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THE MATHEMATICAL DEVELOPMENT OF THE END-POINT METHOD
By S. Frankel and S. Goldberg

ABSTRACT

The end-point method is mathematically developed and its application to the Milne kernel studied
in detail. The general solution of the Wiener-Hopf integral equation is first obtained. The Milne
kernel appears in applying this method to the integral equation describing the diffusion and multipli-
cation of neutrons in multinlying and scattering media. The neutrons are treated as monochromatic,
isotropically scattered and of the same total mean free path in all materials involved. Only problems
with spherical symmetry are treated, these being reducible to equivalent infinite slab problems. So-
lutions are obtained for tamped and untamped spheres; in the former case both growing and decaying
exponential asymptotic solutions in the tamper are treated in detail. Appendix I treats the effects of
the approximations inherent in the end-point method (cf. LADC - 79). Appendix II gives the solution
of the inhomogeneous Wiener-Hopf equation.

INTRODUCTION

The general development of the end-point method and some of its applications are described in
LADC - '79. It is the purpose of this report to supplement this general description with an explicit
mathematical development of the end-point method and a detailed study of its application to the
Milne kernel. This is the kernel entering in the integral equation describing the diffusion and multi-
plication of neutrons in multiplying and scattering materials where the neutrons are treated as mono-
chromatic, isotropically scattered, and of the same total mean free path in all materials involved.

The end-point method of treatment of integral equations is restricted to one-dimensional cases. This
essentially limita the method to the treatment of problems in which the materials involved and the
neutron distributirn are both spherically symmetric, these problems being reducible to equivalent
infinite-slab problems. In LADC - 79 it was shown that the end-point results may be applied loosely
to problems of somewhat more complicated geometry and give more or less accurate approximations
to the truth. These applications depend primarily on loose analogies rather than mathematical argu-
ment and will not be treated here.

Much of this report will be, in part, repetition of material treated in LADC 79. Here the emphasis
will be primarily on the clear mathematical development of the methods of application presented there.

Chapter 1

THE WIENER-HOPF METHOD

dx’ n(x’) K(x - x*) (1.0)

The integral equation, 0
n(x) = f
0
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is known as the equation of Wiener and Hopf. With certain reasonable restrictions on the character
of K and n this equation can be solved exactly. Before examining the method of solving this equation

developed by Wiener and Hopf, it is useful to examine the simpler equation,

n(x) =f dx’ n(x’) K(x - x') (1.1)

Since this equation is homogeneous, if n,(x) is a solution then ang(x) also satisfies the equation for any
constant, a. Because of the infinite limits of integration and the ‘‘displacement’’ character of the
kernel (K depends only on the difference, x - x'), ng{x - b) must also be a solution. If the solution,
ny(x), is unique (except for a multiplicative factor) then ny(x - b) = any(x) for some a. Hence ng(x) =

ekKX, This suggests looking for exponential solutions of (1.1),
0

n(x) = ekx=f dx’ ekx’ K(x - x’)

-0

- .
eka dy e-KY K(y) (1.2)
-0 v
=]

f dy e-Y K(y) = 1

—cd
Any solution of this ‘‘characteristic equation’’ gives a value of k for which eKX gatisfies equation 1.1.
If there is more than one solution to the characteristic equation, then any linear combination of the

exponentials determined by them will satisfy equation 1.1.
These considerations will be relevant to the study of the equation 1.0 if K decays rapidly for

large |y|. If this is the case, for large x, equation 1.0 approximates equation 1.1, and it may be ex-
pected that with increasing x the solutions of equation 1.0 will approach asymptotically the exponential
solutions of equation 1.1. If this is the case, the asymptotic exponential part of the solution of equa-
tion 1.0 may be separated from the remainder of the solution by Laplace or Fourier transformation.
The use of the Laplace transform is further suggested by the fact that the left hand term of equa-

tion 1.2 is the Laplace transform of the kernel.
Taking the Laplace transform of equation 1.1 gives:

—_fdx e-kx n(x) =f°dx e‘kx:[wdx' n(x') K(x - x")

:_‘de’ n(x')e'kx'fo dy e~KY K(y)

fodx e~KX n(x) (fody e-ky K(y) - 1) =0

This last equation shows that the Laplace transform of n(x) must vanish for all values of k which do

not satisfy the characteristic equation 1.2.
An application of the same technique to equation 1.0 does not lead immediately to a factored

equation because of the finite lower limit. To get around this difficulty Wiener and Hopf introduced

the following trick.
Define n(x) = £(x) + g(x)

where f(x) =0 for x < 0
gx)=0forxz 0

This permits writing equation 1.0 in the form

i(x) + g(x) = fdx’ f(x’) K(x - x")
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Now, taking the Laplace transform gives

—
&
=
2
o
\
)
+
——
&
PN
X
[¢]
|
)
1

= _fodx e kx j;lx f(x') K(x - x')

fdx’ e kx’ §(x") fdy e~ky K(y)
-— -0

i

Defining F(k) f dx £(x) e~kX

G(K) = fdx g(x) e-kx

K(k) = fdx K (x)e kX

we have
G() = F) (K —1) = FK) PK) (1.3)
This equation will hold for any value of k for which all three integrals exist. We therefore impose con-
ditions on the kernel and solution of equation 1.0, which ensure the existence of a suitable region in the
complex plane in which all three integrals exist. We require that K(y) decay at least as rapidly as an
exponential for large (positive or negative) y.

K(y) = c(e~C|yf), ¢ >0. (1.4)
Then K(k) will exist for - c<R(k)<c. We further assume that
£(x) = c(edx), d<c (1.5)

The kernels of primary interest are symmetric. For these, if the ‘‘largest’’ value of ¢ satisfying
equation 1.4 is chosen, equation 1.5 is not a restrictive condition, since f(x) must approach asymptoti-
cally an exponential, ekx, for some k satisfying K(k) = 1 and therefore within the range of convergence
of K(k). The form of equation 1.3 clearly requires that g(x) decay (for large negative x) at least as
fast as e®X, Thus G(k) exists for all k having R(k) < c. The three integrals will therefore all exist
throughout a vertical strip in the complex k-plane defined by d < R(k) < c.

\\\\x // /
F (k) EX'STQ'; / F (k) EXISTS
=
-C \\\\ cf
\\\§M
S
2 N
K(FI{ZXISTS
N
F,G,K COE'XISTS

Figure 1.
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Within this “‘common strip’’ all three integrals are convergent and equation 1.3 must be satisfied.
Outside this strip the nonconvergent integrals will be defined by analytic extension (and need not be
analytic) in such a way that the equation is still satisfied.

Within and to the right of the common strip, F(k) exists and is analytic. [It is clear from its
definition that in this range any derivative of F(k) exists.] Similarly within and to the left of the strip,
G(k) exists and is analytic. K(k), hence also P(k), exists and is analytic within the strip but may have
singularities on either side of it. We make the further assumption that F(k) and G(k) have no roots in
their respective regions of analyticity. (Cf. Paley and Wiener, Fourier Transforms, p. 51). We
further require that there exist a sub-strip within the common strip within which P(k) has no roots.

This must be true if P(k) has only a finite number of zeros in the common strip. This will actually
be the case, Cf. Titchmarsh, Fourier Integrals, p. 339.]

We have now a sub-strip within which log P(k) is analytic; within which, and to the right, log F(k)

is analytic; within which, and to the left, log G(k) is analytic, and within which the three satisfy

log P(k) = log G(k) - log F(k)

This equation will be satisfied throughout the plane by the analytic extensions.
It is now easy to find functions, F and G, satisfying this equation and the analyticity conditions.
For values of k within the sub-strip we express log P(k) by means of a Cauchy integral:

log P(k) = (1/2i) fci_dk-‘i log P(k’)

’

= (1/2mi) fRE% log P(k')

+ (1/2ni) fL—l_(_df{_—;{ log P(k’)

where the contour of integration consists of two vertical lines in the sub-strip, one running up to the
right of k, the other down to its left.

YL

Figure 2.
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We have now decomposed log P(k) into two parts, one certainly analytic within the strip and to the
left, the other within and to the right. These may be identified with log G(k) and -log F(k), and give a
solution to the equation 1.0.

dk
log F(k) = - o lLE % log P(k) + constant
(1.6)
log G(k) = & log P(k’) + constant
J 2m f Rk -k
This contour integral representation of log F(k) determines F(k), hence also f(x).
1 0+ ic -
H) = 5 €% F() dk (1.7)

where 0§ is chosen to make F(k) regular along the contour.. In particular, 8 may be taken in the sub-
strip. Since F(k) is analytic to the right of the sub-strip, the contour may be translated to the right
as far as desired. For negative values of x this may be used to show that f(x) vanishes.

If f(x) contains a term AekoX (e.g., as its asymptotic solution), then its Laplace transform, F(k)
will contain a corresponding term.

6[ dx e kX AeKoX = A/(k - k)

Thus a pure exponential term in f(x) manifests itself in F(k) as a simple pole, and the coefficients of
the two may be identified. The coefficient of the singularity is most easily determined by expanding
log F(k) about the singularity.

log F(k} = - log(k - kq) + log A + 0(k - k¢)

The asymptotic solution will be determined by all of the singularities of F(k) on the imaginary axis
and in the right half-plane. If there are no singularities on or to the right of the imaginary axis the
solution, f(x), will approach zero asymptotically. A more useful asymptotic solution however, will
be that determined by the first singularities to the left of the imaginary axis:

An important special case of this general treatment is that for which the kernel, K(y), is sym-
metric and for which the characteristic equation has only a single pair of conjugate roots on the
imaginary axis. If these two roots are at * ik, then the solution will be of the form

F(k) = B[sin ko (x + xo) + h(x)], h(x)=0 as x—+ «» (1.8)

Since the equation is homogeneous, B is undetermined; x,,, however, can be evaluated.

F(k)

It

fdx ekx [sin ko(x + xq) + h(x)]
0

]

rqx e'kxz_Bi [eiko(x +X,) o Ko(x + Xo) | 2ih (x)]

0
B eikoxo e'ikoxo

== - - - + 2iH(k)
2i \k - ik, k+ ].ko

In the neighborhood of * ik,, H(k} is finite. We expand log F(k) near these two poles,

log F(ik, +c)—log2~ +1kyX, - log €+ 0(¢)

-B
log F(~ ik, +€) = loga - 1 kgXq - log € + O(¢)

lim| log F(iky +€) - log F(- ik_+¢€)[ = log (- 1)+2i k,
0 0 OX0

e—0
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log F(k) = log G(k) - log P(k)

1 dk’ ,
= oo fR o -3 log P(k’) - log P(k)

P'(ikg) = log (-1)

li log P(ik - -1 =
im [og (iky +€) - log P (-~ ik, +e)] log| D (-ikg)
e—0
since K(y) is even, K(k) and P(k) are even; P’ (k) is odd.
1 1

. 1 )
zmoxozﬁfde,logp(k) K - ik, k’+ik,
[¢]

1 d’ (1.9)
xO:%{J‘R—Z—“ + ko 10g P(k )

The two terms, log (- 1), have been neglected since the form of the solution 1.8 is unchanged by the
addition of a multiple of 7 to kgxo. The evaluation of x, completes the determination of the asymp-
totic form of the solution equation 1.8. X4 is expressed in equation 1.9 as a single integral, which in
many cases must be evaluated numerically. To get the complete solution requires two integrations,
one to evaluate log F(k) by equation 1.6, another to get f(x) by (1.7).

Two-Medium Problems

A more general problem that can be treated by the Wiener-Hopf technique is

0 o
n(x) = f dx' K’'(x - x’) n(x’) + f dx’' K (x - x’) n(x’).

= i 6
Breaking up n(x) as before and taking the Laplace transform of the resulting equation gives

F(k) + G(k) = K(k) F(k) + K’ (k) G(k)
where the notation is the same as before. This may be written as

G(k) = F(k) <11<_'—(TK)(%)1> = F(k) P(k)

This is now of the same form as equation 1.3. The rest of the treatment proceeds in the same way.
With this more complicated form for P(k) there may be a greater number of singularities of log P(k),
leading to a larger number of independent solutions. In particular it is no longer necessary to re-

quire that g(x) decay exponentially away from the boundary.
An important special case of this two-medium problem is that for which K(y) and K’(y) differ only

by a multiplicative factor. This case will be treated extensively in the second chapter.
The Wiener-Hopf technique may be further extended to permit the solution of inhomogeneous
displacement integral equations. This method is outlined in Appendix II.

Chapter I

APPLICATION TO NEUTRON PROBLEMS

In this chapter we treat the applications of the Wiener-Hopf method (combined with some approxi-
mations) to problems concerning the spatial distribution and time dependence of neutrons in spheres
of multiplying and scattering materiais. It will'be shown that such problems, with suitable physical
approximations, can be represented by integral equations closely analogous to the Wiener-Hopf equa-
tion. By making suitable mathematical approximations (the ‘‘end-point method’’) fairly accurate
solutions to these equations can be gotten from the corresponding Wiener-Hopf solutions.
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We make the foliowing physical approximations:

A) We consider only one neutron velocity; hence for each material only one value for each cross
section,

B) We treat all collision processes as isotropic. (Anisotropy of elastic scattering can be treated
to a limited extent. It can be shown that if this anisotropy is neglected and the transport average used
for the elastic scattering cross section quite accurate results will be obtained. Cf. LADC - 79 and
MT - 26.)

C) The total mean free path will be taken to be the same for all materials involved.

D) The neutron distribution will be treated as a continuum. It will be taken to be spherically
symmetric and of stable spatial distribution. These three conditions will certainly be good approxi-
mations if the neutron distribution has lived through many generations and consists of a sufficient
number of neutrons to make statistical fluctuation negligible.

We adopt the following notation:

o¢ is the fission probability per unit path length. (It is therefore the product of the fission cross
section and the number of nuclei per unit volume.) Similarly,

0g is the scattering probability per unit path length.

0, is the absorption probability per unit path length.

0 =0f+0g5+0y

v is the mean number of neutrons emerging from a fission process.

Vaf +0g
[

F=1+1£= is therefore the mean number ur neutrons emerging from a collision.

v is the neutron velocity.
n(r, t) is the neutron density at point r at time t.
We express the neutron density at (r, t) as an integral over all points at which these neutrons may
have suffered their last collisions.

v n(r, t) =fch_" ov F(r) n(g’, t- I ; r'|> 47r(r1- )2 e -oir - x| (2.1)
We look for solutions of the form
n(r,t) = n(r) e'yot
The integral equation 2.1, then takes the form:
a() =fd;_'o Fr') n(y)m o (@7 /W -1
We now rescale r, taking as the unit of length the mean attenuation distance, 1/(c +7 o/v).
x=1{0+7o/V)
-lx - x|
n(x) = ET/GV fdx F(x’) n(x’ )m
Defining ¥ =7 o/ov gives the three-dimensional integral equation.
1 e-lx-27
n) = 5 [a Fene) ooy (2.2)

* If we now introduce polar coordinates, x’ = (r’,¢’, §'),

taking the point x on the polar axis we may make use of the assumed spherical symmetry of n(x’) to
reduce equation 2.2 to an equation in one dimension.

- (r2+1'2 - 2rr’ cos 9)1/2

1 . e
n(r):m-frrz dr’ F(r’) n(r’) ff d¢sin 6 dé 4n(@2+1'2 - 2rr’ cosf)
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Taking ¢ = cos 0, 12 = r2 + r'2 - 2rr’ cos 6

2 s e-(r2 +r'2 - 2rr’ cose)% 1 1 e-l
d f =_f e_
2 ¢ osmo d04ﬂ(r2+r’2-2rr' cos ) 2 -1d# 12
r+r’ -1
1 Lal e (g, Ld)
h ZJ rrr 120 \HT T

- |:E(|r -r|)-E(r+ r'):|

2rr’
Pt
where E(s) = J; Et——dt-
rn(r) = Tllwv_)—’_) f dr’' F(r')r’ n(r') [E(Ir -r’l) - E(r+ r'):l (2.3)

0
If we now define u(r) = r n(r) and treat u(r) as an odd function, and F(r) as an even function of r [no

meaning has previously been assigned to negative values of r or to the corresponding n(r) and F(r)] ,
we may write equation 2.3 in the form:

u(r) = TllJr_‘;’_)_[odr, F(r')u(r’) E(lr - r'|} (2.4)

If instead of assuming the material and neutron distribution spherically symmetric, we take both as
functions of only one Cartesian coordinate, z, equation 2.2 may be reduced to an equation in one
dimension as follows:

-[(z—z’)2+(Y'Y')2+(X'X')2]%
1 , , , , ,e
ne) - 1oy o Fe)ae) [ e o e o)

1 2 © e-1
=137 fdz' F(z*) n{z") i do fpdp‘l—ﬂ—12
0

where 12 = (z - 2')2 +p2, 1 dl = pdp
n(2) = 375 [ F@) nz) Bz - 21) (2.5)

A comparison of equations 2.4 and 2.5 shows that the sphere problem 2.4 may be identified with a slab
problem 2.5 in which the distribution of materials F(z) across the slab is the same as that along a
diameter of the sphere. Any odd solution of the slab problem, n(z), may be identified with the quantity
u(r) in the sphere problem and conversely. The ‘“‘fundamental mode’’ of the sphere for which n(r) is
everywhere positive corresponds to the ‘first harmonic’’ of the slab in which the neutron density takes
on apparently meaningless negative values. For this reason, and because higher modes may be super-
imposed on the fundamental, we will treat the neutron density, n(z), as a real quantity which may have
either sign.

For a tamped sphere of core radius a, outer tamper radius b, and mean attenuation distances, the
integral equation 2.4 takes the form

-a
u(r)=%i—t '[bdr' u(r’)_;..E(lr—r’l)
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1+1 2 1
1+1e Coulpe o
1oy Iadr u(r)—zE(lr r'l)

b

+—i%f{1 fdr’ u(r')-%-E (Ir - r|)
a
where f; and ft are the values of f in core and tamper respectively. This equation differs from the
Wiener-Hopf equation in having four boundaries instead of one (or two for an untamped sphere). With
more than one boundary no exact sclution is known. We therefore resort to an approximation, namely
to treat the behaviour of the solution near each boundary as if no other boundaries existed. It was
shown in the first chapter that the solution of the one-boundary problem approaches, at large distances
from the boundary, a solution of the problem with infinite limits. It is reasonable to expect that the
solution of a two-boundary problem in which the boundaries are very far apart will behave in some
middle region as a solution of the infinite-limits equation. If this is the case, we have only to combine
two one-boundary solutions in such a way that their asymptotic components coincide. In a many-
boundary problem, e.g., the tamped sphere, we apply this recipe in each region. This approximation
method, the ‘‘end-point method’’, would seem, from the above argument, reasonably accurate only if
the distances between boundaries are many mean attenuation distances. It is shown in Appendix I
that the limit of reasonable accuracy is actually a few tenths of a mean attenuation distance. There
is therefore good reason to believe that for sizes larger than that, the end-point method is sufficiently
accurate,

In order to apply the end-point method we must first study the one-boundary problem with the
‘“Milne kernel’’,

K(y) = ¢ 3+ E(y)

This kernel withc = 1 occurs in “the equation of E. A. Milne’’ describing the flow of radiation through
the outermost layers of a star. We will, however, refer to it as the ‘‘Milne kernel’’ for all positive
values of ¢. The general equation we have to study is then

0 , , 1 , o , 1
n(x) = ¢ f dx’ n(x’) ZE(x - x']) + 6(dx n(x') 2 E (|x - x*|)

c=(1+1£)/(1+7).

Several cases arise. For a free surface, either the outer surface of a tamper or the surface of an un-
tamped sphere, we take ¢’ = 0. For an interface we take both ¢ and ¢’ positive. For the core material,
¢ must be greater than 1 (£>7); in the tamper, ¢ - 1 may be of either sign.

We first treat the free-surface case.
o0

() = c 6[ dx’ n(x) 3 E (Ix - x'|)
The characteristic equation is
w o o
¢ [ atEqyde ™= (/2 ofdy ) fl =T

O

= (c/2) £%§<sik+sfk>
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- -2% log <i—f—l® =§tanh"1 k=1
If c < 1 we have two real roots, * k, such that ¢ = k/tanh 1ko~ If ¢ > 1 we have two imaginary roots, *
i ko, such that ¢ = ky/tan-1ke. In either case it can be shown that the characteristic equation has only
two roots. In the latter case the asymptotic solution is a sinuscidal function of kX, in the former, a
hyperbolic function. We will represent the phase of the asymptotic solution by the ‘‘extrapolated end-
point,”” x,;, such that the asymptotic solution is the sine or hyperbolic sine of ky(x + Xg). We now
follow through, explicitly, the method of solution outlined in Chapter 1.

n(x) = £(x) + g{x) = ¢ f dx’ f(x')-;-E (1% - x'])

f(x})=oforx<o

gx)=oforxzo

F(k) + G(k) = f dxn(x)eikx: fdxe'l“de'f(X’)gE(lx-X'l)
= f dx’f(x')e_le f dye-kygE(IYD
c , [1+k
= F(k)ﬁ iog <1 -k>

G(k) = F(k){ ECE log (%) - 1}5 F(k) P(k)

P(k) has singularities only at X 1, These singularities are branch points so that to make the function
explicit we introduce cuts lying along the real axis from -« to -1 and from +1 to +«, We treat first the
case ¢ > 1. The two roots of P(k) are then pure imaginary, * ik,. The singularities of log P(k) are X1
andtik,. We look for a log F(k), analytic to the right of the imaginary axis |corresponding to the
sinusoidal asymptotic solution, f(x)], and a log G(k), analytic to the left of +1 [corresponding to a g(x)
decaying somewhat faster than e-X], and satisfying

log P(k) = log G(k) - log F(k) (2.6)
The ‘‘sub-strip’’ in which all three of these quantities are analytic is 0 <R(k) < 1. We therefore break

up log P(k) by means of a Cauchy integral along a contour running up and down in this strip and en-
closing k, and (except for a common constant) identify log G(k) and -log F(k) with the two parts of the

integral.

log Pr(k) = % R E‘,d—l{j{ log P(k’) = log G(k) + constant,
1 dk’ log P(k’) = log F(k) + constant.
logPL(k)hﬁka/—k B P = doe 79

We simplify log Pr(k) by deforming the right contour to enclose the right-hand cut.
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R A

Figure 3.

1 0 dk’ c 1+k’ .
log PR(k) = om f TR log I:_Zk' (log Y )— 1] [I(log) = 1r1—-0]
o

’

1 © dk’ [ 1+k . B .
* omi J.l T log [Zk' (logk, 1 +1r1)-1] [I(log) = 0—+ m]

_lf” &' L oaf w2 1.
_ﬂlk’-ktan ‘ll k' +1 K tan™! = 0—1r
2 % -1 ¢

Here the tan~1 rises from O at k’ = 1 tow at k' = + « (as indicated by the bracketed expressions).
Substituting k' = 1/s,
1 ds

1
s o -3 5 7
(o]

1}
i

where T, = tan"1 ( m/2 ) Te

ms=0
tanh-1s - 1/cs 0s=1

1 (lds k1l ds
log pR(k)=;,fo? Tc+,~rj'01_ks T, 2.7

Here and throughout this treatment we encounter logarithmically infinite constants. A slight modifi-
cation of our procedure [to make P(k) —1 as Ikl——uo] suffices to avoid this embarrassment. The
present treatment is somewhat simpler, though formally less rigorous.
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We simplify log PL.(k) by a corresponding deformation of the left contour.

L 4 -+
L -1 IJ 1
-1k,
Figure 4.
I Kl -1
- log Pp (k) = J. log [Zk’ (log 1 & + rri) - 1] I{log) = wi—2mi

o) iko 0 -1
f (2mi) + b[ (2mi)+ j (- 2mi) + 4’ (- 2m)
21 ik,

< Ik l 1. } dk' [ ]
f 10g[2k, (log Y +q7i) - 1 r— I(log) = - 2mi—-mi
c k1 -1 )
--——f dic’ lo, 2k’ (lgl_k' )t log = 2mr—4m
“m ) _ % -k g_C_(lo K- ) €=
2% V21 -k

k k - ik k 1+k
+log1+k+log X 10gk+ik0 log X

Letting r = -k’
L4
1 dr w/2
- log PL(k)=-,—T f Tk tan‘lr 11/ —] l:tan'l“21r——ﬂ':|
1 c? J r-1
1 k + k02
+ og—-——z-(2 k)

1
Letting s = T we have
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1
ds m/2
- = - ——— ‘1 '1 = - = o At
log PL(k) '}r J’o (L + ks) [Zﬂ’ + tan 1/cs - tanh-Ts ] [tan Te=-m 0]

k2+k02
+ log (1 + k)2
1 1
- ds 1 [ __ds 2, k2
--Zf s *w f s(1+ks)Tc+1°g(k + ko9)
0 () :
1ds 1 ds ik ds
log Py (k) = 2 Jr? 7 J ?Tc-log (k2+k°2)+;r 1+ ks Te (2.8)
o o °
Combining those two expressions, 2.7 and 2.8, with
log P () = log (= log 5 - 1) = log PR(K) - log Py, () (2.6)
og = log 7K le_k = log PRl = log ¥y, .
gives
1
¢ plik .2 [
tog (3, log 1 '1) "% b s (Te-m
2k2 ds
+ log (kz-k°2)+——’r— Jii-s—kzs—z. Tc(2.9)
Taking the limit as k--—0 we get
1
1 (ds 1, c-1
: jo S (Te -m) = 5log T (2.10)
and equation 2.9 becomes
kl 1 sds =l_tldsTl_(1dsT
7 | 1-k2s2 ﬂf 1-ks °'nf 1+ks ©
0 o o
9 0 (2.11)
ol (K)o e-1
"2l°g( ko2 ) 2l°g_c_1 ek
2k B 1k

Dividing by k2 and again letting k—0,

1
1 1 (4
7 fosdsTc—- 2ko2+6(c-1)

1d 1 ds
g 1 [ Te - log B, trom log PR(K) and log PL(K) to

We now subtract the (infinite) constant, 2 f
os M l,s

give log G(k) and log F(k).

2 2
log F(k) = - log(k™ + k) +7Er f T+ ks T, + log B;
(s
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ds

2 k ds
log G(k) = 7 -g— -ﬂ)+ﬁj'1—_'g Te + log B,
(]

B(c - 1)
- ks Tc + log k02

E\IW
-

[e
5]

We now determine X¢ and the value of B required to give thebasymptotic sine wave in f(x) unit ampli-
tude.

f(x) = sin kg(x + xg) + h(x) h(x)-=0 as x—+w
o lkoXo -ikoXo ;
e _ k sin kgxg + ko cos koXo
P = o - T 2k v ko) T T 24 k2 + Hi)

log F(iky +€) = - log(21) + ikgXq - log € + O(e)
log F(-iky +€) = - log(- 2i) - ikgXy - log € + O(€)

lim [log F(ik, + €) - log F(- ik, + e)] = log (- 1) + 2ikyxq
-0

1
_ iko + € ds Te . 2
;_{E.g [ ™ ,[; 1+ (iko +€ )s log (2ikoe +¢ <)

iko+s ds Te
f1+

- 2
Tk, +€)s+log( 2ikp€+€ )]

(ko | L L ]
Tw odSTc(1+ikos+1-ikos.+1°g( 1)

Now adding the two values of log F gives

log F(ik, +€ ) + log F(ik, +€) = - 2 log (2¢) + 0(¢),

; 1
ﬁ‘ 1 » 1
2 log (2k,e) + - '[)ds T, T+ ikos ~ 1- ikgs + 2 log B + 0(€)

H

2
2kg2 s ds
- 2 log (2koe) + = f1+k022Tc+210gB+0(€)

ko? 5 ds
log B =log kg = —— - fTonZ'T

This integral may be evaluated by allowing k to approach ik, in equation 2.11:
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1
k.2 s ds 1 2ik, € c-1
-0 = - -
" £1+koﬁsf'r°‘1_*f:,[zl°g(ko§) BT e .
ik, 1 + ko2
1 2(c-1)
=-glog c
1-1+k0§
c
lg B=2 —3@c-1)

k02<1 -1 f! 2)

1
log F(k) =;15, f ds Tc - log (k2 + ko2) +-;—log e - 1)
o

1+ks

- ¢/(1 + ko2) c
F(k)_k2+k2b 2c - 1) “f°1+ks '
Hk) 53 k2 V -2<Eci+1)k 2+ks -ksinkoxo-kocoskoxo

We can evaluate H (o), the total area of h(x), and —(—) its ‘‘mean length”’,

H(o) ’
1 1-c¢/(1+k
H(°)=E; V_z(é‘__f)"o‘l'“s“oxo
“H'(0) ___1 T-/Grkd_1 g‘
Hlo) - Hlo)kgZ |5 Ko%o ko ¥ 3¢ 1) 7 Jo BTe

Making use of the formula

n(o) = lim k J‘” dxn(x) e = lim  k F(K).

| S k~=w

we get

‘ll-c/(1+k°2) ﬂr1+ks(Tc ) + log (1 + k)
n(0—11_n:m k2 + k02 2(c - 1)

1 1 ds -
- 2y 7 < (Tc -1) ~ 3
n(o0) = kq V 1 2%({ -;) ) e fo s _V/1 c/(12+ ko2)

We can derive an expression for h(x) suitable for numerical evaluation as follows:

jo + 8
h(x) = —2—1— dk e H(k), 0< 8§ <1
- jeo+8
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H(k) is not singular at t ikg. The bracketed expression vanishes, thus the contour may be deformed
to lie along the left cut. Only the integral

le ds kJJ ds 2k2 s ds
7 Jo Te 07 - ksTC 7 Jo1 k252 T

1+ ks
C 1+k
_k J log | _ko? 2k %61k !
i Tks T E\k2+k2 c¢-1
is double-valued across the cut. Thus only the first term in H(k) contributes.
k 1 ds T
1-c/(1+ko2) 7f 1-ks - € (c - 1)(k2 + kp2) 1
h(x) = fl dk e K2 + k02 2(c - 1) o ko2 c (10 '1 + k} -rri) )
2k VBT -k
_ 1
¢ 1+k .
g (tos |15 +m1) -1
1 kx+% ldi Te
c \/c -1 ( c ) “ dke TKS
2ko 1 2 1+ky2 f K K g|1+k )2 m2c2
—0 2k 1 4Kk2
Replacing k by -k gives
k J“l ds
h(x)—-L c—l(l_ c )f kdke 1+ks -kx
Tk, ¥ 2 1+ ko2 (gl K- 1 k)z+(n_c)_2"
1 {38 2

(h(x) is negative for all x).
If c < 1 the roots of the characteristic equation are * ki, where ¢ = kl/tanh‘lkl. The contours must now
be taken as shown in Figure 5.

M

+1

IRIANY

Figure 5.
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Proceeding in the same way as for ¢ > 1 we get the analogous results:

n{x) = sinh kl(x + Xq) + h(x)

1
- 1 ds 1 l-c
- f—s— (T -m) =—z-logﬁz— (2.12)
()
i 1
lﬁf sds 1, ko2 -k2, 1-c
™o 1- kZs2 Te = gl k14 1-=< 1og 1+k (2.13)
2k 1-k
. 1___0‘1___T
xo"ﬂ» J;) l_klzsz C
ctap-l— /2 [ 1 ]
Tc tan tanh-l 5 - 1/CS s tan 0

kol _ds
k2 - k12 2(1 - ¢) o

1 1-k12)-1 .
H(0) = --12‘1 ‘/—C—/—Lrl_l—é)‘— - cosh kl Xg

-H'(0) 1 . i T 1
HO) - HOK® sinh ky xg - Ky %_% deTc
o
1 c
n(0) =\/‘§(——--1 i 1)
kd ds

0 T 1 e +C
o= -V 5 () [ S o e
2k1Y 2 \1-k2 (910 k+1_1)2+lc_4
1\2 %% x -1 ( 2 )
Combining;these hyperbolic results (¢ < 1) with the elliptic results (c > 1) previously obtained shows the
character of the solution and its numerically identifiable features to be continuous (as a function of c)
across the parabolic (¢ = 1) boundary case.

We now treat the two-medium case, distinguishing the two materials (e.g., active material and
tamper) only by their difrerent values of c. Here four cases arise as the two ¢ values are less than or
greater than 1. We treat explicitly only the case: ¢ > 1, ¢’ < 1. The extension to other cases will then
be obvious. Because of the applicability of the solution to the simple tamped sphere we refer to the
one region, ¢ >1, x >0, as “‘the core’’, and to the other, ¢ <1, x< 0, as ‘“‘the tamper’’. We find two
pertinent solutions, one belonging to a growing and the other to a decaying exponential asymptotic so-
lution in the tamper. For the problem of the infinitely tamped sphere only the decaying solution will
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figure (decaying as one moves away from the interface into the tamper). However, the ‘‘asymptotic
solution’’ for a finite tamper will be a linear combination of the two solutions. The integral equation is:

n(x) = ¢’ fo dx’ n(x')—;-E(lx -x1)+c f”dx’ n(x’) %E(Ix -x)
. 0

We use the same notation as before:

n(x) = £(x) + g(x)
f(x)=0,x<0
g(x)=0,x20

F(k) = f " dx fie X

G(k)= Jm dx g(x)e B

[}
1 L g ol L g LK
K (k) = [wdsz(Jxl)e = 5 log T

F(k) + G(K) = f " dx n(x)e-kx
= j:w dx e~kx f_w dx'-?:E (Ix - x1) [c' g(x')+cf(x’)]
- rdy-e'kY%E(lyl) .[wdx"e—kx’ [c'g(x’)+cf(x‘)]
= o tog 755 [ 6 + ¢ F)]
e
G(k) = F(k) 2k "1-k = F(k) P(k)
1 E—log1+k
2k °1-k

The singularities of log P(k) now lie at:

* 1 (branch points)

1 ik, | roots of P(k), -ta%fk—o:c]
* kg [poles of P(k) m = c]
F(k)[and we assume also log F(k)] must be analytic for R(k) >0
G(k)[and we assume also log G(k)] must be analytic for
R(K) < + kq for ‘‘decaying solution’’, i.e., g(x) = 0(ek1x)
or R(k) < - k; for ‘‘growing solution”, i.e., g(x) = O(e'klx)

log P(k) is analytic for - 1< R(k) <+ 1, except at * iky, kq

(2.14)
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For the two cases we choose contours as follows:

K,  +1 TNy

-1 1
-1k, 1 -k,
L
VL
Figure 6, Figure 17,
¢‘Growing Solution’’

‘‘Decaying Solution’’

We treat first the decaying solution. As before we identify log F(k) and log G(k) with the left and right

integrals (again excepting a constant).
log P(k’) = log G(k) + const,

4

1
log PRUI =507 ) & -k
R

1 dk
log Py (k) = - prey J; K -k log P(k’) = log F(k) + const.

We deform the contours as follows:

iy € k

L ) R
———>

< — )
-1 -k +hy 41
—ikg \J
Figure 8.
J [ _dk’ c o l+k N LA £33
log PRk) = 5= R K K [l°g(2k' log 1 ) log (1 2k 198 1 k)]

(2.15)

IS S S N S (1 -2 tog 1K)
'srfosu-ks) ¢ om Lk -k BV T BTk

making use of the previous evaluation of the first term.
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1
_1 F_ds dk’ ' 1+k’
log PR(k)‘nf S -ks) T f ook 2 - 21r1 f K -k o8 (2k’1°g1 K’ '1)
‘ P S——
Figure 9.

The last integral is now equivalent to that evaluated in equation 2.15 (and is identical with the right-
contour integral occurring in the one- -medium problem for ¢ <1),

1 ds
log PR(k) =z Jim Te + Ter

fl/ ki s 1 J‘l ds

o s(l-ks)-; o S(1 - ks)

1 1/k

1 ds 1. 71 k

__J' 1 (Tc Tc:)+;\_ J' " (Te = T¢') + fo ds(—s_+1-ks)
(o]

We choose the constant to make

1 1ds l/klds
log G(k) = log PRr(k) + log B - — f — (Te - Te') - f =
oS o S
} 1 (2.16)
k d Bk
== -T..) + log =1
™), 1- Ter) + logs — %

Evaluating the left-contour integral gives

“dk’ c 1+k’ c’ 1+k’
- log Py (k) = 21!1 ka' -k [mg(z_k"l"g'l-k' '1) - log (1'51?1°g1fk')]

14ds 1 A ds
= - = 2 2) 4 = %
l ZJ'OS + log (k +k°)+ﬂ'fs(1+ks) Te
)

U R S (1- 2 10gttE)
2ml ;s k' -k °F %k B1-k




LI
p——
P —
-1 -k, ' k, 1
Figure 11.
1 dk c’ 1+k' o1 dk ” c 1+k”
2t '[. g 1og (g et - 1) =3 [ rn (@ et - 1)
1 f s
="_'f s(1 + ks) Ter
(o]
1 1 1/kg 1
- ds 2,k.2) 41 ds (1_ k )_1 ds
- log Py (k) = - 2 f = +log (2 + ko?) + 3 fs(“ks)Tch J‘ (- T “fs(“ks)
o [0} [0} [o]
K [ d ky (k2 + ko2 1 ! s 'a 1/klds
S + S
-5 [T e - T vrog S g [ D@eTen -2 [T [ D
(o] o [¢] o
1 1/kq
log F(k) = log PL(k)+logB-,lr f%i(Tc’Tc) - %s_
(o} Q
1 1 1
k [ _ds (k1+K)B 2 [ ds ds
=;r.[1+ks(T°-Tc')+10gk1(k2+kog)-;ff?(Tc-Tc')+2f s
° 0 1/k
: 2
2 |ds = T = - log BLE— kg2
_”J;S [(1\' Te') - (= Tc)]— logl_c, +l°gc-1
1
_k ds (k3 + K)B 1-c¢' ko? 2
log F(k)-1,r J;1+ks (Tc-Tc,)+10gk1(k2_H{()z)+log(k12 ool + log ky
k : ds Bko? (k1 + k)(1 - ¢’)
== _m, o” (k] + -c’),
o fo“ks (Te = Te') + 198 41 (2 + Ko)(e - )

AECD - 2056
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We again determine xo and the value of B required to make the asymptotic sine solution of unit ampli-

tude.
(x) = sin ko(x + x4) + h(x), x>0, h(x)-=0 as x-=+wo (2.17)

F(k) = %0 -t oo
2i \k-ik, k+iko

+ H(k)

lim [log F(iky + €) - log F~ik, +€)] = log (-1) + 2ikgx,
&~=0

21k0 J' (-2ikne) ki + iko
1+k 252 (Te -~ Te') + log +2ikoe 1ngl-iko

=1 -1ko _ 1 . 1k
X0 = ¢ J———st (T - Tc)+ an E;—xl+kotan1-i‘; (2.18)
lim [log F(iky +€) + log F(-iky + €) - 2loge] = -2log2
€—0

1
2
=2k°J. s ds -Tc)+210g—l—{9———(1_c) g—l—-——lgl-z+ 2

s 1 + ko2s2 (Te 4kq2

The first term may be evaluated by the use of equation 2.11 and equation 2.13.

(k12 +ko2)(1 -c¥)

2’1:02.[ _ f:;sz (Te - Ty0) =61_i‘:‘° log 2 i,ZikOE(c - lc) - log =
ko I{; (1 - m;z—)e klz(l-g tan-1 ko)
(2.19)
- log 2(c - )k12(1 - ¢ /)
O

2(c - 1) k12(1 - ¢’/c)

_ kj(c-2 1, ki2+ko? 1 ,
logB=logy 201 -c) 2 8 ig 2 BT o/(L +ko?)| (ky2 + K21 - o))

1 (e-[1 oo/ k)]
"2 %%k I(1-c)(1-c'/c)

1
K ds 1, ko2(1 - ¢)[1 - /(1 + ko) K+ ky
log F(h) = i f—-———l g (Tc - Ter) + 2 log 2k12(c "1 - ¢ /o) + log 12+ k2
(¢]
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k1 ds
F(k) = X0 _k+k /(- el - /(1 + k2] e1—r f T+ ks (Tc - Te’)
Tk KZ+koZ Y 2(c- (1 -cr/c) A

k sin k k k
H(k)= F(k) - ey e

[ ] 7 [ To T T
_ 1 | ko ; \/(l-c’)l—c/(1+k02) T) 1+ks ‘€7 7C .
k2 4+ k02 kq (k + k) 2(c - 1)(1 - ¢’Jc) € ‘o ksmkoxo-kocoskoxo

1 ja-e)l1-e/(1 + k2]
H(O)-—ko ,: TCRRNG _c,/:) - ¢os ko X |

1
v tmenli-e/eer?] (1 1 1
B0 = e -D-c/o) kokl’“konfds(TC‘TC') " gz 510 KoXo

o]

O 1 | fa-ey[i-e/uxd] (1,1 ,
"~ H(0) H(O) kg 2(c - 1}(1 - c’/c) <k w fds (T - T, )) -k—; sin k,x

1

] 5l

n(0) = lim kF(k) = lim (k+ K )‘/(1 c)[1-e/(1+ k2] e 01+1<s(Tc
k—o ko k2 + kg 1 2(c - 1)(1 - ¢'/c)

1
k ds

1
k| _ds .l_fd_ 1¢ds
" 01+ks(Tc_”+"'T°') T s Te -m) - J} (Ter -)

. s - c-1) kg2
- ° ko2(1-c)

a/1-c/(1+ 2)
n(0) —V ‘z(l—cT:?‘ (2.20)

h(x) = — }“ dk H(k) e

(using (2.10) and (2.12)).

~ie
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Figure 12.

[1-c/1+kA)(-c)
“’herec‘kl ‘\fz(c—l)u-c/c)
c’ 1+k
&2 + ked)c - 1) ,klz(l’ﬁlogl-k)

kf ds k ds

S (T - T¢") —Jl (T, - To)

M) 1+k c s - c c 2 - k21 -¢’
o 1+ks se o1 ks koz(;klog1+k-1) (kl k2)(1 - ¢)

1-k
k1 ds 1+k
I . K 2(c - 1) %fl-ks(T - Ter) | 1- 5 flog |1 k""i)
k(x) = — dk ™ C 3 0
2mi | ko2(ky - K(1-c) € _9_(10 _\ ) 1
kVET k|
c’ 1+k )
_1-2k log‘l_k+m

3(1 ‘1+k‘+ ) )
ok VOB T k|T™

Replacing k by -k gives

k ds
60 = 2o fl a7 B k)V/[l SR f Tors (Te ™ Te) B
where
[...]=_22.’£_°(1 EEIOE 1% gi cT 1)='“_1§ k 10-0’2 2
(Zkl k-1 1) (ﬁ) (2k l°gk+ 1) (%)

_ _kﬁ‘/ 1 - c/(1+ ko?)] (c - 1)1 - ¢/c)
h(x) = - 33 2 - ) fk+ k1

Now returning to G(k)
log G(k) =

Bk
(T -Te’) + 1o —L

) k] 1. (c-1) |:1 c/(l+k 2)]
(Tc Te: )+10gk1 k+21 2ko2(1 - c’)(1- 070)

:\IW i

L%
S
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A check of this expression is afforded by evaluating

- 2
g(- ¢) = lim -k G(k) = %/él—;c)lgﬂ—) = n(0), (ef. equation 2.20).
Ko ~c0
)
G(k) =f dxe g(x =f) _b( [Ae k1x + j(x)] y

where j(x) = O(e klx) as X-=-o

G(K) = = +J(k), T(ky) is finite.

log G(ky + €) = log (_%) + 0(e)

(k1) ki }_ds (c-[1-c/(1+k2)]
- 10g< s )+_1F f 1-Kqs (Te - Te )+—10g 2k 4(1-c’)(1- cn/c)
0

k
A= kl\/?C-l)[l-C/(1+k02)] 7} f 1- ks (Te - Te-) .
ko 2(1-c¢’)1-c/c)

1 1
2
Elf ds . ,=-151f ds _ ) k14 s ds
™ 01—k1s(Tc Te) =7 o 1 - k1252 (Te - Te’) +— 1- k12s_2(T° Tc).

The first term will be called kyx9 by analogy with the xj introduced in equation 2.18, the second can
be evaluated by the use of equation 2.11 and 2,13,

5

1 gs
——— (T¢ - T¢')
1
e O1 kls :eklxz‘/

2ko2(c/c’ - 1)1 - ¢-)
(k12 + kzz)(c - e/ -X%?) -1] (2.21)

so that
A= ky clt -c/(1+ koZ)] eklx.z
Vki%+ k@ c'[c /(1-k2) -1]
kl‘/c[l-C/(1+k 2)] k(x+x1) .
g(x) = Vk 2 4 koa Vc:[c,/(ci - k2) - 1] +j(x) (2.22)
T) = G() - A .

k1 ds ky A ds l
K (e - )[1 - e/t + k2] e"f:,1 ks(Tc_Tc')_e?j;l-kls(Tc_Tc')
Tkolky -K)Y 2(1-c')1-c'/c)
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leo
=gy [ @™ a0, ,
e
1
jo  kx kd_ds (Te-Ter) Elf——‘ils——('r-'r)
I S ‘/(;-I)EI—C/(I-kaZ):l eﬂfo1—ks cTie W l-ks'© c’ ;
- Zm_[ ko(ky - k) 2(1 - e’ )1 -c'/c)

i

l_{f_ds_(rr -T)
_1_k1\ﬁ—1)|:1-c/(1+k02)__l f dk Jx 7Jo1+ks € c’
R

2mi ko 2(1 - ¢’)1 - c/c) k1 -k

i

21,2 _ 12 _'(i 1_1_15_)
ko2(ky2 - KE)(1 - ¢) {5 log T

24k 2)(c - 2( e 1+k)
(k% + k%) (e - 1) k1% (1 21{logl e
kfl ds
0 — (TC - TC') C k+1 .
7r L llog=t2 i) -
1 &\/(1 Ce) [1- o/l ko?)] [ dnlk+ky) Felolt kS 2k (1°gk- 1””) !
T2mikiY 2(c-1)(1-c’/c) k2 + kg2 ¢ [ k+l
1 1 2k(log———k_1+1r1)

2KV %k-1
c’ k+ )
. I—Zk(logk_lﬂu
0 - Ko (1-'e’)[l—c/(1+k02)]<1-c'/c)fkdk(mkn
&) = 55 2(c - 1) k2 + k2
1
K Fod
S
7r£1+ks(T°'T°')
e kx
) k+ 172 jem2 © (2.23)
(k' 2 ng—l) *(T)

The second solution differs in having as an asymptotic solution in the tamper a growing exponen- s
tial (growing for increasing negative x), e-k1X, The core solution is again sinusoidal, differing only in
phase from the first solution. Thus, the left contour must still lie to the right of the roots of P(k) at *
ik,. The tamper solution, g(x), is to grow as e-K1X, Thus G(k) must have a pole at -k;. (It may also
have a pole at +k;, the corresponding asymptotic g(x), eK1X, will be dominated by the growing expo-
nential,) To give G(k) a pole at -ky the right contour must pass to the left of the pole of P(k) at -kj.
Since the left-contour must always be to the left of the right contour, the two contours must be taken
as in Figure 7, (Other contour arrangements are possible, e.g., but the solutions so obtained may be
represented as linear combinations of the two solutions obtained from the contours of Figure 6 and 7,
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(eIN

KL
\
—ik°-1

Figure 13.

Deforming the contours of Figure 7 so as to permit simplification of the integrals gives
this form:

|

-1

Figure 14.

Taking as before:
log Py (k) = - 5;—1 f k/dl_{ T log P(k’) = log F(k) + constant
L

’

1 ~ o
log PR(k) = o JI; -k log P(k’) = log G(k) + constant

The integral, log Pgr(k), may be broken up into pieces which have been evaluated previously.

’

L g ltkl g) L [ _a¢ ( I3 1+k')
log PRK) = 5.5 Rk'—klog(Zk’logl-k' 1) 2mi Rk'-klog o 81w

L]
1 ds 1 dk’ _
_Wf)s(l-ks)TC_Zﬂi L ¥ T 2

A k' (1_0’ . 1+k')
2mi k -k 8 2k B1-k
R .
decaying
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The last term has been evaluated in getting log Pr(k) for the decaying solution.

1 1 gs -1/k) gs 1k g
log Pp(k) = f s(1 - ks) Te+ f s(1-ks) " f s(1 ~ ks)
0 o]

k
log G(k) = 7 f: 1—(_isk—§ (Te - Ter) - log (kl2 - k2) + log B’ (2.24)

’

__B
ky(k + ky)B
ously obtained. Since the ratio of F(k) to G(k) is the same, the two F(k)’s must differ by the same
factor. We may therefore write log F(k) immediately

It may be observed that the G(k) here obtained differs by a factor of from the G(k) previ-

_k ds B'ko?(1 - ¢’)
log F(k) = . f: 1 ks (Tc - Tc’) + log k12(k2 + koz)(c -1)

B’ is again to be evaluated to give the asymptotic sine solution unit amplitude.
f(x) = sin kg(x + x1) + h(x), x> 0, h(X)—+0 as X — « (2.25)

1 [el¥o*1  gmiKox1
2i\k - ik, Kk + ikg

F(k) = + H(k).

lim [log F(ik, +¢€) - log F(- ik, +e)] = log (- 1) + 2ikgxy,

€0
C2ike (1 ds
T fo 1+ ky2s2 (T¢ - Ter) + log (- 1)
1 ds .
X1=5 J:l)‘l—:T{;)—z—S—é‘ (T - Te) (x1< 0 since Tc< T,- for 0¢s< 1) (2.26)

lim [log F (ik, +€) + log F(- iko+e)+210gc] =-2log 2
€~0

1
_ 2ky2 s ds B'ky2(1 - ¢*)
=7 01+1<0252(T°'TC‘)"‘“"g k,2(c - 1)

- 2 log (2k,)

20 - 2
log B’ = log ke - 1) Eg— JJ sds
o

Ko(l - o) T+ kg2sZ (Te - Te’)

. K2c-1) 1. 2(c-1kj2(1 - c’/c) (cf. 2.19)
108 3ot —e) " 218 1 - c/(1 + koDl (k12 + KD (L - ©)
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k12(c - 1) [1 - /(1 + k2] (k12 + kg2?)
2ky2(1 - ¢’) (1 - ¢’ /c)

=-;—log

k _ds : ko?(1 - ¢')
== Te - Ter) +1log B” +1
log F(k) = J-: T+ 55 (Te - Ter) + log BY + log K202 + k2 (e - 1)

k A ko2(1 - ¢7) [1 - ¢/(1 + ko?)] (kq2 + ko?)
T 1 + ks (T¢ - Te*) +—10g 2ki2(c - 1)(k2 + k02)2(1(1 c’/c) e

k ds
Ko V12 + kot /(1 - c)[1 -c/(1+k02)] ol+ks (T¢ - Ter)
ky (k2 + ko2) 2(c - 1)(1 - ¢’ /c)

F(k) =

H(k) =

k ds
ko Vie? + ko? ‘/(1 ~en1-c/k?)] W Jl T+ ks (e = Ter)

kg (k2 + k2) 2(c - 1)(1-c’/c)

_k sin koxq + ko cos kg x1

k& + ko2
i+
1 kx 1
h(x) = '5'1?'1 f dk H(k) e = yd_ f dk F(k) ekx; (Cf' Flg 12):
~iw+§ -L"

since H(k) is regular at * ik, and F(k) - F(k) - H(k) is single-valued across the - —- 1 cut,

k»’l
; - (T¢ - Te) _c;( ul)
hx) = 2L Dlc - Dig2 e 1-ks L-oe\ogli ok~ ™
T om ko2(ky2 -k2) (1 - c') c 1+k
0°\R1 — [log -mi)-1
- 2k 1-k
c’ 1 .
! 2k<1 ‘1 k ”")

c 1+k .
2k (mg’l-k ‘ ””)'1

where D= koY klz + l{12 ‘/(1 e 1 -/ koz):l

2(c-1) (1 -c¢'/c)

kel ds (Te ~To)
\ ~ T c -Te’
h(x) = kpeVig? + ko2 [ -c/(1+k02)](c_ 1) (1 -c¢'/c) f kdk e ol+ks hx
X 2kq 2(1 -c¢’) k2-k12 < k+1_k2+715 3
1 2 %k-1 )

1

k d ,

1ogG(k)=,—,J‘ T (Te - Ter) - log (ky? - k2) + log B'.
(o]
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l—{f‘-—ds T, - Ty )
Gk)_kl\[k12+k02 (c—l)[l—c/(1+ko‘2):' e ol-ks( c” e’
W=z -k 21-c)(L-c/0)

k ds
ﬂf:, 1- ks (Te - Ter)

- - C _
=, say, ) e

G(k) has simple poles at * k1 and a branch point at -1. We will therefore be able to write g(x) as

g(x) = Ae-klx + Beklx + j(x), j(x) = 0(eX) as x—+-o
A B
G(k) = “k-k; + —k+k1 + J(k),
k1 ds
C 1rol+k1s(Tc-Tc)
A=--—¢e
2ky
El l_d_S__(T -7 ,)
C ” fo 1-ks*°€C ¢
B=+_— e
2k

1 gs k2 s ds ko ds
+51 - £14 - , +._.1 - ,
. 7], 17 1gs Te TC’)=e = Ji1 Tky2s? (Te~Te)2 7 | T kgzs? Te - Te!)
kel _ds 0 py
" _\/c[1-c/(z+k02)1 k1‘vlk12+k02 c-1 e"fol—ks c” e
I(k) = ky2 - k2 ko 2(1-¢)(c-c)
_ k sinh k1x2 + ki cosh kll
\/c'[c’/(l—kIZ)-2] i
K2 (1 _sds . ,
c n ——l-klzsz (T - Ter) sinh ky(x + xg) + j(x),
== 0
g(x) i ©
1 1 ds
where x2=;rJ T k252 (Te - T¢ /), (1< x2<0)
o
2 ds 1, G2+ ke - )e /@ - kg2) - 1]
ME (S (T -Te) = - 1-* %0 ‘ cf. 2.21
T fl-kls (Te - Te) 2log koz(c/c'—l)z(l—c') ( )
_Jeli-c/aexod)] . 2.7
g(x) —‘/C' [C'/(l - k12) _1] élnh kl(x+x2) +](X) ( . )
jeo kp__ds T
. C | Tors(Te=Te) 4 B

cy 1 kx| € i _
’(x)'sz" dke 1iZ-m O KKy -K+kg
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ks o )koz(klz Sk2)(1-c) K11k
c - !
C f dke eﬂ' 02+ks c (k2 + kOZ)(c - 1)k12 1- c’ log 1+k

1
ds
- f————('rc-'rcv)
- CkR-c) [ kakeTe oK

ix) = :
2k2(c - 1) c’ k+1\2 prc’\2
1 1 (k2+k02)[(k‘_2—1°gk_1) +(12—)J

i(x) = koc\/;qz + ko2 (1-¢)(1-c'/c) [1 -c/(1+ knz)l
=70k 2 - 1)

We now have two solutions whose asymptotic forms are:

. 2
sin ko(x + Xy + 1 tan-1 L ki c[l c/(1 + kg )] ekl(x + x2)
ko k1 g2+ ko2 Ve [e /(1 - kp?) - 1]

(cf. equations 2.17, 2.18, 2.22)

sin kq(x + xl)ﬂv‘/z—%&{;kfﬁ)_—]{] sinh ky(x + X9)

(cf. equations 2.25, 2.26, 2.27)

We introduce the notation,

B =Vc[1-c/(1+k2)]

B = ‘/tj[c'/u - k2 - 1]

Vii2 + kg2 . 1 1k
no(x)«'———lfl-;‘)— sin k0<x+x1 +k_0 tan 1;‘11

ekl(x + Xg)
%

ny (x) sin ko;x + X1) sinh kg}f +X2)

V 2 2
ny(x) is Ell-{—l—jg—kg— times the ‘‘decaying solution’’ first obtained (2.14 to 2.23). ny(x) is 1/8 times the
“growing solution’’ next obtained (2.24 to 2.27). Subtracting kyn;(x) from kqn (x) gives

na(x) = klno(x) - kng(x)




39 AECD - 2056
K12 + ka2 -« S
k1~ + Ko sin kqy(x + x1) . + cos ko(x + x1) = )
k2 + ko2 Y+ koz/

‘%L’j‘

sin ko(x + x1)

cos kq(x + xl)»%]; cosh k(x + x3)

|

If we now subtract nj(x) from Ei(l—x) we get

ng(x) = n—%{%{-—) - nl(x)‘——%, [cos k(x + x9) - 1;—(1) - sin ky(x + xl)]

\J 2 2
k-t Ko in ko(x+x1 _i{L tan-1 EQ)
o

kK18 ky

.

L Tkx + xg)
We now have two simple pairs of linearly independent solutions, n(x) and ng(x); ny(x) and ng(x). For any
one of these four solutions, hence also for any other solution made from them as linear combinations,
the asymptotic solutions on the two sides and the derivatives of the asymptotic solutions have a con-
stant ratio when evaluated at x = -x1 and x = -xg for the core and tamper solutions respectively.

derivative of asymptotic
asymptotic core solution (x = -x1)  _ -k,8’ _ _ core solution (X = -X1)
asymptotic tamper solution (x = -x32) h k8 "~ derivative of asymptotic
tamper solution (x = -x2)

the points, -xj and -xg, are both on the core side of the interface, -xg being the farther from the inter-
face. This property leads to the following recipe:
Ineach medium the asymptotic solution is one of the family of solutions of the equation: (4 + k2) n(x) =0,

= ¢ (k may be either real or imaginary). Each of the two asymptotic solutions to be joined at an

k
tan-1lk
interface is examined at its ‘‘fiducial point’’, distant 4 x from the interface on the side of greater c.

1l ds
AX=;[

o *
1 - k2s2
0

T¢ - Te-

(The Ax for each solution uses its own k which may be either real or imaginary.) The two asymptotic
solutions, each at its own fiducial point, have equal logarithmic derivatives. The magnitudes of the two
solutions, evaluated at their fiducial points, have the same ratio as their values of the quantity,

k k2 K2 .
E =\'fm =Jc [c/(l “K 2) _ 1] (for K=1k)

* See Table 3, which gives ¢ .4 X.
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This recipe paraphrases the connection-formulae given above identifying the two asymptotic so-
lutions on the two-sides of an interface. It differs from a simple diffusion theoretic boundary con-
dition connecting the asymptotic solutions only in so far as

1) A x differs from 0

differs from a constant

2)ﬂ

This recipe connects only the asymptotic solutions. Detailed features of the solutions may be

gotten from Table 1.

Symbols used in Table 1.

Te = tan'l[

In untamped solution

n/2

Ex_xh'_lsL-—Vc—s:] » Te(0) =7, To(1) = 0

1
1 ds Ko = = 2
x0‘1rj' 1+ ky2s2 Tc’tan"lko —c,ﬂ-vc[l -c/(L+kg )],c 21

1l ds ki ' 2
xo=;rs 1~ 122 Tc’tanh'lkl =c, B =Vc[c/(1 - k) - 1],c< 1.
)

In tamped (two-medium) solutions the formulae have been written for the case ¢ >1, ¢’ <1. Other cases

follow by analytic extensions.

—k .
tan-1k,

[c /(1 - kq2) - 1]
1l
xy =;j m;z;z-(Tc - Tc')
o
for (xg<x;< 0)

1
1 ds
x2 = 7_1' S _—1 ~ k1'2s"'2' (Tc - Tcl)
[o]
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Each of the four solutions is presented as an asymptotic solution in each medium (sinusoidal or hyper-
bolic) to which is added a discrepancy term (h(x) for x>0, j(x) for x<0). This discrepancy term may

be of either sign.

APPENDIX 1

ACCURACY OF TWO-BOUNDARY APPROXIMATION

To estimate the error introduced by neglecting the interaction of two boundaries we determine the
effect of this neglect in the untamped sphere problem as a first order perturbation. The fundamental

eigenvalue, c, of the equation,

n(x) = cfa dx’ n(X')—;-E(lx =% |), n(- %) = -n(x). (1)
-a

i = 2 =0 _
we write as ¢ = ¢,/(1 + €) + 0(e4), where a Kcg) xo(C0).

The integral operator
L]
[ E - ’
J: a5 (Jx-x'|)

we denote by A .
Write R = R(x) = 0 for x<-a
’ =1forx> -a
L=Lx)=0forx>a
=1forx<a

Equation (i) becomes
(1+e-ARL)n(x)=0,validfor -asx sa

n(x) = ng(x) + ny(x) i (i)
ng(x) = ng(x) + nL(x) - sin kx

where ng(x) and nj (x) are the exact one-boundary solutions satisfying
(1-ARng=(1-ALNnE=0
nR(x) =R sin kx + hR(x)

np(x) = L sin kox + hL(X)

Then
(1+€- ARL)n;=(ARL-1-¢)n,=(ARL - 1)(nR+nL-sin kox) - €n,

[AR-1-2R0-D)|ng+[AL-1- AL -R)]ny

-[A -1+ A(RL - 1)] sin kox - €ng

- A[(l - Lhng +(1 - Rng, + (RL - 1) sinkox] - €ng
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- A [(1-Lhg+(1-RbL+ (R-RL+L-RL+RL - Usin kx| - eng

- A[@- g+ Rehy, | - eng (1)

Since nj must be finite, the right side of (iii) must contain no component, n(x), satisfying (ii). Ne-
glecting terms of ordere 2 we have '

fa ax n(x){A [ - Dby + (1 - Rang ]+ € no} =0
-a

it

a 2 ©
€ L dx no2(x) = - f dx RL n(x) A [(1 - L)hg + (1 - R)hL]

. f‘” dx [(1 - L)hg + (1 - R)hL] A RL n(x)

- f ® dx [(1 - Lihg + (1 - R)hL] n(x) (iv)

o

The left term of (iv) is roughly 2a. The right term is minus twice the integral of the discrepancy
term, hp (>0) starting from a point distant 2a from its boundary, with n(x) beyond x = a. The char-
acter of n(x) in this region may be determined by taking ¢’ = 0 in the decaying two-medium solution.

Its value at the surface is
mL'S _"1 - ¢/(1 + kq2)
c-0) 2

b - z Qz P N .
The right term of (iv) will be approximately (-2) x l-c 2(1 tk )- h(2a) divided by their combined
decay-rate, about 3-4.

For a tamped sphere we proceed in a similar way:

{1+e-A[RL+(1-RL)°c—']}n(x)=o

n=ng+n)=ng+np-sinkex+n

{I-A R+(1-R) ]} ={1- [L+(1-L)£—]} =0

RL+—}n1 { RL+—— } (nR+nL-smk0x)-eno

free-afege
{afrr -] thag e ara- (% 1)ng
{ArL+<1-L> 3F }nL+ AR (L - d)ny
S R o | ST

=-A(1-L)(°

-c' .
pS )(Rsmkox+hR+gR)
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c-c¢'
c

¢c-~-c' c’ .
+{1—A(—C——)RL-;—A}smkox-eno

=(1- A)Sinkox—c;c' A{(I-L)hR+(1—R)hL}-eno

-A(I—R)( )(Lsmkox+hL+gL)

- - (1 - Ec—) A{(l - L)hy + (1 - R)hL}- eng

e~-§ (1 -°c—')fdx ny(x) A{(l - L)hg + (1 - R)hL}

2 c’ ©
~-= <1 - —C_)L dx ny(x) hR(x)

Estimating this integral in the same way as before gives, for example, for ¢ = 2.0, ¢’ = 1.0,

Hence as before:

.2 :5X.Tx.003 o

72 * 2

For ¢' =1 and various values of ¢, we obtain the estimates:

c_ € % in critical radius
1.5 .0002 .09
2.0 .0015 .53
2.5 .003 1.0
3.0 .005 1.3
I .02 2.0

The chief factor making these errors small is the rapid decay of h(x). Taking the untamped-solution
values as typical (they will actually be somewhat too large) it would appear that € will exceed .01 only
for core diameters or tamper thicknesses considerably less than one mean free path.

Comparison with variation theory results gives about 0.3 as the limiting thickness for 1 per cent
accuracy. (cf. Comparison of variation theory and end point results for tamped spheres, LADC - 7)

APPENDIX II

SOLUTION OF THE INHOMOGENEOUS WIENER-HOPF EQUATION

The Wiener-Hopf technique was shown by E. Reissner (Journal of Mathematics and Physics, Vol. XX
(1941), pp 219-223) to permit extension to the inhomogeneous problem. We here treat only the one me-
dium problem with the inhomogeneous term confined to x = 0. The extension to the two-medium prob-
lem with an unrestricted inhomogeneous term is immediately obvious. The equation we wish to solve is:

n{x) = f dx' n(x') K(x - x') + f;(x) (a)
s )
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where f1(x) is known and vanishes for x < 0. The Laplace transform of (a), with the notation used

previously is,

G(k) = F(k) (K(k) - 1) + Fy(k) = F(k) P(k) + Fy(k),

Fy(k) = f dx £,(x) e
o]

The solution of the corresponding homogeneous equation will be denoted by a subscript 0.

Go(K) = Fok) P(K)

P(k) = Gy(k)/Fy(k)
We define F(k) such that

F(k) = Fo(k) F()

This introduces no singularities in F(k) in the right half-plane since Fo(k) had no roots in the right

half-plane. Then (b) becomes,

F(K) P = FK) Fo(®) | ST | = 0 Gl = G - Fy(k)

Thus -Fj(k) is the right-analytic component of F(k) Go(k), which we may write as

[Ew6o] = 2 | 75 F ) 6ot

where the contour L lies to the left of k and of the singularities of G,(k) (which are entirely in the right

half-plane) and to the right of the singularities of F(k) (in the left half-plane).

[£09 6o g = - 710
1

Making use of the fact that ——— as well as G (k) is analytic in the left half-plane we can show that

Go(k)
equation c is satisfied by

Fi) = - [F1(k) G_:(T{)} R

since

[Go(k)_F.‘(k)] R =~ | Golk) [Fl‘k’ Ef(_m]
R|R

. .-l dk’ ' dk " Fi(k")
~ (2m)2 fL k- k Golk’) fL k" -k’ Gglk")

Fi(k") 1

[Go<k>2<k>]n='(—za)—zfﬂ, dk " Go(ku)fﬂ ® Golk) 5, |7

(b)

(c)

(d)
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Displacing the contour L' to the left of L” picks up a residue at k' = k” . The remaining k' integral
vanishes as it may be displaced indefinitely to the left, in which direction the integrand decays as

lk,—llz- . This leaves:
o1 / . Fik")[ 2m .
oot 2]~ e J,, o G| oo

=" [Fl(k):lR = - Fl(k)
The particular integral of equation a has therefore the Laplace transform

F() = - F(K) [%%}R

To this may be added any multiple of the homogeneous solution, Fq(k).

To extend this method of solution to the two-medium problem requires only the replacement of
equation a by the corresponding two-medium equation. This leaves the form of equation b and the rest
of the solution unchanged. To treat an inhomogeneous term existing for both x >0 and x<0 it suffices
to break up the inhomogeneous term into a right and a left side part and treat each separately as above.

A particularly simple special case of the untamped inhomogeneous equation is that of the albedo

problem —
£1(x) = e™®X a>0,

Fl(k) “k+a

i
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Then

[El_(li)] =_1f dik 1
Gol(k) R 2mi Lk' -k (k' +a)Gyk')

IS S dk’
T Go(-a)k+a) T 2m f (k' ~K)(k +a)Gy(k)
LI

In the second term the contour L may be displaced indefinitely to the left. Its integrand may be
written as
Const, +0 1
k' k' 2

Thus the k-dependent part of the integral vanishes. The constant part represents an admixture of the
homogeneous solution to Fq(k) and therefore may be disregarded. The general solution is therefore

1

Go(-a)k + &) TAl

F(k) = - F () [El(—k) +A] = - Fo®)

ol

In an albedo problem ¢ will be = 1 and A should be chosen to make n(x) finite for all x, hence F(k)
regular at k = +kj, despite the pole of Fq(k). Thus

.
A= Goa)s +a)

(k +a)(ky + a)Go(— o)

The density of emergent neutrons in the albedo problem as a function of u, the cosine of the angle of
emergence, is

N(g)=c¢ fwdx n(x)e_x/“
0

= cF

i

and is therefore given directly by the solution F(k).
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