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ABSTRACT 

Efforts to speed up the memory hierarchy have failed to keep up with the 

rapid increase in microprocessor performance. The use of first-level and second- 

level caches has become common in an effort to minimize this speed discrepancy. 

One potential method to overcome the speed problem, while using much less 

hardware than a second-level cache, is the predictive read cache. This thesis 

continues previous efforts in designing and optimizing the predictive read cache. It 

develops a method to simulate the performance of a memory hierarchy containing 

a predictive read cache and uses these simulations to determine the most effective 

architecture of the cache. Using trace data from an Intel 486 processor running the 

SPEC benchmarks, the simulations demonstrate that a small predictive read cache 

can give a performance improvement equivalent to a much larger second-level 

cache. This makes the predictive read cache ideal for systems that are power or 

chip area limited. 
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I. INTRODUCTION 

A.        THE NEED FOR CACHE MEMORIES 

Microprocessor design improvements have resulted in dramatic speed increases 

over the last few years. The performance of the latest high-end microprocessors has 

increased at a rate of 54 % per year over the last ten years [Ref. 1]. However, the speed of 

the dynamic random access memory (DRAM) required for all modern computers has 

failed to keep up with the increases in microprocessor speed, only improving by a factor 

of three (180 ns access time vs. 60 ns access time [Ref. 2]). 

To get around the problem of slow main memory inhibiting the performance of 

the microprocessor, designers have gone to a hierarchical memory design where a smaller 

and faster memory (a cache) is placed between the microprocessor and the main memory. 

This cache memory allows most memory references to be handled by the cache at a high 

speed with only a few references requiring slower main memory access. Use of a cache 

memory has become so critical to the operation of modern microprocessors that it has 

become mandatory to incorporate one directly on the same chip as the microprocessor 

(for example, the 8 Kbyte cache on the Intel 486 microprocessor [Ref. 3]). An on-chip 

cache is limited in size due to silicon area restrictions and the requirement that its data be 

available in one processor clock cycle. Because of the importance of this on-chip cache, 

numerous studies have been done on determining its optimum configuration and most 

practical performance improvements have already been implemented. 

Initially, a single cache provided the improvement in average memory access time 

needed to allow the nominal microprocessor to operate efficiently. However, as the speed 

and memory bandwidth requirements of later microprocessors increased, designers soon 

had to add off-chip second-level caches. A second-level cache could be larger and slower 

than the first-level cache since there are no chip area limitations, cache access time is not 

directly tied to microprocessor clock rate, and any improvement in access time over that 



of main memory is beneficial. Although a second-level cache provides a performance 

enhancement, use of an off-chip cache has several disadvantages. The most important is 

that it is connected to the first-level cache through the microprocessor package's 

input/output pins and therefore has a limited width datapath that reduces the rate at which 

data can be passed from the off-chip cache to the microprocessor. Additionally, since the 

second-level cache is external to the microprocessor package, it requires additional 

components and control circuitry which adds to system complexity and cost. 

The next logical step in improving memory access time is to move the second- 

level cache into the same package as the microprocessor. The Intel Corporation's P6 

microprocessor will have separate 8 Kbyte first-level data and instruction caches on the 

microprocessor chip and a 256 Kbyte second level cache on a separate silicon chip inside 

the same package [Ref. 4]. This design allows a wider datapath between caches and 

allows the designer to better optimize the memory hierarchy. The Digital Equipment 

Corporation's Alpha 21164 goes even further with an integrated 96 Kbyte second-level 

cache on the same chip as separate 8 Kbyte data and instruction first-level caches. 

However, this implementation requires over nine million transistors on the chip. [Ref. 5] 

As can be seen, the use of large second-level caches is very expensive and 

complicates the system design. A very different method to gain the improved memory 

access times without the expense of a second level cache has been proposed by Fouts and 

Billingsly [Ref. 6]. Their solution is to us an on-chip predictive read cache (PRC) instead 

of a second-level cache. By monitoring the trend in memory accesses, the PRC prefetches 

data from main memory to have it available when it is needed by a first-level cache miss. 

B.        CACHE MEMORIES 

Before describing the PRC, it is necessary to have a basic understanding of cache 

memories and how cache performance is normally measured. As mentioned earlier, a 

cache consists of a small high-speed memory located between the microprocessor and 

main memory. Since it is smaller than main memory, it can only hold a subset of the data 



contained in main memory. However, due to the spatial and temporal locality of memory 

references exhibited by most programs, the cache can contain a significant proportion of 

the microprocessor memory accesses. This fact is the primary reason caches improve the 

operation and speed of a microprocessor system [Ref. 1]. 

Common measures of cache performance are the hit and miss ratios. The hit ratio 

is defined as the fraction of memory accesses that were found in the cache memory while 

the miss ratio is 1 - hit ratio [Ref. 1]. Most modern day first-level caches have a hit ratio 

in the low 90% range and most cache optimization has been concerned with improving 

the hit rate since it is the most easily measured parameter during simulations. However, 

another significant aspect of cache performance is the miss penalty; that time required to 

get the data when it is not in the cache. The miss penalty is significantly affected by the 

downstream memory hierarchy and a high miss penalty can offset the benefits of a high 

cache hit ratio [Ref. 2]. Combining the miss penalty with the hit rate yields the average 

memory access time [taccess = HitRate x tcache + MissRate x tmjss ] where tcache = cache access 

time and tmiss = miss penalty. Therefore, the average memory access time serves to 

summarize the performance of the entire memory hierarchy and more accurately reflects 

the impact of cache and memory hierarchy design decisions on microprocessor system 

performance. 

C.        PREDICTIVE READ CACHE 

The predictive read cache (PRC) is fully described by Fouts [Ref. 6]. It is a cache 

memory, organized in any of the standard methods, with the difference that the data 

retrieved into the PRC is based on a predictive algorithm. It is by virtue of this predictive 

algorithm that a small PRC could potentially outperform a larger second-level cache. 

One of the first observations made by Fouts [Ref. 6] is that the PRC is best suited 

for only data references since there already exist several methods to improve the retrieval 

of instructions (i.e., prefetch queues). Therefore, the best location for the PRC would be 



between a first-level data cache (separate from the instruction cache) and main memory. 

This allows the PRC to be optimized for the distribution of data references in memory. 

The designers of the PRC noted that in a typical multitasking environment, groups 

of data references exhibit a strong spatial locality with temporal interleaving. This 

requires the PRC to maintain several different prediction traces so that task switches will 

not invalidate the prediction efforts. The prediction algorithm itself is very simple: the 

difference between the next (predicted) address and the current reference address should 

be the same as the difference between the current reference address and the last reference 

address fetched. This design requires a standard cache memory to hold the data and 

associated address tags, additional storage to maintain the previous PRC miss address, the 

address differences for each cache line, and the hardware necessary to implement the 

predictive algorithm. But, since only a very small PRC is required to provide a significant 

performance improvement, one could be implemented without using too much valuable 

real estate. 

To better understand the PRC, a simple example is required. First, assume address 

000100 is a first-level cache miss. At the same time this address is sent to the read buffer 

for main memory access, the contents of the PRC are checked. Since this is the first 

access to the PRC it will be a miss and the main memory read will be required to satisfy 

the cache request. Next, assume address 000110 also misses the cache. Again, a main 

memory read is started and the PRC is searched. Since this data is also not in the PRC, 

the memory read continues and data is retrieved to satisfy the cache request. However, 

the PRC will now compute the next predicted access [ (000110) + (000110 - 000100) = 

000120] and will initiate a memory read for that data. If, as expected, the next cache miss 

is for address 000120, the data will be available in the PRC and no main memory read 

will be required. This will significantly improve the memory access time. Additionally, if 

there is an access for address 000120, the PRC will fetch the data at address 000130 in 

anticipation of the next request from the cache. Then, if due to a task switch, the next 



request is for another address, the cycle described above will repeat for the new sequence 

of addresses with the predicted data being stored in a different PRC location. This allows 

the PRC to have data available for both predicted addresses when they are needed to 

satisfy subsequent cache misses. This prediction cycle is repeated for all first-level cache 

misses. 

D.        THE NEED FOR SACS2 

In order to determine the effectiveness of a PRC and to properly optimize its 

parameters, a cache and memory hierarchy simulator that provides more than just hit and 

miss percentages is required. The average memory access time is the critical information 

that properly accounts for the effects of the PRC. The optimum PRC parameters would be 

indicated by the minimum average memory access time. Comparing access times 

between configurations with and without a second-level cache would reveal the 

comparative effectiveness of a PRC to these other options. 

Smith [Ref. 7] developed a cache simulation program (SACS - Still Another 

Cache Simulator) that provides exactly the information necessary to optimize a cache 

memory for minimum access time. It was designed to use address traces in ASCII format 

and simulates a single-level cache interacting with main memory. By building on that 

foundation, this thesis documents the programming changes required to incorporate a 

PRC into the simulation memory hierarchy and the results of exhaustive testing using the 

modified simulator (SACS2). 





II. DESIGN OF SACS2 

A. INTRODUCTION TO SACS2 

SACS2 is a cache and memory hierarchy simulation program written in C. It is a 

modification and enhancement to the original SACS written by Smith [Ref. 7] and is 

designed to aid in the analysis of the effects of adding a PRC to a memory hierarchy 

containing a first-level cache. To implement this design goal required the addition of 

functions to model the PRC and modifications to other program functions to incorporate 

the PRC. Additionally, to allow comparison testing of a memory hierarchy built with 

both a first-level and second-level cache, another modified program (SACS21) was 

written. This program uses SACS2 as its basis and incorporates the changes necessary to 

model a non-predictive second-level cache. 

To provide for testing of the various cache and PRC design options, SACS2 gives 

the user the ability to vary numerous design parameters. This allows determination of the 

optimal first-level cache and PRC configuration by the running of simulations with 

different combinations of design parameter values. The user can then compare the 

resulting average memory access times and choose the combination that yields the best 

results. 

B. SACS2 INPUT PARAMETERS 

The various adjustable SACS2 input parameters are shown in Tables 1 and 2. 

These parameters are specified in a sacs.ini file so that they can be easily modified for the 

different simulation runs. This is a modification from the original SACS program that 

required the user to adjust simulation parameters using command line switches [Ref. 7]. 

The parameters listed in Table 1 are unchanged from their usage in the original SACS 

and are fully discussed by Smith [Ref. 7] and therefore will not be separately discussed 

here. However, the impact of changes in these parameters during the simulation runs will 

be discussed in Chapter III. The parameters listed in Table 2 were added in SACS2 to 

allow for proper modeling of the PRC and will be discussed further in this section. 



Cache Size Search Block Buffer 

Block Size Update Read Buffer 

SubBlock Size Remove Read Duplicates 

Cache Associativity Read Buffer Size 

Word Size Write Buffer Size 

Read Cache Access Time Cache Block Replacement Policy 

Read Cache Hit Time Cache Write Policy 

Read Cache Miss Time Cache Write Miss Policy 

Write Cache Access Time Cache Read Forward 

Write Cache Hit Time CPU Waits for Cache Writes 

Write Cache Miss Time Remove Write Duplicates 

Memory Access Time Read Priority 

Memory Transfer Time Read For Write Allocate Priority 

Buffer Cache Access Time Write Dirty Block Priority 

Table 1 Input Parameters From Original SACS 

Use PRC PRC Block Replacement Policy 

PRC Size PRC Write Policy 

PRC Associativity Use PRC on Write Miss 

PRC Cache Access Time PRC Read Priority 

Buffer PRC Access Time PRC Slipped Read Priority 

Max PRC Size in Buffer Drop PRC on Second Miss 

Table 2 Input Parameters Associated with PRC 



1. Use PRC, PRC Size, and PRC Associativity 

Use PRC is provided to allow simulation runs without a PRC so that data for a 

memory hierarchy with only a first-level cache could be obtained for comparison 

purposes. PRC Size is the size in bytes of the PRC being modeled. PRC Associativity 

allows simulating any degree of PRC associativity from direct mapped to fully 

associative. The model used in SACS2 assumes that the PRC Block Size and PRC Sub 

Block Size are the same as the Cache Block Size and Cache Sub Block Size respectively. 

It also assumes that the datapath between the PRC and cache is one block wide allowing 

an entire cache block to be transferred at once from the PRC. 

2. PRC Access Times 

The PRC Cache Access Time is used to model the time it takes for data in the 

PRC to be transferred to the cache on a PRC hit. It models the time required to check the 

address tags and valid bits along with the time required to actually transfer the data on a 

PRC hit. Buffer PRC Access Time is used to model the time it takes for the Block Buffer 

to access the PRC and load it with incoming data once the data has been read from 

memory. 

3. PRC Read Parameters 

There are four parameters directly associated with the handling of PRC read 

requests in the read and block buffers. PRC Read Priority is the priority associated with 

the predictive read being done by the PRC. It is used by the read buffer to determine the 

sequencing of read requests to main memory. It would normally be set to a lower value 

than the cache miss read priority to ensure that cache misses are handled first. Max PRC 

Size in Buffer is another parameter used to ensure that cache miss reads receive priority. 

Normally in the memory model, any read that has started access to memory gets the 

highest priority and will continue until complete. However, this could force a cache miss 

read request to be delayed significantly if it enters the read buffer just after a PRC read 

has started. To prevent this, the simulator has been designed to allow the cache read 

request to push a PRC read request that is not too far along off the top of the buffer so the 



cache read request can immediately start. The Max PRC Size in Buffer parameter 

determines the maximum portion of the original PRC read that can be remaining and still 

allow the PRC read to continue. This parameter is critical because, although a PRC read 

should not hold up a cache read, continually stopping almost complete PRC reads would 

cause these incomplete reads to fill up the read buffer and no PRC read requests will ever 

get processed. If a PRC read is pushed off the top of the buffer, its priority is assigned the 

Slipped PRC Read Priority. This allows the designer to give these read requests a lower 

priority since, if they have slipped once, they are more likely to be superseded by a cache 

read for the same information and/or a new PRC read for the next predicted address. 

Drop PRC On Second Miss allows the designer to specify whether PRC read requests that 

have been bumped off the top of the read buffer twice should be canceled or left in the 

buffer. 

4. PRC Block Replacement Policy and PRC Write Policy 

The PRC Block Replacement Policy controls how locations for the storage of new 

PRC read request data will be determined. It can be set to Least Recently Used (LRU), 

Random, or First In First Out (FIFO) allowing simulation for any of these three common 

cache replacement policies. The PRC Write Policy dictates what happens in the PRC on a 

cache write to memory. If PRC Write Policy is Write Through, the contents of the PRC 

for the write address are updated along with main memory. If PRC Write Policy is Write 

Around, the contents of the PRC for the write address are simply invalidated. 

5. Use PRC On Write Miss 

The setting of Use PRC On Write Miss determines whether the PRC will be 

searched when there is a memory read caused by a write allocate fill of a block in the 

first-level cache. If Use PRC On Write Miss is Yes the PRC will be searched and a new 

prediction trace started based on the address of this read request. If Use PRC On Write 

Miss is No the PRC is ignored on these write allocate reads and the cache read request 

goes directly to the read buffer. 
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C.        SACS2 OPERATIONAL DETAILS 

SACS2 operates in essentially the same manner as the original SACS [Ref. 7]. 

There is a main event loop where simulation time is incremented. All other functions 

simulating portions of the memory hierarchy are called from the main event loop. The 

main event loop ensures that all actions that can be done for a given simulation time are 

completed before incrementing the simulation time. Since there are many similarities 

between SACS2 and SACS, only the new functions and the significantly modified 

functions are discussed here. 

1. Program Initialization 

SACS2 uses a sacs.ini file to store all the user-definable parameters for the 

simulation. If necessary, a file with a name other than sacs.ini can be used by specifying 

its name on the command line. When SACS2 is run, the function LoadArguements parses 

the sacs, ini file to retrieve the initialization values for the user-definable parameters and 

stores these values for use. The original SACS also required that the address traces used 

in the simulation be formatted as ASCII text [Ref. 7]. To allow use of available actual 

address traces, SACS2 has been modified to use binary traces in the BYUTR format 

created by the BACH trace generation tools [Ref. 8]. These readily available traces 

generated by Intel 486 and Sparc microprocessors running the SPEC benchmarks include 

all of the key parameters necessary for the SACS2 simulation (address, read/write, 

instruction/data, time). The length of these traces ensures a more accurate analysis. 

2. PRC Functions 

a. PRCRead 

PRCRead is called whenever there is a first-level cache read miss or a 

first-level cache write allocate read (if UsePRCOnWriteMiss = Yes) on a write miss. It 

calls IsPRCRequestAHit to determine if the read request is in the PRC. Either 

PRCReadHit or PRCReadMiss are then called based on the results of IsPRCRequestAHit. 

11 



b. IsPRCRequestAHit 

IsPRCRequestAHit determines whether the request is in the PRC by 

searching all PRC tags for the request address and, if the address is found, checking the 

associated valid bits. If the request is a hit, the CurrentDeltaAddress is set to the 

PRCDelt a Address that has been stored with the hit address. CurrentDeltaAddress is the 

information that the PRC uses to predict the address of the next requested data, and for a 

PRC hit, will be the same as that used to retrieve the data that was found by the PRC hit. 

If the request is a miss, the CurrentDeltaAddress is instead set to the difference between 

the address of the current request and the address of the last PRC miss in accordance with 

the PRC algorithm [Ref. 6]. 

c. PRCReadHit 

PRCReadHit first calls AccessPRC to determine if the cache PRC access 

time has elapsed. If it has not, no action is taken during the current simulation time. Once 

the cache PRC access time has elapsed, UpdateCacheFromPRC is called to update the 

cache with the data found in the PRC. PRCReadHit then determines the next address to 

retrieve based on the PRC algorithm (PredictedAddress = CurrentAddress + 

CurrentDeltaAddress). Before placing the PredictedAddress in the read buffer using 

PRCAddToReadBuffer, the PredictedAddress is checked to make sure it is not being 

generated by a wraparound through zero (if CurrentDeltaAddress is negative and larger 

than CurrentAddress) and also that the PredictedAddress will not retrieve the same PRC 

block that includes the CurrentAddress (as may occur if the CurrentDeltaAddress is less 

than the block size). These checks are done so that unnecessary PRC reads of memory 

will be eliminated to prevent filling up the read buffer and slowing down other memory 

accesses by using memory bandwidth. 

d. PRCReadMiss 

PRCReadMiss also calculates the PredictedAddress by adding 

CurrentDeltaAddress to the CurrentAddress. As was done in PRCReadHit, it checks for 

zero wraparound and that the PredictedAddress is not in the same block as the 

12 



Current Address. In this case, if the PredictedAddress was in the same block as the 

Current Address, the PRC would just be adding a request to the read buffer for the same 

data that the cache read request is already retrieving. 

e. PRCWrite 

PRCWhte is called whenever the first-level cache has to perform a write to 

main memory. It checks the PRC for the presence of the data being overwritten by the 

memory write and, depending on the value of PRCWritePolicy, either invalidates the data 

(for PRCWrite Around) or copies the new data into the PRC (for PRCWriteThrough). 

f. AccessPRC 

AccessPRC is used to simulate the cache PRC access time associated with 

a read hit. It operates similarly to AccessCache and ensures that the delays associated 

with the PRC tag search and cache transfer are correctly accounted for. 

g. SelectPRCBlockVictim 

SelectPRCBlockVictim is called to search the PRC and determine which 

block will store the new line of data for the predicted address being requested from main 

memory. If the read request is being generated by a PRC hit and a fully associative PRC 

is being used, SelectBlockVictim will choose the block where the PRC hit was generated. 

This maximizes the efficiency of the PRC since it minimizes the overwriting of other 

potentially useful blocks. If the PRC is not fully associative, the block to be used will be 

determined by applying a LRU, Random, or FIFO algorithm depending on the setting of 

PRCBlockReplacementPolicy. SelectPRCBlockVictim also takes care of storing the 

address tag in the selected block. 

h. SetPRCValidBits 

SetPRCValidBits is called whenever it is necessary to invalidate a block in 

the PRC such as on a cache write when PRCWritePolicy is PRCWrite Around. It loops 

through the sub-blocks in the selected block and clears their valid bits. 
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/. PRCAddToReadBuffer 

PRCAddToReadBuffer is responsible for putting the read request 

generated by the PRC into the read buffer. It first checks if a PRC read request for the 

same block is already in the buffer and, if so, does nothing more since the data needed is 

already being retrieved. Next, it checks if a PRC read request for a different address but 

for the same PRC block is in the read buffer. If this is the case, it eliminates the older read 

request since the data being retrieved would be immediately overwritten by the data being 

retrieved by the new request. If neither one of these conditions is present, it stores the 

CurrentDeltaAddress in the PRC block being updated and then adds the read request to 

the read buffer. 

j.  UpdateCacheFromPRC 

UpdateCacheFromPRC is called when there is a PRC hit and is 

responsible for the updating of the cache valid and dirty bits to indicate that the data 

requested has been transferred from the PRC to the cache. It is called by PRCReadHit 

after the Cache PRC Access time has elapsed. 

3. Cache Functions 

a. ReadMiss 

ReadMiss has been updated from the original SACS to account for the use 

of a PRC. Once ReadMiss has selected the cache block for the miss request, it calls 

PRCRead to check if the data is available in the PRC. If PRC Re ad returns with a PRC hit, 

ReadMiss takes no further action. If PRCRead returns with a PRC miss, ReadMiss must 

add the read request to the read buffer. Before doing so, it checks to see if a PRC read 

request is currently in progress which could slow down the retrieval of the data necessary 

to satisfy the cache miss. If such a PRC read request is in progress and the number of 

bytes left to retrieve is greater than the value of MaxPRCSize- InBuffer, the PRC read 

request is bumped off the read buffer and reset to a lower priority. This ensures the cache 

read request being added will immediately start to access memory. Next ReadMiss checks 

to see if there is a PRC read request currently in the read buffer that is retrieving the same 
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data as the current cache read request. If there is such a request, it is cancelled as its 

retrieval would be redundant and waste memory bandwidth. Finally, ReadMiss adds the 

cache read to the read buffer using AddToReadBuffer, 

b.  WriteHit and WriteMiss 

WriteHit has been updated to call PRCWrite so that the correct action is 

taken by the PRC on all writes to memory. WriteMiss also calls PRCWrite but in 

addition, if a write allocate cache strategy is in use and UsePRCOnWriteMiss = Yes, it 

calls PRCRead to check for the data when it performs the read to fill the rest of the block 

being written to. 

4. Buffer Functions 

Several of the buffer functions have been modified to account for the use of the 

PRC. By design, the source of the memory read (cache miss or PRC miss) is stored with 

the memory request so that the correct location (cache or PRC) is updated when the data 

becomes available from memory. Therefore, functions (such as splice) that search the 

buffers for duplicate data had to be modified to only look for those requests that were 

generated by the same source as the one currently adding the request to the buffer. This 

ensures that the cache and PRC are correctly updated by their associated read requests. 

5. Memory Functions 

a. ContinueMemoryReads 

Continue Memory Re ads is the function that simulates the transfer of words 

from memory after the initial word has been retrieved into the block buffer. It is also 

responsible for ensuring that the correct internal variables are set so that the cache or PRC 

(as appropriate) will be updated once the entire request has been read from memory and is 

stored in the block buffer. Therefore, it had to be modified to account for the presence of 

the PRC. 

b. UpdatePRC 

UpdatePRC is a new function that simulates the transfer of data from the 

block buffer to the PRC once a PRC memory read is complete. It is structured similarly 
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to UpdateCache and is responsible for updating the PRC valid bits for the block being 

transferred once the buffer PRC access time has elapsed. It additionally removes the data 

from the block buffer so the next request in the read buffer can commence. 

D.        MODIFICATIONS TO SIMULATE A SECOND-LEVEL CACHE 

To allow comparison of the performance of a PRC with that of an on-chip second- 

level cache, another set of modifications had to be made to the SACS program to model 

the second-level cache. These modifications to the cache, PRC, buffer, and memory 

functions of SACS2 resulted in SACS21. 

1. Cache Functions 

a. ReadMiss 

ReadMiss was modified so that all read requests generated by first-level 

cache misses went through the second-level cache and no read requests could be added to 

the read buffer directly by the first-level cache. This design could be used since all first- 

level cache misses would either be satisfied by the second-level cache or by read requests 

generated by second-level cache misses. If a second-level cache miss occurred, the first- 

level cache would be updated at the same time as the second-level cache. 

b. AddToReadBuffer 

AddToReadBuffer was modified to be used by the second-level cache for 

additions to the read buffer. To provide the ability to update both caches when the read 

was complete, the data structures used for read requests were modified to include both of 

the associated cache blocks. 

2. PRC Functions 

All PRC functions were modified so that the PRC would act like a second-level 

cache and not a predictive cache. This required elimination of all references to delta 

addresses and all calculations of predicted addresses. Additionally, the PRCWriteHit and 

PRCWriteMiss functions were modified to be similar to the cache WriteHit and 

WriteMiss functions so that the different write and write miss policies available for 

caches could also be simulated in the second-level cache. 
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3. Buffer Functions 

Buffer functions were modified to eliminate the difference between cache reads 

and PRC read requests since now all requests would come from the PRC (acting as a 

second-level cache) and would be used to update both caches. This required a modified 

read request data structure and a modification to the search functions used for the 

scoreboarding protocol. 

4. Memory Functions 

The only change to the memory functions required was to the Update PRC 

function. It was modified so that, upon the completion of a memory read, both the PRC 

(second-level cache) and the first-level cache would be updated with the new data. This 

required adding the cache update loop from UpdateCache into the UpdatePRC function. 

17 



18 



III. SIMULATION RESULTS AND ANALYSIS 

A.        SIMULATION ASSUMPTIONS 

The SACS2 simulations used to conduct the testing detailed in this thesis were 

based on certain assumptions that have an impact on the results obtained. Some of these 

assumptions were incorporated into the design of SACS2 while others were used to set 

the value of constant parameters. 

1. Assumptions Built Into SACS2 Model 

In designing the cache and PRC modeling functions used to perform the 

simulations detailed in this thesis, certain design decisions were made and built into the 

SACS2 program. Fouts [Ref. 6] discussed that a PRC should only be used to predict data 

references since there were already alternate methods to speed up the retrieval of 

instruction references. Therefore, SACS2 analyzes the address trace data and only 

operates on the data references contained in it. Because of this, the program models 

separate instruction and data caches with all instruction cache details ignored. This 

assumption does not affect the general trend of data cache and PRC behavior and the 

results obtained should be valid. 

The method of modeling the PRC and its interaction with the first-level cache 

assumes that the PRC is located on-chip between the first-level cache and the buffers that 

interface with main memory. Additionally, the PRC and first-level cache are connected 

by enough data lines to pass one complete cache block at a time. These assumptions are 

valid based on the small size of the PRC and the current trends in microprocessor design. 

According to the PRC design parameters of Fouts [Ref. 6], the model assumes 

that cache misses go to the read buffer and PRC simultaneously. If the data is then found 

in the PRC, the associated memory read is canceled. This method is used so that cache 

misses that are also PRC misses do not take longer than they would without a PRC. This 

method is achievable in current microprocessor design and ensures that the presence of a 

PRC does not slow the system. 
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Since a PRC read for information that is already in the first-level cache would be 

redundant and a waste of memory bandwidth, the model assumes that a cache miss read 

request that goes to the read buffer can check the buffer for the presence of PRC read 

requests for the same address and cancel those requests. This type of scoreboarding is 

consistent with current microprocessor design and ensures that the limited memory 

bandwidth is put to the best use. 

Two assumptions are made in designing SACS21 where the PRC is simulating a 

second-level cache. In this case, all first-level cache misses go to the second-level cache 

and any memory read request must wait until after it has been determined that a miss has 

occurred in both caches. Additionally, since both caches are assumed to be collocated on 

the chip, all data arriving from memory read requests is made available to both caches on 

arrival. This allows the first-level cache to satisfy its memory request as soon as the 

needed data is read from memory and allows both caches to be updated with the new data 

block simultaneously. 

B.        CONSTANT CACHE MODEL PARAMETERS USED 

Since there are a large number of user definable parameters in the SACS2 model, 

assumptions had to be made to decide which parameters should be constant and what 

their values should be. The values of the parameters that remain constant for all 

simulations are summarized in Table 3 and explained below. 

1. First-Level Cache Parameters 

The address traces used in the simulations for this thesis were taken from an Intel 

486 microprocessor running a UNIX operating system. Because of this, most of the first- 

level cache parameters were set to match those on the 486. A 4-way set associative 8192 

byte cache with 16 byte blocks and 4 byte words was chosen as the most accurate model 

for the 486. However, to model a cache closer to the current state of the art, a true LRU 

cache block replacement algorithm and a write back write policy rather than write 

through were used. Additionally, a write allocate miss strategy was used so that all writes 

to the first-level cache would generate a complete valid block of data in the cache. 
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First-Level Cache Parameters 

Size = 8192 bytes 

Block Size = 16 bytes 

Sub Block Size = 4 bytes 

Word Size = 4 bytes 

Associativity = 4 way set associative 

Block Replacement Policy = LRU 

Write Policy = Write Back 

Write Miss Policy = Write Allocate 

Buffer Parameters 

Read Buffer Size = 8 

Write Buffer Size = 4 

Access in Progress Priority = 0 

Cache Read Miss Priority = 1 

Write Priority = 2 

Read For Write Allocate Priority = 3 

Write Dirty Cache Sub Blocks Priority = 4 

PRC Predictive Read Priority = 5 

Slipped PRC Read Priority = 6 Cache Miss Actions 

Read Forward = Yes 

CPU Wait for Writes = No 

Search Block Buffer = Yes 

Update Read Buffer = Yes 

Remove Read Duplicates = Yes 

Remove Write Duplicates = Yes 

Access Times 

Read Cache Access Time = 1 

Write Cache Access Time = 1 

Cache Hit/Miss Access Times = 0 

Cache PRC Access Time = 1 

Memory Access Time = 5 

Memory Transfer Time = 1 

Buffer Cache/PRC Access Time = 1 

Table 3 Constant Simulation Model Parameters 

2. Cache Miss Actions 

The cache miss actions detailed in Table 3 were chosen to accurately model 

current cache design practices. Read Forward ensures that every first-level cache miss 

will generate a read request that will completely fill the cache block. CPU Wait for 

Writes models the use of a write buffer where any writes to memory can be handled in 

parallel with more cache accesses. Search Block Buffer provides the ability for a read 

request generated by the first-level cache to be satisfied if the data needed is currently in 
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the block buffer due to a previous read request. This can significantly improve 

performance by reducing the time it takes to retrieve the cache miss data. Update Read 

Buffer models the ability of a memory write request to check the read buffer for pending 

read requests and remove any bytes stored in the cache by the write. This reduces the size 

of the read request and prevents overwriting of the new data in the cache with older data 

being read from main memory. Remove Read/Write Duplicates ensures that only one 

request for each cache block is active at a time and, if a new request is generated for data 

that is already in the buffers, it is merged with the pending requests. 

3. Buffer Parameters 

The read buffer size was set at eight requests based on the results of preliminary 

testing of SACS2. With the addition of a PRC there are many read requests generated 

and, with a small read buffer, requests generated by cache misses could be blocked by a 

full buffer. With the larger buffer, these requests can enter the buffer and be included in 

the ordering of memory accesses by priority. The write buffer size was set at four 

requests to be consistent with current cache design since the PRC does not significantly 

affect the number of writes to memory. The buffer priorities were chosen to be consistent 

with the design parameters of a cache and PRC memory hierarchy. Satisfying a current 

cache miss needs to occur as soon as possible so it was given the highest priority. 

Predictive read requests were given the lowest priorities so that they would have minimal 

impact on other cache operations. 

4. Access Times 

The various timing parameters used in the simulations were chosen to most 

accurately reflect current microprocessor and memory design. These parameters are given 

as multiples of the system clock cycle so that the resulting average access times are 

independent of the actual clock speed. A time of one clock cycle was chosen for the cache 

access time for both reads and writes. This access time is the time it takes for the first- 

level cache to search its tags and determine if the request is present in the cache. If the 

request is present, the cache read/write hit times of zero cycles result in the data request 
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being satisfied during the current clock period. If the request is a miss, the cache miss 

times of zero cycles result in the associated request going to the PRC and to main 

memory during the current clock cycle. If this request to the PRC results in a PRC hit, the 

cache PRC access time of one cycle will make the data available to the first-level cache 

on the next clock period. The memory access time of five cycles determines how long 

after a request is made to memory until the first word of the data is read into the block 

buffer. This models the current large discrepancy between microprocessor clock rates and 

memory access times. Once the first word of the request has been read from memory, the 

following words are then transferred, one every clock period. Finally, the buffer 

cache/PRC access times of one period model the delay associated with the transfer of data 

from a full block buffer to the cache or PRC. 

C.        SIMULATION RESULTS 

Numerous simulations were run to test the effects of varying PRC design 

parameters on the performance of the memory hierarchy. The parameters varied are 

summarized in Table 4 and the effects of their variation will be discussed below. 

PRC Size 

PRC Associativity 

Max Size in Buffer to Continue Read 

PRC Block Replacement Policy 

PRC Write Policy 

Use PRC on Write Miss 

Drop PRC on Second Slip 

Table 4 PRC Design Parameters 

The simulations were conducted using address traces from the BACH trace generation 

system developed at BYU [Ref. 8]. Three traces were used for most of the testing. The 

first trace was generated during the running of the eqntott portion of the SPEC 

benchmarks and is approximately 1.2 million data references long. It is referred to below 

as trace EQNT. Eqntott is a program that converts boolean equations to the equivalent 

truth tables. In doing so, it performs numerous sorts of a reasonably compact data set. The 
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second and third traces were both generated during the running of the kenbus benchmark 

(20 users). The kenbus program is designed to represent Unix/C usage in a research and 

development environment with twenty concurrent users. It uses Unix shell scripts to 

exercise the entire computer system and access data from many varied memory locations. 

The second trace is approximately 2.4 million data references long and is referred to 

below as trace KEN1. The third trace is approximately 4.7 million data references long 

and is referred to as KEN2. These traces were chosen as representative of both single user 

with compact data storage (EQNT) and multi-user (KEN1 and KEN2). 

1. Baseline Testing with No PRC 

To establish a comparison baseline, simulations were run for all three traces with 

the PRC disabled. This provided the performance of a first-level cache alone. The results 

are shown in Table 5. These results show that despite a reasonably high cache hit 

percentage of over 91%, the cache miss penalty increases the average read access time 

about 40% over that of a perfect cache where all accesses would take one cycle. The 

buffer read hit rate indicates the percentage of cache misses that are found in the block 

buffer. 

Trace Cache Read 

Hit Rate % 

Buffer Read 

Hit Rate % 

Read 

Average 

Access Time 

Cache Write 

Hit Rate % 

Buffer Write 

Hit Rate % 

Write 

Average 

Access Time 

EQNT 91.8 13.2 1.377169 92.9 49.5 1.934060 

KEN I 91.4 6.1 1.423514 94.9 87.3 1.948817 

KEN2 91.5 6.0 1.416308 95.2 85.4 1.951912 

Table 5 Cac ie Performan ce Without a PRC 

2. Effects of PRC Size on Performance 

The next set of simulations involve the addition of a PRC to the memory 

hierarchy and observation of its effects on performance. Table 6 shows the performance 

with a 256 byte 4-way set associative PRC added to the hierarchy. As can be seen, the 
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PRC hit rate was approximately 20% indicating the PRC correctly predicted the data 

request coming from the cache one out of five times. The addition of this very small PRC 

results in a performance speedup (Speedup 
OriginalAccessTime- AccessTimeWithPRC 

) 
OriginalAccessTime 

of between 4.6% and 4.9% for read accesses. This is a significant improvement for the 

small amount of additional hardware required to implement the PRC. There was 

negligible change in the performance of write accesses since the PRC predicts memory 

reads and is designed to not affect writes. The small changes in the write performance are 

due to an increased number of buffer hits where the PRC has brought the data into the 

block buffer just prior to the write. 

Next, simulations of larger PRC sizes were run to determine the effect of PRC 

size on performance. For simulations of 512, 1024, 2048, 4096, 8192 and 16384 byte 

PRCs, a 4-way set associative PRC was again used to be consistent with current design 

practices. The results of these simulations are given in Tables 7 through 12. A summary 

of the simulation results for the various PRC sizes is given in Table 13 while Figure 1 

shows the results graphically. 

Trace Cache 

Read Hit 

Rate % 

Buffer 

Read Hit 

Rate % 

PRC Read 

Hit Rate 

% 

Read 

Average 

Access 

Time 

Cache 

Write Hit 

Rate % 

Buffer 

Write Hit 

Rate % 

Write 

Average 

Access 

Time 

EQNT 92.4 8.4 22.2 1.310371 92.9 55.6 1.934213 

KEN1 91.4 6.7 19.4 1.357973 94.9 87.5 1.948792 

KEN2 91.6 6.5 20.2 1.349544 95.2 85.9 1.951913 

Table 6 Pei rformance I Jsing 256 B yte 4-way Set Associa tive PRC 
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Trace Cache Buffer PRC Read Read Cache Buffer Write 

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average 

Rate % Rate % % Access 

Time 

Rate % Rate % Access 

Time 

EQNT 92.4 8.4 22.6 1.308821 92.9 55.5 1.934439 

KEN1 91.4 6.7 19.8 1.356720 94.9 87.5 1.948810 

KEN2 91.6 6.5 20.5 1.348318 95.2 85.9 1.951887 

Table 7 Performance Using 512 Byte 4-way Set Associative PRC 

Trace Cache Buffer PRC Read Read Cache Buffer Write 

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average 

Rate % Rate % % Access 

Time 

Rate % Rate % Access 

Time 

EQNT 92.4 8.4 23.0 1.307791 92.9 55.5 1.933843 

KEN1 91.4 6.7 20.0 1.355939 94.9 87.5 1.948775 

KEN2 91.6 6.5 20.8 1.347330 95.2 85.9 1.951905 

Table 8 Pei "formance I Jsing 1024 Byte 4-way Set Associ ative PRC 

Trace Cache Buffer PRC Read Read Cache Buffer Write 

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average 

Rate % Rate % % Access 

Time 

Rate % Rate % Access 

Time 

EQNT 92.4 8.4 23.9 1.306571 92.9 55.5 1.934582 

KEN1 91.4 6.7 20.4 1.354370 94.9 87.5 1.948809 

KEN2 91.6 6.5 21.3 1.345649 95.2 85.9 1.951912 

Table 9 Pei 'formance I Jsing 2048 3yte 4-way Set Associ ative PRC 
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Trace Cache 

Read Hit 

Rate % 

Buffer 

Read Hit 

Rate % 

PRC Read 

Hit Rate 

% 

Read 

Average 

Access 

Time 

Cache 

Write Hit 

Rate % 

Buffer 

Write Hit 

Rate % 

Write 

Average 

Access 

Time 

EQNT 92.4 8.4 23.9 1.304870 92.9 55.5 1.934135 

K.EN1 91.4 6.8 21.1 1.351975 94.9 87.5 1.948786 

K.EN2 91.6 6.5 22.0 1.342989 95.2 85.9 1.951910 

Table 10 Performance Using 4096 Byte 4-way Set Associative PRC 

Trace Cache 

Read Hit 

Rate % 

Buffer 

Read Hit 

Rate % 

PRC Read 

Hit Rate 

% 

Read 

Average 

Access 

Time 

Cache 

Write Hit 

Rate % 

Buffer 

Write Hit 

Rate % 

Write 

Average 

Access 

Time 

EQNT 92.4 8.3 25.0 1.301063 92.9 55.5 1.934111 

KEN1 91.4 6.8 22.2 1.348034 94.9 87.5 1.948784 

KEN2 91.6 6.6 23.3 1.338538 95.2 85.9 1.951904 

Table 11 Performance Using 8192 Byte 4-way Set Associative PRC 

Trace Cache Buffer PRC Read Read Cache Buffer Write 

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average 

Rate % Rate % % Access 

Time 

Rate % Rate % Access 

Time 

EQNT 92.4 8.3 27.3 1.292856 92.9 55.5 1.934095 

KEN1 91.4 6.8 23.9 1.341563 94.9 87.5 1.948761 

KEN2 91.6 6.6 25.0 1.332019 95.2 85.9 1.951884 

Table 12 Performance Using 16384 Byte 4-way Set Associative PRC 
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Trace 

Average Read Access Time 

Speed Up over no PRC 

256 

byte 

512 

byte 

1024 

byte 

2048 

byte 

4096 

byte 

8192 

byte 

16384 

byte 

EQNT 1.310371 

4.9 % 

1.308821 

5.0 % 

1.307791 

5.04 % 

1.306571 

5.12% 

1.304870 

5.25 % 

1.301063 

5.53 % 

1.292856 

6.12% 

KEN1 1.357973 

4.60 % 

1.356720 

4.69 % 

1.355939 

4.75 % 

1.354370 

4.86 % 

1.351975 

5.03 % 

1.348034 

5.30 % 

1.341563 

5.76% 

KEN2 1.349544 

4.71 % 

1.348318 

4.80 % 

1.347330 

4.87 % 

1.345649 

4.99 % 

1.342989 

5.18% 

1.338538 

5.49% 

1.332019 

5.95 % 

Table 13 Summary of Read Performance Using 4-way Set Associative PRCs 
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Figure 1 System Performance as a Function of PRC Size 
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The results show that, as would be expected, a larger PRC resulted in a higher 

PRC hit rate and a lower average read access time. Just as with the 256 byte PRC size, 

write performance was not significantly affected as PRC size increased. The higher PRC 

performance for the larger sizes can be attributed to the PRC retaining its predicted data 

longer and then acting like a second-level cache to provide the data when needed due to 

conflict or capacity misses in the first-level cache. However, as can be seen in Figure 1, 

the performance improvement as PRC size increased is small (4.7% average speedup 

with a 256 byte PRC increasing to 5.9% average speedup with a 16384 byte PRC). This 

means that a PRC 64 times larger only provided a 25% improvement in PRC 

performance. These results indicate that the benefit of the PRC comes mostly from its 

predictive nature and that the predicted data is normally used by the first-level cache soon 

after it has been fetched by the PRC. Therefore, the PRC acts to reduce the average 

memory access time chiefly by lowering the penalty for compulsory misses in the first- 

level cache. The small size of the PRC limits its ability to reduce the penalty for conflict 

or capacity misses in the first-level cache. Because of this, as long as the PRC has enough 

locations to hold the different prediction traces, its size has a minimal impact. Therefore, 

the 256 byte 4-way set associative PRC can achieve most of the performance gain of the 

16384 byte PRC. These results also show that, although the different traces result in 

different average access times, the trends due to parameter changes are consistent among 

the traces. Therefore, for the rest of the simulations the longer KEN2 trace is not used due 

to the length of time the simulations would require. 

3. Variation in PRC Set Associativity 

The next set of simulations were to determine the effects of changing the PRC set 

associativity. Nominally, a higher degree of set associativity provides improved 

performance but at the expense of additional hardware [Ref. 1]. Fully associative PRCs 

were simulated for the smaller PRC sizes while direct mapped and 2 and 8-way 

associativities were simulated for all PRC sizes. Tables 14 through 20 detail the results of 

these simulations. 
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Trace 

Average Read Access Time Average Write Access Time 

Direct 

Map 

2-\vay 

S A 

4-way 

S/A 

8-way 

S/A 

Fully 

Assoc 

Direct 

Map 

2-way 

S/A 

4-way 

S/A 

8-way 

S/A 

Fully 

Assoc 

EQNT 1.31 1 S51 1.310887 1.310371 1.310704 1.310262 1.93433 1.93418 1.93421 1.93435 1.93421 

KENl 1.358229 1.358137 1.357973 1.357758 1.357958 1 94875 1.94883 1.94879 1 948826 1.94878 

Table 1 4 Effects of Changing PRC Set Associativity for 256 Byt ePRC 

Trace 

Average Read Access Time Average Write Access Time 

Direct 

Map 

2-way 

S/A 

4-way 

S,A 

8-way 

S/A 

Fully 

Assoc 

Direct 

Map 

2-way 

S/A 

4-wav 

S/A 

8-way 

S/A 

Fully 

Assoc 

EQNT 1.310850 1.309347 1.308821 1.308914 1.308998 1.93431 1.93390 1 93444 1.93346 1 93430 

KENl 1.357581 1,356764 1.356720 1.356794 1.357635 1.94883 1.94873 1.94881 1.94882 1.94879 

Table 1 5 Effects , of Char lging PRC Set Associativity for 512 Byt ePRC 

Trace 

Average Read Access Time Average Write Access Time 

Direct 

Map 

2-way 

S/A 

4-way 

S/A 

8-way 

S/A 

Fully 

Assoc 

Direct 

Map 

2-way 

S/A 

4-way 

S/A 

8-way 

S/A 

Fully 

Assoc 

EQNT 1.309216 1.308353 1.307791 1.308008 1.308248 1.93435 1.93415 1.93384 1.93395 1,934083 

KENl 1.36276 1.356064 1.355939 1.355768 1.356342 1.94883 1.94883 1.94878 1.94882 1.94876 

Table 1 6 Effects , of Char lging PR .C Set A ssociativ ity for 024 B) 'te PRC 

Trace 

Average Read Access Time Average Write Access Time 

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A 

EQNT 1.308026 1.306972 1.306571 1.306775 1.93462 1.93303 1 93458 1.93430 

KENl 1.354605 1.354319 1.354370 1.354343 1.94882 1.94882 1.94881 1.94812 

Table 1 7 Effects of Changing PRC Set Associativ ity for 204S I Byte PR( -i 

Trace 

Average Read Access Time Average Write Access Time 

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A 

EQNT 1.306335 1.305677 1.304870 1.304828 1.93445 1 93447 1.93414 1.933813 

KENl 1.352784 1.349630 1.351975 1.351759 1.94878 1.94883 1.94879 1.94882 

Table 1 8 Effects of Changing PRC Set Associativ ity for 409( 3 Byte PR( —1 
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Trace 

Average Read Access Time Average Write Access Time 

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A 

EQNT 1.301886 1.303746 1.301063 1.300981 1.93432 1.93359 1.93411 1.934191 

KENt 1.349598 1.348663 1.348034 1.347499 1.94876 1.94882 1.94878 1.94879 

Table 1 9 Effects of Changing PRC Set Associativity for 8192 Byte PRC 

Trace 

Average Read Access Time Average Write Access Time 

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A 

EQNT 1.302034 1.310189 1.292856 1.292966 1.93430 1.93464 1.93410 1.93413 

KENl 1.341690 1.341655 1.341563 1.337321 1.94874 1.94882 1.94876 1.94877 

Table 20 Effects of Changing PRC Set Associativity for 16384 Byte PRC 

As can be seen, increasing the set associativity normally resulted in a small 

decrease in average access times, but the effect varied depending on the size of the PRC, 

the associativity, and the particular trace being used. However, on the average, there was 

only a change of 0.13 % in the average read access time due to associativity changes. 

This can be attributed to the fact that data read into the PRC is either used quickly by the 

first-level cache or is not used at all. Therefore, any increase in set associativity has 

minimal impact since conflict misses in the PRC are not common. As a result, the PRC 

should use the easiest set associativity to implement (normally direct mapping) to 

minimize its hardware complexity and size. 

4. Variation in PRC Miss Allocation Policy 

The PRC can operate with any of the three common cache miss allocation policies 

(LRU, Random, FIFO). This set of simulations were run to determine the effects on 

average access time for changes in the PRC miss allocation policy. These simulations 

were done using PRC sizes of 256, 4096, and 8192 bytes and the results are shown in 

Tables 21 through 23. As can be seen, the change from LRU resulted in a very small 

access time degradation. This again is attributed to the fact that data in the PRC is either 
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used soon after it is read in or not at all. Therefore, the simplest replacement algorithm 

would be recommended to reduce system complexity. 

Trace 

Read Average Access Time Write Average Access Time 

LRU Random FIFO LRU Random FIFO 

EQNT 1.310262 1.312604 1.315710 1.934211 1.934441 1.934121 

KEN1 1.357958 1.358787 1.362811 1.948782 1.948831 1.948812 

Table 21 E ffects of PRC Miss Allocation Policy with 256 Byte Fully Associative PRC 

Trace 

Read Average Access Time Write Average Access Time 

LRU Random FIFO LRU Random FIFO 

EQNT 1.304870 1.305913 1.306522 1.934135 1.934533 1.934568 

KEN1 1.351975 1.352489 1.354097 1.948786 1.948806 1.948803 

Table 22 E ffects of PRC Miss Alloc; ition Policy with 4096 B yte 4-way Set Assoc. PRC 

Trace 

Read Average Access Time Write Average Access Time 

LRU Random FIFO LRU Random FIFO 

EQNT 1.301063 1.302155 1.302231 1.934111 1.934378 1.933754 

KEN1 1.348034 1.349315 1.350633 1.948784 1.948806 1.948806 

Table 23 E ffects of PR( 2 Miss Alloc ;ation Policy with 81921 Byte 4-way Set Assoc. PRC 

5. Variation in the Maximum PRC Read in Buffer to Continue 

The Max PRC Read in Buffer parameter determines how often an in-progress 

PRC read gets canceled when new cache read requests are added to the read buffer. As 

explained in Section II.B.3, the setting of this parameter is a balance between getting 

cache read misses started as early as possible without wasting too much memory 

bandwidth on incomplete PRC read requests. This set of simulations was done using a 

256 byte fully associative PRC and a 1024 4-way set associative PRC and compared the 



performance when the Max PRC Read in Buffer was set to 4 (the value used in all other 

simulations) and when it was set to 8. As can be seen from Table 24, increasing the size 

of this parameter resulted in delaying cache read requests and slightly poorer system 

performance. 

Trace 

256 byte PRC 1024 byte PRC 

Max Size = 4 Max Size = 8 Max Size = 4 Max Size = 8 

EQNT 1.310262 1.310318 1.307791 1.308179 

KEN1 1.357958 1.359335 1.355939 1.356460 

Table 24 E Tects of Varyi ng Max PRC Size to Continue 

6. Variation in PRC Write Policy 

All of the simulations so far have used a PRC write policy of write through where 

the PRC is updated at the same time as main memory (if the data was already in the 

PRC). To determine the effects of a write around policy on system performance, a set of 

simulations was run using PRC sizes of 256 and 1024 bytes. The results of these 

simulations are given in Table 25. They show that the difference between the write 

around policies had different effects depending on the trace used and the PRC size. The 

small and variable nature of the change seems to indicate that there is no clear advantage 

to either method. 

Trace 

256 byte PRC 1024 byte PRC 

Write Through Write Around Write Through Write Around 

EQNT 1.310262 1.307876 1.307791 1.307690 

KEN1 1.357958 1.358217 1.355939 1.355946 

Table 25 E Tects of Varying % PRC Write Polic •y 
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7. Effects of Other PRC Parameters 

There are two other PRC parameters that could affect PRC performance. They are 

UsePRCOnWriteMiss and DropPRCOnSecondMiss. Based on the results of preliminary 

testing, all of the simulations so far have had UsePRCOnWriteMiss - No and 

DropPRCOnSecondMiss = Yes. Tables 26 and 27 show the effects of changing these 

values on system performance. UsePRCOnWriteMiss being set to Yes has a significant 

effect on performance for the 256 byte fully associative PRC. probably due to the fact 

that the writes to memory are not consistent with the data being read. This means that 

starting a PRC trace based on a write does not provide data that will be used by a future 

cache read and may even write over a valid prediction trace. This effect is much less 

pronounced in the 1024 byte 4-way set associative PRC. Changing 

DropPRCOnSecondMiss has negligible effect on system performance. This is due to the 

large eight request read buffer and the mechanism for handling request priorities. Even if 

a PRC request is slipped twice, it does not impact future reads because it will stay at the 

bottom of the read buffer until all other read requests are complete. 

Trace 

256 byte PRC 1024 byte PRC 

Use = No Use = Yes Use = No Use = Yes 

EQNT 1.310262 1.350188 1.307791 1.307807 

KEN1 1.357958 1.373540 1.355939 1.370687 

Table 26 E Tects of Varying I UsePRCOnWrih zMiss 

Trace 

256 byte PRC 1024 byte PRC 

Drop = Yes Drop = No Drop = Yes Drop = No 

EQNT 1.310262 1.309977 1.307791 1.307808 

K.EN1 1.357958 1.358575 1.355939 1.358557 

Table 27 E Tects of Varying I DropPRCOnSec ondMiss 



D.        RESULTS MODELING A SECOND-LEVEL CACHE 

To allow comparison of system performance with a PRC to that of a system with 

a second-level cache, simulations of a 16384 byte 4-way set associative second-level 

cache were done using SACS21. The results of these simulations are shown in Table 28 

and show that a second-level cache of this size can provide a significant performance 

increase. The cache size was chosen to be comparable with the PRC sizes tested earlier. 

The second-level cache in these simulations had an access time of one clock cycle. This 

speed would only be possible on a small on-chip cache. The results of using a more 

realistic access time of two clock cycles is shown in Table 29. With this assumption, the 

performance of an 8192 PRC is nearly comparable with a cache twice its size. A 

simulation of an 8192 byte 4-way set associative second-level cache with a one cycle 

access time was done even though this size cache would not normally be used with an 

8192 byte first-level cache. The results of this simulation are shown in Table 30. They 

indicate that this size of second-level cache provides less of a speedup than a 256 byte 

PRC. This confirms that the predictive nature of the PRC is what provides the greatest 

benefit in reducing average memory access time. 

The increase in average write access time over only a first-level cache is attributed 

to the reduced number of buffer hits on writes since all writes now go through the second- 

level cache. Therefore, any writes that miss the first level cache must wait the second- 

level access time before possibly getting a hit in the second-level cache. Without a 

second-level cache, these writes could have hit the buffer as soon as they were being 

written out by the first-level cache. 
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Average Read 

Access Time 

Speed Up Average Write 

Access Time 

Speed Up 

EQNT 1.279652 7.08 % 1.936717 slower 

KEN1 1.319244 7.32 % 1.960368 slower 

KEN2 1.314057 7.22 % 1.962551 slower 

Table 28 Performance Using a 16 Kbyte Second-Level Cache with 1 Cycle Access 

Average Read 

Access Time 

Speed Up Average Write 

Access Time 

Speed Up 

EQNT 1.300383 5.56 % 1.936729 slower 

K.EN1 1.343165 5.64 % 1.960369 slower 

KEN2 1.339284 5.44% 1.962555 slower 

Table 29 Performance Using a 16 Kbyte Second-Level Cache with 2 Cycle Access 

Average Read 

Access Time 

Speed Up Average Write 

Access Time 

Speed Up 

EQNT 1.334967 3.06 % 1.933316 0.04 % 

K.EN1 1.377860 3.21 % 1.956252 slower 

Table 30 Performance Using a 8 Kbyte Second-Level Cache with 1 Cycle Access 
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IV. CONCLUSION 

A.        SUMMARY OF RESULTS 

The simulations run in this thesis proved that a PRC can provide a significant 

performance improvement to a memory hierarchy containing only a first-level cache. 

Even a small (256 byte) PRC provided a 4.7 % speedup while the 16384 byte PRC 

provided a 5.9 % speedup. A 16384 byte second-level cache simulation resulted in a 

7.2 % speedup that is better than any of the PRC results. However, the cache simulation 

assumed that the second-level cache could provide data on a cache hit in only one 

processor clock cycle. This assumption may not be true for this size of a cache, and 

would definitely not be true for an external second-level cache. Using a second-level 

cache hit access time of two processor clock cycles resulted in a 5.6 % speedup; 

approximately equal to the speedup of an 8192 byte PRC (5.5 % speedup). A small PRC 

gets its performance improvement with very little hardware such that it could easily be 

included on the microprocessor chip, and provide hit data in only one clock cycle. 

Therefore, in an actual implementation, a 256 byte PRC might outperform a much larger 

second-level cache. The simulation results also that the PRC associativity is not a major 

effect as long as there are enough different sets to track all prediction traces without 

overwriting other valid prediction traces. A PRC configured in this manner should then 

be fetching data from main memory just before it being needed by the first-level cache. 

This allows the PRC to reduce the miss penalty for first-level cache compulsory misses 

and thereby reduce the average memory access time of the system. As can be seen from 

Figure 2, the 256 byte direct mapped PRC met this goal and provided the best price to 

performance ratio since its performance was almost identical to the 8192 byte PRC while 

using much less hardware. 

The simulation results also showed that the PRC block replacement policy (LRU, 

random, or FIFO) had minimal impact on PRC performance. This result allows the 
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system designer to choose the easiest method to implement when incorporating a PRC 

into a system design. The decision on whether to use the PRC on cache write allocates is 

a harder one as the results were less clear, however, with a small PRC these reads pollute 

the prediction traces and lower performance. In this case, the PRC should only be used 

for cache read misses. Variations in PRC write policy had little effect and the simplest 

method to implement the PRC should be chosen. 
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Figure 2 Comparison of Average Read Access Times For Different Configurations 

B. RECOMMENDATIONS 

A PRC provides an easy way for a microprocessor system designer to gain a 

performance improvement without a major hardware investment. It is also a method to 

reduce the miss penalty associated with compulsory cache misses (the initial filling of the 



first-level cache) since a PRC will retrieve some requests before the cache requires them. 

Since a small PRC provides almost the same performance improvement as a large one 

with much lower cost, the optimum configuration to use would be a 256 byte fully 

associative PRC coupled with an eight request read buffer. The PRC should be designed 

to be bypassed on cache write allocate reads and should use the simplest block allocation 

policy available. This arrangement would gain the maximum performance increase for 

the lowest overall cost. 

Although a large second-level cache outperforms a PRC, it does not mean that 

there is no use for a PRC in microprocessor design. Many designs cannot use a large 

second-level cache, whether because of chip area constraints, power constraints, or 

system cost constraints. These systems may be embedded microprocessors, portable 

computers or space applications. In these cases, a PRC would give enhanced performance 

with very little additional hardware or power consumption. 

Another possible use of a PRC is to place it between the first-level and second- 

level caches where its role would be to reduce the compulsory miss penalty. In this 

application, a very small PRC could be used to bring predicted data into the second-level 

cache where it would be available when a first-level cache compulsory miss occurs. The 

PRC itself would only need to store the information necessary to compute the predicted 

addresses. This type of PRC might even be software controlled so that it only functioned 

when the first-level cache is being initially filled with data following a task switch and is 

then turned off once both caches have been filled with new data. This type of 

implementation could be simulated using a modification to the SACS2 program to 

incorporate both a PRC and a second-level cache. The resulting system would combine 

the best of the PRC and second-level cache implementations and could be used on very 

high-end microprocessors that need every possible method to speed up memory accesses. 

Further investigation into the use of a PRC to enhance memory system 

performance needs to be done. Use of a PRC in lieu of a second-level cache shows great 
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promise to provide higher performance for less power and cost while incorporating a 

PRC in a multi-level cache hierarchy may result in a way to reduce the impact of 

compulsory misses. Using a modified version of the SACS2 program, additional 

simulations could be run to verify that the PRC most affects the compulsory miss penalty 

and has little effect on the conflict or capacity miss penalties. Also, testing with an actual 

PRC in conjunction with a microprocessor containing a first-level cache could be 

performed to obtain actual performance measurements to validate simulation results. 
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