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DEFINITIONS 
IDA publishes the following documents to report the results of Its work. 

Reports 

Reports are the most authoritative and most carefully considered products IDA publishes. 
They normally embody results of major projects which (a) have a direct bearing on 
decisions affecting major programs, (b) address issues of significant concern to the 
Executive Branch, the Congress and/or the public, or (c) address issues that have 
significant economic implications. IDA Reports are reviewed by outside panels of experts 
to ensure their high quality and relevance to the problems studied, and they are released 
by the President of IDA. 

Group Reports 
Group Reports record the findings and results of IDA established working groups and 
panels composed of senior individuals addressing major issues which otherwise would be 
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals 
responsible for the project and others as selected by IDA to ensure their high quality and 
relevance to the problems studied, and are released by the President of IDA. 

Papers 
Papers, also authoritative and carefully considered products of IDA, address studies that 
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure 
that they meet the high standards expected of refereed papers In professional journals or 
formal Agency reports. 

Documents 
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record 
substantive work done in quick reaction studies, (b) to record the proceedings of 
conferences and meetings, (c) to make available preliminary and tentative results of 
analyses, (d) to record data developed in the course of an investigation, or (e) to forward 
information that is essentially unanalyzed and unevaluated. The review of IDA Documents 
is suited to their content and intended use. 

The work reported in this document was conducted under contract DASW01 94 C 0054 for 
the Department of Defense. The publication of this IDA document does not indicate 
endorsement by the Department of Defense, nor should the contents be construed as 
reflecting the official position of that Agency. 



IDA PAPER P-3076 

A MODEL OF FALSE ALARMS IN TARGET 
ACQUISITION BY HUMAN OBSERVERS 

James D. Silk 

September 1995 

Approved for public release; distribution unlimited. 

IDA 
INSTITUTE FOR DEFENSE ANALYSES 

Contract DASW01 94 C 0054 
ARPA Assignment A-162 



PREFACE 

This paper has been prepared for Mr. Thomas Hafer, Deputy Director Advanced 
Systems Technology Office, ARPA, in partial fulfilment of an IDA task order on Analysis 
and Model Development. Additional cognizance and direction have been provided by 
Mr. John Brand and Mr. Eugene Patrick, U.S. Army Research Laboratory (ARL), S3I 
Special Projects Office; and Mr. John D'Agostino, U.S. Army Night Vision and Electro- 

optics Systems Directorate (NVESD), Visionics Division. 

These analyses would not have been possible without the high quality target 
acquisition performance data obtained by the Visionics Division of NVESD in their Phase I 
and Phase IV target acquisition tests. 
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EXECUTIVE SUMMARY 

IDA has conducted a thorough analysis of the false alarm data from the U.S. Army 

Night Vision and Electro-Optics Systems Directorate perception experiments. IDA's 

analysis was designed to support model development by addressing specific modeling 

needs: 

1. A predictive model of false alarm performance. For a given clutter environ- 
ment, how many false alarms are expected on the average? 

2. A descriptive model of the observer ensemble. How can variations among 
observers be quantified? 

This work reports on the above effort. 

PREDICTIVE MODEL 

The relationship between false alarm rate (FAR) and clutter level is documented for 
a test in which observers have been conditioned to a target-rich environment. Good 
correlation exists between a standard measure of clutter and false alarm rate. But the 
correlations do not persist for observers in a different test, who were conditioned to expect 
fewer targets. Observer state turns out to be a much stronger driver of false alarm rate than 

clutter level. This observation does not apply to the probability of detection, PD. 

The IDA false alarm model is valid only for the specific high-target-density scenario 
of the Phase 1 test. It does not consider variation in the observer state. Until better 
understanding of this effect is at hand, IDA recommends against implementing the 

predictive portion of its false alarm model. Further testing is needed, but we believe that 
the required tests are fundamentally unlike those conducted to date. 

In tests to date, observer state was pre-conditioned, the learning curve was 
saturated, and the state of the observer was not varied within a test. All of this is in 
keeping with commonly accepted practice. Resolving the false alarm issues [and, 
similarly, identification friend or foe (IFF) and fratricide issues] requires a new generation 
of tests in which the subjects experience controlled, repeatable preconditioning. Extended, 
detailed simulations and/or extensively instrumented, realistic exercises may be appropriate. 

S-l 



DESCRIPTIVE MODEL 

We have had better success in characterizing the observer ensemble than the 

predicted false alarm rate. We have produced a useful approach to explaining the 
differences that appear among the test subjects. 

In any difficult discrimination task, there is a tradeoff between errors of the first and 
second kinds. For target detection, a missed target is an error of the first kind; a false alarm 
is an error of the second kind. By being more or less conservative in his declarations—that 
is, by setting a high or low threshold—an observer can trade one kind of error for the other. 

On the other hand, some subjects are, through nature or nurture, better observers 

than others. For example, high visual acuity or familiarity with target features may yield an 
advantage. This inherent level of discrimination capability is called sensitivity. Enhanced 
sensitivity implies the ability to simultaneously reduce errors of both kinds. 

We find from these data that there is much less variation in sensitivity to target/ 
background discrimination than there is in the threshold that the observer sets for himself. 
We have demonstrated a useful parameterization of these effects and provided numerical 
support for implementing simulations. 

We believe that the descriptive approach developed herein will be useful to the 

wargaming community, and we recommend that it be considered as a starting point for a 

more complete model. 

« 
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I.   INTRODUCTION 

A. BACKGROUND 

The modeling of target acquisition by humans has focused on the problem of 
predicting whether targets will be detected. In its simplest form, the target detection 
problem is to compute the fraction of a standard observer ensemble that will detect a given 
target. The computation is based upon input about the target state, sensor characteristics, 
and scenario. 

The closely related issue of false alarm prediction has received less attention. There 
is good reason for this. From a user viewpoint, lethality (for sensors) and vulnerability 
(for signature control) are more directly affected by true detections than by false ones. 
Thus, for purposes of evaluating materiel systems, the need for detailed modeling of false 
alarms is marginal. 

While modeling of false alarms is secondary to true detection, it is nevertheless 
important to understand the effects of false alarms and to account for them in the develop- 
ment of doctrine. For the soldier performing a target acquisition task, the detection of true 
targets drives his lethality. On the other hand, servicing false targets affects his surviva- 
bility: His response time, munitions stores, and state of concealment are all compromised. 
Moreover, the subject is closely linked to collateral damage and fratricide. 

B. PURPOSE AND OBJECTIVES 

In this work we extend the scope of target acquisition modeling to the consideration 
of false detections. The model that we propose establishes a link between false alarm rate 
and a simple scene complexity statistic. More significantly, it provides a statistical repre- 
sentation of the correlation among the observer ensemble of false alarm rate with the target 
detection probability. 

The model is phenomenological in the sense that it seeks only to describe the results 

of the tests. It does not build on psychophysical "first principles," but is entirely data 
driven. The results are tabulated and presented in such a way that they could easily be 
implemented in the combat simulations by the wargaming community. 
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The descriptive model is based on the analysis of data obtained in a series of target 
acquisition tests. The tests were conducted by the Visionics Division of the Night Vision 
and Electro-Optics Directorate [NVESD]. They were designed (see Section II) to represent 
(as realistically as possible in a laboratory setting) the target acquisition task faced by a tank 

gunner in the course of an engagement. 

C.  FINDINGS 

An important finding from the analysis of the test data is that the dominant 
determinant of false alarm rate is the expectation of the human subject. We show how 
seemingly subtle aspects of observer expectation can dramatically affect false alarm rates. 

We present this result early on (and expand on it in Section III) so that the results that 

follow can be placed in the proper perspective, with adequate caveats. The principle caveat 

is that the present results should not be extended to target acquisition tasks beyond the one 

simulated in the tests. 

A more general review of the test results reveals two striking features (see 
Section IV). First, for a given background scene, strong positive correlation is seen 
among the observers between the average false alarm rate and the average detection 
probability. Second, when the observers are asked to lower their discrimination threshold 
from standard military detection to "possible object of interest," the trend in the data is 

extended seamlessly. 

The two cited features of the data strongly suggest a description based on signal 
detection theory and we construct such a model of the observer responses (Section V). The 

simplest model based on this paradigm would enable us to characterize the various back- 
grounds by different values of a single sensitivity parameter. Unfortunately, straight- 
forward application of the theory is not appropriate here. This is so because, in a realistic 
search test, the number of "true dismisses" is not known. It is therefore impossible to 
convert the false alarm rate to a false alarm probability. We finesse this issue by 
introducing the normalization as a second free parameter, but find that the data is not well 
described by this model. A more general model, obtained by introducing a third parameter, 
describes the data quite well. Happily, a simple and appropriate approximation collapses 
one of the constraints on the model, so only two free parameters are really needed. 

Re-analysis of the test data in the context of the model allows us to extract the 

parameters that describe the observer ensemble. We tabulate the results (Section VI) and 
find that observer threshold varies much more than observer sensitivity. Moreover, the 



threshold shift corresponding to the resetting of discrimination threshold from "full 
detection" to "possible object of interest" is remarkably reproducible across sensors, 

backgrounds, and observers. 

Finally, we demonstrate the correlation between false alarm rate and a scene 
complexity statistic. We have not accomplished the demonstration of a good correlation 
between our second free parameter and any scene or target statistic. As an interim measure 
we therefore estimate its mean and variance parameters so that stochastic simulations can be 

implemented appropriately. 

We include the complete set of displays of the test data (Appendix A). In 
Appendix B we summarize our previously unpublished analysis of the statistical variance 
(S V) statistic as a predictor of false alarm locations. Appendix C contains the details of the 

computation of some average quantities. 



II.   THE OBSERVER TESTS 

The target acquisition tests that form the basis of this paper were conducted by 

NVESD as part of the Army's Thermal Target Acquisition Model Improvement Program 

(TAMIP). More complete descriptions of the tests and the data accrued from them can be 

found elsewhere.1 The scope and objectives of the tests go well beyond the application 

presented herein, and several analyses of other aspects of the tests have already been 

published.2 The present description is thus intentionally both incomplete and imprecise. It 

is intended only to convey sufficient information for the work in hand to be self-contained 

and comprehensible. 

The tests referenced in this paper are designated by NVESD as Phase I tests al, bl, 

b2, and b3 (this is the complete set of Phase I tests); and Phase rv test a (this is one of four 

Phase IV tests). The methodologies of the two Phases are quite similar, but their 

differences are important. The bulk of our analysis is supported by the Phase I data. The 

explanation for this preference, along with a brief analysis of Phase rV data, is the subject 

of Section III. We will first discuss the Phase I tests, then note the relevant differences 

between these and the Phase rv a test. 

In each of the four Phase I tests, each observer was shown the same set of images, 

or "scenarios," on the terminal screen of a desktop computer. They were instructed to 

designate, using a mouse, all possible target candidates (or "areas of interest"); then to go 

back over their selections and assign one of four confidence levels (0, 25, 50, or 

100 percent confidence) to each selection. All responses, including incorrect ones, were 

recorded for offline scoring and analysis. 

Barbara L. O'Kane, Clarence P. Walters, John D'Agostino, "Report on Perception Experiments in 
Support of Thermal Performance Models," NVESD Report, February 1993. 
Barbara L. O'Kane, Clarence P. Walters, John D'Agostino, Mel Friedman, "Target Signature Metrics 
Analysis for Performance Modeling," Proceedings of the IRIS Symposium on Passive Sensors, 
Volume 2, p. 161,1993; John D'Agostino, Russ Moulton, Bob Sendall, Walt Lawson, "MFTD - A 
Measure of Sensor Performance Under Scene Clutter Limited Conditions," NVESD Report, March 
1993; John D'Agostino, "TAMIP Thermal Modeling Program: Final Technical Report for 1993," 
NVESD Report, May 1994. 



The images were derived from photographs of the NVESD terrain board, which is a 
scale model representative of Central European terrain. Scale models of military vehicles 
are placed on the terrain board. The terrain and vehicles are painted and photographed so 
as to resemble infrared signatures as seen through a FLIR sensor. Postprocessing of the 
digitized imagery introduces specific sensor effects. 

Sixty images were shown to each subject. Each image contained from three to 
seven military targets, or none at all, for a total over all images of 275 targets. The 60 
images were divided among eight different backgrounds, corresponding to differing levels 
of clutter. Each background appeared in seven or eight different images, and each appeared 

once without targets. 

The Phase I bl, b2, and b3 tests were each conducted using the same pool of 22 
military observers as subjects. These three tests all used the same basic images, but 

processed differently to simulate three different sets of sensor characteristics. Roughly 
speaking, the b2 test corresponds to a low noise, high resolution sensor. The bl and b3 
tests represent lower resolution and higher noise excursions, respectively, from the b2 
sensor. The al test used the same scenarios and sensor simulation as the bl test, but the 17 

subjects were civilian analysts. 

The conduct of Phase IV test a was similar in most respects to the Phase I tests. 
The principal difference is that the Phase IV imagery is real infrared sensor imagery of real 
terrain and real military vehicles. There is a greater variety of backgrounds in the Phase IV 
image set, although there is a subset in which the background is a controlled variable. In 
this subset, image processing techniques were to alter the signature of the military vehicles 

while leaving the terrain background unchanged. 

As we shall see, another important difference is that there is exactly one target in 
about 85 percent of the Phase fV test a images. 



III.   OBSERVER EXPECTATIONS 

Since the image stimuli used in the Phase IV test a are based on real, not modeled, 
infrared signatures and sensors, it would be preferable to base our modeling effort on this 
data set rather than the Phase I set Early in the analysis of the Phase IV data, however, it 
became clear that the observers learned to expect one target per image. This expectation on 
the part of the subjects affected performance in a way that we will demonstrate in this 
section. We believe that the behavior that is reflected in this data is not representative of 

behavior in the operational environment. We also believe, for reasons that are discussed 
below, that the cause of this behavior is not present in the Phase I tests. Therefore it is 
appropriate to use the Phase I data, despite the lower fidelity of its imagery, in the 
development of our model for false alarms. 

To demonstrate the existence and effect of the observer expectations in the Phase rV 
test a data, we focus on a subset of the images. This subset contains 70 images, which are 
partitioned into ten subsets. Within each subset of seven images, all the backgrounds are 

identical; the target alone varies. One of the seven is the baseline, which is the image as 
obtained in the field. In the other six images, the target pixels have been subjected to a 
specific treatment so as to make the target look less like a military vehicle. Each subset 
contains one baseline and one image corresponding to each treatment. The detection 
probabilities and false alarm rates which we shall now discuss are averages for the baseline 
targets and the six target treatments, across subsets; that is, each average is taken over all 
ten backgrounds belonging to a treatment (or baseline), and over all 36 observers. 

Figure HI-1 shows the effect of the various treatments on the detection probabilities 
and false alarm rates. It is evident that the treatments were effective to various degrees in 
increasing the number of times the observers missed the target. It is equally clear that the 
treatments resulted in an increase in false alarm rate that is strongly correlated with the 
number of misses. But recall that all of the points in the figure correspond to identically 
similar backgrounds. Only the target pixels were altered between treatments. The only 
plausible explanation for the depicted behavior is that subjects responded differently to 
identical background stimuli based on whether they had detected a target somewhere in the 
image. 
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Figure 111-2.   As Figure ill-1, but for 
Phase I. 
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Figure 111-1.   Average detection and 
false alarm rates from a subset of Phase 

IV data.   The averaging procedure is 
defined in the text.   The T values refer 
to observer confidence designations. 

Such behavior is at odds with reasonable expectations of what would happen in the 

operational environment Certainly observer expectations are equally important there. But 

it seems more plausible that the expectation of encountering targets would be enhanced by 

the identification of a true target, rather than diminished.3 

To be sure, the observers expected to find targets in all of the Phase I images as 

well. We contend, however, that this expectation has a much less confounding effect on 

the results there than in Phase IV. Since there were so many targets per scenario in those 

tests, the observers almost always resolved their expectation by detecting a true target. 

Their expectation did not force them into the false alarm regime. 

A look at the Phase I data supports these ideas. Figure HI-2 is the Phase I analog to 

Figure IH-1. Again, each point corresponds to identical backgrounds but different targets. 

While each average in the Phase IV set contained one target and ten backgrounds, the 

It is tempting, though, to speculate that even in a realistic scenario a "difficult" target is more likely to 
be detected if there are no "easy" targets in evidence. If an observer is certain that there are detectable 
targets nearby, this is obviously so. But even if the observer is uncertain, the "easy" target may create 
an expectation that other targets will be equally easy. Such are the difficulties in assessing the 
importance and impact of the state of the observer. 
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averages in the Phase I set contain several targets (with one exception, see below) and one 
background. The principal difference is that the various targets appeared in the same 
scenario. We observe that there is much less variation in the number of false alarms among 
the points in Fig. III-l than among those in Fig. III-2, even though there is a similar 
variation in detection probability. Just as important as the lower variation is the lack of 
correlation with detection probability in the Phase I trend. We therefore accept the explana- 
tion that the observer expectation to find targets is, for practical purposes, always resolved 

in the Phase I test but not in the Phase IV test. 

It is important to point out, though, that the sham run in the Phase I test [that is, the 
scenario without targets (it appears in Fig. ni-2 as the scenario with PD = 0)] is also in line 
with the false alarm rates for high PD- This seems at odds with our conjecture that it was 
the high multiplicity of targets in the Phase I tests that would resolve the observer 
expectations and render the false alarm rate stable. A comparison of the horizontal axes of 
Figures HJ-1 and HJ-2 provides the explanation. The observers in the Phase I test were 
declaring false alarms in far greater numbers—by a factor of 20—than were the Phase IV 
observers. In fact, even for the high threshold responses, the Phase I false alarm rates 
approach or exceed one false alarm per scenario per observer. Thus, the observer's expec- 
tation to find a target is, at least to some extent, quenched by the false alarms themselves. 
But this greater propensity for false alarms is certainly driven predominantly by the 
observer expectation of multiple targets per scenario, as suggested in the footnote. So, 
whether directly or indirectly, the higher target density in the Phase I data tends to make the 
effects of observer expectations less confounding than in the Phase IV test. 

None of the above should be taken to imply that the Phase IV data may not yield 
detection probability data that is useful. While the detection probability measurements are 
not immune to the effects of observer expectation, we are not concerned that the effect on 
the analysis of Phase IV detection probabilities will be so troublesome. As we shall see in 
the following sections, the detection probabilities are far less sensitive to observer expec- 

tations than are the false alarm rates. 

The foregoing discussion illustrates the limits of validity for the model, which we 
shall base upon the Phase I data set. Clearly the limits will apply only for very target-rich 
environments. It is doubtful, though, that the lower limit of validity for target density is as 
high as several per field of view. In a real search, the observer has the option to return to 
previously scanned areas; the freedom to revisit did not exist in either phase of the tests. 
Neither will such freedom apply in rapidly changing environments. The expectations of the 



observers in the tests were relatively constant throughout the testing, and in fact had been 
preconditioned before the scored part of the test in order to saturate the learning curve. 
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IV.   TRENDS IN THE TEST RESULTS 

Our approach to the modeling of false alarms is phenomenological. We seek to 
identify and parameterize whatever trends exist in the data, not to force them into a 
preconceived model nor even necessarily to explain them. In this section we illustrate the 
trends that are apparent upon a rudimentary analysis of the data in order to motivate the 
model development and more extensive analysis which follow. 

All of the qualitative effects discussed in this section hold equally well for all of the 

four Phase I data sets (al, bl, b2, and b3). Here we focus on the bl test data. Final 
results for all data sets will be displayed and discussed in Section VI and the Appendix. 

First let us describe the preliminary data processing steps for the sake of clarity and 
defining terminology. Since we expect false alarm rates to depend strongly on the 
background scene, we partition the data set into the eight subsets corresponding to the eight 
background scenes, or "views," used in the test. For each observer, we compute detection 
probabilities and false alarm rates over all the images, or "scenarios," in that view. 

The observers were asked to select a confidence level for each target candidate 
designation. We shall treat these confidence levels as thresholds, and compute detection 
probabilities (or false alarm rates) at a given threshold based on the number of correct (or 
incorrect) declarations with confidence equal to or greater than that threshold. Thus, 
probability of detection (PD) for T = 100 is always less than or equal to PD for T = 0. Note 
that NVESD considers the T = 100 threshold to correspond to "full military detection." 
The T = 0 threshold is said to represent the declaration by the observer of a "possible area 
of interest." 

For computation of probabilities of detection we use one of a family of so-called 
uninformed estimates.4 This prescription gives the maximum likelihood estimate of 
probability for n occurrences out of N trials as (n+l/2)/(N+l), instead of the more 
commonly used n/N. Our motivation is primarily to avoid singularities that would arise if 
probabilities were allowed to take the values 0 or 1. We choose this prescription over other 

4    Harry F. Martz and Ray A. Walker, Bayesian Reliability Analysis, John Wiley & Sons, 1982. 
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Figure IV-1.   Detection probability vs. false alarm rate by observer for two 
of the views In the Phase I test b1.   The arrow In the left panel 

indicates a T = 0 point beyond the limit, at (4.3, 0.96). 

candidates [for example, (n+l)/(N+2)] because the distribution of PD that was measured in 

these tests was "U-shaped" and not uniform. 

We define the false alarm rate (FAR) as the number of false alarms per scenario per 
observer. The false alarm rate for zero occurrences is estimated as if 1/3 of an event had 
occurred. For example: If observer A has 0,1, 3,0,1, 2, and 0 false alarms in the seven 
scenarios belonging to view 6, then his FAR is 7 / 7 = 1. If observer B has zero false 

alarms for all seven scenarios, then his FAR is j / 7 = 0.048. 

Figure IV-1 shows representative plots of PD VS. FAR for two of the views. In 
each case, the square symbols correspond to the T = 100 threshold and the circles to T = 0. 
We note that the observers fall along relatively well-defined trajectories in the plane. The 
two trajectories are quite different in the two panels. The left hand panel corresponds to a 
low clutter background scene, the right to high clutter. It is clear that the low clutter case 
admits a trajectory that is much closer to the ideal performance (upper left corner, where 
PD = 1 and FAR = 0) than the high clutter case. 

It is particularly interesting that the low threshold data forms an apparently seamless 

continuation of the high threshold subset. That is, there are some observers whose 

T = 100 performance closely matches the T = 0 performance of others, both in PD and 
FAR. Thus, zero confidence and 100 percent confidence clearly mean vastly different 
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things to different observers. While it has long been recognized that some observers are 
"better" than others in that they obtain persistently higher detection probability, the present 
data indicate that at least part of this enhancement of detection performance is associated 
with higher false alarm rates. Most of the variation among observers seems to be in the 
direction of varying threshold. If one observer were truly more sensitive than another, we 

would expect his PD to be higher and his FAR to be lower. It is reasonable to conclude 
that there is not much variation in sensitivity among observers, but rather a greater degree 

of variation in decision threshold. 

From the foregoing, we extract the following observations which will be used as 
guiding principles in the construction of our observer model: 

• Observer sensitivity is primarily a function of background clutter. 

• The intrinsic sensitivity of the observers is fairly uniform. Most of the vari- 
ation between observers is in threshold. 

• Threshold variations between observers are equivalent to threshold changes 
within an observer. 

13 



V.   MODEL DEVELOPMENT 

Since the Phase I test data congregate so well along trajectories in the PD VS. FAR 
plane, it seems reasonable to seek a description of the data in terms of signal detection 
theory. We demonstrate that the simplest such description is inadequate to fit the data, but 
that a slight generalization matches the data well. 

We first must confront the problem that we have no a priori prescription for 
converting false alarm rates to probabilities. In order to know this relationship, we would 
have to know the number of times that each observer correctly rejected clutter objects—that 
is, the number of true dismisses. In a realistic search, we have no way to know the value 
of this quantity, nor even a clear idea of what it means. We therefore provisionally 
introduce a free normalization parameter, the false alarm opportunity rate (FAOR), to 
account for this unknown: 

FAR 
PFA = FAOR 

The usual approach of SDT is to construct probability distribution functions (PDFs) 
related to the target and non-target ensembles. The simplest case is the one in which these 
two distributions are the same shape, but offset by some amount d which determines the 
sensitivity of the processor. The usual choice is a gaussian PDF, but we use a logistic PDF 
because the algebra is simpler and, in hindsight, it works well. 

Our PDFs thus have the form pT(x) = f(x) and p^x) = f(x4d), where 

r/ x         ex 1       ,2X f(x)s 7^ = 1 sechz~ . 
(l+ex)2   4 2 

The independent variable x may be interpreted as the logarithm of some signal 
strength parameter. A complete theory of human search performance would specify how to 
compute it. We are not in a position to do so, but are only using it as a vehicle to formally 
relate detection probability to false alarm rate. This is done by observing that 

oo 

PD(T)=   fpT(x)dx   , = J PT(> 
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and PFACD = FAQR =   [p^x^x   , 

which we can solve by eliminating the threshold variable T. Observing that 
oo 

F(x) m Jf(x')dx' = -^ = \ (l-tanh fj   , 

some algebra determines that the result for this case is 

P^ = mFÄR + b   ' 

whereb = 1 -e"4andm = FAOR e*. 

Thus if we re-plot the data using the inverses of the PD and FAR values, the points 

should fall along a straight line. Moreover the slope and intercept of the line should 
determine the two model parameters. Note that since d > 0, the intercept b must be on the 

interval (0,1). 

Unfortunately, plotting the data in the manner prescribed shows that the data are 
inconsistent with this simple model. Figure V-l, for view 5 from Phase I test bl, shows a 
case in point. As the left hand panel shows, the problem is that the intercept is clearly 
greater than one. If we display a representative model plot in the original coordinates, as in 
the right hand panel of Fig. V-l (again from Phase I test bl view 5), the problem appears 
to be that the theoretical curve does not saturate as fast as the data does at large FAR. 

We speculate that the quality of the fit can be improved by relaxing the requirement 
that the two PDFs have the same shape. We therefore allow the non-target density to be 
narrower than the target density by a factor c. We then have 

logodds(PD) = ln|prJ - c 1"(FAOR-FARJ ~ c   ' 

This looks terrible; there are now three parameters instead of two and we still do not 
know how to compute the logodds for false alarms. But suppose we assert that we are in 
the low false alarm regime; in other words, that FAR « FAOR. This seems to be justified 
on intuitive grounds. It is not plausible that even the most prolific false alarm generator 
designates more clutter objects than he rejects. If we accept this, then a nice thing happens: 

In 'PD^ ■±ln(FAR) + £- ^(FAOR)) 
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Figure V-1.   Detection and false alarm data from Phase I test b1 view 5.   The 
panel on the left shows a trend which Intercepts the vertical axis at about 

1.2.   In the right panel the provisional model overshoots the high FAR 
points, but the final model accurately represents the trend. 

Now the relevant transform of the FAR is a simple logarithm and is independent of 
unknown parameters. Further, the separation parameter d has become inextricably entan- 
gled with the FAR normalization constant. We cannot separate them—but we do not have 
to. Just redefine an effective separation parameter which absorbs FAOR; call it FAR50: 

FAR5o = FAORexp(-d)   . 

Then we have 

ln(FAR) = c In 
1-PT + ln(FAR50) 

As the name implies, FAR50 is the false alarm rate that is expected if the threshold 
is set so that PD = 50 percent. We now have a two-parameter description of the test data 
that (see Section VI) describes the observer response data quite well. 

An unfortunate consequence of the need to go to a two-parameter description of 
false alarm phenomenology is that there is no single parameter that defines relative sensi- 
tivity. As Figure V-2 shows, if two curves have different values of the slope parameter c, 
then they will intersect. One of the curves will represent better performance on the low 
threshold (i.e., high PD, FAR) side of the crossover point; on the high threshold side, the 
other will be better. 
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Figure V-3.   Illustration of the 
definition of the threshold 
and sensitivity variables. 

For a given trajectory, though, it is a simple matter to define a relative sensitivity, as 
well as a relative threshold value, for a given operating point. We illustrate the method in 
Figure V-3. The straight line is our fit to the data; the point represents the actual 
performance of an individual observer. For a given point, the sensitivity is the component 
of the displacement that is perpendicular to the line, the threshold is the component parallel 
to the line. The directions of the arrows in the figure give the positive sense of these 
quantities. Thus, for the point shown, the sensitivity and the threshold are both positive. 

This description makes it clear that the transformation from the original coordinates 
to the sensitivity and threshold basis is a simple rotation, with the rotation angle specified 
by the slope of the characteristic line. The linear transformation to the new coordinates is 
given by the matrix formula 

/ threshold \        i      /-l -c \ /logodds(PD)> 

\sensitivity. 
K        1      f-1 -c \ /logodds(PDK 

"   -\/c2+r^C  _1^   ln(FAR) ' 

We emphasize that the sensitivity and threshold as defined here are constructed with 
respect to a specified slope parameter, given by c. Direct comparison of the individual 
values of these parameters between different background views with differing values of c is 
not meaningful. However, differences of values within a view—in particular, standard 
deviations of population statistics—are meaningful between views, at least to the extent that 
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our assumptions about the forms of the underlying PDFs are valid. It is the offset, not the 
scale, of the numbers that is arbitrary. 
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VI.   MODEL FITS AND POPULATION STATISTICS 

In this section we discuss the quality of the fits to the Phase I test data and consider 
general properties of the fitted parameters and population statistics. We defer the important 
question of predicting performance based on image statistics to Section VII. 

Two parameters, FAR50 and the width parameter c, determine a characteristic curve 
for each view of each test. The determination of these parameters proceeds as follows: We 
first transform the PD, FAR data to the [logodds(Po), ln(FAR)] representation. Then, we 
determine the parameters of the characteristic curves (which are linear in the new basis) for 
the eight views of the four Phase I tests. The "fitting" procedure is simply to construct a 
straight line for each view of each test Each line is determined by two points: the centroid 
(over observers) of the T = 100 [logodds(Po), ln(FAR)] points, and the centroid of the 
T = 0 points. 

The displays of the complete set of 32 fits, along with a table containing the 
parameters of the fits, are displayed in Appendix A. Note that there is more scatter in the 
data corresponding to views 1,2,7, and 8 than the other four views. Because of the small 
number of false alarms in these views, the estimates of the logarithms of false alarm rates 
are subject to large statistical fluctuations. The situation is further exacerbated for views 1 
and 2, since there are also few missed detections in those views. 

Statistical fluctuations notwithstanding, our model for the data describes it quite 
well. At least for those views with adequate false alarm statistics (views 3 through 6), the 
data closely follow the lines that we have constructed. 

In all views and all tests, the high confidence subset of the data extends smoothly as 
an extrapolation of the low confidence portion. Indeed, in every case there are some 
observers at the low threshold end of the high confidence group whose performance is 

essentially equivalent to some at the high threshold limit of the low confidence group. The 
individual observer's threshold thus seems to be under at least some degree of voluntary 
control. This suggests that the observer pool could be made more homogeneous through 
training or feedback; inter- and intra-observer threshold variations seem to be equivalent. 
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Figure VI-1.   Comparison of the dependence of the slope (or width) 
parameter, c, on view for the various sensor simulations 
(panel a, on left) and observer pools (panel b, on right). 

It is interesting that the slopes of the characteristic curves are quite different between 
views within a given test. It is perhaps even more interesting that the slopes are so similar 
between tests within a given view. Figure VI-la displays the value of the slope parameter c 
for the bl, b2, and b3 tests. It shows that the trends from view to view persist for the 
different sensor simulations. Figure VI-lb shows an even more striking similarity between 
the al and bl test, which represent different observer sets for the same sensor simulation. 

While there is considerable correlation between views and the slope parameter, the 
correlation between the slope parameter and the image based clutter measures that we have 
considered is not sufficiently convincing to warrant elevating it to a model prescription. 
Instead we simply observe that the values of c cluster about a mean value of 2 with a 
standard deviation of 1. 

It is worthwhile to try to understand the origin of the variability of the c parameter. 
Recall that the slope parameter arose as a description of the presumed underlying 

probability distribution function associated with the detectability of the targets which appear 
in the various views. Figure VI-2 shows a scatter plot of the summary statistics of the 

logodds of the detection probability associated with test bl. View 4 certainly does not 
appear to be anomalous in any sense that can be determined from this figure. 
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Figure VI-2.   Summary statistics of the logodds(Po) distribution for the 
various views.   The points are labeled by the view number. 

Nevertheless, we suspect that the variation in c has more to do with subtle aspects 
of the detectability of the targets in the test than with clutter per se. As evidence that this 
may be so, we present in Figure VI-3 a set of histograms, broken out by view, of the 
detection probability, at the T = 0 confidence level, of the targets (that is, averaged over 
observers) as seen in the bl test. Note that for view 4, which has the largest slope 
parameter (c = 4.4), the histogram is somewhat anomalous with respect to the others: the 
target detection probabilities are almost all either very close to one or to zero. This means 
that there cannot be much variation in the observer detection probabilities (averaged over 
targets) due to the bimodal target set. In other words, the observers are constrained to a 
relatively constant detection probability, independent of threshold, while false alarms can 
vary freely. Thus, the large slope parameter. 

Let us now turn to the set of summary statistics that describe the observer 
population. 

The results for the population standard deviations are summarized in Figure VI-4. 
The two panels, a and b, correspond to the 0 percent and 100 percent confidence 
thresholds, respectively. The points corresponding to the views that have adequate false 
alarm statistics are denoted by solid symbols, while the less statistically significant results 
have crosses or open symbols. 
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The quantitative results shown here buttress the qualitative remarks that we have 
made previously: the population is much more homogeneous in sensitivity than in 
thresholds. In fact, for the statistically significant views, the thresholds standard deviations 
are a factor of three larger than the sensitivity standard deviations; this holds within both the 
low and high confidence observer declaration thresholds. 

The other relevant quantity that can be derived is the average threshold offset 
between the high and low confidence declaration thresholds. As Figure VI-5 shows, this 
offset is just as persistent as the standard deviations. All of the points show an offset of 
very close to two units. However much the observers seem to disagree on the absolute 
definitions of 0 percent confidence and 100 percent confidence, they agree remarkably well 
on the relative difference between these two thresholds. Note also that the two-unit 
separation between the centroids of the 0 percent and 100 percent distributions is smaller 
than the sum of their threshold standard deviations; as noted previously, the two distribu- 
tions overlap. 

The model we have developed in the preceding section produces a well-defined set 
of persistent parameters that describe the observer population. These population param- 
eters are summarized in Table VI-1. 
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VII.   FALSE ALARM PREDICTION FROM 
IMAGE STATISTICS 

The statistical variance (SV) statistic has been studied extensively as a predictor of 

target detection probability.5,6 In this section we connect it directly to false alarm rate. 

S V is simply the square root of the average of the local variance of the image pixel 

values. That is, S=V<[(1-F)«I]2>, where I is the original image, 1 is the unit impulse 

filter, and F is a boxcar filter 23 pixels square. (See source in footnote 6 for discussion of 

this choice.) The symbol • denotes convolution, and o the average over all pixels. 

The choice of this statistic as the one to connect to false alarm performance is based 

upon two considerations. First, it is already in use in the NVESD target detection model. 

Second, it is defined unambiguously, up to a scale factor that defines the size of the region 

over which the variances are computed. Thus it allows little "tuning" or calibration. 

We mention here our earlier work, heretofore unpublished, in which we attempted 

to use the SV density to predict specific false alarm locations. This work had limited 

success. While the false alarms often cluster about such peaks, a substantial fraction of the 

time they do not. Furthermore, there are always some other peaks with equally high or 

higher SV value that are not correlated with false alarms. For a synopsis of our analysis of 

SV as a deterministic predictor of false alarms, see Appendix B. 

Despite the unreliability of SV as a tool in locating individual false alarm attractors, 

the positive but sporadic correlation with false alarm clusters gives us confidence that by 

averaging over a large region, such as an entire field of view, the sporadic component 

might be diminished. The hope is that for a given degree of complexity, as measured by 

SV, a more or less fixed fraction will be unidentifiable and therefore a false alarm 

candidate. 

D.E. Schmieder, M.R. Weathersby, Detection Performance in Clutter with Variable Resolution, IEEE 
Transactions on Aerospace and Electronic Systems, AES-19 #4,1983. 
James D. Silk, Statistical Variance Analysis of Clutter Scenes and Application to a Target Acquisition 
Test, Institute for Defense Analyses, IDA Paper P-2950,1994. 
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With this preamble in mind, we consider the test data. Figure VII-1 displays the 
correlation between false alarm rate and S V value. The quality of the correlation is quite 
satisfying. We are further encouraged that the logarithmic plots of the data are all linear, 

and all have roughly the same slope. It therefore seems appropriate to constrain the fit to be 

a power law. 

T=100 

4   5  6 7 8910 
sv 

4   5 6 78910 
SV 

Figure VIM.   Correlation of false alarm rate with statistical variance, for low (left) 
and high (right) confidence detection.   The statistical variance computation 

referenced here is SV23 of footnote 6, In gray scale units. 

The results of power law fits to the data are displayed in the figure and tabulated in 
Table VII-1. The sensor and threshold dependent coefficients should not be regarded as 
being predictive. They may be useful for quantifying differences between sensors under 
controlled conditions, for example. But as the discussion of Section in demonstrates, the 

degree of sensitivity of false alarm results to observer state and expectations render any 
absolute estimate of false alarm rate based on system or image parameters extremely 

tenuous, at best. We believe that the best use of this model would be to predict excursions 
from a measured baseline performance. 

Having made some estimate of false alarm rate based on image statistics, and an 
estimate of the ensemble averaged detection probabilities based on the NVESD detection 
model, it is now possible to generate operating characteristics of the form defined in 

Section V. 
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Table VIM.   Results of power law fits of the form 
FAR m constant x svP°wer to the data of Figure VIM. 

Confidence Sensor Constant Power 

T = 0 b1 0.0088 2.97 

T = 0 b2 0.0021 3.06 

T = 100 b1 0.0015 3.35 

T = 100 b2 0.00013 3.72 

The only remaining connection to be made is that while estimates of the average PD 

can be provided by the Thermal TAMIP detection model, and the average FAR can be 
obtained from Table VII-1, the model of Section V requires the means of different vari- 
ables, namely sensitivity and threshold. The final equation of Section V is the connection 
between these sets of variables, but is not strictly applicable to the mean values of these 
quantities, since the relation is nonlinear. It can be used to get a first order estimate. An 
improved estimate is obtained by expanding the observer probability distribution function, 
which is presumed to be bivariate gaussian in the sensitivity and threshold coordinates, to 
second order about the mean. Appendix C provides a Mathcad™ script which illustrates 

the procedure in detail. 
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VIII.   SUMMARY 

We have presented a model of false alarms that is consistent with the NVESD 
Phase I test data. The model may loosely be partitioned into descriptive and predictive 
components. The descriptive part of the model, which prescribes how to treat the observer 

ensemble for a given average level of detection probability and false alarm rate, is a realistic 
representation of actual human behavior and is extensible to more general situations. The 

predictive portion, which related false alarm rate to image parameters, is demonstrably too 
britde to extend beyond the specific conditions that were replicated in the Phase I tests. 

We conclude by summarizing the algorithm for generating simulated observer 
responses. End-to-end implementation of the model described and justified in this work 
proceeds as follows: 

• Specify the sensor, decision confidence level, and the background and target 
characteristics. 

• Estimate the SV from the background and sensor based on image data if 
available. 

• Determine the average expected FAR from sensor, decision confidence, and 
S V based on Section VII power law estimates. 

• Determine the average PD from sensor, decision confidence, target charac- 
teristics, and SV based on the Thermal TAMBP detection model. 

• Select the slope parameter c based on the advice of Section VI (range 1 to 4 
with mean of 2). 

• Compute mean sensitivity and mean threshold from the mean PD, mean FAR, 
and c using the formula at the end of Section V. (This is only an approxi- 
mation, but a fairly good one, for the mean values; a better but more 
complicated one is provided in Appendix B.) 

• Set observer population standard deviations for the sensitivity and thresholds 
based on the recommendations of Section VI (see especially Figure VI-4; for 
full detection with T = 100, we recommend 0.4 and 1.3 for sensitivity and 
threshold, respectively). 

• Draw individual observer sensitivity and threshold from these distributions. 

• Convert to individual PD and FAR based on inverse of the formula at the end 
of Section V. 
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APPENDIX A 
OBSERVER TEST DATA 

The following pages contain plots of the complete set of observer data from the 
NVESD Phase 1 test. On each page the test index (0,1,2,3) denotes the NVESD Phase I 

test (al, bl, b2, b3). 
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APPENDIX B 
FALSE ALARM LOCATION ANALYSIS 

In Section VII we alluded to an early effort to establish the statistical variance (SV) 

statistic as a predictor of false alarm locations. Since that analysis has not been discussed 

elsewhere, we document it here for the record. 

The first step in the analysis was to subjectively evaluate the correlation between the 

S V density image and the declared false alarms. The meaning and method of construction 

of the SV image are presented in the source in footnote 6. 
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Figure B-1.   Top left:   Scene 2225.   Top right:   Corresponding 
SV density image.    Bottom:   False alarm locations. 
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Two cases are shown here. In Figure B-l is the comparison for background view 

2225. The qualitative correlation seems strikingly good; the inverted "big dipper" pattern is 

evident in all three pictures. 

Unfortunately, view 2225 looks considerably better than the others. View 2741, 

shown in Figure B-2, is more typical. While the strongest SV peak is also the strongest 

false alarm attractor, the correlation over the rest of the image seems weak. 

f      ; ; »--•■•:•• 

I''''I' 'J 

I   I   I   I   I   i   i I I I I I I I I I I I I 11 

Figure B-2.    As Figure B-1, but background 2741. 

Furthermore, the quantitative correlation between SV value and local false alarm 

density is not as strong as one would like. Our method of analysis is as follows: Since the 

clusters seem to correlate with SV peaks, we first need to construct a clustering algorithm 

to "score" the false alarm clusters (recall there is no "ground truth" for the clutter). We 

analyzed all clusters of two or more false alarms, except for view 2747, where there were 

so many small clusters that we stopped at the top 11. Then a rather similar algorithm was 
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used to locate and evaluate SV peaks.   We collected the top 20 SV peaks for each 
background view. 

Finally, we correlated the false alarm clusters with the SV peaks. For each false 
alarm cluster, the distance was computed to all the SV peaks on the top 20 list. The closest 
SV peak on the list was associated with the given cluster, provided that it was within 20 
pixels—about the size of the average target. If no peak was within that range, no 
association was made. 

The results of this analysis are shown in Table B-l. Observe that view 4 shows 
much better correlation than any of the other views. Overall, fewer than 60 percent of the 

clusters are associated with SV peaks, even though the top 20 peaks were identified for 
each view to accommodate an average of seven clusters per view. We do not believe that 

this level of correlation between SV and false alarm locations justifies the formulation of a 

deterministic model of false alarms. We have therefore confined ourselves to the average 
treatment of Section VII. 

Table B-1.   Correlation of false alarm locations with SV value. 

FA 
SV 
seq SV 

view 
# View 

3 2 11.1 1 1701 
2 - 1 1701 
8 4 9.3 2 1705 
2 - 2 1705 
2 - 2 1705 
2 3 9.4 2 1705 
2 12 6.9 2 1705 

21 9 12.5 3 2221 
12 13 11.6 3 2221 
17 1 18.0 3 2221 
5 - 3 2221 
2 - 3 2221 
2 - 3 2221 

32 1 19.0 4 2225 
23 7 14.3 4 2225 
15 8 14.2 4 2225 
11 2 17.4 4 2225 
8 6 14.9 4 2225 
5 15 12.4 4 2225 
3 5 15.0 4 2225 
2 — 4 2225 

FA 
SV 
seq SV 

view 
# View 

52 - 6 2747 
36 3 16.4 6 2747 
22 - 6 2747 
26 15 12.9 6 2747 
17 - 6 2747 
10 - 6 2747 
9 4 16.2 6 2747 
7 12 13.4 6 2747 
5 1 19.0 6 2747 
5 2 18.7 6 2747 
5 - 6 2747 
5 3 10.6 6 2747 
6 - 7 3263 
3 5 9.0 7 3263 
2 10 8.3 7 3263 
2 7 8.6 7 3263 
2 - 7 3263 
2 6 8.8 7 3263 
12 3 12.9 8 3265 
3 - 8 3265 
2 - 8 3265 

(Continued) 
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Table  B-1   (Continued) 

FA 
SV 
seq SV 

view 
# View 

67 1 26.9 5 2741 
31 9 13.9 5 2741 
17 17 12.6 5 2741 
3 - 5 2741 
4 - 5 2741 
3 5 15.3 5 2741 
2 5 2741 
2 8 14.5 5 2741 
2 14 12.8 5 2741 
2 20 12.3 5 2741 

SV view 
FA   seq       SV        #      View 

2       - 8      3265 

We believe that the reason for the sporadic effectiveness of SV as a predictor of 
specific false alarm objects is due to the presence of higher cognitive processes in target 
detection. Some objects are simply identified by the observer as what they are—a bush or 

rock, for instance—and are excluded from being declared as a detection on this basis. 
Although the detection process is often hypothesized to be a lower level process than the 
recognition and identification tasks, these higher elements seem to be present in military 
detection, whether we like it or not. 
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APPENDIX C 
TRANSFORMATION OF AVERAGED VARIABLES 

In order to simulate the detection and false alarm performance of an ensemble of 
observers, we need to know five parameters: s and t, the means of sensitivity and 
threshold; <TS and <7t, their standard deviations; and c, the slope parameter. In the 
foregoing work we have recommended standard choices for the latter three quantities. In 
this appendix we explicitly show how to determine s and t from the quantities that are 
predicted, namely FAR and PD. 

We start by writing our observables as functions of sensitivity and threshold: 

P
D(M) = - ; TT>   FAR(s,t) = exp(-bs-at)   . 

l + exp(-as+bt) 
We assume that the observer ensemble is described by a Gaussian probability 

distribution function: 

0(s,t) = - exp 
lnasat 

(s-s)2    (t-t)2 

lof      laf 
Thus the averages of the observable quantities over the observer ensemble are given 

by 

P^ = jPD(s,t)0(s,t)dsdt   ,and   FAR = fFAR(s,t)0(s,t)dsdt   . 

These integrals are hard, but it is enough to expand the functions PD and FAR to 
second order about the mean values s and t. The first order terms cancel because of the 
symmetry of </>, so we get 

P^ = [l + 2A(l-PD(s,t))2]pD(s,t)   and   FAR = [H- B]FAR(s, t)   , 

where 

_c2+l  c2 + l 
The expressions for PD and FAR can now be inverted; the first is cubic in PD, 

but an approximate iterative solution suffices. The final step is to use the definitions of PD 

and FAR to solve for s and t. The following Mathcad™ script generates pseudodata and 
illustrates these transformations. 
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