VYRS

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS |

' -REPORT No.788  _

.
~

iiexN .

- 4‘ .

ON THE PLANE‘POTENTIAL FLOW PAST A ’» s
LATTICE OF ARBITRARY AIRFOILS o

el ;,m.m"con

I.ibra.ry of r‘ongressa L

o '-”  SHOGE b TSR e

Boianceiﬁd Techriology Prmo-_f = |

- -mRARY OF congess .~ |*

2— JUNW

L

b

g




=9

[

®

O N R ghOTQRn

AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol
. Abbrevia- : Abbrevia-
Unit tion Unit tion
Tength. ... 4 meter_____ ... ... m foot (or mile) .. ._._.. ft (or mi)
Time. cocue. t gecond. ... oo 8 second (or hour)_._.... sec {or hr)
Force meeo .- F weight of 1 kilogram_.__ kg weight of 1 pound._._._ Ib
POWer.cae.-- P horsepower (metric). ... .|eceoaeoooo horsepower. .. _._..__. hp
8 v {kilometers per hour_____ kph miles per hour. _.__._. mph
peed... - meters per second. _ .. __ mps feat per second..___.__. fps
2. GENERAL SYMBOLS
Weight=mg . Kinematic viscosity

Standard acceleratlon of gravity=9.80665 m/s?®
or 32.1740 ft/sec?

Mass=

Moment of inertia=mk?. (Indicate axis of
radius of gyration & by proper subscript.)
Coefficient of viscosity

Atea

Area of wing
Gap

Span

Chord

Aspect ratio, g-:

True air speed

Dynamic pressure, -é-pV’

Lift, absolute coefficient 0"=q—§'
Drag, absolute coefficient 0"=g_g

Profile drag, absolute coefficient C’Do_--g
Induced drag, abselute coefficient CD‘=§DS
Parasite drag, absolute coefficient CD,=£—§

Cross-wind force, absolute coefficient 00=q%

L ]
p

Density (mass per unit volume)

Standard density of dry air, 0.12497 kg-m“ 8! ab 15° C

and

760 mm; or 0.002378 lb-ft—* sec?

Specific wcxght of “standard” air, 1.2255 Lg/m’ or
0 07651 Ib/cu it

T
e

Q
a

B

3. AERODYNAMIC SYMBOLS

Angle of setting of wings (relative to thrust lme)

Anﬂe) of stabilizer setting (relatxve to thrust
o

Resultant moment

Resultant angular velocity

Reynolds number, p-? where is a linear dimen-

sion (e.g., foFn airfoil of 1.0.ft chord, 100 mph,
standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 mps, the corresponding
Reynolds number is 6,865,000)

Angle of attack

Angle of downwash

Angle of attack, infinite aspect ratio

Angle of attack, induced

Angle of attack, absolute (measured from zero-
Lift position)

Flight-path angle-
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Page U4, column 2, line 3: The term at the end of the line should
have a bar over V¥; thus V[o{y)]

Page 7,
Column 1, equation (28): The left-hand side of the equation should

read olC
Column 1, line following oquation (28): Change ¢ to 8.
Column 2, line 16: The bracket and the fractional exponent at the
end of the equation for E should be transyosed to read
.. . sin 2g] /2

Page 13, column 1, last line: The equation should read
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ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

By I. E. GargIck

SUMMARY

The two~limensional, incompressible potential flow past a
lattice of airfoils of arbitrary shape is investigated theoretically.
The problem s treated by usual methods of conformal mapping
in several stages, one stage corresponding to the mapping of
the framework of the arbitrary line lattice and another signifi-
cant stage corresponding to the Theodorsen method for the
mapping of the arbitrary single wing profile into a circle. A
particular feature in the theoretical treatment is the special
handling of the regions at an infinite distance in front of and
behind the lattice. Iixpressions are given for evaluation of the
velocity and pressure distribution at the airfoil boundary. An
lustrative numerical example is included.

INTRODUCTION

This paper treats the problem of determining the flow pat-
tern, or the velocity and pressure fields, associated with the
uniform flow past an infinite row of symmetrically placed
airfoils of the same shape. This airfoil-lattice problem
occurs in the design of turbine blades, wind-tunnel vanes or
grids, and elsewhere. There is a purely mathematical interest
in the problem that concerns the field of conformal mapping
of infinitely connected regions. Analogous two-dimensional
“lattice” problems occur in the steady flow of heat and
clectricity. '

Considerable ingenuity has been devoted to the airfoil-
lattice problem, cspecially in the turbomachine studies in
the German literature and more recently in the British
studies; nevertheless, a survey of the available literature
indicates that ncarly all the treatments employed and the
results obtained are of a special or indirect nature which
involves, for example, lattices of thin lines or approximate
graphical procedures. Recently, however, A. R. Howell in
a British paper of limited circulation has written briefly on
the theory of arbitrary airfoils in cascade. Howell applies a
special transformation to an airfoil lattice to convert the
lattice region to a somewhat random, simply connected
region and, with the atd of several stages of conformal
mapping, obtains a region about a circle.

The problem of determining the incompressible potential
flow past an arbitrary single wing section was studied by
Theodorsen (reference 1), who gave a practical procedure
for its solution. The case of two wing sections, or the
arbitrary biplane, was later treated in reference 2. The
determination of the flow past an infinite lattice of airfoils
of the same shape is a problem intermediate in difficulty in
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comparison with the aforementioned ones. The treatment
for resolving this problem given in the present report is
similar to that for the arbitrary single wing section but the
calculations are more involved.

The problem will herein be studied by the usual method
of conformal mapping. It is convenient to accomplish the
result in three or four stages: The airfoil lattico is first re-
placed by its skeleton, or framework of line segments. The
initial mapping function employed transforms the lattice
skeleton into a circle. In the plane of this circle there are
two singular points, known as branch points. These points
have dual significance: They correspond to infinite regions
in front of and behind the lattice of lines, and they enter in
the problem of reducing the lattice region (multiply con-
nected region) to the region of a single body (simply con-
nected region). If now an arbitrary airfoil shape is gen-
erated or given around the {ramework of lines, then in the
plane of the circle a circular-like contour is generated around
the original circle. This contour may be transformed into
an exact circle by the well-known procedure given in ref-
erence 1 or 3. The original two significant points are then
traced by a transformation due to H. A. Schwarz. A final
clementary transformation will bring the circle into a stand-
ard circle for which the two characteristic branch points are
symmetrically placed. The region of this circle is considered
the standard region for determining the flow pattern.

For illustrative purposes an outline of a procedure for
caleulating pressure distributions is included. The method
may be followed without reference to the theory by readers
interested mainly in numerical results. For convenience, a
list of symbols is given in appendix A.

ANALYSIS

Initial transformation for lattice of straight lines.—Con-
sider the transformation (reference 4)

/“i__a2

+2’ =Ty

si=5{ log ==+ log @ (1
b

where g, 6, and a are real numbers and 8>a. Introduce
coordinates ¢ and § by means of the relation
2/ =qe¢t? )
and let
b
— =g 3
. (3)
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(a) Z-plane,
(b) {i-plane; 8=0°.

-———1

(e

-<

(d)

(¢) faplane; Sm90°,
) {-plane.

FiGURE 1.—The properties of initial transformation.
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Equation (1) may then be expressed as

cosh y,+cosh (Y476

SG=az log ]_(‘0511 VOW:] )

If ¢=0, according to equation (2}, =z’ lies on a cirele

radius « (fig. 1(a)). \ecording to equation (4), ¢=r+iy
is the logarithm of a real positive function and, consequently,
represents a real function (its prmeipal value) and the infinite

sequence of values differing from this function l)\' 57 2k,

where £ is any integer.  The transformation illustrated in
figure 1(h) is that of an infinite lattice of unstaggered lines
of gap ¢ in the ¢-plane into the circle of radius a in the

-plane.  The points z/=b and '=—b correspond to

infinity in front of and behind the lattice, respectively.  The
(l2 (12

mverse points -:’=b- and :'=—b~ are inside the circle of

radius a.
[ order to introduce stagger, it 18 convenient to consider
the teansformation

, . at
ST P A
21 ) c-.b . {Lz
2—‘5‘

where 4 is real. This transformation can be written with the
use of equations (2) and (3) as

h 10 [sinh vo-Fsinh (Y +16)

sinh y,—sinh (¢ +18) (5)

fa=—1
If y=0, the expression within the brackets is a complex
number of unit magnitude; henee, the logarithm is a pure
imaginary number plus an infinite sequence of numbers
differing by 2rxi, Then {y=x,41y, represents a sequence of
real numbers differing by A and the lattice is one of hori-
zontal lines displaced from each other by & (fig. 1(¢)).
The transformation for the general stageered-line lattice
i< a combination of equations (4) and (5)

=+ {6a)
or
a2
2’-1___
= 3 e’ 100 bt +e" log l b {6b)
2 — ’_,_gf
z [) .
where
gup g=d cos 3
stagger h=d «in 3
stagger ratio %=tnn B
the parameter ¢ may be called the slant gap (fig. 1(d)),

and 8 the stagger angle.

The geometry of the lattice mayv be expressed in terms of
the parameters v, and 8 by noting that the chord length
may be obtained from the (singular or eritical) values of 6
which correspond to the end points of the chord and are

PAST
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. . d _— . .
solutions of the equation ’flfh,=(). This equation gives the

result
tan =tanh vy, tan g (7a)
, for later reference,
cosh v, cos B
o8 §=—— Q
(7b)
. sinh vy, sin g8
sin §= “———~Q

where )
Q= (cosh? y,—sin? g)*¢

Relations (7) may be emploved in two ways: (1) When the
parameters v, and g8 are given, the relation determines the
two critical values of 8, §; and 8,, where the subseripts [ and
¢t refer to leading edge and trailing edge, respectively, and
6,=8;+7r. (2) When 6; or tan 8, and the stagger angle 8
are given, the relation determines the parameter vo.

48 .
i
!
I
40 b/a ;
500 —— T T
J |
| |
22 ]
4.00
v ’ |
. ]
Q
NI
8 Qo .00
®
250
1.6 — —r
200 e E——————
9—1‘730_1:‘::::—-——:'22—-—‘
770, —
+1.60 750 F——’ﬁ ___‘/
740 '~ T 1 :
8 }====—r 130 /20 - T / t
il el (0 ) e =
: Aoosr——" "—T

70 45 60 75 90

Stagger unyle. 1S, deg

. b
FiGURE 2.—(iap-chord ratio against stagger angle for various values of b -’

The chord ¢ may be obtained by putting 6=6, and 6=8,
in equation (6a) and taking the difference in abscissas z; and

z,. From equations (4) to (7),
C=T,—Jy
_d , (tcos B B _sin B
(c()s 8 log sinh 7y +-sin 8 tan T (8)

By means of equation (8), the parameter v, can be pre-
sented directly in terms of given values of the gap-chord
ratio for any stagger ratio. A\ representative chart relating
gap-chord ratio, stagger angle, and v, is shown in figure 2;
some values are given in table 1.
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TABLE L—GADP-CHHORD RATIO, PARAMETER 5o, AND CORRESPONDING VALUES OF 8; FOR VARIOUR STAGGER ANGLES

i
! | i ; ‘ i
1 | i —00- m=0° | =300 JE P B=w%
s . : ; B=0°: =0 l: B=30 ’ g=0 | A
hia ' sinh v, ! cosh Y, ; ( ’ i !
! | die I } potder) | e |6 e dfe |
H i i i ]
1. 005 O G04988 | LMOR8 1 1000012 | ! [ ronstg !
1.0t L U995 CORB0 1 L0050 ; | L0y Loosst |
1.02 L 019803 L0104 0 Lol | Loprr i
1.05 (48790 AHNSO9 | o011l | LO3204
1. 10 RUEI] 95485 1 L OKHS4S i L6450 |
115 L 134762 CHO21T L O0YTss | I L9732 |
120 L IN2322 CIN3R3 L6667 | 113061 |
1.25 L 025000 | | s
1,30 i L 346 B 1 1opaTse |
1,35 | ! 0 w24l 1. 06073 1.
1. 40 | t 3 | U3 1. 10841 1.
145 (- 1. L GN456 115433 1.
L 1. i AIeeeT L OXE338 03340 1. 19800 [ S |
1. 60 ATOO04 T ANTR0 L1250 ¢ 112792 1. 28505 [ |
1.70 CRIO628 5882 1 LIS 121427 1. 3GR49 [N i
1.80 USNTTRT L o222 L TTIIR 1, 30830 1 1. |
190 LG4 {R54 ] LGNGR42 1 1213058 P sua61 1 1. |
2.0 L OR14T CTS000 1 1250000 | 148157 1 1 |
2.5 COIG2BL | L OGN0+ 150000 |1 NORN4 2 |
3.0 1. OURG 1S IR AR = S I ] 2, 30553 b 1
1.0 1. 3806204 LSTS000 | 2125000 3. 10588 3 |
5.0 1. 609448 24000 |2 A0 1 8ON04 Q. |
10.0 2, 302585 £U50000 | 5050000 1] 7. NGO 7.8 |

Inversion of equations (4) to (8).—Tho initial transforma-
tions may be thought of as mapping a framework of chords
of an arbitrary lattice into a circle. If a shape is generated
around the chords in the 2z’-plane, a contour is generated
around the circle of radius a. This contour, which must

exclude the points z/=—5b and z’=b and must enclose the
2 2
. a a .
points z’=——F and z’:g; may be considered to bhe com-

pletely defined by the function ¢(8). If a lattice of airfoils
is preassigned, the function ¢ (8) must be found from the given
coordinates of the airfoil shape. In order not to interrupt
the sequence of main ideas, the details of this problem are
relegated to appendix B, with certain remarks on the practical
achievement of a nearly circular contour.

Transformation of contour in :z'-plane to circle in z-
plane.—It is assumed now that the circular-liko contour
in the z’-plane which corresponds to the airfoil contour of
the lattice is either given or determined; that is, the function
¢(0) is known in the boundary expression z/=ae¥t®. By
the procedure of reference 1 or 3, the transformation

2/ =ze/@ (92)
where
~t

= c
fe)=>22_1=log = (9b)
1 & z
and ¢, are complex cocfficients determined by the boundary,
is then employed to transform the ¥'-contour into a circle
z=gqe¥v** in the z-plane. The transformation (9a) keeps

’

the regions alike at infinity in the 2’- and z-planes; that is,

z=2' nnd%=1 at infinity. The correspondence of the

boundaries is determined by the functional equation
¢—0=e(¢)1

27

2

2r L
@) cot 22 4y’ (10)

for which a convenient numerical solution has been outlined
in reference 3. The radius of the circle R=uae*? is determined
by the relation

1 =
¢u=;_)~1rJ0 Y(ojup (11)

For consisteney, the [unctional svmbol ¥(¢) is here used to
denote the quantity ¢ expressed as a function of ¢—that
is, y[6(#)]. In reference 3 the notations y(¢) and y[8(¢)}
are used.

It is necessary also to trace the correspondence of the
points z'=>b and z’=-~b. Let z=48, correspond to z'=b
and let z=—g, correspond to z’=—b. The values 8, and
B: may be determined by a relation (due to Schwarz) that
expresses the value of a complex function in terms of an
integral of the real part of the function along a circle. A
simple derivation of the desired relation is shown in appendix
C. The expression is

tog £ =1(2)

1 2r dd)
=“;J; V(o) ——=i; (12)

—Ze
R
The values of 8, and 8, may be determined from equation
(12) by an iteration process that converges extremely
rapidly. The process may be deseribed as follows: In
equation (12), let the zeroth approximation to 8, be z=z,=b
and let the corresponding value of 2” be written 2’ =z’ =be/®,
where f(b) is the evaluation of equation (12) for z=b6. Itis
actually desired, however, to have z’=5 but, because
2=z =b+2z'—b
the initial value of z’ differs from the desired value by
z'—b. TFurthermore, z=z, differs from z=8, by approxi-
mately the same amount: hencee, reducing z, by the quantity
2,/ —b gives

’

5= Zu+b— 2y
=b2—e/ ]

which may be considered a first approximation to 8,. If it
is desired to check this result or to obtain a second approxi-
mation, the process may be repeated; thus, from equation
(12), find f(z,) and

2|I=€|€j“"
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Then,

s=a+b—2z’
which is a second approximation to 8, and, in general, the
ath approximation is

=zpa+b—2z.)

1t is clear that, should z, correspond to z,_,, =~ must cor-
respond to & and the process automatically stops.  The nu-
merical process is given in appendix ('; relatively elemen-
tary steps are involved. In order to determine —g,, the
process is applied with b replaced by —b.

Transformation to standard circle in w-plane.—In order
to obtain the flow pattern, it is desirable to introduce another
function which transforms the cirele in the z-plane into
another circle in the w-plane in such a way that the char-
acteristic points z= g, and z=— g, map into w=>b and w=—9,
respectively.  The region of the circele in the w-plane may
be considered the standard region. The desired trans-
formation may he written as (see appendix D)

b—w Bi—z
Fo— ﬁz+2) (13)
whero R
‘~S? BB+ 1Y
K=y G (14

and R=ae% is the radius of the original circle in the z-plane,
B is the complex conjugate to 8, and S is the radius of the
new circle in the w~plane. The radius S is determined by

S=be M {15)
where v, is obtained from

2
cosh ¥, =Tl€ Eﬁ_—ﬁﬂ‘ﬁ—'] (16)

Complex velocity potential in w-plane.—Consider the flow
funetion Q(w) =% +2¥, which is defined as

S 2 S
vaf o btw, . YTEY) v, YR
dw)=—5-| e log —w +e'= log —x |3 log E

(17)
The flow pattern may be regarded as due to a combination
of singularities, sinks, sources, and vortices, placed at the

2
points w=4b and w=+ % as indicated in figure 3. It may

Strength
Vd cosa
Ve sin o

FiGuRk 3.—Flow singularities in standard w-plane.

h

be readily vervified that the cirele of radius S—that is,
w=S8¢"—ix part of a streamline and it may further be
observed from figure 3 that the eirculation around any
2
contour which encloses the points w=+£ 3 and for which
the points w= +£b ave exterior points is I' (positive if coun-
terclockwise).  The parameter o will be interpreted later
as an angle of attack.

The value of the circulation T' may be determined by
means of the Kutta-Joukowski condition for smooth flow
at the trailing edge of the lattice. Let gy be the value of ¢
on the boundary cirele Se that corresponds to the trailing
cdge of the lattice. The Kutta-Joukowski condition then
requires that the flow separate at o=g,, or that a stagnation
point exist there.

dQ . . .
With dw=Y and w=_S8e', the following relation for 1I' is

found:

I'=— “-Sd [b sin (g9 +a) +7 S sin (ao—a)] (18)

If S7b is replaced by e~ (vquation (13)), equation (18) may
be expressed as

——2vd( % gn sin g, )
r 2Vd (cosh Vi a+=mh 0 €0s « (19)

Expressions for velocity in lattice field.—In order to obtain
the flow pattern in the lattice field (¢-plane), the component
factors of the following expression are required:

dQ dQdwdz d2’
¢ dwdz d2’ & (20)

These terms may be obtained from equations (17), (13),
(9), and (6). :

It is of particular interest to cvaluate equation (20)
explicitly for the regions at infinity in front of and behind
the lattice and also on the lattice boundary itself. It is
recalled that = corresponds to 2’ =&, z=g8,, w=> and that
{=— corresponds to z’=—b, z=—g,, w=~b. By com-
bining terms according to equation (20), the (reflected)
inlet-velocity vector is obtained as

dQ

B )= V=iV

= = Vetars L @n

and the corresponding expression for the outlet-velocity

vector s
l—(lg’ Ve =iV,

0
e - Vpltatsi 4oL 22
Veltatsi 4 57¢ (22)
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By addition of cquations (21 and (22, it becomes elear by angle g (lig. 4). These components are, for the inlet
that the veloeity veetor of magnitude 1V and angle of attack veloeity,
a+3 with respeet to the s-axis is one-half the vector sum ! Vo=—1cos o

of the inlet and outlet veloeities (fig, 4).
, .. r
y . - V=V sin aTyg
o Neganve 31 Torve B and, for the outlet velocity,
V==V cos a=1y,

1, =1"sin a=57

The squares of the magnitudes of the inlet and outlet
velocities are

o . ) I\ A 11 2
x "1'=I' ‘lil—,l—lz‘/v’d sin a+<2‘/’(z‘)]

=12 1_22 %"d sin d+(2'{1(1).]

J where 1'/2Vd may be obtained from equation (19). Observe

/ Ve 5 . v -

/w(o/:’“ « that the inlet and outlet speeds are equal, 17=1,, when

/ LAY a=0° for any value of T. The inlet and outlet angles of
Fosihve a attack with respect to the normal to the lattice line are

. I
a=tant S0 2577
COoS o

. r
sin a—5775
ay=tan~! 2Vd

Cos a

and the angle through which the stream is turned is

.

2 — COS @
21d

a—a,=tan~! ‘1“‘—'_"‘?——>'.T (23)
_(‘fl"d,

The component factors in equation (20) are now to be
evaluated at the lattice boundarv and, as the boundary
itsell is part of a streamline, only the magnitudes of the
factors are of interest.

FiGure 4.—Inlet, outlet, and mean velocity vectors and angles of attack.

If the angle of attack of the mean velocity veetor with
respect  to the w-axis (chord direction) is denoted by
a;=a+8, the velocity components in cquations (21)
and (22) are

. r . e , : - N — Qpt
Vy=—1V cos a‘+ﬁl sin 8 From equations (17) and (19) and with w=_Se's,
r 4{19,—2% P — {sinh v, sin a(cos ¢—cos @)
V,=-—Vsin ar“*‘@ cos 8 \[dw| ™ =S cosh 2v,—cos 2¢ Sty =i aleos o 0
4 cosh v, cos a(sin e—sin a9)] (24)
and
, i ro where the parameter v, is defined in equation (15).
Vey=—1"cos @,y sin g In order to obtain dw/dz, 1L is convenient first to express
Uoequation (13) explicitly in w as
. r
7 =V . _ 2 cos (KB — B,
V,=Vsin a, 5, ¢0s B waﬂ»i—_Kﬁ;ml)({iB[ 8. 2500
(I—Kyz+ KB -+ 8.
The conventional angle of nttmik o 8 nnxasu'rod ‘,‘v‘lth A standard form for the transformation of a circular region
respect to the normal to the slant fine of the lattice. The 1 22 Rinto wizSis
components normal to and along the slant line of the lattice, T =
sometimes referred to as “axial” and “whirl” components ( N 10 .
. . : ! ' w=RSeH ) —o- (25b)
respectively, ave found by votating all voeters in the ry-plane | Ri—3z
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Comparison of equations (25a) and (25h) makes it clear that
the complex parameter § and the real parameter X may be
obtained from the following relations:

_I\ﬂl

1—+—A (26a)
or, as a cheek relation,
2 I —
3:%g‘+ ;31) (26b)
and
S . (+K)b
R Aﬂl'f'ﬁ
or, by equating angles on both sides,
A=arg(l+K) —arg (KB4 8 (27)

From equation (25b), the explicit correspondence of a point
on the circle w=_8e* to a point on the circle z=Re** can be
obtained as follows:

e =elWtN (23)

Let the complex number ¢ be expressed as {ge* and let

1 —I—g e~ =me" (29)
where

m(¢)=1-—2 1%' cos (¢—7) +753—,

and
18} sin (¢—7)
ﬂ(¢)=tﬂn“*m—'—
I—Te cos (¢—1)

Observe that the denominator in cquation (28) is the con-
jugate of equation (29) and is thercfore equal to me™*.
There results for the correspondence of ¢ and ¢

e=¢+N+2u 30)

In particular, if the (trailing-edge) value of ¢ that corre-
sponds to 6, as determined by cquations (7) is written as
do=0,+¢,, where ¢, is the value of e(¢) at =46, from cquation
(10), then

do=¢o+ M+

By differentiation of equation (25b),

dw_RS(*—s5)e* 31)

dz  (Rt—3z)? '
On the boundary, put z=Re'; then, the magnitude of
cquation (31) is

dw S 1—2)-L 32

dz ) m?

THIOTL 48 2
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’

. . Ll . . .
The expression for /- on the boundary is obtained from
~

equation () in terms of the functions ete) and ¥(p) of
equation (10) as follows (see reference 3):

dz <1+3L/f (33a)

and, because f(z) on the boundary is
Ty =V(p)—hpt+i(6—¢)
where

f—p=e(e)
then
dz'| e

e O-E AT e

The last factor of equation (20) is expressed from equntlon
(6) on the boundary z'=ae¥™* as
de _2d K1

-7 D7 (34)

X%

where
E= [cos% cosh®y,(cosh?y—cos®d)

~+s1n°g sinh?y(cosh?y —sin%4) —% sin 28 sinh 2+, sin 20%]
D=icosh 2y,—cosh 2(y+16)|

={[(cosh 2v,—cosh 2y cos 28)?+ (sinh 2y sin 26)%*

Finally, combining in equation (21) the factors given in
equations (24), (32), (33b), and (34) yields

-

—ABCD

'y

1% 35)

where

1
“* T cosh 2y, —cos 20

[sinh v, sin a(cos ¢—cos ay)
+cosh v, cos a(sin ¢—sin ay)]

o= (%) + (%) 1"

D={(cosh 2v,—cosh 2¢ cos 20)*+ (sinh 2y sin 29)*}*

[fz[coszﬁ cosh*yg(cosh?y —cos9)

1 I
+sin*g smh volcosh®y —sin?f) —— sm 28 sinh 2, sin 20]

An application of equation (35) for the purpose of illus-
trating the various steps involved in a caleulation of the
surface veloeity and pressure of the airfoil lattice is given in
appendix E and illustrated in figures 5 and 6. For the sake
of comparison, the single-uirfoil case is given in figure 7.
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FIGURE 5.—Dressure distribution for NACA 4412airfoil in a lattice arrmngement,  Stugger angle 8= 0°; gup-chard ratio, 0.968; slope of lift curve '1(‘(;(‘-3.71.
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(b) Cr=0.5; gz = =2.13°; ay—ae=49.H°,

FIGURE 6.—Pressure distribution for NACA 4412 afrfoil in a lattice arrangement.

(©) CL=1.0; a:=2.44°; a1 —ay=23.53°.
(d) Crp=0.54; ae=—1.74°% (a1 —a) = 10.97°.

Stagger angle 8=45° gap-chord ratio, 1.096; siope of lift curve %—G 31,
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(a) CrLw0; g=—4.25° ¢) CL=1.0; am4.02.
(b) CLm05; am—0.12°. oy Cup=061; a=u.sie,
FIGURE 7.—Pressure distribution for NACA 4412airfoil.  Single-airfoil case, gap-chord ratio, infinitc; slope of lift curve '%%”-6.95.
Some special results from equation (35) for a lattice of | where
. . - . . ot . .
lines.—In the case of ia, lattico of strax%ht lules, the 2’-, N 1 +cos 3 cos 0_{_5“,1_5 sin 6
z-, and w-planes merge; henee =¢ =0 and R=S=a. (cosh? v,—sin® §)% cosh 7o sinh 7o

From cquations (19) and (7) and with a4+ 8=a,, which is
the angle of attack with respect to the chord,

r sin a,
2Vd ™ (cosh? v,—sin® B)% (36)

The lift per unit span on a single member of the lattice is

given by
L=pVTr

where p i3 the air density. The lift vector is perpendicular
to the mean velocity vector (fig. 4). This result is general
and not limited to a straight-line lattice. The lift coeffi-
cient is

(37)

where I'/2Vd is given in equation (36) and c/d can be found
by equation (8).
The local velocity on the surface (equation (35)) becomes

p= V(cos a,+§—}r sin a,) (38)

cos Bsinf sin B cos @
M="—: -
sinh v, cosh v,
In the special cases in which 8=0° and §=90°, the relations
(36) to (38) are simpler.

For stagger angle 8=0° and with d=y,

r sin a,

2Vg cosh 7
From cquation (8),
c
cosh vy=coth ,7:(1
and '
L=2pV?% tanh ;; sin

wc
tanh 5

=xpc}? sin a,
29
The lift coefficient, according to equation (37), is

e
tanh 5-

CL=27I‘ sin ar

29
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For 8=0°, therefore, the slope of the hft curve is alwavs less
than Note that, for large wap, ¢;g—0 and the lift

coctlicient is

2,
O 9 o
=27 I

When the gap g is small compared with the chord ¢,
4
Cp—4 L SN ar
The local velocity at the surface, by equation (38), is
hd 0 .
v="V"{ cos a,+tanh v, cot 5 sin «,

This result may be compared with that for the single-line
airfoil (y,= =)

. [ZA.
v=1V (cos a,+cot 5 =in a,)
For stagger angle 8=90° and with d=/,
T _ sine:
2Vh  sinh «,
From equation (8),
. e
sinh yo=cot 57
and
re e .
L=2pV7 tan 5p, S0 o
e

tan 57

=wpcV? sin a;

2h

The lift coetlicient, according to equation (37) is

tan g—;

sin o
e i

2h

ADVISORY

|
|

COMMITTEL FOR AERONAUTICS

For g==00°, therefore, the slope of the lift curve is always

agreater than 2o, The loeal veloeity av the surface is

. 1 .
;o= L('ﬂs c.-reoth 4, cot <0—I) sin a,]

. . . 1
It may be noted in passing that, for e=34,

(=S8 sin a,
as compared with
(=27 s a,
for the single airfoil.
For the limiting case i which b and ¢ approach «, the
transformation (6) becomes

d , a?
o ~ o3 [
F=op \ T i
. Lol . ;
and, with limit ,_,—1 and a new variable z”=2'¢="
2
N {3 a
{=2"+
~

which i1s the {amiliar Joukowski transformation. If the
variables ¢ and 8 (equation (2)) are introduced, the cor-
responding result is expressed as

t="2a cosh [y+i(6—B)]

where the limit, as y,~>=, of has been put

Zra coslt v,
equal to 1.

LiANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY F1eLD, VaA., November 19, 1943




APPENDIX A
MAIN SYMBOLS

< complex plane of airfoil lattice (x+4iy) i lattice spac mN or gap for g=0°
& ¢ complex planes of airfoil lattice for stagger angles | 4 lattice spacing, or stagger for g=90°

3=0° and B=WY0°, respectively (w -1y ra-t1a) 1 magnitude of mean of inlet- and outlet-velocity
b complex plane of circular-like contour (ae¥™*) vectors (fig. 4)
: circle of radius R=ae¥0 in z-plane (cesot'e) a, angle of attack with respeet to z-axis of mean
aw cirele of radius S=0be™7" in w-plane (he”71¥i7) veloeity vector
(=, =b, z=8, w=h corresponding points @ angle of attack with respect to normal to slant line
{=—o, 2/=—h, 2=—8,, w=—) corresponding points of lattice of mean veloeity vector
a. b reference lengths a;, a; inlet and outlet angles of attack with respect to
Yo gap-chord parameter  (b=aew) normal to slant line of lattice, respectively
8 stagger angle 1, 1, magnitudes of inlet and outlet velocities, re-
7 lattice spacing, or “slant’’ gap for any value of 8 spectively

APPENDIX B

INVERSION OF EQUATIONS (4) TO (6) AND CHOICE OF COORDINATES

It is desired to find from a given airfoil lattice in the ( ) ( )
¢-plane the contour defined by ¥(8) in the z’-plane. This cos 6 sing)
problem corresponds to an inversion of equations (1) to (6) and (B3)
cosh '//> (smh v

and can be exactly treated for the eases in which g=0° and

B=90° (equations (4) and (5), respectively) but an iteration

or successive-approximation method is required for equation | gpom equation (B3), there result the following cxpressions,

(6). Furthermore, although the parameters g and A are which serve to define the function (8) in terms of the airfoil

fixed by the geometry of the lattice, a choice exists in the coordinates:

definition of the chords and the origin of coordinates. This ;

choice is discussed following equation (B17). sin? 6=p+vp +n’ l
Stagger angle 3=0°.—From equation (3), there is obtained

o (B4)
sinh? y=—p+ w’p"’-%-m”l

cosh (¢ +i6)=cosh v, tanh :—; & (B1) | where
Putting ¢,=r,+<y; and denoting the real and imaginary p=7])- (1—g2—n?)

parts of cquation (B1) by & and »,, respectively, leads to
For small values of 8, the relation sinh ’#:"i,x?il_o may be used.
>,

9
. T
cosh v, sinh " r, . .
cosh ¢ cos =5, = g It is useful for computational purposes to record the real
) s o ) . . . 3
cosh =7 r, +cos : " and imaginary parts of equation (3)
a0
(B2) 2
. 27 Irn= ‘)(] 10" ‘—‘)
cosh v, sin = T oy B35)
sinh ¢ sin f=19,= 3 =5 p Q
ey T
cosh =% ri4cos == == (p— s
J o+ ) IR Wi s (o1 —2)
The expressions containing z; and ¥, in equation (B2) are where
considered given since these quantities are known from the pii= (cosh vy+cosh ¢ cos 8)*1 (sinh ¢ sin 6)
. . . . . . - B k. 1 -
coordinates of the airfoil lattice. If ¢ and 6 are eliminated
sucerssively, ! p=(cosh yo—cosh ¢ cos 6)2+ (sinh ¢ sin 6)*
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. 1 . .
sin ¢,= sinh ¢ sin §
P
. I . .
sin ¢_,:—; sinh ¢ sin @

The angles are to be chosen between —# and 7, and the
quadrants may be determined by noting also the relations

1
cos ¢,=p— (cosh vyo-+cosh ¢ cos 6)
1

cos ¢3=!} (cosh yo—cosh ¢ cos 6)

Stagger angle 3=90°.—Irom ecquation (5), there is

obtained
sinh (¢ -+6)=sinh v, tan ]I (B6)

With ;=r,41, and the real and imaginary parts of equation
(B6) denoted by £ and n, respectively,

2r
sinh «, sin , I

sinh ¢ cos f=§,=
co:h , s +LOS h Iy

(B7)
sinh v, imh _j»
cosh ¢ sin 6=n,= 3
cosh :h— Y2+cos -T L
If ¥ and ¢ are climinated successively,
A
cos 6 sin 6
(B8)

<Sll’l]l \lz) <cosh ¥ -

From cquations (B8) there result finally the following
expressions, which serve to define the function ¢(8) in terms
of the airfoil coordinates:

costt—g + \TTE
sinh?y=—q+ F+£2

(B9)
where
Qzé (I1=&*—n))
For values of 8 near £90°, the relation sinh ¢=(—:§;—0 may
be used.

It is useful for computational purposes to write the real
and imaginary parts of equation (5)

h
=50 (¢3—9y)

1
Y= — qﬂ,( P3)

(B10)

TRS—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where
ps°== (sinh v, +sinh ¢ cos 6)*=+ (cosh] ¢ sin §)?

ps“=(sinh y,—=inh ¢ cos 6)*+ (cosh ¢ sin §)?

. 1 .
sin ¢“=; cosh ¢ sin 8
3

. 1 .
sin ¢,= — — cosh ¢y sin §
P4
The angles are to be chosen between —x and #, and the
quadrants may be determined by noting also the relations

1,. .
cos ¢3=p3(.<mh vo-+sinh ¢ cos 6)

cos ¢,=-p1 (sinh y¢—sinh ¢ cos )
4

Arbitrary stagger angle 3 and choice of coordinates.—
Beeause of the transcendental nature of equation (6), o
direct inversion expression scems unobtainable; however,
the values (¢, ) that correspond to coordinates (x, ¥) may
be obtained without difficulty by an iterative process. For
this purpose and for the purpose of choosing the coordinate
axes, expansions of 2y, £y, ¥, and ¥, in powers of ¢ are useful.
The following expansions may be readily verified:
cosh yot-cos ¢

d
7~ cos B I:log -

cosh y,—cos 8

—sin? -
4y cosh yo cOS § —— sinh? y,—sin’ 0 +.. J (Bl1a)

(cosh? y,—cos? 6)?

d . sin @
Ty 5= sin 8 |:2 tan~! Sinli 7,
- .o cosh? y,+cos? _l
+ ¢ sinh v, sin @ (cosh? 7, —cos* B}’ 0),-!— ... (Bl11b)
d 2 cosh v, sin @
N 08 B o eos e ¥ Blie)
‘ 2 sinh v, cos @
Yoo s ("osl'r Yo— cOS* 6 4 (B11d)
Then
Y=+
~Lyre (B12)
where

cosh v, cos 8 sin 8—xsinh v, sin 8 cos 6
cosh? y,—cos* 6

F(e)=

1f the w-coordinate of the straight-line lattice, which is con-
sidered the skeleton of the airfoil lattice, is denoted by zo,
then z, is given by the value of z=x,+2, for y=0, or
_d cosh 03y g s S0
To=5\ c0s 8 log cosh vy,—cos ()_*_~ sin § tan sinh v,
(B13)

and

(B14)

~To+ ‘P G(6)
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where

cosh v, cos 8 cos §+sinh v, sin 3 sin 4

Go)= cosh? yo—cos?
(cosh Yo €Os 8 sin 8—sin v, §1£B£95 6) 2 sin 6 cos 0
(cosh® vy —cos™ 6)*
=F(0)

In particular, the leading- and trailing-edge points z=u, and
r=zx,, are determined by the values of =6, and =46, that
may be obtained from oquations {rb). Then,

re=ro T Ly, (B15)

cos? B sin® 8 )
_(\) o
sinh? y, msh Yo
and x,, denotes the leading edge of the line given by y=0.
A similar expression holds for z,.

From equation (B12), for constant ¢,

SN 20

where

== \l/G ()
In the neighborhood of the leading edge, therefore,
yzgwo(a—on (B16)

For z, near z,, there is obtained from cquation (B13),

6—4
zo= iy, (=0, + 0

5, +
where the following relations are found to hold:

d
To/ == 1F(0)] gm0, =0

d

rol”:;r[—(;(o)]ﬂ-ﬁl‘:—(—:GO

Hence,
d \
Ty =T, =5~ UACEAY
Then, from equation (B14),
d .,
L—xo, = Lo~ To,+5- VG (6)
Go[—(ﬁ 81)° 4y

It follows from equation (B16) that. for r=u,,

1—0,= \b
and

a o,
W=y =l

With this value of ¥, and equation (B15),

Yo,

J',r_.l'o‘

If the total ordinate for both upper and lower sides at

r=1re, is denoted by ¥,

Y ~4

Iy,

(B17)

This result leads to a simple and convenient way of choosing
axes of coordinates in order that ¢(6) will behave smoothly
at the edges, that is, that the value of ¢ at the leading edge
is approximately the mecan of the values of ¢ at nearby
ordinates on the upper and lower surfaces. For a parabola
the Intus rectum. or ordinate through the focus, is four times
the distance from the vertex to the foeus. Equation (B17)
states that the end point of the skeleton chord should be
approximately the focus of a parabola at the nose.

The scheme for choice of axes is as follows: Locate a point
F near the leading edge where the ordinate through F is four
times the distance of F from the leading edge. Similarly
locate a point F” near the trailing edge. The origin of coor-
dinates then bisects the line FF’, which is on the z-axis and
represents the chord of the skeleton line airfoil ¢=0. (To
the order of approximation employed, the aforementioned
choice of axes coincides with that given for the single wing
section in reference 1 or 3.)

Procedure for finding (¢, ) from (z, y) for arbitrary
stagger angle 8.—An iterative procedure is given herein for
finding ¢(8) from (x, ¥) for arbitrary g8, in which the knowledge
of the case for $=0° is employed to help in formulating the
initial approximation. In bricf, values of 4 are obtained for
stagger angle 8=0° for both the airfoil and its line skeleton.
Values of 6 are then found for the skeleton, in the case of
stagger angle 8. These functions permit approximate values
of 6 to be found for the airfoil, for stagger angle 8. Equation
(B12) then cnables approximate values of ¢ to be obtained.
These values of (¢, 8) are then readily checked and improved,
if necessary. The steps are as follows:

(1) Choose the axes as outlined and express the airfoil
coordinates in percent chord, where the chord for this pur-
pose is the part of the z-axis intercepted by the airfoil.
Denote the coordinates thus obtained by (z, y,). Find
k=FF’ in percent chord. Find z;—x,,, the distance from the
leading edge to F'in percent chord, and denote this value by e.
Obtain the ratio c¢/d, where ¢ means here FF’ and d is the
spacing between corresponding points on adjacent airfoils of
the lattice. IFind conversion factor m by

cl
=D
m=2r 51
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(2) Convert coordinates of the airfoil from r,, »,) to

<‘27r ’l/', RE %) as follows:

D) 'r_’ ! A. N
- Evm 61—9*},,

7
2 ﬁZIN_I/,,

(3) Find the parameter v, that corresponds to the deter-
mined value of efd for the given value of 3 from graph or by
endeulation (equation (8)).  Also find for later use the value
of ¢/g corresponding to this value of v, for g=0°,

(4) Consider, for this value of v, the two straight-line
cases (y=0, §=0° and (y=0, =24); associate values of
6=6, for 8=0° with values =0, for the stagger angle g by
referring associated values of 8 to geometrically similar
points of the lines (equation (B13)).

(5) Multiply coordinates in step (2) by the ratio (e/o

- : (e/d)s
where the chord-gap values are from step (3) for §=0°% and
for B=p. Using equation (B4), find values of 8 for g=0°.

(6) With the aid of step (4) obtain approximate values of
0s associated with the values of 8 obtained in step (5). Then,
with 8=8;, use cquation (B12) to obtain an approximate
value of ¢, where

_2my F(B)

A

and the leading- and trailing-edge values of ¢ are obtained
from equation (B15).
(7) (_‘nl( ulu.to from cquations (I35) and (1310), exact values

of( u%somnt(‘(l with the initial values of (¥, 8) in

step ((») w lww r=ri+rand y=y,+..

(8) If. on comparison of the coordinates in step (7) with
the coordinates in step (2), it is deemed neeessary to approxi-
mate (¢, 8) more closely for several of the points (2. y), one

cian

. o e dt
procedure is the following: An expression for d(y—+i0)

be found from equations (4) to (6) as

_dg

dlg+i8)

o _sinh (y+i6) sinh (¢ +i6)
5,008 B cosh v,+cosh (¢+i0)+cosh vo—cosh (Y=+16)

—i%ng cosh (y+16) cosh (y—+16) ]
Lo sinlt vo+sinh (¢ +i0) " sinh vy—sinh (¢ -+148)
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With the notation of equations (B3) and (B10), this expres-

ston may be written

(1( g‘“),’f

digTie) P+

o 1 .
i0) ( : s i ﬂ"“ﬂ)
P3 Py

p=cos g [slllll ¥ cos 9( oS ¢' iy ®’>
-+ cosh ¢ sin 6 (Sl—n ¢l sin ¢2>J

" ‘. - COS ¢y , COS ¢y
+sin 8 [smh ¥ sin 6 (————m +—)

. . 1 : 1 ;
=cos @ sinh (¢ +6) < - e"“’l+-~e“%)
P1 P

—sin g cosh (¢ +

where

Py

—cosh ¢ cos ¢ (S”;f”-%-i*—";‘%)]

t’os__dzs>
pa
—sinh ¢ cos 6 (SI—E'@'FS———";QS"’>]

P
cos g)
P4

and
cos ¢y

q=cos 8 [cosh ¥ sin ¢ (

cos ¢3

—sin B I_C()%h Y cos @ (

+sinh ¢ sin 6 (qm ¢ s"r-‘«d"):,

The following relation may then be noted:

()7

A(\gf;]\)‘< =), ( (l)
() =), - (x),

where the subseripts 0 and 1 refer to the coordinates given
in steps (2) and (7), respectively. If the values 4, 9)
obtained in step (6) are used, evaluation of equation (B18)
agives values (Ay, A0), and (¢ + Ay, -+ 38) represents the next
approximation to the desired coordinates.  The process n
steps (7) and (8) ean bo repeated if deemed necessary.

Ay+idf =~ (B1S)

Let
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APPENDIX C
DERIVATION OF EQUATION (12)

The transformation (equation (9)) from the /- to the
z-plane may be rewritten

log ==/(2)
= e
=> = (C1)
1T <
where the complex constants ¢, may be defined as
cn=0n+1b,
On the boundaries, 2’ =ae¥*t*® and z=ae¥t'*; henee,
ZI
log Zz =y—¢yT+i(0—9)
and
=/ a, b, .
y— ¢o=$ e €08 n¢+73; sin ne (C2)
where

R=ae¥

With ¢ considered as a function of ¢ denoted by ¥(¢), the
coeflicients in equation (C2) are obtained as

Substituting equation (('3) in cquation {('1) vields

1 o @ Rn tneg
fer=x | we SV s

(CH

N . S . o
For |z1<1, the geometric series in equation (C4) ean be

summed and

or io
=1 [ Ko s ()
which can immediately be expressed as in equation (12).
For computational purposes, cquation (12) may be
separnted into real and imaginary parts.  Let f(z)=p-+1g
and z=r+1iy (where, for example, in the zeroth approxima-
tion =6, y=0). Then,

1 (= AW
p=y J, v 37 do
1 [ AW
= jo ¥(¢) 75 do
where

N,=T4 cos ¢—+—-‘1—I sin ¢— 1
R R

a_1({°
ﬁ-=;}ﬁ ¥(¢)cosng d¢ Ngz% sin qs—-]lé cos ¢

2r 2
m=1 ﬁ ¥(¢) sin npdé C3) D=1—2(;—ecos¢+}§sm¢)+’%ﬂ
e 1 (7 and the integrations can be conveniently performed by
PR ‘I,(¢)ein¢d¢ A ’
R» wj; Simpson’s rule.

APPENDIX D

TRANSFORMATION FROM z-PLANE TO w-PLANE

The linear {ractional transformation

_az+b
W=cz+d

on which the derivation of equation (13) is based, has the
following well-known properties:

(1) When z traverses a circle C;, w traverses a cirele C.

(2) Two points w; and w, inverse with respect to a circle
C, correspond to two points z; and z, inverse with respect to
the circle (.

(3) The anharmonic ratio of four points is preserved; that
is, if 2y, 23, 23, and z, correspond to wy, we, w3, and wy,

(21— 2)) (22— 2y) — (=) (wy —w3)
(ei—z)(zs—zi)  (wr—w2) (03— wy)

For the desired correspondence it is known that four points

. . S? — 82
wy=b, wy=—4, and their inverse points Wy =y Wy="—p— are
to correspond to z;=g,;, z,=—8, and their inverse points’

2 e
zy==- z,=-=—- Property (3) yiclds a relation that may be
1

used to solve for the radius S and that can be expressed by
equations (15) and (16). When the radius of the cirele in
the w-plane has been determined, property (3) can again be
used by replacing—say, w, by w and z, by z. This procedure
will yield a result that is equivalent to equation (13).
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APPENDIX E

OUTLINE OF CALCULATION PROCEDURE

(1) List airfoil-section coordinates in pereent chord.

(2) Choose axes (appendix B, paragraph following equa-
tion (BB17)).

(3) List stagger angle 8 and find v, and value of ¢/d for
the skeleton line lattice (table I, fig. 2, and equation (8)).

(4) Find (¢, 8) (appendix B).

(5) Find e(¢) (equation (10)) by method given in appendix
of reference 3.

(6) Plot ¢ against ¢ where ¢=0-+e
(equation (11)) and R=uae¥e,

(7) Find complex constants 8, and 8; (equation (12) and
appendix C).

(8) Find constants cosh v, v,
tions (16), (15), and (14)).

(9) Find complex constant §='6'e” (equation (26)) and
real constant M (equation (27)). .\lso obtain functions
m(¢) and p(¢) from equation (29).

(10) Find ¢ and, in particular, ¢, (equation (30)).

(11) Evaluate factors B, C, D, and E (equation (35)).

(12) Evaluate factor .1 in equation (35), first choosing
the angle of attack a as indicated in the following paragraphs:

The lift coefficient is as in equation (37)

Find constant v,

S, and K=k +ik, (equa-

1 ©_ dVu—Tn
Ce=trmsva=2c v

Here ¢/d refers to the value of r/d at 0 percent chord minus
z/d at 100 percent chord. By using equation (19) for I'/2V4d,
7. may be expressed as

C =1 sin (a+7) (ED)

(1 ‘,‘2510_ <m m,) 1
cosh 'yl \mh B

sin ¢, cosh
pe=tan~! ( T2 TS
cos o, sinh 7,

where

and

This relation may be used to find « for any desired value
of (¢ and it is further noted that a=-—n is the angle of zero
lift.

The “ideal” angle of attack, introduced by Theodorsen, is
defined for a thin section as the angle of attack for which a
stagnation point exists not only at the sharp trailing edge
but also at the sharp leading edge. For thick airfoils, the
ideal angle of attack is defined in the same manner (the
pressure difference at the leading edge vanishes) although
the point that is considered the leading-edge point is not
precisely defined. If this point is taken to be the intersection
of the z-axis with the airfoil leading edge, the ideal lift and
ideal angle of attack are found as follows: Liet oy be the value
of ¢ corresponding to the leading-edge point. The quantity

25—2}; in equation (24) (or the factor A in equation (35))

vanishes for ¢=o0,. The relation that gives the value of
the ideal angle of attack a=qa; is then

sin o
(OS t’(

cosh v, sin ¢,—sin g,
" sinh v, ¢08 ¢,—c0S a9

and the ideal lift coeflicient, from equation (K1), is

y d1 1
CLIZ"“E j cos E (0’1_(70)

where
2
Ji= I:(‘o%h Y[ COS ‘)(al—f—o'n):l [bmh v, sin ,,(al—i-tro) ]

(13) The surface veloeity ratio o/V is now found from
equation (35) and the (mean) superstream pressure is found
from Bernoulli’s equation as

P (Y
q_] (‘)

The angle through which the stream is turned may be found
from equation (23).

A remark may be inserted here regarding an inverse
calculation procedure. Instead of starting with a given
lattice, it may be convenient to start with given function
¥(¢), (quantity ¥ as a function of ¢) and given parameters
7o and B. Then both the lattice arrangement and the flow
properties follow uniquely and, in this way, systematic
families of lattices can be studied.
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1. 3. GOVERNMENT PRINTING QFFICE: 1948



Positive directions of axes and angles (forces and moments) are shown by arrows

~ Axis _ " Moment about axis Angle Velocities
Force -
‘ m«;l B . Linear
Sym- . Sym- ositi Designa- | Sym-{ (compe- y
Deelgnation g;:l: symbol Deglgn&tion g;')!l] %i’imoti:;; tsi:)gr"-] g!ll i ngnt ;l;:ng “‘“8““? A
Longitudinal........, X X Rolling.......] L Y—2Z Roll......... ¢ % p
Laterai...............| Y Y Pitching.._... M Z—X Pitch......| @8- v q )
Normal.eeeeaee] 4 Z Yawing......| N X——Y. | Yaw......_.| ¥ ® r.o | S
Absolute coefficients of moment Angle of set of control surface (relative to n;aqtral '
L . , N , position), 6. (Indicate surface by proper subscript.)
0|=—— 0,,.=——- 0.=— . s
gbS ™ geS. b8 ) . . o
(rolling) (pitching) (yawing) _ R
4..PROPELLER SYMBOLS ' S
D Diameter ' ' . P
» Geometric pitch P Power, absolute coefficient Op—';m

p/D  Pitch ratio
v Inflow velocity
vV, Slipstream velocity Efficiency

n
T Thrust, absolute coefficient C,-=TT—D, n Revolutions per second, rps
. pIY . . AV
Effective helix angle=tan ‘(m

. 8oV
C, Speed-power coefficient= \/ Pa

i =92
@ Torque, absolute coeflicient 0°_pn“ T

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=>550 ft-lb/sec 11b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 Ib
1 mph=0.4470 mps 1 mi=1,609.35 m==5,280 {t

1 mps==2.2369 mph 1 m=3.2808 ft
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