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Abstract 

This is the first of a series of three devoted to the regularity of solution of elliptic 

problems on nonsmooth domains in IR3. The present paper introduces various weighted 

spaces and countably weighted spaces in neighbourhood of edges and vertices of poly- 

hedral domains, and it concentrates on exploring the structure of these spaces such as 

the imbeddings of weighted Sobolev spaces, the relation between weighted Sobolev spaces 

and weighted continuous function spaces, and the relations between the weighted Sobolev 

spaces and countably weighted Sobolev spaces in Cartesian coordinates and in the spher- 

ical and cylindrical coordinates. 

These well-defined spaces are the foundations for comprehensive study of the regu- 

larity theory of elliptic problem with piecewise analytic date in ffi,3, which are essential for 

the design of effective computation and the analysis of the h — p version of the finite ele- 

ment method for solving elliptic problems in three-dimensional nonsmooth domain arising 

from mechanics and engineering. 
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1. INTRODUCTION 

In engineering applications many problems in IR3 are characterized by partial differential 

equations with piecewise analytic data such as nonsmooth domains, abruptly changes of types 

of boundary conditions, piecewise analytic coefficients and boudary conditions, etc., for instance, 

the physical domains of structral mechanical problems often have edges and vertices, interfaces 

between different materials and material cracks. The solutions of these problems have strong sin- 

gularities at the edges and vertices and around the cracks, which make the conventional numerical 

approximation extremely difficult and inefficient. Hence comprehensive study on the regularity 

of the solutions of elliptic problems in Et3 with piecewise analytic data is of great significance 

not only for theoretical reasons but also for the desigh of effective computations and the optimal 

convergence of numerical method for these problems. 

The regularities of the solutions on nonsmooth domains are typically described in terms of 

usual Sobolev spaces and the asymptotic expansions where the solutions are decomposited into 

regular and singular parts (see [13,14,15,17,18,19,20,32,33,34,36,37,38,41]). Recently the classical 

weighted Sobolev spaces W^ and Yk
ß of finite order with Kondrat'ev-type and Maz'ya-type weight, 

respectively, were used to investigate the regularities of high-order derivatives of the solutions 

(see [35,40,42]). These regularity results are important and useful for the regularity theory for 

elliptic problems on nonsmooth domains and for solving these problems by conventional numerical 

approaches. But these results do not characterize sufficiently the class of solutions of the problems 

in applications. The solutions u(x) of many practical problems on polygonal and polyhedral 

domains may be analytic except at the vertices and edges, and their derivative of order k > 1 

may grow rapidly as x tends to the vertices or edges and as k increases. The regularity described 

by usual Sobolev spaces and the classical weighted Sobolev spaces Wjj and Vß is unable to reflect 

these natures of singularity, and the quantitative features of the growth of the derivatives of high 

order are totally neglected. These features are extremely important for numerical analysis and 

effective computations. Hence we need a new regularity theory for elliptic problems with piecewise 

analytic data, which allows us to construct a maximally effective numerical method and to achieve 

the optimal rate of convergence. It has been proved by the approximation theory of the h — p 

version of the finite element methods and confirmed by computational practices that the optimal 

rate is the exponetial rate with respect to the number of degree of freedom. 

We have found that the most proper regularity theory which best serve the goal of numerical 

analysis is the one described in the frame of countably normed spaces which provide us with 

qualitative as well as quantitative analysis of the solutions and their derivatives of any order. 

Based upon this regularity theory it has been shown theoretically and computationally that the 

exponential convergence of the h—p version of the finite/boundary element method can be achieved. 

The regulairty theory of this type for two-dimensional problems on nonsmooth domains have been 
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well established in 1980's. Here we refer to [4,5] and [27] for the boundary value problems of scalar 

equation and elasticity equations, to [10] for the eigen value problems and to [25] for the interface 

problems. These regularity results have successfully led to the proof of the exponential convergence 

of the h — p version for problems on polygonal domains. For the h - p version of the finite element 

and boundary element method we refer to [6,11,22,23,24,29,30], and refer to [2,8,9,21] for the h-p 

version in three dimensions, which has been addressed recently in 1990's. Since the regularity 

results in two-dimensions can not be directly and easily generalized to the three dimensional case, 

we have to establish a regularity theory for three-dimensional problems on polyhedral domains, 

which is much more complicated. The complexity of the singularity for the three dimensional 

problems is caused not only by the higher dimension, but also by the totally different characters 

of singularities, namely, edge singularity, vertex singularity and vertex-edge singularity. Hence we 

have to find proper weight functions and proper countably normed spaces in neighborhoods of edges 

and vertices separately so that these spaces can characterize precisely and sufficiently the singular 

feature in different neighborhoods of the domain. It is worth indicating that the structure of the 

dynamical weights used in this series is different from ones of Kondrat'ev-type and Maz'ya-type. 

The power of the weight for the m-th derivaties, 0 < m < fc, is fixed or decrease as m increase for 

functions belonging to the classical spaces V^ and W^, respectively. Consequently the spaces V^ 

and Wg must be of finite order. On the contrary the power of the dynamical weight associated 

with the spaces H^'' increases as m increases, which allow us to introduce the countably normed 

spaces Bl and CL to precisely reflects the nature of singularities on finite polygonal and polyhedral 

domains. Hence the regularity theory given in our series has obvious advantages in engineering 

applications. 

This series consisting of three papers is devoted to the analysis of regularity of the solutions 

of elliptic problems on nonsmooth domains in IR3 in the frame of countably normed spaces. The 

first paper concentrates on establishing the theory of the countably normed spaces B^ and Cl
0 

and the weighted Sobolev spaces furnished with the dynamical weights over polyhedral domains. 

The second one deals with the existence and uniqueness of the weak solution for elliptic problem 

with data given in the weighted Sobolev spaces H^', and analyzes the regularity of the solution in 

neighborhoods of edges of polyhedral domains. The regularities in neighborhoods of vertex-edges 

and inner-neighborhood of vertices are addressed in the third paper. 

In present paper (Part I) we introduce countably normed spaces with weighted Sobolev norms 

and weighted Ck - norms. As a framework for comprehensive study of regularity theory we shall 

explore the structures of these spaces qualitatively as well as quantitatively as to be sure that these 

spaces meet our theoretical and numerical purposes. In Section 2 we define various neighborhoods of 

edges, vertex-edges and inner-neighborhoods of vertice, and the weighted Sobolev spaces H^' , and 

the countably normed spaces BL in Cartesian coordinates on these neighborhoods and the whole 



polyhedral domain. Section 3 addresses the imbeddings of the weighted Sobolev spaces H^' into 

usual Sobolev spaces with fraction order and continuous function spaces. The weighted Sobolev 

spaces Tip and the countably normed spaces BL in cylindrical coordinates on neighborhoods 

of edges and in spherical coordinates on neighborhoods of vertices are given in Section 4, and 

the relation between these spaces and those in Cartesian coordinates are established there. We 

introduce in Section 5 the countably normed spaces C^ in weighted continuous function norm, and 

their relation with those with weighted Sobolev norm are fully addressed in this section. 

2. PRELIMINARY 

2.1. The Neighbourhoods Of Edges, Vertices And Vertex-edges. 

Let ft be a polyhedral domain in Ht3, and let I1;, i 6 1 = {1,2,3...,/} be the faces (open), 

Aij be the edges, which are the intersections of fj and fj, and Am, m € M = {1,2, ...,M} 

be the vertices of ft. By Jm we denote a subset {j £ 1 \ Am £ fj} of I for m G M. Let 

£ = {ij | i,j e I, f ,• D fj = Aij}, and let Cm denote a subset of £ such that Cm = {ij £ £ \ Am € 

f jflf j = Ajj}. We denote by Uij the interior angle between T,- and Tj for ij 6 C. Let T° = \Ji€V fj 

and T1 = Ui6v
r« where V is a subset of I and Af = I \ V.  For m € M, Vm = V n Jm and 

Afm=Afr\lm. 

Figure 2.1  Polyhedral Domain ft 

For effectively studying the regularity of the solution of elliptic problems on polyhedral domain 

we shall decompose the domain into various neighbourhoods of low-dimensional manifolds. 



We define a neighbourhood U£i.i5ii(A.ij) of the edge A;J, shown in Figure 2.2 and assume that 

A,j = {x = (xi,x2,x3) | x\ = x2 = 0,a < x < b}, as follows: 

Uen Aji^ij) = {xGfi|0<r = dist(z, Aij) < Sij,a + 6ij < x3 < b - 6ij}. 

It can be written as QSij x ISij with QEij = {(r,0) | 0 < r < e,0 < 9 < w^} and ISi. = 

(a + 6ij,b — 6jj), where (r,0,2:3) are cylindrical coordinate with respect to the edge Aij, s,j and 6ij 

are selected such that UCij ^{Aij) D fe = 0 for £ € I, ^ 7^ z,j. 

X 
1   > 

A12 

5 

— a 

I"1- 
// 

(b) V5,a(A1'A12) 

Figure 2.2 Neighbourhoods of Edges and Vertices 

(a) the neighborhood 11^,6^ (Aij); (b) the neighborhood 0Sm(Am); 

(c) the neighborhood V6m,^ij(Am,Aij); (d) the inner neighborhood 0Sm(Amy 

By Os„(Am) we denote a neighbourhood of the vertex Am, shown in Figure 2.2, 

Osm{Am) = {x£n\0<p = dist(i,Am) < Sm}. 

Here we assume that Am is in the origin and 0 < 6m < 1 such that Osm(Am) fl f* = 0 for any 

£ € (J \ Xm). We need further to decompose Osm{Am) into several neighborhoods of vertex-edge 

and an inner-neighbourhood of vertex. 



We introduce a neighbourhood Vsm^ij (Am, A,-*), shown in Figure 2.2, by 

V6mt(Tij(Am,Aij) = {x G ö6m(Am) | 0 < <f> < Oij} 

where <j> is the angle between the edge Ay, ij G £m and the radial from Am to the point x. We 

always assume that the vertex Am is at the origin and the edge Ay lies along the positive £3-axis. 

Let (<j),0,p) be the spherical coordinates with respect to the vertex Am and the edge Ay, then 

VSm,(Tij(Am,Aij) = Saii x ISm with ISm = (0,<5m) and S^ = {{<f>,6) \ 0 < <f> < atj,0 <0< u>y} 

oy G (0, f) is selected such that 

V«m,ffi,.(i4m, Ay) n VfimiffJfe>/(Aro, AM) = ATO    for all kt e Cm, kt # y. 

Next we define an inner-neighbourhood C?6m(i4m) of the vertex Am, by 

Ö5m(Am) = öÄM(Am)\   U   VSm,aii(Am,Aij) 

which is shown in Figure 2.2. 

Let #y < i£TOcos0y, and £y > ^Smsm<7ij for ij G Cm, m £ M. Then fto = ft \ 

{U7ne^{(!}«m/2(A™)Uye£m^l,/2,«ij/2(Ay)} contain no vertices and edges of the polyhedral do- 

main ft, which is called the regular region of ft, and fto f~l WEi>ifi(y(Ay) 7^ 0, fto H Osm(Am) = 0, 

fto H VämiCTiy(Am, Ay) ^ 0 for any ij G £m and m £ M. Meanwhile we note that WE(>?5(>(Ay) f~l 

v«m,^i(^™'Aii) ^ ^ for V G An and m G A4. 

For the sake of simplicity we shall write ZVy or W(Ay) Vm,y or V(ATO,Ay), (9m or C?(ylm) 

instead of ^.^.(Ay), V5mi(Tiy(Am, Ay) and ÖSm(Am). 

2.2. The Weighted Sobolev Spaces H^(ft) And Countably Normed Spaces B^(ft). 

By Hfc(ft), k > 0 integer, we denote the usual Sobolev space on ft with the norm 

IMIH*(O)= E ii^iikfli) 
cr<\a\<k 

where a = («1,02,03), |"| = ai + «2 + "3, Dau = D%*D%%D%*u = ux°ix<*2xa3 is the weak (or 

distributional) partial derivative. As usual, H°(ft) = L2(ft), Hj(ft) = {u G H2(ft) | u = 0 on T0}, 

MHHV) = £ ll-D0'ullLa(n) 

and 

|£>fcu|2 = Y, l^°wl2- 
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It is well known that the solutions of elliptic problems in polyhedral domains may be very 

singular. The usual Sobolev spaces are not sufficient to describe the natures of regularities of 

high-order derivatives of the solutions. Hence we shall introduce the weighted normed spaces and 

countably normed spaces which are defined in individual neighbourhoods of edges, vertex-edges 

and inner-neighbourhoods of vertices. 

Let r = r(x) = dist(z, A,j) for x G Uij and ßij G (0,1). The weight function is defined by 

(2.1) <W = {f>%+1"'' for \a'\ — a.\ + a.1 > 
for \a'\ < £. 

The weighted Sobolev space H»', (Uij) and the countably normed space B^.(ZYjj) with integer k 

and £, k > £ > 0 are defined as 

^(W«) = {«IIMIH^(MO)=   E  ll<(*)^*(W,) < °°} 

and 

Bj,.(Wy) = {u G Hj;J(Wy) for aU * > I, and \\9a
ßfj{x)Dau\\V{f4..) < Cdaa\}. 

Hereafter da = d^d^d^3 and a! = atila2\a3l, the constants C > 1 and di > 1 are independent 

of a. 

Next, let p = p(x) and (j> = <j>{x) be as before for x G Vm,ij- We define a weight function for 

integer £ > 0 and a pair of real numbers ßm,ij — (ßmißij) with ßm G (0, |) and /3jj € (0,1) 

f p^+lal-f(sin^+la'l-f,    for |a'| = at + a2 > £ 
$£f t..(x) = { /™+|aM, for |a'| < £ < \a\ 

( 1, for \a\ < £, 

and we have the weighted Sobolev space with integer k > £ over the neighbourhood Vm,jj 

Ov"*) = {u i IHI
2
H- (v.,) = E ii<,(*)^ii2L*(vm,,) < 00} H f'm,a •"        L      a„^ ,.(vm,ij) 

\a\<k 

and the countably normed space 

BL,„(V»Mi) = {u e H51,-(v»».y) for all fc > A and \\*a
ßf.(x)Dau\\La{Vm<ij) < Cdaa\}. 

We now introduce a weight function in inner-neighbourhood Om of the vertex Am with an 

integer £ > 0 and a real number ßm G (0, |) 

*«.^,N_/Ppm+|0,M,    for|a|>£ 
^W~\l, for|a|<^ 

with p = /»(x) being defined as before and define the weighted Sobolev space on Om with integer 

k>£ 

n£(om) = {u | ||«||aHj, ö   = £ ||^(,)^,||2
L2(öm) < oo} 

M<fc 
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and the Countably normed space 

KßJÖm) = {u G Hjf (Om) for all k > I, and \\*£(x)D°u\\L2{om) < Cdaa\) 

By ß we denote a multi-index (ßm,ßij,m G .M,ij G C) with /3m G (0, \) and /3y G (0,1). 

Then the weighted Sobolev space H^(fi) over Q is a set of functions such that their restrictions 

belong to Hfc(ft0), H^(^), Hj£(Om) and Hj£ ..(Vmiij) for all tj G £m and raG^, furnished 

with the norm 

IHH*/(o) = IHlH*(no)+ElHlH^.(Wl7)
+ E llull2H^(aro) 

+ E E IMILM ..(v..«)- 
m£M ij€Cm 

The countably normed space Bi(fi) consists of all functions such that their restrictions belong 

to Be
ß (Uij), Bßm(öm) and Bßm ..(Vm,y) for any ij G £TO and m G M, and their restrictions on 

fto are analytic. 

Although /? is a multi-index, it has local interpretations in the individual neighbourhoods, 

namely, ß = ßm in the inner-neighbourhood öm, ß = ßij in the neighbourhood Uij and ß = 

ßm<ij = (ßm,ßij) in the neighbourhood Vm,y. Consequently, we shall write H^' (Öm) = Hß'm(Öm), 

Hj^(Vm,y)   =   HJi^V^y),  Hj'(Wy)   =   Hj£(Wy),  B$(dm)   =   BßJÖm), BjoCy)   = 
BßmJ

Vrn,ii), B$(Wy) = B^(Wy), ete. 

3. IMBEDDINGS OF H^(ft) 

In this section we shall prove imbeddings of H^(O) into spaces of continuous function and 

fractional-order Sobolev spaces. These imbedding theorems are of great importance not only for the 

regularity of the solutions for elliptic problems on polyhedral domains, but also for the numerical 

approximation for these problems (see [8,9,21]). 

3.1. Imbedding Of Hg' (0) Into Fractional Order Sobolev Spaces. 

For non-integer s > 0, the space Hs(fi) is defined as a fractional order Sobolev space (see [1]). 

Lemma 3.1. Let u G Hßf.(Mij) with ßij G (0,1), and u(x) = 0 for x = (xi,X2,x3) G Uij with 

r - (x\ + x\)l2 > \dj. Then u G H1"1"*^) for 0 = 1 - ßtj -e,e>0 arbitrary, and 

(3-1) \\u\\n^[uii)<C\\u\\B2.2(Uij). 

Proof.  Let Uij = U£ij,Sii = Qe^ x h^ with ISij = (a + %& - Sij) and Q£i. = {x = (xi,x2) \ 

0 < r = (x\ + x\)% < £jj,0 < 0 < uiij}. For x0 - (x0,i,x0,2) = (r0cos(cjy/2),r0sin(wjj/2)) with 



ro G (0,£y/2) we let U$ = {x = (Xl + x0,i,x2 + £0,2,23) G U{j | (a? + x\)% < e,-j/2}.  Then 

obviously £/£? C Wy for any r0 G (0,£,j/2). 

Define now v0(x) = u(xt + x0,i,x2 + x0t2,x3) for x G Q£ij/2 x ^y and vofa) = 0 for a; G 

ZYij \ (5£ij./2 X hij), and w0(a;) = u(x) - v0{x). Then v0 G H2(ZYtj) and w0 G H1^). Further we 

have 

(3.2) IM*)llm(wy) ^ CIMIm^.-,-) 

and 

H^lll^) = 
M \a\=2 JUi> 

[    \D2u\2dx 
JU:P 

< 

< r-2ßii  I    \D2u\2r2ß" dx. 
Julf 

which together with (3.2) implies 

(3-3) I^OIIH^.,) < C^^II^IIH^.^)- 

Let now x G Uij, xT = (x\ + TX0,I,X2 + TXO,2,XS), 0 < T < 1. Then 

f1 d f2 _ 
-w0(x) =  /    —u(xT)dr =   I   xo-(y^A){xT)dT 

where Vs = (äf~? äf~)- Hence we have by Schwartz's inequality, for 0 < s < \ 

\WQ{X)\ <r0       \(S7su)(xT)\dt 
Jo 

therefore 

HIIL»(WW) < Cr2 [    dx f \(DX
V){XT)\*T

U
 dr 

JUij        Jo 

= Cr2 f  T2sdr /      {D^fdx. 
Jo Ju^0 

Selecting s = 0 we get 

(3-4) II«>O||L»(W0-) < C»"O||U||HI(M0-) < Cro||«||Ha.a(w   ) 
f>ij 

with C independent of r-Q. 



Note that r = (x2 + x2)2 > rr0 for x e Uj[°. Then we have 

ll-D^ollLar« )<Crl [ T21'dT I     \D2u\2dx 
' Jo JuTJ° 

< Cr2 I' r2s(rr0r
2ßi' dr I      \D2u\2r2ß- dx 

Jo JuTT° 

Due to the assumption that ßij < 1, we can select s — ^- <\, which leads to 

(3-5) UD^OIIL^.) < CT$-ßii)\\«U"{Uii) 

with c depending on ßij, but not on TQ. Combining (3.4) and (3.5) we have 

(3-6) lko||HM^)<^1_/3,i)|l^llH^.(Wu.)- 

Using the Ä'-method for interpolation, (see [12]) we define 

K(u,t)=       inf      (\mHHu..} + t\\v\\H2iu..)) 
ipen (Uij) 
0£H2(W,i) 

<p+tp=u 

Obviously by selecting ij) — u and (p = 0 we get 

(3-7) K(u,t) < ||u||Hi(Mw) < IkllH^.(üy)- 

Selecting cp = 0 and tp = u>o gives us 

(3.8) K(u,t) < C\\u\\Hr{u )(r0
1-ßii) + tr-ßii). 

The norm of the space H1+e(Uij) is defined (see [12]) 

M\u^(uii) = I   \reK(u,t)\2j. 

By (3.7) and (3.8) we have 

/oo jj roo 

|r^(t,,oia*<||<«(Mli)j[-   t-1-2*^ 

< ^\M\l2,2 

£ \r°K{u,t)\2d± < C\\u\\2H^(Uij) j\t-
2^r^-^+r2^r-2ß-)dt. 

By selecting r0 =■ t and 6 = 1 - ßij - e, e > 0 arbitrary, we obtain (3.1). 

The lemma now enables us to prove the imbedding theorem. 
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Theorem 3.1. Hj£(Z/y) is imbedded into H1+e(Z4/) for ßtj e (0,1) and 9 = 1 - ßy - e, 

e > 0, arbitrary. 

Proof.   Let y>(f) € C°°(IR^) such that <p(0 = 1 for 0 < £ < | and y>(£) = 0 for £ > 1.   For 
9 9 o 

u € Hß'..(Uij), define v(a;) = «(x)(/)(j2L) and w(a;) = u(a;) - v(a;). Then v(a;) = 0 for x e U,j with 

r > j€ij, and 

IMIH|.
2
(«0) < c\\u\\Ha,a(Uii). ■ 

Then applying (3.1) to v implies that v e H1+$(Uij) for 9 = 1 - /?,-j - e, £ > 0 arbitrary, and 

(3-9) IMIHI+»(W„-) <C|I
U

IIH^(^)- 

Note that Supp.w C UEijSij \WeJi/2,«.-;> and 

IMIH^) < c\\u\\H^{Uij). 

Hence u G H1+e(£/,j) with 0 = 1 - /% - e, e > 0, arbitrary, and the proof is completed. ■ 
The arguments can be carried out for the space Hßf. (Uij) with any integer t > 1, and we have 

the Corollary 3.1. 

Corollary 3.1. Hj£(Wy) is imbedded into H'_1+9(Wy)'for jfc > * > 1, /% G (0,1) and 9 = 

1 — ßij — e, e > 0, arbitrary. 

Next, let us consider the imbeddings of Hß'^(Öm) into a fractional order Sobolev space. 

Lemma 3.2. Let u € Hß'2(öm) with ßm € (0, |) and u(a:) = 0 for x = (3:1,3:2,3:3) € Öm with 

p = (x\ + xl + ar|)4 > f <5m. Then tt e H1+e(Öm) with 0 = 1 - /?m - e, £>0 arbitrary, and 

(3.10) ll«llHi+»(em) ^ cWuWn™{ön) 

Proof. 0TO is a star-shape domain with the center at the vertex Am (the origin). Let x0 = 

(*o,i5*o,2, «0,3) € Om with /90 = (a'o,i+a;o,2+a:o,3)^ G (0, |tfm). Then analogously as in Lemma 3.1 

we define 

0% = {x = x + x0 \ x <= Om,\x\ < ^>m}. 

Then O^ C Om for any p0 < \öm. Now we will proceed very similarly as in Lemma 3.1. Define 

v0(x) - u(x + x0) and w0(x) = u(x) - v0(x). Then v0 € H2(Öm) and w0(x) = H1^™). It can be 

proved in the same way 

(3.11) IKIIH^ö») < cPößm\\u\\uriöm) 

and for / = 0,1 and s € [0, |) 

\\Dlw4lHÖ     < Cpl Cr2sdT I      \D,+1u\2dx. 
L (Um) Jo JoT

m
P0 
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Noting that p = (x\ + x\ + x\)? > rp0 for x € Om
Po and ßm < \ we have for s = 0 

(3-12) IKU2
L2(öm) < Cp2\\u\\2HHÖm) < Cpl\\ufHr ldm) 

and 

(3.13) 

(3.12) and (3.13) yield 

D'mWlvn  ^ < Cpl(1-M I' T-W™ dr [      \D2u\2p2ß™ dx 
K  m> Jo JöT

m
P0 

< rn2{1~ßm) . Iltill2 

l-/9„ 
(3-14) IKI|Hi(öm) < ^Po    mIMIH£(öm)- 

Defining the fractional order space H1+8(Om) by Ä'-method and arguing as in Lemma 3.1 we 

get u e H.1+e(Öm) for 0 = 1 - ßm - e, e > 0 arbitrary, and (3.10) holds. ■ 
Analogously, Lemma 3.2 leads to Theorem 3.2 and Corollary 3.2. 

Theorem 3.2. H^(Öm) is imbedded into H1+e(Om) for ßm € (0, |) and 0 = 1 - ßm - e, e > 0 

arbitrary. m 

Corollary 3.2. Hj£(0m) is imbedded into H^1+e(Öm) for ßm(0,\), k>£>land0 = l- 

ßm — e, e > 0 arbitrary. ■ 

We now address imbeddings of H^    (Vm,fj) into H.1+e(Vm,ij) with 0 < 0 < 1. 

Lemma 3.3. Let u <E H^ .. (Vro,y) witA /?miy = (ßm,ßij), ßm € (0, i), /% G (0,1) and «(a:) = 0 

for x = (xi,x2,x3) € Vm,jj) with p = (x\,+x\ + x\)% > \8m. Then u e H1+e(Vm,ij) with 

0=1 — max(ßij,ßm) — e, £ > 0 arbitrary, and 

(3-15) IMIm+»(vmiJi) <<?IMIH
2
'
2
 ..(vmii)- 

Proof. The domain Vm,ij ls a star-shape domain with the center at the vertex Am (the origin). 

Let x0 = (zo,i,a:o,2,a:o,3) € Vm,ij with p0 = (xlfl + xl<2 + a?§>3)5 € (0, \Sm). Then analogously as 

in Lemma 3.2 we define 

Vm,ij = \x^x + x0\xe Vm,ij,p{x) < -6m}. 

The Vm°jj C Vm,ij for any p0 < \bm. Let us define v0 = u(x + x0) and w0 = u{x) - v0. Then we 

have 

(3-16) ||vo||Hi(vm,ti) < IMlH»(Vm,w) 
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and 

(3.17) \\D2v0\\hiVmii) = /       £ \D"v0\
2dx < I      \D2u\2dx. 

Jv-M |„|=2 -/v^,.. 

Let us note that p = p(x) > p0 for any x e V£tij and r = r(x) = (x\ + x\)? = p(x) sm<f>(x) > 

r0 = r(x0) = po sin^o, where <f> = <j>(x) and <^0 are the angles between the edge A<j and the radial 

from the origin to x and XQ, respectively. If ßm > ß^ we have 

/       \D2u\\sm<j>)2^p2P™dx=  I       \D2u\2(-)2ßiip2^dx 

>rlßii  I      p2^-^\D2u\2 dx 
Jv"0.. 

(3.18) 
> rJA'p5(A"-A'> /       \D2u\2dx 

Jv"0.. 

= pf™{sm<t>0)
2ß"   I       \D2u\2dx. 

Jv"0.. m,tj 

Analogously we get for ßm < ßij 

I       \D2u\2{sm<j>)2<3"p2^dx =   (       \D2u\2r2^pW">-^dx 
Jvpo Jvpo 

m,tj rn,tj 

(3.19) -r°Ai/'o    \D2ufdx 

>p2
0
ßii(sin<t>0)

2ß<>   I       \D2u\2dx. 
Jv"0.. m,ij 

In either cases we always have that for 7 = max(ßij,ßm) 

IK||H2fv*°  1 ^ /        \D2u\2dx 
(3.20) Jv 

Analogously as in the proof of Lemma 3.2 we get 

H^IIW.,«) <Cplfr2sdrJTpo \Dl^u\2dx 
m,\j 

with s e [0, |) and / = 0,1. Therefore, for / = 0 and s = 0 we have 

IMIl^V™..-,) <C>olMlH2(Vm,.y)' 

and for / = 1 and s = ßij/2 < \ we have by (3.20) 

^'"OIIL^V..«) < cpl[ T2*(Tp0T
2-y(Sm<f>0)-

2*>||„||aH„ y)dr 

m,lj 

V.:_  JL   \-2&,ii_.ii2 
2,2 <Cp0-^(sin^o)-2^||«||2H.„    (v     , 
"ra,ij 

^^-^(sm^J-^llull^ H-|i.(Vro,ii)- 
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Theorem 3.3. Hj£..(Vm,y) is imbedded into H1+e(Vm,ij) for/3m?ij = (ßm,ßij) ßm € (0,|), 

ßij € (0,1) and ö = l — max(ßm, ßij) — e, e > 0 arbitrary. 

Proof. For u € H» ..(Vm,jj), defined u(a;) = y>( 1^)^(2;) and w(a;) = u — v(x) when ty?(£) is a 

C°°-function as before. Then v(x) C H«' ..(Vm>t-j) and vanishes for x € Vm,ij with /»(a;) > \bm. 

By Lemma 3.3 u(x) G H1+e(Vm,jj) with 0 = 1 -max(ßm,ßij) -£, £ > 0 arbitrary, and (3.15) holds 

for v(x). Further note that Supp.w(a:) cVi = Vaiit6m \ V<TjJ,firo/2- Then w(x) € H^'.2(Vi) and 

Due to Theorem 3.1 w(x) e H1+e'(Vi) with 0' = 1 - ßtj - e, e > 0 arbitrary, and 

IMIHH-O'O'P < ^II^IIH^.^) ^ cNlHj;v.(vm,i,-)- 

This establishes the desired imbeddings. ■ 

Corollary 3.3. HJ£ (Vm,y) is imbedded into Ue-1+e(Vm,ij) for k > £ > 1 and 0 = 1 - 

m&x(ßij, ßm) — e, e > 0 arbitrary. ■ 

Let us note that ft = Ü0 U(ILPÄ) U (ILGJU &m)u (U««£m Vm,,-j) and that fi0 n Wy # 0, 

fto H ÖTO 7^ 0 and ft0 n Vm,,-j ^ 0 for all ij G £m and m € M. Due to the definition of the space 

~H.2ß'
2(Q), M € H2(ft0) C H1+e(ft0) for any 0 G (0,1). Combining the theorems above together we 

have 

Theorem 3.4. Hj,2(ß) is imbedded into H1+8(ft) witi 0 = minij,m(l - ßm, 1 - ft,-) - e, £ > 0 

arbitrary. 

Corollary 3.4. H^(ft) is imbedded into He~l+e(n) with k>£>land0 = mmy,m(l -ßm,l- 

ßij) — e, e > 0 arbitrary. ■ 

3.2. Imbedding Of H.k/(ti) Into The Space Of Continuous Functions. 

The continuity is a very important property of the solution, and it is essential for approxima- 

bility of the solution by numerical method. The regularity of the solution in terms of Sobolev space 

H*(Q) implies the continuity in the three dimension if s > |. The solutions of elliptic problems 

on polyhedral domains belong to H^'2(0) but not necessarily to EF(ft) with s > |. Therefore the 

imbedding results of H»' (ft), k > £ > 2 into spaces of continuous function are of great impor- 

tance to the regularity theory of the solution of elliptic problems in polyhedral domains and the 

approximation theory of numerical methods. 

As in previous sections we address the imbeddings in each neighbourhoods of edges and vertex- 

edges and inner neighbourhoods of vertices, and we start with the imbedding of H^'. (Hij) into 

C°(Öy). 
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By W1+0i2(]R3), 0 < 0 < 1 we denote the completion of C°°-functions with the norm 

/oo 

IK>a;3)|lHi+»(iR=)rfa;3+ J2 II^ML^IR») + II^IIHM 
-oo I    i    - 

IR3)- 
M=l 

Then we have the following lemma 

Lemma 3.5. W1+fi2(]R3) is imbedded in C°(IR3). 

Proof. Since Cg°(IR3) is dense in W1+9)2(IR3) it is sufficient to show that for v(x) € Cg°(]R3) 

(3-23) IIUI|C0(IR3) < C||»Hw1+,>a(lR3)- 

Let V(£) denote the Fourier transform of v(x), i.e. 

1 /-OO 

V(0 = F(v) =      t-     /     v(x)e-*-xdx 

and let p2 = £3
=1 tf, r

2 = £2
=1 th and tf(0 = 1 + p2 + r2<1+*) + r2£2 + £■ Then 

v(x)=—L-[  v(0e-ix-Ut; 
(V2TT)

3
 JM

3 

and 

ll*1+..a(R») = (^)8j[lSinOI2WOI2«. 

By Schwartz's inequality we have 

Let 5i be a ball centered at the origin with radius = 1 and Q\ = {£ | |£| > 1, |£3| > ar} and 

•^l = {£ I l£l ^ 1) l&l < arl with some a > 1. Then we have 

and 

/   ^d£<C [°° \dp<C. 
JQ1 W J\   P

2 

For U Su V2 > £3
4 + r2e3

2 + rW+» > ^(£3
4 + r2£2 + r2«£2 + r2^), then 

Vi+«2 

/oo 

This completes the proof. ■ 
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Theorem 3.5. Hj£(Wy) is imbedded in C°(Z4,). 

Proof. Let Uij = Q£i x /{r, and assume without losing generality that 1$^ = I = (0,1). By 

Fubini's Theorem u G Hß*(Qe>j) for almost every x3 G I. According to the extension theorem of 

[3] we can extend u to a function in H^'.2 (IR2) with compact support Q C IR2, and 

(3-22) IMIH^.OR*) = IMIH^.(Q) ^ CW
U

\\H™(QC>J) 

which implies the extended function denoted by u again belongs to H^2(IR2 xJ) with preserving the 

norm. Using the technique of "finite-order reflection" (see e.g. [16,36]) we can extend the function 

u to IR2 X (-1,1), then extend it to K2 X /*, I* = (-1,2) in the same way with preserving the 

norm. Set v(x) = <p(x3)u(x) with <p(xs) being a C°°-function such that tp(x3) = 1 for x3 G / and 

<p(x3) = 0 for x3 i I*. Then v(x) G H^IR3) with support contained in Q x /*, and by (3.22) 

IK^IIH^.CIR
3
) = II

V
(
2;
)IIH

2
/.(QX/-) ^ C'II^IIH

2
'
2
^)- 

Hij "ij Pij 

By Theorem 3.1 v G H1+e(Q x /*) with 0 = 1 - ßtj - e, e > 0 arbitrary, which implies v G 

W1+fl)2(IR3), and 

IMIwi+,,a(iR3) ^ C
W
U

\\H
2
'
2(u^y 

By Lemma 3.5 v G C°(IR3), and (3.23) holds. Note that v(x) = u(x) for x G Uij. Then the 

imbedding follows at once. ■ 
We next consider the imbedding of H2

3'
2(0TO) into C°(Om). To this end we shall define an 

extension operator which continuously maps H2
3'
2(C>m) into H2

3'
2(]R3). The Stein extension may 

serve this purpose, hence we follow closely the notation and arguments of [43, Chapter 6, Section 3] 

in three-dimensional setting. 

-Let (p(xi,X2):JR? —► IR1 be function which satisfies the Lipschitz condition: 

\<p(x) - <p(x*)\ < M\x - x*\,    for x = (x1,x2) G IR2 and x* = (arj,^) G IR2, 

and let D = {x = (x,x3) G IR3,a>3 > <p(x)} be an open set in IR3 which is called a special Lipschitz 

domain. We assume that y>(0) = 0. For x £ D, we let 6(x) denote the distance from x to D, and 

let A(x) be the regularized distance as constructed in [43, p. 171] such that 

(3.24) dS{x) < A(x) < C2S(x),    for x ecD = JR,2\D 

where the positive constants C\ and C2 depend only on M, and A(x) G C°°(CD) satisfying 

(3.25) \Da&{x)\ < Ba\t(x)\^a\ 

with BQ independent of a;. 
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For any x0 G CD and a real number K > m, TK,X0 = {x = (x, x3) : x3 < <p(x0), \x3 - <p(xo)\ > 

K\x — XQ\} denote a lower cone with the vertex at (xo,<p(%o))- Then TntXo D D = {(xo,<p(xo)}, 

and for x G CD 

(3.26) S(x) > (1 + I(-2)-^2(<p(x) - x3). 

Hence due to (3.24) 

<p(x) - a* < (1 + K~2)h(x) < -J-(l + K-2)*A(x) = C3A(x). 
w 

According to [42] d = \ and C3 = 5(1 + A'"2)*. Let S*(x) = 2C3A(x). Then 

6*(x,x3) > 2(tp(x)-x3) 

and 

(3.27) S*(x,x3) > 2\x3\,    if (p(x) = 0. 

Let if) be a smooth function defined on [l,oo) which satisfies 

/oo                                     yoo 

i/>(x)d\=l, rj}(\)\kd\ = 0,    A; = 1,2,  

Let f(x) be defined on D. We then define the extension Ef by -E/(a;) = /(a;), a: G -D and 

/oo _ 

f(x,x3 + \6'{x))il>(\)d\,    x£D. 

Let 5° G IR2, and suppose that <p(x°) = 0. Then for x = (x°,x3) € CD, x3 < 0 and due to 

(3.24) we have for A > 1 

(3.30) x3 + X6*(x) >x3 + 6*(x) > x3 + 2\x3\ = \x3\, 

and 6(x) = dist(a;,.D) < distfa:, (x°,ip(x0)) J = (p(x°) - x3. Then we have 

(3.31) 6*(x) = 2C3A(x) < 2C3C26(x) < 2C3C2{<p(x°) - x3) < 2C3C2\x3\ = a|x3| 

with a = 2C2C3. Here we used the assumption that <p(x°) = 0. Letting s = y + \6*(x) and using 

the fact that |V>(A)| < £ (see [43, p. 187]) we have for x = (x°,x3) € 
CD with <p(x°) = 0 

«*«   i. 
/•oo 

(3.32) \Ef(x°,x3)\<A \f(x°,s)\, 
JXi+XS'(x) (S-^J" 

by (3.30) and (3.31) 
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r°° i 
<A*\x3\ /     \f(x°,s)\-ds 

•/Is., I s 
1*3 I 

where A* = aA. This estimate is an important property of the extended function Ef(x), which 

will be used in the proof of Lemma 3.6 and 3.7. 

Let He/(D), ß\ e (0, *•), 0 < £ < 2 be the space of functions with the norm 

II*,<(D)= £ ii*^a«m»(i» 
0<M<* 

when the weight function is given as before 

*aA*) = {&'f1' fT\alr£; ßl v  '      \1 for \a\ < £, 

withP(a;) = (EL^I2)i- 
Lemma 3.6. E is bounded map: H%(D) -► H^(1R3) for 0 < i < 2. 

Proof. Let us fix 5° € IR2 and assume that ip(x0) = 0. For x = (x°,x3) e 
CD 

p(x°,x3) = \x°\2 + \x3\2 < \x°\2 + s2 = p(x°,s)   for s > \x3\, and 
r°° df 

\p^(x°,x3)Ef(x°,x3)\<A*\x3\ /     p^(x0,S)\f(x0,s)\-. 
J\x3\ 

S 

Therefore 

/° f°     /   f°° //,\ 2 
p2^(x°,x3)\Ef(x°,x3)\2dx3<A*2 /     (/    p2A(*o,*)/(*0,*)") l*3|2d*a 

-oo ./-oo KJ\x3\ 
S 

= A*2 riT p2^(xo,s)f(xo,s)^)\x3\2dx3. 
JO      XJ\x3\ 

s   ' 

Now we quote the Hardy's inequality from [43, p. 272] 

(3.34)       (r (r F{S) ds^ v-1 dtY <v- (r ^FWS
1
-* &) *. 

Letting F(s) = pP1(x°,s)f(x°,s)/s2, p = 2, 7 = 3, and applying (3.34) to the righthand side of 

(3.33) we get 

2 

(3.35) 

f    p2^(x°,X3)\Ef(x°,X3\dx3 < A*2J~^Pßl(£°>s)f(£0'^   s2ds 

/•oo 
<A*2        p2^{x\s)\f{x\s)\2ds. 

Jo 

If <p(x°) ^ 0 by a simple translation in £3 we get 

p2^(x°,x3)\Ef(x0,x3)\2dx3 < A*2 

18- 

/<fi(x°) /-OO 
p2ßi(x0,x3)\Ef(x0,x3)\2dx3 < A*2 /       p2^(xo,s)\f(xo,s)\2ds 

-OO J(fi(x°) 



which implies 

/oo /-oo 

p2^(x°,x3)\Ef(x0,x3)\2 dx3 < A*2 /       p2^(x0,s)\f(x0,s)2ds. 
-oo Jw(x°) 

Integrating both sides over x° € IR   gives 

\\pßlEf(x)\\LH^) < C\\pßif(x)\\LHD) 

which is the desired result for £ = 0. 

Now we turn to the case £ = 2. It has been shown in [43] that E is a bounded map: H1(D) -» 

H1(IR3). It remains to estimate the second derivative of Ef(x). Differentiating Ef(x) for x G CD 

gives us 

92^X) = J°° hi {x,x3 + \6*(x))il>(x) dX + 6*xi (x) j™ fXlX3 {x, x3 + X6*(x))X^(X) dX 

/oo 

fxi{x,x3 + X6*(x))X2i>(X)dX 

/oo 

fX3(x,x3 + X8*(x))Xij;(X)dX. 

Let x° £ IR2 be fixed and <p(x°) = 0. Using the facts that \i/)(X)\ < jz, £, ■$: for A > 1, and 

handling the first three terms of (3.38) in the same way for Ef(x) before we have for OL\ + a3 = 2 

/•oo /-oo ^s 

/    fx*lxV(x°,x3 + \8'(x))\a>il>(\)d\ <A\x3\ \fx-ixt»(2°,8)\-p. 

For the fourth term of (3.38), using the orthogonality given in (3.28) and the techniques of [43] we 

have the estimate 

i  f°° f°° 
\        fX3{x°,x3 + x6(x))X^X)dX <A\x3\2 |/*§(*V) 

Due to (3.25) and (3.26) we have |tf*2(a:)| < C|a;3|_1, which implies that 

d2Ef(x) 

ds 
3- 

dx\ 

/•oo J 

.,    I o J\x*\ ö 
a1+ot3=2 J\x*\ 

Then arguing as for (3.35)-(3.37) we obtain 

p     dx\ 
< C\\P^D2f\\v(D). 

L2(IR3) 

Carrying out the arguments above for general terms DaEf(x) with |a| = 2 completes the proof 

for £ = 2. The theorem for £ = 1 can be proved in similar way. Thus the desired extension is 

established. ■ 
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Now we consider another weighted Sobolev space H^^-D) over D, 0 < £ < 2, ß\ G (0, j) 

and ßi G (0,1), with the norm 

IHIHJ^P)=( E II^A^^HL^I») 
0<lal<£ 

where 
' /* (sin 4>)ß*,   for ax + a2 = i 

p^1 for a.-L+OL2 <£< \a\ 
1 for |a| < I 

with p = /£>(«) = (£-=1 «i)^ and sin^ = sin<£(a:) = (^ + a;^ )*//»• 

Lemma 3.7. Assume that <j>(x) < a0 < f • Then E-.B^^D) -► H^?/32(IR3) is a bounded map 

for 0 < / < 2. 

Proof.   Let z° G ffi,2 be fixed and y>(z°) = 0.   If ßi > /32, then for s > |x3| we have for x = 

(x°,x3)e
cD 

(3.39) p^(x){Sm<t>(x)f2 = ^-^(a:)|x0|Ä < pß^h{x\s)\x°\ß\ 

Therefore we have by (3.32) 

t°° ds 
\p^(x)(sin<t>(x))ß2Ef(x)\ < A>3pY2 /     /^(*V)l/(*V)|-y 

J\x3\ 

Applying the Hardy's inequality (3.34) and arguing as before we get 

p^(smct>)2^\Ef(x0,x3)\2 dx3<C        p2^-ß*\x°,s)\xo\2ß>\f(x0,s)\2ds 
-oo JO 

= C rp2^(x0,s){Sm<f>(x0,s))2ß2\f(x°,s)\2 ds. 
Jo 

If ßi < fo, then for x = (x°,x3) G CD we get 

p^(x){smct>(x))ß2\Ef(x)\ = pßi-ß*(x)\x°f>\Ef(x)\ < \x3f^^\x0\^\Ef(x)\ 

<C|*3|A-A+1|Ä°|Ä f°l/(*o,«)|*. 
J\*3\ S 

Applying the Hardy's inequality (3.38) and arguing as before we have 

f   p2^{x){s\n4>{x))W2\Ef{x)\2dx3 < C\xy* £{^^y&™-M ds 
roo 

= C\x°\2ß>        s2^-M\f(x°,s)\2ds 

<C        p2^(x°,s){smct>(xo,s))W2\f(x0,s)\2ds. 
Jo 
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Here we used the assumption that <f>(x) < <r0 < f for x € D. Arguing as for (3.37) we get for 

cp(x°) * 0 

/oo yoo 
p2^(smcf>)2^\Ef(x0,x3)\2dx3 < C /       p2^(sm<t>)2ß*\f(x0,s)\ds. 

-oo JV(x°) 

Then integrating both sides above over x° G IR2 gives the theorem for £ = 0. 

The argument used above for the second derivatives of Ef(x) in the proof of Lemma 3.6 can 

be carried out here for £ = 1,2. Hence the lemma is completed. ■ 

Let us remark the assumption that (ß(x) < a0 < f. First of all, the assumption holds in most 

practical application. Secondly we can drop this assumption by modifying the weight function 

äai   = { ®aß!ßSx)   fo"ei) with #*) ^ "0 < 2 
ßl'ß      \l    ' for 4>{x) >a0. 

Then all arguments in the proof of Lemma 3.7 can be carried out, and it will be sufficient for the 

imbedding of H2'2(0m) into C°(Öro). 

It is worth indicating that the extension operator E defined in (3.29) is a bounded map from 

H^(Z>) to H^QR3), and from HJ;'IA(Z>) to HJ'^IR3) for any k > £ > 0. But we will not 

elaborate it further here because it does not serve our goal of establishing desired imbeddings of 

Uk/(Om)mtoCe-2(Öm),£>2. 

We now consider an infinite polyhedron Ö which coincides with polyhedral domain fi in a 

neighbourhood Om of the vertex Am. We assume that Am is the origin and one edge A;J of Om is 

on the positive z3-axis. Let V^,.,«, = Saij x Ht1 and Öoo = O \ \Jijecm *W<x>- Botn V*<>.°° and 

Ooo are the special Lipschitz domains. 

Lemma 3.8.  There is a bounded map JE:Hj£(Öm) -> HJ'*(1R3). 

Proof. Let {e,}-^! be an open covering of Om, and let {<&}-f a be a partition of unity subordinate 

to this covering. Each function Ui = <f>iU e H^C?«,) with compact support contained in Om. 

Applying Lemma 3.6 to u, we get an extension Eu{ € H^IR3) with preserving the norm. Set 

Eu = Y,Zi Eui- Then Eu e H^fC^3)' and 

II
£

«IIHJ'»(IR3) ^ CllullH^(öm) 

Since Eu(x) = u(x) for x G Om, we complete the proof. ■ 

Lemma 3.9.  There is a bounded map E: H^'   .. (Vm,ij) ->■ H^ .. (IR ). 

Proof. The proof is the same as that of the previous lemma, except that Lemma 3.7 is used 

instead of Lemma 3.6. 

We now are ready to establish the imbedding results of H2
3'
2(C?m) into C°(Öm). 
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Theorem 3.6. For ßm G (0, \), H^(ÖTO) is imbedded into C°(Öm). 

Proof. By Lemma 3.6 we extend u to 1R3 preserving the weighted Sobolev norm. Let tp(p) be a 

C°°-function such that <p = 1 for p < pQ/2 and <p = 0 for p > p0 with p0 > 28m. Set v = ip(p)u 

and / = Av. Then v and / have a compact support BPo = {x \ \x\ < po}. Define 

Using the fact that ßm < \ we get by Schwartz's inequality 

-2/3m ] 
y\ 

\V(X)\<C([     \f{y)\2p2ß-)Hj    p-W™T-^dy 

<CHIH^(öm)<cNlH^(öm)- 

We obviously have AV - f = Av, and it is easily seen that V(x) -> 0 as \x\ -» oo. Because u(a;) 

has compact support, the standard uniqueness argument gives us that V = v. Therefore 

IHIco(o.)<c|N|H„5  . 
Pm 

Since v(x) = u(x) for x G Om, the theorem is proved. ■ 

Corollary 3.6. Hj£(Om) is imbedded into Ce~2(Öm) fork>£>2. 

Theorem 3.7. Hj£ .. (Vm,ij) with ßm G (0, \) and /% G (0,1) is imbedded into C°(Vm,y). 

Proof. The proof is the same as that for the previous theorem except that the estimate 

J Bon \JBpn I \x~y\2 

<<7|MIHJ3   ..(Vm.y) 

is used. Here we used the fact that ßm G (0, |) and ßij G (0,1). ■ 

Corollary 3.7. HJ£ ..(Vm,y) is imbedded into Ce-2(Vmtij) fork>£>2. 

Combining Theorem 3.5-3.7 and Corollary 3.5-3.7 we have 

Theorem 3.8.  Let ßm G (0, \) for m G M and ßtj G (0,1) for ij G C. Then H^'2(fi) is imbedded 

into C°(Ö). ■ 

Corollary 3.8. HJ'
£
(Q) is imbedded into Cf"2(Ö) for k > I > 2, ßm G (0, |), m G M and 

ßij € (0,1), ij G £. 

4. WEIGHTED SOBOLEV SPACES AND COUNTABLE NORMED SPACES IN 
CYLINDRICAL AND SPHERICAL COORDINATES 
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The weighted Sobolev spaces and countably normed spaces in Cartesian coordinates are denned 

in Section 2 which are of great significance to the theory of regularities of solutions of elliptic 

problem on polyhedral domain and to the applications of numerical analysis (see [8,9,21]). Due to 

the natures of singularity in various neighbourhoods of edges and vertices it would be much easier 

for investigation if we use these spaces in cylindrical coordinates on neighbourhoods of edges and 

in spherical coordinates on neighbourhoods of vertices. Hence the relations between these spaces 

in Cartesian coordinates and in cylindrical and spherical coordinates are extremely important. 

The weighted Sobolev spaces and countably normed spaces in cylindrical and spherical coordi- 

nates will be defined in this section and the relations between these spaces and those in Cartesian 

coordinates will be the focal points. 

4.1. Weighted Sobolev Spaces And Countably Normed Spaces Over Neighbourhoods 

Of Edges In Cylindrical Coordinates 

Let Uij denote a neighbourhood of the edge Ajj as in previous sections, namely, Ajj = {x = 

(0,0,2:3) I a + Sij < £3 < b — Sjj} lies on the a^-axis. x = (xi,x2,x3) and x = (r,0,x3) are 

the Cartesian and cylindrical coordinates for x £ Uij with respect to the edge A,-j. We write 

Vau = urai$a,2x°'3 and 

\Vku\2 =  Y^ \r~a2Vau\2 

\a\=k 

where a = (01,0:2,0:3), a' — (01,02) and |o'| = oi + 02, \a\ = |o'| + 03. 

By $o!.(a;) with ßij G (0,1) and integer £ > 0 we denote the same weight function defined in 

Section 2. Then the weighted Sobolev space Hß'.iJAij) with integers k > t is defined as 

nli&v) = {u 1 Ht.11^,      = £ \\*a
ß;y

a*vau\\lHUti) < 00} 
|a|<fc 

and the countably normed space Bi  (Uij), t > 0 is introduced as 

B%.(Uij) = {u I u e Hk^.{Uij) and \\9a
ßf.r-a^Vau\\V{UiS) < Cdaa\ for any k > £,}. 

Theorem 4.1. For 0 < I < 2 and k > £, W^Xßij) is equivalent to B.k^.(Uij). Moreover, it for ö 

with |ä| < k 

(4.1) ||$^r-^£>*W||LW < CÄ!, 

then for \a\ = k 

(4.2) \\^,Dau\\LHUij)<Cdaa\, 

vice versa, (4.1) stands for \&\ = k if (4.2) holds for \a\ < k. 

Proof. For the proof is analogous to those in two dimensions, we refer the reader to [4]. ■ 

As a consequence of (4.1) and (4.2) we have 
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Corollary 4.1. For 0 < £ < 2, Bß.. (Wy) are Bß.. (W,-j) are equivalent. ■ 

Remark 4.1. For any k > £ > 0, it is always true that HJg(Z^) C Hß'*.(Uij), and B^(Wy) C 

4.2. Weighted Sobolev Spaces And Countably Normed Spaces Over Neighbourhoods 

Of Vertex-edges In Spherical Coordinates 

Let Vm,ij be a neighbourhood of the vertex Am and edge A*j, and we assume as usual that 

Am is at the origin and Ajj lies on the positive 23-axis. x - {x1,x2,x3) and x = ((f>,0,p) denote 

the Cartesian and spherical coordinate of x G Vm,ij with respect to Am and Atj. We write 

Vau = u^<»iö<»2p°3 and 

\Vku\2 =  Y, \p~W\^<j))-a2Vau\2 

\a\=k 

where a = (a1,a25«3) and a' = (ai,o2) are the same as before. 

The weight function $^.0) with ßm<ij = (ßm,ßij), ßm € (0, |) and ß{j € (0,1), is defined 

by (2.2). Then the weighted Sobolev space H^l ..(Vm,ij) with integer k > £ and the countably 

normed space Bi   ..{Vm,ij) with £ > 0 are introduced as 

wJi«(vmt„) = {«i utiii^, (Vm  = x: ii<,(*Kio'W^-^NI2^,,) < °°} 

and 

= {u\u£ Hk
ßi..(Vm,ij) for any fc > £, and ll^^p-^'^n^-^^ull^cv™.«) < Cdad\}. 

The following lemmas are essential to establishing desired imbedding theorems. 

Lemma 4.1. Let Va,s = S„xIs with S« = {(<j>, 9) \ a0 < <t>< <r, 0 < 9 < u} and Is = (0, S). Then 

for (70 > 0 and ßm e (0,|) 

(4.3) llA-^ll^v,.,) < C{ £ ||A+a,8-12>at.||aia(v,il) + IMIW.AV^)} 
l«|=i 

and for £ = 0,1 

(4.4) llA-^'t.Hi,^,) < c{\\p^D^u\\l{Vir6) + ||^||
2

H1(V„,AV.,/2)} 

provided the right hand sides are finite. 

Proof. Let 
u(p) = ie-r /    u(^e^P)ds- 

\3<T\ JS„ 
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It is easily seen that 
du _    1 
dP      \s<r\ JS0 

/   uP{<l>,0,p) ds 

and 

Jo 
r,2(/3m + l) du 

dp 
dp <C [     p^utf dx = \\p> 

JVr.e 

UP\\L2{V„,S)- 

Noting that 0 < ßm < |, we have by Lemma A.l of [4] 

JJm..    112 

du 
dp 

dp I p2ß™\ü(p)-a\2dp<C I p2 

Jo Jo 
<ciip^^iri2(v^). 

where a = u(l), and by the imbedding theorem of the Sobolev space(see[l]) 

W\2 < cj 2(|^|2 + |ö|2) dp < c(||tip||2ia(v.fAVr>l/a) + Mb(v.,.,\v...ta)) 

which leads to 

/  p2^\u\2dp < C(||/"^||2L2(K{) + lkl|2L2(v.„AV.,i/2)) 
Jo 

and 

(4.5) ll/m-1ü||L3(v^) < C((||/-t*p||La(v^) + IMlL»(V„..,\V,.,/a))- 

Further for almost every p we get 

If - - ~   ~   ~ 
u((f>,0,p)-ü(p) = -r—r /   (u(<j>,0,p)-u(4>,9,p))sm<t>d<j>d0 

P<r| Js„ 

=w\L {J* %^,e'p)d*+L %^^p)d§}^d^di 

Further we have 

/   1/   %Ü&P)dö\*n4>d<>M<CJ  (jW\^$Xp)\d0)*ui4>d4>M 
(4.6) 

and by Schwartz's inequality 

r* du 

<C «H< 
/  I [9 du   - -I       -   -   - 
/      /    Tn(<l)i0iP)d<f>\ sin (j>d<f>d6 
JsJJ*   d<j> \ 

(4.7) </   {(/    ^-<f>((t>,0,p)   sin</>d<t>)   \       ,d<j)\   \mv<t>d4>d0 
Js„ lvii   o<p /   \Ji   smd>     I   J 

0(a\du   ~          2       -   »\ I   /"  I /"0    1       - h       ~   ~   - 
\—(<j),0,p)   sm4>d<j))     /     /  d<f>    sin(j)d(j>d0 

(70'^                            J   JsJJj,   sav<t> 

<f> 

dij> 

25 



Note that 

(4.8) 
/  1/   —Ur# 2sin^#rf(9<Ci /   |ln(/>-ln<^sin0# 
JsJJi   sin 6 Ja0 

<Ci(|ln0| + C2)*. 

Substituting (4.8) into (4.7) we obtain 

r* du 
(4.9) /  |/   ^(j>,0,p)dj>\Sm4>dj>d0<Ci(\ln<t>\ + C2)

1*U  &l0,p)\\mj>dj>y 

The combination of (4.6) and (4.9) leads to 

du 2 

's, 
I   \u(<l>,0,p)-u(p)\2dS<c{[ 

Js, (Jsc 

(4.10) 

80 
du 2 

80 

dS + j   C1(|ln^| + C2)(y"£r|^,ö,/>)|2sin^ö)d5} 

dS+ /"""[(/  (CilM + C^sin^) 

(|*||^Ap)|W#)]^} 

<C 
/,( 

du 2      du 2 

00    + d<t> 
\dS. 

Therefore 

(4.11) \\pt~-\u - ü)\\l^s) < C I     p^ (l|^|a + -^|2) dx. 

Combining (4.5) and (4.11) we obtain (4.3). 
Since ID1«!2 = ID1«!2 we get (4.4) for t = 0 from (4.3). Setting v = Dau with |a| = 1, and 

applying (4.3) to v we obtain (4.4) for £ = 1. ■ 

Lemma 4.2. Let V^,s = Sa X Ig be the same as that in Lemma 4.2 with cr0 = 0, and let ßm,ij — 

(ßm,ßij) with ßm G (0, |) and ßij G (0,1). 
(i)  IfueHym..(Va,s),then 

(4.12) ||A-
1
0*M)

AJ
-

1
»'IIL»(V.>,) < C||U||HM    (Vwl) = C\\u\\ny    (      y 

(ii)  IfueH2
ß'li.(Va,s),then 

(4.13) ||/»-2(sin^-2(« - «(0,0,^))!!^^) < C||U||H3,, ;j(V(r{). 

(Hi)   Ifue H^ ..(Vc,s) with l>2, and if Dau vanishes along the edge A;J for ail a with 

0 < |a| < / - 2, then 

(4.14) 
"m,ii 

||A-'(8in^-'t»||ia(v.) < C||t«||Hn    (v#f). 
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Proof. By Lemma A.2 of [4] we have for almost every p € Is 

(4.15) / (sm<f>)2(ß"-V\u\2dt<c{ [ (sm<t>)2ßi'(\u4>\
2 + -^T-\u$\2)dS+ / \u\2 ds\ 

Jsa                                          Us,                 v             sin </>        J          Js„\s.,a > 

where C is a constant independent of p. Multiplying (4.15) with p2ßm and integrating over p, we 

get 

||/--1(sin^)/3i'-1«||L2(V(r|4) 

(4.16) < C{ E ll/-1(oin^+fll-12>ati||Iia(v,.,) + II/^IIL^AV^)}- 

Ml=i 

Applying Lemma 4.1 with CTO = c/2 we get 

Wf^-^Wwv.Av.w) < c{ E llA+a>"1^a«llL»(v..,\v,/M) + ll«lli»(v...\v./w\v,/w/a)} 

<C|MIW^ ..(v„{) 

which together with (4.16) leads to (4.12) 

Furthermore, by the arguments of Lemma A.l and A.2 of [4] it can be shown that for almost 

every p € Is 

I (Sm<l>)2^-V\u-a\2ds<C / (sm ft2«3"-VhuJ2 + -^\ue\
2Y ds 

h. Ja, K *™   4> ' 

where a = u(0,0, p) = «(0,0,2:3). This implies that 

/       ^•»-2)(sin^)2<^-2)|u-o|2rfx<C   /       ^(/3„-2)(sin^)2(Ai-l)/|       j2 _, i_|Me|2\ rfa. 
Jv„,t Jv.,t 

v sin'0        / 

<C   I       p2(^m-l)(sin<?i)2(/3.y-l)j£>lw,2drE 

Jv„,„ 

Applying (4.12) to Dau with \a\ = 1 we obtain (4.13) immediately. 

Now let u e HJ£   (Vm,,-j) with t > 2 such that Z»au(0,0, z3) = 0 for x3 € 7« and |a| < / - 2. 

Then the arguments above can be carried out for I > 2, namely 

/ (sin^)2^-£>M2^<C / (sm4>)2^+1~eH\uJ2 + -^-\ue\2)ds 
JSa Js„ v sin <t>        J 

and 

||/--£(sin</»)^-^||2L2(v   ..)<C I     pW^-'Xsm^^-t^D1^2 dx 
m'" Jv„,s 

<C f     p2V3'*-1\Bm<l>)iV}»-»\Dt-1u\2dx 

< C(\\p^(Sm<f>)^Deu\\lHVmii) + IP'-^IIL^V.,,)) 

which yields the desired result (4.14). ■ 
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Lemma 4.3. Let V„,B = Sa x Ig as before with a0 > 0. Then for ßm € (0, |) 

(4.16) 

||/m-2K-a)||L2(v<r,s) <C{ £  ||p/3m+a3-2(sin^+^-1Pa'«||L2(vff,{) + ||/--1^p||L2(v^)} 
|a'|=l 

with 

(4.17) = lim j7—- /   u<j>(4>,6,p)dS 
P^° \b<r\ Js„ 

provided the right hand side of (4.16) is Unite. 

Proof. Let v = u^ and 

Hp)= Tc~i /   v{<t>,0,p)dS. 
\b°\ Js„ 

Then 

dp      | A» I .As«, 

and 

ts /"       11       2 

/   |v|2 d/o < C /        - 
Jo Jvm,n' P 

■Ar I dP ./Vm,4i 

IP 

-.2/3 

W0 rfx, 

-Ufp dx. 

Therefore   v   €   Hj£(i«)    C    C°(J«)   due  to  Lemma  4.1   of  [5].      Letting   a   =    «(0)   = 

linip^o rcf-r /s  «0(0, Ö, p) dS, we have by Lemma A.l of [4] 

„2/3„ dv 
dp. f  pW~-*\v-a\2dp<C I  p       -j- 

Here we used the fact that ßm € (0, |). This implies 

||/--2(6- a)||2L2(v.,) < CHA-^PII^V,.,) 
(4-18) »     , 

Arguing as in the proof of Lemma 4.1 we have 

\\p^-\v-v)\\j.HVwtt) <C £  ||/*"-2(sin^-1+^^'t;||L2(v^) 
|or'| = l 

(4.19) ' 
<c £ \\pp--2(**4>)ßi'-1+ai'i>e'Mwv.sy 

i«'i=i 

The proof of (4.19) is the same as that given for (4.11) of Lemma 4.1 except that the inequalities 

/  |/   ^{4>j,p)d§\Bhi4d4>d§ <C([  (sm$)2^-V\^(]>,e,p)\2 sm]>d4>d0y, 
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/   1/   -%(4>t9,p)d4\an4>d<i>d6 

<C I   (/ (smj>)2ßii\^(j>,0, p)t sin <£#)' (/ (sin^)-(1+2^) aty* Bmjxßdß 

<C((sin<£)-2ft>+ci)*(7  (sin<£)2^' ™(4,e,p)   sm4>deY 

and 

j   \v-v\2ds<c{J {sm4>?{ßii-X)\^^P)\ dS 

+ y<7((sin^)-2^ +Cl)sin^#| (sin<£)2^||^,0,/>)|2<*s} 

<C T   [ (8in^)2^«+ai-1') 
la'1=1    S<r 

are used instead of (4.6), (4.7) and (4.10) respectively. The combination of (4.18) and (4.19) yields 

(4.16). ■ 

Lemma 4.4. Let VCis = 5CT x Is as before with a0 = 0. Then for ßm € (0, \) and ßtj € (0,1) 

||/--2(sin0)^-1(u0 - a)||L2(v,,,) 

(4.20) <C{Y,  ll/m~V^)/3y+0,1~1Pa'«*llL»(v„,,) + W^HPh'lv.,,)} 
a'=l 

where a is given by (4.17), and 

(4.21) ||/"-2(8in^»-2ti9||La(v„,,) <C Yl  \\pß--2{sm4>Y^-2Va'u6\\i,Hv„,()- 
|o'l=l 

Proof. By Lemma A.2 of [4] we have 

(4-22) , . , 
/   (sin^)2/3--2K-a|2d5<C /   (sin<^)2^ (|u^| + -TTTI^|

2
) dS + / \U4> - a\2 dS 

Js„ Js„ v sin <f> ' Js„\s<,/2 

with a indicated above. Multiplying (4.22) with p2^-2 and integrating over p we get 

||/--2(sin^-1K-a)||2L2(v<r6) <C{ £  ll/m-2(sm^+ai-1^'^||2L2(v(^) 

+ /     p2^-4\u^-a\2dx\. 
JVo.6 ' 

(4.23) 

By Lemma 4.3 

||/»-2(«, - a)llL»(v„.,) < CillA-^^ll^v.,,) 

(4-24) +  £  ||/-"2(Bin^w+ai-1©a,^||La(v,>,)}. 
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Combining (4.23) and (4.24) we get (4.20). 

Analogously, by the arguments of Lemma A.2 of [4] we have 

/ (sin0)2^-2)|^|2d5<C / (sin^^-^d^p + ^-l^l2)^ 
Jsr Jsa 

v sm^ / 

which completes the proof of (4.21), and hence the lemma. ■ 

Theorem 4.2. If u G H^..(Vm)ij), 0<£<2, k>£, ß = (ßm,ßij) with ßm G (0, \) and 

ßij G (0,1), then u G H»  (Vm,ij), and for any ä with \ä\ < k 

(4-25) \\*gMp-l"K™*r*a&"\\wvm,ti) < c\\u\\K,t      } 

moreover, if for a with \a\ < k 

(4.26) II^^^IIL^V.,,) < Cd"a!, 

then for \ä\ — k 

(4.27) \\^ijP-^'\Sm^-^V&u\\LHVm^ < Cd"ä\. 

Proof. Let us note that 

(4.28) 

' Up — uXl sin <f> cos 8 + uX2 sin <f> sin 6 + uX3 cos <f> 
^U0 = uXl cos 4> cos 0 + uX2 cos <f> sin 6 — uX3 sin <f>. 

j^rue = -uXl sin 0 + «^ cos 0 

which implies that |JC*
1
«!

2
 = IP1«!2, 

(4-29) \\V1»hHVm,i) = \\D1u\\L>(Vm,ii) 

and 

(4.20) IMI-w1'1    (v      \ = IMIw1'1    cv      v 

For higher-order derivatives we will prove (4.25) and (4.27) for ä = (A;, 0,0), ä = (0, A;, 0) and 

ö = (0,0, k) with k > £. The general term Vau can be treated in a similar way. 

Note that 

(4.31) v =  2 —J^J—iDau(sm<f>cos6)ai(sin<t>sm0)a2(cos6)a3 

\a\=kai-nn n" 

which implies that for k > £ = 0 

H=fc 

||/+^(sin<^VlMv.,,) <  £ a1'a2''a3'
l|p|Q|+/?'"(sin</>)'Q'l+/3'>jPaM||L2(v-^ 

(4.32) H=fc 

|a|=fc 
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Then (4.25) for ä = (0,0, k) stands. If (4.26) holds for £ = 0, then 

\a\=k 

= Cd%k\ 

with d3 = 3ma,x(di,d2,d3), which is (4.27) for £ = 0 and ä = (0,0, k). 

For k > I > 1 and /% G (0,1), we get from (4.31) 

iiP*-'+Ä-«p*iiia(v.,y) < E -7^rrii^|a|-*f/,"(»ia^)|a,|"<+/,M-Da"iii.'(v..W) 
|ar|=fc 

which together with (4.32) imphes (4.25) for 1 < £ < 2 and a = (0,0, k). Similarly (4.27) can be 

proven for a = (0,0, A;) with k > £ if (4.25) holds.for £ = 1,2. 

Next we consider u$k, k> t. Arguing as in [4] we have 

(4.33) «,. =5>sM)B£     E     ^.».(^^(coBÖru,.-^ 
n=l .7=0 n1 + n2 = " 

rai,ri2>0 

and 

(4.34) 4fc) = E  E  i«!ä»,J^fc£r 
j=0 ni+ri2 = n 

ni,n2>0 

Then it follows from (4.33) that 

||/-^(sin^)^-£wfl*||L2(Vm,ii) 

^EE E i^»1,»jiipB+/J""<(^^w+B-'v-vjii.a(v.,i) 
(4.35) n=l j=0 n!+n2=n 
^ ' nj,ri2>0 

<c{k) E ii*?i^ö«iiLa(v.,i)- 
*<|a|<* 

«3=0 

Here we applied (4.12) of Lemma 4.2 to the first term of the summation if £ = 2, namely, 

Hence (4.25) stands for ä - (0,Jfe,0) and ^ > °- Furthermore (4.26) and (4.33)-(4.34) lead to 

iiZ-^sin^-vii^v.,,) < EE  E  \"{nkL,n2\dr
j4(n-jy.ß 

71=1 J=0    nitTl2>0 

<t(i4)"--4iP 
n=l 

< C^fc! 
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when d2 = 4max(di,d2,d3). This is (4.27) for ö = (0,fc,0) with k > £, 0 < / < 2. 

Now we consider u^k, k > I. To this end we have to derive by the induction: 

k 

(4.36) <v=£>" £        ^       ag^^^^fsiii^HcoBa^rCsiiiörCcoBÖri?-«, 
ra=l        \a\=n    n\+n2=n 

n3+ni = \a'\ 
n,>0 

(4.37) 4fc)=E        E       kl,n2,n3,nj<^,    forl<n<fc, 
|a|=n    ni+n2 = n 

n3+ni = \a'\ 
n,i>0 

and 

(4.38) n, > 0   for 1 < i < 4, n\ + n2 = |o| = n, and ^3 + n± = |o'|. 

Obviously, (4.36)-(4.38) holds for k = 1 due to (4.28). Suppose that they are true up to (k - 1), 

then 

«*» = X>" E        E       afc1
1L,n3,,4{(sm^r(cos^)^(sinö)^(cosö)^ 

n=l        |a|=n    «i+n2=n 
"3+n4 = |a'| 

•/jfcos^cosöZ^^ti^j + cos^sinö-D0«^ — sin^D0«^] 

+ (smO)n3(cos6)niDau[n1(sm<P)ni-1(cos<P)n2+1 - n2(sin^)ni+1(cos0)n8-1]}. 

from which we get for |o| = n = k 

(fc) _   (fc-i) ,    (fc-i) 
,.  „_.. aa,ni,n2,n3,ni  — aa-e1 ,ni ,ra2-l,ra3,ri4-l "■" aa-e2,n,ra2-l,n3-l,ra4 

a—e3,n\—\,n2,n3,rii 

and for |o| = n < k 

a(k) =a{k'1] +a(k~1) 
"■a,n1,n2,n3,ni        "'a-e1 ,ni,n2 — l,ri3,n4 — 1   <   ""a—e2,ni,n2—l,n3 — l,n4 

(4-40) -GL-/3
),n1-l,n2,n3,rl4+(rll+1)a(i1

1+l,n2-l,n3, 7l4 

,(fc-i) 
[n2 + i-)aa,ni-i,n2+i,n3, n4 

where a — e\ = (ai — 1,02,03), a — e2 = (01,0:2 — 1,0:3) and a - e% = (01,02,0:3 — 1). The terms 

on the right hand sides of (4.39) and (4.40) are absent if any of their sub-index is negative. The 

assumption of induction up to (A; - 1) and (4.39)-(4.40) imply (4.38) for n = k, and 

A\K> = 3A£7' < 3 • 5fc-a < 5* |(*)  _ ^(M   < Q. nfe-1 
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and for n < k, 

4"<34*_-1
1)+2(n+l)/iri) 

(n — 1): n! 

n! 

This completes the induction and establises (4.36)-(4.38). 

Now, it follows directly from (4.36) that for k > £ and 0 < £ < 1. 

llA-^dn^+^VllL^v.,,) 

<EE E l«S)»1.na.na.n.lllA + n-'(sm^ + *-^-tt||l!i(v11.,i) 
h=l |a|=n    ru+n2=n 

(4.4i) n3+
n:>ola'1 

<LE £ l«(
Ql,«2,n3,nJH<,^«llL2(Vm,,). 

n=l |a|=n    ni+n2=n 
n3+n4 = |o;'| 

n,>0 

If £ — 2, we have for those a in (4.41) with \a\ — n = 1 

(4.42) ||/--1(sin^-1i?aW||L2(vm„,.) < ||/--1(sin^)/3--1iPaW||L2(vm„i) 

by (4.12) of Lemma 4.2 

<C\\p^{sm<l>)^D\Dau)\\v(Vmtii). 

Hence we obtain (4.41) for k > £ = 2, which leads to (4.25) for 0 < £ < 2 and ä = (k, 0,0) with 

k > £. 

If (4.26) holds we have by (4.37) and (4.41) 

||/--^(sin^+fc-VllL2(vro,,)<E E        E       l<«1,»a,»,.«J.<ia°! 
n=l \a\=n    n1+n2=n 

n3 + ni = \a'\ 
7Xi>0 

k    1 1 -r \n 

<cE(j<fc)  n!AW<Cd>! 

where d2 = 5ma,x(d1,d2,d3). Thus (4.27) holds for ä - (fe,0,0) with fc > £, 0 < £ < 2. 

Since the arguments for upk, w^* and u8k with fc > ^ can be carried out for general terms Vau 

with |ä| < k, we obtained the desired results. ■ 

From (4.26) and (4.27) of Theorem 4.2 we have immediately 
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Corollary 4.2. Bjmy(Vm,y) C Bl
ßm..{Vm,ij). ■ 

IMike the relation between HJg(Z4,-) and Wj;J(Wy) with 0 < ^ < 2 the converse of Theo- 

rem 4.2 does not hold. There is a concrete example which will give us a hint about the difference 

between W*f „(Vm.y) and HJ£..(Vm,y)- Consider to = <j>. Obviously w G Wj'^.^Vm.y) but 

tox2 = -/9-2(2sin<?!>cos<?!>cos2 6» + cot^sin2 9) <£ L2
ßm ..(Vmiij) for any ßm G (0, |). The next theo- 

rem deals with the difference. 

Theorem 4.3. If u G W^     with A; > £ > 0 and 0 < £ < 2, ßm G (0, |) and ft,- G (0,1) then 

(„ _ x(0)) € Hj£ .. (Vmiy) where x(<A) = 0 for 0 < / < 1 and X{<t>) = a<f> for £ = 2 with a given by 

(4.43) o=lim——- u<t>(4>,0,p)dS, 
P^° 1^,- I Jsaii 

and 

(4-44) Hu - XIIH*/    (Vm,iy) ^ CIM^M ..(.vm,„)- 

Moreover, if for any \a\ < k 

(4.45) ||*^,i,.P
|o,'l(sin0)-«»27o'tt||La(vm,j|.) < CdQa!, 

then for \ä\ = fc 

(4.46) H*S£„ ^*(« - X)IIL»(V.IU) < Cd*ä\. 

Proof. We shall first prove by the induction the following: 

(4.47) M=££p-<fc-">>(aM)-(fc-fll-as)      £      ft«, 
n=l |a|=n nj+7i2<n 

n3+n4 = fc 

(sin </>)ni (cos <f))n2 (sin 0f3 (cos 9)ni Vau 

(4 48) 5(fc) =  V       Y"      |6ifc) -|<7*^ V^-^°^ -"n Z^i Z_^        '   ba,ni,n2,n3,ni\ —        n\ 
\a\=n ni+ri2 = n 

n;>0 

(4.49) 0 < n,i <     for 1 < i < 4, na + n2 < k, n3 + «4 = k. 

It is trivial that 

' uXl = wp sin <f>cos 0 + ju<t, cos <£cos 0 - psln<f,ue sin 0 

u^ = wp sin </>sin 0 + -pu^ cos </>sin 9 + j+r$ue cos9 

uX3 = Up cos <p — ^ti0 sin (^ 
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Then (4.47)-(4.49) holds for k = 1. Suppose that (4.47)-(4.49) holds up to (k - 1). Differentiating 

(4.47) we get by straightful calculation for \a\ = k 

tXk) -fc^-1) -ft(fc_1) +/>(fc_1) 
"a,ni,n2,n3,ni        ua — ei,ni,Ti2—1,713,114— 1       "0 — 62,711,712,713 —1,"4    '     ct — e3,7ii—1,712,713,7*4 — 1 

and for |a| < k 

jAk) -ftt*-1) -/>(fc_1) + />(fc_1) 
wa,Tii,«2,713,714       "a—ei.rij,712—1,713,714—1 a — 62,711,712,713—1,714   '   "a — e3,ni —1,712,713,714— 1 

- (fc - 1 - a3)ftL^1
1i2,na,n3,n«-l» -(* ~ 1 ~ "l ~ a3)&L^1

1,)„2_2,n3,n4-l 

+ nl°a,ni,7i2-2,n3,7i4-l       7i2 0a:)„1_2,n2,7i3,7i4-l   '   n^°a,n1,n2,n3,ni-\ 

n4°a, Til, 712,713-2,714+1. 

where a - e<, t = 1,2,3 are the same with those in the proof of Theorem 4.2. Obviously (4.47) and 

(4.49) hold due to the hypothesis of induction and 

B^ < 3B^ + p - t - a3) + (k - 1 - a3 - a3) + (na + rc2 + n3 + n4)]5^-1) 

< 3B^ + 4kBih-V 

<3- 7-^4 + 4- 7'-^<rf. 
(n - 1)! n! n! 

Hence (4.48) holds for &. Thus (4.47)-(4.49) are proved by the induction. 

It follows from (4.47) that 

\\pk-t+^ (sin *)*-<+'« (« - x),} ||La(Vmiii) 

(4.50) <CJ2E E       Ci,n2,n3,n4ll/>a3-^m(^^r+ai-^^(«-X)||L2(Vm,,). 
71=1   |a| = 71    7ll+7l2<*: 

713 + 714 = '= 
71, >0 

For £ = 0,1 (4.44) follows from (4.50) immediately. For £ = 2 we have by (4.12) of Lemma 4.2 

llp^-^sin^-^pll^v^^.) <C|M|w22    (v     ,, 

and by (4.19) of Lemma 4.4 

||A-a(«dn*)A'-1("* " o)llL»)(vmli) < Cllti«^    (Vm ,.) 
Pmtij ' 

and by (4.20) of Lemma 4.4 

«/--'(»in^-'^llL^v.,,) < Clltill^.»   (Vm0.}. 
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Substituting those above into (4.50) we obtain 

||/-2+^(sin <t>f-^Hu - X),; ||ia(Vmiii) 

m'" n=2 \a\=n 

<C||u||w*>a    (Vm   }. 

The arguments above can be carried out for general term Da(u - x) for a with \a\ < k. Hence we 

get the desired results (4.44). 

Furthermore, if (4.45) holds for \a\ < k, we get for k > £ from (4.50) 

||/-^(sin^)fc-^(U-X^I|L2(Vm,,)<Cj:   £ £        \%Lr».n,,J<r°l 
n=l \a\=n m+ri2<k 

n3+n,i = k 

n=l 

by (4.48) 

<<7*!7*£(ij1)
B 

n=l 

< cdf fc! 

where dx = 7max{d1,d2,4}- Thus (4.46) holds for ä = (A;, 0,0) with k > £ and 0 < £ < 2. For 

general term D^u with |ä| = A; > I (4.46) can be treated in the same way. The proof of the 

theorem is completed. ■ 
Due to (4.45) and (4.46) we immediately obtain the following corollary. 

Corollary 4.3. If u G ßJmili(Vm,<i) for 0 < * < 2, then (u - x) G B£m>..(Vm,y). 

Summarizing Theorem 4.2-4.3 and Corollary 4.2-4.3 we have 

Theorem 4.4.  (i)  For £ = 0,1 HJ£ ..(Vm,y) and WJ£ .. (Vm,y) are equivalent and the same are 

(iij  ~Rkßl .. (Vm,ij) (resp. B|m ..{Vm,ij)) is equivalent to the quotient space U^.. (Vm,ij) \ V 

(resp. B2
ßmi. (Vm,ij) \ V), where V = {a<£, a € IR1}. 

4.3. Weighted Sobolev Space And Countably Normed Spaces Over Inner-neighbourhood 

Of Vertices In Spherical Coordinates. 

Let Om be an inner neighbourhood of the vertex Am, and we assume that Am is at the origin 

and one of the edge A,j connecting Am is on the positive 23-axis. x = {x\,X2,xz) and a; = (<j>,6,p) 
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denote the extension and spherical coordinates of x G Om. There is a OQ > 0 such that (j>(x) > üQ 

for x G Om. Let Vau = Va up<*2 = u^iea2P°3 with a and a' being the same as before. 

Using the weight function $g£(%) given by (2.3) we define for ßm G (0, j) and integers k and 

£, k > t > 0 

Ki(om) = {u i \\ufK,t(öm) = £ ll^;V|a,|^«ii2L2(öm) < oo} 

and 

*L(Öm) = {u | « G Wjf(Öm) for aU k > £, ll*^p-,or'lX»0fu||I<a(am) < Cdaa\} 

Theorem 4.5. If u € HJ^(Öm)> 0 < I < 2, k > £, ßm G (0, |), tAen u € Wj^(Öm), and for a 

with \a\ < k 

(4.51) II^V'"''^IIL^) < C|M|HM (ömy 

Moreover, for a with \a\ = k 

(4.52) \\*fy^V*u\\L2{öm)<Cd*ä\ 

if for a with \a\ < k 

(4.53) ll*2^a«llL»(äm) < C^«!- 

Proof. Using (4.31), (4.33)-(4.34) and (4.36)-(4.38) and noting that sin^ > sin<r0 > 0, we can 

prove (4.51) for ä = (0,0, A;), ä = (fc,0,0) and ä - (0,fc,0) in the same way except applying (4.3) 

of Lemma 4.1 for the cases a = (k, 0,0) and a = (0, k, 0), instead of (4.12) of Lemma 4.2. 

Analogously (4.51) can be argued for general term Vau for a with \a\ < k. (4.52) can be 

proved in a similar way as (4.26) if (4.53) holds. ■ 
Like the relation between H^ ..(Vm,jj) and Hßm ..(VTO,jj) the converse of Theorem 4.4 is not 

true. There are two concrete examples: u\ = <f> and ui = 0. Both are not in Hg (dm) for any 

ßm € (0,|), meanwhile u, G Hß'*(öm) for any k > 2 and any ßm G (0, |), i = 1,2. It is worth 

indicating \V1u2\ G L2(Öm), but \V1u2\ i L
2(Vm,0). 

Let 5 be the intersection of the unit sphere and the infinite polyhedron which coincides with 

fi at the neighbourhood Om of Am, and let S^ = S \ Ui?'6£   ^^a with U{j = a, ij G Cm. 

Lemma 4.5. For Om = Sa x Is we nave 

(4.54) \\P
ß--\u, - a)||L2(öm) < C Y, ll/"+a3-2^llL2(öm) 

l«l=i 

and 

(4.55) \\pß--2{u6 - 6)||L2(öm) < C £ \\Pßm+a3-2Vau6\\v(öm) 
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when 

(4.56) a = lim -=— /   u^((j), 0, p) dS, 
p-+° \Sa\ J-Scr 

and 

(4.57) b=]im-^-[   ue(<t>,0,p)dS. 
p-*° 1^1 Jsa 

Proof. Let v = u^ and 

v(p) = TFT /   u(j>{(i>,6,p)dS. 
IA a I -'S,, 

Then arguing in the same way as that for Lemma 4.3 we have 

\\Pßm-\v ~ "?\\v(öm) < C\\p^-\p\\v(öm) 

< CWP^-'U^W^ö^ 

and arguing analogously as for (4.11) of Lemma 4.1 we have 

\\pß™-\v-v)\\v(öm)<C J2  \\pß~-2Va'v\\ 

(4-59) laX' 

|ot'|=l 

Then (4.54) follows from (4.58) and (4.59). 

Next let w = us, and 

^0°) = TTTT /   ue(<t>,0,p)ds. 
I *CT I   JS<r 

Analogously we have 

\\p^-\w - 6)||L2(öm) < CWp^-'ue^ö^ 

and 

\\pß"-Hw - w)\\LHÖm) < c £ ||/--2^'^||L2(öm) 
Kl=l 

which yields (4.55). ■ 

Theorem 4.6. If u G Hk
ß'^(Öm), 0 < t < 2 and /3m € (0, |), then (u - x(<M)) e H^(Öm) 

where x = 0 for I = 0,1, and x(<£>0) = a<f> + b9 for £ = 2, a and b are given by (4.56) and (4.57) 

respectively, and for a with \a\ < k 

(4.60) ll*^> - X)h*(&m) < C\\u\\nkt (öm). 

Moreover, if for a with \a\ < k 

(4.61) ll*;;VHPNIL2(öm) < Cdaa\ 
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then for \ä\ = k 

(4.62) ||**^X>*(« - X)HE.»Cö»> < 

Proof. We will prove (4.60) and (4.61) for a = (A;, 0,0). The proof for general a with |a| = k is 

the same. Due to (4.47) we have 

(4.63) 

\\pk-e+ß-(u-x)x^(Om) < E   E E       (^^0)-fc+n|C1,n1,.3,nJII/'ö3-'+/3^a(^-X)l|L2(ö„ 
n=l \a\=n ni+ri2<k 

n3+rn = k 
7ij>0 

For £ = 0,1 (4.60) for ä = (k, 0,0) with k > £ follows immediately. For £ = 2 and |a| = 1, we have 

by (4.3) of Lemma 4.1 

l|p/3m_lupllL2(öm) <C|Mlw«(Ö 

and by (4.54) and (4.55) of Lemma 4.5 we have 

||/-  2(u0 - a)||L2(öm) < CIMIw" (ö. /3trV~"') 

and 

||/--2(Uö-6)||L2(öm)<C||W||H^(ön )• 

Then (4.60) stands for ä = (A;, 0,0) with k > £ > 2. 

If (4.61) holds for a with |a| < k then it follows from (4.47)-(4.48) and (4.61) that 

||A+fc-'(«-x),sllL»(fl.) < E E       E     (™°o)-k+n\bi%,n2,n3,ni\a\d" 
n=l |o|z=rx ni + n2<* 

n3+«4 = fc 
n;>0 

fc 

<E(sinffo)"fc+n^*)n!dn 

n=l 

<C(sina0)-
fc7fcA:!E(^!^) 

< Cdkk\ 

d\ sin «To ^ ™ 

n=l 

with e^ = max(di,d2)^3) and d\ = max(dj,7/sina0). Thus we complete the proof. 

(4.61) and (4.62) in Theorem 4.5 give the following corollary. 

Corollary 4.6. Ifu G Be
ßm(Öm), 0 < £ < 2, then (u - x) € Bjm(ÖTO). 

Summarizing Theorem 4.5-4.6 and Corollary 4.5-4.6 we have 
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Theorem 4.7.  (i) Fort = 0,1 HJ^ (öm) and Bßm (Öm) are equivalent toHk£(Öm) and B£
ßm (Öm), 

respectively; 

(ii) Hjf (Öm) and B^m(ÖTO) are equivalent to tAe quotient space Hß'*(Öm)\V and B2
ßm(Öm)\ 

V,withV = {a<f> + b0,a,beM1}. ■ 

5. COUNTABLY WEIGHTED CONTINUOUS FUNCTION SPACE c£(fi) 

The countably normed spaces Bß(tt) defined in Section 2 give the description of quantity of 

the derivatives of functions of any order in weighted Sobolev norm, which will be used in Part II 

and Part III of this series of our papers to describe the regularities of the solutions of elliptic 

problems in nonsmooth domains. In many applications, for instance, the error estimates of the p 

and h-p versions of the finite element solutions, we prefer to use the pointwise estimates of high- 

order derivatives of solutions (see [8,9,21]). The imbedding oiHß'e(ü) into C£~2(Ö), I > 2 tell us 

only the continuities of the derivatives, but it gives no quantitative information of the high-order 

derivatives of the solutions. We shall introduce a countably weighted space C2
ß(ü) with weighted 

Cfc- norm in this section and establish the relation between the space B^(fi) and C2
ß(ü). Then 

combining the regularity theorems in the frame of the space Bjg(ft), which will be given in Part II 

and Part III, we shall have pointwise estimates of the high-order derivatives of the solutions of 

elliptic problems in nonsmooth domains in IR . 

5.1. Countably Normed Space C2
ß..(Uij). 

Let Uij = Q£i. x Is{   be the neighbourhood of the edge A,j which lies on £3-axis, and let 

r(x) = r = dist(x, Ajj) for x £ Uij. We write Q = Qeij and I = Is{j, and assume that / = (0,1). 

By C2
ß.\Uij), 0 < ßij < 1, we denote a set of functions u G C°(Üij) such that for |a| > 0 

(5.1) \\Tfj'+ai+a*-lD°(u(x) - u(0,0,x3))||co(oii) < Cdfal 

and for k > 0 

(5.2) ^W(0,0,x3) '" "     s < Cdlkl 
C(I4i,) "3 

It follows from (5.1) that for x £ Uij and any a 

(5.1') \Da{u(x)-u(0,0,x3))\ < Cdaa\r-<~ßi'+a'+a2-1)(x), 

and (5.2) implies that ^(^3) = «(0,0,2:3) is an analytic function of 2:3 on /.   Furthermore, the 

definitions of the space C2
ß..(Uij) and B2

ß,.(Uij) imply 
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Theorem 5.1.  C2
ß..{Uij) C B2

ß.j+e(Uij) fore > 0, arbitrary. 

For the converse of Theorem 5.1 we need a lemma which follows directly from Lemma A.2 

and A.3 of [4]. 

Lemma 5.1. Let UE = {x = (Xl,x2,x3) \ (x1,x2) G Qe,x3 G 1} with Q£ = {(r,9) | 0 < r < e,0 < 
6 < u] and I = (0,1)- (xi,x2,x3) and (r,0,x3) are the Cartesian and cylindrical coordinates, 

respectively. Then for ß G (0,1) we Aave 

(5.3) 

ll^-1*^) < C{ £  l|röl-1+^a,t.||2ia(Ml) + ||*(WlWi)} 
|a'|=l 

<c{ Y, VDa\\\h(Ul) + \nh{Ul\uh)}, 
|<*'=1 

(5.4) 

|r"-2(«-«(0,0,af3))||
2

Iia(tti) <c( £  \\r^-2+ßVa\\\h(Ul) + \\ur\\l(UAU2)} 
\&'\=2 

<C{Y  l|r"i?att||aia(Wl) +  £  \\Da'u\\h^\u>)} 
\&'\=2 |&'|=1 

and for a with \a'\ — 1 

(5.5) \\r^-2V"u\\lHUi) <C{Y  \\r^+^'u\\l(vll) +  £  \\D&'u\\h(u^)} 
|&'|=i |a'|<i 

and 

(5.6) \\rß-1Dau\\l2{Ui)<c{ Y  ||r^5'U||L2(Wl)+  £  \\D*'u||2La(MlW,)} 
|ä'|=2 |ö'|<l 

provided the right sides of (5.3)-(5.6) are finite. ■ 

Theorem 5.2. Bj^(«y) C «^..(Wy). 

Proof. Let u € B^  (Wy). By Theorem 3.5, u € C°(W,-j), and by the definition of Bß..(Uij) 

(5.7) ||rA*+0,1+a8-2£0,u||La(w„) < Codaa!,    for a with aa + a2 > 2, 

and 

(5.8) II^UIIL»^,-) < Co fa!,    for a with aj + a2 < 2. 

For arbitrary x° G ZVy there is a cylinder D(x°) = {x | £i=li2 lx< _ ^l* < R(xo),x3 € 1} 
with radius Ä(a;°) = \ dist(x°, Ay) = \r{xü). 
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Let D(x°) = D(x°)nUij. Then for any x G D(x°) 

(5.9) lr(x°) < r(x°) - R(x°) < r(x) < r(x°) + R(x°) = f r(z°). 

Let M be a linear mapping of the cylinder D0 = {£ = (£1,6, £3) I 0 < R = (£2 + £3)2 < 

1,6 € /} onto £>(a;0), and it maps D0 = {£ e D0 \0 < ® < wi-7-} onto -D(x°), where (E, <§),&) are 

the cylindrical coordinates of the point £ G A)- Set v(x) = Dau(x) for a with |a| > ai + 02 > 1, 

and V(£) = ü(M(£)). Then 

'(Do) ^CY^ Ä2(7l+72_1)(«°) /       |i?a+7tt|2 rfa; 
|7|<2 JD(

~
X

°) 

1^2 JD
(*°) 

fe_„.      _ 
hl<2 •/D(:r0) 

(5.10) '7l- 

|7|<2 

where 7 = (7',73) = (71,72,73) and I7I = |7'| + 73 = 71 + 72 + 73- 

If Kl + IVI = £2=i(«» + 7.) > 2 we have by (5.9) 

(5.11) 

/        \Da+iu\2dx <c(-^-±) /        r2^+^^^(x)\Da+^u\2dx 
JD(x°) V     2     / JD(X°) 

< CC2
0r-

2^ + \a'W\-2\x°){(2dr+i(a + 7)!)2. 

If \a'\ + I-y'j = 1, we have by (5.9) and Lemma A.l of [4] 

/        \Da+^u\2dx<Cr-2^'-^(x°) [       r2^>-l\x)\Da+^u\2 dx 
JD(x°) JD(X°) 

(5-12) <Cr-2^-l\xQ) I   r2ßi'(x){\D1(Da+^u)\2 + \Da+''u\2)dx 
JUij 

<CClT-2^'-^{x0){daa\)2. 

Combining (5.10)-(5.12) we get for a.\ + a^ > 1 

||V||H»(D0) < Cr-^+ai+a*-l\x°)daal 

with C = CCQ > Co and d> d. The Sobolev imbedding theorem implies that for \a\ > a.\ +0:2 > 1 

ll-Da«llc°(ß(*<>)) = IMIc°(D0) 

Now consider the case for a with |a'| = a>i + 02 = 0.  Let v = _Da(u(a:) - «(0,0,0:3)) and 

F(£) = v(M(£)). Analogously we have for 7 with \j'\ = 7i + 72 = 2 

II^7^IIL2(D0) = i^17'1"1 V) /     \Da^u\2 dx 
JD(X°) 

(5-14) <Cr2^-ß-\x°) [       r(a02(/3i'+|V|-2)|£a+7u 
./D(:r0) 

< CC0r
2(1-^)(i0)da+1,(a + 7)! 
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and for 7 with |7| < 2 and |-y'| = 71, + 72 = 1 we have by (5.9) 

(5.15) WV\\v{Do) = /       \Da+^u\2dx 

< Cr-2^-V(x°) [       r2^-V\Da+*<u\2 dx 
JD{x°) 

by (5.3) of Lemma 5.1 

<Cr-W«-V(x0) f       r2^\Dl{Da^u)\2dx 
JD(x°) 

< CC0r-2^-^(x0)da+^+1(a + 7+I)! 

and for 7 with I7I < 2 and ji + 72 = 0 we have by (5.9) 

(5.16) \\D"V\\liDo) = R(x0)-2 f      \Da^{u - u(0,0,x3))\
2dx 

JD(x°) 

<Cr-2^-l\x°) [       r2^-2nDa^(u-u(0,0,x3)\
2dx 

JD(X<>) 

by (5.6) of Lemma 5.1 

<Cr-2^Xx°)\\D*+M\lXxUij) 

< CCor-Wv-^ix^do+^ia + 7 + 2)! 

Combining (5.14)-(5.16) we obtain for some C = CCo > Co and d > d 

IMIH*(A>) < Cr-2^\x°)daal 

The Sobolev imbedding theorem (see [1]) further leads for a with ax + a2 = 0 to 

(517) ll^a(" -«(0.0.*»))llc»(/>(,.)> = ll^llco(5„) 

<Cr-^-iy>(x°)daal 

Note that the constants C and d above are independent of a;0, and x° is an arbitrary point in 

Uij. Hence (5.1) follows from (5.13) and (5.17) at once. 

To prove (5.2) we let w(x) = uxk(x). By Theorem 3.5 w(x) € C°(Z4/), and for some d > d 

INaOIIco^) < C||tö(a:)||H2.. {Uij) = C\\ux* ||H,.» {Uij) 
(5.18) %i *J 

< CC0d$(k + 2)!(max{di})2 < Cdaa\ 

where C > CCo > Co and d > d. This leads (5.2) and completes the theorem. ■ 

5.2. Countably Normed Space C2
ßm(Öm). 
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Let öm be the inner-neighbourhood of Am as before. It is assumed that Am is located in the 

origin, and one of the edge A*j, ij G Cm lies on the positive a:3-axis. Let p(x) = p = dist(x,,4m) 

for x € Om. 

By C2
ßm(Öm), ßm € (0,|) we denote a set of functions u{x) € C°(Öm) such that for \a\ > 0 

(5.19) ||A+|a|-*^B(«(*)-«(^»))llCo(ö1.) * 
Cd°al 

which is equivalent to 

(5.19') \Daiu(x) ~ <Am))\ < Cd°a!p-<A»+H-i>(a!). 

This shows how the derivatives grow as a increases and x tends to the vertex Am. 

Due to the definition C2
ßm(Öm) and B2

ßm(Öm) we immediately have the following theorem. 

Theorem 5.3. C2
ßm{Öm) C B2

ßm+e(Öm) with e > 0, arbitrary. 

For the converse we introduce a lemma. 

Lemma 5.2. Let u€H2£(Öm). Then 

(5.20) /    p2{ß~-2)W-u(Am)\2dx<C\\u\\2u,,2ö    . 
Jöm 

ßm    m 

Proof. Due to the imbedding of H^(Öm) (Theorem 3.6) u £ C°(Öro). We can prove 

/    p2^-2^u-u{Am)\2dx<C\\p^-l\D'u\\\l2(öm) 

in the same way as that for (4.3) of Lemma 4.1 except that 

/' p2^-2\ü{p) - a\2dp < C\\p^up\\l2(ÖTn) 
Jo 

is used with a = ü(0) = u(Am), instead of ü(l).  Then applying (4.4) of Lemma 4.1 we obtain 

(5.20). ■ 

Theorem 5.4. B}  (Öm) C C\  (Ö). 

Proof.   Let u G B2
ßJÖm).   Then u € Hj'*(Öm) C C°(Öm) by Theorem 3.6, and for a with 

M > 2 

and for a with |a| < 1 

\\Dau\yiöm) < c. 
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Fix an arbitrary point x0 G Öm but x0 ^ Am. There exists a ball D(x°) centered at a;0 with 

radius R(x°) = |dist(z°, Am) = \p(x°). By D(x°) we denote D(x°)nÖ°m. For any x G D(x°) we 

have 

(5.21) |p(x°) < p(x°) - R(x°) = p(x) < p(x°) + R(x°) < lp(x°). 

Let M be a linear mapping of the unit ball D0 = {£ = (£1,6,6) | (Ei=i£2)* < *} onto 

Z)(z°), which also maps D0 onto Z»(a;0). Set v(x) = Da(u-u(Am)), \a\ > 0 and V(£) = v{M({)). 

Then by (5.21) 

<CY p2<W-t\x°) \Da+^u\2dx 

where 7 = (71,72,73) and 7' = (71,72)- If |a + 7I > 2 we have 

r /./.0\\ -2(|a+7|-2+/3m)     , 
/ |J9«+^|2da.<Cf^J) / p2(|a+7|-2+/3m)|£)a+7w|2da. 

(5.23) A^O) -       V      2      ; ^(,0) 

< Cp-2(|a,+'Y|-2+^)(*0)(Ma+n,(« + 7)!)2- 

If \a + 7I = 1, then by (4.4) of Lemma 4.1 

/       \Da+^u\dx2<Cp2{1-M(x°) f       p2^-^\Da^u\2dx 
(5.24) ^D^0) JD

(
X

°) 

<cp^Hx°)\\u\\2
ur(öm). 

If \a + 7I = 0, then by (5.20) of Lemma 5.2 we have 

/        \u-u(Am)\2dx<Cp2^2-ß-\x0) [       pW™-V\u-u{Am)\2dx 
(5.25) JD

(
X

°) JD
(
X

°) 

<CpW-^H*0)M2
Bil(ömy 

Combining (5.22)-(5.25) we obtain for some d > 2d 

IMIH'(DO) < Cp-^ + \a^Hx°)daal 

By Sobolev imbedding theorem 

ll^llco(ßo) < C\\V\\mD0) < Cp{x0)-V-+M-tod°aL 

Note that XQ is arbitrary and that C and d are independent of XQ and a. Hence (5.19) follows 

immediately. ■ 
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5.3. Countably Normed Space Cßm ..(Vm,ij)- 

Let Vm,ij = 5CTi> X I6m be the neighbourhood of Am and A,-j as before, and we assume that 

Am is at the origin and Ay lies on the positive a;3-axis. Let p(x) = p = dist(a;, Am), r(x) = r = 

dist(a:,Ay), and sm<f> = sin0(x) = ^il. 4> = <f>(x) is the angle between the radial Amx and the 

edge Ajj. 

By Cßm,ii(Vm,ij), ßm € (0,|) and /?y € (0,1) we denote a set of functions «(a;) € C°(Vm,ij) 

such that for a with 

(5.26) ||/-+lal-5(sin^+ai+a2-1Z?a(«(a;) - «(O^a*))^^..) < Cdaa\ 

and 

< Crfjib!, (5.27) \x3\ß-+^-^{u(0,0,x3)-u(Am)) 
dx% c°(i«m) 

(5.26) is equivalent to the estimates 

(5.26') \Da(u(x)- u(0,0,i3))| < Cdaa!p-<^+l°,l+*)(a:)(sin^(x))-(ft'+0,1+0'a-1) 

which indicates the growth of the derivatives with respect to p(x), <f>(x) and a, and (5.27) is 

equivalent 

(5.27') ^(«(O.O,^)-«^))   <Cd£*!|x3r
(A"+fc-*). 

which tells that the trace of u(x) on the edge Ay belongs to the countably normed space C2
ßm(Isti) 

with respect to the vertex Am (see [5]). 

Then by the definition of the space C2
ßm ..{Vm,ij) and the space Bßm ..(Vm,;j) we immediately 

conclude 

Theorem 5.5. C\m ..(Vm,ij) C  Bßm..+£(Vm,ij) with ßm,a + e =  (ßm + e,ßij + e), e  > 0 

arbitrary. ■ 

For the converse theorem we need a lemma. 

Lemma 5.3  Let u € H2^ ..(Vm,ij), tfien 

(5.28) /      p2W»-a)|«-tt(Aro)|
2rfx<C|H|23,3 )' 

Proof. Due to the imbedding of H2^ ..(Vmtij) into C°(Vm,ij) (Theorem 3.7), u € C°(Vm,y)- Jt 

can be proved that 

/      pW~-2)\u - u(Am)\2 dx < CHA-^^lll^v. „) 
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in the same way as that for (4.3) of Lemma 4.1 except that 

f P
2^-2)\ü(p)-a\Up<C\\P^^up\\lHVmii) 

is used with a = ü(0) = u(Am), instead of ö(l). Furhter 

/       p^-V^u? dx<C I       pW^Hsm^^-VlD1^2 dx 

by (4.12) of Lemma 4.2 

<CHlH-..(Vm,,) 

which leads to (5.28). 

Theorem 5.6. B2
ßm ..{Vm,ij) C C2

ßm jVm,ij). 

Proof. We assume that crjj = a < j. For a fixed point x° G Vm,ij hut x° $ Ä,-j, there exists 

an ellipsoid D(x°) = {x = («1,0:2,2:3) | X]j=i 2 a% + ^T = 1 with a = \dist(xo,Aij) = 

|r(a;°) and b = |dist(a;o, Am) = \p{x0)}. Let D(x°) — D(x°) n Vm,ij. Then obviously we have 

(5.29) \r{x°) < r{x°) -a< r(x) < r(x°) + a< -r(x°) 

and 

(5.30) l-p{x°) < p(x°) - b < p(x) < p(x°) + b < \p{x°). 

Let u(x) e B2ßm .. (Vm,,j). Then u(x) £ H|'jj ..{Vm,ij) C C°(VTO>,j) by the imbedding theorem 

(Theorem 3.7), and for |a| > a\ + a<i > 2 

||p^m + |«|-2(sin0)fti+a1 + a3-2jDa,u||ia(v^^^  <Cdaa\ 

and for \a\ > 2 and a\ + at < 2 

||^»+H-a2?-«||ia(Viiiili)<CcPa!. 

Now let M be a linear mapping of the unit ball D0 = {£ = (£1,6,£3) I ]Ci=i £i ^ *} onto 

the ellipsoid D(x°), then Af maps D0 onto _D(a:0). For |ce| > a\ + a2 > 1 set v = Dau and 

v(0 = V{M(0). Then 

(5.31) II^H2H2m0) = E a2(7l+72_1)o2(73-i) /       \Da^u\2dx. 
|7|<2 yD(-°) 
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If I« + 7l > ELi(«* + 7-) > 2 we have 

(5.32) 
r //J/,0\\-2(/»m+|o.+7|-2)/     /     x  v-20»li+|a'|+|7'|-2) 

. [       p2^+la+^-2)(Sm<f>)2^+\a'\+^-^\Da+^u\2dx 
JD(X°) 

< Cp(x°)-2^+la+^l-2) (sin^°))-2(^+|a'l+l7,|-2)((6^)^(0 + 7)!)2. 

If \a + 7| > 2 and ai + 02 = 1, 71 = 72 = 0, we have 

JL*~- '—(i^)2(1-fc,(^)2^ 
(5.33) 

By the arguments similar to those for (4.15) and (4.16) we have 

f f    fißm-ViüjxfiWii-ViD^uffdSdp 
J±p{x°) JSaij 

<C I f    (p2ßm (sin cj>)2^ Y\ \Da+tuXi |2 + \Da^u\2)p2 dSdp 

(5.34) *p(x0)   S-v i=1 

<C(^)-
2

(I
Q

+TI-
1

) • ( f      p^+l^l-^sin^ V; \Da^uXi\
2 dx 

+  f        p20Jm+|o+7|-l)|I,a+7u|2da.Ji 

Combination of (5.33) and (5.34) gives for \a + j\ > 2, ai + 02 = 1 and 71 = 72 = 0 

f       \Da+^u2 dx <C/9-2(^+|a+7|-2)(sin^(2;0))-2^-1)dQ+7(a + 7)! 
JD(x°) 

•(£>, +1)4 + 1). 

/£>(i°) 
(5.35) 

1=1 

If |a| = ai + a2 = 1, I7I = 0, we have 

• /       p2(^-1)(sin^)2^-1)|£»Qu|2dx 
./.D(z°) 

by (4.12) of Lemma 4.2 
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< Cp2*1-^*0)(silica:0))"1" ' ^'II-.H2 
2(l-ßij) 

II«IIH».» H^ifi(V«.«)- 

Combining (5.31) and (5.35))-(5.36) we get for a with ai+a2>l and d>Qd 

(5.37) HVHH.^) < Cp-W-+l°l-*)(x°)(ain^a:
0))-ü,«+ai+ai-1)rf-a!. 

We next consider the case that \a'\ = ai + a2 = 0. Set t; = u — u(0,0,2:3) and V = u(M(£)). 

Then analogously we have 

(5.38) I|V||H»(B„) < Cp(a:0)-<A-+lal-i)(siii^(a:0))"(/,y"1)dbla!. 

By Sobolev imbedding theorem 

IC°(ä>) ^ C||V||H2(ZJ0) 

which together with (5.37) and (5.38) implies (5.26). 

In order to prove (5.27) we let x° = (0,0,2:3) with 2:3 € Ism and Uxo = {x € Vm|y | 0 < r < 

^x% tana, ^2:3 < 2:3 < 2:3}. There is a mapping M: 

xi — iajgtanCT^i 
<  x2 = §2:3 tan a £2 

k 2:3 = x%£3 

which maps U° = {£ = (£1,6,0:3) I 0 < V^f+lf < 1,| < & < 1} onto Uxo.   Let 17(0 = 

u(M(i)) - u(0,0,0). Then for a with c*i + a2 > 2 

(5.39) /   |DaC^|2(e? + e2)/,y+0l+aa"2^<C,x§2(as+i"^) /    |Dau|2r2^+ai+a2-2)dx 
JW° Juxo 

and 

(5.40) /    |I>au|2r2^+a,l+a»-2)cfa<Cil(x0) /    \Dau\2p2^+^-2\sin(f>)2^+a^a2-^ dx 
JUxo Jux0 

WIlGrG 

and 
n f    X%    \-2(ßm-ßi}+<*3) 

A(x°)=(—M if/3m-/% + a3<0 
VCOSCT/ J 

(5.39) and (5.40) yield for ax + a2 > 2 

/  |£>a!7|2(£2 + g)ßv+ai+a>-2d( < C2a3\xl\-Wm-*Uaa\ 
(5.41) Vwo 

< C\x°3\-
2(ßm-'\2d)aaL 
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Here we used the assumption that a < j. 

For a with ai + 0:2 < 2 and \a\ > 2 we have 

/   \DaU\2d^<C\x°3\
2^-2) f      \Dau\2dx 

(5.42) <C\xl\-W™-^2W [    \Dau\2p2^-2+ß^dx 

<C\xl\- 0i-2(^m-l)/9,>ia„, (2d)aa\ 

For a with |a| = 1 

[   \DaU\2d£<C\xl\-1 [    \Dau\2dx 
JU° JUxo 

<C\x°3\-
2^-^ [      p2^m-^\Dau\2dx 

JVm,ij 

by (4.3) of Lemma 4.1 

and 

<ci^r2^-^iiuii^ 

[   MO\2dt<C\x°3\-3 [    \u(x)-u(0,0,0)\2dx 

(5.43) < C\x°3\-
2(ßm-^ [      p2(ßm-V\u(x)-u(0,0,0)\2dx 

•/Vro,y 

by Lemma 5.3 

Therefore W(0 € H%2(U°) due to (5.41)-(5.43). Then applying (5.18) of Theorem 5.2 we have 

that for £3 € [§, 1] and d = Kd with some K > 1 

-^(tf(0,0,&) - ^(0,0,0))   < C\xl\-^~^daa\ 
"S3 

which implies 

dxo 
(u(0,0,^) -«(0,0,0))  < C\x°3\-(ßm+k-^daal 

Since x3 is arbitrary, this completes the proof of (5.26), and hence the theorem. 

5.4. Countably Normed Space Cj|(ft). 

By Cß(ü) we denote the countably weighted continuous function space, namely for u 6 C^fl), 

there hold: 

(i) u € C°(Ö); 
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(ii) u\Uij 6 Cjy(Wy) for any ij 6 £; 

(iii) u\öm 6 C^m(Öm) for any m e M; 

(iv) ulvm,0 € Cjmiy(VTO,y) for any ij e £m and m e A4; 

(v) u\n0 e C°°(fi0), and for a; e fi0 

|Dau(a;)| < Cdaa!. 

Due to the definition of B^(fi) and Cj|(ü) and Theorem 5.1-5.6 we have the following con- 

clusion. 

Theorem 5.7. Bj|(ft) C Cj|(fi) C B|+e(fi) with e > 0, arbitrary. m 

Remark 5.1. Analogously the spaces Cjg(ft) for I > 2 and 0 < £ < 2 can be defined, then similar 

results for these spaces will be valid, namely, B^(fi) C CJg(fi) C B^+e(0) with e > 0, arbitrary, m 

We now have established the theory of the countably normed spaces and the dynamical 

weighted Sobolev spaces in 1R3,which will be the foundation to study the regularity of solutions 

for elliptic problems on polyhedral domains in the forth coming papers[26,27j. The theorems on 

imbedding and the equavilence of spaces in different coordinates and in different weighted norms 

will precisely characterize the behaviours of the solutions in various neighborhoods of polyhedral 

domains. The theory can be generalized further for the problems on nonsmooth domains in IR3 

with surface boundaries. Nevertheless we will not elaborate it here although this case is important 

in engineering applications. 
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