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PART I 

1     Introduction 

The major goals of the program of research on approximate reasoning of the Artificial Intel- 
ligence Center (AIC), SRI International, are 

• The development of sound formal foundations to explain the different methodologies 
proposed to solve the problems associated with the processing of imprecise and uncer- 
tain information 

• The identification of criteria to determine the applicability of these methodologies to 
specific problems 

• The development of methods for the approximate modeling of real-world systems 

• The development of techniques for the analysis of approximate models and determina- 
tion of their behavioral properties, such as stability, robustness, and controllability 

A major difference between our research goals and those of similar approaches to the 
treatment of imprecision and uncertainty is the development of techniques based on a sound 
understanding of the nature of approximate models of a real-world system. An approximate 
model is a qualitative representation of an aspect of reality developed to analyze and predict 
the behavior of a physical system. In the context of this discussion, the term "qualitative" 
is intended to indicate that the model may be based on vague, incomplete, imprecise, or 
uncertain information. 

The need to rely on approximate models may be the consequence of poor understanding of 
system laws, imprecision and errors in measurements or observations, or practical limitations 
on our analytical capabilities. These limitations may require the consideration of simpler 
models that, avoiding unnecessary detail, attempt to focus only on significant aspects of 
system behavior. 

We seek to develop sound analytical techniques to determine, on the basis of those ap- 
proximate models, control and planning policies or important system properties such as 
"stability" or "robustness." We also seek useful characterizations of those properties in a 
qualitative context at a level of description similar to that used in the models themselves. 
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Specific Research Objectives of This Program 

Our investigative efforts under the sponsorship of the U.S. Air Force Office of Scientific 
Research were primarily directed toward the development of improved formal models for 
the methodologies for representation of vague and imprecise behavior known as possibilistic 
or "fuzzy" logic. We developed two classes of models, based on the notions of similarity 
and utility, respectively, and we studied the relations between each of those models and 
possibilistic logic. We also studied the relations between the two types of models. 

Our study of similarity-based models sought a better understanding of the role of similarity- 
based structures in intelligent reasoning and of its applicability to analogical reasoning pro- 
cesses such as those employed, for example, in case-based reasoning. 

Our investigations on utility-based models, on the other hand, sought a better under- 
standing of the relation between possibilistic constructs and those of utility theory. A major 
goal of our research in utilitarian concepts was the development of a sound methodology to 
represent multiple objectives, their relations, and the explicit contextual circumstances that 
determine goal importance (e.g., "near an obstacle decrease importance of minimum-time 
goal"). In particular, we sought the development of "explainable" reasoning methods capa- 
ble of tracing the inference path leading to a particular decision recommendation (e.g., why 
importance was given to some subgoals, how that assignment influenced choice). 

Our research on approximate models led to the development of 

• Enhanced models of similarity and utilitarian concepts, including improved under- 
standing of notions such as joint and marginal similarity. 

• 

• 

Formal relationships between similarity-based notions and knowledge structures that 
permit the derivation of similarity measures—important in analogical reasoning method- 
ologies such as case-based reasoning—from conditional rules. 

Enhanced fuzzy inference methods, based on these formal models. 

Methods for the control of systems under conditions of imprecision and uncertainty that 
blend purposive behaviors—oriented toward attainment of user-specified goals— and 
reactive behaviors, intended to cope with unexpected circumstances. These methods 
are capable of performing even when information about the operational environment 
is imprecise and ambiguous (approximate maps). 

Our methods were successfully applied to the control of autonomous mobile robots 
in experiments conducted at the AIC and at the First Robotics Competition of the 
American Association for Artificial Intelligence. 

• Techniques to combine these control techniques based on numerical inference schemes 
with classical artificial intelligence (AI) planning procedures, which are primarily sym- 
bolic in nature. 



New, axiom-based techniques, for the dynamic resolution of conflicts between compet- 
ing goals. 'o ov 

• Generalizations of dynamic programming techniques, based on concepts and structures 
from multivalued logic, that provide the bases for an evolving methodology for the 
automated generation of control and decision rules. 

This document is composed of two major parts. The first part, introduced in this section, 
is a summary of the major research papers produced under the sponsored research. These 
papers constitute the second part. 

Applicability of Methodology to DoD and the Commercial World 

The concepts and techniques sought by our research program are basic in nature and are 
applicable to a wide variety of decision, control, and information-processing problems. 

At the theoretical level, our research is directed toward the clarification of major issues in 
the nature of inconvenient, but nonetheless important, features of knowledge about complex 
systems: ambiguity, imprecision, uncertainty, and vagueness. In particular, we seek to clarify 
differences between aspects of information that result in imperfect knowledge about the state 
of the world (e.g., ignorance or uncertainty) and issues of applicability of knowledge items to 
specific situations. Problems caused by uncertain information are usually better dealt with 
by probabilistic reasoning methods. Examination of issues of knowledge suitability aspects 
requires, as shown in our earlier investigations, studies of notions of preference and similarity. 

Utilitarian notions, such as cost or preference, are ubiquitous in the design and assessment 
of any practical system. Our approach, based on a sound, logic-based, treatment of preference 
and utility, has clarified numerous issues related to the specification of performance goals, 
notably the representation of relations and tradeoffs between multiple, possibly conflicting, 
objectives. 

Our treatment of related similarity issues has led also to insights on analogical reasoning 
processes such as they are used, for example, in case-based reasoning. 

At a more applied level, we have placed emphasis on evaluating the applicability of our 
theoretical results to important problems of DoD interest. In particular, we have sought 
to develop concepts that provide theoretical support for sound methods to treat complex 
decision and control problems. 

The computational methods developed in our research have broad applicability to the 
regulation of a wide variety of control systems, to the planning of complex task activities, and 
to the support of decision makers dealing with large real-world systems. Of particular interest 
to DoD is the ability of our methodology to develop robust plans to guide manufacturing 
processes, strategic and logistic missions, and the actions of various autonomous vehicles. 



We are particularly interested in the application of these techniques to the design and 
modification of complex systems (e.g., software systems, airplanes) where excessively detailed 
initial specifications lead to inflexible design processes and to large reengineering costs. This 
methodology may also be applied to control the acquisition of knowledge and the learning 
activities of intelligent systems. 

2    Accomplishments 

We briefly review here the major results of our research, which encompasses advances in 
the understanding of basic concepts and methods of possibilistic reasoning, developments 
in the planning and reactive control of systems operating under conditions of imprecision 
and uncertainty, studies of relationships between similarity measures and knowledge-based 
structures, and development of techniques for automated generation of control and decision 
rules. 

Basic Research on Approximate Reasoning Methods 

Approximate reasoning is a branch of AI concerned with the modeling and analysis of systems 
that are known under conditions of imprecision and uncertainty. 

The ubiquitous presence of information that is partial, imprecise, and uncertain is a 
common characteristic of many important technological problems, including data sensing 
and fusion, situation assessment, decision support, device design, path planning, robotics, 
information retrieval, logistic planning, and fault diagnosis. In the military context, the 
importance of approximate reasoning is heightened by the need to process information having 
diverse levels of credibility, which is often distorted through the efforts of enemy agents. 

Recent results by the author have established a unified framework for the description and 
comparison of diverse approximate reasoning methodologies. 

This framework, which is based on the notion of possible world, has shown that ba- 
sic conceptual differences exist between probabilistic methods—based on the concept of 
likelihood—and possibilistic methods—based on the related concepts of similarity and pref- 
erence. 

Approximate Reasoning and Possible Worlds 

Possible worlds are the possible scenarios or situations describing the state of the real system 
or, in short, the possible, or logically conceivable, answers to a system analysis question. 

In a classical reasoning problem, characterized by precise information, it is possible to 
provide answers that are not ambiguous,—i.e., that describe a system to the desired level 
of detail.   In an approximate-reasoning problem, on the other hand, a question that has 



either a "yes" or a "no:' answer (e.g., whether a statement or proposition is true) may not 
be answered in unambiguous fashion, since the available information (or evidence) may be 
insufficient to infer the correct answer. In other words, there are scenarios where the answer 
may be yes, and scenarios where the answer may be no. The set of such scenarios, situations, 
or possible worlds is called the evidential set. 

Existing approximate-reasoning methods may be said to be based on procedures that 
describe certain properties of such evidential sets. Two major classes of methods have 
been proposed, each leading to a different type of description. These approaches are called 
probabilistic and possibilistic reasoning, respectively. 

Probabilistic Reasoning Methods 

Probabilistic reasoning methods are concerned with the description of the likelihood that 
the answer to certain questions about the state of the system may be either "yes" or "no." 

For example, if we are interested in the weather at a certain location and we ask the 
question "will it rain in three hours from now?," a probabilistic system may respond with an 
answer of the type "the probability that it will rain in three hours is 60%." Such a probability 
estimate may be the result of the examination of historical records of the weather under 
similar circumstances (objective probabilities), or the result of assessing the willingness of a 
weather expert to bet a certain amount of money in a gamble that pays off if, after three 
hours, it actually rains (subjective probabilities). 

In some cases, the necessary records or elements of judgment required to derive such 
probability values may themselves be unavailable. Often, under such conditions we may say 
only that the probability of rain is between 60% and 80%. These interval estimates are the 
bases of so-called interval, or generalized, probability methods. 

A major example of this type of method is the Dempster-Shafer calculus of evidence. 
This method may also be explained, using our unified framework, as the result of examining 
how often, in past similar experiences, it has been possible to answer questions of interest 
with a definite "yes." Since, in general, lack of information may sometimes prevent such a 
question from being answered with a firm "yes" or a firm "no," the sum of frequencies for 
such answers may be less than 1. 

This simple idea—arising naturally from information that is both uncertain and imprecise— 
was formalized in a possible-worlds model based on the use of so-called epistemic logics. 

Epistemic logics are formalisms that distinguish between the truth of a statement and 
the fact that such statement is known to be true to some reasoning agent. In other words, 
the functions of the calculus of evidence (called mass distributions and support functions by 
Shafer) measure the likelihood that a proposition may be known (or deduced) to be true if 
additional evidence were to be added to our imperfect information. 



Possibilistic Reasoning Methods o 

In contrast with probabilistic reasoning, possibilistic reasoning describes the evidential set in 
terms of the resemblance of its "scenarios" to some reference situations. While probabilistic 
reasoning, concerned with proportions of truth or falsehood of propositions, finds a natural 
formalization on the notion of set measure (i.e., the relative proportion of "yes" versus 
"no" scenarios in the evidential set), possibilistic approaches find a ready expression using 
measures of similarity or resemblance between pairs of possible worlds. 

A typical possibilistic scheme requires a rich variety of possible alternatives to a given 
question, so that questions such as "will it rain at least 1 inch in the next 24 hours?" may be 
answered by statements such as "I do not know, but I am sure that it will rain at least 3/4 
of an inch" (where a probabilistic answer might have been "I do not know, but the chances 
of such precipitation are 60%"). 

Theoretical Research 

During the reported research we continued to investigate the formal bases of possibilistic logic 
placing emphasis on interpretations of possibilistic constructs in terms of utility-oriented 
notions. 

Our interest in concepts concerned with the utility of certain outcomes or the related 
notion of preference between alternatives stems from two major considerations. 

At an informal level, it seems clear that, in problem-solving contexts, situations (i.e., 
possible worlds) are similar if there do not exist relevant preference considerations that render 
one of them considerably more desirable than the other. In other words, two situations 
resemble each other if they are nearly equally preferable from every important problem- 
relevant viewpoint. 

From a purely formal—although hardly unrelated—perspective, preference functions are 
readily modeled by mathematical structures called fuzzy preorders (i.e., generalization of the 
mathematical notion of order relation), which have been shown to be closely related to the 
notion of similarity (which is, itself, a generalization of the classical notion of equivalence 
relation). 

Exploiting the relations between metric (i.e., similarity, resemblance, distance) and util- 
itarian concepts, we developed utility-based interpretations that generalize the well-known 
interpretation of Bellman and Zadeh [1] that advanced the notion of fuzzy sets as "elastic 
constraints" on problem solutions. 

Exploring comparisons between metric and utilitarian structures, we further developed 
the concepts of relative, marginal, conditional, and joint utility on the basis of their utilitarian 
counterparts. Some of these notions were mentioned in a recent technical paper [5], which is 
included in Part II of this report. A full treatment of a formal theory of similarity, and of 
its relations with analogical knowledge structures, is currently being prepared. 



In our recent paper [5] we also improve the original interpretation of the basic inferential 
operation of fuzzy logic—the generalized modus ponens—by allowing unconditioned and 
conditional knowledge to be generated by different bodies of evidence. On the basis of these 
results and independent investigations, researchers at the Center of Advanced Studies in 
Blanes, with whom the principal investigator has collaborated and visited since the mid 
1980s, were able to prove [4] that other important interpretations of fuzzy logic, such as the 
possibilistic logic of Dubois and Prade and fuzzy-truth valued logic, are formally subsumed 
by the similarity logic originally proposed by the principal investigator in 1991 [7]. 

Our semantic models have also led to new insights on the meaning of possibility distri- 
butions used to represent vague knowledge about real-world systems. 

Although the meaning of possibility distributions as measures of the desirability of a 
particular state of affairs (e.g., the adequacy of a control policy or the overall utility of some 
outcome) has been understood for some time, the interpretations of vague statements about 
the world such as "The distance between obstacles is approximately 20 meters," and that 
of vague rules such as "If the temperature T is high, then the volume V is small," have 
remained largely unexplored. 

Our studies at the conceptual level have now provided, however, a basic explanation of 
these declarative statements based on a utility-oriented interpretation of modeling. Infor- 
mally, this interpretation considers the modeler, being interested in gaining knowledge about 
the state of the world, as an agent that must make decisions about the extent by which cer- 
tain statements may be construed as correct descriptors of the state of a system or of its 
behavior. The errors made by assuming certain statements as facts or as applicable rules 
are quantified by possibility distributions. Should the modeler decide to employ a particular 
distribution, representing vague knowledge in his deliberations, he risks making erroneous 
assessments—the magnitude of which is numerically bound by the values of the distribution. 

For example, should he decide to accept the validity of the vague proposition "John is 
tall," he is indicating his willingness to derive results that will be erroneous to the extent 
that the actual state of affairs matches the vague proposition. If John turns out to be 7 
feet tall (a value assumed to have a possibility value of 1), then use of the statement "John 
is tall" will not result in substantial errors when reality is assessed. On the other hand, if 
John is only 5 feet tall (a value assumed to have a possibility of 0), then it is possible that 
the conclusions inferred from the model may be completely erroneous (note the emphasis on 
"may" as it is impossible to assert, in general, that a modeling error will necessarily lead to 
significant mistakes in hypothesis assessment). 

From this perspective, vague models may be seen as statements of willingness, on the 
part of the modeler, to accept consequences, quantified by certain measures of potential loss, 
as the result of using inferences based on incorrect models of reality. In conventional cases, 
where all constraints are "crisp," such a disposition has the usual consequences—i.e., results 
can only be trusted if the assumptions agree with reality. 

This interpretation of declarative statements in terms of potential modeling payoffs also 



permits a clearer delineation of the role played by probabilistic constructs—measuring the 
tendency or propensity of nature to act in certain ways—as distinct entities from possibilistic 
structures—that assess the consequences of modeling errors. In our view, the two basic com- 
ponents of decision-making, namely utility and likelihood, are represented, in our semantic 
models, by formalisms intended to capture the properties of probabilistic concepts such as 
frequency or by theories dealing with the rational bases of preference (i.e., why one situation 
is deemed better than another). 

It must be remarked, however, that although in most situations the interaction between 
probability and possibility will take the form of a probability distribution over utility values, 
in some cases that interaction has a more complex nature as when, for example, the vague 
fact "The obstacle is approximately 20 meters from point P" must be given an interpretation. 
This statement may be thought of as an assessment of the utility Poss(:c) of assuming that 
the obstacle is at a distance of 20 meters from P when its actual distance is x, or, alternatively, 
as a declaration that the probability of finding the object at a distance x is given by Poss(x) 
(i.e., the utility value is given directly by the probability of risk). 

Our investigations also resulted in new methods for the combination of utility functions. 
Among these are techniques that permit the construction of complex utility functions using 
(generalized) logical operators. These methods permit the description of the relative impor- 
tance of goals, relations between operational contexts and objectives, and criteria to be used 
to resolve dynamic conflicts between competing objectives. 

Unlike other approaches, which mainly stress weighted combinations of numerical indexes 
of performance, our logic-based techniques facilitate the explanation of the rationale leading 
to control and decision recommendations. 

The ability to explicitly limit certain actions (e.g., forcing compliant motion in a manip- 
ulator) combined with the gradual nature of the underlying logics (based on a continuous 
truth scale) permits the easy development and refinement of control and decision systems 
that smoothly combine actions seeking the attainment of multiple, possibly conflicting, goals, 
while responding to unforeseen environmental circumstances. 

We are currently continuing to expand and improve these methods, focusing particularly 
on relationships with multiattribute utility theory [6]. 

Closely related to these results is our derivation of a new technique for resolution of 
conflicts between competing goals. This method, based on an axiomatic approach, defines 
acceptable outcomes of any conflict-resolution algorithm by means of a system of axioms 
that captures the notion of constraint relaxation. On the basis of the analysis of these 
axiomatic constraints, it is possible to derive an expression that permits the calculation of 
a (fuzzy) set of "acceptable" choices. Unlike other approaches, this scheme is based on a 
partial order of the problem goals and does not require specification of values representing 
relative importance of the problem objectives. 

We have also initiated investigations leading to the development of efficient logic pro- 
gramming methods for the specification of approximate models. Our first step is the formal 



specification of a logic incorporating possibilistic and probabilistic notions. We are currently 
engaged, with Dr. Alessandro Saffiotti of the Free University of Brussels (who visited SRI 
as an International Fellow from 1992 to 1993), in such a task, which includes specification 
of syntax, semantics, and, most important, proof procedures for such a complex multivalued 
logic. Our point of departure is, once again, our formal semantic models. Our studies have 
been helped considerably by the previously mentioned results of Esteva , Garcia and Godo [4], 
which have further strengthened knowledge about the meaning of possibilistic structures. 

Control in Uncertain Environments 

The interaction between humans and their environment requires the development of effective 
techniques to control the behavior of a wide variety of real-world systems. The continued 
growth of control theory and its application to a variety of problems, from process regulation 
and production of logistic and strategic plans to the design and modification of complex 
assemblies, simply reflects the importance attached to methods that direct the evolution of 
complex processes and systems. 

In many planning and control applications there exist requirements that go beyond the 
mere production of a plan under certain assumptions about the nature of a system. In these 
problems, the underlying systems operate under conditions of uncertainty that make impos- 
sible the prediction of changes to the environment where the system operates. Under these 
conditions, any policy without sufficient flexibility is bound to be of little use as, typically, 
dynamic environmental changes prevent further utilization of the policies recommended by 
the plan. 

Our principal research objective in the area of control and decision-support systems was 
the application of our theoretical results to the development of robust controllers. We sought 
methods to build controllers capable of reacting in a flexible, adaptive fashion to changes 
in the environment while still continuing, to the best possible extent, to try to achieve 
explicit control goals. We also investigated the generation of control and decision strategies 
that respond in a gradual, smooth, fashion to perceived modifications in environmental 
conditions. 

If a dynamic control problem is thought of as the regulation of the behavior of a system, 
then we may classify such behavior as being essentially purposive (e.g., transport troops 
and equipment to some place in an efficient fashion) or reactive (e.g., overcome a temporary 
difficulty such as troublesome weather). In this view, the development of a control policy is 
considered to be equivalent to the identification of purposive and reactive behaviors, and of 
procedures to activate, deactivate, and integrate (or "blend") them. 

Each of the just-mentioned components of a control policy is required to assure successful 
performance of a robust controller. Purposive behaviors are obviously required to assure 
that the system attains its goals. Reactive behaviors, on the other hand, are intended to 
provide responsiveness to a myriad of possible but difficult-to-predict environmental changes. 
Finally, adequate activation and blending techniques are needed to assure smooth transition 
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between behaviors and to permit partial attainment of goals while responding to evolving 
circumstances. 

The requirement to trade off a degree of goal attainment with responsiveness is essential 
to assure that incompatible goals, sought by various possible modes of operational behavior, 
may be successfully integrated. In a typical logistic planning problem, for example, demands 
to deliver equipment at a certain time may be traded off with requirements to attain a 
minimum level of security (i.e., within bounds, delays may be permitted if they decrease 
mission risk). 

Control/Decision Systems 

Our investigations resulted in the development of a general system control methodology for 
the dynamic management of multiple, possibly conflicting, objectives under conditions of 
imprecision and uncertainty. This technology is based on methods that compute numerical 
desirability measures for control actions as assessed from the viewpoint of specific goals or 
objectives. These individual measures may then be combined, using explicit descriptions 
of rule applicability, goal importance, and allowable tradeoffs, into combined measures that 
gauge the overall suitability of each possible control action. 

Our approach relies on dynamic management of a set of control rules on the basis of 
changes in the operational context of the plant. This approach is based on our theoretical 
results, which interpret fuzzy logic as a generalized inferential methodology placing emphasis 
on the measurement of the utility of various states of affairs (e.g., the desirability of utilizing 
some amount of a resource, given the current circumstances). We also have successfully 
combined numerical possibilistic techniques with conventional AI planning techniques into 
an integrated methodology for the development of flexible plans to attain multiple system 
goals. 

These developments have extended the applicability both of conventional planning tech- 
niques and of approaches to represent and manipulate "elastic" constraints—that is, con- 
straints that may be satisfied to various degrees. Related methods also allow the explicit 
specification and manipulation of multiple, possibly conflicting, goals and the representation 
of context-dependent tradeoff policies. 

The desirability measures used to determine control and decision choices are computed 
by application of control rules associated with a particular goal or objective. This knowledge 
base contains either explicit rules of the form 

"If the state is in set S, then the control must be in set C," 

or, in more complex cases, rules that are capable, likewise, of inferring (through a sequence 
of steps) the suitability of each potential control action. For example, rules to drive a car 
to some intersection measure the desirability of each steering and accelerating action as a 
function of the perceived position of the car. 
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A well-known generalization of the deductive rule of modus ponens is employed to perform 
the inferential steps. In the generalized modus ponens, each rule fires to a different degree, 
depending on the degree of matching of the rule antecedent and the present situation. If 
the match is exact (i.e., the current state implies the truth of the antecedent), then the 
consequent is asserted. If the match is not exact, then a more general conclusion is derived. 
When the match is very poor, the outcome is noninformative (i.e., for all we know, any 
control might work). 

Desirability functions are associated both with purposive goals and with reactive behav- 
iors. In an autonomous vehicle application, for example, a purposive goal may be to reach 
a location or to observe some landmark, while a reactive behavior may be the result of 
following procedures for obstacle avoidance. 

The computational mechanism utilized to determine the importance of activation or 
deactivation of behaviors and to specify related desirability functions is called a control 
structure. A control structure specifies the contextual conditions (in terms of requirements 
for certain events or structures to be perceived or observed by the system) that must be met 
for an associated behavior to be activated. The rules associated with such a behavior are 
then used to determine the suitability of individual actions. 

Since contexts are typically activated in a gradual fashion (e.g., rules to turn a vehicle are 
not turned instantly on or off, but they are gradually activated as a function of the distance 
between the current position of a vehicle and an ideal turning point), several behaviors may 
be present at any time, each activated to a different degree. The result of this aggregation 
of behaviors has been shown experimentally to lead to smooth transition between behaviors 
and to high responsiveness to unforeseen events. 

Our methodology does not require precise, certain knowledge of the characteristics of the 
system and of its environment. In vehicle control applications, for example, we have relied 
on approximate maps of the workspace. These maps consist primarily of connectivity infor- 
mation, describing the general layout of the workspace. This information is complemented 
by approximate metric information characterizing important features of the environment 
(e.g., approximate distances between objects, approximate angles of intersection between 
hallways). 

In the course of our research we have applied these techniques to the control of the 
local motion of an autonomous vehicle. We have simulated and tested their approach in 
SRI's autonomous vehicle in experiments conducted in our AIC and in the context of the 
First Robotics Competition of the American Association for Artificial Intelligence. SRI's 
autonomous vehicle, which was one of only two that did not rely on instrumentation (i.e., 
bar code markers, emitters) of the competition area, was commended by the judges for its 
ability to quickly and smoothly react to unforeseen circumstances. 

The experience gained in our experiments provided, in turn, additional bases for our 
theoretical research. On such bases we have developed a theory of reactive control [8], which 
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we have documented in a technical report and in a forthcoming paper to be published 
Artificial Intelligence. 

in 

It is important to remark that although our techniques were tested in an autonomous 
mobile-device application, these methods have wide applicability to a number of decision 
and control problems. 

Results of our research efforts are given in detail in the publications Part II of this report. 
A videotape showing the performance of SRFs autonomous vehicle under the guidance of a 
fuzzy controller based on our results is also available from the AIC. 

In addition to our experiments with autonomous mobile platforms, we are currently 
engaged in the development of controllers for a number of systems of practical importance. 
Among these, two specific platforms deserve special mention. 

The first of these systems is a prototype of a lightweight, flexible manipulator, which must 
be moved subject to constraints that limit both its motion and the extent of motion-induced 
vibrations on the manipulator's arm. The second prototype is provided by a complex model 
of a hybrid gasoline-electric automobile power-generation plant that must be controlled so 
as to attain a number of objectives in response to unpredictable driver demands. 

A noteworthy characteristic of our approach to the solution of these control problems is its 
reliance on the development of approximate, qualitative models, capable of being validated 
as true descriptions of the actual real-world systems that they model. Our techniques, based 
on the theoretical results discussed above, are based on sound procedures for the analysis of 
these models and for the deductive derivation of controllers. This approach is significantly 
different from most of the heuristic and intuitive techniques that have, so far, characterized 
the application of fuzzy-logic ideas. 

Planning 

The need for robust, flexible systems extends well beyond needs for the local control and 
regulation of devices. A wide variety of important applications ranging from logistics and 
flexible manufacturing to complex system design and modification (e.g., software systems) 
would greatly benefit from methods to determine decision policies that may be readily mod- 
ified because of unforeseen circumstances. 

Conventional AI planners do not have, at this time, capabilities for the representation of 
elastic constraints, for their manipulation, or for quick modification of plans in response to 
variations in initial assumptions. As is the case for control problems, the difficulties center 
on the inability to efficiently determine the performance effects of variations in the control 
and decision parameters. 

On the other hand, conventional AI planners, relying primarily on symbolic techniques, 
are well suited to identifying plans to attain multiple objectives on the basis of effective 
searches of the planning space and careful determination of the relations between goals. 
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In particular, conventional AI planners are capable of identifying major feasible strategies, 
specific subgoals to be achieved, and temporal sequencing conditions (e.g., do not initiate 
Task B until Task A is completed). 

Consideration of the complementary capabilities of symbolic planning techniques with 
numerical inference methods suggests that these technologies might be effectively combined 
into an integrated approach that incorporates the strong points of each methodology. In 
particular, it will be desirable to take advantage of the ability of symbolic techniques to 
break down complex planning problems into separate subproblems and that of numeric 
approaches to specify desirability of a number of alternative control actions. 

We investigated the combination of techniques based on the notions of control structure 
and desirability measure with classical AI planning approaches, such as those that are in- 
corporated in SRI's planning systems SIPE and PRS, to produce a general methodology to 
the production of flexible planning and control policies. 

The overall approach employed by this methodology relies on the determination, at the 
high level, of subgoals to be attained by the control policy. These subgoals, however, are elas- 
tic objectives in the sense that they may be attained to different degrees. While, ideally, the 
controller would like to attain each subgoal to the maximum possible extent, inherent con- 
flicts between goals combined with requirements for reactivity to unforeseen circumstances 
may result in some of them being achieved at lesser degrees. For example, a manufacturing 
plan may require certain use of resources for optimal productivity. This usage may be dynam- 
ically modified, however, in response to circumstances (e.g., slowdowns in a station or buffer 
overflow), and such changes may result in lower, yet acceptable, yields. In this way, the plan 
may be effectively modified without undergoing expensive and time-consuming replanning 
operations. 

This methodological approach seeks to emulate the human capability to formulate plans 
as general, high-level, descriptions of the overall strategy to be followed to attain some goals, 
which are specified in terms that are flexible enough to permit real-time adjustments during 
their execution. For example, a flight plan may be specified in terms of various points to be 
reached and areas to be avoided. However, these milestones and constraints are, with few 
exceptions, to be interpreted as ideal, rather than actual desiderata. Similarly, instructions 
to park a car are usually meant to describe prototypical maneuvers that may be followed 
approximately and changed, during execution, according to the circumstances. 

The high-level planner may also be thought of as a mechanism that identifies the rules to 
be followed by the controller during execution of the plan—that is, the numerical standards 
that will be used to judge controller performance. The desirability functions that embody 
those measures are usually not explicitly given but, rather, they are computed by applica- 
tion of the inferential mechanisms of fuzzy logic to a knowledge base of rules that promote 
performance of certain behaviors. 

Experiments on the integration of these control techniques with conventional planning 
approaches using both a goal-regression planner and a procedural reasoning system were 
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completed in early 1993. These experiments, presented in detail in the publications in Part 
II, have established the feasibility of this two-level approach to planning and control where 
a high-level process specifies partial, flexible, plans, and a low-level process carries those 
specifications and reacts to environmental changes. 

Similarity-based Structures and Analogical Reasoning 

We have further studied the relation between possibilistic methods and similarity-based 
techniques seeking to further understand the relations that exist between logic concepts 
(predicates, variables) and metric structures (joint, marginal, conditional similarities) with 
a view to the development of analogical reasoning methods (e.g., case-based reasoning). The 
results of these examinations have provided a logical basis for the constructive development 
of similarity measures on the basis of domain knowledge expressed by vague facts and condi- 
tional knowledge rules. We have also benefitted from insights on the relations between metric 
and utilitarian interpretations that have permitted incorporation of technical knowledge on 
the structure of utility functions into the study of analogical-reasoning issues. 

We have obtained new results linking joint and conditional similarities that have provided 
the bases for current studies on the identification of conditioning formulas: the backbone of 
any evidence-combination approach. Results of this research have been published in a recent 
paper, included in Part II, which is coauthored by colleagues of the principal investigator 
at the Center of Advanced Studies, Blanes, and at the University of the Balearic Islands, 
Spain. We expect to continue these joint studies, focusing on alternative interpretations of 
the notion of conditional knowledge and its determination. 

We have also developed mechanisms to translate statements describing (typically in a 
multivalued logic) facts about the world into actual measures of similarity between different 
situations (i.e., possible worlds). This research is based on our previous models relating the 
notions of possibility and similarity. 

Control/Decision Rule Generation 

The success of any multistage sequential decision scheme for the planning and control of 
complex real-world systems hinges on the ability to successfully relate overall goals (e.g., 
minimal time to reach some state) with specific instantaneous actions that promote those 
goals. Ö 

In our approach to control, instantaneous actions are controlled by desirability functions 
that gauge the relative quality of potential decisions as promoters of some specific goal or 
objective. Overall goals or objectives are usually expressed as elastic constraints on system 
behavior. 

In our methodology, desirability functions are the output of inferential processes operating 
on a dynamic knowledge base of control rules.  In our experiments so far, the actual rules 
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have been derived either as the result of immediate analysis of the particular system at hand 
or as the result of trial-and-error refinement of heuristic rule sets. 

One of the most important objectives of our continuing research is, however, the system- 
atization and normalization of the control-synthesis process by 

1. Representation of the underlying system by a qualitative model based upon sound 
logical constructs 

2. Description of system goals and constraints by means of the same constructs 

3. Joint analysis of system characteristics and problem constraints by sound inferential 
methods that derive the desired control and decision strategies 

4. Determination, again by application of sound deductive procedures, of properties of 
the system being regulated 

The research reported in this document has attained these objectives while providing strong 
semantic bases (i.e., similarity and utility interpretations) for the development of further 
representation and analysis methods. 

Seeking to develop methods for the attainment of our remaining goals, we turned our 
attention toward methodologies that promote derivation of control strategies by deductive 
analysis of system models, constraints, and objectives. Because of its generality, simplicity, 
and adaptability to multivalued-logic reformulation we concentrated on dynamic program- 
ming. 

Dynamic programming is the most powerful method for the synthesis of state-based 
decision strategies and feedback controllers, being, more generally, an extremely powerful 
procedure for treating a variety of optimization problems. 

Unfortunately, the usefulness of this methodology is limited by the need to store solu- 
tions as large tables, even for problems of relatively low dimensionality. A number of recent 
theoretical (approximation theorems) and practical (fuzzy-controller design) results [9] have 
shown, however, that solutions of dynamic programming problems may be efficiently approx- 
imated by compact sets of fuzzy rules. Furthermore, a number of efficient techniques, based 
primarily on clustering and neural-network methods, have been developed and successfully 
applied [2, 3] to derive such approximations. 

Our research on multistage decision processes has resulted in a logic-based reformula- 
tion of the Hamilton-Jacobi-Bellman (HJB) equation as a fixed-point logical expression. 
The essential observation leading to this reformulation is that, when dynamic behavior and 
performance objectives are modeled by possibility distributions according to the ideas first 
advanced by Bellman and Zadeh [1], the principle of optimality of Bellman may be rewritten 
in logical form as the fixed-point logical equation 

Good(a;) <£> 3?/,u Feasible(x,y,u) A Eff icient (x,y,u) A Good(y), 
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where Good is a numerical measure of the quality of the optimal set of decisions guiding 
a system toward achievement of dynamic goals, Feasible is a multivalued-logic predicate 
measuring the physical feasibility of moving the state from x to y using the control u, 
and Efficient is another multivalued-logic predicate measuring the efficiency of such a 
movement. In simpler worlds, this fixed-point expression simply states that there exists 
an optimal strategy leading the system from x toward its goals if there exists an optimal 
subtrajectory leading x to some y and if there exists an optimal strategy from y toward those 
objectives. 

This reformulation of the HJB equation has led, in turn, to a generalization that does 
not define quality of a control strategy in terms of its optimality, measuring, instead, the 
degree of compliance of any strategy (i.e., a feedback function) with prototypical strategies 
known to produce adequate behavior. The essential novel element of that formulation is the 
explicit introduction of expressions that measure compliance with specific strategies, thus re- 
laxing the notion of adequacy as optimality that is built into classical dynamic programming 
formulations. 

This generalization of the HJB equation is helpful as a source of insight into the solution 
of a wide variety of operational research problems and their generalizations. Current research 
based on these ideas is aimed at three major objectives: 

1. The iterative derivation of solutions for the generalized equation by means of algorithms 
that improve approximations of the feedback function by fuzzy rules 

2. Identification of relations between solutions of the HJB equation and their generaliza- 
tions that provide insight leading to compact, effective approximations 

3. Development of techniques that promote attainment of multiple, possibly conflicting, 
objectives, by dynamic relaxation and blending of feedback strategies 

Following the successful representation of dynamic programming approaches for terminal- 
set control, using a utility-based, multivalued-logic representation, we have started to develop 
a series of recursive control approaches based on direct modeling of the adequacy of control 
schemes, using approaches that directly generalize the Hamilton-Jacobi-Bellman equation. 
Informally, the idea is that a "good" control steering a discrete-time system from a point P 
to a terminald -set is one that 

1. Is economical in its first step 

2. Results in a state, after the first step, that may be guided in a satisfactory fashion to 
the terminal set 

When such statements are formalized using multivalued logic tools, the resulting fixed-point 
equation may be used to determine the degree of adequacy (as measured from a variety of 
viewpoints) of various control policies. 
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We are also investigating supervised learning methods to generate rules for the represen- 
tation of performance values (as a function of state) and for the generation of the desirability 
measures. 

3    Summary of Accomplishments of Principal Investigator 
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ABSTRACT 

™" Pf7 PrT a f0rmal chara^ization of the major concepts and con- 
hZL 0ffuzzyJ0*>c<" te™ of notions of distance, closeness, and similarity 
between pairs of possible worlds. The formalism is a direct extension (by recogni- 
tion of multiple degrees of accessibility, conceivability, or reachability) of the 
major modal logic concepts of possible and necessary truth 

Given a function that maps pairs of possible worlds into a number between 0 
and 1 generalizing the conventional concept of an equivalence relation, the major 
constructs of fuzzy logic (conditional and unconditioned possibility distributions) 
^defined in terms of this similarity relation using familiar concepts from the 

character from the typical, chance-oriented, meanings associated with probabilistic 
concepts, which are grounded on the mathematical notion of set measure The 

TV" StZCT/efinSS " t0P°l0^al notion of continuity in the space of 
possible worlds (and in that of its subsets, i.e., propositions) that allows a form of 
logical   extrapolation" between possible worlds. 

This logical extrapolation operation corresponds to the major deductive rule of 
juzzy logic - the compositional rule of inference or generalized modus ponens of 
Zadeh -an inferential operation that generalizes its classical counterpart by virtue 
of its ability to be utilized when propositions representing available evidence match 
only approximately the antecedents of conditional propositions. The relations 
between the similarity-based interpretation of the role of conditional possibility 
distnoutions and the approximate inferential procedures of Baldwin are also 
discussed. 

A straightforward extension of the theory to the case where the similarity scale 
is symbolic rather than numeric is described. The problem of generating similarity 
functions from a given set of possibility distributions, with the latter interpreted as 
defining a number of (graded) discernibility relations and the former as the result 
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of combining them into a joint measure of distinguishability between possible 
worlds, is briefly discussed. 

KEYWORDS:  fuzzy logic, semantics, modal logics, possible worlds, gen- 
eralized modus ponens 

INTRODUCTION 

This paper presents a semantic characterization of the major concepts and 
constructs of fuzzy logic in terms of notions of similarity, closeness, and 
proximity between possible states of a system that is being reasoned about. 
Informally, a "possible state" (to be formalized later using the notion of 
"possible world") is an assignment of a well-defined truth value (i.e., either 
true or false) to all relevant declarative knowledge statements about that 
system. 

The primary goal that guided the research leading to the results presented in 
this work was one of conceptual clarification. A great deal of energy has been 
directed in the past few years to debating the methodological necessity and 
relative merits of various approximate reasoning methodologies. As a result of 
these exchanges, the need to consider certain nonclassical approaches has been 
questioned on a variety of bases. 

Recognizing the need for the development of sound semantic formalisms that 
shed light on the nature of different approaches, I have pursued, in the past few 
years, a line of theoretical research seeking to describe various approximate 
reasoning methodologies using a common framework. These investigations 
have recently shown the close connection between the Dempster-Shafer [38] 
calculus of evidence [35] and epistemic logics. This relationship was elucidated 
by straightforward application of conventional probabilistic concepts to models 
of knowledge states that distinguish between the true of a proposition and 
knowledge (by rational agents) of that truth. Central to this development is the 
notion of "possible world" used by Carnap [6] to develop logical bases for 
probability theory. 

The central notion of possible state of affairs is also the conceptual basis of 
the results presented in this paper, which is aimed at establishing the semantic 
bases of possibilistic logic with emphasis on the study of its possible relations 
and differences, if any, with probabilistic reasoning. 

The results of this investigation clearly show that possibilistic logic can be 
interpreted in terms of nonprobabilistic concepts that are related to the notions 
of continuity and proximity. The major functional structures of fuzzy logic, 
possibility and necessity distributions,1 may be defined in terms of the more 
primitive notion of similarity between possible states of a system using 
constructs that are the direct extension of well-known concepts in the theory of 

'it is important to remark that the scope of this work is limited to the most fundamental concepts 
and constructs of fuzzy logic without examining related notions such as generalized quantifiers. 
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metric spaces. The topologicai metric structure that is so defined may be used 
to derive a sound inferential rule that is a form of logical "extrapolation 
This rule is also shown to be the compositional rule of inference or generalized 
modus ponens proposed by Zadeh [53]. Conversely, possibility distribu- 
tions-expressing resemblance in some specific regard-may be used to derive 
the actual similarity functions, discerning between possible worlds from the 

multiple points of view. . 
The constructs that are used to derive the interpretation presented in this 

paper are formally, structurally, and conceptually different from those that 
explain probabilistic reasoning, in either its objective or subjective interpreta- 
tions irrespective of methodological reliance on interval-based approaches to 
represent ignorance. The larter class of methods-measuring the relative 
proportion of the (either observed or believed) occurrence of some event-are 
based on the mathematical notion of set measure, while the former-seeking to 
establish similarities between situations that may be used for analogical reason- 
ina_are related to the theory of distances and metric spaces. 

This presentation of the relationships between similarity-based concepts and 
possibüistic notions, while grounded on a formal treatment that is based on 
rigorous logical and mathematical formalisms, will be kept at a level that is as 
informal as possible. The purpose of this presentation style is to facilitate 
comprehension of major ideas without the clutter chat would otherwise need to 
be introduced keep matters strictly precise. For this reason, I will refrain from 
formal introduction of structures and axiom schemata, that, although correct 
and proper, may encumber understanding of the basic concepts. 

Before we proceed to the detailed consideration of semantic models, I must 
briefly remark on the epistemological implication of these developments. The 
present interpretation is not the only that may be advanced to define the notion 
of possibility in terms of simpler concepts, nor do I claim that it may not be 
sometimes possible, even desirable, to model possibüistic structures from other 
bases. Mv intent is not to prove the conceptual superiority ot one approach 
over another or to argue about the relative utility of different technologies. 
Rather I hope that these results have contributed to establish the basic 
conceptual differences in the treatment of imprecise and uncertain mformation 
that are inherent in probabilistic and possibüistic methods-the former onen ed 
toward quantifying believed or measured frequency of occurrence, and *e 
larter seeking to determine propositions, implied by the evidence, that are 
similar in some sense to a hypothesis of interest. In other words, beyond 
accidental domain-specific relat.ons, both types of methods are needed to 
analyze and clarifv the significance of imprecise and uncertain mtormation. 

APPROXIMATE REASONING AND POSSIBLE WORLDS 

Our point of departure is the model-theoretic formalisms of modal logics. 
Let us assume that declarative statements about the state, situation, or behav10r 
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of a real-world system under study are symbolically represented by the letters 
of some alphabet 

ssl= {p.g.r,...} 

which are combined in the customary way using the logical operators -, v, A, 
- , and <-* (to be interpreted with their usual meanings) to derive a language 
2 (i.e., a collection of sentences). Furthermore, we augment this language by 
the use of two unary operators N and II, called the necessity and possibility 
operators, respectively, having usage governed by the rule 

If 0 is a sentence, then N<p and Ü0 are also sentences, 

which introduces the ability to represent different modalities for the truth of 
propositions. 

A mode! for this prepositional system is a structure consisting of three 
components: 

1. A nonempty set of possible worlds % introduced to represent states, 
situations, or behaviors of the system being modeled by our sentences. In 
what follows we will refer to this set as the universe of discourse, or 
universe for short. 

We will also need to consider a nonempty subset / of the universe #, 
which is introduced to model the set of conceivable worlds that are 
consistent with observed evidence. This set (possibly equal to the whole 
universe *) will be called the evidential set. Throughout this paper, we 
will assume that evidence about the world is always given by means of 
conventional propositions that allow us to determine, without'ambiguity, 
whether a possible world either is or is not a member of the evidential 
set. 

2. A function (called a valuation) that assigns one and only one of the truth 
values true or false to every possible world w in the' universe # and 
every sentence <$> in the language. Assignment of the truth value true to a 
pair (w, <p) will be denoted w i- <? (i.e., 0 is true in the world w). 

In what follows, we will use the same symbols to describe subsets of 
possible worlds and the propositions that are true only in worlds that are 
members of such subsets. For example, the symbol § will be used to 
denote both the evidential set and the proposition that asserts the validity 
of the corresponding evidential observations.  Using this notation, for 
example, we will write w t- S to indicate that the world w is compatible 
(i.e., logically consistent) with the evidence i. Furthermore, we will use 
the symbol  if, introduced above as a set of well-formed sentences, to 
denote also the power set of the universe <%. Rigorously, subsets of # 
strictly correspond to the classes of equivalence of the sentence set  if 
that are obtained by equating logically equivalent sentences. Tn the same 
simplifying vein, we will also drop the customary distinction between 
sentences-the linguistic expressions of something that may be true or 
false—and propositions —the actual things being asserted. 
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3. A binary relation R between possible worlds, called the accessibility, 
conceivability, or reachability relation, introduced to model the seman- 
tic of the modal operators N and II. 

It is not necessary to review here the well-known axioms (Hughes and 
Creswell [21]) that restrict the assignment of truth values to well-formed 
sentences according to the rules of propositional logic. To facilitate compre- 
hension of our formalism, we need to recall solely the rules that constrain 
assignment of truth values to sentences formed by prefixing other valid 
expressions with the modal operators, that is, 

1. The sentence <£ is necessarily true in the possible world w (i.e., 
w I- N<p) if and only if it is true in every world w' that is related to the 

world w by the relation R. 
2. The sentence 4> is possibly true in the possible world w (i.e., w H 110) 

if and only if it is true in some world w' that is related to the world w by 

the relation R. 
If, for example, the relation R relates worlds that share the same (possibly 
empty) subset of true sentences of the prespecified set of expressions 

Sf- {pi,62, . . . } 

that is, if R( w, *0 if and only if any sentence 0 in ? is either true in both vv 
and w' or false in both w and W, then the resulting system has an "epistemic" 
interpretation that regards related possible worlds as "being possible for all we 
know" (i.e., observed evidence, corresponding to a subset of F, is the same 
for both worlds). In this case, the necessity operator N corresponds to the 
epistemic operator K of epistemic logics, with the correspondmg system 
having the properties of the modal system S5, which was used in the context of 
probability theory as the semantic basis for the Dempster-Shafer [38] calculus 

of evidence (Ruspini [35]). 
If on the other hand, the original interpretation of logical necessity-corre- 

sponding to a relation R that is equal to * x tf, that is, that relates every pair 
of possible worlds-is given to the operator N, then a proposition is necessar- 
ily true if and only if it is true in every possible world. 

If the relation R is chosen as 

R = / X i 

then this interpretation may be used to characterize approximate reasoning 
problems as those where a hypothesis of interest is neither necessarily true nor 
necessarily false in worlds in the evidential set g, reflecting the inability of 
conventional deductive techniques to unambiguously determine the truth value 

of the hypothesis.2 

2
The notion of approximate reasoning problem is often extended to encompass situations where 

deductive techniques cannot always be used because of practical limitations on computational 

resources. 
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In those problems, in spite of this fundamental impossibility, we may resort 
to approximate reasoning methods to describe various properties of the eviden- 
tial set i. For example, the probabilistic structures used by various probabilis- 
tic reasoning approaches typically characterize relations of the form 

n{j?/\ i) : n(-jfA g) 

between the measures of the subsets of the evidential set i where a hypothesis 
JP is true or false, respectively. 

Our aim will be to study how other structures, defining a metric or distance 
in the universe <%, can be used to describe the nature of the evidential set. To 
do so, we will assign a different meaning to the accessibility relation, giving it 
an interpretation that regards related worlds as "similar" or "close" in some 
sense. We will require, however, a scheme that is richer than that provided by 
a single relation so that we can extend modal notions and derive semantics 
bases for fuzzy logic, which relies on concepts of degrees of matching or 
closeness expressed by real numbers between 0 and 1. 

In what follows we will use the symbols => and » to denote strong 
implication and equivalence, respectively. A proposition q strongly implies p 
(denoted q =» p) if and only if p is true in any world where q is. Similarly, p 
is logically equivalent to q (denoted p •» q) if and only if p and q are true 
in the same subset of worlds of %t. 

Following traditional terminology, we will say also that a proposition p is 
satisfiable if there exists a possible world p such that w H p. 

EXTENDED MODALITIES 

We first turn our attention to the problem of generalizing modal logic 
formalisms to explain the structures and functions of fuzzy logic. 

A number of authors have studied various relations between fuzzy and 
modal logics. Lakoff [24], Murai et al. [28], and Schocht [36] have proposed 
graded generalizations of basic modal constructs. Dubois and Prade [13, 14] 
have also explored analogies between these nonstandard logics. In a recent 
paper [12], they developed, in addition, a modal basis for possibility theory by 
introducing fuzzy structures into modal frameworks with the goal of deriving 
proof mechanisms that can be used in possibilistic reasoning. 

The goal for the model presented in this paper is somewhat different from 
the objectives guiding those efforts. We will seek explanations for possibilistic 
constructs on the basis of previously existing notions rather than generaliza- 
tions of modal frameworks by means of fuzzy constructs. The model presented 
here is not based on the use of graded notions of possibility and necessity as 
primitive—and, by implication, easy to understand—structures. The founda- 
tion for this model is provided by a generalization of the accessibility relation, 
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which is given a simple interpretation as a measure of resemblance and 
proximity between possible worlds. 

We will extend the notion of accessibility relation to encompass a family of 
nonempty binary relations Ra that are indexed by a numerical parameter a 
between 0 and 1. These relations, which are nested, 

Ra ^ R0       whenever ß < a 

are introduced to represent different degrees of similarity, using a scheme that 
is akin to that used by Lewis in his study of counterfactuals [25]. The family of 
accessibility relations introduced here differs from that proposed by Lewis, 
however, in its use of numerical indexes3 and in the nature of the overall 
modeling goals that, in Lewis's formalism, are intended to represent changes 
of scale induced by consideration of different restrictive statements. 

Similarity Relations 

To facilitate the definition of a family of accessibility relations, we introduce 
a similarity function 

S: <%x %~ [0,1] 

assigning to each pair of possible worlds (w, w') a unique degree of similarity 
between 0 (corresponding to maximum dissimilarity) and 1 (corresponding to 
maximum similarity). 

With the help of this function, we will then say that w and w' are related to 
the degree a, denoted Ra(w, W), if and only if S(w, w') > a. In this way, 
the relations Ra have the required nesting property with R0 corresponding to 
the whole Cartesian product <% x % (or, every possible world is at least 
similar in a degree zero to every other possible world). 

Some properties are required to assure that the function 5 has the required 
semantics of a metric relationship capturing the intuitive notion of similarity or 
"proximity." It is first necessary to demand that the degree of similarity 
between any world and itself be as high as possible, that is, 

S(w, w) = 1        for all w in It 

This property assures that every one of the accessibility relations Ra will be 
reflexive and,  following the nomenclature  introduced by Zadeh  for fuzzy 
relations [52], we will also say that the similarity relation is reflexive. 

Next, we will call for the function S to be symmetric, that is, 

S{ w, w') = S( w', w)        for any worlds w and w' in * 

3We will later see that similarities can be measured by using more general, nonnumeric, scales. 
For simplicity reasons, I will avoid at this point the introduction of more general schemes that 
unnecessarily complicate the exposition. 
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This is a very natural requirement of any relation intended to represent a 
relation of resemblance between objects. 

Finally, and most important, we will impose a form of transitivity require- 
ment upon the similarity function S that turns it into a generalized equivalence 
relation. The purpose of this restriction is to assure that S has reasonable 
behavior as a metric in the universe of possible worlds. It would certainly be 
surprising if, for some similarity S, we were to be told that w and w' are very 
similar and that w' and w" are also very similar, but that w does not resemble 
w" at all. Clearly, there should be a lower bound on the possible values of 
S(w, w") that can be expressed as a function of the values of S(w, w') and 
S(w', w"). We will express such a constraint using a numeric operation, 
denoted ®, that takes as arguments two real numbers between 0 and 1 and 
returns another number in the same range, that is, 

®:[0,1] X [0,1] ~ [0,1] 

in the form of the inequality 

S(w, w") > S{w, w')®S(W, w") 

assumed valid for any worlds w, w', and w" in the universe %. Reverting to a 
modal terminology, the above transitivity constraint, which will be called 
®-transitivity, may be rewritten in relational form as 

Ra<3äZRa-R3       forall0<a,/3< 1 

making obvious its generalization of the conventional definition of transitivity 
for ordinary binary relations, that is, 

R £R°R 

Since the role of ©, through recursive application, is that of providing a 
lower bound for the similarity between the two end members w, and wn of a 
chain of possible worlds [ wp w2,. .., wj, it is obvious that the operation © 
should be commutative and associative. Furthermore, it should also be nonde- 
creasing in each argument, as it is reasonable to ask that the desired lower 
bound be a monotonic function of its arguments. Finally, it is also desirable to 
ask that 

a©l = l®a = a 

that is, that the values of the similarities of two indistinguishable objects to a 
third should be the same. These requirements are equivalent to demanding that 
the operation © be a triangular norm (Schweizer and Sklax [37]), or T-norm, 
for short. 

Triangular norms, originally introduced in the theory of probabilistic metric 
spaces to treat certain statistical problems, play a distinguished role in [0, 1]- 
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multivalued logics (Alsina and Trillas [1], Dubois and Prade [11], Gaines [17], 
Rescher [31]) as the result of imposing reasonable requirements upon opera- 
tions that produce the truth value of the conjunction of two expressions as a 
function of the truth values of the conjuncts. Furthermore, generalized similar- 
ity relations (called B-R relations by Zadeh [54]) also have an important 
function, to be examined further later in this paper, in the generalization of the 
inferential rule of modus ponens (Dubois and Prade [10], Trillas and Valverde 
[43]). Our axiomatic derivation for the requirement that ® be a T-norm is 
based, however, solely on metric considerations, applied here to a space of 
possible worlds but valid in general metric spaces. 

From the axioms of triangular norms, it is easy to see that 

a®ß :£ min(o;, jS) 

which shows that the minimum function, itself a T-norm, is the largest element 
in this class of operations. Its minimal element, on the other hand, is the 
noncontinuous function ® defined by 

[a if/3 = l 
a®/3 =  \ß if a = 1 

[ 0 otherwise 

In what follows, we will also impose a most reasonable additional assump- 
tion of continuity of ® with respect to its arguments (i.e., why should there be 
a jump in the value of a lower bound provided by ® when the values of its 
arguments are slightly changed?). The class of continuous T-norms does not 
have a minimal element, although under certain additional assumptions (requir- 
ing T-norms to be also J-copulas [37]), the inequality 

max(a +ß - 1,0) < a®ß 

also holds true, showing that certain important continuous T-norms lie between 
that of the K,-logic of Lukasiewicz (see [17]) and that of the original fuzzy 

logic proposed by Zadeh [53]. 
Continuous triangular norms play a significant part in the theories of pattern 

recognition and automatic classification (Ruspini [32]). In [33] I proposed the 
use of generalized similarity relations based on the T-norm of Lukasiewicz to 
generalize existing classification techniques-based on the mapping of a simi- 
larity function into a conventional equivalence relation-to the fuzzy domain 
by mapping these T-norms (which I called likeness relations) into generalized 
fuzzy partitions. Bezdek and Harris [3] independently studied axiomatic ap- 
proaches to cluster analysis based on the use of continuous T-norms. 

I have also studied [34] the possible relation between the multivalued logic 
and similarity related aspects of T-norms. and suggested that the degrees of 
similarity between two objects A and B may be regarded as the "degree of 
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truth" of the vague proposition 

'M is similar to B." 

Having argued that S should have the structure of a generalized equivalence 
relation, we will assume, mainly for reasons of simplicity, that the function S 
is the dual of a "true" distance, that is, that 

5(w, w') = 1 if and only if w = w' 

This restriction, which is not substantial, is introduced primarily to assure that 
different possible worlds may be distinguished by means of the function S. 
Otherwise, the equivalence relation that relates two worlds w and w' if and 
only if S(w, w1) = 1 may be used to partition our universe <2f into "indis- 
tinguishable" nonintersecting classes, indicating that our metric cannot dis- 
criminate between significant differences in system state. 

Before closing our presentation of generalized similarity relations, it is 
important to remark upon the close relation between the notion of similarity 
and that of distance. If a function 5 is defined in terms of a similarity function 
S by the simple relation 

5 = 1 - S 

then it is easy to see that the function <5 has the properties of a metric or 
distance. This is evident if the operation © corresponds to the T-norm of 
Lukasiewicz, since the transitivity condition is equivalent to the well-known 
triangular inequality, that is, 

8{w, w") < 8{w, w') + 8(w', w") 

If other T-norms are used, even stronger inequalities hold, with the so-called 
"ultrametric inequality" 

8(w, w") < max[o(w, w'),8(w', w")] 

being valid for the T-norm of Zadeh. In this case, each of the relations in the 
family Ra (known in fuzzy set theory as the a-cut4 of the similarity S) is a 
conventional equivalence relation. This fact was exploited, prior to the intro- 
duction of fuzzy set theory and fuzzy cluster analysis, by a variety of clustering 
procedures of the "single-link" type (Jardine and Sibson [22], Sokal and 
Sneath [40]). 

Possible and Necessary Similarity 

Our semantic formalization needs require the introduction of constructs to 
indicate  the extent by which a concept exemplifies,   illustrates,  or is an 

4The a-cut [46] of a fuzzy set p: i — (0, 1] is the conventional set of all points  w such that 
n(w) > a. A similar concept is defined for relations as subsets of a product space * x #. 
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adequate model of another concept. Our interpretations will therefore be 
oriented toward characterization of the degree to which a concept can be said 
to be a good example of another concept with the purpose of defining vague 
concepts by means of measures of proximity between defined and defining 
concepts. In our treatment, each of the multiple "definiens" will be a 
conventional proposition corresponding to a subset of possible worlds. It is 
conceivable, however, that new vague concepts might also be described metric 
relations to other vague concepts. 

The required constructs are based on the idea that whenever p and q are 
propositions such that p => q, then any /7-world is an "example" of a 
g-world. This basic notion will be generalized by the introduction of modal 
structures that define to what degree possible worlds that satisfy a certain 
proposition q fit a vague concept. Some of those possible worlds are "para- 
digmatic" of the vague concept, that is, they fit it to a degree equal to 1 in the 
same sense that we may say, for example, that somebody whose height is 7 ft 
is definitely "tall." If we use a notion of graded fitness, however, certain 
worlds will fit the concept to a degree, that is, they resemble (or are similar to) 
some paradigmatic example of the vague concept. 

The conventional interpretation of possibility must be modified, therefore, to 
capture the idea that a particular possible world is similar in some degree to 
another world that satisfies a "reference" proposition. 

More generally, however, we will be interested in relations of similarity 
between pairs of subsets of possible worlds rather than between pairs of 
possible worlds. This requirement complicates matters considerably, because 
we will be forced to consider both the "validity" of a proposition p in some 
world where another proposition q is true and its applicability in every world 
where q is true. In the former case, we will care about the existence of 
<7-worlds that are similar to some degree to some /7-worid, whereas in the 
latter we will be concerned with the size of the minimum neighborhood of p 
(as a subset of the universe #) that fully encloses the subset q. 

This dual concern for what may possibly apply and what must necessarily 
hold-an essential aspect of modal logic-is typical of situations where 
relationships between ensembles of objects are described in terms of relations 
between their members. In the probability calculus, for example, knowledge of 
probabilities over certain families of subsets provides "sharp" upper and 
lower bounds (called lower and upper probabilities, respectively) for the 
probabilities of other subsets-an important fact in the extension of set 
measures to larger domains (Halmos [19]). The role and properties of these 
bounds in the Dempster-Shafer [38] calculus of evidence is well known, 
havin* been described in the original paper of Dempster [8], related to 
concepts of modal logic by Ruspini [35], and being also the subjects of 
considerable formal study (Choquet [7]) as mathematical structures. 
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Analogies between the role of probabilistic bounds (i.e., bounds for proba- 
bility values) and possibility/necessity distributions, have been the source of 
much of the confusion about the need for pcssibilistic schemes. Each 
upper /lower-bound pair, however, leads to a substantially different description 
of the nature of a subset of possible worlds, being, in either case, measures 
thai arise naturally when poinrwise properties are expended to set partitions. 
General properties of these measures have been studied by Dubois and Prade 
[15] in the context of approximate reasoning and in other regards by Pavlak 
[30]. 

Our generalizations of the notions of possibility and necessity are related to 
the so-called de re (Hughes and Creswel [21]) interpretation of the statement 
"If qt then p is possible" as the modal prepositional relation 

We will say that the proposition q implies, or is a necessary model of, the 
proposition p to the degree a if and only if for every ^-world w there exists a 
/vworld W that is at least «-similar to it [i.e., S(w, W) > a] or, equivalently, 
whenever 

Similarly, we will say that the proposition q is consistent with, or is a 
possible model of, the proposition p to the degree a3 if and only there exist 
a ^-world w and a .p-world w' that are at least o-similar or, equivalently, 
whenever 

-(/>--n.*) 
The similarity function that we have introduced in the universe * provides 

us with a simple mechanism to quantify both the extent of "inclusion'' and that 
of the "intersection" between pairs of subsets of possible worlds.6 

PossbHistic Implication and Consistency 

The notion of subset inclusion and its related concept of set identity are of 
central importance in deductive logic, since subsets of possible worlds are 
formally equivalent to propositions with subset inclusion and identity corre- 

Note that our characterizatioes of both possibility and necessity distributions are based in Ac 
modal possibility operators n„. 
For reasons chat by now should be evident, we will Mt need to introduce a concept of 

'• unconditioned possibility" although ll would be easy 10 do so using q = f. Beiag concerned 
with the power of ceruie prepositions to exemplify other conditions, we will not have miirh 
occasaian to deal with the strength of tautologies in that regard. 
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spending to logical implication and equivalence, respectively. These proposi- 
tions] relationships are the basis of derivation rules such as the modus poneos. 
The notion of intersection plays a similar role is modal analyses because of its 
ability to express the potential validity of a statement. 

Classical accounts, however, recognize only two "degrees" of inclusion 
corresponding to the cases when either a set q is a subset of another set p or it 
is not, with a similar dichotomy applying to degrees of intersection. Our 
generalization exploits the metric structures defined between sets of possible 
worlds by introducing measures that describe a subset as rnrlosrd in a 
neighborhood (of some size) of another set while intersecting another of its 
neighborhoods (of '•smaUer" size).7 The problem of measuring the "size" of 
those neighborhoods is the subject of our immediate considerations. 

DEGREE OF IMPLICATION Our definition of partial implication between 
propositions was based on conditions that determine whether, given two 
propositions p and q, one of them implies the other to the same value o. In 
particular, since every world w is always similar in a degree that is at least 
equal to zero to any other world w', it is always true that any proposition q 
implies any other proposition p to the degree zero. It is often the case, 
however, that the degree of implication between p and q is at least equal to 
some certain positive value a. 

If we want to generalize procedures based on inclusion relationships, such as 
the modus poneas, in an efficient fashion, we will need to measure the 
"optimal" (or maximum) value of the parameter a such chat q implies p to 
the degree a. This value is a measure of the degree to which the set of all 
p-worlds must be "stretched" to encompass the set of all ^-worlds. The least 
upper bound of the values of the similarities between any 9-world w' and some 
p-world w is given by the degree of implication function: 

DEPTNITION 1    The degree of implication of p by q is the value 

l{p\q) =   inf   sup S(w.w') 

Defined in this way, the degree of implication l(p J q) is a measure of the 
"minimal amount" of stretching required to reach a ..p-world from any 
^-world, in the sense that if ß < l(p | q), then 

q =» Tlgp 

Ii ii important to recall that. o*iog to OUT reliance 00 similarity rather (has 00 the dual MOOS of 
dissimilarity or distance, high values of a correspond to low values of "stretching" or to smaller 
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Furthermore, a is the largest real value for which the above statement may be 
made. 

As the following theorem makes clearer, this function provides the basis for 
the generalization of the modus ponens. This truth-derivation procedure may 
be thought of as an expression of the nesting relationships that hold between 
the sizes of neighborhoods of such subsets. 

THEOREM 1    The degree of implication function, 

I: if x if- [0,1] 

has the following properties: 
(i) Ifp =» r, then I(p \ q) <> I(r | q) 

(ii) lfp~r, then Ifp j q) > Ifp | r) 
(iii) I(p\q)>I(p\r)®I(r\q) 

where p, q, and r are any satisfiable propositions. 

Proof The first two properties are an immediate consequence of the 
definition of degree of implication. To prove the third, observe that by 
definition of similarity, 

S(w, w') > S(w, w")®S(w", w') 

for any worlds w, w', and w". 
Taking the supremum on both sides of this inequality with respect to all 

worlds w I- p, it follows, because © is continuous, that 

sup S(w, w') >    sup S(w, w") ®S(w", W') 

Since this expression is true, in particular, for all worlds w" h- r, it is true that 

supS(w,w')>     inf   sup S{w, w") ®S(vv, w') 

= l(p\r)®S{w,w') 

where w is any world such that ivi-r 
From this inequality, it follows, since © is continuous, that 

sup S(w, w') > \{p | r)®   supS(vv, w') 

Taking now the infimum on both sides of this expression over ail worlds w' 
such that W \- q, it is easy to see, using again the continuity of ®, that 

inf   sup S(w, w') > l(p\ r)®    inf   sup S(w,w') 
w'»-<7 w>-p liv'i-^ Al_r 

proving the ©-transitivity of I. 
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Note, that since l(q | q) = 1 for any proposition q, the following statement 
is also true. 

COROLLARY    If p and q are propositions in  <£, then 

\{p\q) = sap[l{p\r)®l(r\q)] 
r 

Notice also that if I(p | q) = 1, then 

sup S(w, w') = 1        for all w' \- q 
wi-p 

Under minimal assumptions (assuring that the supremum operation is actually a 
maximization), this relation is equivalent to stating that q strongly implies p, 
or that any <7-world is also a p-world. 

The nonsymmetric function I measures the extent to which every world W 
in a certain class resembles some world w (dependent on w1) in a reference 
class, explicating the nature of the nonsymmetric assessments (Tversky [44]) 
found in psychological experimentation when subjects are asked to evaluate the 
degree to which an object "resembles" another. The results obtained in those 
experiments suggest that human beings, when assessing similarity between 
objects, use one of them (or a class of similar objects) as a reference landmark 
to describe the other. Such asymmetries might be explained by noticing that, in 
general, l(p | q) =£ \{q \ p), indicating that the stronger stimulus might gener- 
ally be used to construct a reference class, which is then used to describe other 
stimuli. 

The degree of implication of one proposition by another can be readily used 
to generate a measure of similarity between propositions that generalizes our 
original measure of similarity between possible worlds: 

S(p,q) = min[l{p\q),I{q\p)] 

quantifying the degree by which the propositions p and q are equivalent. It 
can be readily proved (Valverde [45]) from its definition and from the 
transitivity property of I that S is a reflexive, symmetric, and ©-transitive 
function between subsets of possible worlds. This similarity function is the 
dual of the well-known Hausdorff distance, defined between subsets of a 
metric as a function of the distance between pairs of their members (Dieudonne 
[9]), which is given by the expression 

5(A,B)=mzxl   sup info(x, y)  ,   sup inf<5(;c, y) 
1 xeB yeA ■ xsA yeS 

The result expressed by the transitive property of the degree of implication 
may be stated using modal notation in the form 

q => Ylar and r => Tl3p    imply that    q =» Ua&3p 

as the simplest form of the generalized modus ponens rule of Zadeh. 
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Figure 1. The generalized modus ponens. 

The relationship between this rule and the classical modus ponens is easier 
to perceive if it is remembered that classical conditional propositions of the 
form "If q, then p" simply state that the set of ^-worlds is a subset of the set 
of p-worlds. Such relationships of inclusion can also be described in metric 
terms by saying that every <7-world has a p-v/odd (i.e., itself) that is as similar 
as possible to it. 

Logic structures, however, only allow us to say either that q implies p or 
that q implies its negation - p, or that neither of those statements is true. By 
contrast, similarity relations allow measurement of the amount by which a set 
must be "stretched" (as illustrated in Figure 1) to enclose another set. Using 
such metrics, we can describe the generalized modus ponens as a relation 
between the stretching required to reach p from any point of the set r, the 
stretching required to reach r from any point of the set q, and the stretching 
required to reach p from any point of the set q. 

In the section Generalized Inference, we will derive alternative expressions 
for the generalized modus ponens that allow us to propagate both measures 
characterizing degree of implication and degree of consistency; a dual concept 
that plays, with respect to the notion of possibility, the function that is fulfilled 
by the degree of implication function with respect to necessity. In those 
derivations, by introducing sharper bounds for certain conditional concepts, we 
will also be able to improve the quality of the bounds provided by generalized 
modus ponens rules while being closer in spirit to its usual fuzzy-logic 
formulation. 

DEGREE OF CONSISTENCY A notion that is dual to that of degree of 
implication is given by a function that measures the pointwise proximity 
between pairs of possible worlds from an "optimistic" point of view character- 
izing the degree to which statements that are true in some worlds may apply in 
others. By contrast, the degree of implication measures the extent to which 
statements that are true in /7-worlds must hold in g-worlds. 

DEFINITION 2    The degree of consistency of p and q is the value 

C(p\q) =   sup   sup5(w,w') 
w' (— q wy— p 

An immediate consequence of this definition that C(- | • ) is a symmetric 
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Table 1.   Triangular Norms, Conorms, and Pseudoinverses  

Name 

Lukasiewicz 
Product 

Zadeh 

T-Norm a® b 

max(a + b - 1,0)) 
ab 

min(a, b) 

Conorm a ® b       Pseudoinverse a0 b 

min(a + b, I) 
a + b - ab 

max(a, 6) 

min(l + a - b,l) 
ajb   \lb> a 

1     otherwise 
a   \lb> a 

1   otherwise 

in the equivalent form 

5(w,w') > |5(w,0 -5(w',0|, 

which utilizes a form of inverse (i.e., the subtraction operator -) of the 
function used to express the original inequality (i.e., the addition operator +). 
This notion of inverse can be directly generalized (Schweizer and Sklar [37]) to 
provide us with the tools required to define possibility and- necessity functions 
and to derive useful forms of the generalized modus ponens involving either 
type of these constructs. 

DEFINITION 3 If © is a triangular norm, its pseudoinverse 0 is the 
function defined over pairs of numbers in the unit interval of the real 
line by the expression 

a0b = sup{c: b®c < a} 

From this definition it is clear that a0b is nondecreasing in a and 
nonincreasing in b. Furthermore, a0 0 = 1 and a0 1 = a for any a in 
[0, 1]. Other important properties of the pseudoinverse function are given in 
the works of Schweizer and Sklar [37], Trillas and Valverde [43], and 
Valverde [45]. 

Examples of the pseudoinverses of important triangular norms are given in 
Table 1 together with the corresponding conorms. 

Unconditioned Necessity Distributions 

We introduce first a family of functions that bound from below the value of 
the similarity between any evidential world in i and some world where 
another proposition p is true. These unconditioned necessity distributions are 
lower bounds for values of the degree of implication \{p \ 4), which measures 
the extent to which statements that are true in a reference set (i.e., the subset of 
p-worlds) must hold in the evidential set. 

As observed before, whenever I(pK)= 1, it is true, under minimal 
assumptions, that the evidential subset 4 is a subset of the set of all ^-worlds, 
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or that p necessarily holds in /. If, on the other hand, l{p \ g) = a < i then 
p must be stretched a certain amount-with smaller a corresponding to 
greater stretching-in order for one of its neighborhoods to encompass /. 

DEFINITION 4 If £ is cm evidential set, then a function Nec(-) defined 
over propositions in the language <£ is called an unconditioned necessity 
distribution for g if 

Unconditioned Possibility Distributions 

The dual counterpart of the unconditioned necessity distribution is provided 
by upper bounds of the degree of consistency C(p\ £). Whenever C(p | /) = 
1, it is easy to see that, under minimal assumptions, there exists a /7-world w 
that is m the evidential set i or, equivalently, that p (for all we know) is 
possibly true. If, on the other hand, C(p\g) = a < i, ^ ±eTS exists a 

neighborhood (of "size" a) of some ^-worid that intersects the evidential set. 

DEFINITION 5    If £ is an evidential set, then a function Poss(-) defined 
over propositions in the language <£ is called an unconditioned possibility 
distribution for i if 

PossO) > C{p\i) 

Since the value Poss(p) of any possibility function Poss(-) is an upper bound 
of the value C(p | f) of the degree of consistence, the corresponding value 
Nec(p) of any necessity function Nec(-) is a lower bound of I(p |q) it follows 
that values of a possibility function can never be smaller than the correspond- 
ing values of any necessity function, that is, that 

Nec(p) < Poss(p) 

Properties of Possibility and Necessity Distributions 

In this subsection we will develop similarity-based interpretations for some 
basic formulas of possibilistic calculus. These expressions may be thought of 
as mechanisms that allow the extension of a partially known possibility 
distribution. For example, the property that 

max[Poss(»,Poss(<7)] >C(pVq\g) 

which is proved below, is the similarity interpretation of the standard rule that 
allows computation of the value of the possibility of a disjunction in fuzzy 
logic, that is, J 

Poss(pVq) =max[Poss(j?),Poss(?)] 
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THEOREM 2    If p and q are propositions, and if the quantities Possip), 
Poss(q), Necip), and Nec(q) are such that 

Nec(/»)sl(p|/).        Nec(*)sl(f|/) 

Poss(p) a C(pj/),       Poss(tf) 2: C(q\€) 

then the following statements {similarity-based interpretations of the 
basic laws of fuzzy logic) are valid: 

max[Nec(j).Nec(f)'l*l(/>v?|/) 

raax[Poss(.p),Poss(<7)] 2= C(/>v<7| <f) 

min[Poss(p), Pos$(^)] S C(/> A i? |/) 

Proof   Noie first that since C(- j •) is nondecreasing (with respect to the 
«• order) in its arguments, it is true that 

Poss(p) feC(p|/) s C(pAff|S) 

Poss(9)2:C(g|/)sC(pA^|^) 

whenever p A 9 is satisfiable, from which it is easy to see thai 

min[Poss(p),Poss(?)j sC(;A?|/) 

The corresponding result is obvious when p A q is nonsansfiable. 
A «imjfar argument shows, for necessity functions, that 

max[Nec(/>),Nec(tf)] Sl(pV«|/) 

To prove the disjunctive law for possibilities, notice that if / is any function 
mapping elements of a general domain D into real numbers, then 

sxxp{f{d):deA U B) = max[sup{/(</): deA},sup{f{d): deB}] 

From this equality, it is easy to see that if Poss(p) and Poss(?) are upper 
bounds of \{p j /) and I(q} /), respectively, then 

max[Poss(/>),Poss(s)j i>C{p\iq\t) 

which completes the proof of the theorem. ■ 

Note, however, that another law commonly given as an axiom for necessity 
functions does not hold valid in our interpretation. As illustrated in Figure 2, 
the distance from a point to the intersection of two sets may be strictly larger 
than the distance to either set (i.e., the similarity will be strictly smaller). In 
general, therefore, 

min[Nec(/>).Nee(f)] 41(pr\q\*) 
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Figure 2. Failure of conjunctive necessity. 

making invalid, under this interpretation, the conjunctive law for necessities 
(Dubois and Prade [11]) 

Nec(/?A<?) = min[Nec(/?),Nec($)] 

We may also note in this regard that the similarity-based model that is 
discussed here does not make use of the notion of negation either as a 
mechanism to generate dual concepts or in its own right as an important logical 
concept. It is my intent to study, in the immediate future, alternative models in 
which notions of negation and maximal dissimilarity play more substantive 
roles. 

Conditional Possibilities and Necessities 

The concepts of conditional possibility and necessity are closely related to 
the previously introduced unconditioned structures. These structures may be 
thought of as a characterization of the proximity of a world w to some or all of 
the worlds where a proposition p is true, given that w is similar in the 
degree 1 to the evidential set i (i.e., w I- /). With this fact in mind, we 
could have used the somewhat baroque formulation 

C(p|/)- wp[l(/>|w)0I(/|"O] 
»>-s 

to define unconditioned possibility distributions—a rather unnecessary effort if 
we consider that I(* | w) = 1 whenever w H /, showing its obvious equiva- 
lence to me simpler form used in the previous section. In spite of such 
observation, the above identity is important in understanding the purpose of the 
definitions that follow. Those definitions interpret conditional possibilities and 
necessities as a measure of the proximity of worlds on the evidential set i to 
(tome or all) worlds satisfying a (conditioned) proposition p relative to their 
proximity to (some or all of) the worlds that satisfy another (conditioning) 
proposition q. 
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Figure 3. Similarities as viewed from the «S^T^ 
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Poss(9|p)> sup [l(?j w)01(^1 „)) 

for any propositions p and q in 2. 
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necessity distribution are never larger than the corresponding values of a 
conditional possibility distribution, that is, 

Nec(q\ p) < Poss(<7| p) 

Furthermore, since I(-1 •) is ©-transitive, it is 

I{q\w)>I(q\p)®I{p\w) 

From this inequality and the definition of psuedoinverse of a triangular norm, it 
is easy to see that l(q | /?) is a conditional necessity function, showing also that 
the bounds provided by the evidential-set perspective are better than those that 
can be obtained by direct use of the degree of implication as the definition of 
conditional necessity.8 

Note also that if Nec(/?) = 1, indicating that l(p\£) = 1, and if 
Nec(<? | p) = 1, then the above definition of conditional necessity shows that 
l(q\i) = 1, indicating that Nec(<?) may be taken to be equal to 1, thus 
generalizing the well-known axiom (consequential closure) of certain modal 
systems (e.g., the system T, as discussed in Hughes and Creswell [21]) 

If N/7 and N( p -* q), then N<?. 

The definitions above can also be further interpreted as a way to compare the 
similarities between evidential worlds and those in the conditioning and 
conditioned sets by noting that whenever 

I(<7|w) >I{p\») 

for every evidential world w H i, then Nec(<7 | p) may be chosen to be equal 
to 1. Similarly, if there exists some world v> \- i where this inequality holds, 
then it is Poss(<7 | p) = 1. In either case, however, the maximum value for the 
conditional distribution (i.e., 1) is reached when the proximity of one eviden- 
tial world w, in the case of possibilities, or of every one of them, in the case of 
necessities, to a world w in the conditioned set exceeds the proximity of w to 
the conditioning set p. In either case, once again returning to an apparent 
notational overkill, we may state this fact by means of the identity function r 
in the unit interval: 

r:[0, l] - [0, l] : a ~ a 

in the form 

\{q\ w) > r(l{p\w)) 

for some w i- i in the case of possibilities, with the same inequality holding 

A dual result for possibilities involving C(q\ p) does not hold in general. It is easy to see. 
however, that C{q\ <?)<ZUp\ «O is a possibility function for q given p. 
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l(q|w) 

l(p|w) 

Figure 4. Examples of possible similarity relationships between condiuoning and 
conditioned sets. 

for every w h- i in the case of necessities. We can, however, conceive of 

other functions 
7: [0,1] ~ [0,1]: a-7(«) 

with 7(a) > a to specify a stronger form of implication, as illustrated in 

Figure 4, that is, 

l(q\w) £ y{l(p\ ")) 

Similarly, we can also conceive of functions <£ with $(a) < a that can be 
used to model weaker forms of implication. 

Possibilistic calculi based on the propagation of truth mappings of this type, 
first proposed by Baldwin [2], are utilized in the RUM (Bonissone and Decker 
[4], Bonissone et al. [5]) and MILORD (Godo et al. [18]) expert systems. The 
particular case when 7 = r, stating that every «-cut of the conditioning 
proposition p is fully enclosed (in the conventional sense) in the a-cut of the 
conditioned proposition q, has been called truth mapping in fuzzy logic 

literature. 
The primary purpose of conditional distributions, however, is to provide a 

quantitative measure of the degree to which one proposition may be said to 
imply another with a view to extending inferential procedures by means of 
structures that superimpose the topological notion of continuity upon a logical 
framework concerned with prepositional validity. 

GENERALIZED INFERENCE 

The major inferential tool of fuzzy logic is the compositional rule of 
inference of Zadeh [53], which generalizes the corresponding classical rule of 
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inference by its ability to infer valid statements even when a perfect match 
between facts and rule antecedent does not exist, that is, from 

to its "approximate" version 

P 

p' 
P^q 

q' 

where p> and q' are similar to p and q, respectively. In this sense, the 
generalized modus ponens operates as an "interpolation" (or, more precisely 
as an   extrapolation") procedure in possible-world space. 

Unlike the interpolation procedures of numerical analysis, however which 
yield estimates of function value, this extrapolation procedure approximates 
truth in the sense that it produces a proposition that is more general than the 
consequent of the inferential rule but resembles it to some degree (which is a 
function of the degree to which p' resembles p). The "extrapolated conclu- 
sion however, is a correctly derived proposition, that is, the result of a 
sound logical procedure rather than of an approximate heuristic technique. 

Generalized Modus Ponens 

The theorems that are proved below are based on the use of a family 9 of 
propositions that partitions the universe of discourse * in the sense that every 
possiole world will satisfy at least one proposition in 9. 

DEFINITION 8    If 9 is a subset of satisfiable propositions in 2 such that 
if »is a possible world in the universe <*, then there exists a proposition 
p in 9 such that w H- p, then the family 9 is called a partition of V. 

These results make use of information such as the values of the unconditioned 
necessity or posSIbiliry distributions  for antecedent propositions  p in the 
family 9 together with the values Nec(?| p) or, respectively, Poss(q\p) to 

extend    the unconditioned distributions to the "consequent" proposition q 
In this sense, these findings interpret, in the same spirit used in Theorem 2 for 
other basic laws, the generalized modus ponens laws of fuzzy logic: 

Nec(<7) = sup[Nec(?|/7)©Nec(/?)] 

Poss(q) = sup[Poss(<7| p)®Poss(p)} 

THEOREM 3 (GENERALIZED MODUS PONENS FOR NECESSITY FUNCTIONS)    Let 
9 be a partition of %  and let q be a proposition.  If Nec(p)  and 
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Nec{q | p) are real values defined for every proposition p in the parti- 
tion 9 such that 

Hec(p)*l(p\t) 

Nec(<7|/7)<  M[l{q\w)(Z)l(p\w)\ 

then the following inequality is valid: 

3up[Nec(?|/7)®Nec(p)] <I(?|«T) 

Proof   Note first that since 0 is nonincreasing in its second argument and 
since 

\{p\i) <\{p\y) 

for every evidential world w, 

Nec(<?|p)<  inf fl(<?|w)0l(^|w)] <  inf [l(?| w)0I(p|/)] 

It follows then from the monotoniciry and continuity of ® with respect to its 
arguments that 

Uec(p)®Kcc(q\p) <l{p\£)® inf [I(?|w)01(^|')] 

=  inf {l{p\*)®[l(q\*)<dl{p\*j\} 

<  inf I(<? j w) 
Wh- f 

= i(<?K) 

since 
l{p\t)®[l{q\y*)®l{p\*)\ <I(?|w) 

because of the definition of 0 and the continuity of ®. 
Since the above inequality is valid for any proposition p in 9, Theorem 3 

follows. 

A dual result also holds for possibility functions. 

THEOREM 4 (GENERALIZED MODUS PONENS FOR POSSIBILITY FUNCTIONS Let 
9 be a partition of <% and let q be a proposition. If Poss{p) and 
Poss(q\ p) are real values, defined for every proposition p in 9, such 
that 

?oss(p) >C(p\<?) 

POSS(<?| p) > sup [l(<7| w)0I(p| w)] 
WH 4 
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then the following inequality is valid: 

suP[poss(glp)®PosS(p)j^c(ql^ 

Proof   Note first that if „ is an evidential world, then 

It follows then from the nonincreasing nature of Os wirh 
argument that ä r ^ WIth «spect to its second 

Poss(qlP)> sup[l(qlw)0l(plw}] 

- SUP fl(<7f H')0C(/;/^)T 

and therefore that 

^^'^•^W*«;p[%|w)0c^,/)jec(p|/) 

pro^nm"e
itt°Ve eXPreSSi°n' ** SUP™ ^ «P« to a* 

s°v[*x&{q\ p)®?oss{p)]^ 

sup{sup[l(,M0c(/;|/)]@c(;7JOj   (i) 

mat C(/71 /) = 1 (l.e., p ••mtersects..- ,}> ^ ^4^ 

2: ^v[l{q\y»)QiC{^\i)\®c{^\g) 

=   sup I(g( w) 
W)~ g 

= C(q\g) 

Theorem 4 foUows at once by combination of the inequalities (1) and ?)       ■ 

ponensfornecessiües S ,i h      uu PamtI°n for the generalized modus 
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tional collections 9 would lead to better lower bounds for values of the degree 

of implication \(q\g). 

Variables 

The © -transitivity property of I is the essential fact expressing the relation- 
ships between the degrees of implication of the propositions that were proved 
in the previous section. The statements of these relations in most works 
devoted to fuzzy logic are made, however, using special subsets of the universe 
of discourse that are described through the important notion of variable. 
Introduction of this concept, which is also central to other approximate 
reasoning methodologies, permits us to make a clearer distinction between 
similarities defined, in some absolute sense, from the several viewpoints and 
related proximity measures that compare objects (in our case, possible worlds) 
from the marginal viewpoint of one or more variables. 

In what follows, we will assume that only certain propositions, specifying 
the value of a system variable belonging to a finite set 

Y= {X,Y,Z,...} 

will be used to characterize possible worlds. 
The propositions of interest are those formed by logical combination of 

statements of the type 

"The value of the variable V is u." 

where V is in the variable set Y and u is a specific value in the domain 9{ V) 

of the variable V. . 
We will also assume that, in any possible world, the value of any variable is 

a member of the corresponding domain of definition of the variable. In the 
context of our discussion, we will not need to make special assumptions about 
the scalar or numeric nature of the state variables, using the notion in the same 
primitive and general sense in which it is customarily used in predicate 

calculus. 
We will be specially interested in subsets, called variable sets, of the 

universe « consisting of worlds where the value of some variable V is equal 
to a specified value u. We will denote by [X = x] (similarly [Y = y], etc.) 
the set of all possible worlds where the proposition "The value of the variable 
X is x" is true. Clearly, the variable-sets in the collection 

{{X = x}: x is in 9{X)} 

partition the universe into disjoint subsets. These collections have been used to 
characterize the concept of rough sets (Pavlak [30]), of importance m many 
information system analysis problems, including some that arise in the context 
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of approximate reasoning. A similar notion has been used also to describe 
algorithms for the combination of probabilities and of belief functions (Shafer 
et al. [39]). 

To simplify the notation we will write 

w\- x,    w \- y, 

as shorthand for w H- [X = x], w H- [ Y = y] respectively. 

POSSmiLISTIC STRUCTURES AND LAWS The usual statements of the laws of 
fuzzy logic are made, as mentioned before, through the use of variables rather 
than by means of general propositional expressions. It is customary, for 
example, to speak of the possibility of the variable X taking the value x to 
describe the value that a possibility function for an evidential set i attains for 
the proposition [X = x]. 

In our model, we will therefore say that a function 

Poss(-):<2(*) ~ [0,1] 

is a possibility function for the evidential set i and the variable X whenever 

Poss(» ssCp = x]|/) 

for all values x in the domain 9{ X). Similarly, we will say that Nec(-) is a 
necessity function for X whenever 

Nec(x) *l([X = x]\f) 

for all values x in 9(X). 
If possibility distributions are defined in this way as point functions in the 

variable domain 9(X), then it is possible to use the disjunctive laws of fuzzy 
logic proved in the section Properties of Possibility and Necessity Functions to 
extend their definition over the power set of 9(X), that is, 

Nec(,4 U B) = max[Nec(/!),Nec(5)] 

Poss(^4 U5)= max[Poss(<4),Poss(£)] 

where A and B are subsets of the domain 9{ X). These equations are usually 
given as the basic disjunctive laws of possibility distributions. 

Note that, using such extensions, both possibility and necessity functions are 
nondecreasing functions (with respect to the order induced by set inclusion). 
The value of Nec(/4) measures the extent to which the evidence supports the 
statement that the variable value necessarily lies in the subset A of its domain 
of definition, with a dual interpretation being applicable for possibility distribu- 
tions. 
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MARGINAL AND JOINT POSSIBILITIES The original similarity relation intro- 
duced earlier may be considered to be a measure of proximity between possible 
worlds from the joint viewpoint of all system variables. The notion of variable, 
however, permits the definition of similarities from the restricted viewpoint of 
some variables or subsets of variables. 

These restricted perspectives play a role with respect to the original similar- 
ity 5 that is analogous to that of marginal probability distributions with respect 
to joint probability distributions. To derive useful expressions that describe 
similarities between two values x and x' of the same variable X, it should be 
noted first that the degree of implication I(-1 • ) is transitive. This fact permits 
the application of a theorem of Vaiverde [45] to define a function Sx by means 
of the expression 

Sx :9(X)x 9(X) ~ [0, l] : (x, x') ~ min[l(*| x'),l(x' | x)} 

Defined in this way as a "symmetrization" of the preorder induced by the 
degree of implication I(- j •), the marginal similarity Sx has the properties of 
a similarity function. Furthermore, the "projection" operation entailed by the 
use of l{x\ x'), based on the projection of every x'-world into the set of 
x-worlds, may be considered to be the basic mechanism to transform the 
original similarity function into one that discerns differences only in the values 
of the variable X. 

It must be noted, however, that unless additional assumptions are made 
about the nature of the original similarity S, the function Sx fails to satisfy the 
intuitive requirement 

S(w, w') £Sx(w,w') 

whenever w i- x and W v- x', that is, the similarity between two objects from 
a restricted viewpoint is always higher than their similarity from more general 
viewpoints that encompass additional criteria of comparison. 

Although considerable research remains to be done to identify alternative 
definitions of marginal similarities that are not hampered by this problem, a 
basic result of Vaiverde [45] presented later in this paper, appears to provide 
the essential tool that must be employed to produce the required coarser 
measures. Additional reasonable assumptions that might be demanded from S 
to facilitate the construction of marginal similarities with desirable characteris- 
tics are also an object of current investigation. 

CONDITIONAL DISTRIBUTIONS AND GENERALIZED INFERENCE The basic 
conditional structures of fuzzy logic are usually defined as elastic constraints 
that restrict the values of one variable given those of another. By simple 
extension of our previous convention to conditional structures, we will write 
Nec(j/1 x) and Poss(/1 x) as shorthand for 

Ncc([Y = y]\[X = x})       and       Poss([ Y = y] \ [ X = x]) 

respectively. 
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Evldtnca In X 

Figure 5. Inference as a compatibility relation. 

If a classical (i.e., Boolean) inferential rule of the type 

If X = x, then Y is in R{x). 

is thought of as the definition of a relation R defined over pairs (x, y) in the 
Cartesian product X X Y, then such a relation may be used to define a 
multivalued mapping that maps possible values of X into possible values of Y 
as illustrated in Figure 5. 

Such a compatibility relation perspective is an essential element of the 
original formulations of both the Dempster-Shafer calculus of evidence (De- 
mpster [8]), where distributions in some space (i.e., the domain of some 
variable X) are mapped into distributions of another variable (i.e., the domain 
of another variable Y) by direct transfer of "mass" from individual values to 
their mapped projections, and of the compositional rule of inference (Zadeh 
[51]). 

Note that whenever ?oss(y | x) = 1, if the bound is actually attained, that 
is, if 

sup[l(y\w)Ql(x\w)] = 1 

then it is possible for an evidential world w in [X = x] [i.e., I(x\ w) - 1] to 
be such that w \- y. Pairs (x, y) such that Poss(/ J x) = 1 may be considered 
to approximate the core9 of a generalized inferential relation that allows us to 
determine bounds for the similarity between evidential worlds and those in the 
variable set [ Y = y] on the basis of knowledge of similar bounds applicable to 
the variable set [X = x]. This relation, which is the fuzzy extension of the 
classical compatibility mapping R illustrated in Figure 5, may be thought of as 
a descriptor of the behavior, for ^-worlds, of the values of the variable  Y 

The core of a fuzzy set p: *- [0, 1] is the set of all points w such that p(w) = 1, that is, the 
points that "fully" belong to p. 
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"near" R. The compatibility relation is itself approximated by (or embedded 
in) the core of the conditional possibility distribution, that is, worlds w such 
that vi y- x and w\- y, and such that PossO | x) = 1. 

Since the collection of the sets [ X = x] partitions the universe <% into 
disjoint sets, then the generalized modus ponens laws can be readily stated in 
terms of variable values as 

Nec(/) = sup[Nec(7| x)®Nec(x)] 
X 

Poss(.y) = sup[Poss(7| x)®Poss(x)j 
x 

which clearly shows the basic nature of inferential mapping as the composition 
of relational combination (i.e., ©-"intersection") and projection (i.e., maxi- 
mization). 

FUZZY IMPLICATION RULES We will now examine proposed interpretations 
for conditional rules, usually stated in the form 

If A" is A, then Y is B. 

within the context of possibilistic logic. Whereas in two-valued logic any such 
rule simply states that whenever a condition A is true, another condition B 
also holds, various interpretations have been proposed for rules expressing 
other notions of conditional truth. 

In the case of probabilities, for example, degrees of conditionality have been 
modeled either by means of conditional probability values Prob(/l | B), which 
measure the likelihood of B given the assumed truth of A, or by the 
alternative interpretation Prob(- A V B), used by Nilsson [29] in his probabilis- 
tic logic, which essentially quantifies the probability that a rule is a valid 
component of a knowledge base. Either one of these interpretations is valid in 
particular contexts being, respectively, the probabilistic extensions of the 
so-called de re, that is, 

p-Iiq 
and de dicto, that is, 

interpretations of conditionals in modal logic. 
In fuzzy logic, two major interpretations have been advanced to translate 

conditional rules,10 with A and B corresponding to the fuzzy sets 

pA:X~[Q,l]        and        y.B : Y - [0, l] 

A rather encompassing account of potential fuzzy reasoning mechanisms may be found in a paper 
by Mtzumoto et al. [27]. 
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The first interpretation was originally proposed by Zadeh [52], as a formal 
translation of the statement 

If pA is a possibility for X, then y.B is a possibility distribution for Y. 

This conditional statement, which may be regarded as a constraint on the 
values of one variable given those of another, states the existence of a 
conditional possibility function Poss(-1 •) such that 

V-a{y) 2= sup[Poss(/|^)®^(x)] >?oss{y\x)®ßA(x) 
x 

Recalling now the definition and properties of the pseudoinverse, we may 
restate this particular interpretation as 

PossOl x) = iia(y)0nA(x) > I(y\ w)0I(x| w) 

for every world w \- i. 

In Zadeh's original formulation, made within the context of a calculus based 
on the minimum function as the T-norm, conditionals were, however, formally 
translated by means of the pseudoinverse of the Lukasiewicz T-norm. Certain 
formal problems associated with such a combination were pointed out by 
Trillas and Valverde [42], who developed translations consistent with the 
T-norm used as the basis for the possibilistic calculus. 

Using the characterization of conditionals introduced earlier, this relation 
may also be thought of as a measure of the degree to which a possibility for Y 
exceeds a fraction (measured by the conditional possibility distribution) of a 
given possibility distribution for X. In particular, whenever Poss(y| x) = 1, 
then V-B^y) — M^(■*■). indicating the possible existence, since PossO | x) is 
only an upper bound of \{y\ w)0I(x| w), of an evidential world such that 
w H x and w f- y, with x in A and y in B. 

As illustrated in Figure 6, where it has been assumed that the underlying 
metric (i.e., dissimilarity) is proportional to the Euclidean distance in the 
plane, the core of the corresponding conditional possibility distribution is an 
(upper) approximant of a classical compatibility relation (indicated by the 
shaded area in the figure) that fans outward from the Cartesian product of the 
cores of A and B. If this interpretation is taken whenever several such rules 
are available, then each one of these rules will lead to a separate possibility 
distribution. Combination of these upper bounds by minimization results in a 
sharper possibility estimate that represents the "integrated" effect of the rule 
set. 

The second interpretation of conditional relations, leading to a wide variety 
of practical applications (Sugeno [41]), was utilized by Mamdani and Assilian 
[26] to develop fuzzy controllers. The basic idea underlying this explanation 
follows an approach originally outlined by Zadeh [47, 48, 49, 50, 51]. In this 
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Y    core(B) 

Figure 6. Rules as possibilistic approximants of a compatibility relation. 

case, a number of conditional statements of the form 

If X is Ak, then Y is Bk,       k = 1,2,. . ., „ 

S yVBüarnbined "difnctive" descriPtion of *e relation between X 
rufe £ fZ " " Set °f mdependenÜy valid "Ies. The purpose of this 
T   I * ^ *PProxunaaon of the compatibility relation bv a "fuzzy curve'' 
generated by disjunction of all the rules in the set, as shown in Figured 

Figure 7. Rule sets as disjunct approximants of a compatibility relation. 
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y 

Figure 8. A possibilistic conditional rule (ZTV). 

Recalling the characterization of conditioning as an extension of a classical 
compatibility relation, we may say that the core of the compatibility relation is 
approximated by above by the union 

n 

U [coretaj x core(Ms )] 

of the Cartesian products of the cores of the fuzzy sets for Ak and Bk. In this 
case the multiple rules are meant to approximate some region of possible 
(X, Y) values, and the results of application of individual component rules 
must be combined using maximization to produce a conditional possibility 
function. We may say, therefore, that under the Zadeh-Mamdani-Assilian 
(ZMA) interpretation, the function 

?oss(y\x) = sup{mm[fiA(x),ftB(y)]} 
k 

is a conditional possibility for Y given X. 
It is important to note that the two interpretations of fuzzy rules that we have 

just examined are based on different approaches to the approximation (by 
above) of the value 

sup [l(y\w)01(x\w)} 

being, in the case of the Zadeh-Trillas-Valverde (ZTV) method, the result of 
the conjunction of multiple fuzzy relations such as that illustrated in Figure 8, 
while in the case of the ZMA logic the construction requires disjunction of 
relations such as that illustrated in Figure 9. 

The difference between the two approaches when combining several rules is 
illustrated also in Figures 10 and II, showing the contour plots for the a-cuts 
of the fuzzy relations that are obtained in a simple example involving four 
rules. In these figures, the rectangles with a dark oudine correspond to the 
Cartesian products of the cores of the antecedents Ak and Bk. Darker shades 
of gray correspond to higher degrees of membership. 
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Figure 9. A component of a disjunctive rule set (ZMA). 

^^^^^^r-about *-potemiaJ for *** 
formalism should b,^ .^TSV' *"" ^ *"* 
compatibility relation that is based on J%# approximation of a 

of relationships between v^^^^^**^ 
intent is to generalize the interrelation n™ w u     MA mterPr*ation, the 
in functional approxüWo™T^ H?-    ^^u*" "* n0maIJy emPIo^d 

contrast, is a generalization of cliicS bSI ft,      , aPPf°aCh' by 

regarded, from a relational viewnoinTr, g ? formul™°™ and may be 
the locus of points that a JneH " ' T, ^^ * dSSCribe a ««*» as 
"fozzy points" of , CanSS product * """* ^ M a SUbse£ of 

i~Ve approaches, 'astü Z^^L^ a" ££ 

Figure 10. Contour plots for a rule set (ZTV). 
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Figure 11. Contour plots for a rule set (ZiMA). 

perspective, should normally be based on rule sets that are different from those 
used when rules are thought of as independent constraints. 

THE NATURE OF SIMILARITY RELATIONS 

In this closing section, we will examine issues that arise naturally from our 
previous examination of the role of similarities as the semantic basis for 
possibility theory. 

Our discussion focuses on two topics. We look first at the requirements that 
our theory imposes upon the nature of the scales used to measure proximity or 
resemblance between possible worlds. Finally, our examination of the inter- 
play between similarities and possibilities turns to issues related to the genera- 
tion of similarity relations from such sources as domain knowledge that 
describe significant relations between system variables. 

On Similarity Scales 

Our previous interpretation of possibilistic concepts and structures was based 
on the use of measures of proximity that quantify interobject resemblance using 
real numbers between 0 and 1. Our assumptions about the use of the [0, 1] 
interval as a similarity scale have been made primarily,, however, as a matter 
of convenience to simplify the description of our model while being consistent 
with the customary definitions of possibility and necessity distributions as 
functions taking values in that interval. 

Close examination of the actual requirements imposed upon our similarity 
scales reveals, however, chat our measurement domain may be quite general so 
as to include symbolic structures such as 

{identical, very similar completely dissimilar) 
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Our model is based on the use of a partially ordered set having a maximal anc 
a minimal element representing identity and complete dissimilarity, respec- 
tively. Furthermore, we have assumed the existence of a binary operation (the 
triangular norm ©) mapping pairs of possible worlds into real numbers, with 
certain desirable order-preserving and transitive properties. The concept of 
triangular norm, however, does not rely substantially on the use of real 
numbers as its range and may be readily extended to more general partially 
ordered sets with maximal and minimal elements. 

We have also assumed a continuity property for the triangular norm opera- 
don. This property, however, simply requires that a notion of proximity also 
exist among similarity values so as to provide a form of (order-consistent) 
topology in that space. While, in general, more precise scales will result in 
more detailed representations of interworld similarity, it is important to stress 
that the similarity-based model presented here does not rely on "density" 
assumptions such as the existence of an intermediate value c between any 
different values a and b in the similarity-measurement scale. 

From a practical viewpoint, the major requirement is to quantify proximity 
in such a way as to be able to determine that two quantities are similar to some 
degree (i.e., approximate matching). The degree of precision that such a 
matching entails is problem-dependent and will typically be the result of 
conflicting impositions between the desire, on the one hand, to keep granularity 
relatively low to reduce complexity, and the need, on the other, to describe 
system behavior at an acceptable level of accuracy. The work of Bonissone and 
Decker [4] is a significant example of the type of systematic study that must be 
carried out to define similarity scales that are both useful and tractable. 

The Origin of Similarity Functions 

The model of fuzzy logic presented in this paper is centered on the metric 
notion of similarity as a primitive concept that is useful in explaining the nature 
of possibilistic constructs and the meaning of possibilistic reasoning. In this 
formulation, similarities are defined as real functions defined over pairs of 

possible worlds. 
From this perspective, similarities describe relations of resemblance between 

objects of high complexity, which, typically, result from consideration of a 
large number of system variables. Reliance on such complex structures has 
been the direct consequence of a research program that stressed conceptual 
clarification as its primary objective. In practice, however, it will be generally 
difficult to define complex measures that quantify similarity between complex 
objects on the basis of a large number of criteria. 

Similarities provide the framework that is required to understand approxi- 
mate relations of corelevance, usually stated as generalized conditional rules. 
The practical generation of similarity functions typically proceeds, however, in 
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the opposite direction, from separate statements about limited aspects of system 
behavior to general metric structures. Once such resemblance measures are 
denned, they may be used to express and acquire new laws of system behavior 
determined, for example, from historical experience with similar systems. 
Furthermore, such similarity notions may be used as the basis for analogical 
reasoning systems that try to determine the system's state on the basis of 
similarity to known cases (Kolodner [23]). 

Perhaps the simplest mechanism that may be devised to generate complex 
metrics from simpler ones is that which starts with measures of resemblance 
that quantify proximity from a limited viewpoint. These metrics are usually 
derived, using a variety of techniques, in unsupervised pattern classification (or 
clustering) problems (Hartigan [20]). In many important applications, hierar- 
chical taxonomies—a feature of many representation approaches in artificial 
intelligence—may be used, often in connection with a variety of weighing 
schemes, quantifying branching importance, to generate metrics that often 
satisfy the more stringent requirements of an ultrametric (Jardine and Sibson 
[22]). 

Classification hierarchies such as those may be though of as sets of general 
rules, having a particularly useful structure, that specify interest proximity 
from relevant, but restricted, viewpoints, eventually providing measures of 
similarity between variable values (i.e., the "leaves" of the taxonomic tree). 
More generally, however, we may expect that sets of possibilistic rules (i.e., a 
general knowledge base) denning a general semantic network of corelevance 
relations may be available as the source for the determination of interobject 
proximity. These possibilistic semantic networks resemble conventional seman- 
tic networks in most regards, being more general in that, in addition to 
specifying knowledge about system behavior in some subsets of state-space,11 

they also specify characteristics of behavior in neighborhoods of those subsets. 
We may think, therefore, that the antecedents of implicational rules define 

general regions in state-space where existence of relevant knowledge may 
increase insight through application of inferential rules. Using Zadeh's termi- 
nology, these antecedents define "granules" that identify important regions of 
state-space and indicate the level of accuracy (or granularity) that is required 
to perform effective system analysis. In this case, the possibilistic granules 
correspond to fuzzy sets that are used to specify both what is true in the core of 
the granule and, with decreasing specificity, what is true in a nested set (i.e., 
the a-cuts) of its neighborhoods. The ability to specify behavior using such a 
topological structure results in inferential gains that are the direct consequence 
of our ability to reason by similarity—an ability that is made possible by the 
approximate matching property of the generalized modus ponens. From an- 

"The expression "state-space" is loosely used here to indicate the space defined by all system 
variables. 
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other perspective yet, the fuzzy granules identified by possibilistic rules may 
also be thought of as generalizations of the arbitrary variable sets used in a 
variety of artificial intelligence efforts aimed at understanding system behavior 
using qualitative descriptions of reality (Forbus [16]). 

A number of heuristics may be easily formulated to integrate "marginal" 
measures of resemblance into joint similarity relations. More generally, how- 
ever, we may state the problem of similarity construction as that of defining 
metric structures on the basis of knowledge of the aspects of system behavior 
that are important to its understanding—the previously mentioned granules, 
which define what must be distinguished. Since generally those granules are 
fuzzy sets, the relevance to similarity construction of the following representa- 
tion theorem, due to Valverde, may be immediately seen. 

THEOREM 5 (VALVERDE)) A binary function S mapping pairs of objects 
of a universe of discourse % into [0, I] is a similarity relation if and 
only if there exists a family tf of fuzzy subsets of % such that 

S(w,w') = inf{min[A(w)0A(w'),A(w')0A(w)]} 
jr 

for all w and W in %, where the infimum is taken over all fuzzy subsets 
h in the family Jf. 

Besides its obvious relevance to the generation of similarity relations from 
knowledge of important sets in the domain of discourse, Valverde's 
theorem—resulting originally from studies in pattern recognition—is also of 
potential significance to the solution of knowledge acquisition problems be- 
cause of the important relations that exist between learning procedures and 
structure-discovery techniques such as cluster analysis. 

CONCLUSION 

This paper has presented a similarity-based model that provides a clear 
interpretation of the major structures and methods of possibilistic logic using 
metric concepts that are formally different from the set-measure constructs of 
probability theory. Regardless of the potential existence, so far unestablished, 
of probability-based interpretations for possibilistic structures, this metric 
model makes clear that there are no compelling reasons to confuse two rather 
different aspects of uncertainty into a single notion simply because one's 
favorite theoretical framework, in spite of its otherwise many remarkable 
virtues, fails to fully capture reality. 

Succinctly stated, being in a situation that resembles a state of affairs S does 
not make S likely or vice versa. Furthermore, our reference state may not 
even be possible in the current circumstances, which would make it completely 
unlikely, but we may still find it useful as a comparison landmark. This use of 
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"impossible" examples as a way to illustrate system behavior is very prevalent 
in human culture, being exemplified by such utterances as "he had the strength 
of a horse and the swiftness of a swallow," even if it is obvious to all that no 
such beast exists other than for such metaphorical purposes. 

The insight provided by this model makes it rather obvious that very little 
can be gained by continuing to assert a potential—although never reveal- 
ed—encompassing probabilistic interpretation for possibilistic structures that, 
presumably, would render them unnecessary as serious objects of scientific 
discourse. In addition, and quite beyond whatever understanding theory may 
provide, the current success of possibilistic logic as the basis for major systems 
of important human value (Sugeno [41]), often unmatched by other ap- 
proaches, should be enough to convince those having more pragmatic perspec- 
tives as to its utility. 

The task for approximate reasoning researchers is to proceed now beyond 
unnecessary controversy into the study of the issues that arise from models 
such as the one presented in this paper. Among such questions, further studies 
of the relations between the notions of possibility, similarity, and negation and 
of those between probability and possibility are of major importance. 

ACKNOWLEDGMENTS 

This work was supported in pan by the Air Force Office of Scientific 
Research under contract No. F49620-89-0001 and in part by the U.S. Army 
Research Office under contract No. DAAL03-89-K-0156. The views, opinions, 
and/or conclusions contained in this paper are my own and should not be 
interpreted as representative of the official positions, decisions, or policies, 
either express or implied, of the Air Force Office of Scientific Research, the 
Department of the Army, or the U.S. Government. 

The model presented herein is  the product of an effort aimed at the 
explication of possibilistic structures by means of more primitive similarity 
concepts. During this endeavor, which produced sufficient versions to require 
eventually a formal  numbering  system,  I benefited  from the advice and 
comments of Claudi Aisina, Hamid Berenji, Piero Bonissone, Didier Dubois, 
Francesc Esteva, Oscar Firschein, Marty Fischler, Pascal Fua, Maria Angeles 
Gil, Luis Godo, Andy Hanson, Jerry Hobbs, David Israel, Joan Jacas, Yvan 
Leclerc, Ramön Lopez de Mäntaras, John Lowrance, Abe Mamdani, Bob 
Moore, Ray Perrault, Henri Prade, Elie Sanchez, Philippe Smets, Tom Strat, 
Enric Trillas, Llorenc Valverde, Len Wesley, and Lotfi Zadeh. To all of them 
many thanks. 

The Fulbright Commission for the International Exchange of Scholars, the 
University of the Balearic Islands, the Center of Advanced Studies of Blanes, 
the  National  Research  Council  of Spain,   and the  Caixa de  Pensions of 



86 Enrique H. Ruspini 

Barcelona supported several visits to Spanish research centers where I had 
invaluable exchanges on the subject matter of this paper. 

The assistance of Joani IchiJd, Valerie Maslak, and Diego Ruspini in the 
preparation of the final manuscript is gratefully acknowledged. 

References 

1. Alsina, C, and Trillas, E., Additive homogeneity of logical connectives for 
membership functions, in Analysis of Fuzzy Information, Vol. I, Mathematics 
analogic (J. C. Bezdek, Ed.), CRC, Boca Raton, Fla., 1987, pp. 179-184. 

2. Baldwin, J. F., A new approach to approximate reasoning using a fuzzy logic, 
Fuzzy Sets Syst. 2, 302-335, 1979. 

3. Bezdek. J. C, and Harris, J. 0., Fuzzy partitions and relations: an axiomatic basis 
for clustering, Fuzzy Sets Syst. 1, 112-127, 1978. 

4. Bonissone, P., and Decker, K., Selecting uncertainty calculi and granularity: an 
experiment in trading-off precision and uncertainty, in Uncertainty in Artificial 
Intelligence (L. N. Kanaal and J. F. Lemmer, Eds.), North-Holland, Amsterdam, 
1986. 

5. Bonissone, P. P., Gans, S. S., and Decker, K. S., RUM: a layered architecture for 
reasoning with uncertainty, in Proceedings of the Tenth International Joint 
Conference on Artificial Intelligence, (John McDermott, Ed.), Morgan Kauf- 
mann, Los Altos, Calif., 1987, pp. 891-896. 

6. Carnap, R., The Logical Foundations of Probability, Univ. Chicago Press, 
Chicago, 1950. 

7. Choquet, G., Theorie des capacites, Ann. Inst. Fourier (Grenoble) V, 131-295, 
1953. 

8. Dempster, A. P., Upper and lower probabilities induced by a multivalued map- 
ping, Ann. Stat. 38^ 325-339, 1967. 

9. Dieudonne, J., Foundations of Modern Analysis, Academic, New York, 1960. 

10. Dubois, D., and Prade, H., Fuzzy logics and the generalized modus ponens 
revisited. Int. J. Cybern. Syst.. 15, 293-331, 1984. 

11. Dubois, D., and Prade, H., Possibility Theory: An Approach to the Computer- 
ized Processing of Uncertainty, Plenum, New York, 1988. 

12. Dubois, D., and Prade, H., In search of a modal system for possibility theory, 
Proceedings of the 8th European Conference on AI, Technical University, 
Munich. 1988, pp. 501-506. 

13. Dubois, D., and Prade, H., An introduction to possibility theory and fuzzy logics, 
in Non-standard Logics for Automated Reasoning (P. Smets, E. H. Mamdani, 
D. Dubois, and H. Prade, Eds.), Academic, New York, 1988, pp. 287-326. 



On the Semantics of Fuzzy Logic 87 

14. Dubois, D., and Prade, H., Representation and combination of uncertainty with 
belief and possibility measures, Comput. Intel!., to appear. 

15. Dubois, D., and Prade, H., Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. 

Syst., to appear. 

16. Forbus, K., Qualitative process theory, AI, 24, 85-168, 1984. 

17. Gaines, B., Fuzzy and probability uncertainty logics. Inf. Control 38, 154-169, 

1978. 

18. Godo, L. I., Lopez de Mäntaras, R., Sierra, C., and Verdaguer, A., Managing 
linguistically expressed uncertainly in MILORD: application to medical diagnosis, 
Res. Report No. 87/2, Group of Logic and Artificial Intelligence, Center of 
Advanced Studies of Blanes, Blanes, Spain, 1987. 

19. Halmos, P. R., Measure Theory, Springer-Verlag, New York, 1974. 

20. Hartigan, J., Clustering Algorithms, Wiley, New York, 1975. 

21. Hughes, G. E., and Creswell, M. L, An Introduction to Modal Logic, 

Methuen, New York, 1972. 

22. Jardine, N., and Sibson, R., Mathematical Taxonomy, Wiley, New York, 1971. 

23. Kolodner, J. (Ed.), Case-Based Reasoning, Proceedings of a Workshop, Clearwa- 
ter Beach, Fla., May 1988, Morgan Kaufmann, San Mateo, Calif., 1988. 

24. Lakoff, G., Hedges: a study in meaning criteria and the logic of fuzzy concepts, J. 
Phil. Logic 2, 458-508, 1973. 

25. Lewis, D., Counter/actuals, Harvard Univ. Press, Cambridge, Mass., 1973. 

26. Mamdani, E. H., and Assüian, S., An experiment in linguistic synthesis with a 
fuzzy logic controller, Int. J. Man-Mach. Stud. 7, 1-13, 1975. 

27. Mizumoto, M., Fukami, S., and Tanaka, K., Some methods of fuzzy reasoning, in 
Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, 
and R. R. Yager, Eds.), North-Holland, Amsterdam, 1979, pp. 117-136. 

28. Murai, T., Miyakoshi, M., and Shimbo, M., Fuzzifications of modal operators 
from the standpoint of fuzzy semantics. Proceedings of the 2nd International 
Fuzzy Systems Assoc. Congress, Tokyo, 430-432, 1987. 

29. Nilsson, N. J., Probabilistic logic, AI 28, 71-87, 1987. 

30. Pavlak, Z., Rough sets, Int. J. Comput. Inf. Sei. 11, 341-356, 1982. 

31. Rescher, N., Many Valued Logic, McGraw-Hill, New York, 1969. 

32. Ruspini, E. H., A new approach to clustering, Inf. Control 15, 22-32, 1969. 

33. Ruspini. E. H., A theory of cluster analysis, Ph.D. Thesis, Dept. of System 
Science, Univ. California, Los Angeles, 1977. 

34. Ruspini, E. H., Recent developments in fuzzy clustering, in Fuzzy Sets and 
Possibility Theory: Recent Developments (R. R. Yager, Ed.), Pergamon, New 
York. 1982, pp. 133-147. 



88 Enrique H. Ruspini 

35. Ruspini, E. H., The logical foundations of evidential reasoning. Tech. Note No. 
408, AI Center. SRI International, Menlo Park, Calif., 1987. 

36. Schocht, P. K., Fuzzy modal logic, Proceedings of the 5 th International 
Symposium on Multiple-Valued Logic, IEEE, 176-182, 1975. 

37. Schweizer, B., and Sklar, A., Associative functions and abstract semigroups, 
Pubi. Math. Debrecen 10, 69-81, 1963. 

38. Shafer, G., A Mathematical Theory of Evidence, Princeton Univ. Press, 
Princeton, N.J., 1976. 

39. Shafer, G., Shenoy, P. P., and Mellouli, K., Propagating belief functions in 
qualitative Markov trees, Int. J. Approximate Reasoning 1, 349-400, 1987. 

40. Sokal, R. R., and Sneaih, P. H. A., Principles of Numerical Taxonomy, 
Freeman, San Francisco, 1963. 

41. Sugeno, M., Industrial Applications of Fuzzy Control, North-Holland, Amster- 
dam, 1985. 

42. Trillas, E., and Valverde, L., On some functionally expressible implications for 
fuzzy set theory, in Proceedings 3rd International Seminar on Fuzzy Set 
Theory (E. P. Klement, Ed.), Johanes Kepler Univ., Linz, Austria, 173-190, 
1981. 

43. Trillas, E., and Valverde, L., On mode and implication in approximate reasoning, 
in Approximate Reasoning and Expert Systems (M. M. Gupta, A. Kandel, W. 
Bandler, and J. B. Kiszka, Eds.), North-Holland, Amsterdam, 1985, pp. 157-166. 

44. Tversky, A., Features of similarity, Psycholog. Rev. 84, 433-460, 1977. 

45. Valverde, L., On the structure of F-indistinguishability operators, Fuzzy Sets 
Syst. 17, 313-328, 1985. 

46. Zadeh, L. A., Fuzzy sets, Inf. Control 8, 338-353, 1965. 

47. Zadeh, L. A., A rationale for fuzzy control, /. Dynam. Syst., Measurement 
Control C94, 3-4, 1972. 

48. Zadeh, L. A., Outline of a new approach to the analysis of complex systems and 
decision processes, IEEE Trans. Syst. Man Cybern., SMC-3, 28-44, 1973. 

49. Zadeh, L. A., The concept of a linguistic variable and its application to approxi- 
mate reasoning. Part 1, Inf. Sei. 8, 199-249, 1975. 

50. Zadeh, L. A., The concept of a linguistic variable and its application to approxi- 
mate reasoning, Part 2, Inf. Sei. 8, 301-357, 1975. 

51. Zadeh, L. A., The concept of a linguistic variable and its application to approxi- 
mate reasoning. Pan 3, Inf. Sei. 9, 43-80. 1976. 

52. Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1, 
3-28, 1978. 

53. Zadeh, L. A., A theory of approximate reasoning, in Machine Intelligence, Vol. 
9 (D. Michie and L. I. Mikulich, Eds.), Halstead. New York, 1979, pp. 149-194. 

54. Zadeh, L. A., The role of fuzzy logic in the management of uncertainty in expert 
systems. Fuzzy Sets Syst. 11, 199-227, 1983. 



■■^'■:- ^i;'r - ;*3?' '.--5 ■■'...'■'■■■■,';■/ - •    ■I_^'--"^-.--.3r?<-^i-.-j-s- •„• ■iz?y*gsa 

•'.''"" 'S-.',".   4 "  ' '■ V -X :: ■-',: ■-."■' ■'?ftV-'.>r-0:'S2fW^-i^^'!-£SaäB!«? 
•. ■ .-/>;. ■  >i ■   :_  .' ■    •--'•• -^r—^£S^^:^'SJ?lf-S 

""'■   VOLUME 5, NUMBBt'i;;JAJ^UARY:Tw^^^' 

J    \    \ \    \ \    i  / \    \   ■  \   \       "A   Z ' / 

Editor-'m-Ckief 

James C. Bezdek 

NORTH-HOLLAND 
ISSN: 0888-613X  "- ' " 

UARE4 5(1) 1-88(1991)   • 



Approximate Reasoning: 
Past, Present, Future 



APPROXIMATE REASONING: PAST, PRESENT, FUTURE 

Technical Note No. 492 

June 27, 1990 

By:     Enrique H. Ruspini, Sr. Computer Scientist 
Artificial Intelligence Center 
Computing and Engineering Sciences Division 

Published in Information Sciences Volume 57-58, pp 297-317 (1991) 

This work was supported in part by the Air Force Office of Scientific Research under Contract F49620-89-K-0001 and in 
part by the United States Army Research Office under Contract No. DAAL03-89-K-0156. 

The views, opinions and/or conclusions contained in this note are those of the author and should not be interpreted as 
representative of the official positions, decisions, or policies, either expressed or implied, of the Air Force Office of 
Scientific Research, the Department of the Army, or the United States Government. 



Abstract 

This note presents a personal view of the state of the art in the representation 
and manipulation of imprecise and uncertain information by automated processing 
systems. To contrast their objectives and characteristics with the sound deductive 
procedures of classical logic, methodologies developed for that purpose are usually 
described as relying on Approximate Reasoning. 

Using a unified descriptive framework, we will argue that, far from being mere 
approximations of logically correct procedures, approximate reasoning methods are 
also sound techniques that describe the properties of a set of conceivable states of a 
real-world system. This framework, which is based on the logical notion of possible 
worlds, permits the description of the various approximate reasoning methods and 
techniques and simplifies their comparison. More importantly, our descriptive model 
facilitates the understanding of the fundamental conceptual characteristics of the 
major methodologies. 

We examine first the development of approximate reasoning methods from early 
advances to the present state of the art, commenting also on the technical motivation 
for the introduction of certain controversial approaches. 

Our unifying semantic model is then introduced to explain the formal concepts and 
structures of the major approximate reasoning methodologies: classical probability 
calculus, the Dempster-Shafer calculus of evidence, and fuzzy (possibilistic) logic. 
In particular, we discuss the basic conceptual differences between probabilistic and 

possibilistic approaches. 

Finally, we take a critical look at the controversy about the need and utility for 
diverse methodologies, and assess requirements for future research and development. 
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1   Introduction 

This note presents a personal view of the state of the art in approximate reasoning, 
the name used to describe several methodologies for the development of intelligent 
systems capable of manipulating imprecise and uncertain information. 

Approximate reasoning techniques loosely based on the calculus of probability 
appeared almost simultaneously with the development of expert systems relying on 
classical (i.e., two-valued) logic techniques. Soon after these systems were introduced, 
other approaches to the treatment of uncertainty and imprecision were also proposed, 
both to generalize more or less conventional probabilistic schemes and to capture other 
aspects of imperfect knowledge, claimed to have a nonprobabilistic nature. 

The short technological history of approximate reasoning methods may be de- 
scribed as being, from that moment, one of extreme controversy that has lasted to 
this day. Most of the proponents of classical probabilistic treatments, often described, 
although vaguely and somewhat misleadingly, as Bayesians,1 have doubted the ne- 
cessity for the introduction of other conceptual structures and have often sought to 
explain those frameworks in terms of probabilistic notions. Proponents of alternative 
approaches, on the other hand, have defended their techniques on the strength of 
two main arguments: the practical problems associated with the parameter-intensive 
procedures of conventional probability, often demanding knowledge of a large number 
of probability values; and, the nonprobabilistic nature of the uncertainties associated 

with the use of vague concepts. 

Much of this disagreement has been clearly caused by misunderstandings about 
the fundamental philosophical characteristics of each approach. Lacking a suitable 
basis to interpret certain concepts, particularly those related to the "degrees of truth" 
of multivalued logics, it has been impossible, until recently, to provide an adequate 
framework to discuss fundamental issues in a rational manner. 

This position paper on the past evolution of the field, its present state of the art, 
and desiderata for future evolution is the result of recent research by the author in 
basic semantic issues that are germane to the foundations of approximate reasoning. 
The presentation is based on the use of a central unifying framework: a formal model 
of the approximate reasoning problem that explains the similarities and differences 
between major methodologies. Using this "possible-worlds" model, we will also be 
able to compare the rationale of nonmonotonic logic approaches with that of approx- 

^he qualifier Bayesian is used in the context of statistics to describe proponents of a statistical 
methodology and in the context of the philosophy of probability to denote various subjective views 
of probability. In Artificial Intelligence, the term has been loosely applied both to those investigating 
approaches based on the probability calculus and, more narrowly, to those espousing the decision- 
theoretic methods of subjective probability. 



imate reasoning procedures. Although our model is a rigorous formalism, described 
in detail elsewhere [32,33] in connection with the logical foundations of the Dempster- 
Shafer calculus of evidence and fuzzy logic, our discussion will be kept as informal as 
possible to facilitate understanding our philosophical and technical position. 

We will contend that regarding probabilistic and possibilistic approaches as com- 
peting alternatives is incorrect and confuses the need to describe different aspects of 
reality with the adequacy or ability of probability as a measure of likelihood. We will 
also take a critical look at the major claims supporting a narrow view of probability, 
based on a subjectivist interpretation that regards all forms of rational decision- 
making as necessarily demanding optimization of expected-utility functional, and 
we dispute claims that only such approaches are endowed with either a suitable or a 
proven decision-theoretical apparatus. 

On the basis of our theoretical arguments, and of recent success in the appli- 
cation of various techniques to practical problems, we will also argue that future 
accomplishment in the field lies in the rational development of tools leading to mul- 
tiple complementary views of the implications of evidence rather than on arbitrary 
circumscription to a limited class of techniques and procedures. 

2   The Development of Approximate Reasoning 

Intelligent systems relying on approximate reasoning techniques [8,39] appeared in the 
1970s, approximately at the same time as other systems seeking to emulate the exper- 
tise of specialists in diverse fields of endeavor. Problems related to the development 
of the expert systems based on classical deductive procedures, however, were primar- 
ily related to the need to organize knowledge and its processing in such a manner 
as to assure an efficient derivation of the truth value of hypotheses (i.e., either true 
or false). Systems such as MYCIN or PROSPECTOR— reasoning about medical 
and geological systems, where knowledge is limited and where observations may be 
difficult or impossible to make—were forced to deal, in addition, with issues that, to 
this day, have almost completely consumed the attention of approximate reasoning 
researchers. 

These issues may be generally described as related to the extension of the basic 
derivation rule of classical logic, the modus ponens, which states that from the va- 
lidity of an antecedent proposition p and that of the implication p —* q, it is possible 
to derive the validity of the consequent proposition q. Although a conventional ex- 
pert system, using classical rules of derivation, could be assumed to have sufficient 
information to derive the validity of a hypothesis of interest, whenever knowledge 
was scarce or uncertain it was necessary to resort to other schemes that qualified 
in one way or another the meaning of the truth of propositions.  Still imitating the 



network-oriented techniques of truth-value propagation of two-valued logic, the ap- 
proximate reasoning schemes developed in early systems sought to propagate numeric 
truth values that were loosely related to probabilistic interpretations of uncertainty. 

The concept of probability provides a most important tool to describe the state of 
systems that are known under less than desirable informational circumstances. Aris- 
ing clearly from the need to make decisions despite undesirable knowledge handicaps, 
the notion of probability, seriously studied from the seventeenth century, has always 

played a major role in human judgment [16]. 

The appeal of probability as an instrument to assess system behavior is due to the 
empirically observed property that is expressed by the long-run stability of occurrence 
of certain events. Whether such a pattern of occurrence has been objectively quanti- 
fied through experimentation or historical observation (objective interpretation), or 
is subjectively expressed by the willingness to gamble with certain stakes (subjec- 
tive interpretation), it is clear that it provides a rational basis to formulate rational 
expectations about system state. Why would anybody, if such predictable stability 
of occurrence could not be assured, be willing to consciously bet on some outcomes 
rather than others if the real world defies any attempts to descriptive characteriza- 

tion? 

Curiously enough, although probabilistic interpretations were always implicitly or 
explicitly intended by the developers of early approximate reasoning systems, and 
while the underlying calculi reflect such explanations, it seems also clear that the 
machinery of these devices was primarily oriented toward the emulation of the propa- 
gation schemes of classical logic with truth flowing from node to node through edges 
corresponding to implication rules. Approximate truth, measured by numbers asso- 
ciated with objective likelihood or expert confidence, also flowed from evidence to 
hypothesis in a scheme that generalized the true-false dichotomy of multivalued logic. 

Regardless of the clearly intended probabilistic interpretations of those numbers, 
misgivings about their meaning and utility were sufficient to plant the seeds of the 
ensuing controversy. Concerns about the inability of probability to capture notions of 
evidential confirmation led the developers of MYCIN[39], for example, to introduce 
modified concepts ("certainty factors") as an alternative to direct use of conditional 
probabilities. In spite of subsequent studies showing that such certainty factors were 
related to probability values [18], it is clear that these worries were well founded, 
having been already eloquently expressed in the works of philosophers of science [34]. 

Although such concerns are indeed important and, despite some claims to the 
contrary, must still be properly addressed, other issues soon captured the attention 
of those seeking to develop expert systems with approximate reasoning capabilities. 
Beyond certain troublesome issues that were apparent when formulating the proba- 
bilistic calculi used by PROSPECTOR, arising from inconsistencies between "expert 



estimates" of probability values and the laws of probability, it was also clear to those 
engaged in the development of new expert systems that a typical application required 
estimation of a very large number of individual probability values [14], which were 

neither available or derivable from existing data. 

In addition, other researchers, acquainted with the concepts and methods of mul- 
tivalued logic [31,13], advanced the notion that some of the "degrees of truth" being 
propagated could be interpreted in a nonprobabilistic fashion. The theory of fuzzy 
sets, introduced by Zadeh in 1965 [45], had been for some time the focus of attention 
of these researchers and soon became a major source of techniques for the treatment 
of uncertainty by use of nonprobabilistic schemes. 

The variety of approximate reasoning methods arising from this diversity—expressed 
as a preference toward either a variedly interpreted, more or less strict application 
of classical probability schemes; as approaches seeking the expression of ignorance 
about probability values, such as the Dempster-Shafer calculus of evidence; and as 
nonprobabilistic schemes like fuzzy logic— have led to a controversy that has endured 
to this day. 

It has not been possible, until recently, to discuss these approaches with the help 
of a unifying framework that facilitates the interpretation of relevant concepts and the 
comparison of alternative methodologies. This unifying framework is based on a view 
of approximate reasoning problems as those wherein the truth-value of a hypothesis 
cannot be deduced from available information.2 In other words, several scenarios, all 
consistent with evidence, may be conceived. In some of those stuations the hypothesis 

is true, while in others it is false. 

The logical notion that we will use to characterize such conceivable states of affairs, 
situations, or scenarios, is the concept of " possible world" utilized by Carnap [4] 
in his logical treatment of the concept of probability, which was also employed by 
Nilsson [26] to derive a logic-based methodology for probabilistic reasoning. 

3   Possible-World Models 

A possible world may be briefly described as a function that assigns one and only one 
of the truth values true or false to every proposition (i.e., declarative statement) 
about the system that is being reasoned about. If we seek to describe and study 
the weather in Menlo Park, for example, the atmospheric conditions at several points 
in time are described by assigning specific values to meteorological variables such as 
temperature, humidity, and rainfall, or, equivalently, by assigning a truth value to 

2Sometimes this characterization is extended to include those cases where that derivation is very 
difficult. 



propositions such as 

The temperature at 3PM was 75°F. 

Since the value of system variables is unique (e.g., the temperature cannot be both 
75°F and 85°F at the same time), it is clear that each possible world (i.e., an assign- 
ment of truth values) must satisfy certain consistency conditions that follow from the 
axioms of classical logic. 

In approximate reasoning problems, however, we can usually do more to restrict 
the extent of the set of possible worlds that may conceivably describe the state of 
the system. Typically, the information or knowledge about the state of the system 
and its applicable rules of behavior, in spite of its defnciencies, is a major source of 
constraints that further limit the extent of the situations that must be considered. 
The subset of possible worlds that is logically consistent with this evidence is called 
the evidential set, and, in one form or another, is the concern of every approximate 
reasoning approach. In any approximate reasoning problem, by definition, some of 
these evidential worlds are such that a hypothesis is true in some of them and false 

on others, as depicted in Figure 1. 

Figure 1: The approximate reasoning problem 

The view of approximate reasoning problems that is afforded by this possible- 
world perspective also simplifies the understanding of the objective of approximate 
reasoning approaches. Lacking, by the nature of the problem, the ability to determine 
if the evidence implies whether we are in a situation where a hypothesis is true or in 



one where it is false, every approximate reasoning methodology seeks answers to a 
different problem: that of describing certain properties of the evidential set. 

4   The Semantics of Approximate Reasoning 

Our view of approximate reasoning methods as techniques to describe the evidential 
subset3 e of possible worlds that are consistent with available information now allows 
a more detailed look into their philosophical bases. 

Probabilistic methods, regardless of their subjective or objective semantics, seek 
to estimate measures of the subsets of the evidential set where a hypothesis h is true 
and where it is false, i.e., the values 

fi(hAe)    and    n(-ih A e), 

or other related quantities, such as likelihood ratios or conditional measures with 
respect to the evidential set e. The measure \x is, however, an aggregate measure of 

set extension based on the additive law 

MP) + M?) = t*{P A ?) + MP V q), 

stating that its value over a set may be derived from knowledge of its value over a 
partition of nonintersecting subsets. Regardless of the mechanism used to derive the 
weights associated with individual members of the subsets, it should be clear that 
interactions and associations between possible worlds (e.g., distances) do not play 
any role in such quantities. Simply stated, all that matter are the weights of each 
individual point (more generally, each atomic subset) that are then added to gauge 
the extent of the subset. 

Possibilistic methods, on the other hand, are based on notions of proximity and 
resemblance between pairs of possible worlds. This association or similarity is also a 
measure, albeit not one that may be expressed in terms of individual weights. Ex- 
ploiting the idea that, in many systems, statements that are true in certain situations 
remain approximately true in similar instances (e.g., clothing that is appropriate when 
the temperature is 75°F will work nearly as well at 78°F), the purpose of possibilistic 
techniques is to describe the evidential set in terms of the similarity of its component 
possible worlds to other possible worlds used as reference landmarks. 

The basic difference between probabilistic and possibilistic methods, therefore, 
goes beyond the use of different formulas to derive truth values. The methodologies 
are based on different conceptual approaches to the description of the evidential set; 

3For simplicity, we refer loosely to sets and propositions are if they were the same objects. 



they stress, in probabilistic reasoning, relative measures of set size, such as the ratio oi 
previously observed true and false cases, while, in possibilistic reasoning, they stress 
binary measures of similarity that describe how far is any conceivable scenario from 

certain significant situations. 

In both approaches, however, the objective is the description of properties of the 
evidential set rather than of any of its particular members. By contrast, certain 
nonmotonic logic techniques such as circumcription [24] rely on methods to choose 
least-exceptional worlds in the evidential set by extension of the "close-world as- 
sumption" [30], i.e., the only propositions or predicates that are true are those that 
are known to be true. These techniques may be considered general procedures to 
represent states of evidential knowledge by choice of prototypical situations. New 
evidence, however, may force retraction of some of the assumptions leading to the 
selection of other evidential worlds as prototypes. Another class of nonmonotonic 
reasoning techniques, while generally fitting the description given above, relies on 
prespecified "default" rules [29] to control the choice of prototypical worlds. Since 
these rules are usually formulated on the basis of plausibility notions rooted on sta- 
tistical information (as in the famous example of Tweety and the flying ability of 
most live birds) it is not surprising that the derivation techniques and rules of these 
preferential logics—a name indicating their definition of a preferred order for models 
of a situation—resemble those of probabilistic reasoning. In fact, recent developments 
strongly point to the existence of a common unifying interpretation for both [28,15]. 

4.1   Probabilistic Reasoning 

There can be little argument from any quarter that frequencies of occurrence of events 
satisfy the famous additive law that is axiomatized in the definition of set measure [17]. 
If propositions that describe event occurrence can only be assigned one and only one 
of the classical probability values, then it is obvious that whenever such repetitive 
occurrences are counted, then the sum of positive and negative occurrences must add 
up to the total number of relevant cases. As far as this objectivist interpretation 
of probability is concerned, therefore, there is little doubt that classical formalisms 
provide a suitable conceptual tool to capture the behavior of systems that expresses 
itself, as experimentally observed, in the form of stable frequency values. 

Probabilities, viewed from the perspective of our possible-worlds model, may be 
considered as the basis of methods providing answers to a question that is related to 
but different from the undecidable issue of the validity of a hypothesis. Unable to 
state, because of lack of information, that h is either true or false, we describe instead 
the behavior of the system in the long run, by calculating the frequency of occurrence 

under similar circumstances. 



Probabilistic reasoning schemes may be generally described as concerned with the 
computation of the joint probability distribution of several system variables, based 
on knowledge of the values of related marginal and conditional probability distribu- 
tions. Whenever the required values are available it is possible, conceptually at least, 
to derive the required joint distributions. In fact, it may be fairly stated that, once 
it was understood that such derivation should be the goal of probabilistic reasoning 
systems, the attention of proponents of that methodological perspective has been al- 
most completely directed toward the development of methods to simplify the required 

knowledge organization and manipulation [27]. 

Substantial concerns arise, however, regarding what must be done when the needed 
probability values are not known. In applied science, when unknown systems and phe- 
nomena are investigated, experiments are designed and performed to determine the 
basic laws of system behavior, which are typically expressed through quantitative 
relationships. If, based on such knowledge, rational courses of action are chosen, the 
careful scientist is then able to explain and justify his decisions on the basis of a strong 
epistemological apparatus supported both by empirical observation and by rational 
deduction. This scheme, which proceeds from information acquisition to decision 
making, embodies the experimental method of modern science. From such a per- 
spective, probabilistic laws describe certain aspects of system behavior described by 
parameters that are estimated using the same methods that are universally accepted 

and employed in applied science. 

Another view of probability, however, regards probability values as expressions of 
the degree of belief of rational decision makers regarding the validity of hypotheses. 
This degree of belief is quantified by the amount of money that a rational gambler 
is willing to bet in a gamble where the payoff, if the unknown truth value turns out 
to be true, is $1. The probabilistic behavior of these degrees of belief is justified 
by a number of axiomatic systems [6,35] providing formal support not only to this 
subjectivist interpretation of probability but also to a decision-making methodology 
based on the maximization of expected utility. Related axiomatic formulations have 
been also developed to support the contention that the only correct procedure for 
updating such beliefs is the Bayes-Laplace rule [5]: 

Prob(p|g)Prob(q) 
Prob(9|p) = pTobb) • 

A number of researchers have questioned, in the past, the purportedly rational 
nature of these axiomatic systems. Their misgivings, which we share, arise both from 
questions about the rationality of some specific axioms, as noted by Suppes [42], and 
from observation of the behavior of rational decision-makers(including developers of 
the axiomatic formalisms) that contradicts the sure-thing principle, as observed by 
by Allais [1] and Ellsberg [11]. Kyburg [21] has also raised substantial concerns about 



the epistemological status and soundness of the subjectivist approach. The axiomatic 
system of Cox has also been criticized for its assumption that beliefs are measured by a 
single number [10] and, again, for the less-than-natural character of some axioms [38]. 

Proponents of this stringent orthodoxy have often argued that behavior departing 
from their theoretical requirements, however prevalent, is actually irrational. Such a 
claim, however, suffers from a fundamental methodological flaw. Rationality should 
be defined in terms of basic requirements that demand proper consideration of two 
fundamental factors: observed empirical evidence and the laws of logic. By requiring 

compliance with certain basic tenets of rational behavior, such as the famous avoid- 
ance of "dutch books," subjectivist schemes certainly attempt to meet one of these 
requirements, albeit in a limited fashion, as pointed out by Kyburg[21]. By defining 
rational behavior as that which results from utilization of the proponent's favorite 
scheme, the characterization of rationality is subjected to a curious argument that 
inverts the identity of what is rational with what must be done to ensure rational 
behavior. This inversion effectively ensures that the expected utility approach would 
always be considered to be rational: in fact, if any other behavior is observed, it 
would be, by definition, irrational. 

This inversion of premises and conclusions is also apparent in other arguments, 
based on pragmatic necessity considerations, for the superiority of the subjectivist 
approach. If decisions, even those to obtain more information, must be made, then 
the elements required to make the decision (i.e., utility functions and degrees of 
belief) must be assessed. Conversely, any decision implies that such values have been, 
whether knowingly or not, chosen in some form or fashion. As a result of this close 
relation between the assessment of situations and the selection of suitable courses of 
action, guaranteed by the fact that values of expected utilities (i.e., numbers) may 
always be totally ordered, it is claimed that the subjectivist approach is the only 
one among approximate reasoning methods that has a rational decision-theoretic 

apparatus. 

As appealing as such claims may be to some decision-makers, we must note again 
a curious exchange of roles in the scientific discovery process: decisions no longer 
follow from empirical observation and rational cogitation; rather, parameters that 
describe knowledge follow from a practical need to choose suitable actions. However 
pressing may be the need to derive decisions it should be clear that, in the absence of 
information, it is usually impossible to determine what is the best course of action. 
Any randomizing device would, under such circumstances, provide a total ordering of 
possible choices but there is very little to assure us that any behavior based on such 
arbitrary basis ought to be called rational. 

The ultimate goal of an intelligent system is to take actions based on knowledge 
about the actual rather than the believed behavior of a real world system.   It is 



difficult to see why, as noted by Kyburg [22], the latter should be given much attention 
outside psychological research. If applied science is, as generally admitted, a rational 
enterprise that seeks to uncover the secrets of the universe and to provide guidelines 
to take actions based on such knowledge, then it is clearly desirable that intelligent 
agents, in their quest for similar objectives, follow as closely as possible the essential 
procedures of the scientific method. The ability to produce decisions regardless of 
the extent and pertinence of available knowledge should be regarded as a handicap 
rather than as an advantage of a procedure: a fact readily noticed by those engaged in 
the solution of important real life problems [12]. As we pointed out before, whenever 
such knowledge is acquired, it is typically reported using a format that emphasizes 
the quality of the observational method and the strength of the arguments leading 
from empirical data to the author's conclusions rather than on the basis of personal 
confidence expressed by willingness to take gambling risks. 

I have made a rather long exposition about the dichotomy between subjectivist 
and objectivist approaches to probability primarily because I believe this to be a 
major cause of a controversy that, beyond considerations that are solely germane to 
probabilistic reasoning, extends to the need for techniques that are not directly based 
on subjectivist orthodoxy. I have also been motivated by the desire to clearly expose 
a personal position that is shared by many in the approximate reasoning community 
but that is also often misleadingly described as being antiprobabilistic. 

Far from being antagonistic to one approach for the simple sake of promoting oth- 
ers, my eclectic view is the direct result of practical experience with the development 
of models of complex systems, and of close familiarity with the application of math- 
ematics to technological problems. Probability is indeed a powerful tool to describe 
chance-related aspects of the behavior of real-world systems. Recent contributions of 
probabilists and decision scientists, within and without the context of AI, such as the 
development of network-oriented procedures for probabilistic reasoning [27], are most 
important additions to our methodological arsenal. 

There are, however, limitations on the capabilities of any tool, whether for system 
analysis or for any other purpose. As is true of any tool, including all methodolo- 
gies described in this note, the applicability of probability is limited by its inability 
to perform functions that lie outside its scope, and by practical constraints on our 
ability to use it in specific situations. In spite of its unquestionable utility, other ap- 
proaches also play a significant role in the description of the possible state of affairs. 
These techniques must not be considered to be competitors of probability but, rather, 
complementary techniques to enhance the understanding of the real world. 

10 



4.2   Generalized Probabilistic Reasoning 

Those who worry about the potential lack of applicability of techniques based on con- 
ventional probability formalisms do not question the conceptual validity of probability 
as the appropriate tool to measure the frequency of occurrence of diverse events under 
various conditions or, in some cases, the strength of belief of decision-makers. Con- 
cerns about the problems caused by ignorance of probability values, however, have 
been expressed continuously since the nineteenth century by such prominent logi- 
cians as George Boole [3], and have led to the development of approaches to represent 
probabilistic ignorance by using subsets of possible probability values. 

If, for example, the probability of validity of a proposition p is unknown, an 
interval probability method will represent such ignorance by assigning the interval 
[0,1] as the value of the missing probability. If it is known, on the other hand, that 
an event has better than even chances of occurring, such knowledge will be represented 
by the [0.5,1] interval. More generally, probabilistic knowledge may be represented 
as a set of possible probability values in a hyperdimensional cube, as in the convex 
probabilities approach of Kyburg[20]. 

The corresponding probabilistic calculi are straightforward conceptual extensions 
of the classic, number based calculus. Such extensions produce, for example, inter- 
vals of expected utility values on the basis of knowledge expressed as set of possible 
probability values. These intervals may be used, in many instances, to rank decisions 
in the same way that such choices are ordered with number-based schemes. When 
this ordering is not possible (e.g., overlapping intervals show that under certain sce- 
narios A is preferrable to B, while, in other situations, B is to be preferred), the lack 
of a clear choice does not imply that the decision-theoretic apparatus is defective. 
Rather, the methodology is rich enough to tell us precisely how far empirical knowl- 
edge, combined with the laws of rational thought, can take us. If, beyond that point, 
it is imperative to do something—a rather unfortunate set of events—any selection 
scheme, from that point on, will be as rational as any other (i.e., very little). 

Although the manipulation of intervals and sets of possible probability values al- 
leviates some conceptual worries, it hardly helps in terms of the ability to perform 
the required computations. The situation, unfortunately, is made worse by the need 
to represent and manipulate probability bounds for subsets without the simplifying 
help that additivity provides for actual probability values. This unfortunate state 
of affairs is the primary reason for the popularity that an approach—capable of be- 
ing interpreted in terms of interval probabilities— enjoys today as one of the major 
methodologies of approximate reasoning. This approach is the Dempster-Shafer cal- 

culus of evidence. 

Originally developed by Dempster [7] in the context of statistical studies, the ap- 
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proach was further developed by Shafer [36] as a non-Bayesian alternative to the 
representation and manipulation of degrees of belief. Recently [32], application of 
possible-world semantic models to the interpretation of its major structures has shown 
that the approach is fully consistent with the classical calculus of probability, includ- 
ing the Bayes-Laplace formula. Smets [40] has also recently reviewed the structures 
of the calculus of evidence proposing, in addition, unconventional extensions based 

on a nonprobabilistic concept of belief. 

The calculus of evidence may be readily understood using our basic model if it is 
recalled that, whenever assessing the validity of a hypothesis on the basis of emprical 
knowledge, there are three possible logical outcomes of any reasoning process: the 
hypothesis may be proved to be true, the hypothesis may be proved to be false, or 
the information may be insufficient to make either of those conclusions. 

If the notation Kp is used to denote the set of situations, i.e., possible worlds, 
where p can be proved true, if K-ip correspondingly denotes those cases where it 
can be proved false, and if Ip denotes the set of situations where the truth value of 
p cannot be established without ambiguity, then it is obvious that any probability 

function Prob(-) will satisfy the equation 

Prob(Kp) + Prob(K-np) + Prob(Ip) = 1. 

Furthermore, since the probability of Ip may be positive, it will be true, in general, 

that 
Prob(Kp) + Prob(K-.p) < 1 . 

The calculus of evidence is based on the representation of the probabilistic in- 
formation conveyed by evidence by means of belief functions. These functions may 
be readily interpreted in terms of the above probabilities of provability through the 

equation 
Bel(p) = Prob(Kp). 

More importantly, these belief functions are usually expressible in a compact form by 
means of basic probability assignments or mass functions. These functions m, which 
are also defined over propositions, are related to belief functions by the equation 

Bel(p) = £ m(q). 
<?=>P 

The ability to represent and manipulate probability intervals by means of mass func- 
tions is the major reason for the appeal of the Dempster-Shafer methodology. 

Although, in a typical decision problem, we are interested in the truth of p rather 
than its provability, lack of adequate information precludes determination of the prob- 
ability of such truth. In general, however, it may be said that 

Bel(p) < Prob(p) < 1 - Bel(^p). 
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Furthermore, these bounds cannot be improved. 

This interpretation of the Dempster-Shafer calculus as concerned with probabili- 
ties of provability, as called by Pearl [27], was first formalized by the author using a 
possible-worlds model based on the use of a modal logic called epistemic logic. The 
formal system, which is equivalent to the modal system S5 [19] used by Moore [25] in 
his pioneer work on the application of modal logic concepts to artificial intelligence 
problems, is enhanced by consideration of probability distributions over the set of 
possible worlds. In particular, the unary operator K represents the knowledge of a 
rational agent to prove that a proposition may be known or proved to be true. 

The probability of the set of all possible worlds where a proposition p is the most 
specific proposition that is known to be true, called the epistemic set, corresponds to 
the values of the mass function. In any possible world, this most specific knowledge is 
the conjunction of all propositions that are known to be true in that possible world. 

The semantic model of the Dempster-Shafer theory also validates the so-called 
Dempster's rule of combination, which permits the combination of belief and mass 
functions corresponding to evidential observations made under certain conditions of 
independence. When such conditions are not valid, use of this formula leads, of 
course, to erroneous results, often, although incorrectly, considered to be an essen- 
tial handicap of the evidential reasoning approach, rather than a consequence of its 

misapplication. 

From our perspective the only substantial example of such misapplication is that 
which results from improper use of the Dempster's rule of conditioning, i.e., a par- 
ticular use of the rule of combination that is valid only under special circumstances, 
as a substitute for Bayes' rule. Certain methodological limitations of the calculus of 
evidence, notably the lack of methods to handle with sufficient generality the coun- 
terparts of conventional conditional probabilities, are more worrisome, in our opinion, 
than any distress arising from its misuse or its supposed lack of a decision-making 

apparatus. 

4.3   Possibilistic Reasoning 

Our basic semantic model also provides straightforward interpretations [33] for the 
major concepts and structures of possibility theory [46,9]: an approach to approxi- 
mate reasoning derived from multivalued logics [31] and the theory of fuzzy sets [45]. 
The major formal tool that enhances our understanding of such structures is not a 
probabilistic measure of set size but, rather, a binary measure of proximity or dis- 

tance, called a similarity relation. 

Similarity considerations play a major role in human cognitive processes [44]. In- 
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formally, all such analogical processes are based on the notion that the validity of 
some propositions in a given situation extends also to other situations where the 
same basic conditions are prevalent. 

In our model of possibilistic structures, the similarity between states of affairs is 
expressed by a function that assigns a number between 0 and 1 to every pair of possible 
worlds. The value of that function S(w, w') for a pair of possible worlds quantifies the 
extent of resemblance between pairs of situations or scenarios, as evaluated from the 
viewpoint of the particular problem being considered. In a decision-making problem, 
for example, the decision maker may define such measures to describe the extent by 
which the consequences of certain decisions resemble desirable goals or objectives. 

The highest similarity value, 1, indicates that, from the perspective of the system 
being studied, both situations are indistinguishable. The lowest value, 0, indicates 
that knowlege of what is true in one possible world does not help to derive what is 
true in the other. 

Similarity scales are the measurement sticks used to describe the extent by which 
certain results may be extrapolated from one possible world to another. Unlike proba- 
bility functions, which correspond to either measurable properties of physical systems 
or states of belief of rational agents, the similarity relations simply provide a mecha- 
nism to describe resemblance between states of affairs. 

Similarity relations may also be regarded as generalizations of the modal-logic 
notion of accessibility or conceivabiiity [19] by introduction of multiple binary relations 
Ra between possible worlds (one for each value of a between 0 and 1), defined by 

Ra(w,w') if and only if S(w,w') > a. 

These relations also justify the use of a possibilistic terminology that regards proposi- 
tions as being possible to some degree, thereby generalizing the classical definition of 
the modal operator for possible truth in a manner similar to that used by Lewis [23] 
in his treatment of counterfactual statements. 

Certain requirements must be imposed to assure that similarity functions truly 
represent notions of resemblance between possible situations. Similarities between 
identical scenarios, for example, should have a value of 1, the highest possible value. 
Furthermore, if two different possible worlds are to be distinguished by means of 
similarity values, then it also makes sense to require that their similarity be strictly 
less than 1. It is likewise natural to require that the similarity between two particular 
scenarios be a symmetric function, i.e., w resembles w' as much as w' resembles w. 

Beyond these properties of reflexivity and symmetry, it is also necessary to require 
that similarities satisfy a generalized form of transivity. If, given three possible worlds 
w, w' and w", the worlds w and w' are highly similar while w' and w" are also highly 
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similar, it will be unreasonable to say that w and w" may be highly dissimilar. The 
value of S(w, w") must, therefore, be bounded by below by a function of S{w, w') and 

S(w',w"), as expressed by the condition 

S{w,w") >S{w,w')®S{w',w"), 

which uses the binary operation © to denote the required function. 

If certain reasonable requirements are imposed upon the function ©, it is easy 
to see that this function has the properties of triangular norms, which are usually 
introduced in multivalued logics [43] to relate the truth value of a conjunction p A q 
to the degrees of truth of p and q. These functions are motivated, in our model, by 
considerations that are related solely to metric concepts of proximity and resemblance. 
Important examples of triangular norms are given by the functions 

a®b = min(a,6), a ©6 = max(a + b - 1,0),      and     a®b = ab, 

called the Zadeh, Lukasiewicz, and product triangular norms, respectively. 

Similarity functions are trivially related by the relation 

8 = \-S, 

to functions 8 that have the properties of a distance or metric function. In the 
particular case where © is the triangular norm of Lukasiewicz, then 6 is an ordinary 
metric or distance, which obeys the well-known triangular inequality 

6(w, w") < 8(w, w') + 8{w', w"). 

If © is the Zadeh triangular norm, on the other hand, the transitivity property is 

equivalent to the stronger ultrametric inequality 

6(w, w") < max ( 8(w, w'), 8(w', w")). 

The structures introduced by similarity relations may be readily applied to gen- 
eralize the subset inclusion relations that are the fundamental basis of deductive 
reasoning. These inclusion relations are typically expressed by conditional proposi- 
tions of the form " If q, then p," stating that any state of affairs where q is true is such 
that p is also true. These conditional propositions, which permit the derivation of 
true propositions from knowledge of the truth of others by means of the rule of modus 
ponens, may be also stated using similarity structures by saying that any q-world has 

a p-world (i.e., itself) that is as similar as possible to it. 

The ability to characterize proximity between possible worlds using a continuous 

scale of similarity provides for a more general characterization of the inclusion rela- 
tions that hold between subsets of possible worlds (i.e., propositions). If the subset 
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of g-worlds is not included in that of p-worlds, we may, however, use the similarity 
structure to quantify the amount of stretching required to reach a p-world from any 
q-world. The degree of implication function defined by the expression 

I{p\q)= inf   sup S(w,w'), 
w'\-q    whp 

which is related to the well-known Hausdorff distance, provides such quantification 
as the size of the topological neighborhood of p that encloses q, as shown in Figure 2. 

Figure 2: Degree of implication 

The ability to express relationships between neighborhoods of different sets of 
possible worlds or, equivalently, between propositions permits the generalization of 
the modus ponens by use of the transitive property of the degree of implication 

function: 
I(p\r) >I(p|g)@I(g|r), 

illustrated in Figure 3. 

Figure 3: The generalized modus ponens. 

The generalized modus ponens rule of Zadeh [46] is expressed by means of pos- 
sibility distributions, which are themselves defined in terms of similarities between 
evidential worlds and those satisfying a given proposition p[33]. From the viewpoint 
of our similarity-based model, the generalized modus ponens may be thought of as 
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a sound rule of logical extrapolation that exploits similarities between conceivable 
scenarios or situations. The fundamental topological structures that permit this type 
of reasoning are clearly different in character and nature than the measures of set 
extension that are the conceptual basis of probabilistic reasoning. 

In closing, it is important to mention that posibilistic reasoning based on fuzzy 
logic has led recently to the implementation of a large number of successful commercial 
products [41]. These systems, which have primarily exploited the applicability of the 
technology to a variety of control devices, provide a clear indication of the usefulness 
of these ideas, which now also rest on clearly understandable theoretical foundations. 

5   Looking ahead 

The ability to explain the role and utility of the major approximate reasoning ap- 
proaches by use of a unifying framework provides the rational basis to resolve most 
of the issues about relative importance and necessity. Rather than supporting any 
partisan contention about the superiority of one methodology over the others, this 
framework shows instead that a variety of tools are needed to produce effective de- 

scriptions of evidence and its implications. 

Each methodology may play a significant role in every potential application of 
approximate reasoning techniques: a role that complements rather than substitutes 
forf other procedures. In the absence of compelling theoretical arguments for rejecting 
any approximate reasoning position and in the presence of substantial solid evidence 
of their usefulness and applicability, it is irrational to maintain positions that are 
needlesly divisive and polemic. 

Recent investigations showing that there exist substantial functional rather than 
conceptual similarities between the network-oriented methods of conventional prob- 
abilistic schemes and the calculus of evidence [37], and indicating that fuzzy-set con- 
cepts and multivalued logic may be successfully blended to represent vague knowledge 
about probabilities [2], clearly point the way toward a more productive research col- 
laboration between approximate reasoning specialists. 

This collaboration should stress application of all valid concepts to the solution of 
practical problems rather than further continuation of the controversy about techno- 
logical superiority or necessity. In particular, the example set by Japanese researchers 
in the development of a large number of commercial products of evident applicability 
illuminates the path that must be followed. The future lies in the solution of practi- 
cal problems, both because of the direct importance of those problems, and because 
conceptual developments and clarifications usually follow, as is the case of the work 
discussed in this note, from the experiences gained producing such solutions. Having 
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established needed conceptual bases to clarify controversial issues, we hope it is clear 
that this is the time to apply ideas rather than to continue to argue about them. 
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ABSTRACT 

We address recent criticisms of evidential reasoning, an approach to the analysis 
of imprecise and uncertain information that is based on the Dempster-Shafer 

calculus of evidence. . 
We show that evidential reasoning can be interpreted in terms of classical 

probability theory and that the Dempster-Shafer calculus of evidence may be 
considered to be a form of generalized probabilistic reasoning based on the 
representation of probabilistic ignorance by intervals of possible values. In particu- 
lar, we emphasize that it is not necessary to resort to nonprobabilistic or subjec- 
tiv'ist explanations to justify the validity of the approach. 

We answer conceptual criticisms of evidential reasoning primarily on the basis 
of the criticism's confusion between the current state of development of the 
theory - mainly theoretical limitations in the treatment of conditional informa- 
tion - and its potential usefulness in treating a wide variety of uncertainty analysis 
problems Similarlv, we indicate that the supposed lack of decision-support schemes 
of generalized probability approaches is not a theoretical handicap but rather an 
indication of basic informational shortcomings that is a desirable asset of any 
formal approximate reasoning approach. We also point to potential shortcomings 
of the underlying representation scheme to treat general probabilistic reasoning 

problems. ,    ,       • ■      •; 
We also consider methodological criticisms of the approach, focusing primarily 

on the alleged counterintuitive nature of Dempster's combination formula, show- 
ing that such results are the result of its misapplication. We also address issues of 
complexity and validity of scope of the calculus of evidence. 
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tions, Dempster-Shafer theory, calculus of evidence 

1. INTRODUCTION " ~ 

If artificially intelligent systems are to produce adequate assessments of the 
state and behavior of the real world, they must cope with information and 
knowledge that is characterized by varying degrees of uncertainty, ignorance, 
and correctness. To address this need, we have developed a technology called 
evidential reasoning. It is formally based upon the Dempster-Shafer [1] 
theory of belief functions, it has been implemented as a domain-independent 
automated reasoning system, and it has been successfully applied to a range of 
real-world problems (Lowrance et al. [2]). Yet, its reliance on belief functions 
has drawn criticism. 

Our choice of an approach based on the Dempster-Shafer theory was not 
arbitrary. We believe that theory confers important methodological advantages, 
such as its ability to represent ignorance in a direct and straightforward 
fashion, its consistency with classical probability theory, its compatibility with 
Boolean logic, and its manageable computational complexity. At the same 
time, we recognize that other approaches may also complement and augment 
the assessments provided by evidential reasoning. 

We examine several criticisms of belief functions that have appeared in the 
literature, discussing first the fundamental theoretical bases supporting the 
belief function approach and justifying its use in terms of the requirements 
imposed by ignorance of certain probability distributions. We consider the 
nature of Dempster's rule of combination and argue that negative assessments 
either misinterpret the nature of the distributions being combined or ignore the 
basic independence assumptions that ensure its validity. We stress also that it is 
not necessary to rely on explanations  that are either nonprobabilistic or 
subjective to justify the validity of the Dempster-Shafer calculus of evidence. 

Furthermore, we show that certain apparendy counterintuitive properties of 
the approach (e.g., the "spoiled sandwich" paradox) are the natural conse- 
quence of considering families of possible probability distributions that solve 
an approximate reasoning problem.  In the context of this discussion, we 
indicate also the inherent pitfalls of "axiomatic" approaches that accept or 
reject methodologies on the basis of their compliance with allegedly intuitive 
principles. 

We also answer critiques based on the computational complexity of the 
belief function approach. Such criticisms claim that the complexity of proba- 
bilistic knowledge representations grows exponentially with the size of the 
frame, thus making the theory unsuited for automated reasoning. Other com- 
ments addressed in our presentation center on limitations on the representa- 
tional ability of belief functions and the lack of certain methodological capabili- 
ties (e.g., decision-making mechanisms). 
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Despite the criticism that belief functions have drawn, we believe that 
evidential reasoning is well founded and that it may be effectively applied to 
the solution of a broad range of important practical problems. 

Most of our comments will be made in direct reply Pearl's recent criticism 
of the belief function approach [3], because we feel that his paper encompasses 
most of the major worries and concerns expressed about the calculus of 
evidence. Although most of the discussion in this paper consists of direct 
responses to issues raised by Pearl and others, our overall objective is 
considerably broader. Our answers are motivated by the remarks of DeGroot, 
quoted by Pearl at the conclusion of his work, about the need to use our 
methodological approaches "with the utmost care and in accordance with the 
highest ethical standards." Our aim, like Pearl's, is to enlighten and clarify, 
through careful discussion of rather subtle and delicate issues, rather than to 
engage in dogmatic defense of one approach to the detriment of another. It is 
our earnest hope that this work, in conjunction with other evaluations of the 
belief function approach, will lead to a better understanding of its foundations, 
capabilities, and limitations. 

2. ON THEORETICAL SOUNDNESS 

The theory of belief functions was originated by Dempster [4] in the context 
of statistical research. The use of the term "belief," together with its 
subjectivist connotations, is due to Shafer [1], who first applied the theory to 
the analysis of imprecise and uncertain evidence. 

Although much skepticism has been voiced about the naturality of belief 
functions and their agreement with conventional probabilistic approaches, its 
theoretical bases are provided by a simple consideration of the role of evidence 
as a basic information carrier. 

In classical probabilistic treatments, it is assumed that, under certain eviden- 
tial conditions <f,' the value P(p\<?) of the likelihood of a particular 
statement p is known. This view of evidence, adequate to represent the 
informational conditions of most controlled experimental setups, fails to ade- 
quately model the effects that acquiring similar information has on our state of 
knowledge when the state of the world cannot be so readily manipulated. 

In such circumstances, whenever the evidence § is observed, three possible 
informational outcomes may result from examination of further information 

1 Throughout this paper, the symbol <? is used to denote available evidence, that is, a collection 
of propositions about the real world that are known to be true either as a result of direct 
obsen/ation or as the consequences of applicable background knowledge. 
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that later turns out to improve our state of knowledge: Either p is found to be 
true, ^p is found to be true (i.e., p is false), or such information is 
insufficient to determine the truth value of p. Use of modal logic concepts, 
which are the bases of the formal model of Ruspini [5] suggests the use of the 
notation Kp, K-*p, and \p to identify these outcomes. Since these alterna- 
tives are exclusive, it is clear that 

P(Kp)+P(K^p)+P(lp) = 1. 

Furthermore, since the probability of Ip may be positive, it will be true, in 
general, that 

P(Kp) + P(K^p) < 1. 

This model, based on a combination of classical probability methods and the 
modal logic S5 (Hughes and Cresswell [6], Moore [7]), essentially 
provides—through the logical notation of possible world—a meaning for the 
unary operator K as the representation of the state of knowledge of a 
statistician who is estimating the probability of truth of diverse propositions 
{p, Q, ' ■ ■ } under evidential conditions. 

This statistician estimates those distributions by considering multiple sam- 
ples of the state or behavior of a real-world system. Using, for each sample, 
additional information collected through further experimentation, the statisti- 
cian may then establish or not the validity of a proposition p. If he is rather 
lucky, our statistician will find himself in the ideal situation where he can 
actually "know"2 or "prove" that the real world is in a state s that is 
described to the best level of detail that is necessary to understand its behavior 
(i.e., a "possible world"). This is the state of knowledge usually attained, 
under perfect laboratory conditions, when experimental samples are fully 
analyzed and when the outcome of such analyses is classified in terms of a set 
of exhaustive and mutually exclusive alternatives. 

Under less desirable epistemological circumstances, however, the statistician 
will only be able to prove that a less specific proposition q is true. In the 
extreme case where no further information exists, he will be forced to say that 
his knowledge is limited to that provided by the evidence 6', or that it is 
"vacuous." 

All samples so analyzed, however, can be classified as to the "most specific 
knowledge" that could be determined in each case. The corresponding proba- 
bility measure of the set e(p) of samples where the proposition p was the 
most specific knowledge (called an epistemic set by Ruspini) corresponds, in 

■ Note thai, in the context of epistemic logics such as 55, the operator K behaves as a logical 
necessity operator. "Knowing" a proposition simply means that observations logically imply such 
a proposition or that it is necessarily true. 
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Shafer's framework, to the value m{p) of a mass function m, that is, 

m{p) =P{e{p))- 

Correspondingly, the probability that p was "^"»J^'S 
statistical experimentation corresponds to the value Bel(p) of Shafer s belief 

functions, 

Bel{p) =P(Kp). 

The connection between the ability of our statistician to know that p was 
true and the belief and mass functions that he estimates through »penmenta- 
Z justifies both the expression epistemic probability introduced by Ruspuu 
5] to describe the underlying probabilities defined over a J^cuta>rs«of 
Lions or scenarios Kp (called the epistemic universe) and the, d*cnpnon 
^functions as being "probabilities of provabuity; or '^** of 

necessity" by Pearl [8], following a suggestion by Fagin and Halpern [9] 
n short, all such interpretations are equivalent to the onginal mode1 of 

Ruspini where a rational agent was able to prove the truth of different 
propos t'ions under different information circumstances that were found to 
p evaü, during his statistical experiment, with different frequencies of occur- 

rence 3 

sTnce the ability to prove a proposition q entails the ability to prove any 
proposition p that is implied by q, it should be clear that 

Bel{p) =  E m(<?)> 
q-P 

which is the fundamental equation relating the basic structures of the calculus 

of evidence. It is also true that 

Bel{p) *P(p)*l -BeHpp), 

providing bounds for the probability of p that may not be improved. This 
SSSManipulate probability intervals by means oi; the compact^representa- 
tion scheme of mass functions is the major reason for the appeal 
Dempster-Shafer methodology. 

' ' Note, however, that while use of the ternis "k.rfty:- "^^^; 
doe. a»*» to prov.de adequate semantics to the -cuius of ev, ence he, too*». -^ 
unnecessary confusion. For example, in .".s-ent cnt,c sm [; 3] P*jl lakes s q ^ ^ 

semantic license with the term "necessity. ™°™"*- ^^ pragmatic" necessity does 
decision »will have to bemade ™ »'™^^.. t a u^testhe Dempster-Shafer 
not have anything to do. ot course, with the log.cal necessity■ t 
theory, that is. the necessary truth of a proposition given available evidence. 
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eZhÜe^,abuVlf?SSi0n ClarifieS the nature of the statistician's knowl- 
edge modeled by belief and mass Junction», doubts might still remainTt0 

their utihty to those who were not involved in their statistical estimation 
process. Such usage», however, that made of any other probabilistic informa 

.on^The analyst who observes / does not have the luxury that was avaäabte 
to the statistican estimating epistemic probabilities, that is   the abiSv to 
collect additional information that permits a more detailed chaVacterizaS of 
the smte of the world, for the same reasons that the user of statistic^ Ms is 
unable to utilize the raw data of the estimating statistician   StetS 
crcumstances   the analyst is forced to rely on the probabilistic es,Latet 
provided by the statistician, which are believed on the basis of L tZZ 

Z ao7 °fh
th

hV
ePetltlVe beh3Vi0r °f ^ SyStem: the epistemologtal   orner stone of probabdistic reasoning. r 

is ava^bLTot' ^ :'pr0babiI5 ^-ability" is the best information that 
is available to the analyst; an observation that disposes not only of questions 

ue°in ?     f H 
PKbabiliStiC reaSOning' bUt *° °f Pearl's w°-°  SI use in l,eu of the obv10usly more desirable "probability of truth" [3]: 

why we should concern ourselves with the probability that the evidence 
implies A, rather than the probability that A is true, given the 
evidence. ° 

Ä fTrmT' ^ ^ ** ^ ^ Unfo™a^> - can measure 

Our interpretation of the major evidential Sanctions and structures also 
quickly disposes of erroneous arguments based on unintended inte^ Sdonfof 
*e intervals defined by belief functions. Each such interval reorients igno 

onditil3 f\? Pi;0babÜ
h
ity Valf f°r a ProP°sition P ««ter fixed evidential 

condit ons e . If critics choose, for example, to interpret such intervals as the 
possible vah.es that conditional probabilities might attain when further evi- 
dence is collected, as suggested by Pearl [10], belief functions will not, indeed 
behave according to such unintended semantics. 

In closing this section, it is important to mention other alternative views of 

Jit 7,CnreSK K^ 
C3lCUlUS °f eVldenCe SUCh as that recen^ Proposed by 

imets [11], which are based on a nonprobabilistic concept of belief. Although 
those models are interesting on the strength of their own virtues, we still 
emphasize that such interpretations are not required to reconcile the calculus of 
evidence with conventional probability theory 

caltluTnf^ °n °f °U\ ^Uty t0 reC°nCile aJI StrUCtUres and for™Ias of the calculus of evidence  includmg Dempster's formula, with conventional proba- 
b.lity structures, such as inner and outer probabilities, we do not feel strong 

«3'kVT^ aJtematiVe SpiStemiC interP^tations. Our skepticism in Ms 
regard is further supported by the observation that, often, such epistemological 
alternatives are  the result of misunderstandings about the role of certain 
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evidential formulas and processes (e.g., normalization). For the same reasons, 
we remain unconvinced about the need to assign alternative interpretations to 
the structures of calculus of evidence or to its functions, as is the recent 
suggestion of Halpern and Fagin [12], which is echoed by Pearl [3]. 

3. ON DECISION SUPPORT 

A criticism of a more fundamental nature of the calculus of evidence is often 
raised regarding the output of generalized interval-probability approaches. 
Since these methods often fail, because of basic knowledge deficiencies, to 
rank decision choices by the value of some measure that quantifies the 
desirability of each choice (e.g., expected utility), then it is said that they lack 
a decision-theoretic apparatus. 

Although these arguments correctly point to the basic knowledge require- 
ment that most decision problems entail—if a rational choice is to be made, 
then we must have a proper informational basis to do it—this obvious 
consideration is twisted to argue for the necessity to estimate unknown 
probability and utility values when they are not available. We do not think that 
this pragmatic necessity argument is either sound or compelling. 

In our view, the calculus of evidence may be used in a straightforward 
fashion to produce intervals of possible utility values. When such intervals 
overlap and cannot be ordered, this fact simply reflects a basic deficiency in 
our knowledge. We look down upon "pragmatic justifications" with the same 
concern that any experimental scientist must show about proposals to guess 
what he has not measured: The ability to make decisions in the absence of 
knowledge is, in our view, a handicap rather than an advantage of any method. 

Far from lacking a decision-theoretic methodology, our approach provides 
an understandable quantification of the undesirable effects that poor informa- 
tion has on our decision-making ability, ordering decisions whenever it is 
rationally possible but advising us that such ranking is not possible if our 
knowledge is insufficient. In brief, our approach not only supports decision 
making but, through its built-in sensitivity analysis features, helps us to 
determine what must be done to reach a happier epistemological state.4 

4. ON DEMPSTER'S RULE OF COMBINATION  

The semantic model of the Dempster-Shafer theory also validates the 
so-called Dempster's rule of combination, which permits the combination of 

4 For an example of an approach that incorporates decision-maker preferences into the frame- 
work of the belief function calculus, the reader is referred to a recent paper by Strat [13]. 
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valid, use of this formula lead« „f ™ " S"ch c°ndiiions are not 
incorrectly, coJ^JT^Z^ZlTTr^ °*"- *>»* 
approach rather than a co„sequ" Ä eV'den,iaI """'* 

.«EäS SLcLTitprin?" 'evitoa '-"— 
bask model of die effect ofnXT, I ™ denval in "* '<""=« of a 
-dence as Ä"AS^1^ "^ "* 
actual values   which are Jli„ u       j "m M "» s™ree of the 
expression L derceroTLi,"^Tf " m,y "' tecriW » - 
*e conditionaTproSbi^lZST« ,f 'ff "V'^ b0U"dS ** 
bounds for the pn^VhbS #,', j^' 2* ^ °f staiI* 

To understand the conceptual bases for Dempster^ 2J,,n     ,      .. 
and rts consistence with conventional nroLhnT "'" °f '"""'»»'■on 
of the logical model used\ZZZTA "'"^'^ • we reM" » « generalization 
evidence Inst^nsSn™    st"," ^ re'a,i°nS °f *e cäk»'«s <* 
a single stadstrcian ocbse™  w^wü! el T °Pera'°r' »™P°*% » 
wi* their taow,edge modeled, ^^^^J^ »"l 

gathered by the ofteTtwo S aggreSi"eS *e ^'^ "»»»"dge 

«Ä agÄTesTr tT° "^ &° *" *" *"™ '■ - 
Pledge of his^^^tr^oTS'-^TheT r r 
tion axiom: conJ°<ned), Imply p, as expressed by the basic combina- 

*P is true if and only if there exist sentences p, and p, such that K  » and 
K2 /,2 are true, and such that PlAp2~ p. ' 'Pi ™d 

Using our three operators to generate ail nossihl«* (\ *    \    •   » 

5 Note  that such  most-specific knowledge always  exists  and  i,  „ • 
eq-alences because the co„JUnct,on of-, proved loZlXrt. 2^ ** ^ 



Understanding Evidential Reasoning 409 

ogy of Ruspini's semantic model, each of the agents is in an epistemic state, 
denoted by e(p), e,(/?,), and e2(p2), respectively, each corresponding to the 
set of all conceivable states of the real world (i.e., possible worlds) having 
such knowledge characteristics. 

The following important set equation relating all of these types of epistemic 
sets as subsets of our enhanced epistemic universe is the basis for the 
derivation of various evidential combination formulas, 

e{p)=      (J    (*,(/;,) ne2(/;2)) 

of which the Dempster combination formula, 

m(p) -K    £     mi{P\)m2(pt), 

where 

m{p) = P{e{p)\ix,S2), 

mx{px) = P{ex{px) | <?,),        m2{p2) = P{e2{p2) | £2) 

and where K is a multiplicative factor, is the best known and used. 
Before reviewing the actual process leading to the derivation of Dempster's 

formula, it is important to pause and reflect upon the nature of the above 
set-theoretic equation and its usefulness to derive evidence combination formu- 
las. 

We may first note that this equation has been derived as a relation between 
subsets of possible "epistemological states" that is valid regardless of any 
assumptions about probabilistic structures and their properties (e.g., independ- 
ence). As such, it provides the bases not only for the derivation of Dempster's 
formula but actually for a variety of formulas that bound possible probability 
values within and outside the structures of the Dempster-Shafer theory. 

Basically, this formula provides the basis to extend a probability function P 
that is known over subsets of the form ex(px) and e2(p2) (i.e., over two 
a-algebras), to the set of unions of sets of the form ex(px) fl e2(p2) (i.e., 
another a-algebra). If such extension can be made uniquely—as is the case, for 
Dempster's formula—the resulting extension may be used to generate both the 
conditional probability P(-\£x, £z) and its associated bounds Bel and PI, 
which are fully compliant with Shafer's axioms. In other less fortunate cases 
(e.g., dependent evidence), such extension is not unique, and the lower 
envelope of the possible extensions, which is not a probability, will lead to 
bounds that do not satisfy the axioms of the calculus of evidence. 

This equation is now being used to extend the evidential calculus approach 
by generalization of the notion of conditional probability by study of the 
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probabilistic relations that define dependencies between the different types of 
epistemic sets [i.e., e(p), e,(/?,), and e2(p2)]. Pearl [3], however, believes, 
apparently as the result of his examination of the role of compatibility 
relations in the calculus of evidence, that this approach is essentially limited in 
its expressive ability to set-theoretic relations between epistemic sets, which 
correspond to classical logical conditional statements (i.e., material implica- 
tions). 

In fact, it can be easily seen from our epistemic identity that whenever the 
conditional probabilities P{e2(p2)\ *,(/>,)) and P{ex{p{)\ e2(p2)) are re- 
stricted to take the values 0 or l,6 this identity can be used to map one body of 
evidence into another, by means of the compatibility relations that such 
probabilities define. 

Since under these assumptions, however, there can be only one proposition 
p2 for every proposition px such that P(e2(p2) | «,(/?,)) = 1, and vice versa, 
then the compatibility relation that is so defined can be characterized by several 
implications of the form 

e\(Pi) ^e2{p2) 

and of the form 

ei{<iz) - *i(<7i) 

between knowledge states of one observer and knowledge states of the other 
that are useful to "transfer mass" between propositions. This correspondence 
must be contrasted with that following from the limited interpretation given by 
Pearl, who, from knowledge of 

*\{Pi) ~ ei(Pi)> 

concludes (by contraposition), correctly but narrowly, that 

and proceeds then to attach all material implication paradoxes (e.g., the 
"ravens paradox") to the calculus of evidence as if they were an essential 
methodological bane. If that were the case—clearly it is not—the same 
concerns should be raised about the use of conditionals in conventional 
probability calculus. 

The second observation that can be made about the nature of evidence 
combination, in general, and the role of our basic set identity to generate 
combination formulas, in particular, is that while the functions to be combined 

It can be shown from the definition of epistemic sets that, under such conditions, knowledge of 
P(e1(p1)\ei(pl)) suffices to derive P(et(pj)\ ez(p2)). 
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are conditional probabilities over two different evidential sets <f, and i2 (i.e., 
the evidence observed by two agents), the desired integrated probability is a 
distribution over Sx C\ S2 (since we know that both observations are correct). 
Except for unusual cases, however, computation of P{-\ix,&2) entails a 
"normalization" operation that is fully consistent with the calculus of probabil- 
ity. Most of the normalization "paradoxes" are the result of misunderstanding 
about what is being combined: two different conditional probabilities rather 
than two different lower and upper bounds of the same probability function.7 

Focusing now on the rationale for Dempster's formula, we should notice 
first that the epistemic sets e,(j3:) and e2(p2) are such that 

«,(/>,)£*,,       e2(p2)^S2, 

that is, the possible knowledge states of each statistician include awareness of 
the truth of the evidence that is observed by each. Furthermore, 

<f,=   U «,(/>,),       #2=   Ue2(p2), 
Pi PI 

where px=> <$x and p2 =» £2\ that is, each statistician knows something that 
implies that his evidential observation is true (otherwise he would not be 
"counting" that sample).8 

Assume now that there exists a probability distribution P defined over the 
space of all possible epistemic states for our observing statisticians and our 
"integrating" agent. Each such epistemic state is a possible world that 
corresponds to a possible state of the world and to a possible state of 
knowledge for each agent that, in addition, is consistent with the laws of logic. 
We will assume now that, whenever px =» S{  and p2 =» iz, 

*(«,(*) n *(/>,)) = (Pi'iMW'tM)   if * A* * 0 

( 0 otherwise 

This assumption simply states that when Sx and $2 are both true, the 
probability that a rational observer will be in a particular knowledge, or 
epistemic, state does not provide any information about the probability of the 
epistemic state of the other agent (i.e., beyond ruling out logical impossibili- 
ties). In purely formal terms, we may say that knowledge of values of P over 

7 It is fair to say that much of the skepticism raised by the normalization used in Dempster's 
formula can be traced to the exposition given by Shafer [1], which suggests a nonprobabilistic 
method of evidence combination. 

3 Recall that our observers, or rational agents, are statisticians estimating properties of certain 
statistical distributions by classifying each sample using their evidence and additional sample-de- 
pendent knowledge. 
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sets of the form ex(px) does not provide any indication, beyond exclusion of 
logical impossibilities, of the values of P over sets of the form e2(p2) and 
vice versa. The epistemic states of our two agents may be said, therefore, to be 
unrelated in that knowledge of the state of one of our observers (by our 
integrating agent) does not provide any information about the state of the other, 
save for elimination of logical impossibilities. 

Noting now that 

then, whenever px Ap2 ^ 0, 

P(*i(Pi) n e2(p2) | ixg2) = KP{ex(p{) | ix)P{e2(p2) \ i2) 

= Kmx(px)m2(p2), 

from which the Dempster's formula readily follows. 
The normalization factor 

P(*X n i2) 

has been the object of considerable concern on the pan of both skeptics and 
proponents of the calculus of evidence. The above expression, however, 
provides the rationale for its use while disposing of arguments about its alleged 
inconsistence with the probability calculus. In that expression, the denominator 
P(ix n Sz) appears as the consequence of the need to derive probability 
distribution estimates with respect to the intersection of the two observed 
evidences £{ and i2. The numerator of that expression simply reflects the 
need to combine conditional distributions over the same reference set (i.e., the 
epistemic universe) while our probabilistic knowledge is expressed over two of 
its subsets (i.e., ix  and ef2). 

The essence of the conditions that lend validity to the Dempster formula may 
be summarized by saying that the formula's usefulness is confined to the 
limited, but rather important, cases where estimates of probabilistic likelihood 
have been formulated by two rational agents on the bases of independent 
observations while ignoring the evidence available to the other. 

If our integrating agent is thought of as being concerned with estimating the 
probabilities of certain events when both 6\ and £-, are true, then we may say 
that, whenever the conditions validating Dempster's formula hold, knowledge 
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of the fact that a particular sample satisfies p, tells the agent nothing about the 
likelihood of p2 (unless, of course, pl happens to be logically inconsistent 
with p2). Furthermore, whenever our integrating agent is done with his job, 
he should find out that estimating this joint distribution (i.e., over ix D i2) 
could have been accomplished in an easier fashion by estimating the marginal 
distributions over ix and S2 and deriving the joint distribution by multiplica- 

tion and normalization. 
Other accounts supporting the validity of Dempster's formula and its consis- 

tence with the probability calculus have been advanced by several authors. A 
particularly compelling justification has recently been given by Wilson [14]. 

5. ON "PARADOXES' 

Criticisms of the Dempster formula may be broadly characterized as being 
the consequence of basic misunderstandings about either its meaning or its 

validity. 
In this section, we examine three alleged paradoxes of the theory, showing 

that the purported inconsistencies are actually the results of conceptual misun- 
derstandings or misrepresentations of the positions of those who, while gener- 
ally supporting the calculus of evidence, are concerned with its possible 

misapplication. 

5.1 The Three Prisoners Problem 

Turning our attention first to concerns about the validity of Dempster's 
formula, we note that, in general, such examples ignore its scope of applicabil- 
ity, producing counterintuitive results that are then used to dismiss the method- 
ology as inadequate. Among those, the three prisoners problem discussed by 
Diaconis and Zabell [15] has been perhaps the most quoted and discussed. 

This problem is one of a variety of examples in which the combination 
formula is used as a conditioning formula by assuming that one of the mass 
distributions being combined simply assigns all of its mass to a proposition p 
in the frame of discernment. Combination of such a simple support function 
with another mass function associated with a belief function Bel(-) leads to the 
conditioning formula 

Bel(qv -<p) - Bel{-p) 

*'(*!') =  l-Bel(-p) 

In the particular case of the three prisoners problem, which is concerned 
with the guilt or innocence of a prisoner who has been chosen (by the warden) 
as the guilty party by random draw among three candidates A{. A2, and A3, 
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our "logical space" or frame of discernment is simply the Boolean algebra 
induced by the three noncompatible propositions 

Prisoner At has been found guilty 

where / = 1, 2, 3. Since only one of the three prisoners is chosen by the 
warden, we clearly have 

P(pt) = 1/3,        /= 1,2,3. 

(Note that P is actually a classical, additive, probability distribution.) 
Prisoner At now asks the jailer to name one of the innocent prisoners (other 

than Ax), arguing that such information would clearly be of little help to him 
as an indicator of his potential fate. As Pearl notes, if q stands for the 
proposition "The jailer names A2 as one of the innocent," then application of 
the conditioning rule leads to the result 

indicating that the conditional probability P{p{\q) must be exactly  1/2 
instead of the "correct solution," 

0<P(Pl\q)< 1/2, 

while also saying, against the correct intuition of Av that his chances of guilt 
have been increased as the result of the irrelevant information provided by the 
jailer. From such an observation, Pearl concludes that the formula is seriously 
flawed, both because of the counterintuitive result that it produces and for its 
"collapsing" of a family of solutions into a single value. 

Before proceeding to the discussion of Pearl's concerns, we may note, in 
passing, that this problem has been well known as a source of paradoxes and 
incorrect solutions within the scope of the conventional probability calculus 
(Bar-Hillel and Falk [16]) quite independently of any issues of validity of its 
treatment using the Dempster-Shafer calculus. The explanations given to 
describe the conceptual errors leading to incorrect classical treatments resem- 
ble to some extent those that shed light on the inapplicability of Dempster's 
formula. 

Returning now to the role of Dempster's formula in this problem, we first 
observe that although, at first glance, the distributions representing the jailer's 
and warden's choices seem independent, it is actually impossible for the jailer 
to tell A, that A2 is one of those to be spared if all he knows is that the 
Warden is choosing the guilty party by random draw (i.e., he needs to know 
exactly who is the one chosen for punishment). To use the terminology of 
Ruspini's model, the probability of A2 being named as one of the innocent 
depends on the epistemic state of the warden, thus violating the independence 
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assumptions of Dempster's formula. If all possible combinations of truth 
values for the propositions p-„ i = 1, 2, 3, and q are tabulated, together with 
their probabilities, as is done in Table 1, then it is clear that 

P{q\p3) = l,       P(g) = (l/3)(l+a), 

where 0 < a < 1 represents the unknown probability that the jailer will choose 
to name A2 rather than /43 as innocent if At is actually the one chosen by the 
warden as guilty. 

But then, 

P{q\ Pi) * P(l) 

violating the assumptions, discussed above, that validate the use of Dempster's 
formula [i.e., P(e2(p2) | «,(/?,)) * P{e2(p2))]. There is not, therefore, 
"total mystery," as Pearl says, as to the incorrect results obtained using 
Dempster's formula. Because it fails to be applicable, there should be little 
wonder that it leads to an apparent paradox. 

Although, as clearly shown by this discussion, the incorrect treatment of the 
three prisoners problem fails to invalidate Dempster's rule of combination, we 
share the concern of Pearl and others about its wide misapplication, particu- 
larly when it is used indiscriminately to generate conditional distributions. In 
our research, we are endeavoring to extend the original theory to produce 
expressions to produce and utilize conditional belief information (Ruspini [17]) 
that incorporates known dependencies between evidential bodies. These formu- 
las are intended to provide better interval estimates than the typically uninfor- 
mative bounds that are supplied by strict derivation of bounds in the absence of 
additional information by the expression 

Bel{pAq) 
Bel{g]p) = Bel(pAq)+Pl(pA^g)' 

which is mentioned in Dempster's original paper [4] and that has been the 
object of recent concern by several authors (de Campos et al. [18], Halpern 
and Fagin [12]). 

In closing, we believe it is important to address other concerns of Pearl, 
apparently going beyond the three prisoners problem, about the counterinru- 

Table 1.    Possible Worlds in the Three Prisoners Problem 

Possible World Warden's Choice Jailer Identifies Probability 

W, A, An (1/3)0! 
W2 Ax A, (l/3)(l-a) 
Wz A-, Az 1/3 
lVt A3 A2 1/3 
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itive nature of the "collapse" that usage of the Dempster formula often yields, 
which is manifested by production of a single conditional probability distribu- 
tion when conditioning multiple members of a family 9 of probabilities over 
some specific subset q. Just as it is true that all members of the family of 
distributions 

^= {Pt:t in [0,1]}, 

defined in the set X = {a, b,c} by the expression 

(1/2/, if x = a, 

Pt(x) =    1/2(1 - -0. if JC = b, 

1/2, if x = c, 

are such that P:({a, b}) = 1/2, despite their variability over other subsets, it 
is also true that an extensive family of distributions may collapse into a single 
conditional probability without violating any rational or probabilistic princi- 
ples. Such "invariants" are, in fact, desirable as elements that simplify the 
analysis of an otherwise complex probabilistic problem. For these reasons, we 
believe that if Dempster's conditioning formula is applicable, its reduction of 
the variability of probability values should not be a particular cause for concern 
as to its validity. 

5.2. The Spoiled Sandwich 

While discussing the suitability of the calculus of evidence either as a form 
of generalized probabilistic calculus or as a new theory that intends to capture 
a novel notion of belief, Pearl [3] again faults the approach for failing to satisfy 
the following rationality principle originally stated by Aleilunas [19]: 

If two diametrically opposed assumptions yield two different degrees of 
belief in a proposition Q, then the unconditional degree of belief 
merited by Q should be somewhere between the two. 

As natural as such a principle might look at first, the following simple and 
clever example from Wilson [20] clearly shows that it is neither intuitive nor 
appealing but points instead to the pitfalls of creating or supporting one's 
favorite scheme on the strength of supposedly rational axioms. 

Let  X = {a, b, c, d}  with   A = {a, b}  and  B = {a, c), so that  B = 
{b, d}. Consider the family of probability distributions in X, 

9= {P,:t in [0,1]}, 
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indexed by a parameter t in [0, 1] and defined by 

P,M) = 1/2'. 

P,({0}) = 1/2(1-0. 

P,({c)) - !/4- 

and let 

Then, clearly, 

P* = inf{P,}. 

P,(,4) = 1/2^+1/2(1 -0 = 1/2, 

and therefore  P*(A) = 1/2. The conditional probabilities  Pt{A\B) and 
Pt(/4 | B) are given by the expressions 

P,KA\*)- Pf({ff;C}) - 1/4+ l/2r' 

^'^ "/>,({*,«/})       1/4+1/2(1-0' 

from which the lower bounds 

P.(A\B) = MP^AIB) = 0, 

P.(A\B) = infP,(A|I) =0, 

are easily derived. It is clear, however, that 

1/2 = P.(A) > P.(A\ B) = P.(A\ B) = 0 

showing that the sandwich principle is violated even within the confines of 
conventional probability theory. 

5.3. Other Ways to Spoil the Sandwich 

Although such simple examples should suffice to dispose of concerns about 
spoiled sandwiches, we feel that Pearl's discussion of the problem deserves a 
more detailed analysis, mainly because of its philosophical implications for 
rational thinking. This is particularly important because loose use of such 
terms as "assured winnings," "support," or "belief in the absence of a 
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sound, formal interpretive framework may quickly mislead those engaged in 
the comparison of alternative methodolo-ies S 

In an example called "the Peter, Paul, and Mary sandwich problem " Pearl 
presents a betting situation in which Mary prepays either a h'am or a turkey 
andw,ch, promising to pay Paul S1000 should he guess correctly the type of 

sandwich that she has prepared. Not having a clue as to Mary's choice ^au 

^rkev"' -f rn' gUeSSing "ham" If ±Q COin 0™ "P h^ ** S* ssfng 

P(win) =P(winjturkey)P(turkey) + P(win |ham)P(ham) 

= P(tails j turkey)a + /'(heads |ham)(l - a) = \/o 

regardless of the value a of the probability that Mary has actually prepared a 

"s™       1Ch, ™US' iD Splte °f n0t *** ''"" * w^or'ha  ng 
supporting evidence/' Paul can invoke the rationality (doubtful   as wf 

already saw) of the sandwich principle and argue that he does not need To 
engage in unnecessary knowledge acquisition or experimentation [3J: 

If every possible outcome of an experiment would lead you to choose 
the same action, then you ought to choose that action without running 
the experiment. s 

From such an observation, Pearl proceeds to fault the philosophical underpin- 
nings of the evidential reasoning approach, eventuaUy going so far Tl 

^ZT^T^5™ 0rth0d°Xy bC iMPPIicable' Dempster's formula 
-which, he freely admits, does not play any role in this example-be replaced 
by other formulas such as the well-known bounds recently rediscovered by 
Halpern and Fagin [12]. y 

In the light of our previous example about the rather inconvenient ability of 
conventional probability families to spoil sandwiches, all of these pronounce- 
ments look increasingly suspicious. What, however, can we say is wrong? This 
question be answered in two equivalent ways. 

We can say first, keeping ourselves at the informal discussion level that 
otten, the experiments may interact with probabilities in complex ways that' 
obviously Pearl has not considered. Nothing in Pearl's formalism suggests,' 
for example, that the sandwich has already been prepared and that it may not 
be artfully substituted by Mary to ensure that Paul always loses, thus invalidat- 
ing his hopes of having at least a 50% chance of winning 

The second more formal, rendering of this observation is again based on the 
semantic model of Ruspini. In this, and in other similar problems, we have 
several agents that deliberate about the state of the world on the basis of their 
knowledge and their knowledge of the knowledge of others. If the unary 
operator K represents the state of knowledge of one of these agents   then  as 
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Abstract 

V\> explore relations between the notions of utility, similarity, and multivalued truth thai extend the 

logics of preference of Rescher Emphasis is placed on the development of constructive procedures leading 

to solutions of control and decision-making problems that may be explicitly justified and explained 

Our departure point is the well-known interpretation, originally advanced by Bellman and Zadeh, of 

fuzzy sets on a solution space (i.e., a universe of possible worlds) as »ofl-constraint measures that quantify 

the relative desirability of alternative solutions. We propose also new procedures for the relaxation of 

problem-solving goals that are based solely on a conventional order relation defined among problem- 
solving constraints 

We explore mechanisms, based on multivalued logic, for the combination of desirability functions into 

more complex measures of solution quality and discuss differential preference relations between alternative 

state of affairs and, on the bases of certain formal relationships between them and desirability measures, 
we propose mechanisms for their logical combination. 

We introduce and explore structures for the representation of ignorance about the utility of alternative 

solutions These structures are based on generalizations of modal-logic notions of possible and necessary 
truth Finally, we discuss relations between these concepts and similarity-based semantic models of fuzzy 
logic 

1.     Introduction 

In tin» paper we elaborate upon previous efforts [9] to develop a common framework to understand the 

aims, characteristics, and scope of application of several approximate-reasoning methodologies, includ- 

ing classical probability-based schemes, the Dempster-Shafer calculus of evidence, and fuzzy logic In 

particular, this paper further explores the semantic underpinnings of fuzzy logic [8], Specifically, we link 

the similarity-based structures discussed in our previous work to measures of utility that quantify the 

absolute or relative desirability of potential solutions to decision-making problems 

Our investigations were also strongly motivated by the requirement to produce a decision-making 

methodology that, going beyond the implementation of rule-based schemes, is capable of explaining the 

selection processes leading to a particular decision We were specifically interested in the description of 

the rationale that permits to establish that some solution is worthier than another. Beyond simply stating 

that the value of some measure of quality is higher for some alternative UJ than for another alternative 

w\ we tried to develop mechanisms to explicitly describe the reasons that make one solution preferrable 
to another. 

Our investigations are based on ideas, first advanced by Rescher with his logics of preference [7], 
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which are based on the assignment of truth-values, in a [0,l]-scale, to sentences describing preference 

relations among uncertain outcomes of available decisions This interpretation of truth value» in terms of 

utilitarian concepts is similar in spirit to that originally proposed by Bellman and Zadeli (V) to describ- 

the role of certain fuzzy sets in control and decision-making problems 

The results of our research, also concerned with the development of rational bases for the definition 

of similarity functions, owe much to previous efforts to introduce decision-theoretic concepts within the 

framework of fuzzy decision problems[3] and to studies on the »tructure and characteristics of fuzzy 

relations and operators [10,11] 

The contribution described in this work may be summarized as the integration of these ideas, arising 

from developments on the theory of fuzzy sets and relations, with possible-world models that facilitate the 

description and interpretation of possibilislic structures, with a view to the advancement of methodology 

for the qualitative modeling and analysis of complex systems In this regard, we were strongly mieiesied 

in the identification of control and planning policies that follow from rational analy»-» of approximate 

model» of reality rathei than from poorly understood human introspective processes 

Moreover, our efforts have been largely motivated by the need to integral»- operation-research method* 

and logic-based procedures so as to develop techniques that produce decisions that may be justified and 

explained, i.e.. to the description of the deliberations that led to the selection of such choices To this 

end. we have also sought to clarify the logical relations that exist between individual measures of solution 

adequacy and global expressions that combine such measures into a single utility function on the basis 

of information about their relative degrees of importance 

Our formalism like Re»chei 's. is based on the assignment of truth values to propositions of ih.- fonn 

"It is desirable that y conies about " These values are directly derived from measures or the utility 

assigned by the decision-maker to such an outcome, or. in other words, the quantitative measure, of tl>- 

degree by which p is a "good thing " 

In our approach, however, each of the propositions that defines the acceptability of a possible world 

as a solution is associated with a utility measure that provides a numerical ranking of all potential 

solutions, from the perspective of that restrictive statement, a// other things being equal Our measure» 

are. therefore, expressions of the degree of adequacy of solutions from a limited perspective rather than 

measure» of global relative desirability, regardless of context In Reseller's approach, one such global 

measure is defined as an average of context-specific desirability values, an assumption that lead- to th- 

derivaiion of needlessly-restrictive properlies for thai function showing it to be similar to a probability 

distribution In addition to be able to represent degrees of knowledge about the potential utility ol 

certain decisions, we introduce epistemir modalities [5] based on a generalization of «ell-known nioil.il- 

logic concepts 

2.    Possible Worlds and Desirabilities 

Our mode! is based on the notion of possible-world, which may be informally characterized as the detailed 

description of any conceivable solution of a reasoning problem. In a proposilional-logic framework, a 

possible world is an assignment of conventional truth-values (i.e, true or faise) to the sentences that 

describe the possible state, behavior, or characteristics of a real-world system 

Any reasoning problem may be described as the determination of the set of possible world» thai 

complies with certain prescribed constraints, usually called the knowledge or the evidence More generally 

we may think of such constraints, i.e., a »et of restrictive propositions, as criteria to determine the 

acceptability or worthiness of any possible world as an answer to the problem    In what follows we 
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observed before, our agent is always in one of three possible epistemological 
states with respect to the validity of a proposition p: Either he knows that p is 
true (denoted Kp) or he knows that p is false (denoted K^/?), or he may be 
ignorant of such truth (i.e., ->K A -K^/7, denoted Ig). 

In standard accounts, assuming that knowledge of the truth of one proposi- 
tion does not affect the likelihood of truth of other propositions,9 we are 
simply concerned with a single form of conditional probability: measuring the 
likelihood of p being true when q is true. In more complex epistemological 
situations, we may need to be concerned with such quantities as P(Kp\Kq), 
P(Kp\ q), P(Kp\lq), and the like. In other words, Bel(/71 q) measures the 
support that knowledge of the truth of q provides to the truth of p, rather than 
the support provided by the truth of q to the truth of p. 

In the Peter, Paul, and Mary sandwich problem, Pearl implicitly assumes 

that 

P{K MARY heads) = 0 

-P(KMARYtails) = 0 

P (turkey |IMARYheads) = a 

^(harnllMARY1163115) = 1 - <* 

concluding correctly, by application of the total probability law, over the 
exhaustive and exclusive set of possibilities 

{K MARY heads, KMARYtails, IMARYheads} 

that Paul has at least a 50% chance of winning. 
This correct use of the total probability law does not mean that, by contrast, 

one should assume that the full extent of the conditional information by belief 
functions is limited to the conditional support functions 

Bel{p\q) =P(p\Kq),       Bel{p\^q) = P{p\K-q) 

as Pearl evidently does. In short, not knowing p is not the same as knowing 
-p. The example of the Peter, Paul, and Mary sandwich shows that one needs 
to consider states of ignorance that, when properly accounted for, spoil even 
the best-conceived principles of rationality. 

To fully appreciate the complexity of the problem, suppose that we change 
Pearl's implicit assumptions, bringing the previously absent Peter into the 
scene as a spy acting on behalf of Mary. In this new scenario, still consistent 

'The relations between knowledge and truth are more evident if "knowing- is thought of as 
sensing or observing, and if independence is understood as a lack of relationship between the 

errors of the sensors. 



420 V   u   u        ■   ■ t. H. Ruspini et al. 

with Pearl's explicit statement of the problem. Peter, spying on Paul's coin- 
flipping experiment, alerts Mary, who, being rather annul and deft of hand 
substitutes the sandwich so as to make sure that Paul always loses. In this case] 

^(ham|KMAÄYtails) = 1,        P(turkey |KMAÄYheads) = 1 

and, most important 

^((K MARY heads) U (KMARYheads)) = 1, 

that is, Mary is never ignorant as to what Paul will bet. 
The Peter, Paul, and Mary sandwich example does not, in our view 

invalidate the applicability of the evidential approach but rather highlights the 
need to make necessary discriminations between prepositional truth, "knowl- 
edge of that truth, and the interplay between such conditions that are likely to 
be glossed over by cursory analyses based on conventional approaches. 

5.4. The Disagreeing Experts 

Another common misunderstanding regarding the role of Dempster's combi- 
nation formula is that provoked by an example of Zadeh [21], which is often 
described as an indication of theoretical inadequacy. This example concerns 
two reliable experts who assess, in a rather conflicting fashion, the likelihood 
of three noncompatible events A, B, and C as shown in Table 2. Representa- 
tion of each of the expert's assessments as a mass distribution followed by their 
combination with Dempster's rule yields P(B) = 1, indicating that the "true" 
event is B, an alternative considered to be rather unlikely by either of the 
assessors. 

Although this example is often quoted as an example of the failure of 
Deftpster's rule, it is clear that each of the rows in Table 2 defines a 
conventional probability distribution, thus suggesting that the problem is likely 
to lie elsewhere. While one may be tempted to defend any method of evidence 
combination by saying that the evidence, however peculiar, indicates that 
Observer 1 is ruling out alternative C while Observer 2 is excluding alterna- 
tive A, thus leaving only B as the sole possible answer, it is ctear, upon 
further examination, that the rows of Table 2 cannot possibly be evaluations of 
the same probability distribution. If that were the case, then at least one of the 

 Table 2.    Experts Disagree on the State of the World 

Observer P(A) P(B) p(Q 
1 0.99 0.01 o 
2 ° 0.1 0.99 



 '       Taäte/Edibihty 

Good/edible 
Bad/edible 
Poisonous 
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Color 
Size 

Probability 

99/199 
99/199 

1/99 

n be only one correct probability 

experts must be wrong, £^^ ^ they are bot* ^f b&ms. 
Sbuüon, con— *   -^ sense-under ^^^ 

Clearly, if the example * ^ w a different con ^ 
tic interpretation-each row raus ^ ^^ observanons 

Sity where the cof"101^°7uLsted by a recent «f^^Jw«. 
2* expert. A simple «J^*^ issues, will help toclax£ 

[22] t0 addre-^^fSS. aslced to «T^^U be either 
to thus example we ar Qf cenain berneS isonOUS to 

evidence, about the «» ■£       ^ or bad taste, arfbesafe o P        ^ ^ 
snail or large, red or bto£ ^  =, tion ^ ^nbuted *: ^ 
^ We will assume.** <£b«n a berry is plcked up£* 
distribution shown >»T^ conclude from such evidenc 
expert to be large, he wülco ^ „_ 0.01, 

p(socdllarg«) - "• v 

plbadtasteltoS«) '"■"■ 

to" „(„rfl-)-«.».       P(P0—l^-O.O. 
p(bad taste 1 large) -0. 

ate observations are 

however, reveals that _      , 
p(poisonous|red,large) = l 

•     ,w expected from any reasoning method 

a corxecl solution that must be rationally expe ^ 

that purports to be valid^ disagreeing ex^rts l^es ^ ^ 

the same probability distn 

\ 
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analysis of the results of its application to the berries examole   ir< „      • 
««uanons where there is considerable disparity £2^ 
suggested by the large normalization factor) should be disco ZZ on 2V? 
of practical rather thai, conceptual considerations. ^ 

6. ON COMPLEXITY AND GENERALITY 

The potential complexity of the belief function approach to represent anH 

Frnt. our expenence shows that, notwithstanding crittcisms based on »„„ , 

"„Trrr *<approach is «*»*«Ä£CS: lar, we have found that representation of belief function, in ,,mt £ 
potions results in a storage and manipulation ^Z^T^l^ 
and easy £o understand. ^ ^^ we have impta^s 

such  s summation and coarsening operators, that can be uLSS to 
limit representational complexity. effectively to 

Second, our current functional operators have been chosen to guarantee that 
the manipulation of evidential knowledge results also in knowledSTaTcan be 
represented m the evidential framework (i.e., the operated anTcCd) 

The lack of generality of the belief function approach to repr s nt ceneral 

on   h UPPelZ°^bÜity C°nStraintS 1S Weli known ÖCyburg [23])  OurreTaS 
on th   methodology is primarily the result of practical con de^at ons T 

valul ZTi   ?        t0 manipUlat£ m°re genCral COnSt-nts on bi, 
scop^of ^obfeCOmPU^0na! effiCienCy argUmentS f0rCS us «^ to scope of the problems considered to those capable of bein* at least aooroxi 
mately solved by a belief function treatment PP   *" 

areBS IfT^' ^ "^ interPretation* of evidential structures that 

d recSy "X   H 
WT PrObab0ity the0r7' °Ur CUrTent —h « ^g 

evideUnrceTent
tnrCe^S "f ** man*uIation °f conditional and dependent 

exaloT IV £  eVldemial counterPart of conditional probabUities) show, for 

Sit10"*imponant problems> ^resuits of svidentiaj combina- 

^n^^ *» * ^ * * claUedtck Ta 

Prehminary results (Ruspini [17]) indicate, on the other hand that the belief 
funcnon approach can be used to approximate the results of these ev den al 
combmation operations and that extended representation mechaniU   (SpS 
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[24]) may yet be developed to treat more general evidential problems. This 
research also shows the basic errors inherent in criticisms that regard the belief 
function approach as a fully developed methodology incapable of sustaining 
further enhancement and modification. Because it has been studied in depth for 
only 15 years, its technological status is that of a young discipline, being 
capable both of enhancement on its own and of combination with other 
approaches to produce more general tools for probabilistic reasoning. Far from 
proving that we have reached a technological plateau, our investigations 
indicate that much is yet to be gained from such a development and integration 
process. 
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shall use the symbol if to denote the set of such evidentiary statements, or, equivalently, their logical 

conjunction 

Unlike conventional formalisms where restrictive propositions can only attain the classical truth-values 

true or fake. [0. lj-multivalued logics permit the definition of measures that gauge the relative adequacy 

of any solution These elastic constraints describe the extent by which that solution meets some specific 

requirement, with a value of 1 being used to indicate that an alternative attains or exceeds target values 

or conditions, and a value of 0 utilized to describe complete failure to meet the standard. 

It is important to remark, however, that these desirability measures rank solutions of a problem 

solely from the limited perspective of a single specific constraint and that they should not be confused 

with structures that represent the relative importance of each constraint or problem-solving goal, called 

"utilities of satisfaction" by Haddawy and Hanks [4] 

2.1.     Desirability Measures 

in this section, we si ale. mainly for the sake of completeness, well-known interpretation» of fuzzy sets [2] 

as elastic problem constraints, i.e . measures of relative desirability or adequacy from a specific viewpoint 

Definition:     A desirability measure is a function D : U H- [0,1], i.e., a fuzzy set in the universe U of 

possible worlds 

Desirability measures clearly extend the conventional notion of "hard" or "crisp" constraint The 

value D(u') attained by such a measure D for a particular solution w may also be considered to be the 

multivalued degree of truth of the proposition "The solution w is acceptable from the viewpoint of D " 

If w is a satisfactory solution from the viewpoint of a generalized requirement, which is expressed 

by means of the desirability measure D. and from the viewpoint of another requirement, expressed by 

means of another desirability measure D', then it is clear that U' should also be acceptable from the 

joint viewpoint of those two requirements Well-known arguments [10] show that the desirability of a 

conjunction of two desirabilities D and D' is expressed by the relation 

(DAD')(H') = D(U))I»D»,    winU, 

where »  is a triangular norm 

Similarly, the desirability of the disjunction of two constraints D and D' can be seen to be given by 

|DVD')(U'| = DW*D'|III|.    winU. 

where rr is a triangular conorm. 

In what follows we will assume that all triangular norms and conorms to be considered are continuous 

functions of their arguments since it is reasonable to require that the desirability of either the conjunction 

or the disjunction, respectively, of two arguments does not vary abruptly when there is a slight change 

of the desirabilities being combined. 

Desirability measures that rank possible solutions by the degree by which they do not meet some 

constraint expressed by a desirability D are given by expressions of the form ~ D, where ~ is a negation 

function, i.e., a function ~ from [0,1] into [0,1] that reverses the order of its argument, i.e., «• b <— a if 

a < b. and that, in addition, satisfies the relations —0=1 and ~ 1 ss 0. 

The pseudoinverse O of a T-norm '$> is useful to generalize the implication operator — of classical 

logic by means of the expression (D—D')(iu) = D'(u>) O D(ti>). The importance of pseudoinverses is 

related to the tautology (D*(D—D'))—>D', which generalizes the classical modus ponens[10] 
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2.2.    Constraint Importance 

In a large number of situations, one? several desirability measures Dj ,D2 D„, have been specified as 

the elastic constraints that restrict the acceptability of possible worlds as solutions to a reasoning problem, 

the goal of a problem-solving procedure may be simply described as the identification of possible worlds 

that are consistent with the evidence if and that, in addition, score sufficiently high values for the 

combined joint desirability measure 

Di®D2®...®D„ 

In other instances, however, the description of what is acceptable or not might involve the considera- 

tion of more complex logical expressions, as is the case in the famous example where a party host is told 

that it would desirable to invite John to a party, it would desirable to invite Mary to the same party, but 

that it would be rather unadvisable to have both present at the event. In that case, the desirability of a 

solution might be measured by the combined measure1 

<DMary * ~ DJohn > * <~ DMary * DJohn > 

Furthermore, as pointed by various authors [1], requirements typically have unequal importance, a 

fact thai has led to the consideration of broader connectives to derive a global measure of adequacy 

from the individual, goal-specific, measures D,,l < i < n. To some extent, the ability to use various 

triangular norms and conorms, simplifies the task of specifying how individual measures of adequacy may 

be traded off when assessing the overall worthiness of a potential solution Thus, the minimum norm may 

be said to require minimum standards for each of the quality criteria being combined while the product 

norm provides for a reduction in the acceptability of one criteria given an appropriate increase in the 

quality of another Such expressions, however, are based on utilization of symmetric functions that fail 

to adequately represent their different degrees of importance 

On the other hand, expressions suggested by optimization considerations such as 

QD, + &D-,. 

which are based on the use of connectives having properties that lie between those of conjunctive and 

di>junclive operators [1] do not yield decision-making algorithms that are well-suited to explanatory 

analysis 

Seeking to provide foundations for the derivation of explainable decision-making procedures, we have 

considered a number of typical situations arising in the context of control and decision problems where 

there exist basic requirements to develop procedures that selectively relax certain goals whenever all 

constraining statements cannol be met, usually expressed by unacceptably low values of the conjunction 

of the measures D, 

Although various extensions and enhancements are possible, the following situation should be sufficient 

to illustrate the nature of our results while keeping the complexity of our presentation to an acceptable 

level 

In a decision-making problem, suppose that we seek to determine solutions u that satisfy a number 

of adequacy criteria D,, 0 < i < n. Furthermore, assume that, whenever i > j,, D, is more important 

than D;, in the sense that if solutions having sufficiently high values for both D, and D} cannot be 

found, we would be willing to settle for those that have high enough values for D,   Furthermore, assume 

'We »it unconcerned here about the difficult problems faced by linguists »ho must translate typical utterance» of such 
requirements, stated in language thai loosely uses logical connectives, into it* intended logical meaiuug 
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tliat conjunctions will be represented, as discussed above, by means of a triangular norm ® having a 
pseudoinverse O, and let the measures E,, 0 < i < n, be defined by the expression 

E, = DoADi A.D.,    0<»'<n. 

Note that E„ < E„-i < ... Ei < Eo< In addition, let if denote the set of possible worlds that describe 

certain minimum adequacy requirements imposed by available knowledge or evidence 

Our goal is to describe the overall adequacy of potential solutions to our problem by means of a fuzzy 

set A. called the acceptability set. defined as the largest fuzzy subset of our universe of discourse that 

satisfies the following axioms 

1   A^- if. i.e., all acceptable solutions must be consistent with the available evidence. 

2. E„ A if ^A. i.e., worlds in the most desirable class, if at all existent, are acceptable 

3   For all i such thai  1 < i < n it is true that 

Vu.     E,(u)Atf(tr)-[Vu'. E,_,(ti'')A^(u-') —E,(u-')] . 

i e . if there are world» that are desirable to the level i, then every acceptable world that is desirable 

at a level lower than i it is also acceptable to the level i or, informally, lower-quality alternatives 
are not acceptable if better choices are available. 

Under these conditions, it is possible to show that the acceptability set A is given by the expression 

A(w) = mm [*(«/), inf [( E,(w) 0 (a, ®E,_,(ti/))] ] , 

where 

a, = sup [E,{w)i/if («!■)] 
w 

The general form of tin» expression suggests that the values a, may be regarded as degrees of relative 
importance along'lines suggested by Yager [12]. The above derivation, however, does not require the 
explicit specification of such quantities while making their value a function of the evidence if 

2.3.     Preference Relations 

In a variety of situations it is easier to specify the degree by which some solution u> is preferred to 
another solution u'. from the viewpoint of some specific requirement, than to assign an absolute measure 

of adequacy toeither alternative 

Tin» notion of relative desirability is formalized by functions of the form p{w\w') that map pairs of 
possible worlds to numbers between 0 and 1 so as to quantify the extent by which a possible world u. is 

preferred to another u'. from the viewpoint of a particular constraint To furnish p with the appropriate 
semantics we shall require it to satisfy the following conditions: 

1 No resources should be spent to be in w if we are already in w. 

2 If we are willing to spend resources to be in w when we are in w', then we should not spend any 

resources to be in w' if we were in u> 

3 The amount that we would be willing to pay to be in w when we are in w" should be bound by 

above by a function of the amount that we would be willing to spend to be in w if we were in u/ 

and of the amount that we would be willing to pay to be in w' if we were in w". 
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These conditions readily lead to the following 

Definition:    A function p mapping pairs of possible worlds into numbers between 0 and 1 is called a 

b-prtfercnct relation if and only if 

1. p(u>\w) = 0 for all w in U 

2 If p(w\w') > 0, then p(w'\w) = 0 for all u> and w' in U. 

3 For any possible worlds u\ w' and u>" it is 

p(w\w") < p(w\w') ® p(w'\w") 

It is also easy to see that if p has the semantics of a relation representing graded preference, then * 

should be a conorm 

2.4.    Relations between Desirabilities and Preferences 

The combination and aggregation of preference relations is considerably more complex than that of 

desirability measures as. for example, the negation - p of a preference relation p is not itself a preference 
relation In order to develop an aggregation methodology, it is necessary first to study the relations that 

exist between both types of utilitarian measures 

The derivation of a <$-preference relation pD from a desirability measure D is easily achieved by means 

of the pseudoinverse £• of 4*: 
/>oMu/) = D(ti>)eD(ti/). 

The inverse process of derivation of a unique desirability measure from a preference relation is, in general, 

not possible  One of several representation theorems of Valverde[ll] exploiting in this case the identity 

p(w\w')=    tup    {p(w\w")ep(w'\u<")} , 
v" in u 

assures, however, that there is always a family {D0} of desirability measures such that 

p(u>|u') = sup{D0(u)~Du(u/)} . 

The above representation has a most natural interpretation as the set of constraints (i.e., desirability 

measures) that are involved in the generalized order defined by a preference relation, i.e., the criteria that 

make a solution better than another As it is often the case with conventional constraints, some of these 

generalized constraints may never be "active," being, in effect, superseded by more specific restrictions 

For this reason, the above decomposition is never unique[6]. We may, however, always define a unique 

"canonical decomposition," which is suggested by the proofs of Valverde's theorems. We will call the 

family of desirability measures {Du) defined by 

Dw(w') = p{w'\w).        for every w in It, 

the Valvcrde rtprtitntatton of p 

Note that, although this relation essentially defines a mapping from every possible world w into a 

desirability measure D«,, the collection of generating functions that is so defined may have a cardinality 

that is considerably smaller than that of U. The question of whether there exists a unique desirability D 

measure that generates p, i.e., p(w\w') = D(u>) 6 D(u/'), is, in view of the above comments, a matter of 

rather important practical significance, which was studied and solved by Jacas[6] 
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3. Combination of Preference Functions 

The ability to express any preference function (i.e., relative adequacy of solutions) in terms of a collec- 

tion of desirability measures (i.e.. criteria for adequacy) also suggests a natural algebraic structure for 

preference relations 

Definition: Let p and p' be two preference relations in the universe of discourse U Furthermore, 

lei { Du } and { Du } be the Valverde representations of p and p', respectively Then the conjunction 

and disjunction of p and p' are the preference functions, denoted p®p' and p * p\ associated with the 

generating families { Du ; D'u } . and { D„ •$ Du } , respectively Furthermore, the complement of p 

is the preference relation ~ p associated with the generating family { ~ Du } Finally, the implication 

preference p—p' is the preference relation generated by the family { D„,—D^ } of desirability measures 

4. Possibility and Necessity 

It is often difficult to assess the adequacy of certain solutions even from the limited perspective of a 

single prohlem-solving goal While steering a mobile robot around an obstacle, for example, it is hard to 

determine if a particular move is preferrable to another from the viewpoint of a maneuver to be performed 

later at a remote location 

Modal logics [5], by introduction of not ions of possible and necessary truth, permit to represent stales 

of ignorance about the potential truth of the different statements that are being reasoned about In 

the formalism presented in this paper, where restrictive propositions have been generalized a» relative 

measures of solution adequacy, the role of the necessity and possibility operators of modal logic is replaced 

by lower and upper bounds for measures of desirability and preference. 

We will say. therefore, that a function No mapping possible worlds w into values between 0 and 1 is a 

nectssary desirability distribution for a desirability measure D if Nß(ui) < D(tt') for all w in U Similarly, 

we will say that üß is a possible desirability distribution for D if D(u/) < TID{W) for all u> in U. 

The following results permit to manipulate necessary and possible desirabilities along lines that gen- 

eralize similar derivation procedures for conventional modal logic 

(a) If N^o is a necessary desirability for the complement ~ D of D, then ~ N^o is a possible desirability 

for D Similarly if H~.D is a possible desirability for the complement ~ D of D. then — n_D is 

a necessary desirability for D These relations are the generalization of the well-known duality 

relations ->N->j> = Il/< and -■FI-'p = Np. 

(b) If No and N/j- are necessary desirabilities for D and D', respectively, then No ■iiNp' and Nß*Nc 

are necessary desirabilities for DifiD' and D t* D', respectively. A similar statement holds for 

possible desirabilities 

(c) If Np is a necessary desirability for D and if lie is a possible desirability for D'. then No -f- üc 

is a necessary desirability for D'—D   A dual statement also holds for possible desirabilities 

Bounds called necessary and possible preference functions, may also be introduced to represent igno- 

rance about relative preference between solutions. Rules for their manipulation, however, are consider- 

ably more complex than those for their desirability counterparts. A rather straightforward consequence, 

nonetheless, of the definition of preference functions is that if if Nx> and 11© axe necessary and possibility 

desirability distributions for a desirability measure D, then the functions defined by the expressions 

N,(u>|u/) = ND(w)~nD(u>').    and    Ilf(w\w') = TlD(u>) 6 N/>(u>'), 
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are necessary and possible preferences for PD{W\W') = D(u>) t» D(u>') 

It should be also clear that necessary and possible preference functions can always, be chosen to satisfy 
the first two properties (generalized nonreflexivity and antisymmetry) of the definition of preference 
function Less obvious is the fact that a possible preference function may always be selected to satisfy 

the third (or transitive) property. Since then such possible preference relation will be itself a preference 

relation, it may be represented by a family D» of desirability measures that is related to the Valverde 

representation D», of p by the inequality D* < D» 

5.    Preference, Similarity, and Fuwy Logic 

A recent semantic model of the author [6] presented a rationale for the interpretation of the possibihstic 
structures of fuzzy logic and for its major rule of derivation on the basis of similarity relations between 

possible worlds. Similarity relations 5 assign a value S(u.w') between 0 and 1 to every pair of possible 

worlds u and u' in such a way that 

1 S(u.u) = 1 for all possible worlds u, 

2 S{u .u') = S(u'.u) for all possible worlds u; and u>\ and 

3 S(u.u') < S(u-.u-")'i S(u",u') for all possible worlds u-, u>' and u", where <s is a T-norm 

Two possible world:» u and u' may be considered similar if. from the perspective of all constraints 
defining a problem, the solutions that they represent have close desirability values This statement, 

reflected by the well known relation 

S{u,u') = min(~ p(u|u'), ~ p{w'\u)) . 

permits derivation of a similarity relation from a preference relation Extensions of the notion of simi- 
larity to allow definition of bounds for the resemblance between subsets of possible worlds, called degree 

of implication and degree of consistence, play an essential role in the interpretation of the possibility 

distributions of fuzzy logic 
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Abstract— Controlling the movement of tin au- 
tonomous mobile robot requires the ability to pur- 
sue strategic goals in a highly reactive way. We 
describe a fuzzy controller for such a mobile robot 
that can take abstract goals into consideration. 
Through the use of fuzzy logic, reactive behav- 
ior (e.g., avoiding obstacles on the way) and goal- 
oriented behavior (e.g., trying to reach a given lo- 
cation) are smoothly blended into one sequence 
of control actions. The fuzzy controller has been 
implemented on the SRI robot Flakey. 

I. INTRODUCTION 

Autonomous operation of a mobile robot in a real envi- 
ronment poses a series of problems. In the general case, 
knowledge of the environment is partial and approximate; 
sensing is noisy; the dynamics of the environment can only 
be partially predicted; and robot's hardware execution is 
not completely reliable. Though, the robot must take de- 
cisions and execute actions at the time-scale of the envi- 
ronment. Classical planning approaches have been criti- 
cized for not being able to adequately cope with this situa- 
tion, and a number of reactive approaches to robot control 
have been proposed (e.g., [Firby, 1987; Kaelbling, 1987; 
Gat, 1991]), including the use of fuzzy control techniques 
(e.g., [Sugeno and Nishida, 1985; Yen and Pfluger, 1992]). 
Reactivity provides immediate response to unpredicted 
environmental situations by giving up the idea of rea- 
soning about future consequences of actions. Reasoning 
about future consequences (sometimes called "strategic 
planning"), however, is still needed in order to intelligently 
solve complex tasks (e.g., by deciding not to carry an oil 
lantern downstairs to look for a gas leak [Firby, 1987].) 

One solution to the dual need for strategic planning 
and reactivity is to adopt a two-level model: at the upper 
level, a planner decides a sequence of abstract goals to be 
achieved, based on the available knowledge; at the lower 

level, a reactive controller achieves these goals while deal- 
ing with the environmental contingencies. This solution 
requires that the reactive controller be able to simultane- 
ously satisfy strategic goals coming from the planner (e.g., 
going to the end of the corridor), and low-level "innate" 
goals (e.g., avoiding obstacles on the way). A major prob- 
lem in the design of such a controller is how to resolve 
conflicts between simultaneous goals. 

In this paper, we describe a reactive controller for an 
autonomous mobile robot that uses fuzzy logic for trad- 
ing off conflicting goals. This controller has been im- 
plemented on the SRI robot Flakey, and its performance 
demonstrated at the first A A AI robot competition, where 
Flakey finished second [Congdon et a/., 1993]. The for- 
mal bases for the proposed controller have been set forth 
by Ruspini [Ruspini, 1990; Ruspini and Ruspini, 1991; 
Ruspini, 1991a] after the seminal works by Zadeh (e.g., 
[Zadeh, 1978]). In a nutshell, each goal is associated with 
a function that maps each perceived situation to a measure 
of desirability of possible actions from the point of view 
of that goal. The notion of a control structure is used for 
introducing high-level goals into the fuzzy controller. In- 
tuitively, a control structure is an object in the robot's 
workspace, together with a desirability relation: typical 
control structures are locations to reach, walls to follow, 
doors to enter, and so on. Each desirability function in- 
duces a particular behavior — one obtained by executing 
the actions with higher desirability. Behaviors induced by 
many simultaneous goals can be smoothly blended by us- 
ing the mechanisms of fuzzy logic. In particular, reactive 
and goal-oriented behaviors are blended in this way into 
one sequence of control actions. 

The next section gives a brief overview of Flakey. Sec- 
tion III sketches the architecture of the controller, and 
describes the way behaviors are implemented, and how 
they are blended together. Section IV deals with the in- 
troduction of high-level goals into the reactive controller. 
Section V discusses the results, and concludes. 

*On leave from Iridia, Universite Libre de Bruxelles, Brussels, 
Belgium. 
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Figure 1: Architecture of Flakey (partial) 

II. THE MOBILE ROBOT TEST-BED 

Flakey is a custom-built mobile robot platform approx- 
imately 1 meter high and .6 meter in diameter for use 
in an indoor environment. There are two independently- 
driven wheels, one on each side, giving a maximum linear 
velocity of about .5 meters/sec. Flakey sensors include a 
ring of 12 sonars, giving information about distances of 
objects up to about 2 meters; wheel encoders, providing 
information about current linear and rotational velocity; 
and a video camera, currently used in combination with a 
laser to provide dense depth information over a small area 
in front of Flakey. On-board computers are dedicated to 
low-level sensor interpretation, motor control, and radio 
communication with an off-board Sparc station. Though 
it is possible to run the high level interpretation and con- 
trol processes on board, they are normally run remotely 
for programming convenience. 

Figure 1 illustrates the part of Flakey's architecture 
that is relevant to the controller. The sensorial input is 
processed by a number of interpretation processes at dif- 
ferent levels of abstraction and complexity, and the results 
of interpretation are stored in the local perceptual space 
(LPS). The LPS represents a Cartesian plane centered 
on Flakey where all the information about the vicinity of 
Flakey is registered. In Figure 1, points corresponding 
to surfaces identified by the sonars and the camera are 
visible in the LPS — Flakey is the the octagon in the 
middle of the LPS, in top-view. The other objects in the 
LPS are "artifacts" associated to control structures, and 
are discussed in Section V. The content of the LPS con- 
stitutes the input to the controller: this checks its input 
and generates a control action every 100 milliseconds. 

III. REACTIVE FUZZY CONTROLLER 

The fuzzy controller is centered on the notion of behavior. 
Intuitively, a behavior is one particular control regime that 

focuses on achieving one specific, predetermined goal (e.g., 
avoiding obstacles). Hence, we can think of a behavior as 
a mapping from configurations in the LPS to actions to 
perform. More precisely, and following [Ruspini, 1991b], 
we say that each behavior B is associated with a desir- 
ability function 

DesB : LPS x Control — [0,1] 

that measures, for each configuration s of the LPS and 
value c of a control variable, the desirability Desß(s,c) 
of applying control values c in the situation s from the 
point of view of B. Equivalently, we can sayj.hat Desß 
associates each situation s with the fuzzy set C of control 
values characterized by the membership function fig(c) = 
DesB(s,c). Notice that in general, c is a n-dimensional 
vector of values for all the control variables; in the case 
of Flakey, the control variables include linear acceleration 
and turning angle. 

In practice, each behavior is implemented by a fuzzy 
machine structured as shown in Figure 2. The fuzzy state 
is a vector of fuzzy variables (each having a value in [0,1]) 
representing the truth values of a set of fuzzy proposi- 
tions of interest (e.g., "obstacle-close-on-left").  At every 

activation laval 

4 
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Figure 2: Implementation of a behavior. 



cycle, the Update module look at the (partially) inter- 
preted perceptual input stored in LPS, and produces a 
new fuzzy state. The Fuzzy Rule-Set module contains 
a set of fuzzy rules of the form "If A then c" where A is 
a fuzzy expression composed by predicates in the fuzzy 
states plus the fuzzy connectives AND, OR and NOT; and 
c is a vector of values for the control variables. Max, min, 
and complement to 1 are used to compute the truth value 
of disjunction, conjunction and negation, respectively. An 
example of a control rule is: 

IF obstacle-close-in-front 
AND HOT obstacle-close-on-left 
THEN turn -6 degrees 

Each "If A then c" rule computes the degree of desir- 
ability of applying control value c as a function of the 
degree at which the current state happens to be similar to 
A. The outputs of all the rules in a rule-set are unioned 
using the max T-conorm: the function computed in this 
way is meant to provide an approximation of the Desß 
function above.1 This desirability function is fed to the 
Defuzzify module for computing one single control value. 
We presently do defuzzification according to the centroid 
approach: the resulting control value is given by 

/ cDesß(c)dc 

/ Desß(c)dc 

As shown in Figure 1 above, many behaviors can be 
simultaneously active in the controller, each aiming at 
one particular goal — e.g., one for avoiding obstacles; 
one for keeping a constant speed; one for heading toward 
a beacon; etc. Correspondingly, many instances of the 
fuzzy machine depicted in Figure 2 simultaneously run 
in the controller, each one implementing one behavior's 
desirability function. All these desirability functions are 
merged into a composite one by the max T-norm; the 
defuzzification module converts the resulting tradeoff de- 
sirabilities into one crisp control decision. Care must be 
taken, however, of possible conflicts among behaviors aim- 
ing at different, incompatible goals. These conflicts would 
result in desirability functions that assign high values to 
opposite actions: simple T-norm composition should not 
be applied in these cases. The key observation here is that 
each behavior has in general its own context of applicabil- 
ity. Correspondingly, we would like that the impact of the 
control actions suggested by each behavior be weighted 
according to that behavior's degree of applicability to the 
current situation. For instance, the actions proposed by 
the obstacle avoidance behavior should receive higher pri- 
ority when there is a danger of collision, at the expense 

of the other, concurrent behaviors. In order to do this, 
the output of each rule-set is discarded by the value of the 
corresponding activation level: typically, the activation 
level is represented by some variable in the fuzzy state. 
This corresponds to arbitrate the relative dominance of 
different behaviors by a set of meta-rules of the form 

IF A' THEN activate_behavior B (1) 

1 See [Ruspini, 1991a; Ruspini, 1991b] for an account of fuzzy logic 
and fuzzy control in terms of similarity and desirability measures, 
and the use of T-norms and T-conorms in this context. 

where A' is a LPS configuration. Notice that this solution 
is formally equivalent to transforming each rule "If A then 
c" in B into a rule "If A' and A then c" (see [Berenji et 
al., 1990] for a similar approach to conflict resolution.) 

As an example, consider the way Flakey "wanders" 
around. In the wandering mode, three behaviors coexist 
in the controller: AVOID-OBSTACLES, AVOID-COLLISIONS 

and GO-FORWARD. GO-FORWARD just keeps Flakey go- 
ing at a fixed velocity, given as a parameter. AvoiD- 
OBSTACLES looks at the last 5 seconds' sonar readings 
in the LPS, and guides Flakey away form occupied areas. 
AvoiD-CoLLISIONS looks at the nearest sonar readings 
and proposes drastic actions (immediate stop and turn) 
when a serious risk of collision is detected. The activation 
levels of AVOID-OBSTACLES and AVOID-COLLISIONS are 
given by the fuzzy state variable "approaching-obstacle"; 
the complement of this value gives the activation level for 
Go-FoRWARD. The visual result for an external observer 
is that Flakey "follows its nose", while smoothly turning 
away from obstacles as it approaches them. 

IV. BEYOND PURE REACTIVITY 

The behaviors discussed in the previous section are purely 
reactive: at each cycle, Flakey selects an action solely on 
the basis of the current state of the world as perceived by 
its sensors and represented in the local perceptual space. 
Engaging into more purposeful activities than just wan- 
dering around requires more than pure reactivity: we need 
to take explicit goals into consideration. For example, we 
may want Flakey to reach a given position at a given veloc- 
ity, and still (reactively) avoid the obstacles on the way- 

In our approach, a goal is represented by a control struc- 
ture. Intuitively, a control structure is virtual object (an 
artifact) that we put in the LPS, associated with a behav- 
ior that encodes the way to react to the presence of this 
object. For example, a "control-point" is a marker for a 
(x, y) location, together with a heading and a velocity: the 
associated behavior Go-To-CP reacts to the presence of 
a control point in the LPS by generating the commands 
to reach that position, heading and velocity. In Figure 1 
there are two artifacts: a control point to reach (left), and 
a wall to follow (right). 

2Reactive behaviors are also associated with (innate) goals, hard- 
wired in the definition of the behavior. We are now interested in 
dynamically assigning specific strategic goals to Flakey. 
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Figure 4:   A snapshot of Flakey's control window while 

achieving a control point. 

More precisely, a control structure is a pair 

S=(Qs,Rs), 

where Qs is an artifact, and Rs is a fuzzy relation between 
the position of Flakey and that of the artifact.3 Such 
a control structure implicitly defines a goal: the goal to 
achieve, and maintain, the given relation between Flakey 
and the artifact Qs. Intuitively, if Qs is at position q, 
Rs{q,p) says how much a position p of Flakey satisfies 
this goal. If the position of Flakey is such that Rs{q,p) — 
a, we say that the control structure S is satisfied to the 
degree a. 

The Rs relation induces a desirability function Dess in 
the following way. Given the set P of possible positions 
of Flakey, and the set C of possible control values, let 
Exec(p, c) denote the new position reached by applying 
control c from position p. Then, the desirability from the 
viewpoint of the control structure S of executing c when 
Flakey is at position p (and Qs is at q) is given by 

Dess(q,P,c) = Rs{q,Exec(p,c)) 

However, not all positions are equally reachable by 
Flakey: moving to certain positions will require more ef- 
fort (changes in velocity and/or direction, time, etc.) than 
moving to others. To account for this, we consider a sec- 
ond desirability function Desf. Desf(p,c) measures the 
desirability from the viewpoint of Flakey's motion capa- 
bilities of executing control action c when Flakey is at 
position p. The desirability of control actions from the 
joint viewpoints of feasibility for Flakey, and effectiveness 
with respect to the control structure S, is measured by the 
combination Dess ® Des? (where <g> is a T-norm). Fig- 
ure 3 illustrates one such combined desirability function: 

here, 5 is a control point, represented by the semi-circle 
near the top (the "tail" indicates the desired entry ori- 
entation.) The fading from black to white illustrates the 
increase in the value of Dess ® Desp for some families of 
possible paths. 

We have already seen how Dess can induce, for each 
LPS configuration, a fuzzy set of possible controls. As we 
did in the case of reactive behaviors, we approximate this 
fuzzy set using rules on the form "If A then c". The only 
difference is that A now refers to artifacts rather than to 
sensorial input.4 We have designed sets of rules for many 
"purposeful" behaviors, including going to a x, y position; 
achieving a control point; following a wall; crossing a door; 
and so forth. Each ruleset consists of a small number 
(four to eight) of rules. Purposeful behaviors can coexist 
with other behaviors, either purposeful and reactive: the 
context-dependent blending of behaviors explained above 
provides arbitration and guarantees the smooth integra- 
tion of directed activities and reactivity. 

Figure 4 exemplifies the performance of the integration. 
The picture shows Flakey's control window during an ac- 
tual run: on the right is Flakey's local perceptual space. 
Flakey sits in the middle of the window, pointing upwards; 
the small points all around mark sonar readings, indicat- 
ing the possible presence of some object; the rectangle 
on the left of Flakey highlight a dangerously close ob- 
ject. The window on the left lists all the currently active 
rules, grouped into rule-sets: topmost, the rules for the 
GO-FORWARD behavior; below, those for Go-To-CP, for 
AVOID-OBSTACLES, and for AVOID-COLLISIONS. In the 
shown situation, Flakey is going too slow and heading 
right of the CP: hence, some desirability is given to the 

3Positions are actually points in a (x, y, 9, v) 4-D space. 

4 Alternatively, these rules can be thought as responding to input 
from a "virtual sensor" that senses the position of an artifact. 



accelerate and the turn-lefl actions. However, the close ob- 
stacle on the left causes the activation level of the AvoiD- 
OBSTACLES behavior to be high, at the expenses of the 
other behaviors; hence, the turn-right action suggested by 
AvoiD-OBSTACLES receives high total desirability (as in- 
dicated by the 7 stars). The small box in front of Flakey 
indicates the resulting turning control — some degrees on 
the right. The overall result of the blending is that Flakey 
makes its way among obstacles while en route to achiev- 
ing the position and bearing of the given control point. 
The smoothness of the movement in evident in the wake 
of small boxes that Flakey left behind it (one box per sec- 
ond). Flakey's speed was between 200 and 300 mm/sec. 

One word is worth spent on the problem of local min- 
ima, ubiquitous in approaches to robot navigation based 
on local combination of behaviors [Latombe, 1991]. The 
problem is illustrated in Figure 5 (top): the robot needs 
to mediate the tendency to move toward the goal, and 
the tendency to stay away from the obstacle. A straight- 
forward combination of these two opposite tendencies 
(whether they are described by desirability measures, po- 
tential fields [Khatib, 1986], motor Schemas [Arkin, 1990], 
or other) may result in the production of a zone of local 
equilibrium (local minimum): when coming from the left 
edge, the robot would be first attracted and then trapped 
into this zone. By using meta-rules like the 1 above to rea- 
son about the relative importance of goals, our context- 
dependent blending of behaviors provides a way around 
this problem. Figure 5 shows the path followed by Flakey 
in a simulated run (top), and the corresponding activation 
levels of the KEEP-OFF and REACH behaviors (bottom). 
In (a), Flakey has perceived the obstacle; as the obstacle 
becomes nearer, the KEEP-OFF behavior becomes more 
active, at the expenses of the REACH behavior. In this 
way, the "attractive power" of the goal is gradually shaded 
away by the obstacle, and Flakey responds more and more 
to the obstacle-avoidance suggestions alone. The REACH 
behavior re-gains importance, however, as soon as Flakey 

is out of danger (b). 

V. CONCLUSIONS 

We have defined a mechanism based on fuzzy logic for 
blending multiple behaviors aimed at achieving different, 
possibly conflicting goals. Goals are either built-in, as in 
most fuzzy controllers, or dynamically set from outside 
the controller. Typically, the built-in goals correspond 
to reactive behaviors (like avoiding collisions), while the 
dynamic ones are strategic goals communicated by a plan- 
ner. Context-dependent blending of behaviors ensures 
that strategic goals be achieved as much as possible, while 
maintaining a high reactivity. 

Our behavior blending mechanism has been originally 
inspired  to the  technique  proposed  by  Berenji  et  al. 

(b) Q 
00 

goal 

potential minimum 

Keep-Off 

Reach 

Figure 5: How context-dependent blending of behaviors 

avoids potential local minima. 

[Berenji et al., 1990] for dealing with multiple goals in 
fuzzy control. There are however two important differ- 
ences: first, our context mechanism dynamically modifies 
the degrees of importance of each goal; second, we allow 
the introduction of high-level, situation-specific goals in 

the controller. 
From another perspective, the work presented here fits 

in the tradition of the "two level" approaches to robot con- 
trol, where a strategic planner is used to generate guide- 
lines to a reactive controller (e.g., [Arkin, 1990; Payton et 
al, 1990; Gat, 1991]). In our case, a plan consists in a se- 
quence of control structures. For example, a plan to exit 
building E could consist in three successive corridors to 
follow, one control point in the entrance hall close to the 
door, and the exit door itself. The context of applicability 
of each control structure is used to decide when each con- 
trol structure becomes relevant, (see [Saffiotti et al, 1993; 
Saffiotti, 1993] for more on this issue). We believe that 
having based our architecture on fuzzy logic results in im- 
proved robustness (e.g., more tolerance to sensor noise 
and knowledge imprecision), while granting a better un- 
derstanding of the underlying mechanisms. 

Finally, many current approaches to robot control deal 
with multiple goals using the so-called "potential fields" 
method [Khatib, 1986]: goals are represented by pseudo- 
forces, which may be thought of as representatives of most 
desirable behavior from that goal's viewpoint. These op- 
timal forces are then combined, as physical vectors, to 
produce a resultant force that summarizes their joint ef- 
fect. In our approach, by contrast, the goals' desirability 
functions, rather than a summary description, are com- 
bined into a joint desirability function, from which a most 
desired tradeoff control is extracted. Moreover, this com- 



bination takes behaviors' context of applicability into ac- 
count; this provides a key to eliminate the local minima 
arising from the combination of conflicting goals. 

The technique proposed in this paper has been imple- 
mented in the SRI mobile robot Flakey, resulting in ex- 
tremely smooth and reliable movement. The performance 
of Flakey's controller has been demonstrated at the first 
AAAI robot competition in San Jose, CA [Congdon et 
al., 1993]. Flakey accomplished all the given tasks while 
smoothly getting around obstacles (whose positions were 
not known beforehand) and people, and placed second be- 
hind Michigan University's CARMEL. Flakey's reliable 
reactivity is best summarized in one judge's comment: 
"Only robot I felt I could sit or lie down in front of." 
(What he actually did!) 
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A Comparison of 

Two Winners 
Clare Congdon, Marcus Huber, David Kortenkamp, Kurt Konolige, Karen 

Myers, Alessandro Saffiotti, and Enrique H. Ruspini1 

The University of Michigan's CARMEL and SRI 
International's FLAKEY were the first- and second- 
place finishers, respectively, at the 1992 Robot 
Competition sponsored by the American Associa- 
tion for Artificial Intelligence. The two teams 
used vastly different approaches in the design of 
their robots. Many of these differences were for 
technical reasons, although time constraints, 
financial resources, and long-term research objec- 
tives also played a part. This article gives a techni- 
cal comparison of CARMEL and FLAKEY, focusing on 
design issues that were not directly reflected in 
the scoring criteria. 

The University of Michigan's CARMEL and 
SRI International's FLAKEY were the first- 
and second-place finishers, respectively, 

at the 1992 Robot Competition sponsored by 
the American Association for Artificial Intelli- 
gence (AAAI) (see the Dean and Bonasso arti- 
cle in this issue). Interestingly, the two teams 
used vastly different approaches in the design 
of their robots. Many of these differences 
were for technical reasons, although time 
constraints, financial resources, and long- 
term research objectives also played a part. 

The final scores for the robots, based solely 
on competition-day performance, constitute 
only a rough evaluation of the merits of the 
various systems. This article provides a tech- 
nical comparison of CARMEL and FLAKEY, focus- 
ing on design issues that were not directly 
reflected in the scoring criteria. Space limita- 
tions preclude detailed descriptions of the 
two approaches; further details can be found 
in an upcoming AAAI Technical Report by the 
authors. 

The Two Robots 
CARMEL (computer-aided robotics for mainte- 
nance, emergency, and life support) is based 
on a commercially available Cybermotion 
K2A mobile robot platform, CARMEL is a cylin- 
drical robot about a meter in diameter, stand- 
ing a bit less than a meter high. It has a top 
velocity of 780 millimeters/second and a top 
turning rate of 120 degrees/second; it moves 
using three synchronously driven wheels. For 
sensing, CARMEL has a ring of 24 Polaroid sen- 
sors and a single black-and-white charge cou- 
pled device camera. The camera is mounted 
on a rotating table that allows it to turn 360 
degrees independently of robot motion. Three 
computers work cooperatively while the robot 
is running: First, an IBM PC clone runs a 33- 
MHz, 80486-based processor that performs all 
top-level functions and contains a frame grab- 
ber for vision processing. Second, a motor- 
control processor (Z80) controls the robot's 
wheel speed and direction. Third, an IBM PC 

XT clone is dedicated to the sonar ring. All 
processing and power are contained on board 
CARMEL. 

CARMEL'S software design is hierarchical in 
structure. At the top level is a supervising 
planning system that decides when to call 
subordinate modules for movement, vision, 
or the recalibration of the robot's position. 
Each of the subordinate modules is responsi- 
ble for doing low-level error handling and 
must return control to the planner in a set 
period of time, perhaps reporting failure; the 
planning module then determines whether to 
recall the submodule with different parame- 
ters or resort to another course of action. 

Copyright © 1993, AAAI. 0738-4602-1993 / $2.00 WINTER 1992    49 
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CARMEL avoids obstacles using a point-to-point, 
goal-directed algorithm called VFH. 

CARMEL avoids obstacles using a point-to- 
point, goal-directed algorithm called VFH 

(Borenstein and Koren 1991a, 1991b). Object 
recognition is done using a single camera and 
a one-pass algorithm to detect horizontally 
striped, bar-code-like tags on each of the 10 
objects. A distance and a heading for each 
object are returned. Recalibrating the robot's 
position is done by triangulating from three 
objects with known locations. 

The software system of CARMEL was kept 
modular to allow for a team design, whereby 
small groups could work independently on 
each module. Using this approach, the team 
of 30 students was able to write its winning 
system in six months. Only the low-level 
object-avoidance modules existed before 
work on the competition began, CARMEL'S soft- 
ware system was also kept simple so that it 
could be run completely on board, allowing 
CARMEL to navigate at high speeds while it 
smoothly avoided obstacles. (Many of the 
other robots in the competition were sending 
information to off-board processors and, as a 
result, operated in a jerky, stop-and-go fash- 
ion, moving a bit but then having to stop 
and wait while sensor information was sent 
off board and processed and the results trans- 
mitted back to the robot.) 

FLAKEY is a custom-built mobile robot plat- 
form approximately 1 meter high and .6 
meter in diameter. There are two indepen- 
dently driven wheels, 1 on each side, giving a 
maximum linear velocity of 500 
millimeters/second and a turning velocity of 
100 degrees/second. Like CARMEL, FLAKEY has 
ultrasonic sonar sensors good to about 2 
meters, but instead of a uniform ring, FLAKEY 

has 4 sensors facing front, 4 facing back, and 
2 facing each side. Additionally, FLAKEY has 8 
touch-sensitive bumpers around the bottom 
perimeter of the robot and a structured-light 
sensor that is a combination of a light stripe 
and a video camera that is capable of provid- 
ing a dense depth map over a small area in 
front of FLAKEY. FLAKEY has 3 computers: (1) a 
Z80 motor and sonar controller, (2) a SUN 3 
dedicated to the structured-light sensor, and 
(3) a SPARCSTATION responsible for high-level 
routines. During the competition, all compu- 
tation was performed on board. 

FLAKEY'S basic software design is distributed: 
The modules work in parallel and communi- 
cate through a blackboardlike structure called 
the local perceptual space (LPS). LPS is a geo- 
metric egocentric map of the area within two 
meters of the robot. Modules contribute 
information to, and draw information from, 
LPS. The loosely linked structure makes it 
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possible to have tasks running in parallel that 
have different reaction-time and information 
requirements. On the perception side, mod- 
ules add raw sonar and structured-light infor- 
mation to LPS, treating it as an occupancy 
grid. Other interpretive processes use this 
information to construct and maintain 
higher-order structures, parsing the data into 
surface segments, recognizing objects, and so 
on. All this information is coordinated geo- 
metrically so that an action module can use 
whatever form is appropriate, for example, 
the occupancy grid for obstacle avoidance, 
surface segments for path planning, and 
object tags for task planning. 

On the action side, there are three main 
types of modules. At the lowest level, reac- 
tive-action modules called behaviors guide the 
robot's movements. The input to these 
modules is the occupancy grid for obstacle 
avoidance plus artifacts (such as a path to 
follow) that are put into LPS by higher-level 
navigation routines, FLAKEY was unique in 
using fuzzy rules as the building block for 
behaviors (Saffiotti and Ruspini 1993), giving 
it the ability to react gracefully to the envi- 
ronment by grading the strength of the reac- 
tion (for example, turn left) according to the 
strength of the stimulus (for example, the dis- 
tance of an obstacle on the right). 

More complex behaviors, such as moving 
to desired locations, use surface information 
and artifacts to guide the reactive behaviors; 
they can also add artifacts to LPS as control 
points for motion. At this level, fuzzy rules 
allow FLAKEY to blend possibly conflicting 
aims into one smooth action sequence. At a 
higher level, the navigation module 
autonomously updates FLAKEY'S global posi- 
tion by comparing it to a tolerant global map, 
which contains prior, approximate spatial 
knowledge of objects in the domain. Finally, 
task-level modules continuously monitor the 
progress of the complex behaviors, using 
information from the navigation module to 
plan sequences of behaviors to achieve a 
given goal. 

The distributed architecture and loosely 
coupled control structure enable FLAKEY to 
simultaneously interpret sensory data, react 
to the local environment, and form long- 
range plans. The modular and distributed 
design of FLAKEY means that it is both flexible 
and extensible. The SRI team incorporated 
large portions of software previously written 
for an office environment, including almost 
all the perceptual routines and the low-level 
behaviors. The team started working on the 
competition one month before it began and 
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The distributed architecture and loosely coupled 
control structure enable FLAKEY to simultaneously 
interpret sensory data, react to the local environ- 
ment, and form long-range plan. 
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CARMEL Was 
distinguished 

by its graceful 
motion 
around 

obstacles in 
open terrain 

and was 
pleasant to 

watch 

produced and integrated modules for com- 
plex behaviors, tasks, and navigation. 

Issues in Moving 
In stage 1, both robots had to roam the arena, 
avoiding people and obstacles. Both robots 
used sonar sensors as their primary obstacle- 
avoidance sensors, CARMEL used a two-step 
process in which the sonar readings were first 
filtered to reduce noise and imprecision 
(Borenstein and Koren 1992), and then an 
occupancy grid-style map, similar to that 
introduced by Moravec and Elfes (1985), was 
updated, CARMEL used this sonar map to navi- 
gate. Similarly, FLAKEY used LPS to integrate 
sonar readings and fuzzy-control rules to con- 
trol motion. 

Both robots performed obstacle avoidance 
remarkably well despite attempts by the 
judges to surprise and contain them, FLAKEY'S 

use of fuzzy rules resulted in extremely 
smooth and reliable movement, FLAKEY uses 
two-part obstacle-avoidance rules: Longer- 
range rules deflect FLAKEY away from distant 
obstacles, and collision-avoidance rules force 
emergency maneuvers when an object is sud- 
denly detected nearby. These rules are typical- 
ly combined with rules for purposeful 
motion, such as following a wall. This combi- 
nation of rules ensures that strategic goals are 
achieved as much as possible while a high 
reactivity is maintained. In this phase of the 
competition, speed was limited to 200 mil- 
limeters/second, primarily because of the 
blind spots on the diagonal: Objects in these 
positions had to be relatively close before 
they could be seen by the sonar, FLAKEY'S reli- 
able behavior is best summarized by one 
judge's comment: "only robot I felt I could sit 
or lie down in front of" (which he actually 
did). 

CARMEL was distinguished by its graceful 
motion around obstacles in open terrain and 
was pleasant to watch. It moved at a speed of 
300 millimeters/second, noticeably faster 
than FLAKEY. However, under prodding from 
the judges, CARMEL touched two obstacles and 
grazed a judge, CARMEL touched objects in part 
because many variables in CARMEL'S obstacle- 
avoidance code need to be tuned for the envi- 
ronment in which it is running. The 
Michigan team had assumed an environment 
with dynamic but much more benign obsta- 
cles. 

FLAKEY placed ahead of CARMEL in this stage 
of the competition and was only one point 
behind the first-place (at this point) entry, 
TJ2 from IBM. Part of the reason why CARMEL 

did not do as well was because it was so goal 
oriented; that is, it was always trying to get 
somewhere in particular, CARMEL could not be 
"shepherded" about by the judges because it 
had a dogged persistence in trying to achieve 
its goal location. Both teams noticed that 
behavior could be improved markedly by 
tuning the parameters of the avoidance rou- 
tines. 

Issues in Object Recognition 
Stages 2 and 3 both required the ability to 
detect and visit objects (specifically, poles of a 
fixed diameter) scattered throughout the 
arena. The rules permitted teams to modify 
poles to facilitate the recognition process, 
although a small bonus was awarded for full 
autonomy, that is, no altering of the environ- 
ment. Michigan took advantage of the object- 
modification rule by attaching a distinct 
omnidirectional bar-code tag to each pole. 
CARMEL'S vision algorithm was designed to 
extract the bar codes from an image. 

SRI, however, was one of only two teams 
(the other being Brown University) that did 
not modify the arena or poles in any way. 
Instead, FLAKEY used only the physical charac- 
teristics of the poles themselves in the detec- 
tion process, FLAKEY used a two-tiered 
approach, whereby sonar input was moni- 
tored during navigation to detect candidate 
poles, and candidates were actively verified 
by having FLAKEY navigate to a position where 
the structured-light sensor could be applied. 
This hybrid approach was necessary because 
of the limitations of the two sensing modali- 
ties: Structured-light verification is highly 
accurate but applies only to a small perceptu- 
al space (less than two meters) directly in 
front of the robot; sonar input covers a much 
larger space during navigation but is not 
nearly as reliable for object recognition. Both 
the structured-light and sonar routines were 
built using low-level perceptual routines that 
FLAKEY has used for some time. 

The recognition components of both teams 
performed extremely well during the compe- 
tition, CARMEL never saw a false object, and it 
never missed seeing an actual object; similar- 
ly, FLAKEY'S structured-light routine was 
perfectly reliable, CARMEL'S performance was 
surprising because its long-range vision creat- 
ed the added difficulty of dealing with false 
objects outside the arena, a problem that 
FLAKEY'S short-range sensors did not have. 
FLAKEY'S candidate generation techniques 
based on sonar input also performed well, 
picking out only two nonpoles (box corners) 
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as candidates and only failing to detect one 
pole in its perceptual space as a candidate 
(because the robot passed too close to the 
pole). 

The SRI team demonstrated that reliable 
object-type recognition was possible using 
only physical characteristics of the objects 
and simple domain constraints (such as non- 
proximity to other objects) without having to 
modify the environment. As such, FLAKEY, in 
contrast to CARMEL, was able to perform recog- 
nition for classes of objects rather than spe- 
cially marked individuals in the class. One 
consequence of doing class recognition was 
that individual objects had to be identified 
based solely on information about the 
object's location. In contrast, the individual- 
ized bar codes used by the Michigan team 
provided immediate identification informa- 
tion tO CARMEL. 

CARMEL'S use of long-range sensing made it 
possible to locate objects from as far away as 
12 meters (over half the diameter of the 
arena). In contrast, FLAKEY could only recog- 
nize poles and candidates within its local per- 
ceptual space. As discussed later, this 
difference had a major impact on the meth- 
ods used by the two teams for mapping and 
navigation. 

Issues in Mapping 
To be competitive in stage 3, it was necessary 
for the robots to generate maps of the envi- 
ronment during stage 2. At a minimum, these 
maps contain the location of discovered 
poles, but they could also encode further 
information, such as the positions of obsta- 
cles or walls. A complementary problem to 
map construction is self-localization, which 
involves having the robot determine where it 
is relative to the map. A critical issue faced by 
both robots in solving these problems was the 
inaccuracies inherent in dead reckoning, the 
robot's internal calculation of its location 
based on wheel movements. 

Automated map generation remains a topic 
of current research for the field of robotics. 
Michigan and SRI chose two different 
approaches to the design of maps for their 
robots, CARMEL used a global Cartesian system 
that stores only pole locations and the cur- 
rent position of the robot. To track its posi- 
tion with reference to the map, CARMEL relied 
exclusively on dead reckoning: When initial- 
ized, it was given its position and orientation 
on the map, and subsequent movements gave 
an estimated position based on wheel rota- 
tion. When discovered, the poles were placed 

on the map using the current estimated posi- 
tion together with the range and angle 
returned by the vision system. 

Of course, errors in estimated position 
accumulate over time from wheel slippage 
and the like; CARMEL incorporated an algo- 
rithm to triangulate its position from known 
object locations, thus reducing the error. The 
vision-based triangulation system was not 
actually used for the competition because of 
last-minute changes to the system software. 
However, not using triangulation did not 
noticeably affect the performance of CARMEL 

for three reasons: First, the time and the dis- 
tance between tasks were small; second, 
CARMEL'S dead reckoning and its vision system 
were highly accurate; and, finally, the plan- 
ning system was designed to deal with self- 
localization errors, CARMEL could be several 
meters away from the expected location of 
the pole and still be able to locate it. 

In contrast to CARMEL, FLAKEY used a tolerant 
global map containing local Cartesian patches 
related by approximate metric information. 
Each patch contains some recognizable fea- 
ture or landmark by which the robot can 
orient itself; the approach is similar to the 
work on landmark-based navigation (Kuipers 
1978). The patches chosen for the competi- 
tion were the walls of the arena because they 
were the most stable features for navigation. 
The approximate length and the relative ori- 
entation of the walls were given to FLAKEY as 
prior knowledge; FLAKEY could easily have 
learned this information by circumnavigating 
the arena. 

The SRI team chose the tolerant global 
maps because FLAKEY accumulated dead-reck- 
oning errors more quickly than CARMEL. 

Moving four or five meters, especially with 
some turning, can cause significant errors in 
estimated position, and FLAKEY must use 
sensed landmarks to correct its localization 
on the map. Compounding the problem is 
FLAKEY'S short-range sensing, which makes it 
impossible to locate landmarks more than a 
few meters away. The tolerant global maps are 
a solution to FLAKEY'S imprecision in large- 
scale sensing and movement. Within each 
patch, local landmarks can be sensed almost 
continuously (in this case, the arena walls 
and wall junctions) to keep localized. When 
going between patches, approximate metric 
information can be used to find the next 
landmark for localization. Because sensing 
and movement are accurate only over small 
distances, there is no need to keep a highly 
precise global geometry; further, FLAKEY would 
find it impossible to use this information. 

Fuzzy rules 
allow FLAKEY 
to blend 
possibly 
conflicting 
aims into 
one 
smooth 
action 
sequence 
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The 
recognition 

components 
of both teams 

performed 
extremely well 

The use of precise dead reckoning and 
long-range sensing gave CARMEL a marked 
advantage over FLAKEY in the competition 
because it made it easy to both register the 
poles in a global coordinate system and deter- 
mine trajectories for navigating from one to 
another (as required for stage 3). FLAKEY'S abili- 
ty to rerecognize poles that it discovered pre- 
viously demonstrated that the tolerant global 
map can successfully be used for self-localiza- 
tion, although FLAKEY encountered some diffi- 
culties in using this system (see the next 
section). 

It is interesting to speculate about how well 
the different methods would work in other 
domains, FLAKEY'S tolerant global maps were 
designed for an office environment, where 
navigation landmarks are plentiful (walls, 
corridors, doors), and long-range triangula- 
tion is difficult and of limited value. The tol- 
erant global maps are robust in this situation, 
whereas a precise global Cartesian map would 
be hard to acquire and use. Its main advan- 
tage—navigation over open space—would be 
minimized because most navigation is by cor- 
ridor paths. 

However, FLAKEY'S approach is less useful in 
more open areas such as outdoor navigation, 
where paths and local landmarks might be 
sparse. In this case, CARMEL benefits from the 
inclusion of more global positioning informa- 
tion. 

Issues in Navigation 
Task-oriented navigation played a critical role 
in the competition. Stage 2 required explo- 
rative navigation of the arena to detect and 
visit poles. Because the robots had no prior 
information about object locations, a general 
and thorough exploration methodology was 
required. Stage 3 involved directed naviga- 
tion: Robots were to revisit three poles in a 
prespecified sequence and then return home. 

Explorative Navigation 
CARMEL'S long-range object-recognition capa- 
bilities enabled the Michigan team to use a 
fairly simple exploration strategy, CARMEL'S 

exploration consisted of moving to viewing 
positions distributed throughout the arena, 
executing a visual sweep for objects, and then 
visiting each object. 

FLAKEY'S reliance on local sensing necessitat- 
ed an actual physical exploration of the envi- 
ronment: To ensure full coverage, FLAKEY had 
to cover the full extent of the competition 
arena with its local perception. The strategy 
adopted by the SRI team was to traverse the 

perimeter of the arena, making forays into 
the center of the arena at certain points along 
the way. This strategy was designed to recon- 
cile the conflicting objectives of providing 
broad coverage of the arena and keeping 
FLAKEY self-localized using information about 
wall locations. 

FLAKEY did encounter some localization 
problems near the end of its stage 2 run, pri- 
marily because of a tactical mistake (on the 
part of the designers!) in the execution of 
forays, FLAKEY initiated its final foray before 
having registered the current wall. As a result, 
dead-reckoning errors accumulated to such 
an extent that FLAKEY'S beliefs about its posi- 
tion were inaccurate. Given more time, FLAKEY 

would eventually have returned to the wall 
and reregistered itself, thus correcting the 
problem. The entire issue could have been 
avoided had forays been postponed until wall 
registration had taken place. 

The Michigan team's use of long-range 
sensing easily enabled CARMEL to find all 10 
poles within the allotted 20-minute search 
period. In contrast, the physical exploration 
executed by FLAKEY was time consuming. In 
the end, FLAKEY found and correctly registered 
only 8 of the 10 poles before time expired. 
Certainly, the Michigan approach was superi- 
or given the conditions of the competition 
environment. In particular, Michigan took 
full advantage of the fact that objects would 
be visible above all obstacles. Because FLAKEY'S 

method was not based on any such assump- 
tions, it was less efficient; however, FLAKEY'S 

exploration method could be used in more 
realistic environments, where objects can be 
occluded. 

Directed Navigation 
In stage 3 of the competition, the robots were 
given three poles to visit in order, and then, 
they were to return to a home position. This 
stage was timed, with the robots receiving 
points based on their time with respect to the 
other robots. 

FLAKEY'S strategy of registering objects and 
itself with respect to walls meant that the 
robot had to navigate along the perimeter of 
the arena when traveling between objects. 
Visiting an object registered with respect to a 
wall W involved determining the direction of 
the shortest perimeter path to W (either 
clockwise or counterclockwise), following the 
perimeter in this direction until W was 
encountered, and then using dead reckoning 
within the coordinate system of W to move 
to the pole, CARMEL, however, used dead reck- 
oning with its global map to proceed directly 
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to the recorded locations of objects. Not sur- 
prisingly, CARMEL was able to perform the 
stage-3 visiting task in a much shorter period 
of time (3 minutes versus 11 minutes for 
FLAKEY). 

Like many other teams, the Michigan team 
marked the home position by placing an 11th 
pole there. This modification to the environ- 
ment was made to provide a perceptual land- 
mark for the home position, which 
compensated for the accumulation of dead- 
reckoning errors during the run. FLAKEY, in 
contrast, did not require any such modifica- 
tion to the environment. Instead, it was able 
to treat the home location in the same 
manner as other positions of interest (such as 
pole locations or foray positions) because it 
used the tolerant global maps to continuously 
correct its position. 

Conclusion 
Both CARMEL and FLAKEY must be considered 
unqualified successes, having bested 10 or so 
other entries in a nationwide competition. 
There were many reasons for this success. 
Both teams did all their processing on board 
the robot, avoiding problems with radio and 
video links and enabling their robots to be 
more reactive. Both teams inherited robots 
that had well-developed software systems. In 
addition, both teams used simulations to 
speed the development process. However, the 
approach to the competition was different for 
each team. Michigan looked at the competi- 
tion rules and engineered a system to opti- 
mize its robot's performance at the cost of 
generality. SRI used the competition as a 
demonstration of the application of its 
research in a new domain, without engineer- 
ing any hardware specific for this domain. 

Interestingly, neither team used any geo- 
metric planning for navigation around obsta- 
cles to a goal point, although this area is a 
large part of robotics research (Latombe, 
Lazanas, and Shekhar 1991). Instead, both 
teams relied on the simple strategy of heading 
toward the goal and using reactive behavior 
to avoid obstacles, with simple methods for 
getting out of cul-de-sac situations. Geometric 
planning requires some sophistication in per- 
ception and mapping of obstacles and can be 
difficult to perform in real time. The large 
openings around obstacles in the competition 
made it easy to pursue simpler strategies, and 
we speculate that in other domains, geomet- 
ric planning will also play a minor role in 
navigation. 

It is interesting to try to compare the two 

system architectures. At the level of reactive 
movement, FLAKEY perhaps had the advantage, 
because the fuzzy-control paradigm provides 
a flexible and powerful representation for 
specifying behavior. In less than a month, the 
SRI team was able to write and debug half a 
dozen complex movement routines that inte- 
grated perception and action in the service of 
multiple simultaneous goals. 

In terms of overall design, it is difficult to 
compare the relative merit of the two archi- 
tectures because the approaches to solving 
the problem were so different, FLAKEY'S dis- 
tributed control scheme allows various mod- 
ules to run in parallel, so that (for example) 
self-localization with respect to landmarks 
occurs continuously as FLAKEY moves toward a 
goal location or searches for poles. However, 
the distributed design leads to behavior that 
is more difficult to predict and debug than 
that of CARMEL'S top-down approach in which 
all the perception and goal actions are under 
sequential, hierarchical control. 

Although Michigan was the winner of the 
competition, it is not clear that its system can 
easily be extended to other domains. Certain- 
ly, the obstacle-avoidance routines are neces- 
sary in any domain and are widely applicable. 
CARMEL'S reliance on a global coordinate 
system and tagged objects restricts it to engi- 
neered environments that can accurately be 
surveyed (a reasonable assumption when you 
consider how much of the world in which 
humans operate is highly engineered). Also, 
CARMEL'S simple exploration strategies would 
be naive in an environment where objects 
can be occluded, CARMEL'S keys to victory were 
fast, graceful obstacle avoidance and fast, 
accurate vision algorithms, not cognitive 
smarts. 

FLAKEY, moving more slowly and possessing 
less accurate and more local sensing, had to 
rely on a smart exploration strategy and con- 
stant position correction. One of the key 
research ideas behind FLAKEY is that natural 
(that is, non-engineered) landmarks are suffi- 
cient if the right map representation is used, 
and it was gratifying to see this approach 
work in a new environment. Still, FLAKEY 
could be more efficient in navigating open 
spaces if it incorporated more global geomet- 
ric information, such as CARMEL used. 

The fact that CARMEL, which is sensor rich 
and cognitively poor and FLAKEY, which is 
sensor poor and cognitively rich, came in as 
the top two robots in the competition clearly 
shows that fundamental trade-offs can be 
made in engineering mobile robots. Complex 
sensing can allow for simple planning; simple 
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sensing requires complex planning. In no 
sense is either robot more complex than the 
other; it is just that the complexity lies in dif- 
ferent places. What was not clear from the 
competition was whether complex sensing 
and complex planning will make for a funda- 
mentally better robot. This issue will have to 
be resolved at future competitions. 
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1    Introduction 

Performance of complex tasks by an autonomous robot requires careful planning. A large 
part of AI research has been devoted to the study and development of general knowledge- 
based planning techniques [Wilkins, 1988]. In order to make the planning problem tractable, 
most of these techniques make use of strong simplifying assumptions about the conditions 
under which the plan is to be executed. Typically, the environment is supposed to have 
simple, well-known, predictable dynamics — e.g., to be static; agent's knowledge about this 
environment is supposed to be complete and accurate; and agent's actions are supposed to 
be completely reliable. Unfortunately, in any realistic case involving an autonomous mobile 
robot's operation in the real world, none of these assumptions holds. Prior information is 
in general approximate and incomplete; sensorial input is noisy and limited by the sensors' 
range and environmental the features (e.g., occlusion); the dynamics of the environment is 
largely unpredictable (e.g., people moving around); and robot's actions are imprecise and 
may fail. This has led many researchers to question the validity of traditional AI planning 
techniques for situated agents [Brooks, 1987], and to propose alternative (or in some cases 
complementary) approaches (e.g., [Firby, 1987; Schoppers, 1987; Saffiotti, 1993]). 

In this paper, we propose an approach to plan execution that can cope with many of the 
difficulties encountered in real-world situations. We exploit the flexibility of fuzzy logic for 
dealing with the imprecision and errors in the prior knowledge, in the sensed information, 
and in robot's movement. We describe a fuzzy controller that implements robust high-level 
actions (like traversing a hallway, or crossing a door), and provides capabilities for: 

*On leave from Iridia, Universite Libre de Bruxelles, 50 av. F. Roosevelt, Brussels, Belgium. 



Program Planner 

Control Structures 

Figure 1: Flakey's architecture (partial). 

1. Robust, uncertainty-tolerating goal-directed activity; 

2. Real-time reactivity to unexpected contingencies (e.g., unknown obstacles); and 

3. Blending of multiple goals (e.g., reaching a given location while avoiding obstacles 
and people). 

goals are represented by control structures: abstract descriptions of actions that can be easily 
generated by traditional AI planning techniques, and can be used by the fuzzy controller 
to orient the robot's activity [Safnotti et al., 1993a]. 

The proposed approach has been implemented on our mobile robot, Flakey, and consis- 
tently validated in an unmodified office environment during normal office activity. Flakey's 
fuzzy controller has also been demonstrated at the first AAAI robot competition, where 
Flakey placed second, and was prized for its smooth reliable reactivity [Congdon et al, 
1993]. A full account of the fuzzy controller can be found in [Safnotti et al, 1993b]. 

Figure 1 sketches the architecture of Flakey. The controller is centered on the notion 
of behavior. Intuitively, a behavior is one particular control regime that focuses on achiev- 
ing one specific, predetermined goal, like avoiding obstacles, or reaching a specific location 



(given as a parameter). Behaviors take their input from a common storage structure, named 
local perceptual space (LPS), where all sensory input (possibly after some perceptual inter- 
pretation) is maintained. Moreover, the LPS may contain control structures, representing 
strategic goals to achieve, like a position to reach or a door to cross. Specific behaviors 
in the fuzzy controller react to the presence of control structures in the LPS by trying to 
satisfy them. Control structures can be put in the LPS by a human programmer, or by an 
automatic planner. 

Two important aspects differentiate this architecture from other two-level architectures 
[Hanks and Firby, 1990]. First, most current approaches typically assume that behaviors are 
implemented by executable procedures that directly control robot's effectors, and arbitration 
between competing behaviors results in giving complete contol to one of them. By contrast, 
our elementary behaviors only express preferences among possible control actions. Many 
behaviors are in general active at the same time: the fuzzy controller weights the preferences 
expressed by all the active behaviors, and generate one tradeoff control for the effectors. 

The second difference is that in our approach plans do not constitute programs to be 
executed by the controller, but information about which goals should be considered, and 
when. (This is why control structures are put into the LPS, rather than being directly 
fed to the controller). The fuzzy controller exploits this information, together with the 
perceptual data, in order to take decisions about the best actions to perform. Viewing 
plans as sources of information rather than as sequences of instructions provides added 
flexibility in face of unknown execution contingencies [Suchman, 1987; Schoppers, 1987; 
Payton et al., 1990]. 

2    The fuzzy controller 

The basic building block of the fuzzy controller is a behavior. A behavior implements a 
motor skill of the agent, aimed at achieving a given goal. Behavioral skills are expressed as 
preferences over possible control actions from the perspective of achieving that behavior's 
goal. For example, a behavior aimed at following a given wall could prefer actions that keep 
the agent parallel to that wall at a "safe" distance. 

More formally, and following the semantic characterization of [Ruspini, 1991a; Ruspini, 
1991b], we describe each behavior B in terms of a desirability function 

DesB : State x Control —► [0,1] 

that measures, for each state s (i.e., input configuration in the LPS) and control vector1 c, 
the desirability Desß(s, c) of applying control c in the state s from the point of view of B. 
Hence, a behavior maps each input configuration to a fuzzy set of admissible controls — 
this contrasts with other approaches to robot control where individual behaviors map each 
state to one preferred control (e.g., [Khatib, 1986; Brooks, 1987; Arkin, 1990; Gat, 1991]). 

'In the case of Flakey, control vectors include linear acceleration and turning angle. 



For any behavior B, the task of our fuzzy controller is to compute, at every step, the value 
of Desß(s,c) from the current LPS configuration s, and then choose one control c for actual 
execution. This choice corresponds to what is commonly referred to as "defuzzification" in 
the fuzzy control literature. We currently use the so called centroid defuzzification: 

. _ / cDesB(s,c)dc 
/ DesB(s,c)dc 

In practice, we approximate desirability functions by sets of fuzzy rules of the form 

IF Ai THEN d 

where Ai is composed of fuzzy predicates and fuzzy connectives,2 and C; is a fuzzy set of 
control vectors. For example, the following rule is part of the rules implementing the KEEP- 

OFF behavior, a behavior intended to keep Flakey safely away from unknown obstacles as 
they are perceived by the sonars: 

IF obstacle-close-in-front 

AND NOT obstacle-close-on-left 

THEN turn sharp-left 

Given a ruleset 1Z = {R\,..., Rn}, and a state s, the fuzzy controller first computes 

Desn(s, c) = (A1(s) © d(c)) © ... © (An(s) © Ci(c)) (2) 

and then chooses one control c to apply, using the (1) above. It is the task of the programmer 
to make sure that Desn is a "reasonable" approximation of the intended desirability function 
Desß — i.e., that the rules produce the expected effect.3 In practice, we have found that 
a limited number of rules is sufficient to achieve a good performance of each behavior. 
For instance, the KEEP-OFF behavior above consists of four rules; in cluttered spaces, 
the combination of these rules through (2) has been shown to actually produce effective 
maneuvers towards open areas. 

The controller includes "purposeful" behaviors that take explicit goals into considera- 
tion, represented by control structures. Purposeful behaviors are also described by desir- 
ability functions of the form Desß(s,c), the only (formally invisible) difference being that 
the state s —and hence the antecedents A,'s of the fuzzy rules— depends in general on some 
property of an artifact (see below) in the LPS. For instance, the FOLLOW-WALL behavior 
includes the following rule: 

IF wall-too-far-on-right 

THEN turn moderate-right 

2We use min, max and complement to 1 for © (AND), 0 (OR), and 0 (NOT). 
3We are currently exploring formal techniques to automatically generate correct rules from abstract 

specifications of goals [Ruspini and Saffiotti, 1993]. 



Many behaviors can be simultaneously active in the fuzzy controller, each aimed at 
one specific goal (see Figure 1). The fuzzy controller selects the controls that best satisfy 
all the active behaviors. However, not all behaviors are always applicable: for instance, 
the FOLLOW-WALL behavior is most applicable when the wall is near and the path is 
clear; while KEEP-OFF becomes more applicable when there is an obstacle on the way. To 
account for this, we associate with each behavior B a context of applicability, expressed by a 
fuzzy predicate CxtB. Given n behaviors {Bi,..., Bn}, the fuzzy controller combines their 
desirability functions, modulo their contexts, into one overall desirability function 

Des(s, c) = (Desi(a, c) © Cxh (s)) © ... 8 (Desn(s, c) © Cxtn(s)) 

and then chooses a most desired control for execution. In practice, context dependent 
blending of behaviors is implemented by combining the output of all the behaviors using 
met a-rules of the form 

IF CxU THEN &pply(Bi) 

and then defuzzifying with (1) to produce a tradeoff control (see Figure 1). 

3    Control structures 

Control structures, first introduced in [Ruspini, 1990], are the main ingredient for directing 
agent's activity. Each control structure acts as an elastic constraint: the fuzzy controller 
prefers the actions that best satisfy this constraint. Moreover, each control structure in- 
cludes a specification of the conditions under which it is applicable. For example, a corridor 
may need to be followed only whenever the agent in inside it, and the path is clear. 

More precisely, a control structure is a triple 

5 = (A,B,C), 

where A is virtual object (an artifact) in the LPS; B is a behavior that specifies the way 
to react to the presence of this object; and C is the context where the control structure is 
relevant. An example of a control structure is 

(CPl,Go-To-CP,near(CPl)). 

CP1 is a "control-point", a marker for a (x,y) location, together with a heading and a 
velocity; the associated behavior Go-To-CP reacts to the presence of a control point in the 
LPS by generating the commands to reach that location, heading and velocity; near(CPl) 
specifies that this behavior should be used only when the robot is sufficiently close to the 
control point. Hence, a control structure can be thought of as a specification of what 
behavior should be used with respect to which object and under which conditions. 

Artifacts can correspond to real objects, like a wall to follow; these are normally placed 
in LPS based on prior information (e.g., map information), and are subsequently updated 
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Figure 2: Blending reactivity with purposeful action. 

on the basis of what is actually perceived. The combination of artifacts and fuzzy logic 
compensates for some uncertainty: the artifact provides an assumption for action when 
the sensors are not "seeing" the wall; the elasticity of fuzzy rules guarantees a smooth 
degradation of performance when this assumption is partially incorrect. 

A set of control structures represents a complex control regime, or a plan. Depending 
from the current context, some of the control structures in the set will be more active, and 
some less. Context depending blending of the corresponding behaviors produces a overall 
control at each point. For instance, two consecutive corridors to follow, and a door to cross, 
together with the condition when each one is adequate, may constitute a plan for visiting an 
office. We have made experiments using traditional planning techniques to automatically 
generate sets of control structures for performing complex tasks [SafRotti et al, 1993a]. 

4    The outcome 

The use of fuzzy logic in the definition of individual behaviors, as well as as a basis for 
behavior blending, has resulted in a robust mechanism for executing complex activities in 
the real world. In this section, we give some examples of the performance of this mechanism 
as implemented on our mobile robot, Flakey. 

Flakey's controller includes behaviors, often called reactive in the robotic literature, 
whose goal is to promptly react to certain perceptual events in the LPS, like the KEEP-OFF 

behavior above. These behaviors are typically based on data that have undergone little or no 
interpretation, and hence very quickly available.   Context-dependent blending of reactive 
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Figure 3: Compensating for inexact prior knowledge. 

behaviors with purposeful ones provide Flakey with the ability to perform goal-oriented 
activities in an uncertain, dynamic environment. Figure 2 shows the result of blending 
the FOLLOW and the KEEP-OFF behaviors. The bars show the level of activation and the 
preferred controls (turn and acceleration) for each behavior, and the result of the blending.4 

In (a), an obstacle has been detected, and the preferences of KEEP-OFF are dominating; 
later, when the path is clear, the goal-oriented preferences expressed by FOLLOW re-gain 
importance (b). 

Blending reactive and purposeful behaviors may also help in compensating for the im- 
precision of the prior knowledge. Figure 3 illustrates this point. In (a), the CROSS behavior 
is relying on prior information about the position of the door to cross. This estimate turns 
out to be off by some 40 centimeters, and Flakey is grossly misheaded. In (b), KEEP-OFF 

intervenes to avoid colliding with the edge of the door, re-orienting Flakey toward the door 
opening. Later (c), both behaviors cooperate to lead Flakey though the office door — i.e., 
through the perceived opening that is more or less in the assumed position. 

Finally, Figure 4 shows an example of execution of a full plan. The plan consists of the 

4The bar graph representation may be misleading: recall that each behavior actually generates a measure 
of desirability for each possible control, and that these measures —not just a preferred representative— are 
then used in the blending. 
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following four control structures5 

51 = (Obstacle, KEEP-OFF, near(Obstacle)) 
52 = (Corr2, FOLLOW, -.near(Obstacle) A at(Corr2) A -.near(Corrl)) 
53 = (Corrl, FOLLOW, -.near(Obstacle) A at(Corrl) A -mear(Door5)) 
54 = (Doorl, CROSS, -mear(Obstacle) A near(Door5)) 

This plan has been generated by a simple goal-regression planner based on a topological 
map annotated with approximate metric information. No obstacle was represented in the 
map. Total execution time was approximately 80 seconds, at top speeds of 400 mm/s. 

5    Conclusions 

We have proposed a behavior-based approach to autonomous execution of robot plans 
grounded in fuzzy logic. Our approach provides robustness in face of uncertain knowl- 
edge and unpredictable dynamics; principled combination of concurrent activities; and a 
simple, modular implementation. By ensuring reliable execution of high-level operation, 
our approach allows an agent to make effective use of coarse-grained plans generated by 
traditional AI techniques. From a more theoretical viewpoint, our study resulted in the 
development of the notion of control structure as a way to introduce high level symbolic 
goals into a fuzzy controller; and of context-dependent blending of behaviors as an effec- 
tive technique for integrating multiple goals. The proposed technique has been successfully 
demonstrated on our mobile robot, Flakey. 

5The actual plan has more control structures, including some for perceptual actions, and more complex 
contexts — see [Saffiotti et al., 1993a]. 
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Abstract 

Controlling the movement of an autonomous mobile robot in real-world unstructured 
environments requires the ability to pursue strategic goals under conditions of uncer- 
tainty, incompleteness, and imprecision. We describe a fuzzy controller for a mobile 
robot that can take multiple goals into consideration. Through the use of fuzzy logic, 
goal-oriented behavior (e.g., trying to reach a given location) and reactive behavior 
(e.g., avoiding obstacles on the way) are smoothly blended into one sequence of control 
actions. The fuzzy controller has been implemented in the SRI robot Flakey. 

1   INTRODUCTION 

Many classical solutions to the problem of autonomous robot operation in artificial intelli- 
gence have been based on a "two level" paradigm, where a planner generates a sequences of 
operations whose performance is expected (in an ideal world!) to satisfy the robot's goals; 
and these operations are then executed by the robot. This approach has been criticized 
for not providing the real-time responsiveness, or reactivity, that is needed in real-world 
environments (for example, to avoid a person walking in front of the robot), and for be- 
ing too inflexible in the face of uncertainty and imprecision in the information used (both 
prior knowledge, and perceptual information), and errors in the execution [Firby, 1987; 
Kaelbling, 1987; Gat, 1991; Saffiotti, 1993]. Some authors have proposed the use of fuzzy 
control techniques to overcome these limitations (e.g., [Sugeno and Nishida, 1985; Yen and 
Pfluger, 1992]). As they utilize continuous.feedback, fuzzy controllers are inherently more 
reactive that the mainly open-loop control suggested in the two-level approach; and as they 
utilize fuzzy logic, they are inherently more tolerant to imprecision in knowledge and ex- 
ecution than crisp, purely symbolic approaches. However, fuzzy controllers are normally 
defined to achieve one specific, predetermined functionality of the system, or goal, even if 
this goal can be parameterized — e.g., to follow a path given at execution time. By contrast, 
an intelligent robot should be able to perform a variety of different tasks, and to consider 

*On leave from Iridia, Universite Libre de Bruxelles, Brussels, Belgium. 



several goals simultaneously — e.g., to traverse a hallway while avoiding the obstacles and 
people on the way and while making sure that there is enough energy left. 

We describe a fuzzy controller architecture that can achieve multiple symbolic goals, 
communicated by a planner or by a human programmer, and trade off conflicting goals. This 
architecture has been implemented in the SRI autonomous mobile robot, Flakey. Flakey's 
fuzzy controller implements robust high-level robot actions (like traversing a hallway, or 
crossing a door), and provides capabilities for: 

1 . Robust, uncertainty-tolerating goal-directed activity; 

2. Real-time reactivity to unexpected contingencies; and 

3. Blending of multiple goals. 

The next section provides an outline of our mobile robot, and of the overall architecture 
of the fuzzy controller. Sections 3 and 4 describe how reactive and goal-oriented behaviors 
are produced, respectively. Section 5 discusses behavior blending and shows some examples. 
Finally, Section 6 concludes. An extended version of this note is available as [Saffiotti et 
al., 1993b]. 

2   ARCHITECTURE OVERVIEW 

Flakey is a custom-built mobile robot platform approximately 1 meter high and .6 meter in 
diameter operating in an indoor environment. Two independently-driven wheels provide a 
maximum linear velocity of about .5 meters/sec. Sensors include a ring of 12 sonars, wheel 
encoders, and a video camera, currently used in combination with a laser to provide dense 
depth information over a small area in front of Flakey. A passive-vision system is currently 
being added. Flakey has enough computational power to run all the low-level and high-level 
interpretation and control processes on-board; in addition, Flakey's high-level processes can 
be run remotely through a radio link for better programming and debugging convenience. 

Figure 1 sketches the architecture we developed for Flakey. The controller is centered 
on the notion of behavior. Intuitively, a behavior is one particular control regime that 
focuses on achieving one specific, predetermined goal, like avoiding obstacles, or reaching a 
specific location (given as a parameter). Hence, each behavior can be though of as being one 
separate parametric fuzzy controller. Behaviors take their input from a common storage 
structure, named local perceptual space (LPS), where all sensory input (possibly after some 
perceptual interpretation) is maintained. Moreover, the LPS may contain control structures, 
representing strategic goals to achieve, like a position to reach or a door to cross. Specific 
behaviors in the fuzzy controller react to the presence of control structures in the LPS by 
trying to satisfy them. Control structures can be put in the LPS by a human programmer, 
or by an automatic planner. 

Many behaviors can be simultaneously active in the fuzzy controller. The outputs of all 
the currently active behaviors are combined together and a specific command is chosen for 
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Figure 1: Flakey's architecture (partial). 

execution ("defuzzification"). Before being combined, however, the output of each behavior 
is weighted according to how much that behavior applies to the current contextual situation 
— for example, a behavior for following a wall is scarcely applicable in the situation where 
there in an obstacle standing in front of Flakey, while one for avoiding obstacles is more 
adequate. The context rules encode the information about the applicability condition of 
each behavior. 

The formal grounding of our behavioral approach, and of the context-depending blending 
of behaviors, rests on the notion of desirability function [Ruspini, 1990; Ruspini, 1991b]. 
Each behavior is represented by a function that maps each perceived situation to a measure 
of desirability of possible control from the point of view of that behavior's goal. Many 
behaviors, corresponding to many simultaneous goals, can be smoothly blended together by 
combining their desirability functions using the inferential procedures of fuzzy logic. The 
fuzzy controller prefers the actions that best satisfy each behavior. The formal perspective 
underlying our fuzzy controller is explored in detail in [Saffiotti et a/., 1993a]. 

3   REACTIVE BEHAVIORS 

Each behavior in the fuzzy controller is responsible for producing a certain type of movement, 
aimed at the attainment of certain goal. The simplest form of behaviors are the reactive 
behaviors: these map each input configuration, as in the LPS, to a control to apply in 
that situation. For example, a behavior for avoiding obstacles maps configurations of sonar 
readings where an obstacle is detected on the front left to the control of slowing down and 
turning right. 

More precisely, and following [Ruspini, 1991b], we say that each behavior B is associated 
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with a desirability function 

DesB : LPS x Control -► [0,1] 

that measures, for each configuration s of the LPS and value c of a control variable, the 
desirability Desß(s, c) of applying control values c in the situation s from the point of view 
of B. Equivalently, we can say that Desß associates each situation s with the fuzzy set C of 
control values characterized by the membership function /x^(c) = Desß(s,c). Notice that 
in general, c is a n-dimensional vector of values for all the control variables; in the case of 
Flakey, the control variables include linear acceleration and turning angle. 

In practice, each behavior is implemented by a fuzzy machine structured as shown in 
Figure 2. The Fuzzy State is a vector of fuzzy variables (each having a value in [0,1]) 
representing the truth values of a set of fuzzy propositions of interest (e.g., "obstacle-close- 
on-left"). At every cycle, the Update module looks at the (partially) interpreted perceptual 
input stored in LPS, and produces a new fuzzy state. The Fuzzy Rule-Set module contains 
a set of fuzzy rules of the form "If A then c" where A is a fuzzy expression composed by 
predicates in the fuzzy states plus the fuzzy connectives AND, OR and NOT; and c is a fuzzy 
set of values for the control variables. Max, min, and complement to 1 are used to compute 
the truth value of disjunction, conjunction and negation, respectively. An example of a 
control rule is: 

IF obstacle-close-in-front 

AND NOT obstacle-close-on-left 

THEN turn sharp-left 

Each "If A then c" rule computes the degree of desirability of applying the control values 
in c as a function of the degree at which the current state happens to be similar to A. The 
outputs of all the rules in a rule-set are unioned using the max T-conorm: the function 
computed in this way is meant to provide an approximation of the Dess function above.1 

JSee [Ruspini, 1991a; Ruspini, 1991b] for an account of fuzzy logic and fuzzy control in terms of similarity 
and desirability measures, and the use of T-norms and T-conorms in this context. 



This desirability function is fed to the Defuzzify module for computing one single control 
value. We presently do defuzzification according to the centroid approach: the resulting 
control value is given by 

JcDesB(c)dc 
/ DesB(c)dc 

4   GOAL-ORIENTED BEHAVIORS 

The behaviors discussed in the previous section are purely reactive: at each cycle, Flakey 
selects an action solely on the basis of the current state of the world as perceived by its 
sensors and represented in the local perceptual space. Engaging into purposeful activi- 
ties requires more than pure reactivity: we need to take explicit goals into consideration. 
For example, we may want Flakey to reach a given position at a given velocity, and still 
(reactively) avoid the obstacles on the way. 

In our approach, a goal is represented by a control structure. Intuitively, a control 
structure is virtual object (an artifact) that we put in the LPS, associated with a behavior 
that encodes the way to react to the presence of this object. For example, a "control-point" 
is a marker for a (x,y) location, together with a heading and a velocity: the associated 
behavior Go-To-CP reacts to the presence of a control point in the LPS by generating the 
commands to reach that position, heading and velocity. More precisely, a control structure 
is a triple 

S={A,D,C), 

where A is an artifact, D is a desirability function that encodes the preferred relation 
between Flakey and the artifact, and C is a context of applicability (see below). Such a 
control structure implicitly defines a goal: the goal to achieve, and maintain, the relation 
D between Flakey and the artifact A. 

Purposeful behaviors react to the presence of control structures in the LPS by generating 
a corresponding preference for controls. For example, a behavior for crossing a door reacts 
to the presence of a control structure 

51 = (Watfi, FOLLOW, clear-path) 

in the LPS by generating preferences for the commands that keep Flakey parallel to the wall 
Walll and at a fixed distance and proceeding at a given cruising speed. Hence, putting a 
control structure in the LPS is the basic way to communicate a goal to the fuzzy controller 
(provided that the controller includes a corresponding behavior). 

Purposeful behaviors are implemented in the same form as reactive behaviors (see Fig- 
ure 2 above), the only (formally invisible) difference being that the fuzzy state depends in 
general on properties of the artifact A of the control structure — e.g., its position relative 
to Flakey. For example, the FOLLOW-WALL behavior is meant to respond to the presence 
of the control structure 51 above; it includes the following rule: 

IF too-close-on-right(wall) 

THEN turn moderate-left 
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Figure 3: Blending reactive and purposeful behaviors. 

where wall is the artifact of the control structure to which the behavior is reacting (in this 
case, Waiii). 

5    BLENDING BEHAVIORS 

Many behaviors can be simultaneously active in the fuzzy controller, each aimed at one 
specific goal (see Figure 1). The fuzzy controller selects the controls that best satisfy all 
the active behaviors. However, not all behaviors are always applicable: for instance, the 
FOLLOW-WALL behavior is most applicable when the wall is near and the path is clear; 
when there is an obstacle on the way, an obstacle avoidance behavior (called KEEP-OFF 

becomes more applicable. To account for this, we associate with each behavior B a context 
of applicability, expressed by a fuzzy predicate Cxtg. If the behavior is reacting to a control 
structure, Cxtß is simply the context C of the control structure (as is the case for the dear- 
path in the 51 control structure above); otherwise, it is defined as part of the behavior (as is 
the case for the KEEP-OFF behavior). Given n behaviors {Bi,..., £„}, the fuzzy controller 
combines their desirability functions, modulo their contexts, into one overall desirability 
function 

Des(s, c) = (Desi(s, c) ® Cxtx(s)) © ... 0 {Desn(s, c) ® Cxtn(s)) 

and then chooses a most desired control for execution using the (1) above. We call this way 
of combining behaviors context-dependent blending of behaviors. 

In practice, context dependent blending of behaviors is implemented by discounting the 
output of each behavior using context-rules of the form 

IF Cxt,-THEN appWfli). 

The truth value of the context CxU is used as the Activation level input to the fuzzy 



(b> ■0 

(a) ® 

potential minimum 

Keep-Off .fc 
Reach 
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machine in Figure 2. The output of all the fuzzy machines, discounted by the corresponding 
activation levels, are then combined by © (MAX) and defuzzified by (1) to produce a tradeoff 
control (see Figure 1). 

For example, consider the task of following a corridor while avoiding possible obstacles. 
The following context-rules express the desired interaction between the obstacle-avoidance 
behavior KEEP-OFF, and the corridor following behavior FOLLOW. 

IF collision-danger 
THEN APPLY(Keep-Off) 

IF    NOT(collision-danger) 
THEN APPLY(Follow) 

Figure 3 shows the result of this blending. The bars show the activation level and the 
preferred controls (turn and acceleration) for each behavior, and the result of the blending. 
In (a), an obstacle has been detected, and the preferences of KEEP-OFF are dominating; 
later, when the path is clear, the goal-oriented preferences expressed by FOLLOW re-gain 
importance (b). 

Figure 4 shows a similar example where a REACH behavior, meant to reach the goal 
point marked on the right, is blended with KEEP-OFF. The plot in the lower part shows 
the activation level of each beahvior over time. In (a), Flakey has perceived the obstacle; as 
the obstacle becomes nearer, the KEEP-OFF behavior becomes more active, at the expenses 
of the REACH behavior, and Flakey responds more and more to its suggestions (aimed at 
turning away from the obstacle), discarding the suggestions of the REACH behavior (aimed 
at heading toward the goal point). The REACH behavior then regains importance as soon 
as Flakey is out of danger (b), and Flakey resumes its goal-oriented course.  Notice that 



an un-weighted combination (e.g., the vector summation performed in most potential-field 
approaches to robot navigation [Khatib, 1986]) would result in the production of a zone 
of local equilibrium (local minimum) as indicated in the picture: when coming from the 
left edge, the robot would be first attracted and then trapped into this zone. By using 
contexts, the "attractive power" of the goal is gradually shaded away by the obstacle as 
Flakey approaches the obstacle, so Flakey responds more and more to the obstacle-avoidance 
suggestions alone. 

6   CONCLUSIONS 

The use of fuzzy logic in Flakey's controller has resulted in robustness in face of uncertain 
knowledge and unpredictable dynamics; principled combination of concurrent activities; and 
a simple, modular implementation. In return, our study resulted in the development of the 
notion of context-dependent blending of behaviors as an effective technique for integrating 
multiple goals in a controller; we have shown how this technique can be implemented in a 
two-level hierarchical rule-based system. A similar technique for dealing with multiple goals 
in a fuzzy controller has been previously proposed in [Berenji et a/., 1990]. Our solution 
extends this proposal by allowing the introduction of strategic goals in the controller; and 
by dynamically modify their degree of importance by the context mechanism. 

Our controller presents several advantages over existing approaches to autonomous robot 
navigation. Firstly, the use of fuzzy logic at the movement control level results in improved 
robustness (e.g., more tolerance to sensor noise and knowledge imprecision), allowing our 
robot to make effective use of approximate and incomplete maps. Second, context dependent 
blending of behaviors provides a more principled approach to behavior combination when 
compared with other combination Schemas (e.g., [Arkin, 1990; Payton et a/., 1990]). Finally, 
fuzzy rules appear to be a more powerful and natural way to express goals than the pseudo- 
potential functions required by the so-called "potential fields" methods, widely used for 
robot navigation (e.g., [Khatib, 1986]). 

The performance of Flakey's controller has been demonstrated at the first AAAI robot 
competition in San Jose, CA [Congdon et a/., 1993]. The rules of the competition required 
that the robots perform purposeful activities in presence of unknown obstacles and moving 
people. Flakey accomplished the task and exhibited smooth movement and extremely reli- 
able reactivity, as best summarized in one judge comment: "Only robot I felt I could sit or 
lie down in front of." (What he actually did!) 
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Abstract 

Autonomous vehicle operation in real-world unstructured environments requires capa- 
bilities for coping with uncertain, incomplete and approximate information in real time. 
We report on our progress on robust autonomous navigation using techniques based on 
fuzzy logic, and show some experiments performed on the SRi's mobile robot, Flakey. 

1    Introduction 

Autonomous operation of an unmanned vehicle (e.g., a mobile robot) in a real-world un- 
structured environment poses a series of problems. Firstly, the knowledge about the envi- 
ronment is in general incomplete, uncertain, and approximate. For example, maps typically 
omit many details and temporary features, things may have changed since the map was 
built, and the metric information available may be inexact. Secondly, perceptually ac- 
quired information is not reliable: sensor's noise introduces uncertainty and imprecision, 
sensor's limited range and visibility (e.g., occlusion) introduce incompleteness, and errors 
in the interpretation process may cause false beliefs. Thirdly, real-world environments have 
complex and largely unpredictable dynamics: objects can move, other agents may modify 
the environment, and environmental features may change (e.g., seasonal variations). Fi- 
nally, vehicle's action execution is not completely reliable: the results produced by sending 
a given command to an effector can only be approximately estimated in general, and action 

execution may fail altogether. 

In this paper, we report on our progress in the development of techniques for robust 

autonomous navigation of an experimental vehicle based on fuzzy logic. The techniques 
we describe have been tested on SRI's mobile robot, Flakey. However, their scope reaches 
beyond this particular testbed, as they attack such basic problems as the use of approximate 
and incomplete global maps to accommodate poor prior information; the integration of fuzzy 
control and symbolic reasoning (e.g., planning) to obtain robust goal-directed behavior; and 

*On leave from Iridia, Universite Libre de Bruxelles, Brussels, Belgium. 



Figure 1: A simplified view of the architecture of Flakey. 

the use of fuzzy logic for trading off possibly conflicting goals in real time — e.g., to achieve 
a given location while promptly reacting to unexpected events (like a person walking in 
front of the vehicle). 

Figure 1 shows the architecture we developed for Flakey. The main data structure used 
during execution is the Local Perceptual Space (LPS), which provides a geometric picture 
of the space around the vehicle. LPS integrates information coming from the sensors, at 
different levels of abstraction (hence the different layers in the picture); and information 
coming from the planner. The latter consists of control structures, abstract descriptions 
of subgoals used by the fuzzy controller to orient the robot's activity. A set of control 
structures can be used to represent a decomposition of a complex task into more basic 
subtasks. Such a set, or plan, can be provided by a human programmer, or automatically 
generated by standard AI planning techniques [Saffiotti et ah, 1993a]. 

In the rest of this paper, we focus on two aspects of our work where the use of fuzzy 
logic is critical: movement control, and execution of complex navigation plans. 

2    Movement Control 

We base the low-level control of agent physical motion on a complex fuzzy controller (see 
Figure 1), whose role is to provide a layer of robust high-level motor skills. The controller is 
able to operate in real time under conditions of uncertainty, approximation and imprecision. 
The basic building block of this controller is a behavior. A behavior implements an atomic 
motor skill aimed at achieving or maintaining a given goal situation (e.g., to follow a given 
wall).   Following Ruspini's semantic interpretation of fuzzy logic in terms of desirability 



and utility [Ruspini, 1991a; Ruspini, 1991b], we represent each behavioral skill by means 
of a desirability function that expresses preferences over possible control actions from the 
perspective ofthat behavior's goal. (See [Saffiotti et ai, 1993b; Safflotti et al., 1993a] for a 
full account). For example, a behavior aimed at following a given wall prefers actions that 
keep the agent parallel to that wall and at a safe distance. Each behavior is implemented 
by a set of fuzzy rules of the form 

IF Ai THEN C, 

where Ai is composed of fuzzy predicates and fuzzy connectives,1 and C, is a fuzzy set of 
control vectors. For example, our robot platform, Flakey, includes a KEEP-OFF behavior, 
intended to keep the robot safely away from occupied areas (obstacles) as they are detected 
by the sonars. This behavior includes the following rule: 

IF obstacle-close-in-front 

AND NOT obstacle-close-on-left 

THEN turn sharp-left 

The controller can use any of the objects maintained in the LPS as its input. Purely 
reactive behaviors, intended to provide quick simple reactions to potential dangers (e.g., 
to avoid collisions) typically use sensor data that has undergone little or no interpretation. 
More purposeful behaviors, like reaching a given location, must take explicit goals into 
consideration. We represent goals into the LPS by means of control structures. A control 
structure is a triple 

S = (A,B,C>, 

where A is virtual object (an artifact) in the LPS; B is a behavior that specifies the way to 
react to the presence of this object; and C is a fuzzy predicate expressing the context where 
the control structure is relevant. An example of a control structure is: 

51 = (CPl,Go-To-CP,near(CPl)). 

CP1 is a "control-point", a marker for a (x,y) location, together with a heading and a 
velocity. The associated behavior Go-To-CP reacts to the presence of SI in the LPS by 
generating the commands to reach the location, heading and velocity specified by CP1. 
Go-To-CP includes rules like: 

IF    facing(CPl) 
AND too-slow-for(CPl) 
THEN accelerate smooth-positive 

Finally, near(CPl) specifies that this behavior should be used only when the robot is suffi- 
ciently near to the control point — that is, these are the conditions under which the rules 
in the behaviors are expected to produce the intended result. Our fuzzy controller includes 

'We use min, max, and complement to 1 for AND, OR, and NOT, respectively. 



several purposeful behaviors — e.g., FOLLOW-WALL, FOLLOW-CORRIDOR, CROSS-DOOR, 

FACE-POINT, etc — each implemented by four to eight fuzzy rules. 

Many behaviors can be simultaneously active in the fuzzy controDer, each aimed at one 
specific goal. For instance, a purposeful behavior for following a wall can coexist with a 
reactive one for avoiding obstacles on the way. The fuzzy controller selects the controls that 
best satisfy all the active behaviors. Satisfaction is weighted by each behavior's relevance to 
the current situation, as measured by the truth value of the corresponding context predicate: 
for instance, the FOLLOW-WALL behavior is most applicable when the wall is near and the 
path is clear; while KEEP-OFF becomes more applicable when there is an obstacle on the 
way. Context dependent blending of behaviors is implemented by combining the output of 
all the behaviors using Context-Rules (cf. Figure 1) of the form 

IF d THEN apply(Bi). 

The truth value of the context condition C, in the current situation is used as an activa- 
tion level to discount the output of the behavior B{ before combination (through the MAX 
operator). The result of the weighted combination of all the active behaviors is then de- 
fuzzified, and the command so obtained is sent to the vehicle for execution. This technique 
for combining multiple goals was originally inspired by the work of Berenji [Berenji et al., 
1990], and further developed by Ruspini [Ruspini, 1990]. 

3    Plan Execution 

Context dependent blending of behaviors is our main mechanism for composing control 
structures into complex control regimes, or plans. Intelligent performance of complex and 
varied tasks by an autonomous agent requires that the agent itself be able to generate these 
plans. The use of fuzzy logic in our control structures allows us to level the disparity between 
the symbolic, discrete level of traditional planning and deliberating mechanisms developed 
in AI, and the analogical, continuous level of physical control. In this respect, control 
structures embody a declarative representation of executable actions: from the execution 
side, complex control regime can be expressed by set of control structures blended through 
the context mechanism exposed above. From the symbolic reasoning side, we have shown in 
[Saffiotti et al., 1993a] how sets of control structures can be easily generated by traditional 
planning techniques. 

Figure 2 shows an example of execution of a plan by Flakey.   The core of the plan 
consists of the following four control structures: 

51 = (Obstacle, KEEP-OFF, near(Obstacle)) 
52 = (Corrl, FOLLOW, -mear(Obstacle) A at(Corrl) A ->near(Corr2)) 
53 = (Corr2, FOLLOW, ->near(Obstacle) A at(Corr2) A ->near(Door5)) 
54 = (Door5, CROSS, -<near(Obstacle) A near(Doorö)) 

This plan has been generated by a simple goal-regression planner based on a topological map 
annotated with approximate metric information. No obstacle was represented in the map. 
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Figure 2: Robust execution of a plan. 

Notice that plans are arbitrarily complex combinations of behaviors, possibly including 
information-gathering behaviors [Saffiotti, 1993]. This contrasts with other approaches to 
autonomous navigation based on fuzzy logic, where the agent generates and then follows a 
path (e.g., [Yen and Pfluger, 1992]). 

At any point during the execution of the above plan, the KEEP-OFF control structure 
(SI) will become active should an obstacle be detected by the sensors. Blending SI with the 
goal-oriented control structures S2-S4 results in Flakey pursuing its goals while smoothly 
going around obstacles (as in (a) and (b)). It also helps Flakey to compensate for imprecision 
in the map: in (c), 54 is relying on prior information to cross a door; as this turns out to 
be off by some 30 centimeters, KEEP-OFF intervenes to avoid colliding with the edge of 
the door (d); successively (e), both behaviors cooperate to lead Flakey though the opening 
which is more or less in the assumed position — e.g., through the actual doorway. 

Figure 3 shows how behavior blending works in the case of FOLLOW and KEEP-OFF 

when avoiding the first obstacle in Figure 2 (a) and (b). The bars in the picture show, for 
each behavior, the level of activation and the preferred controls (turn and acceleration); 
the bottom level shows the result of the blending. In (a), the obstacle has been detected, 
and the preferences of KEEP-OFF dominate and cause Flakey to turn right and slow down; 
later, when the path is clear (b), the goal-oriented preferences expressed by FOLLOW regain 
importance and Flakey resumes its main course. 

It is interesting to note that control structures also provides a mechanism to deal with 
the problem of self-localization in face of the approximate knowledge available in a map, 
ubiquitous in autonomous vehicle navigation in unstructured environments. Execution of 
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control structures includes anchoring the artifact in the control structure to a physical object 
(see [Saffiotti et a/., 1993a] for more on this point). For instance, consider a FOLLOW action 
whose artifact is a given wall: the initial location of the artifact is extracted from the map. 
When the action is executed, perception is used to try to match a perceived wall-like object 
with this artifact. If the match is successful (i.e., the position and orientation are within 
certain tolerance ranges), the artifact is anchored to the perceived object, and its position 
is modified to reflect the position of the perceived object. The robot's motion is always 
performed relative to the artifact, which operates as an assumption when perceptual data 
is not available (e.g., when engaging in a new corridor, or the wall is occluded by a vacuum 
cleaner). The elasticity of fuzzy rules allows behaviors to tolerate errors in the assumed 
position, and guarantee a smooth degradation of performance when this assumption is 
incorrect. 

The techniques discussed in this paper have been validated on many occasions. Flakey 
consistently performed innumerable runs inside the (unmodified) SRI's corridors and offices 
during normal working activity — the run shown above was one of these. Flakey's perfor- 
mance was also demonstrated at the first AAAI robotic competition (San Jose, CA, July 
1992) [Congdon et al., 1993]. The competing robots had to explore an unknown environ- 
ment, recognize ten poles, and map their location. Later, they were required to return to 
three poles chosen by the judges. Flakey successfully completed the tasks, while avoiding 
obstacles and people, and placed overall second. Flakey gained special recognition for its 
smooth and reliable reactivity, as exemplified by one judge's comment: "Only robot I felt I 
could sit or lie down in front of." (He actually did!). 

4    Conclusions 

A solution to the problem of autonomous navigation in real world unstructured environment 
should include capabilities for both planned and real-time reactive behavior in situation of 
uncertainty and ignorance. The techniques that we have presented in this paper make use 
of fuzzy logic for providing flexible behavior that can tolerate imprecision in knowledge 
and execution, and for smoothly blending different behaviors aimed at different concurrent 
goals. We have implemented our techniques on an experimental indoor autonomous vehicle, 



Flakey, and have integrated them with classical AI planning systems. Future work includes 
the automatic learning and improvement of fuzzy behaviors, the integration of more complex 
sensors (e.g., vision), and experiments in outdoor environments. 
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1    Introduction 

We address the problem of controlling the motion of an autonomous mobile robot operating in 
a real-world unstructured environment. One of the major problems of this task is the extreme 
weakness of the diferent types of knowledge that need to be used. In the general case, the prior 
information available is approximate and incomplete; sensorial input is noisy and limited by the 
sensors' range and environmental features (e.g., occlusion); the dynamics of the environment is 
largely unpredictable (e.g., people moving around); and robot's actions are not completely reliable. 
Hence, a controller for an autonomous mobile robot must be able to operate under conditions of 
uncertainty, approximation and imprecision. Moreover, the robot must operate at the time-scale 
of the environment, and consider multiple goals simultaneously (e.g., reaching a position while 
avoiding obstacles and people). In order to cope with these difficulties, a controller must provide 
the robot with (at least) capabilities for 

1. Real-time reactivity to unexpected contingencies; 

2. Robust, uncertainty-tolerating goal-directed activity; and 

3. Blending of multiple goals. 

We have developed a controller based on fuzzy logic that satisfies these requirements, and tested 
it on the SRI mobile robot Flakey. In this note, we give an outline of this controller, and show 
how it satisfies the requirements stated above. A deeper description of Flakye's fuzzy controller 
can be found in [Saffiotti et al, 1993b; Saffiotti et al, 1993c]. 

*This work has been performed while the first author was visiting the AI Center of SRI International. 
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Figure 1: General architecture of the fuzzy controller. 

2    The Fuzzy Controller 

Figure 1 shows the architecture used. The controller is centered on the notion of behavior. In- 
tuitively, a behavior is one particular control regime that focuses on achieving one specific, pre- 
determined goal, like avoiding obstacles, or reaching a given location. Behaviors take their input 
from a common storage structure, named local perceptual space (LPS), where perceptual data, 
interpretations built from these data, and artifacts (discussed later) are maintained. 

Following [Ruspini, 1990; Ruspini, 1991], we describe each behavior B in terms of a desirability 
function 

DesB ■■ LPS x Control -»[0,1] 

that measures, for each state s of the LPS and control vector1 c, the desirability DCSB(S,C) of 
applying control c in the state s from the point of view of B. In every given state s, a behavior 
B induces an preferential order -<B between possible controls in the obvious way: c' -<B C" iff 
Dess(s, d) < Dess(s, c"). For example, if the LPS state includes an obstacle on the left of Flakey, 
then right turning control actions will have higher desirability than left turning ones from the point 
of view of an obstacle avoidance behavior. The task of the controller is to compute -<B at every 
step, and choose a corresponding maximally preferred control. 

In practice, the controller is given approximations of desirability functions, written as sets of 
fuzzy rules of the form 

IF Ai THEN d (1) 

where Ai is a fuzzy formula composed of fuzzy predicates and fuzzy connectives,2 and C, is a fuzzy 
set of control vectors. Given a ruleset H, = {Ri,..., #„}, and a state s, the fuzzy controller first 
computes the desirability Desn(s, c) of applying control c in state s according to the rules H: 

Desn(s, c) = (A^s) ® Ci(c)) 0 ... 0 CM«) ® Ci(c)) 

and then chooses one control c to apply, using centroid defuzzification: 

c = 
f cDesx.(s,c)dc 

f Des-ji(s,c)dc 

(2) 

(3) 

'In the case of Flakey, control vectors include linear acceleration and turning angle. 
2In our implementation, we use min, max and complement to 1 for ® (AND), ® (OR), and 0 (NOT). 



At each cycle of the controller, all the rules are evaluated in the current LPS state, and a new 
control vector is generated.3 The perceptual processes that update the content of the LPS run 
asynchronously. 

It is the task of the programmer to make sure that Des-n is a close enough approximation of 
the intended desirability function — i.e., that the fuzzy rules produce the expected behavior. 

2.1    Reactivity 

The controller includes behaviors whose goal is to react to certain perceptual events in the LPS. 
These behaviors are typically based on data that has undergone little or no interpretation, and 
hence very quickly available. For example, the KEEP-OFF behavior is intended to keep Flakey 
safely away from unknown obstacles as they are perceived by Flakey's sonars. A typical rule of 
KEEP-OFF is 

IF      obstacle_close_in_front AHD HOT obstacle_close_on_leit 
THEH turn sharp_left 

The KEEP-OFF behavior includes four rules; the combination of these rules through (2) has been 
shown to produce effective maneuvers towards open areas, even in highly cluttered spaces. 

2.2    Goal-directed activity 

The controller includes "purposeful" behaviors that take explicit goals into consideration. Goals 
are represented by artifacts in LPS, as an imaginary line to follow: purposeful behaviors take these 
artifacts as input.4 For instance, the FOLLOW-WALL behavior includes rules like 

IF     ¥all_too_iar_on_right 
THEH turn aoderate_right 

Artifacts can correspond to real objects, like the wall above; these are normally placed in LPS 
based on prior information (e.g., map information), and are subsequently updated on the basis 
of what is actually perceived. The combination of artifacts and fuzzy logic compensates for some 
uncertainty: the artifact provides an assumption for action when the sensors are not "seeing" 
the wall; and the use of fuzzy logic guarantees a smooth degradation of performance when this 
assumption is incorrect. 

2.3    Multiple goals 

Many behaviors can be simultaneously active in the fuzzy controller, each aimed at one specific 
goal (see Figure 1): for instance, one for following a wall; one for keeping away from obstacles; and 
one for having the camera point at certain landmarks used for orientation. The fuzzy controller 
selects the controls that best satisfy all the active behaviors. However, not all behaviors are always 
applicable: for instance, the FOLLOW-WALL behavior is most applicable when the wall is near and 
the path is clear; while KEEP-OFF becomes more applicable when there is an obstacle on the way. 
Correspondingly, we associate to each behavior B a context of applicability, expressed by a fuzzy 

3The cycle time of our controller is 100 msecs, which is adequate to our platform. 

* Artifacts are typically provided by an external module, e.g., a planner. 
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Figure 2: Blending reactive and purposeful behaviors. 

predicate Cxtß- Given n behaviors {Bi,...,Bn}, the fuzzy controller combines their desirability 
functions, modulo their contexts, into one overall desirability function 

Des{s, c) = (Desi(s, c) <g> Cxti(s)) 8 ... 0 (Des„(s, c) <g> Cxtn(s)) (4) 

and then chooses a most desired control for execution. We call (4) context dependent blending of 
behaviors. 

In practice, context dependent blending of behaviors is implemented by weighting the output 
of each behaviors using meta-rules of the form 

IF Cxti THEN &pply{Bi) 

and then merging those outputs by a © T-norm (max, in our case), and defuzzifying with (3) to 
produce an overall tradeoff control (see Figure 1). 

3    Examples 

Context-dependent blending of behaviors is particular useful in combining purposeful action with 
the ability to react to unexpected contingencies. Figure 2 shows the result of blending the FOLLOW 

and the KEEP-OFF behaviors. The bars show the level of activation and the preferred controls 
(turn and acceleration) for each behavior, and the result of the blending. In (a), an obstacle has 
been detected, and the preferences of KEEP-OFF are dominating; later, when the path is clear, the 
goal-oriented preferences expressed by FOLLOW re-gain importance (b). 

Blending reactive and purposeful behaviors can also help in compensating for imprecision in 
the prior knowledge. Figure 3 illustrates this point. In (a), the CROSS behavior is relying on prior 
information about the position of the door to cross. This estimate turns out to be off by some 40 
centimeters (b), and KEEP-OFF intervenes to avoid colliding with the edge of the door. Later (c), 
both behaviors cooperate to lead Flakey though the actual doorway, by crossing the opening that 
is more or less in the assumed position. 

Many purposeful behaviors can be blended to produce a complex activity. The context mecha- 
nism is used to decide when each behavior becomes relevant: plans including sequential and parallel 
activities can be built in this way. [Saffiotti, 1993; Saffiotti et a/., 1993a] duscuss the integration 
of Flakey's fuzzy controller with symbolic planning. 
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Figure 3: Compensating for inexact prior knowledge. 

4    Conclusions 

The use of fuzzy logic in Flakey's controller has resulted in robustness in face of uncertain knowl- 
edge and unpredictable dynamics; principled combination of concurrent activities; and a sim- 
ple, modular implementation. In return, our study resulted in the development of the notion of 
context-dependent blending of behaviors as an effective technique for integrating multiple goals 
in a controller; we have shown how this technique can be implemented in a two-level hierarchical 
rule-based system. A similar technique for dealing with multiple goals in a fuzzy controller has 
been previously proposed in [Berenji et al, 1990]. Our solution extends this proposal by allowing 
the introduction of strategic goals in the controller; and by dynamically modify their degree of 
importance by the context mechanism. 

Our controller presents several advantages over existing approaches to autonomous robot navi- 
gation. Firstly, the use of fuzzy logic at the movement control level results in improved robustness 
(e.g., more tolerance to sensor noise and knowledge imprecision), allowing our robot to make effec- 
tive use of approximate and incomplete maps. Second, context dependent blending of behaviors 
provides a more principled approach to behavior combination when compared with other combi- 
nation schemas (e.g., [Arkin, 1990; Payton et al, 1990]). Finally, fuzzy rules appear to be a more 
powerful and natural way to express partial goals than the energy function used in the so-called 
"potential fields" methods, used in many approaches to robot motion planning and control (e.g., 
[Khatib, 1986]). 

The performance of Flakey's controller has been demonstrated at the first A A AI robot com- 
petition in San Jose, CA [Congdon et al, 1993]. The rules of the competition required that the 
robots perform purposeful activities in presence of unknown obstacles and moving people. Flakey 
accomplished the task and exhibited smooth movement and extremely reliable reactivity, as best 
summarized in one judge comment: "Only robot I felt I could sit or lie down in front of." (What 
he actually did!) 
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