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Abstract

This is the first of a series of three devoted to the regularity of solution of elliptic
problems on nonsmooth domains in IR®. The present paper introduces various weighted
spaces and countably weighted spaces in neighbourhood of edges and vertices of poly-
hedral domains, and it concentrates on exploring the structure of these spaces such as
the imbeddings of weighted Sobolev spaces, the relation between weighted Sobolev spaces
and weighted continuous function spaces, and the relations between the weighted Sobolev
spaces and countably weighted Sobolev spaces in Cartesian coordinates and in the spher-
ical and cylindrical coordine_mtes.

These well-defined spaces are the foundations for comprehensive study of the regu-
larity theory of elliptic problem with piecewise analytic date in IR3, which are essential for
the design of effective computation and the analysis of the A — p version of the finite ele-
ment method for solving elliptic problems in three-dimensional nonsmooth domain arising
from mechanics and engineering.
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1. INTRODUCTION

In engineering applications many problems in IR? are characterized by partial differential
equations with piecewise analytic data such as nonsmooth domains, abruptly changes of types
of boundary conditions, piecewise analytic coefficients and boudary conditions, etc., for instance,
the physical domains of structral mechanical problems often have edges and vertices, interfaces
between different materials and material cracks. The solutions of these problems have strong sin-
gularities at the edges and vertices and around the cracks, which make the conventional numerical
approximation extremely difficult and inefficient. Hence comprehensive study on the regularity
of the solutions of elliptic problems in IR® with piecewise analytic data is of great significance
not only for theoretical reasons but also for the desigh of effective computations and the optimal
convergence of numerical method for these problems.

The regularities of the solutions on nonsmooth domains are typically described in terms of
usual Sobolev spaces and the asymptotic expansions where the solutions are decomposited into
regular and singular parts (see [13,14,15,17,18,19,20,32,33,34,36,37,38,41]). Recently the classical
weighted Sobolev spaces Wf, and Vg of finite order with Kondrat’ev-type and Maz’ya-type weight,
respectively, were used to investigate the regularities of high-order derivatives of the solutions
(see [35,40,42]). These regularity results are important and useful for the regularity theory for
elliptic problems on nonsmooth domains and for solving these problems by conventional numerical
approaches. But these results do not characterize sufficiently the class of solutions of the problems
in applications. The solutions u(z) of many practical problems on polygonal and polyhedral
domains may be analytic except at the vertices and edges, and their derivative of order £ > 1
may grow rapidly as z tends to the vertices or edges and as k increases. The regularity described
by usual Sobolev spaces and the classical weighted Sobolev spaces Wg and Vg is unable to reflect
these natures of singularity, and the quantitative features of the growth of the derivatives of high
order are totally neglected. These features are extremely important for numerical analysis and
effective computations. Hence we need a new regularity theory for elliptic problems with piecewise
analytic data, which allows us to construct a maximally effective numerical method and to achieve
the optimal rate of convergence. It has been proved by the approximation theory of the h — p
version of the finite element methods and confirmed by computational practices that the optimal
rate is the exponetial rate with respect to the number of degree of freedom.

We have found that the most proper regularity theory which best serve the goal of numerical
analysis is the one described in the frame of countably normed spaces which provide us with
qualitative as well as quantitative analysis of the solutions and their derivatives of any order.
Based upon this regularity theory it has been shown theoretically and computationally that the
exponential convergence of the h—p version of the finite/boundary element method can be achieved.

The regulairty theory of this type for two-dimensional problems on nonsmooth domains have been
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well established in 1980’s. Here we refer to [4,5] and [27] for the boundary value problems of scalar
equation and elasticity equations, to [10] for the eigen value problems and to [25] for the interface
problems. These regularity results have successfully led to the proof of the exponential convergence
of the h — p version for problems on polygonal domains. For the h — p version of the finite element
and boundary element method we refer to [6,11,22,23,24,29,30}, and refer to [2,8,9,21] for the h—p
version in three dimensions, which has been addressed recently in 1990’s. Since the regularity
results in two-dimensions can not be directly and easily generalized to the three dimensional case,
we have to establish a regularity theory for three-dimensional problems on polyhedral domains,
which is much more complicated. The complexity of the singularity for the three dimensional
problems is caused not only by the higher dimension, but also by the totally different characters
of singularities, namely, edge singularity, vertex singularity and vertex-edge singularity. Hence we
have to find proper weight functions and proper countably normed spaces in neighborhoods of edges
and vertices separately so that these spaces can characterize precisely and sufficiently the singular
feature in different neighborhoods of the domain. It is worth indicating that the structure of the
dynamical weights used in this series is different from ones of Kondrat’ev-type and Maz’ya-type.
The power of the weight for the m-th derivaties, 0 < m < k, is fixed or decrease as m increase for
functions belonging to the classical spaces Vg and Wg, respectively. Consequently the spaces Vz
and Wf, must be of finite order. On the contrary the power of the dynamical weight associated
with the spaces Hg’l increases as m increases, which allow us to introduce the countably normed
spaces B,le and Ci, to precisely reflects the nature of singularities on finite polygonal and polyhedral
domains. Hence the regularity theory given in our series has obvious advantages in engineering

applications.

This series consisting of three papers is devoted to the analysis of regularity of the solutions
of elliptic problems on nonsmooth domains in R3 in the frame of countably normed spaces. The
first paper concentrates on establishing the theory of the countably normed spaces B}i and C’ﬂ
and the weighted Sobolev spaces furnished with the dynamical weights over polyhedral domains. -
The second one deals with the existence and uniqueness of ‘the weak solution for elliptic problem
with data given in the weighted Sobolev spaces HZ", and analyzes the regularity of the solution in
neighborhoods of edges of polyhedral domains. The regularities in neighborhoods of vertex-edges

and inner-neighborhood of vertices are addressed in the third paper.

In present paper (Part I) we introduce countably normed spaces with weighted Sobolev norms
and weighted C* - norms. As a framework for comprehensive study of regularity theory we shall
explore the structures of these spaces qualitatively as well as quantitatively as to be sure that these
spaces meet our theoretical and numerical purposes. In Section 2 we define various neighborhoods of
edges, vertex-edges and inner-neighborhoods of vertice, and the weighted Sobolev spaces Hg’l, and

the countably normed spaces Bf@ in Cartesian coordinates on these neighborhoods and the whole
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polyhedral domain. Section 3 addresses the imbeddings of the weighted Sobolev spaces HZ’I into
usual Sobolev spaces with fraction order and continuous function spaces. The weighted Sobolev
spaces Hg" and the countably normed spaces B}, in cylindrical coordinates on neighborhoods
of edges and in spherical coordinates on neighborhoods of vertices are given in Section 4, and
the relation between these spaces and those in Cartesian coordinates are established there. We
introduce in Section 5 the countably normed spaces C}, in weighted continuous function norm, and

their relation with those with weighted Sobolev norm are fully addressed in this section.

2. PRELIMINARY

2.1. The Neighbourhoods Of Edges, Vertices And Vertex-edges.

Let Q be a polyhedral domain in IR?, and let Ty, i € T = {1,2,3...,I} be the faces (open),
Ai; be the edges, which are the intersections of T; and f‘j, and A, m € M = {1,2,...,M}
be the vertices of Q. By Z,, we denote a subset {j € Z | A, € I;} of T for m € M. Let
L ={ij|i,j€ZI,T;nT; = A;;}, and let L,, denote a subset of L such that L, = {ij € L | Amm €
I—‘,-ﬂf‘j = A;;}. We denote by w;; the interior angle between I'; and I'; for ij € £. Let I'° = Uiev T;
and T = (J;en I's where D is a subset of Z and N = Z\D. For m € M, Dy, = DN Iy, and
N =NNTI,.

Am

Figure 2.1 Polyhedral Domain {2
For effectively studying the regularity of the solution of elliptic problems on polyhedral domain

we shall decompose the domain into various neighbourhoods of low-dimensional manifolds.
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We define a neighbourhood ., s5,.(Ai;) of the edge A;j, shown in Figure 2.2 and assume that
Aij = {z = (z1,23,23) [z1 =22 =0, <z < b}, as follows:
usl.’.,ai].(A,'j) = {12 €N l O0<r= diSt(z,Aij) < E&ij,0 +5,‘j <z3<b- 61']'}.
It can be written as Q.,; X I5,; with Q.;; = {(r,0) | 0 < r < £,0 < 8 < wj;} and I5; =
(a+ 6;5,b—6;;), where (7,0, z3) are cylindrical coordinate with respect to the edge A;j, €;; and §;;
are selected such that U, 5, (Aij)NT¢=0for L€ I, L #i,5.

Figure 2.2 Neighbourhoods of Edges and Vertices
(a) the neighborhood U;; 5,; (Ai;); (b) the neighborhood O, (An);

(c) the neighborhood Vs, ,..(Am,Aij); (d) the inner neighborhood @6.,,( An)-
By Os,,(Am) we denote a neighbourhood of the vertex A,,, shown in Figure 2.2,
05, (An)={z €2|0< p=dist(z,Am) < bn}.

Here we assume that A,, is in the origin and 0 < §,, < 1 such that Os, (A,) N T = 0 for any
£ € (Z\In). We need further to decompose Os,, (A ) into several neighborhoods of vertex-edge

and an inner-neighbourhood of vertex.



We introduce a neighbourhood Vs, .. (Am,Ai:), shown in Figure 2.2, by
v5m»<7ij (Am?Aij) = {:12 € Oém(Am) | 0<o< aij}

where ¢ is the angle between the edge A;j, ¢j € £, and the radial from A, to the point z. We
always assume that the vertex A,, is at the origin and the edge A;; lies along the positive z3-axis.
Let (¢,8,p) be the spherical coordinates with respect to the vertex A,, and the edge A;;, then
Vs, 00 (Am, Nij) = So; x Is,, with I, = (0,6,,) and S5, = {(4,0) | 0 < ¢ < 05,0 < 6 < wi;}
oij € (0, %) is selected such that

m’”u (Am’AU) N vsmaak l(A'maAk l) A, forall kl € L:m, 4 # Z]
Next we define an inner-neighbourhood O, (A,,) of the vertex A, by
@6m(‘4m) = O6M (Am) \ U )—)5myaij (A'm’ AU)
tj€Lm

which is shown in Figure 2.2.

Let 6;; < -1-6 coso;;, and €;; > %6msina,-j for ij € L, m € M. Then Qp = Q)
{Umerm{06,,.(Am) Usjec,, Ueis 2,6 -:/2(Ai3')} contain no vertices and edges of the polyhedral do-
s(Ai) # 0, 20 0, (Am) = 0,
(Aij) N

main §, which is called the regular region of Q, and Qo NUe,; 5
Qo N Vs, .00, (Am,Aij) # 0 for any ij € L, and m € M. Meanwhile we note that I/,

Vs, 04; (Am, Aij) # 0 for ij € Ly, and m € M. '
For the sake of simplicity we shall write U;; or U(Ai;) Vim,ij or V(Am, Asj), O0,, or @(Am)

instead of U, 5., (Aij)s Vépm,0i;(Am,Aij) and Os..(Am).

5:; 1045

i 0ij

2.2. The Weighted Sobolev Spaces H (©) And Countably Normed Spaces B 3(Q).

By H¥(Q), k > 0 integer, we denote the usual Sobolev space on § with the norm
lullfry = D, I1D%ullagq
o<lal<k

where o = (a1, 2,03), |o| = a1 + a2 + @3, D% = D1 D32 D33u = u 221502423 is the weak (or
distributional) partial derivative. As usual, H(Q) = L2(Q), H} o(2) ={u e H?(Q) | v =0o0n I},

|ul§1k(9) = Z ||Dau||%.2(n)
loe|=k

and

|D*u)* = Y |D*uf’.

lal=k
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It is well known that the solutions of elliptic problems in polyhedral domains may be very
singular. The usual Sobolev spaces are not sufficient to describe the natures of regularities of
high-order derivatives of the solutions. Hence we shall introduce the weighted normed spaces and
countably normed spaces which are defined in individual neighbourhoods of edges, vertex-edges

and inner-neighbourhoods of vertices.
Let r = r(z) = dist(z, Ay;) for 2 € U;; and B;; € (0,1). The weight function is defined by

Fistle'l=L for jo!| = a; 4+ ag > £
9.1 ot r(z)F or [o/| = o1 +
(2.1) 5y (@) = { for |o/| < L.
The weighted Sobolev space H[I;:f (U;;) and the countably normed space Bfi.-j (U;;) with integer k
and £, k > £ > 0 are defined as

k£ o
HE W) = {ul lullge gy = D0 195D ulag,) < 0}
0<|a|<k

and
Bj,, (Us;) = {v € HE' (Uy;) for all k > £, and || @5 (2)Dul|r2q4;) < Cd*at}.
Hereafter d* = d7"d3?d3® and a! = a;!ay!as!, the constants C' > 1 and d; > 1 are independent
of a.
Next, let p = p(z) and ¢ = ¢(z) be as before for z € V,, ;;. We define a weight function for
integer £ > 0 and a pair of real numbers 8, ;; = (Bm,Bi;) with Bn € (0, %) and B;; € (0,1)

Qaf

s pPntlal=t) for |o/] < £ < |a

pPmtlal=L(sin g)Piitle' 1= for |o'| = oy + g > £
(z) =
1, for |a| < £,

and we have the weighted Sobolev space with integer k¥ > £ over the neighbourhood V, ;;
HE Vi) = (ol e = 2 1950, @D uliay, ;) < o
o |laj<k

and the countably normed space
Blm,ij(vm,ij) = {u € Hk’,f’ij(Vm,,-j) for all £ > £, and IIQZJf(m)D“uHLz(va) < C’daa!}.

We now introduce a weight function in inner-neighbourhood O,, of the vertex A,, with an

integer £ > 0 and a real number By, € (0, 3)

mtled=£ " for |a| > £
(I)al _1p or >
(2) = { for |a| < £

with p = p(z) being defined as before and define the weighted Sobolev space on O,, with integer
k>t
k¢
HE (On) = {1 lulline 6, = 2 195Dl g, < o0}

le|<k

-7-



and the Countably normed space
Bf;m((’}m) = {u € HZ:f(@m) for all £ > ¢, and ||<I>gf(z)D°‘u||L2(@m) < Cd"‘a!}

By (3 we denote a multi-index (8pm,B:;, m € M,ij € L) with B, € (0, %) and f;; € (0,1).
Then the weighted Sobolev space HZ’Z(Q) over 2 is a set of functions such that their restrictions
belong to H¥(£y), Hgf (Us;), Hgﬁ((’)m) and Hgf i (Vm,ij) forall 4j € L, and m € M, furnished

with the norm

el oy = uwmmw+§Nmmuw)+§jmhu

ijEL
+ Z Z ”“”H“ o Vmais)’
mEM IjELy,

The countably normed space B 5(Q) consists of all functions such that their restrictions belong
to Bﬁ'_j Uij), Bﬁm (O) and Bf?m,;j( Vim,ij) for any ij € L, and m € M, and their restrictions on
Q¢ are analytic.

Although B is a multi-index, it has local interpretations in the individual neighbourhoods,
namely, 8 = f,, in the inner-neighbourhood Om, B = Bi; in the neighbourhood U;; and 8 =
Bm,ii = (Bm, Bij) in the neighbourhood Vp, ;;. Consequently, we shall write Hg,e(@m) = Hgf (On),

HY (Vmii) = HE' (Vmgs), Hy'(Us) = HGi(Usj), BE(Om) = Bj (On), Bi(Vmij) =
B‘ml (Vim,ij)s BE (11”) =Bj ,; Uij), ete.

3. IMBEDDINGS OF H}‘(2)

In this section we shall prove imbeddings of HZ’Z(Q) into spaces of continuous function and
fractional-order Sobolev spaces. These imbedding theorems are of great importance not only for the
regularity of the solutions for elliptic problems on polyhedral domains, but also for the numerical
approximation for these problems (see [8,9,21]).

3.1. Imbedding Of H (Q) Into Fractional Order Sobolev Spaces.

For non-integer s > 0, the space H*(Q?) is defined as a fractional order Sobolev space (see [1]).
Lemma 3.1. Let u € H%:‘:(L{U) with B;; € (0,1), and u(z) = 0 for x = (z1,%2,23) € U;; with
r = (22 4+ 23)% > le;;. Then u € H™(Uy;) for 6 = 1 — B — £, ¢ > 0 arbitrary, and
(3.1) lellrsso gy < Cliulliz g
Proof. Let U;; = Ue,; s, = Qey; X Is,; with Is; = (a4 6;5,b = 6;5) and Q¢,; = {Z = (21,722) |
0<7=(e? +23)% < £;,0 < 0 < w;j}. For T = (20,1,%0,2) = (7o cos(wij/2), rosin(w;;/2)) with
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ro € (0,€i;/2) welet UP = {z = (21 + zo1,%2 + T0,2,23) € Uij | (2] + 22)? < €;;/2}. Then
obviously U;? C U;; for any ro € (0,¢:/2).

Define now wvo(z) = u(zy + ®o,1,22 + To2,23) for ¢ € Q2 X Is,; and vo(z) = 0 for z €
Ui; \ (Se,; 72 % Is,; ), and wo(z) = u(z) — vo(z). Then vy € HE(U;;) and wo € H'(U;;). Further we

have
(8.2) oo (@)l ;) < Cllullaass)
and

1D*vol1321s,;) = Z/u EID"vOPdX
i

|a}=2

S/ | D?u|? dz
- Jupe

i

< ry 2P / | D?u|?r?P da.
u;?
ij
which together with (3.2) implies
_ﬁ..‘
(3.3) [lvollmzqay) < Cro ™ llulluze wy)-
ij

Let now = € U;j, zr = (21 + 20,1, %2 + TZ0,2,23), 0 < 7 < 1. Then

—wo(z) = /01 %u(ﬂfr)d‘f = /02 Zo - (Ve )(z-)dr

where ¥z = (6%1, ;—3%). Hence we have by Schwartz’s inequality, for 0 < s < %

(@I <o | ' (au)(en) di
<ono( [ (@m@rrar)’,

therefore

1
funlie,y < €73 [ do [ (D)@ Pr ar
;1
= Cr%/ r2s d'r/ |D'u|? dz.
0 u‘f"j"o
Selecting s = 0 we get

with C independent of rq.



Note that r = (22 4+ 22)7 > rro for z € U;°. Then we have

1
1D woll3 2y, < C’rf,/ 28 dr/ |D?ul? dz
Y 0 urro

iy

1
< Cr(z,/ Tzs(rro)_zﬂ"' dT/
0 u

|D2u|2r2'@‘f dz
0

Due to the assumption that §;; < 1, we can select s = %L < %, which leads to
(3.5) 1D wolltey) < Crg~*llullg22 o4,
with ¢ depending on f;;, but not on rg. Combining (3.4) and (3.5) we have

(1-Bi;
0

(3.6) [wolles) < Cr )Ilullngg (is)*

Using the K-method for interpolation, (see [12]) we define

K(u,ty=inf  (|[$llmras;) + tlellaze,))
YEH (Uij)
dEH?(U;;)
ptv=u

Obviously by selecting ¢ = u and ¢ = 0 we get
3.7) K(u,t) < Jlullm ) < lullaz? w,)-
Selecting ¢ = 0 and ¥ = wy gives us
- 1-0i; —Bij
(3.8) K (u,1) < Cllullgze g4 (6" +1r5 ™).
The norm of the space H*%(l;;) is defined (see [12])
0 dt
ssna,y = [ 1K@ OPS,
0

By (3.7) and (3.8) we have

/oo [t~ K (u t)|2dt < Jlu)i? /oot‘l‘” dt
1 ’ t ~ H? (Uis)

1 2
< '2'6”'“”}12'2] ;)

1 1
dt —Bi: —28:;
JL O < Gl [ O 4o
iy

By selecting 7o =t and 6 =1 — 8;; — €, € > 0 arbitrary, we obtain (3.1).

The lemma now enables us to prove the imbedding theorem.
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Theorem 3.1. H%’j(u”) is imbedded into H'*%(Y;;) for B;; € (0,1) and 6 = 1 — §;; — ¢,
¢ > 0, arbitrary.

Proof. Let p(£) € C®°(IR}) such that ¢(¢) = 1 for 0 < £ < 1 and ¢(¢) = 0 for £ > 1. For
u € HZ’j(Uij), define v(z) = u(m)go(:l—:) and w(z) = u(z) — v(z). Then v(z) = 0 for z € U;; with
> -;-8,']', and

””“Hz'é(u.-,-) S C“’UHHQ,Q(U“). )
Then applying (3.1) to v implies that v € H*?(Y;;) for § = 1 — B;; — ¢, € > 0 arbitrary, and
(3.9) Holle+o @) < Cllullaz2 -
Note that Supp.w C Ue,;s,; \ Ue,, s2,5,;» and
lwllmzes) < Cllellaz? w,)-

Hence u € H™*%(U;;) with 6 = 1 — B3;; — ¢, € > 0, arbitrary, and the proof is completed. .
The arguments can be carried out for the space Hé’f (Ui;) with any integer £ > 1, and we have
the Corollary 3.1.

Corollary 3.1. Hgf(ll,]) is imbedded into Hl‘1+9(u,-j)' for k > € > 1, pi; € (0,1) and 0 =
1-8ij —¢, € >0, arbitrary.

Next, let us consider the imbeddings of Hz‘j(@m) into a fractional order Sobolev space.

Lemma 3.2. Let u € Hz’j (Or,) with B, € (0,1) and u(z) = 0 for z = (21,22,23) € Oy, with

p= (2} + 2} +23)% > L§,,. Then u € H'**(O,,) with 0 = 1 - B,, — ¢, ¢ > 0 arbitrary, and

(3.10) lullgise(6,,) < Cllullazz 6,,)

Proof. O, is a star-shape domain with the center at the vertex A,, (the origin). Let z¢ =
(20,1,%0,2,%0,3) € O,, with Po = (w%,l +m3’2 +:c(2,,3)% € (0, %6,,1) Then analogously as in Lemma 3.1
we define

. ~ 1

ore = {:l? =Z+4+29|Z € On,|ZT| < §6m}

Then @f,f c O,, for any po < %6,”. Now we will proceed very similarly as in Lemma 3.1. Define
vo(z) = u(z + zo) and wo(z) = u(z) — vo(z). Then vy € H2(O,,) and wo(z) = H(D,,). It can be

proved in the same way

(3.11) llvollyz(s,.) < Cp(;-ﬁm”u“HZ’;(@m)

andforl:O,landsE[O,—;—)
L2 2 12 I+1,,12
| D wol|4 5, SCp/TsdT/ D" tyl? dz.
| 0”1, (Om) 0 o é;pol |

211 -




Noting that p = (23 + 2% + 22)% > rpg for a € 010 and B, < 3 we have fors=0
(3'12) ||wo||iz(@m) < Cp?)“’"’”ip(@m) < CP(Z)”u“iIZi(ém)
and

1
||D1w0||iz(@m) < Cpg(l_ﬁ"’)/ 7~ 2Pm dr/_ N | D2u|?p*Pm de
o

(3.13) 0
< Cp20=Bm) a2
> Upp “u”HZi(Om)
(3.12) and (3.13) yield
| Y
(3.14) lwollery(s,.) < Coo~ " lulluz2 6,,)-

Defining the fractional order space H'*®(0,,) by K-method and arguing as in Lemma 3.1 we
get u € H'14(0,,) for = 1 — 8, — ¢, € > 0 arbitrary, and (3.10) holds. L]
Analogously, Lemma 3.2 leads to Theorem 3.2 and Corollary 3.2.
Theorem 3.2. HZ’; (0,,) is imbedded into H'*+¢(0,,) for B, € (0,1) and § =1— B, — £, > 0
arbitrary. n

Corollary 3.2. Hf;’,f(@m) is imbedded into H*"1*9(0,,) for 8 (0,1), k > £ > 1 and § =1 -

Bm — €, € > 0 arbitrary. .
We now address imbeddings of Hy? | (Vi) into H*#(V,, ;5) with 0 < 6 < 1.

Lemma 3.3. Let u € H5? | (Vinij) With B ij = (Bm, Bis), Bm € (0,3), Bij € (0,1) and u(z) = 0

for z = (21,22,23) € Vimi;) with p = (22,422 4+ 22)7 > +6m. Then uw € H™¥O(V,, ;;) with

6 = 1 — max(B;j, m) — €, € > 0 arbitrary, and

(3.15) A lellise vy < Cllullazz v

m,ii)

Proof. The domain Vp, ;; is a star-shape domain with the center at the vertex A,, (the origin).
Let 29 = (%0,1,%0,2,%0,3) € Vm,ij With po = (23 ; + 2d 5, + a:%y;;)% € (0,%6m). Then analogously as

in Lemma 3.2 we define

1
Viij = {’” =%+ 20| T € Vmij,p(z) < §5m}.

The V,’,’f,,-j C Vm,ij for any pp < %6m. Let us define v = u(z + 2¢) and wo = u(z) — vo. Then we

have

(3.16) lvollar (Ve i) < ullH2(V.0s)
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and

(3.17) 1D?v0|Z2y,,..;) =/v >, |D%0|2d$3/ Dl da.
yeo .

™ |o)=2 m,ij

Let us note that p = p(z) > po for any z € V2, and r = r(z) = (23 + 23)%

m,iJ
from the origin to z and 2o, respectively. If 8,,, > 0;; we have

p

m,13

2Bi;
/ | D%u|?(sin ¢)?Pii p2Pm dg = / | D?u|? <r) p2Pm dz
o Voo .
m,if

> rgﬁ‘j /vpo p2(ﬁm—ﬂaj)|D2u|2 dr

(3.18) Y

> ,rgﬂijpg(ﬁm“ﬁij)/ D%uf? da

yro

m,ij

= pfr(singof®s [ Dl do.
po,.

m,iy

Analogously we get for 3,, < fi;

/ | D?u|?(sin ¢)2Fii p2Pm dg = / | D?u|?r2Pii p2(Bm —Bis) g
vPo .

= p(x)sin §(x) >
7o = 7(20) = po sin ¢y, where ¢ = ¢(z) and ¢, are the angles between the edge A;; and the radial

dr

m vfnol'j
20;;
(3.19) >yl / |D*ul® dz
Volis
2Bij ¢ s 28i; 2,12
> po 7 (sin g )P / | D*ul” dz.
In either cases we always have that for 7 = max(8;j, fm)
||v0||§-l2(V;‘fij) < /v"o |D2u]2 dx
(3.20) , m.ij
Y Y —98.:
< Crind) ol
Analogously as in the proof of Lemma 3.2 we get
1
1D ol < €3 [ 7ar [ DI de
- 0 v,
with s € [0, %) and I = 0, 1. Therefore, for I = 0 and s = 0 we have
[0llLe(vn, ) < Coolleliaw,, ;)
and for I = 1 and s = 8;;/2 < 1 we have by (3.20)
1
1D wollgz(y,, .,y < CP(Z)/O 72%(rpo) ™" (sin ¢p) ~2P% “"”i{",;j Vi)

21=7) s 1 \=20i;
< CPO( 7)(Sln éo) Zﬁ"”u”i{z'? (Vi ij)”
m,s
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Theorem 3.3. H%ﬁl‘j(vm,ij) is imbedded into 1\'-11+0(Vm,ij) for Bm.i; = (Bm,Bij) Bm € (0,%),
Bi; € (0,1) and 6 = 1 — max(fBp,, Bi;) — €, € > 0 arbitrary.

Proof. For u € Hzﬁ’u(vm,ij), defined v(z) = (,o(;—”:)u(m) and w(z) = u — v(z) when () is a
C°-function as before. Then v(z) C HZ’j’ﬁ(Vm,,:j) and vanishes for & € V,, ;; with p(z) > %6m.
By Lemma 3.3 v(z) € H*(V,, ;;) with 6 = 1 —max(8m, 8i;) —¢€, € > 0 arbitrary, and (3.15) holds
for v(z). Further note that Supp.w(z) C Vi = Vo5, \ Vo, 62 Then w(z) € Hﬁ,@(v%) and

”w”HZi(V%) S C||U||HZ’:MJ_(V,”,.»,-).
Due to Theorem 3.1 w(z) € H*¥ (V1) with 8’ = 1 — §;; — ¢, € > 0 arbitrary, and
2
||’w||H1+o'(v%) < C“w”HZ'j_(V%) < C“"”HZ':.“_(V,,,@)‘

This establishes the desired imbeddings. _ =

Corollary 3.3. Hy' (Vm,;) is imbedded into HS1*¢(V, ;) for k > £ > 1 and § = 1 -

max(fij, Bm) — €, € > 0 arbitrary. =
Let us note that @ = Qo U(U;jecUij) U (Urem Om)U (U,,%cja Vi,ij) and that Qo NU;; # 0,

: m

QNO,, #0and QN Vi,ij # 0 for all ij € L, and m € M. Due to the definition of the space

HE’Z(Q), u € H2(Qp) Cc H*¥(Qyp) for any 8 € (0,1). Combining the theorems above together we

have

Theorem 3.4. H%*(Q) is imbedded into H'+*(Q) with 6 = minj,m(1 - Bm,1 = fij) —€, € > 0

arbitrary.

Corollary 3.4. HE’Z(Q) is imbedded into H*"1*%(Q) with k > £ > 1 and 6 = min;; ;m(1 = B, 1 -
Bij) — €, € > 0 arbitrary. A -

3.2. Imbedding Of Hg’e(Q) Into The Space Of Continuous Functions.

The continuity is a very important property of the solution, and it is essential for approxima-
bility of the solution by numerical method. The regularity of the solution in terms of Sobolev space
H*(Q) implies the continuity in the three dimension if s > 3. The solutions of elliptic problems
on polyhedral domains belong to Hg’z(ﬂ) but not necessarily to H*(Q) with s > 2. Therefore the
imbedding results of Hz’e(ﬂ), k > £ > 2 into spaces of continuous function are of great impor-
tance to the regularity theory of the solution of elliptic problems in polyhedral domains and the
approximation theory of numerical methods. |

As in previous sections we address the imbeddings in each neighbourhoods of edges and vertex-
edges and inner neighbourhoods of vertices, and we start with the imbedding of Hz’j (U;;) into

Co(U;).
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By Wi462(IR?), 0 < 6 < 1 we denote the completion of C*°-functions with the norm

o0
“”||%v1+9,2(ma) =/ ||”('am3)”§11+9(m2) des + Z ||Da”a:3“i2(m3)+ ”vllill(le)‘
- Jal|=1
Then we have the following lemma
Lemma 3.5. Wy45(IR%) is imbedded in C°(IR?).
Proof. Since CP(IR?) is dense in Wy¢ ,(IR®) it is sufficient to show that for »(z) € C§°(RR?)
(3.23) Ivllcors) < Cllvliw, 4 2(m3)-

Let V(€) denote the Fourier transform of v(z), i.e.
1 0 ;
— — —if-x
V(€)= F(v) = Var ) /_oo v(z)e dz
and let p2 = 0_ €2, 72 = 2 €2, and Q/J(f) =1+ p? + r2048) 4 12¢2 4 ¢4 Then

v(z) = _1 et
(#)= e . VO

and n
1B,y = (55) [, VPO de.

By Schwartz’s inequality we have
0@ < Cliliv, o m) [, T 9

Let By be a ball centered at the origin with radius = 1 and @; = {£ | |€] > 1,|&3] > ar} and
S1={€| €] > 1,|&s| < ar} with some a > 1. Then we have

/Bl pep @ =©

/ ¢2d§<C/ —dp<C
Q1
For £ € Sy, %? > €5 + 265 + r2(040) > L (65 + v265 + 2043 + r2(49), then

/sl ¥ df(c/ (/o (53+r2§f§3+r20>)"d’"

<C/ ri-%dr < C.

1+a2

and

This completes the proof. [
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Theorem 3.5. H%f (Us;) is imbedded in CO(U;;).

Proof. Let U;; = Q,; x L5,

Fubini’s Theorem u € Hf,’f (Qe,;) for almost every z3 € I. According to the extension theorem of

and assume without losing generality that I, = I = (0,1). By

3] we can extend u to a function in H2?(IR?) with compact support Q C R?, and
ﬂo]
(3.22) ||u”H§fj(m2) = "“”Hf;'?j @ S C||U|IH§'§(Q5'.,.)

which implies the extended function denoted by u again belongs to Hf,’j (IR? x I) with preserving the
norm. Using the technique of “finite-order reflection” (see e.g. [16,36]) we can extend the function
u to IR? x (—1,1), then extend it to IR? x I*, I* = (—1,2) in the same way with preserving the
norm. Set v(z) = (z3)u(z) with ¢(z3) being a C*-function such that ¢(z3) = 1 for z3 € I and
¢(z3) = 0 for z3 & I*. Then v(z) € Hz’j (IR?) with support contained in @ X I*, and by (3.22)

||v($)llngﬁ(ms) = lv(@llazz (@xrm) < Cllullngﬁ(uu)‘

By Theorem 3.1 v € H'*%(Q x I*) with § = 1 — 8;; — ¢, € > 0 arbitrary, which implies v €
Wite2(IR®), and
12/lw40,2002) < Cllellaz? as,)-

By Lemma 3.5 v € C°R?), and (3.23) holds. Note that v(z) = u(z) for ¢ € U;;. Then the
imbedding follows at once. n

We next consider the imbedding of HZ’z(Om) into C%°(0,,). To this end we shall define an
extension operator which continuously maps Hz’z((’)m) into H;’Z(IR:S). The Stein extension may
serve this purpose, hence we follow closely the notation and arguments of [43, Chapter 6, Section 3]

in three-dimensional setting.

Let ¢(zq,z2): IR? — IR! be function which satisfies the Lipschitz condition:
lo(&) — (&%) < M|z — &*|, for & = (z1,22) € R? and 3* = (z},23) € R?,

and let D = {z = (&,23) € R>,23 > ¢(%)} be an open set in IR? which is called a special Lipschitz
domain. We assume that (0) = 0. For z ¢ D, we let 6(z) denote the distance from z to D, and
let A(z) be the regularized distance as constructed in [43, p. 171] such that

(3.24) C16(z) < A(z) < Co6(z), for z € °D = R?|D
where the positive constants C; and Cy depend only on M, and A(z) € C®(°D) satisfying
(3.25) |DA(z)| < Bal6(z)[*~1e!

with B, independent of z.
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For any zo € °D and a real number K > m, 'k z, = {z = (£, 23) : 23 < ¢(&0), |23 — ¢(Z0)| >
K| — %o|} denote a lower cone with the vertex at (%p,(%)). Then Tk, N D = {(Zo, p(f0)},
and for z € °D

(3.26) §(x) > (14 K72) 72 (p(&) - ).

- Hence due to (3.24)

£

c (1+ K22 A(z) = C3A().

P(F) — 23 < (1+ K)74(z) <

According to [42) C; = L and C3 = 5(1 + K~2)7. Let 6*(z) = 2C3A(z). Then

§(5,23) > 2(4(#) - 23)
and
(3.27) 60*(&,x3) > 2|zs|, if (&) =0.
Let % be a smooth function defined on [1,00) which satisfies
(3.28) /loozp(x)dA: 1, /1w¢(A)A*dA=0, k=1,2,....
Let f(z) be defined on D. We then define the extension Ef by Ef(z) = f(z),z € D and
- (3.29) Ef(s) = /1 " £(&, 25 + A*(@)$(\) d), o ¢ D.

Let #° € IR?, and suppose that (#°) = 0. Then for z = (&%, 23) € °D, z3 < 0 and due to
(3.24) we have for A > 1

(3.30) z3 + A6 (z) > 23 + 6*(z) > 23 + 2|zs| = |23],
and é(z) = dist(z, D) < dist (:1:, (:EO,(p(:ZO))) = ¢(&%) — 3. Then we have
(3.31) 6*(z) = 2C3A(z) < 2C3C268(z) < 2C3C:(p(3%) — 23) < 2C3C;|z3| = alzs)

with @ = 2C,C;. Here we used the assumption that p(3°) = 0. Letting s = y + A6*(z) and using
the fact that |1(A)] < £ (see [43, p. 187]) we have for = = (£°,23) € °D with ¢(2°) = 0

> 70 s ﬂi)__ s
V@9l

(3.32) IEf(°,23)| < A /

z3+A6*(z
by (3.30) and (3.31)
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< A%|as] / £(@
|z3|

where A* = aA. This estimate is an important property of the extended function E f(z), which
will be used in the proof of Lemma 3.6 and 3.7.
Let Hf;f(D), B € (0, %), 0 < £ < 2 be the space of functions with the norm

N
IIUIIHu = > 1195 Duliz(p)
0<|a|<e

when the weight function is given as before

e p(z)Pr, for |af = ¢,
5 (2) = { for |a| < ¢,

with p(z) = (X7, |2il*)?.
Lemma 3.6. E is bounded map: Hﬁ ‘(D) — f;f(II{3) for0 <{<2.
Proof. Let us fix #° € R? and assume that ¢(%) = 0. For z = (3°,23) € °D
p(3°, z3) = |2°) + |z3|® < 3% + s* = p(3°,s) for s > |z3], and
P (3, 2) B )] < ool [ @0 A

Therefore

/O p2ﬁ1(570,$3)|Ef(i'0,$3)|2d.’II3 SA*2/ (/ 251(:1;0 .S)f((U 3) ) |£L‘3|2d$3.
3.33) U7 “oo Wzl

o0
* ~ - S
=47 [T (0, 91(@0,) 5 laal? doa
0 |zl s

0

Now we quote the Hardy’s inequality from [43, p. 272]

(3.34) ( /0 ” ( /t ” F(s)ds) 11" dt)i < ’73( /0 P (s)Ps! ds)%

Letting F(s) = pP(3°,s)f(3°,5)/s%, p = 2, v = 3, and applying (3.34) to the righthand side of
(3.33) we get

0 0 B1( 50 ~0 2 '
/ p2'61($ $3)|Ef($ .’123|d.’l)3 A*2/ (sp l(x ,S)f(.’l} ,S)) 2 ds
—oo 0

82

(3.35) .
< A / P21 (30, )| F(2°, 5)* ds.
0

If (&%) # 0 by a simple translation in z3 we get

©(z°) 0 v
(3.36) / p*P(a% 23)| Ef (30, 23)|" dos < A7 / _ P (30, 9)|f(Z0, 5)| ds

oo ©(£°)
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which implies

(3.37) / p81(30, )| B f (30, 3)|? das < A / 281 (30, 6)| f (0, 5) ds.

(2°)

Integrating both sides over 2° € IR? gives

1p°* E f(2)llL2@msy < Cllp™ f(2)llL2p)

which is the desired result for £ = 0.

Now we turn to the case £ = 2. It has been shown in [43] that E is a bounded map: H'(D) —
H!(IR®). It remains to estimate the second derivative of Ef(z). Differentiating E f(z) for z € °D
gives us

PEf(z)
3x1

(3.38) + 62 (2)? /1 ” Far (8,23 + A6%(2)) N2 (2) dA

= [ (@ AR+ 82,(0) [ s (B0 + X)) 4

#6230) [ e B2+ X @) ) A

Let 0 € IR? be fixed and p(3°) = 0. Using the facts that [(A)| < &, &, % for A > 1, and
handling the first three terms of (3.38) in the same way for E f(z) before we have for a; + a3 = 2

0 ~0 *© -0 ds
|/1 fozrzos (8 ,:z:3+>\6*(a:))/\°‘31/1()\)d)\‘ < A|m3|/| Ilfx;lxga(x »8)l
3

For the fourth term of (3.38), using the orthogonality given in (3.28) and the techniques of [43] we

have the estimate
= ~0 2 o ~0 dS
|/ foo (2 ,ﬂv‘3+w6(x)))\¢(/\)d)\|§A|z3l /n ||fx§(a: '8) =5
1 s

Due to (3.25) and (3.26) we have |6*,(z)| < C|z3|™?, which implies that
1

<Clas] > / | foza 490 (2° s)|2.

a1+a3—2

O*Ef(z)
5

Then arguing as for (3.35)—(3.37) we obtain

|

Carrying out the arguments above for general terms D®E f(z) with |a| = 2 completes the proof

0’E f(z)

522 < Cl1p® D f|lna(py

L2(IR3)

for £ = 2. The theorem for £ = 1 can be proved in similar way. Thus the desired extension is
established. [
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Now we consider another weighted Sobolev space Hf,’f,ﬁz(D) over D, 0<£< 2,0 € (0, %)
and B € (0,1), with the norm

_ o,l o 2
lulgge, (D)= (3 1955, 0%ulEe))

0<[al<e

(ST

where

pPi(sin ¢)%, for oy +on =4
ﬁl’ﬁz(m) P foron + 0y < €< o] -
for |a| < £
with p = p(z) = (z?=1 £2)7 and sin ¢ = sin ¢(z) = (2 + z2)% /p.
Lemma 3.7. Assume that ¢(z) < 0o < Z. Then E:Hg’ﬁh(D) — Hgf s, (R?) is a bounded map
for0 < £<L 2.

Proof. Let 3° € IR? be fixed and ¢(2°) = 0. If B; > S, then for s > |z3] we have for z =
(50,333) € cb

(3.39) PP () (sin 9(2)) = p =2 (2)|&%12 < pP 2 (30, )12
Therefore we have by (3.32)

0P (2) sin () * B (2)] < A”lasll2® [ o (a0, )12, )7

EXY

Applying the Hardy’s inequality (3.34) and arguing as before we get

0 o
[ oo B S @, ) doa < C [ OB a1, )P d

= C/ p?P1(3°, 5)(sin d)(ai‘o,ss))z'ﬁr"lf(a?:o,s)|2 ds.
0
If 81 < B, then for z = (2%, 23) € °D we get
pP1(2) (sin ¢(2)) | Ef(z)| = pP P2 ()| | Ef(2)] < Jas| P ~%|2°| | E f(z)|
< Clasf 1205 [ (a0, 9)1 5
fz3|

Applying the Hardy’s inequality (3.38) and arguing as before we have

0 00 ~ 2
[ i mae) s dus < clatpee [ (LT p0smem o

- 00

= C|3°|*5 /00 2(ﬁ1—ﬁz)|f(50’3)|2 ds

< C/ 23 ( (fo,ls)yﬁ?(Eﬁfgﬁl)mu(z",s)ﬁ ds

<C / PP, ) (sin d(Go, )| f(5°, 5)[2 ds.
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Here we used the assumption that ¢(z) < 09 < T for z € D. Arguing as for (3.37) we get for

@(2°) # 0

o0

/ p*P1(sin ¢)*%2|E f(3°, z3)|* dzs < C

-0 w(z

P (sin 62| £(°, )] ds.

Then integrating both sides above over #° € R? gives the theorem for £ = 0.
The argument used above for the second derivatives of E f(z) in the proof of Lemma 3.6 can

be carried out here for £ = 1,2. Hence the lemma is completed. n

Let us remark the assumption that ¢(z) < g¢ < F. First of all, the assumption holds in most

practical application. Secondly we can drop this assumption by modifying the we/ight function

‘i’g’l _ { ngm(m) for z € D with ¢(z) <09 < 5

18 for ¢(z) > oo.

Then all arguments in the proof of Lemma 3.7 can be carried out, and it will be sufficient for the
imbedding of H3*(0,,) into C°(Op,).

It is worth indicating that the extension operator E defined in (3.29) is a bounded map from
HZ’IZ(D) to HZ’IZ(]RS), and from HZ’]{[,Q(D) to Hg’fﬁz(]R:‘) for any £ > £ > 0. But we will not
elaborate it further here because it does not serve our goal of establishing desired imbeddings of
HY(0,) into C*2(Op), £ > 2.

We now consider an infinite polyhedron @ which coincides with polyhedral domain € in a
neighbourhood O,, of the vertex A,. We assume that A, is the origin and one edge A;; of Oy, is
on the positive z3-axis. Let V;,; 00 = S5,; X R! and O, = O\ Uijeﬁm f&,ii,oo. Both V,,; « and

O are the special Lipschitz domains.
Lemma 3.8. There is a bounded map F: Hz'i(@m) — HZZ (R?).

Proof. Let {¢;}$2, be an open éovering of O, and let {#;}%2, be a partition of unity subordinate
to this covering. Each function u; = ¢;u € Hz’j((’)oo) with compact support contained in Op,.
Applying Lemma 3.6 to u; we get an extension Fu; € Héj(]R:’) with preserving the norm. Set
Eu=Y2, Eu;. Then Eu € Hf,’j (IR?), and

I Eullaz2 (moy < Cllullnze o,.)
Since Eu(z) = u(z) for z € O,,, we complete the proof. ]

Lemma 3.9. There is a bounded map E: HZ’ij(Vm,ij) — Hz’:) (R?).

Proof. The proof is the same as that of the previous lemma, except that Lemma 3.7 is used
instead of Lemma 3.6.
We now are ready to establish the imbedding results of Hf,’2((9m) into C°(Or,).
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Theorem 3.6. For B € (0,3), Hf,’j((f)m) is imbedded into CO(—5m).

Proof. By Lemma 3.6 we extend u to R® preserving the weighted Sobolev norm. Let ¢(p) be a
C>-function such that ¢ = 1 for p < po/2 and ¢ = 0 for p > po With pg > 26,,. Set v = @(p)u
and f = Av. Then v and f have a compact support B,, = {z | |z| < po}. Define

Ve =5 [ Mo

Using the fact that 8, < % we get by Schwartz’s inequality

£0

< C”””H%:(c')m) < C”"”niﬁ(ém)'
We obviously have AV = f = Aw, and it is easily seen that V(z) — 0 as |z| — oo. Because v(z)
has compact support, the standard uniqueness argument gives us that V" = v. Therefore
Pl o) < Clivllgze 3,,):
Since v(x) = u(z) for z € O,,, the theorem is proved. "
Corollary 3.6. Hf,i(@m) is imbedded into C*=2(0,,) for k > £ > 2.
Theorem 3.7. Hy” . (Vpnij) with fm € (0,7) and B;; € (0,1) is imbedded into C°(Vpmi;)-

Proof. The proof is the same as that for the previous theorem except that the estimate

V< (f) 1P mepa) ([ e o dy)%

PO

<
< C|Iv||H§i,ij(v,,,,i,-)

is used. Here we used the fact that §,, € (0, %—) and g;; € (0,1). n

Corollary 3.7. Hf’ (V) is imbedded into C*=*(Vyyij) for k 2 £ > 2.
Combining Theorem 3.5-3.7 and Corollary 3.5—3.7 we have

Theorem 3.8. Let By, € (0, %) for m € M and B;; € (0,1) for ij € L. Then Hf;z((l) is imbedded
into CO(Q2). n
Corollary 3.8. Hg’e(Q) is imbedded into C*~%(Q) for k > £ > 2, Bm € (0,3), m € M and
,Bij € (0, 1), ij € L.

4. WEIGHTED SOBOLEV SPACES AND COUNTABLE NORMED SPACES IN
CYLINDRICAL AND SPHERICAL COORDINATES
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The weighted Sobolev spaces and countably normed spaces in Cartesian coordinates are defined
in Section 2 which are of great significance to the theory of regularities of solutions of elliptic
problem on polyhedral domain and to the applications of numerical analysis (see [8,9,21]). Due to
the natures of singularity in various neighbourhoods of edges and vertices it would be much easier
for investigation if we use these spaces in cylindrical coordinates on neighbourhoods of edges and
in spherical coordinates on neighbourhoods of vertices. Hence the relations between these spaces
in Cartesian coordinates and in cylindrical and spherical coordinates are extremely important.

The weighted Sobolev spaces and countably normed spaces in cylindrical and spherical coordi-
nates will be defined in this section and the relations between these spaces and those in Cartesian

coordinates will be the focal points.

4.1. Weighted Sobolev Spaces And Countably Normed Spaces Over Neighbourhoods
Of Edges In Cylindrical Coordinates

Let U;; denote a neighbourhood of the edge A;; as in previous sections, namely, A;; = {z =
(0,0,z3) | @ + 8;; < z3 < b — 6;;} lies on the z3-axis. = = (21,%2,23) and = = (7,0,23) are
the Cartesian and cylindrical coordinates for # € U;; with respect to the edge A;;. We write
DU = Upay gas 22 and

|DFul? = Z |r=2 D% y|?
le]=k
where a = (@1,as,0a3), @' = (a1,a2) and |¢/| = a1 + @, |a| = |&/| + as.

By @g:f(:c) with 8;; € (0,1) and integer £ > 0 we denote the same weight function defined in

Section 2. Then the weighted Sobolev space Hgf (U;;) with integers k > £ is defined as
e @hs) = {u Il e o, = 32 19570l < o0}
' al<k

and the countably nqrmed space Bfi,-,- (U;;), £ > 0 is introduced as
Bf,, Us;) = {u | u € ! (Us;) and || @5 72D |12zy,;) < Cd®al for any k > £, }.

Theorem 4.1. For0<{<2and k > ¢, 'Hg;f (U;;) is equivalent to ngf(u,-j). Moreover, if for &
with |&| < k

(4.1) - @5 r= Do u|pay,;) < Cd°,
then for |a| = k

(4.2) 1254, D¥ull2q,;) < Cd*al,
vice versa, (4.1) stands for |&| = k if (4.2) holds for |¢| < k.

Proof. For the proof is analogous to those in two dimensions, we refer the reader to [4]. L]

As a consequence of (4.1) and (4.2) we have
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Corollary 4.1. For0<{£<2, Bf,‘_j (U;;) are Bf,',j (Ui;) are equivalent. ' .

Remark 4.1. For any k& > £ > 0, it is always true that Hgf (Us;) C 'Hf,:f (Ui;), and Bgu (U;) C
Bf,'(um) u

3

4.2. Weighted Sobolev Spaces And Countably Normed Spaces Over Neighbourhoods
Of Vertex-edges In Spherical Coordinates

Let Vi be a neighbourhood of the vertex An and edge A;j, and we assume as usual that
A, is at the origin and A;; lies on the positive z3-axis. z = (z1,22,23) and z = (4,0, p) denote
the Cartesian and spherical coordinate of @ € V,, ;; with respect to A, and A;;. We write
D*y = Ugaigazpes and

ID*uf = Y |p71'l(sin ¢) "2 Duf?
lo|=k

where o = (a1, ay,3) and o = (a1, ay) are the same as before.
The weight function @g”:”(w) with B ij = (Bm, Bij), Bm € (0,%) and Bi; € (0,1), is defined
by (2.2). Then the weighted Sobolev space Hgf»ij(vm,ij) with integer £ > £ and the countably

normed space Bf;m i (Vm,ij) with £2> 0 are introduced as

k,l — oz,l - o(’ . - o
Hﬁm’,»j (vm,ij) e {u I ”u”?H’l;’,i,.-j(v’""'f) = Z ”@ﬁm,ij(:l:)p ! I(Sln ¢) *D u||%2(vm,.~,~) < OO}

la|<k ,
and

Bfim,g,- (VWJ])
= {u|u€H (Vmj) for any k > {, and @5 . p~ 1 (sin )2 Dul| g2y, ,;) < Cd¥d!}.
The following lemmas are essential to establishing desired imbedding theorems.
Lemma 4.1. Let V, 5 = S; X Is with So = {(¢,0) |00 < ¢ < 0,0< 8 < w} and Is = (0,6). Then

for 69 > 0 and B3, € (0,—;—

(4.3) 1P~ ulliagy, 4 < C{ D Pt D sy, ) + ||“||%2(va_5\v,‘6,2)}
|af=1

and for £ = 0,1

(4.4) 0%~ D ullaqy, ) < C{I0P D ullecy, 1y + 1D Ul v \veriro

provided the right hand sides are finite.

Proof. Let
_ 1
o) = g7 [ w(@.0.p)ds.
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It is easily seen that
di 1

= — u,(¢,0,p)ds
dp ISUI So P(¢ P)

and
/0 p ﬂ’"ml I dp<C/ PP\l dz = 1™ u Lo, o)
0'6

Noting that 0 < 8, < 3, we have by Lemma A.1 of [4]

é s -
_ di|?
| o) -apdp s [ 4| T o
0 P

0
< ClePmwolliav, )

where a = (1), and by the imbedding theorem of the Sobolev space(see[1])
jaf* < C 5/2(H +1a) dp < elupllEagy, \v, o0 + Nl \Vie)

which leads to 5
|| 1l do < G Ry, )+ Wl 5y

and

(4.5) 0%l k2w, ) < CIPPmullL2w,.5) + NullLz(v,, s\V,.q 2))-

Further for almost every p we get

w(6,6,0) = 1) = 75 [ (ul6r8.0) = u(B..0) sin b

1

¢ du - - ou - - A o T 315
{/ 55 B0 db+ [ 58,6, a0} sin $di i
Further we have

/ l ; 60(¢,0 p)d0\sm¢d¢d0<C/ / |80(¢’ép ‘d0)51n¢d¢d0

/\ |ds%

(4.6)

and by Schwartz’s inequality

/ l/ (.6, P)d¢|sm¢d¢d9

(4.7) / / ‘ (4,0, p)’ sm¢d¢)
<([

¢

P }sinq"sdédé

é sm¢

(¢’0 p)} sm¢d¢ / lA sin &
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Note that
(4'8) /d | /¢

Substituting (4.8) into (4.7) we obtain

d¢3|fsm¢;dqzdégcl/ IIn ¢ — In | sin § d
sm L ago

< Cy(|In¢| + Cp)E.

(4,6, p)l sm¢d¢)%

as) [ | [ S sndasai < cimel+ ¥ ([ |53
The combination of (4.6) and (4.9) leads to

Ou ((Z), 0, p)l2 sin JS dé) d.S’}

[ 16,0~ atoras <o [ |55 as+ [ cl(|1n¢|+cz)(
(4.10) <c /| ]ds+/w’ / Cllln¢]+C’2)sm¢d¢)

( 9% 4,8, p)‘ sm¢d¢)] do}

SC/SG(I% +|g5] )43

Therefore
| B ~1 7112 26m (1 2, 1 2
(4.11) 0P = gy, S C [ (el + Slual?) de
. 0,8

Combining (4.5) and (4.11) we obtain (4.3).
Since |D'u|? = |Du|? we get (4.4) for £ = 0 from (4.3). Setting v = D%u with |a| = 1, and
applying (4.3) to v we obtain (4.4) for £ = 1. ]

Lemma 4.2. Let V, 5 = S, X Is be the same as that in Lemma 4.2 with oo = 0, and let By, ;; =

(ﬂmn@u) with ﬂ'm € (0’%) and ,Bij € (01 1)'
(i) Ifue H1 1 ;(Vo,6), then

(412) 0P (sin )5 ullgzv,) < Cllellays | v = Cllelgr v,
(ii) Fue Hf,’j'“(va,g), then
(4.13) ”pﬁm—2(sin q&)ﬁ-’j -2 (u - u(O,O,:I);;))”Lg(va,d) < C”u”Hfa',i,u(vmﬁ)'

(iii) Ifu € Hg’i ij(va'(s) with £ > 2, and if D*u vanishes along the edge A;; for all a with
0 <|a| <£-2, then

(4.14) [|0Pm~#(sin ¢)P ~*ullpa(y,) < C”u”Hf;f,,,.-,-(Vm’)'
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Proof. By Lemma A.2 of [4] we have for almost every p € I5

@15) [ (oin o PsDup de < 0f [ (sing (fuol + —fusl) ds+ [ Jupas)

2
n ¢ 7\ o/2

where C is a constant independent of p. Multiplying (4.15) with p?°~ and integrating over p, we
get

llpPm=1(sin ¢)P5 ~Lul| 2y, )

(419 <C{ 3 1P i 8P+ D gy, 4 + 10 v v gen -
Jali=1

Applying Lemma 4.1 with gy = /2 we get
" ulla(w, o\, ) < C{ Y Pt eIy, o\, o) + Hullm(v,,,s\v,,g,ﬁ\v,,g,ﬁ,z)}
|aj=1
< C||U“H;,;fm(v,>5)
which together with (4.16) leads to (4.12)
Furthermore, by the arguments of Lemma A.1 and A.2 of [4] it can be shown that for almost
every p € I

/ (sin ¢)2(ﬁ‘f‘2)|u —al*ds < C/ (sin ¢)2(ﬁ"' -1 (|u¢l2 + !
So So

sin® ¢

2
|u9|2) ds
where a = 4(0,8, p) = u(0,0,z3). This implies that

1
/ PP =D (sin ¢)* P =Dy — af* dx < C / P20 =0 (sin ¢)2(%5 =D (Juy|? +
Va,g va-,6

sin? ¢

|U9|2) dz
< C/ p2(ﬂm—l)(sin ¢)2(ﬁ"—l)lplu|2 dz.
Voo

Applying (4.12) to D%u with |a| = 1 we obtain (4.13) immediately.
Now let u € Hg;f‘”(vm,ij) with £ > 2 such that D*u(0,0,z3) = 0 for 23 € I5 and |o| <1 —2.

Then the arguments above can be carried out for £ > 2, namely

/ (sin ¢)2(ﬁ-’j—1)|u|2 ds < C/ (sin ¢)2(ﬁ.‘j+1—-£)(|u¢|2 + - 12 |u9|2) ds
Sq S0 sin” ¢
and
“pﬁ"‘_z(sin ¢)Bs,~ —Zuniz(vm'u) < C/v pz(ﬂ,,.-f-l—e)(sin ¢)2(ﬂ;,~+l—l)‘D1u|2 dz
o,é )
va’,é
< C(|lp" (sin )% D*ullia(y,, ;) + 1D ulleav,, i)
which yields the desired result (4.14). L]
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Lemma 4.3. Let V,5 = S, x I5 as before with ag > 0. Then for 3, € (0, %)
(4.16)
”pﬁ""—z(ud’ - a)|IL2(va',6) < C{ Z ”pﬂm+a3—2(sin ¢)ﬁij+01—1Da'u||L2(vm6) + ”Pﬁm—luqsp“L?(v,,g)}

le’|=1

with

(4.17) a = lim Fl—l/S ug(9,0,p)dS

p—0

provided the right hand side of (4.16) is finite.

Proof. Let v = uy and

I
) = 7 [5 4(6,6,7) 5

Then

and

] i 2
/ prdp<c [ [Rug da,
Vom,ij ' P

1 2

Therefore o € Hz’;(I‘s) C CO°Is) due to Lemma 4.1 of [5]. Letting a = %(0) =
lim 0 ]?la_l fS, ugy(4, 8, p) dS, we have by Lemma A.1 of [4]

5 5 _
2= dv)?
/ p*om 2|v—alzalpSC/ p2ﬁ"‘|;1—| dp.
0 0 P
Here we used the fact that 8, € (0, %—) This implies

(4.18) 672 (3 = )iEay, 5y < CllPP " 0,ll T2, 4)
< CllePm M upgllLzw, 4)-

Arguing as in the proof of Lemma 4.1 we have
[6°7=2 (v = D)l2(ves) S C ) [lpPm 2 (sin ¢)%5 T+ D e, )
le’]=1

<C Y (1P (sin ¢)P T DY g |y, 4
o1

(4.19)

The proof of (4.19) is the same as that given for (4.11) of Lemma 4.1 except that the inequalities

/ | / (¢,0 p)dé| sin $dddd < C / (sin §)2(4ii l)\—(qs,o p)\ s1n¢d¢d0)
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/50 | /; %@5’ 6,0) a4 sin ¢ dd df

cof ([emorni

——2—(({5, (),p)l2 sin &dé) : (/(:(sin $)~(1+26:) dqhﬁ) : sin ¢ d dé
< C((sin )™ + 1) ( / " (sin )20

ov, - 2 . 1
a—$(¢,9,p)‘ sxn¢d0)
and |
/ |v - ’T)l2 ds < C’ / (sin ¢)2(ﬁsj—1)‘@(¢’0,p)l2 s
S
/ ((Sm¢) 2his +Cl sin ¢d¢/ (Sm¢)2ﬁu
< C z / (Sln¢)2 Bij+ai 'avl

le'|=1

—(¢,0 p)| as}

s

are used instead of (4.6), (4.7) and (4.10) respectively. The combination of (4.18) and (4.19) yields
(4.16). | .

Lemma 4.4. Let V, 5 = S, X I as before with oo = 0. Then for 3, € (0, —;—) and B;; € (0,1)

[P ~2(sin )% "} (ug — a)llLa(v, )
(4.20) < 3 1P i @Yt D uglluar, + 107 ugplia, o )

lo'|=1
where a is given by (4.17), and
(4.21) 16772 (sin 8)Pm 2 ugllLa(v, ) < C D loPm 2 (sind)*5 1 D ugllua(y, )-
o=t
Proof. By Lemma A.2 of [4] we have
(4.22) ‘

1
/ (sin )2 ~2|ug — a|? dS < C/ (sin ¢)2Pis (|u¢¢| + —
Sa sin

o

¢IU99|2) ds + /:5' |’M¢ - a|2 ds

with a indicated above. Multiplying (4.22) with p?=~2 and integrating over p we get

P2 (sin )5 7 (us — @)laqv, ) < C{ 20 1072 (sin 6)P5+ 1D ug gy, o

(4.23) =
+ [ PPty -l do).
» va,&
By Lemma 4.3
1P~y — @)llaav, ) < CLlO*™ M ugpllv, )
(4.24) + Y 1P (sin )Pt 1D w2y, ) }-

lav|=1
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Combining (4.23) and (4.24) we get (4.20).
Analogously, by the arguments of Lemma A.2 of [4] we have

/ (sin ¢)2(Pii =) |y, |2 dS<C'/ (sin ¢)*(Fii— 1)(|U¢9|2

Slussl?) s

which completes the proof of (4.21), and hence the lemma. _ ]

Theorem 4.2. If u € Hy' (Vmij), 0 S £ <2, k 2 £, B = (Bm,Bi;) with B € (0,3) and

Bij € (0,1), then u € 'Hg:ﬁ (Vm,ij), and for any & with |&| < k
(4.25) @5 p 1%\ (sin ¢)=22 D ul v, ) < Cllullm ¢ Vi)

moreover, if for o with |a| < k

(4.26) 125 D*ullev,, ;) < Cdl,
then for |&] =
(4.27) @5 o711 (sin §) %2 D%ul| () < Cd%al.

Proof. Let us note that

Uy = Ug, sin @cosd + uy, sin ¢sin 6 + uz, cos ¢
(4.28) g = Ug, COS P08 0 + Uy, cOs Psin b — ug, sin ¢.
1 .
YETYAL Uz, sin 6 + uy, cosf

which implies that |Du|? = |D u|?,

(4'29) ||D1UIIL2(Vm.ij) = “Dlu“L?(Vm,ij)
and
(4.20) _ ||u||71;,»:m(v,,,,.~,~) = ||u||n;;;",j(vm,,~,-)-

For higher-order derivatives we will prove (4.25) and (4.27) for & = (k,0,0), & = (0,%,0) and
& = (0,0,k) with k£ > £. The general term D®u can be treated in a similar way.
Note that

(4.31) Upk = |§:k al'(lczl’)ag D®u(sin ¢ cos §)** (sin ¢ sin §)**(cos §)*?

which implies that for k > £=10
[|p5Pm (sin 6)P5 wpe 2w, i) < D
|ea|=k

< C(k) Z ”‘I’grf ,Da“”L2(Vm,-'j)'
o=k

k!
2 plel+Bm lo'+8i5 per
al' a2|a '”p (sln ¢) ’ u”L2(vm IJ)

(4.32)
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Then (4.25) for @ = (0,0, k) stands. If (4.26) holds for £ = 0, then
k!

k+Bm (sin &)Bii — e
o™ 7o (sin @)™ upllLa (v, i) SC%,;QI“"?“"‘!d )

= C d¥k!
with d3 = 3max(dy, d,ds), which is (4.27) for £ = 0 and & = (0,0, k).
For k > £ > 1 and f3;; € (0,1), we get from (4.31)
! ,
llo* =P w okl v, ) € D et~ (sin )1 1= Doy,

! ! !
o=k Q1. 0. O3,

< C(k) Z “‘I’g;f_,-jDau”Lz(Vm.ﬁ)
o=k
which together with (4.32) implies (4.25) for 1 < £ < 2 and a = (0,0, k). Similarly (4.27) can be
proven for o = (0,0, k) with k£ > £ if (4.25) holds for £ = 1,2.

Next we consider ugr, k > £. Arguing as in [4] we have

k n
(4.33) Ugh = Z(psin q&)”z Z a(ﬁ,nlm(sin 6)"* (cos 0)"2u$;»-jz£
n=1 j=0 ni+nz=n
‘ nl,nQZO
and
- (k) k!
k) _ kR
(4.34) AP =37 N )l $4 5
j=0 ni+na=n
nlvnﬁzo

Then it follows from (4.33) that

[|pP=~*(sing)P 'euok”L?(vm,u)

n

k s o
= ZZ Z Ia;}mhnzl”pn+ﬁm “(sin g)Puitn luw?"'w’élle(Vm,ij)

(4.35) n=1j=0 ni+nz2=n

- M1,N2 20

<Ck) D, 1195F . DullLa(v,, .p)-
<o)<k
oz3=0

Here we applied (4.12) of Lemma 4.2 to the first term of the summation if £ = 2, namely,
[l =2 (sin @) " ugnms 43 12(Vp i) < CllP ™ (850 0)™ D (Ui i MIL2(vi)-

Hence (4.25) stands for & = (0,%,0) and £ > 0. Furthermore (4.26) and (4.33)-(4.34) lead to

k n
0y - _ k —i i Ny
l|loPm =4 (sin )% ~fugn ||y, ;) < E E E |a'(n,,;,n1,n2|d¥ Tdj(n — j)! 5!

n=1 j=0 n;,n>0
ni+nz=n

<3 (1) m
n=1 4
< Cd¥k!

-31-




when dy = 4 max(dy,ds,ds). This is (4.27) for @ = (0,k,0) with k > £,0 < £ < 2.

Now we consider uyx, k > £. To this end we have to derive by the induction:

(4.36) uyre = Z " Z Z ag’%:,nz,ns,m (sin @)™ (cosg )2 (sin 8)"*(cos 8)™* D%u,

=1 ja|=n mnitne=n
n3+n4 |a'|
n; >0
k!
(4'37) As'tk) = Z Z |a(ak,')nl,n2,n3,n4l S 5k;f7 for 1 S n S k?
Jal=n nitna=n )
nat+ng=|a’|
n; >0
and
(4.38) n; >0 forl1<i<4, ny+n;=|a|=n, and n3 + ng = ||

Obviously, (4.36)(4.38) holds for k¥ = 1 due to (4.28). Suppose that they are true up to (k — 1),
then

Ugh = Z p" Z Z ag'f,jll?nzyns ns 1(sin )" (cos ¢)"2(sin 6)"* (cos §)™

lal=n n1+n2-n
nz+ng=|a’|
n; 20

plcos pcos D% uy, + cos psin D% uy, — sin D ug,]
+ (sin )™ (cos 8)™ D*u[n (sin )™~ (cos )" — ny(sin ¢)™ 1 (cos p)"2 1]}

from which we get for |a| =n =k

(k) _ a(k—l) + a(k—l)
o,M1,M2,n3,Me T 0—ey,nyme—1,n3,n4—1 a—ez,m,n2—1,n3—-1,n4
(4.39) -
_ kD

o—e3,ny—1,n2,n3,n4

and for ol =n < k

(k) _ (k-1) (k-1)
Qo/n1na,mams = Go—eyynyng—1,m3,me—1 + Qo —ey,m1,m2-1,n3—1,n4
. (k 1) (k-1)
(4'40) a—£€3,n1—1,n2,n3,n4 + (nl + 1)aa,n1+1,n2—1m3,n4

(k1)
- (n2 + 1)aa,n1—1,n2+1,n3,n4

[

where a —e; = (a1 — 1,a9,03), 0 — €, = (1,02 —1,a3) and o — e3 = (a1, a2,a3 — 1). The terms
on the right hand sides of (4.39) and (4.40) are absent if any of their sub-index is negative. The
assumption of induction up to (k — 1) and (4.39)—(4.40) imply (4.38) for n = k, and

(k) _ k—1) -
AP =340 < 3.5%1 < 5*
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and for n < k,
AR < 34%-1) 4 op 4 1) A%-D)

<3-5% 1§k 1§,+2( + 1)5%~ 1(kn! )

k!
k
<SS

This completes the induction and establises (4.36)—(4.38).
Now, it follows directly from (4.36) that for kK > £and 0 < £ < 1.

[|pP = (sin @) t* " ugy|lLa(w,, ;)

k
k m —fl . iit+k—4
<SS S (a8 a0 (sin 8 TR DY gy,

h=1|al=n nitno=n

(4.41) s

P
Z Z Z Iaoz 77.1,7L2,7l3,n4|”¢ﬁm i D~ u”Lz(Vm is)e

n=1|aj=n n1+n2_n
na+ns=|a’|
n; 20

If £ = 2, we have for those o in (4.41) with |a|=n =1

(4.42) llp?m = (sin ¢)% "' D%ullga(v,, ;) < [1PPm " (sin @)™ 7' D*ul|a(y
by (4.12) of Lemma 4.2

m,is)
< C||pP (sin ¢)%s DY (D*u)llL2(v, i)

Hence we obtain (4.41) for k > £ = 2, which leads to (4.25) for 0 < £ < 2 and a = (k,0,0) with
k>L. '
If (4.26) holds we have by (4 37) and (4.41)

k
”pﬂm —Z(Sin ¢)ﬁu+k—[u¢k |IL2(vm,ij) _— Z Z Z |a]:;1n1 yN2,MN3,Nyg I daa!

n=1 Ial—n n1+'n.2_n
nz+ng=|a’|
n; 20

k 1-\n ' -
<CY (2dy) n! AP < Cdik!

where dy = 5 max(dy,ds,ds). Thus (4.27) holds for & = (k,0,0) with £ > £,0< £ < 2.
Since the arguments for u,, ug and g with k > £ can be carried out for general terms D%u
with |@| < k, we obtained the desired results. ]
From (4.26) and (4.27) of Theorem 4.2 we have immediately
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,.(vm,ij)- n

m,iy

Corollary 4.2. Bf,m'.,j(vm,ij) C B¢
Unlike the relation between HZ’f (Ui;) and ’Hgf (U;;) with 0 < £ < 2 the converse of Theo-
rem 4.2 does not hold. There is a concrete example which will give us a hint about the difference
between Hwa(Vm,ij) and Hgf,ij(vm,,-j). Consider w = ¢. Obviously w € Hé’:”(vm,ij) but
Wy2 = —p~2(2sin ¢ cos ¢ cos? B + cot ¢ sin® 8) ¢ Lzm’ij(Vm,ij) for any S € (0,1). The next theo-
rem deals with the difference.
Theorem 4.3. Ifu € 'Hgﬁ g withk >£>0and 0< (<2, 8, € (0,-15) and (;; € (0,1) then
(u—x(¢)) € ka ',j(Vm,ij) where x(¢) = 0 for 0 < £ < 1 and x(¢) = a¢ for £ = 2 with a given by

1
(4.43) a = lim ———/ ug(9,0,p)dS,
p—+0 Isa'ijl SV:‘j
and
(4.44) flu— X“H’;;i’” Vim.ii) < C”u”‘H’;”:,ii(Vm,ij).

Moreover, if for any |a| < k

(4.45) 125 p!*I(sin ¢)~**Du|| 2w, ;) < Cdal,
then for |&| = k

(4.46) 125 D*(u = X)llL2v ) < Cdoal.

Proof. We shall first prove by the induction the following:

k .
(4.47) Ugk = Z z p~(k=23)(sin ¢)~(k-e1=03) Z b(al?"llyn2yn3n4
n=1 |a|=n ny+nz<n
na+ng=k
n; 20
(sin @)™ (cos )" (sin 8)"*(cos §)"* D*u
K _ (k) w k!
(4'48) Bgl) - Z Z ) ’bba,nl,ng,ns,n,,l S 7 -7,7
ja|=n nit+ne=n )
n3+ng=k
n; 20
(4.49) 0<n; < for1<i<4, ny+ny<k, nzg+ng==~F.

It is trivial that

— . l 1 .
Uz, = Upsin$cosf + 5 g COS ¢cosf — Ssing U6 sin 0
. . . 1 . 1
Uz, = Upsin @sin 6 + Jug cos @sin § + = ug cosd

Uz, = UpCOS P — %W, sin ¢
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Then (4.47)—(4.49) holds for k = 1. Suppose that (4.47)-(4.49) holds up to (k — 1). Differentiating
(4.47) we get by straightful calculation for |a| = &

(k) _ plk=-1) _ p(k-1) (k-1)
ba,nl,nz,na,n4 - ba_elynl m2—1,n3,ms—1 ba—e2,n1,n2,n3—1,n4 + ba—ea,nl—l,ng,ng,,n.,—l
and for |a| < k
(k) _ 3(k-1) _ p(k=1) (k—1)
ba!nlvn2an31n4 - ba-—el,nl,ng—l,na,n4-—1 ba—e2qnlyn21n3"‘1)n4 + ba—eSvnl _11n27n30n4_1
. (k-1) (k—-1)
- (k -1~ a3)ba,n1—2,n2,n3,n4—1’ _(k -l-—o - a3)ba,n1,n2-—2,n3,n4—l
(k-1) (k-1) (k-1)
+m a,nyne~2,n3,mg—1 "~ n2b01,n1 —2,n2,m3,n4—1 + n3b0,ﬂ1,n2,n37n4—1
(k-1)
- n4ba1n17n21n3_27n4+1-

where a —¢;, i = 1,2, 3 are the same with those in the proof of Theorem 4.2. Obviously (4.47) and
(4.49) hold due to the hypothesis of induction and

B® <3BE D 4 ((k—i—a3)+(k—1—a3—a3)+(n1 + ng + ng + ng)| B
< 3B 4 4k B

<3.7k—l(k—1)'+4'7k—l(k_1)!k<7k_k_'
= (n—1)! nl T al

Hence (4.48) holds for k. Thus (4.47)~(4.49) are proved by the induction.
It follows from (4.47) that

[|0% =P (sin §)F =05 (1 — x)pt [lL2(Vim i)

k
@50)  <CY N Y B e llp% T (sin g)2 B D (y — x)|gagy,, 4)-

n=1 |a|=n ni1+n2<k
n3+n4=k
n 20

For £ = 0,1 (4.44) follows from (4.50) immediately. For £ = 2 we have by (4.12) of Lemma 4.2
”pﬁ”‘_l(sin ¢)ﬁ‘i_1Up||L2(Vm,i,-) < C”““'HZJ (Vimis)?
and by (4.19) of Lemma 4.4
=2 (sin $)% 7 (s = @)lle2) vy < Cllellazz | )
and by (4.20) of Lemma 4.4

[|0Pm 2 (sin ¢)% ~2ug|lav,, ;) < C”““’HZ’: i (Vmis)®
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Substituting those above into (4.50) we obtain
I =245 (sin ¢)* 75 (u — X)a4 ||L2<vm i)

<C{llulaz o+ S Y 1857 D% - Wl

n=2 |aj=n -

< Cllellaggz | vy

The arguments above can be carried out for general term D*(u — x) for a with |a| < k. Hence we
get the desired results (4.44).
Furthermore, if (4.45) holds for || < k, we get for k > £ from (4.50)

k
¥4 (sin 6)F =405 (1 = X)at o) SC D D D5 [ g nayn 4!

n=1 |a|=n ni+n2<k
'n3+n4_k
n; 20

k
<y BW(La) n
; (7 1) "
by (4.48)
k
< Ck!'7F AN
;(7 1)
< cdfk!

where d; = 7max{d;,d;,ds}. Thus (4.46) holds for & = (k,0,0) with ¥ > £ and 0 < £ < 2. For

general term D%u with |& = k > ¢ (4.46) can be treated in the same way. The proof of the

theorem is completed. [
Due to (4.45) and (4.46) we immediately obtain the following corollary.

Corollary 4.3. Ifu € Bf;m,ij(vm,ij) for 0 < £ < 2, then (u — x) € B i3 (Vm,ij)-

Summarizing Theorem 4.2-4.3 and Corollary 4.2-4.3 we have
Theorem 4.4. (i) For{=10,1 Hg”: ;s (Vm,ij) and ‘Hg"ﬁ ;;(Vm,ij) are equivalent and the same are
Bf . (Vi) and Bj (Vm,ij);

(ii) Hf,j i (Vm,ij) (resp. B}, ..(Vm,ij)) is equivalent to the quotient space ng,ﬁ(vm,,-j) \P
(resp. Bﬁm,e;( Vm,ij) \ P), where P = {a¢,a € R'}.

4.3. Weighted Sobolev Space And Countably Normed Spaces Over Inner-neighbourhood
Of Vertices In Spherical Coordinates.

Let O,, be an inner neighbourhood of the vertex A,,, and we assume that A,, is at the origin

and one of the edge A;; connecting A, is on the pdsitive z3-axis. ¢ = (z1,22,23) and z = (¢, 0, p)
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denote the extension and spherical coordinates of 2 € Op. There is a gg > 0 such that #(z) > oo
for z € O,,. Let D%u = ’D°"upa3 = Uga1gaz pes With o and o' being the same as before.
Using the weight function ng(z) given by (2.3) we define for B, € (0,3) and integers k and
LE>£>0
k., s A of —|a' |y
e (Om) = {u [l e 0,0 = D 19527 D ulq, ) < 00
" lol <k

and
Bb (Om) = {u|u€ HE (On) for all k > £, [|855p7 11D || 155y < Cd®al}

Theorem 4.5. Ifu € Hgf(@m), 0<£<2,k>¢ B €(0,3), then u € Hgf(@m), and for a
with |o| < k

W —lo! 24
(451) 196557110l x0,.) < Clullase 0,
Moreover, for o with |a| =k
(4.52) 185:p7 18" D% |55, ) < Cd%a!
if for a with |o| < k
(4.53) 1255 D%ull 25, < Cd*al.

Proof. Using (4.31), (4.33)—~(4.34) and (4.36)—(4.38) and noting that sin ¢ > sinog > 0, we can
prove (4.51) for @ = (0,0,k), & = (k,0,0) and & = (0,%,0) in the same way except applying (4.3)
of Lemma 4.1 for the cases a = (k,0,0) and a = (0, k,0), instead of (4.12) of Lemma 4.2.

Analogously (4.51) can be argued for general term D*u for a with |a] < k. (4.52) can be
proved in a similar way as (4.26) if (4.53) holds. (]

Like the relation between HZ’,f'.,j(Vm,,-j) and ’Hgf,ﬁ (Vim,i;j) the converse of Theorem 4.4 is not
true. There are two concrete examples: 43 = ¢ and uy = 6. Both are not in H?;j((’}m) for any
Bm € (0,%), meanwhile u; € 'Hg’j(@m) for any k > 2 and any B, € (0,3), 7 = 1,2. It is worth
indicating |D'uz| € L2(O,,), but |Dluz| ¢ L2 (Vi i5)-

Let S be the intersection of the unit sphere and the infinite polyhedron which coincides with
Q at the neighbourhood O,, of A,,, and let 5,=9 \ Uijel:m S5,; With 05 = 0,17 € L.

Lemma 4.5. For O,, = S, x I; we have

(4.54) PP g = a)llgae,y € Y PPt DYyl o,
lal=1

and

(4.55) 1% (a6 = B)llg2(s,,) < C Y NP DVug|p2(,,)
|aj=1
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when

: 1
4.56 = lim — / ,0,p)dS,
(4.56) a = lim 51 s, ug(¢,0,p)
and
(4.57) b= lim ug(,0,p)dS.

p—0 |‘§0'| Sa

Proof. Let v = ug and

1
Wp) = - / us(9,6,p) dS.

1S
Then arguing in the same way as that for Lemma 4.3 we have
1P =2 (3 = 0)*llg2,,) < Cllo* " ,llzce,0)
(4.58) Bl
< Clle™ " ugpllieo,,)

and arguing analogously as for (4.11) of Lemma 4.1 we have
P2 (0 = Dllgzo,) S € D o™ D" 0]
lo’}=1

=C Y [P D% uyll.

lo'|=1

(4.59)

Then (4.54) follows from (4.58) and (4.59).

Next let w = ug, and

1
w(p)— a-|[§, u9(¢707p)ds'

B
Analogously we have

1P =*(®@ = B)llga(o,.) < Clio™ " uspllneo,)

and
PP~ (w0 = ®)|l 25,y S C Y 0P 72D ugll 6.,

ot |=1

which yields (4.55). =

Theorem 4.6. If u € 1y (Op), 0 < £ < 2 and B € (0,1), then (u— x(¢,6)) € HY(On)
where x = 0 for £ = 0,1, and x(¢,6) = a¢ + b6 for £ = 2, a and b are given by (4.56) and (4.57)

respectively, and for a with |a| <k

(4.60) 185:°D% (v = X)lp2(a,,) < Cllullyt 5,y
Moreover, if for a with |a| < k

(4.61) 125 o~ 11D ]| o,y < Cd*a!
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then for |G| = k
(4.62) 195 D%(u - Yllgao,) < Cd?aL.

Proof. We will prove (4.60) and (4.61) for @ = (k,0,0). The proof for general a with |a| = k is
the same. Due to (4.47) we have
(4.63)
k
Ilpk_l+ﬂm(u"X)m'{I|L2(0m) < Z Z Z (Sin 00)_k+n|bgign,m,n3,n4|”Pas_H-ﬁmDa(u—x)nllz(om)'

n=1 Ial:n ny+neo Sk
n3+ns=k
g 20

For £ = 0,1 (4.60) for & = (k,0,0) with k > £ follows immediately. For £ = 2 and |a| = 1, we have

by (4.3) of Lemma 4.1

ﬁm"l

llp “p”L?(@m) < C”’U‘“HZ‘i(@m)

and by (4.54) and (4.55) of Lemma 4.5 we have

lIp°m =2 (g — )ligas,.) < Cllullyze o,y
Bm

and

172 (g = B)liga,0) < Cllullrz? (6,

Then (4.60) stands for & = (k,0,0) with & > £ > 2.
If (4.61) holds for a with |a| < k then it follows from (4.47)-(4.48) and (4.61) that

k
075w = XDt llpao,y S D D, D, (sinao) FFBEL o nan, lat

n=1 |aj=n n1+n2<k
nst+na=k
n; >0

k
< Z(sin o0) " B nld"

n=1

koo n
< C(sin o) ~*7*k! E((—ll—s—?ﬂ)
n=1

< Cdrk!

with d* = max(dy, dy,d3) and d; = max(d*,7/sinog). Thus we complete the proof. ]

(4.61) and (4.62) in Theorem 4.5 give the following corollary.

Corollary 4.6. Ifu € B} (O), 0< £< 2, then (u—x) € B%m(@m). .

Summarizing Theorem 4.5-4.6 and Corollary 4.5-4.6 we have
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Theorem 4.7. (i) For{=0,1 Hg (Op) and B (O,,) are equivalent toHﬂ £(On) and B ( On),
respectively;

(ii) Hgﬁ(@m) and B%m((’}m) are equivalent to the quotient space 'Hgf(@m)\?) and Bf,m((’}m)\
P, with P = {a¢ + b8,a,b € R'}. =

5. COUNTABLY WEIGHTED CONTINUOUS FUNCTION SPACE C%()

The countably normed spaces B2 5(1?) defined in Section 2 give the description of quantity of
the derivatives of functions of any order in weighted Sobolev norm, which will be used in Part II
and Part III of this series of our papers to describe the regularities of the solutions of elliptic
problems in nonsmooth domains. In many applications, for instance, the error estimates of the p
and h — p versions of the finite element solutions, we prefer to use the pointwise estimates of high-
order derivatives of solutions (see [8,9,21]). The imbedding of HEE(Q) into C*~2(Q), £ > 2 tell us
only the continuities of the derivatives, but it gives no quantitative information of the high-order
derivatives of the solutions. We shall introduce a countably weighted space C? 5(2) with weighted
C*— norm in this section and establish the relation between the space B3(Q) and C%(). Then
combining the regularity theorems in the frame of the space B?@(Q), which will be given in Part II
and Part III, we shall have pointwise estimates of the high-order derivatives of the solutions of

elliptic problems in nonsmooth domains in R3.

5.1. Countably Normed Space C}, (U;;).

Let U;; = Q.,; x I5;; be the neighbourhood of the edge A;; which lies on z3-axis, and let
r(z) = r = dist(z, A;j) for = € U;;. We write Q = Q,,; and I = Ij,;, and assume that I = (0, 1).
By C%’a; (Us;), 0 < Bi; < 1, we denote a set of functions u € CO(¥;;) such that for |a] > 0

(5.1) ||Tﬁ"+al+a2-1Da( () = 4(0,0,23))|lcoz,;) < Cd*e!
and for k > 0

5.2 H , H < Cd*k).

(5.2) u(O 0:29)| uq < CBE

It follows from (5.1) that for z € U;; and any «
(5.1 |D°‘ (z) — u(0,0,23))| < Cd%alr~(Pisteataz=1)(g)

and (5.2) implies that v(z3) = u(0,0,z3) is an analytic function of z3 on I. Furthermore, the
definitions of the space C%q (U;;) and B%ﬁ (U;;) imply
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Theorem 5.1. C%s,’ (Uis) C BY,. +(Us;) for e > 0, arbitrary.

For the converse of Theorem 5.1 we need a lemma which follows directly from Lemma A.2

and A.3 of [4].

Lemma 5.1. Let U, = {z = (¢1,232,23) | (z1,22) € Qc, 23 € I} with Q. = {(r,6) |0<r<e0<
9 < w} and I = (0,1). (z1,22,23) and (r,0,23) are the Cartesian and cylindrical coordinates,

respectively. Then for § € (0,1) we have

I iy < € 3 17Dl + ol )

(5.3) ol
<o{ 3 1P D% ullauey + lullEaa ey
lo'f=1
- 2 _ '
||7"8 2(u - “(0’0""3))||L2(ul) < C’( Z ||ror—2tADe ““%:,2(141) + “ur”iz(ul\uz)}
|a']=2
(54) B no,, 12 o112
SC{ > D% ulfaq + > D u||L2(u1\u%)}
|&'|=2 j&!|=1
and for o with |a'| =1
(655 I Do < Of T 0 ullagny + 3 1% ulisenuy )
la'|=1 la’|<1 ?
and
(56 P Dl < € 3 1D ey + D ID% ulany)
& [=2 &<t
provided the right sides of (5.3)—(5.6) are finite. "

Theorem 5.2. B%‘j (Ui;) C C5,. (Usj)-

i

Proof. Lgt u € B}, (Ui;). By Theorem 3.5, u € C(l;;), and by the definition of B}, (Us;)

(5.7) “'I‘ﬁi”+a1+a2_2Dau”LQ(u‘j) < Co d"a!, for a with oy + a2 > 2,
and
(5.8) | D%ullL2;y € Cod¥e!, for o with o 4+ a < 2.

For arbitrary 2° € U;; there is a cylinder D(z°) = {z | X,y , & — 20> < R(o),23 € I}
with radius R(z°) = 1 dist(2®, Ai;) = 37(2°).
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Let D(z°) = D(2°) NU;;. Then for any z € D(z°)
(5.9) 2r(z%) < 7(z%) — R(z") < r(z) < (%) + R(=) = 5r(=).

Let M be a linear mapping of the cylinder Dy = {€ = (&1,62,63) | 0 < R = (€} + )% <
1,5 € I} onto D(2°), and it maps Do = {€ € Dy | 0 < ® < w;;} onto D(z°), where (R, ®, £3) are
the cylindrical coordinates of the point £ € Dy. Set v(z) = D%u(z) for o with |a| > a3 + a2 > 1,
and V(€) = v(M(€)). Then

Vg < C 3 BAM+2-D(s0) /D D+ de

<2 (=°)
(5.10)
<C Y PPl (g0) / | Dt Vu? da
<2 D(=%)

where 7 = (7',75) = (11,72,7) and [7| = [7'| 4 93 = 11 + 72 + 75-
If ||+ 14| = E§=l(as + v5) > 2 we have by (5.9)
(5.11)

+7,)2 r(z0)) THO D) 2(Bis+la! [+ 1~2) a2
| DTV u|*dz < C| ——= relPis Y1 (2)| DTV u|® da
D(z°) 2 D(z9%)

< CC3 2B+l D120 (20) (2d)+ (e + 7)!)’.
If |o/| + |7'| = 1, we have by (5.9) and Lemma A.1 of [4]

/ IDa+'yu|2 dz < CT—2(/6.';‘—1)($0)/ 7.2([3;;-1)(;;;)|D°‘+'7u|2 dz
D(z°) D(z)

(5.12) . < Cr=2Bi -1)(:,;0)/ 7.2ﬂ-'j(z)(|D1(D°‘+”u)|2 + |D°‘+’Yu|2) dx
< C’Cgr'2(ﬁ"f'1)(x0)l(’d°‘a!)2.
Combining (5.10)—(5.12) we get for a; + oz > 1
IVilaz(pgy < Cr~(Pteatar=l(g0)dal
with ¢ = CCy > Cp and d > d. The Sobolev imbedding theorem implies that for |a| > a;+a; > 1

(5.13) 1 D%ullco(pz0)) = IV llco(po)
' < Gr= Bt =1 (39) g,
Now consider the case for o with |¢/| = a3 + a3 = 0. Let v = D® (u(m) — u(0,0,z3)) and

V(&) = v(M(€)). Analogously we have for v with |[y/| =11+ 72 =2

ID"Vllgagpyy = BP0 | 1Dl do
. D(z%)
(5.14) < C,rz(l—ﬁu)(zo)/ T(x)2(ﬂu‘+h'|—2)|Da+~/u|2 da
D(z9)

< CCOT2(1‘ﬁ‘f)(m°)d“+'7(a +7)!
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and for v with |y| < 2 and |y'| = v, + 72 = 1 we have by (5.9)

(5.15) ' D"V |lL2(p,) = / |DTu|? dx
(=)
< Cr~2Biu—1(0) r2(Bi =1 | patry|? d
: D(z%)
by (5.3) of Lemma 5.1
< Cr=2Bi=1) (0) r284| DY (D*Hu)|? dz
D(z°)

< CCor~ 2B =1 (20)@o 1+ (o 4 o 4 1)

and for v with |y| < 2 and 7; + vy, = 0 we have by (5.9)

(5.16) 1DV I}z (p,) = R(z°)~2 /D ( 0)]1701+7 (u — (0,0, z3)) |2 dz
x
< Cr—2(ﬂ‘j-1)($0) ,.2(B¢j—2)|Da+'r(u — (0, 0,:1:3)[2 dz
D(z°)

by (5.6) of Lemma 5.1

)
< CCur~2Bii=1) (z0)dot7+2(o 4 + 2!

< Cr 0D ) D Tul o,
By \V*

Combining (5.14)—(5.16) we obtain for some € = CCy > Cp and d > d
IVllaz(0) < Cr=2Pu)(2%)d*al.
The Sobolev imbedding theorem (see [1]) further leads for a with a; + a; =0 to

”Da (u —.’U(0,0, $3)) ||CO(D(10)). = ”V”CO(DO)

5.17
(5.17 < Cr=Bu=1) (%) doqn,

Note that the constants C' and d above are independent of z°, and z° is an arbitrary point in

U;;. Hence (5.1) follows from (5.13) and (5.17) at once.
To prove (5.2) we let w(z) = uzk(z). By Theorem 3.5 w(z) € C°(U;;), and for some d > d

lw(@)lco @) < Cllw(z)llngé(uﬁ) = Clluxgllng'; )

(5.18) ol
< CCodE (k + 2)(max{d;})? < Cd*a!

where € > CCy > C, and d > d. This leads (5.2) and completes the theorem.

5.2. Countably Normed Space C%_(Op).
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Let O,, be the inner-neighbourhood of A,, as before. It is assumed that A, is located in the
origin, and one of the edge A;;, ij € Ly, lies on the positive z3-axis. Let p(z) = p = dist(z, Am)
for z € O,,.

By C%m((’}m), Brm € (0,1) we denote a set of functions u(z) € C°(0,,) such that for |a| > 0

(5.19) o=+l D (u(@) - w(Am)) | o5, < Cd70!

wlﬁch is equivalent to
(5.19") | D> (u(z) - u(An))| < Cd*alp™(Pmtiel= N e).
This shows how the derivatives grow as a increases and z tends to the vertex Ap,.
Due to the definition C%m (Or,) and Bf,m (O) we immediately have the following theorem.
Theorem 5.3. C% (0n) C B3 +e(0m) with € > 0, arbitrary.
For the converse we introduce a lemma.

Lemma 5.2. Let u € H%j(@m) Then

(5.20) [ P u(dn) de < Cllulias o,y

m

Proof. Due to the imbedding of H2 2(Om) (Theorem 3.6) u € CO( m ). We can prove

[ Dl udn) b < CllPn DMl

m

in the same way as that for (4.3) of Lemma 4.1 except that

6

[ 75 1a(0) = aff dp < ClloP i,
is used with @ = @(0) = u(An), instead of @(1). Then applying (4.4) of Lemma 4.1 we obtain
(5.20). .
Theorem 5.4. B} (0,,) C C} _(0).

Proof. Let u € B%m(@m) Then u € H”( On) C CO( Y) by Theorem 3.6, and for a with
le| > 2
llple1=246m D a6, < Cd”l

and for o with |a| <1
1D%ullg26,,) < C-
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Fix an arbitrary point z¢ € _(75,,1 but g # A,,. There exists a ball D(zo) centered at z° with
radius R(z°) = 1 dist(z%, A,n) = 1p(2°). By D(2°) we denote D(z°) N OY,. For any z € D(z°) we

have
(5.21) 2(%) < pla°) ~ R(2%) = p(2) < p(a) + R(z") < 3p(a°).

Let M be a linear mapping of the unit ball Dy = {€ = (£1,6,8) | (Z?=1 E?)% < 1} onto
D(z®), which also maps Dg onto D(z°). Set v(z) = D*(u—u(4n)), |a| > 0and V(§) = v(M(£)).
Then by (5.21)

||V”H2(D0) <C Z R2(|’Y|‘%)(w0) ID’YV]2 dx
lvl<2 D(=%)
(5.22)
<C Z p2(h|—%)(x0)/ | Doty da
lvi<2 D(=%)

where v = (71,72,73) and ¥’ = (71,72). If |a + 7| > 2 we have

—2(|a+7|_2+ﬁm)
/ |Da+'yu|2 dz < C(p(zo)) / p2(|a+'y!—2+ﬂm)|Da+7u|2 dz
(5.23) D(=9) 2 D(a)

< Cp2et1=246m) (50) ((ad)*+ (o + 7)!)2.

If | + 7| = 1, then by (4.4) of Lemma 4.1

/ IDa-l-’Yul d$2 S Cp2(l_ﬁ'")($0) p2('3”‘ "1)|D°’+7u]2 dz
D(Z‘o) D(:L‘o)

(5.24)

If |o + 4| = 0, then by (5.20) of Lemma 5.2 we have

/ lu — u(Ap)|* dz < Cp2(2‘ﬁ"‘)(:v°)/
D(z%) D

< CpPCEPm)(20)]

p*Pm =By — u(An)|* du
)

(=°

(5.25)

lui|§‘Zi(@m)'
Combining (5.22)—(5.25) we obtain for some d > 2d
| IV lls2(pgy < Cp~Bmtlal=)(:0)d%at.
By Sobolev imbedding theorem
IVllcope) < ClIV lmz(pe) < Cp(a®)~Pmtlel=2)degy,

Note that g is arbitrary and that C and d are independent of 2o and a. Hence (5.19) follows

immediately. -
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5.3. Countably Normed Space C%m’u (Vim,ij)-

Let Vpij = S5;; X Is,, be the neighbourhood of A,, and A;; as before, and we assume that
A, is at the origin and A;; lies on the positive z3-axis. Let p(z) = p = dist(z, An), r(z) =7 =
dist(z, A;;), and sin ¢ = sin ¢(z) = %%. ¢ = ¢(z) is the angle between the radial A,z and the
edge A;j.

By Cg,, .;(Vm,ij), Bm € (0,3) and Bi; € (0,1) we denote a set of functions u(z) € Co'(Vim,ij)

such that for a with

626 el s oD ) - (0,0, 55 g € Cl
and
dk
2 ” Bm+la|—% 0,0, —u(A H < Cdkk",
(5.27) |z3] 2d.’1:§ (u( z3) — u( m)) ooty S 3

(5.26) is equivalent to the estimates
(5.26") | D* (w(z) — u(0,0,23))| < Cd*alp=Pm+lel+2) (z)(sin ¢(z))~(Fiitertez=1)

which indicates the growth of the derivatives with respect to p(z), #(z) and e, and (5.27) is

equivalent

dk

27
(5:27) | dzk

(4(0,0,25) = u(Ar))| < Cdbk!fzs|~Frt =3,

which tells that the trace of u(z) on the edge A;; belongs to the countably normed space C?@m (Is,;)
with respect to the vertex A,, (see [5]).
Then by the definition of the space C%m_” (Vm,ij) and the space B%m,ﬁ (Vim,ij) we immgdia,tely

conclude

Theorem 5.5. C%m,‘j(vm,;j) C B%m’“_i,s(vm,ij) with Bpmij +€ = (Bm + 6085 +¢€), e > 0

arbitrary. u

For the converse theorem we need a lemma.
Lemma 5.3 Let u € H%’"Zw(vm,ij), then

(5.28) / P2y —u( A dz < Cllullps .
VYom,ij "m,-'j(v"'""')

Proof. Due to the imbedding of Hé‘j'”(vm’ij) into C°(Vysi5) (Theorem 3.7), u € CO(Vpij)- It

can be proved that

m,ij)

/v P2y — y(An)? dz < Cllpm 1D ulday
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in the same way as that for (4.3) of Lemma 4.1 except that

&
/o p*Pr=DNa(p) — af? dp < Cllp® |32y, )

is used with @ = %(0) = u(An,), instead of %(1). Furhter

J

by (4.12) of Lemma 4.2

p2(ﬁm—1)|D1u|2 dz < C'/ pZ(ﬁm—l)(Sin ¢))2(ﬁ-‘j—1)'D1u|2 da
v

m,iy m,if

2
< C”u“HZi,;i(v”"‘j)
which leads to (5.28).

Theorem 5.6. B%m‘ij(l—;m,ij) C sz,i,-(vm,ij)-

Proof. We assume that o;; = 0 < F. For a fixed point 2° € Vj,;; but 20 ¢ A;;, there exists
042 0y2
4 (xazfs) = 1 with a = Ldist(zo,As;) =

an ellipsoid D(2°) = {z = (21, %;,23) | Yi=12 (i
1r(2°) and b = L dist(z0, Am) = 1p(2°)}. Let D(2°) = D(2°) N V,y, ;5. Then obviously we have

a

(5.29) %r(zo) <r(@) -a<r(e)<r(a%)+a< gr(xo)
and
(5.30) 27(2°) < (%)~ b < p(a) < p(e%) +b < Sp(=").

Let u(z) € B Vm.ii). Then u(z) € HY? (Vp.i;) C C%(V,.i;) by the imbedding theorem
m 247 ﬁm, ) X

3 )

(Theorem 3.7), and for |a| > a1+ a3 > 2
|| pPmH1e1=2(sin d))ﬁ"f+°‘1+“2“2D“u||1,2(vm_”) < Cd%a!
and for |a| > 2 and a3 + a3 < 2
llpPm+121=2 Do Loy, 1y < Cd®al.

Now let M be a linear mapping of the unit ball Dy = {€ = (&1,6,&3) | E?=1 &2 < 1} onto
the ellipsoid D(z°), then M maps Dy onto D(z°). For |o| > o7 + ag > 1 set v = D%u and
v(€) = V(M(&)). Then

(5.31) IVIkpey = 3 a?mtm=Dp20e-3) / 1Dl da.
lvis2 D(=?)

- 47 -




Kla+v2> Ei:l(as +75) > 2 we have

(5.32)
/ |D°‘“"”/u|2 s < C(p(:’;O)) =2(Bm+|at+7]-2) ( r(zo) )—2(ﬂij+la v|+|’7 [-2)
D(z°) - 3p(z°)

. / p2(Bm+lat|=2) (sin ¢)2(ﬁe,-+|a’|+l'y’|—2)|Da+7u|2 dz
D(z°)

S Cp(zo)"z(ﬁm+la+'¥|—2) (Sin ¢($0))_2(Bij+|a’|+|7,|_2) ((Gd)a-{-—y(a + 7)!)2.

If la+7|>2and oy + a = 1, 71 = 72 = 0, we have

3 2(1-Bm) [ 3r(z0) ) 2474
D**y? dz < C( =p(z° (___
/D(zO) | | (2'0( )) p(z®)

(5.33)

s .
. / / p?Bm=1)(sin ¢)2Bis=1)| D+ 1y |2 p? dSdp
‘%P(mo) Sﬂgj
By the arguments similar to those for (4.15) and (4.16) we have

8
/ / p2Bm=1) (gin $)2(B:5=1)| D+14|22 dSdp
1p(z) Js

4 3
SC/ / (pzﬁm(sin¢)2ﬁ¢j E’Da+7ux;|2 + |Da+—yul2)p2 dep
3p(a0) IS

%ij =1
(5.34) 3

0
SC(p(; ))-—2(Ia+7|—1) | / pPBmtlatr1=1) (5in )28 Y | DM, |? da

Vm.ij i=1

+ / pABmtlotrl=D | Datry 2 ).
Vm

W&

Combination of (5.33) and (5.34) gives for |a+v| > 2,01 +ac=1land 7, =72 =0

‘/1’)( o) ID&+7U2 dz Scp‘z(ﬂm+|a+7l-2)(Sin¢(z0))—2(ﬂij—l)da+fy(a+’y)!
x

(5.35) 3
. (Z(ai +1)d; +1).

If |a| = a1 + a2 =1, |y] = 0, we have

(5.36) /D(mo) |D%ul? dz < O(gp(xo))z(l—ﬂm)(%(%2)2(1—%)

. / p2(ﬂm—l) (sin ¢)2(ﬂij—l)|Dau|2 dz
D(z9)
by (4.12) of Lemma 4.2
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)2(1-ﬁu)

< Cp?i=Bm) (g0) (sin #(z%) ”“”;If,’ (Vim,43)"
m,ij ’

Combining (5.31) and (5.35))-(5.36) we get for a with o; + az > 1 and d > 6d
(5.37) IV lliz2(pg) < Cp~Bmt1et=1)(50) (sin ¢(z?)) ~Prrterte=D oy,

We next consider the case that |o/| = a; + a3 = 0. Set v =u —u(0,0,z3) and V = v(M(£)).

Then analogously we have
(5.38) IV lis2(pg) < Co(a®)=CPmHel=1) (sin g(2%)) =%~ oo,
By Sobolev imbedding theorem
IVllce(0) < ClIVIImz(po)

which together with (5.37) and (5.38) implies (5.26).
In order to prove (5.27) we let z° = (0,0,z%) with 2§ € I5,, and Uyo = {T € Vpi; |0 < T <

1z tano, 323 < z3 < z3}. There is a mapping M:
z3tano s

I
z2

0
z3 353

which maps U° = {£ = (&,8,23) | 0 < /&2 + & < 1,2 < & < 1} onto Ugp. Let U(E) =
u(M(¢)) — u(0,0,0). Then for a with a; + ap > 2 v

TItano &)
0

8 o=

(5.39) / |DOU|? (€2 + ¢2)Putontas—2 ge < ngz(“”%‘ﬂii)/ | Dou|2r2(Bistertan=2) gy
uo U,o
and

(5.40) / |DOy|2r2Bitentaz=2) gy < CA(zO)/ | Dy|2p?(Pm +1e1=2) (in 4)2(Bistertaz=2) gy
U, U0

here
wher 0 xg -2(Bm—PBij+as)
A(“’)’-’(‘z—) if Bn — Bij +az3 >0
and :
Az z9 \~2Bm—Bij+as) 2 0
(@) = (cosa) i fm = Pij + a3 <

(5.39) and (5.40) yield for a; + ag > 2

(5.41) / IDAU (€2 + £2)Putorta=2 ge < 0205 |z0|~2Bn =)o)
° ue
< ( ylzg|~2(ﬁm—%)(2d)aa!.
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Here we used the assumption that o < %.

For o with a; + az < 2 and |a| > 2 we have

/ |DeU 2 d¢ < C|z8)2Ual-D) / |D%ul? dz
uo V.

m,ij

(5.42) SCIzg|—2(ﬁm-§)2|a1/ |Dou|?p2(1el=248m) g

20

< Clad|~2Bn=1) (2d)%al.

For a with |a] =1

/ ID°U|? d¢ < Clal| / \D%uf? dz
ue 0

u:

) e [

m,ij

by (4.3) of Lemma 4.1

- -1
S ClZgI 2B z)llu”;z# (Vim,ij)’
m,ij ’

and
/ U@ de < Clal]~? / [u(z) - u(0,0,0)? de
ue o
(5.43) < Clal|~2Bn=1) / 2Bn=Du(z) - u(0,0,0)? dz
. Vm,ij
by Lemma 5.3

- -4
S Cl(L‘gI 2(ﬂm 2)“’“,"%12'2 (vm ij).
m,if !

Therefore U(€) € Hf,j (U°) due to (5.41)-(5.43). Then applying (5.18) of Theorem 5.2 we have
that for & € [3,1] and d = Kd with some K > 1 :

k ~
%(U(O,O,ﬁa) - U(0,0, 0))| < Oz~ D) d>a!
3
which implies
k -~
|—--dik (u(O, O,mg) - u(0,0, 0))| < Clxgl"(ﬂm+k—‘]2‘)daa!'
3

Since zJ is arbitrary, this completes the proof of (5.26), and hence the theorem.

5.4. Countably Normed Space C3(().

By C%(£2) we denote the countably weighted continuous function space, namely for u € C3(2),
there hold:
(i) u € COQ);
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(ii) uly,; € C%u (U;;) for any ij € L;
(iii) ulg,, € C}, (Op) for any m € M;
(iv) ulv,y € C3,, ., (Vm,i;) for any ij € L, and m € M;
(v) ulg, € C*(), and for z € Qg
|D%u(z)| < Cd*al.
Due to the definition of B3(f2) and C%(22) and Theorem 5.1-5.6 we have the following con-

clusion.
Theorem 5.7. B3(Q) C C3(?) C B3, .(Q) with ¢ > 0, arbitrary. "

Remark 5.1. Analogously the spaces Cf, () for £ > 2 and 0 < £ < 2 can be defined, then similar
results for these spaces will be valid, namely, Bé(Q) C Cf,(Q) C Bf, +¢(2) with e > 0, arbitrary. =

We now have established the theory of the countably normed spaces and the dynamical
weighted Sobolev spaces in IR3,which will be the foundation to study the regularity of solutions
for elliptic problems on polyhedral domains in the forth coming papers[26,27]. The theorems on
imbedding and the equavilence of spaces in different coordinates and in different weighted norms
will precisely characterize the behaviours of the solutions in various neighborhoods of polyhedral
domains. The theory can be generalized further for the problems on nonsmooth domains in IR3
with surface boundaries. Nevertheless we will not elaborate it here although this case is important

in engineering applications.
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