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THE MATHEMATICAL DEVELOPMENT OF THE END-POINT METHOD 

By S. Frankel and S. Goldberg 

ABSTRACT 

The end-point method is mathematically developed and its application to the Milne kernel studied 
in detail. The general solution of the Wiener-Hopf integral equation is first obtained. The Milne 
kernel appears in applying this method to the integral equation describing the diffusion and multipli- 
cation of neutrons in multiplying and scattering media. The neutrons are treated as monochromatic, 
isotropically scattered and of the same total mean free path in all materials involved. Only problems 
with spherical symmetry are treated, these being reducible to equivalent infinite slab problems. So- 
lutions are obtained for tamped and untamped spheres; in the former case both growing and decaying 
exponential asymptotic solutions in the tamper are treated in detail. Appendix I treats the effects of 
the approximations inherent in the end-point method (cf. LADC - 79). Appendix II gives the solution 
of the inhomogeneous Wiener-Hopf equation. 

INTRODUCTION 

The general development of the end-point method and some of its applications are described in 
LADC - 79. It is the purpose of this report to supplement this general description with an explicit 
mathematical development of the end-point method and a detailed study of its application to the 
Milne kernel. This is the kernel entering in the integral equation describing the diffusion and multi- 
plication of neutrons in multiplying and scattering materials where the neutrons are treated as mono- 
chromatic, isotropically scattered, and of the same total mean free path in all materials involved. 
The end-point method of treatment of integral equations is restricted to one-dimensional cases. This 
essentially limits the method to the treatment of problems in which the materials involved and the 
neutron distribution are both spherically symmetric, these problems being reducible to equivalent 
infinite-slab problems. In LADC - 79 it was shown that the end-point results may be applied loosely 
to problems of somewhat more complicated geometry and give more or less accurate approximations 
to the truth. These applications depend primarily on loose analogies rather than mathematical argu- 
ment and will not be treated here. 

Much of this report will be, in part, repetition of material treated in LADC 79. Here the emphasis 
will be primarily on the clear mathematical development of the methods of application presented there. 

Chapter I 

THE WIENER-HOPF METHOD 

The integral equation, 
n(x) = J    dx'n(x') K(x - x') (1.0) 

0 
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is known as the equation of Wiener and Hopf. With certain reasonable restrictions on the character 
of K and n this equation can be solved exactly. Before examining the method of solving this equation 
developed by Wiener and Hopf, it is useful to examine the simpler equation, 

n(x) = / dx' n(x') K(x - x') (1.1) 

Since this equation is homogeneous, if n0(x) is a solution then an0(x) also satisfies the equation for any 
constant, a. Because of the infinite limits of integration and the "displacement" character of the 
kernel (K depends only on the difference, x - x'), n0(x - b) must also be a solution. If the solution, 
n0(x), is unique (except for a multiplicative factor) then nQ(x - b) = an0(x) for some a. Hence n0(x) = 
ekx. This suggests looking for exponential solutions of (1.1). 

n(x) = e1"^ J  dx' ekx' K(x - x') 

oo 

J dy e-ky K(y) (1.2) ekx 

oo 

dy e-y K(y) = 1 

Any solution of this "characteristic equation" gives a value of k for which e1™ satisfies equation 1.1. 
If there is more than one solution to the characteristic equation, then any linear combination of the 
exponentials determined by them will satisfy equation 1.1. 

These considerations will be relevant to the study of the equation 1.0 if K decays rapidly for 
large |y|. If this is the case, for large x, equation 1.0 approximates equation 1.1, and it may be ex- 
pected that with increasing x the solutions of equation 1.0 will approach asymptotically the exponential 
solutions of equation 1.1. If this is the case, the asymptotic exponential part of the solution of equa- 
tion 1.0 may be separated from the remainder of the solution by Laplace or Fourier transformation. 
The use of the Laplace transform is further suggested by the fact that the left hand term of equa- 
tion 1.2 is the Laplace transform of the kernel. 

Taking the Laplace transform of equation 1.1 gives: 
oo oo CO 

j dxe-kx n(x) = ]   dxe-kxj dx'n(x') K(x - x') 
-QO -OO -CO 

OO °° 

= f dx' n(x')e-kx' f dye-ty K(y) 
-•» -OO 

j dx e-kx n(x)[|dy e"ky K(y) - l] = 0 

This last equation shows that the Laplace transform of n(x) must vanish for all values of k which do 
not satisfy the characteristic equation 1.2. 

An application of the same technique to equation 1.0 does not lead immediately to a factored 
equation because of the finite lower limit. To get around this difficulty Wiener and Hopf introduced 
the following trick. 

Define n(x) ^ f(x) + g(x) 

where f(x) = 0 for x < 0 

g(x) = 0 for x ä 0 

This permits writing equation 1.0 in the form 

CO 

f(x) + g(x) = f dx' f(x')K(x-x') 
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Now, taking the Laplace transform gives 
OO OO CO OO 

J* dx f(x) e-kx + j dx g(x)e-kx = j dx e'k*   J dx' f(x') K(x - x') 
-OO —oo -oo — oo 

OO OO 

=   f dx' e-kx' f(x')   fdy e-ky K(y) 

Defining 

we have 

OO 

F(k) = j dx f(x) e_kx 

-OO 

CO 

G(K) = Jdx g(x) e-kx 
-CO 

K(k)= JdxKCxJe-kx 
-CO 

G(k) = F(k) (lC(k)- l] = F(k) P(k) (1.3) 

This equation will hold for any value of k for which all three integrals exist. We therefore impose con- 
ditions on the kernel and solution of equation 1.0, which ensure the existence of a suitable region in the 
complex plane in which all three integrals exist. We require that K(y) decay at least as rapidly as an 
exponential for large (positive or negative) y. 

K(y) =c(e-c|y|), c>0. (1.4) 

Then K(k) will exist for - c<R(k)< c. We further assume that 

f(x) = c(edx), d<c (1.5) 

The kernels of primary interest are symmetric. For these, if the "largest" value of c satisfying 
equation 1.4 is chosen, equation 1.5 is not a restrictive condition, since f(x) must approach asymptoti- 
cally an exponential, ekx, for some k satisfying K(k) = 1 and therefore within the range of convergence 
of K(k). The form of equation 1.3 clearly requires that g(x) decay (for large negative x) at least as 
fast as ecx. Thus G(k) exists for all k having R(k) < c. The three integrals will therefore all exist 
throughout a vertical strip in the complex k-plane defined by d < R(k) < c. 

Figure 1. 
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Within this "common strip" all three integrals are convergent and equation 1.3 must be satisfied. 
Outside this strip the nonconvergent integrals will be defined by analytic extension (and need not be 
analytic) in such a way that the equation is still satisfied. 

Within and to the right of the common strip, F(k) exists and is analytic, [it is clear from its 
definition that in this range any derivative of F(k) exists.] Similarly within and to the left of the strip, 
G(k) exists and is analytic. K(k), hence also P(k), exists and is analytic within the strip but may have 
singularities on either side of it. We make the further assumption that F(k) and G(k) have no roots in 
their respective regions of analyticity. (Cf. Paley and Wiener, Fourier Transforms, p. 51). We 
further require that there exist a sub-strip within the common strip within which P(k) has no roots. 
[This must be true if P(k) has only a finite number of zeros in the common strip. This will actually 
be the case, Cf. Titchmarsh, Fourier Integrals, p. 339.] 

We have now a sub-strip within which log P(k) is analytic; within which, and to the right, log F(k) 
is analytic; within which, and to the left, log G(k) is analytic, and within which the three satisfy 

log P(k) = log G(k) - log F(k) 

This equation will be satisfied throughout the plane by the analytic extensions. 
It is now easy to find functions, F and G, satisfying this equation and the analyticity conditions. 

For values of k within the sub-strip we express log P(k) by means of a Cauchy integral: 

dk' 
log P(k) = (l/2»ii) rc^rT^ loe p(k') 

(l/2wi) h dk' 
k' - k 

dk 

logP(k') 

(1/2*1) /LiTTi   logP(k') 

where the contour of integration consists of two vertical lines in the sub-strip, one running up to the 
right of k, the other down to its left. 
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We have now decomposed log P(k) into two parts, one certainly analytic within the strip and to the 
left, the other within and to the right. These may be identified with log G(k) and -log F(k), and give a 
solution to the equation 1.0. 

log F(k) = - — f   ZT—^ log P(k) + constant 

1    r        dk 
(1.6) 

log G(k) = 2^r I R k, _ k   log P(k') + constant 

This contour integral representation of log F(k) determines F(k), hence also f(x). 

f(x) = ^T  «-llekXF(k)dk ^ 
where Ö is chosen to make F(k) regular along the contour.. In particular, b may be taken in the sub- 
strip. Since F(k) is analytic to the right of the sub-strip, the contour may be translated to the right 
as far as desired. For negative values of x this may be used to show that f(x) vanishes. 

If f(x) contains a term Aekox (e.g., as its asymptotic solution), then its Laplace transform, F(k) 
will contain a corresponding term. 

DO 

J dx e_kx Aekox = A/(k _ ^ 

Thus a pure exponential term in f(x) manifests itself in F(k) as a simple pole, and the coefficients of 
the two may be identified. The coefficient of the singularity is most easily determined by expanding 
log F(k) about the singularity. 

log F(k) = - log(k - k0) + log A + 0(k - k0) 

The asymptotic solution will be determined by all of the singularities of F(k) on the imaginary axis 
and in the right half-plane. If there are no singularities on or to the right of the imaginary axis the 
solution, f(x), will approach zero asymptotically. A more useful asymptotic solution however, will 
be that determined by the first singularities to the left of the imaginary axis: 

An important special case of this general treatment is that for which the kernel, K(y), is sym- 
metric and for which the characteristic equation has only a single pair of conjugate roots on the 
imaginary axis. If these two roots are at ± ikQ, then the solution will be of the form 

F(k) = ß[sin k0 (x + xQ) + h(x)], h(x)—0 as x—+ » (1.8) 

Since the equation is homogeneous, B is undetermined; x0, however, can be evaluated. 
CO 

F(k) =   J dx e"1« B [sin kQ(x + x0) + h(x)l 
o 

fj       -kx  B    T  ikn(x + xr.)       "Ik«!* + Xr>)      „.,  ,   \1 =     dx e **■ —  |_e   °v        o' _e     °v        °' + 2ih (x)J 
o 

= ^ h T"  " 7—M  + 2iH(k) 2i \k - ik0     k + lk v ' 

In the neighborhood of ± ikQ, H(k) is finite. We expand log F(k) near these two poles, 

2i 
log F(ikQ + e) = log —- + i k0x0 - log e + 0(e) 

-B 
log F(- ik0 + e) = log — - i k0x0 - log e + 0(e) 

lim [log F(ik0+€) - log F(- ikQ +«)] = log (- l) + 2i k^ 

€^0 
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log F(k) = log G(k) - log P(k) 

2wi J R : 
dk' 

log P(k') - log P(k) 

im [log P(ik0 +e) - log P (- ik0 + e)] = log lim 

e —0 

P'(ikn 
P'(-ik0) 

= log (-1) 

since K(y) is even, K(k) and P(k) are even; P'(k) is odd. 

2ik0x0 = ^/Rdk'logP(k') 
k' - ik      k' + ik0 

(1.9) 

The two terms, log (- 1), have been neglected since the form of the solution 1.8 is unchanged by the 
addition of a multiple of rrto koX0. The evaluation of x0 completes the determination of the asymp- 
totic form of the solution equation 1.8. x0 is expressed in equation 1.9 as a single integral, which in 
many cases must be evaluated numerically. To get the complete solution requires two integrations, 
one to evaluate log F(k) by equation 1.6, another to get f(x) by (1.7). 

Two-Medium Problems 

A more general problem that can be treated by the Wiener-Hopf technique is 
0 oo 

n(x) = J    dx' K'(x - x') n(x') + J    dx' K (x - x') n(x'). 
-& 0 

Breaking up n(x) as before and taking the Laplace transform of the resulting equation gives 

F(k) + G(k) = K(k) F(k) + K'(k) G(k) 

where the notation is the same as before. This may be written as 

' 1 - K(k) \ = F(k) P(k) 
G(k) = F(k) K'(k) 

This is now of the same form as equation 1.3. The rest of the treatment proceeds in the same way. 
With this more complicated form for P(k) there may be a greater number of singularities of log P(k), 
leading to a larger number of independent solutions. In particular it is no longer necessary to re- 
quire that g(x) decay exponentially away from the boundary. 

An important special case of this two-medium problem is that for which K(y) and K'(y) differ only 
by a multiplicative factor. This case will be treated extensively in the second chapter. 

The Wiener-Hopf technique may be further extended to permit the solution of inhomogeneous 
displacement integral equations. This method is outlined in Appendix H. 

Chapter H 

APPLICATION TO NEUTRON PROBLEMS 

In this chapter we treat the applications of the Wiener-Hopf method (combined with some approxi- 
mations) to problems concerning the spatial distribution and time dependence of neutrons in spheres 
of multiplying and scattering materials. It will be shown that such problems, with suitable physical 
approximations, can be represented by integral equations closely analogous to the Wiener-Hopf equa- 
tion. By making suitable mathematical approximations (the "end-point method") fairly accurate 
solutions to these equations can be gotten from the corresponding Wiener-Hopf solutions. 
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We make the following physical approximations: 
A) We consider only one neutron velocity; hence for each material only one value for each cross 

section. 
B) We treat all collision processes as isotropic. (Anisotropy of elastic scattering can be treated 

to a limited extent. It can be shown that if this anisotropy is neglected and the transport average used 
for the elastic scattering cross section quite accurate results will be obtained. Cf. LADC - 79 and 
MT - 26.) 

C) The total mean free path will be taken to be the same for all materials involved. 
D) The neutron distribution will be treated as a continuum. It will be taken to be spherically 

symmetric and of stable spatial distribution. These three conditions will certainly be good approxi- 
mations if the neutron distribution has lived through many generations and consists of a sufficient 
number of neutrons to make statistical fluctuation negligible. 

We adopt the following notation: 
Of is the fission probability per unit path length. (It is therefore the product of the fission cross 

section and the number of nuclei per unit volume.) Similarly, 
as is the scattering probability per unit path length. 
0a is the absorption probability per unit path length. 
a = Cf + as + <ra 

v is the mean number of neutrons emerging from a fission process. 

Vat + cs 
F = 1 + f = is therefore the mean number ui neutrons emerging from a collision. 

v is the neutron velocity. 
n(r, t) is the neutron density at point r at time t. 

We express the neutron density at (r, t) as an integral over all points at which these neutrons may 
have suffered their last collisions. 

vn(r,t)=JV   <rvF(r<)n(r<,t- ^ ) ^ f, )2 e ~° lr ' r'' (2.1) 

We look for solutions of the form 

n(r,t) = n(r)eVot 

The integral equation 2.1, then takes the form: 

n(r) = fdr*  F(r') n(rO     ,     *    >, e _ {° + Vv) 'r " r'l 
—     J   — —       —    4w(r - i" )* 

We now rescale r, taking as the unit of length the mean attenuation distance, l/(a +y Q/V). 

x = r (<7 + y0/v) 

n« = T^5;-/^'F(s')nfe')- 
- X - X 

e ' 
-      1 +Y0/ov   J   -       -       -    47r(x - x )2 

Defining 1 ="f 0/<r\ gives the three-dimensional integral equation 

n(x) = ^Jdx'F(x-)n(x0 4^r^ (2.2) 

" If we now introduce polar coordinates, x' = (r',</>', $'), 

taking the point x on the polar axis we may make use of the assumed spherical symmetry of n(x') to 
reduce equation 2.2 to an equation in one dimension. 

- - (r2 + r'2 - 2rr' cosö)1/2 

n(r)=!-^7    r'2 dr' F(r') n(r') d^sin 0 d0 7—? 75—-—; „ . 1 +f ■ JJ      v \TX{\~
1
 + r'2 - 2rr    cos 6 ) 
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Taking (i = cos 0, l2 = r2 + r' 2 - 2rr' cos 0 

2»r Tt -(r2 + r'2 - 2rr' cosö)5 .1 -1 
J d*  /sin0dfl^r2 + r.2_2rr,cos.fl)       =T   J^d/i-6 

i 

o 

T + T'       ,    ,,        -1 

4,t(r2 + r' 2 - 2rr' cos 6») 2    J-l    M l2 

2   I rr'    12     V rr- / J|r-r'| 

= 2^7[E(|r-r'|)-E(r + r')] 

i 

where E(s) 
Je"ldt 

m(r) = 7^ ;    f dr' F(r')r' n(r')   [~E(|r - r'l) - E(r + r')] (2.3) 
2(1 +y) J L -1 

o 
If we now define u(r) = r n(r) and treat u(r) as an odd function, and F(r) as an even function of r [no 
meaning has previously been assigned to negative values of r or to the corresponding n(r) and F(r)] , 
we may write equation 2.3 in the form: 

00 

u(r)=    ,/     -   fdr' F(r') u(r') E(|r - r'l) (2.4) 

If instead of assuming the material and neutron distribution spherically symmetric, we take both as 
functions of only one Cartesian coordinate, z, equation 2.2 may be reduced to an equation in one 
dimension as follows: 

e-[(z-z')2 + (y-r)2 + (x-x')2]i 

n(z) = ^ Jdz' F(z') n(z') J J  dx' dy' 4^ [(z . z>)2 + (y - r )2 + (x - x-)^ j 

= iTv fc' F(z')n(z,)  / A(j> / pdp4^i2 
0 0 

where I2 = (z - z')2 +p2, 1 dl = p&p 

n(z) = 2(iT7) \^' F(z')n(z')E(lz-z'D (2-5) 

A comparison of equations 2.4 and 2.5 shows that the sphere problem 2.4 may be identified with a slab 
problem 2.5 in which the distribution of materials F(z) across the slab is the same as that along a 
diameter of the sphere. Any odd solution of the slab problem, n(z), may be identified with the quantity 
u(r) in the sphere problem and conversely. The "fundamental mode" of the sphere for which n(r) is 
everywhere positive corresponds to the "first harmonic" of the slab in which the neutron density takes 
on apparently meaningless negative values. For this reason, and because higher modes may be super- 
imposed on the fundamental, we will treat the neutron density, n(z), as a real quantity which may have 
either sign. 

For a tamped sphere of core radius a, outer tamper radius b, and mean attenuation distances, the 
integral equation 2.4 takes the form 

-a 
u(r) = lTr    / dl" u(r')|E(lr-r'D 
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1     f        a 

+ f-^     f   dr' u(r')4-E (|r - r'|) 
1 +y      J 2 -a 

+ YT7   Jdr' »(i")-jE(|r-r<|) 
a 

where fc and fy are the values of f in core and tamper respectively. This equation differs from the 
Wiener-Hopf equation in having four boundaries instead of one (or two for an untamped sphere). With 
more than one boundary no exact solution is known. We therefore resort to an approximation, namely 
to treat the behaviour of the solution near each boundary as if no other boundaries existed. It was 
shown in the first chapter that the solution of the one-boundary problem approaches, at large distances 
from the boundary, a solution of the problem with infinite limits. It is reasonable to expect that the 
solution of a two-boundary problem in which the boundaries are very far apart will behave in some 
middle region as a solution of the infinite-limits equation. If this is the case, we have only to combine 
two one-boundary solutions in such a way that their asymptotic components coincide. In a many- 
boundary problem, e.g., the tamped sphere, we apply this recipe in each region. This approximation 
method, the "end-point method", would seem, from the above argument, reasonably accurate only if 
the distances between boundaries are many mean attenuation distances. It is shown in Appendix I 
that the limit of reasonable accuracy is actually a few tenths of a mean attenuation distance. There 
is therefore good reason to believe that for sizes larger than that, the end-point method is sufficiently 
accurate. 

In order to apply the end-point method we must first study the one-boundary problem with the 
"Milne kernel", 

K(y) = c|-E(|y|) 

This kernel with c = 1 occurs in "the equation of E. A. Milne" describing the flow of radiation through 
the outermost layers of a star. We will, however, refer to it as the "Milne kernel" for all positive 
values of c. The general equation we have to study is then 

n(x) = C     f   dx'n(x')-£E(|x-x'|)+ c    f dx' n(x') - E (|x - x'|) 

c = (l + f)/(l+V). 

Several cases arise. For a free surface, either the outer surface of a tamper or the surface of an un- 
tamped sphere, we take c' = 0. For an interface we take both c and c' positive. For the core material, 
c must be greater than 1 (f> V); in the tamper, c - 1 may be of either sign. 

We first treat the free-surface case. 

n(x) = c   I     dx' n(x')4E (|x -x'|) I     dx' n(x') — 

The characteristic equation is 

c   fdylEOyDe-^Mc/^    U (o"* + e*)    f*VyS 

-«= o is 

J   sls + k    s-k 

c 

' l 

f    _ds 
!   S2 -k2 



] 0 AECD - 2056 

i^H-3-i--"-1 

If c < 1 we have two real roots, + kQ such that c = k/tanh lk0. If c> 1 we have two imaginary roots, ± 
i k0, such that c = k0/tan-lk0. In either case it can be shown that the characteristic equation has only 
two roots. In the latter case the asymptotic solution is a sinusoidal function of kgX, in the former, a 
hyperbolic function. We will represent the phase of the asymptotic solution by the "extrapolated end- 
point," x0, such that the asymptotic solution is the sine or hyperbolic sine of k0(x + x0). We now 
follow through, explicitly, the method of solution outlined in Chapter 1. 

OO .. 

n(x) s f(x) + g(x) = c   J  dx'f(x')2 E (|x-x'| 

f(x) = o for x < o 

g(x) = o for x ä o 

F(k) + G(k)=   J  dxn(x)e       =   f dxe       fdx'f(x')f E(|x-x'|) 

=   J^dx'ftxOe"1™'   ^dye'^lEdyl) 

= F(k)^  log(r.T 

G(k) = F(k)|^ log (~^j - lj= F(k) P(k) 

P(k) has singularities only at ± 1. These singularities are branch points so that to make the function 
explicit we introduce cuts lying along the real axis from -"to -1 and from +1 to +». We treat first the 
case c> 1. The two roots of P(k) are then pure imaginary, ± ikQ. The singularities of log P(k) are±l 
and±ik0. We look for a log F(k), analytic to the right of the imaginary axis [corresponding to the 
sinusoidal asymptotic solution, f(x)J, and a log G(k), analytic to the left of +1 [corresponding to a g(x) 
decaying somewhat faster than e-xj, and satisfying 

log P(k) = log G(k) - log F(k) (2.6) 

The "sub-strip" in which all three of these quantities are analytic is 0<R(k) < 1. We therefore break 
up log P(k) by means of a Cauchy integral along a contour running up and down in this strip and en- 
closing k, and (except for a common constant) identify log G(k) and -log F(k) with the two parts of the 
integral. 

log PR(k) = — f    ^—-   log P(k') = log G(k) + constant, 

logPL(k) = -^-JL^ dk'   log P(k') = log F(k) + constant, 
k 

We simplify log PR,(k) by deforming the right contour to enclose the right-hand cut. 

R 
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"V 

R ii 

k 

-1 

TL 

+ 1 

Figure 3. 

^PRW^J'Ä^^SITF)-1] [I(log) ='ri-0] 

ir 
1 

dk' 
tan" ■n/2 

1 ,     k'+ 1    k' 
•2l0gkTTl-7" 

tan-1 = 0—-n 

Here the tan"* rises from 0 at k' = 1 to IT at k' = + « (as indicated by the bracketed expressions). 
Substituting k' = 1/s, 

toBPRCk)=^^rTta)TC 

where ,-1 
(; 

n/2 
c \tanh-ls - 1/cs 

Tc = »r s = 0 
= 0  s = 1 

'»^M-ij'fT^j'^T, (2.7) 

Here and throughout this treatment we encounter logarithmically infinite constants. A slight modifi- 
cation of our procedure [to make P(k) —*-l as I kl—-»J suffices to avoid this embarrassment. The 
present treatment is somewhat simpler, though formally less rigorous. 
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We simplify log PL(W by a corresponding deformation of the left contour. 

Ik. 

KS 
-ik„ 

Figure 4. 

log Pi» = ^ \   J   log [^7 (log'i^L ♦ *i) - 1 I(log) = 7rl—-2m 

P }ko r° f1 

+ (2m) +    I     (2m)+   I       (- 2»ri) +    I    (- 2m) 

-OO 

c   „      k'   - 1       ..     , dk' 
k' -k 

I(log) = - 2m —•— jri 

—    f 2m   J 
--1   dk'  ,   äF^TT^-^1)-1 

log 
2m   J_,k'-k "*_£_/1     Ikl  -1 

2k  \   B    1 - k' 
/,      Ik'l  - 1 -\    , (log-j-j^-«)-! 

log = 2TT—4TT 

k k - ik0    ,        k . 3 - log ,. ,  .,,   - log + logrTr+log    k 
1 +k 

k + ik0 k 

Letting r = -k' 

1oepLM.-iJ7fl'--17TTZ^TT 
-—log 
c2    Br-1 

tan"1 = 2n^ir 

,     k2 + k02 
+ l0g727k)2- 

Letting s = - we have 
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log PL(k) ■ - 1 J ^fe5) [2^tan-l1/cs^
2
tanh.ls] [ten-l--Tc--n->o] 

,     k2 + k02 
+ l0g7TTkJ2 

ds     1   r       ds -•/M/a^B1«-'"««1''*'^ 
O 0 

logPL(« = 2  |f  J /   f Tc-log(k2 + ko2)+|  JJ 
*o o 

Combining those two expressions, 2.7 and 2.8, with 

ks 

log P (k) = log (^ log |^|- - l)  = log PR(k) - log PL (k) 

(2.8) 

(2.6) 

gives 

M=**H-')-UT<*.-' > 
* log <k> - K?) ' *TT I rrfb T" (2-9) 

Taking the limit as k— 0 we get 

1   f ds ,m       .     1, ^/-(Tc-^^log 1,     c - 1 
ko2 

(2.10) 

and equation 2.9 becomes 

kl  f 1    sds       _ k A     ds k A    ds 
jr        l-k2s2    n       1 - ks    c " " I    1 + ks ±c 

J
0 "'O o 

1,     / k2 + ko2 \      1 , c - 1 
(2.11) 

2kl0gl-k 

Dividing by k2 and again letting k— 0, 

* . 0 
SdS Tc = " 2M + 6(c - 1) 

1 ds     1   f1 ds r 1 ds     1   r   ds 
We now subtract the (infinite) constant, 2 I    — - =       — Tc - log B, from log PR(k) and log PL(k) to 

jos      f   jQ s 

give log G(k) and log F(k). 

2 2      k    r     ds 
log F(k) = - log(k   + k0 ) + s   f T-+ -^ Tc + log B; 
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1 1 
logG(k)=f   [   f Crc-n)+l   f TTli   Tc + logB, 

k   r*    ds 

o 

k   f      ds    „      ,     B(c - 1) 

0 ü 

We now determine xo and the value of B required to give the asymptotic sine wave in f(x) unit ampli- 
tude. 

f(x) = sin k0(x + x0) + h(x) h(x)—«-0 as x—-+t 

„ikoxo 
F(k) = f; 

-ikcx0 
,.,„     ■„, -,.,„    °     + H(k) = ksi"WkoCOSkoXo   +    (k) 
2i(k - iko)    2i(k + ik0) k2 + kQ2 

log F(iko +< ) = - log(2i) + ik^o - log e + 0(c) 

log F(-ik0 + e ) = - log(- 2i) - ikoX0 - log e + 0(e) 

lim [log F(ik0 + e) - log F(- ik0 + e)] = log (- 1) + 2ikoX0 

«-0 

= lim 
e-~ 0 

ik0 + e — f ,     tTC  i    -log(2ikoe+t2) 
7T       J   1 + (iko +« )s 

ik0 +6 

0 ° 

Now adding the two values of log F gives 

1 

= ^5  J  ds Tc (,    *       + ,     \.    ) + log (- 1) 
is   Jo        c \1 + ik0s     1 - ik0sy       & 

1 
1    f      ds 

X° = *   J  1 + k 2S2   Tc 

log F(iko +e ) + log F(ik0 +«) = - 2 log (2«) + 0(e), 

2 log (2W + Ä»  / ds TC(I7^ • IT^) + 2 log B + 0«) 

= - 2 log (2k0<) + ^  J ifkT? TC + 2 log B + 0(c) 

log B = log k0 = — 
ko2   }■     s ds 

/, 
*    lol + k02s2 xc 

This integral may be evaluated by allowing k to approach ik0 in equation 2.11: 
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k 2 Sa- 
lt 0 e iko y1 rTk?j£ 

1.        2(c - 1) 
*log c 

rTk? 

l0g B " 2 2(c - 1) 

1 ^ . _e \ 

log F(k)" S I T?E Te "log (k2 + ** +Tlog      2(c-+l) 
o 

/—     k  f *     ds     _ 
FW    k2 + k02 V       2(c-l)       e" 

«/, N      1        f t, i/l-c/(i + kj) *f f 2 + ks Tc    .    .   . . . H(k) k2 + k02 IM      2(c-l)      e     ° -ksinkoxo-kocoskoxoy 

Wfc can evaluate H(o), the total area of h(x), and -jjT^Ti its "mean length", 

H(o) 
*o 

dsTc o       c 

Making use of the formula 

n(o) = lim k f dx n(x) e-kx = lim     k F(k). 
k-*~ i k—«> 

we get 

: f   dx n(: 

k A    ds 

n(0=;im k2T^V   2(c-i) '* Jo 

»to - * \^g%^> .4 £ ? (T°"") - y ■"*';**• 
We can derive an expression for h(x) suitable for numerical evaluation as follows: 

i      ieo + 6 w 
hW= 7T-     f * e     H(k),       0<  5 <1 

2 i    J   .       . 
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H(k) is not singular at + ik0. The bracketed expression vanishes, thus the contour may be deformed 
to lie along the left cut. Only the integral 

k  r    ds k  [     ds 2k2  f 
* Jo 1 + ks    c " * •'0 1 - ks    c "   ""   Jo 1 

s ds 
k2s2    xc 

*   J 1 

c 1 + k       , 

Tc     log  \ k2 + ko2 c - 1 ks 

is double-valued across the cut. Thus only the first term in H(k) contributes. 

, ,    k f1    ds 
r rik pkx        ko     i/l - c/(l + k02j   it      1 - ks    c (c - l)(k2 + kn2) 

iJ   dke     k^Tk72-V      2(c-l)        6     ° kn2 Mxj^fdke1-^- c   /,     1 + k|     A 
2k(l0gr^|-m)' 

c   /,     ll + kl      .\    . 

c 
2k( ̂ (-I^r)  / 

kx + 
dke ^Jol- 

ds 
ks 

~2      7T2C2" 

Replacing k by -k gives 

/c       ll + k      ,\ 

k   r1    ds 
ks    c 

h(x) = 

k  f _9J 

c   i/c - 1   / c     \   [     kdke      J°    + "" -kx 
2k0 V   2      I1 " l + k02   J     /c       k^~l      \2x /TTC\2" 

e 

1 (2logkTi-k)   (y) 

(h(x) is negative for all x). 

If c < 1 the roots of the characteristic equation are ± kj, where c = k^/tann'1^. The contours must now 
be taken as shown in Figure 5. 

-1      -•<. 
3—6 
k +1 

Figure 5. 
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Proceeding in the same way as for c> 1 we get the analogous results: 

n(x) = sinh k^x + x0) + h(x) 

1       ds  /m        .     1,     1 -c (2.12) 

1 

IT      J    1 
1,     kn2 - k2. 1-c k2    f     sds 

k2s2  *c ---g-s    kl 
(2.13) 

2kl0gl-k 

1   r        ds 
x° " 7T J0 l - kj2s2  Tc 

Tc = tan-1 -——i   —TTZ: c tanh *■ s - 1/cs 

F(k) 

[tan"1 =7T-*ol 

k   4    ds     , 

kl l/c/(l - kia) - 1  eF J   1 + 

:-ki2f       2(1-c) ° 
ks    c 

k2 - kx2 

H(0) = 
kl 

\/c/(l - kl2) - 1 
y        2(1 - c) 

cosh kj x0 

-H'(0) 
H(0) H(0)k^ 

sinh k-^ x- - k L\/c/(l-kt2)-T    1    f 
V        2(1 - c) »  J 

ds Tr 

■<°>=nt^H 
h« - -^V^FM^ -x) J"! dke 

k f1   ds 

»Jo 1 + ; ks Tc 

-kx 
/c .     k+ 1     A^  /»re Y 

lU^TTT-1) +(y) 
Combining;these hyperbolic results (c < 1) with the elliptic results (c > 1) previously obtained shows the 
character of the solution and its numerically identifiable features to be continuous (as a function of c) 
across the parabolic (c = 1) boundary case. 

We now treat the two-medium case, distinguishing the two materials (e.g., active material and 
tamper) only by their different values of c. Here four cases arise as the two c values are less than or 
greater than 1. We treat explicitly only the case: c > 1, C < 1. The extension to other cases will then 
be obvious. Because of the applicability of the solution to the simple tamped sphere we refer to the 
one region, c > 1, x > 0, as "the core", and to the other, c < 1, x < 0, as "the tamper". We find two 
pertinent solutions, one belonging to a growing and the other to a decaying exponential asymptotic so- 
lution in the tamper. For the problem of the infinitely tamped sphere only the decaying solution will 
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figure (decaying as one moves away from the interface into the tamper). However, the "asymptotic 
solution" for a finite tamper will be a linear combination of the two solutions. The integral equation is: 

n(x) = C      f   dx' n(x')^E(|x - x'|) + c    f dx' n(x') AE(|X - x'l) (2.14) 
J- * oJ 2 

We use the same notation as before: 

n(x) = f(x) + g(x) 

f(x) = 0, x<0 

g(x) = 0, x&O 

F(k) = J     dx f(x)e -kx 

G(k) = dx g(x)e 
•'-oo 

-kx 

-K([\ A p-kX -i], 1 + k 
■>cr  

F(k) + G(k) = dx n(x)e_kx 

•'-00 

.00 -OO 

=  J     dxe_kx J M dx'iE (|x -x'l ) [c' g(x') + c f(x')] 

=   f°° dye-ky|E(|y|)    [   dx'e_kx' [c'g(x') + c f(x')J 

= 4l0gH| tC' G(k) + C F(k)] 
2k l0g TTV ' 1 

G(k) = F(k) ZK    .   1    * E F(k) P(k) ,    c   .     1+k 

The singularities of log P(k) now lie at: 

± 1 (branch points) 

± ik0 [roots of p(k))T-^=c] 

± kl [poles of p« gJO-jj-. C-] 

F(k)[and we assume also log F(k) J must be analytic for R(k) > 0 

G(k)Tand we assume also log G(k) 1 must be analytic for 

R(K) < + kj for "decaying solution", i.e., g(x) = 0(eklx) 

or R(k) < - kj for "growing solution", i.e., g(x) = 0(e-klx) 

log P(k) is analytic for - 1< R(k) < + 1, except at ± iko, ± kj 
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For the two cases we choose contours as follows: 

ik„ 

-1    -k. 

-Ik. 

k1      +1 

?L 

Figure 6. 
"Decaying Solution" 

Figure 7. 
'Growing Solution" 

We treat first the decaying solution. As before we identify log F(k) and log G(k) with the left and right 
integrals (again excepting a constant). 

log PR(k) = — J     ^TTk l0S p(k') = lo& GM + const- 
R 

log PL(k) = - 2^r J   ^-k log P(k') = log F(k) + const. 

We deform the contours as follows: 

Ik, r\ 

-1 

-1k„ 

+k1     +1 

W 

Figure 8. 

log PfcW -sfÄ [MlF l0^ fHH " ** (* " «F log ifi'). 
ds 

w J   s(l - ks) 
If    dk'    ,     r      c' 1 + k' \ 

R 

making use of the previous evaluation of the first term. 

(2.15) 
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1     1 

Figure 9. 

The last integral is now equivalent to that evaluated in equation 2.15 (and is identical with the right- 
contour integral occurring in the one-medium problem for c < 1). 

1   i*       ds r1/kl     ds 1   f1     ds log PR(k) = s J   s(1 . ks) Tc + J s(1 . ks) " „ Jo s(1 . ks) *C 

l/A<T.-T..)*-i/*cr.-T..,*f1*^rhi) 

We choose the constant to make 
.Vki 

ds 
s log G(k) = log PR(k) + log B - I   f ^ (Tc - Tc.) - j 

•'o c 

_k   /_ds_ f) + 1      Hki_ 
" « Jo i - ks  tTc    Tc''        g kx - k 

Evaluating the left-contour integral gives 

J O O 

f      dk' L      c    .     1 + k' \ 
V F^ log I1" 2IF logrrFJ 27ri   •'L'  k' - k 

k1   1 

kl    dk' 1      r
_*l_j 

" 27ri k' 
(2»ri) 

Figure 10. 

m    Jr." 

(2.16) 

dk' 
27rt   JL"   k' 

/C   .     1 + k'      ,\ log(2Flogr^ -1) 



AECD - 2056 21 

L" 

-1     -k. k1    1 

Figure 11. 

1     r      dk /c   ,     1 + k'     A       1     f      dk"    ,     /   c    ,     1 + k"      ,\ 
IST („ FTi ** («r logrnr -*) =^ /. k^N är^rn^- *) > 

«r J    s(l + 
ds 

(1 + ks) Tc' 

log PL(k) = - 2 / f + log (k* + k02) + I  J
1 ^ TC +    fk2 d.(± - JZZ)  -1 J^V 

o o 0 o 

l lAi 
log F(k) = log PL(k) + log B - l jf(Tc-Tc)   -   j ds 

s 

k  f_*_/T      T   >    i,   (kl + k)B       2   f ds        _T,) + 2   f      ds = « J TTki (Tc ' TC> + l0g ki(k2 + k02)    * J    S(TC    Tc) + 2j        s 
o o 1/kx 

- » J 1 + ts lTc    T« '       g kl(k2 ♦ ko2)(= " 1) 
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We again determine x0 and the value of B required to make the asymptotic sine solution of unit ampli- 
tude. 

f(x) = sin k0(x + x0) + h(x), x> 0, h(x)—>0 as x— +•» 

1  I e^-Y 

(2.17) 

F(k) 
^0*0      e " ikdlio 

2i \ k-iko       k + ik0 
+ H(k) 

lim [log F(ik0 + e) - log F-ik0 + «)] = log (-1) + 2ikoXc 

2iko   f      ds „,   .    ,     /-2ik„*\    ,     ki + i 
"   *     J 171^2 (Tc - TC.) + log (T^) + log^ iko 

iko 

i. 

1     f       ds ,_        _    .      1    ,     _1 kn 1^-1 So = r   JlTk^^c-VJ^tan    ^ = «j + - tan X 
*1 

(2.18) 

lim [log F(ik0 + e) + log F(-ik0 + e) - 2 log «] = - 2 log 2 

,1 

«—o 

2ko2f       sds      ,„,      m    .     „,     Bko2(l-c')     ,     kj2 + k<j2 

The first term may be evaluated by the use of equation 2.11 and equation 2.13. 

1 
o    /        sds log 2ikot(c - 1) 

log 
2(c - l)ki2(l -c7c) 

('•I7i?)*.,^!»-'1 

log 
(ki2 + ko2)(l-c0 

(2.19) 

,     „     ,       ki (c - 2)    1   ,     kj2 + k02   i 2(c - l)ki2(i - c'/c) 

1,        (c-l)[l-c/(l + kn2)] 
" 2 10g2k02(l -c»)(l-c'/c) 

,     ^/vx    k   f    ds    ,„,      „,   .     1.     k02(l - c')[l -c/(l + kn2)] / k + ki \ 
lQg F(h) = m j ITS(Tc - Tc>+ 2log V(e - DU - c '/O       +log IkTTvJ 
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k 1    ds 
F(k) = ko      k + k^ JiLLZL) [l - c/d + kn2)]     « / 1 

W    kj    k2 + ko2y     2(c-l)(l-c'/c) e   -o 

H(k) = F(k) - k sin koxo + kp cos kpxn 
k2 + k0

2 

+ ks (Tc - Tc/) 

k2 + k02 
ko (k    1:i,J(l-c-)[l-c/(l + kn2)]    n / ! +\s  (Tc " Tc-) 
kx (k    kl)V 2(^-l)(l-cVc)       e      ° ■ k sin k0 x0 - ko cos kQ x0 

H(0)=- 
d-c-)[;i-c/(i + kn2)i _ 

2(c- 1)(1-c'/c) COSKoxo 

H'(0) 
(l-c-)[l-C/(2 + kn2)l   /  ! i_    / 

2(c- 1)(1 -c/c) (»&;♦£;/*«*•-*«•>) -6 sinkoXo 

H'(0)_ 1 
H(0)       H(0) k0 V       2(c 

) [l - c/(l + kp2)     /  1       l 
c- i)(i -c/c) 

1 + I   f 
4      * J 

1 
r-       Je   r     ds 

n(0) = lim    kF(k) = lim        k kß ,/(! - c ') [l - c/(l + 1^)1    * J-Hta (Tc " Tc") 
k—       k—tfTT? ki tk + ki)y 2(c-i)(i-c/c)     e 

k f     ds 

"   Vko^d-c-) 
(using (2.10) and (2.12)). 

*>-^^ 

h(x) = ^    f* dk H(k) e1^ 

-i» 

(2.20) 

k   ?    ds 
-L    f      dkekx(k+ki) r "■  J  1 + ks (Tc " Tc) 
2*i    J L,      k2 + k02        Ce      ° 



24 AECD - 2056 

3- 

Figure 12. 

where C 
kni/fl - c/(l + kp2)] (1 -C 
ki V       2(c - 1)(1 - c '/c) 

k }    ds 
/J0l + k (Tc - T 

ds 
(Tr - Tc< )- 

(k2 + k02)(c - 1)     , 
ks-c     -, = e,Jol.ksvc       c   ^2(^iog^_ki) (kx2 - k2)(l - C) 

1 

k(x) = ^-    f   dke^C     o  ^2{C-1}        e^l-to^6'^ kW    2*i   J    dke     Ck02(kl-k)(l-c)  e i. r1 
2fi   J 

'-= (log 
1 
1 

+ k 
- k -»ri] 

sfr* 
1 + 
1 - 

k 
k 

-Tti)- 1 

^»(^ 
1 + k 
1 - k 

+ jri) 

2k(l0gll- kl"" .)-, 

Replacing k by -k gives 

h« = 2^1  / 
1   -kx        ki        •/[l-c/(H-k02)](c-l) 
dke        k0(k1+k)V       2(l-c')U-c'/c) 

k  I»    ds 
ff J  1 + ks (Tc " TC') 

where 

A     c,     k+ 1\     , / c   ,      k+ 1      \ 
2ffic(1-2ll06k-rirc l^^kTT-1) 
2k /c   ,     k+ 1     ,\ 2     /CJT\2 

»ri 
k / c k+1     .\ 2     /C7r\"^ 

k f    ds 
~fJ0 1 + k ̂i

(Tc-Tc') 
v       kA/Ll-c/d-f^^c-Dd-cVc)    f k dk e       ° 
;-"2kJ 2(1-C) j

1
k + kl(^log^^-k)    +(y) 

h(x: 

Now returning to G(k) 

-kx 

fcBGW-^ITta^c-TO + toeif 
Bk!_ 

k (2.16) 

kl 1,     (c-l)[l-c/(l + kn2)] k  1     ds     ,„,      „,    ,     .        ki 1 ,     (c- l)[l-c/(l + kn2), 
«JlTYs  (T° - Tc-) * ** ^ ^lQg 2k02(l - c-)(l-c70 
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A check of this expression is afforded by evaluating 

g(- c) = lim      - k G(k) = Jl(l !
/

c
(1
/

+
c)

k"2) = n(0), 
k-*-oo 

(ef. equation 2.20). 

G(k)=r°    dxe"kXg(x)=r°   dx e _kx [Ae klX + j(x)] 

where j(x) = 0(e   1 )  as x-«- 

G(k) = + J(k), J(kx) is finite. 

logG(k1 + €) = log(";|)   +0(e) 

= log(da\3 r-ä5_(T -T »)+^iog(c-^-cA1+kn2>J 10g I s   /     rr J   1 - klS 
Uc     xc ' + 2 10g  2k0

SJ(l-c')(l-c'/c) 

|—     £1   f     as 
A    ki J(c - l)[l - c/(l + k02)]      «■  j   1 - kl 

k„ \      2(1 - c')(l -c/c) 

(Tc " Tc-) 

2(1 - c')(l - c/c) 

ki   r      ds . _ki f ds ki^       s ds     . . 
ff J0 1 - kis (Tc " Tc'} =^ J0 1 - kl2s2 (  C "    C/) + ~^"  1 - ki2s2 <Tc " TC>- 

The first term will be called k^x2 by analogy with the xj introduced in equation 2.18, the second can 
be evaluated by the use of equation 2.11 and 2.13. 

so that 

Ml   f     ds      (T   _T   ,) 
kl*2 2kn2(c/c - 1)(1 - c) 

(kt2 + koZ)(c - 1) [c/(1 - kj2) - 1] 
(2.21) 

a  c [I - c/(i + kn2)]     klX2 
A= Vk^ + k^     c^c/d-k^)-!] 

VcC 
gW     V^i* + k02 Vc'[c/(1 - k^) - 1] 

Xl)
+i(x) (2.22) 

J(k) = G(k) - k! - k 

ki *Uc- 1) [l - c/(l + kn2)] 
k^kj -k)V   2(l-c')(l -c/c) 

k /*     ds    ,„      m    ,       ki   ,*     ds   .„, . 
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2m J 
*"        etaki    , Ac - 1) Ll - c/(l + kn2). 

dk: 
2ml      ~'k0(ki-k)y     2(1 - c)(l - c/c) 

1   ki./(c- l)|l-c/(l + kn2) 

2»ri koV    2(1 - c')U - c/c) / 
R 

.ffJo 
ds 

1 -ksVic_xc (Tc-Tc0 

dk     kx 
e     e 

k l    ds 
* Jo 1 + 

ill f    ds 

7T J'    l-ki£ 
(Tc-TcO 

•e       o 

ks(Tc-Tc.) 

ki - k 

k^-k^l-cQ^log^-l) 

J_ ko./(l-c')[l-c/(H-ko2)]    f   dk(k + ki) e^e*1 

2ffi kiV     2(c - 1)(1 - c'/c) J k2 + k0: 

7t f0 l + ks(Tc "Tc,) c  /,     k+1      .\   , 
-(log—+^-1 

,    c'/,    k+1     . < 

ko_ , x    -o    Al -c')[l -c/(l + ko2)](l -"c'/c)   fk dk (k + ki 
J(x) = 2k7y 2(c - 1) J      k2 + k02 

^(l°g^TT-iri)-l 

'      c' /,    k+1     A 

* J   1 + ks (Tc " TC > 
kx 

(> 
~c\     k+ 1\2    /C-JT\ 

2 

2l0gk-Tl)   +(-2-) 

(2.23) 

The second solution differs in having as an asymptotic solution in the tamper a growing exponen- 
tial (growing for increasing negative x), e-kix. The core solution is again sinusoidal, differing only in 
phase from the first solution. Thus, the left contour must still lie to the right of the roots of P(k) at ± 
ik0. The tamper solution, g(x), is to grow as e"klx. Thus G(k) must have a pole at -k^ (It may also 
have a pole at +k1( the corresponding asymptotic g(x), eklx, will be dominated by the growing expo- 
nential.) To give G(k) a pole at -ki the right contour must pass to the left of the pole of P(k) at -k^. 
Since the left-contour must always be to the left of the right contour, the two contours must be taken 
as in Figure 7. (Other contour arrangements are possible, e.g., but the solutions so obtained may be 
represented as linear combinations of the two solutions obtained from the contours of Figure 6 and 7. 
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Figure 13. 

Deforming the contours of Figure 7 so as to permit simplification of the integrals gives 

this form: 

Figure 14. 

Taking as before: 

log PL(k) = -^r   j     ^    log P(k') = log F(k) + constant 
IJ 

log PR(k) = ^r j p-7^ log P(k') = log G(k) + constant 

R 

The integral, log PR(k), may be broken up into pieces which have been evaluated previously. 

R R 

1   r1       ds J_    r°     dk' 
* Jo s(l - ks) Tc " 27ri   J      k' -k1'*™' 

-A- f 
2*i   R 

dk'   ,      f,      c' 
^—j^logfl-—log 

1 + k'^ 
1 -W 

decaying 
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The last term has been evaluated in getting log Pn(k) for the decaying solution. 

iAi   ds       l
/ki   ds 

log PR(k) = - j i(rTIi-) Tc +    j      ^17*,+   | s(l - ks) 
ö o 

ds 
To J0 8(1 - ks)   XC 

-i/rrk(Tc-Tc,)+i   Jf(Tc-V) + 2/f-log(k2-kl2). 
"x> o ° 

log G(k) = J J    j-^ (Tc - Tc,) - log (kj2 - k2) + log B' (2.24) 

B' 
It may be observed that the G(k) here obtained differs by a factor of —TT—r~c^: from the G(k) previ- 

ously obtained. Since the ratio of F(k) to G(k) is the same, the two F(k)'s must differ by the same 
factor. We may therefore write log F(k) immediately 

l0* F*k> -1 /0 irk <Tc - v> + ** ^Xfe-i) 
B' is again to be evaluated to give the asymptotic sine solution unit amplitude. 

f(x) = sin k0(x + xj) + h(x), x > o, h(x)—~o asx—«> (2.25) 

1 /e
ikoxl       e

_ikoXl\ F(k>4pk7-k71k7J + H(k)- 
lim [log F(iko + « ) - log F(- ikQ + e)] = log (- 1) + 2fk^v 

2ik0 r1     ds ._      _    ,    ,     ,   H. = ^rJ0rrk7s^(Tc-Tc) + ^(-i) 

Xl = I I   l + k
d2s2 <Tc - TC>   (xl< ° since Tc< TC for 0< s< 1) (2.26) 

J n O 

O 
€~0 

lim [log F (ikQ + e ) + log F(- ik0 + c ) + 2 log e J = - 2 log 2 

^ / irgb (Tc - V) + » *« B>lg : ;;} - 2 log (2k0) 'o A T *o s" " *i 

,     „ -    ,     kl2(c - 1)     k0
2  r1     sds ._      m   , 

log B   = ^W^7) ' ^ Jo^V^2" (TC " Tc,) 

,     ki2(c - 1)     1        2(c- l)ki2(l -c7c) 
= logk0(i - c)" 2 log [i - c/(i + ^)] {k^ + ^)(i - c) 

kj2(c - 1)     1 lo   JKe-Dti'd-c'/c^ (cf. 2.19) 
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1 lng kl2(c - 1) [l - c/(l + kn2)] (kl2 + kn2) 
-log 

2k02(l -c)(l -c'/c) 

log F(k) = |  f* jf^ (Tc - Tc<) + log B' + log        kp2(1'C' 

k r1    ds   ,„      „   ,.1,     kp2(l - c) [1 - c/(l + k02)] (kj2 + k02) 

kx2(k2 + kQ2) (c - 1) 

K   r    as    . .    j_      kp2(l -  
«r J    1 + ks(Tc " Tc'' + 2 log 2kl2(c - l)(k2 + k02)2(l - C'/c) 

o 

     k  A     ds    , 
_,..     k0Vki2 + k02   /(l-c-)[l-c/(l + k02)]     tr JQ j + ks ^c " Tc') 
FW = k1(k2 + k02)   V      2(c - 1)(1 - c </c) 

f]rv    kp Vki2 + k02   /(l - c')[l - c/(l + kn2)]     ff Jn i + ks lTc ' Tc' 
tk) = k! (k2 + k02)    V 2(c - 1)(1 - c'/c) 

k sin kpxi + k0 cos k0 x\ 

1        C kx        1 /" lrv 
h(x) = 2^   J dkH(k)e     =^      J      dkF(k)e    ,    (cf.Fig12), 

ioo + 8 

-i«o+8 -L 

since H(k) is regular at ± ik0 and F(k) - F(k) - H(k) is single-valued across the -co — - i cut. 

h<X> = 2*1  j 
-1..    kx D(c - l)ki2 e * 
dk e     — —— 

fc 

ds 
ks (Tc-Tc) 

k02(k!2 -k2)(l -c) 

1 - 2kll0g 
' /,      1 + k       \ 

c 
2k (logrTkl-mj- 

1 - fk (log 
1 + kl 
1 - kl 

+ m 

2k 
log 

1 + k 
1-k 

+ jri -1 

where k0Vki2 + kl2   /(l-c')[l-c/(l + kn2)] 
ki V        2(c - 1) (1 - c/c) 

k/-1   ds 

h(x) 
2k0 V klCVki2 + ko2./[l - c/(l + kn2)](c - 1) (1 - c'/c) 

-IJlirt^-c-) 
2(1 -C) 

1 

f     kdk     e   "•'o1 + Kb 

J k2 - k,2 /c      k+1   ,\2 
1 *   U^kTI^J   + Te 

-kx 

log G(k) = Ä  f ^-^ (Tc - Tc<) - log (kx2 - k2) + log B'. 
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          k A      ds 
_,.      kiVki2 + ko2 /(c-l)[l-c/(l + ko2)]      wj0 1 - ks(Tc " Tc'> 
ÜW " k0(ki2 - tf) V     2(1 - c') (1 - c/c) 

c     ffLrn^(Tc'Tc/) 

= 'Say'kl[2-^2  e   J° 

G(k) has simple poles at ± ki and a branch point at -1. We will therefore be able to write g(x) as 

g(x) = Ae"klX + BeklX + j(x), j(x) = 0(ex) as x-»— 

G(k) = -T^T: + -TTT- + «W> k-ki     -k+k^ 

VJoTTkTi (Tc-Tc) 
A = -^e 

B= + ——   e 
2k! 

kl  f1      ds     (T   -iv) 

^l^^-Tc^B¥jlr^^.Te.,±^or^(Tc.T,, 

W-%^^1 kWki2 + k02tr       C-l */0 1 -Is (Tc - V> 
k0 Y2(l-c')(c-c) 

k sinh kjx2 + ki cosh kl 

/ *     c 
K(x)=^e 

Vc'tc/d-k^] 
9       1 

^r~   f   i Tic 2S2 (Tc " Tc -) sinh kx(x + x2) + j(x), 

where 
ds s2 = *jol.kl 2S2 (Tc -Tc,), (Xl<x2<0) 

k^ Lr^fe(T' c - TC')   = " 2 lo& 
1        (ki2 + kn2)(c-l)[c'/(l-ki2)-l] 

k02(c/c'-1)2(1 -C) 
(cf. 2.21) 

J(x) = 

*(x) Vc r[c"/a-*X^]5inh kl(x + X2) + j(: 

i-        f ^r1- 
1   f      .4,    5« C * I   1 = 2^J.  dke    kl2-rkie  Jo 

£ (Tc " Tc*>        A 

(2.27) 

B 
-k-ki   -k + kj 
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k,        *t-*L-(T       T    ^(k^-k^l-c)     2kl0gl-k 
C    f    dke**       *J0 2 + ks (Tc " 1C» (k2 + kQ2)(c - 1)^2 c: .     i±k 

2Tti J , kx2 - k2 e 2k°El-k 

r°°         kx      flTte(Tc"Tc') 

., ,    (c-c') Ckn^U -c)        kdke     e   V    KS  

j(x) 
knc Vki2 + kp2"  Al - C) (1 - c'/c) [l - c/(lTk„2)] 

2k! V 2(c - 1) 

J 1 +ks^Tc "Tc'^ f  kdke    o1+KS    kx  ,      .. 

We now have two solutions whose asymptotic forms are: 

•   w                !   *    -1 k" ,,   kiVc[l-c/(l + kn
2)] kl(x + x2) sin kn(x + xi + — tan x r-"-~-.—-——- r-r -* e 

(cf. equations 2.17, 2.18, 2.22) 

Vc [l - c/(l + k^2)] . u 1   / \ 
Bta^ + »i>^yc .[07(1-^-1] smhki(x + x2) 

(cf. equations 2.25, 2.26, 2.27) 

We introduce the notation, 

/?^Vc[l-c/(l + k0
2)J 

^--/c'Cc'/d-k!2)-!] 
ki(x + x2) 

H«^*^1"'^^ 

sin k0(x + Xj)      sinh ki(x + X2) 

£ 

n0(x) is      *   + k°   times the "decaying solution" first obtained (2.14 to 2.23). nx(x) is l/ß times the 
kl P 

"growing solution" next obtained (2.24 to 2.27). Subtracting k1n1(x) from kinQ(x) gives 

n2(x) = k!n0(x) - k1n1(x) 
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Mkt2 + k02 
sin k0(x + xx) —*  + cos k0(x + xi)    °- 

y^2 + ko2 yki2 + k02 

ß 
sin ko(x + X]) 

k ki 
-^ cos k0(x + xl)~~ß, cosh kl(x + x2> 

If we now subtract ni(x) from -j*— we get 
Kl 

/ x    n2(x) / \       1 
"3(x) =   kf ' ni(x)~£ k0(x + xx) • ^ - sin k0(x + xj) 

= JiEl^>_2
sinko(x + xl.J_tan-l^ 

k^S 

ß' 
We now have two simple pairs of linearly independent solutions, n(x) and n2(x); n0(x) and n3(x). For any 
one of these four solutions, hence also for any other solution made from them as linear combinations, 
the asymptotic solutions on the two sides and the derivatives of the asymptotic solutions have a con- 
stant ratio when evaluated at x = -xi and x = -x2 for the core and tamper solutions respectively. 

derivative of asymptotic 
asymptotic core solution (x = -XJ) _ -kn0' _ core solution (x = -XJ) 

asymptotic tamper solution (x = -X2>       k-^ß       derivative of asymptotic 
tamper solution (x = -X2) 

the points, -xj and -X2, are both on the core side of the interface, -x2 being the farther from the inter- 
face. This property leads to the following recipe: 

In each medium the asymptotic solution is one of the family of solutions of the equation: (A + k2) n(x) = 0, 

,   = c (k may be either real or imaginary). Each of the two asymptotic solutions to b.e joined at an 
tan-Ik 
interface is examined at its "fiducial point", distant A x from the interface on the side of greater c. 

Ax M1- 
"Jo1 

ds 
k2S2 Tc - Tc, 

(The Ax for each solution uses its own k which may be either real or imaginary.) The two asymptotic 
solutions, each at its own fiducial point, have equal logarithmic derivatives. The magnitudes of the two 
solutions, evaluated at their fiducial points, have the same ratio as their values of the quantity, 

k 
0 

k2 k2 

\c[l-c/(l + k2)]   =\c[c/(l-K 2)-l]    <forK=ik> 

* See Table 3, which gives c .AX. 
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This recipe paraphrases the connection-formulae given above identifying the two asymptotic so- 
lutions on the two-sides of an interface. It differs from a simple diffusion theoretic boundary con- 
dition connecting the asymptotic solutions only in so far as 

1) Ax differs from 0 

2) ö differs from a constant 

This recipe connects only the asymptotic solutions. Detailed features of the solutions may be 
gotten from Table 1. 

Symbols used in Table 1. 

Tc   "^-^tanh-lf-l/cs]  .Tc(0)-ir,Tc(l)-0 

In untamped solution 

xo4£irf^TC'-^   =c)/? = yc[l-c/(l + ko2)],c>l 

xo--^r^^,^^--o,^o[c/{i.h2).1])C<u 
Jo 

In tamped (two-medium) solutions the formulae have been written for the case c >1, c' < 1. Other cases 
follow by analytic extensions. 

tan-lk0 

kT , 
tanh-lkj 

yS = yc[l-c/(l + k02)] 

1 f1 ds    .„,      „,    , 
Xl=*       lTk7i2(Tc-Tc') 

•'o 

for (X2<xi< 0) 
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Each of the four solutions is presented as an asymptotic solution in each medium (sinusoidal or hyper- 
bolic) to which is added a discrepancy term (h(x) for x>0, j(x) for x<0j. This discrepancy term may 
be of either sign. 

APPENDIX I 

ACCURACY OF TWO-BOUNDARY APPROXIMATION 

To estimate the error introduced by neglecting the interaction of two boundaries we determine the 
effect of this neglect in the untamped sphere problem as a first order perturbation. The fundamental 
eigenvalue, c, of the equation, 

■ a 
n(x) = c fa dx'n(x')-f E(|x - x' |), n(- x) = -n(x). (i) 

J-a. 

we write as c = CQ/U + €) + 0(«2), where a = ^-. - x0(cQ). 

The integral operator 

Lj*' 2 E(JX-X'I> 
we denote by A . 

Write R - R(x) = 0 for x < -a 

= 1 for x > -a 

L = L(x) = 0 for x > a 

= 1 for x < a 

Equation (i) becomes 

(1 + e - A RL) n(x) = 0, valid for -a S x S a 

n(x) = no(x) + nj(x) (ii) 

n0(x) = nR(x) + nL(x) - sin kQx 

where nR(x) and nL(x) are the exact one-boundary solutions satisfying 

(1 - A R)nR = (1 - A L)nL = 0 

nR(x) = R sin ICQX + hR(x) 

nL(x) = L sin kQX + h.(x) 

Then 

(1 + £ - A RL)nx = (A RL - 1 - «)n0 = (ARL - 1) (nR + nL - sin k^) - «nQ 

[A R- 1 - AR(1 - L)JnR+[AL - 1 - A L(l -R)]nL 

-IA - 1 + A(RL - 1)1 sin ICQX - «nQ 

- A [(1 - L)nR + (1 - R)nL + (RL - 1) sin koxj - en0 
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= - A [ (1 - L)hR + (1 - R(hL + (R - RL + L - RL + RL - l)sin k^l - «n0 

= -   A [ (1 - L)hR + (1 + R(hL] - «no (iii) 

Since nj must be finite, the right side of (iii) must contain no component, n(x), satisfying (ii). Ne- 
glecting terms of order e 2 we have 

fa dx n(x) JA [(1 - L)hR + (1 - R)hL ] + e n0| = 0 

j    dxn0
2(x) = -   r°°dxRLn(x)Ar(l - L)hR+(l-R)hLl 

= -   f °° dx [(1 - L)hR + (1 - R)hL] A RL n(x) 
•/-oo 

= -   f° dx [(1 - L)hR + (1 - R)hL] n(x) 

c 
-a 

(iv) 

The left term of (iv) is roughly 2 a. The right term is minus twice the integral of the discrepancy 
term, hR (>0) starting from a point distant 2a from its boundary, with n(x) beyond x = a. The char- 
acter of n(x) in this region may be determined by taking c ' = 0 in the decaying two-medium solution. 
Its value at the surface is 

*       -xfl-c/d + kn2! 
Vi(c-o) "\       2 

1 - c/(l + k 2) 
The right term of (iv) will be approximately (-2) x ^ Q- • h(2a) divided by their combined 

decay-rate, about 3-4. 

For a tamped sphere we-proceed in a similar way: 

jl + € - A [RL + (1 - RL) ^-J Wx) = 0 

n = n0 + nj = nR + nL - sin kjjX + n^ 

jl - A [R+ (1 - R)^-Jj.nR = jl - A [L+ (1 - L)^-|nL = 0 

jl + r - A [^- RL + ^-]jni - JA [£-^El RL + ^-]- lj- (nR + nL - sin k^) - € n0 

= (A[R+(1 -R)^-] - ljnR+ AR(1 - L)(~ ljnR 

+ JA[L+(l-L)^]-ljnL+ A L(l-R)^--l)nL 

+ jl - A p^1 RL + ^"] j-Bln k0x - £n0 

= - A (i - L) (r—^-j (R sül ko* + hR + BR) 
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Hence as before: 

£ 

- A(l -RH^p-HLsinkoX + hL + gL) 

+ I1 " A \^/ RL " c" AJSin koX " £n° 

= (1 - A ) sin kox - 5-l-£l A |(1 - L)hR + (1 - R)hL|- «no 

= - (l - ^\ A|(1 - Dhjj + (1 - R)hL|- £n0 

" ! (X " T")/* no(x) A {(1 ■ L) hR + (1 " R)hl} 

— f (1-7-)/"*tnoWhRW 

Estimating this integral in the same way as before gives, for example, for c = 2.0, c' = 1.0, 

2        .5 x .71 x .003      AA1_ 
€-T72X 2 -0015 

For c' = 1 and various values of c, we obtain the estimates: 

  % in critical radius 

1.5 
2.0 
2.5 
3.0 
oo 

The chief factor making these errors small is the rapid decay of h(x). Taking the untamped-solution 
values as typical (they will actually be somewhat too large) it would appear that « will exceed .01 only 
for core diameters or tamper thicknesses considerably less than one mean free path. 

Comparison with variation theory results gives about 0.3 as the limiting thickness for 1 per cent 
accuracy, (cf. Comparison of variation theory and end point results for tamped spheres, LADC - 77) 

APPENDIX II 

SOLUTION OF THE INHOMOGENEOUS WIENER-HOPF EQUATION 

The Wiener-Hopf technique was shown by E. Reissner (Journal of Mathematics and Physics, Vol. XX 
(1941), pp 219-223) to permit extension to the inhomogeneous problem. We here treat only the one me- 
dium problem with the inhomogeneous term confined to x ä 0. The extension to the two-medium prob- 
lem with an unrestricted inhomogeneous term is immediately obvious. The equation we wish to solve is: 

.0002 .09 

.0015 .53 

.003 1.0 

.005 1.3 

.02 2.0 

n(x) =   j    dx' n(x') K(x - x') + fx(x) 
•'n 

(a) 
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where fjM is known and vanishes for x < 0. The Laplace transform of (a), with the notation used 
previously is, 

G(k) = F(k) (K(k) - 1) + Fx(k) = F(k) P(k) + F^k), 

Fx(k) =  /"°dx f !(x) e_kX 

•'o 

The solution of the corresponding homogeneous equation will be denoted by a subscript 0. 

G0(k) = F0(k) P(k) 

P(k) = G0(k)/F0(k) 

(b) 

We define F(k) such that 

F(k) = F0(k) F(k) 

This introduces no singularities in F(k) in the right half-plane since FQ(k) had no roots in the right 
half-plane. Then (b) becomes, 

F(k) P(k) = F(k) F0(k) I |J|j = F(k) G0(k) = G(k) - Fx(k) 

Thus -Fi(k) is the right-analytic component of F(k) G0(k), which we may write as 

[F(k)G0(k)]R-4JL^-kF(k')G0(k'), 

where the contour L lies to the left of k and of the singularities of G0(k) (which are entirely in the right 
half-plane) and to the right of the singularities of F(k) (in the left half-plane). 

[F(k)G0(k)]R=-F!(k) (c) 

Making use of the fact that      , . as well as G0(k) is analytic in the left half-plane we can show that 
GQW 

equation c is satisfied by 

since 

F(k) = -   FJk) -^-[r   D   • 
— L  x      G0(k)J R 

[Go(k)F(k)] R = -   G0(k) [Fl(k) ^] 

(d) 

R R 

_ll_   f   _dkl G (k>)   f        dk" F!(k" ) 
(2»ri)2 J     k' - k ^k ) J  „   k»   . k.   Go(k- ) 

[«WHR-(P/L.  
dk" l$^)l dk'Go(k') k Ik' - k        k"   - k', 
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Displacing the contour L' to the left of L"   picks up a residue at k' = k" . The remaining-k' integral 
vanishes as it may be displaced indefinitely to the left, in which direction the integrand decays as 

1 
Ik'I 2 This leaves: 

G0(k) F(k) R (2jri)2 f. dk"   F1(k" > 
^     G0(k"Hk 

27T1 
G0(k' 

= -    FjWj^-F^k) 

The particular integral of equation a has therefore the Laplace transform 

F(k) - F0(k) 
FiW 
G0(k). R 

To this may be added any multiple of the homogeneous solution, F0(k). 
To extend this method of solution to the two-medium problem requires only the replacement of 

equation a by the corresponding two-medium equation. This leaves the form of equation b and the rest 
of the solution unchanged. To treat an inhomogeneous term existing for both x >0 and x<0 it suffices 
to break up the inhomogeneous term into a right and a left side part and treat each separately as above. 

A particularly simple special case of the untamped inhomogeneous equation is that of the albedo 
problem— 

fx(x) = e""x a>0. 

Fi(k) 
k +a 
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Then 
'Fl(k)' 
Go(k). 

L  f     dk 1 
jri L k' -k   (k' +o)G0(k') R    2ni-"L 

1 J_   r   _ 
G0(-a)(k + ce) + 2m. J     (k' 

dk' 
k)(k' +«)G0(k') 

In the second term the contour L   may be displaced indefinitely to the left. Its integrand may be 
written as 

Const.     Jl 
—+°(k"2 

Thus the k-dependent part of the integral vanishes. The constant part represents an admixture of the 
homogeneous solution to Fj^(k) and therefore may be disregarded. The general solution is therefore 

F(k) = - FQ(k) 
Fi(k)" 

|_G0(k)J 
+ A   =-F0(k)| 

R 
G0(-a)(k + a) 

+ A 

In an albedo problem c will be ä 1 and A should be chosen to make n(x) finite for all x, hence F(k) 
regular at k = +ki, despite the pole of F0(k). Thus 

A = 
G0(-a)(k1+a) 

F(k) _     (k - ki)Fp(k) 
*W~(k + a)(k1+a)G0(-«) 

The density of emergent neutrons in the albedo problem as a function of ju, the cosine of the angle of 
emergence, is 

N(|t) = c I   dx n(x)e 
x/u 

cF -fi 

and is therefore given directly by the solution F(k). 
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