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FOREWORD 

Physical processes often cannot be accurately modeled as a purely deterministic 
mathematical process because of the existence of random aspects of their behavior. This 
unpredictable portion is often statistically modeled as Gaussian white noise. However, noise 
processes are not always characterized by the properties of Gaussian white noise. For example, a 
projectile whose motion is disturbed by air or water turbulence or a self-propelled projectile with 
unevenly mixed fuel may possess long-term slowly decreasing dependencies that may not be 
well represented by white noise. This research concerns an optimal estimator for parameters and 
states of systems driven by another type of noise, known as fractional Gaussian noise (FGN) 
processes. These stochastic processes can model systems containing long-term, slowly 
decreasing time-correlated random disturbances. 

This report examines an estimator for an unknown parameter in a model represented by a 
form of FGN-driven stochastic differential equation. A simulation of fractional Brownian 
motion (FBM) process and a state model driven by FGN are also developed for the purpose of 
testing the estimator. FBM is a stochastic process that corresponds to FGN. This 
correspondence is discussed. The estimator is tested using the simulations of FBM and the state 
model driven by FGN. An alternate algorithm for estimating the unknown parameter is derived 
in this report. Also, estimating the single parameter that controls the time correlation of FBM is 
discussed. 

Time and funding constraints did not permit further study to compare the methodologies 
reported here with more conventional methods for a specific application. 

The research involved in the report was in support of the Navy In-house Laboratory 
Independent Research (IR) Program at the Naval Surface Warfare Center, Dahlgren Division 
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Department of Applied and Engineering Statistics, George Mason University, Fairfax, Virginia. 
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INTRODUCTION 

The motion of a projectile or torpedo traveling through the air or water may be governed 
by a differential equation whose variable, commonly called its state, represents speed. Random 
disturbances affecting the flight or trajectory of the object may be caused by air or water 
turbulence, or, in the case of a self-propelled projectile, the disturbance could have originated 
from an uneven fuel mixture. Many physical processes, such as these, often cannot be accurately 
modeled as a purely deterministic mathematical process because of the existence of random 
aspects of their behavior. This unpredictable portion of the phenomena, often known as noise, is 
frequently statistically modeled as Gaussian white noise. However, noise processes are not 
always characterized by the properties of white noise. Thus, Gaussian white noise, which by 
definition assumes time independence may not form an accurate model. Furthermore, a constant, 
such as one representing friction divided by projectile mass may represent an unknown 
parameter in the differential equation (see Reference 1, p. 154). This investigation concerns 
optimal estimators for parameters and states of systems driven by a type of noise that possesses 
long-term, slowly decreasing time dependencies. This noise is known as fractional Gaussian 
noise (FGN), and it may represent systems with slowly decreasing dependencies, such as the 
example just described, more accurately than traditional white noise models. 

The use of stochastic processes in the form of stochastic differential equations 
(differential equations disturbed by random noise) driven by white noise for modeling physical 
phenomena has been extensively studied for the case where the equations were driven by 
Gaussian white noise. Parametric estimators have been developed for parameters in some forms 
of stochastic differential equations driven by this type of noise. This report examines an 
estimator that was described in Reference 2 that can be used to estimate an unknown parameter 
of a model represented by a form of FGN-driven stochastic differential equation. A simulation 
of fractional Brownian motion (FBM) process and a state model driven by FGN was also 
developed for the purpose of testing the estimator. FBM is a stochastic process that corresponds 
to FGN. The estimator was tested, using the simulations of FBM and the state model driven by 
FGN. An alternate estimator was also derived in this report. 

Another parameter that is very crucial in any models involving FBM is the single 
parameter known as H that characterizes FBM itself. The higher the value of H, the greater the 
time dependency of the FBM. In this research, H is assumed to be within the interval (0.5, 1.0) 
although it can be defined for all H within the interval (0.0,1.0). The interpretation for processes 
where H > 1 is unclear (Reference 3, p. 943). After investigation, an algorithm was found in 
literature for estimating the single parameter needed to characterized FBM and its corresponding 
Gaussian noise process. This parameter determines the time correlation of the FBM and FGN. 
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BACKGROUND 

This section provides some basic definitions and mathematical results needed for 
developing an optimal estimator for parameters and states of FGN-driven systems. These 
definitions and results can also help in understanding the reasons for potential applications of this 
work. 

FBM DEFINITION 

The most important background item is the definition of FBM, because this process is the 
originator of all processes in this research. 

DEFINITION: Let B = (B(t): t e R} be a standard Brownian motion (BM) process and R the set 
of real numbers. Fractional Brownian motion (FBM), symbolized by BH, given H e (0.5, 1) is 
defined as follows: 

BH (t) = I o 5    ( Kit - s|H-°-5-[s|H-0-5 )dB(s) + 
/     — oo 

f H-0 5 W Jit- slH  °'5dB(s)) 
0 

where T is the gamma function, and s varies from negative infinity to t. 

Hence, FBM is a stochastic integral of a deterministic function with respect to standard 
Brownian motion. 

For H = 0.5, FBM is standard BM. Hence, FBM can be thought of as a generalization of 
standard BM. FBM is a zero mean normally distributed process with the following covariance 
function (R): 

RBH (s, t) = ^-(ls|2H +lt|2H -It - s|2H ) (2) 

V   _-r(2-2H)cos(PH) _ 
H JtH(2H-l)       ' (3) 

The distribution of BH also has the property of self-similarity, which can formally be 
defined for FBM as follows: 

d    H 

{BH(at):t e R} = a" {BH(t):te R }; d = distribution (4) 
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Equation (4) defines FBM self-similarity and states that the distribution of FBM looks the same 
regardless of the scale factor in time. The self-similarity property is also commonly known as 
the fractal property, and therefore the distribution of BH can be said to possess the fractal 
property. One can see that by setting H = 0.5, BM also possesses this fractal property. This 
property is useful because some physical processes, or the random noise part of the physical 
processes, appear to behave as fractals. 

An example of a physical system possessing random noise that behaves like FBM is 
random errors in communication channels as found in Reference 3. The errors in these channels 
may appear as groups of bursts, and this group of bursts is itself grouped in bursts, giving the 
appearance of the self-similarity property. 

The FBM can also be defined by Equation (1) for H e (0, 0.5). However, for modeling 
long-term dependencies, H is considered to be between 0.5 and 1. 

FGN DEFINITION 

FGN (symbolized by WR) is considered to be the derivative of FBM, just as Gaussian 
white noise is considered to be the derivative of standard Brownian motion. In this sense, FGN 
corresponds to FBM and vice versa. Yet, analogous to the fact that Brownian motion is almost 
surely (a. s.) not differentiable, we have the following theorem: 

THEOREM 1 (Reference 4): Fractional Brownian motion is a. s. not differentiable with respect 
tot. 

The significance of this theorem is to show that in the strict mathematical sense, FGN (along 
with Gaussian white noise) does not exist as a true stochastic process. Yet, it is still desirable to 
use them as processes because of the useful properties they possess: FGN's long-term slowly 
decreasing time dependencies and 1/f properties (described in the next paragraph) and Gaussian 
white noise being time independent. These properties approximate physical systems. 
Furthermore, physical phenomena often behave as if they were derivatives of FBM or Brownian 
motion in spite of the fact that such derivatives do not truly exist. See Reference 3 for a 
description of how to define FGN in terms of an operator instead of a derivative of FBM. 

FGN can be thought of as a stochastic process defined to be normally distributed with 
zero mean and the covariance function (R), which is defined in Equation (5), and spectral density 
function (S\YH)> defined in Equation (6): 

R(t,s) = Rw   (r)=VHH(2H-l)M2H~2 

H 

V   _-r(2-2H)cos(pH) 
H 7tH(2H-l) 

il-2H 

(5) 

T = t - S 

SWH(W) = IWI 
l-/H;weR,w*0 (6) 
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Equation (5) (the covariance function) shows that FGN exhibits the long-term dependency 
property of having slowly decreasing correlations. Because -1.0 < 2H - 2 < 0.0, the correlation is 
high for small t, which decreases slowly with increasing t since 2H - 2 > -1.0. Moreover, since 
-1.0 < 1 - 2H < 0.0, the spectral density function (Equation (6)) shows that FGN has low- 
frequency, slowly decreasing spectral power for the same reason that FGN has high correlation 
for small t (decreasing slowly with increasing x). Processes with such spectral densities are 
known as 1/f processes. Along with being normally distributed, these unique properties give 
FGN its potential for applications as mathematical/statistical models of physical processes. 

Note that by setting % to zero, Equation (5) shows that FBM has infinite variance. Also, 
notice that since -1.0 < 1 - 2H < 0, 

oo oo 

JSW   (w)dw = Jlwl1_2Hdw = oo 

Figure 1 contains graphs showing sample paths of standard Brownian motion and 
Gaussian white noise (H = 0.5). Figure 2 shows graphs of a sample path of FBM and FGN, 
where H = 0.85. These graphs are presented merely to show pictorially examples of the noise 
processes being studied. They are not part of the findings in this investigation. 

SPECTRAL DENSITY 

Since spectral density can be interpreted as the average spectral power per unit frequency 
(Reference 5, pp. 92-93), Equation (7) shows that FGN has infinite spectral power. Similarly, 
Gaussian white noise has infinite variance and infinite average spectral power. No natural 
process can possess such properties. Hence, in the physical sense as well as in the mathematical 
sense, neither FGN nor Gaussian white noise can exist. However, both of these pseudo- 
processes can form approximations of many real-life phenomena where the spectral power 
density is non-zero for a wide range of frequencies. 

Gaussian white noise is well known in the literature for having a constant spectral density 
function. Therefore, it is often useful for representing processes with constant spectral power 
over a wide range. FGN is useful for representing phenomena in an approximate manner with 
low frequency power that is high near zero and slowly decreasing over a wide range before 
becoming zero. Note that processes with the long-term slowly decreasing time dependencies, as 
given by Equation (5) (covariance) used for "defining" FGN, can be shown to have the low 
frequency spectral power as also given in Equation (6). 

One example of a physical process that behaves as a FGN is discharge from a river. 
These discharges may tend to exhibit clusters of high and low periods and therefore exhibit long- 
term dependencies. As a second example, the influence of sea wave action on the accuracy of 
projectiles fired from weapons on ships may also possess the long-term time dependency 
property of FGN. Further investigation needs to be conducted regarding this second example to 
study how closely it can be approximated by FGN. Taking the "derivative" of a model of the 
errors portion of the communications channel (as described previously) gives a third example of 
FGN. Also, the effects of air or water turbulence on projectiles or the effects of unevenly mixed 
fuel could be candidates for FGN representation. This was described in the introduction. 
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Although FBM is not differentiable, a "pseudo-derivative" can be approximated by 
determining the ratio of an increment of BH to an increment of time and thinking of it as a 
derivative in analyzing mathematical properties of the model. 

MARTINGALE 

Another important concept is the definition of a martingale. A martingale is a stochastic 
process where the expectation of its future state is precisely its present state. The precise 
definition follows: 

DEFINITION: Given a pair (M(t), a(t): t e T) where M(t) is a stochastic process that is 
measurable with respect to a(t), an increasing family of a-algebras, then the pair is called a 
martingale if 

EIM(t)l<oo and 
(8) 

E[M(t)la(s)] = M(s)Vt> s 

The most common example of such a process is standard Brownian motion itself. See 
Reference 2 p. 6 for a definition of a a-algebra. 

A martingale has two useful properties: Future expectations can be described, and a 
martingale lends itself to well-defined stochastic integrals. If a process is not at least a 
generalization of martingales known as a local martingale, possible problems arise in defining 
integrals of another stochastic process with respect to this original non-martingale process. See 
Reference 5, p. 234, for a precise definition of a local martingale. 

PROBLEM STATEMENTS AND APPROACH 

OPTIMAL ESTIMATOR FOR PARAMETER 6 

Developing the Estimator 

The first problem was to develop an optimal estimator for the parameter 9 in the 
following FGN-driven stochastic differential equation. 

dX (t) = 9X(t)dt + VVH (t)dt (9) 

With FGN not being a technically true stochastic process, perhaps a more accurate notation in the 
strict mathematical sense for the same equation is shown in Equation (10): 

dX (t) = 9X(t)dt +dBH (t) (10) 
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Because FBM is not differentiable, one may ask what is the meaning of this stochastic 
differential equation. The answer is that Equation (10) is a symbolic form of the following 
integral equation: 

t 

X(t) = 0jX(s)ds+BH(t) (11) 

0 

Comparing the stochastic differential equation with the random noise in the form of FGN with 
the equivalent stochastic integral equation with its random noise in the form of FBM further 
reinforces the concept that FBM and FGN correspond to one another. 

The stochastic differential equation, Equation (10), with an unknown parameter 6 is 
potentially useful in modeling physical systems whose behavior resembles that of a family of 
differential equations indexed by the parameter 0 and whose random noise behaves like FGN. 
Hence, finding an estimate of the unknown parameter 0 is one method of selecting which of the 
differential equations in such a family of equations best approximates the system being modeled. 

Fitting Equation (10), or equivalently Equation (9), into the projectile example given in 
the introduction, 0 represents the frictional constant divided by the projectile mass, X represents 
the projectile velocity, and W~H represents the random disturbance. 

Methods have been established to derive an optimal estimator if the noise process is a 
square-integrable martingale. However, one can show the following theorem: 

THEOREM 2 (Reference 2, pp. 47-49): BH is not a local martingale for H e (0.5, 1). 

Therefore, BH cannot be a martingale for H e (0.5, 1) because local martingales are more general 
than martingales. A direct proof that BH is not a martingale for H e (0.5,1) was also presented in 
Reference 2. Hence, a method of estimating the parameter in Equation (10) needed to be 
developed. As already noted, when H = 0.5, BH is standard Brownian motion, which is a 
martingale. 

One of the methods developed in Reference 2 for estimating 0 was based upon a pseudo- 
least-squares estimator shown in Christopeit (Reference 6). In Christopeit's "quasi-least-squares" 
method, the random noise is still assumed to be a martingale. Otherwise, however, one can show 
that the model represented by Equation (10) can. fit into the model given in Reference 6. Note 
that the quasi-least-squares method was derived as a continuous generalization of the 
conventional (discrete) least-squares estimator. A conventional least-squares estimator was 
derived without regard to random noise distribution. Also, the only places where the martingale 
property was used in developing the quasi-least-squares method were in defining stochastic 
integrals and in determining asymptotic properties such as consistency. Hence, the least-squares 
estimator itself will be mathematically correct as long as the terms within the estimator, 
involving stochastic integrals, are well-defined. 
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The modified Christopeit's "quasi-least-squares" solution is shown in Equation (12): 

t 

JX(s)dX(s) 

0(t)=°- 
2,,, d2) 

t 

JX^(s)ds 
o 

See Reference 2, pp. 63-65, for a detailed explanation of this formula. 

The denominator on the right-hand side of Equation (12) is merely a Riemann or 
Lebesgue integral. However, the interpretation of the integral in the numerator is not as clear. 
The form of the model's stochastic differential equation shows that the dX (s), located under the 
integral sign in the numerator, is actually equivalent to 0X (s) ds + dBn (s); that is, 

dX(s) = 0X(s)ds +dBH(s) 

Hence, the integral in the numerator of the right-hand side implicitly contains two integrals: an 
integral of 0X (s) with respect to s, which can be interpreted as a Riemann or Lebesgue integral, 
and a stochastic integral with respect to BH, which is in the following form 

JX(s)dBH(s) 
0 ^14'* 

These facts were explained in Reference 2, pp. 64-65. Since BH is neither a square-integrable 
martingale or a local martingale, investigation was required to determine whether this integral 
can be shown to be well-defined. An argument developed in Reference 2, pp. 53-62, shows that 
this integral is indeed well defined. This finding was essential to assure the estimator's 
numerator is meaningful. 

The formula for the modified Christopeit's quasi-least-squares estimation method was 
coded in FORTRAN for running on a VAX computer system. 

Testing the Estimator 

To test the program, a method for simulating the X given parameter 0 must be found. 
The algorithm that was derived in this research was in the form of a Monte Carlo simulation of 
the solution to the model shown in Equation (10). The solution to this stochastic differential 
equation follows for X (0) = 0: 

t 

X(t) = Je(t-s)9dBH(s) (15) 

o 
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The derivation of Equation (15) is explained in Reference 2, pp. 37-40. Note that because the 
integrand of this integral is a deterministic function, there is no ambiguity concerning whether 
the integral is well-defined. 

Because X is an integral with respect to FBM, in order to simulate X in a Monte Carlo 
manner, a method of simulating the FBM for any H such that H e (0.5, 1) must also be found. A 
Monte Carlo simulation of BH was developed as a multivariate normally distributed random 
vector of dimension 1000 or 2000 where each component BH (i) (i = 1,.-, n; n = 1000 or 2000) 
represented a different time, i At, of BH- At was a constant to be read in as an input representing 
the desired increment in time between successive components of the random vector. 

Ideally, one desires to have the highest possible dimension in the random vector because 
the higher the dimension, the greater the amount of data, which improves the ability to test for 
the convergence of the estimator. However, because of capacity limitations of the VAX 
computer, either 1000 or 2000 data points are near the maximum amount of data for inputting 
into the computer for this particular project. A dimension of 2000 was used for analysis in single 
precision, but, because double precision requires more memory, a dimension of only 1000 was 
used for double precision analysis. The mean of the normally distributed random vector was set 
to be zero because FBM by definition has zero mean. The covariance matrix was designed so 
that each entry represented a covariance of the FBM between two of the times. 

Given the simulated FBM and noting that X's solution was an integral with respect to 
FBM, X was simulated as a numerical approximation of the integral with respect to the simulated 
FBM. A numerical approximation of a Monte Carlo simulation of X thus was obtained. 

Finally, noting that Christopeit used the martingale property for determining consistency 
and knowing that BH lacks this property, a third task was to find an alternate method for 
determining consistency. After extensive study, an analytic algorithm has not yet been found. 
Therefore, one possible method may be to empirically test the consistency using the simulated X. 
The empirical testing of consistency has not yet been performed. Performing an empirical test of 
consistency is currently difficult because the VAX's memory capability limits the dimension of 
the multivariate random vector FBM simulation to 1000 or 2000 (as previously explained). 

An alternate estimator is also derived in this report. 

FBM PARAMETER H ESTIMATION 

Another problem for investigation was to estimate the FBM parameter H, assuming that 
H e (0.5, 1). In the Equation (10) model, the FBM, BH (t), was assumed to be unknown for 
nonnegative t because only X (t) or increments of X (t) were assumed to be observable. 
However, in some applications, BH (t), may possibly lend itself to observation for negative t. 
Hence, two data sources may be used to estimate H. 

The most accurate way is to estimate H directly from the observed data for BH (t) for 
negative t. If this data is unavailable, the alternate method is to first estimate 0 and then solve for 
the BH (t) in the integral form of the stochastic differential equation model: 

BH(t) = X(t)-6jX(s)ds (16) 
o 

10 
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The estimated BH (t) obtained in this manner can then be used to estimate H, although the 
accuracy of the estimated H from data obtained by this alternate method is unknown and needs to 
be studied, probably by empirical methods. 

One method for estimating H (given the FBM data) is described in Reference 7. This 
method is based upon a least-squares fit to the incremental BH data given by 

k 

V( j,k)= I[ABH ((j+i)At)-m(ABH(( j+i)At))]2 (17) 
i=l 

where j is any positive integer. The A represents the increment of BH between (j+i)At and 
(j+i-l)At. H is estimated as being one-half (1/2) the slope of a straight line fitted using the least- 
squares method to data given in the form of log V (j, k) versus log (k) as shown in Equation (18). 

logV(j,k)=0.5Hlogk+C (18) 

C is a constant. 

KALMAN FILTER GENERALIZATION FOR X ESTIMATOR 

Another research problem also dealt with the same FGN-driven stochastic differential 
equation, Equation (9); that is, the same equation with FGN as the random noise. One assumed 
in this problem that parameter 9 was known but the state X (t) was unknown. Moreover, an 
observation model with the random component being the traditional Gaussian white noise was 
assumed to be available. The problem was to investigate the possibility of generalizing the 
Kaiman filter into an estimator that can estimate the state X in spite of the fact that X was driven 
by FGN instead of Gaussian white noise. 

ACHIEVEMENTS 

The previous section defined problems that must be considered for FGN Estimation 
Theory. Approaches for resolving those problems were also examined. This section details the 
procedures and achievements. 

OPTIMAL ESTIMATOR FOR PARAMETER 0 

As stated in the previous section, an estimator for 6 in the stochastic differential equation, 
Equation (10) was developed in the form of the modified Christopeit's generalized least-squares 
fit (Equation (12)). The coding for this estimator and every computer program in this research 
project was written in FORTRAN using the VAX computer system. This estimator was checked 
by using the simulation of X that was a function of the Monte Carlo simulation of BH. 
Reference 8 described the software package that was used to generate a normally distributed 

11 
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random vector. Theorem 2 showed that BH is not a local martingale for H e (0.5, 1). Also, 
stochastic integrals involved in the estimator can be shown to be well-defined (see previous 
section or Reference 2, pp. 53-62, pp. 64-65). This is necessary to ensure that the estimator itself 
is well-defined. 

Denoting the single parameter of FBM again by H and assuming H is in the interval 
[0.5,1), this algorithm worked well for H = 0.5 for three conditions: 

(1) The unknown parameter is positive and less than or equal to approximately 4.6. 
(2) The increment of time is set to 0.001 units. 
(3) The array is allowed to hold a sequence of 2000 different times (see Table 1). 

The numbers as shown for 0 in Table 1 were chosen merely as representations of possible 
parameters and are not of any particular significance. If the parameter was set to a value much 
larger than approximately 4.6, the program aborted because X's magnitude was too large. 

TABLE 1. ESTIMATION OF 9 

VALUE OF H 6 = 1.0 9 = 4.5 6 = -2.0 0 » 4.6 
0.5 e = 0.09 £ = 0.01 e = 0.08 program aborts 

0.75 e = 0.005 e = 0.1 £=1.9 program aborts 

It was noted that FBM becomes standard Brownian motion when H = 0.5. A true FBM 
that is not merely Brownian motion was simulated with H = 0.75. In this case, double precision 
was needed for the program to work. However, double precision necessitated greater computer 
memory than single precision. Therefore, the array had to be decreased back to 1000 elements. 
Also, the increment of time was changed to 0.01 units. For positive valued parameters not 
exceeding 4.6, reasonably accurate estimates resulted. However, the results were not as 
favorable for the negative valued parameter, probably because for the negative value parameters, 
1000 different time elements did not comprise a sufficiently large sampling of the model. 
However, in double precision, the VAX's space limitation did not allow an array much larger 
than 1000. The FORTRAN listing of the double precision versions of the simulator and 
estimator programs is shown in Appendix A. Table 1 also gives results for H = 0.75. Further 
investigation of the handling of this array problem is needed to determine alternative possibilities 
for testing the estimator. 

Another method for simulating the FBM for use in obtaining X is to first perform a 
Monte Carlo simulation of independent Gaussian random numbers, which can be used to 
represent dB (s) for time s. Then the FBM can be simulated using either the given formula 
defining BH (see Equation (1)) or another equation for FBM restricted to time within a closed 
and bounded set [0, T], such that T < °o; that equation is shown in the next section. Then the X 
can be simulated in the same manner already described. 

12 
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Refer to Equation (12) for the estimator. Suppose that the experimental data is "close" to 
being continuous and analog, enabling readings for extremely small increments of time. As 
shown, the estimator involves a ratio of two stochastic integrals, defined to be the quadratic mean 
(q. m.) limits of summations over partitions of [0, tj. This convergence is analyzed below. 

E [X2 (s)] is a finite and continuous function for all se[0,t] for finite t with the set [0, t] 
being Lebesgue measurable. Therefore, the integral in the denominator can be treated as a 
Lebesgue integral, according to Reference 5, p. 45, instead of as a quadratic mean integral. 
Furthermore, Equation (15) showed X as an integral of a continuous function with respect to a 
FBM, which is the sum of 2 integrals of continuous functions with respect to a Brownian motion. 
Brownian motion is equivalent to a process that is a. s. sample path continuous (Reference 9, 
pp. 66-67). This implies that X2 must be equivalent to an a. s. continuous process. Thus, the 
integral can further be assumed to be a Riemann integral. The denominator as a Riemann 
integral is analyzed as follows: 

Consider the partition of [0, t], {to = 0, ti,...,tn = t}. Let Ii(t;8,n) represent the numerical 
summation approximating the integral of the denominator. Then lli(t;q,n) - Ii(t;q,m)l->0 as 
n,m-4°o and max(At)-*0 according to Cauchy's sequence theorem. This numerical integration 
can be repeatedly performed to obtain both Ii(t;8,m) and Ii(t;8,n), refining the partition with 
each iteration, assuming that the continuous experimental data allows such refinement, until 
lll(t;6,n) - li(t;0,m)l no longer decreases. 

Since the numerator is not equivalent to any Lebesgue or Riemann integral, analyzing the 
partition of [0, t] is more involved than analyzing the denominator. Also, an estimated value for 
H and a finite range of possible values of 9 must be known. For this case, let l2(t,9,n) be the 
function approximating the integral in the denominator. Since l2(t,6,n) converges to the actual 
integral in q. m. instead of in the ordinary limit (as in the Lebesgue or Riemann integral), 
Il2(t;6,n)- l2(t;8,m)l-»0 cannot be claimed. The q. m. convergence implies that VE[ Il2(t;0,n)- 
l2(t;0,m)l2]->O. However, without knowing the precise value for 0 and given only a single 
sample path of data, E[ Il2(t;8,n)- l2(t;0,m)l2] cannot be determined. Thus, the values for 
E[ Il2(t;0,n)- l2(t;0,m)t2] must be determined for a known range of possible values of 0 or by 
substituting the already estimated value. One can refine the partition {to=0, ti,..., tn=t} until 
vE[ ll2(t;0,n)- l2(t;0,m)l2] no longer decreases for each 0 and from this set choose the one with 
the most refined partition. Note that given a trial 0, VE[ Il2(t;6,n)- l2(t;0,m)l2] can be obtained by 
two methods. One way is by mathematical derivation using Equation (15) for X(t) and the 
properties of expectations. The other is by Monte Carlo simulation of a set of sample paths of 
l2(t;0,n)- l2(t;0,m) and finding the sample second moment. 

The puipose of this description of convergence is only to describe its nature. In actuality, 
the practical way to check the partition for a given t is to merely select a partition and repetitively 
refine it until the estimated 0 stabilizes. 

An alternate estimator and its derivation are discussed below. It has the advantage of a. s. 
convergence, which will be justified. However, its disadvantage is that the value of the H 
parameter for the FBM is assumed to be already known, while the estimator just described does 
not make this assumption. 

13 
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FBM PARAMETER H ESTIMATING THE STATE X 

An algorithm from Reference 7 that is an estimator for the value of the H parameter, 
given FBM data, was described in the previous section. Future plans to implement this estimator 
in FORTRAN and to test it using the simulated FBM have been proposed. Also proposed are 
plans to test this estimator for its performance when the data are available only in the form of the 
simulated X, assuming that the value of the parameter 0 is known. 

KALMAN FILTER GENERALIZATION FOR ESTIMATING THE STATE X 

Finally, considerable research has been performed in an attempt to derive a generalization 
of the Kaiman filter. That filter can perform an optimal estimate of the state X for the model 
where the parameter 8 was then assumed to be known (see Equation (10)). Recall that this 
problem is a generalization of the Kaiman filter since the noise is FGN and not Gaussian white 
noise, which is the assumed noise of a state model to be estimated by the Kaiman filter. At the 
present time, however, such a generalized filter has not yet been worked out. Whether such a 
generalized filter can be mathematically derived currently remains unknown. 

ALTERNATE ESTIMATOR FOR PARAMETER 9 

Suppose that the value of H is unknown and the model is as follows: 

dX(t) = 0X(t)dt + dBH  (t) for-00 and 

dX(t)=dBH(t) otherwise 

(19) 

The H parameter can then be estimated by using the data for negative time. With this estimated 
H, another algorithm, derived in Reference 2, can be used to estimate the 0. This algorithm was 
shown to be strongly consistent. In other words, the alternate estimator converges a. s. to the 
actual 0. 

Now suppose that data are only available for t e [0,T] for finite T and that the value of H 
is assumed to be known. The following alternate algorithm that converges a. s. as finite T 
becomes infinitely large can be derived for the model: 

dX(t) = 9X(t)dt +dBH (t)te[0,T] 

The following theorem must be used to derive this new estimator: 

THEOREM 3 (Reference 3, pp. 951-952): Given the closed and bounded indexing set [0,t], 
there exists a standard Brownian motion process Bj for t e [0,T] such that for the FBM 
restricted to t e [0,T], symbolized by BRIT» the following transformation holds: 

BT(
'
)=

 rnlm ^H'05"/j(^-")"-5"H"05'H1BHIT(u)] (21) 
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With the X in the model, let 

Y(t)= I   ^   Js
H-05dsJ(s-u)05-Hu°-5-HdX(u) (22) 

This implies that: 

Y(t) = [9 J sH-05ds J(s - u)0-5"H a0-5"» X(u)du + 
T(  1.5-H)     o o 

(23) 
JsH-°5ds  J(s-u)°-5-Hu0.5-HdBH|T(u)] 

Theorem 3 implies that the second term for the expression of Y must be Brownian motion. 
Hence, 

Y(t)=   r       * [8jsH-0-5dsJ(S-u)0-5-Hu°-5-HX(u)du+BT(t)] (24) 
(1.5-H)        0 0 

or 

Y(t) = 8R(t) + BT(t) (25) 

where 

i t s 

R(t)-— —— JsH-°-5ds J(s-u)0-5-Hu°-5-HX(u)du 
r( 1.5-H); (26) 

o 

The formula for integration by parts is known to also hold true for integrals of a stochastic 
process with respect to time or integrals of a deterministic function with respect to a stochastic 
process (see Reference 9, p. 88). This fact is needed to find the derivative of R; R is needed for 
using the estimator that is now being derived. Another fact used to find dR/dt is Theorem 4: 

THEOREM 4: Let f and g be two deterministic and differentiable functions in [0,T]. Let X (not 
necessarily the same X of the model in this report) be any stochastic process with a covariance 
function that is of bounded variation in the set [0,T] x [0,T]. Then 

t t t 

J f (s)d[g(s)X(s)] =J f(s)X(s)g(s)ds + J f (s)g(s)dx (s) (27) 
0 0 0 

15 
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Proof: By the stochastic version of the integration by parts formula, 

! l 

Jf(s)d[g(s)X(s)] = [f(s)g(s)X(s)^-Jg(s)X(s)f(s)ds (28) 
0 0 

Moreover, by using the stochastic version of integration by parts again, 

Jf(s)g(s)dX(s)= [f(s)g(s)X(s)]J -Jg(s)X(s)f(s)ds -jf(s)X(s)g(s)ds 
o 0 0 

(29) 

Therefore, 

Jf(s)X(s)g(s)ds+J  f(s)g(s)dX(s) = [f(s)g(s)X(s)]J)- Jg(s)X(s)f(s)ds 
0 0 o 

(30) 

Note that both the left and right sides of the equation in the theorem statement are equal to the 
same expression, meaning that the equation must be true. Therefore, the proof of Theorem 4 is 
now complete. 

Also, if a process, say Q, is either sample path or q.m. differentiable, 

Jf(s)dQ(s)=Jf(s)(^i£>)ds on 
ds 

where the derivative is either q.m, or sample path, and f is an ordinary deterministic function. 
This fact can be proven by using the two variations of the stochastic integral by parts formula to 
show that either of the above two integrals are equal to the same thing. 

With these concepts, Equation (26) for R(t) can now be manipulated to give a form that 
lends itself to deriving its derivative. Using Leibniz formula for derivatives on the differential 
term, 

dsJ(s-r)0-5  HX(r)dr = 
o (32) 

S-E 

lim [ J (0.5 - H )(s - r y0*-* r05"« X(r )dr + e °-5~H (s- e) °-*-H X (s-e)]ds 

Note that the above integral is a function of s that is of bounded variation and thus has a 
derivative almost everywhere (a. e.) in s. Hence, the traditional sample path and the quadratic 
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mean derivative are a. e. the same in s. In analyzing the above differential term, one can think of 
it as a sample path differential that obeys the conventional laws of differential calculus a. e. 
With the conventional laws of calculus and uniform convergence in mind while considering ds, 
the limit of d/ds and d/ds of the limit can be shown to be equal for the case being considered 
here. Explanations can be found in books on advanced calculus or real analysis such as 
Reference 10. Making the substitutions for integration by parts on the term with the integral in 
the above expression, 

u = X(r)r05"H => du =( 0.5 - H )X(r )r ~a5_Hdr +ra5_HdX(r) (33) 

dv = (s-r)-°-5-Hdr=>v=    05~1H   (s-r) 0-5"H (34) 

Equation (33) for du is merely a set of symbols from formal manipulations. It becomes 
meaningful when combined with the expression for v and integrated (using Theorem 4) as part of 
the integration by parts formula. Using these terms for u, v, du, and dv for integrating the term in 
the right-hand side of Equation (32) with the integral, 

S—E 

lim[ J(0.5-H)(s-r)-°-5-Hr05-HX(r)dr + e0-5-H(s-e)0-5-HX(s-e)]ds = 
E-*°   o 

lim[_e0.5-H(s_e)0.5-HX(s_e)+(05_H)
SJ"£(s_r)0.5-HX(r)r-0.5-Hdr + 

e->o 0 

J(s_r)-0.5-Hr0.5-Hdx(r)+e0.5-H(s_£)0.5-HX(s_e)]ds = 

0 

[(  0.5 - H )J (s- r )05~H X(r )r -°5-Hdr + J (s - r T05"" r 0-5~HdX(r )]ds 
o o 

(35) 

.'. R (t) = -    Is""05 [( 0.5 -H )J (s - r )05-H X(r )r -°-5-Hdr + 
ro.5-H)   0 0        

} 

s <36> 
J(s_r)-0.5-Hr0.5-Hdx(r)]ds 

0 
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Hence, taking the derivative of R(t) with respect to t gives the following: 

^12 = 1 tH-°-5[(0.5 -H)J(t-r)°-5-HX(r)r-^-Hdr + 
dt T( 1.5-H  ) o 

t (37) 
J(t_r)-0.5-Hr0.5-Hdx(r)] 

0 

Following the same arguments in Reference 2, pp. 71-76, for the derivation for the 
estimator in Equation (19), the estimator for the present model with t e [0,T] can be shown to be 
as follows: 

6(T) = 

T 

J(dR(s)/ds)dY(s) 
o 

J[dR(s)/ds]2ds 
o 

Values for Y can be derived from Equation (22). Furthermore, the derivative of R as shown in 
Equation (37) is in terms of X. Hence, everything in the estimator of 0 can be obtained from X, 
which is the original given data. This means that estimator can be implemented to give a 
numerical estimation of 6. 

Now consider an infinite class of closed and bounded sets {[0,Tn]: Tn finite, n = 0,1,2,..., 
and Tn+l>Tn}. Note that Theorem 3 implies that a Brownian motion exists for each [0,Tn] such 
that the desirable properties are fulfilled. However, examine the formula in Theorem 3, which 
tells about the existence of Brownian motion given FBM in a finite interval. This formula is 
valid for both [0,Tn] and [0,Tn+k] for any positive integer k, and it shows that the sample path 
up to Tn+k of the interval when restricted to Tn is the same as the sample path of Brownian 
motion derived for the closed and bounded set [0,Tn]. Therefore, the estimator derived in 
Equation (38) is equivalent to an estimator for all finite T e [0, °°). Thus, considering whether 
asymptotic properties such as consistency exist is still meaningful in spite of the fact that the 
algorithm was derived for a finite index set. This algorithm can be shown to be strongly 
consistent; that is, it converges a. s. to the actual 9 by the same argument given in Reference 2, 
pp. 77-86, for showing the strong consistency of the parametric estimator for the model given by 
Equation (19). 
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SUMMARY 

The purpose of this research project was to find methods for modeling physical 
phenomena that contain an unknown constant parameter and random noises, characterized by 
long-term slowly decreasing time dependencies. The model being considered is in the form of a 
stochastic differential equation written as Equations (9) or (10) in this report. The unknown 
parameter is 0. With this purpose in mind, an estimator that estimates the unknown parameter 
was tested. The noise process being used in this project is fractional Brownian motion (FBM or 
BH) or fractional Gaussian noise (FGN or WH). The question concerning whether this estimator 
is convergent (converges to the actual value of the parameter) remains inconclusive from the 
tests. FBM and FGN are themselves characterized by a single parameter known as H. An 
algorithm that can be used to estimate this single parameter of FBM was also described in this 
report. 

A Monte Carlo simulation of the FBM as a multivariate normally distributed random 
vector (where each component of the vector represents FBM at a different time) has been 
developed. This was in turn used to create a simulation of the variable called X, in the stochastic 
differential equation model, Equation (10). The simulation of X was necessary to test the results 
of the estimator for the parameter 0. Furthermore, the simulator of X itself has potentials for 
applications for studying a physical process that cannot be replicated in a laboratory, although its 
behavior needs to be studied. 

In addition to the above, an alternate estimator was also derived to estimate the parameter 
0. This estimator must assume prior knowledge of the value of the FBM parameter H but can be 
shown to converge to the true value of the parameter. 
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PROGRAM ESTIMATION 
C THIS PROGRAM IS IN DOUBLE PRECISION AND IS CALLED ESTIMATION2DP. A SINGLE 
C PRECISION VERSION IS IDENTICAL WITH THIS PROGRAM EXCEPT FOR THE FACT THAT 
C "IMPLICIT REAL*8 (A-H,0-Z)" IS NOT USED AND SINGLE PRECISION VERSIONS OF 
C THE NSWC LIBRARY OF MATH ROUNTINES ARE USED INSTEAD OF THE DOUBLE PRECISION 
C VERSIONS (REF. 8). 
C USE LINK ESTIMATION2DP,DNRVG,FILEl FOR LINKING ON THE VAX COMPUTER. 

IMPLICIT REAL*8 (A-H,0-Z) 
COMMON X(1000),BH(1000,1),U(1000) 
DIMENSION A(1000,1000),B(500500) 

C FOR X(1000), USE B(500500), FOR X(2000), USE B(2001000) 
PI=3.1415926535897932 

C SEE NRVG PROGRAM IN NSWC LIBRARY OF MATH ROUTINES (REF. 8) AND ALIGN THE NEXT 
C FOUR VARIABLES TO CHECK THEIR MEANINGS. NOTE THAT THIS PROGRAM USES DRVG, 
C THE DOUBLE PRECISION VERSION OF NRVG. 

M0=0 
NVEC=1 
KX=2000 
ISEED=2795601 

H IS THE FRACTIONAL BROWNIAN MOTION (FBM) PARAMETER, THETA0 IS THE INPUT 
PARAMETER OF THE MODEL DX(T)=(THETA0)X(T)DT+DBH(T) WHERE BH IS FBM 
PARAMETERIZED BY H.  THIS PROGRAM SIMULATES X(T) AFTER SIMULATING BH 
VIA THE NRVG ROUTINE. 

WRITE(6,*)'ENTER H,N=# OF INCREMENTS,DEL=INCREMENT,THETAO-=THETA' 
WRITE(7,*)'ENTER H,N=# OF INaaEMENTS,DEL=INa*E^IE^r^,THETAO=THETA' 
READ(5,*)H,N,DEL,THETA0 
WRITE(6,*)'H,N,DEL,THETA0',H,N,DEL,THETA0 
WRITE(7,*)'H,N,DEL,THETA0',H,N,DEL,THETA0 
M=N 

C U IS THE MEAN VECTOR. 
DO 1=1,M 

U(I)=0. 
ENDDO 
Z=2.-2.*H 

C GAM=GAMMA FUNCTION (SEE REF. 8 FOR EXPLANATION OF THE DGAMMA FUNCTION GIVEN 
C ON THE NEXT LINE). 

GAM«=DGAMMA(Z) 
PIH=PI*H 
IF(H.EQ..5)THEN 
VH=1.0 

ELSE 
C VH IS THE SCALE FACTOR IN THE COVARIANCE MATRIX OF BH. 

VH=-(GAM*COS(PIH))/(PIH*(2.*H-1.)) 
ENDIF 
WRITE(6,*)'VH',VH 
WRITE(7,*)'VH',VH 

C CALCULATE THE COVARIANCE MATRIX OF BH. 
DO 1=1,N 

DO J=I,N 
TIMEl=FLOAT(I)*DEL 
TIME2=FLOAT(J)*DEL 
S2H=ABS(TIMED 
S2H=S2H**(2.*H) 
T2H=ABS(TIME2) 
T2H=T2H**(2.*H) 
TS=ABS(TIME2-TIME1) 
TS=TS**(2.*H) 
A( I, J) = (S2H+T2H-TS) *VH/2. 
A(J,I)=A(I,J) 

ENDDO 
ENDDO 

C     WRITE(6,*) 'A' 
C     WRITE(7,*) 'A' 
C     DO 1=1,N 
C       WRITE(6,*) (A(I,J), J=1,N) 
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C       WRITE(7,*) (A(I,J), J=1,N) 
C     ENDDO 
C DMCVFS PACKS THE COVARIANCE MATRIX (REF 8).  THIS IS REQUIRED BY DNRVG. 

CALL DMCVFS(A,M,M,B) 
C     WRITE(6,*) 'B',B 
C     WRITE(7,*) 'B',B 
C DNRVG SIMULATES FBM KNOWN AS BH IN THIS PROGRAM (REF 8). 

CALL DNRVG(MO,ISEED,NVEC,M,B,U,BH,KX,IERR) 
WRITE(6,*) 'M0,ISEED,NVEC',M0,ISEED,NVEC 
WRITE(6,*) 'M,KX',M,KX 

C     WRITE(6,*)'U',U 
C     WRITE(6,*) 'B',B 
C     WRITE(6,*) 'BH VALUES', BH 

WRITE(6,*) 'IERR - ',IERR 
WRITE(6,*) 'U(1),U(100)',U(1),U(100) 
WRITE(7,*) 'MO,ISEED,NVEC',MO,ISEED,NVEC 
WRITE(7,*) 'M,KX',M,KX 

C     WRITE(7,*)'U',U 
C     WRITE(7,*) 'B',B 
C     WRITE(7,*) 'BH VALUES', BH 

WRITE(7,*) 'IERR = ',IERR 
AV=0. 
DO 1=1,N 
AV=AV+BH{I,1) 

ENDDO 
C SAMPLE MEAN OF BH 

AV=AV/N 
WRITE(6,*)'SAMPLE MEAN OF BH',AV 
WRITE(7,*)'SAMPLE MEAN OF BH',AV 

C STATE SIMULATES X(T) OF THE PARAMETRIC STOCHASTIC DIFFERENTIAL EQUATION. 
C ESTIM IS THE PARAMETRIC ESTIMATOR OF THE STOCHASTIC DIFF. EQTN. 

CALL STATE(N,THETA0,DEL) 
CALL ESTIM(N,THETA,DEL) 

C     WRITE(6,*) 'STATE MODEL VALUES', X 
WRITE (6,*) 'ACTUAL THETA', THETAO 
WRITE(6,*) 'ESTIMATED THETA', THETA 
WRITE(7,*) 'STATE MODEL VALUES', X 
WRITE (7,*) 'ACTUAL THETA', THETAO 
WRITE(7,*) 'ESTIMATED THETA', THETA 
STOP 
END 
SUBROUTINE STATE(N,THETAO,DEL) 
IMPLICIT REAL*8 (A-H,0-Z) 
REAL LNSUM,LNEXP,LNX 
COMMON X(2000),BH(2000,1),U(2000) 
SUM=0. 
AV1=0. 
ADD=0. 
ADDSQ=0. 

C GO TO 10 IF THE ACTUAL PARAMETER IS NEGATIVE. 
IF<THETA0.LT.0)GO TO 10 
DO 1=1,N 

REALI=FLOAT(I-l) 
REALJ=FLOAT(I) 
IF(I.EQ.l) THEN 
DBH=BH(1,1) 

C       WRITE(7,*)'DBH',DBH 
POWER=0 

ELSE 
DBH=BH(I,1)-BH(I-1,1) 

C        WRITE(7,*)'DBH',DBH 
POWER=-THETA0*REALI*DEL 

ENDIF 
C AVI AND ADD USED TO CALCULATE SAMPLE MEAN/VAR OF DBH FOR DEBUGGING THIS PROG 

ADD=ADD+DBH 
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SUM. 
OF LOG CANNOT BE NEC 

-SUM WAS TAKEN. 

C ADDSQ AND ADD USED TO CALC SAMPLE VAR. FOR DEBUGGING. 
DBHSQ=DBH**2 
ADDSQ=ADDSQ+DBHSQ 
FUNC=EXP(POWER) 
TERM=FUNC*DBH 
SUM=SUM+TERM 

C       WRITE(7,*)'SUM FOR LOG',SUM 
C TAKE LOG IN ORDER TO HELP IN CASE OF LARGE 
C THE FOLLOWING TAKES CARE OF FACT THAT ARG. 

IF(SUM.LT.O) THEN 
LNSUM=LOG(-SUM) 
ELSE 
LNSUM=LOG(SUM) 

ENDIF 
LNEXP=THETAO*REALJ*DEL 
LNX=LNEXP+LNSUM 
X(I)=EXP(LNX) 

C NEXT LINE TAKES CARE OF CASE WHERE LOG OF 
IF(SUM.LT.O) X(I)=-X(I) 

C ABOVE GIVES X(T) AT T=I*DEL FOR THE CASE WHERE THETAO IS NONNEGATIVE. 
ENDDO 

C     WRITE(7,*) 'X VALUE',X 
AVl=ADD/N 
WRITE(6,*)'SAMPLE MEAN OF DBH',AV1 
WRITE(7,*)'SAMPLE MEAN OF DBH',AVI 
SQADD=ADD**2 
VARHAT=(N*ADDSQ-SQADD)/(N*(N-l)) 
WRITE(6,*)'SAMPLE VAR OF DBH',VARHAT 
WRITE(7,*)'SAMPLE VAR OF DBH', VARHAT 
RETURN 

10  DO 1=1,N 
SUM=0. 
DO J=1,I 
REALI=FLQAT(I) 
REALJ=FLOAT(J-l) 
IF(J.EQ.l) THEN 
DBH=BH(1,1) 

C        WRITE(7,*)'DBH',DBH 
POWER=THETA0 *REALI*DEL 

ELSE 
DBH=BH(J,1)-BH(J-1,1) 

C       WRITE(7,*)'DBH',DBH 
PCWER=THETA0 *(REALI*DEL-REALJ*DEL) 

ENDIF 
C AVI AND ADD USED TO CALCULATE SAMPLE MEAN/VAR OF DBH FOR DEBUGGING THIS PROG. 

ADD=ADD+DBH 
C ADDSQ AND ADD USED TO CALC SAMPLE VAR. FOR DEBUGGING. 

DBHSQ=DBH**2 
ADDSQ=ADDSQ+DBHSQ 
FUNC=EXP(POWER) 
TERM=FUNC*DBH 
SUM=SUM+TERM 
ENDDO 

X(I)=SUM 
C THIS GIVES X AT T=I*DEL FOR THE CASE WHERE THETAO IS NEGATIVE. 

ENDDO 
NN=N*(N+l)/2 
AV1=ADD/NN 
WRITE(6,*)'SAMPLE MEAN OF DBH',AVl 
WRITE(7,*)'SAMPLE MEAN OF DBH',AVI 
SQADD=ADD**2 

C    VARHAT=(NN*ADDSQ-SQADD)/(NN*(NN-1)) 
C    WRITE(6,*)'SAMPLE VAR OF DBH',VARHAT 
C    WRITE(7,*)'SAMPLE VAR OF DBH', VARHAT 

RETURN 
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END 
SUBROUTINE ESTIM(N,THETA,DEL) 

C THIS IS A GENERALIZED VERSION OF THE LEAST SQUARES ESTIMATOR FOR THE PARAMETER 
C THETA IN A STOCHASTIC DIFFERENTIAL EQUATION DX(T)=(THETA)X(T)DT+DBH(T). SEE 
C THE TEXT OF THIS REPORT FOR AN EXPLANATION. 

IMPLICIT REAL*8 (A-H,0-Z) 
COMMON X(2000),BH(2000,1),U(2000) 
SUM1=0. 
SUM2=0. 
DO 1=1,N 

IF(I.EQ.1)THEN 
XTERM1=0. 
DX=X(I) 

ELSE 
DX=X(I)-X(I-1) 
XTERM1=X(1-1)*DX 

ENDIF 
SUMl=SUMl+XTERMl 

C SUMl IS THE INTEGRAL OF THE PROCESS X WITH RESPECT TO THE PROCESS 
C X ITSELF.  INTEGRATION IS FROM 0 TO TIME N*DEL. 

ENDDO 
DO J=1,N 

IF(J.EQ.1)THEN 
XTERM2=0. 

ELSE 
XSQ=X(J-1)**2. 
XTERM2=XSQ*DEL 

ENDIF 
C SUM2 IS THE INTEGRAL OF THE SQUARE OF THE PROCESS X WITH RESPECT TO TIME. 
C INTEGRATION IS FROM 0 TO TIME N*DEL. 

SUM2=SUM2+XTERM2 
ENDDO 
WRITE(6,*)'SUMl',SUMl 
WRITE(6,*)'SUM2',SUM2 
WRITE(7,*)'SUMl',SUMl 
WRITE(7,*)'SUM2',SUM2 
THETA=SUM1/SUM2 

C NOTE THAT IN BOTH INTEGRALS RESPRESENTED BY SUMl AND SUM2 RESPECTIVELY 
C ARE APPROXIMATED WHERE IN EACH TERM OF THE SUM, THE INTEGRAND IS APPROX. 
C AS THE 1-1 TERM. THIS IS TO MIMIC THE ITO INTEGRAL.  SINCE THESE ARE 
C NOT TRUE ITO INTEGRALS, IT IS NOT NECESSARY TO CHOOSE THE TERM AT 1-1. 

RETURN 
END 
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