
NASA Contractor Report 3977 

Stress Waves in Transversely 
Isotropie Media 

The Homogeneous Problem 

ii   """"           •waft, Pr-T^ IS   /«*"* I 
F-                  M   '3   8    St i 

'                K      («/"     *•**    *    *"* >/']     '.'Ml 

."?V .;' ic' >",;? f! 

§^S!af®ffl^fi®®?K^ jS^ä^^ÄWiÄSES*®^ !^l 

EÜ2abeth R. C. Marques and James H. Williams, Jr. 

GRANT NAG3-328 
MAY 1986 

'%: 

IWNSA 
I ; \    '% 



SlülN    C ■'1.1 !--!!' *i']l>Ü   L>J.4 .üAOjillO   '- n J :     111 r >-> 1 

*HSG DI4 DROLS PROCESSING - LAST INPUT IGNORED 

müTIC DOES NOT HAVE THIS ITEM*** 
■- 1 - AD NUMBER' D32280? 
~ 5 - CORPORATE AUTHOR: MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF 

"MECHANICAL ENGINEERING 
-- 6 - UNCLASSIFIED TITLE:   STRESS WAVES IN TRANSVERSELY ISOTROPIE 

MEDIA - THE HOMOGENEOUS PROBLEM 
-10 - PERSONAL AUTHORS: MARQUES,ELIZABETH R, C, ;WILLIAMS.JAMES H, , JR.; 
-11 - REPORT DATE:    HAY  , 1986 
-12 - PAGINATION:   45P 
-13 - MONITOR ACRONYM: NASA 

-20 - REPORT CLASSIFICATION: UNCLASSIFIED 
-22 - LIMITATIONS (ALPHA):  jWfeft&iWffM fAR..^' eiHW^-^frlfr-jr^way 

■^l,..?,*,,;,,.!:,, ,f,ii;...j j ".;>.', j.i«> 

-33 - LIMITATION CODES: | M. 

- END        Y FOR NEXT ACCESSION END 

Alt-Z FOR HELPS ANSI   3 HDX 3       3 LOS CLOSED 3 PRINT OFF 3 PARITY 



NASA Contractor Report 3977 

Stress Waves in Transversely 
Isotropie Media 

The Homogeneous Problem 

Elizabeth R. C. Marques and James H. Williams, Jr. 

Massachusetts Institute of Technology 

Cambridge, Massachusetts 

Prepared for 
Lewis Research Center 
under Grant NAG3-328 

f\J/\SA 
National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

1986 
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THE HOMOGENEOUS PROBLEM 

Elizabeth R.C. Marques and James H. Williams, Jr. 
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Department of Mechanical Engineering 
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SUMMARY 

The homogeneous problem of stress wave propagation in 

unbounded transversely isotropic media is analyzed. By adopting 

plane wave solutions, the conditions for the existence of the 

solution are established in terms of phase velocities and 

directions of particle displacements. Dispersion relations and 

group velocities are derived from the phase velocity expressions. 

The deviation angles - angles between the normals to the adopted 

plane waves and the actual directions of their propagation - are 

numerically determined for a specific fiberglass/epoxy composite. 

A graphical method for the construction of the wave surfaces is 

introduced, using magnitudes of phase velocities and deviation 

angles. The simpler results for the case of isotropic media are 

shown to be contained in the solutions for the transversely 

isotropic media. 
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INTRODUCTION 

Most studies on of stress waves in solid elastic materials 

refer to isotropic media. The usual model adopted to describe the 

geometry of such waves is based on the theory of sound waves in 

homogeneous materials as first presented by Lord Rayleigh [1]. 

The same concepts of wave front,dispersion relations and 

directivity functions which are used to describe sound waves are 

also used in the description of stress waves in isotropic solids, 

as can be seen, for instance, in the work of Miller and Pursey 

[2] and Achenbach [3]. Because an isotropic medium has the 

simplest dynamic behavior among all possible cases of symmetry, 

it can be used as a "reference" when anisotropic cases are 

studied. Concepts (such as phase and group velocities , velocity 

surfaces and wave surfaces ) used to describe the propagation of 

waves in isotropic media have also been applied to anisotropic 

media [4-8] • 

This work is focused on the problem of propagation in 

anisotropic media. The behavior of stress waves in one type of 

anisotropic medium, the transversely isotropic material, is 

described for an infinite medium, establishing the parallel 

between such materials and the isotropic case. Also a graphical 

technique for the construction of the wave surface is introduced, 

giving a better understanding of special geometric features that 

frequently occur during the propagation in filamentary materials. 



BASIC CONCEPTS 

Definition of Phase Velocity 

The definition of phase velocity is formulated by following 

the path of a small segment of a wave front propagating through a 

medium . The segment is assumed to be sufficiently small that it 

can be approximated by a plane wave segment. The concept is valid 

for any elastic medium »isotropic or anisotropic. 

The phase velocity is defined for periodic or nonperiodic 

waves as [9] 

v   =  d / t (1) 
n 

where  d  is the distance travelled by the plane segment  in  the 

direction of the normal n to the wave front in time t (see Figs. 

1.a  and 1.b ) .  The subscript n for the velocity indicates that 

the  phase  velocity represents the speed of propagation  of  the 

front segment  in the direction of the normal _n. 

For periodic waves, the phase velocity can be represented 

in terms of either wavelength and period or frequency and wave 

number as [8] 

v=X/T=co/k (2) 
n 

where  X  is the wavelength ,  T is the period of the wave, QJ  is 

the radian frequency and k is the wave number magnitude. 

It is' assumed that, in general, the plane wave segment 

travels along a direction that is different from the the wave 

front normal n.   If  this direction is called r (as  for  ray of 
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propagation ) , the angle between _r and n is defined as the 

deviation angle [10]. It is known that the deviation angle for 

isotropic materials is zero [9] • 

Also, it can be shown that stress waves in infinite elastic 

media are nondispersive [4»6] . As a consequence , the phase 

velocities and deviation angles are independent of frequency for 

any symmetry configuration of properties of the medium , 

including the isotropic and transversely isotropic media 

considered here . 



Definition of Group Velocity 

The group velocity is defined as the velocity of propagation 

of energy in a medium [4]« 

For  a periodic wave propagating in a medium,the  components 

v .   of the group velocity in a cartesian coordinate system x, 

y and z are [9] 

v .  = d to /dk 
gi 

(3) 

where the k. 's (i=x,y,z) are the components of the wave 

number vector along the coordinate axes and OJ represents the 

radian frequency of oscillation of the wave . The frequency is 

usually represented as a function of the wave number components 

and the elastic properties of the medium ; this representation 

is known as the dispersion relation [11]. If the dispersion 

relation is known, the derivatives in eqn.(3) can be easily 

calculated. These relations will be derived later from the 

expressions of phase velocity for the media of interest, 

including  isotropic and  transversely isotropic materials. 

In unbounded elastic isotropic media the elastic properties 

are the same in all directions. For this reason it can be shown 

that the magnitudes of the phase and group velocities are equal 

and the directions n and r are coincident [7] (see Fig.l.a). 

These results are to be expected since the system is 

nondispersive. 

For a transversely isotropic medium, the magnitudes of phase 

velocity and group velocity are distinct, and it can be shown 

that  the deviation angle ZX »between n and r,has the value  [10] 



cos /\   = v  /v (4) 
n   g 

where   v  = (v   + v  +v 2)''      .  The deviation angle  A  is 

indicated in Fig. 1b . 

The physical meaning of a nonzero deviation angle is that 

energy propagates obliquely with respect to the wave front 

normal. The fact that nondispersive systems can have distinct 

values of phase and group velocities was first emphasized by 

Lighthill [12]. 



PLANE WAVE SOLUTION OF THE HOMOGENEOUS PROBLEM 

The solution of the equations of motion is derived for the 

specific problem of the propagation of stress waves in 

transversely Isotropie media. All the assumptions and results 

also apply to Isotropie media ,as they are a subclass of 

transversely isotropic media . In the following sections all 

results are first derived for a transversely isotropic medium and 

then simplified to an isotropic medium. 

Equations of Motion for Transversely Isotropic Medium 

The following assumptions are made for the derivation of the 

equations of motion: 

(1) The medium is homogeneous and has constant density. 

(2) The medium obeys Hooke's law. 

The equations of motion can be obtained for any elastic 

medium by the force-dynamic requirements of a volumetric element. 

Using a cartesian coordinate system, oxyz, as the reference 

system, these equations can be written as [9] 

T     + T     +T     =PU ,, xx,x   xy,y  xz,z    ,tt 

+ T „„  + T„„   = P V . . (5) T     + T     +T     = P V , . xy,x  yy,y  yz,z    ,tt 

Txz,x+ Tyz,y + Tzz,z= pw,tt 

where    T        (r,s=x,y,z)  are the normal  (r=s)  and  shear 

(r#s) stresses with respect to system oxyz; 

u,v  and  w are the displacement components of a point  in 



the   medium  along  the  directions  x,y  and 

z, respectively; and 

P     is  the  density. 

The indexes  following commas denote derivatives. 

Now, assume a general orthotropic medium in which the 

principal axes coincide with the reference system oxyz. The 

generalized Hooke's law for this medium is [13] 

Txx= C11u,x+ C12\y+ C13\z 

Tyy= C12U,x+ C22v,y+ C23W,z 

T  = C„,u  + COTv ,+ C,,w „ zz 13 »x  23 »y  33 ,z                           (g) 

T  = C. .(u  +w  ) xz 44^ ,z  ,x' 

T   = Ccc(v   + W ,,) 
yz 55  »z  »y 

T  = C---.(u  +v  ) xy  66v ,y  ,x' 

where the C.. are the nine independent elastic constants  of  the 

stifness matrix. 

Here the interest is focused on transversely isotropic 

media, which comprise a subclass of the orthotropic media 

described by eqn.(6), where the number of independent constants 

C.  is reduced to five by the following constraints: 

C11=C22«   C13=C23'   C44=C55  and C66=(C11-C12>/2 
(7) 

In  accordance  with  eqn.(7), the xy plane is taken  to  be  the 

isotropic plane for elastic properties. 



The equations of motion, eqn.(5)> can be written in terms of 

the displacements u, v and w »using eqns.(6) and (7) for the 

transversely isotropic medium ,as 

C.„u   +CHOv   +C.^w   + Ccc{\x       +v   ) + C..(u   +w   )=pu ,. 
11 ,xx  12 ,yx  13 ,zx 66' ,yy  ,xy'  44  ,zz  ,xz'    ,tt 

Cr,(u   +v   )+C..u   +C..V   + C„,w   +C,.(v   + w   )=Pv .,  (8) 66v ,yx  ,xx'  12 ,xy  11 ,yy  13 ,zy  44' ,zz  ,yzy    ,tt  v ' 

C^Cu   + w   )+C,,(v   +w   )+C._(u   +v  )+C,,w   =  p w . . 
44' ,zx  ,xx'  44  »zy  ,yy   13  ,xz  yz'  33 ,zz      ,tt 

Conditions for Existence of Plane Wave Solution 

Now, assume a plane wave solution of the form [10] 

(u,v,w)= (P ,P ,P ) exp[2J_i(xn +yn +zn -v t)] (9) \. » » /  v x  y  z     —j~       x   y   z  n 

where  P , P , P   are the  amplitude  components  of a  particle x   y   z 

displacement  vector  along  the  coordinate axes  x,  y  and  z, 

respectively,  corresponding to a plane wave with unit normal  n; 

n ,  n   and  n   are the direction cosines  of  the  unit 
x   y       z 

normal  n  along the coordinate axes x, y and z, respectively; v 

is the phase velocity defined for the direction n  ,  and  A   is 

the associated wavelength with the selected n and  v . n 

If the assumed solution ,  eqn.(9).  is substituted into the 
> 

equations  of  motion,  eqn.(8),  the following  expressions  are 

obtained [10]: 

rc„.,n  2 + Cc.n  2 + CJ/(n  2- Pv   2]P   + (CH _ + Cc<:)n  n  P   +(C„,*C,, )n  n  P   =0 L   11   x       66  y       44   z n   J   x   x   12     66y   x  y  y       13     44'xzz 



(C12 + C66)nxnyPx+[C66nx2 + C11ny2 + C44nz2- P Vn2]Py+(C13 + C44)nynz=0 

(C13+C44)nxnzPx+(C13C44)nynZV
[C44(nx2+ny2)+C33nz2- ^V0 

(10) 

The condition for the existence of the plane wave solution 

can be expressed by setting the determinant of the matrix of the 

coefficients of P , P  and P  in eqn..(l0) equal to zero  [10,14]: 

fC11nx2+C66ny2+C44nz2-pVn2J   <C12+C66 Kny       <C13+C44)n*ns 

(C., + C,,)n n    [C^n 2+C..n 2 + Cy,,,n 
2- pv 2]  (C„ + C,Jn n 

12  66  x y    66 x   11 y   44 z    n J 13  44  y z 

(C.,+C^.)n n 
13  44  x z 13 44 y z 

[C..(n %n  )+C„n ^-pv d] 44  x   y   33 z    n J 

=0 

(11) 

Eqn.(11)  is   known as Christoffel's equation  [5] and  is 

written  here specifically for transversely isotropic  materials, 

considering  the  symmetry conditions and relations  between  the 

elastic constants of the stiffness matrix  given in  eqn.(7). The 

expression for the determinant is a cubic equation in v , and its 
n 

solution gives three possible values of v   for each selected set 
n 

of  n ,   n  and n .   ( Recall that each  unit  normal vector n x     y      z — 

in the medium is uniquely associated with a set of components n , 

n  and  n .)    Moreover,  the  elastic properties are symmetric 
y      z 

with respect to the z axis,so the direction cosines for the 

normal n can be expressed in terms of the angle between n and 

the z axis, as [14] 



nx
2 + ny

2  = sin29 (12) 

n   = cos 8 z 

The advantage of expressing the direction cosines in terms 

of the angle 9 is that the expressions for the velocities can be 

written in terms of a single variable. 

Expressions for Phase Velocities 

By  combining eqns.(H) and (12),  the expressions  for  the 

phase  velocities  associated  with  the  possible  plane  wave 

solutions can be written as follows: 

-For a transversely isotropic medium 

(vn)I  =[C66sin
29+C44cos

29)/P ]1/2 

(vn)II =[(C  +C1lSin
2e+C  cos29-|/^T)/2P ]1/2 (13) 

(vn)III = [(C44+C11Sin2e + C33COs29+^" )/2P ] 
1/2 

44  11      33 

where 

e =[(C11-C44sin
2e+(C44-C33)cos

29]2+4(C13+C44)
2(sin6cos8)2 

-For an isotropic medium 

<VIII- [cn/pJ1/2 

10 



Where for the Isotropie medium the following constraint relations 

between the elastic constants of the stiffness matrix have been 

applied: 

C11=C22=C33'    C12 = C13 = C23'     C44 = C55 = C66=^ C11~C12)//2     (15) 

The Isotropie medium results may be used as a means of 

checking the more general results for the transversely isotropic 

medium. The results in eqn.(l4) are derived from the 

corresponding velocity expressions for the transversely isotropic 

medium. Observe that the values obtained for the phase velocities 

in eqn.(l4) are the widely known values of velocities of shear 

waves, (v )T and (v )TI> and longitudinal waves, (v )T-rT» which 

in terms of elastic properties can also be represented by 

(G/P)1'2 and (E/P )1'2, respectively. The values G and E are 

the shear and extensional elastic moduli»repectively. 

Particle Displacement Vector Components 

By  using the computed  values of the phase velocities  ,the 

amplitudes   of  the particle displacement components  associated 

with each of the phase velocity vectors can be found .  This  can 

be  achieved  by solving eqn.(lO) for the displacement  amplitude 

components  P , P   and  P   for  each of the  phase  velocities. r x   y       z 

Because  at  each  point there  are three  velocities   for  each 

direction  defined  by  n,  there  are  also  three  displacement 

amplitude vectors for each direction n, namely, (P),=(P ,P ,P ) . 
— "»     —  Ixyz'I' 

(-)Il"(Px'Py»pz)n   and ^III^VVVlH     corresP°nding     to 

11 



(v )-r. (v )TT and (v ),,,., respectively. The three displacement v n I    n II       n III 

vectors  are normal to each other but usually neither  normal  to 

nor  coincident with the direction n for a transversely isotropic 

medium. 

In the homogeneous problem, there is no  unique solution for 

the displacement amplitude components. Each phase velocity (v ) , 

(v )-_ and (v )TTT has a corresponding displacement vector v n II        n'HI 

(P) , (£.)TI 
and (J^III' respectively , which represents a 

mode  of  vibration.   Any  multiple of  the  three  displacement 

vectors (P)j» (P)TJ 
and Q^III  is also a solution« 

As  there  are  no  initial conditions  in  the  homogeneous 

problem, the components P ,P  and P  obtained by solving eqn.(lO) f J r x  y     z 

for  each  (v ).,  can  be expressed  in  terms  of  an  arbitrary 
n'i 

constant. Thus, the useful information that can be extracted 

from the solution of eqn.(lO) for the displacements consists of 

the direction of the particle displacement vector with respect to 

the coordinate axes. The magnitude of the displacement vectors 

(P).  is expressed in terms of the components as 

(P) (P 2+P 
2
+P 

2)1/2 v x   y   z 
i=I,II,III (16) 

Then,  the  direction  cosines of the displacement  vectors  with 

respect to the xyz coordinate system are [10] 

[nx2<Cl2+C66)] 
1/2 

 _ _ _ _ _ 
B [ Pv  -(n  +n ^)C..-niT C..] L y    n    x   y '   66  z  44 

12 



p 
_5L 

[n2(C12+C66)]
1/2 

B [ Pv^-faZ+n/jCgg-n^j 
(17) 

tnz2(C13 + C44)2/(C12 + C66^ 
1/2 

P vn
2- (nxV)C44-n/c33+n/(C13 + C44)^ 

(C12+C66} 

where 

B »J 
(n 2 + n 2) (C.. + Cß<.) x   y '   12  66  

[ Pv 2-(n 2 + n 2)CfiC-n 
2C,,] L   n  v x   y ' 66  z  44J 

[°z2(C1^C44)2/'C12tC66)] 
11/2 

'"B
2-t°/"T

2>C^-«2c»;°.'ir<C13*CU)Zl 2 

(C12+C66> 

Observe  from eqn.(l7) that  the sum  of the squares of  the 

ratios P /P, P /P  and  P /P  is equal to one,  meaning that only x     y z 

two of the three components can be independently determined. 

The isotropic medium is a particular case of the 

transversely isotropic medium and where the particle displacement 

directions are either normal to or parallel with the direction 

n. In this case, the displacement vectors are aligned with or 

perpendicular to the direction n. 

13 



VALUES OF ELASTIC CONSTANTS OF THE STIFFNESS MATRIX 

In order to demonstrate the application of the plane wave 

solution for the homogeneous problem of wave propagation in 

infinite media, numerical values are fixed for the elastic 

constants of the stiffness matrix, representing the two media of 

interest: transversely isotropic and isotropic materials. 

Transversely Isotropic Material 

For the transversely isotropic material, there are five 

independent elastic constants in the stiffnes matrix that will be 

taken as C.., C„_, C„_, C__ and C...  Note that  C._ = C..-2C,,, . 
11   12   13   33     44 12    11   66 

In this case, the material is a unidirectional fiberglass epoxy 

composite having a resin content of 36 percent by weight and a 

density of 1850 kg/m . The elastic constants of the stiffness 

matrix were determined experimentally by ultrasonic techniques 

from samples of the material as [15] 

C„„ = 10.581 x 109  N/m2 
11 

C„_ =  4.679 x 109  N/m2 
13 

C__ = 40.741 x 109  N/m2 
33 

C   =  4.422 x 109  N/m2 

Z,£   =  3.243 x 109  N/m2 
DO 

The constant C   was calculated from the values of C    and 

)9 N/m2, 

between the coordinate  axes and the material's orientation. 

Z,,     above as C.„= 4.098 x 10y N/m .  See Fig.2  for the relation 
66 12 

14 



Isotropie Material 

For  an isotropic material,there are two independent  elastic 

constants  in the stiffness matrix that will be taken as  C^ and 

L12 ' 

chosen. 

For the representative isotropic material,  E  glass was 

The  values  of  the  corresponding  elastic  constants  are 

C  = 82.658 x  109 N/m2 and C,- = 23.31 x  109 N/m2  with  a density 
11 '<£ 

of 2540 kg/m3 [16] . This material in fiber form is one of the 

constituents of the transversely isotropic material described 

above . 

15 



POLAR DIAGRAMS OF PHASE VELOCITIES 

The values of the phase velocities obtained from eqna.(l3) 

and (14), using the numerical values of the material properties, 

can be presented in polar diagrams. Such polar diagrams of phase 

velocity are called velocity surfaces [5]. 

The velocity surfaces are shown in Figs. 3 and 4 for the 

Isotropie material and the transversely isotropic 

material,respectively. One quarter of each surfaces» intersection 

with the xz plane is presented . The surfaces are designated as 

V(SH), V(SV) and V(P) corresponding to the velocities indexed as 

I, II and III, respectively. 

Among  the  directions  defined  by the  normal  n  used  to 

calculate the points of the velocity surfaces, several directions 

were selected and presented in. Figs.  3 and 4.  These directions 

are  represented  as the radii from the origin of the  coordinate 

system  to  the  surfaces.   The  particle  displacement  vectors 

corresponding  to these directions are represented by the  arrows 

and dots ,  giving an indication of the relative position between 

the   particle  displacement direction and the direction  of  the 

normal to the wave front n. The relative position of the particle 

displacement  direction  and the corresponding direction  of  the 

normal  n (radii from the origin )  can be used to  identify  the 

modes of 'propagation. If these two directions are coincident, the 

mode   is  purely  longitudinal.   If  the  two  directions   are 

perpendicular ,the mode is purely transverse. 

Observation  of  the  V(P)  surface in  Fig.  3  shows  that 

directions n and particle displacement directions are  coincident 

16 



for all directions in the medium, indicating the existence of a 

pure longitudinal mode of propagation . The surfaces V(SH) and 

V(SV) in Fig.3 show that directions n and particle displacement 

directions are normal to each other for all directions in the 

medium, indicating the existence of two pure transverse modes of 

propagation. So, for isotropic materials there are three possible 

pure  modes of propagation,  one longitudinal and two transverse. 

For the transversely isotropic material, there is one 

possible pure transverse mode propagating in all directions of 

the medium, corresponding to the V(SH) surface as can be seen in 

Fig.4. Pure longitudinal modes occur only at the intersections 

of the V(P) surface with the coordinate axes (x, y and z) where 

the particle displacement direction coincides with the direction 

n. For the V(SV) surface there are three directions where pure 

transverse modes occur, namely, the directions of the coordinate 

axes x, y and z. (In Fig.4 only the intersections with the x and 

z axes are shown). 

According to the convention adopted for the designation of 

the surfaces, Table 1 shows the modes of vibration for points 

along the directions of the coordinate axes and the surfaces 

that contain the indicated modes . Other designations for the 

surfaces can be found in the literature [10,14,17], as, for 

instance, "transverse" for the SH waves, "quasi-transverse" for 

the SV waves,  and "quasi-longitudinal" for the P waves . 

17 



DISPERSION RELATIONS AND GROUP VELOCITIES 

After the phase velocities for each direction n are 

obtained,the group velocities can be determined by the use of 

the dispersion relation. Combining the definition of phase 

velocity, eqn.(2), and the expressions obtained for the 

velocities, eqns.(l3) and (14)» the dispersion relations can be 

written as follows: 

-For a transversely Isotropie medium 

( w )T   = U
c£*(k 2 + k 2) + c„„k 2]/ P}1/2 I 66  x   y    44 z 

(   0)   )TT      =   {[CAAk2 + C„(k   2 + k   2)+C„k   2-V71?]/2 P }1/2 (18) II l L   44 11v   x       y 33   z     ' J/        ' v      ' 

(   co   )TTT   =   {[C. .k2 + C,,(k   2 + k  2)+C„k   2 + ]/Tk^]/2 P}1/2 

III L 44   11v x  y   33 z 

-For an isotropic medium 

(  u)l      - [c66(kx
2

+ky
2

+kz
2)/p]1/2 

(   ^11     "  ^66(kx2 + ky2 + kz2)/p^l/2 (19) 

(   a)   ).TT   »   [C_(k   2 + k   2 + k   2)/P ]1/2 

III 11      x       y       z   ''      J 

where the square of the wave number magnitude is represented by 

k2= (k 2+k 2+k 2) (20) x x   y   z ' x 

and the relations between the components of k,   namely, 

k 2+ k 2 = k2sin26,   k 2 = k2cos26 (21) x    y '    z v  ' 

were used  (as in eqn.(l2) for n) . 

18 



From the dispersion relations in eqns.(l8) and (19) and the 

definition in eqn.(3)> the values of the group velocity 

components along the coordinate axes can be determined . The 

expressions for the group velocity components in the xz plane are 

as follows : 

-For a transversely isotropic medium 

(v  )T =  n Cc,   [(C,,n 2 + Cj)yln 
2) P ]"1/2 v gxyI    x 66 L  66 x  44 z 

(v  )_ -  n CAA   [(C-Än 
2+C,,n 2) p ]"1/2 v gz I    z 44   66 x  44 z 

(v     )II=   (l/B){nx(C     +Cl1)- e~l/2n   (C,   -C,J[(C,   -C^)n  2 + 
zv   11     44 11     44     x 

(C44-C33)nz2]+2nxnz2(C13+C44)2} 

(22) 

(v     )__-   (1/B){n   (C     +C      )■ gz   II z     44     33 
e"1/VC44-C33)[(CirC44)Bx2+ 

(C44-C33)n
^
2]+2n

^
n
;[

2(C13+C44)2, 

(V)«I-(1/C){,'x(C44+C11)+   £"1/2nx(CH-C44>[(C11-C44)nx2t 

(C44-C33)nz2]+2nx"z
2(C13+C44)2} 

< V)III=(1/C,<n
Z
(C44+C33)+   £ "1/\(C44-C33)[(C11-C44)nx2t 

(C44-C33)^2]+^^nx2(C13tC44)2, 

2        2N    „ 2   „ 2   ,/  , ln n  ,1/2 
where     B = {[C     (nx  +nz   J+C^  +0^  -^7]/2P } 
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C-{[C..(n  2 + n   2) + C^n   2 + C     n  Z
+\fT }/2Q }1/2 

44    x       z   '     11   x      33  z    /        J' 

-For  an   isotropic   medium 

<Vl-   (V}H ■  V66   tC66   P  ^x2+nz2)rl/2 

< Vl"   (VlI ■  nzC66   fC66   P   ^x2+nz2)rl/2 

(v     )TTT=   n  C_ [C,„   P   (n  2 + n  2)]"1/2 x   gx'III X   11 L    11 v    x z'J 

(v  )TTT= n C„, [C„, P (n 2+n 2)]"1/2 v gz III   z 11 L 11   ^ x   z/J 

(23) 

Observe  that  the  magnitudes  of the group  velocities  can  be 

obtained from the corresponding components in the xz plane  as 

lVl,II,III  UVgx +vgz ;   JI,II,III (24) 

For an isotropic medium, the magnitudes of the group 

velocities are identical to those of the phase velocities as 

defined in eqns.(l4) • 
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CALCULATION OF DEVIATION ANGLES 

The purpose of calculating the deviation angles is to 

determine the actual direction r of propagation of plane wave 

segments having normal ri. The deviation angle can be expressed 

in terms of the phase and group velocity magnitudes as given in 

eqn.(4). 

Because z is the symmetry axis in the transversely 

isotropic medium under consideration , the directions of phase 

velocity and group velocity (n and r, respectively) are expressed 

in terms of their angles with respect to this axis . 

For the phase velocity direction , the angle 9 with 

respect to the z axis (see Fig.1b ) is defined by the direction 

cosines of n as given in eqn.(l2) as 

<tan 9 >I,IIfIII- t<nx2+ny2)l/2/ ^1,11,111       (25) 

The angle 9' of the direction r (for which the group 

velocity is defined) with respect to the z axis can be 

expresse-d in terms of the group velocity components as 

(tan 9')T TT TTT= [(v  
2+v  2)1/2/ v  ]_ TT TTT    (26) I,II,III Lv gx  gy      gxJi,il,lli     ' 

The  indexes I,II and III in eqns.(25) and (26) denote  that 

the same equations apply to each of the velocity sets.  Moreover, 

due to  symmetry,  n   and v    may be taken as  zero  ,and  the 
y      gy 

calculation can be done for the xz plane . 

The general expression for the deviation angle is then 

A =  9'- Q (27) 
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The specific algebraic expressions, expressed in terms of 

elastic constants for the deviation angles of transversely 

isotropic media, are not reproduced here. For isotropic media 

the deviation angles are zero. It is interesting to note that 

algebraic manipulations show that the deviation angle is 

independent of the frequency. And, since the phase velocity is 

also independent of frequency (see eqns.(l3) and (14))» so is 

the group velocity, which is another way of expressing the 

nondispersive character of the elastic media under study. 

The calculated deviation angles for the transversely 

isotropic medium under consideration are shown in Figs. 5a ,5b 

and 5c , for the SH,SV and P modes, respectively. 
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GRAPHIC CONSTRUCTION OF WAVE SURFACES 

In this section the graphic construction of the wave front 

will be described, focusing on the transversely isotropic 

material. The quantities needed for this construction are the 

magnitudes of the phase velocities ,the directions n for which 

these velocities are defined and the deviation angles. 

In other words , the locus of the points of equal phase in 

geometric space for unit time will be determined, supposing that 

plane waves passed through the origin at time t=0 in all possible 

directions defined by their normals n. The construction is 

described for the xz plane but it is valid for any plane 

containing the symmetry axis z. 

The following steps must be followed for the construction (see 

Fig.(6)): 

(1) Choose a direction n (n , n ) 
X   z 

(2) Draw a line from the origin of the coordinate  system 

in  the  direction n and having a scaled length  equal  to 

v . Since time is taken as unity, the segment represents a 
n 

distance. 

(3) From the line with direction n,  mark the  deviation 

angle A ,  if positive below ,if negative above the  line 

having the direction n. The direction so determined is  r 

which is the direction of the the group velocity v 
S 

(4) From  the tip of the line of length v ,  draw a line 

perpendicular to it. 

(5) The intersection of the perpendicular line with the 
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direction _r   determines a point P on the  wave  surface. 

Thus, point P represents the location at time t=1 sec of a 

point  of the wave front which at time t=0  passed through 

the origin with velocity v  in the direction of n. 
n — 

If the construction described is repeated for each set of 

calculated phase velocities assuming all possible directions ji 

of the wave normal in the medium , the wave surfaces are 

obtained. The construction steps of the wave surfaces W(SV) and 

W(P) corresponding to velocity surfaces V(SV) and V(P) 

respectively, are shown in Figs. 7 and 8 for some directions in 

the representative transversely isotropic medium. In these 

figures, the primed points are points of the extremities of 

the segments of length v as described in step 2). The umprimed 

points are the corresponding points on the wave surface. 

The construction of the wave surface W(SH) corresponding to 

velocities V(SH) is not shown since the deviation angles are 

small and the final shape of W(SH) is very similar to the shape 

of V(SH). The three wave surfaces obtained for the 

representative transversely isotropic medium are shown together 

(positive x-z quadrant only) in Fig. 9 • 

For the isotropic medium no construction is made since the 

deviation angles are zero. For such a case, the wave surfaces are 

identical to the corresponding velocity surfaces. 

It is important to emphasize that the wave surfaces are the 

actual geometric positions of wave fronts for the three possible 

modes of propagation. Because plane wave solutions are assumed to 

generate these surfaces ,the wave surfaces represent the envelope 
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r 
of all possible plane waves emanating from the origin of the 

coordinate system in all possible directions, as if such a 

source existed at the origin. 
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SPECIAL FEATURES OBSERVED IN THE WAVE SURFACE W(SV) 

As  it can be  observed in Fig. 7,  for the  representative 

transversely  isotropic  medium there is a folding of  the  W(SV) 

wave  surface  due to an inversion of the sign of  the  deviation 

angle 

To explain the geometric shape of the wave surface W(SV), 

assume that the wave front is constituted of many small segments 

of plane waves having the same length and passing through the 

origin at time t=0. Assume that for an infinitesimal interval of 

time these segments of plane wave are still very close to the 

origin and form a polygonal line that can be inscribed in an arc 

of circumference. Then immediately thereafter, the segments start 

to deviate from their normals, following the directions £ defined 

by the deviation angles .If it is assumed that the segments* 

extremities remain connected physically , the wave front must be 

continuous in time as these segments will be stretched as they 

travel away from the origin. 

The deviation angles, Fig. 5b, can be associated with a 

degree of stretching of the original straight segments . The 

larger the deviation angle ,the larger the degree of stretching 

undergone by the segment. Recall that the angle 9 represents 

the angle of the normal n (to each segment) with respect to the z 

axis. 

Observe that the curve of (Z\)TT has two maxima, one 

positive at 9 = 33° and one negative at 9 = 77.5 , and passes 

through zero at 9 = 60°. If the curve is divided in four 

regions as shown in Fig. 10b ,it can be observed that in region 1 
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the segments are stretched increasingly until the first maximum 

at Ö = 33°. Then for region 2 the segments are less and less 

stretched until the deviation angle reaches the value 

zero, represented by point C in Fig. 5.a. The segment 

corresponding to the zero deviation is not stretched. For region 

3, again the segments are stretched from zero to the second 

maximum at 9 = 77.5° and finally in region 4 they are less and 

and less stretched until reaches zero for the segment whose 

normal is located at 90° with respect to the z axis. 

In the model of the polygonal line constituted of straight 

segments, if points A and E, Fig. 10.a, are the intersections of 

this line with the coordinate axes, for an infinitesimal time 

after zero time »these points remain on the coordinate axes since 

the corresponding deviation angles are zero. Later ,at a time 

t equals unity, these points will be at positions A' and E', 

respectively. Considering that at the same time all segments are 

supposed to remain connected ,the segments originally in regions 

1 and 2 (Fig. 10.b) will undergo an effect of pulling away from 

the z axis; the segments originally in regions 3 and 4 on the 

other hand , will undergo an effect of pulling away from the x 

axis, moving closer toward the z axis. 

It has been determined that the segments which are the tips 

of the cuspidal edges B',D* of the wave surface W(SV) have 

normals n at angles of 54«02° and 75.06°, respectively, with 

respect to the z axis. For time t equals unity, the location of 

these two segments is defined by the lines passing through the 

origin and  the  points  B* and  D', respectively, at 61.86   and 
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41.93   with respect to the z axis (see Fig. 10a ). 

The originally equal segments that at time t equals unity- 

are located inside the region limited by the lines OB'and 0D' can 

be associated with the amount of energy that is concentrated in 

this region. If it is assumed that each segment that passes 

through the origin at time t=0 carries the same amount of energy, 

the percentage of the total number of the segments contained in 

the region of interest at time t equals unity is also the 

percentage of energy contained in the region at any other time 

t. Using this concept, it was found numerically that 64.4$ of 

the total energy propagates through the region located between 

the lines OB* and 0D• where the included angle B'OD* is 20.93°. 

This calculation was made for a total number of 180  segments. 

Concerning the geometry of propagation of the entire wave 

front, it can be said that if an observer stands at a position 

with respect to the coordinate axes inside the region defined by 

lines OB' and 0D' (for instance, at position P in Fig. 10.a ), 

such an observer will see three portions of the same front W(SV) 

passing through him at different times . 

It must be stressed that the special feature described above 

is valid for the fiberglass epoxy composite used in this 

numerical example. The existence of this special behavior is not 

a common characteristic of all transversely isotropic media and 

depends on the numerical values of the elastic constants , so 

such features must be analyzed and determined for each specific 

material. 
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CONCLUSIONS 

The problem of the geometry of propagation of waves in 

transversely isotropio media was studied. The solution of the 

homogeneous problem of motion for a fiberglass epoxy composite 

was analyzed and the numerical values of the resulta were 

presented. 

The  solution  of the homogeneous problem of motion  in  an 

infinite medium provided a  description of the behavior of  plane 

stress  waves  in terms of velocities and paths of propagation 

Using these concepts,  a graphical method for the construction of 

the wave fronts was introduced . 

As described above,the following conclusions can be stated: 

(1) The graphical technique is found useful in the construction 

and the physical interpretation of the wave surfaces . The 

technique was applied to transversely isotropic materials but 

the concept can be extended to other cases having anisotropic 

symmetry. 

(2) The wave surfaces corresponding to a fiberglass epoxy 

composite material were constructed .Special features were found 

in the W(SV) surface. 

(3) It was found that energy carried by the SV waves in the 

fiberglass epoxy composite material is concentrated along certain 

preferential directions. This phenomenon can be explained in 

terms of the spreading geometry of plane wave segments . 

The conclusions above suggest some possible applications and 

recommendations for ultrasonic NDE of transversely isotropic 

materials  .   For  instance,  the special features of  the  wave 
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surface W(SV) for the fiberglass epoxy material can be used as 

an auxiliary criterion for the placement of transducers when 

experiments are designed . For example, the locations where the 

energy is focused (angle B'OD' in Fig.10 ) can be selected as the 

receiving region since the signals within this region are 

expected to be stronger due to larger displacement amplitudes. 

Also, certain locations in the medium can be selected as 

receiving points where up to five different wave front arrivals 

may occur, when the three modes of propagation are considered. 

The knowledge of the geometry of the spreading can also be 

used for crack detection since the number of expected arrivals 

can be computed for each direction in the medium. Thus, the 

absence of the arrival of one of the expected portions of a wave 

front might indicate that an obstacle was in the path of that 

portion of the front. Such an obstacle might indicate the 

presence of a flaw. 
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Table 1.  Designation of Velocity Surfaces and Modes of Vibration 
at Intersections with Coordinate Axes. 

Propagation   |     Particle Displacement Directions 

I y     I     z 

x          i     v(p) V(SH)    |     V(SV) 

y       i    V(SH) V(P)    !    v(sv) 

z        !    V(SV) V(SH)    |     V(P) 

33 



< 

ray of propagation 

»» x 

a) Isotropie medium, v =d//\t 

b) Anisotropie medium, v =d/Z\t 

Fig.l   Phase  velocity definition for a) isotropic  and  b) 
amsotropic media  .   (A,, A and  A, 
represent positions of ^ wave fronts 
in times t, t+At , t+2At. For d= A, /\t= T, 
vn= A /T = w/k for periodic waves.) 
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Fig.2  Position of material axes with respect to coordinate 
axes  for transversely isotropic medium. 
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Fig.6   Schematic for procedure for determination of 
P  on wave surface. 
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