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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metrio English
Symbol
. Abbrevia- . o Abbrevi
Unit ton Unit tion
Length._ . ___ 14 meter. - o ccemceamae- "m foot (or mile) . . _...... ft (or mi)
Time.oeoceu- t 86CoNd -« oo c e 8 second (or hour)......_ sec (or hr)
Force .. ._ F weight of 1 kilogram...._ kg weight of 1 pound.___. b
" Power-._---- P horsepower (metric) ... _________ horsepower._ __._____.. hp
Speed v - {kilometers per hour______ kph miles per hour. . ______ mph
"""" meters per second. . _._.. mpa feét per.second..._.___| fps
2. GENERAL SYMBOLS
Weight=mg v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s* » Density (mass per unit volume)
or 32.1740 ft/sec? Standard density of dry air, 0.12497 kg-m~*%s?* at 15° C
M 4 " and 760 mm; or 0.002378 Ib-ft~* sec’ :
Bs8= Specific weight of “standard” air, 1.2255 kg/m® or .
Moment of inertia=mk®. (Indicate axis- of 0. 07651 Ib/cu ft :
radius of gyration & by proper subscript.) .

Coefficient of viscosity - .-
: 3. AERODYNAMIC SYMBOLS

-

Area te Angle of setting of wings (relative to thrust lme)
Area of wing . o e Angle of stabilizer setting (relative to thrust
Gap line) ' . T
Span ; Q Resultant moment - .
Chord Q Resultant angular velocity -
. .

Aspect ratio, % R Reynolds number, p% where ! is a linear dimen-
True air speed ’ - sion (e.g., for an airfoil of 1.0 {t chord, 100 mph,

standard pressure at 15° C, the corresponding

Reynolds number is 935,400; or for an airfoil

of 1.0 m chord, 100 mps, the correspondm,g

.. Reynolds number is 6,865,000) o
a Angle of attack :
D, € Angle of downwash
_ " ap  Angle of attack, infinite aspect ratio

Profile drag, absolute coefficient Cpy B . Anglo of attack. induced

as  Angle of attack, absolute (measured froln zero-
Llift position)

4 Flight-path angle

Dynamic pressure, ZpV’
Lift, absolute coefficient C,;ag e

Drag, absolute coeflicient CD=—g

Induced drag, absolute coefﬁcu,nt C”‘:qQS

Parasite drag, absolute coefficient CD,=%§

ALY

Cross-wind force, absolute coefficient Co=-%5
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ON THE FLOW OF A COMPRESSIBLE FLUID BY THE HODOGRAPH METHOD
I—UNIFICATION AND EXTENSION OF PRESENT-DAY RESULTS

By I. E. Gagrrick and CARL KAPLAN

SUMMARY

Elementary basic solutions of the equations of motion of a
compressible fluid in the hodograph variables are developed and
used to provide a basis for comparison, in the form of velocity
correction formulas, of corresponding compressible and incom-
pressible flows. The known approrimate results of ( haplygin,
von Kdrmdn and Tsien, Temple and Yarwood, and Prandtl
and Glauert are unified by means of the analysis of the
present paper. Two new types of approrimations, obtained
from the basic solutions, are introduced; they possess certain
desirable features of the other approrimations and appear
preferable as a basis for extrapolation inlo the range of high
stream Mach numbers and large disturbances to the main
stream. Tables and figures giving velocily and pressure-
coefficient correction factors are included in order to facilitate
the practical application of the resulls.

INTRODUCTION

The present paper is concerned with a theoretical study
of the hydrodynamical cquations of a perfect compressible
fluid in two dimensions, in which the so-called hodograph
variables are used as the independent variables. It is hoped
to achieve herein a unification of the present-day results
obtained in this field and also to provide a working basis for
further developments. The carliest contributors to the
hodograph method for treating compressible fluids were
Molenbroek (veference 1) and Chaplygin (reference 2). The
remarkable work of Chaplygin on gas jets appeared in
Russian in 1904 but remained relatively unnoticed. In
recent years contributions to ihe hodograph method have
been made chiefly by Demtchenko (reference 3), von Karman
(reference 4), Tsien (reference 3), Ringleb (reference 6), and
Temple and Yarwood (veference 7).

The chief reason, and perhaps the only reason. for pre-
ferring the hodograph variables to the physical plane co-
ordinates is that the equations of motion in the hodograph
variables are lincar. This simplification is achieved, how-
ever, at the cost of more difficult boundary conditions and
at o loss of physical insight. The great simplification in the
mathematics due to lincarity nevertheless makes it desirable

to pursue this line of attack as long as it appears profitable
to do so.

The mathematics for handling the flow cquations re-
coived a substantial impetus by the work of Bers and
Gelbart (reference 8), who developed a new function theory
analogous to ordinary analytic function theory. The
present paper utilizes the methods of this new function
theory to develop certain functions essential to the compres-
sible-flow problem. It is of historical interest that ideas
similar to those of Bers and Gelbart were explored by the
renowned mathematician Hilbert (reference 9) in the early
part of this century but do not appear to have been further
developed at the time.

The material to be treated is conveniently separated into
two parts. In part I, the present paper, basic particular
solutions of the hodograph flow equations are developed and
employed in unifying and extending the results obtained by
Chaplygin, von Kérmén, and Temple and Yarwood. The
results obtained in part [ are of immediate practical applica-
tion and are given in the form of tables and graphs of velocity
and pressure-coefficient correction factors. In part II,
general particular solutions of the hodograph flow equations
are developed and discussed. The material in part IL, it is
hoped, will lead to a method for handling the actual boundary
problem of the flow of a compressible fluid past a prescribed
body.

ANALYSIS
FLOW EQUATIONS OF AN INCOMPRESSIBLE FLUID

It is well known that the relations between the velocity
potential ¢ and the stream function ¥ for the steady irrota-
tional two-dimensional motion of a perfect incompressible
fluid are

2¢_2¢
or oY
(1)
0__
oy Oz

These equations are the Cauchy-Riemann equations and
therefore ¢+iy is an analytic function f(2) of the complex
variable z=z+1y.

1
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The complex velocity or reflected velocity vector wu—ir is
obtained from the complex potential f(z) by differentiation.

Thus,
. df (D
U—W="5"
dz

___qe-w

—gt@tt 1oz @) (2)
where ¢ is the magnitude of the velocity vector and 8 is the
angle the vector makes with the positive direction of the
T-axis.

The variables 6 and g are sometimes referred to as “the
hodograph variables.” The flow equations in the variables
6 and ¢ can be readily derived by introducing 841 log q as the
independent complex variable in place of r4+iy. Then, in
analogy with equation (1),

20_ 00
o0 ologq l
(3)
2 __0v
dlogq 06!
or
20_ 04
of
% (4)
%__10ov
0¢ q of

These cquations arc known as the hodograph equations for
the flow of an incompressible fluid.

FLOW EQUATIONS OF A COMPRESSIBLE FLUID

The cquations corresponding to equation (1) are, for a
compressible fluid,

Q0 _py O¥
dr p 0¥
(5
_ _m ¥
dy p Ox

where p is the density of the fluid at any point (+.%) and p, is
a constant density, which for convenience is referred to a
stagnation point.

A short way to derive the hodograph equations for a
compressible fluid, attributed to Molenbroek, is as follows:

. . ¢ _ ¢
According to cquations (5), with u= Sy and v= Y

do+1 ';:9 dy=(u dz+v dy) +i(—v dr+u dy)

= (u—1v) (dz+1 dy)
=qe' @ dZ
or

dz=—le“’<d¢+vi 99d¢) (6)
q P

It follows from cquation (6), by considering 6 and ¢ as
independent variables, that

0z 1 19 Oé,.pogi

—_—=— ==

M g 26 o o8

|
'1
|

and
0z 1, (06 .pyO¥
Sere(Sried)
Then, by assuming that p is a function of only ¢ (equivalent
to assuming that the pressure is a function of only the
density),

Oz e 1 0%, dpo/pg) ¥ L o O ., ;p0 %Y
0(108*8 [ g 6Tt dqg 08 +q(‘ 0q08 ' o 0qob
and
Oz i (99 @?_\k) 1 e -p O
a60q ¢ \2ati s ag) Ty \8s0q ™" » 2609

Since, by continuity, these two cexpressions are identical, it
follows that

e (90 BQ?“.’)._ i |:_l_9_‘i’ - d(po/pg) Q¥
q ¢ <Oq‘H o Of =€ q OG—H dq 08
Hence, by equating real and imaginary parts,

O¢ _pog Q¥

M p Og

d6_, dim/or) 2V
3¢~ 1 dg o8

These are the hodograph cquations, first obtained by
Molenbroek, for the flow of a compressible fluid and are
independent of the form of the pressure-density relation.
It is observed that, when p=p,=Constant, cquations (7)
reduce to equations (4). Equations (7), in contrast with
cquations (5), are linear in the dependent variables.

BERNOULLI'S EQUATION AND EQUATION OF STATE

In the present section there is listed a collection of for-
mulas and definitions necessary in the analysis.
Bernoulli’s equation for a compressible fluid is

P
f Ty =0 8
n P b

where
p  static pressure in fluid
Po static pressure at stagnation point (¢=0)
p density of fluid
q magnitude of velocity of fluid
The adiabatic relation between the pressure and the

density is
r =( e)’
Mo Po
where

v adiabatic index (approx. 1.4 for air)
0 density of fluid at stagnation point (q=0)
The local velocity of sound a is obtained from

)

For the adiabatic case,
=L 1o
o
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From Bernoulli’s equation (8) and from equations (9)
and (10), the following relations may be obtained:

. 1 )
a=ay'=-5(y—1)g*

1

! =i
D:pu[l—iw—n"zz]’ an

,
1 el R
!‘:[’ol:l_.:)()’—l)”iz] |

where a, is the velocity of sound at stagnation point (g==0).

From cquations (11) for 4>1, a maximum veloeity

1 , 3

q=qn is obtained for the limiting conditions p=p==a=0.
Thus,

In*= " T’
=28a,* (12)
where
i
B=—
y—I

The fundamental nondimensional speed variable, in
general, is g/a, but it is found useful in the analysis to employ
a nondimensional speed variable 7 defined as

r=-L (13)

Ior ¥>>1, the range of the variable 7 is 08 r=<1. The value
r=0 has a dual meaning; r=0 in the case of & compressible
fluid corresponds to a stagnation point (g=0), or r=0 may
mean the limiting case of an incompressible fluid (@y==).

With the definitions of » and 8, cquations (11) become
a=ay(l —r)'#A| -
p=py(l—7)8 (14)

p=po(1—r7)8*t

The local Mach number M ==% may be expressed in terms

of the speed variable 7 in the following way:

_¢ g’
M="5"5 7
qrn ap" a

- 287

l—r

(15)

or, by solving for = in terms of A,

A?
T=W (16)
The value of 7 for which the local velocity of the fluid
equals the local velocity of sound (M=1) is given by

1

=511 (17)

In the case of uniform flow past a fixed boundary, the
pressure coefficient is defined as

=]
(‘,,,M[::{ ’.I.
§P|(]|"

where the subseript 1 refers to the undisturbed stream. The
pressure coeflicient for the incompressible case (M=0) is

AN
Cpo=1 q,)‘ (188)

The pressure coceflicient for the compressible case is

2 1 M
C,,,Ml=m(—1+{1+.—2(7—1)M,2|:1—<Z;>‘ ") (18b)

For g=¢, (sonic),

_ 2 9t (v— DM
(C,,M[),—V—MIZ -1+[——7—+f—_ ' (18¢)
For q=qn (racuum),
(€, )=————2 (18d)
v My m .ﬂulz

BASIC SOLUTIONS OF HODOGRAPH EQUATIONS

Consider the incompressible case represented by equa-
tions (3) or (4). It is clear that ¢==8 and y¥=log ¢ satisfy
these equations. In fact, any convergent power series in
w=0+1 log ¢ represents an analytic function of which the
real and imaginary parts satisfy equations (3) or (4). The
class of analytic functions in » (and the concept of analytic
continuation) then yields all the particular solutions of these
equations.

The particular solution w=8+: log ¢ can be obtained by
means of an integration that is instructive in the generaliza-
tion to the compressible case. It is well known that

Flw)={ f(w) dw

can be represented as the sum of two line integrals

F(w)=[(Pdo—Qdlog ¢)+i[(Q d6+ P dlogq)

where

fw)=P+1Q

Thus, given a pair of functions P and @ that satisfy equations
(3) or (4), this process yiclds another pair of solutions,
namely, the real and the imaginary parts of F(w). For
example, if P=1 and =0,

Fw)=w=0+iloggq (19)
Again, if P=0 and ¢=1,
F(w)=1w=—log ¢+18 (20)

The physical interpretation of equations (19) and (20),
considered as flow patterns, is of some interest in connection
with later developments. It is clear that equations (19)
and (20) represent a vortex and a source located at the
origin, respectively.




4 REPORT NO. 789—NATIONAL ADVISORY COMMITTEE

The generalization to the compressible case of the fore-
coing clementary results was accomplished by Bers and
Gelbart (reference 8) by means of simple yet fertile ideas.
Bers and Gelbart treat equations of the form

3\ ) ¥
o6 M) oq

(21)

%__, o

and show as is readily verified that, it P and Q arc a pair
of solutions. the real and imaginary parts of the following
sum of line integrals

I‘[P do— N\ Q dq]-{—if [Q do+ )\11((1) r dq] (22)

are also solutions of cquations (21).
In particular, corresponding to the pair of solutions 2=1
and Q=0, there is obtained

. 1 .
lV—-@“{"LJ‘XTGl‘j dq (23)
and, for =0 and @=1,
i =ilo-+i [ M(@) da) (24)

By repeated application of the process of integration, indi-
cated by expression (22), a general set of particular solutions
of equations (21) may be obtained. These particular solu-
tions are discussed in part I1T; in the present paper, only the
solutions given by equations (23) and (24) are needed.

The general hodograph equations (7) are of the form of
cquations (21) with

Mg =p%(1

and

N(g)=—1 d—*—(p(}é‘" 2

For the rest of this paper. the adiabatic pressure-density
relation (9) is used. By means of equations (9) and (14)
and the relation

dp___Pap

a— "M

obtained from the differential form of Bernoulli’s cqua-
tion (8), it follows that

MO =T
(25)
1—(2 19k
A (q) =—q(1L_:%‘+')T

The evaluation of the integrals in equations (23) and (24)
is made unique by requiring that the results reduce to the
incompressible case when the speed of sound is infinite
(that is, when 7=0). Then,

FOR AERONAUTICS

L-:—f(l—r)“ ‘fl‘l

=log g+f(7) (26)
where
1(- 1
= [, ta=mp—17
and
[ (1=@8+Drdy
(I—7) g
=log g+g(r) (27
where

-t e )t

and it is observed that the functions f(7) and ¢(r) vanish
for r=40.
Equations (23) and (24) can be written in the form
W=06-+:L
and
W =1(0+1L)
It is important to note that, in the incompressible case,
W and i7" reduce to w and iw, since L and L reduce to log q.
Thus, there are in the compressible case two basic functions
L and L corresponding to the one function log ¢ in the in-
compressible case. It is of interest to mention that the
functions 1 and i¥1’, considered as flow patterns in a com-
pressible fluid, can again be interpreted as a vortex and a
source.

EVALUATION OF FUNCTIONS f(r) AND g(r) FOR VARIOUS VALUES OF 8

In general, the integrals in equations (26) and (27) repre-
senting the functions f(r) and g(r) are expressible by infinite
series. For the important case of air, however, with the
adiabatic index vy put equal to 1.4 instead of the usual value
1.408, these functions can be obtained in closed forms.
Thus, with g=2.5,

fo=4[[la=m-n

— Lty (1=

¢ — \1/72
+(l—r)“2—%—log 1 ﬂl_l__’)__ (28)
and
1 1—=6 {
g(r)=35 [:j [('1":;)’;/2— l] (TT
1 1 1
=Ta=7 T3 A
1 1 14+(1—n)"

Table 1 contains values of f(r) and g(r), and figure 1(a)
shows these functions plotted against 7. Observe that f(7)
and ¢(r) are well-behaved functions in the range 0=7<1.
In figure 1(b), these functions are plotted against the local
Mach number A in the practical speed range.
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FIGURE 1.—The functions f, g+

f+a
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(b) M-curves.

+ and & against r and M for y=1].4; the function f=g against M for y==1.0.
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Other interesting cases for which the functions 7(r) and
. 3
g(r) can be expressed in closed forms are y=o, y=2. y=3"
and y==—1. PFor y== (B=0, a==, incompressible case),
f(N=g(r)=0
For r=2 (B=1).
1
f(f) = —‘_—27

. 1 1
y\‘r)zl—r_"‘r—'.—z log (1—71)

FFor r=% (B=2)

o) =55 G E g log 1=

1
For v=—1(8=—5)

—2 2
Jey=g(r)=—log FUZT

For the isothermal case y=1 (B=), the veloeity of sound
a=a,=Constant and the functions f and g are obtained as
infinite series in the ratio q/a,. Thus, in the limit 8—w,

flgfag) = lim 5 [ [(- sEy - dlafu

1 aae | -1 al:; )i(ﬂ/a_“)_
—§L (e ) "ylas

® n ((12/(1 Z)n
=23 (=" yueiga]

and

1\ ¢

1—(1453) &
O ( Qﬁ) a¢® _ d(qla.)
saia=lim; | Gy |

2 Bao2

2 igjx
1 fae 2 ao d
oy

Y& (/)"
+ .

,,Z_:l anting!

=1—e

For arbitrary values of v (or 8) the expressions for f(r) and
g(r), obtained with the aid of the binomial expansion, are

=t (8)7

T (Ll

and

, 1e g\ 2n—1
jo- L5 o ()
1. 3 .
= —g Br—g BT~

_ L¢3 (fi _
= Tial 327 \af

The significant feature of this general result is that, if powers
of qla, higher than the third arc neglected,

2

f(r)=g(r) = —% ;,(’z : (30)

0

and does not involve explicitly the adinbatic index y. This
circumstance underlies the present-day approximate methods
for obtaining velocity and pressure-coeflicient correction
factors; in the following scctions, this point is brought out
more clearly.

APPLICATION OF BASIC FUNCTIONS L AND L

In this section, the basic functions L and L are employed
to sct up relations between velocities in ‘‘corresponding”
compressible and incompressible flows. These relations are
of the nature of “stretching factors” or velocity correction
formulas and contain the results of Chaplygin, von Kdrman.
Temple and Yarwood, and Glauert and Prandtl. It is
important to recognize at the outset that no single velocity
correction formula can represent in an exact way the cor-
respondence of flow patterns past a prescribed body in
a compressible and an incompressible fluid. A single velocity
correction formula is actually feasible in only two cases:
(1) The stream Mach number is small (cven though the
disturbance to the main stream due to the presence of the
body may be large) so that the compressible-flow pattern
differs only slightly from the incompressible-flow pattern or
(2) the disturbance to the main stream is vanishingly small
(even though the stream Mach number may be high) so that
the effect of the shape of the solid boundary is small. The
various velocity correction formulas discussed in the present
paper differ essentially only in the degree to which the
requircments of these two cases are satisfied. Despite their
limitations, single velocity correction formulas are extra-
polated, in view of the lack of more rigorous solutions, into
the range of large disturbances to the main stream and high
Mach numbers. This extrapolation can be justified by
further theoretical investigations and by comparison with
experimental results.

Consider again the corresponding pairs of functions

w=0+1 log q}
1
W=0+iL @1
and
z‘z£=i(0+i log q)} 32)
iW=i(0+iL) o
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it has previously been noted that the pairs of funetions in
equations (31) and (32) denote respeetively a vortex and a
souree in an incompressible and a compressible fluid. Fach
pair of functions can be employed to define a correspondenee
of flow patterns in which corresponding points are identified
by the same values (¢.9). Thus, in the case of the vortex
(equations (3D),

¢1=¢c:0
5(/1=\ﬁc‘—=10g‘ (11:[/

where the subseripts i and e refer to the incompressible and
to the compressible case, respeetively. 1t follows that

([,=e"
=g/ (33)
Similarly, in the case of the source (equations (32)),
¢l=¢c= -IOQ gi=— Z
‘l’|=¢t=0
and
q'=e':
=qce“‘” (34)

At the end of the preceding section it was pointed out that,
to a first approximation, the functions f(r) and g(7) are equal.
This fact implies that. to a first approximation, a single veloc-
ity correction formula is {casible. The assumption is now
made that cither equation 33) or equation (34) canbe adopted
to provide a correspondence of flow patterns in the case of
uniform flow past a body in an incompressible and a com-
pressible fluid. With the undisturbed streams as con-
vonient references, the following nondimensional forms of
cquations (33) and (34) can be written:

) (1) 2.

(fn):_(m)c el 35)
and

D

o/ \q@/cen (36)
where the subseript 1 refers to the undisturbed  stream.

The use of the undisturbed stream as reference in the non-
dimensional form of the velocity correction formula was
introduced by Tsien in reference 5. where also the details of
the von Kdrmdn approximation are developed. Tt is shown
in the following section that cither of equations (35) or (36)
contains the result of Chaplygin, von Karmin, and Temple
and Yaurwood. As has been previously pointed out, the
concept of a single veloeity correction formula is feasible in
only two cases, namely, small stream Mach numbers and
vanishingly small disturbinces to the main stream. [t s
desirable then to seck a single velocity correction formula
that combines the features of these two cases.  From this
point of view, equation (35) or equation (36) is not the best
choice. A better choice of a single velocity correction for-

THERT- -

JT— -2
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mula appears to be the following combination of equations
35) and (36). based on the avithmetic mean of f(r) and glr):

7N - '/>
(I1>| (\‘[1 ¢

In a later seetion, still another combination referred to as
“the geometric-mean type of approximation” is introduced:
in the section dealing with the Glauert-Prandtl approxima-
tion. cortain features of the foregoing arithmetic-mean type
of approximation and of the geometric-mean type are
discussed.

At this point it is desirable to discuss the practical applica-
tion of equation (37). According to equation (16),

A2

T —:’B-*—-AF

__ M
TE9RFALY

(E)-G)

M (21
TM O\ 28 M

e S Hgnl

30

e ity |

and

(38)

Equation (37) then yiclds, for a given set of values of the
stream Mach number A, and the local Mach number 3/, &
value for the ratio (g/q). of the local velocity q and the
stream velocity ¢, in an incompressible fluid. Table 2 shows
corresponding values of (q/q)e and (9/q0) for various values
of the stream Mach number M, with y=1.4 (8=2.5). This
tabulation is performed, for the purpose of comparison, for
the three cases represented by equations (35), (36), and (37).

Values of (¢/g)« (@/q)e and (Q/q')‘r obtained from equations
(q/9)):

37) and (38), are plotted against the local Mach number M
in figure 2 for various values of the stream Mach number M.
Table 2 also shows values of the pressurc coefficients C,
and C,a, calculated by ecquations (18a) and (18h) for
these corresponding values of (q/q)): and (q/q)e Figure 3
shows the curves of pressure coefficients corresponding to the
curves of velocities of figure 2. Useful cross plots of the
curves in figure 3 are shown in figure 4, in which Cya, is
plotted against A/, for various values of C,, In addition.
curves are shown in figure 4 for (Cpays and (Coyr)m
caleulated by equations (18¢) and (18d), respectively. The
curve for (Cpa,)s corresponds to the sonic value M=1 or
T=r,=% and in effect divides the region of flow into a sub-
<onie and a supersonic part. The curve of (Cpa)m corre-
sponds to the maximum value M= o or r=1 and represents
the outer limit of the supersonic region (or a perfect vacuum).
In order to exhibit the main differences hetween the various
correetion formulas (33), (36), and (37), the ratios of the
sonic values (Cpar)s and the corresponding incompressible
values €, are plotted against the stream Mach number
M, in figure 5.
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of (g/q1), and (g/gn) in (8) and (b)
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Observe in figure 2 that the (g/q)~curves have maxi-
mum points. This fact mcans that the value of (g/q).
associated with a value of (g/g:) (s not unique. Analytically,
the eriterion for the maximum point is equivalent to

1

diqlq))_ .
=0 (39)

or, from velocity correction formula (37),

(1=~ (28+1)7r+1=0

For §=2.5 this equation has only one positive root, T4
or M=1.15. Itisinteresting to note that velocity correction
formula (30) yields as the criterion for the maximum point

1—(28+1)r=0

The root of this equation is TZT’:"HIJ—_I and, for 3=2.5,1s

1 \ . . .
T={ or M=1. Velocity correction formula (35) yields no

maximum value of 7 or 1/,
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Meaning can be given to the value r=‘l—; (M=1) in the

case of cquation (34) with reference to the original inter-
pretation of the flow pattern as that of a source. It can be

. 1 L
shown that the acceleration (q ’d—({) along a streamline 1s
w/se
infinite at all points for which the local Mach number is
. 1 . L .
unity (r——-a) and that a How discontinuity exists there.

In the case of the vortex flow pattern (cquation (33)), no
flow discontinuity occurs for /< =. The velocity correc-
tion formula (37) suggests a “limiting” value M =1.15 for a
spiral flow, since equation (39) is analogous to a condition
of infinite scceleration. Thus, the existence of a mixed
subsonic and supersonic region of flow without discontinuities
is indicated. Since the occurrence of this limiting value of
A is a consequence of the simple form assumed for the
velocity correction formula, no undue significance should
be attached to any particular value at the present time.

THE CHAPLYGIN APPROXIMATION

From the point of view of the present paper, Chaplygin’s
approximation for subsonic speeds assumes a simple and
lucid form. Chaplygin introduces in place of ¢ a new inde-

pendent speed variable 5 equivalent to the quantity given
on the right-hand side of equation (33), namely,

n=qe/"

The hodograph flow equations (7) then assume the form

96 _ 0¥
267 on
(40)
d N
1 P Fn
where
F(T)=l—(‘_’6+l)r

: "(‘1'; 1;) 28+

- A+ BEBH)EHDT— . .

Values of the function F(r), for several values of ¥ (or 8),
are given in table 3 and are plotted in figure 6 against the
local Mach number 3. Chaplygin noted that, in the case

of air (8=2.5), F(r) differs but little from unity over about
one-half the subsonic range 0= 7= (—l) iis approximation in

the range of low subsonic speeds consists in neglecting powers
of = higher than the first or in veplacing F(r) by unity.
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Equations (40) can then be written in the Cauchy-Riemann
form
o6 _ 0¥ _
o0 ologn
__o¥
of

09
0 log n

and ¢+ iy thercfore is an analytic function of the complex
variable 6+ log n.  Chaplygin’s approximation thus leads
to the velocity correction formula ;

)
T

‘1_) =<(l > T3
ULVA] q 4

<)

g

(41)

where powers of 7 higher than tho first are neglected through-
out. The use of equation (34) instead of equation (33) also
leads to this result to the same order of approximation.

THE VON KARMAN APPROXIMATION

Von Karmin's approximation corresponds to the case

y=—1 {or B::—rl)-) It follows at once from the integral

cxpressions for f(=) and g(r) given by equations (26) and
(27), respectively, that for this case

14 (1—r)t2
fnr=g(r)=—tog EETT=
or, with the use of equation (16),

1
firy=g(r)=—log 3 [1 + (,';'j{ﬁm]

This function, plotted against M, is included in figure 1(b).
Corresponding to equations (35) and (36), there is a single

equation
qA> =(”—> I+ (=)'
qQ1/ ¢ Uit A=)t

. 7\? M .

Replacing 7 by () and ro by yr2° according to equa-
N/ MiE=1

tion (16) yields

L+A=MHF

E]]:>‘=<gl - " lll'z (‘T) 2]! s (42)
M/

Then, by solving for (q/qi). in terms of (¢/q1), and the stream

Mach number A4,
(‘L) :(‘1- R et
. 2
M/e N/« 1—u (‘1

0/

S (1= M) k[l—.\[ﬁf\

(43)

where
_ Me
S TR Y R

expressed in terms of the
obtained

The pressure coeflicient Oy,
incompressible pressure coetticient (', is casily

ADVISORY COMMITTEE FOR AERONAUTICS

from the general formula (18h) by putting y=—1 and
making use of equations (+3) and (18a). Thus,

1 44)
Cyary=Ch0 PR TTTTTALE o (4]
(A=A o 2y 2

Observe that for this case the function F(r) introduced by
Chaplygin and given in equation (40) is exactly equal to
unity. From the point of view of the present paper then,
von Karman's approximation appears to be equivalent to
that of Chaplygin, who approximates F(r) by unity. Tt
follows that the range of validity of von Karman's approxi-
mation and that of Chaplygin, in a strict sense, coincide.
Furthermore, it is pointed out that the von Karman approxi-
mation does not permit a supersonic region. Von Karman’s
clioice of y=—1 has the advantage, however, of yielding
simple explicit expressions for (q/q). in terms of (¢/g1) and
for €, in terms of C,, Several values of C,a, caleu-
lated by cquation (44) are included in figure 4. For the
purpose of comparison with the other approximations, there
is plotted in figure 5 the ratio of (Crar)s to Cha against the
stream Mach number M, in the case of von KArman’s approxi-
mation. The values of Cho are obtained with the use of
velocity correction formula (42) for the local Mach number
M=1, but the values of (Cpoary)s arC calculated with y=1.4.

THE TEMPLE-YARWOOD APPROXIMATION

The functions ¢ and ¥ related by the first-order simultane-
ous equations (21) separately satisly the second-order
equations

) D[ 1 267_
e n® [ 3"

M(g) %‘Z]zo'

In terms of the nondimensional speed variable 7 and with
the values of M(g) and (@) for the adiabatic case given by
cquations (25), these cquations take the form

(4
o'y, 1 2

2
o TR o

1(1=—# %, D

s ote, [ H1—n 287

4 T 96t T or | 1= (28+1)r o7, - l
\ (46)

L1oEar ey, O r )

3 r(1—7)Btt 08 ' or (1—r)# o7

Formal solutions of these equations were given by Chaplygin

in the form of two infinite series

¢/=BG+Z‘:B".¢M(T) sin (’n0+5m)

m=\

(47)
d=—Beo(r) —S°B.¢n(r) cOs (mB-+em)
1

e
where the [unctions ¥a(7) and ¢n(r) are obtained from
hypergeometric series and B, Bn, and e are arbitrary
constants.

A disadvantage of the formal solution, as remarked by
Temple and Yarwood, is that it is unsuitable for numerical
computation beeause the hvpergeometric functions involved
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are complicated and are not tabulated.  Temple and Yar-
wood therefore looked for approximations that are of
practical value in caleulations of compressible flows. By
means of a skillful analvsis, they found such approximations
and showed that the simplest forms for ¢, and ¢, are of
the type

‘l/m(T) :[’?(7)]""

Pnl(r) =] (48)
du(7) zl()g &)
where n(r) and £(), independent of the index m, are
p=e=(1-31)s (49)

Significantly, from the point of view of the analysis of the
present paper, the functions z and £, approximated by

4

right-hand sides of equations (33) and (34).  The approxima-
tion of Temple and Yarwood then leads to the same velocity
correction relation as was obtained by means of Chaplygin's
approximation (cquation (41)).

The velocity and pressure-cocfficient correction formulas
obtained by Temple and Yarwood are more involved than
the explicit cexpressions (43) and (44) obtained by von

<l -2 r) ¢ are none other than the funetions defined on the

2
Kérmén. Replacing 7 in equation (41) by n(% ) thusyields
17¢

5 g \*
) —(T l_i”_(ﬂ_
ald \q 5 (50)
1 /e I—ZTI
where
O M?
T SEM?

The solution of this cubic equation for (g/¢,). is

‘i-l—( ol
(0‘3 Tto

) (1L S N S 5

’Il)z <ql>13 (l 4 Tl) co8s ¢ 1)
3 12

e ) ),

and 0<a_$_1;"
lated by cquation (18b). Some values of the pressure
coefficient C,,y, calculated with the aid of equation (51) are

(Crm,

shown in figure 4: a curve of—(,
‘p.

included in figure 5. It is remarked that, with the use of
equation (39), the velocity correction formula (50) viclds a
limiting value M = 1.35.

where

The pressure coefficient (', is then calcu-

Je plotted against M, is

APPROXIMATION BASED ON GEOMETRIC MEAN OF dL AND di

Without going into its deep significance in the present
paper, it is of interest to introduce another function related

to L and L and to the general particular solutions.  This
function. which like L and L reduces to log q for =0, is
defined by

M= [(dLdLy+ (52)

It is remarked that 77(s) is closely related to u function K(r)

employed by Temple and Yarwood (reference 7) in the

determination of their approximation. In the next section,

it will be seen that the function Z7(r) plays an important role

in conneetion with the Prandtl-Glanert approximation.
IFrom cquations (26) and (27),

((Lz—i\:dgz(l—r} ’—{I’—/
and
1 —(28+ 11 ds
dL = N\dy—= (T= 78+ —(11
Then,
” A\ 1— 28+ 17" dq -
PR — i 2 SR 5¢
(L dL) <x.> dy [ 22 ] MG
and, from cquation (52),
H(7)=log q+h(7) (54)

where
—l *r l—(2ﬁ+l)_1' 1/2.— QI
h(T)__‘.ZJo {[ 1—7r ] ll T

The function A(r) can be obtained in a closed form for any
value of v (or B) and is

log [(] _r)l/2+(l -_i)l”] [(1 _lr)l,,__ (T."'T)“z]:/l?:

'-’(l—\/T—:)T:'

h{r)==—

(55a)

1 . . . S
where =95 and where this expression is valid in the

Y12
subsonic range 0=<r<r,. With 7 replaced by "—E}T-I_iwz and

0< M1, the expression for h(7) becomes

P T Az
h(z)=—log lii]*)*"!)_ "'ll’i“v\:_' log = \%‘(—!“_{Ep)
2 "N VT
/a— o - - 23172
+|_;£7‘ T log \;.—f'!,i VA (55b)
2, AT,

It is observed that, for the supersonic region =rs1or
A>1, (1) as defined by equation (52) becomes a complex
function; but. for present purposes, only the real function
of the subsonic range is utilized.

The function 77(r) may be utilized to obtain a velocity
correction formula in the same manner as the functions
L(r) und L(r). Thus, analogous to cquation (33), (36),

or (37).
(1) ¢ 5
<(Il>l“((/l)r etin (56)
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equation (36) with the approxi-
Equation (37} may be

It is instructive to compare
mation given by equation (37).
written us i ‘
,(1> (,‘/ Lt 1)
( - ./'-i(dl,;d?,i] )
and cquation (56) may be written as

q ) B pfm‘du::

0/, [(,./'(.uldb' ’], ]

)

Thus. the power of the exponential is in one case the integral
. . . dL+dL . .

of the artthmetic mean > and in the other case the in-

tegral of the geometric mean (dL dIDV2, Table 1 shows val-

. + . .
nes of the functions 1) o () and A(r) i the case of wir

- 1 R
(«,:1.4, B=2.5, and r,——6> and figures 1(n) and 1(b) show

these functions plotted against 7 and M, respectively. Observe
{hat these functions, and consequently the velocity correction
formulas (37) and (56), differ only slightly in the subsonie
range 0< M1, Figure 5 exhibits graphically a comparison
of the velocity correction formulas (37) and (36) for M=1.
The limiting value of M (defined by equation (39)) is M=1
in the case of equation (56) as compared with M =1.15 in the
case of equation (37).

COMPARISON OF RESULTS OF PRESENT PAPER WITH PRANDTL.

GLAUERT APPROXIMATION

The well-known Prandtl-Glauert approximation is based

on the assumption of vanishingly small disturbances to the

main  stream. The Prandtl-Glauert  velocity correction
formula may be expressed as

5

N T Je ! (57)

(IV:.\[{'))'”

(q f’;_‘(]})

where ¢—q: is vanishingly small.

'

The left-hand side of this

equation s actually the differential cocfficient (q/q,).
d{qlq):
evaluated at the main stream velocity g=gq (or r=m). An

oxact form of the Prandtl-Glauert approximation then is

[d(q/ql)c R S -
4l ) e~ =M (38)
The differential cocfficient in cquation (58) is now evaluated
for the various approximations treated in the present paper.

Tor the arithmetic-mean approximation of the present
paper given by equation (37) (v or 8 arbitrary),

d(f//qQ_c] - A
_ D)
daig) dean” (g ppaq T REEDT
o 1Y
= T T UM

1+(1—;\{;‘>(1+ 55
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| e DAy
SRt AL S T

\ . D
: +

1182448+ .
" a8 "*B"Bi—r a0 (69

‘ For the Chaplygin or the Temple-Yarwood approximation
given by equation (41) (y= L4 or 8=2.5),

| ; =2,

t (lﬁfz,/'mr] 4t

‘ d((]/ql)f =7y 15
1'—'4_ T
| —o M2

-

1—7‘,-(1531‘2
i lageriianeg (60)
- 9ot 40 ! e

\ For the von Kérmain approximation given by cquation (42)
1

11 ('y:—l or 3=—:;):

| -

‘Mﬂi)f] =(1—7)"
fl'fl

d(q/q):
_ 1
=M (61)
Ifor the gcomctri(--mvmi approximation of the present
paper given by equation (56) (v or B arbitrary),
[d(‘l_/fl_').s] ___[, 1= ._.}”
d(qlg) ) rer, LI—@B+DT
1
R (62)

[quation (62) is independent of the value of the adiabatic
index v and includes the von Kdrmdn approximation. Ob-
sorve that the geometric-mean approximation yields the
Prandti-Glauert result exactly, whereas the arithmetic-mean
approximation vields the Prandtl-Glauert result insofar as
torms inclusive of M* are concerned.  The Chaplygin or the
Temple-Yarwood approximation contains  the Prandtl-
Glauert result only insofar as the M -term is concerned.

RESUME AND CONCLUDING REMARKS

1. Basic elementary solutions of the hodograph equations
have been employed to provide a basis for comparison, in
the form of velocity correction formulas, of corresponding
compressible and incompressible flows.

9. The velocity correction formulas obtained by Chaplygin,
by von Kirmin, and by Temple and Yarwood have been
unified by means of these basic solutions and shown to be
cssentially equivalent.
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3. In the present paper two tyvpes of approximations have
been introduced by means of the basic elementary solutions,
namely, the “arithmetic-mean” type and the *‘geometrie-
mean’’ type. These approximations include those obtained
by Chaplygin, by von Kirmin, and by Temple and Yarwood.

4, The approximations discussed in the present paper
have been compared with the well-known results of Prandtl
and Glauert. For this purpose, it has been emphasized that
the Prandtl-Glauert result is valid for vanishingly small dis-
turbances and, in a strict sense, is the slope term in a Taylor
expansion in a quantity which measures the disturbance.
It was found that the arithmetic-mean type yields the
Prandtl-Glauert result to a higher order of approximation
than the Chaplygin or the Temple-Yarwood type and that
the geometric-mean type contains the Prandti-Glauert result
exactly. The two types of approximations introduced in
the present paper then appear to be preferable to the others
as a basis for extrapolation into the range of high stream
Mach numbers and large disturbances to the main stream.

5. The results of the present paper have been obtained
without consideration of any particular boundary. The
actual boundary problem of determining the flow past a
prescribed body is of a high order of difficulty and involves
in general all the particular solutions of the hodograph
equations.

6. The particular solutions discussed in the present paper
are well-behaved functions in both the subsonic and the
supersonic regions. The hodograph equations give no reason,
in general, to suppose that a discontinuity necessarily occurs
in the solution when local sound speed is attained. Rather,
it appears that the first breakdown of the solution is as-
sociated with the vanishing of the Jacobian of the trans-
formation from the physical to the hodograph variables.
Indeed, von Kfirmin has made an equivalent suggestion in
that the appearance of infinite accelerations in the flow
solution is a condition for flow discontinuities. Interesting
speculations on this matter are suggested by the results of the
present paper since the “limiting” curves discussed in the
present paper are defined by a condition that is equivalent
to the condition for infinite acceleration. The arithmetic-
mean type of approximation thus yields a limiting value of
the local Mach number Af=1.15, and the geometric-mean
type of approximation yields a limiting value of the local
Mach number M=1. The value M =1 appears to be exact
for vanishingly small disturbances; that is, local Mach
number M=stream Mach number 3f;=1 (Prandtl-Glauert

Y3

approximation). Ilowever, for finite disturbances to the
main flow due to the presence of a body in the Huid, infinite
accelerations may oceur, for stream Mach numbers less than
unity, in regions where the local Mach number is greater
than unity. In this regard, the arithmetic-mean type of
approximation, considered as an extension of the Prandtl-
Glauert relation to finite disturbances, indicates the pos-
sibility of a mixed subsonic and supersonic flow without
discontinuities. [t is important, however, to recognize
that in general the limiting value of the local Mach number
M is a function of shape parameters and is a result of the
blending of many particular solutions of the hodograph flow
equations according to the boundary conditions.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTioNAL ADpvisory COMMITTEE FOR AERONAUTICS,
LancLeY Fiewp, Va., January 12, 1944.
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TABLE 3—VALUES OF F(r) FOR SEVERAL VALUES OF
1—M?

—(B+DT_
[F(“I)" ety ( 3 -xu]

M
=14 yml - (B
\ @=29 || (ah-m) . n;ﬁm‘l}hc Limiting
Adiabatic sotherma analogy nosc_;g:gl;cs-

|y, Fa(1=MDeM

lymom, Fml=M1
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force -
: gpara!h;l o Linear
N Sym- | 'O AX18 . |Sym-{| Positive | Designa- |Sym-| (compo-
Designation m symbol | Designation | “Joi” | .irection | ton, g o nént a‘l)gng Angular
. axis)
Longitudinal.___.... X X Rolling...-... L Y—2Z Roll......... @ u ]
Lateral...cecccaeeeaee| Y Y Pitohing...... M Z—X Pitch.____... 9 v . q
Normal..cococeaemanad] Z z Yawing....... N X—vY Yaw........| ¢ w T
Absolute coefficients of moment Angle of set of control surface (relative to neutral’
Ci= L o.=M Co= N position), 5. (Indicate surface by proper subscript.)
T gbS " geS " gbS o ,
(rolling) (pitching) (yawing)
4, PROPELLER SYMBOLS
D Diameter . P
P Geometric pitch P f:'ower, absolute coefﬁmgnb Cp,—pnaD‘
D  Pitch ratio . S5V
1"7/ , Inflow velocity C, Speed-power coeﬁicxent=¢ pp—n—2 .
\ Slipstream velocity T 7 Efficiency
T Thrust, absolute coefficient Cr=—375; n Revolutions per second, rps
e Effective helix angl (X
. ) ective helix angle=tan~ (———)
Q Torque, absolute coefficient Cq;;n%)—b - © 2xrn

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=550 ft-lb/sec
1 metric horsepower=0.9863 hp

1 mph=0.4470 mps

1 mps=2.2369 mph

1 1b=0.4536 kg
1 kg=2.2046 1b
1 mi=1,609.35 m=>5,280 ft
1 m=3.2808 ft




