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Introduction 

The goal of this project is to research and develop a neural geometric engine for rapidly 
determining geometric relations between parts of a scene from sensor images. The subject of 
building a spatio-geometric and kinetic model of the scene from images was considered "image 
understanding" or "early vision" in artificial intelligence research. 

The approach we have taken to spatio-geometric modeling of the scene is a smart sensor 
approach. It is fundamentally different from the current art. The novel neural computing system 
is based on Lie group model of neural processing in primate's visual cortex. 

Termed "information processing" approach to vision by David Marr, the pioneer of 
computational vision research, the current art of early vision is build upon the concept that the 
spatio-geometric information can be extracted by processing the image data, and the process can 
be formed as a computer algorithm. 

While the term "information processing approach" sounds very general, it does lead to a specific 
method of algorithm design. Particularly, it was suggested that in order to determine the changes 
(motion, binocular disparity, geometric distortion) in images and to further infer the scene 
geometry and motion, or register images, the first step should be to determine how a point on 
the image plane is moved to another place. It was further suggested that a process of feature 
detection followed by feature matching will do the job. All the spatio-geometric information 
are considered directly or indirectly derived from feature matching. It appears to be a very 
natural and very common sense approach to follow except for a little difficulty in its logic. 

In order to measure geometric changes from the images, the computation must anchored to some 
recognizable place holders, the image features. If a feature is a dot type place holder, it provides 
no cue for matching: One such place holder does not distinguish itself from the others. If it is 
a patch of image, itself will subject to changes. In order to match patches, the changes must be 
compensated while the very changes are to be computed! The current art of getting out of the 
bad loop is some trial and error, some heuristic control, some tolerance of error, some 
constraints, some middle ground taking, etc. Some of these strategies are of ad hoc nature, others 
are with deep thinking. All kinds mixtures of these ingredients are flourished in a beautiful 
garden of image understanding with tens of thousands technical papers published there. 

The "information processing" approach to visual perception was criticized by J. J. Gibson, one 
of the most influential psychologist on visual perception research in America. According to ^ 
Gibson, the spatio-geometric relation is contained in the visual stimulus, and can be directly g 
picked up by vision system. It is a smart sensor approach. The assertion is, the vision system 
does not manipulate the image data to "compute" the geometric information, but simply pick it 
up by the direct response to the stimulus. Marr's criticism to it was that the smart sensor 
approach grossly underestimated the complexity of visual information processing. While the 
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information processing approach was supported by the firm ground of modern computer 
technology, Gibson's approach was supported by only a firm philosophical conviction that vision 
system is an instrument for animal to adapt to its environment. For that reason, the nature of 
visual perception must be a kind of direct response to visual stimulus justifiable for animal's 
adaptation to the environment. Lacking of computational theory and practice, Gibson's theory 
was moved to the back stage, and was regarded as a philosophy. 

Two big problems caused by finding the feature matchings are the combinatoral complexity and 
uncertainty. They make the accurate and robust geometric modeling of the scene virtually 
impossible, and prevented images from being used as effective sensor means. For example, it 
is easy to get binocular stereo images. However, to date no computer based system uses 
binocular image pair to generate 3-D surfaces. Instead, 3-D images are mainly generated by 
active sensors, such as laser range finder, structured light 3-D imaging system, etc. For the same 
reason, image registering, image fusion, object recognition, object motion computation, all 
suffered same problems of combinatoral complexity and uncertainty. 

There are persistent efforts of developing new computer architecture to overcome the above 
mentioned problems, and to make the collected image data more useful. These efforts use parallel 
processing, faster processors, and other techniques to increase the speed of computers. Still based 
on the basic method of feature detection and feature matching, these approaches are brute force 
by nature. The success of brute force approach to early vision problems are very limited. 

It was until 1980's, that neurobiologist started paying great attention to the dynamical property 
of the receptive fields of cortical cells. It was observed that cells in primate's visual cortex can 
maintain a stable response to an object in motion by adaptively shifting and warping their 
receptive fields. The dynamics of the cortical neuron reveals the secrete of how the smart sensor 
is build. The process can be modelled using Lie group method. This leads to another theory of 
early vision, a theory of how the brain can adapt to an environment with motion and spatial 
disparity to maintain an invariant representation of the object of concern, and to obtain a spatio- 
geometric model of the environment. 

The cortical neurons with dynamical receptive fields thus perform the function of a smart sensor 
capable of directly picking up the image geometric transform information, as Gibson had 
suggested. The smart sensor can be implemented using analog VLSI technology to mimic the 
analog process in primate's visual cortex. It also can be implemented as a digital system using 
fixed amount DSP chips to cope with the required computing power. In either of the 
implementations, the resulted system is a simulator of the particular neural circuit in primate's 
visual cortex, and is called a neural geometric engine. In either implementation the architecture 
of neural geometric engine is derived from the Lie group model of primate's visual cortical 
process. 

This report summarizes our phase I effort in research and develop the neural geometric engine. 
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1. Task Objectives Achieved 

Three objectives have been achieved through phase I research: (1) verify the validity and 
robustness of the basic computational structure of the neural geometric engine; (2) outline the 
architecture of the computing system, including the information coding method, the selection of 
computational primitives, the Lie group processor, and the organization of the system; and (3) 
confirm the availability of hardware technologies suitable for digital or analog implementation 
of the neural geometric engine. 

The proposed neural computing system is different from neural network models for pattern 
recognition. The neural networks for pattern recognition are based on various models of 
associative memory. The core parts in these neural network models are the learning algorithms 
by which the networks can build up associative memory for carrying out particular pattern 
recognition tasks. 

The neural geometric engine is a perceptual engine. Its task is not to build an associative 
memory through a learning process, but to build up a geometric-kinetic model of the scene in 
responding to image input in real-time. The spatio-geometric perception of a scene is 
accomplished by several levels of visual processing. The first level process is to determine the 
local affine geometric transformations in image sequence or in binocular image pair. It is a true 
leap from which the brain starts perceiving its environment in terms of geometric parameters 
while originally it only has sensor signals. 

Instead of functioning as associative memory, or feature detectors, a substantial part of primate's 
primal visual cortex has the function of a dynamical coordinate system for visual stimulus. They 
are organized in hypercolumns consisting many orientation specific microcolumns. The receptive 
fields of these cells not only serves as basis functions for encoding the local oriented contrast of 
visual stimuli, but also can adaptively change in real-time to maintain stable percepts of objects 
in motion. These cells provide a moving reference frame for images. The moving reference 
frame is a smart sensor which responding to the transform of visual stimuli with its own 
transform. 

The perceptual leap is achieved via a dynamical process facilitated by a neural circuit. The neural 
circuit, consists the neural computational elements for cortical representation of visual 
information, cortical coordinate affine transforming, feedback control, and Lie germs, is called 
a Lie group processor. The Lie group processor defines the basic computational structure of the 
Neural Geometric Engine. Our first objective was to verify the validity of this computational structure. 
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Computer experiments establish the feasibility of our new concept and method. Our results 
showed that for affine transforms up to 30 degrees rotation and 80% linear scale, the digital 
simulation with the Newton scheme converges in a few iterations with error less than 5%. 

The phase I work outlines the architecture of the neural geometric engine and provides a 
theoretical foundation for the novel neural computing system: 

(a) In the neural geometric engine, visual information is represented as the measurement of 
image intensity by linear receptive fields which are modelled as various derivatives of 
Gaussian distribution functions, and the measurement of relative geometric deformations 
between parts of different images by Lie germs. 

(b) The basic computation of the system is a nonlinear dynamical process with a minimum 
energy state. The process involves the operations of linear cell receptive fields and the 
operations to transform these receptive fields in a feedback loop. This basic computation 
is supported by a physical circuit called Lie group processor. 

(c) The primitives for linear cell receptive field processes are multiplication and summation. 
For affine transforming the receptive fields functions, the system further includes 
exponential mapping as a primitive function. This is because the receptive fields take the 
Gaussian distribution function as the basic form of the spatial extension. In a word, we 
chose three computational primitives: summation, multiplication, and exponentiation. 
All of them can be implemented by fundamental physical phenomena of analog circuits. 

(d) The neural geometric engine is a hierarchical distributed information processing system 
which includes two levels of function: it first extracts the affine parameters of local image 
transform from images, and then computes from these parameters three dimensional 
motion and shape of objects. 

The phase I study identifies several high end parallel computing systems and state of the art DSP 
chip technology for building a digital version of the neural geometric engine and achieving real- 
time or near real-time performance for several important applications. Phase I study also 
confirms the availability of analog VLSI technology for implementation of the neural geometric 
engine. Analog VLSI implementation makes possible particular military applications that require 
miniature size and very low energy consumption. 
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2. Technical Problems 

Real-time determination of the spatio-geometric relation between parts of a scene from sensor 
images is the key to various autonomous systems. The problem appears in various places with 
different forms, such as automatic terrain recognition for robotics vehicles, automatic target 
recognition, sensor image fusion, stereo surface characterization, image motion compensation, 
etc. 

Images collected by sensor systems mounted on moving platforms or from multiple sensors, and 
images of moving objects, are subject to geometric transformations. The parameter of image 
geometric transformation carries geometric and kinetic information of the environment, such as 
three dimensional structure of visible surfaces, and object or platform motion. In order to 
recognize objects in various poses, fuse sensory data collected from different sensors, a common 
problem is to reduce transformational differences of image data. Also, in practical situations, it 
often happens that real-time computation is required. 

Thus the general problems in early vision are: (1) How to determine from image data the 
geometric parameters of the scene, and (2) How to determine it in real-time. Our approach to 
these problems is to build a neural geometric engine. 

The following specific technical problems for building a neural geometric engine are those with 
regard to the architectural issues and the implementation issues: 

(1) Define a representation scheme for the visual information in this neural computing system; 

(2) Verify the fundamental computational structure of this neural computing system; 

(3) Define the computational primitive set of this neural computing system; 

(4) Define the organization of this neural computing system for the early vision process; 

(5) The approach of implementing this neural computing system with digital means; and 

(6) The approach of implementing this neural computing system with analog means. 

To systematically resolve these technical problems requires extensive and specialized research 
and development effort involving areas of computational vision, mathematical modeling of 
biological visual cortex, neural computing theory, parallel and distributed digital computing 
method, DSP computing technology,.and analog VLSI computing technology. 
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3. General Methodology 

Phase I work is focussed on the feasibility of implementing the neural geometric engine with 
practical applications, and exploration of commercial potentials. The feasibility study includes 
verifying the validity of the fundamental computational structure, the survey of hardware 
technology suitable for implementing the engine, the collection of practical problems targeted for 
the neural geometric engine to solve, the experiments with examples of these problems. The 
phase I study therefore involves computational experiments, literature survey, visiting the 
potential users, collection of examples of practical problems and real data, experimenting with 
these application data. 

1. Computational Experiments 

The concept of extract geometric transform parameters from intensity images through a 
dynamical neural process of "receptive fields", modelled as cortical coordinates and Lie 
derivative operators, is new in mathematics as well as in computational vision and image 
processing. There is nothing similar to this work that we can borrow or get some guidance from.. 
Whether the mathematically verified numeric procedure will work in actual computer experiments 
is a first question. Also we need to see how fast the algorithm will converge to a solution and 
how accurate will it be when it converges. Without answering these fundamental questions with 
actual computations, further research and development of the computational structure, the 
algorithm and architecture, as well as applications, will be baseless. 

In phase I study, both real image data and synthetic images are used in the computational 
experiments. The advantage of using synthetic images Is that the accuracy of the computation can 
be directly measured because the actual geometric transform of data are known exactly. 
Experiments with real images are necessary because real imagery are usually noisy, and with 
background clutter. A robust algorithm must be graciously degrade its performance as these noise 
and disturbances are presented. Also the accuracy should be recovered if data redundancy is 
plentiful. 

2. Literature Survey 

Behind the design of a digital computer is the whole knowledge body including the theory of 
digital computing (mathematical logic and algorithm, computability), theory of symbolic 
information coding (information theory), the methods of symbolic data structures and file 
organization, and designs of digital electronic hardware architecture, etc. There is no such well 
formed theoretical base and knowledge body available to date for designing a neural computing 
system. 
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However, some fundamental theoretical problems must be answered if our approach is not of ad 
hoc nature. For that purpose, extensive literature review and survey has been an essential part 
of work for defining the architecture of neural geometric engine. 

Particularly, we have reviewed and surveyed articles regarding to the coding method of of analog 
signals and visual information, articles on visual perception process and artificial vision, the 
recent results in biological study of visual cortex of primates, the recent technological 
development in analog VLSI computing, the recent DSP chip technology, the parallel and 
distributed digital computing, dynamical system theory, and mathematical modeling of neural 
learning process and neural computing in general. 

The extensive literature review and survey has helped us to crystalize our concept of the 
geometric engine and the way of implementing it. 

3. Collection of Application Problems and Examples 

During the phase I research, a set of examples and problems are collected through contacting to 
potential users, having technical discussions with them, and taking their problems and examples 
for studying. 
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4. Technical Results 

1. Verification of The Computational Structure of The Lie Group Processor 

The process of adaptive change of receptive fields of neurons in response to the change of visual 
stimuli is a basic process of VI area. It represents the function of the Lie group processor. It 
kills two most difficult problems in computer vision, the affine invariant feature extraction and 
the so-called "feature correspondent problem", in one shot. 

The question can be set forth as this: given two actual image patches, one a transformed version 
of the other, can a machine determine the parameters without using traditional computer 
algorithm tricks, such as feature matching, trial and error, artificial intelligence heuristic, 
knowledge, etc., but simply by the dynamics of a feedback circuit? The departure from all 
other approaches and the start of neural geometric computation will be possible only if this test 
can be passed. 

Related to the above question is: to what extent can the scheme determine the parameters of 
image transforms? Any realistic application will demand the computational scheme work in a 
range of parameters that has practical significance. 

To answer these questions, a set of simulations have been done. The result confirms our 
conviction that the Lie group method will be a superior method for early vision processing. 

A sequence of computer experiments were performed on a Pentium PC. In these experiments, 
all the Lie group parameters are initially set to zero (scale parameter set to 1). With Newton 
scheme, we found in many cases, the first iteration is able to get very close to the true 
transformation parameters, and thus substantially reduce the "energy". 

Figure 1 shows a computer generated target pattern and its transformed version which is rotated 
15 degrees and scaled by 0.8 in both dimensions. Figure 2 shows the geometric compensation 
process reducing the difference between these two patterns measured by the "energy" in a 
dynamical process. Figure 2(a) is of the gradient scheme, (b) is of the Newton scheme. 

Figure 3 shows a computer generated target pattern and its transformed version of rotate 10 
degrees and scale to 1.2 in both dimensions. Figure 4 shows the geometric compensation process 
reducing the difference between these two patterns measured by "energy" in a dynamical process. 
Figure 4 (a) is of the gradient scheme, (b) is of the Newton scheme. 

Figure 5 shows a computer generated target pattern and its transformed version which is rotated 
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20 degrees and scaled by 0.9 in both dimensions. Figure 6 shows the geometric compensation 
process reducing the difference between these two patterns measured by the "energy" in a 
dynamical process. Figure 6 (a) is of the gradient scheme, (b) is of the Newton scheme. 

Figure 7 shows a computer generated target pattern and its transformed version which is rotated 
by -15 degrees and scaled by 0.85 in both dimensions. Figure 8 shows the geometric 
compensation process reducing the difference between these two patterns measured by the 
"energy" in a dynamical process. Figure 8 (a) is of the gradient scheme, (b) is of the Newton 
scheme. 

The results of the computational experiments in terms of geometric transform parameters been 
determined with the four synthetic image patterns in the dynamical processes are listed in the 
following table: 

Pattern Class 
Transform Parameters Compensated in 

Gradient Process 
Compensated in 
Newton Process 

1 8 = 15° 
o = 0.8 

0 = 15.0531° 
o =0.8139 

0 = 15.0611° 
a = 0.8068 

2 6 = 10° 
o = 1.2 

0 = 10.0460° 
o = 1.2220 

0 = 10.0452° 
o = 1.2168 

3 0 = 20° 
o = 0.9 

0 = 19.8470° 
o = 0.9182 

0 = 20.0714° 
o = 0.9149 

4 0 = -15° 
o = 0.85 

0 = -14.2633° 
o = 0.8623 

0 = -15.1310° 
a = 0.8579 
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Figure 3. A computer generated target pattern and its transformed version of rotate 10 degrees 
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Figure 5., A computer generated target pattern and its transformed version of rotate 20 degrees 
and scale to 0.9 in both dimensions. 
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Figure 7. A computer generated target pattern and its transformed version of rotate -15 degrees 
and scate to 0.85 in both dimensions. 
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2. The Architecture of The Neural Geometric Engine 

1. TJie Concept of Tlie Neural Geometric Engine 

The neural geometric engine is a real-time computing system designed according to neural 
computation methods for extracting spatio-geometrical information from a scene. 

The neural computation methods include (1) a method of neural representation of information, 
(2) a method of neural processing of information, (3) a set of neural computational primitives, 
and (4) a neural organization of information processes. There are fundamental differences 
between digital computing systems and neural computing systems. 

In contrast to digital computer systems where information is represented by the absolute value 
of digital signals, in the brain, sensor information is represented by the relative value of analog 
signals. 

Accordingly, in the neural geometric engine, visual information is represented by the 
measurements of intensity image by receptive fields which can be modelled as various spatial 
derivatives of Gaussian functions or Gabor functions and the measurements of relative geometric 
deformations between different image parts by Lie germ type hypercomplex cells. 

In contrast to digital computer systems where information (represented as discrete symbols) is 
processed according to algorithms which should halt in a finite number of steps, in the brain, the 
sensor information (analog signal) is processed by nonlinear dynamical systems which yield 
definite results when they converge to equilibrium states, in a continuous time course. Sometimes 
the word "algorithm of neural computation" is used. The actual meaning is a nonlinear dynamical 
system, instead of that defined in the classic computing theory. 

Accordingly, in the neural geometric engine, the information processing is carried out by a 
special class of nonlinear circuits, the closed loop adaptive circuits. They are the elemental neural 
processors. An example of the closed loop adaptive circuits in our design are those with real-time 
adjustable linear combiners, which simulate cortical neurons with dynamical receptive fields. 
These closed loop adaptive circuits appear similar to Widrow's closed loop adaptive filters. But 
there is a very fundamental difference. In the adaptive filter concept, the process is defined by 
the linear operation singled out from the adaptation process. The adaptation process is viewed 
as a learning process outside the linear filtering. This separation becomes possible because the 
adaptation process happens in discrete time and the linear filtering process happens in real time. 
In a nonlinear real (continuous) time adaptive system, it is impossible to separate the linear term 
from a transient process. Only the equilibrium state is eligible to provide a definite output. 

Since feedback signals continuously change the receptive field functions of cortical cells before 
the closed loop circuit reaches an equilibrium state, the measurement provided by single cells are 
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transient and not well defined. Having equilibrium states is the property of a nonlinear dynamical 
system of the neural circuit which cannot be defined by a single neuron. In the neural geometric 
engine, single neurons are not the elemental processors, although they have well defined 
functionalities. The closed loop adaptive circuits are the elemental processors. 

The digital computer system has a set of logic-arithmetic operations as its computational 
primitives and builds all processes upon this set of primitive operations. Neural computing also 
has its functional units. These are the neural computational primitives. Neural computational 
primitives are the basic building blocks in a closed loop adaptive circuit, each corresponding to 
certain elemental physical phenomena. 

In the neural geometric engine, the summation, multiplication, and exponentiation of analog 
signals, are chosen to be the computational primitives upon which the closed loop adaptive 
circuits are built. 

In contrast to digital computer systems where memory and processor are separate entities, in 
brain, memory and processor reside in same network structure. The brain is a hierarchical and 
distributed system with feedback routes. Different levels of processing and representation of 
sensor information are able to exhibit increasingly more intrinsic properties of the environment. 

In our design, the neural geometric engine is a hierarchical distributed information processing 
system that includes two levels of functions: the VI level for extracting affine parameters of local 
image transform from images, and the V2 level for computing three dimensional motion and 
surface shape in a viewer-centered coordinate system. 

(1) Representation of Visual Information 

In the neural geometric engine, visual information is represented as the measurements of image 
intensity by receptive fields which can be modelled as various spatial derivatives of Gaussian 
distribution functions or Gabor functions. 

Homogeneous intensity does not convey much information about the environment. Visual 
information is conveyed in spatially oriented contrasts of intensity. A visual field with spatially 
oriented contrasts of intensity with finite extension can be naturally modelled by directional 
derivative of Gaussian distributions. As shown in Figure 9, the simple cells in visual cortex are 
found to have that structure. Receptive field functions of simple cells are the basis functions in 
cortical representation of visual information, just as bits are the basic form of computer 
representation of symbolic information. 

Another model of simple cells is the Gabor functions (Figure 9). The spatial change of intensity 
can also be modelled by spatial frequency components. The theory arose from the desire to 
minimize the joint uncertainty of an event in terms of spatial location and spatial frequency. The 
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bases functions realizing such a requirement were proven to be the Gabor functions. The Gabor 
function represents a "quanta of information." Gabor suggested calling the elementary quantum 
of information a logon. A logon is a quanta of information in analog signal domain just as a bit 
is a quanta of information in discrete symbol domain. 

The Fourier expansion has better convergence properties than the Taylor expansion beyond a 
narrow neighborhood of a point. The two models, the directional derivative, and the Gabor 
model, might each have its applications: one for simple parvo cell receptive fields and the other 
for simple magno cell receptive fields. 

There are fundamental differences between the hierarchical representation of visual information 
in biological systems and the data structures in digital computers. Computer data structures are 
stored for logical and arithmetic manipulations. In contrast, the biological sensor information 
processing and representation is a mechanism of adaptation by an animal to its environment. 
Mead depicted a conceptual arrangement of a single level of neural information processing and 
representation (Figure 10(a)), which provides some hint of how a neural system organizes visual 
information in a hierarchical order. 

Marr was the first to systematically address the representation issues of visual information. He 
suggested a modular, hierarchical organization of spatio-geometric information in the visual 
pathway in three principal representations: (1) the primal sketch, which is concerned with explicit 
properties of the two dimensional image; (2) the 2 1/2-D sketch, which is a viewer-centered 
representation of depth and orientation of the visible surfaces and includes contours of 
discontinuities in these quantities; and (3) the 3-D model representation, whose important feature 
is that its coordinate system is object-oriented. 

Marr's theory clearly depicted the path of information flow from sensor data to invariant object 
model. The shortcoming of Marr's theory is the lack of an internal dynamical model. The 
deficiency of Marr's computation theory of vision is particularly obvious in the first level 
process: detection of zero-crossings. Vision system cannot organize higher level of spatio- 
geometric description based solely upon the impoverished and isolated zero-crossings without 
introducing various tricks, strategies, and constraints in processing algorithms to "find feature 
correspondences" and to infer geometric relation therefrom. 

The survival pressure from the environment and the adaptation process has made the primate 
vision system a geometric engine. The processing of spatio-geometric information must start from 
the first level of visual cortex. Different from Marr's zero crossing based primal sketch concept, 
the Lie group model of vision takes the affine Lie transformation group as the "model" which 
the vision system applies for encoding the spatio-geometric information. That is, the vision 
system takes affine transform of a local image as a "common" and "acceptable" event, and thus 
quantitatively measures such a transform. 
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This is conceivable because locally any movement of the eye or object will affine transform 
images of locally flat surfaces. Affine transforms will be part of a primate's visual experience 
all the time. For that reason, the VI will record the affine parameters for the changes, and leave 
the code of spatially oriented intensity contrast affine invariant (Figure 10(b)). The mechanism 
of affine Lie group processes is a critical step towards adaptation to a dynamical environment. 
It makes it possible for an animal to perceive a 3-D geometric world and its motion. 

Based on affine parameter measured from first level processing, the viewer-centered surface and 
motion description is built in the second level representation. Current work on the neural 
geometric engine will not involve the object-centered 3-D description of the environment. 

(2) The Nonlinear Dynamical System for Extracting Affine Parameters 

The heart of the neural geometric engine is its elemental "Lie group processor," the particular 
closed loop adaptive circuit which calculates invariant codes of spatial contrasts and performs 
measurements of affine parameters of input visual stimulus by setting up the nonlinear dynamical 
system upon receiving sensor images. The nonlinear dynamical system is the process executed 
by the neural elemental processor. It represents the most fundamental "algorithm" of our neural 
system. We will describe it in detail. 

Assuming, as much biophysical research has suggested, that the cortical simple cells have Gabor 
(or directional derivatives of Gaussian) type receptive fields, we will explain how the dynamical 
receptive field in a closed loop adaptive circuit will facilitate a neural dynamical system that 
extracts affine parameters upon convergence to equilibrium. 

The intensity value of a small image patch fix, y) of a visible surface is a square integrable (L2) 

function: ff/2^, y)dxdy < °°. Here x and y are horizontal and vertical coordinates of pixels. 
In accordance with the information representation method adopted in the neural geometric engine, 
the simple cells of different orientation selectivity provides a reference frame for the Hilbert 
space vector fix, y). The cortical reference frame (CRF) consists of a set of n, n ;> 3, simple 
cells with receptive field functions gt(x, y), i=1, .... n. They are chosen to be rapid descent 

functions: gl e S (for the definition of rapid descent functions, see A.H. Zeemanian 
"Distribution Theory and Transform Analysis," New York, McGraw-Hill, 1965). They are 

vectors in the dual space of the L2 space of the images: Each gt is a functional on L2. 

The set of values produced by projecting local intensity image to simple cells in the CRF 

Y* = fe,.A   i = 1. •••.»• (1) 

provides a CRF representation for the image patch /, where (gt, fi is the Hilbert space inner 
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product of/ and gt. The linear processors represent the functional gt, i = 1, ..., n constitutes 
a cortical reference frame (CRF). 

In equation (1), the «-dimensional vector (y\ ..., yn) is called the cortical coordinate (CC) vector 
of the local retinal image (briefly, retinal image, or simply image) f{x, y) in the local CRF. Even 
though the image patch fix, y) may not be a differential function of the retinal (image plane) 
coordinates x and y, when the local image f(x,y) undergoes an affine transform: 

A(P) *fay) =Äx',y), (2) 

where A(p) is a 2D affine transform of the image with parameters p = (p1f ..., p6): 

( i\ f.\ X 
= A(p) 

X 

ly'j W 
Pi     P2 (x) [p.] 

IPS P4, W W 
the components of the CC-vector are differential functions of the parameter p of the 2D affine 
Lie group: 

Y'(P) =<&,4(P)°A   i = 1, ..., n. 

Latter,    the    Lie    derivative    of    the    components    of    the    CC-vector    of   f(x,y) 

dY'(p)/3p;- = (?ji dA(p)ldpj°fi will be denoted by Q]. 

If instead of using p =(p1, ..., p6) as defined in Equation (2), we use it denote a canonical 
coordinate of the second kind (see L. Pontrjagin "Topological Groups," Princeton, 1946, 

Princeton University Press), then Qy can be calculated as follows: 

Qj = (?,, dA(p)ldPjofi = igp XjA(p)ofi 

= Ufa A(p(t))oß 

where Xj is the Hubert space conjugate of the infinitesimal generator of the j-th 1-parameter Lie 

subgroup the 2D affine Lie group A(2, R). 
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Take as example two image patterns fd and ft. The pattern matching in the brain is via yd and 

Yj, i = 1, ..., n. And in cortical representation, the affine invariant distance between two 
patterns results from a conjugate (dual) transform A(p) on g, that maximally compensates the 
affine distance between image data and template: 

44(1?, 2); U ft) = min^^ 2){£;=1 [(<A(P) . g, fi> - vl)2]1'2} (3) 

The spectrum of an image feature are same as that of a template if ft e Traj(fd, A(R, 2)), the 
affine equivalent class of pattern fd called the trajectory (or orbit) of fd under the affine group 

A(R, 2) defined as: 

Trajif, A{R, 2)) = U(p) °/| pel?5}. 

The trajectory is an six dimensional manifold. 

This affine invariant distance of patterns and the parameter p0 of the affine transform /i(p) that 
maximally compensates the affine distance are calculated via a dynamical process of energy 
minimization, where the energy function £(p; fd, /,) is 

£(p; /* ti = Z?.i (^(P) ° ft. /-> - Y!)2- (4) 

Equipped with analytically calculated Lie derivatives through Lie germs (see Figure 9), it is 
straightforward to construct a dynamical process to determine an affine invariant representation 
of data relative to a template by minimizing the energy function. A gradient system or a Newton- 
Raphson system are candidates for such dynamical systems. For numerical execution of the 
dynamical system, the Newton-Raphson scheme converges rapidly when the solution is in a 
neighborhood of an initial guess. 

In our design, the closed loop adaptive circuit containing simple cells and Lie germs and the 
feedback control is called a Lie group processor (see Figure 11). The design of the Lie group 
processor simulates the hypercolumn structure in visual cortex which contains many orientation 
specific microcolumns. The Lie group processor contains n different orientation specific units 
(see Figure 12). The simple cells in these specific orientation units constitutes a cortical reference 
frame (CRF) for coding the local image intensity distributions. The intrinsic neurons are 
responsible for affine transforming the CRF to keep the CC-code stable, and the binocular CC- 
code be fused. 
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The affine transform operation of the intrinsic neurons is controlled by feedback signal from the 

remaining differences of (binocular) CC-codes Ö1 and the Lie derivatives QJ. The extraction of 
affine transform parameter at the minimum energy state is accompanied with the computation of 
(binocular or motion) invariant CC-code of the intensity pattern. 

In our Lie group model, Lie group processors are the basic circuits in VI, and the representation 
of visual information in VI has two parts: affine invariant CC-vector and affine parameters. This 
is coincident to Gibson's view that the vision system picks up two kinds of information: optic 
array and its transformation. It is very different from Marr's primal sketch, and all those based 
on a feature detection paradigm, which only cares for the static contrasts of intensity. 

As matter of fact, all the later geometric information processing is from the transformation part. 
For example, the parameter of shift in binocular fusion affine transform determines the range 
from the viewer. In Figure 13, using a simplified Lie group model, local shift parameters are 
computed from two consecutive photos (shown on the top) taken from an airplane. The result 
show at the bottom indicates the range at each point. The shift parameter together with other two 
parameters further determines the surface 3-D orientation, etc. In this sense, extraction of the 
affine parameter is the starting point of spatio-geometric information processing. 

(3) Neural Computational Primitives of Lie Group Processors 

In a computer program, not just any sector of a code defines a process. The criterion for being 
an individual process is if it defines an input-output relation. In neural processing, the operational 
meaning will be: does the network define a dynamical system that leads to some equilibrium 
state? The sensor signal input to a neural system generates a disturbance of the system and 
initiates a dynamical process which may lead to some equilibrium state. If the dynamical system 
leads to a stable equilibrium state, it defines a process. 

According to the Lie group model, A VI level process is not defined by linear processes 
performed by cell receptive fields. (This is different from the "feature detector" doctrine, in 
which VI processes are defined by the linear "orientation selective" cells and other selective 
response cells). A VI process is a dynamical process participated by affine Lie group elements 
(intrinsic neurons) which help fuse the binocular image and compensate motion affine effect by 
transforming the receptive fields of the linear "orientation selective" cells. That is, the intrinsic 
neurons are functioning as agents for the cortical reference frame transformation. During the 
process, the receptive fields and their output signals are transient, until they reach a minimum 
energy state. 

The computational primitives are the "elemental forces" which participate in the dynamical 
process, collectively generating and changing the transient phase vector in a nonlinear dynamical 
system. The neural representation and processing of visual information is determined by the 
structure and real-time dynamics of the receptive fields of cortical relay neurons, as well as the 

Final Report, October 24, 1995 16 

hi 



Figure 13. On the top is a pair of Pentagon images taken from above. The left side of bottom 
is the map of shifts between two images, generated by the Lie group model neural system 
employing only shift-parameter Lie germs, in the form of intensity image. The right side is the 
three dimensional display of the shifts, which is proportional to the ranges from the camera. 
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interaction and participation of intrinsic neurons. 

Separated from the feedback network, the operations of simple cells can be viewed as linear. The 
simple cells act as linear combiners. However, as part of nonlinear dynamical process, the 
receptive fields of the cells are transformed in real-time. Thus, the overall nonlinear dynamical 
process involves more than the primitive operations of a linear process, namely multiplication 
and summation. The process also involves as its primitive function the exponential mapping for 
transforming the receptive fields, since the receptive fields take the Gaussian distribution function 
as the basic form of spatial extension. 

There are profound reasons for the Gaussian distribution function being taken as nature's choice 
for the basic form of spatial extension of receptive fields. (For example, the requirement of 
minimum joint uncertainty of spatial location and spatial frequency leads to the form of Gabor 
functions which are Gaussian modulated harmonic functions.) In neural processing of spatio- 
temporal information, various types of receptive fields have forms derived from this basic 
Gaussian distribution form of spatial extension. The implication of this particular form to the 
neural geometric engine architecture is the inclusion of the exponential function in the primitive 
operation set along with multiplication and summation. 

(4) The Organization of The Neural Geometric Engine 

The current design of the engine has two levels of processing: (1) extract affine parameters of 
local transforms from images, and (2) compute three dimensional motion and shape in a viewer- 
centered coordinate system. These two levels of processing correspond to the magno stream 
processing of areas VI and V2 in primate visual cortex. The function of VI processing is to 
extract sensory parameters from images, and the function of V2 processing is to further infer 3-D 
geometric and kinetic parameters of the visible surface from the sensory parameters. Both levels 
of the early vision process are local and driven by sensory data. 

The primate's vision system has been highly developed for accurate perception of three 
dimensional shape and object motion. The perception of 3-D motion and shape of objects do not 
just emerge in some high level specialized visual process areas. Rather, it is supported by 
expanded lower level sensory data processing. 

According to our Lie group model, VI processing in the primate's visual system is significantly 
different from the visual processing in lower forms, such as the frog's moving feature detection. 
Frog's vision system sees no difference between a far away big object and a nearby small bug 
and gives same response. Primate's vision system sees same object in a close distance or in a far 
distance. This gives primate extra flexibility to respond to its environment. 

The tremendous bottom structure of VI does not exist only for performing simple tasks by the 
"selective response" cells such as feature detectors or motion detectors. The structure is a large 
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collection of closed loop adaptive circuit modules supporting nonlinear processes (i.e. analog 
neural computations). Composed of many types of linear cells and intrinsic cells, these Lie 
group modules are able to perform sophisticated measurements of affine parameters involved in 
binocular and motion vision, while maintaining stable representation to same object. 

Without the broader foundation of the lower level processes, the higher level processes would 
be baseless. As a matter of fact, area VI of visual cortex is the largest of all the cortical areas 
of the macaque's brain (15% of all neocortex). The receptive fields of typical VI cells receive 
input signals from 800 to several thousand retinal ganglions for local processing of visual 
information. 

In some sense, the evolution of the primate's vision system not only created advanced high level 
visual areas, but more importantly, created a much more sophisticated lower level visual area. 
In order to be able to maintain a stable response to same object in motion, the primate's vision 
system has a large facility to support the transformable local cortical reference frames, i.e., to 
make the receptive fields of linear cells in hypercolumns dynamical. This extra structure also 
facilitates the parameter measurements of the affine transforms. In contrast, frog's vision system 
only has a rigid reference frame. 

Most vision theories are based upon the concept of feature detectors. The prototype of the feature 
detector concept is the classic concept of static receptive fields formed in 60s, such as described 
in Hubel and Wiesel's work. It was only after 80s that the dynamical properties of cortical 
receptive fields become center of attention of neurobiological research. The vision system with 
rigid receptive fields, such as frog's, has very little capability to represent spatial information, 
mainly limited to retinotopic positions of features. It is sufficient for a frog to live in its limited 
environment. But for artificial vision system designers, this has caused serious problem. 

Because no significant spatio-geometric information is represented in the zero-crossings or other 
features, some outside viewer (or ad hoc heuristic computer program) must supply it by finding 
the feature correspondences. The difference between this proposed geometric engine and other 
machine vision systems and "image understanding systems" is mainly in the lower processing 
level. It is the unique internal dynamics embedded in the lower processing level that makes the 
neural geometric engine an autonomous visual engine. 

Thus, different from other computer based vision systems, the neural geometric engine contains 
no feature detection. It has two levels of computation after the sensor input level (see Figure 14): 
the affine transform analysis level, and the viewer-centered three dimensional modelling level. 

3. The Design of Digital Version Neural Geometric Engine 

Digital implementation of a neural geometric engine means using digital computing system to 
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perform numeric simulation of the cortical process of vision, in contrast to the analog 
implementation which directly mimic the cortical process. However, certain parallel distributed 
processing characteristics still can be retained. 

A pure software computer simulation can use workstations. The workstations such as Sun 
SPARC, HP J210 series, and ALPHA offer 50 to 200 MIPS processing. However, simply using 
a high performance workstation as the computing engine has several drawbacks: 

I. Complex operating systems can occupy as much as 60% of CPU's processing time. 

II. Sophisticated graphics display and graphical user interface demand extensive CPU 
processing. 

III. Real-time applications require an additional software layer, which must coordinate the disk, 
graphics, and peripheral I/O , host-to-data acquisition, and data-to-host transfers. 

Those drawbacks can be easily bypassed by integrating the workstation with dedicated parallel 
processing host-based hardware. Such hardware, DSP, can accelerate cycle time for CPU (central 
processing unit). 

During the past decade, DSP performance increased from 5 MIPS (million instructions per 
second) in early 80s to over 2 BIPS (billion instructions per second) today. The development of | 
DSP chip technology has made possible to implementing real-time or near real-time processing 
for the neural geometric engine. Particularly, the advanced DSP chips commercially developed 
by companies of Motorola, Analog Device, AT&T, and TI are suitable for the tasks. 

In this implementation, the specialized DSP will be 100% dedicated to the neural geometric 
engine computation. Multiple DSP chips working in parallel will provide several hundreds to 
several thousands times of computing power of a high end workstation, and will make possible 
for real-time processing of the neural geometric engine. 

Figure 15(a) shows the block diagram architecture for a C40 DSP chip which includes 32-bit 
floating -point parallel central processing unit with some multichannel direct-memory-access 
(DMA) co-processor, six communication ports, memory, program cache, 32-bit global and local 
memory buses, two times, and an analysis module. This architecture is especially suitable for 
parallel multi processing system, which meets these criteria: 

I. High processing speed; 

II. A large number of high-speed DMA channels supported links; 

III. Ease in load balancing (even processing distribution over all the processors); 
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IV. Easily configurative and incremental expandable architecture; 

V. Ease in programming via multitasking kernels and multi processing program support; 

VI. High speed I/O. 

Figure 15(b) shows a building block of a digital implementation of the neural geometric engine 
using parallel DSP computing. The structure of Figure 15(b) is widely used in parallel 
processing, where large data is segmented and decomposed. There are five DSP nodes in the 
building block. The DSP node on the top is called level 1, which can have only four level 2 
nodes, because the communication ports are limited. This DSP structure is designed to implement 
a "specific orientation unit" of the neural geometric engine as shown in Figures 11 and 12. There 
are six specific orientation units and one DOT-product circuit in the neural geometric engine. Six 
nodes of level one and one node of level 0 consists of thirty-one C40 DSP chips to implement 
one neural geometric engine shown in Figure 16. 

Two advantages will benefit the DSP implementation of the neural geometric engine: DSP offers 
DMA and CPU operations over the link to reduce communication overhead for large amount of 
data. Also DSP independently processes the data without slowing down the others. Thus the 
parallel processing and high data throughput make the DSP a suitable digital means. 

4. Issues of Analog VLSI Implementation of Neural Geometric Engine 

The neural geometric engine architecture as above described can be most naturally implemented 
using analog VLSI technology. All three computational primitives correspond to fundamental 
physical phenomena in silicon circuits; Analog signals from sensor can be sent to artificial linear 
cell's "receptive fields" to be processed and represented in the system without having go through 
all the binary coding and processing. An energy minimization process will occur in a continuous 
time physical process in the circuit, without suffering the convergence problem caused by discrete 
time and numeric round-off error. 

As described before, the architecture of neural geometric engine is to mimic primate's visual 
cortex as we understood via Lie group model. The single most important and central concept for 
understanding the functions of visual cortex is the receptive field. The relay cells use their 
receptive fields process visual information and generate a cortical representation of it. The 
intrinsic neuron uses their arborized axon to transform relay cell's receptive fields, etc. The 
receptive field structure makes neurons able to process visual information. Receptive fields are 
the elements and "bits" of the neural geometric engine. They are the building bricks. A 
prominent and universal feature carried in by the receptive field structure of neurons is the 
extensive, two dimensional, mathematically defined integration of signals in each basic 
processing step. This is very different from most of the artificial neural networks, as well as 
artificial retinas. This is an essential feature of the primate's primal visual cortex. 
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The technology described by Mead's group and many other groups working on artificial retinas 
is basically a two dimensional neural structure. However, the brain, as correctly pointed out by 
Mead, is a 2 + e structure. Simple cell is to represent the spatially oriented contrasts. They 
represents logon's of the two dimensional sensor images, and not pointwise pixels. For that 
purpose, nodes in a quite extensive area will be included in a linear combination operation. The 
cortical receptive fields are highly overlapped. A strict two dimensional structure will face a 
difficult wire crossing problem. A third dimension is necessary as the processing arising to 
higher levels, because each level requires integration of a substantial number of nodes from the 
level below, not just from some immediate neighbors. The first two dimensions of the structure 
are necessary for representing the extension and resolution of images. The third (e) dimension 
is necessary for the levels of processing. Without the third dimension, the natural parallelism in 
visual processing will be eliminated substantially and the flow of visual information will be 
bottlenecked. 

The difference between the technology suitable for an artificial retina and the technology suitable 
for an artificial cortex is the third (e) dimension. To alleviate this computational bottleneck 
Irvine Sensors has developed a three dimensional artificial neural network, 3DANN. Stacks of 
two dimensional structures are highly interconnected. Irvine Sensor's 3DANN has the computing 
power to compare 260 million templates to an incoming image every second with a power 
dissipation of less than 2W. Despite the substantial differences between the architecture and 
functions of the neural geometric engine and that of the 3DANN neural network, the success of 
3DANN indicates that all the necessary components of technology for implementing the neural 
geometric engine, an artificial visual cortex capable of spatio-geometric perception, are already 
available, or within the reach. 

The analog VLSI technology provides a viable approach to creating a computing system that 
distinguishes itself from the existing supercomputers by many orders of magnitudes in terms of 
computing power, physical size reduction, energy efficiency, and robustness. 

5. Three Major Fields of Applications 

The neural geometric engine is not only a new way of providing the computing horse power. It 
is not only a new way of computing. Most importantly, it computes information that has never 
before been computable by machines: The affine invariant CC-vector of image intensity and the 
parameters of affine transforms between image parts. The great query of Pitts and McCulloch, 
"How we know universals" was not answered by AI research and neural network research. The 
significance of computing this type of visual information is that without it our efforts at object 
recognition are baseless: In order to recognize something we have to perceive it properly. The 
failure of the image understanding approach is rooted in its methodology of trying bypass the 
perceptual process, not just the lack of enough computing power, although it is true that to get 
this critical piece of information is very costly in terms of digital computing. 
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The Neural Geometric Engine will change the way of thinking that currently dominates the 
design and development of algorithms and computer systems for stereo vision, pattern 
recognition, and sensor fusion applications. Innovations in these application fields will be 
developed as the results of applications of the neural geometric engine. 

1. Stereo Vision 

Surface shape can be derived from binocular stereo images or successive images taken from a 
sensor system on a moving platform. Current state of the art only calculates the shift disparity 
and range map of the visible surface through a feature matching process. The local affine 
parameters extracted from binocular stereo images also determine the orientations of surfaces at 
each visual direction. This gives a complete description of the shape of the surface. The surface 
orientation information will be useful for various military and industrial applications. 

2. Fusion of Multiple Images 

The second field of applications is fusion of multiple images. Typical examples are binocular 
fusion and image registering. Usually, the differences between images subject to fusion cannot 
be removed by simple shift operations. It involves local affine changes, such as scale, rotation, 
and shear transforms. Local geometric correction is needed in order to register multiple images 
with geometric deformation, or mosaic images taken from different positions into a large view 
of a scene. 

Conventional local geometric compensation processes takes substantial time because they use 
brute force "rubber sheeting". In many real life applications, image fusion must be performed 
in real-time. The supply of local affine parameters by the neural geometric engine will advance 
the state of the art of this application field. 

3. ATR and Automated Screening of Image Data 

The third field of applications is automatic target recognition and automated screening of large 
numbers of image data. In these applications, computer systems are employed to detect, classify, 
and recognize image features of targets of interest. In real life applications, the sensor image data 
is always subject to variations of scale, rotation, translation, and shear. While feature matching 
and classification are quite straightforward processes, the geometric variance in data poses great 
difficulties for ATR and target feature detection in image screening. Image geometric variances 
may cause detection miss, classification miss, or lead to false dismiss. Usually, ATR with image 
geometric variances requires tremendous computing resource and computing time. Naturally, a 
breakthrough in handling the geometric variances will greatly advance the state of the art of ATR 
and automated image screening technologies. 
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The novel method of automatic target recognition applies a geometric compensation processor 
prior to image feature matching (see Figure 17). The function of the geometric compensation 
processor is to remove the image feature variances, such as scale, rotation, shear, and translation 
changes, and reduce the image feature to a "standard presentation" before matching the templates 
for the purpose of detection and classification. Neural geometric engine is expected to be applied 
to substantially reduce the number of templates and matching, and reduce the error rates. 
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Figure 17. Apply Geometric Compensation Processor to the Gabor base functions 
I~ will allow invariant target feature matching when data variances 

including changes of scale, rotation, shear, and translation. 
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5. Conclusions 

Giving Gibson's smart sensor concept of spatial vision a computational theory and 
implementation, neural geometric engine is the first artificial vision system in which the basic 
process is analytically formulated. Compared with the feature matching based computer vision 
approaches, the analytical method has compelling advantage in reducing computational 
complexity and uncertainty, achieving high accuracy and robustness. 

Various new computer architectures have achieved impressive progress in speed and storage. 
They provided new capacity to image and signal processing. The neural geometric engine is 
different from these computers in basic information representation method, processor concept, 
computational primitives, and organization. It is a neural computing system and can be 
implemented in analog VLSI to reach the level of speed, compactness, and energy savings of the 
analog computing. Moreover, as a neural computing system, it not provides the computing 
power, but also provides the effective "algorithms" for the early vision process, without which 
a powerful computer is only a helpless giant. 

Even in digital implementation, the neural "algorithm" for vision process is different from a 
computer vision algorithm. It is a digital simulation of the deterministic analog process in neural 
circuit, while computer vision algorithm, with feature matching as the central piece, is an 
common sense method of image data processing. The common sense method, supported by 
various ad hoc strategies (or "knowledge"), are usually very fragile. 

The neural geometric engine is different from most neural networks. It is not a piece of 
associative memory. It simulates the spatio-geometric information processing neural circuits in 
primate's visual cortex. Compared with neural networks, the neural geometric engine carries 
image analysis functions in different ways and different aspects. The spatio-geometric information 
extracted from neural geometric engine can be used for various passive sensor based 
measurements and modelling. It also opens a new way of invariant object recognition. 

1 
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6. Implications for Further Researches 

The most important implication of the neural geometric engine research is that it will change the 
way of thinking that currently dominates the design and development of algorithms and computer 
systems for stereo vision, pattern recognition, and sensor fusion applications. It implies a 
revolution in artificial vision research. 

The currently dominant information processing paradigm in vision research is based on a deep 
belief that the spatio-geometric relation must be derived from some measurement from images, 
and the procedure of executing such measurement is feature detection followed by feature 
matching. The concept of matching become so predominant after three decades practicing in 
vision, although without much success, that few were questioning on it. To many who are 
working on the field, the only thing can be done is to make the feature detection and feature 
matching procedure more effective, and faster. 

We have shown that in biological vision system, spatio-geometric relation is measured in a real- 
time process of dynamical warping and shifting of receptive fields for maintaining the stable 
representation of moving object or fusion binocular images. The real-time measurement of spatio- 
geometric relation is not happening in image domain. It happens in the dual space of images, 
the space of reference vectors that the brain provided as basis for representing image data. The 
geometric measurement is in the dual space via a process of "adapting" to motion or binocular 
disparity. The measurement is accurate and robust. The process of measurement is determinate 
and can be described by a dynamical system using Lie derivatives, a Lie group model. 

The neural geometric engine will be the first of its kind in artificial vision systems, as well as 
in artificial neural systems. The implementation of the neural geometric engine will make 
possible the research and development of innovative methods of ATR and automatic image 
screening, stereo vision, and image fusion, which all depend on geometric computation from 
sensor images. It is anticipated that the actual use of the neural geometric engine through these 
three application fields will stimulate more interesting research topics and lead to more 
development of artificial vision systems and artificial neural systems. 
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7. Special Comments 

1. Marr's theory is best represented in his book "Vision", the bible of computational vision 
research. Gibson's theory is best represented in his book "The Ecological Approach to 
Visual Perception". 

2. The Lie group model of early vision and the neural geometric engine is not an 
improvement of current art. It is not even an innovation of information processing method 
for image understanding. 

3. The Lie group model of early vision and the neural geometric engine changes the very 
basic concept underlies all the algorithm design and system concept in image 
understanding, the so-called information processing method. 

4. The Lie group model is not a description of a method of geometric computing from the 
images, but a description of the dynamics of the smart sensor itself, a description of the 
process for adaptively maintaining invariant representations of objects in the brain. 

5. In neural geometric engine, the "algorithm" (computational structure) determines the 
architecture of the computing system, and the computing system implements the 
algorithms. They are two faces of a coin. This is very different from that of digital 
algorithm design, which relatively independent of the architecture design. 
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