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AN ANALYTICAL SOLUTION FOR THE UNSTEADY FLOW OF A 
BINGHAM PLASTIC FLUID IN A CIRCULAR TUBE 

1. INTRODUCTION 

The solution of unsteady, non-Newtonian fluid velocity profiles is developed using 

numerical approximations as found in Edwards et al. (1972), Lipscomb and Denn (1984), 

Duggins (1972), Atkin et al. (1991), and Walton and Bittleston (1991). The closed form solution 

of unsteady velocity profiles in circular tubes has been accomplished by Szymanski (1932) for 

Newtonian fluids. An attempt to provide a closed form solution of the unsteady flow in circular 

tubes was made by Atabek (1964) for a non-Newtonian Bingham plastic fluid. The predominant 

method of solution for a Bingham plastic fluid in a circular tube has been to assume the form of 

the velocity profile in the boundary layer region, which was done by Chen et al. (1970) with an 

integral equation-based solution and by Duggins (1972) with a numerical solution. 

In this report, the solution of the start-up of a Bingham flow in a long circular tube is 

presented in an analytical closed form. This non-Newtonian fluid model will be compared with 

Newtonian fluid models in order to determine the rheological influence for such borderline fluids 

as blood, which exhibit characteristics of both fluid classifications. 

2.   SYSTEM MODEL 

The governing equations for a Bingham fluid within a long circular tube are developed 

from the Cauchy formulation of the momentum equations. Since the cylinder is considered long, 

compared to the radius, the velocity profile inside the tube is assumed to be in the axial direction. 

The momentum equation in the axial direction is expressed for a general fluid as (Bird et al. 

(I960)) 

Du _ _dP_ 
P Dt ~    dz rdr     n'     r98       dz   )    K*7 'z 
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where D/Dt is the substantial derivative, u is the axial component of velocity (m/s), P is the fluid 

pressure field (Pa), xrz is the shear stress acting on the radial face in the axial direction (Pa), x0z is 

the shear stress acting on the circumferential face in the axial direction (Pa), xzz is the normal 

longitudinal stress on the fluid (Pa), p is the fluid mass density (kg/m3), gz is the axial component 

of gravitational acceleration (m/s2), r is the radial coordinate (m), 9 is the circumferential 

coordinate (radians), z is the axial coordinate (m), and t is time (s). The fluid flow applications of 

interest are those assumed for a horizontal tube (gz = 0) that is axisymmetric. The remaining 

spatial parameters, after applying this assumption, are the radius of the tube and the axial location 

along the tube. The expression of the momentum in the axial direction in terms of the fluid 

velocity is obtained by substituting the Bingham constitutive relationship into equation (1) for the 

stress components, which is found in Bird et al. (1960) to be 

du 
Xrz = X0-»Tr (2) 

when the shear stress is equal to or greater than the yield stress of the fluid, x0. The Newtonian 

component in equation (2) contains the absolute viscosity, \i, of the fluid (Pa-s) and the rate of 

shear strain (1/s) in terms of the spatial velocity gradient. When the shear stress is less than the 

yield shear stress of the fluid, the flow is considered plugged. 

Since this analysis governs an axisymmetric cylindrical tube for a one-dimensional flow, 

the normal stresses and the radial component of velocity vanish from equation (1). Based on the 

one-dimensional flow assumption and the symmetry of the problem, the continuity equation 

becomes 

£ = 0. (3) 
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The axial velocity of the fluid is a function of time, t, and the radial coordinate, r. The effect of the 

one-dimensional flow assumption and the symmetry of the problem reduces the momentum 

equations in the radial and circumferential directions to 

dr (4) 

and 

I ■ »■ 

The substitution of equation (2) into equation (1) produces a momentum equation in the 

axial direction in terms of the axial velocity and the pressure gradient in the axial direction driving 

the flow. The implication of equations (4) and (5) result in the pressure being a function of only 

the axial location, which is consistent with the boundary layer theory assumptions. The governing 

equation for the unsteady flow of a Bingham fluid in a long circular tube thus becomes 

du        dP      1 3 ,. du.     T0 
*dr dz       rdr   ör       r 

The spatial domain governed by equation (6) is represented in figure 1. The radial domain 

extends from zero, at the center of the tube, to the inside radius, a. The axial domain extends from 

zero to the final length, /, of the tube. The solution to the axial velocity governed by equation (6) 

is valid for a completely filled cylinder only. This region is represented at an axial location greater 

than (Bird et al., 1960) 

u     a 
Q26jnax_ (?) 
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where v is the kinematic viscosity of the fluid (m2/s) and umax is the maximum axial velocity of 

the flow. The location of the flow region shown here is valid for laminar flow applications. The 

boundary conditions consist of zero velocity on the tube wall and a finite velocity at the center of 

the tube when the radius goes to zero. The initial condition requires the fluid to be at rest. 

r-a 

3 
r--a 

u(r,t) 

2=0 z=l 

Figure 1.   Flow Domain 

Since the pressure is only dependent on the axial coordinate, the gradient can be 

represented as the difference between the entrance and exit pressure divided by the length of the 

circular tube. The analysis is conducted by nondimensionalizing equation (6). The parameters 

used to nondimensionalize the governing equation are 

0> = 
4}i/w (r, t) 

a2(P0-Pi) 
a 

a 
pa2 

(8) 

where ®(^,a) is the nondimensional axial velocity, Z, is the nondimensional radial coordinate, and 

o is nondimensional time. The substitution of the parameters in equation (8) into equation (6) 

produces the unsteady flow of a Bingham plastic fluid in a circular tube as 
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(9) 

with 

4/T„ 
a - W^PJ- (10) 

The nondimensionalized boundary conditions and the initial condition have the following form: 

o = 0, time = 00 = 0 

% = 1, radius = a        0 = 0 

£ = 0, radius = 0       O-» finite. 

The form of equation (9) as presented is not separable for direct solution. In order to 

obtain a separable form, the nondimensional axial velocity will be assumed to have the form 

*(S,o) = *,(!;)-*0($,c). (12) 

where Ooo(^) is the steady state solution when nondimensional time goes to infinity and 

O (!;, a) is the unsteady portion of the total solution. The steady state solution is obtained first 

by substituting O^ (%) into equation (9); next by integrating the resulting ordinary differential 

with respect to the radial direction, as shown in equation (13), 
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a-4^ = Jd^ )'• <13> 

and finally by applying the boundary conditions of equation (11). The steady state portion of the 

total solution expressed by equation (12) becomes 

OJS) = S(cc-S)-a+l. (14) 

The substitution of equation (14) into equation (12) produces the foundation for the unsteady 

solution to the differential equation (9) as 

<D(£,a) = 5(a-5)-a+l+<BCT(5,a) • (15) 

By taking the partial derivatives with respect to time and axial location in equation (15) and 

placing these terms into equation (9), an unsteady, separable partial differential equation is 

developed: 

a^ - mvn )' ■(16) 

The initial condition and the boundary conditions transform as follows: 

G = 0      0=0 
a o 

\ = 1        % = 0 (17) 

t, - 0        <J>CT -> finite . 
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The assumed solution for the unsteady problem, equation (16), is dependent on two 

functions: the nondimensional time and the nondimensional axial location: 

<D0(5,a) = Y(5)x(a) . (18) 

Substituting the proper partial derivatives of equation (18) into equation (16) results in the 

following separable differential equation: 

If = J* (A = -%\ (19) 

where X2 is the separation constant. Based on this assumed solution, the ordinary differential 

equations in equation (19) can be separated into the following two ordinary differential equations: 

In terms of nondimensional time, 

f- + l2X = 0, (20) 
dö 

In terms of nondimensional space, 

{&<*%>+xh< • ° ■ (21) 
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The resulting ordinary differential equations are found to be the Helmholtz differential equation 

(equation (20)) and a zero-order Bessel equation (equation (21)). The general form of solution for 

these differential equations is 

-X2a 
X(o)  = Cje (22) 

for the dependence on nondimensional time. The spatial dependence portion of the solution 

becomes 

\|/($) = C2J0(Xt;)+C3Y0(\&, (23) 

where Ch C2, and C3 are arbitrary constants resolved by the initial condition and boundary 

conditions; J0 is the zero-order Bessel function of the first kind; Y0 is the zero-order Bessel 

function of the second kind; and X is the appropriate separation constant. 

The application of the boundary conditions (equation (17) to equation (23)) produces 

V(0  =   5>„W) • (24) 
n= 1 

where Xn are the nth zeroes of the Bessel function of the first kind and Dn is an arbitrary constant. 

The combination of equations (22) and (24) develops the total solution of the unsteady flow of the 

Bingham fluid in a circular tube: 
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-X2a 

n= 1 

(25) 

The arbitrary constant, Bn, is the combination of the constants found in equations (22) and (24). 

Since the final solution is given as the difference between the steady state solution and the 

unsteady solution, the solution for the remaining constant, Bn, becomes 

a^2 + l-cc=  £Vo<\5> (26) 

The solution of Bn is obtained through the orthogonalization of equation (26) by 

multiplying both sides by JQ (X \)\ and integrating with respect to \ from zero to one. Since 

Bessel functions are orthogonal, the only right-hand side representation that is nonvanishing is 

when m = n as shown in 

1 1 
J/0(^)^(a^-?+l-a)d§ = JBnJoan^)J0(Xn^)^ 
0 0 

(27) 

The left-hand side integral in equation (27) cannot be entirely solved analytically (Potter (1978)). 

The simplest form for the constant Bn is expressed as 

B_ = 

with 
X3J, (X ) 

n 1 v  n' 

+ 2a 
n 

j\iXn)      Vl<Xn>_ 
(28) 
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(29) 

The nondimensionalized velocity for the unsteady flow of a Bingham fluid in a long circular tube 

is expressed by combining equations (14), (25), (28), and (29) into equation (12), producing 

O(to)  =  (l-^2) +oc(^-l) - £ Wi) fg 
^ -MX )  113 + 2a 

ß, 
/, (X )     X In7 «. 

-X2a 
(30) 

The velocity model described by equation (30) should revert to the Newtonian solution 

found in Szymanski (1932) when the Bingham yield stress goes to zero. Therefore, a becomes 

zero and equation (30) represents the unsteady Newtonian solution 

*a^°>  =  <l-*2)-I 
■V^)  8   -&* 

^   /, (X )   i3 (3D 

In an additional check, the solution is bounded at the center of the tube (^ = 0). Applying this 

value of \ to equation (30) produces 

O(0,o) = i-cc- £ _1      J JU2o 
ß. -X2a 

(32) 

The steady state solution at the center of the circular tube (a = «>) then becomes 

10 
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0(0, oo)  = l-cc (33) 

The steady state solution for the center velocity of the circular tube becomes unity at the 

Newtonian limit (a-*0). This is the expected solution found in Szymanski (1932). The 

developed model describing the nondimensional velocity of the Bingham fluid satisfies the initial 

condition and the boundary conditions of the flow, and has been shown to revert to the Newtonian 

solution. 

The nondimensional shear stress can be evaluated from the velocity profile provided by 

equation (30). The constitutive relationship used to relate the velocity gradient to the shear stress 

was found in equation (2) to be that of a Bingham plastic fluid. The resulting shear stress in 

equation (2) is nondimensionalized by the parameter 

t($,o) = 
2/x rz 

a{P0-Pi) 
(34) 

This nondimensionalization is accomplished by dividing the shear stress by the steady state shear 

stress at the wall of the circular tube. The nondimensional shear stress developed in the yielded 

region of the flow is evaluated by 

*<ta>=*-S-^-£ + a 
„=1       lv   n>      [A.n 

ß. 
JAX)    X .   1 v   n' n_ 

-X2a 
(35) 

The location of the unyielded region, or the plugged flow region, is calculated from the dynamic 

shear stress at the tube wall. The plugged flow region is located at the critical radius, £0, which is 

11 
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evaluated by taking the ratio of the fluid yield stress to the dynamic wall shear stress. At a radius 

greater than the critical radius, equation (30) for the velocity applies. When the radius is less than 

or equal to the critical radius, the flow is plugged and the velocity is constant across the radius of 

the tube with a magnitude defined by equation (30) evaluated at t,0. The regions of plugged and 

yielded flows are illustrated in figure 2 using a representative value of 0.4 for £,Q. The ordinate 

represents the normalized axial velocity; the abscissa represents the normalized tube radius from 

the tube center to the tube wall. 

1.0- 

Nondimensional     0.75- 
Axial 
Velocity 0.5 _ 
(O) 

0.25-1 

o- 

Plugged Flow Region | Yielded Flow Region^ 

0 0.25     ^o = 0.4 0.5 0.75 

Nondimensional Tube Radius (b,) 

Figure 2.   Plugged Flow and Yielded Flow Region Locations 

1.0 

3. MODEL VALIDATION 

The axial velocity model for the Bingham plastic fluid developed in equation (30) is 

compared to the steady state solution found in Churchill (1988). In order to compare the steady 

state solution of Churchill to that of the converged steady state solution of equation (30), the 

velocity profile must be divided by the average velocity. The average velocity is the ratio of the 

integral of the velocity over the area to the cross-sectional area of the tube. The plugged flow 

region and the yielded flow region are integrated separately over the radius. The above 

mathematical operations result in equation (36): 

12 
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O 
ave 

Steady State Solution 

i(40)4-| «„) + i]  -lBessel-\ I Vo<W^o • 
n=\ 

(36) 

with 

Transient Solution 

1      oo 

v-1 (37) 

and 

Y   = 
»    A (V + 2a 

L   n L-W      ^nJ 
-X2a 

(38) 

The normalized axial velocity is calculated by dividing the axial velocity in equation (30) by the 

average velocity expressed in equation (36). This result is compared to the steady state Bingham 

flow in a round tube given by Churchill (1988) (see figure 3). The ordinate in the figure represents 

the normalized axial velocity, and the abscissa represents the nondimensional radius of the round 

tube. This analysis shows a curious result: O/O = 1 when the critical radius, £0, is equal to 

one. Physically this represents the condition where the yield shear stress of the Bingham fluid is 

equal to the wall shear stress. Since the resistive shear stress in the fluid (i0) and the driving shear 

13 
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stress (xj are equal, no fluid flow should occur. The plugged flow condition exists across the 

complete tube; therefore, the expected solution would be zero fluid velocity. However, when the 

velocity is calculated for this case, the undefined expression of zero over zero is obtained. The 

evaluation of this limiting case is done by performing a L' Hopital operation on the normalized 

velocity, which calculates the result as one. 

Normalized Axial Velocity Profile (0/Oave) 

Figure 3.   Velocity Profile for Steady State Laminar Flow of Various 
Bingham Fluids in a Circular Tube 

The limiting case of a Newtonian fluid, t,Q = 0, is also shown in figure 3, with the characteristic 

Poiseuille velocity profile. As the rheological resistance to the fluid flow decreases, the region of 

the yielded fluid increases. Likewise, the region of plugged flow decreases as the yield shear 

stress decreases. 

14 
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4. ANALYSIS 

The parameter needed to resolve the normalized axial velocity and the normalized shear 

stress is the ratio of the fluid yield shear stress to that of the tube wall shear stress. In order to 

compare the results of the closed form analytical model presented here to the numerical 

approximation of Duggins (1972), a ratio of 0.25 is used. The prediction of the fluid velocity in 

the work of Duggins requires the assumption that the velocity profile is parabolic for the first two 

nodal locations from the wall of the tube. Applying this assumption to the velocity profile near the 

wall provides excellent agreement with the steady state solution. However, the evaluation of the 

transient fluid velocity has errors greater than 10 percent for 87 percent of the solution. The 

comparison of the velocity ratio between the maximum velocity to the average velocity for the 

closed form solution and the solution of Duggins is shown in table 1. 

Table 1. Comparison of Duggins (1972) Approximation and the Closed 
Form Solution of the Commencement of Flow for a Bingham 
Fluid 

Time 
(nondim.) 

<t>    /<& ^max'^ave 

Duggins 

<f>      M> ^max' ^ave 

Closed 
Form 

Difference % Steady 
State Solution 

0.0513 1.335 0.639 109.0 38.0 

0.1014 1.458 0.937 56.0 56.0 

0.1510 1.531 1.136 35.0 67.5 

0.2002 1.578 1.280 23.0 76.0 

0.2995 1.631 1.464 11.0 87.0 

0.4007 1.656 1.564 5.9 93.0 

0.5034 1.669 1.619 3.0 96.0 

0.7520 1.681 1.669 0.7 99.0 

1.0 1.6835 1.6806 0.2 99.8 

1000.0 1.6842 1.6842 0.0 100.0 

The solution to the evolution of fluid flow in the circular tube approaches the steady state 

condition rapidly. The numerical approximation of Duggins (1972) produces extreme errors for 

15 
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the transient solution and approaches accurate values only after the transients have decayed. 

Therefore, this numerical solution becomes valid for the steady state problem, as shown in the 

table. The interesting aspect of the transient solution is the nonlinearity of the shear stress profiles 

that are produced in the closed form solution. These shear stress profiles are important in the 

estimation of the energy dissipation by the viscous fluid forces. 

The only known attempt to analytically solve the start-up flow of a Bingham plastic fluid 

is that of Atabek (1964). This solution appears to have the transient portion of the Bingham plastic 

fluid in addition to the steady state solution form, as shown in equations (30) and (35). However, 

on closer inspection of Atabek's solution, the transient terms are simply the Newtonian transient 

solution of Szymanski (1932) added to the steady state Bingham solution. The rheology of the 

Bingham fluid is not present in the time-dependent portion of Atabek's solution. The comparison 

of the solution of Atabek with the closed form solution presented here is similar to the comparison 

with Duggins (1972). The normalized axial velocity results compared in table 2 show that 

Atabek's (1964) model at early time steps produces negative velocity values, which are physically 

impossible for the boundary conditions applied to the problem. 

The solutions of the normalized axial velocity and the normalized shear stress are shown 

in figures 4 through 17. These results were evaluated at nondimensional times, including 0.025, 

0.051, 0.077, 0.103, 0.129, 0.467, and steady state. The even-numbered figures represent the 

normalized axial velocity plotted on the ordinate and the normalized tube radius plotted on the 

abscissa. The odd-numbered figures contain the normalized shear stress plotted on the ordinate 

and the normalized tube radius plotted on the abscissa. The progression of the plugged flow 

interface in time toward the steady state value of 0.25 is seen in figures 4, 6, 8, 10, 12, 14, and 16. 

The initial nonlinear shear stress profile is shown in figures 5,7,9,11, and 13. As time approaches 

infinity (a = 1000), the shear stress profile becomes linear in figures 15 and 17. The nonlinear 

characteristics of the shear stress profiles are consistent with the results of Szymanski (1932), in 

16 
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the case of the Newtonian fluids, and with the results of Duggins (1972). It has been found that 

Duggins' assumption, which states that the deviation from the parabolic velocity profile of the 

sheared fluid would have a minimal effect on the instantaneous mean velocity, is not valid 

Table 2. Comparison of Solution of Atabek (1964) and the Closed 
Form Solution of the Commencement of Flow for a Bingham 
Fluid 

Time 
(non-dim.) 

^max'^ave 

Atabek 

^max'^ave 

Closed 
Form 

Difference 

%A 
% Steady 
State Solution 

0.0513 -0.161 0.639 125.0 38.0 

0.1014 0.372 0.937 60.0 56.0 

0.1510 0.749 1.136 34.0 67.5 
0.2002 1.013 1.280 21.0 76.0 

0.2995 1.331 1.464 9.0 87.0 

0.4007 1.495 1.564 4.4 93.0 
0.5034 1.582 1.619 2.3 96.0 

0.7520 1.681 1.669 0.5 99.0 

1.0 1.6786 1.6806 0.1 99.8 

1000.0 1.6842 1.6842 0.0 100.0 

5. CONCLUSIONS 

A closed form solution to the commencement of flow for a Bingham plastic fluid in an 

axisymmetric cylindrical tube is presented. This analytical model has shown that past numerical 

and analytical treatments of non-Newtonian fluid applications have inaccurate velocity profiles, 

resulting in errors of up to 125 percent. The concern with the past models is that the region of 

extreme error is in the time-dependent portion of the solutions. The velocity and shear stress 

profiles predicted in the closed form solution presented here will provide the accuracy needed to 

analyze flows with small time durations that include impulse loads, such as the oscillating flow of 

blood in an artery. 

17 
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Figure 4. Axial Velocity Profile as a Function of Radial 
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