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The estimation of material and patch parameters for a system involving a circular plate, to 
which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) 
model for the thin circular plate is used with the passive and active contributions from the 
patches included in the internal and external bending moments. This model contains piecewise 
constant parameters describing the density, flexural rigidity, Poisson ratio and Kelvin-Voigt 
damping for the system as well as patch constants and a coefficient for viscous air damping. 
Examples demonstrating the estimation of these parameters with experimental acceleration 
data and a variety of inputs to the experimental plate are presented. By using a. physically- 
derived PDE model to describe the system, parameter sets consistent across experiments are 
obtained, even when phenomena such as damping due to electric circuits affect the system 
dynamics. 
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1     Introduction 

In many applications involving vibrating structures, it is both feasible and advantageous to 
start with basic physical principles and from them, derive a PDE model describing the system 
dynamics. Such models can directly incorporate the effects of nonhomogeneities, actuators or 
sensors bonded to or embedded in the structure (e.g., piezoceramic patches), coupling with 
adjacent acoustic or fluid fields if they exist, and contributions due to multiple components, 
inexact boundary conditions, and any other influences which may affect the system dynamics. 
General constitutive laws, moment and force relations, and electromechanical laws are used 
when deriving these models. This then leads to PDE models having physical parameters which 
must be estimated through fit-to-data techniques. 

Consider, for example, a structural system with surface-mounted piezoelectric actuators 
and sensors. Physical parameters include density, stiffness, damping and Poisson ratios for 
the structure and electromechanical coefficients describing the strain generated and sensed by 
the piezoelectric elements. These parameters must be determined for the experimental system 
under consideration before the PDE models can be used with any accuracy in model-based 
applications such as simulation or control. In simulations, the use of inexact parameters can 
lead to spurious results, whereas controllers will be degraded or even potentially destabilized 
by the use of inexact parameter values. 

While "handbook" values often exist for the density, stiffness and Poisson coefficients for the 
material in a uniform and homogeneous structure, they usually cannot be used with certainty 
or reliability in the models describing actual experimental structures due to nonhomogeneities 
in materials, and differing geometries and material properties in the regions of actuators and 
sensors. Similarly, while electromechanical constants for actuators and sensors can often be 
found in manufacturer specifications, variability in actual experimental conditions necessitates 
the estimation of these parameters before PDE models can be employed in simulation and 
control applications. Finally, the estimation of damping coefficients using experimental data is 
crucial since accurate compilations of damping coefficients for various materials do not exist. 

Several studies regarding the estimation of parameters in PDE models for homogeneous 
beams [11, 12], plates [5] and grid structures [3, 4] have been reported. Furthermore, results 
pertaining to parameter estimation issues which arise when piezoceramic patches are used as 
sensors and actuators on a beam can be found in [13, 14]. There it was demonstrated that the 
stiffness, density and damping parameters for a beam with surface-mounted piezoceramic actu- 
ators and sensors must be taken to be piecewise-constant to account for the differing geometry 
and material properties of the patches. When this was done, consistency across experiments 
with a variety of inputs and outputs was obtained, thus validating the applicability of the PDE 
model for the system. 

In this work, we extend the PDE-based parameter estimation methods of [14] to a clamped 
circular plate with surface-mounted piezoceramic patches. The dynamics of the plate differ 
from those of a beam in that Poisson effects provide a coupling between the radial and tan- 
gential vibrations. Hence, when estimating parameters for the plate, one must work with data 
containing significantly more frequencies than is typically the case with the beams. The results 
reported here differ from those in [3, 4, 5] in that the emphasis here is on the consistent esti- 
mation of physical parameters for a plate whose dynamics are influenced by the presence and 
excitation of piezoceramic patches. 
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In addition to issues regarding the estimation of the density, stiffness, Poisson and material 
and air damping parameters, questions concerning the passive damping due to the patches are 
addressed. It is well-known among experimentalists that significant passive damping is provided 
when the circuit for the piezoceramic patch is closed or shunted [16]. This general phenomenon 
for structures is investigated in the context of the circular plate with its corresponding PDE- 
based model. 

By using PDE models and estimating parameters through fit-to-data techniques, model fits 
to data that are consistent across experiments are obtained, even in the presence of passive 
patch damping. Up to six axisymmetric and eight nonaxisymmetric frequencies are matched 
through time-domain optimization, thus demonstrating that the effectiveness of the the model 
is not dependent upon the number of excited frequencies. The distributed nature of the model 
is further demonstrated by examples illustrating the match of the model response with data 
measured at plate points not used in the optimization process. As discussed in [1], the model, 
with parameters estimated from experimental data, is sufficiently accurate so as to be very 
effective when incorporated in PDE-based control methods for reducing plate vibrations. 

We note that throughout this work, fixed-edge (zero displacement and slope) boundary 
conditions are assumed. This assumption was made after tests indicated minimal energy loss 
through the boundary clamps. In many structures, however, boundary movement makes this 
assumption inappropriate. In such cases, a boundary moment model of the type discussed in [9] 
and experimentally investigated in [2] may provide a more accurate description of the boundary 
physics. 

In Section 2, the strong and weak forms of the PDE model for a thin circular plate with fixed- 
edge boundary conditions are discussed. Care is taken to include both the passive and active 
contributions due to the piezoceramic patches when developing this model. A Fourier-Galerkin 
approximation method and the parameter estimation problem are outlined in Section 3. A 
modified cubic spline basis in the radial direction provides accurate approximates and facili- 
tates the incorporation of patch effects. The final section of the paper contains a repertoire of 
examples demonstrating the model fits when parameters are estimated in a variety of experi- 
ments. These examples demonstrate the accuracy of the PDE model for describing the plate 
dynamics and the effects of passive damping due to the shunted patches. 

2     Plate Model 

The structure under consideration consists of a thin circular plate mounted to a frame with a 
heavy metal collar. Bonded to the plate are piezoceramic patches which are mounted either 
individually or in pairs as illustrated in Figure 1. As discussed in [8], the free patches generate 
strains in response to an applied voltage. When bonded to an underlying structure, these strains 
lead to the generation of in-plane forces and/or bending moments as depicted in Figure 2. In 
this paper, we will consider only the bending moments which are generated by the patches and 
will consider them as an input to a model describing the transverse vibrations of a plate. 
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Figure 1.    A thin circular plate with piezoeceramic patches bonded individually or in pairs 

to its surface. 
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Figure 2.    Strain distribution resulting from applied voltages to (a) a patch pair, and (b) a 
single piezoceramic patch. In both cases, in-plane forces and/or bending moments 
can be generated. 

2.1     Strong Form of the Plate Equation 

For this discussion, we will consider a plate of radius a and thickness h as shown in Figure 1. 
The radial and circumferential coordinates are denoted by r and 0, respectively. Bonded to 
the plate are patches of thickness T with a bonding layer that is assumed to have uniform 
thickness Ty (see Figure 2). The Young's modulus, density coefficient, Poisson ratio and Kelvin- 
Voigt damping coefficient for the plate are denoted by Ep,pp,vp and cp , respectively, while 

pe 1 Vpe 1 (-Dp anc similar parameters for the patches and bonding layer are denoted by Epe,v. 
Eb(,Ub(,Ubc,CDbt, respectively.   We point out that the assumption that all the patches (and 
respectively, bonding layers) have the same Young's modulus and Poisson ratio is made only 
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for ease of exposition and analogous formulations result when differing values are assumed for 
the individual patches and bonding layers (see, for example, [8]). 

Letting zu, 7,/? and / denote, respectively, the transverse plate displacement, viscous air 
damping coefficient, density for the combined structure, and external surface force, the strong 
form of the equations modeling the transverse motion is 

d2w      dw    d2Mr    2dMr    lfJMg    2d2Mre     2 dMr6     1 d2Mt 

^W^dt       dr2 

with initial conditions 

dr ■ + — 
r   or r  drdö       r2    dO        r2   Ö62 

dw 

f(t,r,9) (2.1) 

w(0, r, 0) = w0(r, 9)    ,     —(0, r, 9) = uh(r, 6) 

The general moments are given by 

Mr   =   Mr-(Mr)pe 

Me   =   Me-{Mg)pe 

Mro   =   Mr e 

where Mr,Me and Mr$ are internal plate moments, and [Mr)pe and (Mg)pe are the external 
moments generated by the patches. The internal moments for the circular plate with s pairs of 
surface-mounted piezoceramic patches are 

Mr = DKr + DKe + CDKT + CQKQ 

Me = DKe + DKr + cDKB + cDKr 

\/t        A*        
D        D        cD .      cD . Mre = Mar = —r r H r r 

12.2) 

where 
d2w 

Or2 Ke = 
1 dw      1 d2w 

r dr 

2 d2w       2 dw 

r2 Ö92 T r drdO + de 
The global flexural rigidity parameters D, D and Kelvin-Voigt damping parameters CD and crj 
are given by 

D(r,6) 
Eph

3 2   s 

12(1 - «/=)   '  3£[1 

E„h3un 2 A fl(r,fl) =       p     \   +-T 

CD(r'Ö)=12Ü^) + 3S 
CDPea3pe CDb(,a3b( 

Xi(r,0) 

(2-3) 



Here a3M = (A/2 + TM)3 - (A/2)3, a3pe = (A/2 + Tbe + T)3 - (A/2 + TM)3 and Xi{r, B) denotes the 
characteristic function which has a value of 1 in the region covered by the ith patch and is 0 
elsewhere. A similar definition is used for the density which also exhibits a piecewise constant 
nature due to the presence of the patches. These definitions can be adapted to the case of a 
single patch that is bonded to the plate by replacing the 2/3 by 1/3. We point out that if the 
plate, patches and bonding layers have the same Poisson ratios [v,p = vve = vy = v), then the 
internal moment expressions reduce to the familiar relations for a thin plate. For example, Mr 

in this case is given by 

d w    v dw     v d2w\ f d3w      v d2w      v   c) 
Mr = -D\ -rr+-^r + -T-^ \-cD\ -r^7 + -7T^7 + 

w 

Or2     r dr     r2 dB2 J      '"\dr2dt     r drfjt    r2dB20tJ 

with D and cp defined in (2.3). 
The external moments generated by the patches in response to an applied voltage (out-of- 

phase for the patch pair) are given by 

(Mr)pe = (M,)pe = -t/K:fui(t)Xi(r,e) (2.4) 
«=i 

where Ui(t) is the voltage into the itk patch (or patch pair) and Kf is a parameter given by 

K,f = 

'   1        F* 
-•-—^—c?3i(A + 2Ty + T)        ,     active single patch 
2    1 - i/pe 

E„ 
(2.5) 

pe 

. i - *v 
d31(h + 2TM + T) ,     active patch pair 

(see [8] for details). In these expressions, the piezoelectric strain constant dz\ relates the input 
voltage to the free strain generated in the patch. 

In the case of perfectly clamped edges, zero displacement and slope are maintained at the 
plate perimeter and the boundary conditions are taken to be 

w(t,aJ)='-£(t,a,B) = 0 . (2.6) 

For the experiments discussed here, this fixed-edge boundary condition adequately modeled 
the edge dynamics and hence it is used throughout this work. In many applications, however, 
perfect clamps modeled by fixed-edge boundary conditions are difficult to attain, thus resulting 
in frequencies that are lower than expected [17, 18, 21, 22]. In such cases, boundary moment 
models of the type discussed in [9, 10] can be employed. 

We point out that the piezoceramic material parameters K.f ,i = 1, • • •, ,s and the plate 
parameters p, D,;/, CD and 7 should be considered as unknown and in applications must be 
estimated using the fit-to-data techniques to be discussed in the next section (D and CD can be 
constructed using components of D, CD and v). One might argue that in regions of the plate not 
covered by patches, "handbook" values of p, D and // for the aluminum plate material be used 
and parameter estimation avoided. As demonstrated by the examples, however, there exists 
sufficient variation in material properties (and boundary conditions) so as to yield plate param- 
eters which vary significantly from the "handbook" values.   Similarly, manufacturer specified 



values for </31 can be found for various piezoceramic materials and hence the analytic moments 
generated by the patches can be obtained from (2.4). The specified values for d31 can vary by 
batch, however, and the static values listed by manufacturers are often significantly larger than 
the actual values obtained in dynamic experiments [15, 19, 20]. Finally, the strain output for 
the patches often decays over time which is manifested in the moment expression (2.4) by a 
decrease in d31. Hence, all of the parameters listed above must be estimated before an accurate 
fit of the model to the experimental system can be expected. 

2.2     Weak Form of the Plate Equations 

Due to the piecewise constant nature of the physical parameters D, v and C£>, one is forced to 
differentiate discontinuous functions when considering the strong form of the plate equations 
(2.1). Moreover, the input due to the excitation of the patches is spatially discontinuous since it 
is defined only in the regions of the active patches. Since this input acts as a bending moment on 
the plate, it too is twice differentiated when considering the strong form of the plate equations, 
thus yielding a distribution having the regularity of a differentiated Dirac delta "function." To 
avoid these difficulties as well as lower smoothness requirements for approximating elements, 
we will consider a weak form of the modeling plate equations. 

We begin by defining appropriate spaces in which to consider the evolution and approxima- 
tion of the plate dynamics. For a plate having perfectly clamped edges and hence boundary 
conditions (2.6), the state for the problem is taken to be the transverse displacement tu in the 
state space H = L2(T0) where F0 denotes the region occupied by the unstrained neutral surface 
of the plate. Motivated by the energy considerations discussed in [7], we also define the space 
of test functions V = H2(T0) = {q 6 H2(T0) | r](a,0) = § (a,6) = 0}. 

A weak or variational form of the equation describing the transverse motion of a damped 
thin circular plate having perfectly clamped edges and s surface-mounted piezoceramic patches 
or patch pairs is then 

, d2w 
r0 

phW 
f     ow_ 1        r   , r azT] 7        / 

:M„ 
ch]     d2r] 

du 

d2r] 

"drde (2.7) 

- / £^(0x*M)VV^+ / fvdco 

for all test functions ?/ £ V. The overbar here denotes complex conjugation and the differential 
is duj = rdOdr. 

We point out that in the weak form, the derivatives are transferred from the moments 
onto the test functions, thus eliminating the difficulties associated with the differentiation of 
discontinuous physical parameters and patch input terms. This is then an appropriate form in 
which to approximate the plate dynamics and consider parameter identification techniques to 
estimate the unknown physical parameters. For the interested reader, further details concerning 
the development and well-posedness of this model can be found in [6, 7]. 



3     System Approximation and Parameter Estimation 

In order to develop techniques for numerically simulating plate dynamics, estimating parameters 
and implementing control schemes, one must approximate the infinite dimensional states and 
test functions in (2.7). In doing so, care must be taken at the origin to avoid numerical 
instabilities and decreased convergence rates due to the coordinate singularity (as manifested 
by the ^ and ^ terms in the moment expressions). The approach used here follows that 
described in [7, 23]. 

3.1      Approximate Plate Solution and Resulting Matrix System 

As discussed in [7, 23], an appropriate choice for the basis and Fourier-Galerkin expansion of 
the plate displacement is Bf(r,6) = rHJB™(r)e™<? and 

M      Nm A/" 

w"(t,r,9) =    £    E i(t)rHß:(r)e,'M' = £ «^(*)£f M) . (3.1) 
m=-M n=\ k=l 

Here B™{r) is the nth modified cubic spline satisfying B™{a) = tiB£(a) = 0 with the condition 

—^-^ = 0 being enforced when m = 0 (this latter condition guarantees differentiability at the 
origin and implies that 

f N ,   m = 0 

{ N + l     ,   m ^ 0 

where N denotes the number of modified cubic splines). The total number of plate basis 
functions is M = (2M + l)(Ar + 1) — 1. As discussed in the [7, 23], the inclusion of the weighting 
term r'm' with 

f 0     ,   m = 0 

i 1     ,   m ^ 0 

is motivated by the asymptotic behavior of the Bessel functions (which make up the analytic 
plate solution) as r —> 0. It also serves to ensure the uniqueness of the solution at the origin. 
The Fourier coefficient in the weight is truncated to control the conditioning of the mass and 
stiffness matrices (see the examples in [7]). 

To obtain a matrix system, the J\f dimensional approximating subspace is taken to be 
H = span{Bf} and the product space for the first-order system is H^ x HA''. The restriction 
of the infinite-dimensional system (2.7) to the space Hxr x H^ then yields a matrix system of 
the form 

y"(t) = //(t) + BMu{t) + FM(t) 

yM(0) = yf (3-2) 

where yM(t) = [wi(t), ■ • • ,wtf(t), w^t), ■ ■ ■, w_\f(t)] denotes the 2J\f column vector containing 
the generalized Fourier coefficients for the approximate displacement and velocity. Details 
concerning the construction of the component vectors and matrices in (3.2) can be found in [7, 
23]. In this form, the finite-dimensional parameter estimation problem can be readily discussed. 



3.2     Parameter Estimation 

The parameter estimation problem is posed as the problem of determining estimates of the 
"true" physical parameters p, D, u, c#,7, /Cf, • • • ,/Cf given data measurements z. In the ex- 
perimental results reported here, this data consisted of time histories of the transverse plate 
acceleration which were obtained from accelerometers located at various coordinates on the 
plate. 

As discussed previously, the parameters /?, Z), v and CD are assumed to be piecewise con- 
stants in order to account for the presence and differing material properties of the piezoceramic 
patches. For the case in which s patches or patch pairs are bonded to the plate, these parameters 
can then be expressed as 

p(r, 9) = J2 cpiXi(r, 9)        ,       D(r, 0) = £ cDiXi(r, 0) 

(3.3) 
s+l s+1 y ' 

7/(r, 0) = Y^ CviXiir, 9)       ,       cD(r, 9) = J^ cCj}iXi{r, 9) 
«=1 i=l 

where again, Xi(ri &) ■> i = !,••• ,s is the characteristic functions over the ith patch or patch pair 
and Xs+i is the characteristic function over the portion of the plate not covered with patches. 
The damping due to air is assumed to be uniform over the entire surface; hence 7 is taken to be 
constant. Moreover, we recall from the definition (2.5) that the patch parameters /Cf, • • • ,/Cf 
are constants which depend on piezoelectric properties, the geometry and size of the patch, and 
bonding layer and patch properties. 

To formulate the problem in an optimization setting, we let q — (/), D, u, CD, 7, /Cf, • • •, JCf) 
and assume that q £ Q where Q is an admissible parameter space in which the constraints 
(3.3), smoothness criteria, and physical constraints on the parameters are satisfied. The finite 
dimensional parameter estimation problem is to then seek q £ Q which minimizes 

JN(q) = E 
2„,JV d w 

dt2 -(tj,r,9;q) (3.4) 

subject to wA  satisfying the approximate plate equations (hence the coefficients {w£ } of w 
must satisfy (3.2)). Here Zj is an observation of acceleration taken at time tj and point (r, 9) on 
the plate.  Details regarding the convergence of the parameter estimates for general problems 
of this type can be found in [14]. 

In the results in the examples of the next section, minimization of the functional (3.4) 
was accomplished via a Levenberg-Marquardt routine with a stiff ODE solver being used to 
integrate the system (3.2) in order to obtain the model response at the sample points. This 
minimization can also be performed with various constrained optimization routines in which 
case, parameter constraints such as positivity can be enforced. 



4    Experimental Results 

In the experimental results reported here, a circular aluminum plate with a single centered 
circular patch was considered (see Figure 3). The dimensions of the plate and piezoceramic 
patches are summarized in Table 1. We note that the patch has a radius that is ^ that of the 
plate and a thickness that is approximately I of the plate thickness; hence it is quite small in 
relation to the plate. Table 1 also contains "handbook" values of the density, Young's modulus 
and Poisson ratio for the plate. We reiterate that while these values provide a starting point 
in the parameter estimation routine, they usually cannot be used in the final system model 
with any accuracy due to nonuniformities in the plate or boundary conditions, variations in 
materials, and the contributions due to the presence of the patches (this fact is illustrated in 
the examples). 

To provide a basis for comparison between measured experimental natural frequencies and 
the analytic frequencies for a plate of this size to which no patches are bonded, analytic values 
were calculated using the plate dimensions and "handbook" parameter values summarized in 
Table 1. These analytic values are compiled in Table 2. In this latter table, m refers to the 
Fourier number and n denotes the order of the root to the Bessel functions which comprise 
the analytic solutions. Hence the analytic frequencies of the first four axisymmetric modes 
are 61.9,241.2,540.5 and 959.5 hertz corresponding to m = 0 , ?? = 0,1,2 and 3, respectively. 
The Fourier number m can also be interpreted as the number of nodal diameters while n is 
the number of nodal circles, not including the boundary. As will be seen in the examples, the 
experimental frequencies are, in many cases, significantly lower than the corresponding analytic 
values due to variations in material properties. 

Time domain data was collected using accelerometers located at the points At- = (2", 0), Ac = 
(0,0) and Ar = (2",7r) as depicted in Figure 3 (thus specifying (r,8) in (3.4)). This orientation 
of accelerometers permitted the collection of both axisymmetric and nonaxisymmetric data with 
the location chosen to avoid low-order nodal lines and circles. In all cases, data was obtained 
at a 12 KHz sample rate so as to resolve any high frequency responses. 

The experimental results reported here can be summarized as follows: 

Example 1: Axisymmetric Excitation with Large Hammer- Open Circuit 

Example 2: Axisymmetric Excitation with Large Hammer- Closed Circuit 

Example 3: Axisymmetric Excitation with Small Hammer 

Example 4: Axisymmetric Excitation through a Voltage Spike to Patch 

Example 5: Nonaxisymmetric Excitation with Small Hammer 

Note that both axisymmetric and general nonaxisymmetric responses are considered with input 
provided by various impact hammers as well as from the patches themselves. The damping 
effects due to the electric circuit containing the patch are also investigated. In each experiment, 
the goal is the estimation of the various physical parameters and the results from all experiments 
discussed here are summarized in Table 3. The consistency and/or variability of these estimates 
will be discussed in the examples presented below. 



Accelerometer at  A,. 

>  Accelerometer at  Ar 

    Centered Hammer Impact 

1   Accelerometer at  Aj 

  Offcenter Hammer Impact 

Figure 3. Clamped circular plate with a single centered piezoceramic patch. Accelerometers 
located at A( = (2",0),AC = (0,0) and Ar = (2",TT). Centered hammer impact at 
(0,0), offcenter hammer impact at (7.27", 0). 

Plate Properties Patch Properties 

Radius a = .2286?77 (9") rad = .01905 777 (.75") 

Thickness h = .00127 777 (.05") T= .0001778 77? (.007") 

Young's Modulus Ep = 7.1 xlO10 N/m2 Epe = 6.3 x 1010 7V/?77,2 

Density pp = 2700 kg/m3 ppe = 7600 kg/m3 

Poisson ratio Vp = .33 Upe  = .31 

Strain Coefficient d31 = 190 x 10~12 m/V 

Table 1. Dimensionsand "handbook" characteristics of the plate and PZT piezoceramic patch. 

77 77? = 0 777 =  1 777 = 2 777 = 3 777. = 4 777 = 5 777 = 6 

0 61.9 129.0 211.6 309.6 422.6 550.4 692.8 
1 241.2 368.9 513.0 673.3 849.8 
2 540.5 728.3 932.9 
3 959.5 

Table 2. Plate frequencies calculated using "handbook" dimensions and parameters under the 
assumption of a thin plate model with fixed boundary conditions. 
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Analytic Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 

p 
(kg/m2) 

Plate 

Plate + Pzt 

3.429 3.107 

3.131 

3.123 

3.230 

3.114 

2.993 

3.170 

3.216 

3.165 

3.179 

D 

(Nm) 

Plate 

Plate + Pzt 

13.601 11.310 

11.381 

11.270 

11.302 

11.205 

11.674 

11.151 

11.506 

11.361 

11.783 

CD 

(Nmsec) 

Plate 

Plate + Pzt 

1.161-4 

1.290-4 

1.443-4 

2.031-4 

9.358-6 

9.392-6 

2.816-5 

3.211-5 

2.598-5 

2.693-5 

V Plate 

Plate + Pzt 

.33 .331 

.326 

.331 

.325 

.330 

.327 

.326 

.325 

.330 

.328 

7 [secN/m3) 11.57 17.02 58.57 58.97 45.71 

KB(N/V) .006074 

Table 3. Analytic and experimental parameters values obtained in Examples 1 - 5. 

Example 1: Axisymmetric Excitation with Large Hammer - Open Circuit 

In the first set of experiments, the plate was excited through an impulse delivered by a large 
impact hammer having a plastic tip (the force transducer on the hammer delivered 50 mV/lb). 
The impact was delivered to the center of the plate and data was collected from accelerometers 
located at the points A( = (2",0), Ac = (0,0) and Ar = (2",TT) (see Figure 3). The excitation 
of the structure in this manner provided a primarily axisymmetric response with the purely 
axisymmetric component being measured by the centered accelerometer. Data obtained from 
off-center accelerometers indicated that while slight nonaxisymmetric vibrations were present, 
their effect was minimal. 

During the collection of this data, the circuit involving the piezoceramic patch was left open 
to minimize piezoelectric effects due to the bending patch (with a closed circuit, the voltage 
produced when the patch vibrates is fed back to the patch which in turn produces a bending 
moment; the damping and stiffening effects which occur in this case are investigated in the next 
example). 

Minimization of the function (3.4) was performed using the time history of the acceleration 
obtained from the centered accelerometer (at Ac = (0,0)). For this experiment, fixed-edge 
boundary conditions were assumed and hence the optimization was performed subject to wAr 

satisfying the discretization of (2.7). The estimated parameters p,^,D,v and crj (KB was not 
estimated here since there is no patch input) are recorded in Table 3 while model-based results 
obtained with these values are plotted against experimental results in Figures 4 and 5. We 
reiterate that in these plots, both the data and calculated model response were obtained at the 
center point of the plate. 

As indicated by the frequency results in Figure 5, four axisymmetric modes, having fre- 
quencies of 59.3,227.8,516.4 and 917.7, were excited in this experiment. The results in both 
figures demonstrate that the parameter estimates in Table 3 lead to a very close matching of 
the first two frequencies. The overdamping of the higher frequency modes is characteristic of 
the Kelvin-Voigt clamping model and this leads to the very slight variation seen in the time 
history when comparing the experimental data and model response. 
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To demonstrate the distributed nature of the model, the parameters obtained using data 
from the centered accelerometer, as summarized in Table 3, were used to calculate the model 
response at the offcenter point Ar = (2", TC). The results are plotted along with the experimental 
data at that point in Figures 6 and 7. From the frequency results in Figure 7, it can be seen 
that the primary response at that point is in the first two axisymmetric modes, and while the 
model response in the first mode is slightly larger than the corresponding experimental result, 
the agreement is very close in light of the fact that experimental data from this accelerometer 
was not used when determining the physical parameters. Similar results were found at the 
point An = (2",0), thus demonstrating the distributed nature of the model. 

200 

-200 

Plate Response to a Hammer Impact 

0.05        0.1 0.15        0.2        0.25 
Time (sec) 

0.3 0.35 0.4 

Figure 4. Time history of the Experiment 1 data measured at Ac = (0,0) and model response 
with estimated parameters, (Experimental Data), (Model Response). 
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FFT of Plate Response to a Hammer Impact for Time Interval (0,.2) 

200 400 600 
Frequency (Hertz) 

800 1000 

Figure 5. Frequency content of the Experiment 1 data measured at Ac = (0, 0) and thin plate 
model with estimated parameters, x (Experimental Data), o (Model 
Response). 

Plate Response to a Hammer Impact 

Figure 6. Time history of the Experiment 1 data measured at AT = (2, TT) and model response 
with estimated parameters, (Experimental Data), (Model Response). 
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FFT of Plate Response to a Hammer Impact for Time Interval (0,.2) 

59.3 
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t 287.1 3508  516-4 
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Figure 7. Frequency content of the Experiment 1 data, measured at Ar = (2,7r) and thin plate 
model with estimated parameters, x (Experimental Data), o (Model 
Response). 

Example 2: Axisymmetric Excitation with Large Hammer - Closed Circuit 

As discussed previously, the piezoelectric effect is manifested in two ways in the patches. 
In one case, vibrations in the plate and hence the patch lead to generated strains which in 
turn produce voltages, whereas the converse effect leads to generated strains in response to an 
input voltage. The completion of the circuit involving the piezoceramic patch leads to a strong 
interaction between these effects, and indeed, the shunting of the patch by simply connecting 
the leads is a recognized means of increasing system damping and changing stiffness properties 

[16]. 
In this example, the effects of closing the circuit on the estimated parameters are investi- 

gated. The experimental setup is identical to that described in the previous example except 
that in this case, the circuit involving the piezoceramic patch was closed. For experiments in 
which input to a piezoceramic actuator is used to control the system, this is a more realistic 
scenario since the circuits must be complete in any control setup. As in the previous example, 
an impact hammer hit to the plate center was used to obtain an axisymmetric response and 
data was obtained from accelerometers located at the points ACJ Ar and At depicted in Figure 3. 

To obtain model responses for this case, three sets of parameters, as summarized in Table 4, 
were used. The first set of parameters was obtained by minimizing the functional (3.4) using 
data from the centered accelerometer. These parameters can be compared with those in the 
second set which were obtained in the first experiment. To obtain the third set, the analytic 
values for the density, flexural rigidity and Poisson ratio for the plate were used throughout the 
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structure while 7 and CJJ from the first data set were used as damping values. The use of the 
third data set simulates the results that are obtained if one simply uses "handbook" values for 
the density, flexural rigidity and Poisson ratio. 

As demonstrated by the time history and corresponding frequency plots in Figure 8a, results 
comparable to those obtained in Example 1 can be obtained when the physical parameters are 
obtained using fit-to-data techniques. By comparing the parameters obtained here with those 
of the first experiment, however, one sees some variation due to the circuit effects on the 
piezoceramic patches. The most marked difference is an increase in damping which results 
when the system is closed. Since the clamping effects clue to the circuit are not included in the 
model, the optimization routine increased the viscous clamping coefficient 7 and Kelvin-Voigt 
parameter Cß. As noted in the plots of Figure 8a, this compensation for the damping leads to 
a good model fit to the data even though the mechanism for the unmodeled circuit clamping 
differs from the internal and viscous damping included in the model. While some difference in 
density and stiffness also occur, these effects are less pronounced clue to the small size of the 
patch in relation to the plate. 

The experimental data and model response obtained with parameters from Experiment 1 
(open circuit) are plotted in Figure 8b. As noted in these plots, the model response is signifi- 
cantly underdamped since the effects of damping clue to the closed circuit were not considered 
in Example 1. Moreover, a slight shift in frequency due to changes in p,D and 7/ can also be 
noted. This illustrates some of the variations which result from changing the configuration of 
the electric circuit and highlights the fact that identification procedures should be performed 
in the setting in which applications or control are to be considered. 

Finally, the experimental data and model response obtained with the third set of parameters 
(analytic values of p, D and ;/) are plotted in Figure 8c. As noted in both time domain and 
frequency plots, the frequency of the model response is much too large in this case, namely due 
to the fact that the analytic value of the flexural rigidity is approximately 17% larger than the 
estimated values. This illustrates the fact that even those parameters for which "handbook" 
values exist must be estimated through parameter identification techniques in order to guarantee 
an accurate model. 

Estimated 

Parameters 

Example 1 

Parameters 

Analytical 

Parameters 

p ■thickness 

(kg/m2) 

Plate 

Plate + Pzt 

3.123 

3.230 

3.107 

3.131 

3.429 

3.429 

D Plate 

Plate + Pzt 

11.270 

11.302 

11.310 

11.381 

13.601 

13.601 

CD 

(N ■ m ■ sec) 

Plate 

Plate + Pzt 

1.443-4 

2.031-4 

1.161-4 

1.290-4 

1.161-4 

1.290-4 

V Plate 

Plate + Pzt 
.331 

.325 

.331 

.326 

.330 

.330 

7 {sec • N/m) 17.021 11.569 11.569 

Table 4. Analytic and experimental values of the physical parameters. The estimated 
parameters in Column 3 were obtained using Experiment 2 data. 
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(a) Plate Response to a Hammer Impact FFT of Plate Response to a Hammer Impact for Time Interval (0..2) 

400 600 
Frequency (Hertz) 

1000 

(b) Plate Response to a Hammer Impact FFT of Plate Response to a Hammer Impact for Time Interval (0..2) 

0.05        0.1        0.15        0.2        0.25        0.3        0.35        0.4 
Time (sec) 

400 600 
Frequency (Hertz) 

(c) Plate Response to a Hammer Impact FFT of Plate Response to a Hammer Impact for Time Interval (0,.2) 

400 600 
Frequency (Hertz) 

1000 

Figure 8. Experiment 2 data, measured at Ac — (0,0) and model response with (a) estimated 
parameters, (b) parameters from Example 1, and (c) analytic parameters; x  
(Experimental Data), o (Model Response). 
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Example 3: Axisymmetric Excitation with Small Hammer 

In the previous two experiments, the plate was excited through impacts from a large hammer 
having a soft tip. This resulted in the excitation of four axisymmetric modes having frequencies 
ranging from approximately 60 Hz to 920 Hz. To investigate the suitability of the model when 
a wider range of frequencies are excited, a small impact hammer (with a force transducer 
delivering 100 mV/lb) having a metal tip was also used with the results being reported in this 
example. 

As in the previous example, a centered hit was used to evoke an axisymmetric response 
with data being obtained from accelerometers located at AC,A( and Ar. The leads to the 
piezoceramic patches were left disconnected, thus minimizing the damping effects due to the 
circuit and patch. The minimization of the functional (3.4) was performed with data from the 
centered accelerometer and the resulting estimated parameters are summarized in Table 3. The 
model response and experimental data from the centered accelerometer are plotted in Figure 9 
and 10. As indicated by the frequency plots in Figure 10, six modes were accurately matched 
with these estimated parameter values with expected overdamping of the high frequency 2814 
and 3661 Hz modes. 

In comparing the parameter estimates of Examples 1 and 2 in Table 3, it can be seen that 
while little change occurs in />, D and u, there is some variation in the viscous clamping constant 
7 and the internal Kelvin-Voigt parameter CJJ. This is clue to the different frequency responses 
in the two experiments and again reflects some limitations in the damping model. When the 
large hammer was used to excite the plate, the primary response was in the lower frequency 
modes and the parameters obtained from the minimization of (3.4) yielded a model which 
matched the lower frequencies but overdamped the higher frequencies having less energy. The 
use of the small hammer with a metal head resulted in data in which the primary response 
was in the 918 Hz mode with very little energy in the 60 Hz mode. This shift in the excited 
frequencies generally leads to a reduction in the estimated values of C£> and an increase in 7 
(see also Examples 4 and 5). 

17 



Plate Response to a Centered Hit 
T r~ 

-250 
0.01       0.02      0.03      0.04      0.05      0.06      0.07      0.08      0.09 

Time (sec) 
0.1 

Figure 9. Time history of the Experiment 3 data measured at Ac = (0, 0) and model response 
with estimated parameters, (Experimental Data), (Model Response). 

FFT of Plate Response to Centered Hit for Time Interval (0,.1) 

500 1000 1500        2000 2500        3000 3500 4000 
Frequency (Hertz) 

Figure 10. Frequency content of the Experiment 3 data measured at Ac= (0,0) and thin plate 
model with estimated parameters, x (Experimental Data), o (Model 
Response). 

18 



Example 4: Axisymmetric Excitation - Voltage Spike to Patch 

A second means of exciting the plate is through a voltage spike to the piezoceramic patch 
and results obtained in that manner are reported here. Because the active patch was centered 
on the plate, this yielded an axisymmetric response and data from the centered accelerometer 
was used when minimizing the functional (3.4). 

The estimated physical parameters p,D,v,CD and 7 as well as the patch input parameter 
K, are summarized in Table 3 and the resulting model response is plotted along with the 
experimental data from the centered accelerometer in Figure 11 and 12. As indicated by 
the time and frequency plots in the figures, the plate response obtained in this manner is 
quite similar to that obtained by exciting the plate with the small metal-tipped hammer. In 
comparing the estimated parameters from Examples 3 and 4, it is noted that there is very little 
variation in either p, D, v or 00,7, in spite of the differing mechanisms for exciting the system. 

The estimated value .006074 for the patch parameter KB is seen to be approximately 48% 
of the value .0126 predicted by the model (2.5) with the values of Epe, vpe, h, T and d3i specified 
in Table 1 and Tu taken to be 0. Some of this variation can be attributed to patch material 
values which differ slightly from those summarized in Table 1. While differences occur between 
the "handbook" values of the Young's modulus and Poisson ratio and the "true" parameters 
for the experimental patch, perhaps the biggest source of variation occurs in the values for the 
strain constant dz\. The value reported in the product literature (and given in Table 1) was 
obtained through static tests while the estimated value is obtained in a dynamic setting which 
tends to decrease the realized values of strain parameters such as dz\ [15, 19, 20]. Hence while 
the analytic values given by the model (2.5) can be used as starting values in the optimization 
routine, they will not in general yield an accurate model response due to physical variations in 
the material patch properties. 

Plate Response to a Voltage Spike 

-100 
0 0.01       0.02       0.03      0.04      0.05      0.06      0.07      0.08      0.09       0.1 

Time (sec) 

Figure 11. Time history of the Experiment 4 data measured at Ac = (0,0) and model response 
with estimated parameters, (Experimental Data), (Model Response). 
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FFT of Plate Response to a Voltage Spike for Time Interval (0,.1) 
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? 

L 
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Figure 12. Frequency content of the Experiment 4 data measured at Ac = (0, 0) and thin plate 
model with estimated parameters, x (Experimental Data), o (Model 
Response). 

Example 5: Nonaxisymmetric Excitation with Small Hammer 

In this experiment, a nonaxisymmetric response was obtained through a small hammer 
impact at the point (7.27", 0) (see Figure 3). The leads to the piezoceramic patch were dis- 
connected in this experiment to minimize damping effects due to the circuit and piezoelectric 
properties of the patch. Data was again measured via the three accelerometers located at 
Ar = (2",0),AC = (0,0) and Ae = (2", w). Optimization was performed using the data from 
the accelerometer located at Ar = (2", 0) and the estimated parameters values are summarized 
in Table 3. 

Time and frequency plots of the experimental data from the right (Ar), centered (Ac) and 
left (A?) accelerometers as well as corresponding model responses are given in Figure 13a, b 
and c, respectively. The observed experimental frequencies as well as the calculated model 
frequencies at the three accelerometers are tabulated in Table 5. 

From the frequency plots in figure 13a, it can be seen that the model very accurately matches 
the (n,m) = (0,0), (0,2), (0,3), (1,1), (1,2), (2,0), (2,1) and (0,4) modes while significantly 
underdamping the (1,0) and (0,1) modes (see Table 2 to compare the observed frequencies 
with the corresponding modes). As expected, the higher-order modes are overdamped as is 
typical with the Kelvin-Voigt damping mechanism. 

Similar results are observed in the plots in Figure 13c which depict the acceleration data and 
model response at A( (recall that the data from the right accelerometer was used for obtaining 
the parameters).  In addition to the previously matched modes, this data contains a stronger 
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response in the (0,4) mode (408 Hz) which is accurately matched by the model. Although the 
(1,0) and (0,1) modes are still under damped, the accurate matching of 9 modes demonstrates 
the distributed nature of this model. 

The underdamping of the (1,0) mode is very evident in both the time domain and frequency 
plots of the data and model response at the centered accelerometer (Figure 13b). By comparing 
the relative degree of underdamping that is observed at Ac with that, seen at Ar or A(, it can 
be seen that the results are comparable. However, the different distribution of energy in the 
axisymmetric and nonaxisymmetric modes leads to larger discrepancies between the model 
and experimental data measured at Ac than were observed at the noncentered points. The 
underdamping of the (1,0) and (0,1) modes again illustrates some of the limitations of the 
clamping model being used in these investigations. 

Right Accel. (Measured) Right Accel. (Model Response) 
60.1 123.0   204.3 297.4   403.6 59.3    123.0   202.1   295.2   399.2 

227.1 350.1   493.7 646.0   818.8 229.2   350.8   488.5   642.3 
512.7 692.1   895.0 512.7   692.9   887.7 

916.3 

Center Accel (Measured) Center Accel. (Model Response) 
59.3 298.1 59.3 
227.8 230.0 
514.9 894.3 514.9 
915.5 914.1 

Left Accel. (Measured) Left Accel. (Model Response) 
60.1 123.0   204.3 297.4   408.0   529.5 59.3     122.3   201.4   295.9   403.6 
227.8 350.1   493.7 646.0   819.6 229.9   350.8   488.5   641.6 
512.0 692.1   895.0 512.7   692.9   887.7 
917.7 914.8 

Table 5:    Observed frequencies in the Experiment 5 data and model response. 

21 



(a) Plate Response to a Hammer Impact FFT of Plate Response to a Hammer Impact for Time Interval (0,.2) 

0.06      0.08       0.1        0.12      0.14      0.16      0.18       0.2 0 100       200       300       400       500       600       700       800       900      1000 
Time (sec) Frequency (Hertz) 

(b) Plate Response to a Hammer Impact FFT of Plate Response to a Hammer Impact for Time Interval (0,.2) 

0.06  0.08  0.1   0.12  0.14  0.16  0.18  0. 
Time (sec) 

2     0   100  200  300  400  500  600   700  800   900  1000 
Frequency (Hertz) 

Figure 13. Experiment 5 data, and model response at (a) Ar - 
(c) Ae = (2",7T); x (Experimental Data), o 

(2",0), (b) Ac = (0,0)and 
— (Model Response). 
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5     Conclusion 

In this paper, we have considered issues associated with the estimation of parameters in a 
PDE-based model for a vibrating plate. Specifically, we considered a clamped thin circular 
plate with surface-mounted piezoceramic patches. Thin plate equations which accounted for 
both the passive and active contributions from the patches were used to model the dynamics 
of the system. The unknown parameters in the model included structural parameters (density, 
flexural rigidity, Poisson ratio and material and air damping) and patch parameters. The 
structural parameters were taken to be piecewise constant in order to account for the presence 
and differing material properties of the patches. It should be noted that all modeling equations 
for the system were derived using Newtonian principles (force and moment balancing), and all 
parameters represent physical quantities in the system. 

When designing and performing experiments, two issues were considered. The first con- 
cerned the ability of the PDE model to accurately and consistently describe the physics of 
the system under a. variety of inputs and responses. Secondly, it is well-known that closing or 
shunting the circuit containing the piezoceramic patch provides additional damping, and this 
was investigated in the context of the PDE model. 

With regards to the first issue, experiments were performed in which the plate was excited 
with a. variety of inputs (including impact hammers and voltage spikes to the patches) which 
excited from four to fifteen frequencies ranging from 60 Hz to 4000 Hz. The matching of up to six 
axisymmetric and eight nonaxisymmetric frequencies illustrated that the thin plate model was 
appropriate and sufficiently accurate for the experimental plate under consideration. Moreover, 
the distributed nature of the PDE model means that it accurately describes the physics of the 
entire plate including points not used in the optimization process. As demonstrated by results 
reported in [1], the accuracy of the model, with parameters estimated in the manner discussed 
here, contributed to the good vibration attenuation attained when the model was incorporated 
in a PDE-based controller. 

When comparing the parameters estimated in the various experiments, it was noted that 
the density, flexural rigidity and Poisson ratios were consistent across all experiments. There 
was some variation in the clamping parameters depending on the frequency content of the 
data. In experiments with minimal low frequency excitation but substantial energy in the high 
frequencies, the Kelvin-Voigt damping coefficient CD was smaller and air clamping 7 higher than 
in experiments in which the response was dominated by the primary mode. This indicates the 
necessity of estimating parameters with a response in the frequency range under consideration 
and illustrates a limitation in the damping model. 

The damping which results when the circuit involving the piezoceramic patch is closed was 
investigated by performing a series of experiments with open and closed circuits. The estimated 
parameters and model responses for the two cases were then compared. As expected, the plate 
response with the closed circuit was more highly damped than that obtained with the open 
circuit, and the optimization routine compensated by increasing the material clamping coeffi- 
cients. While the damping provided by the circuit is not directly modeled by the Kelvin-Voigt 
or viscous damping terms, it does produce an effect in the system which is phenomenologically 
similar to Kelvin-Voigt and viscous damping, and hence accurate model fits were obtained with 
the estimated parameters. We emphasize that if the applications of interest involve such a 
closed circuit, parameter estimation should be performed in this regime so as to account for 
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the additional damping. 
We reiterate that while the fixed-edge boundary conditions (2.6) adequately modeled the 

boundary dynamics for the setup under consideration, in many cases, energy loss through the 
boundary clamps will make the fixed-edge model inadequate. In such cases, an "almost fixed" 
boundary moment model of the type discussed in [9] may provide a more accurate description 
of edge physics. Experimental results pertaining to the use of that model for describing the 
plate dynamics when boundary clamps are loosened can be found in [2]. 

Finally, while the investigations here pertained to a circular plate, the issues are important in 
a large number of applications involving vibrating structures, and the specific results reported 
here may indicate directions to be followed when developing and applying PDE models to 
more complex structures. As indicated by parameter estimation results reported here and 
control results reported in [1], the use of PDE models can lead to accurate descriptions of 
structural systems (even in the presence of actuators and sensors) which can then be successfully 
incorporated in PDE-based controllers. 
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