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TWO-DIMENSIONAL TRANSONIC FLOW PATTERNS.* * 

By STEFAN BEHGMAN. 

1. Introduction. The successful development of the mathematical 
theory of two-dimensional steady flows of an ideal incompressible fluid is 
largely due to the fact that the complex potentials of such flows are analytic 
functions of a complex variable. Function-theoretical methods may therefore 
be used in order to obtain and to investigate flow patterns possessing at given 
points the assigned singular character and satisfying given boundary 
conditions.2 

In investigating the flow of an incompressible fluid by theoretical methods, 
two alternative treatments have been used. The behavior of the solutions has 
been studied either in the so-called physical, i. e., the plane in which the motion 
actually occurs, or in the hodograph plane, i. e., the plane whose cartesian 
coordinates are the velocity components. In the incompressible case, both the 

"potential and the streamfunction are harmonic functions, irrespective of 
whether the motion is considered in the physical—or the hodograph plane. 

In . the compressible case, both the potential and the streamf unction 
considered in the physical plane satisfy complicated non-linear equations. By 
considering the motion in the hodograph plane, and making a few appropriate 
transformations, it is possible to linearize these equations. (See [11] and 2 
of the present paper.3) 

The treatment of the problem in the physical plane has, of course, the 
fundamental advantage of making the boundary conditions enter in an obvious 
way. The gain in simplicity due to the linearization is, however, so consider- 
able as to make the hodograph method vastly superior for various purposes. 

In the present paper the theory of compressible fluid flow is developed 

* Received August 2, 1947. 
1 Research paper done under Navy Contract NOrd 8555-Task F, at Harvard Uni- 

versity. The ideas expressed in this paper represent the personal views of the author, 
and are not necessarily those of the Bureau of Ordnance. 

2 Poles, logarithmic singularities, etc., of the complex potential represent doublets, 
sinks, sources, vortices, etc., of the flow. 

3 The numbers in brackets refer to the bibliography at the end of the paper. 
Acquaintance with the contents of these publications is not assumed in the present 

paper. 
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by studying the linearized equation and applying to it the operator method 
developed in [1-10]. Generalizing the procedure: "taking the real part," 
this method leads to the determination of certain linear operators which trans- 
form functions of one variable into stream (or potential) functions of com- 
pressible fluid flows preserving many fundamental properties of functions to 
which the operator is applied. In the present paper, two operators of this 
kind are considered: the so-called integral operator of the first kind (3) and 
that of the second kind (4-6). For some fluid dynamical applications, and 
in particular for the study of the behavior of the flow near the sonic line, 
the second operator seems to be more appropriate. In this case, however, the 
relations between the properties of functions to which the operator is applied 
and those of generated functions is more hidden. This is why it is useful at 
first to investigate the special case which is obtained by assuming a simplified 
equation of state. This simplifying assumption results in the equation for 
the stream function taking the form 

(1-1) — CH(8ty/80) + (9V/9H2) = 0, C > 0 

where 'H is a function of the Mach number, M, which is negative for M < 1 
and positive for M > 1.    (See (2.1) and (2. 3)). 

In an important investigation, Tricomi [16] studied the boundary value 
problem of equation (1.1) and showed that if we consider a finite domain D, 
bounded in the supersonic region by two characteristics, say BA and GA, 
and by a curve BmC in the subsonic region, and if the boundary values are 
prescribed in BmC and on one of the characteristics, say BA, then the boundary 
value problem has a unique solution. Frankl [13] considered questions allied 
with Tricomi's investigations in the case of the exact compressibility equation. 

The questions arising in our approach are, however, of a somewhat 
different nature than those considered by the above-mentioned authors. 

In the first place, we seek to find conditions for a function, say /, of one 
variable in order that the generated function P(/) will be defined in a pre- 
scribed domain B, which in general lies partially in the subsonic and partially   p 
in the supersonic region. r-. 

Secondly, and this is the most essential difference, we are considering 
solutions of the compressibility equation which possess singularities (e.g., 
branchpoints) in the hodograph plane. In the applications of the theory, 
the consideration of this type of solution cannot be dispensed with, since, 
notwithstanding the singularities in the hodograph plane, the behavior of the ~ 
solutions in the physical plane can be perfectly regular.   Furthermore, certain   .^ 

12 Dist 6pfcCia, 
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858 STEFAN  BBEGMAN. 

singularities in the physical plane have a hydro-dynamical meaning and must 
be considered in investigating flow patterns. 

The methods employed in the case of equation (1.1) are to some extent 
capable of generalization to the case in which the coefficient (— OH) is 
replaced by an arbitrary function 1(H). (See 5). This includes, in particular, 
the exact, i. e., non-simplified compressibility equation. 

In 3, we introduce the so-called integral operator of the first kind, P^ 
This operator yields a streamfunction of a subsonic, compressible fluid flow 
in terms of an arbitrary function of one complex variable. The representation 
holds for4 E[AT < 1,— oo < 6 < oo]. Here M is the Mach number and 9 
the angle which the velocity vector forms with the positive «-axis. 

An analogous representation for the streamfunctions of supersonic flows 
in terms of two differentiate functions of one real variable holds for 
E [M > 1, — oo < 6 < oo ]. Using the integral operator of the second kind, 
we obtain (4, 5) four analogous representations in terms of arbitrary functions 
of one variable. These four representations are valid in four adjacent domains 

of the M, 0-plane, namely 

D1 = E[M < 1, 6 > 3* | \(M) |] + E[M > 1, 6 > A(M)], 

2>2 — Epf <1, \0\ <3i\X(M)\], 

D3 = E[2lf < 1, 0 < — 3i | \(M) |] + E[M > 1, 0 < — 3A(M)], 

D4 = E[M>1, — 3A(M) <6< A(M)], 

respectively. Here 0=±3*A(M) and 6»= (— 1 ± 2)\(M) are certain 
curves which pass through the point M = 1,0=0 and which lie in the sub- 
sonic and supersonic region respectively  (see fig. 1). 

In the simplified case these four representations can be combined into 
one, yielding a representation which holds in the whole M, 0-plane. This 
result is based on certain theorems of the Fuchs theory of ordinary differential 
equations with singular coefficients. The question of combining the analogues 
of the above four solutions in the exact case, and generally, the study of the 
solutions leads to the investigation of partial differential equations with 
singular coefficients, which, when solutions are continued to complex values 
of the arguments, can be attacked by methods representing a generalization 

4 The functions ^ = Pi(/) may be multi-valued functions which may possess singu- 
larities. The statement that Pt(/) is defined in E[Jf < 1] means that the projections 
of the domain in which V^f)  is defined on the schlicht M, 9-plane, lies in E[Jf <1].^ 

E[ ] denotes the set of points whose coordinates satisfy .conditions indicated in 

the brackets. 
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of the Fuchs theory for ordinary differential equations. These questions, and 
in particular the problem of combining the four above representations into 
one, will be treated in a subsequent paper. 

In 6, we determine the "associate" function for P2(/) in terms of the 
values of the stream function tp = Im[P2(/)], and its derivative with respect 
to M on the line M = 1 (sonic line). 

The author would like to take this opportunity to thank Bernard Epstein 
and A. Zeichner for helpful advice and aid in connection with the present 

Fig. 1. 

paper.   He would also like to thank Z. Nehari and M. Schiffer for a number 
of helpful suggestions. 

2. Equation for the streamfunction of a compressible fluid flow. 
Exact and simplified equations. Assuming that the thermodynamical equa- 
tion of state of the fluid has the form p = <jpk, where a and Tc are constants, 
and p and p the density and pressure respectively, and introducing as new 
variables 

(2.1) H=   rp(dq/q)=   C q^\l — i(fc — l)f]^dq, 
J 81 ./ 3i 

and 6, where q is the speed and 9 the angle which the velocity vector makes 
with some fixed direction (say the positive x-axis,), we obtain the following 
linear equation for the streamfunction: 
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(2.2) S(rt =Z(H)(0V/902) + (9V/9H2) =0,       Z(H) = (1— M2)/P
2, 

where 

(2.3) Jf —gr/[l — *(fc — l)?2]* 

is the Mach number. The denominator in (2. 3), being the local velocity of 
sound, M will be smaller or larger than 1 according as the flow is subsonic 
or supersonic respectively. The differential equation (2. 2) will therefore 
be of ellipitic or hyperbolic type, corresponding to the subsonic or supersonic 

character of the flow. 
A formal computation6 shows that the Taylor development of Z(H) in 

the neighborhood of H = 0 is 

(2.4) 1(H) = [2/(fc — l)](**>X*-i>[(_ an) 

_((2fc+5)/(2fc + 2))((fc + l)/2)2«=/<*-1'(— 2H)2 

F+(43/6)F + 16fc2+(31/2)fc + 31/6 ((fr |  1)/?)t/r^11(     0TT)3  ,,.. . .]# 

(fc + 1)4 

In considering a flow (or a portion of a flow) which is purely subsonic, 
it has some advantages to replace H by the variable A defined by 

(2.5) — A =   f    [J(—T)]*tfr. 
«/ T=0 

A can be expressed in a closed form as a function of M; a formal compu- 

tation yields 

(2.6) >A = ilog   [_1+(1_M2)i   ^_Ä(i_M2)iy    J' 

fe=[(fc-l)/(fc + l)]i. 

Now 

(2. 7) ^HH = iM + M**)-a = iM — ilM^H = fc + F~
S/2?

H] 

so that (2. 2) becomes 

(2. 8a) <Au + ^eo + 4-^ = °> 

' 

6 A detailed account of formal derivations of some expressions used in the present 
paper can be found in the Appendix to Technical Report 10, of the series " Operator 
methods in the theory of compressible fluids," Harvard University, 1948. 
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or, in complex notation, 

(2- 8b) 4^5 + 4JSf(fz + xj;z) = 0, 
where 

(3.9)   y-y-^H — [(t +1)/8] (1_^2)3/2, Z-A + *M--A-*. 

See [6, (46)].   It should be noted that the interval — oo < A < 0 corresponds 
to the interval — oo < H < 0. 

In the supersonic case (i. e., for M > 1) the right-hand side of (2. 6) 
becomes purely imaginary.    If we introduce the new variable A defined by 

(2-10) A = i\, 

it is easily confirmed that 

(2.11) A = h'1 arctan [h(M2 — 1)»] — arctan [(M2 — 1)*]. 

In this case, (2. 8a) will take the form 

(2.12) ^AA-^ + 4^A=0,    J,-^-1^. 

EEMAEK.    Equations   (2.8)   and  (2.12)   can be simplified.    If ^ is 
replaced by 
(2.13) ^* = q/R 

where (dR/dZ) =N, then if,* satisfies the equations 

(2.14) V*xx + 4>*ee + 4*ty* -= 0 and ^   —+*ee — 4Jty* = 0, 
where 

(2 151        F     F — (fe + 1)^4r— (3^ — l)^4 — 4(3 — 2h)M2 + l6^ 
V  '     ' 1 64 L (1—If2)3 _T 

For subsequent use, we write down the expansions of N and F in the 
neighborhood of A = 0 

(2.16) tf-(l/12X)[l —i(fc + l)»[(2 + f2l)fc+5-2» —2]   X 

(2.17) F= (5/144)(—A)"2 + A_2(—A)"2/3-fiL„ + 42(—A)2'3 

+ • • • = 5/36(— 2A)2+- • ■. 

In the vicinity of H=0, i.e., the sonic line, l(B.) may be replaced by 
the first term in its expansion (2.4).   Using this value of Z(H) in (2.2), 
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we obtain the so-called "simplified" compressibility equation (1.1). In 
considering transonic flows, the solutions of the simplified equation will 
therefore give a fair approximation—in a certain neighborhood of the sonic 

line—of the exact streamfunction. 
The expression for N, F, and H will, in this case, reduce to 

(2.18) N==Nf=— (1/6) (l/(— 2A)), 

^ = ^f=(5/36)(l/(—2A)2), 

H=Ht=(32/y2)(2/(fc — 1) )(*-«/(«*-»)(— A)2/3, 

respectively. 

EEMAEK. We are using the same variable A in both the exact and the 
simplified case, as this facilitates the comparison of the respective flow patterns. 

3. Application of integral operators to the compressibility equation. 
Integral operator of the first kind. The use of integral operators in the 
theory of the compressibility equation is based on the following theorem: 

THEOKEM 3.1. Let E(Z,Z,t) be a function of two real and one com- 
plex variables, A, 6, t, which is defined for t along a curve connecting t= — l 
and t = 1, and for (A, 6) e G. G denotes here a sufficiently small neighborhood 

of the origin. 

Let E satisfy the following conditions: 

1. E possesses continuous partial derivatives with respect to all three 

of its arguments, up to the second order. 

2. The expression 

(3.1) l(\ — t*)E{Z,Z,t)/Zf\d/M 

is continuous for Z = 0, and approaches zero, uniformly with respect to 

(A, 6) e G as t -» — 1 or t -^ 1. 

3. E satisfies the partial differential equation 

(3. 2)        G(E) = (1 — t2) {Eh + NEt) — (l/t)E'z + 2tZL(E) - 0 

where 
(3.3)        L(E) =EEZ + N(Ez + Ei) 's* (V±)E*\ + (l/±)Eee + NEx. 

If /(£/2) is an analytic function of £ defined in a simply-connected domain P, 
which includes the origin, then the expression u(Z,Z), given by 
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(3.4a) u(Z,Z)=P(f), 

(3.4b) P(/)^ fy(Z,Z,t)f(iZ(l-t*))dt/(l-t*)i 

is defined in a simply-connected domain which lies in G f] P, and satisfies 
the equation L(u) = 0. 

The proof of this theorem is given in [1, § 1 and 6, pp. 34-39]. The 
function / will be called the associate of P(/) with regard to the operator P. 

Since (3. 2) has an infinity of solutions, there exist infinitely many 
integral operators; a closer investigation of their properties will show which 
type of'operator is best suited for the purpose on hand. The following 
property of the integral operator plays an important role in some of the 
applications. 

As is well-known, a harmonic function G^X',0') = G{Z',Z') may be 
written in the form 

G(Z',Z') = (l/2i)[g(Z')-g(Z>)]. 
Here 6 

Z'*=k' + W,      Z' = \' — iff,    A' = A — Ao,      ff = 6 — 0O, A0<0. 

If now the harmonic function G1{k', 6') is continued to the complex values 
of the arguments A' and 6', i. e., if we assume that Z' and Z' are not necessarily 
conjugate to each other, and if, in particular, we consider G and g in the 
so-called characteristic planes Z' = 0 or Zf = 0, then we see that the analytic 
function of a complex variable and the continuation of the real harmonic 
function differ only by constants;7 indeed, 

G(Z',0)^(l/2i)[g(Z')-g(0)l 

An integral operator generates complex solutions of L, and we may demand 
that these complex solutions possess an analogous property. We shall show 
that there exists an integral operator p (which is connected by relations 
(3. 11),  (3.12) with P) such that the complex solution of (3. 3) 

0 In the discussions, it will be useful to consider a shift of origin to the point X0, 0O 

(point of reference of the operator). 

In this section Z' and Z' will be treated as independent variables. 
7 Analytic functions of a complex variable represent a very special subclass of 

complex harmonic functions (i. e., the totality of functions G + iB, where Q- and H are 
two arbitrary real harmonic functions). Operator (3.4a), (3.4b) generates also a 
subclass of complex solutions of the equation L- 
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u(Z',Z')=p[g(Z')] 
and the real solution 

xp(Z',Z')=Im[u(Z';Z')-\ 

are connected by the following relations 

(3. 5)    ${Z', 0) = (l/2i) [u(Z', 0) —R(Z', 0) const.],     u(Z',Q) = g(Z') 

where B(Z',Z/) is a given function denned in (3. 7).    This operator P will 
be called "integral operator of the first kind" and will be denoted by Pi. 

Defining the generating function Ex{Z',Z',t)  of the operator of the 
first kind by the requirement that 

(3.6a) Et(Z', 0,t) = 1 
and 

(3. 6b) E1 (0, Z',t)= exp [ —   C NdZ'], 
Jo 

we shall show that these relations imply the property (3. 5). 

Writing the generating function of the first kind E± in the form 

(3.7) E1-B(Z/,^)E*1(Z',Z,,t); 

R(Z',Z') = exp [ —  f*N(Z' + Z\)d'Z\~\ 

and assuming that E*± has the development 

(3.8) E*1=l+^Z,H2nP^(Z',Z'), 

it is found that (3.7) satisfies the relation (3.6b). Substituting this into 
equation (3. 2) we find that the P(n) satisfy the following recurrence relations: 

(3.9) Pi-W-f 2^=0,    {2n + l)Pz-(n+1)+2Pz>£{n) + 2FP^=0, 

n = 1, 2, 3, • • 

Finally, (3. 6a) is satisfied by imposing upon the JP(n) the initial conditions 

(3.10) P<"> {Z', 0) = 0, n = 1, 2, 3, • ■ •. 

By the above requirement, the Pin) and hence the generating functions Ex 
(of the first kind), are uniquely determined. Applying the considerations 
of [1, pp. 1173-76] it can be shown that the series (3. 8) converges absolutely 
and uniformly in a sufficiently small neighborhood of the origin Z' = 0, 
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2' = 0. The existence of an integral operator of the first kind thus is 
assured. Assuming that the associate function / is regular in a sufficiently 
large domain, we prove that by applying to it the integral operator of the 
first kind, we obtain a solution u(Z,Z) (see (3.4a), (3.4b)) of (2.8b) 
defined in a sufficiently small neighborhood of the origin. We shall show in 
the following that if / is regular for M < 1, this solution can be continued 
throughout the whole subsonic region. 

EEMAEK. Integral operators of the first kind can also be written in a 
somewhat different form which is useful for various purposes. Namely (as 
can be shown by a straightforward computation, see [4, pp. 618-619]) 
we have8 

(3.11) P(/)=p(<7) 

= R(Z', Z') [g(Z') + 2 2-"» rr
(^+Y P<«> (Z', Z')gW(Z')] 

n=l l \n -\- i.) 

|     g(Zn)dZn- ■ ■dZ1 
o    *J o Jo 

(—l)»-i    W=Z' 

-t=l5lJ^(Z/-°^(c)* 
where 

(3.12) g(Z')=   rl/[iZ'(l-P)]<M/(l-f»)». 

(3.11), (3.7) and (3.10) imply (3.5). 

We proceed now to the proof that every real solution of equation (2. 8b) 
can be represented in a sufficiently small neighborhood of the origin Z' = 0, 
2'= 0 as the imaginary part of the right-hand side of (3.11) with suitably 
chosen associate function / (or g). 

Let \j/{Z',ZJ) (Z' being conjugate to Z') be a real solution of equation 
(2. 8b) which is regular in a sufficiently small neighborhood of the origin. 
Since this equation is of elliptic type and its coefficient N is an analytic 
function of two variables, \\i(Z',Z') can be written in the-form of a power 
series 

00      00 

^(Z', 2') — 2 2 BmnZ'mZ'«,       Dmn = Dnm, 
»1=0   n=0 

which converges in a sufficiently small neighborhood of the origin. 

s/ and g are associates of the same solution of (2. 8b), the first with respect to the 
operator P, the second with respect to p. In order to avoid any confusion we shall 
speak about " p-associate " and " P-associate." 
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In the plane Z' = 0, we have: 

oo 

(3.13) <p(Z',0)='2DmoZ"n = G1(Z') 

and in the plane Z' = 0, 
00 

(3.14) ^(0, Z') = 2 DmiZ'm= G2(Z') ; 
m=0 

G1 and G2 are two analytic functions of one complex variable Z' and Z', 
respectively, which are regular in a sufficiently small neighborhood of the 
origin. (We note that Gt{0) =(?2(0) and G2{Z') =G1{Z') since for Z' 
conjugate to Z', i// is real.) On the other hand, by classical results (the initial 
value problem in the theory of partial differential equations), it is known 
that if functions GX{Z'), G2(Z

/), G1{Q) = (?2(0), are given, there exists one 
and only one solution xf/{Z',Z') of equation (2.8b) such that (3.13) and 
(3.14) hold. The integral operator (3.4) enables us to write down the 
solution. Indeed, let us determine two functions say gi(Z') and g2(Z'), 
g2(Z') = gx(Z'), such that 

(3.15) 9l(Z') + g2(0)R(0,Z') = G1(Z') 

and therefore: 
g2(Z>)+9l(0)R(0,Z')=G2(Z'). 

Now 

(3.16) B(Z;z')[g,(Z') 

+ l^TT) pM<z''z") X''' J>w' • -ÄJ 

+ S(Z',Z')[S,(:Z') 

+l-S^)fM^j*- ■ ■ x *«■>*• • -aj 

will represent a solution of (2. 8b) which satisfies the conditions (3.13) and 
(3.14); our assertion that every (real) solution can be represented as the 
imaginary part of (3.13) is therefore proved. 

As already mentioned, (3.18) is a priori only defined in a sufficiently 
small neighborhood of the origin. We shall prove, however, that provided / 
is regular for A'< A0, the solution ^{Z',Z') obtained in this way can be 
continued into the whole region E[Ke(Z' + Z') < 2A0, | Z' | < oo, | Z' \ < oo]. 
As shown in  [6, pp. 56 ff.; 8, p. 48 ft], the quantity F = ¥(\{Z' + Z')) 
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introduced in (2.15) is a function of two complex variables Z', Z' which is 
denned in the above region.    Therefore the expression 9 

(3.17)    R{Z',Z'){gi(Z')--   C   C^FgJZ.dZ, 
Jo     Jo 

+    i      I    F[\ Fg1dZ2dZa]dZ1dZ1 + - • •] 
«/0       «^ 0 «/ 0       "^ 0 

+ R{z', Z') [g2{'Z') -   C $Fg2dZ\dz\ 
Jo    J 0 

+   f     fZ[F   fZl CAlFg2dZ2dZ2]dZ1dZ1 + - • •] 

satisfies the differential equation (2. 8b) and the initial conditions (3.13), 
(3.14). It is evident that the series (3.17) converges in any simply- 
connected domain which includes the origin Z' = 0, Z' = 0 and which is 
common to the regularity domains of F, g1} g2. Since by the above require- 
ments a solution of (2. 8b) is uniquely determined, the expressions (3. 16) 
and (3.17) must coincide, so that they are two different representations of 
the same function. 

We proceed now to the discussion of the relations between the domains 
of regularity, a and k, of the pi-associate function g and the generated 
solution pi(g) in the real plane, i. e., for Z' conjugate to Z'. 

THEOREM 3. 2. Let B be a bounded region of the (real) A', O'-plane, 
situated in E[A' < A0]. // g is regular in B, then p±(g) is also regular in B; 
conversely, the regularity of Px(g) in B im.plies that g is regular there. 

Proof. In order to prove our statement we investigate the relations 
which exist between the regularity domain of a solution ^(Z',Z') of (2. 8b) 
in the real A', ö'-plane (i. e., for Z' conjugate to Z') and in the space of two 
complex variables, A, 6 (i. e., when Z' and Z' are two independent complex 
variables).    Let B be a domain in the A, 0-plane.    We denote as the hull10 

9
 The integral operator of the first kind may be regarded as a generalization of the 

Riemann formula in the theory of linear hyperbolic equations uXY-\-a(X,Y)ux 

+ i(X, Y)uy -f- c(X, Y) = 0 to the elliptic ease, where the real variables X, Y are 
replaced by two independent complex variables, Z' and 7/ respectively. If we consider 
the solution in the real plane, i. e., for Z', // conjugate, we thus obtain solutions of 
elliptic equations.   See [5, pp. 317-318]. 

10 The superscript indicates the dimension of the manifold under consideration. 
In the case where the manifolds are one- or two-dimensional and are situated in the 
(real) X, 0-plane, these superscripts are omitted. 
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HA{B) of B the intersection B^ f] B2
i of two cylinders of (four-dimensional) 

space, B1*=~E[Z'eB, 2' arbitrary], 52
4 = E[Z' arbitrary, 7/eB]. 

It is well-known that a solution y*(Z', Z') of the first equation of (2.14) 
can be represented in the domain B of the real A, 0-plane in the form 

(3.i8) r(z'J') = f^jqMl^iz'j'uro -raro H*{Z'C['M~\ <%> 
where 6 denotes the boundary of B, n? the interior normal to I, ds$ the line 
element of 6.    Here <f>* is a fundamental solution of (2.14), and we have 

(3.19)   ^^MZ'^'U^VgiZ'-O+igiz'-in + HZ'^';^) 
where " 

(3.20).   x{Z',Z';t,Z) 
Xz'   rZ' 

I    FdZJZ, 

XZ'   fZ' s>Zx  cZ^ 
J    F [  I      I   FdZzdZz] dZxdZx + • • ■ 

(3.21)    v{Z',Z'U,l) 

' GdZ1dz1 

J'Z'   fZ' 

—  (Z' fZF[ CZl f%dZ2dz2]dZ1dz1 + 

G = -(l/(z'-Z))(dx/dZ') - (l/(Z' — t)) {dx/d'Z') 

Since F is denned for all values: Ke((Z' + Z')/2) < A0, | Z | < oo, | Z | < oo, 
it follows from (3.17) that if gt is regular in B, B = E[A' < A0], then pi{gx) 
is regular in H4(B), and therefore also in the domain B, which is the inter- 
section of Hi{B) with the real A, 0-plane. This is the first assertion of 
Theorem 3. 2. 

From (3.18), (3.19), (3.20), (3.21) it follows that every solution 
which is regular in the domain B of the real A, 0-plane can be extended to 
the complex values in Ei{B). Since B represents the intersection of Ü4(U) 
with the plane Z'=0 as well as with Z' = 0, ^(Z',0) and t(0,Z') are 
regular in B. Since R(Z', Z') is regular in E[Ee((Z' + Z')/2) < A„, | Z' | < oo, 
\Z'\< oo], it follows from (3.17) that GX(Z'), (as well as G2(Z') = G^Z') 
see (3.15)) is regular in B. See [1, §1 and 2, §2]. This completes the 
proof of Theorem 3. 2. 

"We note that x(Z',Z';0,0) =/>!(!). 
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As has been shown in [5, pp. 318-319], the function generated by integral 
operators P(/) defined in (3.11), will have branchpoints of finite order,12 

at the same points as the function 

(3.22) Po(/)=   P/Ci^l —*W/(1 —i1)*. 
l/t=-l 

As a consequence, the following holds. 

THEOREM 3. 3.   Suppose that the function 

(3.23) 9(Z)-Vo{f) 

is defined and regular in a region R situated on a Riemann surface, which 
possesses in its interior a finite number of branchpoints, each of finite order. 
Let further the projection of R on the schlicht X, 6-plane lie in E[— oo < X' 

<Ao]. 

Then the function 

(3.24) Pi(/)-   C Ex{Z',Z',t)f\_\Z{\ — V)-\dtJ(\-t^ 
J t--i 

(see (3.2), (3.7), (3.8), (3.9), (3.10)), is a solution of (2.8b) defined 
in R, possessing branchpoints at the same points and of the same orders as g. 

i//— Im [Pi(/)] satisfies equation (2.8a) and can be interpreted as a 
stream function (in the X, 6-plane) of a (possible) flow pattern of a com- 
pressible fluid. 

Making an obvious modification, we can in a similar way extend the 
definition of the operator Px so that it can be applied to functions of one 
variable A -f- 6 and A — 6 respectively, thus generating solutions of equation 
(2.12).    The expression 

(3.25) Pl(/l(A + ö))+P1(/2(A-ö)) 

where f± and f2 are two linearly independent functions, will represent a 
(possible) streamfunction of a supersonic flow pattern. 

4. The integral operator of the second kind in the case of the sim- 
plified compressibility equation. The integral operator of the first kind, 
convenient though it is for many purposes, has the disadvantage that it does 

12 At poles and logarithmic singularities, operators P(f) do not, in general, preserve 
certain properties of P0(/) which are essential in aerodynamical applications; in these 
cases, we have to use other means (see [3, 9]), in order to produce the necessary 
singularities of ^. 
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not represent solutions of the compressibility equation in the neighborhood 
of the sonic line. Furthermore, it has the disadvantage from the practical 
point of view that the PM (Z', Z') are functions of two variables which 
makes tabulation of the values of P{n) very time-consuming. 

These two disadvantages can be removed by the use of another operator—■ 
to be termed " operator of the second kind "—for which the PM are functions 
of one variable only and which yields a representation of the streamfunction 
in the neighborhood of the sonic line. This operator has a number of other 
distinctive features which will best be elucidated by the detailed discussion 
of the so-called " simplified " compressibility equation, i. e., where N = Nj 
= (12A)-1 in equation (2.8a) or alternatively, where F = F-f = 5/144A2 in 
equation (2.14). 

According to Theorem 3. 1, any function E of the form 

(4.1) E=>HE*, 

where E* is a solution of the equation 

(4. 2)    G2(E*) = (1 — ¥)ErM — (l/t)E*i + 2ZtE*E
mz + 2ZtFE* — 0, 

and H is denned by 
X2X 

N(r)dr] 
■00 

= (1 — lf2)-1/*[l + i(fc— l)AP]-i/2U:-i. 

= £„(— 2A)"1X (— 2A)2/3) 
with 

p{(— 2Xy/s)=l + 81(— 2\y'3 + S2(—-2A)4/3 + - • -, 

g0 = 2(2ft+l)/(6ft-6)3-l/6^ _|_ l) (2^)/(«fc+6) 

(4.4) St= (l/10)(3/4)2/3(fc + l)-V3(2fc+5), 

82 = — (1/1400) (3/4)4/3(fc+l)-2/3(64fc2 + 70fc+ 75),- ■ • 

may be used as a generating function of our operator. In the case of 
the simplified equation, we have Nj = 1/(12A), p((— 2A)2/3) =1, Hf(2\) 

= So (— 2A) -1/6, Ff = 5/144A2. 

We now introduce a new variable 

(4.5) u = t2Z/(Z + Z), 

and we shall show that in the simplified case there exist solutions of (4. 2) 
which are functions of u alone. 
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LEMMA 4.1. 

(4.6) E*\{k,6,t) = 4^(1/6, 5/6, 1/2, —t2(X + i6)/— 2\) 

+ B1(—t2(\ + i6)/—2\)i~F{2/3, 4/3, 3/2, — t2(k + %&)/— 2\) 

(where F(a, ß, y, X) denotes the hypergeometric function and At and Bt 
are arbitrary constants) is the most general solution of (4. 2) which is a 
function of u alone.' Let us note that there exist other solutions of (4. 2) 
which are functions of one variable, see (4. 20).) 

Proof.     We   shall  show  that   (4.2)   can  be  reduced  to   an  ordinary 
differential equation whose solution is  (4. 6).    A formal computation yields 

du/dt = 2u/t,     du/dZ = (t2u — v?)/t2Z,     du/dz = — u2/t2Z, 

E*^z = — uH-2Z-i]]J*U   E*\zt = — 2M2i"3Z-1 [utf *t„ + ^*tu] 

E*]zz = — uH-*Z-*l(ut* — u2)E*Uu + (t2 — 2u)E*\,], 

F\= (5/36)uH-iZ-2. 

Substituting the above expressions into (4. 2) we obtain 

G2(E*\) = — 2u2t-sZ[u(l~u)E*juu + (i — 2u)E*\u — (5/36)J?*f] — 0. 

The equation 

(4.7) u(l — u)E*\m+ ($ — 2u)E*\u — (5/36)^*f = 0 

is a hypergeometric equation whose general solution can be represented in 
the form 

(4.8) £,*f = 41F(l/6, 5/6,1/2, M)+B1M*F(2/3,4/3, 3/2,M)    |«|<1 

(4. 8') = A2M"1/6F(l/6, 2/3,1/3,1/u) 

+ B2M-
5
/<T(5/6, 4/3, 5/3,1/u), | u | > 1. 

Eeplacing u by the right-hand side of (4. 5), we arrive at (4. 6). 

Thus, combining (4.1) and (4. 6), we obtain for the generating function 
in the simplified case 13 

13
 We note that in many instances we may omit the second term on the right-hand 

side of (4. 9) since 

'^F(2/3; 4/3, 3/2, — t*(\ + ie)/— 2\)f(iZ(l — tz))dt/(l— *2)i = 0 

if f is regular at Z = 0. 
x: 
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(4.9)    E\(\,0,t)=A1S0(—2\)-V<iF( 1/6, 5/6,1/2, —t2(\ + M)/— 2\) 

+ BA(—2A)-2/3[—u2(A + iO)]iP(2/3, 4/3,3/2, —t2(\ + to)/— 2A), 

|— t2(\ + id)/— 2A[ < 1 

(4. 9') = A2S0[(— t2) (A + iÖ)]-1/6F(l/6, 2/3,1/3, — 2A/— t2(\ + tö)] 

+ B2S0(— 2A)-2/3[(— i2) (A + iö)]-5/«F(5/6,4/3, 5/3, —2A/— *2(A + #)), 

|— 2A/— *2(A + i0) | <1. 

In Theorem 3.1 we proved the existence of a generating function by 
means of which we can obtain solutions of the compressibility equation in a 
sufficiently small neighborhood of the origin. We shall now show that in 
the case of the simplified equation and the operator of the second type this 
result in the small can be replaced by a result in the large. This result 
enables us, from the behavior of the associate /, to make conclusions con- 
cerning the behavior of the generated solution of the compressibility equation 
in its entire domain of definition. An exact formulation of this statement, 
at first for the subsonic region, is given in the following theorem: 

THEOEEM 4.1.    Suppose that the function 

(4.10) g(Z) =   f f[iZ(l-t2)-]dt/(l-t2)i 
J t=-i 

is regular in a region B (situated on a Biemann surface) which possesses in 
its interior a finite number of branchpoints,14' each of finite order. Let 
further the projection of B on the schlicht A, 6-plane lie in E [—■ oo < A < 0]. 

The function 

(4.11) 4, = Im[PUm, 

pf2(/)= f tft(M,*)/[iZ(i-*2)]<«/i-*')*>     z = x + ie   , 
•* c 

(where C is a suitably chosen curve in the complex t-plane connecting the 
points t =— 1 and i = l) is a solution of (2.8) with N = N\ = 1/12A; 
this solution is defined in B and possesses branchpoints at the same points 
and of the same order as (4.10). i// = Im[Pf2(/)] can be interpreted as a 
stream]'unction (in the A, 6-plane) of a (possible) flow pattern of a com- 
pressible fluid (for the simplified compressibility equation). 

"We assume here that the only singularities of g in B are branchpoints. In 
applying the integral operator method in the case where g has poles or logarithmic 
singularities, certain modifications, indicated in [9, p. 469, footnote 14], are needed. 
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Proof. In order to prove our statement, we have to show that by (4. 6) 
and (4.10) and slight modifications of these formulas, Ej2(\, 6, t) is defined 
for all values A < 0, — co <•<? < oo and for values t belonging to a suitable 
simple, sufficiently smooth curve in the complex tf-plane which connects 
i = — 1 and t = l. Obviously, this curve has to avoid the points t = 0, 
t = ± (2A/(A + #))* as these would give rise to singularities of the hyper- 
geometric function. On the other hand, any such curve will be suitable for 
our purposes. However, with a view to the subsequent generalization of our 
procedure to the " exact" case, we shall use two special paths of integration, 
d and Co, the former apart from its terminals t = ± 1, inside E[| t | <1], 
and the latter outside E[| t | < 1]. d will be used for values A, 6 satisfying 
| (A + i0)/2\ | < 1 and C2 for the case | (A + i6)/2\ j > 1. 

It should be noted that the two terminals of the integration path, viz., 
t=±l, will never be singularities of E\2(\,6,t) since, for t = ± 1, 
(A -f- %6)/2\ ^= 1 for real A and 0. 

The expressions thus obtained will not necessarily be analytical con- 
tinuations of each other (qua functions of A, 6). Since, however, the hyper- 
geometric equation has only two linearly independent solutions, the constants, 
A1} #! and A2, B2 can always be so adjusted as to make these two solutions 
analytical continuations of each other. 

EEMAKK. It would, of course, also be possible to characterize the path 
of integration in a manner which is topologically invariant with regard to 
the way the singular points of Ef2(X, d, t) are by-passed; using this definition 
we would, for any value (A, 6), obtain one and the same function \j,(\, 0). 
However, although this procedure has some theoretical advantages, its actual 
carrying.out may give rise to certain difficulties; in practical applications 
it is much easier to assure analytical continuation by the determination of 
the constants A2, B2 if A1} B^ are given, or vice versa. 

The integral representation (4.11) can be immediately generalized to 
the supersonic case where it will produce, in an analogous manner, solutions 
of (2.12) with N1==,N\1 (see (2.18)). Indeed, replacing A by the variable 
<o = A + tA and considering the solution \ji{<a,0) of (2.8a) in the plane 
A = 0, it is seen that ^(iA,$) satisfies equation (2.12) with iVr=l/12A. 
Eepeating the procedure which led to the generating function (4. 9) in the 
subsonic case, we now obtain the generating function 

(4.12)        Ej = (aiS0/(2A)^)F(l/G, 5/6,1/2, tz(A + 0)/2A) 

+ (JA(A+ ö)^/(2A)V3)p(2/3,4/3,3/2, *"(A + 0)/2A), 

| C2(A + 0)/2A[ <1. 
13 
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If 'F(a1,ß1,y1,X) denotes only the hypergeometric series and not the hyper- 
geometric function, (4.12) has to be replaced, for | t2(A + 9)ßA | > 1, by 

(4.13) Ät=(^„/(^2(A+Ö))1/6)P(1/6,'3A1A 2A/*2(A + 0)) 
+ (&2£o(2A)2/y(*2(A + 0))5/8)F(5/6,4/3,5/3, 2A/t2(A + 8)), 

where the constants a2, b2 are easily expressible in terms of a1} bt. 

If 0 = A and f2 = l, there arise certain difficulties, since the hyper- 
geometric functions in   (4.12)   will then become singular.    By the trans- 
formation formulas of the hypergeometric function,  (4.12) may be written 

'in the neighborhood of ((A + 0)/2A)i2 = 1, in the form 

(4.14) JBf=(ffl3S0/(2A)1/e)P(l/6,5/6,3/2,  1 — t*(A + 0)/2A) 

&3#o(2A/(2A-i2(A + 0)))iF(l/3, — 1/3,1/2,1 — t2(A+9)/2A). 

In order to avoid the complications which arise from the fact that the second 
term of (4.14) has a singularity for A = 6, t2=l, we shall therefore take 
b3 = 0.   The function Ef will accordingly be of the form 

(4.15) ^t=(a3Ä„/(2A)^)F(l/6,5/6,3/2, 1 — i2(A + 0)/2A). 

We note further that all these considerations can be repeated with A 
replaced by —A. Our operator will therefore yield two independent types 
of solutions, depending on whether the argument of the associate function 

is taken as A -f- 6 or A — 6. 
The exact conditions under which our operator can generate solutions 

of the compressibility equation in the supersonic case • are given in the 

following theorem: 

THEOREM 4.2. Suppose /,(£), s = 1,2, are real functions of the real 
variable f and everywhere differentiate with the possible exception of £ = 0; 
suppose further that in a fixed neighborhood of £ = 0, /, can be approximated 
to   any   prescribed   degree   of  accuracy   by   the   expressions   of   the   form 

|l,(«ftf,>l.    Then 

(4.16) ^(A,o.)=Rti(/i)+«t«(/0, 

Rts(/s) = rj/f2(A,-(-i)^o/s[i(A-(-i)sö)(i-^)]^/(i-^)^ 

represents a solution of the compressibility equation, which is defined for any 
A > 0 and can be interpreted as a streamfunction of a (possible) supersonic 

flow pattern. 
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Proof.    By (4. 12) we have 

(4.17)    Rti(/0 =ai/(2A)V6 

X J^/CVe, 5/6,1/2, i2( (A + 0)/2A)/((A + 0) (1 —12)/2) (1 — t*)-Ut 

+ c1(A + ö)*(2A)-2/3 

X JW(2/3,4/3,3A *2(A + 0)/2A)/((A + 0)(l — F)/2)(l — *»)-***. 

In view of A > 0, the only values of (A, 0) for which this expression may not be 
differentiable are those for which A -f 6 = 0 or for which u = t2(A + 0)/2A 
coincides with either of the values 0,1, GO for — 1 < t < 1. The case it, = oo 
is ruled out because of A > 0; the case u=l, although corresponding to a 
singularity of the hypergeometric equation, does not give rise to a singularity 
of R, by virtue of our particular choice (4.15) of Ef. The case u = 0 need 
only to be considered for A + 0 = 0, as t = 0 obviously does not cause any 
difficulties. 

Under our assumptions, it is sufficient to consider the special case 

(4-18) fi(0=fi.«(0=2T, K>1, 

in which (4.17) reduces to 

(4.19)    Rf2,1(f1|K)=a1/(2A)1/6 

X JF(1/6, 5/6,1/2,  *2(A + 0)/2A)(A + 0)*(l — t*)»*dt 

+ Cl(2A)-2/3 J\F(2/3,4/3,3/2,   t'(A + 0)/2A) (A + 0)«*(1 — f)Hfi, 

For A -f- 6 -=> 0, this expression is obviously continuous. The same is also 
true of the derivative 9Rf2|1/9Hf. Indeed, SKf^/oHf (see (2.18)) behaves 
in the neighborhood of A + 9 = 0 like (A -f O)"-1; in view of « > 1, it there- 
fore remains continuous there.   This completes the proof of Theorem 4.1. 

Before we proceed to investigate the behavior of our solutions on the 
sonic line, we note that (4. 6) is not the only solution which depends only 
on one variable.    If we write 

(4-20) /JL==t2(X — X0 + i6)/2X 

and try to solve (4. 2) by a function of one variable /i, a formal computation 
shows that E*j as a function of /x must satisfy the hypergeometric equation 
(4. 7) with u replaced by /x. 
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Accordingly, the generating function (4. 6) for the operator of the second 

kind may be replaced by 

(4.21)    E\(\,8,t)=A1(— 2Xy/6¥(1/6,5/6,1/2, i2(A —A0 + t0)/2A). 

Besides its greater generality, the generating function (4. 21 with A0=T^0 

has a number of additional features, which make it superior to (4. 6) in 
many cases. In (4.6) the point A = 0, 0 = 0 is a singularity since, by 
approaching this point in a suitable manner, the argument of the hyper- 
geometric function can be given an arbitrary value. In (4.21) such a 
singularity does not exist, since A and A — X0 + i6 cannot vanish simul- 

taneously if A0 T^= 0. 
Another singularity, which can be removed by using (4. 21) with A0 ¥" ° 

instead of (4.6), occurs in the supersonic case. For i2 = 1 and A = 0, 
the second term of the right-hand side of (4. 14) becomes singular. In order 
to allow for this case, we had to assume that &3 = 0, thus somewhat restricting 
the generality of the solutions we could obtain. Setting A = iA, it is seen 
that in the supersonic case the argument of the hypergeometric function in 

(4. 21) becomes 
(4.22) /, = ^(A + tAo + 0)/2A. 

For t = ± 1, we have ^ =^= 1 for real values of A, 0; the singularity in question 
is therefore removed and the constant ba in (4.14) may now take any 
arbitrary value. Moreover, (4.22) shows that /A^O for A+0 = 0; as a 
consequence, the line A + 0 = 0 loses its singular character and the dis- 
cussion of the equivalent of (4.17) is considerably simplified. 

Thus, by the use of integral operators of the second kind with the 
generating functions (4. 9) and (4. 12) as well as (4. 21) we obtain solutions 
^ = Ini[>,(#)] which are defined in the subsonic and supersonic regions 
respectively. If g is defined in a (not necessarily schlicht) domain Gx in the 
subsonic region and has, as its only singularities in 01} branchpoints of finite 
order (but not poles or logarithmic singularities), then the generated function 
is again denned in G^. (In particular, it has branchpoints at the same points 

and of the same order as g). 
If g is a twice differentiable function of one real variable in a schlicht 

domain G2 in the supersonic region, the generated function will be a solution 

of (2.18). 
Thus by this procedure, we can generate solutions of (2. 2) which are 

defined in adjacent domains, one in the subsonic, the other in the supersonic 
region. Our object is to show that these solutions can be continued across 

the sonic line. 
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This fact is immediately seen if we introduce a new variable,15 

(4 23) S=(_A)2/3    for    A < 0, 
s = — A2/3        for    A>0. 

The  variable  s = s(lff)   considered as  a  function  of  Mach  number  M\, 
possesses the property that s(l) = 0, and that 

(4.24) ds(Mj)/dMf = — 25/3(3fc + 3)-2/-W| +0(1 — Iff) 

is non-vanishing and bounded in a sufficiently small neighborhood of Mj = 1. 

If A0 ^= 0, and if g is regular for (— 0„ < $ < 00, s = A = A = 0) then 
the generated function is an analytic function of 9 and s (and therefore of 6 
and Mf) for (— $0 < 0 < 0O, — s<°> < s < s(o))j s(o)  sufficiently small. 

If A0 = 0, we have to assume that lim Z~5/Bf(Z) exists (or alternately 

that lim Z^g'(Z) exists) in order to assume that the generated function 

\p(6,s) is regular also at the point 6 = 0, s = 0. 

5. Integral operator of the second kind in the case of the " exact" 
compressibility equation. As we mentioned before, any solution E* of the 
equation 

(5- !) E*it — t*E*h — (l/t)E*i + 2ZtE*zz + 2ZtFE* — 0, 

XZ+2 
Ndr],  (see  (4.3)), is a generating function of 

00 

an integral operator P(/)   (see (3.4b) which produces solutions of equation 
OO 

(2.8b).    The series 1 + 2 (t2Z)»0<»>(2A), where the g<»)'s are solutions 
"=1 

of the system: 

(5.2)      (2n+l)gx<««)+0xx<»>+4FG<»>=O, gw«- —4   PW 
•^   -00 

(see  (87)  of [6]), is a solution of  (5.1).    The above series converges for 
| Z | < 2 [A | and reduces to the first summand of (4. 6) for F = F]. 

It is therefore desirable to obtain solutions of (5. 1) which are defined 
in I Z [ > 2 | A | . In this section we shall determine two power series 
E*W (K = 1, 2), both converging in | Z | > 2 | A | , such that in the simplified 
case, AJtE*™ +B2RE*W reduces to  (4.9'). 

16 We note that in the simplified case we have 

S= — 2.3-2/3(2/(fc —l))(2-*)/(8*-3)Ht. 
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THEOREM 5.1.   Let 

(5.3) qM=%CvM (— A)"-i+(2/3)(KW) « = 1,2, 
v=o 

be a set of functions which are connected by the relations 

(5. 4a) q\x<°'K) + 4Fq{°'K) = 0 

(5. 4b)        2(n + h)^n'K) + gxx(n+1'K)'+ 4Fg<»+1'«> = 0, 
n = 1, 2, ■ • •, K = 1,2. 

Then each of the functions 
00 

'(5.5) p(K)=|?(w)/(_fZ)«-i+W3)' 

is a solution of (5.1).    Each of the series converges in E[2 | X | < | Z | ]. 

Proof. Substituting the series (5.5) into (5.1) and equating the 
coefficients of H<^>/3(— Z)-«^1'/6, w = —1, 0,1, • • •, to 0, we obtain the 

following set of equations: 

(5. 6)    q-zzM + Fq^K) = 0, (n + §*)#<"•"> + g«^1"0 + ^(n+1,K) = °> 
« = 0,1, • • •, 

which, if we assume that the ql"-K) are functions of A alone, result in the 

equations (5.4a) and (5.4b). 
According to (2.17), F can be written in the form 

(5.7) F^s-S8(s),       s={—\)2/s, 

where S(s) = «„ + «i« + «2s
2 + • • •, «o = 5/144, «i = 0, ■ • •, see (2.17), 

considered as a function of s, is regular in a circle of radius s0 say, with 

center at the origin. 
Introducing the variable s, we obtain 

gx(»,«) „ (ds/d(-\))(dq^/ds) =-f (-A)-1/3^"""/^) 

^ — p-b^q^/ds) 

gxx(n*i.«) = (4/9) [— is-2gs<"+1"° + *-1g..(»+1",)]. 

Hence, the system (5.4a), (5.4b) assumes the form 

(5. 9a) s'q..^ - W"° + 9S(s)q^ = 0 

(5.9b)    -3(n+h)s5/2qsM +8*q..l>»1-»-W1«) +SS(s)q^^0, 
n = 0,1, 2, 3, • • •. 
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LEMMA 5.1.   There exists a system of solutions g^*)   n = 0 1 2 • • • 
of (5. 9a), (5. 9b) of the form '   '  ' 

(5. 10)      gC«) = s(3/2„n-i+(2/3)Ä,rK(., (s)} jy.) (a) = § ^„^ ^^ _^ Q 

where each 2V»>(s) is a power series which converges in the circle | s | < s0. 

Proof. We shall first prove the above lemma for g(°*>'and then for 
arbitrary n by induction on n, i. e., we shall show that if the lemma holds for 
?<»•*>, then it must hold for g<-^>. Let us first consider the homogeneous 
equation 

(5-n) s2wss~iSws-\-9S(s)w = 0. 

The indicial equation (see [15], p. 225) is 

(5. 12) p(p _ 1) _ ip + 5/16 = 0} or pi _ 5/4j p2 = 1/4_ 

By substituting w = s^y, we obtain the equation 

(5- 13) V" + 9s-2[Ä(s) — 5/144]*/ = 0. 

Since s-2[£(s) — 5/144] is a regular function of s for | s | < s0, (see 5. 7)) 
we may choose the two particular solutions of (5.13) as 

yt = Co'0-1» + 02<°>i>s2 + C3 (•*>«» + ■ ■ • 

y2 = Oo(0'2»s + CV0-2)«2 + C2(°-2»s3 + • ■ • 
which yield 

g(o.D=C0(».1)sV4+(72(o,1)s9/4 + (73(„,lV3/4 + . . .ssi/4W(i)(a) 

g(0,2> = Co«.»)«»/* + ^ («.*)«•/« _(_ C72(0.1)S18/« + .    .    . SS./*W(2) (S). 

In the case of the simplified equation we have [see (4. 9'), (4.1), (4. 3)] 

gf (0.1) = Cf0(o.i) (_x)i/e, CV0'1* =- 21/6, 

?t(0'2) = Cfo (0'2) (— A)*'«, Of C'2» = 2Ve. 

In order to obtain analogous series for the " exact" case we choose 

(5.14)        C0(°'D = Cto(0ll) = 2Vo;       <70<0-2) = Cf „«>.») = av«. 

Let us now instead of (5. 9a) consider the solution of the non-homo- 
geneous equation (5. 9b) and let us assume that for n > 0, we have already 
proved that g<«.«> has the form (5.10) and 2V«>(a) converges for | s | < s0. 

In order to prove that there exists a solution of the equation (5 9b) 
of the form ?<»«.«)   ^s^H^ß)^^) {s)> ^ prQceed ag ^^ 
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Let 
(5.15) g<»+1'*>(s) = w(s)w(s), 

where w(s) =sK-3/4W(K)(s)   is a solution  (see above)   of the homogeneous 

equation (5.11).    Then u will satisfy the equation 

(5.16) wuss+ (2ws — w/2s)us = 3{n + lK)siqs^
K). 

The particular solution of this equation is easily verified to be 

(5.17) u«=3(» + §ic) fSw-2s*(J°wqs(
n>K)ds)ds 

Expanding q<-n+1>K\ we obtain 

(5.19) g(n+l,*)(s) =S(3/2)(»+l+(2/3)K)r/c(»+l)'(s), 

2V»+1>(0) 

= [(6w — 3 + 4K) (3n + 2ic)/(3n + 3) (3« + 4K — 3)]2V"> (0) =^= 0 

the series for TK<"+1> (s) converging for | s | < s0. 

This completes the proof of Lemma 5. 1. In order to prove Theorem 5.1, 
it remains to be shown that it is legitimate to interchange the order of 

summation in the double series 

(5. 20) 2 (— t*Z)-l»+-W'M  2 C»«»-*) (—A)"-ä+<2/3' <*+»> 

for 2 | A | < | Z | .    For this purpose, we shall prove 1C 

LEMMA 5. 2. 
(5.21) | <V"+lll) | ^ 2«+1M/V 

for  «,+ 1^^170,  where  (V""1"1'1'   are the  coefficients  of the  series   (5.2). 
Here, pa and M are sufficiently large constants, and Sx = s0(l + 0_1- 

Proof. We shall give a proof by induction. Consider at first the C0
ln'1), 

n==0,l, 2, • • •. If we substitute the power series (5.3) into (5.4b), it 
becomes' evident that the Co*"'1' depend only upon a„, and are independent 
of the remaining coefficients a», n > 0, of the series expansion of S{s), 
(see (5.7)). On the other hand, if we substitute a0 = 5/144, an = 0 for 
n > 0, we obtain the simplified case considered in (4. 9'), where we had a 
representation for E\ as a power series in (2X/—t*Z).    Using the fact that 

18 We shall consider here only the case when K = 1. Exactly the same proof holds 

for K = 2. 
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jj*j = E\/H] = #o_1(—2A)1/6£rf (see (4.1) ff.) we obtain two power series 
for E*\; the first of which corresponds to the case K = 1 and the second to 
the case K = 2.    Thus, setting A2 = l in (4.9'), we have 

(5.22)        E*\= (—2A/—^)1/6F(l/6, 2/3, 1/3, —2A/—i2Z) 

= (_2X/_FZ)1/« 

whence 

(5. 23)    Co'0'1' = Cto(0,1) = 21/6, Co«"-1) = CV»'1' 

M+v- • ■a+^)(f)(f+1)- • •(§+«)2Bti/6 

n = 1, 2, 3, • • •, 
from which the inequality (5.21) for /A==0 follows. 

EEMAEK. Since in this case v = n = 0, the number s0 in (5. 21) where 
v is replaced by /x) may be given any positive value.   For n = — 1, and an arbi- 

00 

trary p, the inequality (5. 21) follows from the fact that g«0-1) == 2 G ^ s"+1f4 

00 ll~0 

is a solution of (5.9a)  and the fact that 8(s) = 2 V" is regular in the 

circles of the radius s0 (see also (5.13)); accordingly, 

(5. 24) | ac,, | < r/s0" 

holds, if r is a sufficiently large constant. 

We now proceed to the proof (by induction) of (5.21) for n > ■—1 
and j«. > 0. Let us assume that this inequality holds for some n-\-1, and 
ix < v — 1 as well as for N < n and /* < v + 1- We shall prove that (5. 21) 
then holds for N = n-\- 1, p — v. 

If we substitute the series (5.3). (with K = 1) into (5.4b), we obtain 

the relation 

(5.25) 

Hence, 

■ Hn + §) (n + 1 + SvJCv«»'1) + (»+* + I") (» + * + frOCv«"1'1' 

+ 4a„Cfy<»+1>1> + 2 4<V"+1'1)av-M = 0. 
u=o 

(5.26) |0v("+1'1)[l+(4a0/(n + i + fv)(^ + i + tv))] | 

^ 2™+1M/s0s1"-1{[(l + 2/3«)/ (1 + 7/6» + (3/3) (*/«))] 
+ 4.r/(n + t + |v)(W + i + |v)}. 
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If n -f- § v > ^.o, then 

(5. 27) | Cv^1'1) [1 + 4«o/Po2] | ^ 2"+1M/s0s1"-1[l + 6r/p0], 
or 

| Cv(B+1,1> | ^ 2«+1M(l + ^/SoSi*"1 = 2J>+1M/s1". 

This completes the proof of Lemma 5. 2. 
In order to show that it is legitimate to interchange the order ■ of summa- 

tion in (5. 20), we shall show that for 

| A |2/3 ^ So — €, | — 2A/— t2Z | < 1 — £, where £ > 0, 

the series converges absolutely and uniformly. Indeed, by Lemma 5. 2 we 
obtain 

oo no 
(5.28) |  2   (^)-(1/6)-»2v(re'1)(— X)n+(l/6) + (2/3)*| 

Jl=0 J<=0 
00       00 

£S M 2   2 2"(— A.)»+(i/6) + (2/3)ys/ I ^ I d/6)+» 

= M I — 2A/— £2Z I V6[i _ I _ 2x/— <2Z Ij-^l  — I \2'z/s1\ Y
1 

which for | A | 2/s < s0 — e, | — 2X/— PZ\<l—t, 0 < e < 1, becomes 
smaller than M(l — £)1/6/e2, which shows that the series converges absolutely 
and uniformly. 

In order to obtain a continuation of a given streamfunction to the 
supersonic region, i. e., for imaginary values of A, it is convenient to replace 
A by the variable s = (—A)2/3 used before in a different context (see (4. 23)). 
Then the. generating function in the subsonic case may be written as 

(5.29)        EW(\,6,t)=H(2X)E*W(\,0,t) 

00        00 

— 802-1/ep(s)si(-12 2 <7v(n'K>s<3/2),w/(— pzy-i+wv«, 

I s I < s0, 2 | s | 3/2 < | Z |, K = 1, 2, 
(see (4.3) and (5.5)) where now 

(5.29a) Z = — sa'2 + ie. 

By replacing A by iA, we see that (—A)2/3 is changed to •—A2/3.   Thus 
we obtain as the generating function in the supersonic case 

(5.30)        E^{K,6,t) 
00        00 

= 2-1/G80p(s)sK-1 2    2 t"Cv("'K> (—S) <S/2)nsy(_ f2£)n-JH2/8H- 

I s I < so, 2 | s | 3/2 < | Z | , 
where 
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(5.30a) Z = i(— sy'2 + i6. 

Let us now restrict ourselves to a neighborhood of the point A = 0, 6 = 0a 

(0O=^ 0) lying entirely in the domain D = E[| s | < s0, | s | < 3"1/3 | 0 | 2/8]. 

For  (s, 0) eE[s2+(0 —0o)
2<0o

2/25], we have 

(5.31a)    Zv=(i0o)v[l—(ss/z —i(6 — Öo))/iÖo¥ 

. —2«»m(0 — 0o)
ms(3/2)'1 forM<l, 

(5.31b)    Z-y—(töo)Y[l+((— s)3/2 +(0 — 0o))/0r 

— 2 hmn(e — 0„)mS<3/2>» for  Jf > 1 

because then both \(sV2 — i(9—6o))/i60\ and | ((— s)3/2 + t(0 — 0„))/0o1 
are less than 

(\8\">+\6 — 60\)/\90\ 
< (3-i/2101 + | e — e01)/| ft, | < (s • s1/2 +1)/5 < l. 

Here • amn and bmn are suitably chosen constants. Thus both the subsonic 
generating function and the associate function, and therefore P[f(—s3/2 

+ iö)], may be expanded in integral powers of (0— 0O) and s1/2. Similarly, 
in the supersonic case, V\j{i{—s)3/2-\-i8)~] may be expanded in integral 
powers of (6 — 0O) and (—s)1/2. Both functions are determined and equal 
to each other for s = 0. 

We shall show that if / is regular in D, the coefficients of svl2, v odd, 
vanish, and therefore P[/(—s3/2 + t0)] is an analytic function of s and 
(0 — 0O) at (O,0O). 

THEOREM 5.2. // / is regular in the domain Z>=E[|s|<s0, 
| s | < 3~1/3 | 6 | 2/3], then the solution P[/(—s3/2 -|- to)] is a regular function 
of s and (0-—0O) in D. 

Proof. We have shown that P(/) may be expresed as a power series 
in s1/2 of the form 

00 

(5.32) P(/)=Efc»(fl — ö°)s"/2. 
re=o 

00 

Using the variable s, and noting the fact that N = (l/12)s"3/2(l + 2 an^snn) 

(see (2.16)) equation (2.8a) becomes 
00 

(2. 8') 4^F„ + 9s^9 + 2^s 2 «WS" = 0. 
n=0 

By substituting (5. 32) in (2. 8') we obtain the recursion formulae: 

(5.33a) ft1==fr3 = 0 
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(5.33b)    Ä„+4 

(»-D/2 
— [V(« + 4) (« + 8)] [9ÄVa + 2   2 ((3/2) + /)a(n/2)+i-^t3] 

for ft odd, 
(5.33c)    Ä„t4 

n/2 

= — [l/(n + 4) (» + 2)] [9Ä"„-2 + 2 2 (1 + ;)a(»/2)+i-iÄ2j+2] 

for ft even. 

Since hn, where n is odd, depends only on the previous hm for odd m, 
we see from (5. 33a) that hn = 0 for all odd n. 

Thus (5.32) becomes 
00 

(5.32') p[/(— ss^ + ie)] = ^fn(e — e0)s
n. 

Since 5 is unchanged by the result of putting iA for A, we obtain 

00 

(5.34) P[/(*(— *)8/2 + tf)] = 2/»(0 — öo)s".      • 
n=0 

The expressions P[/(— s3/2 + iö)] and P[/(i(—s)3/2 + t#)L gim functions 
of s and (0 — 60), are analytic continuations of each other across the sonic line. 

Thus, assuming that the associate function is regular in a sufficiently 
large domain, and applying the integral operator of the second kind, we 
obtain solutions of a compressibility equation defined in four adjacent domains, 

D1 = B[Jf < 1, 6 > 31/2 | \{M) |] + E[M > 1, 6 > A(Jf)], 

•       D2_E[Jf <1, |0| <3
1
/2|A(M)|], 

J>3 = E[M < 1, 0 < — 31/21 X(M)\] + E[M > 1, 6 < — 3A(M)], 

D4 = E[M >1, — 3A(ilf) <0< A(7lf)]. 

(See fig. 1, p. 859.)    The solutions defined in Dx and Z>3 were derived in the 
present paper, while those defined in D2 and 2>4 were derived in [6, § 11]. 

In the simplified case, using the theory of hypergeometric equations, it 
was possible to combine these representations into one, which yields solutions 
of (2. 2) defined in the whole M-0-plane. In the exact compressibility equation 
the problem remains of combining these four representations into one. This 
problem can be attacked by using the integral operator of the first kind in 
addition to that of the second kind, and, in analogy to the simplified case, 
developing a theory of differential equations with singular coefficients, which 
would furnish us with information corresponding to that used in the simplified 
case. As will be shown elsewhere, the methods of the Euchs theory for ordinary 
differential equations can be generalized to the case of partial differential 
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equations of type (2. 14) with F being an analytic function of two complex 
variables and possessing certain singularities. In particular, if the singularity 
surfaces are linear, the following results which will be proved in a subsequent 
paper, will be valid: 

THEOKEM 5. 3.   Let the coefficient F of i/> in equation 

(5.35)     (d^/dZ^) + (8Y/8Z22) + ity = 0,     Zx = \ + iA.,     Z2 = 6 + id, 

have the form 
00   00 

(5. 36)        F = 2   2 4m.1,n.1T7»-1Z»-1, 4.!,.! 7^ 0, 
OT=0   tt=0 

^ = ^+^2,   Z = Z± — iZ2 

where the coefficients A.„,t„ satisfy the inequalities 

(5.37) I Am-i,»-! I < A/Pl
mp2'\    A>1,    Pi>0,    P2>0, 

being suitably chosen constants. 

If r =^= 0 is a complex constant which satisfies the inequalities 

(5.38a)        r^= — (TO/2)[1 ± (1 + A^/mn)*], 

0 < arg (1 -f- !_,,_!/««)" < TT/2, 

(5.38b) r ^ A.^/^n, 

(5.38c) r^ — m 

for m = 0,1, • • • ; n = 0,1, • • • ;   (m,n) =7^(0,0), ifcen £Ae expression 

00 

(5.39) ^ — F^w«'2 BWnTP'Z", 

w^ represent a solution of (5.35). Here B00 is an arbitrary complex 
constant, and the Bm«. have to be determined from the equations 

(5. 40)    4[mn + m — (A.1,.1m/4:r)]Bmn 

m-l     n n-1 
= 2     2 j4.TO-/X-l,re-V-l-Djxv 2j 4-i,«-v-Av 

(5. 38) converges in 

E[| W I < Pi/AB, \Z\< P2/AB] where B = max [1, | Bm \ , M/4], 

and 
M = max {{mn -\- m + n)/| mit + rn — 4_1i-1mJLi,_i |}, 

TO = 0,1, 2, • • •, n = 0,1, 2, • ■ •,  (mn) =£ (0, 0). 
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THEOEEM 5. 4.   Let the coefficient F of \p in (5. 35) have the form 

00 
(5.41)    ' F = Z^A.2,0 + Zr^iZz) + 2 An{Z2)Z^ 

1J=0 

where 
(5. 42) 4.2,0 ^ (1 — n2)/4„ » — 0,1, 2, • ■ ■ 

awd iAe An(Z2) are analytic functions of Z2 which are dominated by 
A/(R — Z2)

n+2, (i.e., for which An(Z2) « A/(R — Z2)
n+2 n = —1,0,1, 

2. • • • holds) A and R being suitably chosen positive constants. Then the 
expression 

(5.43) t = Z1r*'ZBn(Z2)Z1«, s — 1,2, 

represents a solution of (5. 35) which is defined in 

(5.44) E[|^|< (R— \Z2\)/(l + e), 

| Z2 | < 1 — ((— 1)'(1 —44.2,o)* + A)/{I — A-2..)*] 
wftere 
(5. 45)        e = max [| (1 — (—1)«(1 — 44.2,0)^ + A)/{I — 44_2,0)* |, 

M/(l+ (—1)'(1 —4A_2.o)*)|] 

rs = i+(— l)s(i — A.2,„)», 0<arg(i —4_2.0)*<ir/2,      « = 1,2. 

fl"ere B0{Z2) is an arbitrary function for which 

(5.46) B„(Z2)«B(1 — .R-%)-2, J3>0, 

an^ Bre(Z2) are tfo &e determined by the relations 

(5.47) [l+(— l)s(l — 44_2,„)^]B1(Z2)= — 4.1(Z2)B„(Z2) 

■   »[«+ (—1)»(1 — 4A_2,0)i]B„(Z2) 

= — [-B'V2(^2) +2Av-2(22)B„.v(Z2)],        n —2,3,- • •. 

We should like to add here a remark regarding the general question of 
analytic continuation of a solution ij/(Z,Z) of a linear partial differential 
equation. If ^ is given in two different domains, say Bt and B2 by different 
representations, say, in Bx by the integral operator of the first kind in the 

form 

(5.48) *=>i = p[fl'(^)]+p[Ä(«)] 

[see (3.11)] and in B2 by another operator 

(5.49) >-^2SS   VE{Z,Z,t)H\Z{l — P))(dt/{l — tW 
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[see   (3.4a)]   (not necessarily  of the  first  kind),  and the  origin  lies  in 
By Pi Bz, then the problem of the analytic continuation of fa into the domain 

■7-» °° 
Bx is equivalent to the determination of g and h from a given / = 2 a«Zn. 

Setting Z = 0, and Z = 0, respectively, in the relation 

(5.50)       p[g(Z)]+p[h(Z)]=   f1.E(Z,Z,t)f(iZ(l—^))dt/(l~t')i 
•s   »'=-1 

we obtain the identities 

(5.51) 22n2r„v(1>av = ö'(Z) +S(0,Z)Ä(0), 
oo 

«oo 2 Z"r»»(2) = R(0, Z)g(0) + ft(Z) 
m=0 

where 

(5.52) T„V
(1)
=  f1^„_v(1)(l— t2)»-*2-*dt, 

J t=-i 

T„nw=   C1 En^(t)(l — t2)-Ht, 
00 00 

E(Z,0,t)=2,En^(t)Z»,       E(0,Z,t)=-2E*w(t)Z». 
>t=0 n=0 

[See 5, page 310.] It is thus seen that the analytic continuation of fa into 
Bx and all the problems arising from it, such as the determination of the 
singularities, etc., are reduced to similar problems in the theory of functions 
of one complex variable which are given by their power series expansions. 

6. The determination of the associate function in terms of the given 
streamfunction. We now turn to the problem of determining the associate 
function / in terms of the given streamfunction. In the case of the integral 
operator of the first kind, the formulas (3. 7), (3. 10), (3.15), (3. 16) yield 
the associate gx(Z). Therefore, if the continuation of the streamfunction 
(which a priori is given in the real plane) to complex values of the argu- 
ments is known, then these formulas immediately yield the associate. In the 
case of general integral operators (in particular, of that of the second kind), 
if the streamfunction is given in the form of a power series, then it may be 
shown (see [5], p. 310) that the associate can be expressed in the form of a 
power series. On the other hand, the streamfunction \p is, in many instances, 
given in some different form, say the values of \p and d^/dM are given on a 
line M = const. If these quantities are analytic functions of 6, then from 
these data it will be possible to determine the coefficients of the series 
development from which we may then determine the associate functions in 
the way indicated above.    However, this procedure gives,, only the function 
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element of f(Z), so that the function is in general determined only in a 
sufficiently small neighborhood of the interval of M = const, along which the 
values <// = xi(0) and df/dM = x2(#) are given. We shall show in the present 
section that, in the case of certain generating functions of the second kind, 
a formula expressing / in terms of the values '// = Xi(^) and dip/dM = xsW 
on the sonic line, M = 1,' can be derived. According to the consideration 
of 5 an integral operator of the second kind can be written in the form " 

(6.1) ^(A,ö)-Im[  f   E(Z,Z,t)f($Z(l-t*))(l-t*)+df] 

= (2i)-1  f [Ef — eß(l — t*)-*dt 
■■ J c2 

where 
(6.2) E = A1E

<-1) + [|Z(1 — t2)]2^3A2E^, AK complex const. 

Here Eu), K = 1, 2, are the generating functions introduced in (5.5) and 
(4. 1); C2 is a simple curve in the complex i-plane which connects t = -—1 
with t = 1 and, except for the endpoints, lies outside B[| t | < 1]. Moreover, 
C2 has to be chosen in such a manner that \_\Z(\ — i2)] lies in the regularity 
domain of / for the values of Z under consideration. 

We assume the associate function to be of the form 

00 

(6. 3) /(£) = 2 c„f"+1/6, c" complex const. 

which is suggested by previous considerations.    Under the assumption that 
the (complex) constants A1} A2 satisfy the inequality 

(6. 4) Im[A2Ä1'] =£ 0, 

the desired inverse formula for / in terms of Xi(0) and Xz(ö) is given in 

THBOEEM 6.1.     Let  V(M)   oe   a   (real)   solution   of   the   compressi- 
bility  equation   (2. 8a)   which is defined in a  domain, say B, situated in 

' [3M A | < | 6 | , A < 0]   and  such   that  its   boundary  includes   an  interval 
[0o < 0 s; 0i] of the transonic line A = 0 not containing the origin.    Let 

(6.5a) lim ^(A, 0) =xi(ö) =2av(1)0", av
(l<) real const. 

X-»o- v=o 

00 

(6.5b)      lim^(A,0)=X2(ö)=31/3(l —^2)2/32    av^6%^M= d^/dM, 
X-»o- 

(see   (2.6))   then the P2 associate f of the integral operator   (6.1)   with 
generating function (6. 2) and A1} A2 satisfying (6. 4) is given by 

17 In the remainder of this section we shall omit the subscript "2" in E2, and 

shall write simply E. 
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(6.6) /(£)=— {(— 2iO1/6/31/^80
2Im[A2Ä1]}t— d0 f  tVs

Xl(<r)dt 
J c 

+ £(—1)*& f t-s/\k{<r)äq 
where 
(6.7) . a = —2i£(l —*2), 

the constants dv, v = 0,1, 2, are 

(6.8) d0 = — (2/3)is'2S0A2,   d1 = —(25/3/3)i^S^Ax,   d2 = — i^e80A1} 

the Sv are defined in (4.4). 

REMAKE 6.1.   Developing the right-hand side of (2. 6) into an infinite 
series and inverting it, we obtain the following series for (dX/dM) 

(6.9) d\/dM= [&/*(l — ^)2/3] (_x)V3 

X [l + 31/3(i_Ä2)-V3((3/io) +1/12— (4/5)ft*)(— A)2/3 + - • •] 

Therefore   it   is   legitimate   to   consider   lim (—A)1/3((ty/0A),   instead   of 
lim (dip/dM). x-*°~ 
X->o- 

Proof.   A formal computation yields (see (5. 3), (5. 5), (5.14), (6. 8)) 

(6.10) lim E(Z, Z,t)= — cy-1/s0-1/6 

X-»o- 

and 
(6.11) lim (—\)V*Ex(Z,Z,t) = [ektrW+aoWll — Py/^W. 

X->o- 

We now determine the limit values as A—» 0~ for the right-hand side of (6.1) 
and the  derivative of this expression multiplied by   (—A)1/3.    Since  by 

00 

assumption   these   limit   values   are   equal   to   expressions   2«v(1)0"   and 
00 v=o 

2 31/3(1'—h2)2/3av
{2)6v respectively, we obtain (by equating the coefficients 

of the 6") the following system of equations 

(6.12a) av
(1)=Im[(—2t)-("+1/6)d27v(1)cv], 

(6.12b)       av
(2> — Im[(— 2i)-^W (dJv

M + d0IvM)cv~],    v = l,2,--- 
where 

(6.13a)    7v(1)= f   «-^»(l — t2)"-^dt 
J c2 

_ ± i<r(./.)»ri(e-(*/.)-i_l) r(l/3)r(> + 2/3)    n-0, ± 1 
r(v-\-1) 

(6.13b)    7v(2)= fi-5/3(l —i2)"+1/s^ 

1 ± K(Wlw,(r(v.)rt_i) r(-i/8)r(, + 4/8) 
* v '        r(v + i) 
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We note that the last term on the right hand side of (6.13b) is obtained 

as follows: 

7„(2)=_ (3/2) f   (1 — Py^'H^-2^) 

= _(3/2)[i-2/3(1_i52)m/3]=_L3(v+i/3)   f ?/*(!—t2)»- 
«■=-1 J c2 

2'sdt. 

The first term in the last expression vanishes and in the second term, as in 
Zv

(1), we replace the integration curve C2 by the segments (— 1, 0~) and 
(0% 1) and a half-circle around the origin. 

EEMAEK. Since the curve C2 need only satisfy the inequality 
| t | > | 2A/(A + i0) | l (see 4.11), it is valid to replace it by a curve con- 
sisting of the segments (—1,0") and (0+, 1) and a half-circle around the 
origin provided the radius of the latter is greater than | 2A/(A + iO) | * which 
approaches zero as A-»0. The right hand sides of (6.13a) and (6.13b) 
are obtained by making the substitution t2 = T and considering the integrals 
in the three-sheeted r-plane. In the following, we choose the sheet for 
which n = 1. 

We introduce the integrals 

(6.14a)    Jv(1) = f *"5/3(l — t2)"dt 

r(—i/3)r(v+i) 
r(v + 2/3) 

± ie-(2/3)»"r«(e-(2/3)« — l) 

(6.14b)    Jv(2) =  f i"1/3(l — t2)vdt 

 H lP-WS)nri(p-(i/s)n 1\ r(1/3)r(v + 1) 
— ±2e 1,6 J-;     r(v_)_4/3) 

and note that 

(6.15) JvWJv'1' = 7v<2) Jv(2) = — 33/22-V. 

The determinant of the system (6.12) does not vanish for any v since 

it equals 

(6.16) — (V2)Im[W<2>/M] 

which would vanish only if Im[d,Ä] = 0. Since, by (6.8), Im[d0d2] 
= (2/3)#o2 Im[42Äi], the determinant does not vanish, because of condition 

(6.4). 
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Solving (6. 2), we obtain 

from which (6.6) follows. 

HARVARD UNIVERSITY. 
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APPEHDIX I. 

The derivation of formulae (2.4). In this section 

we shall at first determine the series development 

of €(h) = — " v  introduced in (2.2) in the neigh- 

f 
borhood of the point H = 0. According to (42) of 

[6] E is defined by 

u.i) £•   - \ ■ H(,(1)) - 0 
1 

(l) 2 ■q     ~   [2/(k+l)]     being the speed which corresponds 

to the Mach number 1. 

According to p.   7 of  [o]   it holds for 

2 
9L 

1- l/2(k-l)a2 
(A,2)  T^l-M2« h-1/^Lä^ , 

Vtfc-l) 
^-   (1-1/2(k-lk6) 

Eliminating v between both equations (A.2) we get 
1 1 

(Ä.3)  P= (TV)^1 ■(!- (——)T2)  k" X . 
J  k+1 k + i 

= ( )   (1+ +  ■*-+...) 
k+1       k+1    2(k+1)" 

Now, from (A.l) we have = . —— = —*-     _ 

i dT   da       dT   •%     d? 
-2 

= X  iiii.i—JL . prom the first formula of (A.2) 
2      dT 



^ ■   l 2 we obtain « '«[ = 
1 - T 

(k+1)- (k-l)'T* 
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Therefore 

(A.4)^4p 
AT     ^ ._> dT 

2 CT 

2  T 2(fc"l) 
^   1- T2 (k+l)-(k-l)T?J 

(l-T5(k+l)-(k-l) T2 k+ 1 

1 

 T_ T 

2      k-1 
(—") 
k+1 k+1 2(k+l)^ 

,J2 ,  k- 1 
k+ 1 

T+(Ell)T3
+ 

3k + 2»5k:x   T5 

k + 1 (k+1)' 
+.J 

Therefore  (since H=0 for T=0) 

(A. 5)  H=  -(_i__)  k^T 
k +1 

Now from (A.3) follows} 

l     r\ 2 2 

T2_ " trr 

For simplicity, let  . 

~L- +  (2k+1)Tt 5k2+2.5k*$T^ 1 
_2   4(k+l)    6(k7l72  J 

1 _,_  2   1.5k +2k+12 
—g- + ——- + —i 1 + 
T   k+ 1      (k+1)   " 

(A.7) A= 

-i- r_L_^ k- x„ _i B* -ig- ( ) 
T   k+1 

k-1 

^00 (k + i> 

Then 

.  .     2 ,2k+ 1 v 4 3k2 + 2.5k + 1 g 
(A.8) A= T + ( -)T + -      2 T6

+ ... 
2k + 2       3(k+ 1Y 
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and 

T*  k+1    (k+l)4 

Now (A,8) can be inverted to yield T as a 

function of A and (A.9) can be "turned upside 
1 ? 

down" to give -asa Taylor series in T .• 

There are thus obtained the following series: 

2k~l ,2  Sk+1 
Jk+2  A   6ET6 

(A 10 ^   T2 - A  2k~l  /-2 + 
6k+1 a3 * 

(A..11) I - T2 ♦ 2 T4 + 2.5k*+6k«3 f6   _ 
B      k+1       (k+l)

4 

Replacing T" in (A. 11) by (A. 10) we obtain 

(A.12)  ^H)    , - i - A - f3k+5)A2 + 
p/(k+i]| 

2/(k-x)    B (lra) 

„. k +(43/6)k5+16k2+15.5k+(31.6)  3 

(k+l)
4 

from which (2.4) follows. 

The derivation of formulae (2.16) and (2.17). 

We denote in the following by u the 

quantity 
1 

(A.13)    »M(l)MS(1ir)2-. 

It follows from (A.2) that in the neighborhood 
2      2 

of u = 0, T =1 - M has the series development 



$9o« 
_1    3  .  -J,    1 _1    _l 

(A.14) f2= 2 *(k+l)2 U-Ü-J2 2(k+l)2+2~2(k+l) V2. 

u + ., 

■Ill 
-\ 
C 

J 

Therefore T -o^ses.ses the series expansion 

-I       31,- - J.      I JL      JL 
(A, 15)  T -  2 4(k+l)4u2jl+J2  2(k+l)2+2  2(k+l)  2.<k2- 

v.*    L 
1) 

u+   ., . 

Furthermore: 
i - 

,:. .16 ■ -•- ~;2 " k+l)    -u 

1       1 

1 

i Kl 1 ) 

' 1 

J 
L5)  of   [(■},   "■"■/d-i= r/q .   u-id there- 

0 b 
5'/. (k+1) '«" ■••    ,2,    (k+1/ 

3 j - ,_, 

2 "(k+1)  2iu +  ..A 

X.l  -'   2  V-l)'o. ■:-   ... '• 

.)   x .- 

.2 :"'r/wM2 !,,+.. .1 = -2  ^(k+l)^2^-^  ^(k-i    :  2(l/ ..'.j-2  "3'lr+3)Ä!u+...,r 

6 5  1   r   9 7 '.3 7- 

-2 4(k+l)V-.'2   '(l^I)::.c+l) 4 i    ,       v4 *-3 3(1;:+!)^ 
J 

Thus 

(/1.13)'A- '2   -v--l)(lc+l)     + 



13 
~4 

+2   3(k+l) 

7- 
4 
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u + .., 

Raising each side to 2/3 power, we get 
_1 2    J5    2_ 
63?(k+l) 6(-^.)3 - 

r    i i 

(A.19) 

ujl-2 2 5" (k+l)2(k-5/2)u + ...t 
L. 

Inverting (A.19) we obtain 

JL£        5       i 
(A.20) u = q

(l)-q = 2 633(k~l) 6(-?\)3 + 

5   2^ 
6 

+ ... +2 V1(k+l)2(k-5«2)[g 633(k+l) °(-^)° 

According to (47) of [6], 

N=.|(k+l)q
4ji4(k+l)q

2 -°  Xl(k-l)q2J~' 

Expanding this expression in a power series of 

u = 2~1^(k+l)'1/2-q-, we get 

_9     5 Z ^ 

(A.21) N=-~2 4(k+l)"\*"2|L- i(k-l)(k+l)
2 + 

v  1- 

ä2(l3/ö)(k+l)li[u + ... f 

Raising toth  sides to the  (-2/3)'power,  we 

obtain J2       3 |5 * 

(A.22)  N 3= 22'(k+l)6|u+ 

1 1 

g2Vi)2Ju + — j 

|(k-l)(kH)2  + 

1 
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Replacing u by the expansion (A.20), we have 

V3 = UV*. 
5        £| 
6,   -vs3 r .-!„  2, 2. ^(k+1)  bN 6 =[352 b(k+l)  6(-A)3!+5"12  ^(k-2.5) 

h -I _Ü 2** 
332 6(k*l)  6(-^)3 

1 1 

45- 2-(k+i)
f- 

"2,    1 

±(k-l)(k+l)"  + 

"   2 -) 
bs2.6(k+ir

6(-?y)5! + ...v 
L -J J 

or 
5    ?.    1 

(A.23)  N 3= 22(k+l)~5 332  6(k+l)  6(-»'3->
v?.+(k+l)2 

f(2+|22)+5-22.-2 

6 

1 
1 £       11 

2 \3(k+l)  6(->.)3 
+  ., 

Raising both  sides to the   (-Z^2)  power,  we obtain 

r 
(A.24)  II« T~ ^L-(k+l)^ - 

I-Uv. (2-.-»-'i   'k'-L- 2   -.2 ! 

J 
J_ & _5 _2_ 

2, 633(k+l)  6(-^)3 
+   ... 

According to (A.24) and-(70) of [6], we obtain 

4 

(A.25) F--(H
2
4N)= ^T2* 0(.» 3 + 

A  (-90 5+A *A (-ft3 + .. 

Remark.     In particular,   for k =  1,401 we have 
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(A.25a)                        F=£A2n52n/^ 

where A   .  =   „45,  A ,= 0, A    =   -41f^3,  A = 
■■•n                         —4                 «e,                                U 

.32792, 

A„ =  -,l,iÖ76- A =   .05392, A -  -.«G.1759.   A « 
ei                               4                           u                      '      o 

.-00523, 

A,   -  -,00149,   etc. 
i.vj 

3.     The derivation of formula  (4;3).   (i.>4) 

Expanding the  right hand side of:   (?,6j   in a power 

series. we  obtain 

(A.^p)->,^l-h2)T34(l-h:)T5-- f(1-liV7  +  . 5   *                 . 

Let 

(A ..27)                       U?./(l-.h2)i= ^ 

Then? 

(A.281  H,'5 =T+ iCl+h2)^^ ,..p- ;::8+llh2+18b 4.m5 
;T    + 

Inverting this  series we  obtaui. 
j_ 

(A.29)  T = ft*- I(l+h2)^)3.  ^ (3+ülh* 
A         "■>"  r 

T 1 

-r           -1- 
(A.30) 1"'=^ 34l+i(l+h2)(Mx

3)2    + 

or finally                 ^ 

(A.31)  l"   2-/\ 71+ i^l+h2)0^.3)2  + 

-                0 
14üö(9-82h2+  9i^W3)4  *   — \    ' 
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Now 

2/(k+l) 

1 

^FT) 

(A.32) fl+^(k-l)l^[' 2(k,<:L) 

*fc)L ^ck-D-Vi2* ^(k.i)-
2(2k-i)hV a/(k+i) 

*i(k-l)-3(2k-l)(4k-3)h6T6 

Replacing T in (A.32) by its power series expansion 

(A.29) we obtain 

1 

(A.33) [l + l(k-l)M
2J adc-l).^2/(k+1J|-SrE=T 

f - 1 

+ Möö(k+1)"S(584k2' + 122k - 579) h * "-S 

If we multiply series (A,31) and (A.33) together, 

we get the following expansion for B(2^\) as a function 

(A.34) H(2?\) = 2(k+l)
2<k"X^.;L 

6/l + 

4-(k+l)-
1(2k+5)U13-..Ii-(k+l) 

-2 
1400' 

(64k + 70k + 75)^ + ... > 
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Derivation of formula (6,9 ). Differentiating 

(A.26) with respect to T, we have 

(A.35) -(d,^dT)=(l-h2)T2*(l-h4)T4+(l-h6)T6 + 

2 2 
Since T    =  1-M    and therefore 

(A.36)-(dT/dll)-T~1M=T"*1 5l--iT2--|T
4
 +  ,..£ 

we obtain by multiplying  (A.35)  by (A.36) 

(A.37)   (dYdMHl-hV+d + ih2 , h4)TS 

^   ,3       1. 2       1, 6    , 6Nm5 

Replacing in (A.37) T by its series development 

(A.29) we find 
1 

2s .3 1, 2 4u4, 3s2, 
(A.38) (dVdM)^!-^)^ + (iL + £h<- frXfi*)* 

5. Formula for -ß~rr- and -^"-g— ►- A straightforward 

derivation of (4.15) with respect to A, and 0, res- 

pectively,  yields 

A„ 
(A..59)^L =    p(?>-)-, 

(.2^)3    (-t2CA* iO)) 

1 
s3 

l 
^\3, 

. 2i(~2/T9     F,A,£,I, 
t2(A+ iQ)2 Nj'S'S' Tt^O  iQ)( \+ ie)y 
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(t (^+ie)) 

> m    5    W) > 
(PA^)~ R T~"—~~J 

i4 5 _ZL2_^+ 2J-(-2»Q 
''S'3' -t2(A+i©)y   t2(/\+ie)2 

6 3 3   -t^(A+ie)yJ 

2 2 

(A)'- g vl s2("2^ + •• J/i+s1(-2/^)+ .. J 
2 / *- 2 

| + ^(-2*)  ♦ ...1 /Jl+S1(-2/)5+...j 
' + .. .     ~lf     ._ 

F 

where 

P 

p4(>0=- 

2?,i 

1     /l 2  1    -2 A A  |- ijWi - .t -If. 
IG)6 ( 2[ 6    ^6'3J3,-t2(?>,+ie) ■) 

F'A 2 1    ^z- _^ _ 
t2(AMG)      V6'3'3' -t2(A*ie/ 

r c       (-2?-) -? ^,     > 3 L I —L_ *F(MA --i^—) 
I (-t2)B  (/\+i0)5      6  3 3    -t^(/ViG)^ 

(-2»°i ... 

7x:~^ F < 
''S45 2 A \ 

^ ^ 

(^)b(J\+iG)° 6  3  3    -t  (A+  iO)'J ) 



ERRATA 

it ti 

pg.   860,  1.  4 from bot.t    i    should be deleted. 

pg.  862,  formula (3.2)  should read 

M ^[(l-t2)E(Z,Z,t)/zt]/?l Z 

Pg . 872, formula (4.9'): the exponent -2/3 
It  . « 

should be changed to 2/3 , 
tt tt 

pg. 872, formula (4.11)»  (  should be added 
tt   " 

after dt/ . 

pg. 882, formula (5.29): the symbol before S 
it  tt     y 

is  = ; an s should be deleted, 

pg. 892, line 5 from bot. should read 
it " 

Eliminating q between both . . . 

pg. 892, line 2 from bot. should read 

"    *   /A n   v,   dH _ dH . dq _^_ dq = 
Now, from (A.l) we have -^ - -^  dT ~ q df 
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