225 Calle Celestial, Santa Fe, NM 87501 

0.    ABSTRACT 
Problem solving in electromagnetics, whether by 
analysis, measurement or computation, involves not 
only activities specific to these particular categories, but 
also some concepts that are common to all. Fields and 
sources are sampled as a function of time, frequency, 
space, angle, etc. and boundary conditions are satisfied 
through mathematical imposition or experimental 
conditions. The source samples, usually the 
unknowns in a problem, are found numerically or 
analytically by requiring them to satisfy both the 
appropriate form of Maxwell's Equations as 
relationships between them, together with the 
applicable boundary conditions. Alternatively, source 
samples may be measured under prescribed 
experimental conditions. These sampled relationships 
can be interpreted from the viewpoint of signal and 
information processing, and are mathematically similar 
to various kinds of filtering operations. It is this 
similarity that is discussed here in the context of model- 
based parameter estimation, where the dependence of 
electromagnetic fields and sources that produce them 
are both regarded as generalized signals. 

MBPE substitutes the requirement of obtaining all 
samples of desired quantities (physical observables 
such as impedance, gain, RCS, etc. or numerical 
observables such as impedance-matrix coefficients, 
geometrical-diffraction coefficients, etc.) from first- 
principles models (FPMs) or from measured data (MD) 
by instead using a reduced-order, physically-based 
approximation, a fitting model (FM), to interpolate 
between, or extrapolate from, FPM or MD samples. 
When used for electromagnetic observables, MBPE 
can reduce the number of samples that are required to 
represent responses of interest, thus increasing the 
efficiency of obtaining them. When used in connection 
with the FPM itself, MBPE can decrease the 
computational cost of its implementation. Some 
specific possibilities for improving FPM efficiency are 
surveyed, specifically in terms of using FMs to 
simplify frequency and spatial variations associated 
with FPMs. Examples of MBPE applications are 
included here as well as speculative possibilities for 
their further development in improving FPM 
performance. 

1.0   BACKGROUND AND MOTIVATION 
The computational basis for solving most problems in 
physics and engineering, including computational 
electromagnetics (CEM) derives from first-principles 
mathematical descriptions, or first-principles models 
(FPMs), of the applicable physics. The computer 
models which derive from a FPM are developed using 
numerical analysis, a process that, as has been 
observed by Oppenheim and Schäfer (1975), can be 
logically interpreted as generalized signal, or 
information, processing. Consider, for example, 
solving the LaPlace equation using finite differences, 
where V2V = 0 « (fi+1 + fj.j - 2fj)/h2 is equivalent to 

*i= tfi+1 + fi-l)/2' showing that the potential at point i 
is the average of its neighboring values, with similar 
results obtained in two and three dimensions. Thus, 
the LaPlacian operator has the property of acting as a 
spatial, low-pass filter. More elaborate differential 
equations and numerical treatments produce different 
"computational molecules" or filters but ultimately lead 
to expressing a sample of an unknown from the 
applicable differential equation evaluated in terms of 
weighted sums of the unknowns in its neighborhood. 
In this sense, their computational molecules are 
equivalent to generalized spatial filters. Similar 
observations apply when solving integral equations 
numerically, but where the weighted sums that yield a 
sample of a specific unknown involve all other 
unknown samples. 

Since numerical analysis does exhibit properties in 
common with signal processing, and also considering 
that one of the most productive uses of EM fields is the 
transmission of information, it seems reasonable to 
inquire about whether there may be possible benefits of 
examining CEM from a signal-, or information- 
processing, perspective. As discussed in part I of this 
article [Miller (1995)], referred to hereafter as RI, EM 
observables, however obtained, are well- 
approximated, or exactly described, by series of 
complex exponentials or complex poles. When the 
independent variables in the exponential and pole series 
are the time-frequency transform pair, their sums yield 
transient waveforms and frequency spectra, while other 
independent variables (see Table I of RI) are associated 
with different kinds of observables.  For convenience, 



the terms waveform domain (WD) and spectral domain 
(SD), respectively, will be used as generic descriptions 
whatever are the actual observables given by the 
exponential and pole series. 

Continuing the theme begun in RI,  we denote the 
exponential and pole series as "fitting models" (FMs) 
whose unknown coefficients are obtained numerically 
by their being "fitted" to samples of a FPM that they 
are intended to approximate and replace and which we 
denote as "generating models" (GMs).  This procedure 
is   known   as   model-based   parameter   estimation 
(MBPE).       Although   MBPE   is   discussed   here 
specifically with respect to some representative EM 
applications   and   particular   FMs,    it   should   be 
appreciated that it is a very general procedure that is 
applicable  to essentially  any process,   physical  or 
otherwise,   for  which   a reduced-order,   parametric 
model can be deduced.   Also, it must be noted that 
MBPE is not "curve fitting" in the sense that term is 
normally used, which also can involve finding the 
parameters of  some function   which is fit  to the 
available data. The essential difference between MBPE 
and curve fitting is that the former uses a FM based on 
the problem physics, while the latter need not do so, 
which is why MBPE might be characterized as "smart" 
curve fitting.   When curve fitting includes the goal of 
finding the correct FM for the process that generated 
the given data, this approach can also be described as 
"system identification."   It's worth emphasizing that 
MBPE is not limited to physical processes but forms 
the basis for variously named analytical procedures 
{e.g.,  Kummer's method, Richardson extrapolation 
and Romberg quadrature  [Ralston (1965)]}  whose 
purpose is to speed the numerical  convergence of 
mathematical representations involving integrals and 
infinite sums and wherein the integrand function or the 
sequence  of  partial  sums   can  be  regarded  as   a 
generalized  "signal."     In  discussing   a  non-linear 
procedure he developed for a similar purpose, Shanks 
(1955) referred to such phenomena as "physical" and 
"mathematical" transients. In essence, any process that 
produces a sequence or set of samples is a candidate 
for MBPE. 

In the first part of this article, RI [Miller (1995)], the 
mathematical background of MBPE is presented for 
WD and SD signals, showing that the associated FMs 
can be quantified using function sampling, derivative 
sampling, or a combination thereof. The second part, 
RII [Miller (1996)] demonstrates use of MBPE for 
developing approximate, reduced-order representations 
of a variety of EM observables in the WD and SD, an 
example of which is included in this special issue [de 
Beer and Baker (1995)]. In this article we discuss 
application of MBPE to improving the computational 
efficiency of a FPM. 

2.0   MBPE APPLICATION TO A 
FREQUENCY-DOMAIN INTEGRAL- 
EQUATION, FIRST-PRINCIPLE MODEL 
Almost all EM boundary-value problems involve 
finding the fields over some surface or throughout 
some volume due to sources distributed over that same 
surface or volume. When using an integral-equation 
formulation, these source-field relationships are given 
by a Green's function or some equivalent field 
propagator, whereas a differential-equation model 
employs the Maxwell curl equations as the propagator. 
The spatial behavior of the fields might be viewed for 
some purposes as a generalized signal, as can angle, 
time and frequency dependencies of such fields as 
well. Such a perspective can suggest alternate ways of 
representing the fields in signal-processing terms for 
numerical purposes to simplify whatever computations 
that must be done, a viewpoint that is explored here. 

For moment-method models based on a frequency- 
domain integral equation (FDIE) (other FPMs can be 
analyzed in a similar context), the number of arithmetic 
operations or operation count (OC), required for 
solution at a single frequency fj, OCj, will depend on 
the number of unknowns,  Xsj, used in the model 
approximately as 

OCi~AxXsi   +BxXsi 

or, in terms of frequency, f, as 

OCj-Aff^+Bffj6 

(la) 

(lb) 

for a three-dimensional object requiring two- 
dimensional sampling (i.e., sampling over its surface). 
When a solution is desired over some frequency 
interval, as is usually the case, then the total operation 
count, OGp, can be estimated as 

OCT~2Affi
4+Bffi

6,i = l, ...,F 

where there are a total of F solution frequencies. 

(2) 

The "A" terms here account for filling the "system" 
matrix [known as the impedance or g matrix when an 
electric-field integral equation (EFIE) is used], and the 
"B" terms account for solving the system matrix in 
factored or inverted form as a "solution" matrix 
(known as the admittance or Y_ matrix when using an 
EFIE).   Use of iterative solution techniques changes 
the above B terms to B'xXsj2 and B'ffj4 but where 
Bf' can be much larger than Bf.    Various, so-called 
"fasf'techniques are being developed with the goal of 
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reducing the highest-order terms in Eq. (la) to of order 
Xsjlog(Xsi).  Clearly, any means of reducing F would 
also be helpful in decreasing the total computational 
cost, a point that is considered in detail in Sections 4 
and 5.   First, let's consider how the impact on OCj of 
the individual terms in Eq. (1) can be mitigated. 

It can be observed that as the frequency increases from 
zero for a given problem, OCj at first grows  in 

proportion to FXj2 or Ffj4, but it eventually becomes 

proportional to FXj3 or Ffj6 when the higher-order 
term begins to dominate, assuming a constant spatial 
sampling density per X2. By reducing both the number 
of impedance matrices that need to be computed from 
the defining formulation when impedance-matrix 
computation  dominates   OCj,   and  the   number of 
admittance matrices that need to be solved from the 
impedance matrix when solution time dominates OCj, it 
should be possible to significantly reduce the OCj 
required to cover a specified bandwidth. This might be 
done by modeling the frequency behavior of the 
impedance matrix for smaller problems, and the 
frequency behavior of the admittance matrix for larger 
problems, in both cases with the goal of reducing the 
number of FPM evaluations needed, i.e. to reduce F in 
Eq. (2), and to thus minimize OGp It should be noted 
that the "crossover" point in Xsj between fill-time and 
solution-time domination of OCj, can vary from as few 
as 200 unknowns to as many as 10,000 unknowns. 
Thus,  the £ and  Y matrices,  or their interaction 
coefficients, both become candidates for MBPE, albeit 
using different kinds of FMs as is considered below. 

In addition to modeling the frequency behavior of g 
and Y, it is also worth considering whether the spatial 
behaviors of either of these matrices can be modeled. 
From a signal-processing perspective, the spatial 
variation of the field over an object due to a given 
localized source (e.g., asubdomain basis function) on 
that object might be regarded as a generalized signal. If 
this field "signal" can be predicted or estimated using a 
FM that is computationally simpler than using the 
defining equations normally employed for calculating 
the exact interaction coefficients, the magnitude of the 
Af term in Eq. (2) could be commensurately reduced. 
Alternatively, if a first-principles evaluation of only a 
subset of the Xs

2 interaction coefficients needs to be 
done, say CXS where C « Xs, and the rest can be 
estimated from the rigorously computed coefficients, 
then the effect would be to change the AxXg   term to 

of order CAxXg, if the cost of obtaining the estimated 
values is much less than that of the rigorously 
computed coefficients. 

A specific example of reducing the Af term in Eq. (2) is 

to compute none of the Xs
2 interaction coefficients in Z. 

from first principles, but instead to estimate them using 
some appropriate FM based on a small set of 
precomputed, first-principles field samples. This 
approach, summarized in Section 4 below, was used 
by Burke and Miller (1984) for reducing the cost of 
evaluating the Sommerfeld integrals that arises when 
modeling objects near an interface where the FMs are 
analytical approximations to these integrals. Their 
approach is an extension of earlier work described by 
Miller et al. (1977) where linear interpolation of 
sampled Sommerfeld integrals for the matrix 
coefficients was used as a curve-fitting procedure 
rather than MBPE. Other problems having special 
Green's functions are also candidates for this 
procedure, another example of which is provided by 
modeling sources between infinite parallel planes 
[Demarest et al. (1989)]. In these instances, the 
reduction in OCj is reflected in a decrease in the Af 

coefficient in Eq. (1). 

Another way of reducing the effect of the Af term is to 
exploit the fact that, as the source and observation 
points become more widely separated, the complexity 
of their interaction fields is reduced. This is easy to see 
by considering that the fields in the vicinity of a linear 
source distribution of a few wavelengths in extent are 
to be pointwise sampled along a line parallel to, and a 
distance E away from, the source. In order to develop 
an accurate-enough representation, it would necessary 
to sample the field at some minimum density per 
wavelength. Now consider the situation as the 
sampling line is moved further and further away from 
the source. The field variation along that line will 
become less complex as the near-field components 
decrease with increasing distance and finally only the 
1/r field remains. Furthermore, with increasing 
observation distance, the spatial variation of the field 
along a line of fixed length further decreases in 
complexity because the angle subtended by this line at 
the source monotonically decreases. In other words, at 
a great enough, finite distance away from the source, 
the field variation becomes a function of subtended 
angle rather than of linear distance over some fixed 
observation range. 

Thus, the effective rank of the interaction between 
sources of given size decreases as their separation 
distance increases, reducing the complexity of that 
interaction, and, consequently, the amount of 
computation needed to determine it to some specified 
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accuracy. This idea is exploited in techniques such as 
the fast multipole method [Coifman, et al. (1993)], 
impedance-matrix localization [Canning (1990)], 
recursive models [Chew (1993)], etc., where rank 
reduction is explicitly employed, or where more distant 
interaction coefficients are approximated by simpler 
expressions [Vecchi et al. (1993)]. Such approaches 
effectively employ exact interaction coefficients when 
the source and observations points are close and 
controlled approximations as their separation distance 
increases.     This results  in an Af coefficient that 
becomes smaller as source-observation distance 
increases, or a reduced matrix-fill time. In addition, 
because the interaction complexity decreases with 
increasing distance for fixed source and observations 
spans, the complexity, or effective number of 
interaction coefficients also decreases, reducing the 
OCj of multiplying the impedance matrix by a source 

vector from of order Qi\) to of order Xj. The OCj 
associated with solving a matrix having Xj unknowns 
by iteration thus trends towards order Xj or XjlogXj 

from being of order (Xj)^. 

Whether spatial variations in the solution or admittance 
matrix might be exploited in a similar fashion is not so 
clear. Certainly, a valid solution to the original 
problem must exhibit spatial dependencies consistent 
with the geometry and excitation involved and be 
consistent with Maxwell's equations. Graphical 
examination of the Y matrix for simple objects like a 
straight wire[MiIIer et al. (1981) and below] reveals 
that it exhibits a standing-wave character, not a 
surprising result in that the currents on such structures 
are well-known to have such behavior. In other 
words, the "traveling-wave" nature of the Green's 
function in the formulation domain, reflected in terms 
like exp(ikR)/R, is converted to a standing-wave 
response in the solution domain, where amplitude 
maxima occur at resonances associated with the object 
poles. Thus, an appropriate FM for the admittance 
matrix should apparently be expected to be of wave- 
domain type as well. These kinds of ideas are now 
explored from the perspective of MBPE in the 
following section. 

Afillf4>Bsolvef€ 

Formulation-domain modeling: 
reduce complexity of coefficient 
computation and minimize number of 
matrix-fill frequencies. 

Afillr<Bsolve1 

Solution-domain modeling: 
reduce cost of matrix solution 
and minimize number of matrix-solution 
frequencies. 

Figure 1. Illustration showing where matrix-fill and matrix-solution operation counts dominate for a 
frequency-domain integral equation solved using L-U decomposition and assuming that a fixed sampling 
density per wavelength is used as frequency is increased. At lower frequencies a computational benefit 
can be realized by finding ways to compute interaction coefficients more efficiently or to reduce the 
number of rigorously computed £ matrices.  At higher frequencies, a computational benefit results from 
reducing the number of solutions, or Y matrices. 

3.0 THE TWO APPLICATION DOMAINS IN 
INTEGRAL-EQUATION MODELING 
We have discussed MBPE in CEM from the 
perspective of whether the quantities of interest exhibit 
wavelike   or  polelike   behavior,   referring   to   their 

respective occurrences by the designations waveform 
domain and spectral domain, respectively, determined 
by the mathematical description that applies to a given 
quantity. There is another domain pair that is also 
useful for problem categorization, one describing the 
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domain wherein a boundary-value problem is defined, 
and the other describing the domain wherein a solution 
to that problem is presented. We refer to the former as 
the "formulation" domain, in which a formal 
mathematical statement originating from Maxwell's 
Equations is developed for a problem, and to the latter 
as the "solution" domain, in which that original 
formulation has been mathematically solved. In the 
formulation domain we begin with known exciting 
fields to which to-be-found induced sources are 
required by Maxwell's Equations to satisfy the 
appropriate boundary conditions. Finding these 
induced sources requires inverting the original source- 
field relationship. For all but the simplest problems the 
inversion requires numerical computation. 

A potential approach to alleviating the computational 
requirements that arise in either the formulation domain 
or solution domain is to exploit the underlying physical 
and mathematical behavior of EM fields, as is 
embodied in first-principles analysis of wave-equation 
problems, through a simplifying, reduced-order, 
signal-processing formalism. Of course, knowledge of 
the problem physics is required to begin with as any 
solution process, analytical or numerical, can not be 
initiated without having the applicable physics captured 
in appropriate mathematical form, something that in 
terms of Maxwell's Equations might be characterized as 
a microscopic description. But the physical behavior 
of greater practical interest is usually macroscopic in 
nature, as it is not generally the fine details of the 
current distribution on an antenna or the near fields 
around a scatterer, but the antenna input impedance and 
gain, or scattering cross section, that are needed for 
system design. The macroscopic description is 
naturally a reduced-order one and provides the context 
forMBPE. 

As previously observed, MBPE involves fitting 
physically motivated analytical approximations (the 
model) to accurately computed or measured EM 
observables from which unknown coefficients (the 
model parameters) are numerically obtained. These 
fitting models can then be used in subsequent 
applications to more efficiently characterize time, 
frequency, angle and space responses as well as to 
provide more insightful access to the underlying 
physics. In the solution domain, MBPE can be applied 
directly to the spatial and frequency dependencies of 
the computed observables themselves, such as currents 
and fields as discussed in RII, or instead to the solution 
matrix from which these quantities are obtained, as is 
discussed here. 

Alternatively, we might also employ MBPE in the 
formulation domain, where it is the behavior of the 
first-principles analytical representation that is being 
approximated by reduced-order FMs. In that case, the 

frequency and space dependence to be represented 
would be that of the defining source-field relationships 
as contained in the system matrix. In contrast to 
working in the solution domain, where resonance 
effects dominate the EM behavior, growing phase 
change and geometric attenuation of the fields of 
increasingly distant sources dominate the behavior 
when working in the formulation domain. While the 
most appropriate FM will depend on the particular 
quantity being modeled, exponential- and pole-series 
models are widely applicable. For example, the 
frequency and spatial variations of a EDIE are suitable 
for exponential, or WD, FMs in the formulation 
domain, whereas in the solution domain pole-series 
FMs are suitable for frequency and angle variations and 
exponential-series FMs for their spatial variation. 
Formulation-domain approaches are described by 
Newman (1988) and Benthien and Schenck (1991), 
and solution-domain approaches are presented in Burke 
et al. (1988, 1989). Other kinds of FMs can be found 
useful, e.g. based on the geometrical theory of 
diffraction, for other analytical formulations and 
solutions. Some of these possibilities are discussed in 
the following sections. Each of these two FMs and 
problem domains are considered in the following. 

4.0   FORMULATION-DOMAIN MODELING 
4.1     Waveform-Based MBPE in the 

Formulation Domain 
The question to be considered here is how 

waveform-based MBPE might be used for improving 
the numerical solution of a FDIE. First observe that 
the coefficients that appear in the impedance matrix for 
an FDIE model can be expressed in the generic form 

Zm;» = f Sn(Q))KR)m;n(a))KA;m>n((o)dAn 

(3) 

where m and n denote the observation and source 
patches, respectively; Sn is the source on patch An; 
KR m n is ^ patch-to-patch (or P-P) part of the IE 
kernel; and KAjrnn is the in-patch (or I-P) part of the 
kernel, where we have assumed a subdomain 
numerical model is being used. These terms refer, 
respectively, to that part of the kernel function whose 
frequency and spatial dependence is driven by an 
exponential phase change due to the P-P distance as 
contrasted with those variations due to variable 
positions within the source (and, possibly, 
observation) patches. Because increasing the P-P 
distance and increasing the frequency both increase the 
phase of KR m n, changes in one or the other of these 
variables have similar effects on interaction phase, an 
effect that is exploited in using scale models in making 
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experimental measurements. Considering frequency 
variations specifically, except for the patches that are 
close to each other (with respect to the wavelength), the 
P-P term would normally represent a faster frequency 
variation while the I-P would always represent a 
slower frequency dependence because patches need to 
be small relative to a wavelength while the interpatch 
distance can be arbitrarily large.   The XgxXs set of 

interaction coefficients defined by Eq. (3) provides all 
the information needed to represent an object's EM 
characteristics, to the degree permitted by a numerical 
model based on it, but the source-field, integral- 
equation relationship represented by Z'L= Vmust be 

inverted to I = Y- V to obtain the desired solution. 

The P-P, or fast, term always has the form, for IE- 
based models, 

kr„ 
KR,m» = e)Kr-/r] m,n (4) 

where rm n, the separation between the origins of the 
source- and observation-patch local coordinates, is 
assumed to be a far-field distance and k is the 
wavenumber, a form that emphasizes the traveling- 
wave nature of the impedance-matrix coefficients. 
Integration over the source patch (and, possibly, the 
observation patch if using other than delta-function 
field sampling; though here we explicitly consider only 
source integration) involves changes in the fast term of 
order exp^'kAr^^), where kArmn «   1 is the distance 
variation caused by scanning over patch n. The 
interaction coefficient Zm n can, thus, be rewritten as 

Zm,n(co) = ejkR-f Sn(co)KA(m(n(co)dAn 

(5) 

with Rmn + Armn  = rm>n and KAmn a modified 

slow-variation   kernel.      This   form  of   interaction 
coefficient suggests that we can estimate Z^ n(o)2) at a 

new frequency 002 from an accurately computed value 

at frequency co j as 

Z^K) - Z^a(^°rt^Mn.n(a2-<>>l) 
(6) 

where Mm n(o>2"0)l) *s an interpolation model that 
accounts for the slowly varying part of the kernel 
function whose specific form would depend not only 
on object geometry but on whatever frequency 
dependence might have been incorporated into the basis 

and testing functions that are used. Exploiting a 
capability for modeling the spatial variation and its 
decreasing complexity with increasing distance is more 
involved, but is essentially embodied in "fast" methods 
which   seek  to  reduce  the OC  of  filling  Z_ and 

performing Z_T multiplies from of order Xs
2 to of 

order XsLog(Xs) [e.g., see Canning (1990), Chew 
(1993), Coifman et al. (1993)]. The specific problem 
of modeling the frequency variations in Z_ is considered 
next. 

4.1.1    Modeling Frequency Variations- 
Antenna   Applications.      The   model 

Mm n might be represented in various ways including 
using low-order polynomials (the model) whose 
coefficients (the parameters) are computed from 
samples of Zm n at selected frequencies [Newman 
(1988), Benthien and Schenck (1991)]. When 
sinusoidal bases functions specifically are used, it may 
also be advantageous to develop a recursive form for 
Mm n.  By accurately computing the impedance matrix 
at widely spaced frequencies and using estimated 
values at intervening frequencies, the goal is to obtain 
acceptably accurate results across a wide bandwidth 
without the cost of computing the impedance matrix at 
all sampling frequencies desired. As an example 
application, the analytical behavior of the impedance- 
matrix coefficients has been approximated for small 
variations in frequency about the computation point 00 j 
by [Newman (1988)] 

M^to - co^linjag = Ai + B^co - to^ 

+ Cj(co - coj) (7) 

V " <° Irreal = Ar + B^ " <° l> 
+   C^tD-CDj)2 (8) 

A result obtained by Newman is presented in Fig. 2 
where the input impedance of a center-fed dipole 
antenna is plotted as a function of frequency over its 
first two resonance frequencies. Two different curves 
are shown, one for a GM sample interval of 300 MHz 
and the other of 600 MHz. 

Virga   and   Rahmat-Samii    (1995)   used   g-matrix 

frequency modeling for more complex communications 
antennas, one result for which is shown in Fig. 3. 
There the input impedance of a 4-turn helical antenna 
on an infinite ground plane is plotted versus frequency 
as obtained by direct evaluation and from two 
interpolation methods. The interpolated results are 
obtained using a simple quadratic FM and a second FM 
that incorporates the singularity of interaction 
coefficients    for    segments    closer   than    one-half 
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wavelength and otherwise uses Eqs. (6) to (8). The 
authors report an approximately 30-to-l computer 
savings   results  from   modeling  the   g matrix   as 
compared with direct evaluation at a total of 301 
frequency samples. 

4.1.2 Modeling Frequency Variations: 
Elastodynamic Scattering. Benthien 

and Schenck (1991) have used an approach similar to 
the above for modeling elastodynamic problems whose 
frequency responses, it should be noted, can be much 
more complex in structure than typical EM spectra. 
One interesting aspect of their work is that they are able 
to span a bandwidth that includes several resonances 
with only two FPM system-matrix computations at its 

endpoints while using MBPE for frequencies between 
them, in contrast to modeling the solution (admittance) 
matrix where the equivalent of two samples per 
resonance are required [RII]. The resonance structure 
is manifested only when the solution has been 
developed, or the source-field description has been 
inverted. This difference stems from the fact, so long 
as phase changes are handled accurately enough across 
a given frequency interval over which the phasor 
between the most widely spaced points on the object 
being modeled rotates through several (say n) times 
2rc, then n to 2n resonances can be predicted by using 
only 2 FPM samples. Examples of Benthien and 
Schenck's results are included in Figs. 4 and 5. 
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Figure 2.  Results from using MBPE and two different FMs to represent the interaction coefficients of the g. matrix of a 
center-fed, half-wave dipole antenna [Newman (1988)]. The FMs employ the approach of Eqs. (31) to (33) and are based 
on GM samples spaced 300 MHz apart (the solid line) and 600 MHz apart (the dashed line). The discontinuity in the 
impedance curves occurs at the point where a FM replaces a GM sample at one end of its span with a new one at the 
other as successive GM samples are employed. 

4.1.3.    Modeling Spatial Variations: 
The     Sommerfeld     Problem. A 

computationally demanding problem is that of 
determining the Sommerfeld fields that result from the 
interaction of elementary sources with a half space and 
which become part of the Green's function in an IE 
model for antennas near ground, microstrip structures, 
etc. One of the first approaches to this problem to 
incorporate numerically the rigor of the Sommerfeld 
integrals while avoiding their computational complexity 
used a two-dimensional mesh of pre-computed 
Sommerfeld integrals [Miller et al. (1977)]. This 
permitted evaluating the impedance-matrix coefficients 
for wire objects located on one side of an interface 

from simple bivariate interpolation, since the fields are 
then functions of only two variables, their lateral 
separation p and the sum of the vertical coordinates, z' 
and z, of the source and observations points relative to 
the interface, respectively. This essentially curve- 
fitting approach, used in NEC-2, reduced the matrix fill 
time to being little more than what is needed for a 
perfectly conducting ground where image theory is 
analytically rigorous. An example of the field variation 
on the same side of the interface as a fixed source 
located near an interface is shown as a function of 
observation position in Fig. 6. Clearly, the field is 
quite well-behaved and can be accurately approximated 
using linear interpolation. 
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Figure 3.   Results from using MBPE and two different FMs of the interaction coefficients of the Z_ matrix for a helical 
antenna. Values obtained from straight-line interpolation of 301 GM samples (solid line) are compared with a quadratic 
FM (dot-dash line) and a FM defined by Eqs. (6) to (8) (dashed line) [Virga and Rahmat-Samii (1995)]. The GM samples 
used for the FM results are indicated by the starred points. 

Figure 4. Results for acoustic backscattering from the end of a circular cylinder as a function of frequency 
obtained from the basic model without interpolation (solid line) and using MBPE on samples spaced 1.0 
unit apart in ka (dotted line) [Benthien and Schenck (1991)]. A linear interpolation model is used for, 
Mmn(o)2 - to-)) in Eq. (6) to obtain the estimated interaction coefficients.   The Z-matrix FM samples 

themselves are spaced too far apart to adequately resolve the fine structure of the response. A second 
series of pole-based FMs might be used to rectify this problem, as additional FM samples developed 
in the solution domain would require much less computation than using the formulation-domain FMs each 
of which involve solution of a large matrix. 
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B ACKSCATTERING FROM END OF CYLINDER 

Figure 5 Results for acoustic backscattering from the end of a circular cylinder as a function of frequency 
obtained from the basic model without interpolation (solid line) and using MBPE on samples spaced 0.4 
units apart in ka (dotted line) [Benthien and Schenck (1991)]. The Z-matrix interaction coefficients are 
estimated between their rigorously computed samples using a linear-interpolation model in Eq. (6), but 
absorbing the "scaling" factor, exp[j(co2- <°l)Rm,n/c]> in Mm,n(co2 - "l)- Comparison of Figs. 5 and 6 
emphasizes the importance of including the dominant functional variaions of the quantity being estimated 
in the MBPE process. 

(a) (b) .,    ,      ■ Figure 6. These plots exhibit representative electric fields due to a delta-current source located on the air side of an air- 
earth interface as a function of radial distance R i and elevation angle 6 for a lossy, (a), and a lossless, (b), lower medium, 
respectively The field is seen to be spatially less variable than the mathematical complexity of the Sommerfeld integral 
which gives it might imply. An interference between the different-wavelength above-surface and below-surface fields can 
be observed along the interface (where 8 = 0). 
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Later, in extending NEC-2 to model objects interacting 
across an interface, a problem where three-dimensional 
interpolation would have been required since the fields 
are then functions of lateral separation and the distance 
from the interface of both the source and observation 
point, an unattractive prospect, MBPE was then 
employed. The analytical "models" in this case are 
extracted from various asymptotic and other 
approximations that are applicable to the parameter 
range of interest so that Sommerfeld integrals of the 
form 

-y _ +lz'l-y Jzl 

Vl = 2fe    •      "  Jo(Xp)MX, 

are replaced by expressions like 
(9) 

TVä-K^Kr_k]_fI^ne^ _Sco^R-K 

4*    [k++k-    cos0 

where 

e = tan-1ii^,S = ^,andK = J^4 
P R k! + k! 

(10) 

with the details described by Burke and Miller (1984). 
Finally, the fields needed for the integral-equation 
model are then approximated by 

E(r,z,z') « 2Anfn(p,z,z*); n = 1, . . .,N    (11) 

where the fn(p,z,z') functions comprise the model and 
An are the model parameters.   This MBPE approach 
for the interface problem provides an essentially 
rigorous numerical model for objects interacting across 
an infinite, planar interface at a cost of increasing the 
matrix fill time by only 5-10 times over what modeling 
the same object(s) in free space would require. An 
example of one electric-field component transmitted to 
a lower medium from an above-surface source is 
shown in Fig. 7. 

An alternate approach for the half-space problem based 
on a series of complex images developed using Prony's 
Method is described by Shubair and Chow (1993). 
For a verticallly oriented antenna, a series of three to 
five image antennas are found to be adequate for the 
one-sided problem (antenna on one side of the 
interface). A similar approach for a horizontal antenna 
is reported by Fang et al. (1988). 

MTL 

ZA0 

Figure 7.   The MBPE FM results for the Tp
v field as a function of radial and vertical location beneath an 

interface for a source located above it [Burke and Miller (1984)]. Also shown by the dots are the 
Sommerfeld-integral values used as GMs for the FM approximation. Although not clearly shown 
because they overlap, the exact and MBPE results are both plotted in this figure. 
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4.1.4    Modeling Spatial Variations: 
Waveguide Fields. Other opportunities 

for Green' s-function applications of MBPE arise from 
separation-of-variables solutions for exterior problems 
involving cylinders, spheroids, etc. where infinite 
series of special functions occur and for interior 
problems where the Green's function can then involve 
an infinite series of images. An example of the latter 
application is reported by Demarest et al. (1989) for a 
wire antenna located in the region between infinite, 
parallel, perfectly conducting planes for which some 
results are shown in Fig. 8. The microscopic source- 
field description contained in the infinite-series Green's 
function for this problem is replaced by low-order FMs 
of the spatial field behavior that provide a much more 
efficient, yet acceptably accurate, numerical 
representation of these fields. These FMs substantially 
increase the efficiency of computing the interaction 
coefficients in an FDIE model by a factor of about 20 
for the example shown. We note that the Green's 
function for this particular problem has the 
characteristics of both the WD and SD FMs, since the 
contribution of each image is pole-like, having a l/(x - 
xn) amplitude multiplied by a wave-like phase factor 
exp(-ik(x - xn).    The signal fields of this kind of 
Green's function might be described as having a hybrid 
character, with the goal of the FM being to replace both 
with a simpler analytical description. 

4.1.5. Modeling Spatial Variations: 
Moment-Method Impedance 
Matrices. The preceding examples deal 

with modeling the frequency variation of the 
coefficients of a FDIE system matrix as a means of 
reducing the number of needed FPM-matrix 
evaluations when spanning many resonances across 
some frequency band to reduce the overall operation 
count. Alternatively, we might examine the feasibility 
of reducing the number of FDIE-matrix coefficients 
that need FPM evaluation at a given frequency as way 
to reduce the OC at a given frequency. This kind of 
approach is described by Vecchi et al. (1994) and 
demonstrated by application to a microstrip line with a 
coupled dipole, an example of which is presented in 
Fig. 9. According to Vecchi et al., there is no 
appreciable difference between results obtained using 
the FM and the exact results. 

Spatial variations of impedance and admittance matrices 
can be better appreciated by presenting them as surface 
plots, an example of which is included in Fig. 10a for a 
straight wire where the numbering of the subdomains 
used for this model is sequential from 1 to N. The 
axes represent the matrix rows and columns and the 
normalized height of the surface at row = m, column = 

n above the row-column plane represents the 
magnitude of a given interaction coefficient, E^ nl. 
The plotting routine passes a smooth surface through 
the set of 1^ nl values,  and so may introduce a 
"fractional" interpolation between the discrete set of 
row-column indices. It's well-known, of course, that 
the impedance matrix for a straight wire or a strip is of 
Toeplitz form and so this particular matrix could be 
fully displayed by a single row or column. The matrix 
for the same wire bent to form a polygonal 
approximation of a circular loop would look very 
similar on this same linear scale except that there would 
be large components near the corners opposite the main 
diagonal, assuming the wire segments are numbered in 
order as well. Were a spatial FM to be used for these 
impedance matrices, the phase variation would also be 
needed, or as an alternative the real and imaginary parts 
might be used instead. The use of magnitude and 
phase for modeling Z seems the more appropriate since 
they are "smoother" [Brown and Prata (1994)]. 

RglGJ (w/o source) 0 

RE[GJ(w/o source}'      0 

Figure 8.   Results for the Gxx component of the 
dyadic Green's function (x-directed source 
perpendicular to waveguide walls, and x-directed 
field) as obtained from direct evaluation of the 
defining equation, (a), and as evaluated using a FM 
consisting of two multiplied 3rd-order polynomials 
in x and z, (b) [Demarest et al. (1989)]. The current 
on a dipole antenna located midway between the 
waveguide walls obtained from using (b) are within 
5% of those resulting from (a). 
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(a) (b) 
Figure 9. Example of modeling the spatial variation of an interaction coefficients for an integral-equation 
system matrix of a microstrip line with a coupled dipole using a Galerkin subdomain [Vecchi et al. (1994)]. 
Result in (a) is log-jg of tne static, singular part of the self-impedance matrix for the line as a function of 
the difference between the source and observation subdomain indices. The +'s show the points where 
the interactions are sampled for the FM, the solid line is the exact result and the dashed line is the FM 
result. The FM in this case is a polynomial applied to Zg[log(q)].  The results in (b) are obtained for the 
frequency-dependent part of the interaction coefficient, where the solid line is the exact result, the 
dashed line is FM approximation, again using a polynomial, and the o's and +'s indicate the real and 
imaginary samples used for evaluating the FMs. 

An example for a more interesting structure, an 8-turn 
helical spiral having a total wire length of 16 
wavelengths, is shown in Fig. 10b, also using a linear 
magnitude scale. A "splitting" of the coefficients along 
the main diagonal may be observed, due to the 
changing orientation of the neighboring wire segments 
as they spiral around the helix. This effect can be seen 
to continue as a ripple in the coefficients further away 
from the main diagonal. 

More information is conveyed by plotting the log of the 
matrix coefficients, for which two examples are 
included in Fig. 11. The first, in (a), is for a wire two- 
free-space wavelengths in length, located parallel to, 
and 10"4 free-space wavelengths beneath, the interface 
between an upper free space and a lower half space 
having a relative dielectric constant of 10. There the 
interference between the waves propagating above and 
below the interface is seen in a somewhat different way 
than demonstrated in Fig. 6 for the Sommerfeld Field 
alone. Aside from the fact that this matrix is also of 
Toeplitz form, and therefore more simply filled and 
solved than an arbitrary matrix, the regular variation of 
the coefficients in a given row or column indicates the 
feasibility of using a suitable spatial FM for reducing 
matrix-fill complexity. 

When the same two-wavelength wire is rotated 90 

degrees to penetrate the earth-air interface normally at 
its midpoint, the impedance matrix shown in Fig. lib 
is obtained. The matrix is now block-Toeplitz but is 
otherwise nearly as simple spatially as is the case for 
the same object located in free space. 

A much more complicated structure because it has a 
surface, rather than a linear, geometry is a wire mesh 
for which an impedance matrix is presented in Fig. 12. 
This plot dramatizes the problem encountered when 
attempting to visually display source-field relationships 
over a two-dimensional surface (or a three-dimensional 
volume) in terms of a two-dimensional matrix of 
interaction coefficients. The interactions are dependent 
on the four spatial coordinates that define observation- 
and source-patch locations Am and An, respectively, 
as well on other details of the numerical model, and 
when projected onto the two-dimensional surface of the 
impedance matrix their associated spatial relationships 
are disordered. The field "signal" is no longer simply 
discerned by observing the behavior of a row or 
column from £ but instead requires following a path 
through the matrix determined by the numbers assigned 
to the individual unknowns. This does not mean that 
the spatial variation of the fields can no longer be 
modeled, but that matrix indices can no longer serve as 
the FM variables. 
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Figure 10. Surface plots of the magnitudes of the impedance-matrix coefficients of a straight wire 2 
wavelengths long, (a), and an 8-turn helical spiral 16 wavelengths long, (b). 

4.2 Using Spectral MBPE in the Formulation Domain 
A spectral FM would not be expected to be applicable to an integral equation based on a space-based 

Green's function, but could be appropriate for a transformed or modal Green's function where the variable is 
spatial wavenumber rather than distance. That possibility is not considered further in this discussion. 

l.M 

(a) (b) 

Figure 11. Surface plots of the magnitudes of the impedance-matrix coefficients of a straight wire 2 
wavelengths long infree space when parallel to, and 10"4 wavelengths beneath, an air-ground(er = 10) 
interface, (a), and the same wire oriented normally to the interface with half its length in each half space, 
(b). 
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Figure 12. Surface plots of the magnitudes of the impedance-matrix coefficients of a 5-wirex 5 -wire 
mesh of wires whose total length is two wavelengths. The irregular appearance of this matrix results 
from the fact although the unknowns can be numbered in a sequential fashion, their separation is no 
longer linearly dependent on their respective indices. 

5.0  SOLUTION-DOMAIN MBPE 
5.1  Using Waveform MBPE in the 

Solution Domain 
At least two kinds of CEM quantities in the 

solution domain possess wavelike nature, the source 
solutions themselves and the far-field angular 
dependence. 

5.1.1 Modeling Spatial Variations. 
While the spatial forms of the formulation- 

domain problem description provided by the impedance 
matrices are relatively uncomplicated, due to the basic 
simplicity of the Green's function source-field 
description, their solution-domain counterparts in the 
form of admittances matrices are not since the 
coefficients of the latter must encompass all possible 
source distributions that can occur on a given structure. 
Thus, whereas the impedance-matrix coefficients 
decline essentially monotonically with increasing 
distance, the admittance-matrix coefficients will in 
general not do this because, unless loss is a 
predominant effect, traveling-wave currents must be 
included among the distributions that can arise, 
becoming standing waves when impedance or other 
discontinuities occur on the structure being modeled. 
Never-the-less, the "signal" represented by the spatial 
variation of the induced sources, which is generally the 
current for conducting objects, is basically comprised 
of exponential waves and is therefore a potential 
candidate for MBPE using a WD FM. The potential 
significance of this possibility is that were a model for 
the spatial current response to be available, the number 
of parameters needed to quantify this current could be 

substantially less than the Xs coefficients otherwise 

used when developing an iterative solution, or the Xg 
when the system matrix is factored. By combining 
iteration with MBPE of the spatial current, it may be 
feasible to obtain an acceptably accurate solution via 
iteration that requires ~ KXg operations per iteration 

step rather than theXg
2 normally involved, where K is 

the number of spatial current samples actually 
computed from the impedance matrix, an OC 
comparable to some of the "fast" methods mentioned 
above. 

In order to explore the possibility of modeling the 
spatial variation of the admittance-matrix coefficients, a 
number of admittance-matrix, or |Yy|, plots for some 
simple wire objects are plotted below.1 The admittance 

1 Note that since the current on a structure 
represented by Y_ is given by I = Y_- Y, the current that 
results from exciting it as an antenna at a single point, 
or segment i = e, is Ij = Yj eVe. Consequently, the 
current for this excitation is proportional to column "e" 
of the admittance matrix, and so as the excitation is 
scanned from e = 1 to e = Xs, the current that results 
can be discerned from observing the spatial behavior of 
column 1 to Xs of |Yy|. We can thus refer to the plots 
of the admittance matrix as simply displaying its 
coefficients, or alternatively, a current distribution on 
the structure for which the matrix has been derived. 
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matrices for a two-wavelength straight wire and two- 
wavelength circular loop are shown in Fig. 13. It's 
clear in Fig. 13b for the loop that the spatial current is 
invariant in shape with respect to where the loop is 
excited, but simply rotates around the loop as the 
excitation point changes. It's not as clear, but 
suggestive from Fig. 13a for the straight wire, that the 
shape of its current distribution is also largely 
insensitive to where the the wire is excited, but that the 
magnitude of that current varies periodically with a 
changing excitation point. For these simple objects, it 
appears that not only might the current 

spatial dependence be described by a low-order, WD 
FM, but that, for the case of the straight wire, the 
dependence on excitation point can also be modeled. 

Admittance-matrix plots for an 8-turn helix of total wire 
length 4 and 16 wavelengths, respectively, are shown 
in Fig. 14. The dramatic difference between the two 
results is due to the fact that in the former case, the 
helix is below cutoff because the circumference of the 
helical turns is less than a wavelength whereas the 
latter, being above the cutoff frequency, results in an 
attenuated traveling wave. Again, an exponential- 
series FM for the current appears to be a good 
approximation for either case. 

1.00^ 

1.08 

1.00 

1.00 

COLUMN COUUMN^vJff W        V 

(a) (b) 
Figure 13. Surface plots of the magnitudes of the admittance-matrix coefficients of a two-wavelength-long straight 
wire, (a), and a circular loop, (b). Although the impedance-matrix magnitudes exhibit no explicit wavelength 
dependence (refer to the impedance matrix for the straight wire in Fig. 9a), the effects of standing waves are 
clearly evident in the admittance matrices. Also, whereas the field "signal" in the formulation domain, as 
represented by the impedance-matrix coefficients, falls off with distance, the corresponding current "signal" in the 
solution domain, does not necessarilydo so, instead exhibiting the propagating-wave nature expected on such 
structures. 

The plots in Fig. 15 show the magnitudes of the 
admittance matrix coefficients for a wire two-free- 
space-wavelengths long that is parallel to, and 10"^ 
wavelengths above and 10"^ wavelengths beneath, the 
interface between free space and a dielectric half space 
of Er = 10.   The transition between a spatial current 
distribution having a dominant wavelength 
characteristic of free space and that of the dielectric is 
seen to occur over a very small vertical movement of 
the wire. 

The results of Fig. 16 are for the same horizontal wire 
as Fig. 15a but with a half-space relative permittivity of 
er = 10 - j 10, (a), and for the two-wavelength wire 

oriented perpendicular to the interface with its midpoint 
at the interface, (b). The effect of the half-space loss 
on the horizontal-wire current distribution of part (a) is 
seen to cause an increased attenuation, which, in terms 
of a exponential-series FM indicates that the effective 
wavenumber has developed a larger real part. In Fig. 
16b, the vertical wire can be seen to carry two 
distinctly different current waves on each half having a 
wavelength appropriate to the medium in which that 
wire half is located. For the cases of Figs. 15 and 16, 
an exponential-series FM for the current would again 
seem to be a good approximation. 

The final result of this sequence, Fig. 17, is the 
admittance matrix of the wire mesh whose impedance 
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matrix is shown in Fig. 12. Not unexpectedly, there is associatedFMs needed for their spatial modeling 
no discernible pattern in this plot for the reasons would need to take into account their higher-order 
previously stated.  Both the graphical presentation of dimensionality, as compared with the one-dimensional 
such matrices for two-dimensional surfaces and the nature of wires. 
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(a) (b) t      t 
Figure 14. Surface plots of the magnitudes of the admittance-matrix coefficients for an 8-turn helix of total wire 
Iength4 wavelengths, (a), and 16 wavelengths, (b). In (a), the structure is below cutoff since the helix 
circumference, C, is less than k, whereas for (b), C ~ 2 k, so that the dominant current behavior changes from a 
standing wave to a damped traveling wave. 
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(a) (b) 
Figure 15. Surface plots of the magnitudes of the admittance-matrix coefficients for a two-wavelength (in free- 
space) wire parallel to a dielectric half-spaceof er= 10 when 10"4 wavelengths above the interface, (a), and 10"4 

beneath the interface, (b). Thedamped, standing-wave nature of the current is again evident, with achangefrom 
the free-space value to the half-space value taking place over a vertical distance of - 10"4 wavelengths, or less. 
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(a) (b) 
Figure 16. Surface plots of the magnitudes of the admittance-matrix coefficients for a two-wavelength 
wire in free space when parallel to and 10"4 free-space wavelengths above a half space with er = 10 - j10, 
(a), and for the same wire when perpendicularto a dielectric half space of er = 10 with its center at the 
interface, (b). The influence of the lossy lower half space is evident in the increased current attenuation 
exhibited in(a) as compared with 15a. The changein dominant currentwavelength in the verticalwire is 
clearly demonstrated in (b) on each half of the wire. Again, an appropriate Fitting Model for such currents 
is an exponential series, or waveform-domain, form. 

1.00 

1.00 

Figure 17. Surface plot of the magnitudes of the admittance-matrix coefficients for a 5-wire x 5 -wire 
mesh of wires whose total length is two wavelengths. The irregular appearance of this matrix results 
from the fact although the unknowns can be numbered in a sequential fashion, their separation is no 
longer linearly dependent on the respective indices used to construct the system and solution matrices. 
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5.1.2 Modeling Angle Variations of the 
Far Field. The far-field approximation 

universally used to obtain the distant field of a known 
source distribution depends only on the angular 
coordinates of the far-field observation point relative to 
the coordinate-system origin and the source location 
projected onto the line-of-sight from that origin. For a 
simple linear array of discrete sources, the far electric 
field a can be expressed in the general form 

E(0) ~ ISnexptikc^cosCe)]; n = 1, . . .,N 
(12) 

where Sn and dn are, respectively, the amplitude and 
location along the array of source n of which there are a 
total of N. The radiation pattern is normally developed 
by sampling the far fields finely enough in angle such 
that a straight-line interpolation between the field 
samples can be employed to develop an approximation 
continuous in observation angle. Clearly, Eq. (12) has 
the form of an exponential series and is a candidate for 
a WD FM. Two- and three-dimensional source 
distributions have a more complicated far-field 
expression, but otherwise retain the basic structure of 
Eq. (12), being functions of two observation angles, 
elevation and azimuth in a spherical coordinate system. 

For extended source distributions, where N exceeds 50 
or so, it is not computationally practical to employ a 
single FM for the entire pattern since ill-conditioned 
data matrices are encountered. Furthermore, a pattern 
that is a function of two angles can not be directly 
modeled using the basic Prony model described in RI. 
Instead, observation windows of limited angular extent 
can be used so that low-order FMs can accurately 
approximate the pattern over that window. The pattern 
can then be developed by employing enough FMs so 
that a continuous range of observation angles is 
encompassed over the angle variations that are desired. 
This approach has been described by Roberts and 
McNamara (1994) and is summarized in RI. 

5.2   Using Spectral MBPE in the Solution 
Domain 
In RI, the use of FMs to represent the 

frequency dependence of EM observables was 
discussed and demonstrated using various examples. 
Here we consider the more fundamental problem of 
modeling the frequency dependence of the admittance 
matrix itself using both function sampling and 
derivative sampling. 

5.2.1    Modeling the Admittance Matrix. 
As previously discussed, the impedance or 

system matrix arising from an FDIE model contains all 
the interaction information needed to describe the EM 

properties of an object being modeled. In a numerical 
model, this information is represented by the fields 
produced at observation patches in response to unit- 
amplitude source patches, both sets of which span the 
entire object. The relative amplitudes and phase- 
changes associated with the Xg    source-field patch 
pairs convey object size implicitly in these interactions. 
The inverse of these relationships in the form of the 
admittance matrix is needed to establish the absolute 
source amplitudes that satisfy the required boundary 
conditions. The solution, or admittance, matrix 
explicitly includes aspects of object size and shape the 
effects of which are exhibited as periodic body 
resonances as a function of frequency. Thus, the 
model appropriate for MBPE representation of the 
admittance matrix must be capable of handling 
frequency-dependent resonances. 

Since the observables that the solution matrix provides 
are   well-approximated   by   pole   series,   or   more 
generally rational functions, as demonstrated in RI, it 
follows that the solution matrix itself might also be 
modeled using rational functions.    This conclusion 
follows by noting that for a single-port antenna its 
input admittance is defined as the ratio of the feedpoint 
current to the exciting voltage.    For a wire antenna 
excited at segment j then, having already shown that 
the admittance can be modeled by a rational function, 
the Y; ; coefficient of the solution matrix must also 

J'J 
have this model.   Similarly, the currents on the other 
wire segments for that excitation, given by Yj: where i 
= 1,.   .   .,i-l,i+l,.   .  .,XS if there are a total Xs 

segments, can also be modeled using a rational 
function. These observations extend to exciting other 
segments of the wire one at a time, indicating that each 
coefficient in the solution matrix can be represented by 
a rational-function FM. Furthermore, since each of 
these coefficients shares the same resonance structure 
and thus the same denominator polynomial, the 
solution matrix can be modeled by a denominator 
polynomial multiplying a matrix of numerator 
polynomials, as exhibited by 
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Y(s) = 
D(s) 

X • "• X nia(s)   ••• nib(s) 

X • "• X n2a(s)   ••• n2b(s) 

x • " X n3a(s)   ••• n3b(s) 

X ••• X nXa(s) ••'   nXb(s) 
(13) 

where   n; ;(s)   is   the   numerator   polynomial   for 
coefficient ij, D(s) is the common denominator and a 
and b are the indices of those excitation ports whose 
current response have been modeled. This form 
permits direct representation of the wire current for an 
arbitrary right-hand-side excitation so long as its 
frequency lies within the valid bandwidth of the 
solution matrix or of the rational function FMs that 
comprise its coefficients. 

5.2.2    Sampling Admittance-Matrices 
Derivatives. The FM approaches 

discussed here for estimating frequency responses 
require sampled values of the impedance or admittance 
matrices from which the MBPE parameters can be 
computed and from which the FM is thus quantified. 
The sampling can be done either as a function of 
frequency; as a function of derivative, with respect to 
frequency at a given frequency; or a combination 
thereof Miller and Burke (1991). Also, since an EM 
frequency response has complex-conjugate behavior 
around zero frequency, this knowledge can be 
employed to provide virtual samples that further 
improve the MBPE performance, i.e., negative- 
frequency samples can be employed at essentially no 
further FPM cost. 

For practical reasons of numerical conditioning and 
accuracy, however, it is advisable not to cover too- 
wide a frequency interval with a single model. The 
approach that now seems most attractive is to employ a 
series of frequency windows that slide over the 
frequency interval to be modeled. These windows can 
be of lower order to avoid the conditioning problems 
that can otherwise. Using sliding, and overlapping, 
windows also can yield some estimate of the numerical 
accuracy of the modeled transfer function by 
comparing the results of two, or more, windows in 
their region of overlap where they share common 
samples, some examples for which are included in RI. 
Here, we outline specifically the additional 
computational benefits that arise from derivative 
sampling. 

Qn writing the moment-method equations that arise 
from an integral-equation formulation in matrix form, 

the impedance equation 

2)Zy(ü>)Ij(a>) = Vi(co) 
i=l (14) 

is obtained where these various quantities are evaluated 
at the frequency a». A solution for the current can then 
be formally written as an admittance equation 

Xs 

[i((D) = ^»VjCco) 

j=i (15) 

where Yj; is the inverse of Zj;.    We should note 
however that the approach developed here for the 
frequency derivatives could be implemented using LU 
factorization, iteration, or any other solution method. 

Upon differentiating the impedance equation with 
respect to frequency there is obtained 

Xs 

2)[Zij(C0)i;((0) + ZyMIitCD)] = V|((D) 

j=l 

(16) 

where the prime denotes a frequency derivative. A 
solution of the differentiated impedance equation for 
the differentiated current can then be written 

Xs / Xs \ 

ii(co) = 2Yi>) Vj(cD) - 2Zj,k(co)Ik(co) 

V k=i j=l 
(17) 
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where we observe that while the differentiated 
impedance matrix appears as part of a modified right- 
hand-side of the differentiated admittance equation, I' 
is given in terms of an undifferentiated admittance 
matrix. Computing the differentiated current thus 
requires an additional number of computations beyond 
those needed for solution of the undifferentiated current 
proportional to Xg

2 rather than the Xs
3 that would 

apply to obtain another frequency sample (assuming 
that LU decomposition is used rather than iteration). 

Continuing this process, the n'th frequency derivative 
of the current is given by 

]<n)(co) = 2Yi,j(co) 

j=i m=l        Vk=l / 

(18) 

where again Cn ^ is the binomial coefficient and the 
superscript in parenthesis indicates differentiation with 
respect to frequency of the order indicated. 

It is especially important to observe that information 
about the n'th frequency derivative of the current 
continues to require an operation count proportional to 
Xs .     Expressed in another way, each additional 
frequency derivative of the solution vector for the 
current can be computed in a number of operations 
proportional to A(n,Nrjls)/Xs where A is a function 
which depends on the order of the derivative and the 
number of right-hand-sides for which the solution is 
sought. If the frequency derivatives provide 
information comparable to that available from the 
frequency samples themselves, it can be appreciated 
that there could be a substantial computational 
advantage to using the solution derivatives in 
estimating the transfer functions. The problem of 
mplementing the above approach in the NEC code is 
discussed by Miller and Burke (1991). 

A conclusion to be reached from this observation is that 
first-principles models (FPMs) need not be employed 
in the manner they most often now are to obtain desired 
information. Rather, supplementary information is 
available from our knowledge of EM mathematics and 
physics, allowing us to employ reduced-order models 
to represent observables obtained from a FPM or to 
reduce the complexity of the FPMs themselves. This 
substitution offers the possibilities of greatly 
decreasing the number of evaluations required of FPMs 
and the cost of their evaluation, with a consequent 
reduction in the overall computer cost required to 
obtain the information desired. 

In the context of using an FDIE solved using the 
moment method, modeling the frequency variation of 
the impedance matrix saves an operation count (OC) 
proportional to Xs^ for each frequency sample that can 
be eliminated. Similarly, modeling the frequency 
variation of the admittance matrix produces an OC 
savings   proportional   to   Xg     for   each   sample 
eliminated. Modeling the spatial variation of the 
impedance matrix can reduce the OC of a solution 
towards Xglog(Xs), which forms the basis for the 
newer, "fast" techniques. Modeling the spatial 
variation of the admittance matrix might offer similar 
kinds of savings, but has not yet been tested. For 
problems solved using a FPM and requiring hours of 
computer time for each new frequency sample, the 
savings in computer resources resulting from matrix 
modeling can be substantial. The models discussed, 
especially for the admittance matrix, not only provide a 
more useful representation of the physical behavior 
continuous in the independent variable, but are valuable 
for other purposes such as obtaining transient 
responses. 
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6.0    CONCLUDING COMMENTS 
The applicability of low-order fitting models (FMs) in 
computational electromagnetics both to reduce the 
sampling density of computed observables and to 
decrease the computational cost of obtaining these 
observables has been the focus of this and a companion 
article [RII, Miller (1995)]. Both of these possibilities 
rest on the fact that much EM modeling is redundant, in 
that source and field variations as a function of time, 
frequency, angle and space can be accurately described 
by physically derived FMs that permit equivalent 
information to be determined from fewer computations. 
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Abstract 

This article examines the application of Model Based 
Parameter Estimation (MBPE) to the evaluation of 
the input impedance of HF Log Periodic Dipole Arrays 
(LPDA) during mechanical deformation. A study of 
cases of lengthening, shortening and displacing one ele- 
ment as well as the effect of mechanical sagging of the 
array is made. It is found that MBPE is a useful tool 
for minimizing computations and/or measurements in 
the study of mechanical deformation. 

1    Introduction: 

The MBPE [1] technique is used to predict deviations in 
the input-impedance of a 4 to 30 MHz Log Periodic Di- 
pole Array (LPDA). All the analyses were made using 
NEC-2 [2]. The work reported in this article is based 
in part on work done for the M.Eng. degree by one 
of the authors [3]. The MBPE technique works well 
if sufficient samples are used as input. Four (4) fre- 
quency samples per element : were found to be more 
than adequate for a good estimate of the impedance 
characteristics of the antenna. Over-sampling (that is 
for the MBPE model) occurred at very high sampling 
rates - in the order of 60 samples per element. The use 
of MBPE allows the forecasting of problem areas in the 
evaluation of the input impedance. By means of a more 
complete analysis, an evaluation of the accuracy of these 
predictions can be made. MBPE may be used to give 
an early warning of possible instabilities in the input im- 
pedance of an LPDA. Although the input impedance of 
the LPDA does not show instabilities within the operat- 
ing frequency band, these may occur outside the band. 
During deformation of the LPDA, changes in the input 
impedance are to be expected, perhaps radical changes 
and singularities. MBPE can be used to provide early 
warning of such problems. (Early in the sense that it is 

not necessary to compute a very fine grid of frequency 
samples - which is computationally expensive). The de- 
velopment of MBPE described and used here is based 
on the work of Burke, Miller et al [1]. 

2    The Basics of MBPE 

MBPE uses a control system type pole-null structure to 
represent the input impedance of an antenna (or other 
system) as a Laplacian transfer function. The LPDA 
actually consists of an array of dipoles, each easily rep- 
resented by a pole-null combination. Because of this 
the characteristics of LPDA's, and many other anten- 
nas, could possibly be examined using this technique. 

2.1     Mathematical model 

In general, Equation 1 is used to represent a pole-null 
system. (In this case the input impedance of the LPDA.) 

F(s) = F{ju) = G 
[s + Zi)(s + z2) 

(1) (s + pi)(s + p2) • • • 

In Equation 1 zn represents nulls, pn represents poles 
and G represents the gain, and s is the complex fre- 
quency usually represented only by ju. The poles and 
nulls, pn and zn, will be detected in the form cr + ju, 
where a is the damping constant and ju the complex 
angular frequency. 

Unlike control system applications, estimation of the 
placement of the poles and nulls is not done by the struc- 
ture or the properties of subsystems. The model will 
instead be applied in a curve fitting environment. 

Equation 1 can conveniently be converted to: 

F(s) 
no + nis + n2s

2 + n3s
3 . 

1 +pis + p2s
2 +p3s

3 .. 
(2) 

'An element is a single dipole, The LPDA consists of a number 
of dipoles spaced and scaled periodically 

Since the values of s (s — ju) and F(s) (from input 
data) are known, Equation 2 can conveniently be solved. 
For multiple inputs for s and F(s) a matrix equation 
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is obtained. This is used for solving Equation 2, with 
mathematical routines such as Gauss-Jordan elimination 
(see for example [4]). The result returns the values of n„ 
and pn ■ The actual placement of the poles and nulls is 
not important as a first objective, but they can easily be 
found from the values of nn and pn. The main objective 
is to reconstruct the frequency response of the system (of 
the input impedance in this case). Equation 2 is used 
to do just this. MBPE will be able to fill in the missing 
parts in the data, according to the pole null structure 
detected. 

2.2    MBPE and the Data 

Since MBPE tends to become unstable if too many data 
points are used, this study is limited to the use of four 
poles and four nulls per sliding window. The effect of 
using too many data points is well illustrated in Figure 1. 
In this case 40 poles and 39 nulls were used. These errors 
do not necessarily indicate a failure of the model but are 
rather due to limitations in numerical accuracy during 
the Gauss-Jordan elimination process (see for example 
[4]). An exact solution of Equation 2 would result in 
zero errors at the supplied data points. This is clearly 
not the case as seen in Figure 1. 
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Figure 1: Illustration of the effect of using too many 
samples simultaneously . MBPE was applied on 80 
points of data with 40 poles and 39 nulls (solid lines). 
For reference 640 frequency points (from NEC2) were 
used, with straight line interpolation (SLI), of the same 
structure (dotted lines). 

Due to the wide frequency range of the LPDA, the ap- 
plication of MBPE will be on data-windows (with width 
= 1 + poles + nulls). This means MBPE is applied to 
frequency points 1 to 9, and then to frequency points 
2 to 10 etc. All the outcomes are plotted on the same 
graph, since for a good solution these graphs are sup- 
posed to lie on the same curve.  This can also be used 

to determine how stable the solution is. If the different 
graphs (over the same data area) differ too much from 
each other, further investigation should be made on that 
area. Instabilities are caused either by some singularity 
in that area or under-sampling or some kind of failure in 
the model. Using more data points to solve the problem 
will give a more stable solution, and better illumination 
of any singularities. It is also useful to investigate the 
placement of the poles and nulls as illustrated in Sec- 
tion 3.2. 

The main objective is to have more than one pole-null 
pair per element. This amounts to more than 2 samples 
per element depending on the window size used. This 
corresponds with the Nyquist sampling criteria. At a 
total of 50 samples across the band (2 — 30MHz), an 
error, in the real part of the impedance, of 4.9% was 
detected. This might be accurate for many applications, 
but for the investigation of deformations on the LPDA 
this accuracy is not high enough. Furthermore the poles 
and nulls detected, should move around under deform- 
ation. For these reasons a sample rate of about four 
(4) samples per element is used for the investigation of 
deformations. It is also important to use the correct 
method of frequency incrementing. Since the lengths of 
the elements in the LPDA are spaced periodically in fre- 
quency, we must also space our samples in a similar way. 
Throughout this article, logarithmic sampling is used. 

3    The 'Ideal' LPDA and MBPE 

The term 'ideal', as used here, means undeformed. In 
later sections, the applications of MBPE to deformed 
LPDA's, whether mechanical sagging, displacement or 
length changes of elements, are discussed. The ideal 
LPDA is described in Section 3.1. Application of MBPE 
to the input impedance of this LPDA is described in 
Section 3.2. Sections 4, 5 and 6, examine the effects of 
mechanical deformations on this LPDA. 

3.1     Construction of the LPDA 

A 20 element LPDA with a 30° apex (a), element reduc- 
tion factor (T) of 0.87 and a rear element total length of 
42.13m was used for this study. The whole structure is 
located at a height of 20m above ground. The ground 
parameters used are: a relative dielectric constant (er) 
of 15 and a conductivity (<r) of 0.0055/m. The center 
fed transmission line has an impedance of 450Q. The 
transmission line is terminated in a short 21.065m bey- 
ond the rear element. This construction is represented 
in Figure 2. In Section 6 the same structure is used, 
with nonconducting catenaries to support the structure 
as used in practice. This antenna is similar to that used 
in [3] and [5]. 
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Spacing Factor (T ): 0.87 

Height: 20m 

Nr. elements: 20 

Figure 2: The construction parameters of the LPDA 
used for this study. (Transmission line shown crossed 
to illustrate alternating connections of elements. The 
shorted stub length is 21.065m) 

3.2    Input Impedance of the Ideal LPDA 

Due to the log periodic structure of the LPDA, log- 
arithmic repetitions are expected for the input imped- 
ance. Since frequencies corresponding to the resonant 
lengths of the elements are spaced logarithmically in the 
frequency band, samples are spaced in the same way. 
NEC-2 was used to determine the input impedance of 
the LPDA. 

The result of application of MBPE to 20 frequency 
data points is shown in Figure 3. Also shown for ref- 
erence are the results of a 640 frequency point solution 
with straight line interpolation. A sliding sample 'win- 
dow' 2 with only 4 poles and 4 nulls were used for this 
solution. Multiple overlapping solid curves in Figure 3 
arise from this sliding window. Although the MBPE 
data is stable, it is very clear that not enough samples 
were used in this case. This sample rate violates the 
Nyquist sample criteria. A sample rate of 50 samples 
(above Nyquist) across the band gave stable results, but 
not accurate enough to use with the study of deforma- 
tions. At 60 samples (across 2 — 30MHz) the stability 
of MBPE solutions was much improved. However, with 
medium to heavy deformations, errors occured due to 
movement of poles and nulls. The authors therefore de- 
cided to use a sample rate of 80 samples across the band 
as a standard for the investigation of deformations. 

Applying MBPE to the same LPDA with 80 frequency 
samples, a clear picture of the actual response of the 
LPDA is obtained. Figure 4 gives a more complete pic- 
ture of the behavior of the LPDA. The data from the 
MBPE and a 640 frequency sample point Straight Line 
Interpolation (SLI) are plotted on the same graph in Fig- 
ures 4 and 5. This gives an indication of the potential 
of the MBPE technique. 
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Figure 3: The input impedance of the LPDA with 
MBPE (with 4 nulls and 4 poles) applied to 20 sample 
points in frequency (solid lines). Reference curve for 640 
frequency sample points shown as dotted lines (SLI). See 
text. 
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Figure 4: The input impedance of the LPDA with 
MBPE (with 4 nulls and 4 poles) applied to 80 sample 
points in frequency (solid lines). Reference curve for 640 
frequency sample points shown as dotted lines (SLI). See 
text. 

From Figure 4 and 5 it is clear that a singularity oc- 
curred at about 2.8 MHz. This is due to the short used 
at the end of the LPDA's transmission line to increase 
bandwidth. Since the antenna is designed to work from 
4 to 30 MHz it is clear that this 2.8 MHz point is not in 
the design area. Still, this irregularity shows the effect- 
iveness of MBPE for detecting such anomalies. 

Figure 4 can be used as reference for investigating 
how the input impedance of the LPDA changes with 
deviations. The 640 point solution for the ideal LPDA 
is used as a reference for further sections investigating 
the effect of deformation of the LPDA from the ideal. 
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Figure 5: The input impedance of the LPDA with 
MBPE (with 4 nulls and 4 poles) applied to 80 sample 
points in frequency (solid lines). The response of 640 
sample points illustrate possible margins (dotted lines, 
SLI). 

Another instability was also detected at about 7MHz. 
Further examination of the 640 point solution, shows 
a small inflection in the input impedance for this fre- 
quency, as is shown more clearly in the expanded fre- 
quency scale in Figures 8 and 9, later. For this case it 
is essential to look at the poles and nulls detected at 
that area. The poles and nulls detected in the frequency 
band 7.015 to 9.202MHz are shown in Figure 6. It is 
clear that a pole-null pair was detected at a point in 
the s-plane, corresponding to 7MHz. This explains the 
occurrence of the instability at 7MHz. Further invest- 
igation showed that this instability was caused by the 
short at the end of the transmission line. 
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Figure 6: The pole null pair detected, by MBPE, at 
about 8MHz. This figure represents the frequency band 
7.015 to 9.202MHz. The poles are shown by crosses and 
the nulls with pluses. 

For the evaluation of the effect of physical deformation 
of the LPDA, one would prefer to have some kind of 
curve fit to another dimension. An ideal case would be 
to fit a curve to the poles and nulls with a polynomial 
fit. This would result in the position of the poles and 
nulls being represented by a polynomial as shown in 
Equation 3, where z is the pole or null, z0 and kn are 
constants and d is a value connected to the deformation: 

z = z0(k0 + dki+d2k2...d
nkn) (3) 

Each element (dipole) in the LPDA can essentially be 
represented by a pole and a null. These poles and nulls 
are spaced to have poles approximately where the real 
part of the impedance is a maximum, and nulls where it 
is a minimum. These are the fundamental poles and 
nulls for the impedance. To complete the curve-fit - 
since MBPE is an exact solution - some extra poles and 
nulls are detected. The presence of these extra poles 
and nulls moves the fundamental poles and nulls. These 
extra poles and nulls sometimes occur in pairs on the 
resonant part of the s-plane. For different extremes of 
a deformation the extra poles and nulls are detected at 
completely different places. If a curve fit on the extra 
poles and nulls is made, the intermediate extra poles and 
nulls may cause very unstable solutions. Since the fun- 
damental poles and nulls are moved by the detection of 
extra poles and nulls, this further complicates the ap- 
plication of a polynomial curve-fit. In Figure 7 the poles 
and nulls from the 12 to 20MHz band are shown. The 
difference between the poles and nulls detected on the 
same data-set by merely using different windows of data 
is illustrated. 
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Figure 7: The poles and nulls detected across the 12 
to 20MHz band of the LPDA. Groupings of poles and 
nulls can be found, but they are not uniquely defined. 
Poles and nulls (usually in pairs) were also detected in 
the resonant (a > 0) region. 

Due to the quality of the results obtained from MBPE 
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an attempt was made to implement a curve fit on the 
poles and nulls detected during application of MBPE 
to a two dimensional impedance plot, with both fre- 
quency and deformation dependence. These results were 
however difficult to interpret, and essentially meaning- 
less. 

Due to the difficulty of implementing a two dimen- 
sional fit, the rest of this paper is limited to the use of 
MBPE at discrete deviations for single parameters. 

4    The effects of changing the ele- 
ment length 

For this and the following sections, physical deviations 
from the structure of an ideal LPDA, as used in [5], 
are considered. Data can not be compared directly to 
that in [5], since only 20 linearly spaced sample points 
were used in [5]. With the help of MBPE the validity of 
assumptions made in [5] is evaluated, since MBPE gives 
a better indication of the actual response than the few 
data points used in [5]. The first case study will be on 
the deviation in the length of one of the elements of the 
LPDA. The effects on the radiation pattern of the LPDA 
were found to be minimal  [5, 3]. 

4.1 Increasing 
length 

the     10MHz     element 

In this case the length of element no. 13, with an isol- 
ated free space resonance of around 10MHz is increased 
by 6.5% of its original length. (This is much more than 
allowed in Smith [6]). At first there does not seem to be 
much difference between the impedance of this deform- 
ation and that of the ideal LPDA. 

With the application of MBPE, more definite devi- 
ations in the input impedance of the LPDA can be de- 
tected, as can be seen in Figure 8. This is still not as 
radical as assumed by Smith [6], but not as insensitive 
as expected in [5]. The effect of this deviation is clearly 
illustrated in Figure 8. 

To verify the results from MBPE, the MBPE model 
used in Figure 8 was compared with a 640 data point 
solution. From this comparison it was clear that the 
MBPE is a very good approximation and therefore can 
be used as a basis for further comparisons to the ideal 
LPDA. 

4.2    Decreasing the length of the 10MHz 
element 

Decreasing the length of an element produces results 
similar to those in Section 4.1. The deviations shown 
in Figure 8, are expected to be reversed. In Figure 9 the 
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Figure 8: The comparison of the input impedance of the 
ideal LPDA (dotted lines, SLI) and the input imped- 
ance of a LPDA with the length of the element around 
10MHz increased by 6.5% of its original length (solid 
line, MBPE). 

results from applying MBPE for this case, are compared 
to the ideal LPDA. The effects in Figure 8 can be ex- 
plained with three fundamental poles at about 8MHz. 
(The centre pole would be associated with the deformed 
element.) The center pole moved away, (<r << 0) and 
the two neighboring poles moved closer to the jui = 0 
axis.3 (Please also refer to Figures 6 and 7 for the use of 
ju and a.) In Figure 9 this effect has inverted: the center 
pole moved closer to the ju = 0 axis, and its neighboring 
poles moved away. The instabilities at about l.QMHz 
are caused by the short at the end of the transmission 
line. 

From the above it is clear that the effects of these devi- 
ations show up at lower frequency values than expected 
due to the actual operation of the LPDA. An LPDA typ- 
ically has an active region of a few localized elements at 
any in-band frequency. This active region is displaced 
towards elements shorter than those which would nor- 
mally correspond to resonance in isolation at a given in- 
band frequency. This may explain why the deviations 
occur at lower frequencies than expected, since at that 
stage the deformed element will be in use. 

5    Displacing the 10MHz element 

In this section the 13'th element, corresponding to res- 
onance at 10MHz, is moved along the transmission line 
by 10% of its spacing from the previous element. The 
results (with MBPE applied) of moving the element to- 
wards the region of the LPDA with longer elements, are 
shown in Figure 10, and those from moving the element 

3 jut: Angular frequency, a: Damping coefficient. 
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Figure 9: Tie comparison of the input impedance of the 
ideal LPDA (dotted line, SLI) and the input impedance 
of a LPDA with the length of the element around 10MHz 
decreased by 6.5% of its ideal length (solid line, MBPE). 

towards the shorter elements in Figure 11. From these 
two figures it is clear that this change does not have 
much effect on the input impedance of the LPDA. 
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Figure 10: The comparison of the input impedance of 
an idea] LPDA (dotted lines, SLI) and a LPDA where 
the element corresponding to 10MHz is moved 10% of its 
spacing towards the wide-end of the LPDA (solid lines, 
MBPE). 

In Figure 10 an instability or 'glitch' occurred at about 
21MHz. These glitches also occurred in the impedances 
examined in Figures 8 and 9, and in some other imple- 
mentations, these glitches occurred at the edge of the 
data window used. The MBPE technique has no a pri- 
ori knowledge of the impedance values outside the data- 
window and therefore sometimes place poles and nulls 
close to the window in irregular places. This causes the 

ends of the reconstructed window to be more unstable. 
MBPE can be used to reconstruct the impedance of an 
antenna outside the sample window, but it was found 
that such expectations outside the data-window were not 
very accurate for the LPDA. It was also found that the 
reconstruction in the center of the window is more re- 
liable than on the edges. This effect can be eliminated 
by only using the inner eg. 60% of the reconstructed 
window. 

From Figures 10 and 11 the effects of misplacement 
could also be explained using movement of poles and 
nulls. 

500 

400 
'**' 
fci 300 
O 

200 
u 
C 
CO 100 •a 
<D 
a, 0 
£ 

HH 

-100 

-200 
7      8      9     10    11 

Frequency (MHz) 

Figure 11: The comparison of the input impedance of 
an ideal LPDA (dotted lines, SLI) and a LPDA where 
the element corresponding to 10MHz is moved 10% of its 
spacing towards the small-end of the LPDA (solid lines, 
MBPE). 

6    Mechanical     sagging    of    the 
LPDA 

In this section the use of MBPE to investigate the effects 
of mechanical sagging, is examined. The same deforma- 
tions as used in [5] are used here. Once again the results 
of these sagged cases are compared to those of the ideal 
LPDA. 

The program TOWEROPT, used for structural ana- 
lysis and optimizations, (See [5]) was used to evaluate the 
sagging of a practical LPDA at discrete points. These 
points were used to construct a NEC input file. The 
effects of sagging was evaluated with the aid of NEC-2. 
Practical load parameters were used for the structure, 
namely: 117gm/mfor the conductors and 275gm/mfor 
the parafil ropes. A tensile strength of 20kN was used for 
the 'parafil'4 rope. All possible information available was 

4'Parafil' is a trade name for a class of pre-strained terylene 
rope encased in a UV absorbing sheath (see [7]) 
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used for the construction of the TOWEROPT input file. 
(This include for example the weight of the fiberglass 
joints used to join the parafll rope with the conductors 
etc.) This was done to get the best practical evaluation 
possible. Only one adjustable parameter, prestrain, was 
available. By adjusting the prestrain, on certain cables, 
different cases of sagging could be evaluated. 

The moderately sagged and extremely sagged cases 
as described in [5] were compared to the ideal LPDA. 
Comparisons as in Figure 12 for the extremely sagged 
case and Figure 13 for the moderately sagged case were 
obtained. 

Figure 12 displays the effect of extreme sagging on 
the LPDA. This case represents an antenna laid out 
on the ground, with no prestrains in the cables/ropes, 
which is then hoisted to a height of 20m. In this case 
the final strain in the cables was only 8% of its rated 
strength. The maximum physical sag of 4.33m occurred 
at element sixteen - corresponding to 18% of the total 
element length. The maximum percentage sag was at 
element four with 28% sagging. This case is represented 
by a zero prestrain value in the stay-wires and supports. 
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Figure 12: Comparison between predicted impedances 
for the Extremely sagged LPDA (solid lines, MBPE) and 
the ideal LPDA (dotted lines, SLI). 

Figure 13 displays the input impedance of the moder- 
ately sagged case. The same type of approach as above, 
except, some of the cables were prestrained 5, corres- 
ponding to ropes 2% shorter than the actual distance 
between their connecting points, and then stretched to 
reach these points. The structure was then 'hoisted' to 
a height of 20m as described above. This gave a max- 
imum tension of 40% of the breaking strength of the 
catenary material used. This case is represented by a 
2% prestrain in the parafil stay-wires and supports. 

5The prestrained cables were: the transmission line tension 
rope, the rear element pull-up ropes and the stay-wires on the 
sides of the antenna 

It is clear that the effects of mechanical sagging on the 
input impedance are very limited. The limitations set 
in Smith [6] are clearly very conservative. The effects on 
the radiation pattern may be of more concern as sugges- 
ted in [5], although these effects were also limited. 
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Figure 13: Comparison between predicted impedances 
for the Moderately sagged LPDA (solid lines, MBPE) 
and the ideal LPDA (dotted lines, SLI). 

7    Conclusion 

MBPE is a useful tool for investigating singularities in 
LPDA's (and antennas in general). It has proved to 
be very helpful in the study of deformation of an LPDA. 
Since the study of mechanical deformation needs a whole 
new set of data for each 'mechanical movement'6, it is 
computationally intensive. By reducing the amount of 
computations for a given mechanical movement one can 
- for the same amount of computation time - get a much 
better view of how the antenna reacts. MBPE also gives 
a clear indication of problem areas in the frequency band 
used. Sometimes a deviation of an element shows its 
effect in a different place in the frequency band from 
that expected as discussed in Section 4. 
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ABSTRACT. A current-based hybrid method combin- 
ing the method of moments (MM) with asymptotic cur- 
rent expansions for the higher frequency range is pre- 
sented for the analysis of arbitrarily shaped, three-di- 
mensional, perfectly conducting electromagnetic radia- 
tion and scattering problems. Some examples demon- 
strate the drastic saving in memory requirement and 
CPU-time when applying the hybrid method as com- 
pared to the conventional MM. Even though the pro- 
posed method is a frequency domain formulation, some 
time domain results based on a Fourier transform are 
presented as they show an accurate description of dif- 
fracted and creeping waves. 

means that for a two-dimensional surface of fixed area 
the necessary number N of basis functions grows pro- 
portional to /2, the square of the frequency. The result 
is a memory requirement proportional to f4, and the 
CPU-time grows as /4—6. 

These dependencies obviously show that the conventional 
MM is restricted to the lower frequency range. The hy- 
brid method proposed in the next section can overcome 
this difficulty. 

2    Hybrid method 

1    Introduction 

The MM [1] is a widely employed method to deal with 
perfectly conducting, lossy, or dielectric scattering prob- 
lems either in the frequency or time domain. Here we will 
concentrate on three-dimensional, perfectly conducting 
bodies. 

Rao et al. [2] proposed a current basis function /„ defined 
over triangular patches to deal with this type of problem 
in the frequency domain. The electric surface current 
density J is expressed as a linear superposition of basis 
functions 

N 

J=^2,Ctn-fn (1) 
n=l 

with unknown coefficients an. The electric field inte- 
gral equation leads to a system of linear equations to 
determine these 7V unknown coefficients. Therefore, the 
memory requirement to store the elements of the matrix 
is of order N2, and the CPU time to solve the system 
of linear equations is of order iV2—3, depending on the 
applied algorithm, e.g. Gauß elimination or conjugate 
gradient method. 

The required number of triangular patches depends on 
the size of the scattering body with respect to the wave- 
length. In our experience, a value of about N w 70 ... 100 
basis functions for modelling a surface with an area of 
a square wavelength A2 seems to be appropriate.  This 

PO-region MM-region 

R= lm 

Fig. 1: Plane electromagnetic wave incident on a perfectly 
conducting sphere with radius R = lm. 

Consider the example depicted in Fig. 1 where a plane 
electromagnetic wave is incident on a perfectly conduct- 
ing sphere with radius R = 1 m. The surface of the 
sphere has been subdivided into triangular patches, where 
basis functions /„ according to Ref. [2] are applied in eqn. 
(1) to represent the current density J on the surface of 
the sphere. 

Ray-based hybrid methods combining the MM with the 
geometrical theory of diffraction [3, 4, 5] are not very 
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suitable to deal with this class of problems involving one 
large scattering body. Their scope of application is, for 
instance, radiation problems with an antenna located in 
front of a large scatterer. Here, however, current-based 
hybrid methods [6, 7, 8, 9, 10] seem to be more advanta- 
geous. As depicted in Fig. 1, we can subdivide the sur- 
face into a MM- (light shading) and a PO-region (dark 
shading), where the physical optics approximation is ap- 
plied. 

In general, the MM-region may consist of wires and sur- 
faces while the PO approximation can be applied only 
to surfaces. We subdivide metallic wires into electrically 
short segments and employ triangular basis functions to 
represent the electric current IMM. On the surfaces in 
both regions we use an expansion according to eqn. (1) 
for the surface current density: 

JVA 

TMM 

n=l 

j?o =    £   «„./;. 
n=NMM+l 

(2) 

(3) 

Every basis function /„ extends over two adjacent trian- 
gular patches [2]. Basis functions located at the bound- 
ary between the MM- and the PO-region, i.e. one of the 
two patches lies in the PO-region and the other in the 
MM-region, are assigned to the MM-region. This allows 
a continuous current modeling across the boundary. 

Only the NMM unknown coefficients a„ in eqn. (2) are 
determined by solving a system of linear equations which 
results from the electric field integral equation and a 
Galerkin testing procedure. The remaining Npo coef- 
ficients a„ in eqn. (3) are based on the physical optics 
approximation 

fpo (f)   =    2Si-nxHi{f) 

+   ^  2a„Sn -hx H{fn).    (4) 
n=l 

The first contribution in eqn. (4) represents the conven- 
tional PO current density caused by the incident mag- 
netic field strength Hi of the excitation. The vector h 
denotes a unit vector normal to the surface at the obser- 
vation point f. A coefficient Si accounts for shadowing 
effects. If r lies in the shadowed region, Si must be set 
to zero. Otherwise Si equals ±1, the sign depending on 
the direction of incidence with respect to the orientation 
of n. 

The second contribution in eqn. (4) accounts for the cou- 
pling between the MM- and the PO-region. A summa- 
tion takes place over basis functions /„ in the MM-region 

with respective coefficients an. The operator 7i acting 
on /„ yields the magnetic field strength caused by the 
basis function /„ and can be expressed as 

A1 

with the free space Green's function 

jß\r-?'\ 
G(f, f') = 

\r—r'\ 

(5) 

(6) 

and the wave number ß = ~. The vector product 2nx 
in eqn. (4) leads to the PO-current density. Again, coef- 
ficients Sn must be considered to account for shadowing 
effects. 

The coefficients an in eqn. (3) can be obtained directly 
from eqn. (4), thus circumventing the process of solving 
a system of linear equations. 

All further details of the hybrid method can be found 
in Ref. [11]. In that paper we also developed correction 
terms J FW (fringe wave) based on the exact solution for 
the half-plane scattering problem to account for effects 
of edges of polygonal plates. Further correction terms 
to consider the edges of perfectly conducting wedges are 
presented in Ref. [12]. The following examples show that 
these high frequency current approximations implemen- 
ted in a hybrid method together with the MM represent 
a powerful tool for the analysis of a wide variety of elec- 
tromagnetic radiation and scattering problems. 

3    Examples 

The first example has already been depicted in Fig. 1. 
The perfectly conducting sphere of radius R = 1 m is 
subdivided into 368 triangular patches resulting in 552 
basis functions /„ associated with the interior edges be- 
tween the triangular patches. A plane electromagnetic 
wave polarized in ^-direction and propagating in posi- 
tive ^-direction is incident on the sphere. 

We have chosen this particular example because the re- 
sults can be compared to the exact solution available in 
the literature (e.g. Ref. [13]). First we have calculated 
the monostatic radar cross section (RCS) a of the sphere 
in the frequency domain using the MM or the PO ap- 
proximation, respectively, on the entire surface of the 
sphere, i.e. contrary to Fig. 1 no subdivision into a MM- 
and a PO-region has been made. 

The result is depicted in Fig. 2. It shows an excellent 
agreement between the exact solution (dash-dotted line) 
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Fig. 2: Monostatic radar cross section cr of the sphere as a 
function of the frequency /. 

R= lm 

Fig. 3: Adaptive subdivision of the surface of the sphere into 
triangular patches (1272 triangles here, 368 patches 
in Fig. 1). 

and the MM solution (solid line). The PO solution (dot- 
ted line) fails, mainly because of the small size of the 
sphere. At / = 150 MHz the diameter of the sphere just 
equals one wavelength A. 

It should be noted that the implemented computer code 
allows an adaptive segmentation based on the actual 
value of the wavelength. When dealing with low fre- 
quencies the sphere is subdivided into 368 patches as 
shown in Fig. 1. With increasing frequency the program 
automatically chooses a larger number of patches, e.g. 
at 500 MHz 1272 triangles are used as depicted in Fig. 3. 
This varying number of patches causes the small jumps 

6 8        10       12       14       16       IS       20 

time t in lightmeters 

Fig. 4: Pulse incident on the sphere according to eqn. (7) at 
the origin r = 0 with a = 1.5—, t\ = 61m, and 
t2 = 7.251m. 

1 .0 

IS 

100 150 200 250 

frequency / in MHz 
300 

Fig. 5: Normalized spectral density for the pulse according to 
eqn. (7) with a = 1.5 ^, h = 61m, and t2 = 7.251m 
as depicted in Fig. 4. 

that can be observed in the MM-solution in Fig. 2 e.g. 
at about 225 MHz. 

Now we will investigate the time domain response when 
a pulse described by 

Ei(r,t) = So- (e-*2^-^)-^]2 -e—'[c(t-ta)-?.0]*j 

(7) 
with a = 1.5 ^, 11 = 20 ns, t2 = 24.18 ns, E0 = EQ X, and 

ß = z is incident on the sphere, c denotes the velocity 
of light in free space. It is useful to specify the time t 
in units of lightmeters (lm) with 11m = — f« 3.34 ns. 
Thus we have t\ = 6 lm and t? = 7.25 lm. 
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Fig. 6: Backscattered pulse in the farfield as a function of 
time for the pulse according to Fig. 4 incident on the 
perfectly conducting sphere. 

Fig. 4 shows the shape of the incident pulse as a function 
of time. The corresponding normalized spectral density 
is depicted in Fig. 5. We have chosen two successive 
Gauß pulses with a time delay of ti —i\ = 1.25 lm so that 
the spectral intensity is maximum at about 79 MHz. 

The backscattered pulse in the farfield region can be cal- 
culated by means of Fourier transforming the complex 
frequency response, as depicted in Fig. 2, multiplied with 
the complex spectral intensity of the excitation. The re- 
sult is shown in Fig. 6, where r denotes the distance of 
the observation point in the farfield. The time t is shifted 
by - so that t — | = 0 describes the propagation of a pulse 
starting at t = 0 at the origin of the coordinate system or 
at the center of the sphere, respectively. Looking at Fig. 
3, we can see that the maximum of the incident wave at 
t = 61m in Fig. 4 is reflected at the point x = y = 0 
and z = -R = —lm at the time t — 51m. This re- 
flected wave can be observed in the farfield at the time 
t — - — 4 lm, which is in accordance with the calculated 
response in Fig. 6. 

The solid line in Fig. 6 represents a solution based on 
an application of the MM on the whole surface of the 
sphere, i.e. no asymptotic current expansion is involved. 
This curve is in excellent agreement with the exact result 
(dash-dotted line). The dotted line is the result of the 
PO approximation on the whole surface of the sphere. 
This solution differs distinctly from the exact result for 
times t — | > 61m. The additional negative peak of 
the exact solution at t — | «91m can be interpreted 
as a creeping wave with a time delay of —" & 3.141m 
arriving at t — £ « (6 + 3.14) lm in the farfield region. 
This creeping wave term is absent in the PO solution. 

Fig. 7: Plane electromagnetic wave incident on a perfectly 
conducting square plate with side length 12 m. 

Now we will demonstrate the application of the hybrid 
method. For frequencies lower than 75 MHz (compare to 
Fig. 5) we employ the conventional MM for the whole 
surface of the sphere. This is not a disadvantage, as 
we make use of an adaptive segmentation scheme and 
for these low frequencies only a moderate number of un- 
knowns is required. The hybrid method is used for fre- 
quencies above 75 MHz. The range 0° < d < 120° in 
Fig. 3 represents the MM-region while PO is applied on 
the remaining part of the surface (dark shading). The 
resulting backscattered pulse is depicted in Fig. 6 by the 
dashed line. Good agreement with the exact solution can 
be observed also for times t — £ > 6 lm when PO fails. 

A second example is shown in Fig. 7. A plane elec- 
tromagnetic wave according to eqn. (7) with a = 1^, 
ti = 61m, and t2 = 81m is incident on a perfectly con- 
ducting square plate with side length 12 m. First the case 
of perpendicular incidence with $,• = 90° and tpi = 270° 
will be considered, i.e. the wave is propagating in positive 
y-direction with Eo = EQZ and ß = y in eqn. (7). 

The backscattered pulse in the farfield region is depicted 
in Fig. 8. The solid line corresponds to the solution based 
on the MM applied to the entire structure. The dot- 
ted curve is the result of the PO approximation jf° = 
2Hix. We can modify this PO current density by a 
heuristic superposition of correction terms JFW asso- 
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Fig. 8: Backscattered pulse in the farfield as a function of 
time for the perfectly conducting plate with perpen- 
dicular incidence. 
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10: Backscattered pulse in the farfield as a function of 
time for the perfectly conducting plate with direction 
of incidence di = 90° and ipi = 250°. 
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Fig. 9: Scattered pulse in the nearfield at an observation 
point x = z = 0 and y = — 2 m as a function of time 
for the perfectly conducting plate with perpendicular 
incidence. 

ciated with the four edges of the plate [11]. This leads 
to the dashed line in Fig. 8. If we try to interpret the 
results with diffraction theory, we find one reflected and 
four edge diffracted rays that overlap because of the same 
time delay for an observation point on the negative y- 
axis in the far field. The double diffracted rays have an 
additional time delay of 121m and can be observed in 
Fig. 8 at t - | « 18 lm. 

We can separate the reflected pulse and the four edge 
diffracted pulses by choosing an observation point in the 
nearfield. Fig. 9 shows the scattered field at an observa- 
tion point x = z = 0 and y = —2 m. The maximum of 

the incident pulse, which is reflected at t = ti = 61m, 
arrives at the observation point at t = 81m. The first 
maximum of the four edge diffracted pulses can be ob- 
served at t = (6 + V62 + 22) lm « 12.321m, whereas the 
double diffracted pulses arrive at t m 24.321m. 

The two figures 8 and 9 show that the agreement between 
the MM solution acting as reference and the PO solution 
is very accurate concerning the reflected pulse. However, 
this is not true for other than perpendicular incidence. 

Fig. 10 shows the monostatic backscattered pulse in the 
farfield for the direction of incidence $,• = 90° and <p, = 
250°. If we try to interpret this figure with diffraction 
theory, we find that for the first maximum of the inci- 
dent pulse at t = 6 lm a diffraction process at the point 
x = — 6 m and y = z = 0 takes place. The farfield re- 
sponse can be observed at t — £ = (6 — 2-6 sin 20°) lm K, 

1.91m. This time agrees well with Fig. 10, but we can 
observe that the amplitude of the pulse based on the PO 
solution (dotted line) differs from the MM solution (solid 
line). Only through the superposition of correction terms 
(dashed line) can the amplitude be improved. This ap- 
plies equally to the second pulse caused by a diffraction 
process at the point x — 6 m and y = z = 0, which can 
be observed in Fig. 10 at t - \. = (6 + 2 • 6 sin 20°) lm as 
10.11m. 

A further example is shown in Fig. 11. A backfire Yagi- 
Uda antenna consisting of three shape optimized ele- 
ments [14, 15] is located in front of a perfectly conducting 
square plate with a side length of 3A. As opposed to the 
previous examples, we will restrict our investigations to 
one single frequency. 

The radiation patterns in the E- and H-plane of the 
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Fig. 11: Backfire Yagi-Uda antenna of three shaped opti- 
mized elements in front of a reflector of size 3A x 3A. 
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Fig. 12: E-plane radiation pattern of the shape optimized 
Yagi-Uda antenna in front of a reflector. 

Yagi-Uda antenna are depicted in Fig. 12 and 13, re- 
spectively. The solid line results from a calculation based 
on the conventional MM. Applying the hybrid method 
proposed in Section 2, we assign the wire antenna to 
the MM-region and the surface of the reflector to the 
PO-region.   This yields a radiation pattern shown by 

P3 

.5  -io 
v 
■t o 
a, -15 

-20   - 

-25 

-30 

1           ^^ 
  MM 
  hybrid (PO) 
 hybrid (PO+FW) 

- 

\\ \                        \ 

v A A A -v 
y /    y-"'.7   l.i 

1          1          1          1          1          1 

*s*s 

60 120 180 240 

angle in degrees 
300 360 

Fig. 13: H-plane radiation pattern of the shape optimized 
Yagi-Uda antenna in front of a reflector. 

Table 1: Input impedance, gain, memory requirement and 
CPU-time for the backfire Yagi-Uda array in front 
of a reflector. 

MM 
hybri« 
PO 

i method 
PO+FW 

input impedance in Ü 
real part 
imaginary part 

15.6 
-56.9 

15.4 
-56.8 

15.5 
-56.9 

gain in dB 12.67 12.47 12.62 
no. of basis functions 

MM-region 
PO-region 

1494 86 
1408 

86 
1408 

number of unknowns 
(exploiting symmetry) 

397 45 45 

memory for matrix 
in kByte 

2463 32 32 

CPU-time in sec 
(HP 9000/710) 

380 163 325 

the dotted lines in Figs. 12 and 13. Superimposing addi- 
tional correction terms JFW to the PO current density 
on the surface of the plate leads to the results depicted 
by dashed lines. 

Values of the input impedance and the gain of the an- 
tenna as obtained by the three methods are tabulated in 
Table 1. 

In the introduction we claimed that the application of the 
hybrid method leads to a drastic reduction in memory 
requirement and CPU time as compared to the conven- 
tional MM. This is confirmed in Table 1. 86 triangular 
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280' 

240"' 

Fig. 16: H-plane radiation pattern of the A-dipole antenna 
in front of a circular cylinder (a = 0.7 A). 

Fig. 14: A-dipole antenna in front of a circular cylinder of 
finite length with variable distance a. 

260" 

20° 

Fig. 15: E-plane radiation pattern of the A-dipole antenna 
in front of a circular cylinder (a = 0.7 A). 

basis functions defined along the wire segments are re- 
quired to model the wire antenna.   On the surface of 

the reflector 1408 basis functions fn are used leading to 
a total number of 1494 basis functions for the conven- 
tional MM. Exploiting symmetry of the structure, the 
total number of unknown coefficients which have to be 
calculated from the solution of a system of linear equa- 
tions can be reduced to 397. When applying the hybrid 
method, this number equals 45. Consequently, we have 
a reduction in memory requirement for the matrix of the 
system of linear equations by a factor of about 77. 

Finally, one last example shown in Fig. 14 shall be in- 
vestigated. A A-dipole antenna is located in front of a 
circular cylinder of finite length with variable distance a. 
The cylinder has a diameter of |A and a height of ^A. 

When applying the hybrid method, the dipole antenna 
represents the MM-region and the PO-region consists 
of the surface of the cylinder. Note that we have used 
conventional PO on the cylindrical surface. Similar to 
accounting for effects of edges of polygonal plates by cor- 
rection terms JFW, we are presently investigating the 
improvement of the PO-current for curved surfaces by 
correction terms derived from the Fock theory [16]. Re- 
sults will be reported in an upcoming paper. 

The four figures 15-18 show the E-plane and H-plane 
radiation pattern, respectively, for the two distances a = 
0.7 A and a — 0.9 A, respectively. The solid line is based 
on a calculation with the conventional MM whereas the 
dotted curve shows the result of the hybrid method. 
Good agreement can be observed. 
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Table 2: Memory requirement  and  CPU-time for the A- 
dipole antenna in front of a circular cylinder. 

340° 

260° 

Fig. 17: E-plane radiation pattern of the A-dipole antenna 
in front of a circular cylinder (a = 0.9 A). 

300° 

280' 

Fig. 18: H-plane radiation pattern of the A-dipole antenna 
in front of a circular cylinder (a = 0.9 A). 

Table 2 summarizes memory requirement and CPU-time 
for this example. 

MM hybrid m. 
number of basis functions 

MM-region 
PO-region 

2852 20 
2832 

number of unknowns 
(exploiting symmetry) 

726 11 

memory for matrix 
in kByte 

8236 2 

CPU-time in sec 
(HP 9000/735) 

258 54 

4    Conclusions 

A hybrid method has been presented combining the MM 
with asymptotic current expansions for the higher fre- 
quency range. In the simplest case the conventional 
PO approximation is employed. For polygonal scatter- 
ing bodies we have improved the asymptotic PO current 
density by heuristic correction terms to take the effects of 
edges into account. Currently we are also investigating 
the application of Fock currents for curved surfaces. 

Some examples have demonstrated the accuracy of the 
hybrid method as compared to the conventional MM 
even though a drastic reduction in memory requirement 
and CPU-time can be achieved. Some computational 
results have been transformed from the frequency do- 
main into the time domain allowing a physical inter- 
pretation with diffraction theory considering reflected, 
creeping and diffracted waves. 
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1    Abstract 

A hybrid technique is developed, using the integral 
equation/moment method solution approach with 
non-free space Green's functions, for a class of scat- 
tering problems involving nearly-circular 2-D dielec- 
tric cylinders under TMZ illumination. The tech- 
nique is applicable to other nearly-canonical 2-D 
penetrable scatterers, and may be extended to cer- 
tain 3-D geometries. Applications to several 2-D 
geometries are demonstrated, with scattering pre- 
dictions compared to those from a standard moment 
method code. 

2    Introduction 

The method of moments (MM) is one of the most 
powerful techniques for solving electromagnetic ra- 
diation and scattering problems in the frequency 
domain. Most implementations of the MM begin 
with invoking the surface or volume equivalence the- 
orems, in which all material in the problem is re- 
placed with free-space along with equivalent scatter- 
ing currents. This results in an integral equation in 
which the unknown currents are integrated against 
the free-space Green's function. 

The power of such a formulation lies in it's gen- 
erality; the same free-space Green's function can be 
used for any geometry. However, in some cases, this 
generality comes at the expense of computational ef- 
ficiency, since the unknown currents must span the 
volume or boundary of the scatterer. On the other 
hand, if the geometry under consideration is "close" 
to a canonical geometry for which the Green's func- 
tion is known, then computational savings can be 
reaped if the integral equation is set up to exploit 
the Green's function. (For an excellent overview of 
this hybrid technique, see Newman [4].) An exam- 
ple of such a geometry is a nearly-circular, nearly- 
homogeneous ("perturbed") two-dimensional (2-D) 

dielectric cylinder. 
In this paper, a hybrid Green's function/method 

of moments (GF/MM) solution will be presented for 
the plane-wave scattering from a perturbed dielec- 
tric cylinder in the TM2 polarization. First, the 
geometry of the perturbed dielectric circular cylin- 
der will be defined. Second, the Green's function 
for the circular, homogeneous 2-D dielectric cylinder 
will be developed. Third, the integral equation for 
the scattering from the perturbed dielectric cylinder 
will be developed. Fourth, a volumetric pulse/point- 
matching MM solution will be presented. Fifth, nu- 
merical results will be presented for several repre- 
sentative perturbation geometries. 

3    Geometry 

Consider a dielectric circular cylinder with radius 
a and constant dielectric constant ec that is per- 
turbed by an arbitrary protrusion and/or inclusion, 
as shown in Figure 1. We will denote the cross- 
section of the protrusion as Qp, and the cross-section 
of the inclusion as fi;. The protrusion material has 
relative permittivity ep, while the inclusion material 
has relative permittivity £{. 

In the most general case, Qp represents any region 
outside the original circular cylinder, and fi,- repre- 
sents any region inside it. These perturbed regions 
can even be inhomogeneous (that is, zp and e,- can 
vary within Qp and fl;, respectively), although ec 

must be a constant. 

4    Green's Function 

The Green's function for a circular, homogeneous 
dielectric cylinder is well known [7]. Ruck [6] uses it 
to give a formula, in terms of an infinite series, for 
the scattering width of a dielectric cylinder. 
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Figure 1: Perturbed Circular Cylinder Geometry 

In general, for the TM2 polarization, the 2-D 
Green's function G(p,p') is proportional to the z- 
directed electric field at observation point p due to 
a «-directed monochromatic electric line source of 
unit strength at source point p'. It obeys the inho- 
mogeneous Helmholtz equation 

(y* + k2)G(p,p') = -6(p-p') (1) 

where V^ = d2/dx2 + d2/dy2 and k is the prop- 
agation constant of the medium containing the ob- 
servation point. The propagation constant outside 
the cylinder is fco = -\/£oMo, while the propagation 
constant inside the cylinder is fci = y/s^ko, where so 
and po are the permittivity and permeability of free 
space, respectively. The time convention e^wi is as- 
sumed and suppressed. Finding the Green's function 
for an arbitrary geometry is generally non-trivial. 
However, if the geometry consists of a homogeneous, 
linear, isotropic dielectric circular cylinder centered 
at the origin and having radius a and relative dielec- 
tric constant ec, then the Green's function is reason- 
ably straightforward to find by choosing it to obey 
the same boundary conditions as the electric field. 
Specifically, we choose G(p,p') to satisfy periodic 
boundary conditions in <j> and continuity boundary 
conditions at p = a: 

G(P,P%=0    =    G(p,p')\,2lT 

dG(p,p') 
d<f> 

dG(p,p') 

<6=0 

(2) 

(3) 
6=2TT 

JimGte/J')! 
<5—0 

\imG(p,p')\p=a+5 (4) 

lim 
6-*0 

dG{p,p') 
dp p=a — 8 

=    lim 
6^0 

dG(p,p') 
dp (5) 

p—a+S 

In addition, we expect the Green's function to obey 
the radiation condition as p —> oo, and to remain 
bounded as p —>■ 0. The structure of the Green's 
function G(p,p') allows us to identify two compo- 
nents such that 

G(p,p') = G0(p,p') + G,(p,p') (6) 

The first component, Go(p,p'), has the same form as 
the 2-D free-space Green's function and the second 
component, Gs(p,p'), is an infinite series of eigen- 
functions. The expression for G(p,p') takes on dif- 
ferent forms depending on whether the source and 
observation points lie inside or outside the cylinder. 

4.1    Case 1: p,p' < a 

When both the source and observation points lie in- 
side the dielectric circular cylinder (i.e., p, p' < a), 
the components of the Green's function are given by 

GO(P,P') ■J-H<?Xh\p-p'\) (7) 

Gs{p,p')    =    £sfW') «*['(*-*')]  (8) 
1=0 

where 

s\1\p,p') = 3-^-Jl{klp)J1{klp') (9) 

(10) 

B,    = 

J,(kia)HJl\(koa) - 

-(ki/k0)Ji+i(kia)H^\k0a) 

H^2\kia)H^\(k0a) - 

- (h/ko^llih^H^koa)    (11) 

Ji{z) is the Bessel function of the first kind of order 
/ and H\ \Z) is the Hankel function of the second 
kind of order I. The neumann number e; is defined 
as one when / = 0 and zero when I ^ 0. 

4.2    Case 2: p,p' > a 

When both the source and observation points lie out- 
side the dielectric circular cylinder (i.e., p,p' > a), 
the components of the Green's function are given by 

G0(p,p')    =    -J-H^\k0\p-p'\) (12) 

G,(p,i>')    =    ^SpW')cos[^-^)](13) 
1=0 
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where 

spW) =    i«g.Hl>Xk0P)H?Xk0P>) (14) 
Ci    =    Ji(kia)Ji+i(k0a)- 

- (ki/ko)Ji+i(kia)Ji(k0a)(15) 

and the other quantities are as previously defined. 

4.3    Case 3: p < a < p' or p' < a < p 

When the source and observation points lie in differ- 
ent regions (i.e., one inside and the other outside the 
dielectric cylinder), the components of the Green's 
function are given by 

GO(P.P') (16) 

G.(P,?')    =    ^Si
(3)(p,p')cos[/(^-^')](17) 

/=o 

where 

(3)(n   „/^ _ J_iL T,(b. n Mli2\b„n .  1 (18) 
2ir Ai 

p<    =    min(p,p') 

p>    =    max(p,p') 

(19) 

(20) 

and the other quantities are as previously defined. 
Equations 6, 7, 8, 12, 13, 16, and 17 specify the 

Green's function for an arbitrary pair of source and 
observation point locations in the presence of a ho- 
mogeneous dielectric circular cylinder. The Green's 
function can now be used to formulate an integral 
equation for the case of the perturbed cylinder. 

5    Integral Equation 

Let us denote the total z-directed electric field as the 
sum of generalized incident field E9

z
l and scattered 

field E*z components, 

Ez{p) = E?(p) + El{p) (21) 

where the generalized incident field is that field 
which would exist in the presence of the unperturbed 
cylinder. Invoking the volume equivalence princi- 
ple [1], we may replace the perturbed geometry with 
the unperturbed cylinder along with an equivalent 
z-directed electric current density Jz{p). Jz(p) is 
related to the total electric field by 

Jz (p) = jue0 [e(p) - e(p)] Ez (p) (22) 

where e(p) is the relative permittivity of the per- 
turbed geometry and e(p) is the relative permittiv- 
ity of the unperturbed geometry. Note that Jz is 
nonzero only within the region Qp U fi;. The equiv- 
alent currents radiate the scattered field via the ra- 
diation integral 

Et(p)    =    L(JZ) 

=    -jwpo [[ Jz(p')G(p,p')dp' (23) 
J JQpuni 

where G(p,p') is the Green's function of Equation 
(6). 

Combining Equations (21), (22), and (23), we may 
write the integral equation 

EV(P) = 7 
MP) 

juie0 [e(p) - e(p)] 
- L(JZ) (24) 

6    Moment Method Solution 

Let us approximate the unknown current density 
Jz{p) using a pulse basis expansion, 

N 
Jz{p) « 5Zc„P„(p) 

n=l 

where 

Pn(p) U peftn 
p£Qn 

(25) 

(26) 

and the non-overlapping set {€ln}n=i spans £lp Uß;. 
We will further assume that e(p) is constant over 
each fi„. Since Jz{p) is assumed constant over each 
fin, these regions should be chosen to be reasonably 
small and squarish [5]. A good rule of thumb is that 
no linear dimension of fln should exceed A/15. 

If we plug our expansion for Jz(p) into the inte- 
gral equation (24) and enforce it at the center of 
each pulse, we generate an N-by-N linear system of 
equations, 

£f(pm)«Ec» 
ra = l 

Pn(Pm) 
ju)e0Aem 

*->m{in) 

valid for m = 1... N where 

Aem    =    e{pm) - e(p„ 

(27) 

(28) 

(29) 

Due to the sifting property of the pulse bases, the 
first term in brackets of Equation (27) is only active 
when m = n\ that is, Pn(pm) = 6mn where 6mn is 
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the Kronecker delta. Equation (27) can be expressed 
in matrix form as 

" Ef(Pi)  ' 

. Ef{PN) . 

where 

ni 

(30) 

ZNI 

•6mn — 
Vmn 

jweoAsr, 

ZlN 

ZNN 

-Lm(Pn) (31) 

Cl 

CN 

for m.n = 1.. .N. 

6.1    The Generalized Incident Field 

Let the generalized incident field E9
z
l{p) be caused by 

an electric line source of unit strength at pl. Thus, 

Ef(p) = -jkoVoG(p,pi) (32) 

where T]Q — >/PO/
£

O is the impedance of free space. 
As p% —+ oo, Ef(fi) becomes indistinguishable from 
the excitation of a uniform plane-wave incident from 
the <j>* direction. Using the the large-argument 
asymptotic form of the Hankel function [3] in the 
Green's functions of sections 4.2 and 4.3, we find, 
for p < a, 

Ef(P) 

and for p > a, 

27T y JKp1 

00 

^}/j,(Mcos[^-f)]     (33) 
;=o A,' 

Egi(o\      ~ J^O    / 2k0     -jk0p'   \ Jkopcosjt-r) 
>^>       4 y j v       \ 

-EV ^<(2)^cos ^- W \ ^ 
1=0 

A, 

6.2    The Scattered Field 

Once the generalized incident field at the match 
points have been calculated and the elements of the 
[Z] matrix have been found, then Equation (30) can 
be solved for the coefficients cn. The scattered field 
at observation point p° is then the sum of the fields 
radiated by the currents Jz and the field scattered by 
the unperturbed dielectric circular cylinder. Letting 
p° —+ oo, we find 

E*z{p°)    «    _ifcor?0|Gs(p°,pi)+ 

+ f>„ /   G(p°,p')dp'\ (35) 
n=i     -/n« J 

Notice that we have purposely omitted the direct 
radiation from the source to the observation point. If 
we further assume that the far-field radiation of the 
scattering currents can be approximated by the far- 
field radiation of appropriately weighted line sources 
located at the match points, then we can write 

EI(P°) -jkovolGsip0,?^ 

N 

+ £cn(Arean)G(/ö°)p„)W36) 

where (Arean) is the area of the ra-th pulse basis 
function. The echo width of the perturbed cylinder 
is defined to be [2] 

lim 2itp 
p—»oo 

E'M 
Em (37) 

where El
z(0) is the incident field at the origin pro- 

duced by the line source at p* radiating in free space. 
If we let the source and observer recede to infinity 
at the same rate (p2 = p° = p —+ oo), then we can 
combine Equations (36) and (37) to write 

Le{<t>l,4>°) lim 27rp 
p—»-oo 

Gs(p,p) 
El(Ö) 

+ 

+ En=i Cn(Areara)G(p, pn) 
Em (38) 

Equation (38) represents the bistatic echo width of 
a perturbed dielectric circular cylinder. If <$>l = <f>°, 
then Equation (38) gives the monostatic echo width. 

7    Results 

The hybrid GF/MM technique was tested against a 
standard surface integral equation MM (SIE MM) 
program for bistatic echo width predictions. The 
SIE MM program expands electric and magnetic 
surface currents along the perimeter of the homoge- 
neous dielectric scatterer, using pulse basis functions 
and Galerkin testing. Each program was written 
in FORTRAN and executed on a Sun SPARCSta- 
tion 2. Three perturbation geometries were chosen, 
each based on a dielectric circular cylinder having ra- 
dius a/A0 = 0.5 and relative permittivity ec = 2.0. 
The bistatic echo width for the unperturbed geom- 
etry is shown in Figure 2, in units of dB relative to 
one free-space wavelength. 
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Echo Width vs Bistatic Angle 
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Figure 2: Bistatic Echo Width for Unperturbed Ge- 
ometry: a/Ao = 0.5, ec = 2.0 
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Figure 3:  Bistatic Echo Width for Geometry #1: 
l\0 = 0.5, ec 

5°<^<50}. 
a/\0 = 0.5, ec = 2.0, fip = {p : 0.5 < p/A0 < 0.6 

The first perturbed geometry consists of a single 
protrusion on the right side of the dielectric circu- 
lar cylinder, as shown in the inset of Figure 3. The 
protrusion extends from p/A0 = 0.5 to 0.6 , and 
from <j> = —5° to 5° . The protrusion material 
has relative permittivity ep = 2.0, so that the per- 
turbed dielectric cylinder is homogeneous. Figure 3 
shows the bistatic echo width for <j>% = 0° and <f>s 

from 0° to 180°. The bistatic echo width is plot- 
ted in units of dB relative to the bistatic echo width 
of the corresponding unperturbed dielectric circular 
cylinder (Figure 2). The results show that the SIE 

Table 1: Computer Usage Summary 

Geometry 

Hybrid 
GF/MM SIE MM 

Time 
N     (sec) 

Pulses               Time 
per Ao      N      (sec) 

1 4       0.6 20        138      4.8 
50        340     47.9 

2 8       1.9 20        148      5.5 
50        364     58.1 

3 3       0.4 20        154      6.3 
50        376      63.7 

Echo Width vs Bistatic Angle 
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<l>s(deg) 

Figure 4: Bistatic Echo Width for Geometry #2: 
aX0 = 0.5, ec = 2.0, Qp - {p : 0.5 < p/X0 < 0.6, 
-5° < (j> < 5°, 175° <<j>< 185°}. 

MM formulation requires 50 pulses per wavelength 
to achieve the accuracy of the hybrid GF/MM for- 
mulation with only 4 total unknowns. Table 1 shows 
that the hybrid GF/MM program executes nearly 80 
times faster than the SIE MM program for this ge- 
ometry. 

The second perturbed geometry is similar to the 
first geometry, except that a second, identically- 
shaped protrusion is added to the left side of the 
circular cylinder. Figure 4 shows excellent agree- 
ment between the hybrid GF/MM and SIE MM for- 
mulations. As with the first geometry, the GF/MM 
program with 8 total unknowns gives nearly identi- 
cal echo width predictions as the SIE MM program 
with over 300 unknowns. Table 1 shows that the 
hybrid GF/MM program executes nearly 30 times 
faster than the SIE MM program for this geometry. 

The third perturbed geometry consists of a sin- 

51 



Echo Width vs Bistatic Angle 
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Figure 5:   Bistatic Echo Width for Geometry #3: 
a/A0 = 0.5, ec = 2.0, üp = {p : 0.5 < p/A0 < 0.567, 

{p : 0.433 < p/X0 < 0.5, -3.3° < 
3.3° < 

i> < 3.3°}, fi,- 
< 10°}. 

gle protrusion sandwiched between two identical in- 
clusions. The protrusion occupies the region 0.5 < 
p/A0 < 0.567 and -3.3° < <j> < 3.3°, and is filled 
with a dielectric having relative permittivity ep = 
ec = 2.0. The top and bottom inclusions occupy the 
regions 0.433 < p/A0 < 0.5 and 3.3° < \<f>\ < 10°. 
Both inclusions are unfilled; that is, £,• = 1. As 
shown in Figure 5, the hybrid GF/MM formulation 
with 3 unknowns gives nearly identical echo width 
predictions as the SIE MM formulation with over 
350 unknowns. The time savings reaped by the hy- 
brid GF/MM formulation relative to the SIE MM 
formulation exceeds 100. 
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8     Conclusions 

This paper has presented a technique (the hybrid 
GF/MM) to increase the efficiency of the method of 
moments when calculating the scattering properties 
of geometries that are sufficiently "close" to a canon- 
ical geometry. The technique was developed in de- 
tail for the case of a homogeneous dielectric cylinder, 
although the technique may be applied to any pene- 
trable geometry for which the Green's function can 
be found. Excellent agreement was shown between 
the hybrid GF/MM and standard MM formulations, 
and considerable savings in computer requirements 
were reported. 
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Abstract-In this paper a formulation of the method of moments 
for the analysis of low frequency problems is presented. 

In the considered frequency range, the integral solution of 
Maxwell equations in terms of magnetic vector potential and 
electric scalar potential respectively function of currents and 
charges is obtained imposing the Coulomb gauge. 

By combining Gauss law and current continuity at the 
boundaries among regions with different conductivity a first set 
of equations is obtained. Writing Ohm's law inside the 
conductive regions another integral equation set that allows the 
determination of the conduction current and surface charges 
unknowns is obtained. The method of moments is then applied 
to this system of equations. 

The use of pulse functions as subsectional bases allows a 
quick matrix set up especially when regular volume shapes arc 
selected. Calculated results are compared with results obtained 
with other methods relating to benchmark problems. 

I. INTRODUCTION 

Time and frequency domain formulations of the method 
of moments [1], have been widely used for the analysis of the 
electromagnetic scattering by arbitrary shaped perfectly 
conducting bodies excited by electromagnetic pulses and 
incident waves [2], [3]. 

The proposed techniques, using different patches for the 
body modeling, have been proved to be simple and useful 
procedures to solve those problems handling open and closed 
curved structures of finite extent [4], [5]. 

In this paper, we investigate the extension of the method 
in the low frequency range. In this case, some basic features 
of the theoretical basis of the high frequency formulations of 
the method cannot be assumed: 

• Considering finite conductivity, we cannot use the 
equation set usually given by enforcing the tangential 
component of the electric field equal to zero at the 
surface of the conductive bodies. 

• Considering Coulomb gauge together with the hypothesis 
of div J = 0 in the conductive volume we cannot use the 
direct relation between vector and scalar potentials, 
usually given by the Lorentz gauge. 

Therefore, in order to obtain a system of volume integral 
equations in the conduction current unknowns, we have to 
take into account different equations in the considered 
frequency range. A first set of equation in terms of scalar 
and vector potential is obtained considering, in presence of 
finite conductivity. Ohm's law and the electric field 
definition inside the conductive volumes. The scalar 
potential is given by the surface free charge distribution at 

the boundaries among media with different conductivity. 
Then, an equation set relating surface charges and volume 
currents has to be obtained. The relation among charges and- 
currents is determined considering Gauss law and current 
density continuity at these boundaries. Time and frequency 
formulations can be adopted depending on the transient or 
steady state analysis to be performed. Of course, as in the 
high frequency range, the numerical efficiency of the 
presented procedure in terms of computational costs and 
accuracy of the results is influenced by the original domain 
approximation and by the shape function that can be 
adopted. 

II. FORMULATION 

We consider a massive conductor Q with boundary T 
taking into account the presence of an external lumped 
parameter circuit as shown in fig. 1. 

Linear 

Network 

Fig. 1 Considered system 

Combining the definition of the electric field E(r.t) and 
Ohm's law we have: 

8t o C1) 
we consider the magnetic vector potential A expression: 

A(r,t) P-o Hi J(r\t) 
dD. 

(2) 4TC JJJQ \r-r\ 

The scalar potential O is given by: 

O(,,0= wrPLi^ 
47ts0JJr   \r-r\ 

where pT{r',f) is the surface free charge distribution at the 
boundary T. Substituting (2) and (3) in (1) we have: 

(3) 

4TI JJJQ      8t      \r-r\ 

o   JJr  \r-r\ (4) 
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Equation (4) has to be evaluated for the three components 
xj>,z in space. In order to determine an expression that re- 
lates surface charges and conduction current we combine 
Gauss law, current density continuity and Ohm's law at the 
surface T: 

<f/vz£=£+-£; = —; 

dhwj = -r„= --fs       J- = oEr„; 
a (5) 

where the subscript n denotes the normal component, the 
superscripts + and - denote the outside and inside limit 
values with respect to the surface T and divz is the surface 
divergence. Combining these equations we obtain: 

1&H PT _E+_ Mo irr ai(r\n   i 
a ä      sn       "       4^-JJJQ      ä      \r

+- 
■dQ- 

.J_vfff^dT 
\ns0   JJT \r+-r'\ (6) 

The current J(r,t) and the surface charges pr(r,t) can be 

approximated as: 
N 

J(r,t) = YJ
In^fn^ (7) 

M 

P(r,0 = 2/„(0g» (8) 

n=\ 
where/„(r) and gn(r) are the n-th component of the selected 
vector basis function representing the spatial variation of the 

two  quantities,  In{t)   and   pn(t)  are  their  time-varying 
unknown coefficients. Then, we obtain: 

N 

<j Ax^-i    ä    JJh \r-r'\ 

*-{ 4xs0 JJr \r-r\ 

i M 
(9) 

dPn (0  | P« (0 
era s„ 

N ft, y <f„ (0 fff   f„(r') 
A-n-^l        ft       JJJf 

M 

to r-r' 
dCl + 

1 re 1 

—IA (0 fU»c,)vrr-idr 
4;re„'~ JJr k  -n '° n=l (10) 

The presence of the external lumped parameter circuit is 
taken into account considering that at points Pj and P2 we 
have: 

■il^-ll 
for. 

Js JJS dt (ii) 
where S is the area of the surface elements at Pi and P2. 
Writing the nodal or mesh equations of the linear lumped 
Darameters network we have: 

Ie{t) = G{t) + YVe(t) (12a) 
Ve(t)= ®(Put)-®(P2J) = 

1    ff Prfr'.O    PrO-'J)^ 
47TsJJr|P1-/-,|       |P2-r'| (12b) 

where G(t) is due to the independent generators and Y is an 
integral-differential operator due to the impedances of the 
network. 

Imposing (9) at N points in the conductive body Q. (12a) 
(12b) and (10) at M-2 points on the surface T we obtain a 
system of equations in the N+M unknown coefficients In(t) 

and pn(t) to which the testing procedure (point matching, 
Galerkin etc.) is applied. 

Approximating the time differentiation with finite 
difference equations (9) (10) (12a) and (12b) directly 
represent the time domain formulation of the proposed 
procedure. The frequency domain formulation can be easily 
derived replacing the time differentiation with the jo 

operator and assuming the ei01 dependence of the unknown 
quantities, obtaining the algebraic complex system: 

N 

M 

fn(r) 1 Jm Wo rrr J„V\ 
n JJJa |>--/-'! 

dQ. 

M 

n=l 

(13) 

4ze0JJr \r -r'\ 

jm fnO-') dQ. 

(14) 

III. BASIS FUNCTIONS 

We define the following coefficients: 

urn Hi 
ff ?„(OV^T =-ff fn^dT = K(r)\ 
JJT Y-r'\ JJrV-rt (15) 

Then, considering for example subsectional bases [1] for 
N elementary volumes in the domain Q. and M elementary 
surfaces on the boundary T and writing (9) and (10) in the k- 
th elementary volume and surface (referring for example to 
the frequency domain formulation) we obtain: 
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N M Finite Elements methods. 

»=1 n=l (16) 

V. = o(P1)-o(?2) = -—^pJß^PO-ß«^)) 
n=l 

(17) 

(18a) 

(18b) 

Considering good conductors at low frequencies we can 
consider l/s0 much greater than joa/a, then (14) becomes: 

M N 
PA 

s0 47tS0 ^—' 471    ^—' 
w=l «=1 (19) 

Writing (16) in every elementary volume, (19) on the 
surface and equations (18) we derive the matrix forms: 

Al + 5/7=0 DI_ + Ep=V 

These systems can be used in order to have an unknown 
set only, currents or charges. 

Analogously, in the time domain equations, pa/s0 can be 
considered much greater than dp/dt. Therefore, we can use 
(10) to express the charges as a function of currents, 
obtaining an expression in the current unknowns only. 

The accuracy of the presented procedure and the 
computational cost of the matrix set up is determined by the 
coefficients (15). As for the high frequency problems, several 
kinds of basis function and patches can be proposed, and an 
exhaustive analysis of their numerical characteristics in 
several kinds of applications is not easy to be determined. 

We begin implementing pulse functions as subsectional 
bases in order to have a quick matrix set-up. In fact, when 
Qn have particular shapes, such as parallelepipeds or 
cylinder sectors, the evaluation of the surface and volume 
integrals in (14) can be quickly and accurately obtained by 
means of analytical expressions [6], [7]. This choice causes 
the presence of fictitious surface charges at the boundary 
among adjacent elementary volume elements, since adjacent 
currents have different values as shown in fig. 2. 

Nevertheless, the evaluation of integral quantities in the 
examined low frequency benchmark problem, has shown a 
good agreement between our results and results obtained 
with other numerical methods. Furthermore, the 
computational times were analogous to those obtained with 

Fig. 2 Pulse function decomposition of a plate 

IV. RESULTS 

In order to test the frequency domain formulation of the 
method, we analyse the TEAM problem 3 [8] (Bath plate 
with two holes) which geometry, shown in fig. 3, consists of 
a conducting ladder having two holes with a current coil 
above. The conductivity of the ladder is o= 0.3278c8 (S/m), 
and the driving field originates in the coil. The coil carries a 
current equivalent to 1260 Amp turns at 50 and 200 Hz. and 
it is placed at two positions. Position 1 is directly above the 
center of the ladder, position 2 is directly above the center of 
one of the holes. MO 

3.175 J-r + r- 

no        • -r 
coil position 1 

• coil posicion 2 

Fig. 3 Geometry of the frequency domain problem. 
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We calculate the magnitude and phase of the field 
normal to the ladder for the coil position 2, frequency of 
50Hz, along a center line of the geometry 0.5 mm above the 
conducting ladder between +55mm and -55mm. The 
calculated data have been obtained considering the 
decomposition shown in Fig. 4. We adopted parallelepiped 
volumes and rectangular surfaces as subsectional bases. 

Table II 

Fig. 4 Decomposition of the geometry. 

Fig. 5 shows a good agreement between calculated results 
obtained with the proposed method and experimental data. 

Position 1 
la = lb [A] 

Position 2 
la fAl             lb [Al 

Kameari [10] 153.89 190.48 80.14 

Takahashi [91 155.89 191.52 83.12 

M.O.M. 154.91 192.55 82.95 

The time domain formulation has been tested considering 
a problem [10] where a uniform magnetic field in the Z 
direction, having a constant rate B' = 1 T/sec, is applied to a 
square plate (20cm x 20cm) with thickness 1cm shown in 
fig. 6. The resistivity of the plate is 2(.iDcm. 

20  cm 

1 cm 4—L 

1        6 

distance [mm] 

Fig. 5 Comparison between calculated and experimental data 
of B along the center line 

The table I and II report the current in the lateral limbs 
for positions 1 and 2 for f=50 Hz and f=200Hz respectively. 

Table I 
Position 1 
la = lb [A] 

Posit 
la [A] 

ion 2 
lb [Al 

Kameari [10] 68.05 81.68 38.45 

Takahashi [9] 71.63 85.41 41.23 

M.O.M. 69.6 82.61 40.42 

Fig. 6 Geometry of the time domain problem 

The square plate has been decomposed by means of 
elements having different size as shown in Fig. 7. 

Fig. 7 Decomposition of the geometry. 

The figures 8 and 9 show the current density Jy at 
r=10msec and, varying the x-coordinate, at.y=lcm and v=x. 
The figures show a good agreement among the calculated 
data by a Finite Element method [10] and the proposed 
M.O.M. formulation. 

The larger disagreement is obtained near the external 
surface of the plate, where the method [10] forces Jn=0, 
while the proposed formulation gives the average value in 
the parallelepiped nearby the corner. In the considered low 
frequency tests we considered point matching and Galcrkin 
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testing procedures, obtaining nearly equal numerical results. V. CONCLUSIONS 

0.04 0.06 
Distance [cm] 

Fig. 8 Eddy current distribution at t= 10msec along the line 
y=lcm. 

0.04 0.06 
Distance [cm] 

Time and frequency domain formulations of the method 
of moments for the analysis of low frequency problems have 
been presented. 

The two formulations have been tested analysing linear 
benchmark problems obtaining a good agreement with 
experimental data and results obtained with other numerical 
methods. 

The use of pulse functions as subsectional basis has 
allowed a quick matrix set-up with respect to numerical 
integration. 
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THAT IS ACCURATE TO VERY LOW FREQUENCIES 
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Abstract—We give an alternative description of a recently 
published moment-method algorithm, which uses 
divergence-free and rotation-free basis functions to 
maintain accuracy down to very low frequencies. The 
basic algorithm is restricted to simply-connected and 
non-self-intersecting surfaces. But this restriction has 
little practical impact—we show how multiply-connected 
surfaces, self-intersecting surfaces, and one-sided surfaces 
can easily be converted to the required topology without 
changing the solution. We examine a claim that the 
impedance matrix is diagonally dominant, which implies 
a guaranteed-to-converge Jacobi type of iterative solution 
of the matrix equation. Finally, we show how to control 
catastrophic-cancellation errors that occasionally appear 
in the voltage vector. 

INTRODUCTION 

In moment-method algorithms finite computer memory and 
CPU time impose a high-frequency limit at about the first or 
second resonance of the body being tested.    Typically, 
W/k . ~ 1, where W is some representative linear 
dimension of the body. A popular algorithm for finding the 
current on arbitrarily shaped conductors was described by 
Rao, Wilton and Glisson over ten years ago [1]. With this 
algorithm, a finite computer resource of another kind—word 
length—sets a /ow-frequency limit.   Typically, W/Xma ~ 
10 3, which limits the usefulness of the algorithm as a tool 
for studying electrostatic or magnetostatic problems. 

Wilton, Lim, and Rao have recently described a new 
algorithm that has a much smaller low-frequency limit [2,3]. 
It is very effective and has an appealing structure. We think 
it deserves wide exposure and, therefore, we present here our 
own description of it and of the problem that it cures. 

The basic algorithm is restricted to surfaces that are simply- 
connected and not self-intersecting. But this restriction has 
little practical impact—we show that multiply-connected 
surfaces, self-intersecting surfaces, and even one-sided 
surfaces can easily be converted into the required topological 
form without altering the solutions obtained for them. 

The new algorithm also has a feature that may make it 
superior over the entire moment-method bandwidth. Its 
impedance matrix is closer to being diagonally dominant 
than the one from the earlier, Rao-Wilton-Glisson algorithm. 
This makes the matrix equation more likely to yield to an 
iterative method of solution.  We discuss this possibility. 

Finite word-length can occasionally corrupt some of the 
voltage vector of this new algorithm. We present a simple 
and effective fix based on the Faraday law. 

THE CAUSES OF THE LOWER LIMIT 

In the Rao-Wilton-Glisson algorithm a set of "rooftop" 
functions approximates the J field on a triangulated surface 
of the body [1]. There is a rooftop function for each interior 
edge of the triangulation. The domain of a rooftop is 
restricted to the pair of faces that share the interior edge. 
See Figure 1. The definition for the rooftop anchored to the:A 

interior edge is 

Figure 1  Parameters for defining a rooftop function. 
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A,.(r) 
Pi 

reF 

0, otherwise 

(1) 

where h* is the height of face F*, when measured from the 
anchor edge to the free vertex; and p* is (±l)x(the vector 
from the free vertex to r). The area of face F* is a*. The 
length of the anchor edge is I.. 

The rooftop function has four nice features: (1) it 
automatically satisfies Kirchhoff s current law at the anchor 
edge; (2) there is a charge density of p* = ±lil(-j<oaf) on 
each face, yet there is no net charge deposited—no need to 
test for conservation of charge on the body; (3) it is simple 
enough to permit efficient, robust, and accurate computation 
of the potential integrals [4]; (4) it imposes no restriction on 
the topology of surface—the surface can be open, closed, 
simply-connected, disjoint, multiply-connected, one-sided, 
two-sided, or self-intersecting. 

There is a testing integral associated with each rooftop 
function. Its domain is an open path, beginning at the 
centroid of F+ and following a streamline of A(r) across 
the anchor edge to the centroid of F~. Figure 2 shows the 
set of paths from a typical triangulation of a square plate. 
For each path there is a corresponding equation in the 
moment-method matrix equation Zx = b stating that the 
tested scattered field !Esatt-dl is equal to the negative of the 
tested incident field -/E. -d\. inc 

But the scattered field is computed in two parts: 
^scax = "V^(P) -/wA(J).     The  first part,   VP(p),  is 

Figure 2 Integration paths for testing a rooftop model of a 
square plate. 

inversely proportional to the frequency, because 
p* = ±IJ{-j(x>a*). The second part, /"coA, is directly 
proportional to the frequency. So, as the frequency goes 
lower, the E   , field becomes more dominated by VV and ' scat J 

testing integrals of Exat become more path-independent 
(because W is a conservative vector field). Ultimately, an 
integral over any given path in Figure 2 becomes identical 
to one over any concatenation of other paths having the 
same endpoints. The corresponding effect on Z is that any 
row becomes identical to a linear combination of other rows. 
In other words, as the frequency goes lower, Z becomes 
more ill-conditioned.  Ultimately, it becomes singular. 

Increasing condition number is one cause of the poor 
accuracy at low frequencies. Another cause is the loss of 
information about /a) A, due to insufficient word length. 

As the frequency goes lower, the two quantities VV and 
y'coA become increasingly different in magnitude, yet their 
sum is stored in the same word. The recoverable precision 
of the smaller quantity, /"coA, is inversely proportional to the 
square of the frequency. 

But y'wA is no less important than VV, even at extremely 
low frequencies. Although all of the paths in Figure 2 are 
open there are linear combinations of them that form closed 
paths. This implies that there are linear of combinations of 
equations in Zx = b stating that the closed-path integral 
fEscat-dl is equal to the closed-path integral -iE.nc-d\. But 
VV has no curl (because it is a gradient of a scalar). By 
Stokes theorem it contributes nothing to a closed-path 
integral.  The only contributor is /'oA. 

The algorithm ignores this. While numerically computing 
the integrals -fE.mc-d\, it needlessly computes the 
theoretically vanishing integrals fVV-dl. The influence of 
/uA is lost in the resulting, unnoticed, catastrophic 
cancellations. 

An ill-conditioned Z and loss of precision in /'coA are the 
two causes of poor low-frequency accuracy. They, and the 
cure, were first described in [2] and [3]. 

HOW THE LOW-FREQUENCY ERRORS 
ARE REMOVED 

To prevent catastrophic cancellations Wilton, Lim, and Rao 
explicitly create each closed path, which allows them to 
replace the numerical integration of fVV-dl with the exact 
value of zero. They finesse each closed-path integral into 
existence by designing a basis function with that integral as 
its testing integral. The new basis function is a 
superposition of original rooftop functions so that the new 
testing integral is a superposition of original testing integrals. 
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In this way, most of the original algorithm, and its 
corresponding computer code, stay the same. 

But how to find all possible closed paths? The answer is to 
make a set of generator loops, that is, a set of closed paths 
from which all other closed paths can be assembled. Then, 
avoiding (numerical computation of) fW-dl integrals on 
every loop in the set will avoid them on all possible loops. 
Making a set of generators is easy. A set of rooftop 
functions sharing a common node will, if they have the 
proper reference directions, have a testing integral whose 
path is a generator. To see this, pick an interior node in 
Figure 2 and reverse some of the nearby integration paths so 
that they all have the same sense of rotation around the 
node.  This is a "loop function". 

Loop functions do an excellent job of preserving the 
information contained in the /"wA field. But they are an 
incomplete cure for low-frequency errors. There are two 
reasons. First, loop functions do not address the condition- 
number issue. Second, the charges deposited on each face 
of a loop function tend to cancel. In fact a body with 
equilateral triangulation would produce complete 
cancellation.   (Recall that p* = ±IJ(-jü>a*). ) 

A second basis function needs to be invented; one whose 
testing path cannot become part of a concatenation of paths 
in a path-independent integral, and thereby increase the 
condition number. And the second function should be 
guaranteed to contribute to the charge—the charges from 
contributing rooftop functions should accumulate rather than 
cancel. The set of rooftop functions sharing a common face 
will do both of these things, if their reference directions are 
properly chosen. As an illustration, pick a face in Figure 2 
and reverse some of its integration paths so that they all 
have the same sense, outward or inward. The charges on the 
chosen face will accumulate because they all have the same 
sign. This is a "star function". Notice that the testing paths 
of star functions cannot be concatenated to form a non- 
reversing path around a loop. 

Star functions anchored to interior faces are made from three 
rooftop functions. Those anchored to faces on boundaries 
are made from fewer rooftop functions. 

Loop functions describe most of the rotation fJ-dl of the J 
field. Star functions describe most of the divergence V-J of 
the J field. The duties of rotation and divergence usually 
would be shared by both functions, since the triangulation is 
rarely equilateral. Wilton, Lim, and Rao remove this 
awkward feature by adjusting the intensity of the 
contributing rooftop functions to compensate for unequal 
edge lengths. They define the loop function anchored to the 
ith interior node as follows: 

Making a Loop 

from Weighted 

Rooftops 
+ 1/Z, Al 

+ 1/I.A, 

+ l/73 A3 

1/Z4A4 

= 0 

Figure 3  Making a loop function from weighted rooftop 
functions. 

ofl>- E -r\« 
B,Etocp,    '„ 

(2) 

where A,, is the n * member of the set of rooftop functions 
whose common node is the anchor node of 0£; a = ±1; 
and I is the length of the n rt edge attached to the anchor 
node. On each face there are two contributions to the charge 
density; 1/Zn gives them identical magnitudes; an makes 
them cancel. In doing so, an also forces each rooftop 
current to have the same direction as the loop orientation. 
The 1/Z weighting causes the J streamlines to form closed 
paths around the anchor node (rotational flow). See Figure 
3. 

Wilton, Lim, and Rao define the star function anchored to 
the ia face as follows: 

*,« =   E   T Vr> (3) 

where A^ is the n * of the set of rooftop functions whose 
common face is the anchor face of -A-.; v = ±1; and I 
is the length of the n ™ edge of the anchor face. On the 
anchor face there are (usually) three contributions to the 
charge; 1/Z gives them equal magnitudes; vn makes 
them accumulate. In doing so, vn also forces all rooftop 
currents to flow out of the face. The 1/Z weighting causes 
the J streamlines to emanate from the centroid of the anchor 
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Making a Star from 

Three Weighted 

Rooftops 

-1/7, A, 

-1/Z2 A2 

+l/73 A3 

whether it is based on a loop-and-star model or on a rooftop 
model. But only if the surface is simply-connected. This is 
the source of a lingering difficulty with the definition of the 
loop function. (See MULTIPLY-CONNECTED SURFACES 
below.) 

PERFECTLY CONDUCTING SPHERE IN 
A MAGNETOSTATIC FIELD 

Figure 5 shows a perfectly conducting sphere of 1 m radius 
immersed in a static magnetic field of 1 A/m. The exact, 
analytical solution for this problem is J. ; 

[6]. 

-1.5 #.  sine u. 

Figure 4   Making a star function from weighted rooftop 
functions. 

face (but only when there are three contributing 
rooftop functions).  See Figure 4. 

HELMHOLTZIAN COMPLEMENTARITY 

When defined this way, loop and star functions have 
pure Helmholtzian complementarity [5]. Loop 
functions describe only the rotation of the J field; 
star functions describe only the divergence of the J 
field. This feature is unaffected by the triangulation 
of the surface. A loop function's contributions to a 
star function's irrotational flow come in self- 
cancelling pairs. Hence, no superposition of loop 
functions can produce an irrotational flow of current. 
Similarly, a star function's contributions to a loop 
function's rotational flow also come in self-cancelling 
pairs. Hence, no superposition of star functions can 
produce a rotational flow of current. 

There is no coupling via NV-d\ between the two 
kinds of functions; star-to-loop coupling is zero 
because the path is a loop; loop-to-star coupling is 
zero because the integrand is zero. The only vehicle 
for mutual influence between loops and stars is the 
integral /co/A'rfl. Hence, the two sets of functions 
become mutually independent as the frequency goes 
to zero. 

Loops and stars form a complete description of the 
J field on a simply-connected surface, as does the 
original set of rooftop functions from which they were 
assembled.      Hence,   a  moment-method   equation 
Zx = b will have the same number of unknowns 

To do a numerical simulation we illuminated the sphere with 
a 377 V/m plane wave at 30 kHz. We then sampled the 
current that crossed the dashed line. The results show that 
the loss of information in /'uA and the large condition 
number of Z have made the rooftop model useless, and that 
the loop-and-star model suffers from neither of these 
ailments. 

Exact 
Rooftop 
Loop and Star 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 5   Comparison of surface currents computed by rooftop 
and loop-and-star models of a conducting sphere. 
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CONDITION NUMBER 

Figure 6 shows the LENPACK estimate [7] of the condition 
number from a rooftop model and from a loop-and-star 
model of the sphere in Figure 5. The condition number 
from the rooftop model is inversely proportional to the 
square of the frequency, down to about 100 kHz. Below 
100 kHz the curve becomes more complicated. We suspect 
that the roundoff error in the entries in Z actually prevent 
the straight l//2 trend towards total dependence below 100 
kHz. 

The condition number from the loop-and-star model is 
frequency independent down to at least 3 Hz, showing how 
effectively the condition number has been controlled. 

The LENPACK estimate of the condition number is most 
accurate when all entries in Z have the same absolute error. 
Since the error in each ztj is roughly proportional to its 
magnitude, we meet this requirement by scaling the rows 
and columns of Z so that all entries on the diagonal have 
unit magnitude. (Both rows and columns were scaled to 
preserve the near symmetry of the matrix.) 

less if the surface is closed (to avoid making a redundant 
generator). 

The number of star functions is whatever is needed to make 
the total number of unknowns equal to the number of 
unknowns from a rooftop model. 

DISJOINT BODIES 

Both the original Rao-Wilton-Glisson rooftop model and the 
new loop-and-star model compute the mutual influence 
between sources on arbitrarily located faces. It does not 
matter that those faces might reside on disjoint surfaces. 
(However, each surface must be simply-connected if the 
loop-and-star model is to be used). 

MULTIPLY-CONNECTED SURFACES 

When the surface is multiply-connected the loop function 
definition (2) yields an incomplete set of generator loops. 
As examples, it misses a loop for every aperture, and on a 
torus it misses two loops. 

The 

Rooftop: ScaleZ 

Loop-and-Star: ScaleZ 

most obvious solution would be to broaden the 
definition in some manner to include the missing 
loops. But each missing loop is just one of a 
large set of topologically equivalent loops; any 
one of them can be used. It might not be 
possible to design software that reliably and 
efficiently finds the required sets of topologically 
equivalent loops and then picks only one of them. 

A workable alternative would be to supply the 
missing loops by hand after inspecting a three- 
dimensional view of the triangulated surface. 
Each loop could then be supplied to the program 
in the form of the set of faces that are traversed. 
The software would need to be capable of 
assembling the faces into a loop function, which 
would then be processed the same as the original 
loop functions. 

10' 10* io- 
Frequency (Hz) 

Figure 6 Comparison of condition numbers from the rooftop and loop- 
and-star models. 

SIMPLY-CONNECTED OPEN AND 
CLOSED SURFACES 

When the surface is simply-connected there is no difficulty 
with the loop-and-star model. The loop function definition 
(2) forms a complete set of generator loops. There is a loop 
function at each interior node if the surface is open;   one 

Another alternative also involves some manual 
labor. It is based on the fact that loop functions 
and star functions are assembled from rooftop 
functions. Suppose there was some way to 

change the topology to simply-connected without, in any 
way, changing the set of rooftops. The solution would then 
be identical to that produced by either of the previous 
alternatives, because the same set of rooftops would be used 
to assemble the loops and stars. 

Exactly that happens when the surface is "cut" along a 
selected   sequence   of edges   in   such   a   way   that   the 
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CUTTING A MUTIPLY-CONNECTED SURFACE 

Figure 7 Cutting a multiply-connected surface into a simply-connected 
surface. 

overlapping rooftop functions on each face 
become topologically, but not physically, 
delaminated. See Figure 7. The surface becomes 
simply-connected yet the size, shape, and position 
of its rooftops are not changed. 

number of unknowns in the matrix equation 
would be greater than the number of interior 
edges in the triangulation. This method would 
leave the triangulation intact and would change 
the code. 

The original Rao-Wilton-Glisson rooftop 
algorithm could easily be encoded to use this 
method but the loop-and-star algorithm might 
present some trouble. It might be hard to write 
code that reliably assembles loop-and-star 
functions in the vicinity of a generalized edge. 

For us, a better method is to cut the self- 
intersecting surface into surfaces that are not self- 
intersecting. See Figure 8. The cut surface is 
then disjoint and can be treated by the basic 
forms of either the rooftop model or the loop- 
and-star model. (See DISJOINT SURFACES 
above.) As with multiply-connected surfaces, 
cutting a self-intersecting surface does not change 

CUTTING A SELF-INTERSECTING SURFACE 

Three new edges, and one new face, are added 
for each edge in the cut. But the number of 
interior edges is not changed. There are new 
nodes but no new node coordinates. 

We use the cutting option because it changes 
only the triangulation of the surface; the 
algorithm remains in its basic form. Cutting 
involves manual work, which takes time. But 
creating the triangulated surface itself usually 
involves manual work, and sometimes a lot of it. 
This is at least as time consuming as the cutting. 

SELF-INTERSECTING SURFACES 

Before Cutting After Cutting 

Figure 8  Cutting a self-intersecting surface into a disjoint surface. 

When a self-intersecting body is triangulated, some edges 
will have more than two faces attached to them. There are 
(at least) two methods that could handle this situation, both 
of which satisfy Kirchhoff s current law at each edge. 

In one method, each edge at a self-intersection could be 
treated as a generalized edge: an edge with / faces attached 
to it would be assigned /-l rooftop functions. No special 
care would be needed when choosing which pair of faces to 
assign to which rooftop function—rooftop currents could 
even pass through each other at a generalized edge.   The 

in any way the fundamental set of rooftops, so the solution 
does not change either. 

ONE-SIDED SURFACES 

A one-sided (non-orientable) surface, like a Moebius strip, 
can always be cut into a two-sided surface in the manner 
already shown in Figure 7. Once cut, the surface becomes 
simply-connected, allowing the basic loop-and-star model to 
be used. As always, cutting changes the triangulation and 
leaves the encoded algorithm intact. 
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Although the encoded version of the original rooftop 
algorithm of Rao, Wilton, and Glisson is not the main topic 
of this paper, its popularity and the present heading make 
it appropriate to now discuss some pertinent details. 

The original Rao-Wilton-Glisson rooftop code cannot be 
applied to a one-sided surface; nor was it intended to be. 
Its authors chose to give the user another way to check the 
integrity of the triangulation: they designed the code to 
compute the volume whenever a closed surface was 
encountered. So a consistent normal had to be assigned to 
every face. For simplicity this was done for every type of 
surface, even open ones. It then seemed convenient to use 
the normal to help set a reference direction for each rooftop 
function. Each rooftop current was made to cross its 
anchor edge in the same direction as exn, where e is the 
(arbitrarily defined) direction of the anchor edge. 

But a basis function's reference direction is arbitrary in any 
algorithm. (In the Rao-Wilton-Glisson algorithm it depends 
on an arbitrary choice of the direction of e.) There is no 
need to involve the surface normal in an arbitrary decision. 
By removing it from the decision process, the rooftop 
model of Rao, Wilton, and Glisson immediately can be 
applied to one-sided surfaces (and it can still compute the 
volume of closed surfaces). 

Finally, we note that the subroutine that sets the surface 
normals (and, hence, the reference directions) is quite 
complex and contains a subtle bug, which takes effect only 
on some triangulations. 

DIAGONAL DOMINANCE AND ITERATIVE 
SOLUTIONS OF Zx=b 

It turns out that a matrix from a loop-and-star model is 
closer to being diagonally dominant than one from a rooftop 
model. Z is said to be diagonally dominant when the 
"diagonal-dominance" ratio (DDR) 

PLATE180.GEO 

ZJ 
(4) 

is greater than 1 for all i-l,-,N [12]. 

The explanation for the greater DDR lies in the shape of the 
paths of the testing integrals: in loop-and-star modeling the 
paths are made from directed line-segments whose 
orientations tend to cancel; in rooftop modeling the 
orientations tend to accumulate. This makes the off-diagonal 
integrals smaller, relative to the diagonal integral, than those 
in a rooftop model. 
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Figure 9      The   square   plate   used   to   study   diagonal 
dominance. 

Figure 10 compares the DDR from a rooftop model to the 
DDR from a loop-and-star model. (The device-under-test is 
the square plate in Figure 9.) The rows that test the loops 
(rows 1 to 72) have DDRs consistently greater than 1. The 
DDRs of the rows that test stars are about half as big and 
are usually less than one. Other structures that we have 
studied also show this behavior. (Perhaps star functions 
could be redesigned to produce DDRs as high as those of 
loop functions.) 

The DDR is insensitive to the frequency as long as the 
triangulation is dense enough to allow an adequate 
description of the sources on the surface. See Figure 11. 
Also, it is totally independent of the direction and 
polarization of the incident field, because Z itself is totally 
independent of these parameters. 

Wilton, Lim, and Rao claim that the Z matrix is diagonally 
dominant [2,3]. We have found no geometries where this is 
so. We can only say that the Z from a loop-and-star model 
is closer to being diagonally dominant than one from a 
rooftop model. 

In any case, the improved diagonal dominance may have a 
practical benefit at all frequencies (below the upper limit). 
The standard method for solving Zx = b is by LU 
decomposition, for which the required CPU time is 
proportional to N3.  (N is the number of unknowns).  The 
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Figure 10  Comparison of diagonal-dominance ratios for a square plate. 
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CPU time for an iterative solution, such as Jacobi iteration, 
is proportional to N2, a great advantage when N is large. 
Solution by point Jacobi iteration is guaranteed to converge 
when Z is diagonally dominant [8,9,10,11]. A matrix 
equation in which Z is not diagonally dominant can 
sometimes permit a converging Jacobi iteration. Intuition 
suggests the closer Z is to diagonal dominance the more 
likely the iteration will converge and, if it does converge, the 
faster it will converge. 

law to replace the closed-path integral fEinc-dl with the 
surface integral -y'w/jB^-nda, where S is some surface 
bounded by the path. A convenient choice for S is the part 
of the triangulated surface enclosed by the testing path. We 
do the numerical integration by sampling Binc at the 
centroids of the four-sided "facelets" inside the testing path. 
See Figure 12. The centroid of each facelet is at 
5/12 r, + 7/12 r^. The area of the n * facelet is one-third 
the area of the  n"1 face. 

The number of iterations needed to get a solution depends 
on the initial guess. Hence, an iterative solution has an extra 
advantage when doing a sweep of a spectrum since each 
solution is a good initial guess for the next. 

Zx = b could also be solved by block Jacobi iteration. Loop- 
and-star analysis permits a natural way to divide Z into 
submatrices, if the loops are numbered from 1 to JV^ and 
the stars are numbered from N.+1 to N.   The equation 
then becomes 

Z°°  Z*° x° b° (5) 
Z°* Z** X* b* 

which can be solved by block Jacobi iteration, if Z is well 
behaved. Good behaviour is guaranteed at 0 Hz because 
Z*° and Z°* are then filled with zeroes. (See 
HELMHOLTZIAN COMPLEMENTARITY above.) It may 
be that the Helmholtzian complementarity of loop functions 
and star functions will guarantee the convergence of this 
iteration at higher frequencies. 

There are some path integrals for which the Faraday 
alternative is hard to implement. They are the testing 
integrals of those loop functions that are lost whenever the 
surface is multiply-connected. The paths of these integrals 
will not enclose any triangulated surfaces at all! In these 
cases the Faraday alternative would require the construction 
of special (non-conducting) surfaces on which to sample 
B^. Also the basic loop-and-star model would have to be 
modified to handle multiply-connected surfaces. We avoid 
these problems by cutting the multiply-connected surface 
into a simply-connected one. (See MULTIPLY- 
CONNECTED SURFACES above.) Then no testing path 
will enclose an untriangulated surface. 

It is conceivable that a numerical evaluation of the Faraday 
surface integral can also suffer from catastrophic 
cancellation. It could happen when the loop function is 
anchored at the tip of a very sharp cone or at a very sharp 
edge on the surface. But cases like these will not occur if 
the surface is triangulated so that there are no acute angles 
between adjacent faces. The no-acute-angle rule is implied 
by the standard rule for a good triangulation:   it must be 

The potential speed-up is not as great as that for 
point Jacobi iteration because both Z°° and 
Z** need to be LU decomposed. The required 
time, relative to an LU decomposition of Z, is 
(1/3)3 + (2/3)3 = 1/3 (since the numbers of 
loops and stars are approximately Nß and 2AV3, 
respectively). 

CATASTROPHIC CANCELLATIONS IN 
MAKING b° 

Each entry in b° in equation (5) is the integral 
fEfa-dl around the closed testing path of a loop 
function. Sometimes the orientation of the 
surface and polarization of the illumination can 
combine so that the integral vanishes. This will 
happen, for example, when a uniform plane wave 
is normally incident on a flat plate. Since the 
integral is computed numerically, the zero is 
crudely approximated by catastrophic 
cancellations.   To avoid this, we use Faraday's 

Anchor Node of 

i' Loop  

Facelets Enclosed by 

Integration Paths 

Centroid of n  Facelet 

of i"1 Loop  

Figure 12  Computing the centroid of a facelet inside an integration 
loop. 
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dense enough to adequately describe the surface and the 
sources on it. 

The CPU times needed to compute the b° vector by either 
side of the Faraday equation are roughly the same and are 
minuscule when compared to the time needed to fill Z. 

PROGRAMMING 

locations along the inner dimension are simply filled with 
zeroes so that the other accumulations amount to nothing. 

The time to execute the basis-function-specific code is very 
insignificant when compared to the 0(iV3) time needed to 
solve Zx = b and the 0(N2) time needed to fill Z. 

CONCLUSIONS 

Each entry z.. in Z is the integration of E^, due to the 
/* basis function, over the testing path of the Ith basis 
function. The most straightforward way to fill Z is to 
compute an integral for each permutation of i and /' 
encountered in a column-wise scan of Z. (Row-wise if the 
language is not FORTRAN.) But this is not the most time- 
efficient way. Each integration calls a potential-integral 
routine [4], which computes the potentials at a single field 
point due to a source on a single face. Because basis 
functions overlap and testing paths overlap, a scan of Z 
would actually call this routine many times with the same 
combination of source face and field point. It is therefore 
much faster to do the computation for a given combination 
only once and to then add the result to all the z,y that are 
affected by that combination. This requires a scan of the 
geometry for all permutations of faces taken two at a time 
(since there is a field point at the centroid of each face.) 

Notice that the scan is independent of the choice of model; 
the faces of loop functions, star functions, and rooftop 
functions all carry the same Rao-Wilton-Glisson source 
function (to within a weighting factor). Hence, it is natural 
to design the program to do either loop-and-star modeling or 
rooftop modeling. There is only a small amount of code that 
actually depends on the choice of basis function. It 
determines which z-. (and which bt) are to receive an 
accumulation. It also determines the weighting of each 
accumulation. 

In our program this basis-function-specific code is executed 
before any entries in Z or b are computed. It simply fills 
two identically dimensioned arrays. One array links each 
edge of each face to the weighting factors, ±1//, of the four 
possible functions (two loops and two stars) that cross that 
edge. The other array supplies the corresponding indices, 
i = 1JV, of the loops or stars. The inner dimension of each 
array is four because there can be up to four basis functions 
that can cross each interior edge. 

The rest of the code operates without any knowledge of the 
type of basis function being used. It simply uses the two 
generic arrays of weighting factors and indices to fill Z and 
b, and then solves Zx = b. For example, if the program is 
to do rooftop modeling then there is only one weighting 
factor, ±1, and one index per edge.   The remaining three 

The loop-and-star algorithm of Wilton, Lim, and Rao 
effectively controls the catastrophic cancellation errors and 
condition number that corrupt the low-frequency results from 
the rooftop algorithm of Rao, Wilton, and Glisson. The 
high-frequency limit of the loop-and-star algorithm is as 
large as that of the rooftop algorithm, W/k ~ 1; and the low- 
frequency limit is much smaller, at least W/k =2xl0"8. 
Electrostatic and magnetostatic simulations can now be done 
with confidence. 

The basic loop-and-star algorithm can treat only simply- 
connected surfaces. But this restriction has little practical 
impact because multiply-connected surfaces, self-intersecting 
surfaces, and one-sided surfaces can be readily "cut" into the 
required topology without altering the set of rooftop 
functions that they carry. 

The impedance matrix from a loop-and-star model is not 
diagonally dominant. But it is more so than one from a 
rooftop model. In fact, the rows of Z that test the loop 
functions all have a diagonal-dominance ratio greater than 
one. It is only the rows that test the star functions that have 
a diagonal-dominance ratio less than one. It might be 
possible to redesign the star function so that all rows ofZ 
are diagonally dominant. In any case, the matrix equation 
Zx = b from a loop-and-star model is more likely to be 
solved by a converging Jacobi iteration. 

Catastrophic cancellations can corrupt those entries in the 
b vector that participate in loop testing.    This can be 
avoided by using the Faraday law to replace the closed-path 
integral fE^-dl with the surface integral -ja^B^-nda, 
where S is some surface bounded by the testing path. 
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Abstract - The numerical solution of the Electric Field 
Integral Equation (EFIE) using two different low frequency 
formulations is investigated. The two procedures are 
implemented for the triangular patch modeling procedure 
and results obtained for both methods are compared with the 
original triangular patch EFIE solution. The comparisons 
are made on the basis of the computed current values and 
the inverse condition number of the moment matrix. It is 
observed that the condition number of the matrix can be 
significantly different between the two low frequency 
formulations and that the method used to evaluate the 
forcing function can affect the results both in the low and 
high frequency ranges. 

I.  Introduction 

The commonly used numerical solution procedure for 
the Electric Field Integral Equation (EFIE) has been found 
to become inaccurate in the frequency range where the 
maximum dimension of the surface is much smaller than a 
wavelength [1,2]. The problem arises in the evaluation of 
the elements of the impedance matrix in the moment method 
solution procedure, because, if the mixed potential form of 
the EFIE is used as an example, one observes that 

| jwA | <C | V$ | , as co -» 0. Thus, for a fixed precision 
computation, the information on the magnetic vector 
potential A is lost when the frequency is low enough, and 
the remaining information from the electric scalar potential 
is not sufficient to determine the surface current distribution. 
Consequently, the solution is numerically unstable. 

This problem may be partially overcome by simply 
increasing the numeric precision used in the computer code. 
However, to obtain an EFIE solution that has the potential 
to be stable at any frequency, a special method of moments 
solution procedure must be used. 

In    the    following    sections,    two    low-frequency 

formulations, referred to here as the Loop/Tree and 
Loop/Star formulations, are presented. These two 
formulations have been previously studied and have been 
applied to different method of moments solution procedures 
[1-5]. Wilton and Glisson first observed the low-frequency 
problem of the EFIE and applied the Loop/Tree approach as 
the new testing procedure for a rectangular-patch model of 
a perfectly electrically conducting plate [1]. Mautz and 
Harrington explored in greater detail why the numerical 
solution becomes inaccurate in the low frequency range, and 
they applied a procedure equivalent to the Loop/Star 
formulation to their body of revolution code [2]. Lim, Rao, 
and Wilton applied the Loop/Star procedure to their 
triangular patch model [3]. Recently, Wu, Glisson, and 
Kajfez applied both the Loop/Tree and Loop/Star 
formulations to another triangular patch model and 
compared results obtained using the two procedures [4,5]. 

This paper is an extension of [4,5] and sums up our 
recent research on this topic. A new version of the patch 
code, referred to here as LFPATCH, has been developed to 
apply either the Loop/Tree or Loop/Star formulation to 
extend a version of the patch code [6] to the low frequency 
range. The modifications for both formulations require the 
use of different expansion and testing functions that tend to 
decouple the electrostatic and magnetostatic portions of the 
solution. A Galerkin testing procedure is used to obtain the 
system of linear equations. The two different formulations 
are compared with each other and with the original 
triangular patch code with regard to accuracy. The two 
low-frequency formulations, the Loop/Tree and Loop/Star, 
are described in Section II. The influence of the form of the 
forcing function on the solution for the low-frequency 
formulations is discussed in Section III. The numerical 
results are shown in Section IV to demonstrate the 
improvement of the stability of the impedance matrix and 
the accuracy of the computed current density. A summary 
is provided in Section V. 

69 



n.  Low-Frequency Formulations 

The scattering problem of a perfectly electrically 
conducting (PEC) body subject to illumination by a time 
harmonic incident plane wave can be formulated via the 
EFIEas 

E^Jr) = LM(r) + V$(r)]ran ,     r on S      (D 

where E' represents the incident electric field, S is the 
surface of the scatterer, and the subscript tan denotes the 
component of a quantity tangential to the surface S. A and 
$ are the magnetic vector potential and the electric scalar 
potential defined by 

A(r) = ^J(r')G{r,r')dS' r' on S (2) 

*(r) = 1 [ o{r')G{r,r')dS' ,     r' on S        (3) 

where 

Gir,r') = 
e-Mr-r'\ 

4ir\r-r'\ 
(4) 

and where k = u(ße)1/2, and /x and e are the permeability 
and permittivity of the surrounding medium. The surface 
charge density a is related to the surface divergence of J 
through the equation of continuity 

V«7 = -jwa (5) 

Many method of moments [7] schemes have been 
developed to obtain the numerical solution for equation (1). 
One of these is the triangular patch model [6], which is 
based on a method of moments solution of the EFIE in 
conjunction with a planar triangular patch model of the 
scatterer and a special set of basis functions. In this section, 
for completeness, we first describe the basis function used 
in the original patch code [6]; then the two other vector 
basis function sets that are suitable for low-frequency use 
are described. 

In the method of moments solution procedure, the 
surface current density J is approximated as 

N 

n-1 

where N is the number of unknowns, 
coefficient to be determined,  and «_ 

(6) 

/„ is an unknown 
is a vector basis 

function.   For the formulation described here, un in (6) is 
chosen from one of three different sets of basis functions: 

{/•„}, {// and //}, or {// and j/}.  These three sets of 
basis functions are briefly described in following. 

The original vector basis function fn 

As in [6],fn is a vector basis function defined on a pair 
of adjacent triangles Tn~ associated with the n,h non- 
boundary edge of the model, as shown in Figure 1 and 
defined by equation (7), where ln is the length of « edge 
and i4n

± is the area of triangle T^. 

m = 
1A 

2/L 

Tpn 

:Pn 

r in T 

r in T„ 

otherwise 

(7) 

n-th edge 

Figure 1. 
edge. 

Local coordinates associated with an 

To extend the original patch code [6] to the low 
frequency range, vector basis functions are presented based 
on the work in [1-3]. These new vector basis functions Jn 

are divided into two types, /„ and either /n or Jn , with 
the following properties which make them suitable for use 
in the magnetic vector and electric scalar potentials at low 
frequencies: 

• Jn    is   associated   with   interior   nodes   and   is 
divergenceless; 

• /„    is associated with faces and is curl-free; 

• jj is equivalent to^,, but is only associated with 
the interior edges of the model that lie along a 
tree structure connecting the centroids of the 
triangular patches. 
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The combination ofJn
L and Jn

s is subsequently referred to 
as the Loop/Star basis function set, and the combination of 
Jn

L and jj is referred to as the Loop/Tree basis function 
set. Each of the basis functions Jn , Jn , and Jn can be 
constructed as a linear combination of the vector basis 
functions/j, defined in (7). 

The vector basis function Jn
L 

Figure 2 illustrates in a simplified form the "Loop" 
basis function Jn

L associated with an interior node nL. 
T T Within each triangle attached to node n , Jn has vector 

direction parallel to the edge opposite to node n^ and, 
therefore, J^ forms a loop around node nL. In Figure 2(a), 
aside from the edges which are opposite node n^, all the 
other edges are connected to node nL. The currents at these 
edges connected to node nL would be unknowns in the 
original patch code and each would be associated with an 
original vector basis functions/„. To obtain the vector basis 
function /n associated with the interior node nL, basis 
functions /„ are first associated with the edges connected to 
node vf' and are then combined together in a particular 
manner, so that only a single basis function having zero 
divergence remains. Figure 2(b) shows the edges and local 
coordinates associated with one of the triangles in Figure 
2(a). In Figure 2(b), if node 1 corresponds to node nL in 
Figure 2(a), then Jn

L in this triangle is parallel to edge 1. 
As indicated in [6], a constant vector of arbitrary magnitude 
and direction within the triangle may be synthesized by a 
linear combination of two of the original vector basis 
functions. Thus, in conjunction with the definition of the 
vector basis function in equation (7), a vector Lj within the 
triangle of Figure 2(b) can be formed as 

L> * TA ' Th (8) 

where  ^  an^ h  are  tne  lengtns of edges 2 and  3, 
respectively, and A is the triangle area. 

The basis function Jn
L in the triangle of Figure 2(b) is 

then defined to be 

T U 
J        =   — J"        A 

(9) 

This definition holds for all triangles attached to interior 
node n^ by using the local coordinate notation in Figure 2(b) 
for each triangle attached to node n^. Then the basis 
function 7n  associated with interior node n^ is defined as 

(10) 

(b) 

Figure 2.    A representation of the vector basis 
function J„L associated with an interior node nL. 

where N( is the number of triangles attached to node nL, Lj 
is the vector parallel to the edge opposite to node xr in the 
j* triangle, and A- is the area of the/'1 triangle. We note 
that the triangular patch loop basis function of (10) has been 
previously used in the computation of polarizabilities for 
conducting disks and apertures [8] and for magnetostatic 
solutions for arbitrarily shaped bodies [9]. 

The vector basis function Jn
s 

The "Star" vector basis function Jn
s of [3] is associated 

with faces and is shown in a simplified representation in 
Figure 3. The domain of the basis function Jn associated 
with the nth triangular face consists of the n face itself and 
all of the faces attached to the n'h face. The new basis 
function is constructed by first placing an original basis 
function^, on the triangle pair associated with each edge of 
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„ih the n   face and orienting these fn's so that current flows out      used, then 
of the n    face for each one.    Finally, the "Star" basis 
function is formed by summing over the/n's to obtain 

3   S   f y-y uniJni (11) 
i-l 

where /„,- is an original vector basis function associated with 
edge i of the n face, and Sni is a sign and magnitude 
coefficient chosen from the set {-1, 0, 1} to provide current 
flow out of the n face for a non-boundary edge / or to 
eliminate contributions from boundary edges. 

Figure 3.    A representation of the vector basis 
function Jn  associated with a triangular patch. 

The vector basis function Jn 

The "Tree" basis function /„ consists of the fn's for 
the interior edges of the model that lie along a tree structure 
connecting the centroids of adjacent triangular patches. The 
definition of tree and branch, for the rectangular-patch model 
in [Ch.8, 10] is also applied for the triangular patches used 
here. A possible choice of the tree for a triangular patch 
model is shown in Figure 4. Once a tree is obtained, Jn 

can be defined as 

7r= 
ft , if edge t intersects a tree branch   m) 

0 , otherwise 

where/, is the original vector basis function associated with 
a non-boundary edge t. 

With these definitions, three simple approaches are used 
to form a complete set of basis functions. The surface 
current density J is then approximated by either of the three 
basis function sets. If the set of original vector basis 
functions fn is chosen, i.e., if the same basis set as in [6] is 

N 

n-l 

(13) 

where N is the number of interior (non-boundary) edges in 
the triangular patch model. If the Loop/Star basis function 
set is chosen, then / is represented as 

J(r) ^ £/„/„V)+ £ Wnsv>   (14) 

/i-l n-ivM 

where N is the number of interior nodes, and N - N + 1 
is the number of faces in the triangular patch model. If the 
Loop/Tree basis function set is chosen instead, then 

JW« EWw*  E '«//w   (15) 
n-\ „-AM 

where N - NL is the number of tree branches in the 
triangular patch model. 

Figure 4. A tree structure connecting the centroids 
of adjacent triangular patches. 

The basis function set Jn
L must include an additional 

type of element if the body being modeled is not simply 
connected, as shown in Figure 5. The connectivity of the 
body can be determined from the triangular patch model for 
some classes of geometries by noting, for example, that the 
triangular patch model of a simply connected open surface 
without any "handles" will have either no "aperture" or only 
one "aperture," i.e., either there will be no boundary edge 
or the union of all of the boundary edges in the patch model 
will form a single closed curve. For each additional 
aperture in the model it is necessary to include a "super- 
loop"  basis   function of form  similar  to Jn .     These 
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additional basis functions will form loops around apertures 
rather than around interior nodes of the model. In Figure 
5, the surface modeled by triangular patches has two 
apertures; therefore, an additional "super-loop" basis 
function is needed if one uses one of the low-frequency 
formulations to determine the surface current. Additional 
"super-loop" basis functions are also needed if a body 
modeled by triangular patches has any "handles," as is the 
case for a closed body that is not simply connected, such as 
a torus, or for the general open-body geometry illustrated in 
[6]. The definition and topological properties of a "handle" 
can be found in [11]. The construction of a "super-loop" 
basis function is similar to that of Loop basis function J L. 
The only difference is that the Loop basis function /„ is 
formed by all/^'s attached to node n^, while a "super-loop" 
basis function can be formed by all them's associated with 
edges that are attached to an appropriate aperture (either 
aperture 1 or aperture 2 in Figure 5, for example). 

aperture 1 

Figure 5.  An object with two apertures. 

With a Galerkin testing procedure, the impedance 
matrix elements for the three different basis function sets 
may be represented as 

fc*L -J»<W.fm> + <ZV«(V,./B),/M> 

pus] \pq 

B. 
LL 

B, 

nm 

LS 
nm 

B SL 

nss    ss 
Bnm+Cnm 

[
Z

UT\ lpq 

B, 

B 

nm 

LT 

B, TL 

nm      nm 

(17) 

(18) 

B: jo, <A(Jn
s)Jm'> 

Co 
-V*(V, Jn>T>m^ 

where the superscripts s,t may be either L, S, or T and 
indicate the source and testing function types, and < > 
denotes the symmetric product. The brackets on the right 
side of (17) and (18) indicate that the matrix element is 
given by one of the expressions for the four different 
subtypes of matrix elements arising due to the two different 
basis and testing function types, the local subscripts m and 
n in (17) and (18) are assumed to be mapped appropriately 
into the global matrix indices p and q, and the subscripts 
orig, L/S, and LIT on Z denote the basis and testing 
function types. Equation (16) uses the original basis and 
testing functions; equation (17) uses the Loop/Star basis and 
testing functions; and equation (18) uses the Loop/Tree basis 
and testing functions. 

If one compares equations (17) and (18) with (16), it is 
evident that the magnetic vector potential contribution to the 
elements of the impedance matrix appears alone in the upper 
portions of ZL/S and ZL/T, and, therefore, is not lost in 
comparison with | V$> | during matrix element 
computation. We also note that the low-frequency 
formulations described in this section are valid in principle 
at any non-zero frequency. 

III. The Forcing Function for Low-Frequency 
Formulations 

When a Galerkin testing procedure is applied to 
equation (1), the left side yields the forcing function, or 
excitation vector | V> for the system of equations. Four 
different types of excitation vector elements can be obtained 
by using fn, Jn , Jn , or /„ , as described in the last 
section. If the original basis function fn is used as the 
testing function, the same excitation vector as in [6] is 
obtained 

V°ri8 = <Einc,fm> iE" fm dS     (19) 

where m = 1,2,...,N, and TV is the number of interior (non- 
boundary) edges in the triangular patch model. For 
simplicity in the numerical calculation, Emc is often 
approximated by the corresponding value of Einc at the 
centroid of each triangle. If Jn

T is used as the testing 
function, then 

with 
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VT=i 

N, 
yong ^ if edge t intersects a tree branch 

(20) 
0 , otherwise 

where p = 1,2,...,N-NL is the p   tree branch, and N  is 
the number of interior nodes in the triangular model. If Jn 

is used as the testing function, then 

3    o   v°ri8 
= yv *qt V 

i-1        ?qi 

(21) 

where q = l,2,...,Nstar, Nscar is the number of unknowns 
associated with the Star basis function, and 5 • is a sign 
coefficient chosen in the same manner as for (11). 

It is evident that we use the same strategy to form the 
excitation vectors | V > and | V > as we did in last 
section to develop the Tree and Star basis functions. But 
when Jn

L is used as the testing function, there are two ways 
to evaluate the excitation vector | V >. In the first 
approach, we use a linear combination of the Vm's given in 
equation (19) to construct the excitation vector | V >. 
Applying the same procedure as for the construction of the 
Loop basis function in last section, we obtain 

thei 2V°ng 2V°ng 
(22) 

is where Vori8 is given in equation (19), i = \,2,...,tf, N( 

the number of triangles attached to ith the interior node nL 

in the triangular patch model, and the subscripts 2 and 3 
refer to local edge numbers as in Figure 2. The superscript 
Lei denotes the testing function is a Loop testing function, 
and that the incident electric field is used in the calculation. 
In the second approach, we start with the symmetric product 
expression for the excitation vector with the Loop as the 
testing function: 

N, 
rLhi  =   ^ pine V™  =   <E incJf-> = £ \Einc • Jt dS (23) 

Using a vector calculus identity [12], equation (23) can be 
written as 

N. 
Lhi £ U; Ä  '  (VxEinc) dS (24) 

which can be further manipulated to 

rUii 

j-i }s 
Hinc) dS        (25) 

where \j/j is a scalar function [9] defined over they triangle 
attached to node nL (cf. Figure 2), and H'nc is the incident 
magnetic field. If H'nc is approximated by the 
corresponding values of Hmc at the centroids of each 
triangle attached to node nL, then 

rLhi 

3 J-l 

N, 

H" %rcp (26) 

where A= is the area of they triangle attached to node nL 

and rc is the position vector to the centroid of the j 
triangle. The superscript Lhi denotes that the testing 
function is a Loop testing function, and that the incident 
magnetic field is used in the calculation. This result is 
similar to that obtained by Arvas et al [9], where the 
magnetostatic problem was solved. It is apparent from (23) 
to (25) that testing the incident field with the Loop testing 
function is equivalent to performing a curl operation. 
Comparing | VUi> of (22) with | Vm> of (26), one 
notes that | VLei> effectively evaluates the curl of Einc 

numerically, while for | V > the curl operation is 
performed through the analytic procedure (23) to (25). In 
principle, either | VLa> or | VLf"> can serve as the 
excitation vector. However, the numerical results have 
demonstrated that computational advantages can be gained 
by using | V^'> in the higher frequency range and by 
choosing | V > when the operation frequency is in the 
lower frequency range (i.e., when the scatterer is very small 
in terms of wavelength). This is not surprising, since 
evaluation of | V > over a loop results in substantial 
cancellation of the electric field vector over the testing path 
and a subsequent loss of precision when the testing path is 
small in terms of wavelength. Numerical results 
demonstrating these effects and further discussion are 
presented in the next section. 

IV. Numerical Results 

The two low-frequency vector basis functions described 
in the previous sections have been incorporated in a version 
of the patch code [6]. This new version of the patch code 
is referred to here as LFPATCH, which stands for Low 
Frequency triangular patch code. To study the behavior of 
the code for the different approaches, several structures 
have been studied over a wide frequency range. Numerical 
results are presented in this section comparing the inverse of 
the condition numbers [13] of the impedance matrix and 
current  distributions obtained using  the  different basis 
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function sets. All the scatterers studied are modeled by 
triangular patches and subject to illumination by an incident 
plane wave. 

To observe the effects of numerical precision of 
different computers, the examples are computed on different 
platforms with different precision. The two platforms used 
for the numerical computations are an IBM 3084QXC 
Mainframe and a Cray Y-MP8D/464 Supercomputer. The 
Cray single precision computation is effectively equivalent 
to the double precision computation on the IBM mainframe. 

Flat Square Plate Scatterer 

The first example problem considered is a square, flat 
plate PEC scatterer illuminated by an incident wave with the 
H component normal to the surface of scatterer, as shown 
in Figure 6. The inverse condition number obtained for the 
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Figure 7(a). Inverse condition number for a 
square plate scatterer obtained using single 
precision on the IBM mainframe. 
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Figure 6.    A triangular patch model of a flat 
square plate scatterer. 

impedance matrix using the original, Loop/Tree, and 
Loop/Star basis function sets are shown in Figure 7. Figure 
7(a) shows the inverse condition number for the three basis 
function sets obtained by running the code on the IBM 
mainframe using single precision, and Figure 7(b) shows the 
same case, but running on the Cray supercomputer. The 
inverse condition number for the impedance matrix using the 
original basis function set is found to start oscillating wildly 
when L/X is smaller than about 10"3 for the IBM single 
precision result. When the impedance matrix is evaluated 
on the Cray, there is no oscillation, but there is a clear 
change in the behavior of the curve at L/X = 10"6. The 
inverse condition numbers for the two low-frequency 
formulations are  essentially  constant as  a  function of 
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Figure 7(b). Inverse condition number for a 
square plate scatterer obtained using single 
precision on the Cray supercomputer. 

frequency for L/X smaller than about 10"2 regardless of the 
platform used. It is also noticed that the condition number 
obtained with the Loop/Tree basis function is more than an 
order of magnitude better than that obtained with the 
Loop/Star basis function. 

■Lei* The effect of using either  | VLa> or  | Vm> on the 
computed current distribution for the flat plate scatterer is 
shown in Figures 8 and 9. The data for both Figures 8 and 
9 were generated on the Cray supercomputer. Figures 8(a) 
and 9(a) show the absolute value of the real and imaginary 
parts of the current coefficient for edge 22 of the model 
(Figure 6) over a wide frequency range, while Figures 8(b) 
and 9(b) show an expanded plot over the higher portion of 
the frequency range. One observes from Figure 8(a), for 
which | V    > is used, that good agreement is obtained for 
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Figure 8(a). Current density at edge 22 for the 
flat plate scatter obtained using the excitation 
vector  | VLei>. 

the real part of the current using the two low-frequency 
formulations; however, the result obtained using the original 
basis function becomes erratic at the frequency where the 
impedance matrix becomes unstable (see Figure 7(b)). The 
imaginary part of the current obtained with the two low- 
frequency approaches, on the other hand, becomes 
inaccurate for L/X smaller than about 10"8, where one notes 
that the computed current begins to rise as the frequency 
decreases. If we use | V1*" > instead, the result obtained 
is shown in Figure 9(a). For frequencies such that L/X less 
than about 10"1, the real part of the current compares well 
with the results in Figure 8(a); however, the imaginary part 
of the current for Loop/Tree and Loop/Star basis functions 
behaves correctly over this same frequency range, unlike the 
results of Figure 8(a).     Expanded plots of the current 
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Figure 8(b). Current density at edge 22 for the 
flat plate scatter obtained using the excitation 
vector   | \^a > (high frequency range). 

obtained using the excitation vectors | V > and | V ' > 
for the two low-frequency approaches over the higher 
portion of the frequency range are compared with the 
original EFIE procedure in Figures 8(b) and 9(b). Over the 
part of the frequency range shown in Figure 9(b), one 
observes that the currents computed using | V ' > do not 
agree with each other or with the original EFIE. For the 
same frequency range, the currents obtained using | V ' > 
for the two low-frequency approaches, shown in Figure 
8(b), are in excellent agreement for both the real and 
imaginary parts of the current for the three different solution 
procedures. The results shown in these figures suggest that 
a different Loop testing procedure should be used for the 
excitation vector calculation for the high and low frequency 
range. If we consider Figures 8 and 9 again, we can 
roughly   divide   the   entire   frequency   range   into  three 
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Figure 9(a). Current density at edge 22 for the 
flat plate scatter obtained using the excitation 
vector  | Vua>. 

convenient regions: region A, where L/X varies from 10° 
to 10"2; region B, where L/X varies from 10"2 to 10"7; and 
region C, where L/X is smaller than 10"7. In region A, the 
size of a triangle (/4=0.0139X2 at L/X = 1) is comparable 
in size with the wavelength.   To understand the failure of 

| V > in this region, we note that when | V > was 
derived in the previous section, an analytic curl operation 
was performed around the interior node rf via a vector 
calculus identity. If one recalls that the integral definition 
of the curl operation evaluates a vector field as an area tends 
to zero, which implies the field does not change rapidly 
around node xf, it is recognized that the numerical 
application for this definition may not be appropriate in 
region A. As the frequency decreases, especially in region 
C, the size of triangle becomes very small in terms of 

2.5 

o.oioo 0.7525 1.0000 

Figure 9(b). Current density at edge 22 for the 
flat plate scatter obtained using the excitation 
vector  | Vth1 > (high frequency range). 

wavelength, and the value of | V > becomes quite 
accurate. The good agreement between all of the 
approaches in region A for the results obtained when using 

| V^' > for two the low-frequency approaches is because 
all the quantities (A, $, Emc) are evaluated at the same 
points, the triangle centroids, and because there is little loss 
of numerical accuracy due to cancellation when the triangles 
are not small with respect to the wavelength. When the 
frequency falls into region C, the variation of Einc is very 
small over the domain of the loop basis function 
(A = 1.39 X 10"16X2 at L/X = 10"7), and the testing procedure 
leads to the subtraction of very similar field quantities, 
causing a loss of precision in the computation of | V > 
for the two low-frequency approaches, which leads to 
unacceptable results.    In region B, both   | }ra>  and 

| VLi"> for two the low-frequency approaches provide 
essentially   the   same   result.      For   the   results   shown 
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Figure 10(a).   Current density at edge 22 for the 
flat plate  scatter  obtained using the  excitation 

iLeh vector    | V     >   on the IBM mainframe using 
single precision. 
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Figure 10(b). Current density at edge 22 for the 
flat plate scatter obtained using the excitation 
vector | VLeh > on the Cray supercomputer using 
single precision. 

subsequently, we use   | V    > in region A,   | V    > in      Long Narrow Bent Strip 
region C for the two low-frequency approaches, and switch 
between the two excitation vectors in region B according to 
the size of triangle respect to the wavelength.  We refer to 
this as the combined Loop testing procedure,  and the 
corresponding excitation vector is denoted as | VLeh>. 
Figures 10(a) and 10(b) show the current density at edge 22 
in Figure 6 obtained using the three basis function sets and 
on different platforms. Since the | V > is used for the 
Loop testing function, the results obtained with the two low- 
frequency approaches now agree with each other over the 
entire frequency shown and are stable even computed on the 
IBM mainframe in single precision. 

The next example presented is a long narrow (L=30W) 
strip which forms a square, open loop, as shown in Figure 
11. In this example, to make a simple model with relatively 
few unknowns for this shape of scatterer, the sizes of 
triangular patches in the model are not made uniform. 
Results are shown in Figure 12 for the inverse condition 
number in this case, and they are similar to those of the 
previous case, except that the inverse condition number for 
the Loop/Tree basis function set is now about two orders of 
magnitude better than that of the Loop/Star basis function 
set. Consequently, one might expect for this case that the 
Loop/Tree procedure is the only one likely to provide a 
reasonable  solution with single precision  on  the  IBM 
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Figure 11.  A long narrow bent strip (L=30W). 
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Figure 12(a). Inverse condition number for a long 
narrow bent strip obtained using single precision on 
the IBM mainframe. 

mainframe. From Figure 12(b), it can be observed that, as 
the precision is increased, the the inverse condition number 
results obtained using both procedures are large enough 
relative to the machine precision to expect accurate 
solutions, while that obtained using the original basis 
function set shows improvement for L/X larger than about 
10"6, but again deteriorates when L/X becomes smaller than 
about 10"6. The results for the current on one of the edges 
shows behavior similar to that of in previous case. 

It should be noted here, however, that scaling of the 
basis functions may affect the matrix conditioning [14]. 
Indeed, we have observed, for example, that if the edge 
length factor in the denominator of (11) is omitted, the 
Loop/Star results are worse by almost an order of 
magnitude. The Loop basis and testing functions are the 
same in both low frequency methods. Nevertheless, 
application of a scaling factor to the Loop functions may 
improve the Loop/Star and/or the Loop/Tree condition 
numbers and is a subject for further research. 

V. Summary and Discussion 

Two special method of moments solution procedures 
used to improve the accuracy of the numerical solution for 
the Electric Field Integral Equation (EFIE) in the low 
frequency range have been studied. Two alternate vector 
basis functions have been implemented in a version of the 
triangular patch code [6] to extend its usefulness to the low 
frequency range. Numerical results have been presented for 
two different types of structures over a wide frequency 
range. The inverse condition numbers of the impedance 
matrix and the computed current values as a function of 
frequency have been presented to illustrate the improvement 
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Figure 12(b). Inverse condition number for a long 
narrow bent strip obtained using single precision on 
the Cray supercomputer. 

of the EFIE solution in the low-frequency range. It has 
been found in our implementations that using the Loop/Tree 
basis and testing functions usually yields a more stable 
impedance matrix (i.e., one with a larger inverse condition 
number). This is very useful when modeling a resonant 
structure that is small in terms of wavelength, since near the 
resonant frequency, the inverse condition number of the 
impedance matrix usually drops several orders of magnitude 
from that of the off-resonance case. This is also helpful 
when the code is running on a computer with lower 
precision. Additional study of scaling procedures may result 
in further improvements of the inverse condition numbers of 
one or both of the low frequency methods. 
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ABSTRACT. The surface integral equations of a two 
dimensional (2D) anisotropic impedance object is formulated 
to obtain the electromagnetic scattered fields due to oblique 
plane wave incidence. The surface impedance is anisotropic 
with arbitrary principle directions. The moment method 
with pulse basis functions and point matching is used to 
reduce the surface integral equations to a matrix equation. 
Four different formulations are generated for the problem. 
The surface current distributions and the scattered far fields 
are verified against the analytical series solutions of circular 
impedance cylinders. Very good agreement between the 
numerical and the analytical solutions is obtained. A 
rectangular cylinder made of four sofi surfaces is analyzed 
for oblique incidence to verify that the results behave as 
expected. The computer code is also verified by comparing 
the solutions of the different formulations against each other. 

1 INTRODUCTION 

Some complicated structures can be modeled approximately 
using the concept of surface impedance, such as e.g. 
corrugated objects or objects coated with lossy material or 
thin dielectric layers, which can even be loaded with metal 
strips. The surface impedance model deals with the outer 
boundary of the structure in terms of an equivalent surface 
impedance, which can be obtained from the expected local 
relation between the tangential components of the electric 
and magnetic fields on the outer boundary. This relation can 
be found approximately at any surface point from the 
solution of a canonical problem which is similar to the local 
geometry around this point. The equivalent surface im- 
pedance is generally anisotropic, even if the coating is 
isotropic, in particular at an outer surface that has two 
different principle curvatures. Also, structures with periodic 
surface discontinuities such as corrugations or strip loaded 
coatings can be modeled using the anisotropic surface 

This work was performed while Professor Kishk was on 
sabbatical leave at Chalmers University of Technology. 

impedance concept, if the periods of the corrugations or 
strips are smaller than half the wavelength. The advantage 
with the surface impedance concept is that the numerical 
analysis of the object becomes simpler and takes shorter 
time. This is because the exact geometry of the loads do not 
need to be modelled so the problem description becomes 
easier and the number of unknowns can be significantly 
reduced. 

The impedance boundary conditions (IBC) is a valid 
approximation under certain conditions [1], more references 
on the IBC can be found in [2]. The use of the IBC can 
simplify the analysis of some classes of complex electro- 
magnetic problems, but it must be used with care as it may 
sometimes give erroneous results [3]. In order to widen the 
applicability of the IBC, generalized impedance boundary 
conditions (GIBC) was proposed in [4] and later improved 
for coated 2D structures [5] at the expense, however, of 
considerable analytical complications which requires 
specialized researchers to work with such problems. So far, 
the GIBC has only been used in connection with coated 
metallic surfaces without corrugations. On the other hand, 
the IBC has been used successfully to analyze corrugated 
horns and waveguides [6]. 

Anisotropic surface impedances have also been used to 
define soft and hard surfaces [7] that theoretically provides 
polarization independent soft and hard boundary conditions 
for electromagnetic waves of known propagation direction. 
The concept of soft and hard surfaces is also a way of 
thinking that can help to generate ideas for improved 
electromagnetic designs. Analysis tools based on the IBC 
are very important also to verify such thought models 
initially before the accurate analysis including all surface 
details is performed for the final design optimization. An 
example of how to use the concept of soft and hard surfaces 
to reduce the forward scattering from two dimensional (2D) 
structures is described in [8]. 

Previous papers have formulated the problem of electro- 
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magnetic scattering from 2D impedance structures due to a 
normally incident plane wave [9-10]. Oblique incidence is 
considered in [11-12] for the case of an isotropic surface 
impedance. In [11], the finite element method is used for an 
arbitrary cross-section, and in [12] the finite difference 
method in the frequency domain is used for elliptic cross- 
sections. In [13] the method of moment is used for bodies 
of revolution with anisotropic surface impedance. In the 
present paper the problem of scattering from a two dimen- 
sional object of arbitrary cross-section and anisotropic 
surface impedance is formulated for oblique plane wave 
incidence. 

The present formulation is based on the surface integral 
equation and solved using the method of moment with pulse 
basis functions and point matching. With the proper 
implementation of this simple expansion and testing, 
accurate numerical solutions are obtained. The numerical 
solution is verified with the exact solution of a circular 
cylinder [14]. Different surface integral formulations are 
generated and found useful in the verification of the numeri- 
cal solutions for arbitrary objects. In addition a theoretical 
example is constructed for which the E-field solution for 
TMZ incidence should be equal to the H-field solution for 
TEZ incidence. The example is a 2D object with rectangular 
cross section made of four surfaces which are soft as 
defined in [7] for the given oblique incidence. Finally, it 
should be mentioned that the formulations in the present 
paper describe what in [15] is referred to as a harmonic 2D 
solutions, and that these can be extended to an arbitrary 
incident field, i.e. three dimensional sources, by considering 
a spectrum of 2D solutions [15]. 

as 

= vo ly] 
(3) 

with 

[ij] 
% '« 

(4) 

where E>, Et (fff, Ht) are the components of the E-field 

(H-field) along ü^ and tfj, respectively. The IBC is based 
on the fact that we in some cases know exactly or ap- 
proximately the field solution inside the surface, and that 
this solution is the same or approximately the same for all 
excitations (incidences) considered. The inner field solution 
can then be characterized by the relations between its E- and 
H-fields  at  the  surface,   i.e.   the  surface   impedances 

'it' 'it' ^it aa^ ^iV T'ie ^^ aPP^e^ to ^e exteri°r 

fields thereby means that the continuity of the E- and H- 
fields are enforced over the surface S (when the form of the 
inner field solution is given). 

When the surface impedance is anisotropic, we can normally 

find two principle directions tf| and fij. which maker; 

diagonal, according to 

r? =%ß|-ßf + T'i?Ä«% 
(5) 

2 IMPEDANCE BOUNDARY CONDITION 

The impedance boundary condition (IBQ for exterior fields2?Q 

and HQ at a surface S with surface normal ün can generally 
be stated in vector form as 

E0 - (E0 • ün)ün = T/QTJ  • (ü„ X ff0) 

where T/0 is the free space intrinsic impedance and 

(1) 

(2) 

is the anisotropic surface impedance dyad, given in terms of 
its components in a local surface coordinate system defined 
by the unit vectors «j., «> and ün with öj- 1 w^ and 

ün = üt X «v. We can also express this in a matrix form 

From now  on we will let    ä^ and ü^ denote these prin- 

ciple directions of t\. The following example will explain 

how üt and öj. are related to the surface structure. Let us 
assume a corrugated surface with the corrugations parallel 
with üt ■ Then, the öj component of the E-field will be 

shorted by the thin ridges between the corrugations, so matrj^ 

= 0, and the fif component Ej. of the E-field will couple 

to a TE to ö„mode in each corrugation, which acts as a 
shorted parallel plate waveguide if the corrugation are 
straight. The £>. inside the parallel plate waveguide is 

related toff> according to (see e.g. [7]) 

■nova 
E» 
■4- = -JVctoniW) Ht 

(6) 
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where kn is the component of the wave number in the ün 

direction inside the corrugations, d is the corrugation depth, 
and rjcis the intrinsic impedance inside the corrugation. 

This assumption is good when kn is known and independent 
of the angle of incidence. This is the case for corrugations 
that are transverse to the direction of incidence of the wave. 

We can transform i\ in (5) to any coordinate system defined 

by vectors üT 1 ün and üz = ün X ü7 according to 

^^MZ^MT^TZMZ^TTMT (7) 

where 

ITZ'IR ' '«><** * üz)(äi • üz) (8) 

Vrr = Vn(h ' ÜzKÜ! ' Ö
T)-^(% * Üz^h ' Ör) 

Fig. 1 Geometry of the original problem. 

the x-axis in the xy-plane. The incident field at a point r is 
therefore described by 

E^ =Em(EPoosainc ^E^ina^e •i*o* (10) 

3 FORMULATION 

Consider a two dimensional (2D) anisotropic impedance 
scatterer of infinite extent in the z-direction and with 
arbitrary cross section (Fig. 1). For this geometry, there are 
two distinct regions Vj and V0, where Vj constitutes the 
impedance body which is bounded by the surface S and V0 

is the unbounded region outside S. The surface S is 
described by the contour C in the xy-plane and has an 
outward surface normal ün which is orthognal to üz. The 
surface   is   characterized   by   the   anisotropic   surface 

impedance dyad TJ, as defined in the previous section, 

where i\^, ij^, Wj. and «j are allowed to vary around C. 

V0 is the exterior region characterized by the permittivity 
and permeability of the free space (CQ, JIQ). The total 
electric and magnetic fields in region V0 are denoted by E0 

and H0, respectively. The excitation is assumed to be an 
obliquely incident plane wave propagating in th-e direction 

* - -ür(ßinc> tine) = " «**«te™*toc ü: 
(9) 

sin<Aincsin0inc My - cos6inc «z 

Hinc = (£ x Einc)li\Q 

where 

T = xüx + yüy + züz = p + züz 

E" =  -Win, 4>inc) = -*x<*>S°inc <*>s*» 

- «ycosö^ sin^ + «zsin^ 

En = -uAf) = Min&„ - flvcos^ 

(11) 

(12) 

(13) 

(14) 

making an angle $■ c with the z-axis and ^^ measured from 

Ep and E" are the unit vectors corresponding to polariza- 
tions parallel (TMj case) and normal (TE^) to the plane 

defined by the z-axis and tc. The polarization angle a^c is 
the angle the incident electric field makes with the plane of 
incidence. If ainc=0, the plane wave is TN^ polarized (6- 
polarized), and if a-m<.—Tcl2 the plane wave is TEj, polar- 
ized (^-polarized). kg is the wave number in the free space, 
üx, ü and Uz are the unit vectors in the direction of x, y, 

and z, respectively and ür(6inc, <j>inc), üe(dinc, <j>inc), 

and ß^ (4>inc) are me vaa^ vectors in the direction of r, 0^, 
and <j>mc in the spherical coordinate system. The complex 
constant Em is the amplitude of the plane wave. 
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Using the equivalence principle the object can be replaced 
by the material of the region V0 and the equivalent electric 
surface current J and the equivalent magnetic surface 
current M on the surface, which produce zero fields in the 
region Vj and (E0-ET°) and (HQ-IT

0
*) in the region V0, 

where 

indicates that the magnetic vector potential of the three 
dimensional form is the same as the two dimensional form 

multiplied by expQkjZ) [15]. Both J(p/ ) and M (p) have 

components both in the longitudinal üz direction and in the 

transverse üT direction, i.e. 

J = ünxH0      and    M = E0xün    on   S (15) 

For infinite cylindrical structures the electric and magnetic 
currents are assumed to be of the form 

KM M„ ü + z AL on S, 
(20) 

ikz /(/•') =/(p') A (16) 
where the transverse unit tangent is defined by 

ü   = ü   X ü <*T     «*z ~ »n (21) 
and correspondingly for M, where kz = k cos 6 fa. These 
assumptions are evident for isotropic surface boundaries as 
explained in [15], and we see no reason why it should not 
apply to anisotropic impedance surfaces as well. The 
magnetic and electric vector potentials,  A and F, due to      We can now obtain the electric and magnetic fields£(p ) 

where ün is the unit normal to S. 

the equivalent currents / and M can be written as and H(p) due to the electric current J(pf ) by using 

m- 11^' M{r') 
dr' dz' 

(17) 

where   G(r, r  )   is  the three-dimensional  free  space 
./ :„ Green's function and dr is the integration increment along 

the contour C in the cross-sectional plane. The three- 
dimensional Green's function can be written as 

<Kr,r') 
eV«\f-p'\2+{z-zW2 

{\p-p'\2 + {z-z')2)m 

(18) 

where r and r' are the position vectors of the observation 

and source points, respectively, p and p' are the cylindri- 
cal vector coordinates of the field and source points, 
respectively. After performing the known z integral we get 

|A(r)l    ***■ Mo 
60 

'ff0\lr/!) Jip') 
M(p') 

dr' 
(19) 

where kp = ^k2-k\ , kz = -kcos6t, and H^\ ) is the 
Hankel function of zero111 order and second type. This 

H(r) = _ V xA(r)   and  E(r) = -J-Vx H(r)      (22) 
H0 O)€0 

where the V operator in our case can be expressed as 

V = Vß-//tü    andV=JLü+ — ü. (23) 

After some mathematical manipulations the electric and 
magnetic fields due to the electric currents can be expressed 
in operator form as shown in Appendix A. Expressions are 
given for Ea(Jz) En(Jz), £CT(/T), and E„(JT) which 

are each of the components of the vector operator EtaB (J) 
for the tangential E-field at a point p on S, and similarly for 
the tangential H-field vector operator HtaB (J), i.e. 

£tan(7)=[£zz(/z)+£zr(7T)]Öz+[Erz(Jz)+£TT(7T)]öT 

tftanO '[H^J^H^J^u^lH^J,) ^{J^ 

(24) 

The fields due to the magnetic current Af(p') can be 
obtained using duality ( ch. 3, sec. 3-2 [16]). 

We will now  apply the impedance boundary condition in 
Eq. (1) to the field at S.  The result is an integral equation 
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in terms of the unknown electric and magnetic currents of 
the form 

■—EtJJ) --E^JM) + J • (Ö„X {H^iJ) 

+tfto(AO>) = -E£-ir (Mlfi)        on S 

(25) 

We will now use (1) to express Mz and MT in terms oUz 

and JT, as follows. We cross multiply both sides of (1) withun 

and use (15) to obtain 

M = r,0(V • J) X an 
(26) 

We substitute (20) for / and multiply both sides with 
üz and üT to get 

Mz=M-az=r,0[v • (Jzaz+jTaT)] x aj • *z 

= -'?o(1?rr/T+r?TZ-/Z) 

MT=M • «r -ij0 [ ij • (Jzuz +7T«T)] X M„] • uT 

=1to(1»rr/T+1&«/z) 

respectively, with ijK, ij^, ijre and r/^ defined in (8). By 
inserting (27) in (24) and (24) in (25) we get the final 
integral equation 

-±[EJfz) *EJ,rT) +£CT(MT)] ^JH^ (Jz) 

*HJT(Jr) *H„(MZ) +HTT(MT)]-VzilHZT(JT) + 

^0 

(28) 

*HrTgT) +ff„(Mz) +Hn.(Mr)] -U^zr^r) <29> 

+#ZZ(MZ) ^(M,)] = J.^ -i,«^ +i?TTflf) 
'to 

where 

*zr(*r) = 

£„(MZ) = 

*rrW = 

»aW = 

^(M,) = 

Hn(Mz) = 

^(MT) = 

VTT
H

TZ(
J

T) 
+ 

-VTT
E

ZZVT) ~ 

-VrrErz(Jr) 

VZT
E

TA
J

T) 
+ 

" VZZ
H

ZT(
J

Z) 

VTZ
H

TZ(
J

Z) 

^zr^z) 

- ^£TC(/Z) 

(30) 

Following the method of moments, the object contour C is 

divided into N linear segments with length AC as in [9], 
i = 1,2, ...,#and each current component is expanded into 
N unknown constant coefficients multiplied by the pulse 
basis function P. In an equation form, the unknown 
currents can be expressed as 

N 
(27) J§"?V (31) 

where /',   are the unknown current coefficients and /* = 
<r> 

1 on the subdomain i and zero else where. Substituting (31) 
into the operators defined in the Appendix A and then 
substitute the operators in (28) and (29) and satisfy (28) and 
(29) at the match point (middle of the segments), the 
integral equation reduces to a matrix of order 2N, which can 
be written in the form 

=[E]+[vß[H] 
(32) 

here the different matrices and column vectors are defined 
as in the following. The matrices [Z] and [F] consist of four 
submatrices according to 

[Z] 
z'i zl y?, y?, ZZ       ZT 

and [Y] = 
ZZ ZT 

7v 7y 
^TZ   ^TT ±TZ 

Y'J 
(33) 

The elements of the Z and Y matrices are given in Appendix 
B. The first suffix of the subscript refers to the field 
component and the second suffix refers to the electric 
current component. The superscript ij is the element order 
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in the submatrix; i for the matching field point in the middle 
of the segment i and j for the/s unit pulse. [ E ] and [ H] 
are the excitation vectors due to the electric and magnetic 
fields, respectively defined by 

{a([zi+mivsi)+ßivß (m+[z] i%i)} m 

= a[£] + ß[»?/][H] 
(37) 

[£] = 

, line 

, j mc 
and [H] = 

K 
iinc 

H. 
i inc 

(34) 

where i denotes the matching field point in the middle of the 
segment i. The expressions of these elements are given in 
Appendix B. The column vector containing the unknowns 
can be expressed as 

[/] = (35) 

The matrices [ijf] and [r; J each consists of four submatrices 
according to 

iVsl   = 
J>      J 

and ty- 
£ til 

■ J>      - J 

(36) 

where each submatrix is a diagonal matrix with ijjL = the 

value of the surface impedance r\ at the middle of the 
segment i when i = j and zero otherwise, where the 
subscripts 7 and v refer to z and r. Once the matrices Z 
and Fare created and the excitation vectors [E] and [H] are 
filled and substituted in equation (32), the moment matrix 
system (32) can be solved to obtain the unknown current 
coefficients in (35). 

where a and jS are, respectively, the combination parameters 
weighing the electric field and the magnetic field just inside 
the surface S [2]. Thus different field formulations can be 
obtained by different selections of a and ß. These formula- 
tions can be obtained according to Table I. 

Table I 
Generation of different formulations 

Formulation type a ß 

IBCE 
IBCH 
IBCC 
IBC 

1. 
0. 
1. 
1. 

0. 

-to]-1 

i. 

IBCE (IBCH) implies that the E-field (H-field) boundary 
condition is applied, i.e. the tangential electric (magnetic) 
field is assumed zero just inside the surface of the object, 
using the implementation of the IBC approximation for the 
magnetic current, i.e. the magnetic current is related to the 
electric current via the surface impedance as in Eqn (27). 
The third formulation IBCC denotes the combination of 
IBCE and IBCH on the impedance surface. The fourth 
formulation, IBC implies that the IBC is implemented 
explicitly on the equivalent currents and the tangential 
fields. The solutions from the IBCE and IBCH formulations 
are not unique where there are internal structure resonance 
frequencies. These cases can be treated by using the IBCC 
or IBC formulations. The solution of the IBC formulation 
is also not unique when the impedance is zero (perfect 
conducting case) or inductive. The problem of nonunique- 
ness will not be investigated in this paper. Interested 
readers may find this treated in [2] and [17]. 

4 DIFFERENT FORMULATIONS 

In order to account for different formulations, one may use 
the E-field integral equation (E^ = 0), or H-field integral 

equation (ün X fl^) = 0, both applied just inside the 
surface S with the equivalent currents defined in (15). Then 
combining them to obtain the combined field integral 
equations or use the IBC as an integral equation as described 
above. The moment matrix of these integral equations can 
be obtained if the matrix equation (32) is written in the 
following form 

5 SCATTERED FIELDS 

Once any of the above formulations is solved the scattered 
field can be computed from the obtained electric current 
distribution. The field will be scattered along a cone of half 
angle 6= r - Bme around the structure. In the cylindrical 
coordinate system it is sufficient to compute the z-com- 
ponents of the electric and magnetic fields in the far zone 
when r and p are much larger than the wavelength and the 
maximum cross sectional diameter of the object. This can 
be obtained, first, by using the large argument approxima- 
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tion of the Hankel functions in the field operators defined in 
Appendix A and also in their dual operators due to the 
magnetic currents, Second, neglect the high order terms of 
lip. Third, substitute the magnetic current by the electric 
current and the surface impedance using (27). It can be 
found that in the cylindrical coordinate system, only z and 
<j> components of the fields are contributing to the far field. 
The spherical components of the electric field Ee and E^, 
which are more appropriate to use in the oblique incidence 
case, can be obtained from the cylindrical field components 
Ez and Hj, respectively. Therefore, by using simple 
transformations the spherical electric field components can 
be written as 

E?(e,4>) = i? 
-JiKfi-Kz) 

8ir kpp 

N 

E 
AC' ejk"(a" ' Pi) X/T. [ kp VTT - A«, (äp • ß„.) 

K VZT (*p * V1+ h{ % Irz ~ K Vzz % ' K}1 

(38) 

EgC(ß,4>) = ,-J%P-K
Z

^ 
N 

%VKP 

ACieJ\(*>' "'>x/z.[*o(öp • an)Vzz - kp] 
(39) 

In this paper the scattered fields are computed and normal- 

ized to y2j/irkpp  . 

distribution are symmetric around the plane of incidence 
because the incident wave is chosen to have bom TEj. and 
TM^ incident polarizations simultaneously and also because 
of the unequality of the surface impedances values rjZT and 

0.003 

0.002 

0.001 

o 1 
phase J, (deg.) 
180 

3    o 1 
phase J, (deg.) 

-180 
0 12 3     0 12 3 

contour length (A.) contour length (A.) 

Fig. 2a Exact and numerical current distribution on a circular 
cylinder with, ka=3.0, tj2Z=0.5+j.l, ijZT=0.3+j.6, i?ra=0.3 
+j.5 and ij„=0.7-j.3, illuminated by a plane wave with 
0i=45°, 4>{ = 180°, and a{ = 45°. 

6 RESULTS 

First, to verify the code, a circular cylinder with an ar- 
bitrary anisotropic impedance is considered. The paramet- 
ers are ka=3.0, with arbitrary surface impedance of 1^= 
0.5+jO.l, rjzr=0.3+j0.6, ^=0.3+^.5 and ^=0.7^0.3 
(these values are chosen arbitrarily) and the plane wave 
parameters are 0^=45°, <£„„.=180°, and «^=45°. The 
surface electric current components are plotted in Fig. 2a 
(against the exact solution obtained from the series solution 
in [14]), ten and twenty segments per wavelength are used 
in the numerical solution based on the IBC formulation. Ac- 
ceptable results are obtained with 10 segments per wave- 
length and more accurate results are obtained when 20 
segments are used. Also the scattered far fields are com- 
puted and plotted in Fig. 2b and compared with the exact 
solutions. It is obvious that the solution using 20 segments 
per wavelength gives more accurate results within the whole 
<£-range. Notice that neither the fields nor the currents 

10 

0       60     120     180    240    300    360 

Fig. 2b Exact and numerical scattered far fields of the 
example in Fig. 2a. 
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Now we consider some practical configurations. The first 
example is again a circular cylinder, but now with i\ 72— 
- J50.0, r,ZT = r,n = VTT = 0.0, 0inc=45°, ^ = 180°, 
and amc = 45°. This surface impedance represents transve- 
rse corrugations. The actual corrugated surface is very 
difficult to analyze [18]. The impedance model is much 
simpler and easier to analyze and an exact solution can be 
found as considered in [14]. The exact solution is com- 
pared with the present moment method solution using the 
IBC formulation with 20 segment per wavelength. The 
current distributions are plotted in Fig. 3a. Very good 
agreement can be noticed between both solutions. Also, one 
must notice that the current component Jz normal to the 
corrugations is almost zero. This is expected as /must flow 
entirely along the corrugations. This is a good verification 
that the surface impedance considered in this example is a 
good approximation of the transverse corrugated cylinder. 
The scattered far fields are given in Fig. 3b. The exact and 
the numerical solutions are indistinguishable. Notice also, 
the skew symmetry between Ee and E^ components which 
is also expected for oblique incidence and 45 degree 
polarization. For normal incidence E9 and E^ could be 
equal for all <f> for 45 degree incident polarization if the 
impedance 77 ^ = 00. 
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Fig. 3a Exact and numerical current distribution on a 
circular cylinder with, ka=3.0, and 17 ^=^50., ijZT=ijra 
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Fig. 3b Exact and numerical scattered far fields of the 
example in Fig. 3a. 

An impedance cylinder with square cross-section is con- 
sidered as shown in Fig. 4a. This geometry has no analytic 
solution. The surface impedance is used to model soft 
corrugated surfaces. The corrugations of the sides A and C 
are considered to be along the transverse direction parallel 
to the xy-plane with an equivalent surface impedance 
assumed  to be =-j50.0,  r,z =   »j   =  ij_=0.0.   The 

= 180°, and ain = 45° corrugations 

Fig. 4a Geometry of a corrugated square cylinder. 
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corrugations on the sides B and D are assumed to be of the 
same parameters as that on sides A and C (i.e. has the same 
surface impedance with respect to the coordinates of the 
corrugations with ijs.{-=-j50.0, ij^=ijjj.=7j^=0.),but tilted 
by an angle ß—45° with the x-axis. The equivalent surface 
impedance with respect to the object surface coordinates 
using (8) is given as ij ^ i\ZT = t\TL = t]TT= -J25.0 on the 
side D and IJ^ = ij^ = -J25.0, i\zr = rjra = +J25.0 on the 
side B. The electric surface current components and the 
scattered far fields are computed due to a plane wave with 
0.=45°, a. = 0° (TMj polarization) and <£; = 180°. The 
current distributions are plotted in Fig. 4b from the IBCE 
and IBC formulations. Notice that the x-axis of the upper 
two figures (current magnitude) are indicated by the letters 
a, b, c, d, e, and a which are corresponding to the surface 
positions given in Fig. 4a. In the lower two figures (current 
phase) the x-axis is indicated by the contour length starting 
from the point a on Fig. 4a. The scattered far fields are 
plotted in Fig. 4c. In these figures the solution from the 
IBCE and IBC formulations are presented and compared 
against each other. It can be noticed that the solutions 
obtained from both formulations are in good agreement with 
each other. It is clear that the scattered fields are symmetric 
around the xz-plane (plane of incidence) when fy = 180° 
because of the object symmetry around this plane and 
because of the pure Tft^ polarization of the wave incident. 
The (^-component of the scattered field is zero along the 
plane of incidence in the forward and the back scattered 
directions because of the skew symmetry of the JT com- 
ponent which is obvious from the phase distribution of the 
current. When the incident wave is TF^ polarized, the 
current distributions and the scattered far fields are given in 
Figs. 5a and 5b, respectively. One should notice that the 
scattered E-field B6 and E^ for TMj polarization of the 
incident wave is nearly equal to the E^, and Eg, respectively 
for TEZ polarization of the incident wave. This corresponds 
to E-field for TMZ polarization being equal to H-field for 
TEZ polarization, which is expected as the cylinder is close 
to soft (it would have been ideally soft if 17«.= 00) and 
therefore has polarization independent scattering characteris- 
tics according to [7]. The electric current component normal 
to the corrugations must be zero. To check this for our 
example the electric current components along and normal 
to the corrugations are computed from the currents in Fig. 
4b and 5a and plotted in Figs. 6a and 6b, respectively. One 
should notice that the current components normal to the 
corrugations are nearly zero for both TMZ and TEZ in- 
cidence as expected. This can also be considered as a 
verification of the code. 
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Fig. 4c, numerical scattered far filed of the object in 
Fig. 4a with the parameters in Fig. 4b. 
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7 CONCLUSIONS 

The integral equation for the problem of electromagnetic 
scattering from arbitrary 2D objects with anisotropic surface 
impedance due to obliquely incident plane wave with 
arbitrary linear polarization is derived. The surface im- 
pedance is anisotropic with an arbitrary principal direction. 

The integral equations are solved by the method of mo- 
ments with pulse basis functions and point matching. Four 
different surface integral equations are actually imple- 
mented. In the numerical evaluation of the matrix elements 
four point Gaussian quadrature is used. It is also found that 
10 basis functions per wavelength gives reasonable results, 
but 20 segments per wave length is enough for most 
applications to obtain accurate results in the near and far 
fields. For objects with large cross sections in terms of 
wavelength more segments may be needed in order to get 
full convergence in weak field regions or in regions of 
rapidly varying currents. The numerical solutions are 
verified against the analytical solutions of circular cylinders. 
A theoretical example is constructed for which the E-field 
solution for TM^ incidence should be equal to the H-field 
solution for TE^ incidence. The example is a cylinder with 
square cross section with soft surfaces, such as corrugations 
that are tilted to become normal to the k vector for the given 
oblique incidence. The results are found to behave as 
expected. This example illustrates the significance of the 
present solution in order to simplify complex structures that 
may be very difficult to solve using other models. 
The IBC is valid for perfectly electric conducting surfaces 
where the surface impedance is zero as well as to all 
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Fig. 6. The amplitude of the current distribution along 
and normal to the corrugation in Fig. 4a. (a)  for the 
case in Fig. 4b and (b) for the case in Fig. 5a. 

surfaces of finite surface impedances. If the impedance is 
infinite (perfect magnetic conductor) one must use another 
formulation based on the surface admittance which can be 
obtained from applying duality on (1) (not presented here). 
We may refer to this boundary condition as the admittance 
boundary condition (ABC). Therefore, it is expected that the 
numerical accuracy will deteriorate when the surface 
impedance values are much larger than the values used in 
this paper. To improve that one may use the ABC formula- 
tion, which is expected to be more accurate in such cases. 
This subject and this formulation will be considered in a 
future study with some discussions on the accuracy and 
limitations on these formulations. 
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APPENDIX A 

Electric and magnetic field operators due to the electric current 
components are expressed as 

E^---jka\c
J*H«^)dl' 

-jkpk 
En Vz^:^\c

JzH?\kp*>Wr' A»*' 

-jk,k 
£ZT(/T)=-i_L£ jcJTH^(k^)(ÜT' -Ap)dl 

(A-l) 

(A-2) 

(A-3) 
4«£o 

£
"

(7T)
 
=

 "4^T \ck2j^ ' «r^M") 

■^-H®(kpAp)(aT> • fiT) -kplkpH^(kpAp) 

-J-H^ApWj -Ap)(ÜT'Ap)}dl' 

H^J,) = 0 

(A-4) 

H„Cg --£ \c Jr ATM*) (fir • *n) /N A,I dl' 

(A-5) 

(A-6) 

(A-7) 

(A-8) 
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here the first suffix of the subscript denotes field component and 
(2} the second suffix denotes the current component.  Hj\   ( ) is the 

Hankel function of the first order and second type and Ap = \p - p   | 
as shown in Fig. 1. The hat is used to indicate the unit vectors. In 
the above equations the prime is used to indicate the source coor- 
dinates. The field operators due to the magnetic currents can be 
obtained using the duality. 

Yv = 0 

JK 
I* = -J>  f H®(kpW){%• Af?)dr' 

(B-5) 

(B-6a) 

APPENDIX B 

The matrix elemnents of the impedance Z and Y are given below 
as 

y»_ 1 
*    2 

(B-6b) 

ZJ = 
UAC' 

(B-la) 

Y!r = -^\^Hl^M)^n ' *&W (B-7a) 

Z£ = -' AC'[l.-±(ln( J-£)*D1 
**      4£0 n- 4 

(B-lb) 

yÜ _  _     1 (B-7b) 

Z^'^p. \ Hf\kp^)iül' mdr' 
AC 

(B-3) 

r^^^.floVx^^^ 

r"=o 

(B-8a) 

(B-8b) 

z;=o 

z£=-£*E^ | H®(t^)(ij/.^) <fr' 
4«e0 

Ad 

(B-2b) 

(B-3a) 

The above integrals are performed numerically using Gausquadra- 

ture method of 4 points where Ap^ = j p'' - p   j and p   for the 
segment/   The excitation matrix elements are given as 

E^Ssine^cos^W^ (B-9) 
Vo 

2z;=o (B-3b) 

f0 

'VW'') (B-10) 

°AO> 

Apv 

Ap'7 

Z>' H®(_£__)+_»        [l-2iln(_J_£)-l] (B"4b) 
4fc0 2 4*^ ir 4 

(B-4a)        //^Ism^sm^W*^ 
7o 

(B-18) 

H^^coseAEPsinO^-E'COB~) -«V**^ V) (B-19) 

where the superscript i denotes the middel of the segment i. 
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Abstract - The problem of electromagnetic scattering from 
arbitrarily shaped, imperfectly conducting surfaces that can 
be represented by an anisotropic impedance boundary 
condition is solved numerically using the electric field 
integral equation and a triangular patch model for the 
surface. The anisotropic impedance boundary condition 
function is described by a constant surface dyadic within 
each triangular face. The procedure is validated by 
comparison of numerical results obtained with the triangular 
patch model with body of revolution model results for 
problems involving scattering by spheres and cylinders 
having uniform or anisotropic impedance boundary 
conditions. 

I.  Introduction 

Many problems of interest in electromagnetic scattering 
involve imperfectly conducting bodies. The impedance 
boundary condition (IBC) [1] is often used to modeling 
specific classes of such bodies in electromagnetic scattering 
problems. The IBC is an approximate boundary condition 
that relates the tangential electric and magnetic fields at the 
body surface via an impedance parameter, which is a dyadic 
in the case of an anisotropic surface impedance. When the 
approximation is valid, it can be used effectively to reduce 
the number of unknowns required in the numerical solution 
process by a factor of two. Senior has examined the 
conditions for which the IBC is valid [2], and Mitzner has 
presented a surface integral equation formulation for 
scattering by bodies that are represented by an IBC [3]. 
The impedance relationship is often obtained through the 
solution of a canonical problem, such as scattering of a 
plane wave from an imperfectly conducting ground plane 
having  the constitutive parameters  of the  scatterer  of 

interest, and the relationship is then assumed to apply 
locally to the nonplanar surface of the scatterer. The IBC 
represents a good approximation in such cases if the 
magnitude of the complex refractive index of the scatterer 
material is much greater than unity and if the radius of 
curvature of the scatterer is sufficiently large. The 
impedance boundary condition has been used to model high- 
conductivity scatterers, absorbing coatings, plasma coatings, 
corrugated surfaces, rough surfaces, and other 
configurations [4-8]. The applicability of various types of 
integral equations in modeling IBC problems has been 
studied by various investigators [9-14]. Numerical solutions 
for scattering by arbitrarily shaped bodies having isotropic 
IBC's have been presented using a pulse expansion, point 
matching procedure by Sebak and Shafai [15] and using the 
triangular patch modeling method by Glisson [16]. The use 
of more accurate generalized impedance boundary conditions 
in the numerical solution of two-dimensional electromagnetic 
scattering problems has also been demonstrated [17] and 
higher order IBC's applied to bodies of revolution have been 
presented [18]. Anisotropic surface impedances have been 
employed in frequency selective surfaces by Orta et al [19]. 
Numerical solutions for bodies of revolution with anisotropic 
IBC's have been presented in [20], and a comparison of 
different integral equation formulations for bodies of 
revolution with anisotropic IBC's has been presented in 
[21]. 

In this work the solution of electromagnetic scattering 
problems involving an arbitrarily shaped body with an 
anisotropic impedance boundary condition is formulated and 
implemented. The triangular patch model described by Rao 
et al [22] serves as the basis for the development. The 
triangular patch code originally employed the electric field 
integral equation (EFIE) formulation and was applicable 
only to scattering problems involving perfectly conducting 
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bodies, which could be either closed bodies or thin open 
surfaces. In this work the anisotropic IBC model is 
included in the EFIE to represent an approximate model for 
specific classes of imperfectly conducting closed bodies. 
The implementation permits modeling of objects that are 
relatively thin in terms of wavelength [23]. Results are 
validated by comparison of patch code results with results 
obtained with a body of revolution solution procedure. The 
formulation of the surface integral equation is presented 
briefly in Section II, and the numerical implementation is 
described in Section III. Numerical results are given in 
Section IV. 

n. Integral Equation Formulation 

The electric field integral equation for a body having an 
impedance boundary condition can be developed from the 
equivalence principle [24] by first removing the scatterer 
from the medium in which it resides and placing equivalent 
electric and magnetic surface currents J and M along the 
surface forming the boundary of the scatterer in the original 
problem. The equivalent currents radiate in an infinite 
homogeneous region and are defined by the relations 
J=hxH and M=Exh, where E and H are the total electric 
and magnetic fields at the surface of the scatterer in the 
original problem. With the equivalent currents defined in 
this manner, they will radiate the correct scattered field for 
the original problem in the region exterior to the scatterer, 
and will radiate the negative of the incident field in the 
region interior to the scatterer surface. The EFIE for the 
impedance body can therefore be written as 

-nxftxE'=nxnxE* (1) 

where E' is the incident electric field, ~Ef is the scattered 
electric field, and h is the outward directed unit normal at 
the surface of the scatterer. Eq. (1) is valid in the limit as 
the observation point r approaches the surface from the 
interior, denoted by S'. A similar equation valid in the 
limit as r approaches the surface from the exterior may be 
obtained from the definition of the equivalent magnetic 
current. The equation which results after the limit 
operations are performed is the same in both cases. 

The scattered electric field E* may be represented in 
terms of potential functions as 

where 

E*(r) = ->A(r) -V$(r) -IvxF(r) 

A(r)=^[j(r')G{r,r')dS' 

(2) 

(3a) 

$(r) = 1 f o(r')G(r,r')dS' (3b) 4 
F(r) = e [ M(r')G(r,r')dS' (3c) 

and where 

G(r,r') = 
47r|r-r'l 

(4) 

In (3) and (4) r and r' represent the observation and source 
coordinates, respectively, e, /i, and k are the permittivity, 
permeability, and the wavenumber of the exterior region, 
respectively, and a is the equivalent electric surface charge 
density, which is related to J through the continuity 
equation. A harmonic time variation expQ'wt) is assumed 
and suppressed. 

The scattered electric field given by (2) is evaluated in 
the limit as r approaches the scatterer surface from the 
interior. The scattered field expression resulting from the 
limit process is valid just inside the scatterer surface, and it 
may be substituted into (1) to represent the boundary 
condition just inside the scatterer surface as an integral 
equation in the unknown surface currents J and M. 
Additional boundary condition information must be enforced 
to uniquely determine both equivalent current sets, however. 
When applicable, the impedance boundary condition, which 
relates the tangential components of the electric and 
magnetic fields at the scatterer surface, may be enforced to 
provide the necessary additional information. The IBC 
considered in this work is the anisotropic impedance 
boundary condition, which relates the surface electric and 
magnetic fields by any one of several equivalent 
expressions: 

E-(E«n)n = rjZs«(nxH) 

-nXnxE = rjZi«(nxH) 

nxE = r/nx[Z «(rixH)] 

(5) 

where the anisotropic IBC surface impedance dyadic is 
normalized by the intrinsic impedance of free space 17 and 
is defined by 

lts 
=Zlläläl +Z12älä2 +Z21ä2äl +Z22ä2ä2 

Zjjäjäj     Z12ä1ä2 

Z21ä2äj      Zi2^2^2 

(6) 

and where äl and ä2 are unit vectors in an orthogonal 
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coordinate system defined on the surface S. The orientation 
of these unit vectors is assumed to satisfy  ä2 =nxäj , 

where A is the outward-directed unit surface normal. In 
terms of the equivalent electric and magnetic surface 
currents, the anisotropic IBC may be represented by 

defined on pairs of triangles as 

M = -i?Ax[Z *J] (7) 

Thus, one finally obtains the EFIE for a scatterer with an 
anisotropic impedance boundary condition: 

EL(r> = LWJ JG(r,r'>£S' +iv J aG(r,r')dS' 
(8) 

- [v{hx[Zs'J]}xVG(r,r')dS'}lan , 
3s 

r->S" 

where r-* S~ denotes that the equation is valid in the limit 
as the observation point approaches 5 from the interior of S. 
The equivalent electric surface current J is then the only 
unknown quantity and (8) may be solved for J via the 
method of moments [25]. 

HI. Numerical Solution Procedure 

The triangular patch modeling method developed by 
Rao, Wilton, and Glisson [22] is employed to solve (8) for 
the unknown electric surface current density J. A suitable 
triangular patch model of the geometry of the impedance 
body is first developed. The electric surface current density 
J on S is then approximated in terms of basis functions fn 

edge n 

Pn 

c- 

Figure 1.       Geometrical  parameters  associated 
with a triangle pair. 

N 

J(r)=£Wr) 
n-l 

(9) 

where N is the number of interior edges in the model. 
Various geometrical quantities associated with a triangle pair 
with common edge n are illustrated in Figure 1. The two 
triangles attached to the common edge are denoted as Tn

+ 

and Tn~. Points within triangle Tn
+ may be defined by a 

position vector r with respect to a global coordinate origin 
O, or by a local position vector pn

+ defined with respect to 
the free vertex of Tn

+. Quantities in Tn~ are defined 
similarly except that the vector p„" is directed toward the 
free vertex of Tn~ rather than away from it. The vector 
basis function f„ representing the electric surface current 
density associated with the /1th edge is then defined as 

w 
2A 

-Pn 

rer„ 

reT' 

otherwise 

(10) 

where £n is the length of edge n and A*- is the area of 
triangle Tn^. 

The method of moments is applied by next testing (8) 
with suitable testing functions. The testing functions are 
chosen to be the expansion functions fn defined in the 
preceding paragraph. Thus, (8) is tested with fm, 
m=l,2,...,N, and the result can be represented as 

<E',fm> =><A,fm> + <V*,fm> 
i (11) 

+ ±<VxF,fm> 

where the symmetric product is defined as 

<f,g> - Jf-g dS (12) 

and where the curl term in (11) is understood to be 
evaluated in the limit as the observation point approaches 
the surface from the interior, as indicated in (8). The 
Galerkin solution procedure implied by (11) when the basis 
and testing functions are the same has often been 
approximated in previous triangular patch code 
implementations. In this work the expressions for the terms 
in (11) are presented without these approximations. 
Appropriate approximations may be made to reduce the 
amount of numerical integration required if desired. 
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The evaluation of the magnetic vector potential term 
and the electric scalar potential term as they appear in (11) 
is discussed in [22]. However, in this work the vector 
potential is evaluated directly in terms of its vector integrand 
rather than expressing the result as a sum of scalar integrals 
times constant vectors as in [22]. This is done to simplify 
the implementation of the full Galerkin testing procedure, 
which involves double surface integration. As in previous 
work, however, integrations are performed on source 
triangle, observation triangle pairs rather than on source 
basis function, observation basis function pairs. One then 
finds that the vector potential integrations are all of the form 

AV-IL f —L(r-r,.) • f -L{r'-r)GdS'dS 
lJ       }P2AP },2A«        J 

Wj 

\6tAPAi 

+/,J(r-ry)- 
jp 

||(r-ri)-(r'-r/)__-fdS'dS 
jpji 

jV-r,) -dS 
R 

dS , reTP,r'eT4 

(13) 

where R= | R | = | r-r' | , the indices p and q refer to the 
observation and source face numbers, respectively, and the 
indices i and j are local indices referring to the three 
different testing and basis functions, respectively, that exist 
within the testing and source faces. Then, for example, L 
refers to the length of the edge with local edge number y and 
is associated with the ß1 (local) basis function, while the 
position vector r- locates the vertex opposite the edge with 
local edge number j in face q. The quantity ls in (13) is a 
control variable that is set to 1 if extraction of the singular 
term in the integrand is to be performed, and that is set to 
0 if no singularity extraction is to be performed. When the 
singularity extraction procedure is performed, the integration 
of the singular term over the source region can be evaluated 
analytically as 

jq jq fq (14) 

= b«(r) + (p-py)a«(r) 

where the integrals for b9(r) and aq{r) have been evaluated 
in [26], The cylindrical coordinate vectors p in (14) 
represent the projections of the corresponding global 
position vectors r onto the plane of the source triangle as 
described in and as indicated in Fig. 2, where a local 
coordinate system has been illustrated for use in evaluating 
a variety of integrals [26].   The definitions for b?(r) and 

cfl(r) are repeated here for completeness: 

aV)=£^üy[P>(G,.) 
j 

W = !£4*,0)2ln(G/) + (W " W 
z j 

where 

R + (; K, ~t; 
Gr J J   - J J 

ff; +f; K,* -t] ; J J J 

F± ^° >t 
3      Q$}+\d\K? 

(15) 

(16) 

(17) 

(18) 

The remaining quantities appearing in (15)-(18) are defined 
as indicated by Fig. 2. 

Plane <P 

Line Segment C 

Figure 2. Geometrical quantities associated with 
the line segment C lying in plane (P and the 
arbitrary observation point r. 

The first step in the evaluation of the scalar potential 
term in (11) involves the use of a vector calculus identity 
for surface integration [27] and the particular properties of 
the basis function or testing function at the edges of its 
domain of support. The scalar potential term is thus re- 
expressed as 
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<V*,f  >=-U(V-fJdS (19) 

When the integration process is performed on a face-by-face 
basis, the integrals which must be evaluated are of the form 

V 

f.£. ,   , ,-jkR 

4irjo3eApA 
L f f 1 dS'dS (20) 
\PAll   J      R fpfq 

where, as in the vector potential term, the source region 
integration can be expressed in terms of bounded and 
singular integrand portions as 

,-M 

j.q jq 

-M-j 

R 
US' +/, 

jq 
(21) 

The last integral on the right in (21) contains the singular 
integrand and can be evaluated analytically. The result is 
simply a%r) as given by (15). 

The singularity extraction process described above for 
the magnetic vector potential and the scalar potential terms 
was performed for all source-face, testing-face combinations 
in the original implementation of the triangular patch 
computer code (i.e., Is was set to 1 for all source-face, 
testing-face combinations). This seems unnecessary for the 
general case and it may lead to numerical inaccuracies in 
matrix element computations when the source face and 
testing face are far removed from each other and the testing 
face also lies near the linear extension of one of the edges 
of the source triangle. The errors appear to result from the 
evaluation of G- as given by (17) when the l-~ tend to 
cancel the J?.* terms. For widely separated source and 
testing faces, these errors can be eliminated by setting Is=0. 
Similar errors may also occur for nearby source and testing 
faces when the subdomain scheme is not completely regular. 
Therefore, two forms for G- are given in (17). The first 
should be used when the £ - are b0th positive, the second 
when the £•* are both negative, and in other cases either 
expression may be used. 

The accurate evaluation of the electric vector potential 
term in (11) using singularity extraction procedures has been 
previously addressed for the isotropic case [23, 28]. For 
this term, if the source face and the testing face are not the 
same (i.e., for a non-self term) the curl operator may be 
carried under the source integral and appropriate vector 
identities may be applied. Thus, the integration required for 
a source face q and an observation face p becomes 

-i<VxF(r),fm> 
PI 

= -[ {{m'MxVGdS'dS 
■j-pj-q 

= r, J | A'[f„ • (Z, • J)] • VGdS'dS (22) 

j-pjq 

+ijj J(fM-A')(Z,.J).V'GdS'<iS 
jpji 

where the magnetic surface current M has been related to 
the electric surface current J through the IBC relationship, 
and where fm is the portion of the /wth testing function 
within face p. The result in (22) has been expressed in a 
form in which the terms representing field components 
normal and tangential to the plane of the source are easily 
separated. 

We consider first the field component tangential to the 
plane of the source triangle. For this component the 
contribution to a matrix element for the portion of the 
testing function f(- residing in face p and the basis function 
f • in face q is 

')   l   -s    J 4TT 
TP 

l-t- 
' J 

AApAq 

j.p   j.q 
J dJ (r-r,) • Zs • (r' -ry) K(R) dS'dS 

^sj(r-ri)'Zs'AJdS 

(23) 

with 

W) 
(1 +jkR)e -J^-lJil+'Ak^R2) 

R* 

where in is the length of edge n, A" is the area of face n, 
<i=h' *R, r„ is the position vector to the triangle vertex 
opposite edge n, and where 7^ is either one, if singularity 
extraction is to be performed, or zero, if not. The vector 
function Aß in (23) which results when singularity 
extraction is performed is defined by 

A]~-dUi{r) + (p-pp*Vi(r) 

+14 dk2b%r) + ttdk2(p-Pj)a «(r) 

where U^, and V? are defined as: 

(24) 
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U«(r)=£ü,.ln(G,) (25) 

w)=Ef,?'üyh"1(F/)-tan"1(F;)] (26) 

Other quantities appearing in (24) are defined in (15) 
through (18). The details of the evaluations leading to (24) 
through (26) are given in [29] and [30]. Evaluation of the 
electric vector potential integrals has been performed via a 
similar procedure in [28]. Another alternate procedure has 
been described in [31]. 

The source-region integration appearing on the right 
side in (23) is performed numerically. The term in (23) 
containing the source-region integration can be rewritten as 

2    2 

J Tpr-1 *-1 ^ 

V l-t- 
' J 

AT 4APA* 

where 

i* = JV-r,.)<* (1 +jkR)e-jkR-Is(l+
1Ak2R2) 

R' 
dS' 

(28) 

which has been previously evaluated numerically in the 
isotropic IBC case [29, 30]. The double dot product with 
the IBC dyadic in (23) has been represented as a double 
summation in (27). The portion of (23) resulting from 
analytical integration over the source region can be 
expressed similarly as 

(29) 

where 

and 

rJL 
'4* 

l-t- 

4ApA <? 
|(r-r,.)'Zs-A/dS 
jp                                         ' 

= -/  ' 
l-t- 

' J 

jpr-1 s- 1 '4i 4ApAi 

b,f!r = (r-ri)'K                               ( 

b JB,s=*s •A/(r)                        ( 

(30) 

(31) 

No new numerical or analytical integral evaluations are 
required for the field component tangential to the plane of 
the source in the anisotropic case. The terms obtained for 
the isotropic case are merely combined with different 
coefficients. 

The component of the scattered electric field normal to 
the plane of the source triangle and arising from the 
magnetic current contribution in (22) is 

ij [ (ff • ft') [ (Zs • f]) • V G dS'dS (32) 
jp j-i 

The dyadic notation in (32) can be rewritten using the 
double summation as 

JL 
4ir 

l-t- 

JL 
4TT 

l-t- 

4ApAq 

| [(r-r,.) • ft'] | [ Zs • (r' -r,)] • V'GdS'dS 
jq 

2    2 
[WE^tZ^.yr)] 
L r-ls-l 

\dS 

where A^(r)=(r-rI) • h' and 

I^r) = -j[äs'(r'-rpW'GdS' 

(33) 

(34) 
jq 

The integral for I (r) can be expressed in a more 
convenient form for implementation by using the identity 
aVb=V(ab)-bVa and the fact that h,. is tangential to the 
source plane.   One then obtains 

I*« = - } V/Üä, • (r' -rfiG} dS' + JG V,'[&, • (r' -rj>] dS' 

I [äs'(r'-rß]Güdl'^GHsjdS> 

5Tq 

= -IL. + IA. (35) 

where ü is the outward-directed unit normal to the triangle 
boundary lying in the plane of the triangle and H • is a 
constant vector obtained by evaluating the gradient operation 
in the second term of (35): 

H,y = V; {äs • [^ ,(r,.+, -rj) * kj. ,(ry. x ~r,)]} 

!Vf,-1 ■K-'j+i 

■ -L[(fi, • /.. ,)(f,+! x A') -(&, • tjt !)(£ ,! x A')] 
2Aq 

(36) 

This result is obtained by expressing the vector basis 
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function variation (r'-r) in area coordinates [28], as 
indicated in the first line of (36), where £• is the area 
coordinate having value one at the vertex r- and value zero 
at the vertices r+1 and r_j. The gradient operation on the 
jth area coordinate variable is then conveniently expressed 
in terms of the height of the jth vertex, A-, and a vector 
directed normal to thejth edge, h (=u). Thus, I (r) can 
be expressed as 

yr) =nsj\GbdS'+BSJJGudS' 
fl jq 

I [äs'(r'-rß]Gbüdr- J [äs-(r'-rj))Guüd£' 

(37) 

dT* dT* 

ii   jAb    XT   jAu    -.Lb    jLu 
nsj'q sj'q       Lsj      lsj 

In (37) the superscript b indicates a term which is bounded 
or has a bounded integrand (when 7^ is appropriately 
chosen), while the superscript u indicates a term which may 
be unbounded or may have an unbounded integrand. The 
superscript L indicates a line integral term, while the 
superscript A indicates an area integral term. The bounded 
and unbounded kernel terms are given by 

-jkR. 

and 
R 

GU=JJ. 
R 

(38) 

(39) 

Thus, the terms involving the field component normal 
to the plane of the source triangle can be expressed as 

4x 

£■£■ 
' J 

4APA* 

2    2 

2    2 

r-\ s-\ In fP 

Lb, „ , -.Lu, £2X f Wär.[I^(r)+lJV)]<fS 
r-1 s-1       lp 

(40) 

where the area integrations over the source region are 
defined by 

TAb 

and 

lA
q\r)=a\r) 

(41) 

(42) 

while the line integrations around the source triangle are 
given by 

#<r) = [ft,-*,_,]£ Ü* J ^, Gbd£' 

y'+i 
(43) 

and 

k'j'X      dkT« 

#(r)-/,[&,-!;_,]£ ü, } ^-dV 
k~j~l     dji 

■/+1 £ 

(44) 

The area integration terms given in (41) and (42) were 
evaluated in the isotropic case and are again simply 
combined with different coefficients in the anisotropic case. 
The line integrations indicated in (43) and (44), however, 
did not appear in the same form in the isotropic case. 
Therefore, new numerical and analytical line integral 
evaluations are required for the anisotropic IBC case. The 
new analytical integral evaluations required are indicated in 
(45) below. 

J   R 
b,Tq 

*»' Ad 

■7-a i+1 
l)] 

(45) 

w 
*' A0> 

aMr« ',•-1 
I idr=-^R>:-i-Ri-i-fi-ien(Gi-i)i 

The line integral term in (40) that may have an unbounded 
integrand can then be succinctly expressed as 

J*l 
r;+i 

(46) 

where 

k-j-1 

fc-y-i 

hrk-Rk-£l£n{Gk)-\   ,   k=a-l 

1     .      -     - (47) 
±[Rk-Rk-£k£n(G,)]   ,     *=a+l 

o , k=a 
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The special case in which the source and observation 
triangles are the same must also be reevaluated for the 
anisotropic case. The self term for the anisotropic case may 
be written as 

<ff,V4AxM?> =V4ij<ff,Z «ff> 1  ' J 'I     £ J 

u.   , (48) 
= —^   (P'-P,)'Z -(ß'-pßdS' 

If the vector variation of the basis functions is expressed in 
terms of the area coordinates and the dyadic dot products 
are given in double summation form, the self term becomes 

p p 2    2 

-~j f £ £ ^{[|,.+ 1(r,.+ rr,.)^,M(r,,1-rJ.)] -ftr} 

• {ä,' Ky+ i(r,-+ j -r,) + £,-_ ,(r;_ j -r,)]} 

p p     2    2 

- ....EIzAi/j-i, 
4(/i9)r-ls-l                       J y7i+lj+l 

ai-l,raj*l,sJi*lj-l 

"ai+l,r
ay-U7i-1./+1 

+af.i/°if*iAij-i] 

(49) 

where 

«mn = ^-ä„                                  (50) 
and 

1 1-*1 

ti-0 «2-0 

i'W=H     (51) 

The preceding expressions have been implemented in 
the evaluation of the impedance matrix for the triangular 
patch scattering code. The resulting system of linear 
equations is solved in the usual manner for the surface 
current distribution. Once the surface current distribution 
on the scatterer has been computed, the far scattered electric 
field may be determined from 

E* = -C(r)r, 

f
G/ 

[J-*(J •f)]<fS'+C(r) 
?
G/ 

(r: <M)dS' 

(52) 

where 

C(r) = Jk a-jkr 
47IT 

(53) 

G/ = e/*(fr'r') (54) 

After substitution of the IBC relating the electric and 
magnetic current, the 6 and <j> components of the far 
scattered electric field can be represented as 

2    2 
Ee = -r,C(r) [ Gj J • { d - £ £ [(* x A') • ftr]Z„4, } dS' 

5 '~li-1 (55) 

and 

2    2 

^ = -i,C(r)fG/J.{*+XEKdxA')-4r]Zn4x}'ö' 

The far scattered electric field may then be represented 
conveniently in terms of pattern integrals P6 and P^ as 

Es = -r,C(r)[P$^P^] (57) 

where the pattern integral due to a single source face q is 
given by 

1-1       LA    Tq ^ 

2     2 

r-l s-1 

with a replaced by either 6 or <j>. In (58), st= ± 1, the plus 
sign being chosen if the basis function for edge / is directed 
away from vertex i in face q, and the minus sign being 
chosen if the basis function is directed toward the vertex. 
The integration over the source region in (58) can be 
performed analytically to obtain 

P^^i—^'^y'iir'-r^dS' 
M    lA« \q 

3 
= >yS£ sWjeiW' *% ♦ (rc*-r,.) 

i-\ 

(59) 

where 

2    2 

-1 s-\ 
T^^^KÄX^fl'].^ (60) 

Thus, the final result may also be expressed as 

and 
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K=^E sfitfF*' ^f« • (rC<?-r<) 
i-l 

2     2 
(61) 

+(&**)' E £ #' x^/A • (r^-r,)] 
r-\ s-\ 

IV. Numerical Results 

The procedures described in the previous section were 
initially implemented into a modified version of the original 
triangular patch code [22] and were subsequently 
incorporated into the more sophisticated IBC3D scattering 
code [30]. Numerical results are presented here for several 
spherical and cylindrical geometries with isotropic or 
anisotropic surface impedance boundary conditions. Results 
obtained using the triangular patch code and body of 
revolution codes are compared. 

We first consider a cylindrical scatterer geometry with 
geometrical parameters as shown in Fig. 3. The cylinder is 
assumed to have length L and radius a.     A standard 

Figure 3.   Geometrical parameters for cylinder. 

cylindrical coordinate system is used for the body of 
revolution model with the z axis being the axis of 
revolution. For the triangular patch code, the axis of the 
cylinder was oriented along the y axis. Data obtained in the 
rotated coordinate system of the patch code model, 
however, are presented relative to the coordinate system of 
Fig. 3 in each case. 

The first example considered is that of a small cylinder 
with length L=0.2X and radius a=0.1X. The triangular 
patch model used to obtain the results presented is shown in 
Fig. 4. This triangular patch model uses 16 linear segments 
to  model  the  geometry  in  the  azimuthal  direction,   4 

segments along the cylinder radius, and 6 segments along 
the cylinder length. The quadrilateral patches formed by the 
azimuthal and generating contour segmentations are then 
divided by a line segment to form the triangular patches. 
The resulting patch model has 624 unknowns. The 
monostatic radar cross section results obtained with the 
triangular patch code and a body of revolution code 
modified to solve the anisotropic IBC problem [20] are 
shown in Fig. 5. For this case a 0-polarized plane wave is 
the excitation and the anisotropic surface impedance is 

defined by Z = t0, corresponding to a single non-zero, off- 

diagonal element in the impedance dyadic (6). Results are 
shown for the co-polarized and cross-polarized components 
of the radar cross section. The agreement between the 
results obtained by the two different methods is excellent. 

Figure 4. Triangular patch model for a cylinder of 
length L=0.2X and radius a = 0.1X. 
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Figure 5. Comparison of monostatic radar cross 
section results for a small cylinder with an 
anisotropic impedance boundary condition. 

Results were also obtained for a larger, resonant length 
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cylinder of lengthL=X and radius a=0.1X. One triangular 
patch model used for this cylinder is shown in Fig. 6. A 
second model with more unknowns is shown in Fig. 7. The 
model of Fig. 6 has 220 triangular faces and 330 unknowns. 
The model is generated using 10 linear segments to model 
the surface in the azimuthal direction, 2 segments in the 
radial direction, and 8 segments along the length of the 

Figure 6.    Triangular patch model of a cylinder 
with 330 unknowns (L=X, a=0.1X). 

Figure 7.    Triangular patch model of a cylinder 
with 570 unknowns (L=X, a=0.1X). 

cylinder. The model of Fig. 7 has 570 unknowns. It is 
generated using 10 linear segments to model the surface in 
the azimuthal direction again, but with 4 segments in the 
radial direction and 12 segments along the length of the 
cylinder. Results obtained for the triangular patch model of 
Fig. 6 are compared with those obtained from the modified 
body of revolution formulation in Figs. 8 and 9 for the co- 
polarized and cross polarized radar cross section 
components, respectively. For the body of revolution 
model, the generating contour was modeled by 32 linear 
segments, resulting in 126    unknowns.    The anisotropic 

surface impedance is again defined by   Z =t0.     The 

agreement of the results is generally very good except for 
near-axial incidence and, for a^g, in the case of broadside 
incidence. The disagreement between the data obtained by 
the two different methods for axial incidence is believed to 
indicate slow convergence (for both approaches) due to 
discretization error. It seems likely that the error at 
broadside incidence is partially due to insufficient resolution 
of the triangular patch model in the azimuthal direction. 

-10 

PD  -20 
T3 

"S -30 o 

-40 

-50 

cree (BOR) 
Gff, (B0R) 
tree (Patch) 
a<pf (Patch) 

Ztt=0 
Ztf=\ 
Z?t=0 
Z<ptp~0 

45 90 

6(degrees) 
135 180 

Figure 8. Comparison of co-polarized monostatic 
radar cross section results obtained with body of 
revolution and triangular patch models. 
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Figure 9. Comparison    of    cross-polarized 
monostatic radar cross section results obtained with 
body of revolution and triangular patch models. 

For the triangular patch model of Fig. 7, the results are 
compared with those obtained from the modified body of 
revolution formulation in Figs. 10 and 11 for the co- 
polarized and cross-polarized radar cross section 
components, respectively. The generating contour for the 
body of revolution model in this case was defined by 56 
linear segments, resulting in 222 unknowns. The agreement 
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between the results obtained by the two different methods is 
generally very good, and it is clear that the increased 
number of unknowns in both methods has improved the 
agreement between the two methods for axial and broadside 
illumination. 
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Figure 10. Comparison of co-polarized radar cross 
section results obtained with body of revolution and 
triangular patch models. 
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Figure 11. Comparison of cross-polarized radar 
cross section results obtained with body of 
revolution and triangular patch models. 

We next consider the case of a sphere, both with an 
isotropic IBC and with an anisotropic IBC. In both cases, 
the results obtained using the IBC3D patch code are 
compared with an independent IBC body of revolution code 
(JRMBOR [32]). Comparisons are also made with the 
predictions of Weston's theorem [33] for the anisotropic 
IBC case. Three different triangular patch models, with 
260, 570, and 1616 unknowns, were used to represent the 
sphere for the isotropic IBC case. The two models with the 
larger number of unknowns are shown in Fig. 12. 
Calculated backscatter cross-sections, normalized by ita", 

where a is the sphere radius, are shown in Fig. 13 for the 
isotropic IBC case (i.e., in (6) Zn=Z22 = 0.1+jOA, and 
Z12=Z2i = 0) as a function of ka=2ira/\, where X is the 
excitation wavelength. For ka = 3, the segmentations of the 
three IBC3D models correspond to about 7, 11, and 18 
triangles per wavelength. The JRMBOR result used at least 
25 triangles per wavelength, and consequently, was 
reasonably well converged. The plotted IBC3D results have 
been radius-corrected to account for the difference in 
surface area of the inscribed triangle model of the sphere 
and the actual sphere. The radius correction factors for the 
260, 570, and 1616 patch models were 0.988, 0.991, and 
0.998, respectively. The IBC3D results are observed to 
converge to the JRMBOR solution as the triangle 
segmentation is increased. For the 1616, patch model, the 
agreement is nearly precise for ka=2, with differences no 
greater than a small fraction of a dB for ka=3. 

— Model 1 
Triangles:  570 
Vertices:    287 
Edges:        855 

Model 2 — 
Triangles: 1616 
Vertices:    810 
Edges:      2424 

Figure 12.  Triangulated sphere models. 

Note that the 260 triangle patch model has spikes at 
ka=z2.75 and &a = 3.9. The spikes are an artifact of the 
EFIE formulation used, and they appear at the internal 
resonance frequencies of a perfect electric conductor (PEC) 
scatterer having the same surface. The width of the spike 
decreases as the number of patches increases, and, due to 
the finite sampling in frequency, the 570 triangle model 
shows only a small kink near ka = 3.9. The JRMBOR code 
result was obtained with a combined field integral equation 
(CFIE) formulation using equal weightings of the EFIE and 
MFIE, which tends to suppress the spurious internal 
resonances [34]. 

IBC3D results and the JRMBOR results have also been 
compared for the case of a sphere with an anisotropic IBC 
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Figure 13.   Comparison of IBC3D and JRMBOR 
for an isotropic impedance sphere (Zs=0.1+/0.1). 

and size ka=l in Fig. 14.   The geometry is shown in the 
figure,   where   the  dashed   line  represents   an   axis   of 

symmetry of the body, and t is a unit vector in the 
direction of propagation of the incident plane wave. The 
plane of scattering is defined by these two lines, and the 
angle 8 between them is the scattering angle plotted in Fig. 
14. Vertical polarization (V) corresponds to the case where 
the electric field is perpendicular to the plane of scattering, 
while horizontal polarization (H) has the electric field in the 
plane of scattering. The intersection section of the axis of 
symmetry (dashed line) with the surface of the sphere 
defines one pole of the sphere. The unit vectors äj in (6) 
are chosen to be everywhere tangential to the surface of the 
sphere and directed toward the pole, while the unit vectors a2 

are in the azimuthal direction on the sphere surface. The 
surface impedance for the case is then defined as 

Z  = 
—5 

4.0      0 

0     0.25 

Results for the PEC sphere case are also shown (dashed 
curve) in Fig. 14, and the IBC3D and JRMBOR results are 
virtually indistinguishable. For the anisotropic IBC case, 
the surface impedance is defined so that the product of the 
diagonal matrix elements is unity. As a consequence, a 
generalization of Weston's theorem [33] to anisotropic 
BORs [35] is applicable, and the backscatter RCS along the 
axis of symmetry should vanish. It can be seen in Fig. 14 
that the RCS along the axis of symmetry (6=0°, 180°) is 45 
dB lower than the PEC case. Also shown is the comparison 
between JRMBOR and IBC3D results (dotted and solid 
lines, respectively). The agreement between the two codes 
is quite good except for the smallest cross-section regions of 

the curve, where increased model segmentation is required 
to obtain more precise agreement. The generalized Weston 
theorem also requires that the VV and HH polarization 
results should be the same [35]. Both sets of numerically 
computed results exhibit this behavior except over the region 
of the curve where the cross section is small. The 
JRMBOR results were obtained using a segmentation 
equivalent to 40 triangles per wavelength, while the IBC3D 
results were obtained using about 27 triangles per 
wavelength. 

IBC3D Model 
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Figure 14. Comparison of IBC3D and JRMBOR 
bistatic scattering cross section for an anisotropic 
impedance sphere. 

As a final example, we consider the case of another 
cylinder with an anisotropic IBC. The cylinder model is the 
same as that shown in Fig. 6, with length L = \ and radius 
a=0.1\. The unit vectors äj and ä2 that define the 
dyadic surface impedance are chosen to correspond to the 

azimuthal unit vector 0 and the generating arc unit vector t 
commonly used in BOR representations. Thus, äj is on 
the cylinder surface and azimuthally directed with respect to 
the axis of symmetry of the cylinder. Along the length of 
the cylinder, the vector ä2 is parallel to the axis of 

symmetry, but on the endcaps, a2 is radially directed. The 
cylinder has roughly 8.5 triangles per wavelength. The 
JRMBOR results were obtained using the CFIE formulation 
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with equal weight to the EFIE and MFIE. Fourier modes 
zero through five and a Gaussian quadrature order of 30 
were used. There were about 25 triangles per wavelength 
for the JRMBOR model. Thus, one might expect the 
JRMBOR calculations to be more accurate than those of 
IBC3D for this case. 

Fig. 15 shows the comparison between the predictions 
of IBC3D and JRMBOR when the cylinder has an 
anisotropic surface IBC with unequal diagonal elements. 
The plane of scattering and the horizontal and vertical 
polarizations are defined in the same manner as in the 
preceding case of the sphere. The HH results shown in Fig. 
15 for a horizontally polarized transmitter and receiver are 
almost coincident, while there is a worst-case discrepancy 
of less than 2 dB for the VV polarization result at about 
45°. This agreement seems quite reasonable considering the 
rather crude segmentation of the IBC3D patch model. 
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Figure 15. Comparison of IBC3D and JRMBOR 
monostatic RCS results for a cylinder with an 
anisotropic impedance boundary condition. 

V.  Summary 

In this work the problem of electromagnetic scattering 
from arbitrarily shaped, imperfectly conducting surfaces 
modeled by an anisotropic impedance boundary condition 
has been considered. The numerical solution has been 
implemented using the electric field integral equation and a 

triangular patch model for the scatterer surface. The 
anisotropic impedance boundary condition function has been 
specified by a constant surface dyadic within each triangular 
face. Good agreement between numerical results obtained 
with the triangular patch model and a body of revolution 
model has been observed for the scattering cross sections of 
spheres and cylinders for both isotropic and anisotropic 
impedance boundary conditions. 
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Abstract: A parametric mapping of vector basis functions 
is presented for curved-patch discretizations of surface 
integral equations. The mapping of the vector basis 
function maintains the normal continuity of the surface 
current density at cell boundaries, and is therefore suitable 
for use with the electric-field integral equation. Expressions 
for the matrix elements associated with the electric and 
magnetic field integral equations are developed. 

1.    Introduction 

During the past two decades, the approximate 
solution of surface integral equations by the method of 
moments has matured into a well-accepted process. 
However, the most widely-used procedures tend to employ 
flat-cell models of curved structures and relatively low-order 
basis functions to represent surface currents and fields. 
Specifically, the Rao-Wilton-Glisson (RWG) triangular- 
rooftop basis functions [1] commonly used to model 
currents on surfaces in 3D provide only a constant normal 
and linear tangential representation of the surface current 
density. If higher accuracy in the results is desired, a low- 
order representation is likely to prove inefficient. 
Furthermore, flat cells limit the modeling resolution. In 
this article, we discuss the use of a higher-order vector basis 
set with continuity properties similar to the RWG 
functions, in conjunction with a curved-cell scatterer model. 

The incorporation of curved cells into moment- 
method discretizations, although uncommon, has been 
discussed by a number of authors [2-8]. However, a critical 
issue in the discretization of surface integral equations such 
as the electric-field equation (EFIE) is the need to maintain 
continuity of the normal surface current density at cell 
junctions [1]. The existing literature on curved-cell 
representations fails to adequately address this issue. 
References [2] and [3] assumed a piecewise-constant 

representation for the current density, while [4] investigated 
both piecewise-constant and piecewise-linear representations. 
Thus, these studies did not always impose normal continuity 
because of the nature of the basis functions. In addition, [2] 
and [4] only consider the magnetic field integral equation 
(MFDE), which is less sensitive to discontinuities in the 
current density. References [5] and [6] employed mixed-order 
vector basis functions on curved triangular and quadrilateral 
cells, respectively, and a similar approach has been reported 
in [7]. These articles consider the use of low-order basis 
functions similar to the RWG functions and do not 
specifically discuss the continuity properties of the curved- 
cell representation. 

Higher-order scalar polynomial basis functions have 
been investigated by numerous researchers in the context of 
finite element solutions [9-10]. Higher-order vector 
functions are less well known, but have also been studied 
[11-13]. In general, if the scatterer model incorporates 
curvature, there is little additional effort required to 
implement higher-order basis functions (other than the 
additional unknowns for a given number of cells, which may 
be offset by improved accuracy). 

In this paper, we briefly review the scalar 
transformation required to treat the EFIE and MFIE applied 
to two-dimensional scatterers. We then consider the 
mapping necessary to define curved-cell vector basis 
functions compatible with 3D surface integral equations. 
The development is based on a cell-by-cell coordinate 
mapping obtained via Lagrangian interpolation polynomials. 
Other specific representations of the surface (e.g., splines) 
could be implemented in a similar manner. For illustration, 
we present preliminary results for a curved-cell 
implementation using vector basis functions one 
polynomial order greater than the RWG functions. 
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2. Discretization of 2D surface integral 
equations using an isoparametric quadratic 
representation 

To motivate the use of higher-order basis functions 
and curved-cell models, this section briefly reviews their 
application in 2D. Two-dimensional method-of-moments 
discretization schemes employing flat-cell models of the 
scatterer contours and piecewise-constant or piecewise-linear 
basis functions have been widely used [14]. The scatterer 
models can be improved by using cells with parabolic 
curvature. Suppose t is a parametric variable with the 
interval -l<t<l used to describe a single cell. The cell can 
be defined by the three points (x^yi), (x2,y2), and (x3,y3), 
and the mapping 

where 

x(t) = x1B1(t) + x2B2(t) + x3B3(t) 

y(0 = yiB1(t) + y2B2(t) + y3B3(t) 

B2(t) = 1 - t2 

B3(t)=^ 

(1) 

(2) 

(3) 

(4) 

(5) 

are quadratic Lagrangian interpolation functions. It is 
convenient to also use quadratic Lagrangian interpolation 
polynomials to represent the surface current density, which 
is known as an isoparametric expansion. For a smooth 
scatterer, and the TM polarization, the current density within 
a cell can be replaced by 

z(t) = £j„Bn(t) -1 < t < 1 (6) 
n=l 

Thus, within each cell there are three overlapping basis 
functions that contribute to the representation. Each basis 
function interpolates to the current density at one of the 
three "nodes" that define the cell shape, according to (l)-(2)- 

Consider the TM EFIE, and the use of Dirac delta 
testing functions (located at the interpolation nodes) to 
complete the discretization. The entries of the system 
matrix involve integrals of the form 

£fnP=^   J  Bn(OH0
p)(kRm)J(t0df (7) 

cellp 

where m and n now denote global indices, 

R^V^-xOOlMy^yCf)]2 (8) 

and J is the Jacobian 

*>-\/(#M# (9) 

The Jacobian can be evaluated using the mapping in (l)-(2), 
which yields 

dx 

dt ■(*? + (Xj -2x2 + X3)t 

$«m^-*2+*>< 

(10) 

(11) 

within a particular cell. In general, the integrals defined by 
(7) must be evaluated by numerical quadrature. In the case 
where R^, vanishes within the interval of integration, the 
Hankel function singularity can be extracted, splitting the 
integral into two parts. The first integral can be computed 
by quadrature; the second can be evaluated analytically over a 
flat cell. As an alternative approach, the original integral 
can be evaluated using a quadrature rule that specifically 
incorporates the logarithmic singularity [15-16]. 

For the TE MFIE, a similar discretization can be 
developed, using an expansion similar to (6) for the 
transverse component of the current. The off-diagonal 
matrix entries involve integrals of the form 

C
P
=T\     B„(t')UnQ(t'rm 

4
J JceUp 

ym-y(f) 

xm-x(t') 
4JJceUp   "      I Rm 

cosß(t')- 
Rm 

Hf(kRm)J(t')dt'        (12) 

where the Jacobian J is defined in (9), Rm is defined in (8), 
and Q. denotes the continuous angle between the x-axis and 
the tangent vector to each point on the cell. If node m lies 
at an intercell node, the diagonal matrix entries for the MFBE 
have the form 

Aim : 

2rc 
jcellp     ycellq 

"•" 1mm   ~ 1mm (13) 

where Tm denotes the total interior wedge angle formed by 
the conductor at node m, and Im

c
m

n p and Im
c
m

u q have the 
form of (12), except that a small region in the vicinity of 
node m is excluded from the integral.  (The integral was 
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evaluated using an "open" quadrature formula that did not 
sample at the endpoints of the interval; a region on the order 
of 10" X is easily excluded by this procedure.) If node m 
lies in the cell interior, the MFTE diagonal entries are 

i        2      mm (14) 

where again a small region around node m is excluded from 
the integral. 

To illustrate the accuracy of the isoparametric 
Lagrangian approach, Table 1 shows the TE surface current 
density induced on a circular cylinder by a uniform plane 
wave. Results from a curved-cell discretization of the MFTE 
using piecewise-quadratic basis functions are compared to 
similar solutions obtained using a flat-cell discretization 
with piecewise-constant and piecewise-linear representations 

of the current density. For a density of 40 unknowns/X, 
there is a consistent improvement in accuracy as the basis 
function order is increased. The curved-cell results exhibit 
four decimal places of agreement with the exact solution. 

In general, numerical experimentation using a range 
of cell sizes tends to confirm that the error in the 2D surface 
current density follows the predicted interpolation error of 
OOi1*1) as h-»0, where h is the relative cell size and p is the 
polynomial degree of the basis functions (p=2 denotes 
quadratic functions, for instance). Thus, it is more efficient 
to obtain high accuracy by increasing the polynomial order 
than by reducing the cell sizes. Additional results using this 
type of mapping with a combined-field formulation are 
presented in [17]. 

Table 1 

Comparison of the current density induced on a circular cylinder with circumference 1X by a TE plane 
wave propagating in the <)>=0 direction. MFTE results obtained with pulse, linear, and quadratic basis 
functions and Dirac delta testing functions are compared with the exact solution, for a 40 unknown 
discretization. The quadratic case employs parabolic cells defined by (l)-(2); the other results were 

obtained using flat cells. 

MFTE MFIE MFTE 

4> pulse basis, linear basis, quadratic basis, exact 
flat cells flat cells parabolic cells 

(magnitude) 

0° 0.8907 0.8891 0.8883 0.8882 
45 0.6733 0.6729 0.6722 0.6722 
90 1.1751 1.1708 1.1714 1.1713 

135 1.6232 1.6201 1.6199 1.6199 
180 1.7094 1.7076 

(phase) 

1.7073 1.7071 

0° 66.29° 66.66° 66.56° 66.56° 
45 113.41 113.57 113.56 113.56 
90 -164.88 -164.80 -164.82 -164.82 
135 -125.83 -125.82 -125.84 -125.84 
180 -110.77 -110.82 -110.83 -110.83 
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3. Mapping     vector     basis     functions     to 
curvilinear cells  in 3D 

The previous section showed that higher-order basis 
functions and curved cells can produce improved accuracy in 
scalar problems. The process of mapping scalar basis 
functions to curved cells in two and three dimensions is 
explained in a number of textbooks [9-10], and is widely 
understood. A transformation defined by a small number of 
points (nodes) on the curved cell uniquely specifies the 
mapped functions. Neighboring cells can be defined by 
independent mappings that share nodes along the common 
edges. Usually, the continuity of the scalar basis functions 
is maintained across curved cell boundaries, although 
derivative continuity is not. (Derivative continuity can be 
maintained by alternative mappings involving spline 
functions or Hermitian interpolation polynomials.) 

One would expect to realize a similar improvement 
in accuracy from the use of higher-order functions and curved 
cells in vector problems, such as the 3D EFIE. When 
transforming vector basis functions, however, there is an 
additional degree of freedom embodied in the vector direction 
of the function that was not present in the scalar case. 
Thus, the vector mapping process is somewhat different 
from that used with scalar basis functions. A local mapping 
that describes the curved cell shape via Lagrangian 
polynomials will generally not be able to maintain the 
complete continuity of a vector basis function across cell 
boundaries. For the treatment of surface integral equations 
such as the EFIE, the surface current density must maintain 
normal continuity across cell junctions, in order that the 
surface divergence of the current remains finite at the cell 
edges. Therefore, it is critical to define the vector projection 
in a way that ensures normal continuity. In addition, to 
treat surface integral equations the mapping involves a two- 
dimensional surface in three-dimensional space. Crowley 
has discussed the mapping of a tangentially-continuous 
vector representation (the complementary case), for 
application to the vector Helmholtz equation [18]. A 
covariant mapping preserves tangential continuity. 
Apparently, no detailed discussion of the appropriate 
parametric mapping needed for surface integral equations 
exists at present in the electromagnetics literature. Normal 
continuity can be preserved by using a contravariant 
mapping, as described below. 

For illustration, the following development 
considers a curved quadrilateral cell shape; the same 
expressions apply to triangular cells provided that the limits 
of integration are modified accordingly. Consider a basis 
function defined in the 2D reference cell (-l<n<l, -1<^<1). 
This vector can be represented by its covariant components 

B=(B- T))ri'+ (B-9£ 

or its contravariant components 

B = (B- r|0^+ (B-S'H 

where the base vectors are given by 

dx 3y dz « 
1    dr\        or)        dr\ 

-    dx »     dy ~     dz - 

and the reciprocal base vectors are given by 

-.    3TI -    9TI "    dn - 

^äx-x + S7y+äz-z 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

In a skewed quadrilateral cell, the base vectors are tangential 
to the cell edges while the reciprocal base vectors are normal 
to the cell edges. The mapping from the 2D reference cell to 
the curved patch in 3D can be defined by a transformation of 
the form 

x = 2^xnBn(r|,S) 
n 

n 

Z=XZnBn^} 

(21) 

(22) 

(23) 

where {BD} represents a set of scalar Lagrangian 
interpolation functions (of any order), and the nodes (xn,y„) 
specify the specific patch shape. Therefore, the Jacobian 
relationship is given by 

3 ' 

d_ 
.35. 

r si r si 
3x    dy    dz 3x" sr 
!H\   off  ÖT) 
Sx   3y    9z 

a 
ar = J 

a 

a£ al" ad a 
.dz. 

a 
.3z_ 

(24) 

For use with surface integral equations, the basis functions 
must be tangential to the curved patch at every point within 
the patch, and ensure normal continuity between adjacent 
patches.   These characteristics can be obtained if the 
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Cartesian components of the basis function in each cell are 
defined by the contravariant mapping 

A. 
QJ (25) 

where B^ and B^ denote the contravariant components of the 
basis function in the reference cell, 

dz dx 
3T3T -(? : 3y _ 3y 3x^ (26) 

is the pseudo-determinant of the 2x3 Jacobian matrix, and 
we assume that the basis functions B,, and B^ maintain 
normal continuity in the reference cell. The factor Q defines 
the scaling necessary to write the differential surface area 

dS = Qdr|d£ 

in terms of the (n, £) coordinates. 

(27) 

When working with mapped basis functions, it is 
convenient to perform the calculations directly in the (i\,Z) 
system. Thus, we would like to express the integrals 
arising from the EFIE in terms of T| and %. For a basis 
function defined by Equation (25), it is possible to show 
that the surface divergence operation on a curved cell 
simplifies to 

VS:B 
Q I 3n Q l di\      dZ, + ^} (28) 

By combining Equations (27) and (28), the contribution 
from one cell to the scalar potential integral within the EFIE 
can be written as 

*=jMJ(Vs'-in)GdS' = 

^-f1    f1   l?r + Sr}GdTl'd^ (29) 
where G denotes the Green's function. Since the testing 
functions are also defined by the transformation in (25), a 
general form for the complete matrix entry is 

w T   -VOdS 

-JJ(V-Tm) 4» dS 

3T, mr| 3T, 

dr| 
<D dnd£      (30) 

Using (25) and (27), the matrix entry associated with the 
magnetic vector potential term in the EFIE can be written in 
terms of the integral 

JJt«-{J J4(«0 Gdsjds 

Jt)=-iJ§=-i+i'=-i^--r a*t 
G dn'd^'diid^   (31) 

Thus, in these integrals the scale factors arising from the 
basis and testing functions cancel those arising from the 
differential surface areas. The matrix entries associated with 
the MFIE can also be expressed over curved patches; for 
instance the off-diagonal entries have the form 

w T-HsdS = 

ÜÜ[T"TJJ Ü2.    o   - 
dz 

dG 9G 
dz 9y 

9G 
dx 

dG    9G      . 
dy     dx 

L%. 
dn'd^'dnd;   (32) 

while the diagonal entries differ in the usual way due to the 
total field term and the Green's function singularity. 

The general expressions in (30)-(32) provide a 
convenient way of computing the matrix entries when a 
piecewise-parametric representation is used to define the 
curved surface. All integrals can be performed over the 
square reference cell in the (n., §) coordinate system by 
numerical quadrature. In the case of a triangular reference 
cell, the limits of integration in (30H32) must be modified 
to incorporate the triangular cell shape. 

4.       Higher-order   vector 
surface currents 

basis   functions   for 

The surface current representation proposed in 1982 
by Rao, Wilton and Glisson [1] has a constant normal 
component and a linear tangential component (CN/LT) 
around the cell edges. Better accuracy could be obtained with 
higher-order polynomial functions. Functions have been 
proposed that provide a linear normal, quadratic-tangent 
(LN/QT) representation of the surface current density, and 
exhibit finite divergence throughout the computational 
domain [13]. As compared with an RWG representation, 
where three basis functions overlap each cell, eight different 
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LN/QT basis functions overlap each triangular cell. Six of 
these functions have support shared by two triangular cells, 
like the RWG CN/LT functions. Each of these six 
functions interpolates to the normal vector component of the 
surface current at one end of a cell edge. These six functions 
maintain normal-vector continuity with the adjoining cell, 
and eliminate fictitious charge densities at cell interfaces. 
Equivalently, the surface divergence of the representation 
remains finite. Within a single cell, these six edge-based 
basis functions can be expressed as 

z x Wjj L; VLj,      i * j (33) 

where {L1( L2, L3} denote simplex coordinates [9-10] within 
a triangle in the x-y plane, and wy is the length of the edge 
between nodes i and j. (L^ and L2 play the role of the local 
coordinates i\ and £, in the expressions from the preceding 
section, with L3 defined by L3 = 1 - Lj - L2.) In addition, 
there are two basis functions in each cell whose support is 
confined to that cell. These cell-based functions can be 
expressed in simplex coordinates as 

and 

z x 4w13{L2 L3 VLX - U L> VL3} 

zx4w23{L1L3VL2-L1L2VL3} 

(34) 

(35) 

These two functions have zero normal component along all 
three edges of the cell, and together provide a quadratic 
representation for the tangential component of the current 
density. The LN/QT basis functions have been motivated 
by the development of complementary techniques for 
discretizing the curl-curl form of the vector Helmholtz 
equation [19]. The basis functions belong to the mixed- 
order divergence-conforming spaces originally proposed by 
Nedelec [11], which include representations for arbitrary 
polynomial order. For a triangular-cell model, the global 
LN/QT representation consists of two basis functions per 
non-boundary edge and two basis functions per cell. Figure 
1 depicts these basis functions. 

The 8 basis functions in Equations (33)-(35) are 
linearly independent and can be used as testing functions 
within a Galerkin implementation, if desired. However, for 
simplicity we propose the use of piecewise-constant "razor- 
blade" testing functions defined along linearly independent 
paths that roughly correspond to the basis function 
locations, as depicted in Figure 2. 

Figure 1. The linear-normal/quadratic-tangential (LN/QT) 
basis functions defined on a triangular cell. 
The upper two triangles depict the edge-based 
functions, while the lower two depict the cell- 
based functions. 

Figure 2. Domain of support for the razor-blade testing 
functions on triangles. The left cell shows the 
path for the edge-based functions; the right 
shows the path for the cell-based functions. 
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5.     Preliminary results 

To demonstrate the preceding ideas, we 
implemented the basis functions in (33)-(35) using a 
piecewise-parabolic surface representation defined by 
triangular-cell quadratic Lagrangian polynomials. Each 
patch is defined by the mapping in (21M23), using 6 scalar 
interpolation polynomials 

B200CL1.L2.L3) = (2Lj - DLj 

B020OL1.L2.L3) = (2 L2 - 1) L2 

B0o2(Li.L2,L3) = (2 L3 - 1) L3 

B110(Li,L2,L3) = 4L1L2 

B1oi(Li,L2,L3) = 4L1L3 

B0110^2^3) = 4 L2L3 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

and 6 coordinate values at the corners and mid-sides of each 
cell. The first three functions have unity value at one corner 
node, while the latter three functions have unity value in the 
center of one of the three sides. 

The functions in (36M41) define the shape of the 
curved cells comprising the scatterer, given six points per 
patch from which to interpolate according to (21M23). By 
converting from simplex coordinates to Cartesian 
coordinates [10], one readily obtains the entries of the 
Jacobian matrix defined in (24). The LN/QT basis functions 
defined in (33H35) are mapped to the curved cells using the 
contravariant projection in (25), and used to represent the 
vector surface current density. The matrix entries for the 
EHE are obtained from (30M31), with the integration 
limits suitably modified for a triangular reference cell. 
Equations (30H31) account for the curved-cell mapping, so 
the only additional effort needed to implement the curved-cell 
discretization is the computation of the Jacobian matrix at 
points needed for the quadrature algorithm used to evaluate 
(30) and (31). Since the integration is performed in the 
reference cell, it is not necessary to explicitly define the 
basis functions within the curved patches. 

The evaluation of the matrix entries by numerical 
quadrature is straightforward except when the source and 
observation regions overlap, due to the Green's function 
singularity. In this case, the 1/R singularity is extracted and 
evaluated analytically over a tangent plane, then added back 
to the result of the quadrature. 

For illustration, consider a plane wave illuminating 
a perfectly conducting sphere of radius 0.2 X, where X 
denotes the wavelength. Figures 3a, 3b, 4a, and 4b depict 
the magnitude and phase of the surface currents around the 
sphere. The surface current density is normalized to the 
magnitude of the incident magnetic field. The incident field 
propagates in the -z direction with the electric field polarized 
in the -x direction. Exact solutions are compared to EFTE 
results obtained using curved-cell and flat-cell models, each 
of which consist of 48 cells and produce a moment-method 
system of order 240. Both results employed LN/QT basis 
functions and razor-blade testing functions. Clearly, the 
curved-cell data more closely approximates the exact 
solution. Since the basis functions provide normal 
continuity but not tangential continuity, there are a few 
places where jump discontinuities can be observed in these 
plots. These discontinuities occur in places where the 
tangential component contributes to the current density 
shown in the plot, and they diminish as the model is refined 
and the cell sizes are reduced. Figure 5 shows the scattering 
cross section comparison for the same example. In this 
case, the flat-cell model is inscribed within the actual sphere 
and the scattering cross section differs substantially from the 
true values. 

! *»« *«_ • 
•••»lj *sr~^. a> ?()■ "">■        ^* ■0 x                 >        V 3 <•* S" c 
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-C 
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0.0- 

• curved-patch 
* flat-patch 

0 90 18 
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Figure 3(a). The magnitude of the 0 -component of the 
current density induced by a uniform plane 
wave on a spherical conducting scatterer with 
radius 0.2 wavelengths. Numerical results 
produced using LN/QT basis functions with a 
flat-cell model and a curved-cell model are 
compared with the exact solutions. The 
models contained 48 cells and produced a 
system of order 240. 
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Figure 4(a). The magnitude of the ^-component of the 
current density for the example in Figure 3(a). 
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Figure 5. The scattering cross section (dB A. ) for a 
spherical conducting scatterer with radius 0.2 
wavelengths, shown for <j)=0. Numerical 
results obtained using LN/QT basis functions 
with flat-cell and curved-cell models are 
compared with the exact solution. The models 
contained 48 cells and produced a system of 
order 240. The substantial difference in the 
accuracy of the numerical results may be due in 
part to the fact that the flat-cell model was 
inscribed within the desired sphere. 
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Figure 4(b). The phase of the <j>-component of the current 
density for the example in Figure 3(a). 

6.    Summary 

In practice, the accuracy of most numerical 
solutions is limited by the interpolation error associated 
with the expansion, and the use of higher-order functions and 
curved cells is expected to provide better accuracy and faster 
convergence. This paper presents a procedure for defining 
vector basis functions on curved cells, while maintaining the 
normal-vector continuity of the representation. Expressions 
for the matrix entries arising from EFIE and MFIE 
discretizations are presented. The 3D procedure has been 
implemented using LN/QT basis functions and curved 
triangular patches defined by a scalar Lagrangian mapping. 
Additional 3D results based on the EFIE, MFIE, and 
combined field equation are available in [20]. 
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Abstract 

Various surface integral equation formulations, including 
the electric (EFIE) and magnetic (MFIE) field integral 
equations, suffer from what is commonly known as the 
"interior resonance" problem. There are a number of 
remedies to this problem of which many involve mod- 
ifying the integral equation formulation and result in 
increased computational effort and computer storage re- 
quirements. In an attempt to avoid this the application 
of a remedy, proposed in the literature, which requires no 
modification to the formulation has been investigated. 
This involves the detection of interior resonance frequen- 
cies and correction of the current by removing the mode 
responsible for the "interior resonance". In the litera- 
ture, the success of the remedy has been demonstrated 
for two-dimensional scattering problems involving PEC 
cylinders. In this work it is demonstrated that, while 
the correction of the MM (moment method) solution 
is successful when an "interior resonance" has been de- 
tected, the detection of the interior resonance frequen- 
cies can be extremely difficult in an MM solution of ra- 
diation from composite bodies of revolution. In fact, a 
foolproof computational algorithm for detecting interior 
resonance frequencies for this class of problems is yet to 
be developed. 

1    Introduction 

The electric field integral equation (EFIE) and mag- 
netic field integral equation (MFIE) suffer from what 
is commonly known as the "interior resonance" prob- 
lem. The reason for this is that some surface integral 
equation (SIE) formulations, including the EFIE and 
MFIE, can be used to represent both an interior and an 
exterior electromagnetic problem for a closed geometry. 

The exterior problem involves fields produced by an ap- 
plied source whereas the interior, or cavity, problem in- 
volves source-free "resonant cavity modes". The cavity 
modes of the interior problem occur at discrete frequen- 
cies known as eigenfrequencies. Thus, when solving the 
exterior problem in the region of these eigenfrequencies, 
the SIE's solution is not unique because a nontrivial so- 
lution exists to the interior problem. 

The problem is widely reported in the literature, e.g. 
[1, 2, 3, 4, 5]. Recently, Peterson presented an excellent 
review of the problem, along with a survey of various 
remedies [6]. Numerous references to the literature are 
included therein. 

Many of the remedies to the problem involve modi- 
fying the SIE formulation. For example, the combined 
field integral equation (CFIE) [1], involving a linear com- 
bination of the EFIE and MFIE, yields unique solutions 
at all frequencies. These remedies require more com- 
putational effort than the EFIE or MFIE and possibly 
more computer storage as well. 

A remedy proposed by Canning in [7] involves solving 
the EFIE or MFIE without modifications and correcting 
the solution near eigenfrequencies. Algorithms that ex- 
ecute this correction, which involves detecting the pres- 
ence of a cavity mode superimposed on the desired solu- 
tion and "discarding" it, can be added to existing MM 
solutions of the EFIE and MFIE without major modifi- 
cations. 

The purpose of the study presented here is to in- 
vestigate the application of this method to an existing 
MM/BOR formulation for the solution of scattering [8] 
and radiation [9] from composite bodies of revolution1. 

2By composite it is meant here as made up of different homo- 
geneous isotropic material regions, penetrable by electromagnetic 
waves, and perfectly electrically conducting regions surrounded by 
free space. The material regions can be lossy. 
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free  space 

incident 
wave 

Figure 1: A circular cylinder of infinite length, extending 
from z = —oo to oo (the z-axis points out of the page), 
illuminated by a TM plane wave. 

For conducting regions the MM/BOR formulation uti- 
lizes the EFIE, while for penetrable regions the CFIE is 
used. 

Following this introduction is a demonstration of the 
"interior resonance" problem in the application of the 
EFIE to a two-dimensional problem. This is followed by 
a numerical investigation of the problem, which follows 
the work presented by Canning in [10] although from 
a different perspective, wherein the singular value de- 
composition (SVD) was used to demonstrate why the 
"interior resonance" problem occurs. The application 
of Canning's remedy to the canonical problems is then 
discussed. Finally, Canning's remedy is applied to the 
MM/BOR formulation and subtleties involved in its im- 
plementation are demonstrated and discussed. 

2    Demonstration of the "Interior 
Resonance" problem 

To illustrate the interior resonance problem it is useful 
to analyze a problem that can be solved analytically. 
Such a problem, which has previously been investigated 
by Peterson [6] and Canning [10], is scattering of a trans- 
verse magnetic (TM) plane wave from a perfectly elec- 
trically conducting (PEC) circular cylinder of infinite 
length. It is presented here in a different manner in order 
to highlight certain points. The problem is illustrated in 
Figure 1. Here the incident plane wave is assumed to be 
traveling in the negative x-direction with the incident 
electric field given by 

space. The kernel of the integral, H^\ is the Hankel 
function of the second type and order zero, and Jz is 
the desired surface current. 

An MM solution to this problem will be compared 
with an analytical solution. 

An analytical solution for the problem can be obtained 
by following the MM solution procedure [11, pages 5-6] 
as follows. The surface current is expanded as a Fourier 
series that is appropriate to the geometry of the problem, 

ET. 
ZEQC ,jk0x (1) 

where EQ is a constant, z is the unit vector in the z- 
direction and ko is the wave number of free space. This 
is a two-dimensional problem with the EFIE given by 

E" 
,&oa7?o 

\p—a f J — T 
J, (<j>')Hi2\k0a\p- p'\)d<f>' (2) 

i.e. 

where unprimed coordinates indicate the field point, 
primed coordinates the source point, a is the radius of 
the cylinder, and TJQ is the intrinsic impedance of free 

J2 (cf>) - -y + ^ (an cos n<j> + bn sin n<j>)        (3) 
n = l 

where an and bn are unknown coefficients. The ex- 
pansion functions are {^, cos n<f>, sin n<j)} with n = 
1,..., oo, and the testing functions are chosen as 
{1, cos m<j>, sin m<j>] with m = l,...,oo. By substitut- 
ing equation (3) into (2) and forming the inner product 
with each testing function, equation (2) is transformed 
into the infinite order matrix equation 

A0 

[ Vo <•») 

where V„ = 2EQj
nJn(k0a), with J„ being the Bessel 

function of order n, and A0, Ax,..., Aoo are the eigen- 
values of equation (2) which are given by 

Am = 22^Jm(Ao«)2&a)(io«) (5) 

where H$ is the m-th order Hankel function of the 
second type. 

Since the matrix of equation (4) is diagonal, the un- 
known coefficients can easily be obtained and are, for 
n = 0,l,...,oo, 

4£oJn 

rjowkoaHn  {koa) 

bn      =     0. 

(6) 

(7) 

The surface current can then be determined using equa- 
tion (3) with these coefficients. 

For a given k0a value the magnitude of the coefficients 
of equation (6) decreases with increasing n and beyond 
about n = k0a + 2w their magnitudes are less than one 
percent of a0. Thus, Jz(<j>) can be computed reasonably 
accurately using Nmax > k0a + 2ir terms in the summa- 
tion in equation (3). 
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Figure 2:   Behavior of the first few eigenvalues versus 
koa for a circular cylinder of infinite length. 

The interior problem, i.e. the circular cavity of infi- 
nite length formed by the outer boundary of the cylin- 
der, described by equation (2) with the left hand side 
set to zero, has nontrivial solutions at frequencies where 
the eigenvalues of equation (5) are zero. These coincide 
with the zeros of Jm(koa) with m = 0,1,... ,00. The 
behaviour of the first few eigenvalues from koa =1.5 
to 6.5, computed using equation (5), are plotted in Fig- 
ure 2. The first few resonances are seen to occur at 
k0a = 2.405, 3.832, 5.136, 5.520 and 6.380 with the 
responsible eigenvalues being Ao, Ai, A2, Ao, and A3 
respectively. 

An approximate, but more general, MM solution to 
equation (2) was obtained using pulse basis functions 
and impulse testing functions as described in [11, pages 
42-45]. The circle that generates the circular cylinder 
was approximated by a regular N-sided polygon, cir- 
cumscribed by the circle. The pulses coincided with the 
sides of this polygon and the testing was done at the 
centres of these sides. The non-diagonal elements of the 
impedance matrix were found by approximating each 
integral by the value of the integrand at the middle of 
the pulse multiplied by the pulse width [11, equation 
(3-12)]. To avoid the singularity in the self terms, the 
diagonal elements were obtained by replacing the Hankel 
functions by their small argument form and integrating 
analytically [11, equation (3-14)]. The result is a matrix 
equation 

ZJ = E,- (8) 

where the vector J contains the unknown current co- 
efficients, the elements of E,- are given, with EQ = 1, 
by 

Eir, AC*„ pjkoXr, (9) 
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Figure 3: Electric current error Ac in the MM solution 
and backscatter RCS, exact and MM solutions, versus 
koa for scattering by a PEC circular cylinder of infinite 
length excited by an incident TM plane wave. 

and the elements of Z given by 

■6mn —   * 

*^ACmAC, HW[ko y(a.B _ Xm)2 + {yn _ ym)2] 

m ^ n, 

(10) 
where ACm is the width of pulse m, xm and ym are the 
coordinates of the centre of pulse m, j — 1.7810724 ... 
such that log 7 is Euler's constant and e = 2.7182818 ... 
is the natural base of logarithms. Here the widths of all 
the pulses are equal which results in Z for this problem 
being complex symmetric (it is, in fact, Toeplitz). 

The current, JMM, obtained using the formulas of 
equations (10) and (9) can be compared with the "ex- 
act" current, J exact, computed using equation (3) by de- 
termining the current error, Ac, given by [1, equation 
(30)] 

Ac = 
\ 

ffs \JMM - Jexact\2 ds 

\H inc]2 Ms*» 
(ii) 

where S is the surface of the PEC cylinder and Hmc 

is the incident magnetic field. A plot of Ac for this 
problem, from k0a = 1.5 to 6.5, is given in Figure 3. 
The number of unknowns NMM in the MM computation 
varied with koa according to the formula 

NMM > I0k0a (12) 

which ensures that there are 10 unknowns per wave- 
length. It is observed that Ac is small except in the 
vicinity of those values of k^a that coincide with the 
interior resonances observed in Figure 2. 
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Also plotted in Figure 3 is the backscatter radar cross 
section (RCS) computed by the exact solution and the 
MM which demonstrates that the anomalies in the cur- 
rent couple to the far field. 

3 Investigation of the "Interior 
Resonance" problem using the 
SVD 

Canning introduced the application of the SVD to the 
study of MM matrices in [10]. The SVD is discussed 
in numerous texts related to linear algebra, for example 
[12]. An SVD of an N-by-N matrix A is any factoriza- 
tion of the form 

A = USVÄ (13) 

where the superscript h indicates the Hermitian conju- 
gate, U is an N-by-N unitary matrix, V is an N-by-N 
unitary matrix and S is an N-by-N diagonal matrix with 
elements smn = 0 if m # n. The diagonal elements of 
S, sn = s„n, are known as the singular values. These 
are real, nonnegative and arranged in order of decreas- 
ing magnitude. The columns of U are the left singular 
vectors and the columns of V are the right singular vec- 
tors. 

By following the MM procedure, the EFIE is trans- 
formed to a matrix equation of the form given by equa- 
tion (8). Decomposition of Z to its SVD reduces equa- 
tion (8) to the diagonal equation 

SJ = Ei (14) 

where 5 = VÄJ and E,- = UhE;. Thus, the SVD diago- 
nalizes the MM equation and J and E,- are the currents 
and fields expressed in the bases that diagonalize the 
problem - the columns of V and U respectively. The el- 
ements of J, the coefficients of the diagonalizing current 
bases, are easily obtained by 

(15) 

where em is the m-th element of E,-. 
The SVD can be used to reach an understanding of 

how the interior resonance problem occurs for the prob- 
lem of scattering of a TM plane wave from a PEC circu- 
lar cylinder of infinite length. For this particular prob- 
lem, the singular values of Z are numerically equal to the 
magnitude of the eigenvalues of Z (this may be because 
the eigenvalues are approximately orthogonal). Thus, 
the singular values of the approximate MM matrix of 
order NMM are approximations of the magnitudes of 
the first ^f^- + 1 eigenvalues of equation (5) if NMM 

is even, or the first N
MM+

1
 if NMM is odd.   This is 

Singular values 

of MM solution 

Magnitudes of eigenvalues 

of exact solution 

si = 367.698 |A0| = 348.796 

s2 = 219.017 |Ai| = 233.490 

S3 = 219.017 |Ai| = 233.490 

Si = 102.139 |A2| = 112.513 

s5 = 102.139 |A2| = 112.513 

S6 = 65.500 |A3|= 67.396 

sr = 65.500 |A3| = 67.396 

SB = 57.423 |A4|= 48.773 

Table 1: The singular values of Z and the magnitudes 
of the exact eigenvalues for the circular cavity of infinite 
length with fco a = 1 and NMM — 8. 

demonstrated in Table 1 where the singular values are 
compared with the magnitudes of the exact eigenvalues 
for koa = 1 and NMM — 8- 

Further, the columns of U and V are approxima- 
tions of the basis functions of the exact solution, i.e. 
{±, cos n<t>, sin n<f>}. This is demonstrated in Table I of 
[10] for k0a = 1 and NMM = 8. 

Thus, the resonance problem should occur whenever 
the smallest singular value SNMM approaches zero. This 
is verified in Figure 4 where sjvMM is plotted for fc0a = 
1.5 to 6.5. In the vicinity of a value of k0a which cor- 
responds to an interior resonance, sjvMM is observed to 
tend rapidly to zero since it corresponds to the eigen- 
value responsible for the resonance. Otherwise, away 
from interior resonances where it corresponds to the 
eigenvalue with largest index (away from a resonance, for 
a given value of fco a, the eigenvalues decrease in magni- 
tude with increasing index), SNMM remains almost con- 
stant with increasing koa . 

Equations (4) to (6) provide a clue as to how the in- 
terior resonance problem occurs. In computing the co- 
efficient an in the exact solution, the Bessel function, 
J„(k0a), that is present in the eigenvalue An cancels out 
as it also occurs in the excitation. It is this factor that 
becomes zero at an interior resonance making the corre- 
sponding eigenvalue zero. Thus it is not present in the 
exact solution for the exterior problem. However, the 
discretization error perturbs the MM matrix eigenvalue 
from the exact eigenvalue [6] and in the vicinity of an 
interior resonance numerical instability can be expected 
if the factor in the eigenvalue does not cancel properly 
with the factor in the excitation. 

Using the SVD, the MM matrix equation is diagonal- 

119 



2.35   2.37   2.39   2.41   2.43   2.45   2.47   2.49 
koa 

Figure 4: Smallest singular value SNMM, versus koa, of 
the MM impedance matrix for a PEC circular cylinder 
of infinite length. 

ized to the form of equation (14). In this form, the co- 
efficients in the diagonalized current vector J are easily 
obtained using equation (15). However, in the vicinity 
of a resonance, sjvMM tends toward zero and one can 
expect problems in computing the corresponding coeffi- 
cient, i.e. 

JNMM =  (16) 
SNMM 

since s/vMM appears as the denominator. Theoretically, 

NMM 
eNx -e- Ji 

Figure 5: Behavior, in the vicinity of the lowest inte- 
rior resonance, of the inverse of the smallest singular 
value Sft1 , the measure of the cavity mode excitation 
£NMM I the current on the near side of the incoming plane 
wave J\ and the backscatter RCS a versus k0a in the 
MM solution of scattering by a circular cylinder of infi- 
nite length excited by an incident TM plane wave with 
NMM = 32. The curves are vertically shifted from each 
other for clarity and 0 dB is arbitrary. 

mode2. Thus, in the MM solution, since SNMM is shifted 
the near-zero term in sjvMM should cancel with the cor- up in frequency with respect to IN MM > the coefficient 
responding term in the numerator. 

Following [10], the quantities s^1 and ejvMM are 
plotted in Figure 5, as well as the current J\, which is 
on the segment nearest the incoming plane wave, and 
the backscatter RCS, <x, in the vicinity of the lowest 
interior resonance, k^a « 2.405, with NMM = 32. As 
expected, ZNMM tends to zero very close to koa « 2.405. 
However, the peak in s^1 is shifted up in frequency. 
Thus, the cancellation that should occur in the product 
sN

x    ZNMM 
1S n°t realized. The anomalies in J\ and a 

are seen to occur at the same value of fco a as the peak 
-l 

lnSNMM- 
The desired current vector can be written as 

J    =    VJ 

=    VS-1^- (17) 

and since V is orthogonal equation (17) can be rewritten 
as 

NMM 
J =  E W-S-H 

n = l 

(18) 

sNMMeNMM °f the cavity mode VNMM in equation (18) 
is inaccurate in the vicinity of resonance. 

For this particular problem, scattering by an infinitely 
long circular cylinder, more accurate MM matrix el- 
ements can be computed with relative ease by mod- 
elling the pulse basis functions on segments of the ac- 
tual, curved, circular cylinder and performing a care- 
ful numerical integration. Canning did this in [10] and 
demonstrated that the shift in frequency of the smallest 
singular value can be reduced quite substantially. This 
resulted in a much narrower, in terms of koa, anomaly 
in the current and the disappearance of the anomaly in 
the RCS. Canning also showed that the condition num- 
ber increased with the more accurate matrix elements 
which emphasized that the problem is not due solely to 
the ill-conditioned matrix since the more ill-conditioned 
matrix gave more accurate results. Further, since Can- 
ning used the same number of unknowns in the compu- 
tation with more accurate matrix elements as with the 
less accurate elements, it can be concluded, at least for 
the circular cylinder considered, that the problem is not 
entirely due to "truncation error" - the error due to in- 

where Vn is the n-th column of V. With SNMM 
cor" 

responding to the eigenvalue responsible for the reso- 
nance, VNMM 

ls the basis that supports the resonant 

2 This is easily verified by comparing VNMM 
to combmati°ns 

of the +n and —n terms of the summation in equation (5-109) of 
[13]. When Jn(koa) = 0, these terms are cavity mode currents 
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troducing a finite number of basis and testing functions 
and thereby reducing the integral equation to a matrix 
equation [10] - but at least in part due to "numerical 
error" - approximations made in calculating the matrix 
elements in terms of the basis and testing functions [10]. 

4    Protecting the EFIE using the 
SVD 

In the previous section the amount of the resonant cur- 
rent was not computed accurately in the vicinity of an 
internal resonance. Furthermore, the computed reso- 
nant current should in theory not contribute to the 
scattered field at the resonance frequency. The cavity 
mode current is represented by the column of V of the 
SVD which corresponds to the smallest singular value, 
i.e. VjvMM. As suggested by Canning in [10], the scat- 
tered field could be calculated accurately by discarding 
the resonant current in the vicinity of its resonant fre- 
quency. If the MM equation is being solved via the SVD, 
the mode is easily discarded by setting sJJ

1
MM to zero in 

equation (18). 
Unfortunately the SVD is computationally expensive 

and operates on a fully square matrix - thus any advan- 
tage is lost if the impedance matrix Z is symmetric. In 
[7], Canning proposed a method of performing the cor- 
rection to the current in which the vector VjvMM and the 
smallest singular value SNMM are approximated by an 
iterative technique known as the power method (PM). 
The desired current J is approximated by orthogonal- 
izing Jo, the current computed directly by the MM, to 
the resonant mode VNMM using the formula 

J = J0 - VAT* 
< VNMiU ! Jo > 

<  ViVMM . V^A > 
(19) 

where < P,Q > is a vector inner product in which 
one takes the complex conjugate of the first vector. In 
the vicinity of an interior resonance the PM converges 
rapidly [7]. 

For the infinitely long circular PEC cylinder, the 
smallest singular value approximated by the PM is com- 
pared with the smallest singular value computed directly 
by the SVD in Figure 6. The current J0 was used as the 
starting vector in the PM and at each frequency the PM 
was terminated once either the difference between con- 
secutive approximations of the smallest singular value 
was less than 10-8 or 21 iterations had been completed. 
The approximated value were found to converge quickly, 
i.e. within 5 iterations, to the exact value in the vicin- 
ity of an interior resonance, that is when the smallest 
singular value corresponds to the eigenvalue responsi- 
ble for the resonance. Away from resonances, however, 
the convergence is generally poor and the approximated 

Figure 6: Smallest singular value SNMM, exact and ap- 
proximated, of the MM impedance matrix versus k0a 
for a PEC circular cylinder of infinite length. The curve 
"MM/SVD" is SNMM computed by the SVD while the 
curve "MM/LU" is SNMM approximated via the power 
method. The number of unknowns NMM satisfied equa- 
tion (12). 

value is larger - this does not necessarily have a negative 
consequence since it is still clear from the approximated 
values where the resonances occur. 

Oddly, as a resonance is approached, the power 
method converges, within at most 20 iterations, prema- 
turely to the mode responsible for that resonance , i.e. 
before the singular value corresponding with this mode 
is the smallest one3. This accounts for the sudden in- 
crease in the approximated smallest singular value as a 
resonance is approached. 

The wavy nature of the curves away from resonance 
is probably due to the variation in number of unknowns 
NMM with frequency. 

The interior resonances coincide with frequencies 
where the smallest singular value becomes small, so this 
could be used as an indication of the occurrence of prob- 
lems. But, the question is how small should this singu- 
lar value be in order to know whether to discard the 
offending current mode? For the problem involving TM 
scattering by a PEC circular cylinder of infinite length, 
this question is easily answered if a frequency sweep is 
carried out. Then, by observing where the anomalies 
begin and end, with increasing k0a, in the current or 
RCS (for example Figure 3), one can determine the value 
of the smallest singular value at these frequency points 
from, for example, Figure 6. A threshold can then be 
derived and the resonant current mode discarded at all 
frequencies where the smallest singular value is below 
this threshold. It is also easy to know beforehand where 

3 This may be due to the choice of starting vector 
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Figure 7: Electric current error Ac, without and with 
current correction versus koa in the region of the low- 
est resonance in the MM solution, computed via the 
LU decomposition, of a PEC circular cylinder of infinite 
length excited by an incident TM plane wave. The curve 
"MM/LU" is with no correction, the curve "MM/LUx" 
is with equation (19) applied for all k0a and the curves 
"MM/LUxl" and "MM/LUx4" are with equation (19) 
applied where SNMM < 1 and SNMM < 4 respectively. 
The number of unknowns NMM satisfied equation (12). 
(Maximum in the curve "MM/LU" is approximately 36, 
off the scale of this figure.) 

to expect the interior resonances to occur as analytical 
formulas exist for the circular cylinder. However, for a 
more general problem for which analytical solutions do 
not exist, it may be extremely difficult or impossible to 
determine where interior resonances may occur before 
carrying out the MM solution. Also, if the solution is 
only desired at a specific frequency and it is computa- 
tionally expensive to compute a frequency sweep, how 
does one know what the threshold in smallest singular 
value should be? How dependent is this threshold on 
the geometry of the problem being solved? 

Three possibilities were investigated and their effect 
on the current error is compared in Figure 7 and on the 
backscatter RCS in Figure 8. 

The first was to discard VNMM 
at a^ frequencies. This 

seems feasible since away from resonance this vector cor- 
responds to a higher order term in the series expansion, 
equation (3), of the exact solution which does not make 
a significant contribution. The anomaly in Ac has been 
suppressed but the error is now increased over the whole 
range of k0a where sjyMM corresponds to A0. The lat- 
ter situation is because the mode represented by VjvMM 

has been completely removed while part of it should be 

exact      -är- MM/LU      -0- MM/LUx 

-*- MM/LUxl     -e- MM/LUx4 

Figure 8: Backscatter RCS, without and with current 
correction, versus koa in the region of the lowest reso- 
nance for a PEC circular cylinder of infinite length ex- 
cited by an incident TM plane wave. The curve "exact" 
was computed by the Fourier series of equation (3) with 
equation (6). The remaining curves correspond with 
those of Figure 7. 

contributing to the desired solution for the current even 
at the precise resonance point and for the scattered field 
except at the precise resonance point. The current error 
Ac remains constant over the whole range of koa where 
S
NMM corresponds to Ao- It is constant here because 

the exact current contains a constant amount of VNMM. 

There is also a large improvement in the backscatter 
RCS where the anomaly occurred. However, the devi- 
ation becomes larger with decreasing or increasing k0a 
away from this point, emphasizing that it is inappro- 
priate to carry out the orthogonalization away from the 
resonance point and that it is thus important that the 
resonances be detected. 

It is evident from Figures 7 and 8 that one cannot 
expect to completely solve the problem by suppressing 
VATMM, however, the anomalies can be drastically re- 
duced. Ideally, away from the anomalies one would like 
to retain the solution without VNMM discarded. This 
was attempted by setting a threshold in s^MM and only 
discarding VNMM 

wnen S
NMM 

is beneath it. The effect 
on Ac for two thresholds, s^MM < 1 and s^MM < 4, is 
also plotted in Figure 7. These values were arrived at by 
observing SNMM in the vicinity of the anomalies using 
Figures 3 to 4. A threshold of 4 brings the error down 
to almost the best that can be achieved while a thresh- 
old of 1 is a bit low, although the anomaly is drastically 
suppressed. 

The backscatter RCS for SNMM with these thresholds 
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free space 0.2 

Figure 9: A PEC sphere with a rotationally symmetric 
equatorial aperture. 

is plotted in Figure 8. With the threshold of 1 the max- 
imum deviation in the RCS from the exact solution is 
about 10% while with a threshold of 4 it is about 4%. 

5 Protecting the MM/BOR for- 
mulation from interior reso- 
nances 

In this section the application of Canning's method, pre- 
sented in [7], to the MM/BOR formulation for the so- 
lution of scattering [8] and radiation [9] from composite 
bodies of revolution is discussed. For penetrable regions 
the MM/BOR formulation uses the CFIE. However, for 
conducting regions the EFIE is used which results in a 
complex symmetric impedance matrix (this would not 
be the case if the CFIE was used for conducting regions 
as well). Thus, for problems involving conducting re- 
gions, the MM/BOR formulation can suffer from the 
interior resonance problem. 

The method's application is demonstrated here for 
two problems that can also be solved analytically: firstly, 
radiation from a rotationally symmetric aperture in a 
PEC sphere, and secondly, the same problem with the 
PEC sphere covered by a spherical dielectric shell. 

5.1 Radiation from a rotationally sym- 
metric equatorial aperture in a PEC 
sphere 

The problem is illustrated in Figure 9. The PEC sphere 
has a of radius 100 mm and has a rotationally symmetric 
aperture at its equator. The aperture subtends an angle 
of 5° in 6 and it is assumed that only a ^-directed electric 
field exists in the aperture. This excitation will produce 
fields TM to the radial direction. The electric field is 
constant across the aperture, i.e. a pulse distribution in 
9. 

An analytical solution for this problem, in terms of a 
spherical wave function expansion (SWFE), is presented 
by Harrington in [13, pages 301-303] for the case where 
the aperture has a small width so that the aperture field 
is an impulse function in 6. This solution can easily be 
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Figure 10: Electric current error Ac and the far field, 
at 6 = 90°, in the MM solution of radiation from a rota- 
tionally symmetric equatorial aperture in a PEC sphere 
of radius 100 mm. The number of unknowns provided 
ten basis functions per wavelength at 3.4 GHz. 

modified to solve problems involving an aperture sub- 
tending an arbitrary angle in 6 [9, Appendix D]. 

For the radiation problems presented here, the current 
error is defined as 

A, 
'SSs \JMM ~ JsWFB\2ds 

Sis ds 
(20) 

where 3MM is the current computed by the MM, S is 
the outer surface of the PEC sphere and JSWFE is the 
current computed by the SWFE using the relationship 
JSWFE = f X H where r is the unit vector in the re- 
direction and H is the exterior magnetic field. 

In Figure 10 the current error in the MM/BOR solu- 
tion and the radiated far field are plotted from 0.2 to 
3.4 GHz. Anomalies occur in the vicinity of resonance 
frequencies of a spherical cavity [13, pages 269-273]. 

The smallest singular value approximated using the 
PM is compared with that computed directly by the 
SVD in Figure 11. The behaviour of the approximated 
smallest singular value is similar to that in the prob- 
lem involving the PEC cylinder (see Figure 6) in that 
it also converges to the singular value corresponding to 
the resonant mode away from the resonance as well as 
at the resonance. As was the case in the PEC cylinder 
problem, the PM converges to the singular value corre- 
sponding to the resonant mode prematurely, i.e. before 
it is actually the smallest singular value, which results 
in a sudden increase in the approximated value. 

A further observation is that the smallest singular 
value computed directly by the SVD increases gradu- 
ally with frequency outside of the resonance region and 
does not remain approximately constant as was the case 
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Figure 11: Smallest singular value SJVMM of the MM 
impedance matrix for a PEC sphere of radius 100 mm. 
The curve "MM/BOR/SVD" is SNMM computed by the 
SVD while the curve "MM/BOR" is SNMM approxi- 
mated via the power method. The number of unknowns 
provided ten basis functions per wavelength at 3.4 GHz. 

in the results for the problem involving a PEC circular 
cylinder (see Figure 4 or 6). The difference here is that 
the number of unknowns is kept constant, providing ten 
basis functions per wavelength at 3.4 GHz, whereas in 
the PEC cylinder computations the number of unknowns 
was varied with frequency. 

It is difficult to determine a suitable smallest singu- 
lar value threshold from Figure 11 for carrying out the 
current correction. If one is to carry out the correc- 
tion across the entire frequency range displayed then the 
threshold must always be beneath the smallest singular 
value away from resonance. However, if this is satisfied 
at the lower frequencies, the resonances at the higher fre- 
quencies will not be detected. This problem can possibly 
be avoided by varying the discretization with frequency, 
so that there are just ten unknowns per wavelength at 
each frequency, as was done in Figure 6. Then, away 
from resonances, the smallest singular value should be 
larger in magnitude and remain more constant with fre- 
quency. Unfortunately, the computer implementation of 
the MM/BOR method was not at a point where this 
could readily be done at the time of writing this paper. 

In Figure 12 the smallest singular value is plotted in 
the vicinity of the first interior resonance using two dis- 
cretizations. The first is as above, which provided ten 
unknowns per wavelength at 3.4 GHz, and the second 
provided ten unknowns per wavelength at 1.35 GHz. In- 
deed, for the coarser discretization, which is sufficient at 
the resonance, both the exact and approximated singu- 
lar values are larger. The resonance frequency is also 
shifted up in frequency due to the increased truncation 
error. 

1.2       1.25       1.3       1.35       1.4       1.45       1.5 
frequency [GHz] 

 MM/BOR/SVD3.4 

-6- MM/BOR/SVD1.35 

- MM/BOR3.4 

MM/BOR1.35 

Figure 12: Smallest singular value s^MM of the 
MM impedance matrix for a PEC sphere of ra- 
dius 100 mm in the vicinity of the lowest inte- 
rior resonance. The curves "MM/BOR/SVD3.4" and 
"MM/BOR/SVD1.35" are SNMM computed by the SVD 
while the curves "MM/BOR3.4" and "MM/BOR1.35" 
are s^MM approximated via the power method. The 
numbers in the labels, i.e. 3.4 and 1.35, refer to the fre- 
quency in GHz at which the discretization used to com- 
pute the curves provided ten basis functions per wave- 
length. 

Using the curves of the coarser discretization a thresh- 
old of 4 in the approximated smallest singular value 
was chosen to carry out the correction on the current. 
The current error obtained using equation (19) with 
the PM at all frequencies as well as with the threshold 
of SNMM — 4 are plotted in Figure 13, as the curves 
"MM/BORx" and "MM/BORx4" respectively, along 
with the original current error, the curve "MM/BOR", 
in the vicinity of the lowest resonance. The anomaly is 
completely suppressed for the correction at all frequen- 
cies ("MM/BORx") and in contrast to the results for 
scattering by the PEC circular cylinder, see Figure 7, 
the error is now small at all frequencies. The result is 
also good with the threshold of 4 ("MM/BORx4"). 

Far field results at 6 = 90° achieved with the cor- 
rection at all frequencies, the curve "MM/BORx", with 
the threshold of 4, the curve "MM/BORx4", and with 
a threshold of 15, the curve "MM/BORxl5", are com- 
pared in Figure 14 to the far field computed by the 
MM/BOR method without correction as well as the 
SWFE solution. The result obtained with the correction 
at all frequencies (MM/BORx) is excellent at frequen- 
cies below resonance and at the resonance the anomaly 
is completely suppressed. However, above the resonance 
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Figure 13: Electric current error Ac in the region of 
the lowest resonance in the MM solution of radiation 
from a rotationally symmetric equatorial aperture in a 
PEC sphere of radius 100 mm. The curve "MM/BOR" 
is with no correction and the curves "MM/BORx" and 
"MM/BORx4"are with equation (19) applied at all fre- 
quencies and at frequencies where SJVMM < 4 respec- 
tively. The number of unknowns provided ten basis 
functions per wavelength at 1.35 GHz. 

1.2      1.25 1.3      1.35      1.4 
frequency [GHz] 

1.45 

SWFE      -A- MM/BOR     -9- MM/BORx 

-*- MM/BORx4       -B- MM/BORxl5 

Figure 14: Far field, at 9 = 90°, in the region of the 
lowest resonance of the rotationally symmetric equa- 
torial aperture in a PEC sphere of radius 100 mm 
computed by the SWFE and the MM. The curve 
"SWFE" is the SWFE solution, curves "MM/BORx" 
and "MM/BORx4" correspond to those of Figure 13 
and "MM/BORxl5" is with a threshold of 15. 

this result increasingly deviates with frequency until 
1.475 GHz where it jumps to the correct solution. This 
is the frequency at which the approximated smallest sin- 
gular value converges to the exact smallest singular value 
(see Figure 12). With a threshold of 4 the anomaly is 
reduced drastically in close proximity to the resonance 
but slightly away the deviation is still relatively large. A 
far better result is achieved with a threshold of 15 which 
also does not alter the solution above 1.475 GHz. 

From the above results it appears that the current 
correction procedure using the PM can safely be used at 
all frequencies where the approximated smallest singu- 
lar value has converged to the actual smallest singular 
value - this can be at and in close proximity to the res- 
onant frequency as well as away from resonances. The 
reason for this is that at a resonance the smallest singu- 
lar value corresponds to the undesired mode that must 
be thrown away and away from resonance the smallest 
singular value corresponds to a mode whose contribu- 
tion is small if the discretization is sufficiently fine. It 
is not safe, however, to carry out the current correction 
at those frequencies at which the approximated smallest 
singular value is not the actual smallest singular value 
as the approximated value then corresponds to a mode 
that makes a desired and necessary contribution. 

The problem remains as to how to determine at a dis- 
crete frequency, without having done a frequency sweep, 
whether a resonance occurs especially for a complex ge- 
ometry. It is evident from the above results that the 
problem is made a bit easier if the number of unknowns 
in the solution is just sufficient at that frequency. How- 
ever, a knowledge of the magnitude of the smallest sin- 
gular value away from resonance still appears to be nec- 
essary. 

5.2 Radiation from a rotationally sym- 
metric equatorial aperture in a PEC 
sphere with a spherical dielectric 
shell. 

This problem is illustrated in Figure 15. An analytical 
solution, in terms of a spherical wave function expan- 
sion (SWFE) [9, Appendix D], can be derived using the 
methods presented in [13, Chapter 6]. 

The radius of the PEC sphere is 100 mm and the outer 
radius of the dielectric shell is 150 mm. The dielectric 
shell has a relative permittivity er = 3 and relative per- 
meability fir = 1. As for the problem without the shell, 
the aperture subtends an angle of 5° in 6 and it is as- 
sumed that only a 9 directed electric field exists in the 
aperture. 

The current error in the MM solution for this problem 
and the radiated far field are plotted in Figure 16. The 
interior resonances of the sphere have shifted down in 
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Figure 15: A PEC sphere, coated by a spherical dielec- 
tric shell, containing a rotationally symmetric equatorial 
aperture. 
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Figure 17: Smallest singular value SNMM, in the fre- 
quency range 0.6 to 1 GHz, of the MM impedance ma- 
trix for a PEC sphere of radius 100 mm with a spherical 
dielectric shell of radius 150 mm and relative permittiv- 
ity eT = 3. The curve "MM/BOR/SVD" is SNMM com- 
puted by the SVD while the curve "MM/BOR" is SNMM 

approximated via the power method. The number of un- 
knowns provided ten basis functions per wavelength at 
0.9 GHz. 
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Figure 16: Electric current error Ac and the far field, at 
6 = 90°, in the MM solution of radiation from a rotation- 
ally symmetric equatorial aperture in a PEC sphere of 
radius 100 mm with a spherical dielectric shell of radius 
150 mm and relative permittivity er = 3. The number of 
unknowns provided ten basis functions per wavelength 
at 3.4 GHz. 

frequency, as is evident in the positions of the anoma- 
lies in the current error, due to the presence of the shell. 
This is a result of the application of the equivalence prin- 
ciple in the formulation of the EFIE which replaces the 
interior region with the same material as the surround- 
ings. This also means that there are now more interior 
resonances in the frequency range shown as some of the 
higher resonances have shifted down. 

It is clear that not all the apparent anomalies in 
the far field are due to interior resonances as they 
are also present in the result computed by the SWFE. 
Some of the anomalies due to interior resonances have 
merged with actual anomalies in the result computed 
via the MM/BOR formulation. Thus, the presence of 
an anomaly in the frequency sweep of a quantity such 
as the far field is not necessarily an indication of an in- 
terior resonance. 

The smallest singular value for this problem in fre- 
quency subrange 0.6 to 1 GHz is plotted in Figure 17. 

Inspection of Figure 17 led to a threshold of 8 being 
applied to the current orthogonalization procedure in 
the frequency range 0.6 to 1 GHz. The resultant change 
in current error is shown in Figure 18 and the change in 
the field in Figure 19. From these figures it is seen that 
the method does work; however the problems regarding 
the detection of interior resonances remain. 
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6    Conclusions 
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Figure 18: Electric current error Ac in the frequency 
range 0.6 to 0.9 GHz in the MM solution of radiation 
from a rotationally symmetric equatorial aperture in a 
PEC sphere of radius 100 mm with a spherical dielectric 
shell of radius 150 mm and relative permittivity eT = 3. 
The curve "MM/BOR" is with no correction and the 
curve "MM/BORx8" is with equation (19) applied at 
frequencies where SNMM < 8. The number of unknowns 
provided ten basis functions per wavelength at 0.9 GHz. 
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frequency [GHz] 
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Figure 19: Far field in the frequency range 0.6 to 
0.9 GHz, at 6 = 90°, of the rotationally symmetric equa- 
torial aperture in a PEC sphere of radius 100 mm with 
a spherical dielectric shell of radius 150 mm and rel- 
ative permittivity er = 3 computed by the SWFE and 
the MM. The curve "SWFE" is computed via the SWFE 
while the remaining curves correspond with those of Fig- 
ure 18. 

The electric field integral equation, which is a surface in- 
tegral equation, is valid for both the exterior and interior 
problems as defined in section 1. Although the interior 
solution should not couple to the exterior solution and 
vice versa in theory, when solving numerically, anomalies 
are observed at discrete frequencies that coincide with 
the eigenfrequencies of the interior solution. This is a 
well-known result in the literature and is demonstrated 
here. 

A comparison between an analytical solution and a 
moment method solution for a canonical problem shows 
how the interior resonance problem arises. In the ana- 
lytical solution for the electric current, the eigenvector 
corresponding to the zero eigenvalue is generally present 
but does not radiate any external field. However, with 
the aid of the singular value decomposition (SVD), it is 
seen that in the approximate moment method solution 
the zero in the eigenvalue, or smallest singular value, 
shifts in frequency with respect to the zero in the exci- 
tation thus the quotient in equation (16), which is the 
coefficient of the eigenvector corresponding to the zero 
eigenvalue, is inaccurate. Canning has demonstrated 
that the problem may be more due to approximations 
made in calculating the matrix elements in terms of the 
basis and testing functions, than due to introducing a 
finite number of basis and testing functions. 

The anomalies in the computed results for the ex- 
terior field can be suppressed by discarding the eigen- 
vector corresponding to the smallest singular value in 
the vicinity of an interior resonance. This was demon- 
strated using the singular value decomposition to solve 
the moment method matrix equation directly as well as 
by using the power method to approximate the smallest 
singular value and the corresponding eigenvector. It was 
found that the eigenvector corresponding to the smallest 
singular value can safely be discarded at all frequencies, 
provided a sufficient number of unknowns is used, as at 
an interior resonance it makes an undesired contribution 
and away from resonance its contribution is small. How- 
ever, the power method does not always converge to the 
smallest singular value but converges to the eigenvector 
responsible for a resonance prematurely. 

The question still remains on how to detect the oc- 
currence of such resonances in a foolproof manner. The 
detection is easy for canonical problems as analytical 
formulas exist for the eigenvalues. However, for gen- 
eral problems the size of the smallest singular value de- 
pends on the geometry of the problem. A possible way 
around this is to do a frequency sweep if it is suspected 
that an interior resonance is present. However, this 
could prove computationally very expensive and, it was 
demonstrated that anomalies in the computed results do 
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not necessarily indicate interior resonances. More work 
needs to be done to find a reliable method, if possible, 
of detecting interior resonances that takes the geometry 
of the problem into account. 

The major contribution of the work presented in this 
paper is the demonstration that whilst the method used 
to avoid the interior resonances can work, applying it 
automatically in a MM code is not as straightforward 
as was implied by Canning [7]. The major obstacle is 
that the power method only converges to the smallest 
singular value in the region of resonance. This has been 
illustrated in this paper using a number of examples, in- 
cluding rotationally symmetric radiators. The full SVD 
is unfortunately very expensive computationally, mak- 
ing the direct use thereof most unattractive. A further 
contribution is the specific investigation of the method 
with regard to the MM/BOR solution of radiation prob- 
lems. 

Acknowledgements 

We gratefully acknowledge the most helpful comments 
of Dr. Joseph R. Mautz, who drew our attention to 
several errors in the draft version of this paper. 

References 

[1] J. R. Mautz and R. F. Harrington, "H-field, E-field, 
and combined-field solutions for conducting bodies 
of revolution," AEU, vol. 32, pp. 157-164, 1978. 

[2] J. R. Mautz and R. F. Harrington, "A combined- 
source solution for radiation and scattering from a 
perfectly conducting body," IEEE Trans. Antennas 
Propagat, vol. AP-27, pp. 445-454, July 1979. 

[3] L. N. Medgyesi-Mitschang and D.-S. Wang, "Hy- 
brid solutions for scattering from perfectly conduct- 
ing bodies of revolution," IEEE Trans. Antennas 
Propagat., vol. AP-31, pp. 570-583, July 1983. 

[4] L. N. Medgyesi-Mitschang and J. M. Putnam, "In- 
tegral equation formulations for imperfectly con- 
ducting scatterers," IEEE Trans. Antennas Prop- 
agat, vol. AP-33, pp. 206-214, February 1985. 

[5] P. L. Huddleston, L. N. Medgyesi-Mitschang, and 
J. M. Putnam, "Combined field integral equation 
formulation for scattering by dielectrically coated 
conducting bodies," IEEE Trans. Antennas Propa- 
gat, vol. AP-34, pp. 510-520, April 1986. 

[6] A. F. Peterson, "The "interior resonance" problem 
associated with surface integral equations of elec- 
tromagnetics: numerical consequences and a survey 

of remedies,"  Electromagnetics, vol. 10, pp. 293— 
312, 1990. 

[7] F. X. Canning, "Protecting EFIE-based scattering 
computations from effects of interior resonances," 
IEEE Trans. Antennas Propagat., vol. 39, pp. 1545- 
1552, November 1991. 

[8] L. N. Medgyesi-Mitschang and J. M. Putnam, 
"Electromagnetic scattering from axially inhomoge- 
neous bodies of revolution," IEEE Trans. Antennas 
Propagat, vol. AP-32, pp. 797-806, August 1984. 

[9] P. Steyn, A Moment Method Solution of Electro- 
magnetic Radiation from Composite Bodies of Rev- 
olution. PhD thesis, University of Stellenbosch, 
South Africa, November 1994. 

[10] F. X. Canning, "Singular value decomposition of 
integral equations of EM and applications to the 
cavity resonance problem," IEEE Trans. Antennas 
Propagat, vol. 37, pp. 1156-1163, September 1989. 

[11] R. F. Harrington, Field Computation by Moment 
Methods. Malabar, Florida: Robert E. Krieger, 
first ed., 1982. Reprint of 1968 edition. 

[12] G. H. Golub and C. F. van Loan, Matrix Compu- 
tations. Baltimore, Maryland: The John Hopkins 
University Press, first ed., 1983. 

[13] R. F. Harrington, Time-Harmonic Electromagnetic 
Fields. New York: McGraw-Hill, first ed., 1961. 

The authors 

Pierre Steyn was born in Cape Town, South Africa in 
1962. He received the Bachelor and Master degrees in 
electronic engineering (both cum laude) from the Uni- 
versity of Stellenbosch, South Africa in 1986 and 1989 
respectively. In 1994 he received the Ph.D. degree in 
Electronic Engineering from the University of Stellen- 
bosch. His chief research interests are in computational 
electromagnetics and computer aided antenna design. 
Pierre is presently persuing a career in commercial an- 
tenna design. 

David Bruce Davidson:   See biography elsewhere in 
this issue. 

128 



Computation of Multipole Moments for Short 
Thin Wire Chiral Structures 

Isak Petrus Theron, David Bruce Davidson and Johannes Hendrik Cloete 

Department of Electrical and Electronic Engineering 
University of Stellenbosch 

Stellenbosch 7600 
South Africa 

Abstract 
This paper considers the computation of the multipole 
moments of small chiral wire structures. The multipole 
moments are reviewed and it is shown that the charge 
induced on the wire must be accurately computed. A 
quasistatic thin-wire Galerkin Method of Moments for- 
mulation has been developed to numerically compute the 
charge distribution. 

The chiral structures under consideration are on the 
borderline of "thin" and a Body of Revolution Method of 
Moments formulation has also been developed for use as 
a check on the accuracy of the thin-wire approximations. 
It is shown that the "standard" thin-wire formulation is 
not sufficiently accurate, but the relatively simple addi- 
tion of an end-cap greatly improves the convergence and 
accuracy of the formulation with acceptable computation 
cost. 

Finally, the formulation is extended to include bent 
wires, permitting the electric and magnetic dipole mo- 
ments as well as the electric quadrupole moment to be 
calculated for a small chiral structure. 

1    Introduction 

In 1979, Jaggard et al. [1] initiated the current interest of 
the electromagnetic engineering community in artificial 
chiral media at microwave frequencies. They used ap- 
proximate electric and magnetic dipole moments to anal- 
yse a material composed of single turn helixes randomly 
distributed and oriented in vacuum. Since this work was 
published, and in particular over the last several years, 
there has been a substantial amount of research in this 
field. 

In addition to questions regarding the physical realiz- 
ability of microwave chiral absorbing materials, there are 
also questions relating to the theoretical basis of the con- 
stitutive relations used to date. In [2] Graham, Pierrus 
and Raab show that when using magnetic dipoles, one 

Figure 1: Chiral hook 

needs to include the electric quadrupole term to maintain 
the origin-independence of the Maxwell equations. In [3] 
Raab and Cloete show that, for chiral elements much 
smaller than a wavelength, the optical activity of a chi- 
ral medium can be described by the electric quadrupole - 
magnetic dipole approximation. The theory requires the 
structures to be much smaller than a wavelength as the 
scattering from the structures is approximated in terms 
of only the first three multipole moments. It is also re- 
quired that the spacing between structures is much less 
than a wavelength — otherwise the composition will be 
more of a diffraction grating than a continuum. 

Construction of a practical medium to validate this 
theory thus requires chiral structures much smaller than 
a wavelength. To measure at practical microwave fre- 
quencies (eg. 3 GHz) this limits the wire length to a 
few millimetres, while physical restrictions limit the wire 
thickness to no less than a few tenths of a millimetre, re- 
sulting in "thick" thin wires. 

In order to determine the accuracy of the current 
theoretical models, the contribution of the electric 
quadrupole term relative to the dipole terms needs to be 
calculated. This necessitates the calculation of the differ- 
ent multipole moments for a chiral structure. The sim- 
plest possible chiral structure, a three dimensional hook 
as shown in Fig. 1, was chosen such that the calculations 
— using thin wire approximations — would be as simple 
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as possible. This structure, at resonance, was also used 
by Morin for a polarization selective surface [4]. The 
main advantage of this structure is the ease with which 
it can be arranged to simulate crystals in the various 
point groups [5]. This will, however, not be considered 
in this paper. 

To compute the multipole moments, the charges and 
currents induced on the chiral element are required. 
Only the simplest structures admit analytical electrody- 
namic solutions (even the simple half-wave dipole anal- 
ysis found in most undergraduate electromagnetic text- 
books uses an approximation to the current); for an ac- 
curate solution of a bent structure such as the chiral hook 
shown in Fig. 1, numerical methods must be used. The 
well known method of moments (MoM) will be used in 
this paper for this purpose. We will show in the next 
section that a quasi-static formulation suffices for the 
structures of interest, and that only the induced charge 
needs to be solved. 

Solving for the charge on a quasi-static thin-wire struc- 
ture appears to be a rather simple problem (it is ad- 
dressed in many post-graduate texts, for example [6]), 
but we will show that computing multipole moments re- 
quires that the induced charge be very accurately com- 
puted. It will be demonstrated that the widely used thin 
wire approximation must be used with circumspection in 
this case. Following a brief discussion of the computa- 
tion of the polarizability tensors, this paper first presents 
an analysis of a very simple (non-chiral) structure — an 
electrically short dipole — to test the validity of the tech- 
niques. A moderately simple extension to the thin-wire 
formulation is then used to compute the multipole mo- 
ments of a chiral structure. 

2    The polarizability tensors 

In [3] it is shown that the macroscopic electric dipole and 
quadrupole moments and the magnetic dipole moment 
are related to the excitation fields and their derivatives 
via the polarizability tensors 

Pa 

Qaß 

Ma 
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u 

7ßa£jß ' 

from which follow the general form of the constitutive 
relations for chiral media [3]. In these equations a Greek 
subscript denotes any of the three Cartesian directions 
(x, y or z). Repeated subscript notation implies summa- 
tion over the three components (the Einstein notation) 
and V/j implies the derivative with respect to ß. These 
multipole densities can also be found by spatial averaging 

of the multipole moments due to the discrete elements. 
Thus the polarizability tensors describing a composite 
medium can be calculated from the multipole moments 
of the inclusions. From [2] the first three multipole mo- 
ments for a given charge distribution are given by: 

Pa    =        p(r)ra dv 
Jv 

(1) 

qaß    =     / p{r)rarß dv 
Jv 

(2) 

ma    =    \ I [v x J{r)]a dv 
Jv 

(3) 

where p, J and r have their normal definitions. 
As discussed in the introduction, the underlying the- 

ory requires the structures to be much smaller than a 
wavelength. The problem can thus be approached using 
electroquasistatic approximations [7, Chapter 3] and is 
formulated as a boundary value problem in terms of the 
scalar potential, from which the unknown charges can 
be solved. (Note that the structure is quasi-static and 
not static, thus the current is non-zero and can be calcu- 
lated from the spatial integral of the time derivative of 
the charge.) Since calculating the charges from the cur- 
rent implies a numeric differentiation process, directly 
solving for the charges will have a distinct advantage. 
This is the approach adopted here. 

Consider the calculation of the dipole moment. It 
is tempting to view this "observable" as fundamentally 
similar to the computation of a radiation pattern or a 
scattering cross-section, typically the type of output re- 
quired from a full electrodynamic code, since all involve 
an integration over the current (or charge in the present 
case). It is widely accepted that the integration process 
smoothes the effect of errors in the computed current. 
However, this is not so with the dipole moment calcu- 
lations. The reason is that the integrand in this case 
involves the moment of the charge, that is the charge 
weighted by the distance from the centre. Hence, er- 
rors at the ends of the wire, which are normally insignif- 
icant for the typical electrodynamic observables men- 
tioned above, are magnified in this case; furthermore, 
the charge is singular at the end of a wire, whereas the 
current is zero.1 

From this discussion it is obvious that an accurate 
charge distribution is needed. Before using the thin wire 
formulation with its desirable properties, the approach 
must first be carefully validated for this application. This 
will done using as a test case a single straight wire in a 

1-The electric dipole moment can also be formulated in terms of 
the integral of the current on the wire, which can be solved dynam- 
ically. However, due to the short nature of the wires, significant 
currents can exist on the end-caps and the axial current cannot be 
considered to go to zero at the ends of the straight section of wire. 
The dynamic formulation is thus not a very attractive alternative. 
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uniform electric field directed along its length, where, as 
can be seen from Eqs. (1) to (3), only the dipole mo- 
ment, p, is non-zero when referred to the centre of the 
dipole. There are no exact analytical solutions available 
for the charge distribution on a thin wire, and an ac- 
curate numerical scheme was thus required to provide 
reference data. Hence a body of revolution method of 
moments (BOR MoM) formulation was developed, us- 
ing the Galerkin approach. 

3    Body of revolution method of 
moments solution 

The BOR formulation uses entire domain Fourier modes 
for the circumferential expansion, and conventional sub- 
domain basis functions along the generating curve (also 
known as the generatrix). Mautz and Harrington's work, 
along with later extensions, has become one of the stan- 
dard references for the full electrodynamic BOR MoM 
formulation [8]. The present quasi-static formulation is 
similar in concept, although the implementation is of 
course greatly simplified by the quasi-static nature of 
the problem. 

The subdomain basis functions used were triangular 
functions along the generatrix (generally referred to as 
the t direction [8]). This provides a first-order basis func- 
tion in finite element terminology. Since the electric field 
is purely z-directed, the charge is independent of <j>, and 
hence only the zero-order Fourier mode is needed. The 
charge may be visualised as being expanded in terms of 
short cylindrical rings around the z-axis. Reflectional 
symmetry was also exploited and only one half of the 
wire was discretised. 

Due to the singularity of the charge at the end of the 
wire, the distribution varies more rapidly towards the 
end of the wire. Thus it is advisable to use a non-uniform 
discretisation along the vertical part of the generatrix 
(the side of the dipole). On the end-cap the discretisation 
is uniform. The basis functions are shown in Fig. 2. The 
length of the last segment on the dipole side, bzN, is set 
as close as possible to that of the segments on the end- 
cap, and the segments increase linearly in length towards 
the centre of the dipole. 

The quasistatic MoM formulation is given in Ap- 
pendix A while Appendix B shows some detail on the 
evaluation of the integrable singularities which are un- 
avoidable in the BOR MoM formulation. 

The resulting charge distribution, for a 3 mm long wire 
of diameter 0.3 mm in a uniform electric field of 1 V/m 
directed along its axis, on one half of the wire length, 
is given in Fig. 3. The dipole moment for this wire was 
calculated using the charges from the BOR MoM code. 
Doubling the number of segments resulted in less than 

0.01% change in the dipole moment. This result was 
thus taken to be a good reference value and is used to 
normalise the dipole moments in Fig. 4. 

Figure 2: The basis functions on the wire. Note that 
the whole figure is rotated around the z-axis and is sym- 
metric about the z = 0 plane. At the corner, bZN and 
bRN are joined to form a single basis function such that 
continuity of the charge is ensured. 
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Figure 3: Comparison of the surface charges for the 
different techniques. The horizontal axis is the t-axis, a 
length parameter that follows the generatrix. (First it 
follows the z-axis along the surface of the dipole, then 
goes inwards along the -r direction on the end-cap.) The 
3 mm long wire of diameter 0.3 mm was excited by a 
uniform field of 1 V/m along its axis. 
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Figure 4: The dipole moments, for a 3 mm long 
wire with diameter 0.3 mm in a uniform electric field 
of 1 V/m in the axial direction, plotted against the 
number of segments. The moments are normalised by 
p = 9.305xlO-20 as calculated by the BOR MoM code. 

4    The thin wire technique 

The electrodynamic solution of thin wires has been ex- 
tensively studied, initially using analytical techniques 
(work which reached its peak with the King-Middleton 
approximate formulas of the 1950's [9]) and more re- 
cently using numerical methods, in particular the MoM. 
The widely used Pocklington formulation is almost 100 
years old. Despite the very simple physical structure, so- 
phisticated treatments are required for highly accurate 
and stable computations. In particular, the following re- 
quire attention: the end-cap treatment, the source region 
modelling, and a method for handling thicker wires. All 
can and have been handled using a BOR MoM formula- 
tion, but this a computationally expensive solution, and 
the BOR MoM formulation is obviously not applicable 
to bent wires. Janse van Rensburg's doctoral thesis ad- 
dresses the first two points (end-caps and source region 
modelling) [10]. Burke and Poggio incorporated an ex- 
tended thin wire formulation and a simple treatment of 
wire ends in NEC-2 (this is not a full end-cap treatment) 
[11, pp. 10-30]; Burke extended this in [12, pp. 28-31]. 
Popovic et al. describe a careful treatment of end-caps 
of flat or hemispherical shape [13, pp. 79-89]. Peterson 
[14] presents results showing how the careful treatment 
of end-caps is necessary for a properly converged solu- 
tion. Fortunately, the source region modelling problem 
is not a concern with the present scattering formulation. 

However, the electroquasistatic solution has received 
very little attention (certainly in the high-frequency lit- 
erature). We will now consider the standard thin wire 
formulation as given by [6, Chapter 12]. A crucial part 

of the formulation is the reduction of the problem from a 
two-dimensional surface charge to a one-dimensional line 
charge. This is known as the thin-wire approximation 
and has been widely used in powerful numerical electro- 
magnetic codes such as NEC-2. The thin-wire approxi- 
mation is very attractive, since it removes a dimension 
from the problem and also avoids the singularity inherent 
in the formulation. However, the formulation has some 
restrictions, not least the obvious requirement that the 
wire indeed be thin! 

It is intuitively obvious that for a "thick" wire, the thin 
wire approximations are invalid; Collin has presented a 
very elegant discussion of the theoretical reasons for the 
failure of the approximation [15, p. 67-72]. He showed 
that the high spatial frequency component of the equiv- 
alent line current (which the thin-wire MoM codes com- 
pute) grows exponentially if the number of harmonics is 
such that the spatial period becomes less than about wa, 
where a is the wire radius. Collin's analysis used entire 
domain basis functions, but similar caveats apply when 
using subsectional basis functions; it is important to en- 
sure that the discretisation is coarse enough to ensure 
that these harmonics are kept to a minimum. Of course, 
the discretisation must also be fine enough to adequately 
sample the actual spatial variation of the current (or 
charge); for sufficiently thin wires, there is a large sta- 
ble (converged) region between these two requirements, 
but for thick wires it is possible to move directly from the 
under-discretised to the over-discretised regimes without 
the solution evidencing any form of convergence. 

Using too fine a discretisation often results in errors 
around the end points of the wire; the undesirability of 
this for polarizability calculations is evident from the 
discussion in section 2. Generally it is accepted that, for 
the full electrodynamic formulation, the segment length 
to wire diameter ratio must be greater than two. 

The present formulation was implemented with pulse 
basis and testing functions (i.e. a Galerkin approach) 
in a similar fashion to that described in [6]. The charge 
distribution was approximated as a line charge and the 
potential matched at the outer radius of the wire. (This 
is the thin-wire approximation already discussed.) The 
result for the 3 mm wire, shown in Fig. 3, was done 
with 10 segments on the wire — hence a segment length 
equal to the wire diameter. It can be seen that there 
is a considerable error near the end of the wire due to 
the over discretisation. This error is clearly unaccept- 
able when computing the multipole moments. However, 
using fewer segments also resulted in large errors, as long 
segments cannot follow the charge singularity at the end 
of the wire. The ratio used here seems to be the opti- 
mum: half of the normal dynamic requirement that the 
minimum segment length must be larger than twice the 
wire diameter. 
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The dipole moment for the 3 mm wire was calcu- 
lated using the charges resulting from this formulation. 
The charges were also calculated using a formulation im- 
plementing triangular basis and testing functions. The 
dipole moments for these two cases are plotted against 
the number of segments used in Fig. 4. It is clear that al- 
though the results throughout the graph are within 15% 
of the values computed with the BOR MoM formulation 
the convergence is poor and, without the reference data, 
one would be hard pressed to decide which discretisation 
gave the correct result. 

Using the charge calculated by the body of revolution 
code it is found that the end-cap contributes almost 20% 
towards the dipole moment for the test case. Thus it can 
be expected that the thin wire technique will give erro- 
neous results, since the end-cap is explicitly excluded 
from this formulation. An attractive solution to this 
problem is the inclusion of an end-cap term, and this 
will be considered in the next section. 

5    Thin wire formulation with an 
added end-cap 

The thin-wire technique was expanded by adding one 
more basis function — a fiat disc of constant charge den- 
sity to model the end-cap.2 With the axis of the wire in 
the 2-direction and the end-cap located at z', the poten- 
tial of the end-cap at any position (r, <j>, z), given by the 
inner integral in Eq. (7) of Appendix A, is 

r 2x     r 

4(r)= /      / 
Jo    Jo 

r'dr'dfi 

■^{z - z'f + r'2 + r2- 2r'r cos <f>' 

increasing the complexity of the formulation. One more 
weighted sample of the field is thus needed. This is ob- 
tained by an integral over the end-cap area. 

It is important to note that this introduces an asym- 
metry into the impedance matrix of the moment method 
formulation.3 Changing from placing the charge on the 
axis (and sampling on the surface at the radius) to plac- 
ing charge at the surface (and sampling on the axis) now 
results in the transposition of the impedance matrix — 
with a quite significant effect on the charge distribu- 
tion. (For the standard straight thin-wire formulation 
the problem is symmetrical and it is irrelevant whether 
the charge is viewed as on the surface of the wire and 
the sampling on the axis or vice versa).  In accordance 

2 This is only an approximation as the actual charge distribution 
on the end-cap is much more complicated. 

3 This is due to the fact that the testing and basis functions for 
the end-cap are the same, whilst for the axial segments, the basis 
functions lie on the wire surface and the testing functions on the 
axis. For the end-cap, the equivalent of a line charge would be a 
point charge at its centre. 

with physical principles, the charge is placed on the wire 
radius and the potential sampled on the axis — thus 
the outer integral in Eq. (7) of Appendix A reduces to a 
line integral. Sampling on the axis greatly simplifies the 
potential of the end-cap to 

$ = 2ir(^a2 + (z- z'f - \z - z'\) 

where \z — z'\ is the distance from the end-cap. Compu- 
tation of the "self-term" of the end-cap results in similar 
singularities to those experienced with the "self-term" 
calculations discussed in Appendix B. 

The potential caused by the basis functions on the 
sides of the wire is reasonably constant on the end-cap, 
and their contributions are computed by using the value 
at the centre of the end-cap weighted by its area. (The 
"self term" is, however, integrated over the full area.) 
The charge distribution calculated with this technique is 
also shown in Fig. 3. 

The graphs of the dipole moments (Fig. 4) show that 
incorporating the end-cap does indeed have the desired 
result of stabilising the convergence — which is now not 
only stable but also accurate within about 2% of the 
BOR MoM result. It is interesting to note how neglect- 
ing a significant physical feature in the numerical model 
(the end-cap in the standard thin wire formulation) can 
impact in unexpected ways, such as in poor convergence. 
As one would expect, the formulation using pulses con- 
verges more slowly than when using triangles. 

The most important feature of this graph, however, 
is that the pulse formulation remains stable for signifi- 
cantly larger number of segments compared to triangular 
basis functions (up to a segment length equal to wire di- 
ameter). The reason for this is presently not clear. Both 
formulations converge to the same value. Using pulses 
leads to a much simpler formulation and, even with dou- 
ble the number of segments, shorter computing times 
than when using triangles. Hence this last formulation 
— viz. a Galerkin pulse basis function thin wire (with 
end-cap) MoM approach — was the one finally adopted. 
The runtime of this technique on a 486 PC was a few 
minutes compared with a few seconds for the standard 
thin wire technique (and two hours for the BOR MoM 
formulation!) For these time scales the added expense 
of the end-cap is certainly worthwhile, considering the 
increase in stability, and the computational cost is still 
much less than that of a full two-dimensional treatment 
(even one exploiting symmetry). 

6    A chiral element 

The chiral element is the bent wire shown in Fig. 1. As 
for the straight wire, sampling for all the wire segments 
is done on the axis, with the charge placed on the wire 
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Figure 5: Structure of bend segment. 

radius. When sampling on field segments that are not 
on the same straight section of wire, and are far enough 
away from the source segments (at least two segments in 
between them), the source charge was approximated by 
a line charge on the axis. 

The bend requires some special treatment. It is con- 
structed by sweeping the wire cross section along the 
angle 9' through 90 degrees as shown in Fig. 5, thus 
joining the two straight wires. The bend is modelled by 
a single curved segment with the charge placed on the 
wire surface; this is consistent with the straight segment 
treatment. When sampling the potential caused by this 
segment, the integral over the field segment (the outer 
integral in Eq. (7)) is done analytically,4 but the source 
integrand has to be evaluated numerically. Sampling of 
the field on the bend is done on the axis by numerical 
integration over 6 (measured in the same way as 6'). 

This treatment of the bend is much more rigorous (and 
more complex) than merely having a sharp corner. It was 
implemented to check the effect of the bend and avoid the 
uncertainty regarding the position of the surface charge 
in its immediate vicinity. Increasing the radius, r0, of 
the curved segment from r0 — a, which is as small as 
the code will allow, to r0 = 2a decreased qzz for a z- 
directed field5 by about 3%. Hence it does not appear to 
have a significant contribution to the calculation of the 
moments. 

The end-cap is treated as a disk for the straight wire 
section that it terminates; for the other wire sections, it is 
handled as a point charge on the axis. Treating the end- 
cap as a point charge removes the expensive calculations 

4 Except in the case of the "self-term" or the interaction with 
the other bend where the field integral is also done numerically — 
thus requiring three numeric integrations. 

5 This is the moment most sensitive to the radius of the bends. 

necessary when integrating over the endcap without sig- 
nificantly affecting its potential at these wire sections. 

As an example, the charge is calculated for the struc- 
ture in Fig. 1 with 3.12 mm long x- and y-axis legs, 
3.14 mm 2-axis leg and wire diameter 0.3 mm. The ra- 
dius of curvature at the two bends in the wire is 1.5 
times the wire diameter.6 The charge distribution for 
the structure excited by uniform 1 V/m x- and ^-directed 
fields is shown in Fig. 6. Consideration of Fig. 4 led to 
the conclusion that the optimal segment length is equal 
to the wire diameter. This required 10 segments on a 
3 mm leg. Fig. 6 shows the respective charge distri- 
butions calculated with 8 segments on the front leg (27 
basis functions including the two bends and the two end- 
caps7) and with 12 segments on the front leg (39 basis 
functions). It is clear that the charge distribution con- 
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Figure 6: Surface charge in nCm-2 for a chiral hook 
with lx = ly = 3.12 mm, lz = 3.14 mm, wire radius 
a = 0.15 mm, and r0 = 1.5 a; in an excitation field of 
1 V/m using respectively 27 and 39 basis functions. Ex 

and Ez in the graph indicate direction of the applied 
electric field. 

verged very well. The graphs lie almost on top of each 
other, with only a small difference near the ends and 
bends. This is due to the fact that the field is sampled 
at different points for different segmentations. As one 
would expect, the ^-excited charge is anti-symmetrical 
around the centre of the z-ax\s. Note also the small peaks 
at the bends — which is to be expected as a sharp corner 
would have caused a singularity. 

As the charge distribution is convergent around this 
point, it was finally calculated using 10 segments on the 
front leg (33 basis functions in total). This charge dis- 
tribution was used in Eqs. (1) to (3) to calculate the 

6 These dimensions arose from practical considerations in man- 
ufacturing an artificial crystalline medium. 

rThe straight part of the z-leg is shorter due to the two bends 
subtracting from it, and requires one less segment. 
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^-excitation .E^-excitation 

Px 2.12xl0-19 -1.81xl0-19 

Py -6.79xl0-20 1.81xl0~19 

Pz -1.81xl0-19 3.88xl0-19 

5.29xl0"23 -1.41x10-22 
ray -1.66X10-22 1.41X10"22 

Qxx 5.56xl0~22 -4.03x10-22 

qxz -3.33xl0-22 2.84xl0-22 

%y -1.54xl0-22 4.03xl0-22 

Qyz -1.07xl0-22 2.84x10-22 

<lzz 6.95xl0-23 0 

Table 1: Multipole moments for a chiral hook with lx = 
ly = 3.12 mm, lz = 3.14 mm, wire radius a = 0.15 mm, 
and r0 = 1.5a ; in a unity uniform field. 

multipole moments shown in Table 1. The current den- 
sity was found by integrating the charge along the wire 
and differentiating with respect to time. Note that the 
time derivative of the electric quadrupole moments are 
of the same order as the magnetic dipole moments. 

Formulating the problem without the end-caps and 
calculating the moments for the same number of seg- 
ments as used for Table 1 yielded moments within 1% of 
the values in the table. However decreasing or increasing 
the number of segments led to poor convergence similar 
to that shown in Fig. 4. Note that the dipole moments in 
Fig. 4 are also almost equal at 10 segments which is the 
number used here. Hence, the advantage of the end-cap 
is in stabilising the convergence. 

With the multipole moments known, the multipole 
moment densities and medium parameters can be calcu- 
lated. An artificial crystalline medium was designed with 
the lattice and orientation of the structures as shown in 
Fig. 7. The spacings in the plane of the paper are 6.5 
and 8 mm respectively and the disks are repeated in the 
z-direction at intervals of 9.3 mm. 

With a host dielectric constant of 1.09 this resulted in 
dyadic medium parameters [5] 

£xx 

tzz 

6 
I 

xx 

zz 

l.OlxlO-11   =   1.14e0 

1.06X10-11   =   1.20e„ 

-w2.54xl0"16 

w2.55xl0"16 

for the anisotropic constitutive relations 

D    =    e-E + jl-B 

H   =   jV-E + ^B. 

These have been rigorously derived [5] and are in the 
so-called Post-Jaggard form [16]. 

_l    l_-l    i--i    J--1    J--1    J- 

i  m  n  n  r~i  r 

Figure 7: Disklike building element of the crystal. The 
thick lines are situated in front of the plane of the paper 
and the thin ones at the back. 

At 3 GHz this medium would yield a rotation of 6.5 
degrees per metre of the polarization plane of the electric 
field. The rotation is counter clockwise when viewed in 
the direction of propagation. The parameters given here 
were used to predict the rotation inside a waveguide. 
Agreement of the order of 13% was obtained between 
predictions and measurements, which is good when con- 
sidered in the light of probable sources of error [17]. 

7    Conclusion 

This paper has discussed the computation of the mul- 
tipole moments of an electrically short chiral hook. To 
obtain the desired result, the charge distribution induced 
by a uniform electric field was required. It has been ob- 
tained via a quasi-static boundary value problem, which 
was solved using a variety of moment method formula- 
tions. A rigorous body of revolution MoM formulation 
has been presented. Results computed using this BOR 
MoM code converge rapidly and these computations have 
been used as a base-line for numerical investigations on 
thin wire MoM formulations. 

The problems arising with the thin-wire formulation 
for a structure that is on the borderline of "thin" have 
been discussed. It has been shown that because the ob- 
servable required from the code is the moment of the 
charge, the charge must be computed accurately at the 
ends — precisely where the thin-wire MoM formulations 
are expected to be least accurate. Results have been 
presented that show that the conventional thin-wire for- 
mulation does not properly converge for these structures. 
It has been demonstrated that a moderately straightfor- 
ward extension to the thin-wire approach, viz. adding an 
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additional basis function to represent the end-cap, gives 
sufficiently accurate and converged results (within 3% of 
the BOR MoM result). The code used the same basis 
and testing functions, i.e. a Galerkin MoM formulation. 

The emphasis of this paper has been the accurate com- 
putation of multipole moments. These moments can be 
used to predict medium parameters in the low-frequency 
regime as briefly described in section 6. The multipole 
moment calculations are not valid for higher frequencies, 
but at these frequencies the medium constructed with 
the chiral elements described here may start behaving 
more like a diffraction grating than a continuum. The 
predicted parameters have been experimentally verified. 
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A    Quasistatic MoM formulation 

In this appendix we formulate the quasistatic MoM. In 
the quasistatic formulation the static free-space Green's 
function is used. Thus the charge is the solution of the 
integral equation 

$(r) = $,-(r) + / 
Jv 

p(r>) 
v 4ire0\r -r' 

:dV (4) 

where $;(r) is the applied potential in the absence of the 
scatterer and <£(r) is the boundary value for the potential 
over a given boundary area. In this paper the applied 
field is uniform; for example $;(r) = -z for a ^-directed 
field. 

In the method of moments the surface charge distribu- 
tion, p(r), is modelled as the sum of a given set of basis 
functions, bn(r), defined on the surface, S, 

P(r) =^2anK{r) (5) 

with the unknown coefficients, a„, determining the dis- 
tribution.   The unknown coefficients can be found by 
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solving Eq. (4) to yield an approximate charge distribu- 
tion. This is done by multiplying the equation with a 
number of testing functions i,-(r) and integrating over 
the area S. Using N basis and N testing functions this 
results in a matrix equation 

mn 

ma 

mNX 

mm 

mi, 

m^n 

miN 

m,-jv 

mNN 

Vi 

ax 

0-n = 
Vi 

aN 
. VN 

where 

Vi    =   4TT£0   / t<(r)($(r)-Sj(r))da       (6) 

f   [ U{r)bn{r') J 
min    =    Is Is     \r-r'\    dada (?) 

such that the calculation of m,„ involves four integra- 
tions in total. The inner integral yields the potential due 
to bn(r'), while the outer integral samples the potential 
over a given region. 

For a conducting body the boundary potential, $(r)> 
is a constant. For a thin wire, symmetrical about the 
origin, $(r) = 0 by inspection. In the case of the chiral 
structure this constant is, however, unknown. As this 
introduces another variable in the MoM formulation an- 
other equation is necessary. This condition is provided 
for by requiring that the total charge on the wire be zero. 

B    The BOR MoM formulation 

The BOR MoM formulation requires careful attention to 
certain details and this appendix addresses the compu- 
tation of the potential and the associated singularity for 
the self terms of the BOR MoM matrix. 

Here these functions are independent of <j> and can be 
written as bn{z) along the dipole side and bn(r) on the 
endcap. Because of the non-uniform segmentation, the 
potential of each basis function must be computed — 
translational symmetry cannot be used — so it is impor- 
tant to do this efficiently. 

The applied potential is required to produce a uniform 
z-directed field in the absence of the wire thus $j(r) = 
—z. As the boundary condition the wire surface must 
be an equipotential surface. With the structure placed 
symmetrically about the z-axis the boundary potential 
is zero. Thus the excitation vector is 

Vi = 4TT€, , / bi{l)z da 

where / is a parameter that can be either zoxr depending 
on where the testing function is located. As discussed 
earlier, the testing functions are the same as the basis 
functions and thus denoted bi{T). 

The matrix entry m;n for basis functions along the 
dipole side was determined from the integral 

Js Js 

bi(l)bn(z')ar 

s Js y/(z - z')2 + r2 + a2 - Ira cos <j>' 
dz' d<f>' dl d<t> 

where / is as defined before. The inner z' integral was 
done analytically and the ^'-integral numerically. The 
result is proportional to the potential caused by bn(z) 
and is independent of <j> — thus the outer <f> integra- 
tion merely results in multiplication by 2ir. The outer 
/-integration was also done numerically. 

The rain entry for the basis functions on the cap was 
calculated from the integral 

Js Js 

bi(l)bn(r')r'r 

s Js \/(z - z')2 + r2 + r'2 - Irr' cos </>' 
dr d<j> dl d<f> 

(8) 
where the inner r'-integral was again algebraically eval- 
uated and the (/»-integral numerically. Here again the 
outer <j> integral resulted in multiplication by 2x and the 
outer /-integration was also done numerically. Note that 
z' = ±L/2 on the two caps respectively. 

In both cases there is a singularity at <f>' = 0, when 
the testing and basis functions coincide (the self-term 
in MoM parlance). Consider, for example, the inner in- 
tegral when calculating the self-term for the innermost 
basis function on the cap — 6.RO in Fig. 2. If the length 
of this basis function in the r-direction is d, the basis 
function can be written as 

bm(r) 
d — r 

d 

and the inner integral in Eq. (8) becomes 

n Jo    Jo 

(d — r)(d — r') r' r 
dr' d<f>' 

Irr' cos <f>' 
dr' d<j>' 

d2\Jr2 + r'2 — Irr' cos </>' 

2 f fd       (d-r)(d-r')r'r 

Jo   Jo   d2y/r2 + r' 

r{-d~^  fT\r{Zrcos<f>' -2d) 

+ (d - 3r cos <j)')y/d2 + r2 -2drcos<j>' 

+ r (2r - 2d cos <j>' - Zr sin2 <f>') x 

r — r cos <f>' 
log 

d — r cos (j>' + y/d2 + r2 — 2dr cos ft 
d<f> 

where the symmetry of the <j>' dependence is utilised — 
the integral between 0 and 2x can be written as two times 
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the integral between 0 and ir. It is clear that the third 
term in the ^'-integrand will be singular at <j> = 0. This 
singularity, present at any value of r, can be removed by 
subtracting a term 

r(2r - 2d cos <j>' - 3r sin2 <j>') log(l - cos <j>') 

which can be integrated algebraically using8 

log(l - cos (f) d<f>    =    -7T log 2 
/o 

COS (j> \og(l — COS <f>) d<p     =      —7T 

/  sin2<6log(l-cos<^)^    =    |jr(|-log2) 
Jo 

after expanding the factors. The remaining integrand9 

contains a logarithm that is singular at r = d. At this 
value of r it is simplified to 

/* Jo 

I" Jo 

log 
d — r cos <j>' + y/d2 + r2 — 2dr cos </>' 

1 - cos<£' + v/2(l - cos <j>') 

1 + cos <j>' 
=    log- 

sin ^'(sin «£' + v/2(l + cos </>')) 

from which the singular log sin <j>' can be extracted and 
integrated analytically between 0 < <j>' < §. The remain- 
ing term is then integrated numerically (also between 
0 <</>'< f) and the original integrand integrated nu- 
merically between | < <£' < 7r. The analytic integration 
requires the further integrals 

/    log(sin (j>)d(j> 
Jo 

I    cos <^ log(sin 4>)d4> 
Jo 

/    sin2 «^ log(sin 0) d^> 
Jo 

-|log2 

-1 

|(1-log 4). 

This process unfortunately leads to the subtraction of 
a large component due to the analytic integration of the 
singularity from an almost equally large component due 
to the remaining numeric integral. Thus a few signifi- 
cant digits are lost and the numeric integration has to 
be done to a very high degree of accuracy. This prob- 
lem was overcome by dividing the singular component 
by Tr, the integration interval, and subtracting it as a 
constant from the integrand. Thus the two numbers are 
subtracted before the approximation caused by the nu- 
merical integration, requiring much less severe restric- 
tions on the accuracy of the numerical integration to 

8Calculated with Mathematica 2.0. 
9 Note that log a + log b = log ab. 

achieve the same final accuracy. The self-terms for the 
other segments result in similar singularities, which can 
be subtracted in a similar fashion. 

Numeric integration was done with Simpson's rule and 
halving the interval each time until the results had con- 
verged to within 10-3 of the last result. The convergence 
requirements for the inner integral had to be stricter than 
for the outer integral to converge properly, and 10~4 was 
chosen. The charge on the test case wire was calcu- 
lated by this technique using 40 segments on the cap 
and 44 along the axis. About four decimals of accuracy 
were used in the numerical integrations and the condi- 
tion number of the MoM matrix was sufficient to preserve 
this accuracy when inverting the matrix. 
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ABSTRACT. The paper describes an iterative approach to the 
computation of the electromagnetic scattering by isotropic, 
dielectric objects partially made of weakly nonlinear 
materials. The approach is started by using a perturbative 
moment-method solution based on the Sherman-Morris on- 
Woodbury formula. The nonlinearity is assumed to be of the 
Kerr type, i.e., the dielectric permittivity depends on the 
square amplitude of the electric field. The bistatic scattering 
width and the field distribution are computed for some test 
cases, in particular, for infinite cylinders coated and filled 
with nonlinear materials. The convergence of the medium is 
numerically evaluated and the results are compared with 
those obtained by the iterative distorted-wave Born 
approximation. 

1 INTRODUCTION 

An interesting perturbational version of the moment 
method [1] was recently proposed by Yip and Tomas [2]. The 
approach is aimed at determining the electromagnetic 
scattering by a slightly perturbed scatterer, after a moment- 
method solution for the original unperturbed scatterer has 
already been obtained. The method applies the Sherman- 
Morrison-Woodbury (SMW) updating formula and allows one 
to consider changes in both the geometry and the dielectric 
properties of the scatterer. The above method, called by the 
authors the UMoM, is one of the various perturbational 
methods that make it possible to avoid repeating a complete 
computation when several scatterers, only partially different, 
have to be considered in the scattering evaluation. An 
overview of these methods was presented by Newman [3], 
who also described an efficient combination of the moment 
method with Green's function. 

In this paper, the application of the UMoM, as 
proposed in [2], is the starting point for the development of an 
iterative approach to the computation of the electromagnetic 
scattering by nonlinear dielectric objects. The interest in 
evaluating the scattering by nonlinear dielectrics is generally 
related to the possibility of using them as coating materials, 
for example, in order to obtain apparatus for minimizing and 

maximizing scattering cross-sections in camouflage 
applications. 

Here the nonlinearity is assumed to be of the Ken- 
type, i.e., the relative dielectric permittivity depends on the 
square amplitude of the internal electric field. As long as the 
nonlinearity is weak, as for most of nonlinear materials [4], 
the main effect of the nonlinearity is a modification to the 
field distribution at the frequency of the incident field, 
whereas the process of higher-harmonics generation may be 
neglected. Moreover, if the nonlinearity is weak, from a 
perturbation point of view, one can assume the effective 
dielectric permittivity to be approximated by writing it in 
terms of the linear field. This was done by the authors in a 
previous work in which they computed the bistatic scattering 
width for a circular nonlinear cylinder by using an iterative 
approach based on the distorted-wave Born approximation 
[5]. The main limitation of this approach is related to the fact 
that the effective dielectric permittivity must be weak in order 
that the process may converge. This is a severe limitation, in 
that a nonlinearity can usually be considered weak but the 
resulting effective dielectric permittivity is not at all weak. 
The authors showed that, although the nonlinearity was very 
weak, it affected the bistatic scattering width in a significant 
way. 

If a nonlinear material is assumed to be only a 
portion of the scatterer considered, the UMoM can be 
successfully applied, as the weak nonlinearity can be viewed 
as a perturbation of the original scattering configuration. At 
this point, an iterative process is started by applying the SMW 
formula, or, in a simpler way, by using the approach described 
in [5], but, at the 0-th step, the linear field (distorted-wave 
Born approximation) is replaced by the field obtained by the 
UMoM without iterations. 

In the following, the mathematical formulation of the 
approach is provided. Some test cases are described that 
involve coated cylinders of circular and irregular cross- 
sections. We consider infinite cylinders illuminated by 
transverse-magnetic waves. As V-E = 0, E being the electric 
field vector, the problem reduces to a two-dimensional scalar 
one, for which the notation is simplified. 
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MATHEMATICAL FORMULATION 

Let us consider an infinite dielectric cylinder of 
arbitrary cross-section, with the cylindrical axis parallel to the 
z axis (Figure 1). The cylinder is illuminated by a time- 
periodic transverse-magnetic electromagnetic field, for which 
Einc(x,^,z,t) = Ez

inc(x,y,t)z and Hinc(x,^,z,t) = Hx
mc(x,y,t)\ + 

Hy
mc(x,y,t)y. The propagation medium is assumed to be 

lossless, homogeneous, and characterized by \i0 and s0. 
Suppose the region S2 to be made of a weakly nonlinear 
material (isotropic and nonmagnetic) whose dielectric 
permittivity is of the Kerr type [6]: 

Cylinder Cross-Section, S 

£ni<X>0 = SofoO^)+ 4l£z0y>t)|2] (1) 

where e2(x,y) is the linear part and ij, is a nonlinear parameter. 
The medium of the region S2 

IS assumed to be inhomogeneous 
both due to the nonlinearity and in the limit Ez(x,y,t) -> 0 [7]. 
To simplify the notation, let us assume that also the dielectric 
permittivity of the region Sj is expressed by (1), with £ = 0 
and s2(x,y) replaced by Z\(x,y). 

In order to devise an iterative approach to the 
computation of the electromagnetic field distribution, let us 
compute the scattering by an inhomogeneous linear scatterer 
of section S = Sj u S2, obtained by setting £, = 0.0 
everywhere. The electric field integral equation (EFIE) for this 
problem can be expressed as [8]: 

%) = *W) - j(k0
2/4)Js[elin(*j;) -IJOVJO 

xH0(2\k0p)dx'dy' (2) 

where &(x,y) and ^-(x.y) are the space-dependent parts of the 
incident and the total electric fields (the time-dependence 
exp{jmt} is assumed and suppressed); i/0(

2)(k0p) is the 
Hankel function of the second kind and the zero-th order, p is 
given by: p=[(x- x')2 + (y -y'j1]112, and slin(x,j>) = Z\{x,y) if 
(x,y) e Sh snn(x,y) = z2(x,y) if (x,y) e S2, By applying the 
Richmond formulation [9] to (2), the problem solution is 
reduced to solving the following algebraic system of linear 
equations: 

[G]$l = $| 

where: 

(3) 

&: unknown array of dimensions P x 1, P being the number 

of subdomains. The pth element of Ol is given by: <|) = 

flj'^pjp),   where   (xp,yp)   is   the   center   of the pth 
subdomain; 

<S>}: excitation array of dimensions P x 1 whose elements are 

given by: (j)p= <Pi(1)(xpj'p),     p = 1,...,P; 

[G]: Green's matrix of dimensions P x P whose generic 
elements are: 

S2 

(Nonlinear) 

(Linear) 

Fig. 1    Problem geometry. 

gpq = G/2)[slin(xq,jq) - l][7rk0aqJrY1(
2)(k0«q) - 2j] 

if p = q 
gpq = (i/2)[£iin(xq,^q)-l]7ikoaqJ1(koaq)Jr70(2)(koppq) 

if p *q 
where ppq = [(xp - xq)2 + (yp - ^q)2]1/2 and aq = 
(5q/Tt)1/2i S„ being the area of the 9-th subdomain. 

Let us now apply the UMoM, considering the 
perturbed configuration obtained by computing the dielectric 
permittivity in (1) in terms of the linear field distribution. If 
we use the same scheme as for the Richmond formulation, the 
problem turns out to be expressed by: 

(4) 

if 

[G']Onl = $l 

where: 
Onl: unknown array of dimensions P x 1; 
[G']: Green's matrix whose generic elements are: 
gpq = Q/2)[znl(xqyq) - l][7ük0aq//1(

2)(k0aq) - 2j] 
p = q 

Spq = G/2)[enl(xq,.yq) - l]7tkoaqJ1(k0aq)//o(2)(k0ppq) 
if   p*q, 

As the geometrical properties are kept unperturbed and only 
the electric properties are made to change, the matrix 

[AG] = [G]-[G] (5) 

has only P2 non-zero columns, corresponding to the 
subdomains with perturbed characteristics. For the solution of 
(4), the UMoM uses the SMW updating formula [10]: 

[G']"1 = [G]-1 + [G]-![U]([I] - [V]T[G]-1[U])-1[V]T[G]-1(6) 

where [U] and [V] are matrices defined in the following and 
[I] is a P2 x P2 identity matrix. The problem is the same as for 
case (a) in [2], so the identification of matrices [U] and [V] is 
quite immediate. In particular, U is a P x P2 matrix whose 
columns are the P2 non-zero columns of [AG], and [V] is a P2 

x P matrix whose elements are given by: vy = 8jj, where 5y 
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denotes the Kronecker symbol. It follows that: 

[AG] = [U][V]T (7) 

where [V]T is the transposed matrix of [V]. The use of the 
SMW is discussed in several papers and books (see the 
exhaustive list given in [2]; in the Appendix ofthat paper, the 
formula is derived for completeness). A discussion of the 
convergence of the series on which the SMW formula is 
based, in terms of the matrix eigenvalues, can be found, for 
example, in [10]. 

At this point, the nonlinear problem can be solved in 
two ways. Once the first-order approximation has been 
obtained, one can start the iterative process by applying the 
UMoM recursively, according to the following scheme: 

be satisfied for a weak "excess" of permittivity. Analogously, 
in the case of nonlinear scatterers, we can expect the process 
to converge for weak nonlinearities only. Unfortunately, in the 
present case, convergence depends on various factors: the 
linear part of the dielectric permittivity, the nonlinear 
coefficient, and the incident electric field. Unlike linear 
scattering, for a monochromatic plane-wave TM illumination, 
the amplitude, phase and frequency values contribute to the 
process convergence or divergence. At present, this makes it 
impossible for the authors to define a criterion that establishes 
whether convergence can be reached or not, for given 
perturbed and unperturbed configurations. In the Results 
section, however, this aspect will be discussed by way of 
several numerical examples. 

To this end, let us define the following residual error: 

• At step k = 0, set: 

$fc=0 = $t.  Sn^jGCpjJp) = EotejinCitpj/p) + ^|2]; 

[G*=0] = [G] 

• At step k, assume: 
®k=[GkY1& = {[Gk-1]-1 + 

+ [G^rifUKPHVlTfG*-1]-1 [U])-1 [VRG*-1]-1}; 
k ? 

snl(ifc)(V'p> = ^o&WV'p) + ^p n 

In a simplified version of the approach, the nonlinear solution 
obtained by approximating the solution for Onl in (4) by the 
SMW formula is used to start an iterative process expressed 
by(yfc>l): 

*' (x,y) = <P(x,y) - j(k0
2/4)Js[(Elin(x',j')-l) + 

5R{A:+l}[dB] = lO/og^S"1 Js { ^k+1(x',yr) - «VoO + 

+ j(k02/4) Js [eju,v>l]*£+1(«,v) H0(2\k0Q du dv }) (10) 

The approach is assumed to be convergent if SR{£} -» 0, as 
£-»oo. 

3 NUMERICAL RESULTS 

Some test cases are now described. In the first 
example, a homogeneous dielectric cylinder (EJ = 1.8), coated 
with a nonlinear layer (s2 

= 1-1)» was illuminated by a unit 
uniform plane TM-wave propagating along the x axis (Figure 
2(a)). The radii of the two cylinders were such that k0aj = 
0.4971 and k0a2 

= O.671. Figure 2 gives the values of the 
bistatic scattering width (BSW), defined as [11]: 

+ ^[_l(x^\2]<X>tk_1(x',yr)H(P\koP)dx'dy' (8) Wft) [dB] = I01ogn [lim27up 
W(x,y)-<3?'(x,y)\2 

\&(x,y)\2 ]   (11) 

where <&, _()(x,y) is computed, in an approximate way, by (4) 

and (6). This simplified version constitutes an improvement 
over the distorted-wave Born-approximation iterative 
approach proposed in [5]. In a discretized form, the above 
iterative process can be written as: 

ifk *«.* -j(k02/4)E   [6Iin(Wp) + ^*|2]<|(* 
p=l 

xi/0(2)(koPp)Asp 

where pD = [(x - xj- + (y -yS}m and q = 1,.., P. 

(9) 

In a linear case, the possibility of applying the 
UMoM is related to the convergence of the series for the 
SMW formula, which in turn is related to the matrix 
eigenvalues. This sets rigid limits on the validity of the 
approach for slightly perturbed geometries. When the 
scatterer's geometry is unperturbed, the above condition can 

The values of the nonlinear parameter were assumed to be (a) 
£ = 0.01, (b) \ = 0.1, and (c) E, = 0.8. The linear values (^ = 
0.0) are also provided. They were analytically computed by 
using the recursive Richmond formula [12] (slightly corrected 
in [13]). For comparison, the figure also gives the values 
obtained by applying the iterative distorted-wave Born- 
approximation (DWBA) approach [5]. It can be noticed that 
the behaviours for % = 0.01, corresponding to a very weak 
nonlinearity, and for \ = 0.1 are similar. For \ = 0.8, the 
iterative DWBA solution did not converge, so only the first 
two iterations are shown. As expected, the iterative UMoM 
always converged very fast (it should be stressed that the 
relative high permittivity of the internal cylinder made the 
convergence of the DWBA problematic, even for very weak 
nonlinearities). It is worth noting that, for the considered 
values of the field intensity and of the scatterers' dimensions 
most  of the   chosen  values   for   E,  correspond  to   weak 
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Fig. 2 Bistatic scattering width of a circular cylinder (8j = 1.8) coated with a nonlinear layer (s2 = 1.1, k0<jj = 0A9n; k0O2 = 0.6re, P 

= 121, P2 = 40). Comparison between the iterative approaches using the distorted-wave Born approximation (DWBA) and the 
UMoM. (a) I = 0.01; (b) \ = 0.1; (c) \ = 0.8; (d) Z, = 0.8, simplified iterative version (relation (8)). 

nonlinearities, in the sense the resulting scatterers are such that 
the obtained scattering distributions (predicted by the assumed 
nonlinear electromagnetic model) can be regarded as slight 
perturbations of those of the corresponding linear cases. 

The simplified version of the proposed approach 
(relation (8)) was also applied. As an example, Figure 2(d) 
gives the BSW value for £, = 0.8. The solution converged, 
even though rather slowly, whereas, for the other two values 
of %, the behaviours were similar to that of the iterative 
DWBA approach. 

Figure 3 gives, for the same values of the nonlinear 
parameter, the amplitude of the total electric field along the x 
axis [y = 0]. Finally, Figure 4 shows the plots of the residual 
errors (relation (10)) for different numbers of iterations. As 
long   as   the   nonlinearity   was   weak   (and   hence   the 

configuration was slightly perturbed), the iterative UMoM 
approach converged independently of the linear permittivity. 
This is confirmed by Figure 5, which gives the BSW values 
for a multilayer cylinder equal to that in the previous example, 
but with an internal dielectric permittivity equal to 5.0. In this 
example, the nonlinearity was partially blinded by the high 
value of the nonlinear permittivity. The simplified version of 
the approach (which exhibited obvious limitations similar to 
those of the DWBA approach) did not converge 

(SR(1) = -36.2, <R(2) = -31.3, SR(3) = -24.7, 5R(5) = "2-0, 5R 
(8) = 40.5). 

In another example, we considered the effects of the 
ratio between the wavelength and the scatterer's dimensions by 
considering a multilayer cylinder with the cross-section shown 
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Fig. 3 Scattering by a circular cylinder (ej = 1.8) coated with a 
nonlinear layer (s2 = 1.1, k0a] = 0.49TC; k0a2 

= 0.67t, P = 
121, P2 = 40). Amplitude of O^y). Comparison between 
the iterative approaches using the distorted-wave Born 
approximation (DWBA) and the UMoM. (a) \ = 0.01; (b) % 
= 0.1; OK = 0.8. 
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Fig. 4 Residual  errors   5R{£}   (dB)  for  different  numbers  of 
iterations. Simulations in Figs. 2 and 3. 

Fig. 5 Bistatic scattering width of a circular cylinder (S] = 5.0) 
coated with a nonlinear layer (s2 = 1.1, \ - 0.1, k0aj = 
0.49TI; k0a2 = O.671, P = 121, P2 = 40). Iterative UMoM. 

in Figure 6(a). The internal layer was linear (sj = 1.5), 
whereas the external was nonlinear (s2 

= 1-5, % = 0.2). The 
illumination conditions were the same as in the previous 
examples. The BSW was computed by using the iterative 
UMoM for (a) k0/ = 0.48«, (A) k0/ = 0.8*, and (c) k0/ = 1.2n. 
The linear values (E, = 0.) are also given in Figure 6, and the 
residual errors are given in Table I. 

A linear circular cylinder (sj = 3.0) with a nonlinear 
nucleus (S2 = 3.0, \ = 0.2) was then considered. The radii of 
the two cylinders were such that k0aj = 1.277t and k^ = 

1.63n. 
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n/2 3/2% 2x 

ikj /c=1 k=2 k=Z k=A k=5 k=6 k=7 k=8 

0.487t -20.4 -44.6 -66.2 -86.5 -103.2 -121.1 -125.5 -126.0 

0.8T: -15.9 -36.1 -51.1 -67.7 -81.8 -95.0 -109.2 -121.7 

1.2n -13.3 -28.6 -45.1 -58.9 -75.6 -88.5 -101.0 -111.9 

Table I.   Residual  errors  5R {k}   (dB)  for  different  numbers  of 
iterations. Simulations in Fig. 6. 

Figure 7 gives the BSW values computed at various iteration 
steps, and Table II provides the values of the residual errors. 

Fig. 7 Bistatic scattering width of a circular cylinder (sj = 3.0) 
with a nonlinear nucleus (s2 = 3.0, \ = 0.2, k0aj = 1.277t; 
k0a2 = 1.6371, P = 81, P2 = 49). Iterative UMoM. 

-35.0 

(UMoM) " 

re/2 3/2it 2it 

Fig. 6     Bistatic scattering width of a cylinder of irregular cross      Fig. 8      Bistatic scattering width of two separate circular cylinders 
section (s, = s2 = 1.5, \ = 0.2, P = 132, P2 = 52). (a) kQ/ = (E) = g2 = 4.0, % = 0.2, k0a, = kQa2 = 0.82T:;   P = 162, 
0.48TC; (b) k0/ = 0.87t;(a) k0/ = 1.2JC. P2 = 81). Iterative UMoM. 
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k 1 2 3 4 5 10 15 20 

- -11.1 -19.7 -25.3 -33.0 -39.1 -72.9 -107.1 -119.0 

Table II. Residual   errors  5R{£}   (dB)  for  different  numbers  of 
iterations. Simulations in Fig. 7. 

Finally, the plane-wave scattering by two equal, 
separate, homogeneous, circular cylinders was considered (sj 
= s2 = 4.0). The cylinders' radii were such that k0aj = k0a2 = 
0.827c, and the distance between the two centers was such that 
k0<f = 1.271. As a perturbed configuration, one of the two 
cylinders was assumed to be nonlinear, with % = 0.2. Figure 8 
gives the BSW values computed for this configuration at 
various steps. The linear values (numerically computed) are 
also given for comparison. 

4 DISCUSSION AND CONCLUSIONS 

In this paper, the perturbational UMoM has been 
applied to develop an iterative approach to the numerical 
computation of the electromagnetic scattering by dielectric 
cylinders of arbitrary shapes, coated with layers made of 
weakly nonlinear materials (of the Kerr type). Some test cases 
have been described, including multilayer circular cylinders 
coated or filled with nonlinear dielectrics, under TM 
illumination conditions. A comparison with data obtained by 
the iterative DWBA has been made. 

The approach converged very fast as long as the 
nonlinearity was weak, corresponding to a slightly perturbed 
configuration. For example, in the example shown in Figure 7, 
the approach did not converge for % = 2.0. But this 
nonlinearity seems too high for the considered simplified 
electromagnetic model of the nonlinear process (neglecting 
the harmonics generation) to be realistic [14]. 

Future work will be devoted to applying the 
proposed iterative approach to perturbed geometries for which 
the nonlinearities, although weak, are such that the harmonics 
generation cannot be neglected. As shown in [14], each field 
component can then be expressed in integral form by coupling 
coefficients that take into account the harmonics mixing. 
From a perturbation point of view, the nonlinear field 
provided by the UMoM could be used to start an iterative 
process by which the higher-order harmonics (initially, the 
third-order harmonic, if a Kerr-like nonlinearity is assumed to 
be under monochromatic illumination) are first computed in 
terms of the field of the fundamental frequency, and the 
effects of the higher-order harmonics on the effective 
dielectric permittivity are then recursively evaluated. 
Convergence will of course remain an issue. 

The approach has so far been applied only to 
dielectric infinite cylinders under TM illumination. For these 
configurations, the Richmond formulation is quite effective. 
Extensions to the TE-wave case and to the three-dimensional 

case are conceptually feasible, even though more accurate 
testing and weighting functions should be used for the MoM 
implementation. 

The UMoM considered here is not restricted to 
dielectric configurations (the test case described in [2] 
actually concerns perfectly conducting scatterers). Therefore, 
the approach could in principle be applied to conductive 
objects coated with nonlinear materials. To this end, MoM 
solutions suitable for heterogeneous structures made of 
dielectric and conductive materials should be used. 
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ABSTRACT. A moment method solution is presented 
for the full-wave electromagnetics analysis of multi- 
layered planar structures of arbitrary shape. The 
mathematical formulation is based on the spectral 
domain integral equation and the Galerkin's testing 
procedure. The method is applied to shielded MMIC 
as well as radiating systems in the open environment. 
The inclusion of vertical current elements in the 
solution enables the method to analyze structures 
with vias and air bridges in both packaged and open 
environments. Since a periodic structure approach is 
used in the formulation, extension to the analysis of 
infinite and finite antenna arrays becomes rather 
straightforward. Simulated results, obtained from our 
electromagnetic simulator "Microwave Explorer," 
are presented and compared with the available data 
to demonstrate the versatility and the accuracy of the 
method. The numerical results presented include S- 
parameters and far field data. 

I Introduction 

The integral equation formulation in spectral 
domain has become the preferred technique for the 
analysis and simulation of components and 
discontinuities in microwave and millimeter-wave 
circuits and radiating systems [1]. This method is the 
most rigorous and efficient to perform a full-wave 
analysis of 3-D planar circuits. A typical 3-D planar 
structure is shown in Fig. 1. 

We have developed an efficient and accurate 
numerical implementation for the analysis of passive 
microwave circuits and antennas based on an 
extension of the previous work reported in [2]. The 
periodic structure approach is utilized to perform 
efficient analysis of packaged MMIC's and 
interconnects. This approach has been modified and 
applied to structures in open environment. The 
modifications are such that the numerical efficiency in 
open environment analysis is retained, while the 
solution represents the results of an isolated unit cell 

analysis in the absence of the side walls and the top 
cover plate. Linear phased arrays can be easily 
analyzed by making use of a transformation on 
spectral variables. 

Fig. 1: A typical multi-layered 3-D structure backed by a 
ground plane. 

The article consists of an overview of the 
formulation in the next section and then the simulated 
results. Presented simulations are intended to 
demonstrate sample practical problems which can be 
analyzed in Microwave Explorer. 

II Theory 

In this section, an overview of the formulation 
and the numerical solution which is used in 
Microwave Explorer is presented. Figure 1 shows a 
multi-layer structure in a package. The structure can 
consist of an arbitrary number of homogeneous 
dielectric layers with different parameters. Metalized 
traces can run in between layers or from one layer to 
another through vias or vertical strips. Depending on 
whether the circuit to be analyzed is a packaged 
MMIC or a radiating system such as a patch antenna, 
there could be conducting walls on the top, bottom, 
and the sides. 

The dyadic spectral Green's function for a 
stratified medium of infinite extent is derived by using 
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a versatile approach in which a transmission line 
analogy is employed for each layer [3]-[4]. In this 
method, fields are decomposed into TE and TM 
components and the parameters of the transmission 
line model for each layer take on different values for 
each mode. This method offers versatility in 
computation of the Green's function of structures with 
arbitrary number of layers. The dielectric and 
magnetic losses of each layer are also included in the 
Green's function. This is done automatically through 
the lossy characteristic impedances for the 
transmission lines corresponding to each layer and for 
each TE and TM component. 

The expressions for a multi-layered structure 
Green's function are too lengthy to include in this 
article. However, as an example, we assume a 
dielectric layer backed by a ground plane and present 
some of the details regarding the spectral Green's 
function. Assuming that there are only transverse 
currents present in the problem, the dyadic Green's 
function can be written as 

G(kx,ky,h)-- 
xxGxx{kx,ky,h)   3yGxy(kx,ky,hJ 

yxGyx(kx>ky,h)  yyGyy(kx>ky,h) 

(1) 
where 

kl ky 
Gxx = -(— QTM 

+ 77 QTE) 
kp 

Gyx = ~ 

Kp 
(2) 

^(QTM-QTE)        (3) 

1 
/Cp 

Gyy       \   2 HTM ~*~   2 &TE) (4) 

Here kl = kl + k2
y  and kx and k y are the spectral 

variables.   Qm and QTE are the equivalent TM and 

TE impedances seen at the dielectric junction looking 
into the two transmission lines representing the free 
space and the dielectric layer. The characteristic 
(wave) impedances for each region is given by 

_r\0kz 
ZTM — ' 

;TE 

Erko 

kz 

(5) 

(6) 

where ko and T]0 are the free space wave number and 

impedance, respectively. £rand \ir represent the 

relative permittivity and the permeability of the free 

space or the material layer.   While complex £r and 

\ir    account   for   material   losses,   an   imperfect 

conducting ground plane affects the input impedance 
looking into the transmission line which represents 
the dielectric layer. 

The   electric   field   integral   equation   (EFIE) 
formulation of the problem is given by 

nx[El(x,y,z)-ZsJ(x,y,z)] = -nxEi(x,y,z) 
(7) 

where n is the normal vector to the metalized 

surfaces, E1 is the incident field , Zs is the surface 

impedance, and J is the surface current density 

which can have transverse Jt and vertical Jz 

components. The electric field due to the surface 

current Es is given by the integral 

Es=H\G(x,y,z,x',y',z')- 
(8) 

J{x',y',z'Wdy'dz' 

where G is the dyadic Green's function for a general 
multi-layer structure. 

Note that metalization losses are accounted for in 
Eq. (7). If a perfect or lossy conductor top or bottom 
plate or both are present, the Green's function will 
satisfy those boundary conditions. For packaged 
microwave circuits, where the circuit is enclosed in a 
rectangular box, the boundary conditions on the side 
walls are satisfied by employing a periodic structure 
approach. 

The method of moments is utilized to solve Eq. 

(7) for the unknown surface electric current J . The 
electric current in transverse direction is 
approximated by rooftop basis functions in the X and 
y directions [5].   For vertical current elements of 

vias and air bridges, attachment mode basis functions 
are employed to guarantee the continuity of the 
current at the junctions [2]. Applying the Galerkin's 
method and testing the sides of Eq. (7) results in a 
linear system of equations which in matrix notation is 
given by 
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z„   zrz 
(9) 

In this equation the right hand side is the 
excitation vector defined by port voltages and the 
vector on the left is the unknown current coefficients. 
The moment impedance matrix Z contains the 
interaction of the basis functions and is symmetric. A 
fast Fourier transform (FFT) algorithm is used in 
computing the elements of the moment matrix. This 
has resulted in a significant improvement in matrix fill 
time. 

After solving Eq. (9) and obtaining the current 
distribution, S-parameter data is extracted by utilizing 
an accurate deembedding procedure which is detailed 
in [2]. In open environment analyses, the radiated 
power and far field data are computed through the 
use of equivalent magnetic currents on a fictitious 
surface above the structure [7]. Assuming that this 
fictitious surface in located at z = ho > one can show 
that the far fields are related to the Fourier transform 
of the transverse components of the electric field by 

Ee = cos §Ex(kx,ky,ho) + sin §Ey(kx,ky,ho) 

(10) 
£4, =-cos 0x 

[sin §Ex(kx,ky,ho)-cos § Ey(kx,ky,ho)] 

(11) 

where        represents   the   two-dimensional   Fourier 
transform. 

An issue of prime importance in computing the 
moment matrix elements is the proper treatment of the 
poles of the spectral Green's function [6]. In the 
implementation of Microwave Explorer, these poles 
are extracted and accounted for through analytical 
integration in two-dimensional spectral space. The 
numerical results have remarkable accuracy and 
stability due to proper treatment of the Green's 
function poles. 

Ill Simulation Results 

In this section we will present simulated results 
for structures in packaged (MMIC) and open 
environments (antennas). These examples are 
intended to portray versatility and accuracy of 
Microwave Explorer. The first two circuits are 
analyzed using the packaged environment Green's 
function, i.e. inside a metallic enclosure. 

Coplanar Waveguide Filter 
The first circuit we shall consider is a coplanar 

waveguide (CPW) band reject filter as shown in Fig. 
2. This filter was designed to have no transmission at 
18 GHz and good transmission at 36 GHz. Air- 
bridges are used to equalize the potential of the two 
ground planes in order to eliminate the coupled 
slotline mode. At f = 18 GHz the stubs present short 
circuits, thereby allowing no transmission at this 
frequency. The stubs present open circuits at 36 
GHz, thereby allowing good transmission. 

1420 

50 170 

100 

100 

460 

Portl Port 2 

'Airbridge, L=350,H=3, 

All dimensions are in^im 
£^9.8, h=633xm  

Fig. 2: The coplanar waveguide band reject filter. 

Fig. 3 shows the comparison between the 
modeled and measured Sn of the CPW filter from 10- 
40 GHz. The results show an excellent agreement 
with the measured results [8]. This circuit validates 
the approach used to model coplanar waveguide 
circuits in a packaged environment. In addition, it 
also shows the ability of Microwave Explorer to 
deembed coplanar port discontinuities. 
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Fig. 3: Magnitude of Sn of the filter shown in Fig. 2. 

Bandpass Filter 
Figure 4 shows the layout of a bandpass filter, 

which is taken from the MIC Simulation Column [9]. 
The circuit is built on a GaAs substrate of thickness 
125 ]I m  and   dielectric   constant   of   12.9.      The 

dielectric loss tangent of the substrate is 0.0005. The 
metal has a thickness of 4 (I m and conductivity of 

7 
4.9x10   Sm.  The circuit has via pads of dimension 
175 X 175  |X m with the via holes extending to the 

ground plane.    All the physical dimensions of the 
filter are shown in the figure.   The circuit has two 
ports which are terminated with 50 Ohm loads. 

175 xlll 
VIAPAD  -• 

- 200 —; loo r— 

dimensions are in microns 
substrate height, h = 125/jm 
dielectric constant, s = 1Z9 

conductor thickness, i =4^m 

bulk conductivity. cr=4.9xl07Sm 
loss tangent, tg£=0.0005 

c 

Fig. 4: The bandpass filter and its dimensions 

The reflection coefficient and the transmission of 
the filter are plotted in Fig. 5 from 10 to 20 GHz. The 
response of the filter agrees well with the results of 
other electromagnetic simulators as reported in [10]. 
This circuit demonstrates the capability of Microwave 
Explorer to model the metal and dielectric losses 
accurately. 

• ■     , 

; :        iST I 

~- °- 

D     5-0' 

- i 1 .   \ 
i     ■ 

1        '   \ 
3O.0- . 1 1 1        ■ 

-EB" * 

Fig. 5: Magnitude of Sn and S21 of filter shown in Fig. 4. 

Patch Antenna 
The rectangular microstrip patch antennas are 

among the most popular printed circuit antennas. In 
this example we consider an edge fed patch antenna 
whose dimensions are shown in Fig. 6. The substrate 
is a dielectric with8r =2.213 and thickness of 

0.794mm. Fig. 7 shows the reflection coefficient 
(Su) of this antenna between 5 and 20 GHz. It is 

observed that a good match is obtained at about 7.6 
GHz due to the shorter edge being resonant. Also 
shown in Fig. 7 is the measured results as reported in 
[7]. The two results agree very well. 

I Ret plane 

I 8.169 mm] 

j 12.448 mm | 

4 1 16.p mm | » 

Fig. 6: Dimensions of edge-fed rectangular patch 
antenna 
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3 l       ft 

w -       - 
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I 
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Fig. 7: Magnitude of the reflection coefficient (Su) of the 
rectangular patch antenna of Figure 6. 
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The far field generated by this antenna is 
demonstrated in Figs. 8-a and 8-b. Note that the 
ripple in cross polarization in Fig. 8-a is due to the 
long feed line (115.6mm) used in the simulation. In 
fact Microwave Explorer does not need long feed 
lines to excite circuits. The accurate deembedding 
algorithm which is used in Microwave Explorer 
obviates the need for long feed lines. Marks 
(X and +) in Fig. 8 represent the measured data 
obtained from Fig. 4 of [7]. The agreement is very 
good. Note that in [7] the elements of the moment 
matrix are evaluated through direct integration. 
Microwave Explorer uses EFT to obtain these 
interactions which leads to a superior speed 
performance. 

Figs. 8-a, 8-b: Radiation pattern of the antenna of Fig. 6 
at 7.6GHz on a dB scale. Marks (X and +) represent 
the measured data [7] 
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Four-Element Linear Array 
The second example of open environment 

simulation is a four-element linear patch antenna 
array. It is made up of square patches all fed at their 
edges as shown in Fig. 9. The substrate which is 
backed by a ground plane has a thickness of 60 mils 
and is made of CuClad 250, with £ r =2.45 ± 0.04. 

JT1—J^U? 
"U_pn T" 

Ll =0.9175 in 
L2= 1.1095 in 
W= 0.0452 in 

Figure 9. The four element linear patch antenna array 

Antenna arrays are among problems that are 
considered very large and the computational cost of 
their simulation is usually very high. For this reason 
usually only one element of an array is analyzed and 
interactions between elements are either neglected or 
approximated for, e.g. [11]. In this example we 
analyze the entire circuit and therefore all the element 
interaction are automatically included in the solution. 

The center frequency of the array is found to be 
at 3.915GHz as shown in Fig. 10. The computed far 
field data in E-plane (<|)=0o) at the frequency of 

resonance is shown in Fig. 11. Note that there is a 
large difference between the relative amplitudes of 
Ee  (solid line) and E±  (broken line).   During the 

simulation it was found that around the resonance 
frequency the radiation pattern was fairly insensitive 
to the changes in frequency. Microwave Explorer 
predicted a gain of almost 13dB for the array. The 
data presented in Figs. 10 and 11 agree very well with 
the measured and simulated results of Figs. 8 and 7 of 
[11]. 
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Fig. 10: Magnitude of the reflection coefficient (Sn) of 
the antenna array of Fig. 9. 
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Fig. 11: Far field pattern in the E-plane ((j) =0°) of the 
antenna array of Fig. 9 at 3.915 GHz. Solid line 

represents the Ee data and broken line the E^ . 

Two-Port Asymmetric Antenna 
The structure for this two-layer problem is shown 

in Fig. 12. It consists of two orthogonal crossed 
dipoles which are electromagnetically coupled to two 
orthogonal microstrip lines. The length of the two 
dipoles are different and as a result a dual frequency 
operating mode is obtained. The feed lines are 
connected to 50 Ohm terminations. 
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Fig. 13: Magnitude of the S-parameters of the antenna 
shown in Fig. 12. 

The radiation pattern graphs for this structure at 
8.45 GHz are presented in Figure 14. Here the first 
port is excited while the second one is terminated to a 
50 Ohm load. Note that due to a good isolation 
between the ports at this frequency, the cross 
polarization level is low. This data also agrees 
favorably with the measured and calculated results in 
[12]. 

Fig. 14-a, 14-b: Radiation patterns at 8.45GHzfor co- 
(solid line) and cross-polarization (broken line). 
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Figure 12. Dimensions of the 2-port asymmetric antenna 

Fig. 13 shows the reflection coefficient of the 
ports (5nand S22) and the transmission between 

them (S12) on a logarithmic scale.   This data is in 

excellent agreement with the results shown in [12]. 
The resonant frequencies of the long dipole at 8.45 
GHz and the short dipole at 9.55 GHz are within 
0.5% of the values observed in [12]. As it is observed 
in the Figure, the incident power is largely radiated at 
the resonance frequencies of the dipoles and 
transmitted from one port to the other at 11.35 GHz. 
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IV Conclusions 

The article briefly addressed the underlying 
theory used in the development of Compact 
Software's full-wave EM simulator "Microwave 
Explorer." The use of FFT and other numerical 
techniques has resulted in a significant speed 
enhancement in the package. Simulated results for 
sample microwave and antenna structures were 
presented which demonstrate the versatility of the 
numerical techniques utilized in Microwave Explorer. 
The accuracy of the open structure analysis and the 
far field calculations, which have been recently added 
to the simulator, were verified against the measured or 
other available data. 

Function Singularities in a Stratified Dielectric 
Medium," Proceedings of the European Microwave 
Conference 1993, Madrid, Spain, September 1993, 
pp. 1000-1001. 

[ 7] S.C. Wu, N.G. Alexopoulos, and O. Fordham, 
"Feeding Structure Contribution to Radiation by 
Patch Antennas with Rectangular Boundaries," IEEE 
Transactions on Antennas and Propagation, Vol. 40, 
No. 10, October 1992, pp. 1245-1249. 

[ 8] Amjad. A. Omar, Y. Leonard Chow, "A solution 
of Coplanar Waveguide with Air-Bridges using 
Complex Images", IEEE Transactions on Microwave 
Theory and Techniques, Vol. 40, No. 11, Nov. 1992, 
pp. 2070-2077. 

Microwave Explorer belongs to a class of 
simulators which are referred to as 3-D planar. It is 
thus optimized to only handle structures which are 
planar in nature with homogenous dielectric layers. 
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