
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

SIMULATION AND ANALYSIS OF
PREDICTIVE READ CACHE PERFORMANCE

by

Robert W. Miller

June, 1995

Thesis Advisor: Douglas J. Fouts

Approved for public release; distribution is unlimited.

19951121 079
DTIC QUALITY fflSFECTED 8

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-018

Public reporting burden for this collection of information is estimated to average I hour per response, including the time tor reviewing instruction, searching existing data
sources, slathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information
Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

AGENCY USE ONLY (Leave blank) REPORT DATE

June 1995
3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE SIMULATION AND ANALYSIS OF
PREDICTIVE READ CACHE PERFORMANCE

6. AUTHOR(S) Miller, Robert W.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)
Efforts to speed up the memory hierarchy have failed to keep up with the rapid increase in microprocessor performance. The use of
first-level and second-level caches has become common in an effort to minimize this speed discrepancy. One potential method to
overcome the speed problem, while using much less hardware than a second-level cache, is the predictive read cache. This thesis
continues previous efforts in designing and optimizing the predictive read cache. It develops a method to simulate the performance of a
memory hierarchy containing a predictive read cache and uses these simulations to determine the most effective architecture of the
cache. Using trace data from an Intel 486 processor running the SPEC benchmarks, the simulations demonstrate that a small predictive
read cache can give a performance improvement equivalent to a much larger second-level cache. This makes the predictive read cache
ideal for systems that are power or chip area limited.

14. SUBJECT TERMS Cache, Predictive, Memory

SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES 56

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

SIMULATION AND ANALYSIS OF
PREDICTIVE READ CACHE PERFORMANCE

Robert W. Miller
Lieutenant Commander, United States Navy

B.S.E.E., United States Naval Academy, 1980

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

Author:

icoesslcn For

NAVAL POSTGRADUATE SCHOOL
June 1995

TSC/^o
Robert W. Miller

Approved by: offi^^^A 'j^usfe
Douglas J. Fouts, Thesis Advisor

-4z

iTis mu&i gf
DTK T/3 □
Unsixn o ä ,:• c A Q
Zxi:j t, J t' 1. c a t i o a „.„„„„.„^^

Shridhar B. Shukla, Second Reader

Michael A. Morgan, Chairman
A Department of Electrical and Computer Engineering

in

IV

ABSTRACT

Efforts to speed up the memory hierarchy have failed to keep up with the

rapid increase in microprocessor performance. The use of first-level and second-

level caches has become common in an effort to minimize this speed discrepancy.

One potential method to overcome the speed problem, while using much less

hardware than a second-level cache, is the predictive read cache. This thesis

continues previous efforts in designing and optimizing the predictive read cache. It

develops a method to simulate the performance of a memory hierarchy containing

a predictive read cache and uses these simulations to determine the most effective

architecture of the cache. Using trace data from an Intel 486 processor running the

SPEC benchmarks, the simulations demonstrate that a small predictive read cache

can give a performance improvement equivalent to a much larger second-level

cache. This makes the predictive read cache ideal for systems that are power or

chip area limited.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE NEED FOR CACHE MEMORIES 1

B. CACHE MEMORIES 2

C. PREDICTIVE READ CACHE 3

D. THE NEED FOR SACS2 5

II. DESIGN OF SACS2 7

A. INTRODUCTION TO SACS2 7

B. SACS2 INPUT PARAMETERS 7

1. Use PRC, PRC Size, and PRC Associativity 9

2. PRC Access Times 9

3. PRC Read Parameters 9

4. PRC Block Replacement Policy and PRC Write Policy 10

5. Use PRC On Write Miss 10

C. SACS2 OPERATIONAL DETAILS 11

1. Program Initialization 11

2. PRC Functions 11

a. PRCRead 11

b. IsPRCRequestAHit 12

c. PRCReadHit 12

d. PRCReadMiss 12

e. PRCWrite , 13

f. AccessPRC 13

g. SelectPRCBlockVictim 13

h. SetPRCValidBits 13

i. PRCAddToReadBuffer 14

vn

j. UpdateCacheFromPRC 14

3. Cache Functions 14

a. ReadMiss 14

b. WriteHit and WriteMiss 15

4. Buffer Functions 15

5. Memory Functions 15

a. ContinueMemoryReads 15

b. UpdatePRC 15

D. MODIFICATIONS TO SIMULATE A SECOND-LEVEL CACHE ... 16

1. Cache Functions 16

a. ReadMiss 16

b. AddToReadBuffer 16

2. PRC Functions 16

3. Buffer Functions 17

4. Memory Functions 17

III. SIMULATION RESULTS AND ANALYSIS 19

A. SIMULATION ASSUMPTIONS 19

1. Assumptions Built Into SACS2 Model 19

B. CONSTANT CACHE MODEL PARAMETERS USED 20

1. First-Level Cache Parameters 20

2. Cache Miss Actions 21

3. Buffer Parameters 22

4. Access Times 22

C. SIMULATION RESULTS 23

1. Baseline Testing with No PRC 24

2. Effects of PRC Size on Performance 24

vin

3. Variation in PRC Set Associativity 29

4. Variation in PRC Miss Allocation Policy 31

5. Variation in the Maximum PRC Read in Buffer to Continue ... 32

6. Variation in PRC Write Policy 33

7. Effects of Other PRC Parameters 34

D. RESULTS MODELING A SECOND-LEVEL CACHE 35

IV. CONCLUSION 37

A. SUMMARY OF RESULTS 37

B. RECOMMENDATIONS 38

LIST OF REFERENCES 41

INITIAL DISTRIBUTION LIST 43

IX

LIST OF FIGURES

1. System Performance as a Function of PRC Size 28

2. Comparison of Average Access Times for Different Configurations 38

LIST OF TABLES

1. Input Parameters From Original SACS 8

2. Input Parameters Associated with PRC 8

3. Constant Simulation Model Parameters 21

4. PRC Design Parameters 23

5. Cache Performance Without a PRC 24

6. Performance Using 256 Byte 4-way Set Associative PRC 25

7. Performance Using 512 Byte 4-way Set Associative PRC 26

8. Performance Using 1024 Byte 4-way Set Associative PRC 26

9. Performance Using 2048 Byte 4-way Set Associative PRC 26

10. Performance Using 4096 Byte 4-way Set Associative PRC 27

11. Performance Using 8192 Byte 4-way Set Associative PRC 27

12. Performance Using 16384 Byte 4-way Set Associative PRC 27

13. Summary of Read Performance Using 4-way Set Associative PRCs 28

14. Effects of Changing PRC Set Associativity for 256 Byte PRC 30

15. Effects of Changing PRC Set Associativity for 512 Byte PRC 30

16. Effects of Changing PRC Set Associativity for 1024 Byte PRC 30

17. Effects of Changing PRC Set Associativity for 2048 Byte PRC 30

18. Effects of Changing PRC Set Associativity for 4096 Byte PRC 30

19. Effects of Changing PRC Set Associativity for 8192 Byte PRC 31

20. Effects of Changing PRC Set Associativity for 16384 Byte PRC 31

XI

21. Effects of PRC Miss Allocation Policy with 256 Byte Fully Associative PRC 32

22. Effects of PRC Miss Allocation Policy with 4096 Byte 4-way Set Assoc. PRC ... 32

23. Effects of PRC Miss Allocation Policy with 8192 Byte 4-way Set Assoc. PRC ... 32

24. Effects of Varying Max PRC Size to Continue 33

25. Effects of Varying PRC Write Policy 33

26. Effects of Varying UsePRCOnWriteMiss 34

27. Effects of Varying DropPRCOnSecondMiss 34

28. Performance Using a 16 Kbyte Second-Level Cache with 1 Cycle Access 36

29. Performance Using a 16 Kbyte Second-Level Cache with 2 Cycle Access 36

30. Performance Using a 8 Kbyte Second-Level Cache with 1 Cycle Access 36

Xll

I. INTRODUCTION

A. THE NEED FOR CACHE MEMORIES

Microprocessor design improvements have resulted in dramatic speed increases

over the last few years. The performance of the latest high-end microprocessors has

increased at a rate of 54 % per year over the last ten years [Ref. 1]. However, the speed of

the dynamic random access memory (DRAM) required for all modern computers has

failed to keep up with the increases in microprocessor speed, only improving by a factor

of three (180 ns access time vs. 60 ns access time [Ref. 2]).

To get around the problem of slow main memory inhibiting the performance of

the microprocessor, designers have gone to a hierarchical memory design where a smaller

and faster memory (a cache) is placed between the microprocessor and the main memory.

This cache memory allows most memory references to be handled by the cache at a high

speed with only a few references requiring slower main memory access. Use of a cache

memory has become so critical to the operation of modern microprocessors that it has

become mandatory to incorporate one directly on the same chip as the microprocessor

(for example, the 8 Kbyte cache on the Intel 486 microprocessor [Ref. 3]). An on-chip

cache is limited in size due to silicon area restrictions and the requirement that its data be

available in one processor clock cycle. Because of the importance of this on-chip cache,

numerous studies have been done on determining its optimum configuration and most

practical performance improvements have already been implemented.

Initially, a single cache provided the improvement in average memory access time

needed to allow the nominal microprocessor to operate efficiently. However, as the speed

and memory bandwidth requirements of later microprocessors increased, designers soon

had to add off-chip second-level caches. A second-level cache could be larger and slower

than the first-level cache since there are no chip area limitations, cache access time is not

directly tied to microprocessor clock rate, and any improvement in access time over that

of main memory is beneficial. Although a second-level cache provides a performance

enhancement, use of an off-chip cache has several disadvantages. The most important is

that it is connected to the first-level cache through the microprocessor package's

input/output pins and therefore has a limited width datapath that reduces the rate at which

data can be passed from the off-chip cache to the microprocessor. Additionally, since the

second-level cache is external to the microprocessor package, it requires additional

components and control circuitry which adds to system complexity and cost.

The next logical step in improving memory access time is to move the second-

level cache into the same package as the microprocessor. The Intel Corporation's P6

microprocessor will have separate 8 Kbyte first-level data and instruction caches on the

microprocessor chip and a 256 Kbyte second level cache on a separate silicon chip inside

the same package [Ref. 4]. This design allows a wider datapath between caches and

allows the designer to better optimize the memory hierarchy. The Digital Equipment

Corporation's Alpha 21164 goes even further with an integrated 96 Kbyte second-level

cache on the same chip as separate 8 Kbyte data and instruction first-level caches.

However, this implementation requires over nine million transistors on the chip. [Ref. 5]

As can be seen, the use of large second-level caches is very expensive and

complicates the system design. A very different method to gain the improved memory

access times without the expense of a second level cache has been proposed by Fouts and

Billingsly [Ref. 6]. Their solution is to us an on-chip predictive read cache (PRC) instead

of a second-level cache. By monitoring the trend in memory accesses, the PRC prefetches

data from main memory to have it available when it is needed by a first-level cache miss.

B. CACHE MEMORIES

Before describing the PRC, it is necessary to have a basic understanding of cache

memories and how cache performance is normally measured. As mentioned earlier, a

cache consists of a small high-speed memory located between the microprocessor and

main memory. Since it is smaller than main memory, it can only hold a subset of the data

contained in main memory. However, due to the spatial and temporal locality of memory

references exhibited by most programs, the cache can contain a significant proportion of

the microprocessor memory accesses. This fact is the primary reason caches improve the

operation and speed of a microprocessor system [Ref. 1].

Common measures of cache performance are the hit and miss ratios. The hit ratio

is defined as the fraction of memory accesses that were found in the cache memory while

the miss ratio is 1 - hit ratio [Ref. 1]. Most modern day first-level caches have a hit ratio

in the low 90% range and most cache optimization has been concerned with improving

the hit rate since it is the most easily measured parameter during simulations. However,

another significant aspect of cache performance is the miss penalty; that time required to

get the data when it is not in the cache. The miss penalty is significantly affected by the

downstream memory hierarchy and a high miss penalty can offset the benefits of a high

cache hit ratio [Ref. 2]. Combining the miss penalty with the hit rate yields the average

memory access time [taccess = HitRate x tcache + MissRate x tmjss] where tcache = cache access

time and tmiss = miss penalty. Therefore, the average memory access time serves to

summarize the performance of the entire memory hierarchy and more accurately reflects

the impact of cache and memory hierarchy design decisions on microprocessor system

performance.

C. PREDICTIVE READ CACHE

The predictive read cache (PRC) is fully described by Fouts [Ref. 6]. It is a cache

memory, organized in any of the standard methods, with the difference that the data

retrieved into the PRC is based on a predictive algorithm. It is by virtue of this predictive

algorithm that a small PRC could potentially outperform a larger second-level cache.

One of the first observations made by Fouts [Ref. 6] is that the PRC is best suited

for only data references since there already exist several methods to improve the retrieval

of instructions (i.e., prefetch queues). Therefore, the best location for the PRC would be

between a first-level data cache (separate from the instruction cache) and main memory.

This allows the PRC to be optimized for the distribution of data references in memory.

The designers of the PRC noted that in a typical multitasking environment, groups

of data references exhibit a strong spatial locality with temporal interleaving. This

requires the PRC to maintain several different prediction traces so that task switches will

not invalidate the prediction efforts. The prediction algorithm itself is very simple: the

difference between the next (predicted) address and the current reference address should

be the same as the difference between the current reference address and the last reference

address fetched. This design requires a standard cache memory to hold the data and

associated address tags, additional storage to maintain the previous PRC miss address, the

address differences for each cache line, and the hardware necessary to implement the

predictive algorithm. But, since only a very small PRC is required to provide a significant

performance improvement, one could be implemented without using too much valuable

real estate.

To better understand the PRC, a simple example is required. First, assume address

000100 is a first-level cache miss. At the same time this address is sent to the read buffer

for main memory access, the contents of the PRC are checked. Since this is the first

access to the PRC it will be a miss and the main memory read will be required to satisfy

the cache request. Next, assume address 000110 also misses the cache. Again, a main

memory read is started and the PRC is searched. Since this data is also not in the PRC,

the memory read continues and data is retrieved to satisfy the cache request. However,

the PRC will now compute the next predicted access [(000110) + (000110 - 000100) =

000120] and will initiate a memory read for that data. If, as expected, the next cache miss

is for address 000120, the data will be available in the PRC and no main memory read

will be required. This will significantly improve the memory access time. Additionally, if

there is an access for address 000120, the PRC will fetch the data at address 000130 in

anticipation of the next request from the cache. Then, if due to a task switch, the next

request is for another address, the cycle described above will repeat for the new sequence

of addresses with the predicted data being stored in a different PRC location. This allows

the PRC to have data available for both predicted addresses when they are needed to

satisfy subsequent cache misses. This prediction cycle is repeated for all first-level cache

misses.

D. THE NEED FOR SACS2

In order to determine the effectiveness of a PRC and to properly optimize its

parameters, a cache and memory hierarchy simulator that provides more than just hit and

miss percentages is required. The average memory access time is the critical information

that properly accounts for the effects of the PRC. The optimum PRC parameters would be

indicated by the minimum average memory access time. Comparing access times

between configurations with and without a second-level cache would reveal the

comparative effectiveness of a PRC to these other options.

Smith [Ref. 7] developed a cache simulation program (SACS - Still Another

Cache Simulator) that provides exactly the information necessary to optimize a cache

memory for minimum access time. It was designed to use address traces in ASCII format

and simulates a single-level cache interacting with main memory. By building on that

foundation, this thesis documents the programming changes required to incorporate a

PRC into the simulation memory hierarchy and the results of exhaustive testing using the

modified simulator (SACS2).

II. DESIGN OF SACS2

A. INTRODUCTION TO SACS2

SACS2 is a cache and memory hierarchy simulation program written in C. It is a

modification and enhancement to the original SACS written by Smith [Ref. 7] and is

designed to aid in the analysis of the effects of adding a PRC to a memory hierarchy

containing a first-level cache. To implement this design goal required the addition of

functions to model the PRC and modifications to other program functions to incorporate

the PRC. Additionally, to allow comparison testing of a memory hierarchy built with

both a first-level and second-level cache, another modified program (SACS21) was

written. This program uses SACS2 as its basis and incorporates the changes necessary to

model a non-predictive second-level cache.

To provide for testing of the various cache and PRC design options, SACS2 gives

the user the ability to vary numerous design parameters. This allows determination of the

optimal first-level cache and PRC configuration by the running of simulations with

different combinations of design parameter values. The user can then compare the

resulting average memory access times and choose the combination that yields the best

results.

B. SACS2 INPUT PARAMETERS

The various adjustable SACS2 input parameters are shown in Tables 1 and 2.

These parameters are specified in a sacs.ini file so that they can be easily modified for the

different simulation runs. This is a modification from the original SACS program that

required the user to adjust simulation parameters using command line switches [Ref. 7].

The parameters listed in Table 1 are unchanged from their usage in the original SACS

and are fully discussed by Smith [Ref. 7] and therefore will not be separately discussed

here. However, the impact of changes in these parameters during the simulation runs will

be discussed in Chapter III. The parameters listed in Table 2 were added in SACS2 to

allow for proper modeling of the PRC and will be discussed further in this section.

Cache Size Search Block Buffer

Block Size Update Read Buffer

SubBlock Size Remove Read Duplicates

Cache Associativity Read Buffer Size

Word Size Write Buffer Size

Read Cache Access Time Cache Block Replacement Policy

Read Cache Hit Time Cache Write Policy

Read Cache Miss Time Cache Write Miss Policy

Write Cache Access Time Cache Read Forward

Write Cache Hit Time CPU Waits for Cache Writes

Write Cache Miss Time Remove Write Duplicates

Memory Access Time Read Priority

Memory Transfer Time Read For Write Allocate Priority

Buffer Cache Access Time Write Dirty Block Priority

Table 1 Input Parameters From Original SACS

Use PRC PRC Block Replacement Policy

PRC Size PRC Write Policy

PRC Associativity Use PRC on Write Miss

PRC Cache Access Time PRC Read Priority

Buffer PRC Access Time PRC Slipped Read Priority

Max PRC Size in Buffer Drop PRC on Second Miss

Table 2 Input Parameters Associated with PRC

1. Use PRC, PRC Size, and PRC Associativity

Use PRC is provided to allow simulation runs without a PRC so that data for a

memory hierarchy with only a first-level cache could be obtained for comparison

purposes. PRC Size is the size in bytes of the PRC being modeled. PRC Associativity

allows simulating any degree of PRC associativity from direct mapped to fully

associative. The model used in SACS2 assumes that the PRC Block Size and PRC Sub

Block Size are the same as the Cache Block Size and Cache Sub Block Size respectively.

It also assumes that the datapath between the PRC and cache is one block wide allowing

an entire cache block to be transferred at once from the PRC.

2. PRC Access Times

The PRC Cache Access Time is used to model the time it takes for data in the

PRC to be transferred to the cache on a PRC hit. It models the time required to check the

address tags and valid bits along with the time required to actually transfer the data on a

PRC hit. Buffer PRC Access Time is used to model the time it takes for the Block Buffer

to access the PRC and load it with incoming data once the data has been read from

memory.

3. PRC Read Parameters

There are four parameters directly associated with the handling of PRC read

requests in the read and block buffers. PRC Read Priority is the priority associated with

the predictive read being done by the PRC. It is used by the read buffer to determine the

sequencing of read requests to main memory. It would normally be set to a lower value

than the cache miss read priority to ensure that cache misses are handled first. Max PRC

Size in Buffer is another parameter used to ensure that cache miss reads receive priority.

Normally in the memory model, any read that has started access to memory gets the

highest priority and will continue until complete. However, this could force a cache miss

read request to be delayed significantly if it enters the read buffer just after a PRC read

has started. To prevent this, the simulator has been designed to allow the cache read

request to push a PRC read request that is not too far along off the top of the buffer so the

cache read request can immediately start. The Max PRC Size in Buffer parameter

determines the maximum portion of the original PRC read that can be remaining and still

allow the PRC read to continue. This parameter is critical because, although a PRC read

should not hold up a cache read, continually stopping almost complete PRC reads would

cause these incomplete reads to fill up the read buffer and no PRC read requests will ever

get processed. If a PRC read is pushed off the top of the buffer, its priority is assigned the

Slipped PRC Read Priority. This allows the designer to give these read requests a lower

priority since, if they have slipped once, they are more likely to be superseded by a cache

read for the same information and/or a new PRC read for the next predicted address.

Drop PRC On Second Miss allows the designer to specify whether PRC read requests that

have been bumped off the top of the read buffer twice should be canceled or left in the

buffer.

4. PRC Block Replacement Policy and PRC Write Policy

The PRC Block Replacement Policy controls how locations for the storage of new

PRC read request data will be determined. It can be set to Least Recently Used (LRU),

Random, or First In First Out (FIFO) allowing simulation for any of these three common

cache replacement policies. The PRC Write Policy dictates what happens in the PRC on a

cache write to memory. If PRC Write Policy is Write Through, the contents of the PRC

for the write address are updated along with main memory. If PRC Write Policy is Write

Around, the contents of the PRC for the write address are simply invalidated.

5. Use PRC On Write Miss

The setting of Use PRC On Write Miss determines whether the PRC will be

searched when there is a memory read caused by a write allocate fill of a block in the

first-level cache. If Use PRC On Write Miss is Yes the PRC will be searched and a new

prediction trace started based on the address of this read request. If Use PRC On Write

Miss is No the PRC is ignored on these write allocate reads and the cache read request

goes directly to the read buffer.

10

C. SACS2 OPERATIONAL DETAILS

SACS2 operates in essentially the same manner as the original SACS [Ref. 7].

There is a main event loop where simulation time is incremented. All other functions

simulating portions of the memory hierarchy are called from the main event loop. The

main event loop ensures that all actions that can be done for a given simulation time are

completed before incrementing the simulation time. Since there are many similarities

between SACS2 and SACS, only the new functions and the significantly modified

functions are discussed here.

1. Program Initialization

SACS2 uses a sacs.ini file to store all the user-definable parameters for the

simulation. If necessary, a file with a name other than sacs.ini can be used by specifying

its name on the command line. When SACS2 is run, the function LoadArguements parses

the sacs, ini file to retrieve the initialization values for the user-definable parameters and

stores these values for use. The original SACS also required that the address traces used

in the simulation be formatted as ASCII text [Ref. 7]. To allow use of available actual

address traces, SACS2 has been modified to use binary traces in the BYUTR format

created by the BACH trace generation tools [Ref. 8]. These readily available traces

generated by Intel 486 and Sparc microprocessors running the SPEC benchmarks include

all of the key parameters necessary for the SACS2 simulation (address, read/write,

instruction/data, time). The length of these traces ensures a more accurate analysis.

2. PRC Functions

a. PRCRead

PRCRead is called whenever there is a first-level cache read miss or a

first-level cache write allocate read (if UsePRCOnWriteMiss = Yes) on a write miss. It

calls IsPRCRequestAHit to determine if the read request is in the PRC. Either

PRCReadHit or PRCReadMiss are then called based on the results of IsPRCRequestAHit.

11

b. IsPRCRequestAHit

IsPRCRequestAHit determines whether the request is in the PRC by

searching all PRC tags for the request address and, if the address is found, checking the

associated valid bits. If the request is a hit, the CurrentDeltaAddress is set to the

PRCDelt a Address that has been stored with the hit address. CurrentDeltaAddress is the

information that the PRC uses to predict the address of the next requested data, and for a

PRC hit, will be the same as that used to retrieve the data that was found by the PRC hit.

If the request is a miss, the CurrentDeltaAddress is instead set to the difference between

the address of the current request and the address of the last PRC miss in accordance with

the PRC algorithm [Ref. 6].

c. PRCReadHit

PRCReadHit first calls AccessPRC to determine if the cache PRC access

time has elapsed. If it has not, no action is taken during the current simulation time. Once

the cache PRC access time has elapsed, UpdateCacheFromPRC is called to update the

cache with the data found in the PRC. PRCReadHit then determines the next address to

retrieve based on the PRC algorithm (PredictedAddress = CurrentAddress +

CurrentDeltaAddress). Before placing the PredictedAddress in the read buffer using

PRCAddToReadBuffer, the PredictedAddress is checked to make sure it is not being

generated by a wraparound through zero (if CurrentDeltaAddress is negative and larger

than CurrentAddress) and also that the PredictedAddress will not retrieve the same PRC

block that includes the CurrentAddress (as may occur if the CurrentDeltaAddress is less

than the block size). These checks are done so that unnecessary PRC reads of memory

will be eliminated to prevent filling up the read buffer and slowing down other memory

accesses by using memory bandwidth.

d. PRCReadMiss

PRCReadMiss also calculates the PredictedAddress by adding

CurrentDeltaAddress to the CurrentAddress. As was done in PRCReadHit, it checks for

zero wraparound and that the PredictedAddress is not in the same block as the

12

Current Address. In this case, if the PredictedAddress was in the same block as the

Current Address, the PRC would just be adding a request to the read buffer for the same

data that the cache read request is already retrieving.

e. PRCWrite

PRCWhte is called whenever the first-level cache has to perform a write to

main memory. It checks the PRC for the presence of the data being overwritten by the

memory write and, depending on the value of PRCWritePolicy, either invalidates the data

(for PRCWrite Around) or copies the new data into the PRC (for PRCWriteThrough).

f. AccessPRC

AccessPRC is used to simulate the cache PRC access time associated with

a read hit. It operates similarly to AccessCache and ensures that the delays associated

with the PRC tag search and cache transfer are correctly accounted for.

g. SelectPRCBlockVictim

SelectPRCBlockVictim is called to search the PRC and determine which

block will store the new line of data for the predicted address being requested from main

memory. If the read request is being generated by a PRC hit and a fully associative PRC

is being used, SelectBlockVictim will choose the block where the PRC hit was generated.

This maximizes the efficiency of the PRC since it minimizes the overwriting of other

potentially useful blocks. If the PRC is not fully associative, the block to be used will be

determined by applying a LRU, Random, or FIFO algorithm depending on the setting of

PRCBlockReplacementPolicy. SelectPRCBlockVictim also takes care of storing the

address tag in the selected block.

h. SetPRCValidBits

SetPRCValidBits is called whenever it is necessary to invalidate a block in

the PRC such as on a cache write when PRCWritePolicy is PRCWrite Around. It loops

through the sub-blocks in the selected block and clears their valid bits.

13

/. PRCAddToReadBuffer

PRCAddToReadBuffer is responsible for putting the read request

generated by the PRC into the read buffer. It first checks if a PRC read request for the

same block is already in the buffer and, if so, does nothing more since the data needed is

already being retrieved. Next, it checks if a PRC read request for a different address but

for the same PRC block is in the read buffer. If this is the case, it eliminates the older read

request since the data being retrieved would be immediately overwritten by the data being

retrieved by the new request. If neither one of these conditions is present, it stores the

CurrentDeltaAddress in the PRC block being updated and then adds the read request to

the read buffer.

j. UpdateCacheFromPRC

UpdateCacheFromPRC is called when there is a PRC hit and is

responsible for the updating of the cache valid and dirty bits to indicate that the data

requested has been transferred from the PRC to the cache. It is called by PRCReadHit

after the Cache PRC Access time has elapsed.

3. Cache Functions

a. ReadMiss

ReadMiss has been updated from the original SACS to account for the use

of a PRC. Once ReadMiss has selected the cache block for the miss request, it calls

PRCRead to check if the data is available in the PRC. If PRC Re ad returns with a PRC hit,

ReadMiss takes no further action. If PRCRead returns with a PRC miss, ReadMiss must

add the read request to the read buffer. Before doing so, it checks to see if a PRC read

request is currently in progress which could slow down the retrieval of the data necessary

to satisfy the cache miss. If such a PRC read request is in progress and the number of

bytes left to retrieve is greater than the value of MaxPRCSize- InBuffer, the PRC read

request is bumped off the read buffer and reset to a lower priority. This ensures the cache

read request being added will immediately start to access memory. Next ReadMiss checks

to see if there is a PRC read request currently in the read buffer that is retrieving the same

14

data as the current cache read request. If there is such a request, it is cancelled as its

retrieval would be redundant and waste memory bandwidth. Finally, ReadMiss adds the

cache read to the read buffer using AddToReadBuffer,

b. WriteHit and WriteMiss

WriteHit has been updated to call PRCWrite so that the correct action is

taken by the PRC on all writes to memory. WriteMiss also calls PRCWrite but in

addition, if a write allocate cache strategy is in use and UsePRCOnWriteMiss = Yes, it

calls PRCRead to check for the data when it performs the read to fill the rest of the block

being written to.

4. Buffer Functions

Several of the buffer functions have been modified to account for the use of the

PRC. By design, the source of the memory read (cache miss or PRC miss) is stored with

the memory request so that the correct location (cache or PRC) is updated when the data

becomes available from memory. Therefore, functions (such as splice) that search the

buffers for duplicate data had to be modified to only look for those requests that were

generated by the same source as the one currently adding the request to the buffer. This

ensures that the cache and PRC are correctly updated by their associated read requests.

5. Memory Functions

a. ContinueMemoryReads

Continue Memory Re ads is the function that simulates the transfer of words

from memory after the initial word has been retrieved into the block buffer. It is also

responsible for ensuring that the correct internal variables are set so that the cache or PRC

(as appropriate) will be updated once the entire request has been read from memory and is

stored in the block buffer. Therefore, it had to be modified to account for the presence of

the PRC.

b. UpdatePRC

UpdatePRC is a new function that simulates the transfer of data from the

block buffer to the PRC once a PRC memory read is complete. It is structured similarly

15

to UpdateCache and is responsible for updating the PRC valid bits for the block being

transferred once the buffer PRC access time has elapsed. It additionally removes the data

from the block buffer so the next request in the read buffer can commence.

D. MODIFICATIONS TO SIMULATE A SECOND-LEVEL CACHE

To allow comparison of the performance of a PRC with that of an on-chip second-

level cache, another set of modifications had to be made to the SACS program to model

the second-level cache. These modifications to the cache, PRC, buffer, and memory

functions of SACS2 resulted in SACS21.

1. Cache Functions

a. ReadMiss

ReadMiss was modified so that all read requests generated by first-level

cache misses went through the second-level cache and no read requests could be added to

the read buffer directly by the first-level cache. This design could be used since all first-

level cache misses would either be satisfied by the second-level cache or by read requests

generated by second-level cache misses. If a second-level cache miss occurred, the first-

level cache would be updated at the same time as the second-level cache.

b. AddToReadBuffer

AddToReadBuffer was modified to be used by the second-level cache for

additions to the read buffer. To provide the ability to update both caches when the read

was complete, the data structures used for read requests were modified to include both of

the associated cache blocks.

2. PRC Functions

All PRC functions were modified so that the PRC would act like a second-level

cache and not a predictive cache. This required elimination of all references to delta

addresses and all calculations of predicted addresses. Additionally, the PRCWriteHit and

PRCWriteMiss functions were modified to be similar to the cache WriteHit and

WriteMiss functions so that the different write and write miss policies available for

caches could also be simulated in the second-level cache.

16

3. Buffer Functions

Buffer functions were modified to eliminate the difference between cache reads

and PRC read requests since now all requests would come from the PRC (acting as a

second-level cache) and would be used to update both caches. This required a modified

read request data structure and a modification to the search functions used for the

scoreboarding protocol.

4. Memory Functions

The only change to the memory functions required was to the Update PRC

function. It was modified so that, upon the completion of a memory read, both the PRC

(second-level cache) and the first-level cache would be updated with the new data. This

required adding the cache update loop from UpdateCache into the UpdatePRC function.

17

18

III. SIMULATION RESULTS AND ANALYSIS

A. SIMULATION ASSUMPTIONS

The SACS2 simulations used to conduct the testing detailed in this thesis were

based on certain assumptions that have an impact on the results obtained. Some of these

assumptions were incorporated into the design of SACS2 while others were used to set

the value of constant parameters.

1. Assumptions Built Into SACS2 Model

In designing the cache and PRC modeling functions used to perform the

simulations detailed in this thesis, certain design decisions were made and built into the

SACS2 program. Fouts [Ref. 6] discussed that a PRC should only be used to predict data

references since there were already alternate methods to speed up the retrieval of

instruction references. Therefore, SACS2 analyzes the address trace data and only

operates on the data references contained in it. Because of this, the program models

separate instruction and data caches with all instruction cache details ignored. This

assumption does not affect the general trend of data cache and PRC behavior and the

results obtained should be valid.

The method of modeling the PRC and its interaction with the first-level cache

assumes that the PRC is located on-chip between the first-level cache and the buffers that

interface with main memory. Additionally, the PRC and first-level cache are connected

by enough data lines to pass one complete cache block at a time. These assumptions are

valid based on the small size of the PRC and the current trends in microprocessor design.

According to the PRC design parameters of Fouts [Ref. 6], the model assumes

that cache misses go to the read buffer and PRC simultaneously. If the data is then found

in the PRC, the associated memory read is canceled. This method is used so that cache

misses that are also PRC misses do not take longer than they would without a PRC. This

method is achievable in current microprocessor design and ensures that the presence of a

PRC does not slow the system.

19

Since a PRC read for information that is already in the first-level cache would be

redundant and a waste of memory bandwidth, the model assumes that a cache miss read

request that goes to the read buffer can check the buffer for the presence of PRC read

requests for the same address and cancel those requests. This type of scoreboarding is

consistent with current microprocessor design and ensures that the limited memory

bandwidth is put to the best use.

Two assumptions are made in designing SACS21 where the PRC is simulating a

second-level cache. In this case, all first-level cache misses go to the second-level cache

and any memory read request must wait until after it has been determined that a miss has

occurred in both caches. Additionally, since both caches are assumed to be collocated on

the chip, all data arriving from memory read requests is made available to both caches on

arrival. This allows the first-level cache to satisfy its memory request as soon as the

needed data is read from memory and allows both caches to be updated with the new data

block simultaneously.

B. CONSTANT CACHE MODEL PARAMETERS USED

Since there are a large number of user definable parameters in the SACS2 model,

assumptions had to be made to decide which parameters should be constant and what

their values should be. The values of the parameters that remain constant for all

simulations are summarized in Table 3 and explained below.

1. First-Level Cache Parameters

The address traces used in the simulations for this thesis were taken from an Intel

486 microprocessor running a UNIX operating system. Because of this, most of the first-

level cache parameters were set to match those on the 486. A 4-way set associative 8192

byte cache with 16 byte blocks and 4 byte words was chosen as the most accurate model

for the 486. However, to model a cache closer to the current state of the art, a true LRU

cache block replacement algorithm and a write back write policy rather than write

through were used. Additionally, a write allocate miss strategy was used so that all writes

to the first-level cache would generate a complete valid block of data in the cache.

20

First-Level Cache Parameters

Size = 8192 bytes

Block Size = 16 bytes

Sub Block Size = 4 bytes

Word Size = 4 bytes

Associativity = 4 way set associative

Block Replacement Policy = LRU

Write Policy = Write Back

Write Miss Policy = Write Allocate

Buffer Parameters

Read Buffer Size = 8

Write Buffer Size = 4

Access in Progress Priority = 0

Cache Read Miss Priority = 1

Write Priority = 2

Read For Write Allocate Priority = 3

Write Dirty Cache Sub Blocks Priority = 4

PRC Predictive Read Priority = 5

Slipped PRC Read Priority = 6 Cache Miss Actions

Read Forward = Yes

CPU Wait for Writes = No

Search Block Buffer = Yes

Update Read Buffer = Yes

Remove Read Duplicates = Yes

Remove Write Duplicates = Yes

Access Times

Read Cache Access Time = 1

Write Cache Access Time = 1

Cache Hit/Miss Access Times = 0

Cache PRC Access Time = 1

Memory Access Time = 5

Memory Transfer Time = 1

Buffer Cache/PRC Access Time = 1

Table 3 Constant Simulation Model Parameters

2. Cache Miss Actions

The cache miss actions detailed in Table 3 were chosen to accurately model

current cache design practices. Read Forward ensures that every first-level cache miss

will generate a read request that will completely fill the cache block. CPU Wait for

Writes models the use of a write buffer where any writes to memory can be handled in

parallel with more cache accesses. Search Block Buffer provides the ability for a read

request generated by the first-level cache to be satisfied if the data needed is currently in

21

the block buffer due to a previous read request. This can significantly improve

performance by reducing the time it takes to retrieve the cache miss data. Update Read

Buffer models the ability of a memory write request to check the read buffer for pending

read requests and remove any bytes stored in the cache by the write. This reduces the size

of the read request and prevents overwriting of the new data in the cache with older data

being read from main memory. Remove Read/Write Duplicates ensures that only one

request for each cache block is active at a time and, if a new request is generated for data

that is already in the buffers, it is merged with the pending requests.

3. Buffer Parameters

The read buffer size was set at eight requests based on the results of preliminary

testing of SACS2. With the addition of a PRC there are many read requests generated

and, with a small read buffer, requests generated by cache misses could be blocked by a

full buffer. With the larger buffer, these requests can enter the buffer and be included in

the ordering of memory accesses by priority. The write buffer size was set at four

requests to be consistent with current cache design since the PRC does not significantly

affect the number of writes to memory. The buffer priorities were chosen to be consistent

with the design parameters of a cache and PRC memory hierarchy. Satisfying a current

cache miss needs to occur as soon as possible so it was given the highest priority.

Predictive read requests were given the lowest priorities so that they would have minimal

impact on other cache operations.

4. Access Times

The various timing parameters used in the simulations were chosen to most

accurately reflect current microprocessor and memory design. These parameters are given

as multiples of the system clock cycle so that the resulting average access times are

independent of the actual clock speed. A time of one clock cycle was chosen for the cache

access time for both reads and writes. This access time is the time it takes for the first-

level cache to search its tags and determine if the request is present in the cache. If the

request is present, the cache read/write hit times of zero cycles result in the data request

11

being satisfied during the current clock period. If the request is a miss, the cache miss

times of zero cycles result in the associated request going to the PRC and to main

memory during the current clock cycle. If this request to the PRC results in a PRC hit, the

cache PRC access time of one cycle will make the data available to the first-level cache

on the next clock period. The memory access time of five cycles determines how long

after a request is made to memory until the first word of the data is read into the block

buffer. This models the current large discrepancy between microprocessor clock rates and

memory access times. Once the first word of the request has been read from memory, the

following words are then transferred, one every clock period. Finally, the buffer

cache/PRC access times of one period model the delay associated with the transfer of data

from a full block buffer to the cache or PRC.

C. SIMULATION RESULTS

Numerous simulations were run to test the effects of varying PRC design

parameters on the performance of the memory hierarchy. The parameters varied are

summarized in Table 4 and the effects of their variation will be discussed below.

PRC Size

PRC Associativity

Max Size in Buffer to Continue Read

PRC Block Replacement Policy

PRC Write Policy

Use PRC on Write Miss

Drop PRC on Second Slip

Table 4 PRC Design Parameters

The simulations were conducted using address traces from the BACH trace generation

system developed at BYU [Ref. 8]. Three traces were used for most of the testing. The

first trace was generated during the running of the eqntott portion of the SPEC

benchmarks and is approximately 1.2 million data references long. It is referred to below

as trace EQNT. Eqntott is a program that converts boolean equations to the equivalent

truth tables. In doing so, it performs numerous sorts of a reasonably compact data set. The

23

second and third traces were both generated during the running of the kenbus benchmark

(20 users). The kenbus program is designed to represent Unix/C usage in a research and

development environment with twenty concurrent users. It uses Unix shell scripts to

exercise the entire computer system and access data from many varied memory locations.

The second trace is approximately 2.4 million data references long and is referred to

below as trace KEN1. The third trace is approximately 4.7 million data references long

and is referred to as KEN2. These traces were chosen as representative of both single user

with compact data storage (EQNT) and multi-user (KEN1 and KEN2).

1. Baseline Testing with No PRC

To establish a comparison baseline, simulations were run for all three traces with

the PRC disabled. This provided the performance of a first-level cache alone. The results

are shown in Table 5. These results show that despite a reasonably high cache hit

percentage of over 91%, the cache miss penalty increases the average read access time

about 40% over that of a perfect cache where all accesses would take one cycle. The

buffer read hit rate indicates the percentage of cache misses that are found in the block

buffer.

Trace Cache Read

Hit Rate %

Buffer Read

Hit Rate %

Read

Average

Access Time

Cache Write

Hit Rate %

Buffer Write

Hit Rate %

Write

Average

Access Time

EQNT 91.8 13.2 1.377169 92.9 49.5 1.934060

KEN I 91.4 6.1 1.423514 94.9 87.3 1.948817

KEN2 91.5 6.0 1.416308 95.2 85.4 1.951912

Table 5 Cac ie Performan ce Without a PRC

2. Effects of PRC Size on Performance

The next set of simulations involve the addition of a PRC to the memory

hierarchy and observation of its effects on performance. Table 6 shows the performance

with a 256 byte 4-way set associative PRC added to the hierarchy. As can be seen, the

24

PRC hit rate was approximately 20% indicating the PRC correctly predicted the data

request coming from the cache one out of five times. The addition of this very small PRC

results in a performance speedup (Speedup
OriginalAccessTime- AccessTimeWithPRC

)
OriginalAccessTime

of between 4.6% and 4.9% for read accesses. This is a significant improvement for the

small amount of additional hardware required to implement the PRC. There was

negligible change in the performance of write accesses since the PRC predicts memory

reads and is designed to not affect writes. The small changes in the write performance are

due to an increased number of buffer hits where the PRC has brought the data into the

block buffer just prior to the write.

Next, simulations of larger PRC sizes were run to determine the effect of PRC

size on performance. For simulations of 512, 1024, 2048, 4096, 8192 and 16384 byte

PRCs, a 4-way set associative PRC was again used to be consistent with current design

practices. The results of these simulations are given in Tables 7 through 12. A summary

of the simulation results for the various PRC sizes is given in Table 13 while Figure 1

shows the results graphically.

Trace Cache

Read Hit

Rate %

Buffer

Read Hit

Rate %

PRC Read

Hit Rate

%

Read

Average

Access

Time

Cache

Write Hit

Rate %

Buffer

Write Hit

Rate %

Write

Average

Access

Time

EQNT 92.4 8.4 22.2 1.310371 92.9 55.6 1.934213

KEN1 91.4 6.7 19.4 1.357973 94.9 87.5 1.948792

KEN2 91.6 6.5 20.2 1.349544 95.2 85.9 1.951913

Table 6 Pei rformance I Jsing 256 B yte 4-way Set Associa tive PRC

25

Trace Cache Buffer PRC Read Read Cache Buffer Write

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average

Rate % Rate % % Access

Time

Rate % Rate % Access

Time

EQNT 92.4 8.4 22.6 1.308821 92.9 55.5 1.934439

KEN1 91.4 6.7 19.8 1.356720 94.9 87.5 1.948810

KEN2 91.6 6.5 20.5 1.348318 95.2 85.9 1.951887

Table 7 Performance Using 512 Byte 4-way Set Associative PRC

Trace Cache Buffer PRC Read Read Cache Buffer Write

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average

Rate % Rate % % Access

Time

Rate % Rate % Access

Time

EQNT 92.4 8.4 23.0 1.307791 92.9 55.5 1.933843

KEN1 91.4 6.7 20.0 1.355939 94.9 87.5 1.948775

KEN2 91.6 6.5 20.8 1.347330 95.2 85.9 1.951905

Table 8 Pei "formance I Jsing 1024 Byte 4-way Set Associ ative PRC

Trace Cache Buffer PRC Read Read Cache Buffer Write

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average

Rate % Rate % % Access

Time

Rate % Rate % Access

Time

EQNT 92.4 8.4 23.9 1.306571 92.9 55.5 1.934582

KEN1 91.4 6.7 20.4 1.354370 94.9 87.5 1.948809

KEN2 91.6 6.5 21.3 1.345649 95.2 85.9 1.951912

Table 9 Pei 'formance I Jsing 2048 3yte 4-way Set Associ ative PRC

26

Trace Cache

Read Hit

Rate %

Buffer

Read Hit

Rate %

PRC Read

Hit Rate

%

Read

Average

Access

Time

Cache

Write Hit

Rate %

Buffer

Write Hit

Rate %

Write

Average

Access

Time

EQNT 92.4 8.4 23.9 1.304870 92.9 55.5 1.934135

K.EN1 91.4 6.8 21.1 1.351975 94.9 87.5 1.948786

K.EN2 91.6 6.5 22.0 1.342989 95.2 85.9 1.951910

Table 10 Performance Using 4096 Byte 4-way Set Associative PRC

Trace Cache

Read Hit

Rate %

Buffer

Read Hit

Rate %

PRC Read

Hit Rate

%

Read

Average

Access

Time

Cache

Write Hit

Rate %

Buffer

Write Hit

Rate %

Write

Average

Access

Time

EQNT 92.4 8.3 25.0 1.301063 92.9 55.5 1.934111

KEN1 91.4 6.8 22.2 1.348034 94.9 87.5 1.948784

KEN2 91.6 6.6 23.3 1.338538 95.2 85.9 1.951904

Table 11 Performance Using 8192 Byte 4-way Set Associative PRC

Trace Cache Buffer PRC Read Read Cache Buffer Write

Read Hit Read Hit Hit Rate Average Write Hit Write Hit Average

Rate % Rate % % Access

Time

Rate % Rate % Access

Time

EQNT 92.4 8.3 27.3 1.292856 92.9 55.5 1.934095

KEN1 91.4 6.8 23.9 1.341563 94.9 87.5 1.948761

KEN2 91.6 6.6 25.0 1.332019 95.2 85.9 1.951884

Table 12 Performance Using 16384 Byte 4-way Set Associative PRC

27

Trace

Average Read Access Time

Speed Up over no PRC

256

byte

512

byte

1024

byte

2048

byte

4096

byte

8192

byte

16384

byte

EQNT 1.310371

4.9 %

1.308821

5.0 %

1.307791

5.04 %

1.306571

5.12%

1.304870

5.25 %

1.301063

5.53 %

1.292856

6.12%

KEN1 1.357973

4.60 %

1.356720

4.69 %

1.355939

4.75 %

1.354370

4.86 %

1.351975

5.03 %

1.348034

5.30 %

1.341563

5.76%

KEN2 1.349544

4.71 %

1.348318

4.80 %

1.347330

4.87 %

1.345649

4.99 %

1.342989

5.18%

1.338538

5.49%

1.332019

5.95 %

Table 13 Summary of Read Performance Using 4-way Set Associative PRCs

1.45

w
</>
<D
Ü
Ü .

<

>
<,

1.41

1.37

.33

.29

.25

256 1K 4K

512 2K

PRC Size (Bytes)

16K
8K

EQNT - KEN1 KEN2

Figure 1 System Performance as a Function of PRC Size

28

The results show that, as would be expected, a larger PRC resulted in a higher

PRC hit rate and a lower average read access time. Just as with the 256 byte PRC size,

write performance was not significantly affected as PRC size increased. The higher PRC

performance for the larger sizes can be attributed to the PRC retaining its predicted data

longer and then acting like a second-level cache to provide the data when needed due to

conflict or capacity misses in the first-level cache. However, as can be seen in Figure 1,

the performance improvement as PRC size increased is small (4.7% average speedup

with a 256 byte PRC increasing to 5.9% average speedup with a 16384 byte PRC). This

means that a PRC 64 times larger only provided a 25% improvement in PRC

performance. These results indicate that the benefit of the PRC comes mostly from its

predictive nature and that the predicted data is normally used by the first-level cache soon

after it has been fetched by the PRC. Therefore, the PRC acts to reduce the average

memory access time chiefly by lowering the penalty for compulsory misses in the first-

level cache. The small size of the PRC limits its ability to reduce the penalty for conflict

or capacity misses in the first-level cache. Because of this, as long as the PRC has enough

locations to hold the different prediction traces, its size has a minimal impact. Therefore,

the 256 byte 4-way set associative PRC can achieve most of the performance gain of the

16384 byte PRC. These results also show that, although the different traces result in

different average access times, the trends due to parameter changes are consistent among

the traces. Therefore, for the rest of the simulations the longer KEN2 trace is not used due

to the length of time the simulations would require.

3. Variation in PRC Set Associativity

The next set of simulations were to determine the effects of changing the PRC set

associativity. Nominally, a higher degree of set associativity provides improved

performance but at the expense of additional hardware [Ref. 1]. Fully associative PRCs

were simulated for the smaller PRC sizes while direct mapped and 2 and 8-way

associativities were simulated for all PRC sizes. Tables 14 through 20 detail the results of

these simulations.

29

Trace

Average Read Access Time Average Write Access Time

Direct

Map

2-\vay

S A

4-way

S/A

8-way

S/A

Fully

Assoc

Direct

Map

2-way

S/A

4-way

S/A

8-way

S/A

Fully

Assoc

EQNT 1.31 1 S51 1.310887 1.310371 1.310704 1.310262 1.93433 1.93418 1.93421 1.93435 1.93421

KENl 1.358229 1.358137 1.357973 1.357758 1.357958 1 94875 1.94883 1.94879 1 948826 1.94878

Table 1 4 Effects of Changing PRC Set Associativity for 256 Byt ePRC

Trace

Average Read Access Time Average Write Access Time

Direct

Map

2-way

S/A

4-way

S,A

8-way

S/A

Fully

Assoc

Direct

Map

2-way

S/A

4-wav

S/A

8-way

S/A

Fully

Assoc

EQNT 1.310850 1.309347 1.308821 1.308914 1.308998 1.93431 1.93390 1 93444 1.93346 1 93430

KENl 1.357581 1,356764 1.356720 1.356794 1.357635 1.94883 1.94873 1.94881 1.94882 1.94879

Table 1 5 Effects , of Char lging PRC Set Associativity for 512 Byt ePRC

Trace

Average Read Access Time Average Write Access Time

Direct

Map

2-way

S/A

4-way

S/A

8-way

S/A

Fully

Assoc

Direct

Map

2-way

S/A

4-way

S/A

8-way

S/A

Fully

Assoc

EQNT 1.309216 1.308353 1.307791 1.308008 1.308248 1.93435 1.93415 1.93384 1.93395 1,934083

KENl 1.36276 1.356064 1.355939 1.355768 1.356342 1.94883 1.94883 1.94878 1.94882 1.94876

Table 1 6 Effects , of Char lging PR .C Set A ssociativ ity for 024 B) 'te PRC

Trace

Average Read Access Time Average Write Access Time

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A

EQNT 1.308026 1.306972 1.306571 1.306775 1.93462 1.93303 1 93458 1.93430

KENl 1.354605 1.354319 1.354370 1.354343 1.94882 1.94882 1.94881 1.94812

Table 1 7 Effects of Changing PRC Set Associativ ity for 204S I Byte PR(-i

Trace

Average Read Access Time Average Write Access Time

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A

EQNT 1.306335 1.305677 1.304870 1.304828 1.93445 1 93447 1.93414 1.933813

KENl 1.352784 1.349630 1.351975 1.351759 1.94878 1.94883 1.94879 1.94882

Table 1 8 Effects of Changing PRC Set Associativ ity for 409(3 Byte PR(—1

30

Trace

Average Read Access Time Average Write Access Time

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A

EQNT 1.301886 1.303746 1.301063 1.300981 1.93432 1.93359 1.93411 1.934191

KENt 1.349598 1.348663 1.348034 1.347499 1.94876 1.94882 1.94878 1.94879

Table 1 9 Effects of Changing PRC Set Associativity for 8192 Byte PRC

Trace

Average Read Access Time Average Write Access Time

Direct Map 2-way S/A 4-way S/A 8-way S/A Direct Map 2-way S/A 4-way S/A 8-way S/A

EQNT 1.302034 1.310189 1.292856 1.292966 1.93430 1.93464 1.93410 1.93413

KENl 1.341690 1.341655 1.341563 1.337321 1.94874 1.94882 1.94876 1.94877

Table 20 Effects of Changing PRC Set Associativity for 16384 Byte PRC

As can be seen, increasing the set associativity normally resulted in a small

decrease in average access times, but the effect varied depending on the size of the PRC,

the associativity, and the particular trace being used. However, on the average, there was

only a change of 0.13 % in the average read access time due to associativity changes.

This can be attributed to the fact that data read into the PRC is either used quickly by the

first-level cache or is not used at all. Therefore, any increase in set associativity has

minimal impact since conflict misses in the PRC are not common. As a result, the PRC

should use the easiest set associativity to implement (normally direct mapping) to

minimize its hardware complexity and size.

4. Variation in PRC Miss Allocation Policy

The PRC can operate with any of the three common cache miss allocation policies

(LRU, Random, FIFO). This set of simulations were run to determine the effects on

average access time for changes in the PRC miss allocation policy. These simulations

were done using PRC sizes of 256, 4096, and 8192 bytes and the results are shown in

Tables 21 through 23. As can be seen, the change from LRU resulted in a very small

access time degradation. This again is attributed to the fact that data in the PRC is either

31

used soon after it is read in or not at all. Therefore, the simplest replacement algorithm

would be recommended to reduce system complexity.

Trace

Read Average Access Time Write Average Access Time

LRU Random FIFO LRU Random FIFO

EQNT 1.310262 1.312604 1.315710 1.934211 1.934441 1.934121

KEN1 1.357958 1.358787 1.362811 1.948782 1.948831 1.948812

Table 21 E ffects of PRC Miss Allocation Policy with 256 Byte Fully Associative PRC

Trace

Read Average Access Time Write Average Access Time

LRU Random FIFO LRU Random FIFO

EQNT 1.304870 1.305913 1.306522 1.934135 1.934533 1.934568

KEN1 1.351975 1.352489 1.354097 1.948786 1.948806 1.948803

Table 22 E ffects of PRC Miss Alloc; ition Policy with 4096 B yte 4-way Set Assoc. PRC

Trace

Read Average Access Time Write Average Access Time

LRU Random FIFO LRU Random FIFO

EQNT 1.301063 1.302155 1.302231 1.934111 1.934378 1.933754

KEN1 1.348034 1.349315 1.350633 1.948784 1.948806 1.948806

Table 23 E ffects of PR(2 Miss Alloc ;ation Policy with 81921 Byte 4-way Set Assoc. PRC

5. Variation in the Maximum PRC Read in Buffer to Continue

The Max PRC Read in Buffer parameter determines how often an in-progress

PRC read gets canceled when new cache read requests are added to the read buffer. As

explained in Section II.B.3, the setting of this parameter is a balance between getting

cache read misses started as early as possible without wasting too much memory

bandwidth on incomplete PRC read requests. This set of simulations was done using a

256 byte fully associative PRC and a 1024 4-way set associative PRC and compared the

performance when the Max PRC Read in Buffer was set to 4 (the value used in all other

simulations) and when it was set to 8. As can be seen from Table 24, increasing the size

of this parameter resulted in delaying cache read requests and slightly poorer system

performance.

Trace

256 byte PRC 1024 byte PRC

Max Size = 4 Max Size = 8 Max Size = 4 Max Size = 8

EQNT 1.310262 1.310318 1.307791 1.308179

KEN1 1.357958 1.359335 1.355939 1.356460

Table 24 E Tects of Varyi ng Max PRC Size to Continue

6. Variation in PRC Write Policy

All of the simulations so far have used a PRC write policy of write through where

the PRC is updated at the same time as main memory (if the data was already in the

PRC). To determine the effects of a write around policy on system performance, a set of

simulations was run using PRC sizes of 256 and 1024 bytes. The results of these

simulations are given in Table 25. They show that the difference between the write

around policies had different effects depending on the trace used and the PRC size. The

small and variable nature of the change seems to indicate that there is no clear advantage

to either method.

Trace

256 byte PRC 1024 byte PRC

Write Through Write Around Write Through Write Around

EQNT 1.310262 1.307876 1.307791 1.307690

KEN1 1.357958 1.358217 1.355939 1.355946

Table 25 E Tects of Varying % PRC Write Polic •y

33

7. Effects of Other PRC Parameters

There are two other PRC parameters that could affect PRC performance. They are

UsePRCOnWriteMiss and DropPRCOnSecondMiss. Based on the results of preliminary

testing, all of the simulations so far have had UsePRCOnWriteMiss - No and

DropPRCOnSecondMiss = Yes. Tables 26 and 27 show the effects of changing these

values on system performance. UsePRCOnWriteMiss being set to Yes has a significant

effect on performance for the 256 byte fully associative PRC. probably due to the fact

that the writes to memory are not consistent with the data being read. This means that

starting a PRC trace based on a write does not provide data that will be used by a future

cache read and may even write over a valid prediction trace. This effect is much less

pronounced in the 1024 byte 4-way set associative PRC. Changing

DropPRCOnSecondMiss has negligible effect on system performance. This is due to the

large eight request read buffer and the mechanism for handling request priorities. Even if

a PRC request is slipped twice, it does not impact future reads because it will stay at the

bottom of the read buffer until all other read requests are complete.

Trace

256 byte PRC 1024 byte PRC

Use = No Use = Yes Use = No Use = Yes

EQNT 1.310262 1.350188 1.307791 1.307807

KEN1 1.357958 1.373540 1.355939 1.370687

Table 26 E Tects of Varying I UsePRCOnWrih zMiss

Trace

256 byte PRC 1024 byte PRC

Drop = Yes Drop = No Drop = Yes Drop = No

EQNT 1.310262 1.309977 1.307791 1.307808

K.EN1 1.357958 1.358575 1.355939 1.358557

Table 27 E Tects of Varying I DropPRCOnSec ondMiss

D. RESULTS MODELING A SECOND-LEVEL CACHE

To allow comparison of system performance with a PRC to that of a system with

a second-level cache, simulations of a 16384 byte 4-way set associative second-level

cache were done using SACS21. The results of these simulations are shown in Table 28

and show that a second-level cache of this size can provide a significant performance

increase. The cache size was chosen to be comparable with the PRC sizes tested earlier.

The second-level cache in these simulations had an access time of one clock cycle. This

speed would only be possible on a small on-chip cache. The results of using a more

realistic access time of two clock cycles is shown in Table 29. With this assumption, the

performance of an 8192 PRC is nearly comparable with a cache twice its size. A

simulation of an 8192 byte 4-way set associative second-level cache with a one cycle

access time was done even though this size cache would not normally be used with an

8192 byte first-level cache. The results of this simulation are shown in Table 30. They

indicate that this size of second-level cache provides less of a speedup than a 256 byte

PRC. This confirms that the predictive nature of the PRC is what provides the greatest

benefit in reducing average memory access time.

The increase in average write access time over only a first-level cache is attributed

to the reduced number of buffer hits on writes since all writes now go through the second-

level cache. Therefore, any writes that miss the first level cache must wait the second-

level access time before possibly getting a hit in the second-level cache. Without a

second-level cache, these writes could have hit the buffer as soon as they were being

written out by the first-level cache.

35

Average Read

Access Time

Speed Up Average Write

Access Time

Speed Up

EQNT 1.279652 7.08 % 1.936717 slower

KEN1 1.319244 7.32 % 1.960368 slower

KEN2 1.314057 7.22 % 1.962551 slower

Table 28 Performance Using a 16 Kbyte Second-Level Cache with 1 Cycle Access

Average Read

Access Time

Speed Up Average Write

Access Time

Speed Up

EQNT 1.300383 5.56 % 1.936729 slower

K.EN1 1.343165 5.64 % 1.960369 slower

KEN2 1.339284 5.44% 1.962555 slower

Table 29 Performance Using a 16 Kbyte Second-Level Cache with 2 Cycle Access

Average Read

Access Time

Speed Up Average Write

Access Time

Speed Up

EQNT 1.334967 3.06 % 1.933316 0.04 %

K.EN1 1.377860 3.21 % 1.956252 slower

Table 30 Performance Using a 8 Kbyte Second-Level Cache with 1 Cycle Access

36

IV. CONCLUSION

A. SUMMARY OF RESULTS

The simulations run in this thesis proved that a PRC can provide a significant

performance improvement to a memory hierarchy containing only a first-level cache.

Even a small (256 byte) PRC provided a 4.7 % speedup while the 16384 byte PRC

provided a 5.9 % speedup. A 16384 byte second-level cache simulation resulted in a

7.2 % speedup that is better than any of the PRC results. However, the cache simulation

assumed that the second-level cache could provide data on a cache hit in only one

processor clock cycle. This assumption may not be true for this size of a cache, and

would definitely not be true for an external second-level cache. Using a second-level

cache hit access time of two processor clock cycles resulted in a 5.6 % speedup;

approximately equal to the speedup of an 8192 byte PRC (5.5 % speedup). A small PRC

gets its performance improvement with very little hardware such that it could easily be

included on the microprocessor chip, and provide hit data in only one clock cycle.

Therefore, in an actual implementation, a 256 byte PRC might outperform a much larger

second-level cache. The simulation results also that the PRC associativity is not a major

effect as long as there are enough different sets to track all prediction traces without

overwriting other valid prediction traces. A PRC configured in this manner should then

be fetching data from main memory just before it being needed by the first-level cache.

This allows the PRC to reduce the miss penalty for first-level cache compulsory misses

and thereby reduce the average memory access time of the system. As can be seen from

Figure 2, the 256 byte direct mapped PRC met this goal and provided the best price to

performance ratio since its performance was almost identical to the 8192 byte PRC while

using much less hardware.

The simulation results also showed that the PRC block replacement policy (LRU,

random, or FIFO) had minimal impact on PRC performance. This result allows the

37

system designer to choose the easiest method to implement when incorporating a PRC

into a system design. The decision on whether to use the PRC on cache write allocates is

a harder one as the results were less clear, however, with a small PRC these reads pollute

the prediction traces and lower performance. In this case, the PRC should only be used

for cache read misses. Variations in PRC write policy had little effect and the simplest

method to implement the PRC should be chosen.

1.45

C/)
(/)
g 1.33
o
<

1.29 -^rra^^^-

1.25

EQNT KEN1 KEN2
Trace Used

 1L Alone 256 PRC

 8K PRC 16K PRC

 16K2L

Figure 2 Comparison of Average Read Access Times For Different Configurations

B. RECOMMENDATIONS

A PRC provides an easy way for a microprocessor system designer to gain a

performance improvement without a major hardware investment. It is also a method to

reduce the miss penalty associated with compulsory cache misses (the initial filling of the

first-level cache) since a PRC will retrieve some requests before the cache requires them.

Since a small PRC provides almost the same performance improvement as a large one

with much lower cost, the optimum configuration to use would be a 256 byte fully

associative PRC coupled with an eight request read buffer. The PRC should be designed

to be bypassed on cache write allocate reads and should use the simplest block allocation

policy available. This arrangement would gain the maximum performance increase for

the lowest overall cost.

Although a large second-level cache outperforms a PRC, it does not mean that

there is no use for a PRC in microprocessor design. Many designs cannot use a large

second-level cache, whether because of chip area constraints, power constraints, or

system cost constraints. These systems may be embedded microprocessors, portable

computers or space applications. In these cases, a PRC would give enhanced performance

with very little additional hardware or power consumption.

Another possible use of a PRC is to place it between the first-level and second-

level caches where its role would be to reduce the compulsory miss penalty. In this

application, a very small PRC could be used to bring predicted data into the second-level

cache where it would be available when a first-level cache compulsory miss occurs. The

PRC itself would only need to store the information necessary to compute the predicted

addresses. This type of PRC might even be software controlled so that it only functioned

when the first-level cache is being initially filled with data following a task switch and is

then turned off once both caches have been filled with new data. This type of

implementation could be simulated using a modification to the SACS2 program to

incorporate both a PRC and a second-level cache. The resulting system would combine

the best of the PRC and second-level cache implementations and could be used on very

high-end microprocessors that need every possible method to speed up memory accesses.

Further investigation into the use of a PRC to enhance memory system

performance needs to be done. Use of a PRC in lieu of a second-level cache shows great

39

promise to provide higher performance for less power and cost while incorporating a

PRC in a multi-level cache hierarchy may result in a way to reduce the impact of

compulsory misses. Using a modified version of the SACS2 program, additional

simulations could be run to verify that the PRC most affects the compulsory miss penalty

and has little effect on the conflict or capacity miss penalties. Also, testing with an actual

PRC in conjunction with a microprocessor containing a first-level cache could be

performed to obtain actual performance measurements to validate simulation results.

40

LIST OF REFERENCES

1. Patterson, D. A. and Hennessy, J. L., Computer Organization and Design: The
Hardware/ Software Interface, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1994.

2. Przybylski, S. A., Cache and Memory Hierarchy Design: A Performance-Directed
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

3. Crawford, J. H., "The i486 CPU: Executing Instructions in One Clock Cycle," IEEE
Micro, pp 27-36, February 1990.

4. Colwell, R. P. and Steck, R. L., "A 0.6um BiCMOS Processor with Dynamic
Execution," ISSCC Proceedings, pp 176-177, February 1995.

5. Edmondson, J. H. and others, "Superscalar Instruction Execution in the 21164 Alpha
Microprocessor," IEEE Micro, pp 33-43, April 1995.

6. Fouts, D. J. and Billingsly, A. B., "Predictive Read Caches: An Alternative to On-Chip
Second-Level Cache Memories," Journal of Microelectronic Systems Integration, pp
109-121, June 1994.

7. Smith, W. G., "SACS: A Cache Simulator Incorporating Timing Analysis with Buffer
and Memory Management," Master's Thesis, Naval Postgraduate School, Monterey,
CA, 1994.

8. Grimsrud, K. and others, "BACH: A Hardware Monitor for Tracing Microprocessor-
Based Systems," unpublished paper, Brigham Young University, Provo, UT, February
1993.

41

42

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor D. J. Fouts, Code EC/Fs 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. LCDR Robert W. Miller, USN 1
3808 Outrigger Drive
Edgewater, Maryland 21037

43

