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FOREWORD 

This report is intended to be an easily understandable account of the Submarine 
Damage Mechanisms Project and, in particular, of a statistical methodology for 
modeling submarine hull rupture resulting from an underwater explosion. The project 
has been a collaborative effort conducted over several years by the Naval Surface 
Warfare Center at White Oak, MD, the Massachusetts Institute of Technology, and SRI 
International. The work has been sponsored by the Office of Naval Research Explosives 
and Undersea Warheads Technology Program and the Submarine Survivability 
Program. 

Earlier versions of this report were distributed to a number of individuals for 
review. For their interest and feedback the author is grateful to Dr. Edgar Cohen of the 
Naval Surface Warfare Center Dahlgren Division, White Oak; to Mr. Robert Barash, 
Mr. Edward Johnson, Mr. Robert Kavetsky, Mr. John Koenig, Mr. Hans Mair, and Dr. 
Minos Moussouros of the Indian Head Division, Naval Surface Warfare Center, White 
Oak; to Mr. John Barnett of the Naval Command, Control and Ocean Surveillance 
Center; to Dr. Michelle Hoo Fatt, Professor Frank McClintock, and Professor Tomasz 
Wierzbicki of the Massachusetts Institute of Technology; to Dr. Jacques Giovanola of 
SRI International; to Dr. Terry Klopsic, Mr. Bill Baker, and Dr. Stephen Wilkerson of 
the Army Research Laboratory, Aberdeen; to Dr. Judah Goldwasser of the Office of 
Naval Research; and to Professor Nozer Singpurwalla of the George Washington 
University. The author is particularly indebted to those who made valiant efforts to 
follow the thread of the technical details, made constructive comments, and freely 
expressed both their opinions and confusions, before many of the loose ends were tied 
together. Based on this input, the report was substantially reworked with much new 
material added to enhance clarity and much of the rhetoric deleted. The contributions 
of these individuals significantly improved the quality of this report and the 
communication of the ideas.   The author is most appreciative. 
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BACKGROUND AND PROJECT OBJECTIVES 

The Submarine Damage Mechanisms (SDM) Project represents a continuation of 

work begun in the mid 1970s concerned with the development of rigorous methods for 

predicting the effects of explosions upon ships and submarines and for assessing the 

performance of ASW and ASUW* weapon systems. The approach has evolved under a 

variety of sponsors, principally the Office of Naval Research (and formerly the Office of 

Naval Technology [ONT]) and the Defense Nuclear Agency. Earlier applications have 

included submarine hull rupture by low yield nuclear weapons, ship whipping damage, 

ship sinking due to loss of bottom section modulus, internal equipment damage, and the 

failure of major ship systems. Each application has extended and broadened the theory 

and has promoted a more fundamental understanding of the damage problem in general. 

Under the SDM Project the approach has developed into a general methodology that 

should be useful for solving many problems of both military and general interest. In 

addition to describing the SDM Project, this paper attempts to state in clear language 

the methodology and many of the underlying ideas. 

The application we now call the SDM Project grew out of a 1984 ONT-sponsored 

effort at the Naval Surface Warfare Center (NSWC) known as the Target Response 

Task. The objective of the Target Response Task was to develop computational 

methods for predicting hull rupture by underwater warheads when used against 

adversary submarines. Areas of focus included (1) the understanding and improvement 

of existing empirical damage rules through the use of finite element modeling 

techniques, (2) the development of constitutive models for new materials, and (3) the 

development of improved failure criteria. In FY 87 the author assumed management of 

the task and extensively refocussed the effort in light of his earlier work on the hull 

rupture problem. 

The principal objective of the SDM Project remains that of predicting the 

rupture of a submarine hull as a result of an underwater explosion, but in addition we 

address a number of broader issues. The project now consists of three subtasks. Task 

1, referred to as the Hull Rupture Modeling Task, seeks to integrate the disciplines of 

*       ASW and ASUW are abbreviations for anti-submarine warfare and anti-surface ship warfare, 
respectively. 
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structural mechanics and fracture mechanics with empirical test data within a 

statistical framework to predict the probability of breaching the pressure hull, i.e., of 

producing a crack through the thickness of the pressure hull (a "through-crack"). Task 

2, added in 1994 and known as the Catastrophic Failure Task, is regarded as an 

extension of Task 1 and is concerned with the extension of the length of the through- 

crack to large values relative to hull dimensions. Task 3, also added to the project in 

1994, is referred to as the Concept Assessment Methodology Task. Its objective is to 

develop a method for comparing the performances of different warhead design concepts 

and selecting between them. Under Task 3 decision theory and operations research 

techniques are used to bring other considerations, such as cost and development risk, 

into the selection process in addition to considerations of warhead performance. The 

overall objective of the SDM Project is to develop computational and analytical tools 

that the Navy will find useful for making both warhead and submarine design decisions, 

and for establishing effective operational policies for their use. 

Tasks 1 and 3, in particular, reflect the inclusion of probabilistic and statistical 

techniques in the analyses. The use of nondeterministic modeling techniques, in 

addition to engineering and physics response models, in fact, distinguishes the SDM 

Project from other more traditional attempts to analyze the explosion damage problem. 

Historically, the prediction of submarine hull rupture has been approached by the Navy 

in two distinctly different ways. For discussion purposes, we will refer to these as the 

semi-empirical and quasi-deterministic approaches. 

The earliest prediction methods, many of which are still being used, are based 

upon semi-empirical approaches. Prior to and throughout the 1970s, most hull response 

prediction techniques ("damage rules") used by the Navy were developed by fitting hull 

deflection data, obtained from reduced-scale experimental tests, to formulas involving 

structural design and test conditions, and often including variables motivated by 

simplified response analyses. Empirical criteria for rupture were expressed in terms of 

critical hull deflections. 

More recent analysis methods predict structural responses by solving the 

fundamental equations of continuum mechanics. We shall characterize such methods as 

quasi-deterministic, a term coined to connote the notion that the models are basically 

deterministic but with input from empirical tests in which scatter was minimized. This 

approach has been made possible by the advent of modern computers, and it has 

become widely followed due to the emergence of general purpose structural response 

I 
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codes. Criteria for the onset and development of ductile failures are typically expressed 

in these codes in terms of critical values of local variables that depend upon components 

of the strain and/or stress tensors, such as equivalent plastic strains and expressions for 

void volume fractions. Under this approach empirical information, usually obtained by 

laboratory testing of small material specimens, is employed in the formulation of the 

constitutive and failure models and the determination of failure thresholds. 

The methodology being developed under the SDM Project can be viewed as a 

synthesis of the semi-empirical and the quasi-deterministic approaches. We refer to it 

as a statistical approach. Like the semi-empirical approaches, we attempt to model 

observed experimental responses for the system of interest, in particular fracture onset 

and crack length responses, and then use the model to predict the occurrence and 

magnitude of the responses under arbitrary conditions. Like the quasi-deterministic 

methods, physics and engineering models are used within the statistical approach to 

represent the systematic mean behavior of responses as functions of the problem 

conditions. But in addition to these, we include models for the random behavior, which 

is evident in the test data, on top of the systematic behavior. This results in a more 

complete model for the responses and a model that permits more objective 

investigations of important issues which often elude quasi-deterministic analyses alone, 

such as model validation and prediction accuracy. The statistical approach we are 

developing represents an attempt to overcome (1) the criticism of the semi-empirical 

models as lacking in enough of the underlying physics and (2) the difficulties 

encountered by quasi-deterministic models in matching the experimental data. It also 

represents an attempt to more fully utilize the Navy experimental database of explosive 

tests against stiffened shells. 

In this report we present the hull rupture prediction problem from a statistical 

viewpoint. Because scatter is unavoidable in structural test data and always evident 

upon close examination, rigorous models for the observed behavior are necessarily 

probabilistic. Interdisciplinary statistical models are needed to characterize the 

response probabilities when the magnitude of the response scatter is significantly large 

and when prediction errors are of high consequence. It is argued that the development 

of such models is essential for the resolution of the hull rupture prediction problem in 

both lethality and survivability contexts, and for the resolution of many other problems 

of military interest. We will attempt to show the many benefits that are derived by 

casting the problem in such a manner. 
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The report is organized as follows. The next section characterizes the submarine 

hull rupture prediction problem from a nondeterministic viewpoint to set the context of 

the discussion. Then, brief accounts of the semi-empirical and quasi-deterministic 

approaches are presented which describe their usefulness but also point out various 

difficulties encountered when these approaches are applied to the problem of system 

damage prediction. After these, we then present the statistical approach and describe 

in simple language its basic concepts and elements that can be used to model responses 

more generally. This is followed by a description of the SDM Project which illustrates 

its interdisciplinary nature and outlines how the different disciplines can be effectively 

and naturally combined to produce a solution for the hull rupture prediction problem. 

The concluding section addresses some broader modeling issues. Subheadings are 

employed within the longer sections. 
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CHARACTERIZATION AND FORMULATION OF PROBLEM 

Damage Problems, Navy Needs, and Decisions: 

When an explosive charge detonates near the hull of a submerged submarine, 

intense pressures are generated over a somewhat localized area of the pressure hull 

which cause the hull to deform inward. Circular stiffening rings, cut from flat plates 

and welded at regular intervals along the cylindrical pressure hull for the purpose of 

reinforcement, will initially resist the inward motion of the hull at their points of 

attachment. Large stresses and strains will particularly develop in the vicinities of the 

stiffener-to-hull weldments in both the hull and stiffener plates. Although stiffening 

rings typically have top flanges attached to discourage out-of-plane motion, the 

stiffeners will distort and buckle unstably if the pressures are of sufficient magnitude 

and duration, and especially when significant stiffener side loads have been developed. 

For submarine designs where the rings have been welded on the exterior side of the 

pressure hull, a stiffener will often respond in an alternative mode and fracture along its 

welded base. Both mechanisms, buckling of the stiffener and its detachment by 

fracturing, will cause a redistribution of the stress and elastic strain fields in the 

structure. Generally, these will be lowered in the hull plating near the affected 

stiffener, but increased in the vicinities of neighboring stiffeners. The response of the 

submarine is thus governed by a complicated interplay of response mechanisms and load 

transfers that may result in the development of local strains and stresses in the plating 

of the pressure hull of sufficient magnitude to cause hull rupture. Because submarine 

structural steels are tough and highly ductile, large plastic deformations of the hull and 

stiffeners will occur prior to hull rupture. 

Because of the diversity and complexity of the responses produced in a 

submarine by an explosion and the various contexts in which the response problem is 

important, the problem of predicting explosion damage to submarines means different 

things to different people. Perhaps, initially, there appear to be many different 

unrelated problems. Upon closer inspection, however, damage problems of diverse 

descriptions are found to have much in common. 
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The performance and reliability of weapon systems is sometimes described as the 

"lethality problem"; the damage resistance of the submarine target directly affects the 

performance or lethality of the anti-submarine weapon system. Closely related is the 

need to achieve explosion-resistant designs for U.S. submarines. In this defensive 

context the problem of predicting submarine damage is often referred to as the 

submarine "survivability problem." A part of the survivability problem concerns the 

formulation and selection of tough, fracture-resistant hull materials. Materials scientists 

use the term "damage" in a specialized sense to refer to microstructural response 

processes, such as the growth of microvoids or microcracks, that degrade the local 

strength properties of a structural material. Using more broadly defined terms, military 

planners and evaluators may want to minimize or maximize damage to "our" or "their" 

submarines, respectively, in specific encounter scenarios. In all contexts the terms 

damage and failure connote a similar idea: a deleterious response of the submarine in 

some specific sense that limits the submarine's performance capabilities. This similarity 

of concepts translates into similarities in the statistical aspects of mathematical models 

for damage prediction. 

Explosion damage problems are closely associated with the need for making 

decisions, often, if not always, in the presence of uncertainties. Usually these are 

system design and acquisition decisions or decisions regarding the use and management 

of particular systems. It is preferable, obviously, that these decisions be made 

objectively and in a scientific manner. Decision theory is a well-developed scientific 

discipline that relies heavily on statistical methods to model the uncertainties that 

complicate the decision-making process. While objective methods for measuring and 

predicting the responses of well-defined structures to well-defined loads have been 

appropriately funded and extensively researched, it appears that relatively little 

attention, by comparison, has been given to the task of translating those results into 

objective decision making. We propose that statistical methods combined with the 

deterministic methods of physics and engineering can facilitate that linkage. But these 

methods do not now exist and need to be developed. 

In a 1961 report, Dr. William Murray of the David Taylor Model Basin wrote, 

"It is believed that the time is ripe for prediction methods to be organized in such a 

way that the basic methods and damage classification employed by all groups which 

generate inputs to the same overall military problem will be rendered compatible.... The 

researcher recognizes that his problem is to some extent statistical.... The technical 



IHTR 1824 

problem may appear simple within the framework of the overall task of the military 

evaluator. However, the research scientist, who must play the role of predictor in order 

to supply the answer, has certain limitations. These can only be conveyed to the 

evaluator by an assessment of the reliability of the weapon-effects predictions.... 

Methods of preparing answers must be formalized." Later, in a section outlining his 

approach Murray said, "A given attack severity will cause shipboard damage which 

cannot be precisely predicted in any one test. The reason is that damage (hull rupture, 

equipment failure, personnel injury) depends on many details which the predictor 

cannot possibly know, even in a carefully controlled test. This type of ignorance is 

handled by a statistical treatment of available experimental data.... Existing 

experimental data would be utilized to relate attack severity to the probability of 

impairment, see Figure 10." Murray's Figure 10 was an illustration of impairment 

probability curves as functions of an attack severity quantity for various categories or 

levels of impairment.1 

Murray's insights into the problems of response prediction and military decision 

making, which are unfortunately buried in a classified report, remain valid today. Since 

that time decision theoretic and statistical methods have advanced considerably, as 

have the deterministic methods of physics and engineering. The time is now even more 

ripe for creating a comprehensive approach. 

Categories and Types of Uncertainties: 

A basic requirement for developing effective solutions to complex response and 

decision problems is to distinguish between the types of information and uncertainties 

involved. Some of the information out of which a solution is to be developed will be 

"hard" information (i.e., information that we are prepared to accept as being accurately 

known). Of course, many response problems of interest to the Navy can be fully 

characterized by well-known information, including information concerning the 

underlying mechanisms of response, and these can be effectively solved by employing 

quasi-deterministic solution methods. Many currently unsolved problems, however, 

such as the hull rupture prediction problem, involve information that is "soft," 

uncertain, or even lacking. 
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The presence of uncertainties complicates problems of response prediction and 

the related problems of decision making. It is helpful to separate the uncertainties into 

several distinct categories. First, many important variables that may be controlled and 

known in actual experimental tests and used to model the response may need to be 

regarded as uncertain in particular scenario analyses of interest. For example, in a 

given scenario it may be uncertain where in the vicinity of a submarine a tail-homing 

enemy torpedo is going to explode or, in an offensive context, where or at what depth a 

target submarine will be located. Second, there are uncertainties associated with 

missing variables. There are at least 1024 variables (larger, perhaps, than Avogadro's 

number) required for the most complete description of a given structure and only 10 to 

102 of these are used in a typical analysis. As Murray pointed out, damage may depend 

on many details which the predictor cannot possibly know, even in a carefully controlled 

test. Many of these missing details may significantly affect the responses as well as the 

decisions that must be made. Third, there may be uncertainties in our understanding 

of the underlying physical mechanisms of response and, more generally, in the 

relationships between systematic response effects and the modeling variables. The 

engineering models required may be both complicated and undeveloped. Often, the 

complications will seem to increase upon closer examination of the physical phenomena 

as more variables are brought into consideration. To these three types of uncertainty 

we might add a fourth: we presently lack an understanding of how to effectively 

characterize and approach prediction and decision problems in the face of such 

uncertainties and how to put the various pieces of information at hand together in an 

objective and effective manner. The SDM Project has attempted to address all four 

areas of these concerns. 

To develop the discussion, we shall refer to the different categories of information 

that must be considered in a rigorous analysis by special names and, in some cases, with 

special symbols. The set of known or hard information will be symbolized by H. Thus, 

H represents categorical and real variables with known values. In most cases these 

variables will figure prominently in models for the response. The first type of 

uncertainty discussed above will be termed "modeling variable uncertainty." Those 

modeling variables that are regarded as uncertain in the application scenario, but known 

in the tests that form the empirical basis of an analysis, will be denoted as UM. Hence, 

the complete set of variables used to model the response is created by combining sets H 

and UM. The UM variables will sometimes be treated as real variables and sometimes as 

random variables; these distinctions will be apparent from the contexts of their use. 
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The second type of uncertainty associated with missing, ignored, or even unknown 

variables will be called "intrinsic uncertainty." The set of associated variables will be 

symbolized by Uj and always be regarded as random. The third type of uncertainty 

caused by a lack of understanding of the true model underlying the response will be 

called "model uncertainty" or "modeling uncertainty." While modeling variable 

uncertainties and intrinsic uncertainties are associated with variables, model uncertainty 

reflects our uncertain knowledge of how measurable response characteristics or effects 

depend functionally upon UM and H. It is important to note that many variables that 

are part of the set Uj can be moved to the set UM, and vice versa, at the discretion of 

the investigator who decides the scope of his or her investigation and needs. More will 

be said about this point later. 

Figure 1 pictorially represents many of the sources of uncertainty present in the 

ASW warhead lethality problem. The figure is intended to illustrate the breadth of 

details that may, to one degree or another, be either known or uncertain. Each link in 

the illustrated chain is associated with informational and theoretical details, both hard 

and soft in character, that are relevant to the development of a solution. Categorical 

variables, such as the submarine design class, the types of materials, the type of 

warhead explosive, and the type of hull welding processes used, may be known 

quantities and, if so, would belong to H and otherwise to UM. Known system design 

details, such as nominal structural geometries, nominal pressure hull yield stress, and 

charge size, may also be regarded as known and belong to H. The set of uncertain 

modeling variables UM might include the torpedo warhead "hit point," the submarine 

depth, speed, and orientation, and structural geometric and material properties that are 

required for the response analysis but which are incompletely known from intelligence 

information. The set of intrinsically uncertain variables Uj might include details of the 

warhead explosive charges that vary from one charge to another, in a manner typical of 

the warhead design, and cause variations in output pressures. The Ut set might include 

details of the structural materials for a given design that would cause variations of 

fracture strengths and departures from nominal values of the material properties. 

Finally, the poorly understood and complex physics associated with fluid-structure 

interactions, the interactions of global deformation and fracture processes, and the 

causal connection between local conditions and local damage are examples that would 

fall into the category of modeling uncertainty. 
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Formulation of Solutions: 

Under the statistical modeling approach deterministic responses and effects are 

viewed as a subset of a broader class of stochastic or random responses and effects. 

Accordingly, if a response or response event is deterministic, the associated variance of 

the response will by definition be negligible (zero) and the probability of the event will 

be either zero or one. Generally, we will view responses as being nondeterministic and 

expect discrete event probabilities to take on intermediate values between zero and one 

in at least some regions of the problem domain associated with the scenario of interest. 

A major part of the system evaluation process, then, is the estimation of the probability 

of system performance, also known as the system reliability, for the conditions 

associated with the particular context of interest. 

To focus the discussion, it is useful to consider a concise mathematical 

representation of the performance probability written in terms of the information 

available. Although this introduces a mathematical equation into this "clear language" 

introduction, the equation is fully explained and the narrative not difficult to follow. 

The equation is so central to many of the issues involved that its use seems unavoidable 

and necessary for a clear and direct presentation. As the reader will see, it is possible to 

describe not only the statistical approach, but also other approaches to the problem in 

the terms of the equation. An understanding of the statistical approach also requires 

the use of several statistical concepts such as populations, conditional means, and so on. 

These will be introduced as the need arises and accompanied by clarifying examples. 

System performance can usually be described by reference to a capability viewed 

as a discrete event. For the explosion damage problem this may be some specific level 

of damage such as the initiation of a hull crack or deformation of the hull to a degree 

equal to or greater than some specified amount. Using the letter D to represent a clear 

definition of the desired performance, we can write the probability of damage D given 

the set of basic known information H as 

P(D\H) =   \+0°P(D\H,UM)f(UM\H)dUM . (1) 
J — oo 

Equation 1 tends to be known by structural reliability engineers as the "law of total 

probability" and by statisticians as the "law of the extension of conversation," or simply 

"extending the conversation."    The right hand side involves P(D\H,UM), which is the 

11 
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probability of D occurring when both H and UM are controlled and known, and 

f(UM\H) dUM, which can be thought of as the (differential) probability of having the 

specific conditions UM realized when conditions H hold. More rigorously, f(UM\H)dUM 

is the probability of the random vector UM taking a value in the region [UM, 

UM+dUM). We refer to f(UM\H) as the joint conditional frequency function for the 

UM random variables given H. The notation and derivation of Equation 1 are discussed 

in the footnote.* 

A hypothetical example will serve to make the use of Equation 1 more clear. 

Suppose that we wish to predict the probability of hull crack initiation by a specific 

warhead placed at a specific location and that the only uncertain modeling variable is 

the thickness of the hull plating. Hence, UM represents the thickness and H represents 

all other modeling information. Using our intelligence information for this adversary 

target, we represent our uncertainty of the actual value of U^ by the density function 

f(UM\H). We might decide, for example, that the most likely value is 4 centimeters, 

which therefore locates the peak of f(UM\H), and that the function falls off in both 

directions to essentially zero at say 3.0 and 5.0 centimeters.    We then conduct tests 

* The notation P{D\H) is read as the probability that D occurs given that H is known to have 
occurred or be true. The vertical bar (|) makes the probability conditional on the occurrence of the 
proposition to its right and is usually read as "given" or "given that." Similarly, when a random 
variable A takes on discrete values only, the frequency (or generalized density) function /(a|b) means 
P(A=a\B=b); then the integral is regarded as a sum. Here B is a random variable (or vector) of either 
discrete or continuous (or mixed) type. When A is a continuous random variable, /(a|b) is defined by 
a limiting process; then /(a|b)da means P(a < A < a + da\B = 6). When A and a are vectors, P and / 
are referred to as the joint probability and joint density, respectively. In Equation 1 the notation is 
less explicit but customary; e.g., U^ is the value taken on by the associated random variable. 

Detailed understanding of Equation 1 requires the understanding of both the "or" and 
"multiplication rules" of probability. The or rule states that, the probability that one or the other of 
two mutually exclusive events occurring is the sum of their individual probabilities of occurring. The 
multiplication rule says that the probability of two nonexclusive events, say A and B, occurring 
simultaneously is given by the product P{A\B)P{B), or alternatively P(B\A)P(A). Thus, from the 
multiplication rule the product P(D\H,UM)x f(UM\H)dUM is also the differential probability that 
realizations D and UM will occur simultaneously under conditions H. This could be symbolized as 
f(D,UM\H)dUM. Then the integral is the limit of an infinite sum of these terms, each one of which 
corresponds to a different value of U M within the integral domain (note that — oo to + oo represents 
the entire multidimensional space, but fill^H) may only be nonzero over some subdomain). We note 
also that the "and rule" of probability states that the probability of two stochastically independent 
events occurring simultaneously is given by the product of their individual probabilities. Since 
stochastic independence of two events A and B may be defined by the condition P{A\B) = P{A), or 
alternatively P(B\A) = P{B), the multiplication rule becomes the "and" rule when events A and B are 
stochastically independent. While the conditioning on H on the right-hand side is necessary for a 
rigorous statement of Equation 1, the conditioning on H (or any part of H) may be omitted if the 
terms are unaffected by (or are independent of) that information. 

12 
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using the specific loading conditions of interest against a series of structures of design H 

with known thicknesses over the range from 3.0 to 5.0 centimeters. From the resulting 

test data we statistically determine (estimate) P(D\H,UM), which is a function of the 

hull thickness UM. Finally then, we integrate the product of the two functions in 

Equation 1 to estimate the desired P(D\H), which is a measure of the performance of 

our weapon system against this uncertain target. 

In this simple example we obtained the function f(JJM\H) somewhat 

subjectively, although these judgments could have been based upon satellite 

photography data and optical resolution considerations. As presented, the example 

illustrates one of the many natural ways that relevant subjective information can be 

included in a statistical analysis.* On the other hand, we obtained the P(D\H ,U M) 

function by statistical analysis of empirical data. While we might also have employed 

subjective information in the statistical analysis, the P(D\H ,U M) function represents the 

principal vehicle by which the results of damage experiments are included. We will 

show shortly that P(D\H,UM) also represents the principal avenue through which 

models of the underlying physics of the structural response and failure processes are 

introduced. 

Subpopulations and Subpopulation Characteristics: 

A popular textbook on statistics begins, "The science of Statistics deals with the 

properties of populations."2 Here the word population has been used generically. In 

fact, as illustrated by the above example, we are almost always concerned with 

subpopulations, i.e., subdivisions of a larger population that are each characterized by 

* The reader may wish to inquire further into the representation and use of subjective information in 
statistics. The classical (frequentist) approach taken in this paper can be used to model such subjective 
information to a sufficient degree for important applications. However, under the Bayesian 
(subjectivist) approach to statistics, all knowledge is regarded as subjective. Bayesian statistics affords 
a rich supply of concepts and ideas that could and should be applied to the explosion damage problem 
in the future, particularly when highly subjective aspects dominate the problem or when the notion of 
probability defined as the limit achieved after an infinite sequence of tests seems awkward. This paper 
is presented from the classical viewpoint because this was the way the theory was originally developed. 
It is also thought that it is the view familiar to most readers. For further information on Bayesian 
statistics, the reader is referred to a paper by Singpurwalla, not only for its fine summary of the 
Bayesian viewpoint, but also for its expository presentation of many useful statistical concepts 
applicable to the study of system reliability. 
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particular values of conditioning information considered to be known. The quantities 

with which we are concerned in Equation 1 are rigorously defined by testing operations 

conducted within these various subpopulations. In our notation, the values of modeling 

variables appearing in function arguments to the right of vertical lines ( |) condition 

and identify particular subpopulations. Constant values of the conditioning information 

represent conditions held constant (i.e., controlled) in a subpopulation of tests that 

might be performed. Generally, there will be an infinite number of such sub- 

populations, but only a finite number will be represented in any given database. It will 

be instructional to consider the various subpopulations associated with the terms of 

Equation 1. 

Consider, first, the subpopulations associated with the quantity P(D\H,UM) for 

which there is the most conditioning information. Although H may be held fixed, 

P(D\H,UM) is viewed as a function of both UM and H. There is a subpopulation of 

experiments associated with each value of the variables H and UM of interest. It is 

useful to think of the values of UM and H as "labeling" each subpopulation. In the 

simple example considered above, one or more tests were performed for each of several, 

say five or six, different values of the plating thickness ranging between 3.0 and 5.0 

centimeters. Consequently, in that problem we were concerned with five or six different 

subpopulations, each one labeled by a different UM, H combination. 

In each subpopulation of experiments in which H and UM are fixed, the only 

variables remaining uncontrolled and random are the intrinsically uncertain variables 

Uj. These vary in some manner from individual test to individual test. Even though it 

is a common practice to refer to experiments conducted within the H- and ^7^-labeled 

subpopulation as being "identical," it is only with respect to H and UM that they may 

be so described, for the variables Uj are different from one experiment to another. 

Usually the distribution of Uj variables within the subpopulation is unknown, but 

assumed to be fixed.* Each actual experiment may be thought of as being a random 

draw from the subpopulation of experiments labeled by the specific conditions, H and 

UMi by which the experiments are fully described. 

* The assumption of a fixed underlying joint distribution for Uj is regarded as part of the model 
hypothesis as explained below. The assumption is that the tests of the subpopulation are, in a sense, 
statistically stable, i.e., that probabilities are well defined. Under a sophisticated experimental design 
some of the marginal distributions governing Uj variables may be known and the experiments 
randomized. 
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The origin and explanation of the variation of Uj is in most cases found in the 

actual processes used to conduct the tests and manufacture the test systems associated 

with each test subpopulation. The design information H and UM usually include 

specific design tolerances for the test structures and testing systems that establish the 

bounds between which the deviations from nominal values, included among the Uj 

variables, are permitted to vary. The actual processes of material preparations, 

structure fabrications, and testing invest each subpopulation with its characteristic Uj 

distribution. 

The quantity P(D\H,UM) is regarded as a characteristic of the subpopulation 

labeled by H and UM. Population characteristics are quantities like, means, standard 

deviations, variances, moments, cumulants, and other quantities that describe some 

constant feature of the distribution of the random variables within the population. In 

fact, P(D\H,UM) is a type of population mean. To see this we let the outcome of a test 

labeled by H and UM be represented by a binary random variable that takes the value 1 

when damage D occurs (D is an explicit definition of recognizable damage) and the 

value 0 when D does not occur. Then, P(D\H,UM) is the population mean of that 

binary random variable; i.e., it is the total number of occurrences of damage (the sum 

of the binary variables) in the subpopulation divided by the total number of tests in the 

subpopulation. If the subpopulation is infinite, P(D\H,UM) is defined as the limit that 

is approached by this ratio when the number of tests is increased. 

We think of P(D\H,UM) as the underlying probability of damage associated with 

conditions H and UM. If the damage responses under these conditions are deterministic, 

then the underlying probability is either 0 or 1. However, if the response of the system 

is sensitive to the missing information Uj, then the values of P(D\H,UM) will lie 

between 0 and 1. In either case, we can obtain a statistical estimate of P(D\H,UM) by 

summing up the number of times D occurs and dividing it by the total number of tests. 

Such an estimate is called a sample mean. The simple ratio of the number of failures 

divided by the number of tests is also called a basic estimator of the mean. It is a 

random function with a binomial distribution. Presumably, according to the law of 

large numbers, basic estimates will converge to the population mean as the number of 

tests increases. 

The functions in Equation 1 that remain to be discussed, P(D\H) and f(UM\H), 

are defined on a subpopulation labeled by H. Since tests in this subpopulation are only 

conditioned on if, the modeling variables UM are now also random in addition to the 
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intrinsically uncertain variables Uj. In Equation 1 it is assumed that we have 

information that describes how UM varies in the iJ-labeled subpopulation. This is 

represented by the frequency function f(UM\H). P(D\H) is defined on the ff-labeled 

subpopulation in exactly the same manner that P(D\H,UM) was defined on the 

subpopulation labeled by UM and H. In fact, we could conduct tests in which the UM 

variables are randomized according to f(UM\H) and obtain P(D\H) in the same manner 

that P(D\H,UM) was obtained above.   Or we could obtain it from Equation 1. 

One advantage of using Equation 1 to obtain P(D\H) is that we can vary 

scenario descriptions in hypothetical ways by redefining f(UM\H). P{D\H) is then 

easily calculated without the need for additional testing. In the example above, 

f(UM\H) represented our uncertainty, due to incomplete intelligence information, in the 

nominal pressure hull thickness. A change in the accuracy of the intelligence 

information, perhaps as a result of improved collection methods, is then easily 

accommodated. For the lethality problem, where the target description is acquired 

through intelligence sources, the efficiency afforded by Equation 1 is considerable. For 

the survivability problem a similar efficiency is obtained when, for example, weapon 

and warhead characteristics are obtained from intelligence sources. 

Comments and Summary: 

We have not yet addressed the topic of modeling uncertainty because such a 

discussion has not yet been needed. It will be discussed in detail later in the section 

that describes the statistical approach. From the statistical viewpoint, modeling is used 

to connect together (to pool) various probability estimators, like the basic estimators 

discussed above (which are usually inaccurate due to sparseness of the data), to obtain 

more accurate estimators of the population characteristics. In the above discussion we 

saw that we could, in principle, obtain accurate estimates of these characteristics simply 

by conducting enough tests under the right conditions; no physical modeling or 

combining of data collected under different test conditions was required. It was 

assumed that the physics was correctly represented in the tests. Because testing is 

usually expensive, however, the idea of estimating the probabilities of interest by 

empirical means alone is usually impractical and inefficient. The pooling together of 

test information collected under varied conditions to obtain new estimators that are 

more  accurate than the simple basic estimators  is essential,  then, for  an efficient 
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approach. Physics and engineering models for the systematic effects may be used to 

make the necessary connections among the empirical data associated with the various 

test conditions. Under the statistical approach the adequacy of these models becomes a 

statistically testable condition or hypothesis. Thus, modeling uncertainty will be 

handled below in a different manner from the way in which we have treated the 

uncertainties in the variables. 

In summary, the casting of the explosion damage problem in probabilistic terms 

allows one to address issues involving uncertainty. Uncertainties, which are always 

present, (1) may affect the responses of the tests, (2) are often involved in the 

description of various application scenarios of interest, and (3) always affect the 

processes of decision making. Equation 1 describes how uncertainties contribute to the 

probability of system performance; it may be applied in both system lethality and 

survivability contexts. The use of Equation 1 as well as other probabilistic models 

useful for making decisions requires that the problem be characterized and formulated 

in probabilistic terms. Because random effects are fully modeled under the statistical 

approach in addition to the mean systematic effects, the statistical approach is more 

detailed and rigorous than the alternative semi-empirical and quasi-deterministic 

approaches which model some, but not all, of the systematic aspects of the responses. 
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SEMI-EMPIRICAL APPROACH 

The semi-empirical methods that have been developed by the Navy and applied 

to explosion damage prediction problems have many features in common with the 

statistical approach and with the quasi-deterministic approach, both of which are 

described below. The semi-empirical approaches rely heavily on a rudimentary form of 

statistical analysis often described as curve fitting. The response variable to which 

functions are fitted, perhaps using least squares regression, is usually chosen to be a 

continuous variable, such as a measure of the inward deflection of the pressure hull. 

This is done even when the response of primary interest, for example hull rupture, is of 

a discrete nature. The continuous response variable is then fitted to functions of 

independent variables describing the structure and test conditions. The fitting process 

is typically accomplished by assigning values to various coefficients present in the fitting 

functions to produce agreement, in some sense, with the data. The forms of the fitting 

functions are often suggested by data plots. 

In some models the independent variables used are generalized coordinates that 

are functions of the variables describing the structure and test conditions. The forms of 

these functions are often suggested by dimensional analysis considerations or by 

simplified deterministic response models. Examples of functions used as independent 

variables, taken from the submarine damage prediction literature, include a normalized 

hoop collapse stress formula and the ratio of bending moment to plastic limit moment 

for a stiffening ring. 

The strategy for predicting damage that is usually employed under the semi- 

empirical approach is to first obtain a formula for the selected continuous response 

variable, and then to predict the damage of interest by assigning a critical limit or 

range of critical limits to the response variable that might be empirically associated 

with one or several degrees of that damage. The assignment of such critical values is 

usually done by making personal judgments based upon knowledge of the empirical 

results. Prediction of damage is then accomplished by comparing a calculated response 

value, obtained by inserting new conditions of interest into the fitted formula, with the 

critical values. The combination of the response variable and its critical value is 

sometimes referred to as a failure criterion. 
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We will show below that the statistical approach is an extension and rigorous 

refinement of the semi-empirical approach. The critical values that play an important 

part in the expression of the failure criteria under the semi-empirical approach are 

values that are intended to be associated with high, low, and sometimes mid-range 

values of failure probability. Quantities like P(D\H,UM) and P(D\H) thus appear 

tacitly and qualitatively. Instead of using statistical methods for formally establishing 

the links between critical values and probabilities, the associations are usually made 

under the semi-empirical approach by invoking judgment. In some system response 

applications P(D\H) has been calculated by means of Equation 1 (or through an 

equivalent expression to be introduced below), but in these applications P(D\H,UM) has 

been modeled as a deterministic step function (0 or 1) to simplify the analysis. 

Semi-empirical prediction techniques work reasonably well when the test 

conditions of interest are not too far removed from the conditions upon which the 

prediction rule has been based, when rough estimates of risk are sufficient, and when 

the consequences of errors are small. When interpolations and extrapolations are 

required that are remote from the data conditions or when one needs more quantitative 

assessments of risk, the limitations of the semi-empirical approach become more 

apparent. The basic criticism of the approach is simply that it lacks rigor and, 

consequently, that it is often unable to meet more demanding needs. 
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QUASI-DETERMINISTIC APPROACH 

The basic differences between the statistical approach and the quasi- 

deterministic approach can be rather clearly stated in the terms of the above discussion. 

The quasi-deterministic approach is an example of extensive reductionism, i.e., the 

breaking down of a complex process into smaller parts, each of a more elementary 

nature. In the author's opinion the approach may be fairly characterized as an attempt 

to make the set of uncertain modeling variables UM as large as necessary for it to be 

possible to model the response D in a nearly deterministic, or quasi-deterministic 

manner. Equivalently, it is an attempt to make the set of intrinsically uncertain 

variables Uj small enough that their effects upon P(D\H,UM) might be ignored. Under 

these circumstances D can be predicted with certainty and P(D\H,UM) can be expected 

to take on the value zero or one within known regions of the H,UM space of modeling 

variables. 

Under most quasi-deterministic approaches the macroscopic definition of damage 

we have symbolized as D would be modeled as the culmination of more elementary 

damage processes. These basic damage states are generally effects observed in 

laboratory tests of small, highly prepared material specimens such as unnotched, 

notched, or fatigue-precracked round tensile bars, bend bars, and compact tension (CT) 

specimens. Typically, the specimens are of designs rigorously prescribed by the 

American Society for Testing and Materials (ASTM) or some other standardizing 

institution. The basic testing goal is to tightly control all specimen variables except 

those that randomly vary within the material microstructure in some fashion 

characteristic of the material type. Hence, the presence of Uj variables within the 

material microstructure is acknowledged. 

The small specimen test results are used to characterize the behavior of material 

elements up to the point of failure and also after failure has occurred. Relationships 

describing the local behavior prior to the time of failure are normally referred to as 

constitutive models. Relationships used to describe the behavior of failed material 

elements are sometimes called failure models or damage models, although the difference 

between  constitutive and failure models is not necessarily distinct.     Both types of 
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models express relationships among the dependent state variables that are in turn 

functions of the modeling variables. They may be viewed as constraint systems that are 

used to close and render solvable the system of continuum-mechanics-based equations 

that govern the behavior of the material elements when the elements act collectively, 

i.e., as parts of the continuum. 

Constitutive models, for example, might describe specific types of material 

responses such as elastic, plastic, viscoplastic, or thermo-elastic-plastic behaviors of 

isotropic or orthotropic materials. Generally, constitutive models-concern processes of 

shear and dilation of the material elements that occur through dislocation and thermal 

expansion mechanisms. Damage models, on the other hand, are attempts to account for 

more discontinuous processes that might lead to the development of fracture surfaces. 

For ductile materials damage processes of primary concern are the nucleation, growth, 

and coalescence of void spaces within the material. For most materials damage models 

are currently less well developed than constitutive models. Fractures also introduce 

new boundary conditions that can be problematic. Scatter is present in all small 

specimen data though to a lesser degree for quantities modeled by the constitutive 

equations. Both constitutive and failure models are based upon average properties of 

observed responses and measurements. For example, an idealized damage model might 

be based upon a cubic lattice of void nucleation sites. An experimentally determined 

mean distance between void nucleation sites might then be used as the lattice spacing in 

the model. Magnitudes of scatter associated with elementary failure effects typically 

run at five or ten percent of mean values for the ductile steels used to fabricate modern 

submarine hulls. 

Usually, the occurrence of a particular macroscopic damage condition D can be 

easily recognized by running the quasi-deterministic code for particular controlled 

values of H and UM. Then, because the effects of Uj variables are assumed to be 

negligible, the probability function P(D\H\UM) is assumed to take on the values 0 and 1 

over various regions of the H,UM space as directed by the failure model. The quasi- 

deterministic response codes can be viewed as schemes for partitioning the space of 

modeling variables into such dichotomous probability regions. Of course, these regions 

will be in agreement with the empirical data (i.e., damage D will be observed only in 

regions that have been assigned probabilities of one) only if the models underlying the 

codes correctly represent the behaviors of the structures and testing systems, and if the 

effects of the Uj variables on the response D are truly negligible. 
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Under the quasi-deterministic approach, uncertainties that are absent from the 

small specimen tests but present in problems involving complex structures such as 

submarines are expressed by the function f(UM\H). The effects of these uncertainties 

upon P(D\H) are then calculated using Equation 1 and the deterministic P(D\H\UM) 

function. This is perhaps usually accomplished by substituting an alternative form of 

Equation 1 expressed in terms of the distribution of some state variable function of H 

and UM (transformations of this kind are discussed in detail on p. 35). Such analyses 

represent proper investigations of the effects of modeling variable uncertainties on the 

response of interest. Sometimes f(UM\H) is less appropriately employed (in the 

author's opinion) to express the effects of uncertainties of other types. Attempts are 

sometimes made to express the effects of intrinsic uncertainties, which were ignored in 

P(D\H,UM), within f(UM\H) (or, equivalently, within the mathematically related state 

variable distribution). For example, the scatter in the small specimen data, used to 

derive the constitutive and failure models, is sometimes accounted for in this way by 

adding it to the effects of the UM variables upon the state variable distribution (usually 

the standard deviations or variances are added). This add-on line of thinking is 

sometimes extended to also provide a hedge against modeling uncertainty, i.e., the 

uncertainty in the modeler's knowledge of the underlying physics (perhaps thought to 

be responsible for the disagreement between the model theory and the data). As we 

shall see, the statistical approach provides a more natural and less ad hoc way of 

handling the intrinsic and model uncertainties. 

Under the quasi-deterministic approach, variables are included within the UM set 

that would be included as part of the Uj set under the semi-empirical and statistical 

approaches. Because the UM set is large, the task of specifying the joint modeling 

variable distribution f(JJM\H) for the class of structures and scenarios of interest may 

be quite difficult and quite expensive. Hence, the quasi-deterministic approach places a 

significantly greater burden on the problem of specifying the joint density function 

f(UM\H) than do the alternative approaches. For any reliability analysis to be 

accurate, one must be careful to put back the randomness and uncertainties that were 

essentially removed from consideration during the process of determining P(D\H,UM). 

There is, as an appropriate part of the quasi-deterministic approach, an extensive 

literature on statistical distributions associated with details of micromechanical 

responses and on the distributions governing fluctuations of various aspects of loadings 

associated with winds, waves, and other natural forces.    While such studies are valid 
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and useful, there is often in practice a tendency to ignore other important sources of 

uncertainty and to view response uncertainties solely in terms of material and loading 

issues. Other sources of uncertainty in military problems of interest that may be 

consequential include geometric variations from nominal or design geometries, 

geometrical and material irregularities associated with weldments, poorly understood 

and represented joints of all types, material heterogeneities, residual strains, and loading 

fluctuations associated with variations in warhead performances. For the lethality 

problem the most basic of the design variables, such as the nominal pressure hull 

diameter and thickness for example, may be highly uncertain. In many cases, the 

distributional properties of the uncertain variables will have to be estimated empirically 

by examining structures like those for which predictions are sought. In some cases, the 

distributional properties will have to be assigned by a priori means based upon expert 

opinion. 

As alluded to above, model uncertainty is an issue of intense concern to 

practitioners of the quasi-deterministic approach due to the extensive scope of the 

modeling attempted. Because of the complexities of the underlying physics, many 

aspects of the models used in structural response codes are known to be approximate. 

Important questions, then, concern how these approximations affect or limit the 

predictive power of the code. Resolution of the issue requires comparisons with 

experimental results. Currently, code performance is typically assessed by making 

comparisons with the results of controlled benchmark tests not unlike the small 

laboratory tests used to calibrate the material models. The agreement between theory 

and data, however, is almost never perfect. The issue of model validation becomes 

more complicated when comparisons are made with the results of large structure tests 

due to the additional sources of error that might then be acting. Regardless of the test 

size, model uncertainty is a statistical issue that requires a detailed accounting for all 

significant sources of uncertainty. The statistical approach for dealing with this issue 

found in the next section is consistent with a long-standing body of statistical theory. 

While the quasi-deterministic approach has been highly successful in applications 

to structural design, it has been less successful when used for predicting structural 

failure. This is because engineered systems are usually designed to operate rather than 

fail. They are designed to operate within specified limits, in a deterministic manner, 

according to well-understood physical principles. Barring significant design errors, this 

enables   deterministic   engineering   theories   to   predict   the   systematic   behaviors   of 
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engineered systems across a wide range of conditions described by the design variables, 

H and UM. Usually, failures occur when systems are taken beyond the bounds of the 

design domains (by system overloads and erosion processes), which renders the system 

behaviors more sensitive to details contained in Uj. 

The quasi-deterministic approach may be criticized for effectively maintaining 

that it is possible to control enough variables for problems to be made deterministic. 

For some responses and some materials the approach is a reasonable strategy for 

achieving a reasonable level of accuracy. But, the difficulties encountered when the 

quasi-deterministic approach is used to predict the responses of brittle materials suggest 

that the approach is lacking in ways that are of fundamental significance. The absence 

of consideration of the random effects places issues such as validation and accuracy 

outside the scope of the quasi-deterministic approach. Furthermore, the gains made by 

controlling variables are offset by the increased costs of obtaining accurate estimates of 

WM\H). 
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STATISTICAL APPROACH 

The goal of the statistical approach is to develop a probability model for the 

responses of interest that is sufficiently valid throughout the modeling variable domain 

of interest so that the model can be used for making realistic predictions with 

quantifiable accuracies and, more generally, for making objective decisions. 

If submarines and testing were cheap, we would solve the hull rupture prediction 

problem by simply building and testing submarines according to the information H and 

then estimating P(D\H) to any desired level of accuracy using the ratio of successes to 

total number of tests. In contrast, if all we have are the tests of small specimens of the 

materials of interest, then we need the models of the quasi-deterministic approach in 

which the larger set of modeling variables necessary for obtaining a solution from the 

small specimen data is controlled. Thus, the nature of the available data drives the 

necessary analysis; the models required may be regarded as models for the databases. 

As we have seen, however, the quasi-deterministic solution is not complete until the 

uncertainties that are removed for the determination of P(D\H,UM) are put back into 

the problem. This requires the specification of f(UM\H) which may be expensive when 

large numbers of variables are controlled. 

The statistical approach is a very flexible approach for modeling response data. 

Because of its flexibility, the approach offers a way of making use of more of the 

available data than the two alternative approaches we have discussed. Consequently, it 

offers the possibility of obtaining more optimal solutions to complex structural response 

problems. In principle the statistical approach can be applied to all types of response 

data: to small laboratory specimen tests, to tests against full-size prototypes, and to 

data that fall in between. 

The statistical approach was developed because of a desire to make full use of 

large- and intermediate-scale test data obtained by the Navy over several decades. In 

particular, we wished to model a database that includes a wide variety of reduced-scale 

models of submarine pressure hulls. Some of the pressure hull models were fabricated 

by rolling and welding together plates;  other models, including the stiffeners, were 
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machined out of thick-walled pipes. These models were then explosively tested 

throughout a wide range of loading conditions to simulate hull failure responses. 

Although structure designs were sometimes repeated in the database, there were few, if 

any, strict test replications. While much of the testing was performed for the purpose 

of developing the semi-empirical prediction models, the database provides a wealth of 

information that has never been fully utilized. 

We begin our detailed discussion of the statistical approach with some simple 

examples designed to illustrate the application of statistical modeling techniques to the 

hull rupture prediction problem. It will be readily apparent that the complexity of the 

required analysis increases with the number of modeling variables that are varied in a 

controlled manner within the test population. 

Example 1 — Single Discrete Response; All Modeling Variables Constant in Tests: 

Each test of a submarine pressure hull model results in a continuum of responses 

that occur across and throughout the structure, develop in time, and interact in 

complex ways to produce a final pattern of damage. Depending on the severity of the 

loading, the damage pattern may include deep dishing of the hull plating, severe 

distortions and fracturing of the stiffening rings, and possibly one or more tears in the 

pressure hull material. If we define D to represent some condition of interest with 

respect to the final pattern of responses, such as at least one tear in the pressure hull, 

we can ask what is the probability of D occurring under the known conditions of the 

test. As we have seen, for a particular set of test conditions there is a basic estimator 

that converges to this probability as the number of test replications is increased. The 

analysis required to estimate the probability in this manner, simply by performing 

replications of tests, is trivial, regardless of the detailed complexity of the responses, if 

we are interested in only one fixed set of problem conditions. Some elements of the 

required statistical analysis are illustrated in Figure 2. 

Example 2 — Single Discrete Response, One Modeling Variable Varied in Tests: 

In an earlier example we used Equation 1 to predict the probability of hull crack 

initiation when the only uncertain modeling variable was the thickness of the hull 
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Response of interest:      Damage event D  (a specific definition) 

Response variable:     Bernoulli (binary) random variable Y" •, where 

v _ J 1   if D occurs in jth trial, 
;'     \ 0  if D does not occur in jth trial. 

Response probability model:    Bernoulli frequency function 

fY.(y;p)  =  py(l-Py-v  ,y = 0,l;   0<p<l. 
f 

l-p 

0 1    y 

Database:     Vector of results from n independent identical Bernoulli trials 

y = (vi, y«, • • • s y»)' 

Database probability model: 

n Sy- 
fvii;p) = n frivfip) = P M1 - P) 

n-'Ey 
> 2/j = 0, 1, i = l, 2, . . . , n . 

(Becomes a binomial frequency function upon transformation of variables.) 

Here p is an unknown parameter, 0 < p < 1. 

. n 
Parameter (basic) estimator: p =    y^ Y"t- / n . 

J = I 

Basic estimator mean and variance: 

J5(j>)  = p, V(p)  = p(l-p)/n 

FIGURE 2.  ELEMENTS OF A STATISTICAL ANALYSIS WHEN 

ALL MODELING VARIABLES ARE CONSTANT 
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plating. In that problem there was only one UM variable. Although somewhat more 

involved than the trivial case above, a straightforward solution to the problem again 

seemed possible. The probability function P(D\H,UM), viewed as a function of U^, was 

evaluated by building and then testing structures with five or six different values of hull 

thicknesses. This created five or six different basic estimators of the probability 

function P(D\H,UM), one associated with each of the UM values at which tests were 

performed. As illustrated in Figure 3, we can easily imagine the observed values of the 

estimator (its estimates) falling about a curve representing the underlying mean 

function P(D\H,UM) [p(x) in Figure 3]. The appropriate statistical model by which 

P(D\H ,U M) can be estimated in this case is called a regression model. By definition, 

regression models are concerned with the estimation of conditional means. Because the 

response variable, in this case, is the discrete basic estimator, quantal or discrete 

response regression models are required. Statistical details concerning such models may 

be found in references 4, 5 and 6, and at a more advanced level in reference 7. 

Because linear least squares regression is a related topic familiar to many readers 

and involves concepts that also apply to discrete response regression models, it may be 

instructive to review the basic ideas. The problem is usually framed in terms of a 

normally distributed response variable Y and a known independent (regressor) variable 

x. It is immaterial whether x is known before the experiment, or afterwards as the 

measured realization of a random variable X.* The primary things of interest in such 

problems are the mean and variance (or standard deviation) of the response variable Y 

conditional upon various values of x. Under most treatments the variance is assumed to 

be an unknown constant. We describe the mean function as the expected value of Y 

given that X = x, written as E{Y\x). Under linear least squares regression theory a 

functional model for the relationship between the mean E(Y\x) and the regressor 

variable x is selected that is linear in the model parameters.' For example, denoting 

some known functions of x as h^x) and hs(x), we might hypothesize that E(Y\x) has 

the form E{Y\x) = a + ßh}(x) + jh^x); the right-hand side is often called the regression 

function. Frequently, the form of the regression function is based on a data plot of y 

versus x. Values of the model parameters a, ß, and 7 are then chosen which minimize 

the sum of the squared errors [i.e., the squared deviations of the observed Y values from 

*       As in Figures 2 and 3, we adhere to the convention of denoting random variables by upper case 
characters and of using lower case characters to denote the observed values or realizations. 

f        Often the linearity attribute is mistakenly thought to apply to the regressor variables rather than 
the model parameters. 
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Response of interest:     Damage event D  (a specific definition). 

Regressor variable:      An arbitrary modeling variable, say x. 

Response variable:     Bernoulli (binary) random variable Y^, where 

v   _ J 1   if D occurs in jth. trial at level x{, 
ij    1 0  if D does not occur in jth trial at level x{. 

Response probability model:    Bernoulli frequency function 

fYify,Pi) = pH^-Pi)1-* ,y = o,i; o<p,-<i 
/ 

i-p,- 

0 i   y 

Database: m vectors of results from conditionally independent (defined on p. 41), 

identical Bernoulli trials y = (yu, y12, . . . , y/Wj| ytl, y22, . . . , ySng\ . . . | yml, ym2, . . 

■ i Vmn )'   where n^ is number of tests at zth level.   Because test order is unimportant, 
771 

we can equivalently express the data base in terms of binomially distributed basic 
ni 

estimators defined as     ,pi =    ^ Y^     ni ,     i — 1, 2, . . . , m , 
j = i 

and report the data as binomial proportions and numbers of tests {p^n^ at specific 

regressor levels.    Plotted p{ values will fall about means pb i = 1, 2, . . . , m. 

Mean Curve p(x) 

Database probability model:  fy{y_;p)  = jj    ü-WWi)  = II    T[fY-{yiMxi))- 
i = i j = i    tJ »= l i = i    y 

To reduce number of parameters, model is usually reparameterized by substituting a 

class of (regression) functions for p(x).  Estimator details depend upon chosen class.4"7 

FIGURE 3. ELEMENTS OF A STATISTICAL ANALYSIS WHEN 

ONLY ONE MODELING VARIABLE IS VARIED 

29 



IHTR 1824 

the mean, (Y — E(Y\x))2], where the summation is over all observed pairs of x and Y. 

Usually, the estimators of the parameters are obtained by inserting the regression 

function into the summation and setting to zero the partial derivatives with respect to 

the parameters. An estimator for the assumed-to-be-constant variance of Y is usually 

obtained in terms of the sum of the squared errors of the responses relative to the 

estimated mean. 

The fitted regression model can be used to estimate the unknown conditional 

means associated with the tests. For example, by plugging in the different test 

conditions represented, say, by xu x2, . . . , xm one obtains the "estimates E(Y\x^), 

E(Y\x2), . . . , E(Y\xm). The model can also be used to obtain estimates at untested 

values of x. These values represent interpolations and extrapolations of the model. It 

can be shown that regression estimators of the mean are more accurate than the 

individual basic estimators associated with each test. This is because the regression 

model permits the pooling together of responses from dissimilar tests as a result of the 

additional structure provided by the regression function. Increased accuracy is 

demonstrably true, however, only if the assumed structure for relating one conditional 

mean to another, represented by the regression function, is correct. Thus, after the 

fitting process, the hypothesis that the regression function can be used to represent the 

true mean structure is usually tested by a statistical goodness-of-fit test. Other tests 

of residuals might also be applied, e.g., to test the constant variance hypothesis. In 

general, a statistical hypothesis test is designed so that if the hypothesis is true, the 

random test statistic (calculated from the same data used to estimate the model 

parameters) will have a known distribution. If the observed value of the test statistic 

is rare, based on its frequency of appearance in the distribution, this is taken as 

evidence that the hypothesis being tested is questionable. Consequently, if the 

observed value of the test statistic falls below a chosen threshold (called the 

significance level), the model is rejected; otherwise, the model is tentatively accepted 

and used. 

For small data sets the probability of model rejection under the model 

hypothesis test is less than for larger data sets. This is to be expected, perhaps, 

because there is less information about the underlying process contained in the smaller 

data set. However, the price paid for easy model acceptance is that the accuracies of 

the regression estimators derived from smaller data sets are not as good as those of 

successfully tested models based upon larger data sets.   The accuracies are reflected in 
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the widths of the estimator distributions, perhaps measured in terms of confidence 

limits or standard deviations. Thus, the model hypothesis test forces the model into 

closer agreement with the actual systematic structures underlying the data as more 

data are acquired, otherwise the model is rejected. The payoff for the experimental 

and modeling efforts comes in the form of greater estimation and prediction accuracies. 

This convergence of the model and estimated quantities to the underlying population 

characteristics as more data are acquired is called by statisticians model consistency. 

These basic details of the modeling strategy employed under linear least squares 

regression theory apply, in large measure, to classical parametric statistical models of 

quite general forms. 

Example 3 — Single Discrete Response, Many Modeling Variables Varied in Tests: 

In the Navy database of tests against stiffened shells the differences between 

test conditions are nearly always described by changes of more than one UM variable. 

Hence, in this broader problem, we are concerned with basic estimators of P(D\H\UM) 

at multiple points within the H,UM space of modeling variables. In principle, this 

problem could be approached as a multiple-variable regression problem. Such an 

approach would be similar to the description of the single-variable regression problem 

we have just discussed, the principal difference being that x would be regarded as a 

vector. Under a multiple-variable regression approach P(D\H:UM) would be regarded 

as an unknown mean hypersurface within the H,UM space about which the basic 

estimators randomly vary. Such a surface is sketched in three dimensions in Figure 4. 

The main problem with using the multiple-variable regression approach for this 

problem lies in the difficulty of realistically expressing the form of the hypersurface, 

i.e., the form of the regression function. The systematic physical response of the 

stiffened shell varies in very complex ways throughout the H,UM space of modeling 

variables as response mechanisms change and interact in complex manners. Hence, 

the multiple-variable approach may be of use in small neighborhoods of the space, but 

not over the expanses represented by the database. Approaches using multi-linear or 

quadratic forms of the regressor function are sometimes called response surface 

techniques. 
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FAILURES 
TESTS 

MODELING 
VARIABLEI 

DAMAGE PROBABILITY (MEAN) SURFACE 

DATA   ^^^-^+ 
POINTS—♦+ 

MODELING 
VARIABLE 2 

+ 

FIGURE 4.  EXAMPLE OF A MEAN SURFACE IN A MULTIPLE- 

VARIABLE REGRESSION PROBLEM 

More General Discussion of Statistical Modeling: 

Before describing how engineering and physics models can be used to expedite 

the formulation of the probability model, it will be useful to elaborate upon some of 

the concepts introduced above and to introduce some additional ones. First, we will 

attempt to explain more clearly what is meant by the terms nondeterministic 

responses and probability model. This is important because the development of a 

probability model was cited above as the primary objective of the approach. 

Earlier, we had stated that under the statistical approach all responses will be 

regarded as nondeterministic. This means that any response variable, say Y, can be 

associated with a distribution that describes the frequency in which the different 

possible values of Y appear in the population of interest. Deterministic responses are 

not excluded from this viewpoint; rather, they are associated with degenerate 

distributions, such as delta functions, whose probability masses are concentrated at 

single points. In general, we may be interested in discrete or continuous responses 

whose possible values might be spread across a wide range of values or concentrated at 

a single point. 

32 



IHTR 1824 

The distribution of a response Y can be represented by a frequency function 

(e.g., density) or by a (cumulative) distribution function. Either and any 

representation of the distribution is a probability model for Y. That is the meaning of 

probability model. It is a (hypothesized) complete description of the way in which Y 

varies. It represents (hypothetically) all there is to know about the random variable Y. 

The constant, mathematically derivable features of distributions are its 

population characteristics. As we have said, these include quantities like means, 

standard deviations, moments, cumulants, and so on. Most popular distributions can 

be fully described by two or three such terms; but more complex distributions may 

require many such constants for a complete description. Any characteristics in 

addition to the minimum number required to fully describe the distribution would 

then be viewed as dependent functions of the minimum set. The parameters in terms 

of which a distribution is usually expressed, such as the threshold, scale, and shape 

parameters of a Weibull distribution or the mean and standard deviation of a normal 

distribution, are also population characteristics that may be expressed in terms of this 

minimum set. In fact, the minimum set may be comprised of these parameters. 

Hence, a probability model can be described by specifying the functional form of the 

distribution and a set of population characteristics. 

Generally, the "true" probability model underlying a natural real-world 

response is unknown. We obtain information about the model by collecting data; i.e., 

by making observations and measurements of the response experimentally. Statistical 

models are estimates of the true probability model underlying a random response. 

That is, statistical models take data into account so that the model describes to a 

quantifiable level of accuracy the behavior of the response. Usually, this is done by 

developing functions of the random data whose values converge to the unknown 

population characteristics as more and more data are included. Such functions are 

called consistent estimators of the population characteristics. Estimators, that are not 

consistent are said to be biased. 

If we are concerned with a single population, the population characteristics are 

simple constants. But, if we wish to vary, in a controlled manner, a number of 

modeling variables in the tests, subpopulations are generated and the population 

characteristics become functions of the modeling variables. We have seen that 

multiple sets of unique test conditions create multiple subpopulations with which we 

must be concerned.   It is natural then to include the notion of functions that describe 
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the variation of the population characteristics from one subpopulation to another. The 

probability model for the random response variable is then specified, for example, by- 

means, variances, etc. that are functions of the modeling variables varied in the tests. 

The population characteristics are said to represent the systematic behavior of 

the random response. When many subpopulations are of interest, it is common to 

refer to the functions describing the variation of the population characteristics as the 

structure underlying the probability model. Thus, a model for the systematic behavior 

of a response might involve a model for the underlying mean structure, a model for the 

underlying variance structure, and so on, until the probability model is fully specified. 

Classical physics and engineering models of complex systems, such as 

submarines, can be used to develop models for the mean structures underlying the 

system responses. Up to the onset of failure, engineering models will usually describe 

the responses of an engineered structure, in an average sense, with reasonable accuracy. 

Engineering models can also be used to model the mean behavior of a structure after a 

failure process has begun when the geometries and mechanisms of the failure process 

can be adequately represented. Failure processes that are difficult to model 

deterministically are those that involve instabilities, such as buckling, and those that 

involve fractures and the growth of cracks. The modeling of fracture is difficult not 

only because the responses may be affected by the variabilities within the material 

microstructure, but also because the responses are sensitive to the local stress and 

strain fields which are difficult to predict with accuracy in a complex structure. In 

both cases the modeling difficulties may be attributed to intrinsic uncertainties 

operating within each structure and to modeling uncertainty, i.e., uncertainty in the 

description of the underlying physics. 

Modeling a Single Continuous Response Variable: 

A well-known approach for statistically modeling the response of a single 

continuous response variable is to add a random error term to some central measure of 

the response and then estimate the parameters of the error distribution. For example, 

suppose we wanted to predict the length of a coupon crack in a static test as a function 

of the maximum applied load. We might use a fracture mechanics model to predict 

the length of the crack under the various loading conditions of interest and obtain a 

model for  the random  responses  actually observed by  adding error  terms  to  the 
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fracture mechanics predictions. Using test data obtained for a number of known loads, 

we could plot error (i.e., the difference between the predicted and observed responses) 

as a function of load and then estimate the mean and standard deviation of the 

random error term by simple linear least squares regression. In this we might make 

the assumptions that the errors are normally distributed with constant but unknown 

mean and variance. The estimated probability model for the crack length response 

would then be essentially the same as the model for the errors but with a mean 

structure equal to the sum of the fracture mechanics prediction and the estimated 

mean of the error term. The goodness-of-fit test of the probability model is also a test 

of the hypothesis that the fracture mechanics solution is proportional to the true 

conditional mean for each value of the load. 

Modeling a Single Discrete Response Variable: 

The techniques for modeling discrete random responses, i.e., responses regarded 

as random discrete events, are less well known. Since we were concerned with discrete 

events in our discussion of Equation 1, it is not surprising that Equation 1 can be used 

to describe the discrete response modeling techniques. To connect Equation 1 with the 

physical models, however, it is necessary to reexpress it in a manner frequently found 

in reliability analyses.   We write 

P(D\H) =   [+°° P(D\H,T)g(T\H)dT . (2) 
J —oo 

The continuous variable here denoted by T (upsilon) is usually referred to in the 

reliability literature as either a "load function" or a (generalized) "stress function." * 

X is a function of H and UM. Just as UM is regarded as random within the integral of 

Equation 1 [distributed as f(UM\H)], so too is X random under the integral of 

Equation 2 [and distributed as g(T\H)]. It is easily shown that Equation 2 is obtained 

from Equation 1 by a transformation of variables from the set H and UM to the 

variables H and X. The density function g(T\H) is completely defined by its 

relationship to f(UM\H) under the transformation of variables. 

*   In some problems it  is advantageous  to let  Y be a vector.     Equation 2  is still valid when 
T is regarded as a vector of intermediate (generalized) "stress" functions. 
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It is instructive to rigorously discuss the conditions under which Equation 2 can 

be obtained from Equation 1. These are summarized in the next several paragraphs. 

A more complete discussion is given in reference 4. 

The transformation function Y(H,UM) may not be chosen in a completely 

arbitrary manner, for it is required that constant values of T be associated with 

constant values of the probability of damage D. Otherwise, we could not write 

P(D\H,UM) as P(D\H,T), which is what is done to get from Equation 1 to Equation 2. 

For this substitution to be rigorous, projections of constant probability surfaces (level 

surfaces) onto the space of modeling variables, as shown in Figure 5, must represent 

functions of the form T(H,UM) = T, where T values are constant on each level surface. 

Furthermore, since the mean structure P(D\H,UM) is unknown, we cannot know for 

certain, when we choose T(H,UM), if this condition is satisfied. Hence, we must treat 

our choice of this function as a hypothesis and regard it as part of the overall 

probability model hypothesis. In this sense, then, the form assumed for Y(H,UM) 

becomes a statistically testable assumption. 

FAILURES 
TESTS 

DATA 
POINTS—♦+ 

MODELING 
VARIABLEI' 

DAMAGE PROBABILITY (MEAN) SURFACE 

LEVEL SURFACES 

MODELING 
VARIABLE 2 

PROJECTIONS  OF 
LEVEL SURFACES 

FIGURE 5. PROJECTIONS OF LEVEL SURFACES ONTO SPACE 

OF MODELING VARIABLES 
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In the usual context under which Equation 2 is applied, P(D\H,T) is regarded 

as a monotonically increasing function of Y that is zero when Y is zero. This is in 

accord with the usual notions of loads and stresses. In the engineering literature, 

however, the words load and stress have specific physical meanings which can 

introduce confusion when the terms are applied in a strict mathematical sense as in 

Equation 2. The author prefers, therefore, a more neutral and specific language. He 

refers to the class of functions whose values actually do label constant probability 

levels as damage or response potentials. Then, the higher the value of the damage 

potential associated with an experiment, the higher the value of the damage 

probability. Because the damage potential functions are unknown, the functions that 

are hypothesized to be damage potentials, and used in practice for modeling purposes, 

are distinguished from damage (or response) potentials by calling them damage (or 

response) indices. Thus, damage potentials are unknown and damage indices are our 

attempts to represent them. We use the symbol Y to refer to both, and the distinction 

is understood from the context. Clearly, the process of selecting a damage index 

requires physical intuition regarding the unknown damage process. 

When Y is a damage potential P(D\H,Y) can be represented by a probability 

distribution function. Let us denote this as F(Y). We will call the random variable 

that F(Y) distributes a "strength," which is the word used in much reliability 

literature to go along with "stress." When F(T) is substituted for P(D\H,Y) in 

Equation 2, the formulation is sometimes referred to in the reliability literature as a 

"stress-strength model." Alternatively, particularly in the field of structural 

reliability, the random variables might be called "resistances" and paired with "loads" 

in "load-resistance models." In this paper the conjugate terms are damage potentials 

and damage strengths. In an experiment, we say damage will result (by definition) if 

the random strength is less than or equal to the damage potential level for that 

experiment. The probability of this happening is by definition a (cumulative) 

probability distribution function. 

The concepts of damage potentials, damage indices, and damage strengths 

permit us to link the occurrence of a damage response modeled as a discrete event with 

the accompanying physical process described in terms of the information H and UM. 

For example, physical theories concerning the behavior of materials are often based on 

a conceptual view of damage as a continuous evolutionary process that involves the 

distortion of the atomic and molecular matrices, the development of bond failures and 
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dislocations, and the formation of microcracks and microvoids of various types which 

link, coalesce, and eventually result in a macroscopically recognizable condition or 

event defined as crack initiation. Suitable damage indices for predicting initiation 

might be a stress-modified strain or a void volume fraction as formulated by some 

suitable, but idealized, model. In these cases damage strengths would be imagined to 

be critical values of strain or void volume fraction. If the stress and strain conditions 

are sufficient, the damaged region might continue to develop until it achieves a state 

referred to as plate penetration. A damage index useful for prediction of the plate 

penetration event might be the depth of the crack as formulated-by a suitable, but 

idealized, model. The notion of critical crack depths as the conjugate strengths could 

be invoked to explain the test data. Obviously, the center of the strength distribution 

would fall somewhere around the plating thickness if the model is reasonable. Finally, 

the event of crack penetration through the plating thickness begins the process of 

through-crack extension. This is a continuous response that could be statistically 

modeled in a manner analogous to that used in our coupon tests example. 

In these examples damage indices associated with crack initiation and 

penetration events were based on physical models of the continuous underlying 

processes. They can also be based on other considerations. Under the statistical 

approach, physical response theories are used (1) to combine or pool test data gathered 

under different conditions and (2) for predicting or inferring the outcomes of 

experiments conducted at untested conditions. Conceptually, the roles of models 

based on physical response theories are identical to the roles of the models employed in 

the simple linear regression analysis examples discussed earlier, which permitted us to 

combine data subpopulations labeled by different values of the independent variable 

and to infer behavior under untested conditions. Thus, from the viewpoint of 

statistical modeling, the principal role of the physical response theories lies in the 

formation of the model hypothesis. 

In practice, when predicting damage defined as a discrete event, the formation 

of the model hypothesis involves two initial steps. First, we choose any function 

T(H,U'M) that we believe has the properties of a damage potential [i.e., constant Y 

implies constant probability, zero T implies zero probability, and increasing T implies 

increasing (or constant) probability]. Second, we choose any appropriate family of 

strength distribution functions (e.g, the family of Weibull distributions is often applied 

to problems of structural damage). Let us denote this family as F[T;a,ß,^], where a, 

ß, and 7 are undetermined parameters (the semicolon is used to separate them from 
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the value of the random variable). Then, combining F and T, we hypothesize the 

mean structure underlying the tests to be of the form P(D\H,UM) = 

F[Y(H ,U ^aß^]. Using statistical estimation techniques, we select values of a, ß, 

and 7 that best fit the data. The fitted model is then subjected to a goodness-of-fit 

test to finalize the statement of the model hypothesis. The Bernoulli distribution, 

which governs the binary random response (D or not D), is fully characterized by a 

single parameter, its mean P(D\H,UM). Our estimate of the P(D\H,UM) function, 

obtained by substituting the estimated values of a, ß, and 7 into F[Y(H,UM);a,ß,7], 

thus completes the estimation of the probability model for the full population of 

responses of interest. 

Modeling Multiple Discrete and Continuous Response Variables: 

Up to this point we have discussed statistical approaches for modeling single 

continuous responses and single discrete responses. Explosive tests of submarine hull 

models, of course, produce a continuum of responses across the structure that interact 

in complex ways to produce a final pattern of damage; in some cases the responses 

include hull rupture. Deterministic engineering models have been and can be 

developed to describe many of these responses and their complex interactions. We 

have seen how such models might be used to model the mean structures for both single 

continuous and single discrete nondeterministic responses. A response like the rupture 

of an externally stiffened submarine pressure hull, however, depends upon sequences of 

interacting responses leading up to rupture that are themselves quite difficult to model 

deterministically. Some of these are perhaps best regarded as discrete events (the 

initiation and penetration of cracks through one or more stiffening rings) and others 

are in the nature of continuous processes (stiffener buckling and crack extension). 

Much of the uncertainty of the hull rupture response is a consequence of the 

uncertainties of the responses that precede hull rupture. The smaller (perhaps 5 to 10 

percent) uncertainties associated with the initiations of fractures at individual stiffener 

weldment sites, for example, combine together to produce the larger uncertainties 

observed for hull rupture. Consequently, the difficulty of accurately modeling the hull 

rupture response deterministically is also compounded. For such problems it appears 

to be reasonable to construct multivariate statistical models (i.e., models involving 

more than one random response variable) and to use the multivariate response data 
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produced in each test (e.g., the locations and lengths of cracks that make up the 

fracture patterns) to estimate the parameters of such models. This is what we have 

attempted to do in the Hull Rupture Modeling Task of the SDM Project. 

When a single test produces many discrete and continuous response outcomes of 

interest, the probability model for the responses is characterized by a joint 

distribution. In analogy with the case of a single response variable, the joint 

distribution describes how the vector of response variables varies randomly from one 

test to another. Population characteristics of the joint distribution include, as before, 

means, variances, higher order moments, etc. of the individual random outcomes, but 

in addition to these they also include correlations, covariances, etc. that describe the 

interactions and interdependencies of the responses. When the database of interest 

includes many unique sets of test conditions (as in the submarine hull rupture 

database), the mean, covariance, and other structures underlying the multivariate 

probability model may be quite complex functions of the modeling variables. The 

situation is similar to that associated with single-variate models, but there are now 

more population characteristics that must be modeled. 

The goal of a statistical analysis of multivariate data is the same as that for 

single-variate data: to estimate the functions describing the population characteristics 

and, from these, to estimate the probability model as a whole. Again, deterministic 

models may be used to describe the means. The new problem that comes with 

multivariate data is that of modeling and estimating the interaction characteristics. 

Interactions are readily apparent in externally stiffened submarine hull response data. 

For example, if a fracture develops in a stiffening ring, the likelihood of a subsequent 

fracture occurring in the pressure hull in the immediate vicinity of the detached ring is 

considerably reduced, but the probability of a fracture in a more remotely located 

stiffener may be increased. This is because the ring detachment relieves the stresses 

built up in the hull locally, but may transfer the load to the other stiffeners. If the 

fracture first occurs in the hull plate at the base of a stiffener, the likelihood of a 

subsequent ring fracture may be reduced. 

The interaction modeling problem can be simplified by recognizing that 

structural responses are local in nature. That is, a material element of a structure sees 

only the local stress and strain environment directly experienced by the element. The 

interaction of a local response with other responses occurring elsewhere in the structure 

is communicated through the stress and strain fields. If it is possible to track these 

local stress and strain conditions as they are affected by remotely occurring damage 
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processes, then it will be possible to model the local responses as if they were 

stochastically independent of the remote responses. This notion is referred to in the 

statistics literature as conditional independence.8 Basically, conditional independence 

means that if we can deterministically model the loading transfer mechanisms that 

give rise to the dependencies among the responses, then the randomness of the various 

interacting responses can be described by set of single-variable distribution functions 

that are conditional upon the calculated local conditions. Then, instead of being 

concerned with a joint distribution function, we need only be concerned with simpler 

single-variate distribution functions because we have created a physical model for the 

interactions. 

Deterministic structural models are reasonably accurate for tracking local 

responses except when the responses become sensitive to details not included in the 

models. If sensitive responses, such as buckling and fracture onsets, are modeled as 

discrete statistical events, deterministic models can be used to link such events to 

provide a description over the full range of the responses. This is the idea behind the 

Hull Rupture Modeling Task. 

Summary: 

In summary and more concisely, the statistical approach regards all responses 

as nondeterministic. The objective is to use response data to describe the probability 

model underlying the responses; this is the (joint) distribution function for the random 

response outcomes. Specification of the probability model entails the specification of 

characteristics of the response distribution (i.e., means, covariances, etc.) throughout 

the domain of the modeling variables. Deterministic models based on the physics of 

the responses are useful for these specification purposes. It is convenient to model 

some responses, such as threshold phenomena, as discrete events, particularly when the 

physical mechanisms underlying the responses cannot be completely specified. 

Discrete responses introduce the notions of random strengths and strength 

distributions. Observations of continuous responses, which can be approximated using 

deterministic models, are associated with error distributions. The strength 

distributions and error distributions describe the random aspects of the probability 

model, while the characteristics functions of the response distribution describe the 

systematic aspects of the probability model.   When multiple interacting responses are 
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of interest and when physical models for the interaction mechanisms are possible, 

conditional independence of the responses can be used to construct a probability model 

in which response dependencies are adequately represented. A class of possible 

probability models is first developed from which a best candidate is selected by a 

statistical estimation procedure; this forms the model hypothesis. The estimated 

model hypothesis is rejected if it fails statistical tests that are sensitive to the 

differences between the response behavior hypothesized by the model and the actual 

response observations. A model that is not rejected can be used to make predictions of 

behavior means, variances, and other distribution characteristics for arbitrary 

conditions and to construct decision models . 
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SDM PROJECT 

The technical objective of the Hull Rupture Modeling Task is to develop a 

stochastic simulation model for multivariate failure responses of interest in the 

database consisting of explosively tested stiffened shells. The task plan is to build the 

simulation model by employing well-founded deterministic physical models to describe 

the mean structure of the response outcomes. Selected continuous responses simulated 

by the model, namely crack lengths, will be affected by randomly assigned errors, and 

related onset phenomena, namely fracture initiation and crack penetration through the 

plating thickness, will be affected by randomly assigned strengths. The simulation 

model outcomes, thus, will depend upon strength and error distribution functions and 

their associated parameters. The parameter estimation problem is to fit the 

simulation model to the data so that the fitted simulator generates responses with 

systematic characteristics like those of the database. To accurately capture the 

interactions between the responses, the simulation model must also include the loading 

transfer mechanisms responsible for the dependencies in the structural model. The 

adequacy of the various modeling assumptions will be tested by one or more suitably 

designed statistical hypothesis tests. The fitted simulation model will then be used to 

estimate response probabilities of interest for arbitrary structural designs and problem 

conditions to which the model can be interpolated or extrapolated with reasonable 

accuracy. 

The specific test outcomes selected for modeling, namely the occurrences of 

crack initiation and plating penetration and the final lengths of cracks, were chosen 

because (1) they are rather easily extracted from the Navy database, (2) they are 

damage states of considerable interest, and (3) the lengths of stiffener cracks, in 

particular, affect the overall compliance of the structure and the development of cracks 

at neighboring sites. By pinning responses to these data, we hope to obtain a more 

reliable model for predicting hull rupture than models based upon small specimen 

data. 

Additional data could, in principle, also be explicitly included in the statistical 

model.     In  particular,  we  could  include  data  on  shell  deformation  and  stiffener 
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buckling. It was decided, however, to develop and test the deformation and buckling 

(also called tripping) algorithms of the model off-line, so to speak, rather than model 

the random aspects of the deformation and fracture data simultaneously. This was to 

avoid over-complicating an already complex statistical model. Further, since fracture 

responses are closely linked with deformation, the test of the model hypothesis against 

the fracture data would be an indirect test of the deformation algorithms. Moreover, 

the fracture responses were regarded as the responses of primary interest. 

Our modeling strategy was to first develop models for hull deformation, crack 

initiation, plate penetration, and crack extension that would permft us to simulate the 

development of fracture patterns for a given description of the explosion output. The 

computer model for these combined responses is referred to as the response generating 

algorithm or RGA. Basically, the RGA functions like a numerical experiment. A flow 

chart of the RGA appears in Figure 6. While we could, in principle, use one of the 

existing computational mechanics codes as the core of our RGA, such codes are 

without exception too slow at the present time on typical machines to meet our 

modeling requirements.* Hence, we have undertaken the development of faster, 

sufficiently accurate structural models. (We include a discussion of what is meant by 

"sufficiently accurate models" in the following section.) This work has been a joint 

collaborative effort of NSWC, the Massachusetts Institute of Technology (MIT), and 

SRI International. 

To achieve rapid computation speeds, MIT and NSWC have pursued the 

development and coding of highly analytical models for the deformation of arbitrary 

externally ring-stiffened cylinders with and without the presence of cracks.9"13 The 

MIT modeling approach is based on a statement of dynamic equilibrium which equates 

the rate at which energy is dissipated by plastic work and fracture to the rate at which 

energy is supplied to the shell by the explosion. The development of equations of 

motion from this is aided by making various simplifying assumptions regarding the 

behavior of the shell and the ductile shell material. These include the assumptions 

that (1) the dominant response mechanisms of the shell are axial stretching and 

circumferential bending, (2) the material behavior can be approximated as rigid 

perfectly plastic with simple yield criteria, and (3) the stiffening rings respond by 

* Such computational mechanics models are currently being developed by ONR under the Modeling 
and Simulation Project. We foresee their eventual use in statistical applications as discussed here 
when high-speed computational technology becomes widely available. 
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circumferential bending and out of plane buckling with prescribed geometries and 

buckling patterns. In addition, a relatively simple model for crack growth along 

prescribed paths is assumed. These assumptions permit the development of reasonable 

equations of motion that are solved both analytically and numerically for the 

deformation of the pressure hull and the growth of stiffener and shell cracks (that, as 

will be seen, have come into existence by stochastic strain-driven initiation and 

penetration processes). The equations are regarded as being most accurate directly 

opposite the explosive charge along the longitudinal centerline of the load. 

The development of crack initiation and growth models has been the primary 

responsibility of SRI International. Hull and ring fractures tend to occur within or 

near the heat-affected zones associated with the ring-to-shell weld joints (T-joints). 

Experimental and analytical studies carried out at SRI showed that the variations of 

material properties associated with weldments of different sizes and weldments made 

by different welding processes can cause significant differences in weldment fracture 

behaviors. Since we are using the reduced-scale models of our database which differ in 

size as well as in other weldment features from the full-scale pressure hulls of interest, 

it is important to model the systematic changes of behavior associated with these 

differences. It is also known that fracture growth processes in pure single-material, 

geometrically similar specimens are affected by changes of scale; this is sometimes 

referred to as the fracture size effect. 

To guide the fracture modeling effort, SRI International has developed 

DYNA3D finite element models of two-dimensional T-joint weldments (plane strain is 

assumed along the lengths of the welds).14 Each model is finely meshed using small 

elements with multiple, tied, corner nodes in the fracture region near the stress 

concentration at the toe of the weld. A local fracture process is assumed and 

simulated by applying a material-dependent, semi-empirical fracture criterion to the 

elements. When the criterion is met over a multiple-element region of fixed size 

referred to as the process zone, the tied nodes at the center of the zone are released 

and allowed to move independently. Propagation of the crack is thus simulated as the 

process zone at the crack tip moves sequentially through the thickness of the plating 

along a path determined by the material properties and the local stress and strain 

fields. 

The SRI fracture code has been shown to capture the systematic fracture 

behavior observed for both statically and dynamically tested, welded T-joint 

specimens.15"16   And it is thought to model the various mechanisms described above to 
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a reasonable level of accuracy. Currently, its ability to predict the fracture size effect 

is being further evaluated by comparing it with the results of tests of precision 

nonwelded specimens of different sizes. The code is also being used to study the 

results of (mixed-mode) tension-torsion tests that will give an indication of its ability 

to predict the crack extension or tearing mode. A full three-dimensional model of a 

single stiffening ring on a two-frame-width cylinder has been developed to provide 

guidance to MIT's effort to model crack extension. Other similar configurations of 

interest are also being studied. Finally, the code is being used to develop simple, and 

approximate, strain- or energy-based analytical fracture initiation indices and through- 

thickness crack penetration indices that can be calculated using the approximate MIT 

deformation model. These will be used in the statistical code to model the processes of 

crack initiation and penetration as discrete random events. Based on preliminary 

work, physically motivated and relatively simple functions of the longitudinal strains 

and curvatures calculated by the rigid-plastic model appear to be reasonable choices 

for both the initiation indices and the penetration indices. 

The goal of the statistical modeling effort, as stated previously, is to estimate 

the probability structure of a population of tests represented by the Navy stiffened 

shell database and to use this estimated structure to predict the fracture responses of 

full-scale submarine pressure hulls. Said differently, we intend to fit the RGA to the 

database so that it can be used to predict the failure of full-scale submarines. To 

accomplish this, the data for each test are organized according a practical 

discretization scheme. Each structure is divided into annular regions called 

probability elements as indicated in Figure 7. The elements represent a sufficient 

resolution of the probability field over the shell and they identify regions of expected 

crack formation. In particular, we are concerned with (1) cracks in the stiffener web 

plates that, upon extension, separate the rings from the shell, and (2) cracks in the 

shell near the stress concentrations associated with the stiffener-to-shell weldments. 

As shown in Figure 7, the three types of probability elements are called web elements, 

junction elements, and bay elements. 
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FIGURE 7.  PROBABILITY ELEMENTS FOR STIFFENED 

SHELL ANALYSIS 

From experiments we know that within each probability element crack 

initiation tends to occur at the point of maximum (triaxial-stress modified) strain*; we 

call this single point within each element the element "event site." The locations of 

the event sites for the different elements all lie within the loading symmetry plane as 

shown in Figure 8. After each RGA time step, fracture initiation indices are 

monitored at each event site and compared with initiation strengths that were 

initialized at the beginning of the run by random draws from the initiation strength 

distribution. When a strength has been met or exceeded at an event site, the fracture 

penetration index is then calculated and compared with its (also randomly assigned) 

fracture penetration strength. Crack extension is started when the penetration index 

equals or exceeds the penetration strength. The length of the crack is determined at 

any given time by the crack extension algorithm; the calculated value is referred to as 

the crack extension index.    The crack length actually used in the next time step is 

*       We view such conditions as the rotational and dilatational nature of the stress field (triaxiality) 
as affecting the damage per unit strain increment and the critical damage strengths. 
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(STRUCTURE IS SHOWN IN LOADING SYMMETRY PLANE) 
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FIGURE 8. PROBABILITY ELEMENT EVENT SITES 

obtained by multiplying the extension index by a multiplicative error* that is 

randomly drawn from an error distribution and retained for that event site for the 
duration of the run. 

A random fracture pattern is thus produced at the end of each RGA run that 

depends upon the random strengths and errors drawn for the run. Probabilities of 

fractures thus depend upon the fitting parameters associated with the strength and 

error distributions. Other fitting parameters could be added elsewhere within the 

RGA at the discretion of the modeler. Values which maximize the likelihood function' 

associated    with    the    database    are   assigned   to   all   fitting   parameters.       The 

* Multiplicative errors are used so that error standard deviations will be proportional to mean 
crack lengths. This assumption for the underlying structure of the standard deviations is based upon 
informal experimental observations.  The assumption will be later tested statistically. 

| The likelihood function is defined as the probability model (the model for the joint frequency 
function of the observed responses) evaluated at the values of the random outcome variables observed 
in the database. It is a function of the model parameters. For discrete outcomes the likelihood 
function can be thought of as the probability of the observed sample under the model. The 
maximum likelihood estimation technique is discussed in most textbooks on mathematical statistics. 
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likelihood function is represented as an integral which can be calculated by using an 

efficient form of Monte Carlo integration. Reference 17 discusses such a method that 

can be used when the sequence of site fractures in each test is known. It remains to 

generalize this model so that it can be used to analyze fracture data for the more usual 

case where the fracture sequences are unknown. It is believed that a goodness-of-fit 

test for the fitted model can be developed around the concept of likelihood ratio tests. 

Finally, damage probability predictions for arbitrary conditions will be made by using 

efficient Monte Carlo estimators obtained in a manner similar to that by which the 

likelihood function is calculated. 

As implied earlier, the modeling techniques developed for application to the 

Hull Rupture Modeling Task are quite general and can be extended to the 

Catastrophic Failure Task and the Concept Assessment Methodology Task. The 

latter, in particular, will require the use of additional statistical concepts such as loss 

functions or utility functions, which derive from statistical decision theory, to manage 

notions of consequence and importance. Our purpose in doing so is to more effectively 

address the needs of the Navy described earlier. 
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CONCLUDING DISCUSSION 

Sophisticated structural response codes are required in a statistical analysis 

when the mean of the probability model has a complex structure. They are also useful 

for modeling covariance structures associated with response interactions. Clearly, both 

mean and covariance structures become more complex when we wish to control more 

variables. And we are motivated to control more variables because we would like our 

model to be applicable to a wide variety of problem descriptions or conditions. We 

would like be able to use our submarine response model to describe not just the 

responses of one submarine design, but the responses of submarines of many shapes, 

sizes, and construction details. 

The quasi-deterministic approach to this problem can be viewed as an attempt 

to extrapolate the results of small specimen tests (upon which the constitutive and 

failure models are based) to predict the responses of full-scale submarines. The 

statistical approach is an attempt to extrapolate the results of existing reduced-scale 

submarine model tests to achieve the same end. The statistical approach attempts to 

control far fewer variables than the quasi-deterministic approach. Variables that are 

not controlled include the deviations from the idealized hull design geometries, 

geometrical and material imperfections associated with weldments, residual strains, 

explosion variabilities, and a host of other quantities that are permitted to vary in the 

explosion damage tests in natural ways characteristic of the subpopulations of interest. 

Consequently, the uncertainties do not have to be explicitly accounted for in the final 

analysis when system reliability is assessed. Under the statistical approach many 

uncertainties are already accounted for in the test data. Under the quasi-deterministic 

approach many are not, and this necessitates an expensive post-computational analysis 

of the uncertainties. Under both approaches enough variables are controlled to permit 

predictions to be made for a wide variety of test conditions and structures of interest. 

Model uncertainty is a statistically testable and formally defined proposition 

under the statistical approach. It can be shown to be closely tied to the notion of 

estimator consistency, i.e., convergence of the estimated quantities to the underlying 

population   characteristics   as   more   empirical   information   is   acquired.       Model 
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consistency should, in the author's opinion, be required of all modeling techniques. 

That is, any proposed model of the systematic behavior associated with a population 

should improve as more empirical information is acquired from the population. 

Statistical modeling techniques and estimator functions are almost always designed to 

satisfy this basic requirement. 

Consistency of the estimated population characteristics and the probability 

model as a whole is forced by the goodness-of-fit test and by other tests of residuals. 

These tests can be thought of as strategies for controlling the systematic modeling 

errors. In effect, the tests make the experimental data the arbiter of the level of 

approximation that is sufficient and acceptable in modeling the physical processes. To 

make this point a well-known statistician once facetiously proposed calling the 

goodness-of-fit test the "goodenoughness-of-fit" test,18 meaning, that if the estimated 

probability model is not rejected by the goodness-of-fit test, it is good enough for 

making predictions. This should be qualified by the stipulation that accuracy bounds 

for the predictions that are associated with the random errors also be reported. 

There is risk associated with the use of any response prediction model. The 

statistical approach affords a way of quantifying that risk and taking it into account in 

subsequent decision making. The statistical approach can be used to explicitly show 

how experimental information can be used to reduce decision risk and how to best 

design experiments so that reduction of risk is optimized. The approach can also be 

used to quantify the level of risk associated with an existing prediction capability to 

show if additional experimental data are actually needed. The notion that models can 

be validated, once and for all, and used risk-free under all circumstances is an obvious 

oversimplification. Model adequacy involves many issues, and serious consideration of 

model risk requires that the consequences and utilities of actions be taken into 

account. The statistical approach provides an essential framework for conducting such 

examinations. 

In this discussion of the statistical approach we have presumed that the data 

being modeled were representative of the population of interest. If the data are 

contaminated by unwanted sources of variation and the tests are expensive (and 

cannot be repeated), it is often possible, and useful, to model the contamination along 

with the process of interest to extract the information of value; that is, to construct a 

probability model for the contaminated data. If the tests can be repeated, then 

repeating them in a more precise fashion so that they (can be believed to) truly 

represent the the population of interest is perhaps worthwhile. 
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We have sought to emphasize the many benefits of the statistical approach. As 

a synthesis and extension of the semi-empirical and quasi-deterministic approaches it 

brings additional modeling capabilities without sacrificing the predictive power 

associated with the quasi-deterministic method when this power is required for the 

solution of problems. Statistical methods are still quite new to many engineering 

communities that might benefit by using them. Statistical modeling is still too often 

thought of in terms of off-the-shelf canned programs that are rather blindly applied to 

data, rather than in terms of concepts and principles to be used in conjunction with 

physical principles to model the phenomena. At the same time, many of the 

techniques widely used by engineers to model physical processes are still unfamiliar 

within many statistical and mathematical circles. The hull rupture prediction problem 

is only one of many interdisciplinary problems that lie in the cracks between these 

disciplines. 

Since all responses are nondeterministic, if one measures them closely enough, 

statistical modeling techniques are fundamental to describing system behavior and 

should be a part of the analyst's armamentarium for problem solving. The reason why 

existing statistical models often do not seem relevant to the solution of realistic 

engineering problems is perhaps due to the different roots from which the two sciences 

have sprung. For example, much of statistical theory has been developed for problems 

occurring in the biological and social sciences. In these areas the systems being studied 

are so complex and the intrinsic uncertainties of the responses so involved that little is 

known of the governing mechanisms operating within the systems. Consequently, the 

probability models employed, such as those found in the theory of linear models, are 

necessarily simple — involving simple relationships between the modeling variables. 

Thus, these disciplines may be characterized as having relatively weak models for the 

systematic behavior and relatively strong models for the random behavior (consider, 

for example, analysis of variance .theory). On the other hand, by design, engineering 

systems operate according to well-understood physical principles, which enables the 

systematic behaviors to be described over a wide range of conditions. Random 

behavior that is in evidence when engineering systems fail has not received 

commensurate treatment. While much of the statistical theory required for such 

applications has already been developed, much modeling and theory development also 

remains to be accomplished. 
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