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AERONAUTIC SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

W 
a 

m 
I 

8 

a 
b 
c 

A 

V 

1 

L 

D 

Dt 

Dt 

D, 

C 

Symbol 

Metrio English 

Unit Abbrevia- 
tion Unit Abbrevia- 

tion 

Length  
Time  
Force  

; 
t 
F 

m 
s 

kg 

foot (or mile)  ft (or mi) 
seo (or hr) 
lb 

second (or hour)  
weight of 1 pound  weight of 1 kilogram  

Speed  

P 
V 

hp 
mph 
fps 

/kilometers per hour  
l meters per second  

kph 
mpa 

miles per hour  
feet per second  

2. GENERAL SYMBOLS 

We&ght=mg 
Standard acceleration of gravity=9.80665 m/s' 

or 32.1740 ft/sec3 

W Mass=— 
Moment  of  inertia=wufc*.    (Indicate  axis  of 

radius of gyration k by proper subscript.) 
Coefficient of viscosity 

v Kinematic viscosity 
p Density (mass per unit volume) 
Standard density of dry air, 0.12497 kgrm^-s' at 15? C 

and 760 mm; or 0.002378 lb-ff* secJ 

Specific weight of "standard" air, 1.2255 kg/m' or 
0.07651 lb/cu ft 

3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Chord 

Aspect ratio, -g- 

True air speed 

Dynamic pressure, -zßV* 

Lift, absolute coefficient Ct=T& 

Drag, absolute coefficient Co=-^ 

Profile drag, absolute coefficient Cm= 

Induced drag, absolute coefficient CDi=—^ 

Parasite drag, absolute coefficient CDv — ro 

C 
Cross-wind force, absolute coefficient Cc=r& 

t*i 

Q 
o 
B 

a 
t 

D, «0 
qS «« n, «« 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) 
Resultant moment 
Resultant angular velocity .   -   . 

Reynolds number, p— where lis a linear dimen- 

sion (e.g., for an airfoil of 1.0 ft chord, 100 mph, 
standard pressure at 15° C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, tho corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero- 

lift position) 
Flight-path angle 
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REPORT No. 789 

ON THE FLOW OF A COMPRESSIBLE FLUID BY THE HODOGRAPH METHOD 
^-UNIFICATION AND EXTENSION OF PRESENT-DAY RESULTS 

Hv I. E. GARKICK and CARL KAPLAN 

SUMMARY 

Elementam basic solutions of the equations of motion of a 
compressible fluid in the hodograph variables are developed and 
used to provide a basis for comparison, in the. form oj velocity 
correction formulas, of corresponding compressible and incom- 
pressible flows. The known approximate results of Chaplygin 
von Kdrmdn and Tsien, Temple and Yarwood, and Prandtl 
and Glauert are unified by means of the analysis of the 
present paper. Two new types of approximations, obtained 
from the basic solutions, are introduced; they possess certain 
desirable features of the other approximations and appear 
preferable as a basis for extrapolation into the range of high 
stream Mach numbers and large disturbances to the main 
stream. Tables and figures giving velocity and pressure- 
coefficient correction factors are included in order to facilitate 
the practical application of the results. 

INTRODUCTION 

The present paper is concerned with a theoretical study 
of the hydrodynamical equations of a perfect compressible 
iluid in two dimensions, in which the so-called hodograph 
variables are used as the independent variables. It is hoped 
to achieve herein a unification of the present-day results 
obtained in this field and also to provide a working basis for 
further developments. The earliest contributors to the 
hodograph method for treating compressible fluids were 
Molenbroek (reference 1) and Chaplygin (reference 2). The 
remarkable work of Chaplygin on gas jets appeared in 
Russian in 1904 but remained relatively unnoticed. In 
recent years contributions to I lie hodograph method have 
been made chiellv by Demtchenko (reference 3), von Kärmän 
(reference 4), Tsien (reference 5), Ringleb (reference 0), and 
Temple and Yarwood  (reference 7). 

The chief reason, and perhaps the only reason, for pre- 
ferring the hodograph variables to the physical plane co- 
ordinates is that the equations of motion in the hodograph 
variables are linear. This simplification is achieved, how- 
ever, at the cost of more difficult boundary conditions and 
at a loss of physical insight. The great simplification in the 
mathematics due to linearity nevertheless makes it desirable 

to pursue this line of attack as long as it appears profitable 

to do so. 
The mathematics for handling the flow equations re- 

ceived a substantial impetus by the work of Bers and 
Gelbart (reference 8), who developed a new function theory 
analogous to ordinary analytic function theory. The 
present paper utilizes the methods of this new function 
theory to develop certain functions essential to the compres- 
sible-flow problem. It is of historical interest that ideas 
similar to those of Bers and Gelbart were explored by the 
renowned mathematician Hilbert (reference 9) in the early 
part of this century but do not appear to have been further 
developed at the time. 

The material to be treated is conveniently separated into 
two parts. In part I, the present paper, basic particular 
solutions of the hodograph flow equations are developed and 
employed in unifying and extending the results obtained by 
Chaplvgin, von Karman, and Temple and Yarwood. The 
results obtained in part I are of immediate practical applica- 
tion and are given in the form of tables and graphs of velocity 
and pressure-coefficient correction factors. In part II, 
general particular solutions of the hodograph flow equations 
Ire developed and discussed. The material in part II, it is 
hoped, will lead to a method for handling the actual boundary 
problem of the flow of a compressible fluid past a prescribed 

body. 
ANALYSIS 

FLOW EQUATIONS OF AN INCOMPRESSIBLE FLUID 

It is well known that the relations between the velocity 
potential * and the stream function * for the steady irrota- 
tional two-dimensional motion of a perfect incompressible 

fluid are 

öx~ öy 

dif "dx 

(1) 

These equations are the Cauchy-Riemann equations and 
therefore <t>+i4> is an analytic function.f(z) of the complex 
variable z=x+iy. 
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Tlic complex velocity or reflected velocity vector u—ir is 
obtained from the complex potential A» by differentiation. 

Thus, 
df(z\ 
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illld 
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u—%v=- (h 

__g-(W+l lo« <)) (2) 

where q is the magnitude of the velocity vector and 0 is the 
angle the vector makes with the positive direction of the 

i-axis. 
The variables 6 and q are sometimes referred to as "the 

hodograph variables." The flow equations in the variables 
6 and q can be readily derived by introducing 6+i log q as the 
independent complex variable in place of r+iy. Then, m 
analogy with equation (1), 

dO 
d* 

" ö log q 

d<t> 
) (3) 

dlogq        do1 

or 
ö4> 

' q  dd 

(4) 

(•-) 

These equations are known as the hodograph equations for 
the flow of an incompressible fluid. 

FLOW EQUATIONS OF A COMPRF.SSIBLE FLUID 

The equations corresponding to equation  (1)  are, for a 
compressible fluid, 

•Ö^__£n d<P 
dx~p dy 

Ö^__pn dj/ 
by       P dx, 

where p is the density of the fluid at any point (/,?/) and p„ is 
a constant density, which for convenience is referred to a 
stagnation point. 

A short way to derive the hodograph  equations tor a 
compressible fluid, attributed to Molenbroek, is as follows: 

,   .,      a*    ,     a* 
According to equations (5), with «=ä). '>ntl v~^j 

d<i>+i - d$=(u dx+v dy) +i(-v dr+u dy) 

or 

— (u—iv)(dx+i dy) 

=qe~<e dz 

q   \ ps 
(0) 

It follows from equation  (6),  by considering 6 and q as 
independent variables, that 

d<>~ qe   V dd ' % o  00/ 
dz 
"öl 

dz 
dq 

1        /Ö<4 ,   . Pn öA 

Then, by assuming that p is a function of only q (equivalent 
to assuming that the pressure is a function of  only  the 
density), 

dqd'e 

and 

. rffp„/p(/] d^l 
dq        00 J ' q \dqdd '    p  d</d0/ 

p   ötf/^V   \d0dg      P öflö^y 

Since, by continuity, these two expressions are identical, it 
follows that 

.0?"    P 

Hence, by equating real and imaginary parts, 

d9 
Po? d£ 

" P   Ö7 

=,/     </g      00 

(7) 

These arc the hodograph equations, first obtained by 
Molenbroek, for the flow of a compressible fluid and are 
independent of the form of the pressure-density relation. 
It is observed that, when p=p0=Constant, equations (7) 
reduce to equations (4). Equations (7), in contrast with 
equations (5), are linear in the dependent variables. 

BERNOULLI'S EQUATION AND EQUATION OF STATE 

In the present section there is listed a collection of for- 
mulas and definitions necessary in the analysis. 

Bernoulli's equation for a compressible fluid is 

Jpo     P        - 
(8) 

where 
p     static pressure in fluid 
Po    static pressure at stagnation point (2=0) 
p     density of fluid 
q     magnitude of velocity of fluid 

The   adiabatic   relation   between   the   pressure   and   the 

density is 
P_ _/P_V 
Vo     \Pa/ 

where 
-y     adiabatic index (approx. 1.4 for air) 
p0    density of fluid at stagnation point (2=0) 

The local velocity of sound a is obtained from 

(9) 

For the adiabatic case, 

dp 

p 
(10) 
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"- p.if. 
From  Bernoulli's  equation   (S)   and  from  equations   (9) 

and (10), the following relations may be obtained: 

tin 

j 

where a„ is the velocity of sound at stagnation point (<z = 0). 
From   equations   (11)   for   -y>l,   a   maximum   velocity 

<l = qm is obtained for the limiting conditions p = p~a = 0. 
Thus, 

7-1 

=2i8a„1 (12) 

where 

0= 
I 

The fundamental nondimensional speed variable, in 
general, is q/oo but it is found useful in the analysis to employ 
a nondimensional speed variable T defined as 

r-f* (13) 

For 7>1, the range of the variable T is Ogr^ 1. The value 
T = 0 has a dual meaning; T=0 in the case of a compressible 
fluid corresponds to a stagnation point (?=0), or T=0 may 
mean the limiting case of an incompressible fluid (a0=<x>). 

With the definitions of T and ß, equations (11) become 

a=o))(l-T)wl 

p = lh(l-ry (14) 

7» = Pb(l-r)*+I 

The local Mach number M—^: may be expressed in terms 

of the speed variable T in the following way: 

q^do* a' 

= 2JÖr 
1-r 

or, by solving for r in terms of M, 

M2 

'2ß+M" 

(15) 

(Iß) 

The value of T for which the local velocity of the fluid 
equals the. local velocity of sound (il/=l) is given by 

(17) 2/3+1 

In the case of uniform flow past a fixed boundary, the 
pressure coefficient is defined as 

'i     1 

;PI'/I" 

where the subscript 1 refers to the undisturbed stream.   The 
pressure coefficient for the incompressible case (M=Q) is 

e---(S)." 
The pressure coefficient for the compressible case is 

1 
C, ■M-'^^-^-^T) 
For q = q, (sonic), 

(^P.U.it — 
TW 

, .r2+(7-iu/,nr-,| 
+L       7+1 J 

For q = qm (vacuum), 

(Cv,Ui)m—      y^J2 

(18a) 

(lSb) 

(18c) 

(18d) 

BASIC SOLUTIONS OF HODOGRAPH EQUATIONS 

Consider the incompressible case represented by equa- 
tions (3) or (4). It is clear that 0=0 and ^=log q satisfy 
these equations. In fact, any convergent power series in 
w=0+i log q represents an analytic function of which the 
real and imaginary parts satisfy equations (3) or (4). The 
class of analytic functions in w (and the concept of analytic 
continuation) then yields all the particular solutions of these 
equations. 

The particular solution w=ß+i log q can be obtained by 
means of an integration that is instructive in the generaliza- 
tion to the compressible case.   It is well known that 

F(w)=ff(w)dw 

can be represented as the sum of two line integrals 

F(w)=j(Pd8-Qd\oSq)+if(Qd0+Pd\ogq) 

where 
f(w) = P+iQ 

Thus, given a pair of functions P and Q that satisfy equations 
(3) or (4), this process yields another pair of solutions, 
namely, the real and the imaginary parts of F(w). For 
example, if P=\ and Q=0, 

F(w)=w=6+i log? 

Again, if P=0 and Q=l, 

F(w) = iw = — log 2+i& 

(19) 

(20) 

The physical interpretation of equations (19) and (20), 
considered as flow patterns, is of some interest in connection 
with later developments. It is clear that equations (19) 
and (20) represent a vortex and a source located at the 
origin,   respectively. 
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The generalization to the compressible case of the fore- 
going elementary results was accomplished by Bore and 
Gelbart (reference 8) by means of simple yet fertile ideas. 
Bers and Gelbart treat equations of the form 

d<j> ,M^ 

(21) 

and show as is readily verified that, if P and Q are a pair 
of solutions, the real and imaginary parts of the following 
sum of line integrals 

J> de- \A<M dq]+i§ [Q de+ ^ r </</] (22) 

are also solutions of equations (21). 
In particular, corresponding to the pair of solutions P=\ 

and Q=0, there is obtained 

w=--e+i (23) 

(24) 

where 

and 

where 

lhk)dq 

and, for 7,=0andQ=l, 

iW=i[8+i \ \i(q) dq] 

By repeated application of the process of integration, indi- 
cated by expression (22), a general set of particular solutions 
of equations (21) may be obtained. These particular solu- 
tions are discussed in part II; in the present paper, only the 
solutions given by equations (23) and (24) are needed. 

The general hodograph equations (7) are of the form of 
equations (21) with 

and 

*»(«) =-7-^— 

For the rest of this paper, the adiabatic pressure-density 
relation (0) is used. By means of equations (9) and (14) 
and the relation 

dq        q' 

obtained from the differential form of Bernoulli's equa- 
tion (8), it follows that 

Xi('/) = 

x2(<z) 

(I-T)' 

-(20+1)7 
q(l-r)" 

(25) 

The evaluation of the integrals in equations (23) and (24) 
is made unique by requiring that the results reduce to the 
incompressible case when the speed of sound is infinite 
(that is, when 7=0).   Then, 

■>'-■£ 

= log q+J(r) Pß) 

L-J "Ji-ry41" q 

= log q + <j(r) ('27> 

,,  irri-(2g+nr   idr 

and it is observed that the functions /(T) and g(r) vanish 

for 7=0. 
Equations (23) and (24) can be written in the form 

W=6+iL 
and 

iW=i(ß-\-i~L) 

It is important to note that, in the incompressible case, 
W and i\\' reduce to w and iw, since L and L reduce to log q. 
Thus, there are in the compressible case two basic functions 
L and L corresponding to the one function log q in the in- 
compressible case. It is of interest to mention that the 

functions \V and iW, considered as flow patterns in a com- 
pressible fluid, can again be interpreted as a vortex and a 

source. 

EVALUATION OF FUNCTIONS /(r)  AND g(r) FOR VARIOUS VALUES OF 9 

In general, the integrals in equations (26) and (27) repre- 
senting the functions/(r) and g(r) are expressible by infinite 
series. For the important case of air, however, with the 
adiabatic index y put equal to 1.4 instead of the usual value 
1.408, these functions can bo obtained in closed forms. 
Thus, with /3=2.5, 

fb >-!J>- .)5/2_l]ÜI 
' 7 

= l(l_T)5/2+I(l_T)^ 

+ (1_T),fl_2«_l01??±ll=I^ (28) •) 

and 

air 
1  f'T   1-Hr Idr 

(1 -r)S'2+3(l—r)3'* 

+ 1 
(1-7) 

1        , l + ( 
y^-jj-log 

1-7)' (29) 

Table 1 contains values of/(T) and <j{r), and figure 1(a) 
shows those functions plotted against r. Observe that/fr) 
and 17(7) are well-behaved functions in the range 0gr<l. 
In figure Kb), these functions are plotted against the local 
Mach number M in the practical speed range. 
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FIGURE 1.—The functions/, (?< -77-' and A against rand M for 7 -1.4; the function f=g against M for v« —1.0. 
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Other interesting cases for which the- functions/« and 

g(r) can be expressed in dosed forms are 7 = », T = 2. 7 = 7,' 

and 7=,_!.    For 7 = =o  (0 = 0. a = », incompressible case), 

Forr=2 (0=1). 

f(r)=H(T)=0 

AT) = -TJT 

^ = 1-^-4108 d-r) 

For r=^5 (0=2) 

/(T) = -+r2 

For 7= —1 ( 0= —2/ 

/N , 1 + Ü-T)"2 

/(r)=i7(T) = -log 3  

For the isothermal case 7-l(0=-), the velocity of sound 
a=ao=Constant and the functions / and g are obtained as 
infinite series it! the ratio ,/a,.    Thus, in the limit 0-~, 

««/««>=JL™2 J. Iv-**?;   J"^ 

1 Jo   V      "7   '//«• 

n-1 " 

and 

1   (■«/«■ -0+ä)£_, djq/aj 
qja0 

1 no' 

= 2J      L\      a°v ?/fflo 

«■ 
» *■ , ä (7 W* 

= 1—«      + 2J .">«+i7mi 

anil 

«r)4§ (-!)"(£)? 

=4^4/S(/S_1)T* 

-7.^H)(S' 

.'/('■) = 4s <-»• (-.')*"■: 

=4^4fl(/s+nr"_ ■ 

4 a„: ,2    32 7 W/ 

The significant feature of this general result is that, if powers 
of qla0 higher than the third are neglected, 

For arbitrary values of y (or 0) the expressions for/(r) and 
f/(r), obtained'with the aid of the binomial expansion, are 

f(r)=<](r)- (30) 

and does not involve explicitly the adiabatic index 7. Hus 
circumstance underlies the present-day approximate im-tlioci» 
for obtaining velocity and pressure-coefficient correction 
factors; in the following sections, this point is brought out 

more clearly. 

APPLICATION OF BASIC FUNCTIONS L AND L 

In this section, the basic functions L and L are employed 
to set up relations between velocities in "corresponding 
compressible and incompressible flows. These relations are 
of the nature of "stretching factors" or velocity correction 
formulas and contain the results of Chaplygin. von Karman. 
Temple and Yarwood, and dauert and Prandtl. U is 
important to recognize at the outset that no single velocity 
correction formula can represent in an exact way the cor- 
respondence of flow patterns past a prescribed body in 
a compressible and an incompressible fluid. A single velocity 
correction formula is actually feasible in only two cases: 
(1) The stream Mach number is small (even though the 
disturbance to the main stream due to the presence o the 
bodv mav be large) so that the compressible-flow pattern 
differs only slightly from the incompressible-How pattern or 
(2) the disturbance to the main stream is vanishing^ small 
(even though the stream Mach number may be high) so that 
the effect of the shape of the solid boundary is small. 1 he 
various velocitv correction formulas discussed in the present 
paper differ essent.ally only in the degree to which the 
requirements of these two cases are satisfied. Despite their 
limitations, single velocity correction formulas are extra- 
polated, in view of the lack of more rigorous solutions into 
the range of large disturbances to the main stream and high 
Mach numbers. This extrapolation can be justified b> 
further theoretical investigations and by comparison with 

xperimental results. 
Consider again the corresponding pairs of functions 

w=e+ilog2| (31) 

and 

iw=i(B+i log q) 
iW=i(0 + i£) 

(32) 
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It has previously been noted that the p.iii-s of functions m 
equations (31) and (32) denote respectively a vortex and a 
source itt mi incompressible mid « compressible fluid, viel, 
pair of funetions can he employed to define a correspondence 
of flow patterns in which corresponding points are identified 
|,y the same values (*.+). Thus, in the ease of the vortex 

(equations (3111, 
ct>!=--4>c = 9 

^1 — \J,C----\QS. qt — L 

where the subseripts / and c refer to the ineompressihle and 
to the eompressible ease, respeelively.    It follows that 

<j, = eL 

=^/<w (33) 

Similarly, in the ease of the source (equations (32)), 

<l>,=<t>c=—\oa </.= — £ 

mula appears to he the following combination of equations 
(3-,) and (36). based on the arithmetic mean of/(r) and ;I'T). 

(37) 

and 

<f>,=ic=o 

q,=eL 

= qce"" (34) 

At the end of the preceding section it was pomtcd out that, 
to a first approximation, the funetions.,(r) and^r) are equal. 
This fact implies that, to a first approximation, a single veloc- 
ity correction formula is feasible. The assumption is now 
made that cither equation (33) or equation (34) can be adoptee 
to provide n correspondence of flow patterns in the ease of 
uniform flow past a body in an incompressible and a com- 
pressible fluid. With the undisturbed streams as con- 
venient references, the following nondimcnsional forms of 
equations (33) and (34) can he written: 

(35) 

and 
(36) 

I„ a later section, still another combination referred to as 
-the ocometrie-mean tvpe of approximation'' is introduced: 
'„, ,h,: section dealin- with the Glauert-I'randtl approxima- 
tion certain features of the fore-oiu- arithmetic-mean tvpe 
of   approximation   and   of   the   ^conietnc-mcan   type   are 

discussed. . .. 
At this point it is desirable to discuss the practical applica- 

tion of equation (37).    According to equation (Hi). 

AP _ 
T~2ß + iU2 

and 

where the subscript 1 refers to the undisturbed stream. 
The use of the undisturbed stream as reference in the non- 
dimensional form of the velocity correction formula was 
introduced bv Tsien in reference .-5. where also the details of 
the von Kärmän approximation are developed. It is shown 
i„ the following section that either of equations (3.,) or (30) 
contains the result of Chaplygin, von Kaiman, and Temple 
and Yarwood. As has been previously pointed out the 
concept of a single velocity correction formula is feasible in 
onlvtwo cases, namely, small stream Mach numbers and 
vanishinglv small disturbances to the main stream It is 
desirable then to seek a single velocity correction formula 
that combines the features of these two cases. I'rom tins 
point of view, equation (35) or equation (36) is not the best 
choice      V better choice of a single velocity correction tor- 

ri'~_>jf+M2 

(?,H;)" 
M /2fl + M.'Y'' 

= \7A2ß+M2) 
(38) 

Equation (37)  then yields, for a given set of values of the 
stream Mach number A/, and the local Mach number M  a 
value for the ratio fo/«,). of the local velocity <l and the 
stream velocity ?, in an incompressible fluid.   Table 2 shows 
corresponding'values of («/*)« and («/«,), for various values 
of the stream Mach number A/, with y=lA (0=2.5).    lins 
tabulation is performed, for the purpose of comparison   for 
the, three cases represented by equations (35), (30), and (.WJ. 

Values of (,/«,)„ («/«.).. '»«I g]/ «»'tained from equations 

(37) and (38), are plotted against the local Mach number M 
in figure 2 for various values of the stream Mach number .1/,. 
Table 2 also shows values of the pressure  coefficients 6,.«, 
and  CrU   calculated by   equations   (18a)   and   (18b)   for 
these corresponding values of (7/4,), and fo/fl,)«.   figure 3 
shows the curves of pressure coefficients corresponding to   he 
curves of velocities of figure 2.    Useful cross plots of the 
curves in figure 3 are shown in figure 4,  111 which t,„   is 
plotted against A/, for various values of Cp,.   In addition, 
curves   are   shown   in   figure   4   for   (C,.„,).   and    1<W« 

,   calculated bv equations (18c) and (18,1), respective y.    Hie 
curve for (C,.*,). corresponds to the sonic value M-\  or 

T = r = - and in effect divides the region of How into a sub- 
g 6 

sonic and a supersonic part. The curve of (C,*,).. corre- 
sponds to the maximum value A/= - or r= 1 and represents 
the outer limit of the supersonic region (or a perfect vacuum). 
In order to exhibit the main differences between the various 
correction formulas (35), (36), and (37), the ratios of the 
sonic values («V«,). and the corresponding incompressible 
values C,,, are plotted against the stream Mach number 

.U, in figure 5. 
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PIGUKE2. -Velocity ratios <?/«.)«, <?/«!>,. »'"' lllvh/llllih 

(ill <,*,,., „, ,o or loci vdoci.y to stream vcloeUy, comprÄ and (,/?|)( ,„ (a) and (b) 

tmnn locü Mach numhrr -or vanous VHU.OS of Stroan, Mach number .U,.   Coupon 
' .,„, „Ken hv the same pair ol values M, AU. arc Riven by the same pa 
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(b) W4il,, ralio 

1.0 12 
M 

o[ local velocity to stream velocity, incomprcssihlu. 
FIODEK2.—ConlinllMl. 

2.0 22 
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VICORE 2— Concluded. 
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Ku.L-itK :i.   pressure cocllicienls C,«.,aml C',.o, against 

(a) Cp.u.-ciirvos. 

local Mach number M for various values of stream Mach number 
by the same pair «if values M, Mt. 

20 22 

A/,.   Correspond«« values of C.x.aud C,.o in (a) and (b) are given 
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(b) C.o-curvos. 
FIGURE:!.—Concluded. 
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FIGURE 4.—Pressure coclllcient Cp.ut against stroam Mach number Afi with corrosrxmUInK values or Cp.o; and lines of coustant local Mach numbor A/. 

Observe in figure 2 that the (q/qO(-curves have maxi- 
mum points. This fact means that the value of (qlq^c 
associated with a value of (qjqi), is not unique. Analytically, 
the criterion for the maximum point is equivalent to 

dr 

or, from velocity correction formula (37), 

(1-T)
2

*
+1
-(2Ö+1)T+1=0 

(39) 

For (3 = 2.5 this equation has only one positive root, r~'-,± 

or \l~ 1.15.   It is interesting to note that velocity correction 
formula (:iü) yields as the criterion for the maximum point 

l-(20 + l)r = O 

The root of this equation is '' = •'", = ., „XT alK*' ^or ä=2-5< is 

T = - or ;\/=l.    Velocity correction formula (35) yields no 

maximum v alue of T or M. 
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FIGURE 5.—The ralio of <cy JI.J, U) C,.o against Mi tor the various approximations. 
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.3 .4 .5 

l'iauRKÜ.—Tho runclloit /'HCiilusl Much num 

1 

IHT M fur several vnlui-3 u( tho aüüibutlc liuit-x y. 

Meaning can be given to the value r=^(iU=l) in the 

ease of equation (34) with reference to the original inter- 
pretation of the How pattern as that of a source.    It can be 

shown that the acceleration (l'£)   along a streamline is 

infinite at all points for which the local "Mach number is 

unity (•' = -) and  that a How discontinuity exists  there. 

In the case of the vortex How pattern (equation (33)), no 
How discontinuity occurs for i\/<°o. The velocity correc- 
tion formula (37) suggests a "limiting" value .1/-1.15 for a 
spiral How, since equation (39) is analogous to a condition 
of infinite acceleration. Thus, the existence of a mixed 
subsonic and supersonic region of How without discontinuities 
is indicated. Since the occurrence of this limiting value of 
M is a consequence of the simple form assumed for the 
velocity correction formula, no undue significance should 
be attached to any particular value at the present time. 

THE CHAPLYUIN APPROXIMATION 

From the point of view of the present paper, Chaplygin's 
approximation for subsonic speeds assumes a simple and 
lucid form.    Chaplygin introduces in place of q a new inde- 

pendent speed variable ?) equivalent to the quantity given 
on the right-hand side of equation (33), namely, 

r, = qei 

The hodograph How equations (7) then assume the form 

d0       öi/- 
de dv 

d<j> M 

where 
"-^=~//(T)1>0 

(40) 

F(T) = 
I-(2/3+Or 
(1-T)2* + 1 

= l-/3(2/?+l)r- 3 
0(2/3+1) (20 + 2)7*- 

Values of the function ^'(7), for several values of 7 (or 8), 
are given in table 3 and are plotted in figure ü against the 
local Mach number M. Chaplygin noted that, in the case 
of air (0 = 2.5), ^'(7) differs but little from unity over about 

one-half the subsonic range Ogr^ ^   His approximation in 

the range of low subsonic speeds consists in neglecting powers 
of 7 higher than the first or in  replacing   F(T)   by  unity. 
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Equations (40) «... thou be written in the Cuuchy-Riemann 

form 
d<t> __    d^ 
d6~ö log 7? 

d<t>    __djt 
ö log r; <->9 

a„d * + ,> therefore is an analytic funct.on of the complex 
variable 6+1 log „. Chaplygm's approximation thus leads 
to the velocity correction formula 

from   the   general   formula   (lSl.)   by   putting  y=-\   and 
making use of equations (43) and (18a).    Thus, 

1-TT 
(41) 

where powers of r higher than the first are neglected l.rough- 
out The use of equation (154) instead of equation (.1.1) also 
leads to this result to the same order of approximation. 

THE VON KARMAN APPROXIMATION 

Von Kärmän's approximation corresponds to the case 

7=-l (or/3=-7,)- It follows at once from the integral 

expressions for J(r) and g(r) given by equations (26) and 
(27), respectively, that for this case 

,       l+(l-r)"2 

/(r)=ff(T)--log     ~-r,  

or, with the use of equation (10), 

f(T)=g(r) = -\og\\j + {l_jpyn\ 

This function, plotted against M, is included in figure 1(h). 
Corresponding to equations (35) and (30), there is a s.ngle 

equation 

Replacing r by r, (j)(' and r, by ,^T -cording to ela- 

tion (10) yields 

+ (l--l/i2) f<]\ _/<A L+<I~-WLA':  
\jfx)r\qi)c (1_.u,^"2 f-fi-U'+W^"]' 

(42) 

Then, by solving for (?/«,)«in terms of (?/«,), and the stream 

Mach number A/,, 

where 

w« 'w«,_^yy 
A/,' 

"~lT+Ö-^/?)' 

-*.M ',
r-L;,.o 

1 

(l-.lW+i -u-u-') 
<?„ 

(44) 

Observe that for this case the function F(r) introduced by 
Chaplvgin and given ... equation  (40)  is exactly equal to 
„„itv     Fmm the point of view of the present paper then, 
von'Kärmän's approximation appears to be equivalent to 
that of  Chaplvgin, who approximates F(j)  by unity.     It 
follows that the range of validity of von Kärmän s approxi- 
mation and  that of Chaplvgin, in a strict sense, co.nc.de. 
Furthermore, it is pointed out that the von kärmän approxi- 
mation «Iocs not permit a supersonic region.   \ on Karman s 
choice of 7=-I   has the advantage, however, of yielding 
simple explicit expressions for (,//</,)« in terms of (<//</,), and 
for C,v.  in  terms of C,,,.   Several values of Cp.«, calcu- 
lated bv equation (44)  are included in figure 4.    * or the 
purpose of comparison with the other approximations,   hero 
is plotted in figure 5 the ratio of «?„„,), to C,,„ against the 
stream Mach number A/, in the case of von Kärmän s approxi- 
mate...    The  values of  C„, are obtained with the use of 
velocity correction formula (42) for the local Mach number 
.\/=l/but the values of (Cp.,„), are calculated with y=\A. 

THE TEMPLE.YARWOOD APPROXIMATION 

The functions * and * related by the first-order simultane- 
ous equations (21) separately satisfy the second-order 

equations 

(43) 

The pressure coefficient T,,„, expressed  in  terms of  the 
incompressible   pressure  coelficient  <!',„, is easily obtained 

d?5+X.(?)ö(2Lx2(?) dq. 

#*, _i   a 
(451 

In terms of the nondimensional speed variable r and with 
the values of X,(«) and Uq) for the adiabatic case g.ven by 
equations (25), these equations take the form 

1 (1-rVd2* 
4      T   ' be 

1 l-(2|8+l)r V±      Ö r_2_ Ö/Loi 
4 -T-(i -T)'»    Ö6- T Or L(l -I")" ÖrJ       I 

(40) 

Formal solutions of these equations were given by Chaplygin 
in the form of two infinite series 

t=B6+f^Bm+m{T) sin (m8+tm) 

^-«♦,W-Sß.*»W cos (me+(n) 

(47) 

where  the  functions  *„.(T)   and  *m(r)   are  obtained   from 
hypergeometne  series  and   H,   Iim   and   «„  are  arbitrary 

constants. .    , , 
\ disadvantage of the formal solution, as remarked by 

Temple and Yarwood. is that it is unsuitable for numer.ca 
eomputation because the hypergeometric functions involved 
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nro complicated and an- not, tabulated. Temple and Yar- 
wood therefore looked for approximations that are of 
practical value in calculations of compressible Hows. By 
means of a skillful analysis, they found such approximations 
and showed that the simplest  forms  for f„ and <t>m are of 

t ho   tvpe 
lMr)=[u(r)l" 

4>„(T) «log £(T) 

where T,(T) and £(T), independent of the index m, are 

, = f=(1_|T), (40) 

Significantly, from the point, of view of the analysis of the 
present   paper,   the   functions  17   and   £,   approximated   by 

e none other than the functions defined on the (l-ijr)«*: 
right-hand sides of equations (33) and (34). The approxima- 
tion of Temple and Yarwood then leads to the same velocity 
correction relation as was obtained by means of Chaplygin's 
approximation   (equation    (41)). 

The velocity and pressure-coefficient correction formulas 
obtained by Temple and Yarwood are more involved than 
the explicit expressions (43) and (44) obtained by von 

Karman.    Replacing r in equation (41) by r,(^\ thusyields 

,5   (<Ly 

\q,/t    \qjc      i_5 
1 A    '1 

(50) 

where 
_   ML- 

The solution of this cubic equation for {ql(ji)c is 

,   . .    N cos ö (ftm 

ttHiX'C'-i-)-^-- (•r)i) 

where 

».-^('-i-xf-ni). 
and OO^- The pressure coefficient Cp.„t is then calcu- 

lated bv equation (18b). Some values of the pressure 
coefficient C,,.,,, calculated with the aid of equation (51) are 

shown in figure 4; a curve of (—^' plotted against U is 

included in figure 5. It is remarked that, with the use of 
equation (39), the velocity correction formula (oO) yields a 

limiting value M~ 1.35. 

APPROXIMATION BASED ON GEOMETRIC MEAN OF dl. AND dL 

Without going into its deep significance in the present 
paper, it is of interest to introduce another function related 

to L and L and to the general particular solutions. This 
function, which like L and L reduces to log q for r = 0, is 
defined bv 

//(r)-/(rf/w/£)'-- (5->) 

It is remarked that Il(j) is closely related to a function A'(r) 
employed by Temple and Yarwood (reference 7) in the 
determination of their approximation. In the next, section-, 
it will be seen that the function //(Y) plays an important role 
in connection with the l'randtl-tdauert approximation. 

From equations (20) and (27). 

,//. = r, r/*Z = C1 — - 
d<l 

and 
_1-(2J5+1W</ IT     ^   I       |-(-P + 

T :ien, 

and, from equation (52). 

rf7 

q 

II(T)=\ogq-tli(T) 

(53) 

(54) 

where 

h(r) -UT^T-IT 
The function h(r) can be obtained in a closed form for any 
value of 7 (or fl) and is 

/t(r)--log 
[(l-r)'«-f(l--7t)"

,][(l-r)'"-(r.-r)^]vl;: 

■-'(I-VO
VT

" 
(55a) 

where T, = .,-—!  and where this expression is valid in the 
W 

subsonic range Ogrgr,.    With r replaced by ,^"«1 

Og.US 1, the expression for h(r) becomes 

hi r) - - log r, :2-.Tt   
l0« | _ %/T< 

+'^'««,+7("-- (55b) 
\ T. 

It is observed that, for the supersonic region r. ^ rä 1 or 
,\/>l, IKT) as defined by equation (52) becomes a complex 
function; but. for present purposes, only the real function 
of the subsonic range is utilized. 

The function //(r) may be utilized to obtain a velocity 
correction formula in the same manner as the functions 
L{T) and L(r). Thus, analogous to equation (35), (30), 

or (37) 
(56) 

\qjr\'ll^'r 
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«bi- uvro,,,n,r «j-«»:;;«';:!;r;:! 
.nation  given   by   equat.on   (.,,).     l.quauon . 

written as JUL^U ! 

und equation (56) may ho written as I 

^ ef tfl. d~L\> ■■ ] 

Thus, tlu- power of the exponential is in one ease ihe integral 

<IL + llL „„el in the other ease the in- 

Table I shows val- 

and /I(T)  i"  Hie ease of air 

COMM1TTKK   VOR   AKKONArTICS 

,    5    ll/32+4/3 + 1A/8+ _      (59) 
~rl2S    ~" /> 

For the C'haplygin or the Templo-Yarwood approximation 

■riven by equation (41) (7= 1-4 or 0 = 2..)), 

of the arithmetic mean 

tcrral of the geometric mean (dL JL) 
t        . f(T) + <l(r) 

ues of the functions •        ., 

(7=1.4, 0 = 2.5, and r.^) *»d USurcs '(,l) U,ul 1(l,) Sh°W ' 
these functions plotted against r and U respectively. Observe 
that these functions, and consequently the velocity correction 
formulas (37) and (50), differ only slightly m the subsonic 
range 0< M< 1 ■ Figi.ro 5 exhibits graph.cnlly a comparison 
„[ ,he velocity correction formulas (37) and (50) for .U-1. 
The limiting value of M (denned by equation (30 ) .s A - 
in the case of equation (56) as compared with -U- l.lo m the 

ease of equation (157). 
COMPARISON  OF RESULTS OF  PRESENT  PAPER  WITH   PRANI.TI- 
COMPARISON (.|AtlERT APPROXIMATION 

The well-known Prandtl-Glauert approximation is based 
on the assumption of vanishingly small disturbances to he 
main stream. The Prandtl-Glauert veloe.ty correct.on 

formula may be expressed as 

(57) 

where «-«, is vanishingly small. The left-hand side of this 

equation is actually the differential eoeffic.ent ^^ 

evaluated at the main stream velocity ,=«,_ (or r=r,) An 
exact form of the  Prandtl-Glauert approximation  then is 

rd(qlqt)cl        I, (58) 

'd{qlqi) cl       =.  
rf(<Z/</i)J'-',     (] _,-,)* + 

1 + 

"1-(20+UT, 

(1_.Ur)(l+-^) 

1   J-1/2 

1_2ÖlUl 

= i+^,=+-^.w+ (60) 

For the von Kärmän approximation given by equation (42) 

^7=-lor^=—I)» 

r<Hqlq:)r\       =(1_T)W! 
Lrf(7/<7i)J'~n 

 1_._ (61) 
-(1-A/,2)"2 

For  the  geometrie-mean  approximation of  the  present 
pa|.er given'by equation (50) (7 or ß arbitrary), 

p/(///<2,)fi     r  ..'-?' -I"1 

The differential coellie.ent in equat.on (08) .8 now evaluated 
fo   the various approximations treated 1,1 the present paper 

For the  arithmetic-mean approximation of  the  preset., 
paper given by equation (37) (7 or ß arb.trnry), 

= Ö-"3/.') ,1/2 
(62) 

Equation (02) is i,ulepe,.,lent of »he value of the adiabatic. 
index 7 and includes the von Karman approx.mat.o  .   ( 

T::;:t;:::f linn^imauon „»*«. t,, pr.t,- 
(Vtauert result only insofar as the A/r-term » concerned. 

RESUME AND CONCLUDING  REMARKS 

1 Basic elementarv solutions of the hodograph equations 
have bee. employed to provide a basis for comparison ,m 
£0 form of velocity correction formulas, of corresponding 
compressible and incompressible flows ,     . 

"-The velocity correction formulas obtained by Chaplin 
bv von  Karman. and by Temple and Yarwood have been 
indued by moans of these basic solutions and shown to be 

essentially equivalent. 
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3. In the present paper two types of approximations have 
been introduced by means of the basic elementary solutions, 
namely, the "arithmetic-mean" type and the "geometric- 
mean" type. These, approximations include those obtained 
by Chaplygin, by von Kärmän, and by Temple and Yarwood. 

4. The approximations discussed in the present paper 
have been compared with the well-known results of Prandtl 
and Glaucrt. For this purpose, it has been emphasized that 
the Prandtl-Glauert result is valid for vanishingly small dis- 
turbances and, in a strict sense, is the slope term in a Taylor 
expansion in a quantity which measures the disturbance. 
It was found that the arithmetic-mean type yields the 
Prandtl-Glauert result to a higher order of approximation 
than the Chaplygin or the Temple-Yarwood type and that 
the geometric-mean type contains the Prandtl-Glauert result 
exactly. The two types of approximations introduced in 
the present paper then appear to be preferable to the others 
as a basis for extrapolation into the range of high stream 
-Mach numbers and large disturbances to the main stream. 

5. The results of the present paper have been obtained 
without consideration of any particular boundary. The 
actual boundary problem of determining the flow past a 
prescribed body is of a high order of difficulty and involves 
in general all the particular solutions of the hodograph 
equations. 

6. The particular solutions discussed in the present paper 
are well-behaved functions in both the subsonic and the 
supersonic regions. The hodograph equations give no reason, 
in general, to suppose that a discontinuity necessarily occurs 
in the solution when local sound speed is attained. Rather, 
it appears that the first breakdown of the solution is as- 
sociated with the vanishing of the Jacobian of the trans- 
formation from the physical to the hodograph variables. 
Indeed, von Karman has made an equivalent suggestion in 
that the appearance of infinite accelerations in the flow 
solution is a condition for flow discontinuities. Interesting 
speculations on this matter are suggested by the results of the 
present paper since the "limiting" curves discussed in the 
present paper are defined by a condition that is equivalent 
to the condition for infinite acceleration. The arithmetic- 
mean type of approximation thus yields a limiting value of 
the local Mach number M—1.15, and the geometric-mean 
type of approximation yields a limiting value of the local 
Mach number M=l. The value M=l appears to be exact 
for vanishingly small disturbances; that is, local Mach 
number M=stream Mach number A/i=l (Prandtl-Glauert 

approximation). However, for finite disturbances to the 
main flow due to the presence of a body in the fluid, infinite 
accelerations may occur, for stream Mach numbers less than 
unity, in regions where the local Mach number is greater 
than unity. In this regard, the arithmetic-mean type of 
approximation, considered as an extension of the Prandtl- 
Glauert relation to finite disturbances, indicates the pos- 
sibility of a mixed subsonic and supersonic flow without 
discontinuities. It is important, however, to recognize 
that in general the limiting value of the local Mach number 
XI is a function of shape parameters and is a result of the 
blending of many particular solutions of the hodograph flow 
equations according to the boundary conditions. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., January 12, 1044- 
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TABLE 1—VALUES OF /, g, /+S A, AND THEIR EXPONENTIALS FOR T = 1.4 

.\/ r / a Z±2 h tl f" (* 

0 0 0 1.00 1.00 I.(10 1.110 

-.(«1251 -.00251 -.00250 .99750 . ',«1749 . 1197.50 

-.01013 -.01001 -.01001 .99016 .98992 . 99004 
-.02316 -.1)2256 - 02256 . 97828 ,97711 
-.04208 -.04020 -.04020 .96241 .95879 
-.06760 -.06304 -.06300 .94321 .93463 . 93890 
-. 11X159 -.09123 -.09133 .92140 .90430 .91281 
-.12023 -. 10740 -.10768 . 90977 .88671 .89817 
-. U216 -.12502 -. 12541 . S9775 . 86748 .88248 

.75 . 10112 -.12167 -.16657 -.14412 -.14484 .88544 .84656 . S6578 

-.13588 -. 111363 -.16478 —. 16605 .87295 . 82397 . 81810 .84700 

. 11982 -.14313 -.20822 -.17568 -.17740 . 86664 .81202 .83889 

-.15045 -.22354 -.18700 -.18927 .86032 . 79968 

.875 -.157S5 -.23964 -.19875 -.20173 .85398 . 78691 .81975 

-.16530 -.25652 -.21091 -.21487 . H4764 . 77374 .80985 

-.17281 -.27423 -.22352 -. 22876 .84130 . 76016 
-.1S036 -.29280 -.23658 -.24353 .83497 .74617 .78933 

-.18339 -.30047 -.24193 -.24976 . 83245 .74047 
-.18946 -.31624 -.25285 - 26292 . 82741 .72888 

1.00 .16667 -.19556 -. 33261 -.26409 -.27757 .82237 .71705 .70791 

.17224 

.17785 

.18349 

-.20166 
-.20778 
-.21391 
-.22003 
-.22616 
-.23228 
-.24144 
-. 25059 
-.25665 
-.28673 

-.31604 
- 34438 
-.46775 
-.55925 
- 62470 
-7(1538 
-.74934 
-.84019 

-.34958 
-.36718 
-.38542 
-. 40432 
-.42390 

-. 27562 
-. 28748 
-.29967 
-.31218 
-.3250:! 

.75910 

.75015 

1.06 . 80742 .68017 .74106 
.73185 

1.10 
1.12 
1. 15 

.19485 

.20058 

.20917 

. 21782 

. 79759 
79273 

. 65449 

.64136 
.72251 
.71303 

.78550 . 62130 . 69859 
-.50938 
-. 53263 
-.66139 

-.81292 
-.99030 

-2. 39742 
-5. 12014 
-9.99177 

-31.27238 

-.37999 
-.39464 
-. 47406 

-. 50448 
-.66734 

-1.43259 
1      -2.83970 

-5.30824 
!    -15.9H888 

. 68387 

. 67392 

.25202 

.28161 

.62247 

.56865 

. 51307 

.44444 

.55556 

.64286 

.23869 

. 05844 

.00495 
  

5.00 
CO 

.83333 
1.00 

. 17268 .00000 .00000 
. 43162 0 0 
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TABLE 2.—VALUES OF (<//7,)„ (<//<;,),, (Q/<]\)C 

isil'iifi C""'AXD C"-"> 
FOR 7= 14 AND FOR VARIOUS VALUES OF .V, 

I). 00794    I    (1.017118 (1. 00716    I        0. 08925 

f'l!'h)c 

(1'1\) 

I'll:!. 

(ill) I 

(Eq. (18a)) 

ty», 
(Eq. (1st))) 

Eq. C17) 

Eq. 07) 

1.INI       1     1.47401     I       1.111782 

-4.39614    I     -5. 29383 

— 1.21250   I -2.82393   I    -4.75500 

■ 1.42841    I        .1. .'.5441 

-18.511)93    I  -20.57000 

(?.'?|)i 

(Uli), 

(??i). 

C,.t 
(Eq. (I8a)) 

cy«, 
(Eq. (I8bi) 

Eq. (35) 

Eq. (HO) 

Eq. (37) 

Eq. (37) 

0. 60997 

0.«7810 

0. 07875 

I). 07843 

I). 9875.1 

0. 53973 

0. 55794 

1.00 1.32425    I        1.04107    i        1.79821    |        1.94898    j        2.24672 

1.00 

1.00 

1.00 

1.30277 1.58224 1.71233 

1.29942   I        1.50971 I. 09172 

1.30110 1.70200 

1.83567 2.00177 

1.80374 1.99463 

2. 02793 

1.05535 

-0. 69286 -1.48365    I    -1.89080 

-0.741 II -1.62984    I    -2.11683 

.10789 

-3. 11250 

2.53MI    I 3. 07016 3.31958 

>. 20055 2.58087 

2. 13620 

2. 19752    I 

I.15280 

-3.82909 

-2. 02851 -3.09238    I    -4.78921    I    -.5.8X302 

2. 25304 

2.41140 

2. 22352 

2.45317    i        2. 4J123 

1.27319 

-4.81485 

1.3.5318 

'). 01804 

■0. 94746 -7. 95968 -8. 90571 

M,-0A 

(«/?(). 

W»i)l 

(Uli). 

«M>)< 

(Eq. (18a)) 

ty.u, 
(Eq. (lsW) 

Eq. (35) 

Kq. (30) 

Eq.(37) 

Eq. (37) 

1.00 1.23924 

1.00       j        1.21451    I 

1.00        j 1.30801 

1.21124   I       1.30813 

-0.40710    I    -0.71120 

0.70043    I    0.43714 

-M,-0 5 

(ill,). 0. 40«25 0. 00930 11. 80895 1  (10 1.09454 1. 18703 j        1.36906 1.54370 1. 71100 1.87084 2.02281 2. 10094 

(11,) 1 

Eq. (35) 0. 42S57 0. 03202 0.82338 1.0(1 1.08222 1.16017 |        1.30307 1.42871 1.53709 1.63115 1.71051 1.77737 

Eq.(3«) (I. 43240 0. 637O0 II. 82781 1.110 1.07773 1. 14909 |        1.27069 1.30(192    i 1. 41052 1.43531 1.41651 1.30110 

Eq. (37) 0. 43049 II. 03454 0.82560    i 1.1H) 1.07998 1. 15402 |         1.28079 1.39440    ! 1.47,588 1.53012 1. .55662 1. 55539    j 

dill). 

(?'»!>( 

Eq. (37) 

0. 94834 0. 90032 (1.97741    [ I.(X) 1.01348 1.112859 1.06393 1. 10707    1 1   159.1.1 1.22207 1.29941 1.39318 

C, o 
(Kq.  118a)) 

0.81488 (1. .59736 0.3183»    ' 0 -0. 10030 -0. .13315 -0. 05.583 -0.94435    1 -1. 17822 -1.34127 - 1. 42307 -1.41924 

tV.u, 
(Eq. (ISM) 0. 87771 0. 05360 

0. .5,5072 

0. 35640 0 -0. 1U554 -0 40000 

(,-0.55 

-0. 82766 -1.20754    i - 1  7(10.57 -2. 13343 -2.53960 -2.91903 

.) 

(ill, 0. 37299 0. 73725    1 (1.91363    ' 1.00 1.08504 1.25081 1. 41036    j 1..56326 1.70923 1.84810 1.97978 

'■ Eq. (35) 0. 39601 11. 58399 0 76083 0. 924(H 1.110 1.07202 1.20408 1.32017    | 1.42080 1..50722 1..58057 1.64235 

(V'«i)i Eq.<30) Ü. 40122 (I. 59110 0 70811    ; II. 92788 1.00 1.06621 1. 17906 1.28278 1.31434 1.33178 1.31435 1.20294 

Kq. (37) 0. 39801 I). 58753    ] 0. 7644« II. 92595 1.00 1 111,911 1. 19150 1.29114    j 1.36657 1.41680 1.44133 1.44019 

(? Vi). 
I'l 1<)i 

Eq. (37) 

0. 93573 I). 94756 0.96441    : (1.98069    * 1.00 1.01490 1.04978 1.09234    1 1   14393 1. 20640 1.28222 1.37467 

CV.o 
(Eq.  (18a)) 0.84111 0.05481    j 11.41560 0.14262 0 -II. 14300 -0.41907 -0. 66704 -o 86751 -1.IKI732 

1 
-1. 07743    1 -1.07415 

C',.v, 
(Eq. (18b)) 0.91835 11. 72085    i 0. 47249 0. 16737 0 -0. 17497 -II. .54078 -0.91731    '' -1.29299 -1  0.5828 -2.00590    1 -2.33058 
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TABLE 2.—Continued 

D.lUlOl O.I»i71l! 0,08025 
I  12.125 

1.0 

O. Kitit: 0. 10485    I        0.22330 

(1/171) 
(1.117047 1. IK) 

K<|.135) II. 7O071 I. 00 

(iiiqOi Kd. (:«>) 11. 721M1 1.00 

Ki|.(37) 0. 71.104 1.00 

\       (qiqiU 

(<OTi>< 

Kci.(37) 

0. 05025 1.1K) 

C,.o 
>    (E(|. (18n)) 

Ü. 48872 1        0 

!    (Eq. (18b)) 
0. 50492 l      o 

22704    1 

17014    i 

1.07707 ' 1.15277 

1  IK148 ' 1.1211» 

1051112 1. 105*1 

1,0507« i 1.11147    |        1.1(1382 

1.11111:11 1 1. Hi 1.17 

I   14*111 

1. 054112 

I 20081 

I. 2:U40 

1. 1S4:15 

1. 207117 

1.0711.10 

l.:17107    : 1.441191    ! 1. 57527 J [™^ 

T.!siil8 ~i "132559    I 1.10590       _L l74:'S 

1.2190-t    I 1.23272^ 

Täüäl-!      134815 

1.824(10 

1.21245 I.23210 

I.O:IJ:IO 

1.5.12111    I 1.58014 

~M8451    i '■ I""»1 

1.24585 

1. 11)051 

I. 27S41 

12713    j 1. 1SS69 1. 25339 

1.34708    I        1.32253 

1.35440    j        1. «lIMä 

-0.12115    I      -0 24204    I     -0.35448    |     -0.45847 

-0.1578(1    i    -0 31923    i     -0.48:110 -0.(14774 

-0 55214 

-0.81238 

-II. 63433 

-0. 97599 

-0. 75018 -0.81402 

-1.29437 

-0. 7400'J 

88099    j     -2. 14151 
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TABLE 2.—-Concluded 
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0. 6 

0.0(1710 

0.925        | 0. 96 

  
1.2 

 , 

M                          1         0.4 0. S25 11. S5 0,875        1           0.9 l.ll 1.1          j 

II. 19185    | 

1.3 

,                            i    0.03101 0. 11982    ] (I  12020    i ! 
0. 13279    |        II. 13942    1 II. 14012 II. 15563    i        0. 16067 0.22300    j II. 25202    i 

" .W 1-0.825 _   \ 

fo'o,).                            0.50872    1 0. 74871 I.IK)        ! 1.02653 1.05270    1         1.07870    1 1.10434 1.13972    i        1.17942    ' 1.27524    j        1.30010 1.15203    ! 

Kq.(35)     !     II. .'«HIM (I 79002 1  IK) 1  01905 1.03738    1         I.U.'iHHI    i 1.07205    j 1,119475    i         1.11917 1,1731V)    j         1.21950    1 

0;,'?i)i Eq.ciii)   1   ii. ttmen   i II. M33H0 1  IK) 1.01093    1 1.02021    1         1.112785 1.03380    | 1 113929    1        1.04147 1. 02784 0.98704    1 0.92292    1 

Kq. (.'17) II. SS253 0.81409 1.IKI        1 1.(11497    j 1.02874    1        1.04130    1 1.05273    | 1.00005    |        1.07902    I 1.09833 1.09740 1.07744    | 
 1 

W«i). 

Ki|. (.'17) 

0.87329    i 0.91901    ! 1.00 1.01139    | 1.02335    j        1 O35S0 1. (14002    1 1.00850    1        1.09244    1 1. 10107 1.21478 1.34707    1 

i   (En. (inn)) 
0. »«WO    | 0.33028    1 0 -0.0,1016    ! -0. II5S31    j -1). 08443 -11. 10824 -11. 13774 -0. 16558 -I). 20633 -0. 20442 -0. 10088    | 

(Kn. (181))) 
0. 83950 0.47330    ! 1) -0.05320    1 

] 
-II. 10031 -0. 15910 -11.21149 -0 28409 

1 
-0.30571 -0. 50234 -0. 74599 -0.91487 

.Mi -0.85 

(«/,),) .                               (1.49558     1 (1.72930    i 0. 97410 I.IK) 1.02555    1        1.05082 1.07.580    I 1.11026    i        1.14894 1.24228    1        1.13080 1 41451 

  
Ed. (35)    1    II. 55438 0.78114 11.98132 I.IK) 1.01799    i         1.03532 1.05202    1 1  117430    |         1.09826 1. 15171    i        I. 19072 1.23432 

(1l1.)l Eq.(3C) (1. 59418 (1.82478    i 0. 98920 1.00 1.00917    !        1.01673 1.02204 1.02805    i        1.03023 1.01073    |        0.97697 0.91295 

Eq. (37) U. 57394 0.80207    i (1. 98520 1.00 1.01357 1.02599 1.03721 1.05091 1. 00371 1.08212    1        1.08128 1.06155 

HIJUJ 

Eq. (37) 

0. 80347 0.90807    | 0. 98873 1.00 1.01182 1.02420 1.03721 1.05647 1.08013 1. 14801 1.23076 1.33248 

Cp.o II. 07059 0. 35572 0. 02920 0 -0.02732         -0.05206 -0. 07580 -0. 10441 -II. 13148 -I). 17098 -0. 10917 -0. 126S9 

(Eq. (18b)) 
0.86288 0. 50S95 0.05147 0 -0.05129 -0. 10220 -0. 15294 -0. 22305 -0.30199 -0. 49202 —0. 06952 -0.83274 

A/,-0.875 

(17/51).                       i    "•"t322 0.71118 (1.94988 II. 97508 1.00                 1.02403 1.04898 1.08259 1. 1203r 1.21133   |       1.2»763 1.37926 

W<7i)i 

Eq. (35) 0. 54458 0.70734 0. 90390 0. »8232 1.00                 1.01703 1.03340 1.05530 1.07885 1. 13134   1       1. 17555 

Eq. (.10) 0.58877 11.81727 0.98020 0.99091 1.00        1        1.00748 1.01333 1.01870 1.02085 1.00749 0. «6807 0.90464 

Eq. (37) 0. .50020 0. 79102 II. 97207 (1.98001 1.00 1.01225 1.02331 1.03084 1.04947 1.00704 1.00678 

«'""!' 

Eq. (37) 

0 853X1 0. 89805 0 97717 0.98831 1.00 1.01823 I.0250D 1.04412 1.06750 1. 13459 1.21640 1.31003 

!       ev, 
1     (Eq.  (Iltl)) 

\      r„..„, 
(Eq. (18b)) 

(1. 07935 0. 37280 0. 05508 1       0.02000 |      o -0. 02405 -0.04710 -0.0750) -(!. 101.19 ]    -I). 13980 —II. 13802 -0.09090    1 

0.88504 1    0.54277 0. 09960 i       0.04971 |         0              ;    -0.04943 I    -0.09840 -0. 10042 -0. 24280 I    -0.42701 -0. 598D8 \    -0.75712    ; 

i 

A),-0.9 

(,/„,).              ;  0.471«) II. 09409 II. 92705 0. 95104 I       0.97595    i         1.00 1.02370 1.0.5657    i         1.09318 1.18220    1        1.20044 i        1.34009    1 

;      W?i)( 

Eq. (35)     i    1». 5354» 0. 75449 11. 94783 1        0.90587 0,98325    i          1.(1« 1.01010 1.113704    j         1.00079 1.112(0    I        1.15.588 i        1   19218    1 

En. (311)     1    0.5X439 0.81121 i      II 97291 i        I). 98155 |       0.99257 !.<K) 1.0057» 1         1.01113    1         1.01327 1.0000(1    1        0.90089   I        (1.89792    [ 
i 1 

Eq. (37) 0. .55939 1    0.78213 1      11.90029 j        0.97460 II. 98788 1.00 1.01091 1        1.02429    ]        1.03070 1        1.05470    |        1.05387 1         1.03463    | 

W«i>_. 

Eq. (37) 

  
0.84300 1    0.88721 |      0.96539 |       0.97038 ]        0.98792 1  00 1,01271 1.03151 1.05401 i        1. 12089 1.20170 j        1..10104 

  
Cp.o II. »8708 0.38790 11.07784 I        1). 05004 j        0.02409    i         0 -11.02194 -0 0(917 -0.07487 ,    -0.11239 -0. 11004 i    -0.07046   | 

Cp.w, 
(Eq. (181))) 

0.90787 i    0. 57490 |      11. 14460 |        (109017 j        0.01799    j        0 -0. 04762 i     -0.11305 -0. 18788 -0. 30600 -II. 53362 -0.08711 

A),-0.925 1 

ini«,\.               '•   a. warn .    0.07798 11 90552 0. 92955 !        0.95331              0.97078 i          1.00 1.03205 1.00X00 i        1.15476    !        121704 !        1.31486    | 

Kq. (35)    |    0.52097 l    II. 74253 1193279 i        (1.95057 0,90768    1        (I.US415 1          HI 1.02119    !        1.04397 1.09470    |        1.13750 |        1.17320    | 

j               (?'?l)l Kq.(30)    |    (1 5SI03 1    0. H0054 I      (I 90729 (1. 97787 i        0.9808»    j        0.99423 !          1.IKI 1.00532    1        1.00743 0.99424    j        0.95534 1       0.89276    1 

Ell. (37)     1    II. 55335 !    1). 77387 (1 94991 |        0.90413 1        0.97721    1        0.98919 1.00 1.01323    1         1.02550 1.04332    i        1.04249 |        1.02)47 

(1/<hU (1. K3249 1    (I »7609 1      I). 95327 :        0.90413 i        0.975.54 II. 98745 j          1. (K) 
1 

1.01857 1.04138 |        1. 10081             1. 18002 1        1.28471 

!            C'n.o Eq. (37) j    0.69380 1    11.40113 I). 09767 0.07045 (1.04.500            0.021.50 !     " -0.02664    1     -(1.05177 -0.08852 -0.08079 -0.04749 

CV.v, 
(Eq.  (18b)) 

1    0 92963 :    0.60574 0  1S70S 11. 13991 0.09301     j        0.04033 0 -0.00425 -0. 13042 -0.31038    |    -0.47285 -0. 02222 
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TABLE 3- 
VALUES OF F(r)  FOR SEVERAL VALUES OF 

r   i-(s»+ii'-___!ri?l_,~l 

,-l, J.--(l-M')e" 



Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis 
Force 

(parallel 
to axis) 
symbol 

Moment about axis Angle Velocities 

Designation Sym- 
bol 

Designation Sym- 
bol 

Positive 
•'direction 

Designa- 
tion 

Sym- 
bol 

Linear 
(compo- 

nent along 
axis) 

Angular 

X 
Y 
Z 

X 
Y 
Z 

Rolling  
Pitching  

L 
M 
N 

Y >Z 
Z »X 
X >Y 

Roll  
e 

u 
v . 
to 

P 
? 
r 

Pitch. 
Yaw    .  .. 

Absolute coefficients of moment 

(rolling) (pitching) (yawing) 

Angle of set of control surface  (relative to  neutrtl 
position), A.    (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D 

V 
P/D 
V 
v, 
T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient CT— nip* 

Torque, absolute coefficient CQ=    ijy> 

P Power, absolute coefficient C/p=- 3£« 

C,        Speed-power coefficient = -»/p- 
■V* 
W2 

v 
n 

Efficiency 
Revolutions per second, rps 

Effective helix angle=taa"\2irrn/ 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-lb/sec 
1 metric horsepower=0.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

1 lb=0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


