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Greetings 

Welcome to the Fifth Annual Conference on AI, Simulation, and Planning (AIS 94) held at the 
University Centre Hotel adjacent to the University of Florida campus. Every year, the AIS 
conference adopts a different theme, which targets a central research problem in the area of 
computer simulation. This year's theme is "Distributed Interactive Simulation (DIS) 
Environments." Since simulation involves intelligent as well as non-intelligent objects, this 
conference includes technical themes reflecting a combined simulation/AI approach. 

As simulation models are designed with greater numbers of components and sub-components, 
simulation researchers need to find ways to efficiently execute models. Moreover, many 
simulation models contain a "human in the loop," therefore interactivity plays a key role during 
simulation. There are several major technical hurdles in DIS including 1) how to design large- 
scale networked models; 2) how to make models operate in real time when training is the 
simulation goal; and 3) how to effectively partition the mathematical models and data sets to 
reduce network traffic and speed up the simulation. All papers in this proceedings address these 
problems, and more, under the umbrella of DIS. 

I would like to acknowledge several individuals who have helped to create this conference. In 
terms of co-support, I would like to thank two organizations: the Advanced Research Projects 
Agency (ARPA) and the Army Research Office (ARO). Without their financial and technical 
assistance, this conference would not be possible. Dennis McBride (ARPA) and Jagdish Chandra 
(ARO) have made many valuable technical suggestions, and their guidance is greatly 
appreciated. Ole Nelson of the University of Florida Department for Continuing 
Education/Conferences has been a most valued collaborator for local conference management, 
and has offered friendly and timely assistance with all conference-related matters. Edna Straub 
and Penny Storms of the IEEE Computer Society have helped to make the hardcopy proceedings 
a reality, and I spent many hours with Perri Cline, also with the IEEE Computer Society, on the 
technical aspects of storing the proceedings of this conference on an Internet-accessible IEEE 
Computer Society node in hypermedia and Postscript. Perri and the IEEE Computer Society are 
leading the way for the next generation of online proceedings, where readers can browse full 
text/graphics conference articles online using World Wide Web (WWW) client programs. 

I wish you a pleasant stay and am sure that you will walk away from the conference with some 
original questions answered, and new questions to ponder. Welcome to "Gator Country" — 
otherwise known as Gainesville, Florida! 

Paul A. Fishwick 
Conference Chair 
Email: fishwick @cis. ufl. edu 
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Conference Description 

This represents the Fifth AI, Simulation, and Planning Conference for high autonomy systems. 
High autonomy systems are large scale dynamic systems involving many interacting intelligent 
or controlled entities. Past conferences were held in Tucson (Arizona), Cocoa Beach (Florida); 
and Perth, Australia. 

Large scale simulation models are increasingly executed within parallel and distributed 
computing environments. Distributed Interactive Simulation (DIS) directly involves the human in 
the simulation loop, and contains the real-time communication of heterogeneous simulators 
spread throughout wide geographical areas. Research in distributed simulation has taken place 
across many fronts: (1) Military DIS IEEE standard and workshops; (2) Continuous model 
parallelization; and (3) Discrete model (PDES) parallelization. The purpose of this conference is 
to focus on basic research problems in the overall area of distributed simulation with an emphasis 
on problems occurring in interactive environments. 
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Abstract: The Army has set a goal of enhancing 
battlefield effectiveness by fielding a digital division 
by 1998 and has started a sequence of field exercises 
to investigate how new applications of digital 
technology will affect military operations. These 
transition activities are part of preparing the Army to 
fight third-wave warfare - information-age warfare. 
The result will be a 21st-century Army, digitized and 
redesigned to fight the wars of the next century. 
Distributed Interactive Simulation (DIS) is seen as a 
key technology in determining and analyzing 
alternatives for digitizing the battlefield. DIS is a 
rapidly changing field. For over twenty years the 
Army has been using computer-assisted tactical 
engagement simulations and distributed interactive 
simulations to enhance training and evaluate 
engagement alternatives. Based on this experience, 
an emerging vision is the application of advanced 
information systems technology to create a shared 
situational awareness (visualization) of the 
battlefield. Realization of shared awareness will 
support faster-paced operations through real-time 
force synchronization. The Louisiana Maneuvers 
(LAM) initiative will use the joint AMC and 
TRADOC Battle Labs to investigate some of the 
alternatives. Given the rapid changes in computer 
capabilities, communications bandwidth, and 
software complexity, it has been unclear what the 
mid- and far-term technical opportunities and 
challenges are in applying results from the ongoing 
information systems revolution to improve battlefield 
effectiveness.  Substantial improvements in current 

DIS technologies are needed to enable professionals 
at widely distributed sites to interact simultaneously 
through simulators, simulations, and deployed 
systems in a common joint synthetic operational 
environment. In this article we discuss how one of 
the foundational technologies supported by the U. S. 
Army Research Office, hybrid systems technology, 
can support closing some of the DIS technological 
gaps and thus help to analyze alternatives for 
realization of Force XXL. 

1. Introduction: Army Battle Labs, the National 
Simulation Center, and the Louisiana Maneuvers 
(LAM) office are principle sources of Army 
requirements for DIS. The vision for the future of 
Advanced Distributed Simulation (ADS) includes 
creation of synthetic theaters of operation shared and 
simultaneously operated on by the Services, CINCs, 
Joint Task Forces, Joint Staff, and Defense 
community. Realization of the vision of a synthetic 
theater of war (STOW) fully depends on the creation 
of interoperable simulators, simulations, and fielded 
systems that realistically represent warfighting 
concepts, doctrine, forces and weapon systems of 
friendly, neutral and opposing forces [2]. Distributed 
Interactive Simulations (DIS) have provided a wide 
variety of realistic training and analysis applications, 
but cannot currently be relied upon to create the 
STOW because the architecture is known to have 
problems with synchronization, interoperability and 
scalability [3,4,5]. General Gordon R. Sullivan, 
Chief of Staff, U. S. Army, has recently asserted that 

0-8186-6440-1/94 $04.00 © 1994 IEEE 



"Force XXI will represent a new way of thinking for 
a new wave of warfare.[6]." Overcoming DIS 
technology shortfalls is a necessary step in being able 
to analyze alternatives in creation of new formations 
that operate at greater performance levels in speed, 
space, and time. 

1.1. Shortfall in synchronization: Advances in 
technology are needed to improve simulation realism 
and accuracy by correcting shortfalls in 
synchronization of live virtual and constructive 
simulations. Currently, information generated by one 
simulation is not reliably shared with other 
simulations in time to achieve realistic interaction 
(such as a tank being simulated in one location 
driving smoothly over a crater created by another 
simulation, or a tactical radio which depends on line- 
of-sight "communicating" with another radio that is 
over 200 miles away). Realistic synchronization of 
simulations is necessary to engender the level of 
confidence in simulation results needed to provide 
strategic direction for the Army. 

The Army Master Plan for DIS asserts that DIS will 
play a key role in strategic direction for the Army by 
enabling evaluation and analysis of strategic 
concepts, military options and mission needs. The 
Louisiana Maneuvers (LAM) process provides a 
capability for the Army's senior leadership to guide, 
formulate and assess military options for 
continuously improving Army capabilities at the 
strategic and operational levels of war. To meet 
LAM mission needs, future simulations must 
represent the complimentary capabilities of all 
Services in all missions ranging from a full-scale 
theater operation to a small-scale peacekeeping 
mission [2]. Given General Sullivan's intent to build 
formations that operate at greater performance levels 
in speed, space, and time and the shortfall of the 
existing DIS architecture to accurately depict 
formations maneuvering at current rates, 
synchronization of simulations which will enable 
analysis of innovative alternatives of future 
formations is a priority research issue. 

1.2. Shortfall in interoperability: Advances in 
technology are needed to improve interoperability of 
existing diverse simulations. This will increase 
realism and decrease costs of constructing large-scale 
simulations like WarBreaker [3]. Many large-scale 
simulations similar to Warbreaker will be needed to 
support analysis of alternatives for horizontal 
technology integration envisioned for STOW. 
Excellent efforts are underway to improve 
interoperability by implementing standard processes 

for Protocol Data Unit (PDU) interfaces and use of 
the Aggregate Level Simulation Protocol (ALSP). 
However, these efforts to improve the integration 
process have been hampered by the fact that there has 
not been a mathematical framework for 
simultaneously analyzing safety, security, and other 
logical requirements, while considering temporal and 
spatial constraints. Ongoing ARO research efforts 
provide foundational technology for solving basic 
problems in the correlation of time and space in the 
synthetic environment, thereby achieving 
synchronization and interoperability. 

Synchronization and interoperability are both key to 
Horizontal Technology Integration (HTI). HTI is the 
concept for designing major platforms that permit 
rapid replacement of common components and 
subsystems [2]. HTI requires greater attention early 
on to requirements trade-offs, baseline design trade- 
offs, and integrated development across platforms 
and subsystems. The existing DIS architecture does 
not support the level of interoperability needed for 
complex and critical trade-offs requiring close 
coordination and extensive interaction among combat 
development, materiel development, and materiel 
acquisition. 

1.3. Shortfall in scalability: Advances in 
technology are needed to support scalability of 
simulations. Two or three orders of magnitude 
increase in the scale of the number of objects being 
simulated is estimated as being necessary to support 
the kinds of simulations envisioned for DIS [3]. 
Synthetic battlefields must represent the full 
dimension of ground, air, maritime and space 
operations across the entire spectrum of conflict and 
operations other than war [2]. The synthetic 
battlefields must expand representations of forces, 
units, systems, installations, logistics networks, 
terrain, environment, cultural features and people. 

Maintaining consistent views of the battlefield at 
multiple locations and at multiple levels of 
abstraction is a major challenge. High levels of 
resolution are required for analysis of environmental 
effects on component and systems performance while 
low levels of resolution are needed at strategic and 
operational levels. Creating, updating, and 
interacting with the synthetic environment at both 
high- and low-levels of resolution simultaneously 
places extreemly difficult constraints on maintaining 
consistent interactions among simulations and models 
based on widely varying spatial and temporal scales. 



1.4. Addressing technical shortfalls and achieving 
Verification, Validation and Accreditation The 
revolution in military affairs implied by the DIS 
vision depends on commanders trusting the 
simulation results; verification, validation and 
accreditation (VV&A) of new models must be rapid 
enough to meet the needs of national decision 
makers. DIS may require operation of a nested set of 
models or the results of the high-resolution models 
may be used as input to higher-order models. The 
realistic linkage of models and simulations, the real- 
time interaction between models of different levels of 
detail, and the need to maintain verification and 
validation for confederation of linked models are 
essential for DIS [2]. 

the cost of integrating heterogeneous simulations by 
greatly reducing the effort required to perform 
verification, validation and accreditation of 
incremental changes to trusted DIS components. 

A technical shortfall discussed at some length at the 
workshop is a barrier to cost-effective 
implementation of ADS. The shortfall is lack of an 
extractive methodology and an architecture for 
flexible interoperability of distributed, real-time 
information systems. By extractive methodology we 
mean an extraction algorithm, tools and process for 
integration of existing simulation system components 
which will overcome a primary shortfall of the 
current technology which relies on experimentation 
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Figure 1. Simulation Enabling Technologies 

During a recent ARO workshop academic, 
government and commercial representatives were 
informed concerning DIS requirements and technical 
shortfalls, and contributed to a technical discussion 
which centered around the potential of hybrid systems 
to correct some of the shortfalls. Hybrid systems are 
represented by models which are compositions of 
logic models (digital, linguistic, algebraic or finite- 
state-machine models) and evolution models (analog 
or differential operator models). A DIS is a hybrid 
system. Recent research results in mathematics and 
control theory suggest that hybrid systems may offer 
a path to high-safety, high assurance systems 
composed of trusted modules. The formal nature of 
hybrid systems theory supports dramatically lowering 

to integrate heterogeneous systems. The new 
technology discussed to overcome this barrier is 
hybrid systems theory. Hybrid systems are those 
systems most appropriately described by an 
amalgamation of logical representations and 
evolution representations. A network of distributed 
interactive simulation (DIS) processes is a hybrid 
system. A need was identified to expand the hybrid 
systems results achieved thus far and investigate its 
application to achieve the interoperability of existing 
and future DIS. It was not deemed appropriate to 
apply hybrid systems theory to existing simulations 
since rewriting these systems would be an enormous 
task. Instead, it was thought appropriate to apply the 
results of hybrid systems theory to a crucial problem 
in cost-effective enhancement of the existing 



infrastructure: reactive, scalable interoperability of 
current and future simulations. 

2. Hybrid systems and integration of 
heterogeneous models: A recent Defense Science 
Board Summer Task Force studied the impact of 
advanced distributed simulation technology on 
service and joint readiness. The report of the board 
clearly indicated a split in the enabling fundamental 
technologies for software development (Level 0 of 
Figure 1). The split is the explicit dependence upon 
two very different kind of models and simulations: 
logical models (human behavior representation 
models) and evolution models (environmental 
representation models). Engineers, computer 
scientists, and mathematicians deliberately trade off 
between the two different kinds of models for 
different system components (or for different levels 
of aggregation of the same component) as part of the 
system development process. System integration 
often centers around ensuring that the different kinds 
of models are compatible for different environmental 
operating conditions (modes of operation). 

A foundational issue for improving DIS capabilities 
is creation of a technology for constructive 
integration of diverse models. The integration of 
human behavior representation models and 
environmental representation models is currently 
achieved through expensive experimentation. 
Furthermore, this experimentation limits the 
scalability of simulation architectures since without 
some kind of constructive approach, incremental 
expansion of any architecture through addition of 
new components must be experimentally verified. 
What is needed is a methodology and an architecture 
for reliably constructing new versions of an existing 
architecture as new components are incrementally 
added to the existing architecture. Such a 
methodology will be the key to realization of the 
requirement for building reconfigurable simulations 
in support of "train the way you will fight." It will 
also be the key to maintaining consistent data as 
diverse models are mixed and matched in the 
reconfiguration process and also to the verification 
and validation of the confederation of models. 

Thus, we believe that one of the most challenging 
problems facing DIS, the solution to which is most 
likely to lower costs, is the verification of software 
systems that use both logical (e.g. human behavior 
representation) and evolution (e.g. environmental 
representation) algorithms. These models use 
fundamentally different mathematical tools. 
Cognitive models of human behavior are built using 

linguistic tools which depend on the set-based 
mathematics of algebraic topology. Models of the 
physical environment are built using simulation tools 
which support experiments with compositions of set- 
based, linguistic (logical) models and continuum- 
based models which depend on the mathematics of 
differential operators. Experiments are necessary to 
determine the behavior of the composition of models 
for safety, reliability and performance constraints. 
The general approach currently used for verification 
is to explore design failure modes and track 
correction of bugs in the software until a comfort 
level is reached and success is declared. There is a 
nagging expectation that not all of the states of the 
computer finite-state machine have been visited and 
tested. Also, when new capabilities are added, new 
failure modes are created so the system must again be 
tested. 

3.   Overview of the Hybrid Systems Approach: 
The hybrid systems architecture development process 
expects to use software engineering processes and 
environments being developed under the ARPA 
DSSA program [7,8]. The DSSA approach 
emphasizes the role of the domain architect using 
CASE tools in the domain development environment 
to produce a reference architecture and reusable 
software components and the role of the application 
engineer using CASE tools in the domain-specific 
application development environment to apply the 
reference architecture and reusable components to 
produce an architecture instantiation. One hybrid 
systems architecture being considered consists of a 
collection of agents of two types : Simulation Agents 
and Demand Agents interconnected via a general 
purpose communications network (see Figure 1) [9]. 
This approach to control of hybrid systems, 
developed by Wolf Kohn, addresses the software 
design issue by building mathematical foundations 
(developed with Anil Nerode) and creating a tool for 
implementing a constructive algorithm for building 
automata which simultaneously comply with logical 
and evolution constraints. Experimentation to 
determine system equilibria is still required, as is the 
need to experimentally verify that the high-level logic 
meets the needs of the users. However, the need for 
exhaustive experimentation to analyze the result of 
combining high-level logic and low-level evolution 
representations is not required. Thus to the extent 
that high-level, logic models are "trusted" and low- 
level continuous-time models are "trusted", we can 
construct automata which are consistent with 
constraints from both kinds of models. Furthermore, 
if the logic or evolution models are not completely 



compatible with the system they are modeling, the 
procedure provides for formal mechanisms for tuning 
the structure of the logic and evolution models. 

While space limitations preclude providing the 
scientific basis for hybrid systems claims. We 
provide the following summary of results for the 
Kohn-Nerode approach to multiple-agent hybrid 
control (see Figure 2): 

• The formulation gives a precise statement of the 
DIS communication network control problem in 
terms of multiple agent hybrid declarative control. 
The approach characterizes the problem via a 
knowledge base of equational rules that describes the 
dynamics, constraints and requirements of the 
simulations being controlled (channels, switching 
modes, customer characteristics, scheduling and 

multiple-agent controller for any network 
configuration is reduced to a set of agent pairs. This 
result supports the synchronization of the simulations 
to provide consistent data and the achievement of 
scalability. 

• One agent of the agent pair maintains coordination 
with other agent pairs across the network. The agent 
of the pair which represents network information is 
called the Thevenin Agent, after the author of a 
similar theorem in electrical network theory. The 
proof carried out by the Thevenin Agent generates, as 
a side effect, coordination rules that define what and 
how often to communicate with other agents. These 
rules also define what the controller needs from the 
agent network to maintain intelligent control of its 
physical plant. 

•     i     » 
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Figure 2. Multiple-Agent Hybrid Control Architecture for Advanced Distributed Simulation 

planning strategies, etc.). This result holds promise 
for addressing the current shortfall of the Aggregate 
Level Simulation Protocol in reconciling differences 
among its component constructive simulations. It 
specifically provides the ability to accommodate the 
time evolution of simulation elements from those 
available today through the time of availability of the 
technologies planned and under development since 
the architecture emphasizes incremental construction. 
• A canonical representation of interacting networks 
of controllers has been developed. Given a 
connectivity graph with N nodes (controllers) and the 
corresponding agent's knowledge bases, a network of 
2N agents can be constructed with the same input- 
output characteristics, so that each agent interacts 
only with another (equivalent) companion agent, 
whose knowledge base is an abstraction of the 
knowledge in the network.   Thus, in general, the 

• The hybrid systems approach develops a canonical 
way to prove the theorem characterizing the desired 
behavior for each agent by constructing and 
executing on-line a finite state machine called the 
"proof automaton." This result is the basis for 
constructing simulations from existing component 
simulations and for the belief that the resulting 
architecture will support incremental expansion of 
new components with greatly reduced requirements 
for expensive experimentation to validate the new 
architecture. It is not expected that the need for 
experimentation will be entirely eliminated since the 
degree of "trust" in the newly composed architecture 
will depend on the rules for composition of the 
components. However, to the degree that the 
composition rules are correct, the methodology will 
be   a  formally   correct     composition  of the 



components. Thus, the focus of the verification and 
validation effort will be raised to the component level 
and the results can be reused across the confederation 
of components. 

In the full paper we will provide the hybrid systems 
model for Figure 2. 
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Abstract: Realization of the vision of a synthetic 
theater of war (STOW) fully depends on the creation 
of interoperable simulators, simulations, and fielded 
systems that realistically represent warfighting 
concepts, doctrine, forces and weapon systems of 
friendly, neutral and opposing forces. Distributed 
Interactive Simulations (DIS) have provided a wide 
variety of realistic training and analysis applications 
but cannot currently be relied upon to create the 
STOW because the architecture is known to have 
problems with synchronization, interoperability and 
scalability. 

The revolution in military affairs implied by the DIS 
vision depends on commanders trusting the 
simulation results. Additionally, the verification, 
validation and accreditation (VV&A) of new models 
must be rapid enough to meet the needs of national 
decision makers. We provide preliminary ideas 
concerning how a detailed model being develop as 
part of the Automation and Robotics program of the 

I User I       I User | | User | 

Physical Network 

U. S. Army Armaments Research, Development and 
Engineering Center can be applied to address current 
problems in DIS by providing a timely approach to 
both simulation implementation and VV&A. Such an 
approach can be used to provide standard design 
guidance for linking models into seamless simulation 
exercises. Existing models can be incorporated by 
creating the appropriate simulation agents, thereby 
providing backward compatibility. 

We will provide an overview of the architecture 
being developed and details concerning how such 
low-level, detailed models can be integrated into 
distributed, agent-based architectures to support early 
development of flexible test products. Such test 
products can be made to mature with the engineering 
design to provide a more realistic set of test products 
for VV&A of new systems. 

1. Basis for Incremental Verification Validation 
and Accreditation:   One approach to a scalable 

© Demand Agent 

© Simulation Agent 

0 Simulation 

Figure 1. Multiple-Agent Hybrid Control Architecture 
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Simulation architecture consists of a collection of 
Simulation Agents and Demand Agents 
interconnected via a general purpose communications 
network (see Figure 1). Our approach to control of 
hybrid systems addresses the issue of maintaining a 
consistent instantiation of the architecture by building 
mathematical foundations and creating a tool for 
implementing a constructive algorithm for building 
automata which simultaneously comply with logical 
and evolution constraints. Experimentation to 
determine system equilibria is still required, as is the 
need to experimentally verify that the high-level logic 
meets the needs of the users. However, the need for 
exhaustive experimentation to analyze the result of 
combining high-level logic and low-level evolution 
representations is not required since we generate 
programs which are consistent with the logical and 
evolution constraints. Thus to the extent that high- 
level, logic models are "trusted" and low-level 
continuous-time models are "trusted", we can 
construct automata which are consistent with 
constraints from both kinds of models. Furthermore, 
if the logic or evolution models are not completely 
compatible with the system they are modeling, the 
procedure provides for formal mechanisms for tuning 
the structure of the logic and evolution models. The 
proof capabilities for each agent in the multiple-agent 
architecture allows its to determine whether or not the 
local behavior of the system (as viewed by the agent) 
satisfies the requirements (the continuity condition) 
and if not, to modify reactively its plan so that 
requirement satisfaction (agreement set) is achieved. 
However, the on-line capabilities do not provide an 
effective proof for determining if for the given goal 
class, the reachability set of the carrier manifold 
trajectories is abundant. By abundant we mean that, 
at each decision point, the agreement set is populated 
with at least one solution for all the command 
actions. This reachability problem is essentially the 
problem of the validation of the knowledge base of 
the agent. 

2. Problem Domain: The Distributed Nature of 
Engagement of Multiple Targets by Multiple 
Weapon Systems 

The Army intends to field a digital division by 1998. 
Capabilities of the digital division are yet to be fully 
determined. However, it is expected that future 
Army combat operations will increasingly involve 
coalition forces and that future Army missions will 
increasingly require conduct of operations other than 
war (OOTW), such as peacemaking, peacekeeping, 
humanitarian support, and humanitarian relief. 
Current plans to reduce force structure is driving the 
Army to investigate increasing flexibility of existing 
units to support a wide range of missions. 

Innovative use of barriers to decrease mobility of 
opposing forces and active use of barriers to cause 
opposing forces to move in desired directions has 
been a historic discriminator between success and 
failure in war. Barriers, such as intelligent mines are 
often used to channel opposing forces into an area 
where they can be engaged by direct and indirect fire 
weapons of the combined arms team. Successful 
demonstration of command and control of advanced 
mines will provide commanders with a flexible, 
lightweight means of increasing combat 
effectiveness. The Army experts in mine warfare 
determine the critical operational issues and criteria 
for success of the intelligent minefield. Future efforts 
to coordinate results of our current demonstration of 
target engagement with the intelligent minefield 
would provide an opportunity to test concepts for 
dominating the maneuver battle with concepts for 
operational use of intelligent mines. 

2.1. Architecture Development: Battlefield 
Environment Model 

The battlefield environment (see Figure 2) consists of 
a Universe (a prespecified region of the plane, i.e. A 
closed surface of R^)- two types of objects (Friendly 
objects and Foe objects), and the rules which 
determine the reaction (the evolution of the state over 
time) of friend or foe objects given the current state ( 
of friend and foe objects) and the context of the 
operational situation (set of logical inputs). The set 
of possible battlefield scenarios is the set of 
sequences of friend and foe actions (from initiation 
of the battlefield simulation until the friend and foe 
objects are in a terminal state) and associated 
contexts . For the purposes of this demonstration, we 
will have a limited set of friend objects (always three 
objects) and foe objects and a limited number of rules 
(equational clauses - see Section 5.1.1 and [44]) 
which determine the evolution of the state of the 
system. The model is deliberately constructed in 
order to reflect some of the actual conditions which 
occur on the battlefield but only at a level necessary 
to demonstrate the reasoning and behavioral 
capabilities of multiple-agent hybrid control. 

3. Conclusion The structure of the multiple-agent 
demonstration and the scope of multiple-agent hybrid 
control theory admit the construction of a high- 
fidelity model which will not be achieved in the 
current multiple-agent demonstration. However, we 
are currently implementing the steps necessary to 
achieve integration of a detailed, high-fidelity model 
of direct and indirect fire weapons with a distributed, 
low-fidelity, multiple-agent models of multiple 
weapons. A goal of the research is to explicitly 
investigate how such a formalism will support 



development of test products to assist in more 
flexible VV&A of complex simulation models. 

[1] Kohn, W., J. James, and A. Nerode, "Multiple- 
Agent Reactive Control of Distributed Interactive 
Simulations (DIS) Through a Heterogeneous 
Network", Proceedings of the U.S. Army Research 
Office Workshop on Hybrid Systems and Distributed 
Interactive Simulations, p. 100-140, Research 
Triangle Park, NC, 28 Feb. -1 Mar. 1994. 
[2] Kohn, W., J. James and Anil Nerode, "Multiple- 
Agent Hybrid Control Architecture for the Target 
Engagement Process", Intermetrics Technical Report 

Universe 

for the ARPA Domain-Specific Software 
Architectures (DSSA) Program, McLean, VA, 
March, 1994. 
[3] Butler, B., "DIS Architecture for Interoperability, 
Special Problem: Interoperability between 
Heterogeneous Visual Systems", Proceedings of the 
U.S. Army Research Office Workshop on Hybrid 
Systems and Distributed Interactive Simulations, p. 
253-275, Research Triangle Park, NC, 28 Feb. - 1 
Mar. 1994. 
[4] Kohn, W., J. James, R. Modes, and A. Nerode, 
"Multiple-Agent Reactive Control of Distributed 
Interactive Processes (DIS): An Overview", 

Foe System 

Attack System 

&.      Information Gatherer 

(CA)   Control Agent 

Scout Object 

Active Object 

Figure 2. Battlefield Environment 

10 



Intermetrics, Inc., May, 1994. 
[5] "Force XXI - A Talk With the Chief, Army, p. 
28-34, May, 1994. 
[6] Institute of Land Warfare, "Army Tests Info 
War".AUSANews.p. 7, June, 1994. 
[7]  Nerode A.,  Kohn  W.,  "  Multiple Agent 
Autonomous    Control:    A    Hybrid    Systems 
Architecture" Logical Methods In Honor of Anil 
Nerode's   Sixtieth Birthday. N. C. Crossley , J. B. 
Remmel, M. E. Sweedler, Eds., Birkhauser, Boston, 
1993. 

li 



Distributed Intelligent Control Theory of Hybrid Systems 
Xiaolin Ge, Anil Nerode, Wolf Kohn, John James 

Abstract: We discuss recent advances in 
multiple-agent, distributed control of interactive 
processes. Our multiple agent hybrid control 
architecture approach is a new technology with 
broad applicability since it integrates the 
application of logic (set-based) and continuous- 
time models of complex system behavior. The 
Kohn-Nerode approach for integration of hybrid 
systems emphasizes on-line synthesis of 
automata which will meet current constraints. 
A key feature of the approach is that the 
evolution of the behavior trajectory of the 
automata (e.g. the behavior trajectory of agent i) 
is continuous in the carrier manifold (explained 
below). We provide an example of our results 
by discussing the case of multiple agents 
involved in the engagement of multiple targets, 
the agent behavior is continuous with respect to 
the multiple engagement process models whose 

potentials determine the portion of time the 
process is active in a time interval. 

1. A New Concept of System State 
Hybrid System State: For purposes of our 
exposition, there are three cases which need to 
be considered in the characterization of unified 
information models represented in the computer. 
These cases collectively contain the kinds of 
information that describe the state of the system. 
The cases are: (1) information derived from 
monitoring continuous variables, (2) 
information derived from monitoring variables 
which normally evolve continuously but which 
may exhibit logical changes (jumps), and (3) 
information which is derived from logical 
variables (See Figure 1). 
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To represent the state of the system in a 
computable model, the values of continuous 
variables must be approximated, as must the 
values of variables which are normally 
continuous but may occasionally exhibit jumps. 
This is achieved by A-D and D-A transducers . 
Exact representation of logical variables can be 
achieved using transducers. The data structure 
of the hybrid system state in the computational 
environment is a composition of logical and 
evolution variables. The state of the system in 
the physical environment is approximated by the 
state of the system in the computational 
environment (the hybrid system state). The 
information system of the user includes direct 
observation of the physical system as well as 
information available from the user interface of 
the computational environment. The hybrid 
system state evolves over time as the physical 
environment is altered by the user (s) and by the 
actuators of the system. 

The current technical approach for construction 
of computational models for sending signals to 
actuators is based on experimentally integrating 
logical and evolution models of the physical 
environment. The inefficiency in requiring 
experimental verification and validation that the 

safety, security, and functional system 
requirements are satisfied is a fundamental 
barrier to lowering the costs of integrating 
existing complex information systems. Previous 
efforts to improve the integration process have 
been hampered by the fact that there has not 
been a mathematical framework for 
simultaneously analyzing safety, security, and 
other logical requirements while also 
considering temporal and spatial constraints. 
Our creation of the hybrid system state provides 
the technical foundation to achieve the 
unification of logical and evolution models. 
Our multiple-agent declarative control 
architecture provides the analytical framework 
to simultaneously comply with evolution and 
logical constraints. 

Attainment and maintenance of a computable 
model is accomplished through analysis of the 
hybrid system state. The Kohn-Nerode 
approach for unification of logical and evolution 
models is based on introducing the idea of 
continuity of the hybrid state representation. 
The continuity argument and the constructive 
extraction of automata which comply with the 
continuity constraint is accomplished by using 
the mathematics of manifolds (see Figure 2). A 
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Figure 6. Generic model of a point in the carrier manifold 
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Figure 3. Data Flow Model of Points in the Carrier Manifold 

point in a manifold supports unification of logic 
and evolution models. T-zero topologies have a 
one-to-one correspondence with horn clauses of 
logical representations. This enables us to 
model the Discrete-Event Dynamic System 
(DEDS) sampling rule models. Lie algebra 
results concerning infinitesimal operators on 
smooth functions allow us to consider all the 
standard evolution models of differential 
operators and DEDS evolution models. We 
embed logical models in continuous models in 
order to construct automata which comply with 
logical and continuum constraints. Details of 
the generic unified model are given separately. 
The data flow model of points in the carrier 
manifold is given in Figure 3. We assert and 
emphasize here that for systems which meet the 
conditions for creation of a hybrid system state, 
the revolutionary nature of our approach has two 
benefits: 

• Creation of a unified mathematical 
foundation for analysis and synthesis of 
models which for decades have been 
treated separately, and 

• Creation of a rigorous process for 
incremental expansion of trusted systems 

which must comply with stringent safety 
and performance constraints. 

2. A New Approach to Aggregation and 
Disaggregation of Components 

Agent characteristics: Each agent of the 
declarative control architecture operates as a 
real-time theorem prover in the domain of 
relaxed variational theory developed by L. C. 
Young [13]. A customized version of this 
theory, enriched with elements of differential 
geometry and equational logic provides a 
general representation for the dynamics, 
constraints, requirements and logic of complex 
computer-controlled systems. 

We will provide an overview of a generic 
hybrid system architecture and provide a 
domain reference architecture for target 
engagement.The agents are connected via an 
inter-agent network and the effect of each 
agent in the global network on a local agent 
is obtained through a global-to local 
transformation. Inter-agent specification 
clauses characterize constraints on the 
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relaxed Lagrangian optimization problem. 
Specifically, they express the constraints 
imposed by the rest of the network on each 
agent. They also characterize the global-to- 
local transformations and local-to-global 
transformations (see [45]). Finally, they 
provide the rules for building a generalized 
multiplier for incorporating the inter-agent 
constraints into a complete unconstrained 
criterion. The     multiplier     and 
transformations are expanded in rational 
power series in an algebra discussed in [46]. 

The conjunction of equational forms for 
each global-to-local transformation is 
constructed by applying the following 
invariant embedding principle: 

"For each agent, the actions at given time t 
in the current interval are the same actions 
computed at t when the formulation is 
expanded to include the previous, current, 
and next intervals." 

By transitivity and convexity of the 
criterion, the principle can be analytically 
extended to the entire horizon. The 
invariant embedding equation has the same 
structure as the dynamic programming 
equation given in, but with the global 
criterion and global Hamiltonians instead of 
the corresponding local ones. 

The local-to-global transformations are 
obtained by inverting the global-to-local 
transformations, obtained by expressing the 
invariant embedding equation, as an 
equational theorem. These inverses exist 
because of convexity of the relaxed 
Lagrangian and rationality of the power 
series. 

3. Conclusion: We have provided an 
overview of the theory of multiple-agent 
hybrid control. We are currently 
implementing a multiple-agent hybrid 
control architecture for the target 
engagement process. 
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Abstract 

A case study of the use of simulation as a tool 
for design and validation of hybrid systems is pre- 
sented. We use the Intelligent Vehicle Highway Sys- 
tems (IVHS) architecture of [1], a system that involves 
both continuous state and discrete event controllers as 
our example of a hierarchical hybrid system. We point 
out that even though analytical methods do not exist 
for verification of hybrid control system, a simulation 
tool can be useful to (invalidate that the the hybrid 
system operates properly. 

1    Introduction 

The term hybrid system has been used to describe 
a large and rich class of dynamical systems (see for ex- 
ample [2]). A typical system of this class is arranged in 
a hierarchy of two (or more) layers (Figure 1). At each 
layer the system is modeled at a different level of ab- 
straction: the lower layer usually contains the physical 
plant and the low level controllers and is described in 
terms of differential and/or difference equations while 
in the higher layers the description is more abstract. 
Typical choices of descriptive language for these higher 
layers are finite state machines, fuzzy logic, Petri nets, 
etc. Clearly an interface is needed to establish commu- 
nication between different layers. The interface typi- 
cally plays the role of a translator between signals in 
the lower layer and symbols in the higher. 

In a general hierarchical structure more than two 
levels may exist. Usually, as we move up the layers, 
the system description becomes more abstract (i.e., 
closer to linguistic), information gets condensed (i.e., 
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a symbol at a higher level encodes many condensed 
facts about the lower levels) and the commands be- 
come more descriptive (i.e., a single command at a 
higher level induces many actions at the lower levels). 

Designing controllers in such a multilayered envi- 
ronment and analyzing the performance of the result- 
ing closed loop system is a formidable task. Years 
of research have produced powerful techniques for de- 
signing controllers at the individual layers. Standard 
designs include linear and nonlinear control techniques 
for the lower layer (e.g., optimal, adaptive and ro- 
bust control) and supervisory ([3]), fuzzy or other con- 
trollers for the higher layers. There is, however, a gap 
between these techniques: there are no tools for pre- 
dicting and analyzing the performance of the architec- 
ture obtained when the individual layers are brought 
together. One would expect that if the controllers for 
the individual layers were designed properly and the 
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architecture was formed using appropriate interfaces 
the overall system would behave predictably. There 
are however quite a few examples that suggest that 
this need not be the case. 

Because of this lack of tools, simulation plays a 
very important (if not indispensable) role in the design 
of complex, hybrid systems. Even though simulation 
can not replace formal proof techniques (analytical or 
computational) it can still provide valuable informa- 
tion about the system performance. More specifically, 
successful results under extensive simulation indicate 
that the design is likely to behave well, even though, 
usually there is still a lot of room left for situations 
where the system behaves poorly. On the other hand, 
unsatisfactory performance on the simulation testbed 
indicates that the design is not good enough for certain 
cases and may suggest improvements that will elimi- 
nate these shortcomings. In other words, simulation 
results can not be taken as proof that a system works 
well in general but they can be taken as proof that it 
works in specific cases, or, more importantly, that it 
doesn't work in others. 

There has been extensive work on the development 
of techniques for simulating general hierarchical hy- 
brid systems (see e.g. [4] and [5]). Our work is based 
on a specific simulation package, SmartPath, devel- 
oped for simulation of automated vehicles in an IVHS. 
Using the control architecture of IVHS as an example, 
we will demonstrate the role of simulation in design 
and validation of hybrid systems. 

2    Intelligent Vehicle Highway System 

An example where the hybrid system structure can 
be found is an Intelligent Vehicle Highway System 
(IVHS). The goal is to design a system that can sig- 
nificantly increase safety and highway capacity with- 
out having to build new roads, by adding intelligence 
to both the vehicles and the roadside. In order to 
achieve this, the notion of "platooning" is introduced. 
It is assumed that traffic on the highway is organized 
in groups of tightly spaced vehicles, called platoons. 
Successful implementation of such a scheme would not 
only result in substantial increase in capacity (as high 
as four times the current capacity), but it will also en- 
hance passenger safety. By having the vehicles within 
a platoon follow each other with a small intra-platoon 
separation of about 1 meter, we guarantee that if there 
is a failure and an impact is unavoidable, the relative 
speed of the vehicles involved in the collision will be 
small, hence the damage will be minimized. The inter- 
platoon separation, on the other hand, is large (of the 
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order of 30 meters) to physically isolate the platoons 
from each other. 

2.1     IVHS Control Architecture 

Clearly implementation of such a scheme would re- 
quire the vehicles to be automatically controlled, as 
human drivers are not fast and reliable enough to be 
able to form platoons. In the architecture outlined 
in [1] the system is organized in five layers (Figure 2). 

The top layer, called the network layer, is respon- 
sible for the flow of traffic on the entire highway sys- 
tem. Its task is to prevent congestion and maximize 
throughput by dynamic routing of traffic along the in- 
terconnected network of highways. 

The second layer, called the link layer, coordinates 
the operation of whole sections (links) of the highway. 
Its primary concern is to maximize throughput while 
maintaining safe conditions of operation. With these 
criteria in mind, it calculates an optimum platoon size 
and an optimum velocity for each highway section. It 
also decides which lanes the vehicles should follow to 
get to their destination as fast as possible. Finally, it 
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monitors incidents on the highway and diverts traffic 
in order to minimize the impact of the incident on traf- 
fic flow and safety. The link layer design is based on 
a fluid flow traffic model, developed and implemented 
in simulation by Bobby Rao. It uses aggregate sta- 
tistical information about the traffic in a section. As 
a consequence the commands it issues are also in ag- 
gregate form and are addressed to all the vehicles in 
the link. A typical command might be "30% of the 
vehicles going to the next exit change lane now". [6] 
provides details of a possible link layer design. 

The next level of hierarchy below the link layer is 
the coordination layer. It's task is to coordinate the 
operation of platoons with their neighbors. Coordina- 
tion layer controller uses three basic maneuvers (join, 
split and lane change) to organize traffic in platoons. 
Only a leader or a free agent can initiate a maneu- 
ver; a follower needs to request the leader to initiate 
a maneuver for it1. In join a leader of the platoon 
joins the platoon in front to form a larger platoon; in 
split a leader splits the platoon into two at a desig- 
nated position; in change lane a free agent changes 
lane. The coordination layer controller receives the 
link layer commands and translates them to specific 
maneuvers that the platoons need to carry out. For 
example, it will ask two platoons to join to form a 
single platoon whose size is closer to the optimum or, 
given a command like "30% of the vehicles going to 
the next exit change lane now", it will decide which 
vehicles will comprise this 30% and split the platoons 
accordingly in order to let them out. The design of [7] 
uses protocols, in the form of finite state machines, to 
organize the maneuvers in a systematic way. They re- 
ceive the commands of the link layer and aggregated 
sensor information from the individual vehicles (of the 
form "there is a vehicle in the adjacent lane"). They 
then use this information to decide on a control policy 
and issue commands to the regulation layer. The com- 
mands are typically of the form "accelerate to merge 
to the preceding platoon" or "decelerate so that an- 
other vehicle may move into your lane ahead of you". 

Below the coordination layer in the control hierar- 
chy lies the regulation layer. Its task is to receive 
the coordination layer commands and translate them 
to throttle, steering and brake input for the actuators 
on the vehicle. For this purpose it utilizes a num- 
ber of continuous time feedback control laws (See [8] 

Organization of traffic in platoons implies that, at any mo- 
ment of time, an automated vehicle is either a leader (lead ve- 
hicle of a platoon), a follower or a free agent (single vehicle 
platoon). 

and references therein) that use the sensor readings to 
calculate the actuator inputs required for a particular 
maneuver. The regulation layer occasionally needs to 
communicate with the coordination layer to inform it 
of the outcome of a maneuver. 

The bottom layer is not part of the control hierar- 
chy. It is called the physical layer and it contains the 
actual plant (in this case the vehicles with their sen- 
sors, actuators and communication equipment and the 
highway topology). For the purposes of simulation it 
can be assumed that the physical layer contains mod- 
els of the actual physical quantities. From a hybrid 
systems point of view, the physical layer is merged 
with the regulation layer, as they both use ordinary 
differential equations to describe the system. 

2.2     Hybrid System Issues 

From the outline presented above, it is clear that 
the proposed IVHS control architecture fits nicely into 
the hierarchical hybrid control framework described in 
the introduction. The design process and the analysis 
of the proposed hierarchy leads to observations that 
relate to fundamental properties of hybrid systems. 

2.2.1     Distributed vs. Centralized Control 

A key feature of the proposed design is the fact that 
the vehicles operate as semi-autonomous agents. Each 
one has its own control objectives and implements its 
own strategies, but at the same time cooperates with 
its neighbors and the roadside in an attempt to opti- 
mize the performance of the overall system. 

Distributed, decentralized decision making has 
many advantages in this case. For one it greatly sim- 
plifies the work of the designer as it provides a way of 
managing the complexity of the system. The volume 
of the information that needs to be processed and the 
commands that have to be issued is such that it is 
almost impossible to come up with a centralized de- 
sign. The complexity is further increased by the fact 
that the vehicles need not have identical characteris- 
tics. Therefore a decentralized controller, that deals 
with vehicles individually, will be easier to design, de- 
bug and trouble shoot. In addition to this a decen- 
tralized design will provide more gradual degradation 
of performance in the presence of faults. On the other 
hand, a centralized design is likely to be more efficient 
as a centralized controller has access to more informa- 
tion and is therefore better suited to assess the overall 
system performance. Clearly a compromise between 
the two approaches has to be reached. 
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This compromise between centralized and decen- 
tralized decision making seems to be a feature of all 
systems where efficient utilization of a scarce resource 
is needed. In our example the resource is the freeway. 
Other examples of such resources include the airport 
runways in the case of air traffic control and the dis- 
tribution grid in the case of power systems. 

2.2.2 Information Flow 

The amount of information that is available at each 
part of the hierarchy should be determined by the in- 
formation that a given layer needs in order to make 
a "good" decision. Each layer needs some minimum 
amount of data to distinguish a good (e.g. safe or ef- 
ficient) strategy from a bad one, in a give situation. 
The information that is provided should be kept as 
close as possible to this minimum to avoid swamping 
the higher layer controllers with unnecessary data. 

In addition to specifying what information is 
needed at each layer the designer also has to decide 
how this information is coded. The choice of descrip- 
tive language for the layers of the hierarchy dictates 
in what form the information should be passed to the 
various subsystems of the design. In the IVHS ex- 
ample real numbers (raw sensor data) is used in the 
physical and regulation layers, discrete events are used 
in the coordination layer and statistical distribution of 
the traffic are used in the link layer. In order to op- 
timize the flow of information the designer may need 
to come up with elaborate quantization and coding 
schemes for each descriptive language. 

2.2.3 Interface Issues 

Closely related to the information flow is the design 
of an interface between the various layers. Because 
the various layers of the hierarchy use different de- 
scriptive languages an interface is needed to formalize 
their interaction. The design of the interface should 
be done in a way that facilitates the verification of the 
combined system. 

In our example two interfaces are needed, to pro- 
vide interaction between the coordination, regulation 
and link layers. [9] describes a possible design for the 
coordination-regulation interface. The proposed in- 
terface is a finite state machine whose transitions de- 
pend upon the commands from the coordination layer, 
the readings of the sensors (physical layer responses) 
and the state of the continuous controllers. It plays 
a dual role. On the one side it acts as a symbol to 
signal translator and therefore directly influences the 
evolution of the continuous system. It receives the co- 

ordination layer commands (symbols) and uses them 
to switch between the different continuous layer con- 
trollers (signals). In addition it keeps track of which 
of these controllers needs to be initialized (symbol) 
and carries out this initialization by directly changing 
the controller state (signal). In the other direction the 
interface acts as a signal to symbol translator. It pro- 
cesses the sensory information (signal) and presents it 
to the coordination layer in an aggregate form compat- 
ible with the finite state machine formalism (symbol). 
It also monitors the evolution of the continuous sys- 
tem (signal) and decides if the maneuver in progress 
is safe or not. If at any stage the maneuver becomes 
hazardous it aborts it, notifies the coordination layer 
of its decision (symbol) and switches to a different con- 
tinuous control law that will get the system back to a 
safe configuration. 

2.2.4    Verification and Validation Issues 

Despite the fact that design and verification tech- 
niques are available for the individual layers of the 
hierarchy there are still no tools for verifying the over- 
all design. The bounds on the physical layer capabil- 
ities imply limits of the disturbances that the regu- 
lation layer can tolerate. For example, even though 
the control law for the leader of a platoon is designed 
to maintain "safe" following distance from the vehicle 
ahead, it can not safeguard against arbitrary distur- 
bances, because the vehicle capabilities (e.g. acceler- 
ation bounded by [-5,2] m/s2) and sensor ranges (e.g. 
longitudinal distance sensor range is 60m) are limited. 
The controller can guarantee that there will be no ac- 
cident provided that the vehicle ahead does not start 
too close and decelerate too fast at the same time. For 
complete verification therefore we need to guarantee 
that the disturbances at the lower layers due to the 
activity of the higher layers does not go outside these 
limits, 

Unfortunately the current theory does not support 
such verification techniques. Moreover, the cost of 
building and maintaining a prototype for the com- 
bined system is so great that it makes experimen- 
tal verification impractical. Therefore the only pos- 
sible way of testing the design is by simulation. The 
next section describes how this idea was applied to the 
IVHS problem. 

3    SmartPath Simulation 

In order to test the performance of the combined 
system, a dedicated simulator, called SmartPath [10], 
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was developed. The core of the simulator was devel- 
oped by Farokh Eskafi and its capabilities were sub- 
sequently extended by other researchers. The simu- 
lation language CSIM was used as the backbone for 
the platform. It provides all the necessary message 
passing between and within the layers of the architec- 
ture. It also provides a convenient way of coordinating 
the operation of functions that need to operate asyn- 
chronously and at a different time scale. SmartPath 
can be classified as a microscopic traffic simulator, be- 
cause it simulates the dynamics of each vehicle indi- 
vidually. 

3.1    Simulation Setup 

Starting from the bottom of the hierarchy, the phys- 
ical layer was implemented as a C function coding the 
differential equations that describe the dynamics of 
each vehicle. This plant was integrated using a fourth 
order, variable step Kutta-Merson routine. Therefore 
the physical layer essentially operates in continuous 
time. 

The regulation layer was also implemented in C. 
It consists of a number of functions that calculate 
the necessary inputs to the physical layer, namely the 
throttle, brake and the steering input to the vehicle. 
The operation of all these functions is coordinated by 
means of an additional, supervisory function that acts 
as an interface between the regulation and coordina- 
tion layers. The controllers coded in SmartPath were 
designed in continuous time and then sampled every 
5 ms, a period dictated by the sampling frequency re- 
sponse of the actuators that are in use on the real 
vehicles. 

The coordination layer protocols were implemented 
in CSIM. The time frame used here is even slower: the 
coordination layer interacts with the regulation layer 
every 100ms. This value is dictated by the sampling 
frequency response of the communication devices and 
the sensors. 

Finally, the fluid flow algorithms that specify the 
behavior of the link layer were implemented as C func- 
tions. Compared to the other layers the rate at which 
they operate is very slow. New commands are issued 
roughly every 25 seconds of simulation, depending on 
the velocity of the vehicles and the length of the high- 
way section in question. 

The organization of the simulation code mimics the 
hierarchical structure of the controller design. Individ- 
ual modules for the regulation feedback controllers, 
the coordination maneuver protocols and the link al- 
gorithms, as well as sensors, actuators and communi- 
cation devices exist separately. Their interactions are 

determined by the corresponding interactions of the 
theoretical design. This approach may be slightly in- 
efficient in terms of memory requirements and length 
of code, but it facilitates the understanding of the code 
and the implementation of modification, whenever the 
design is changed. Moreover it allows us to incor- 
porate interesting effects to our simulation, such as 
sensor noise, actuator dynamics and external distur- 
bances (e.g. longitudinal and lateral wind). Finally 
the modular arrangement highlights interesting facts 
about the hybrid nature of the problem, such as the 
information flow, the interface requirements, etc. 

3.2    Simulation Results 

The development of the simulation platform was 
carried out in two stages. First the individual layers 
were implemented and tested separately. The results 
of these tests demonstrated that the behavior expected 
from the formal analysis was indeed obtained. For ex- 
ample the regulation layer control laws (like the one 
carried out by the leader of a platoon) were simulated 
one at a time and they all proved to be stable and dis- 
play desirable properties. Similarly the coordination 
layer protocols were simulated using a very simple ab- 
straction to model the regulation and physical layers. 
They also worked well, as expected by the results of 
the automatic verification. Finally the link layer de- 
sign was also tested and tuned using a different simula- 
tion program, called SmartLink (developed by Bobby 
Rao). SmartLink carries out a macroscopic simulation 
of the highway as it codes the fluid flow traffic model 
directly, rather than simulating individual vehicles. 

At a second stage the components were combined 
using appropriate interfaces and the overall system 
was simulated. After many long simulation runs the 
results were very encouraging; the system behaved 
well in most cases. There were however a few situ- 
ations where unacceptable behavior (e.g. high speed 
collisions) was observed. These situations were not 
predicted by the off-line analysis carried out at the 
individual layers. The simulator however allowed us 
not only to observe them but also to determine their 
causes. Using this information the control design has 
been modified to iron out these problems and improve 
the performance of the system. We now describe some 
of the observed collisions. 

Lane change across speed differential 
According to the coordination layer design, only free 
agents (single vehicle platoons) are allowed to change 
lane. Before a vehicle initiates a lane change it looks 
(through its sensors) to the adjacent lane to make sure 
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that there is room for it there. If no vehicle is vis- 
ible in the sensor range the move is initiated imme- 
diately. If a vehicle is found and its distance is less 
than the safe inter-platoon spacing, communication is 
established to coordinate the maneuver. This goes on 
until a gap twice as large as the safe inter-platoon 
spacing is found. Then the lane change takes place in 
the middle of this gap. 

In most situations this arrangement should cause no 
problems. Indeed both the protocol that coordinates 
the maneuver and the regulation layer controllers that 
align the free agent with a gap in the next lane have 
been proven to perform well. However, consider the 
following scenario. Free agent A switches from a slow 
lane to a fast lane. During the change a gap big enough 
for A to move into is present in the fast lane (for ex- 
ample no vehicle is visible in the sensor range). It 
is conceivable however that a vehicle (denoted by B) 
is present in the fast lane behind A, which, after the 
lane change is complete, finds itself just outside A's 
rear sensor range (say 35m) and moving a lot faster 
than A (say 30m/s as opposed to 10m/s). It turns out 
that the AICC lead controller is incapable of recover- 
ing from such drastic initial conditions, so a crash is 
inevitable. Similar crashes have been observed crashes 
during lane change from a fast to a slow lane. 

Joining a decelerating platoon 
The feedback control law for 'join' maneuver is de- 
signed in two steps in [8]. In the first step, an open 
loop trajectory is calculated based on the assumption 
that the platoon in front will travel at constant ve- 
locity during the maneuver. In the second step, a 
feedback control law is used to asymptotically track 
this desired trajectory. With this control law, changes 
in the velocity of the front platoon should cause no 
problem as the state feedback should take care of any 
deviations from the desired trajectory. However, the 
actual trajectory will deviate from the desired one if 
the limits of the actuators (throttle and brake) are 
reached. To avoid this possibility, the interface aborts 
the maneuver when it detects the danger of actuator 
saturation (see [9]). After aborting the maneuver the 
system should find itself in a position from which it 
can continue safely under the AICC lead control law. 
The simulation indicates that under extreme condi- 
tions this may not be true and 'join' maneuver may 
cause a major hazard. 

Such large decelerations were created in the simu- 
lation when we asked all cars in a section of one lane 
to exit at the same time. This caused a number of 
splits in the platoons as the vehicles tried to become 

free agents in order to change lanes. The decelera- 
tion built up enough to cause saturation of the actu- 
ators. Therefore vehicles undergoing 'join' maneuver 
upstream of the disruption were forced to abort their 
maneuvers. In this case, the vehicles that aborted 
join found themselves moving faster than the platoon 
ahead and closer than desired safety distance. The ex- 
treme decelerations saturated the actuators and thus 
caused crashes. 

3.3 Analysis of the simulation results 

The crashes described above illustrate the impor- 
tance of data abstraction, interface design and infor- 
mation flow in hierarchical and distributed control sys- 
tems. The common feature of all the crashes is that 
they are caused by continuous layer performance not 
accounted for by the discrete layer. In all cases this 
leads to the discrete layer making requests that are 
incompatible with the current situation of the contin- 
uous layer, such as a potentially dangerous maneuver. 

Apart from fixing the problems encountered here, 
these observations naturally lead to the question to 
what extend can one trust the conventional discrete 
and continuous verification techniques when it comes 
to hybrid systems. Clearly if any faith is to be placed 
in the IVHS design presented here a proof of its perfor- 
mance claims is needed. This example indicates that 
such a proof is not possible using conventional tools. 

3.4 Additional Features 

To enhance the capabilities of the basic simulation 
platform and to make it more user friendly, some ad- 
ditional features were implemented. From the first 
stages of the development the simulator was coupled 
to an animation program, developed by Delnaz Khor- 
ramabadi. Typically a long simulation is executed, the 
necessary information is stored and then a movie of the 
vehicles as they move along the freeway is displayed. 
Among other things, the animation package allows the 
user to modify the viewing position, to track a vehicle, 
to monitor the communication messages that are ex- 
changed and to obtain information about vehicle state. 
These features proved very useful, especially in iden- 
tifying the causes of high speed collisions, as they al- 
lowed us to visualize the traffic conditions rather than 
try to infer what is going on from the state trajectories 
of individual vehicles. Furthermore, building on the 
capabilities of the animation, an interactive version of 
the simulator was developed. For this the simulation 
and animation are executed simultaneously. The'user 
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is allowed to select a vehicle using the animation dis- 
play and to force it to carry out various maneuvers, 
like accelerate, decelerate and change lane. This al- 
lows us to introduce disturbances to the system and 
investigate how the control architecture responds to 
abnormal conditions. We are currently working on 
extending the simulation capabilities to include var- 
ious abnormal conditions on the highway (e.g. rain, 
poor visibility, sensor faults etc). Together with the 
controller for fault handling this will be useful in ob- 
taining qualitative and quantitative measures of safety 
(e.g. number of accidents per highway miles) on the 
automated highway. 

Ultimately we would like to be able to use this 
simulation package to investigate the behavior of a 
large scale, multihighway system, for example the en- 
tire highway system of the San Francisco Bay Area. 
Because of the number of vehicles involved and the 
fact that each vehicle is simulated independently, a 
simulation of this scale will be very time consuming. 
To solve this problem, work is currently underway to 
produce a parallel version of the SmartPath simulator 
that will run on a CM5 connection machine. At the 
same time an effort is made to couple SmartPath with 
an object oriented data base. This will add a lot of 
flexibility to the program, as it will make it easy to 
change the highway configuration, add new types of 
vehicles, change the control laws and/or the control 
architecture and store the state of the system so that 
simulations can be stopped and restarted at any point. 

4    Conclusions 

In this paper, we have shown that simulation can be 
a very useful tool in validation of hierarchical hybrid 
dynamical systems. We have shown that independent 
verification of discrete and continuous layers may not 
always guarantee satisfactory performance of the hy- 
brid system. The problem arises because of the fact 
that the discrete layer can only comprehend abstrac- 
tions of the continuous layer. As a result it can not 
take sufficiently into account certain continuous layer 
parameters, which in our case were the sensor and ac- 
tuator ranges and the controller performance bounds. 
These observations led to the conclusion that in order 
to fully trust the design we need verification tools that 
test the performance of the combined hybrid system. 
Until such tools are available simulation can be used 
to replace them in the verification/redesign process for 
hybrid control systems. 
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Abstract 

For parallel and distributed simulation, a model 
is usually defined to consist of independent tasks 
which synchronize by communicating time-stamped 
events/messages. In this paper, we define a discrete 
event simulation modeling paradigm which supports 
explicit expression of intratask parallelism, i.e., paral- 
lelism within a task. In this paradigm a task is defined 
by a set of rules whose actions are triggered based on 
multiple simultaneous event occurrences. New ways 
of expressing parallelism in a model emerges because 
(1) actions of multiple rules can be executed in paral- 
lel and (2) an action of a rule can be defined by data 
parallelism on parameter values of simultaneous event 
occurrences. The usefulness of the constructs of our 
paradigm is illustrated by an example. 

1    Introduction 

The limitations of even the best of compilers in ex- 
tracting parallelism from sequential programs are be- 
ing increasingly realized. For complex practical pro- 
grams, it is often the case that a programmer can 
write efficient parallel programs more easily than a 
parallelizing compiler. Hence, it is important to de- 
velop parallel programming paradigms and languages 
in which parallelism can be explicitly expressed by the 
programmers. In a good parallel programming lan- 
guage, a problem can not only be solved more effi- 
ciently but better solutions can be developed because 
the parallelism inherent in the problem is expressible 
directly in the programming language. In contrast, if 
the programming language is sequential then the in- 
herent parallelism in the application known to the pro- 
grammer has to be translated into a sequential code 
by the programmer which may introduce subtle log- 
ical errors. The parallelism expressed directly by a 
programmer is referred to as explicit parallelism and 

the parallelism not directly expressed but extracted by 
a (compiler) technique is referred to as implicit paral- 
lelism. This paper defines a new modeling paradigm 
that facilitates expression of explicit parallelism in dis- 
crete event simulation models. 

The key to expressing explicit parallelism (hence- 
forth simply referred to as parallelism) in discrete 
event simulation models is to identify independent 
computations around the dimensions of state and 
time. The concept of task, process [Mi86, Fu90], or 
component [Ze84, Ze90] provides a basis for defining 
independent computations around the dimension of 
space. Each task has its own state and interacts with 
other tasks by exchanging events (also called signals 
or messages). A task is like a black box in the sense 
that its state is not visible from the outside. Hence, 
tasks can be distributed on separate processors during 
simulation, and interactions among tasks are captured 
through message passing. This gives rise to intertask 
parallelism in which actions modifying states of differ- 
ent tasks can be executed in parallel. A language in 
which models can be defined as tasks is said to support 
expression of explicit intertask parallelism. 

The second dimension of time is critical to simula- 
tion modeling. Many concepts such as event, activity, 
and process have been developed to express time de- 
pendent computations. Time related behavior is ex- 
pressed by associating simulation clock time with en- 
tities such as events, activities, processes, messages, 
etc. In the underlying simulation procedure, a list, 
called Future Entity List (FEL) of scheduled entities 
is maintained. The simulation proceeds by removing 
an entity with the earliest time from FEL and exe- 
cuting some code based on the removed entity. The 
processing of an entity may insert new time-stamped 
entities and/or remove existing entities from FEL. If 
there are two or more entities with the same earli- 
est time then the order in which they are processed 
is important because the order may affect the simu- 
lation results.   The order in which entities with the 
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same time are processed is controlled by the modeler 
by assigning priorities to entities. 

It is possible that two or more entities from FEL 
with the same time, or even different times, can be pro- 
cessed in parallel. The parallel simulation community 
has mainly focused on developing and studying tech- 
niques such as conservative and optimistic simulation 
strategies [Mi86, Fu90] which extract parallelism from 
models whose basic semantics is sequential as denned 
above. In our categorization defined above, these tech- 
niques extract implicit parallelism. As it is difficult to 
automatically extract parallelism from a model, lan- 
guage constructs have also been developed for giving 
hints to the compiler by the modeler. However, these 
language constructs and parallel simulation strategies 
do not change the essential world view of the modeler 
who is still required to define a sequential model of in- 
herently parallel system. Moreover, now the modeler 
is required to give hints to compiler for parallelization. 
This requires the modeler to understand the behavior 
of the system and the compiler. 

In the literature some parallel simulation languages 
such as Maisie [BL90] have been developed. However, 
these languages allow the modeler to explicitly express 
intertask parallelism but not intratask parallelism, i.e., 
the parallelism within a task. Typically, a task is de- 
fined by an event scheduling model in which one rou- 
tine (method or procedure) is defined for each type 
of event (message). The modeler defines a model by 
viewing that one event is removed at a time and its 
routine is processed. The parallelism within a task is 
implicitly extracted by the simulator using the opti- 
mistic or conservative simulation strategies. 

In this paper, we define a modeling paradigm 
in which intratask parallelism can be explicitly ex- 
pressed. The modeling paradigm requires the modeler 
to think that all events with the same earliest clock 
time are removed, and based on the removed events 
many computations are triggered in parallel. 

2    Intratask parallelism 

Explicit expression of intratask parallelism virtu- 
ally remains unexplored in simulation modeling. In 
this paper, we explore some principles of expressing 
intratask parallelism in simulation models. In con- 
trast to the intertask parallelism, the elements ex- 
pressing intratask parallelism share a common state 
and events. It can be argued that intratask paral- 
lelism is not required because one can always divide 
a task into subtasks and utilize the techniques of in- 
tertask parallelism. However, in general this may not 

be feasible or desirable because a task is a "logical en- 
tity", and decomposing it into subtasks may lead to 
artificial and complex decomposition of the state and 
events of the task. 

Many techniques have been developed for express- 
ing intratask parallelism in the parallel programming 
literature. One technique is to define a task as an in- 
terleaving computation where different "threads" syn- 
chronize using devices such as shared memory, mem- 
ory locks, and/or semaphores. Another important 
technique is to express the data parallelism available 
in a task as a Single Program Multiple Data (SPMD) 
program. These and other such techniques can be 
applied for expressing parallelism in simulation mod- 
els as well. However, the applications of these tech- 
niques in simulation is limited by the structure of mod- 
els. The structure of models defined in the model- 
ing paradigm developed in this paper facilitates ap- 
plications of the above parallelization techniques in a 
broader context. 

A task in a simulation model is different from a 
task in a nonsimulation program due to the fact that 
events and computations in simulation are stamped 
with simulation clock time. Hence, it is possible that 
more than one event of the same or different type may 
occur at an instant. For example, many events of 
type arrival(priority) may occur at an instant cor- 
responding to simultaneous arrival of customers. The 
approach to handling simultaneous event occurrences 
is affected by how a task is defined. The common ap- 
proach of defining a task is to define one event routine 
for each type of event. Then, the routines of simulta- 
neously occurred events are executed in the order of 
priorities assigned to events. 

In our approach a task is defined by a set of rules, 
where each rule consists of 

a. an event-expression which can refer to multiple 
simultaneous event occurrences and state condi- 
tions, and 

b. an action which defines state modifications and 
schedules events. 

The action of a rule gets fired whenever the events 
referenced in the event-expression of the rule occur at 
the same point in time. Once the action of a rule is 
fired, it can refer to parameters of one or more events 
occurring at the time of firing. This makes it possible 
to express intratask parallelism in the following two 
forms. 

a. The action of a single rule defines data parallelism 
on data or parameter values of multiple event oc- 
currences. 
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b. The actions of all rules whose event expressions 
are satisfied are fired in parallel. 

2.1     Referring   to   multiple   simultaneous 
event occurrences 

Simultaneous event occurrences play an important 
role in expressing intratask parallelism. The basic 
approach to defining interactions among simultane- 
ous event occurrences has been defined in the Logic- 
Based Foundation (LBF) of discrete event modeling 
and simulation [Ra90, RS94]. In LBF, events are de- 
fined to be logical propositions or relations. For exam- 
ple, LBF treats the events customer-arrives and cus- 
tomer-departs as logical propositions. To claim that 
the event customer-arrives occurs at an instant t is to 
claim that the proposition customer-arrives is true at 
t. The benefit of this view of event is that interac- 
tions among simultaneously occurring events can be 
defined by logical conditions on events. The conjunc- 
tion of two events using &: means that both events 
occur together, and the negation of an event using ~ 
means that the event does not occur. For example, 
the condition (customer-arrives & customer-departs) 
asserts that both events customer-arrives and cus- 
tomer-departs have occurred. Whereas the condition 
(customer-arrives k ~ customer-departs) asserts that 
the event customer-arrives has occurred but the event 
customer-departs has not occurred. 

In general, events are parameterized, i.e., events 
denote various types of relations which are true for 
one or more tuples of values. For example, multi- 
ple occurrences of arrival(priority, gender) may de- 
note the bag {(low, male), (low, male), (low, female), 
(high, female), (high, female)} of values of the pa- 
rameters priority and gender corresponding to simul- 
taneous arrivals of two low priority male customers 
and one low priority and two high priority female cus- 
tomers. This example shows that sets and bags of val- 
ues are associated with event occurrences. We define 
three types of event relations as follows. 

primitive — at any instant the event relation is 
true for at most one tuple. Typical examples are 
the-president-arrives, the -whitehouse -opened, 
and NY .stockmarket-fell. 

set — at any instant the event relation is true for 
at most a finite set of tuples. An example of 
this type of event is release-disk(diskjno) de- 
noting the release of disk disk-no in a multi- 
disk computer system. The type of event relation 
release-disk is set because at a particular instant 

it can be true for more than one disk but for each 
disk-no only one event release-disk(disk-no) can 
occur. 

bag — at any instant the event relation is true for 
at most a finite bag of tuples. A typical example 
is customer-arrives(priority) which may be true 
for more than one value of the parameter priority 
because a high- and a Zow-priority customer may 
arrive at the same instant. It is also possible that 
more than one customer of the same priority may 
arrive at an instant. 

In the syntax of LBF's language LDE, 
an event- 

term consists of an event name followed by a list of 
arguments. An argument can be any expression of the 
corresponding parameter type, or "_" which indicates 
"any value". An event-term can occur in two contexts: 
one is in a set-expression and the other is in a condi- 
tion. In a set-expression, at a given instant, an event- 
term denotes a set of tuples such that for each tuple in 
the set, the event relation is true and the evaluation of 
arguments of the event-term match the corresponding 
components of the tuple. For example, at an instant 
t, the event-term arrival(high,-) denotes the bag 
{(high, x) | arrival(high, x) is true at t, where x can 
be either male or female}, whereas arrival(-,-), or 
simply arrival denotes the bag {(x,y) | arrival(x,y) 
is true at t, where x can be high or low and y can 
be male or female}. An event-term can also occur 
in the context of a condition, in which case it denotes 
the truth value true iff the event relation is true for 
at least one tuple at that instant. 

2.2     Parallelism in actions 

As mentioned before, the behavior of a task is de- 
fined by a set of rules, each of which consists of an 
event-expression and an action. The intratask paral- 
lelism arises in two ways — (1) the code of an ac- 
tion can represent parallelism using the denotation of 
any event and (2) the actions of rules whose event- 
expressions are satisfied can be executed in parallel. 
The parallelism in an action can be expressed by the 
technique of data or control parallelism [RDR94]. The 
data parallelism is expressed using for-all construct 

for-all x in S A 

which executes |S|-many instances of action A in par- 
allel, where each instance of action A gets a different 
value for x from the set denoted by set-expression S. 
In LBF, event-terms are set-expressions because they 
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denote a bag of tuples of values. As sets and bags play 
a crucial role in expressing parallelism, we provide a 
sophisticated type system and powerful set manipu- 
lation operations. To allow manipulation of sets, the 
database set manipulation operators select, project, 
union, difference, and cartesian product are pro- 
vided. The implementations of these set operators are 
described by Ullman in [U188]. In contrast, the data 
parallelism in parallel programming is usually based 
on integer arrays, which is also allowed in our frame- 
work. 

The control parallelism in LDE is expressed by 

Ai An 

which executes different actions A\, ..., An in parallel. 
Note that the explicit parallelism expressed inside 

an action can refer to parameters of several event 
occurrences. Such parallelism would be difficult to 
automatically derive by a compiler from an event- 
scheduling model. 

In LBF, actions are executed in parallel without 
interleaving. Noninterleaving parallel computations 
are defined in terms of the concept of "modification" 
which defines the changes that must be made to the 
state at an instant due to the execution of an action. 
In particular, the action is not viewed to define define 
a new state. This allows us to determine modifica- 
tions corresponding to applications of multiple rules 
in parallel. An elaborate theory of modifications has 
been developed which defines operations for combin- 
ing modifications [RS94]. 

3    Example 
( 

A system of colliding balls (CB) defined in [Fi94] is 
modeled in LDE to illustrate the concepts defined in 
the paper. The CB consists of n perfectly elastic tiny 
balls (molecules) which change their direction of mo- 
tion upon striking a wall. It is assumed that balls do 
not collide with each other, and the containing box is 
two dimensional [Fi94]. Although, the balls are mov- 
ing continuously, it is desirable to develop a discrete- 
event model of CB if we are interested in developing 
a fast, real-time display of the movements of balls, or 
in counting the number of times the balls hit walls. 

The event-scheduling model of CB defined below 
is based on the event-scheduling model of CB defined 
in [Fi94]. Unlike in [Fi94], our model utilizes a pa- 
rameterized event col(bNo, wall) to denote a collision 
of a ball bNo colliding with a wall wall. We need to 

capture the following in a model of CB: every time 
one or more balls collide with a wall, (1) for every 
ball, update its position and (2) for every colliding 
ball, update its velocity (hence, change the direction) 
and schedule the next occurrence of col(bNo, wall) . 
However, the fact that more than one ball may collide 
at the same time makes the event-scheduling model 
complex because events col(bNo, wall) corresponding 
to the balls colliding at the same time are processed 
sequentially. The basic idea of the event-scheduling 
model given below is that only the first of possibly 
many simultaneously colliding balls updates positions 
of all balls. Also, each simultaneously colliding ball 
(including the first) updates the velocity of that ball 
and the next col event for that ball. The following is 
the pseudo code of an event-scheduling model of CB 
which consists of initialization and col event-routines. 

Event-scheduling model of CB 

event-routine initialization 
PrevEventTime := — 1 
schedule col(bNo) for each ball 

event-routine col(bNo, wall) 
I* collision of ball bNo on wall wall */ 

1. if current_time() > PrevEventTime then com- 
pute the time elapsed since last update using 
collisionJime(bNo) defined below and update 
positions of all balls using the elapsed time. 

/* The then-part of this conditional statement is 
executed only by the first of the possibly many 
simultaneously colliding balls. The time elapsed 
since last update is computed using ball bNo's 
position and velocity at the time of last update 
of positions. Using this elapsed time, positions of 
all balls including bNo are updated.*/ 

2. Update velocity of bNo to account for reflection 
at wall. 

3. Compute NextCollisionTime and 
NextCollidingWall. 

4. schedule col(bNo, NextCollidingWall) after 
N extCollisionTime 

5. PrevEventTime := current_time(). 

Similar to the above event-scheduling model, only 
one rule is required in the LDE model of CB defined 
below. This rule is executed when its event-expression 
col is satisfied, i.e., when one or more balls collide 
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Ball 
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Figure 1: Motion of balls in a two-dimensional box. 

walls. In the action of the rule, the technique of data 
parallelism is used to accomplish the tasks of (1) up- 
dating the position and velocity and scheduling next 
col event for each colliding ball in parallel and (2) up- 
dating the positions of all noncolliding balls in paral- 
lel. The data parallelism is expressed using the for-all 
statement. Furthermore, the for-all statements defin- 
ing these two tasks are connected by ||, and hence they 
can be executed in parallel. Note that the parallel 
construct || of LDB defines control parallelism. The 
control or data parallelism can also be used to define 
the code of procedures, e.g. see update-pos(). 

An LDB model of CB 

Types: 

BALLS = l..no-of .balls; 

WALLS = {left,right,top,bottom}; 

Event declarations: 

set col(b G BALLS, w G WALLS) — col is a set 
type of an event which indicates collision of ball b 
with wall w. col's type is set because any two si- 
multaneous occurrences of col has different values 
of parameters, i.e., there is no duplication. 

Variables: 

B : set of BALLS 
balls. 

a set variable to hold a set of 

vxl L vv[ ] — arrays to hold x- and y-components of 
the vectors representing velocities of balls. 

Procedures: 

procedure collision-time(b) 
Returns the collision time and the wall of collision for 
a ball b using 6's current position and velocity. The 
type of this function is collisionMme(b G BALLS) G 
R+ x WALLS. 

procedure update..pos-vel(t, b, wall) 
/* The type of this function is updatejpos-vel(t  G 
R+,b G BALLS, w  G  WALLS)  G void.    It par- 
allely updates 6's position  (#[&], 2/[6]) and velocity 
(t;ar[6],uy[6]) using timef and wall wall. */ 

x[b] := x[b] +t x vx[b] 
|| if (wall = left or wall = right) vx[b] := — vx[b] 
II vV>] :=y[b)+t xvy[b] 
|| if (wall — top or wall = bottom) vy[b] := —vy[b] 

procedure updatejpos(t G R+, b G N) G void — up- 
dates 6's position (x[b], y[b]) using time t. 

Rules: 

whenever col 
B :— pr^col);1 

for-any  6 in col 
{(impact-time, _) := collisionMme(b)}; 

{for-all  (6, old-wall) in col 
{update-posjvel(impact-time, 6, old-wall); 

x[ ]> y[ ] — arrays to hold x- and y-coordinates of 
balls. 

1pri is a projection function that returns the set containing 
first component of tuples in a set (here col). The symbol 0 
denotes the operation of difference on sets. 
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(t,wall) := collision J.ime{b); 
schedule col(b, wall) after t;} 

|| for-all b in BALLS 9 B 
{update-pos(impactJime, &)}} 

4    Conclusions 

The logic-based foundation (LBF) of discrete event 
modeling and simulation views that events denote var- 
ious types of logical relations. This view makes it pos- 
sible to refer to simultaneous multiple occurrences of 
events in the conditions which trigger rules and in the 
actions of rules. The data or parameter values of si- 
multaneously occurring events can be used to express 
data and control parallelism in the actions of rules. 
In LBF, in addition to the statements within a sin- 
gle action, actions of different rules in a task can be 
executed in parallel. 
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Abstract 

To accurately trace the dynamic behavior of the sys- 
tems to be developed, and to effectively proceed with the 
systems' performance measures prior to their imple- 
mentation, are getting harder as advanced technology 
is employed in the system design process. This situa- 
tion drives the functional progress in modern modeling 
and simulation supporting environment. Our study to 
the trend is concentrated on promoting the efficiency of 
modeling and simulating diverse application systems. 
The achievement in the research is the establishment 
of a frame-based modeling and simulation tool termed 
FRAMS. The feature deserved by FRAMS is not just 
high reuse of model resource but great simulation time 
saving by modeling an application system with a hier- 
archical, multilink data structure. Currently, FRAMS 
has been implemented more specific to performance 
measures on computer systems. However, the design 
spirit of FRAMS is for general purposes in extensive 
application areas. 

1    Introduction 

Diverse sorts of modeling and simulation environ- 
ments used in extensive areas for specific or general 
purposes have been developed within the past few 
decades. SIMSCRIPT II.5, GPSS  and  SLAM II are 
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typical examples [1, 7, 8]. Given the existing ones, 
newer kinds of modeling and simulation supporting 
environments are still being invented. The major rea- 
son to reflect the trend is to promote their processing 
power and efficiency while new techniques either in 
hardware or software are explored out. The related 
improvement primarily includes: 1) to automate the 
modeling process in order to speed up the ability in 
modeling an application system being investigated, 2) 
to apply the object-oriented programming scheme in 
designing the supporting environment such that mod- 
els are objects which can be highly reused, and the 
execution of simulation is carried out by the message- 
passing method, 3) to shorten the simulation time by 
distributing the simulation burden in a loosely coupled 
distributed or closely coupled multiprocessor system, 
and 4) to adopt an approach of the hierarchical decom- 
position and hybrid method so that a subsystem can 
be replaced by an equivalent lumped component [10], 
and the original larger system model with larger state 
space is thus shrunk to its equivalent but smaller size 
having much smaller state space; therefore, the time 
spent in model simulation is able to be reduced signif- 
icantly. 

As the goal in the research is targeted for perfor- 
mance measures, various sorts of queueing models and 
queueing networks introduced in the field of Queueing 
Theory [6] become the targets to be modelled by the 
proposed modeling and simulation tool. Since these 
queueing configurations have the trait of random be- 
havior in operation along the time, the simulation time 
required to execute an modelled system usually takes 
time before the behavior of the system is in equilib- 
rium. Hence, how to lower down the unavoidable 
problem is the major concern in the paper. By re- 
alizing the point and the evolution of modern mod- 
eling and simulation designing methodology, an envi- 
ronment called FRAMS (FRAme-based Modeling and 
Simulation tool) is implemented having the support of 
a window-driven user interface. Along with FRAMS, 
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an innovative approach utilizing the object-oriented 
concept but no message-passing feature, and the frame 
structure [9] is presented. The key idea behind this ap- 
proach is to avoid the large portion of time spent in 
message passing between models during model simula- 
tion. By using the frame's characteristics to represent 
objects, and then to form the related frame bases, all 
the frames required to construct a complete system 
model used in simulation will be organized in a hi- 
erarchical, multilink data structure manipulated in a 
single process. By means of the processing of a single 
process, the simulation time can be effectively reduced 
in great scale. 

Basically, FRAMS is designed for general purposes. 
Even current prototype is more dedicated in setting up 
models for computer systems, it is to be expanded to 
model communication networks, manufacturing sys- 
tems and other application areas. In the ensuing sec- 
tions, the way of converting a model (i.e. an object) 
to a frame, the data structure of a simulation model 
in FRAMS, the operation of the data structure in sim- 
ulation, the FRAMS prototype, and a study case are 
presented. 

2    Models in Frame Configurations 

By analyzing the architecture of an application sys- 
tem, it is naturally to decompose the system from top 
to bottom, i.e., a system is composed of several subsys- 
tems. In turn, a subsystem may be partitioned into 
some sub-subsystems. To the bottom, the elemen- 
tary components are identified. Based on the layer- 
by-layer analysis, the architecture can be viewed as 
a multilayer-multicomponent configuration. Modern 
advanced systems usually have the feature such that 
the corresponding simulation models are able to be 
created systematically. By following the philosophy, 
the models used to construct a complete system model 
(which emulates a real system being investigated) will 
be organized hierarchically. The hierarchy facilitates 
the management of the models and the scheduling 
control in simulation. Meanwhile, the object-oriented 
programming techniques provides the features of in- 
formation hiding, data encapsulation and the method 
of message passing. Through the involvement of these 
characteristics into a modeling and simulation envi- 
ronment, the system modeling process can be easily 
and systematically managed. But there is a problem 
which may occur at the model simulation stage. This 
problem can be profiled from Figure 1 in which the 
messages are passed up and down frequently in the hi- 
erarchical simulation structure. The path of message 

C System Model 

(messages) / \ (messages) 

(messages) 

^"Sy^öjrSub-subsysteniN   iil i^psl^Sub-subsysterriN 

(messages) 

(messages) 

Ele   EIc   Ele   Ele   Elementary 
Mo   Mo  Mo   Mo   Model 

^9  ^9  ™  ^y  ^9 

• •• 

(messages) 

(messages) 

Ele  Ele   Ele   Ele  Elementary 
Mo   Mo   Mo   Mo   Model 

Figure 1: Message Passing in A Hierarchical Design. 

passing turns to longer as the complexity of a system 
model increases. The time spent to pass the messages 
directly affects the simulation time, especially in the 
experiments for the purpose of performance measures. 

By utilizing the object-oriented concept but ignor- 
ing the message-passing method, the frame configu- 
ration introduced in Artificial Intelligence [9] is em- 
ployed to describe an object, i.e., a model. A frame 
is composed of slots including procedures (or called 
functions). The slot structure deserves the advantage 
of maintaining all the information related to the at- 
tributes of a model and the procedures required to 
figure out the performance data expected effectively 
and clearly. Furthermore, the hierarchical configura- 
tion of an application system can be effectively set up 
through the establishment of the relationship between 
frames. The slots defined in the FRAMS's frame are 
listed below: 

• Name: it records the frame name, i.e., the name 
of a model. 

• Model Type: a frame can be either "composite" 
or "atomic" type. 

• Models Included: the slot keeps the frames in- 
cluded and the corresponding instances required 
for a composite frame. 
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• Job Scheduling:   the information handles the job 
processing sequence in a model. 

• Status:      it expresses the initial situation of a 
model in simulation. 

• Mean Service Rate:   this is the service rate of the 
model. 

• Initial Jobs:    the jobs set at the beginning of a 
simulation is maintained in the slot. 

• Size:   it is the buffer length in a model. 

• Performance Setting:    this slot holds the proce- 
dure^) used for performance calculation. 

• Linking:   the coupling information between mod- 
els are saved in the slot. 

Referring to the example in Figure 2, the System 
frame is a composite frame in which the Models In- 
cluded and Linking slots tells all the atomic frames 
involved and the related connections needed. The 
information about the atomic frames CPU, Memory, 
Disk, Generator and Monitor are depicted in the fig- 
ure. This frame structure simply specifies the two- 
layer system architecture. By mapping an atomic 
frame to an elementary model, and a composite frame 
to other model in Figure 1, more complex application 
systems with multilayer and multicomponent organi- 
zation is able to be systematically constructed with 
the proposed method. All the atomic and compos- 
ite frames are kept in Device Frame Base (for short, 
DFB) and System Frame Base (for short, SFB), re- 
spectively. Both DFB and SFB associated with Per- 
formance Frame Base (for short, PFB) which is for 
computing performance data will be retrieved to or- 
ganize the simulation models required at the Device 
Modeling and System Modeling stages explained in the 
next section. 

s 
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Figure 2: A System Description in Frames. 

3.1     Organization of The Data Structure 

The organization of the data structure is illustrated 
in Figure 3. The multilink organization is composed of 
four kinds of nodes: A, B, C and D types as shown. 
Type A keeps the fundamental queueing properties 
of a composite model or an atomic model. Types B 
and D maintain the timing control and simple job in- 
out records. The information about model coupling is 
saved into type C's fields. The methodology applied 
to achieve the setup is described with two stages as 
follows: 

3    The Data Structure of A Simulation 
Model 

As mentioned early, there is no message passing oc- 
curred in the design of FRAMS. All the simulation ac- 
tivities are done by handling a hierarchical, multilink 
data structure built in a single process such that the 
simulation time spent compared to the same condi- 
tions but in message-passing simulation environment 
could be much smaller. This section discusses what 
the data structure looks like and how it is to be ma- 
nipulated. 

Stage 1: Device Modeling The task is necessary 
whenever a new elementary device is modelled. The 
steps for the modeling are: 

1) Assign the name to a device (the name of an atomic 
frame). 
2) Define the related queueing properties for the de- 
vice. 
3) Create the atomic frame expected like in Figure 2, 
and save it to DFB. 

Stage 2: System Modeling It consists of two 
parts:   first to set up a composite frame, and then 
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System 

Al A2 A3 A4 A5 A6 A7 A8 

Genr Active FIFO 8.0 200 

CPU Passive FIFO 8.0 100 

HD Passive FIFO 20.0 100 

C1   C2   C3 D1   D2   D3   D4 

Al: Model Name 

A2: Status 

A3: Job Scheduling 

A4: Mean Service Rate 

A5: Size 

A6 : The Pointer to The Initial Jobs, 

A7: Tie Pointer to The Models Involved. 

A8 : The Pointer to A Model's Runtime Info. 

C1 : The Model Connected to It 

C2; The Probability of The Connection 

C3 : The Pointer to The Next Connected Model 

Bl: The Number ofJohs in The Model 

B2: The Time of Next Event 

B3: The Time of Last Event 

B4: Mean number of lobs in The Model So Par 

B5: The Pointer to The Connection List from It 

B6: The Pointer to Its Job List Processed 

Dl: The Job Identification Number 

D2: The Arrival Tune of The Job 

D3 : The Departure Time of The Job 

D4: The Pointer to The Next Job Processed 
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Figure 4: The Main Menu in FRAMS. 

Figure 3: The Data Structure of A Simulation Model 
in FRAMS. 

to generate the corresponding data structure for sim- 
ulation purpose. The primary work includes: 

1) Name the system (or a subsystem), i.e., the name 
of a composite frame. 
2) Specify the required frames from DFB and/or SFB 
(which implies the multilayer design), and the number 
of instances for them. 
3) Set up the connections (the couplings). 
4) Construct type A's link list based on l)'s and 2)'s 
settings but only Al field contains its name. Type B 
nodes are also created and pointed by A8. 
5) Look up yli's content to retrieve the atomic frame 
from DFB, and update A2 to A6. 
6) Based on 3)'s information to set up type C nodes 
and to feed the related data into Cl to CS. 

After the completion of applying the methodol- 
ogy, a data structure which represents the simulation 
model to an application system is organized. (The 
type D nodes will be created during the processing of 
the data structure.) 

3.2     Manipulation of The Data Structure 

For simplicity of explanation, the same configura- 
tion in Figure 2 is considered.  The manipulation on 

the data structure during model simulation is acti- 
vated from the places where A2 fields have the status 
of "active". The "active" models can keep on produc- 
ing jobs (the system traffic) until the simulation ter- 
minates. Each time a job is produced, a type D node 
will be created and linked to the place it belongs. The 
job will be dispatched to a specific model in terms of 
type Cs information. In turn, when a job arrives at 
a model, it will be queued into its buffer and wait for 
service under the policy of job scheduling. Meanwhile, 
a type D node for the job is generated and attached to 
the D node link. As soon as a job is completely served, 
it will be again based on type Cs information to be 
passed to another model. This situation is repeated 
to the end of the simulation. 

4    The Prototype of FRAMS 

In order to enhance the functionality of FRAMS, a 
window-driven user interface has been developed. The 
interface not just facilitates users in modeling and sim- 
ulation processes but encourages users to reuse the re- 
sources existing in frame bases. Figure 4 profiles the 
main menu with six window-click functions. The Help 
function provides a good direction to guide users to 
handle FRAMS. The Model Base is used to list the 
content in the DFB, SFB and PFB. Both Device Set- 
ting and System Setting functions form the modeling 
part. A successful operation at each Device Setting cy- 
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Figure 5: The System Modeling Menu in FRAMS. 
Figure 6: The Open-Queueing-Network System. 

cle will produce a new atomic frame. Similarly, a com- 
posite frame can be created after executing the System 
Setting part completely. Model simulation is executed 
by clicking Run. The Quit is for leaving the FRAMS 
environment. In Figure 5,the detailed System Setting 
pop-up window is demonstrated. The Help function in 
the window teaches users how to do system modeling. 
The data in the left boxes show that the System model 
contains two CPUs, one Memory, three HDs and one 
Relay in cooperation with a job generator Genr. The 
probability settings for the outgoing jobs are specified 
in the right boxes. In the figure, only CPU-l's settings 
are displayed. Other functions in the main menu are 
also driven by the similar pop-up window, and guided 
by the proper Help functions. 

5    Analysis of The Experiments 

As the design motivation in the research is based 
on Queueing Theory, the system models constructed 
in FRAMS can be classified as queueing networks. 
In [2, 4, 5], three fundamental types of queueing net- 
works cascaded, open and closed queueing networks 
have shown their importance in extensive applica- 
tion areas. In order to verify FRAMS, the prop- 
erty of Burke's theorem is tested first. By comparing 
the FRAMS's simulation outcome to the data calcu- 
lated out by analytical approach, the high accuracy is 

achieved. Next, in Figure 6, an open queueing net- 
work having the following conditions is used to prove 
Jackson's theorem in FRAMS. Also, the scheme of 
confidence interval [7] is adopted to investigate the 
correctness of the simulation results. The conditions 
given to the devices in the figure are: 1) The mean ser- 
vice rates at CPU, Memory and HD (hard disk) are 
50, 60 and 10 jobs/millisecond, respectively, 2) No jobs 
are blocked anywhere, 3) The values beside the lines 
express the job dispatching probabilities, 4) The gen- 
erator Genr can generate jobs with 4 jobs/millisecond, 
and 5) Monitor is used to calculate average system 
time delay per job. The ideal average system time 
delay is 1 millisecond. In comparison with the ideal 
value, the outcome collected from multiple simulation 
runs shows that 95% confidence interval is carried out. 
This implies FRAMS is more reliable. The same re- 
sult of testing Gordon-Newell networks is deserved as 
well. 

The configuration in Figure 6 has been modelled by 
DEVS-Scheme [11] for comparison of simulation time 
spent. Even the actual time-saving scale is hard to be 
measured so far, the efficiency provided by FRAMS is 
overwhelming the former. 

6    Summary 

This paper presents a method of describing models 
with the frame configurations, proposes an approach 
to greatly shorten simulation time through the setup 

34 



of the hierarchical, multilink data structure, and intro- 
duces the FRAMS prototype. However, further simu- 
lation time reduction is possible by employing the hy- 
brid approach mentioned in [3, 10], and the scheme of 
multithreaded programming in cooperation with dis- 
tributed computing. In order to achieve the improve- 
ment, the data structure used to form a simulation 
model should be adjusted like state-dependent queue- 
ing models allowed to be constructed. Both are critical 
to the future work. In addition, FRAMS will be en- 
hanced to facilitate modeling in extensive application 
areas. 
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Abstract 

This paper presents a framework for behavior mod- 
eling and scenario control based on hierarchical, con- 
current state machines (HCSM). We present the struc- 
ture and informal operational semantics of hierarchi- 
cal, concurrent state machines. We describe the use of 
HCSM for scenario control in the Iowa Driving Simula- 
tor (IDS), a virtual environment for real-time driving 
simulation. The paper concludes with an outline of a 
forthcoming HCSM-based scenario authoring system 
that will permit non-specialists to graphically program 
behaviors and design experiments for IDS. 

1    Introduction 

State machines provide a natural framework for 
programming the behavior of synthetic entities in in- 
teractive simulation environments. The state machine 
methodology has been successfully used in a number of 
real-time control domains including robot walking and 
reactive systems[2, 3, 7]. Unfortunately, the absence 
of tools for abstraction and the lack of concurrency 
limits the usefulness of traditional state machines for 
programming complex behaviorsfl, 8, 10, 11]. In this 
paper, we present a modeling framework based on 
hierarchical, concurrent state machines (HCSM) and 
demonstrate its usefulness for controlling entity be- 
haviors and scenarios in real-time simulation environ- 
ments. 

Section 2 defines and provides informal semantics 
for HCSM. We present the structure of hierarchical, 
concurrent state machines and the state machine ex- 
ecution algorithm, explaining how output of concur- 
rently executing state machines is resolved by higher- 

level machines. The execution algorithm is free of or- 
der dependencies that cause robustness and stability 
problems in behavior modeling. In Section 3, we de- 
scribe how HCSMs can be applied to behavior model- 
ing and scenario control for virtual environments. In 
particular, we describe the use of HCSMs to control 
vehicle behavior and to author scenarios for the Iowa 
Driving Simulation. In Section 4, we briefly describe a 
graphical programming environment for HCSM under 
development. 

2    Hierarchical,  concurrent  state  ma- 
chines 

State machines encode context dependent actions 
in a set of states. Traditional single-level, non- 
concurrent finite state machines can be used to model 
and control behavior by attaching output or activity 
functions to states. Activity functions implement a 
state's control law by computing control variable val- 
ues appropriate to the state. At any instant, the single 
active state controls behavior by executing its activity 
function and returning control variable values. A state 
transition, in response to simulation events, yields a 
new active control law. 

Traditional finite state machines treat all states 
with equal status and provide no means to organize 
groups of states into independent modules. The lack 
of encapsulation mechanisms inhibits reuse of state 
machine code. A group of logically related states can 
have transitions from any state in the group to any 
state outside the group; these transitions are left dan- 
gling when the group is surgically removed from the 
larger state machine.   The inability to partition be- 
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havior into separate modules complicates modification 
and extension of state machines; changes tend to prop- 
agate throughout the state machine. 

The single-minded focus and sequential logic of 
non-concurrent state machines make it very difficult to 
satisfy the demands of problems that require simulta- 
neous attention to many aspects of the environment. 
This encompasses much of the behavior we wish to 
capture in autonomous or intelligent agents. As the 
problem size grows, states proliferate to represent the 
response to factors occurring in various combinations 
and transitions tend to become dense and tangled. In 
the worst case, every existing state must be duplicated 
and connected to every other state to incorporate an 
intelligent response to a new factor in the environ- 
ment. 

To remedy these problems, we've extended the state 
machine model to include hierarchies of concurrent 
state machines. In our model, any state machine 
may contain multiple, concurrently executing sub- 
state machines. We find that the HCSM programs 
are easier to program, modify, and debug than the 
corresponding single-level state machine. 

2.1     Hierarchical   Concurrent   State   Ma- 
chines Viewed as Black Boxes 

From the outside, an HCSM state machine can be 
treated as a black box with input wires, output wires, 
and a control panel that contains buttons and dials. 
Information flows into the state machine over the in- 
put wires and values flow out of the machine over the 
output wires. The state machine is integrated into the 
simulation environment by connecting input wires to 
constants or variables and output wires to variables. 
More often, the input wires can be bound to expres- 
sions containing constants or simulation variables. 

For example, Figure 1 shows the outermost view of 
a state machine for modeling driver behavior in ve- 
hicle control. Input wires provide values for driver 
aggressiveness and reaction time. The state machine 
outputs an acceleration and heading that are bound 
to the acceleration and heading of the vehicle. These 
values are passed to the dynamics subsystem and used 
to determine the position, orientation, and velocity of 
the vehicle. The use of input and output parameters 
and bindings allows us to design abstract state ma- 
chines that are independent of the specific context in 
which they are used. 

Control panels provide a means for state machines 
to communicate with one another during a simulation. 
A state machine can send messages to other state ma- 
chines; a message can "push a button" on the control 
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Figure 1: Blackbox view of an HCSM state machine. 

panel or adjust a dial on the control panel to one of its 
legal settings. For example, we may want a vehicle to 
turn right at the next intersection in order to set the 
stage for a scenario event. This can be requested by 
pushing the "turn right" button on the the vehicle's 
control panel. Buttons and dials permit state ma- 
chines to interact with other state machines in ways 
that cannot be fully anticipated before the simulations 
begins. This ability is crucial to the orchestration of 
behaviors to create critical events and circumstances. 
For example, the traffic light state machine has a but- 
ton that causes it to change from red to green. 

The only difference between a button and a dial is 
in the persistence of their settings. A button is reset 
to its default position after it has been processed by 
the receiving state machine. A dial maintains its value 
until it is reset to another value. This distinction be- 
tween transient interactions and influences that persist 
for a period of time is useful for behavior control. 

2.2     The Structure of a Hierarchical Con- 
current State Machine 

In this section we present the internal structure 
of our hierarchical, concurrent state machines. An 
HCSM state machine is a structure of the form 

<M,T,F,<I,0>,B,V > 

where 

• M is a set of state machines (generally referred 
to as sub-state machines) 

• T is a set of transitions 

• F is an activity function 

• < /, O > a set of input and output parameters 

• B is a set buttons and associated button resolvers 

• V is a set of local variables 
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2.2.1 States and transitions 

The simplest state machine contains no sub-state ma- 
chines and no transitions. Its activity function com- 
putes output values based on input values, local vari- 
ables, and button and dial settings. 

More complex state machines contain sub-state ma- 
chines and may be categorized as either sequential or 
concurrent. In a concurrent state machine, there are 
no transitions — all the sub-state machines are ac- 
tive concurrently whenever the parent state machine 
is active. In a sequential state machine, exactly one 
sub-state machine is active at any instant. Transitions 
transfer control from one sub-state machine to another 
based on predicates involving the inputs, local vari- 
ables and button and dial settings. The distinction 
between sequential and concurrent HCSM state ma- 
chine's corresponds very closely with the distinction 
between AND-state and OR-states in Harel's State- 
chart formalism[10]. 

2.2.2 Activity functions 

A state machine's activity function is responsible for 
computing output values based on the values returned 
from sub-state machines, input parameters, dial and 
button settings, and local variables. The activity func- 
tions can also send messages to other state machines. 

The activity function for a sequential state ma- 
chine is often quite simple; output values are com- 
puted based on the output values of the single active 
sub-state machine. When the sub-state machine out- 
puts correspond directly with the parent machine out- 
puts, the activity function often directly passes those 
values through. 

On the other hand, the activity function for a con- 
current state machine must compute a set of output 
values based on the output values of multiple active 
sub-state machines. Infrequently, a concurrent state 
machine's outputs are just the disjoint union of the 
the sub-state machine outputs; in such cases the cor- 
responding activity functions are often simple, as in 
the sequential state machine case. 

The multiple active sub-state machines usually cor- 
respond to competing control goals. Each state ma- 
chine provides its own opinion about the values to as- 
sign to the control variables. The activity function 
implements a resolution method for these competing 
goals — it computes a set of outputs for the state ma- 
chine based on the outputs of the sub-state machines. 
For example, in our driving behavior state machines a 
"most conservative" activity function yields good be- 
havior in many (though not all) cases.   For example, 

the top-level driving state machine has linear acceler- 
ation as one of its outputs. It contains sub-state ma- 
chines that output linear accelerations for cruising, fol- 
lowing, passing, and intersection behavior. The driv- 
ing state machine's activity function can implement 
a "most conservative" rule by simply returning the 
minimum of the acceleration outputs of the sub-state 
machines. 

Figure 2 shows the two views of an example HCSM 
state machine. The view on the left side exhibits the 
machine's hierarchical and concurrent structure and 
its state transitions. The view on the right depicts 
the flow of data through the machine, including the 
resolution of competing outputs from sub-state ma- 
chines. 

2.2.3 Information flow, input, and output 

A parent state machine specifies how information flows 
into its sub-state machines by binding sub-state ma- 
chine input parameters to expressions of local vari- 
ables, constants, and input parameters. A sub-state 
machine receives information only when it is active. 
Likewise, sub-state machines produce output values 
only when they are active; when inactive, the output 
wires are dead. 

2.2.4 History 

State machines may retain their local state between 
activations. Thus, when a state machine is re- 
activated after a dormant period, sub-state machine 
execution can be reinitialized by activating the start 
sub-state machine or execution can proceed from the 
most recently active sub-state machine. Local vari- 
ables declared to be static retain their values between 
activations of the state machine. Other local variables 
are reinitialized to default values on reactivation. 

2.2.5 Button handling 

The buttons and dials on a state machine's control 
panel may receive multiple messages simultaneously. 
Buttons and dials have resolver functions that are re- 
sponsible for arbitrating between competing messages 
and ultimately determining button or dial setting. 

2.3    Executing HCSM State Machines 

The HCSM state machine execution algorithm is 
show in Figure 3. 

The first step on each iteration is to resolve requests 
to set buttons and dials. The resolver function consid- 
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Figure 2:  Two views of concurrent state machine containing three sub-state machines.   Two of the sub-state 
machines are sequential; the other is a concurrent state machine. 

ExecuteHCSM (SM)  { 

ResolveButtonsAndDials(SM); 
ComputeAndExecuteTransitions(SM); 
for all sub-state machines SSM of SM do 

ExecuteHCSM(SSM); 
RunActivityFunction(SM); 

Figure 3: Basic HCSM execution algorithm 

ers all requests in button and dial queues to determine 
settings. 

The second step is to update the set of active 
state machines. Transitions from all active state ma- 
chines are tested to see if their predicates are satisfied. 
Whenever a satisfied predicate is found, the predi- 
cate's source state machine is deactivated and the des- 
tination state machine is activated. 

Next, sub-state machines are executed. The value 
of the overall state machine computation is indepen- 
dent of the execution order of the sub-state machines. 
Finally, the activity function is executed; it must pro- 
duce state machine output values as a function of the 
newly computed sub-state machine outputs, button 
and dial settings, and local variable values. 

3 Behavior modeling and scenario con- 
trol using hierarchical, concurrent 
state machines 

We developed HCSM to support behavior mod- 
eling and scenario control in virtual environments. 

In earlier work, we developed a hierarchical, concur- 
rent state machine framework, the Conceptual Con- 
trol Modeler (CCM), for specifying behaviors of high- 
degree-of-freedom mechanisms in rigid-body dynam- 
ics simulation [8, 9]. CCM provides control program- 
ming tools that are useful for developing animations 
and simulations of human, robot, and insect walking, 
robotic hand manipulation strategies, and interacting 
robots (e.g. robots assembling something or playing 
games). CCM was developed for use with the Newton 
system [6] and similar rigid-body dynamics simulators. 

Our work on HCSM has been strongly influenced 
by other research on hierarchical, concurrent state ma- 
chines and control methodologies for satisfying of mul- 
tiple, concurrent goals. Harel's Statechart formalism 
[10, 11] elegantly extends state machines to include 
hierarchy and concurrency. Reynold's [12] presents a 
method to manage competing goals in his work on 
flocking behaviors. Brooks uses hierarchies of state 
machines organized by levels of competence to pro- 
gram robot walking. [2, 3] Lower level state machines 
implement primitive behaviors. Higher levels subsume 
levels by inhibiting or suppressing data paths. 

Our work is strongly motivated by the needs of 
the Iowa Driving Simulator (IDS). The IDS is a high- 
fidelity operator-in-the-loop ground vehicle simulator 
that incorporates a motion platform, force feedback 
and control loading, high-quality visuals, sound, state- 
of-the-art real-time multibody dynamics, and scenario 
control. A Ford Taurus cab is mounted inside a dome1 

on top of the motion platform. High resolution, tex- 
tured graphics are projected on screens on the dome 
walls — the forward field of view is 191° x 45° and the 
rear field of view is 64° x 35°. 

The objective of our work is to create a methodol- 

1 Other  cabs  can be  installed in  the  dome — 
HMMWV and Saturn cabs for some of its projects. 

IDS uses 
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Figure 4:   Simplified version of first generation IDS 
vehicle behavior state machine 

ogy for controlling scenarios in IDS. The scenario con- 
trol subsystem is responsible for generating and man- 
aging traffic, regulating traffic control devices, and set- 
ting the lighting and weather conditions. We partition 
the scenario control problem into two parts: basic be- 
havior modeling and scenario authoring. 

3.1    Basic behavior modeling 

In the IDS, object behaviors are controlled by au- 
tonomous state machines that react to each other as 
well as to the motion of the operator's vehicle. A 
vehicle's state machine is responsible for controlling 
the position of the vehicle at each step in the simu- 
lation. A road database maintains information about 
the state of the virtual environment that is used by 
the state machines to fire state transitions and to set 
parameters in control laws that determine vehicle mo- 
tions. All state machines are executed in sequence on 
a single CPU at 60Hz. At the end of each computa- 
tion cycle, the road database is updated and vehicle 
locations are reported to the visual subsystem for dis- 
play. 

In the first implementation of the IDS, scenario con- 
trol vehicle behavior was modeled using complex, one- 
level state machines. These state machines modeled 
driving on an open road, following behind another ve- 
hicle, and intersection behavior. Figure 4 shows a sim- 
plified version of a state machine used to model typical 
driving behavior. The actual state machines used in 
IDS are significantly more complex and includes states 
for passing and merging behaviors. Using these state 
machines, the scenario control subsystem can generate 
traffic that has a natural, reactive feel, and in which 
phenomena such as jams and clustering emerge. How- 
ever, as mentioned in the previous section and detailed 

in [4], the model is difficult to modify and debug. 
The second generation of scenario control uses 

HCSM to model object behaviors [5]. The ability to 
organize state machines hierarchically permits coher- 
ent activities to be grouped. For example, we have 
separate state machines for passing, following, and 
merging behaviors. The ability to encapsulate the 
logic of one aspect of behavior, such as passing, in a 
single state machine simplifies the development, mod- 
ification, and debugging of control programs. 

The concurrency of our state machines facilitates 
the creation of control programs that must simultane- 
ously attend to the many factors influencing driving 
behavior. Vehicles must obey speed limits, stop at red 
signal lights, avoid collisions with nearby traffic, and 
be alert to hazards in the roadway. At each instant, 
a driver must integrate all the relevant information 
and adjust the accelerator and steering wheel to best 
accommodate the demands of safe driving. 

Figure 5 shows the graphic environment we devel- 
oped to aid in testing and debugging HCSM-based 
vehicle behaviors. At the top level there are six con- 
current state machines controlling the vehicle. At ev- 
ery simulation step, each state machine independently 
produces a recommended acceleration for the vehicle. 
The activity function in parent state machine must 
compute a resolved acceleration based on the recom- 
mendations of the sub-state machines. 

3.2     Scenario authoring 

The ultimate goal of scenario control is to cre- 
ate a convincing dynamic environment for participant 
drivers. In the previous section, we described the tech- 
niques used in IDS to model the basic behavior of ve- 
hicles and traffic control devices. Using these tech- 
niques, we can generate ambient traffic composed of 
autonomous reactive vehicles. 

Many of the applications for which the driving sim- 
ulator is most useful require that drivers be exposed 
to specific crash threats. Investigators studying driv- 
ing safety want to expose subjects to critical situations 
such as cars encroaching into their lane, unexpected 
braking by the vehicle in front of the subject's vehi- 
cle, and cars illegally driving through red lights. These 
experiments require scenario vehicles to perform spe- 
cific actions in predetermined situations. Moreover, in 
order to compare performance across subject groups, 
experimenters demand that circumstances be replica- 
ble from trial to trial. The challenge we face is to cre- 
ate repeatable events by choreographing the behaviors 
of objects without sacrificing the sense of spontane- 
ity characteristic of natural driving environments. We 
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Figure 5: Prototype scenario editor and debugger. 

want to inconspicuously direct the scenario so that the 
subject cannot anticipate upcoming events. 

To accomplish this surreptitious control we have 
developed behavior controllers that manage situations 
by directing the behaviors of vehicles and traffic lights. 
Behavior controllers are HCSMs that behave like a 
daemon process in an operating system - they monitor 
situations and react accordingly. Behavior controllers 
influence the behavior of scenario objects by pressing 
the objects' buttons and setting dials. 

We find it convenient to classify behavior con- 
trollers according to how they are activated and how 
they interact with other objects. For example, a trig- 
ger is a behavior controller that is placed at a specific 
location on the roadway and is activated when a vehi- 
cle drives over it. The trigger can be specialized so the 
it responds only to a specific vehicle or a specific set 
of vehicles. When the trigger is activated, it pushes a 
button on another object causing it to change its be- 
havior. For example, a trigger can be used to initiate 
the motion of a vehicle on the shoulder of a highway 
as the subject's vehicle approaches it. 

The behavior of a trigger is coded as a HCSM. This 
makes it simple to construct triggers that fire once or 
repeatedly.   It is also simple to add delays between 

firings or create event sequences by chaining triggers 
so that one trigger activates another trigger. 

A trigger is connected to a specific object. Some- 
times we can't predict which particular objects must 
play roles in a creating a situation until the simula- 
tion is running. Inevitable differences in subject driv- 
ing behavior lead to variations in the traffic that make 
it impossible to anticipate how a scenario will evolve. 
For these cases, we developed a beacon behavior con- 
troller. A beacon radiates messages to nearby vehicles. 
The beacon can be placed at a specific location or it 
can be attached to a vehicle. For example, a bea- 
con can be attached to the subject vehicle and at the 
appropriate time instruct the vehicles in front to the 
subject to accelerate or change lane in order to create 
a clear path for the subject. 

A beacon can be used to coordinate the actions of 
a number of objects. For example, consider an exper- 
iment in which we want to test a subject's response 
to a vehicle driving through a red light as the subject 
approaches an intersection. For a number reasons, it 
is undesirable to choose the vehicle to perform the of- 
fense off-line. Because subject drive at different rates 
they will arrive at the intersection at different times. 
Thus, it is difficult to guarantee that a particular car 
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will be in position at the intersection at the appro- 
priate time. Instead, a beacon can be used to watch 
for the subject vehicle and conscribe an appropriate 
scenario vehicle to run the light. The beacon may 
help set conditions for the event by sending "clear the 
way" messages to other scenario vehicles. In this way, 
behavior controllers can orchestrate complex scenario 
situations that retain significant reactive components 
and avoid the staleness of scripting. 

4    Programming     Environments     for 
HCSM 

At present, HCSM programs are coded in C. Pro- 
gramming state machines at this level is time consum- 
ing, tedious, and error prone. To aid program devel- 
opment, we are developing a high-level language for 
specifying HCSM state machines, a graphical editor 
for designing state machines, and a graphical inspec- 
tor for visualizing state machine execution. 

A prototype of the state machine visualization soft- 
ware is shown in Figure 5. The tool allows program- 
mers to interactively inspect state machines as they 
execute on a graphic workstation. The tool has proven 
to be enormously useful for testing and debugging be- 
havior models. Currently, work is under way to allow 
experimenters to define new behaviors by graphically 
creating state machines. 
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Abstract 

Today's training simulators have dealt mainly with 
vehicle dynamics, artillery dynamics and soil 
manipulations [9]. Important features such as fluid 
surface effects and flow over a terrain surface have been 
neglected, decreasing the realism of the simulation. The 
modeling and animation of fluids have recently been 
pursued vigorously in computer graphics, but fluid in a 
real-time networked virtual environment has not been 
studied. This paper investigates issues concerning the 
implementation of fluids in a Distributed Interactive 
Simulation (DIS). Several fluid models and a player/ghost 
simulation strategy are examined. 

1.0: Introduction 

In complex simulation and training systems, such as 
those supporting real-time interaction on a battlefield, a 
large number of simulation entities and a variety of 
geographical features are involved. A simulation training 
exercise can be more effective if subjects interact with 
their environment. Such environments may provide the 
capability to dig a ditch, build an embankment, leave 
tracks, generate dust, produce munition craters and crush 
vegetation. The addition of fluids to a simulated 
environment can increase its realism through affecting a 
vehicle's mobility as it fords a stream, allowing buoys and 
debris to drift with the current, flooding a landscape with 
water as a dam breaks, and generating a wake behind a 
boat. 

This paper discusses a method for implementing fluids 
in a distributed interactive real-time simulation. 
Distributed Interactive Simulation (DIS) and the Dynamic 
Terrain (DT) project are briefly described to provide the 
reader with a background for this work. Three real-time 
fluid models of varying complexity are presented. Though 
other fluid models exist [5, 7, 12], the selected models 
were implemented due to their real-time performance 
capabilities. A player/ghost strategy for implementation in 
a real-time distributed interactive simulation is examined. 

1.1: Distributed Interactive Simulation 

Large virtual worlds in which many subjects interact 
with each other and their environment is an emerging 
capability of real-time simulation. The fruition of this 
interactive, simulated environment provides the tools for 
training of large-scale forces, rehearsal of missions, testing 
of new systems, and development of new tactics. All of 
these activities occur with no risk to life and allow replay 
of events. 

This concept is the vision of the Advanced Distributed 
Simulation (ADS) movement sponsored by the Advanced 
Research Projects Agency (ARPA), Joint Warfighting 
Center (JWFC), Defense Modeling and Simulation Office 
(DMSO), and U.S. Army Simulation Training 
Instrumentation Command (STRICOM). Distributed 
Interactive Simulation evolved in an effort to make ADS a 
reality. The DIS community is working towards 
establishing a standards infrastructure that allows the 
interoperability of heterogeneous simulators on a 
distributed network [14]. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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1.2: Dynamic Terrain project 2.0: Fluid models for real-time simulation 

The Institute for Simulation and Training (1ST) was 
tasked by U.S. Army STRICOM to develop a real-time, 
malleable, simulated environment in order to train more 
effectively. Ground warfare involves extensive 
interaction with the terrain which can involve cratering 
from munitions, weather effects such as flooding, 
vehicle tread marks, and vehicle mobility. Initial work 
focused on real-time modifications to the terrain during 
a simulation. Extensions to this work include the 
terrain's effect on vehicle mobility and the addition of 
fluids to the simulated environment. DT researchers are 
exploring fundamental algorithms, data structures, and 
architectures that can support these complex models of a 
dynamic environment. 

DIS Network 

C Terrain Service J> 

Client Application 
(Stealth Viewer) 

Client Application 
(Crater Model) 

I   Client Application 
I (Bulldozer Simulator) 

Physical Machine 

Figure 1: Sample DT service 

The current DT system-level architecture evolved 
from a series of architectures which sought to allow 
unscripted entity/environment interactions in a 
networked simulation. This DT architecture is a client/ 
server approach in which a service runs in the 
background, providing requested data to its client 
applications. Terrain Services is a service currently 
implemented in the DT simulation suite (Figure ). 
Client applications such as a bulldozer simulator, a 
cratering model, and a stealth viewer receive 
modifications and send updates to an active terrain 
database during a simulation exercise via the Terrain 
Service. The DT architecture's flexibility allows for a 
central server, fully distributed, or hybrid configuration 
of the Terrain Services. The selected configuration is 
transparent to client applications - a benefit of 
encapsulation of the service mechanisms. 

The modeling and animation of fluids have captured 
the attention of the computer graphics community 
resulting in the development of many different fluid 
models. However, we are concerned with the trade-off 
between realistic and real-time fluid simulations which 
can be applied to a DIS environment. 

A variety of fluid models can be selected depending 
on the desired fidelity and available simulator 
computation power. A flat surface can be used to 
pictorially represent fluid, a low fidelity model allows 
limited fluid appearances, a high fidelity model achieves 
realistic fluid surface behaviors. All three fluid models 
have been simulated in real-time at 1ST using 
commonly available Silicon Graphics workstations, as 
powerful as or better than an Indigo. Fluid models 
which take significantly longer than real-time were not 
considered for DIS. The trade-off between fluid models 
is, with a low fidelity model, we have faster calculations 
but less realistic fluid behaviors, while with a high 
fidelity model, we have complex calculations but with 
more realistic fluid behaviors. It is noted that the models 
discussed in this paper make simplifications to 
accommodate the real-time demand. The 
approximations are not well-suited for a scenario which 
requires precise fluid dynamics, but they are sufficiently 
realistic for DIS applications. These models 
accommodate changing bounding edges through volume 
conservation. Fluid surface phenomena are achieved 
with the low and high fidelity models presented below. 

2.1: Flat surface model 

A flat surface representation is the simplest 
representation of a fluid. There is no surface behavior or 
fluid phenomena displayed. The perception of fluid is 
conveyed purely by its color. It is displayed as a flat 
surface of a particular height. Entities, such as boats, in 
the fluid do not generate any surface changes or 
fluctuations in boundaries. The fluid surface is merely 
lowered and raised on the surrounding terrain. 

The advantage of this model is that it requires little 
computational power. A fluid surface is simply a 
polygon parallel to the X-Y plane. This trivial 
representation resembles the fluid's color at a desired 
location. This simple model allows a minimum fluid 
representation at a small cost to the simulator. 

A simulator with little available CPU or without a 
need for complex fluid dynamics will find the flat 
surface model attractive. An aircraft simulator may only 
need fluid location for flight reference and does not 
have the additional computational power to expend on 
generating the fluid's surface behavior. 
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(a) before breaching dam 

Figure 2: DT bulldozer/fluid simulation 

(b) after breaching dam 

2.2: A low fidelity model 

Kass and Miller [8] presented a real-time method for 
animating fluid using a simplification of the shallow 
water equations. Their method handles wave refractions, 
wave reflections, the net transport of water and 
boundary changes with changing topology. This model 
allows such phenomena as flowing rivers, raindrops 
hitting the surface, and waves lapping (not breaking) on 
a beach. 

Three approximations bring about their simplified 
form. First, the water surface is treated as a height field; 
thus, it cannot splash or break. The second 
approximation ignores the vertical velocity of a particle 
of water. This assumption causes the accuracy of the 
water model to degenerate if the waves become very 
steep. Finally, they treat the horizontal velocity of a 
column of water as approximately constant which 
breaks down as the water becomes turbulent. These 
simplifications approximate the classical linear wave 
equation. 

Campbell [2] extended Kass' fluid model to accept 
floating bodies. This involved fluid displacement and 
the creation of ripples to simulate disturbances caused 
by floating objects. This model was integrated with a 
DT bulldozer. The dam can be broken by the bulldozer, 
resulting in a water spill (Figure 2). 

The advantage of this model lies in its few 
calculations which are linearly proportional to the 
number of height-field samples. Though the fluid 
behaviors are limited and may not be quite realistic, 
animations occur in real-time. We consider this a low 
fidelity model because phenomena such as moving 
objects (boats) and surface ripple effects are too 
computationally expensive for a real-time simulation. 
This model exhibits the effects of a generic fluid, water, 
independent of its density and viscosity. The Reynold's 
number is an indication of these parameters which 

distinguishes fluids from one another. These capabilities 
are offered by the high-fidelity model. 

2.3: A high fidelity model 

The Navier-Stokes equations represent Newton's 
second law (XF = ma) in fluids and are the governing 
equations for general fluid flow [6]. Neither the flat 
surface nor the low fidelity implementation used these 
equations. The difficulties in a real-time implementation 
of these equations can be attributed to the effort 
involved in deriving a solution technique and in the run- 
time complexity of a solution. 

To accomplish a real-time simulation, Jinxiong and 
Lobo [4] solved the two dimensional Navier-Stokes 
equations for the fluid's surface instead of calculating 
the fluid behavior for the full volume. The third 
dimension, fluid height, was obtained from the 
corresponding pressures in the flow field. When fluid 
from neighboring points flows into a single location, the 
pressure as well as the height of the fluid surface rise. 
When fluid exits a particular location by flowing to 
neighboring points, the pressure as well as the height of 
the fluid surface drop (Figure 3). 

surface drops surface rises 

a zi 
negative pressure positive pressure 

Figure 3: Fluid surface height 
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Abstract 

Distributed Interactive Simulation (DIS) involves a large 
number of geographically dispersed 
operator-in-the-loop simulators interacting in the same 
virtual environment. Organized exercises in a DIS 
environment allow testing of group-level operations or 
procedures that require cooperation among large number 
of units. Recently, the ability of DIS is being expanded to 
evaluate equipment performance for the purpose of design 
modification and eventually, acquisition. This requires use 
of simulators that model the behavior of ground vehicles or 
other such equipment with enough detail to extract useful 
data from the simulator. Terrain modeling and 
representation becomes a central issue due to the 
significance of properly modeling the ground to vehicle 
interaction. This paper discusses design issues associated 
with modeling terrain for high-fidelity ground vehicle 
simulators. Experiences have been drawn from research 
leading to the design and implementation of an arbitrary 
resolution terrain model in the Iowa Driving Simulator 
(IDS), a high-fidelity ground vehicle simulator that is 
being integrated in the DIS network. 

1: Introduction 

All ground-based simulation models must have some 
knowledge of the terrain in which they operate [1]. Here, 
the term terrain refers to the physical geometry of the 
virtual environment and does not include logical attributes 
such as objects, roads or individual features. The degree to 
which the terrain needs to be modeled depends on the final 
purpose of the simulator. While for certain applications 
perfectly flat terrain at an arbitrary elevation may be 
sufficient, more often polygonal representations of terrain 
are more appropriate and provide more realism for a 
modest increase in complexity. Generally, the resolution 
of a polygon representation varies, but is often the same as 
the resolution of the Computer Image Generator (CIG) 
used in the system. In fact, the Height Above Terrain 
(HAT) function provided by most CIGs is a convenient 
method by which terrain information is negotiated in a 
system. As application domains become more demanding 

of simulators however, such approaches to the modeling of 
terrain become insufficient, and new methods must be 
developed for modeling arbitrarily complex terrain. One 
such domain is extending the use of the existing DIS 
framework and infrastructure to include the design 
evaluation, modification and eventually acquisition of 
ground-based equipment. Achievement of such a goal 
requires integration of high-fidelity, operator-in-the-loop 
ground-vehicle simulators into the DIS framework. This 
poses several problems stemming from the differing 
requirements that have driven the technology of simulators 
used in DIS versus high-fidelity simulators traditionally 
used for design evaluation and modification. 

Evaluating the performance of alternative vehicle 
designs without using a physical prototype requires use of 
computer models with enough fidelity to provide 
engineering-level performance data in the course of a 
simulation. Such data can then be used for evaluation and 
potential modification of the design followed by 
re-evaluation in the same manner. This cycle, often 
referred to as virtual prototyping, may replace the 
traditional hardware-based design/test/modify iteration. 
Due to the tight integration between the human operator 
and device under design, achieving this virtual design 
cycle requires integration of the human operator in the 
simulation process. High-fidelity, operator-in-the- loop 
simulators achieve this goal by combining high-fidelity 
dynamic models with a rich set of feedback cues that create 
the illusion of operating the actual device. In such an 
environment, modeling of the interaction between the 
device and the operator is at least as important as modeling 
the device itself. Elements such as vibrations, large-scale 
motion cues, tactile feedback and sounds become an 
important part of the overall experience. In ground 
vehicles, the cause of such feedback is largely due to 
the interaction between the vehicle and the terrain. As a 
result, an accurate model of the terrain is a necessary 
component of a high-fidelity simulation. Resolution fine 
enough to capture the majority of the vehicle-terrain 
interaction, categorization of the property of the materials 
on the terrain, deterministic real-time interrogation, and 
support of arbitrary-complex databases which might 
include overlapping terrain are some of the properties that 
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must be associated with a terrain model associated with 
high-fidelity ground-vehicle simulators. Due to the lack 
of requirements dictating such stringent fidelity in the 
terrain model, current DIS terrain implementations lack 
some or all of these properties. In typical SIMNET 
databases gridded terrain at Level 1 (90 meters), or Level 2 
(30 meters), provides linear triangle patches that include 
information on the surface type. This information is 
sufficient for following the contour of the terrain and for 
calculating concealment. In situations where finer 
resolution is necessary, micro-terrain can be used [2]. 
Micro-terrain consists of a network of points that are 
joined to create a series of adjacent triangles. Information 
associated with each point includes elevation and soil type. 
Decoding the information embedded in micro terrain 
involves searching the network of triangular patches for 
one that includes the requested point and then interpolating 
to determine the elevation of arbitrary points within the 
patch. The computational cost of performing a terrain 
query depends heavily on the implementation, but 
generally is not of fixed-time complexity, a necessary 
feature for deterministic operation. 

Successful integration of high-fidelity simulators in the 
DIS framework requires either that the existing facilities be 
extended to support the requirements of high-fidelity 
simulators, or that new approaches be used to model 
terrain. In the latter case, the compatibility among 
simulators participating in coordinated DIS exercises 
utilizing terrain models of varying capabilities must be 
addressed. This paper discusses some of the technical 
constraints associated with high-fidelity terrain models 
and presents a design that does not depend on facilities 
provided by SIMNET databases. The approach described 
here has, to some degree, addressed the majority of the 
issues associated with arbitrary resolution terrain 
modeling. 

The remainder of the paper is organized as follows. 
Section 2 discusses in detail the requirements that must be 
addressed in the design of terrain databases in the scope of 
simulation and design evaluation. Section 3 describes the 
design of the terrain model used in the IDS [3], a high- 
fidelity operator-in-the-loop ground-vehicle simulator 
built as a testbed for simulator technology and virtual 
prototyping. Finally, section 4 discusses future directions. 

simulated time. The term hard indicates the high degree of 
importance in maintaining real-time execution. The 
consequences of not maintaining real-time execution vary 
depending on the software component that failed and the 
overall design of the system. Generally, inability to 
maintain real-time execution results in events such as 
rendering delays or other cue discontinuities that are 
distracting to the subject, destroy the overall realism of the 
simulator, and can even be the cause of simulator 
sickness[4]. Clearly, the ability of the terrain model to 
provide deterministic queries is critical in minimizing such 
cue discontinuities. Because of the small integration steps 
typically utilized by multi-body dynamics, and because 
separate queries must be performed for each vehicle 
contact point, a terrain model is required to provide queries 
at a high rate. For example, a four-wheeled model that 
executes at 120Hz interrogates the terrain database at 
480Hz. Performing more extreme maneuvers generally 
requires that the integration step be lowered. More 
complex vehicles also require more than four contact 
points to effectively simulate vehicle behavior. Such 
requirements eliminate the CIG HAT function as a 
plausible solution to the terrain interrogation design 
problem. 

Another direct implication of the stringent deterministic 
execution requirement of a high-fidelity simulator is that 
techniques optimizing average performance cannot be 
used. For example, cacheing of disk data is often used in 
SIMNET terrain implementations as a means of reducing 
the average elevation lookup time. Such an approach 
makes no guarantee however, about the maximum 
execution time of a single elevation query. Scalability is 
another implication stemming from the requirement of 
deterministic execution. To ensure that the terrain model is 
scalable, any algorithm used in the process of resolving a 
terrain query must have a computational complexity that is 
constant (i.e., independent) to the size of the database. For 
example searches through the database would not be an 
acceptable solution unless there is a way to guarantee, 
before execution, a bound on the time it takes to perform 
the search. This bound must be fast enough to ensure 
real-time execution. 

2.2: Resolution 

2: Requirements on high-fidelity terrain 
models 

2.1: Deterministic execution 

One of the central requirements on an 
operator-in-the-loop simulator is hard real-time 
execution. Here, the term real-time refers to execution of 
one iteration of the simulation in less physical time than the 

The term resolution here refers to the density of 
information contained in the database itself. In general, 
whether or not the resolution in a database is adequate is 
directly related to the task that the simulator is used for. In 
virtual prototyping applications, where simulating and 
reproducing the maximum amount of cueing is important, 
the terrain database must support enough resolution to 
model all features that can cause cues detectable by the 
human operator.  This includes elements such as general 
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ground or roadway inclination, small hills, burms, 
potholes, and even the roughness of the surface. One 
design alternative, primarily used in DIS databases, is a 
coarse terrain model augmented by an object-based set of 
features that model individual elements. One of the 
features is micro terrain, a dense mesh of triangular patches 
that represents terrain in arbitrarily low resolution. The 
approach is targeted primarily for databases that consist of 
widely sparse areas with occasional areas of high- 
resolution terrain and is not well suited, even though it 
could be used, to modeling extended geographical areas 
with high-resolution requirements. Such areas include 
roadway with banked super-elevated turns, overpasses, 
trumpets etc., and closed test courses that intentionally 
contain extremely sharp curves or other features that push 
the stability and endurance of vehicles. The top view of 
Figure 1 illustrates a terrain scene of the former type as 
displayed by a CIG. The bottom view of Figure 1 
illustrates the terrain elevation grid from a different 
viewpoint. 

Figure 1: Terrain 

Modeling of this type of terrain is important in virtual 
prototyping applications because it represents the ideal 
conditions under which to test newly designed vehicles. To 
capture the basic curvature of such terrain without 
detectable aliasing requires resolutions at or below 2 
meters, locally with areas as low as .15 meters. 

A solution that is often used for generating high- 
frequency cues without explicitly modeling the terrain 
below a threshold resolution is to use the terrain surface 
type as a selection criteria among a set of pre-defined set of 
recorded cues. For example, different background sounds, 

and different frequencies of vibration could be used when 
driving on concrete, asphalt, or grass. At runtime, the 
audio and motion simulator components could use the 
terrain type to select among the appropriate sound or 
vibration frequency. By not depending on the dynamics 
model to generate these high-frequency cues, this 
approach has many advantages. First, it is efficient, since it 
does not cause any runtime overhead and does not increase 
the complexity of the terrain modeling system. 
Furthermore, the simulator cues can be reproduced by 
playing back a recording of the actual cues which yield a 
realistic virtual environment and does not increase the 
modeling demands on the dynamics subsystem. Despite 
these advantages, this method cannot be used exclusively 
for terrain modeling, but it must augment an existing 
model. 

2.3: Correlation with Other Databases 

Due to the stringent execution time requirements 
imposed on the various simulator components, different 
representations of the same virtual environment are often 
used in a simulator. This allows customized views of the 
same virtual world that are optimized according to the 
specific needs of each cueing system. For example, the 
visual databases in almost all simulators consist of a 
polygonal representation that is specifically built to allow 
efficient rendering of the scene and contains a limited set of 
information regarding the logical contents of the scene. A 
separate object database may serve that purpose and 
depending on the application, a separate database could be 
used to provide terrain elevation. Representing the same 
virtual environment by using more than one representation 
allows room for correlation errors. A correlation error 
refers to the situation where the various representations 
differ. For example, it is not atypical to see polygons that 
have no other representation other than inside the CIG 
database, a fact evident when the simulated vehicle can 
penetrate them without any other cue from the remaining 
simulator components. To achieve realism and minimize 
the negative results of such distractions, the issue of 
correlation must be addressed in the terrain model design. 

3: Terrain Implementation in the Iowa 
Driving Simulator 

The IDS is a high-fidelity ground vehicle simulator 
serving as a testbed for the advancement of simulator 
technology, and is actively being used for a variety of 
purposes, including human sciences experimentation and 
virtual prototyping. The IDS is currently being integrated 
in the DIS network with interoperability planned for 
November, 1994.   The IDS uses a multibody dynamic 
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model that, depending on the complexity of the simulated 
vehicle and the specific application, executes at 120Hz, or 
180Hz. Near-term plans include an increase in the 
execution rate of the dynamics to at least 240Hz. 

Figure 2: External and internal views of IDS. 
Motion cues are generated by a high-payload hexapod 
motion base capable of a maximum of lg accelerations at 
8Hz. The top view of Figure 2 illustrates an external view 
of the motion base. Visual cues are generated by an Evans 
and Sutherland ESIG 2000 system that renders the scene at 
50 or 60Hz, and audio cues are generated by a multichannel 
MIDI sound system. Tactile feedback is generated by a 
torque motor driven by the dynamics output that simulates 
the steering mechanism. All of these cueing subsystems 
are directly or indirectly affected by the tire-terrain 
interaction. Audio uses the surface type to modulate the 
tire rolling sound, while the tactile feedback is driven by a 

first principles simulation of the steering mechanism. The 
high bandwidth of the motion base allows it to reproduce 
high- frequency cues caused by the interaction of the 
terrain with the vehicle including low-frequency 
vibrations. 

The virtual environments simulated by EDS can be 
grouped in two classes. The first includes databases 
populated with a variety of standard roadways which meet 
highway engineering standards and include banked 
superelevated curves. The other class includes models of 
actual test courses that consist of non-paved roads with 
sharp curves, extreme slopes and specialized areas used for 
vehicle stress-testing such as the Churchville Test Course 
and the Munson Test Area in Abberdeen, MD. To address 
these varying requirements, the IDS terrain database 
model supports variable density storage, provides an 
efficient and deterministic terrain query that is 
independent of the size of the database and supports 
overlapping terrain, a feature necessary for modeling 
bridges and overpasses. 

The variable resolution storage is used to reduce the 
overall storage requirements and does not affect the 
efficiency of the terrain interrogation algorithm. The 
variable density storage is implemented by partitioning the 
ground (x-y) plane into datazones. A datazone is an 
arbitrary rectangle, aligned on the (x) and (y) axis, that 
contains datasets. A dataset includes information about 
the terrain at a specific location. This information includes 
at least the elevation and the type of terrain at the particular 
location. For storage and access efficiency, datasets stored 
to disk are organized in buckets, where each bucket is equal 
to one or a multiple of a disk block. Datasets are spaced at 
regularly distanced intervals within a datazone. The 
distance between adjacent datasets is defined as the 
resolution of a datazone. To resolve a database query, 
linear interpolation among the four datasets that surround 
the query point is used. Variable density storage is 
achieved by using multiple datazones for modeling a 
specific terrain database. Even though the resolution 
within a datazone remains constant, different datazones 
can have different resolutions. Use of an arbitrary number 
of datazones allows modeling terrain in different 
resolutions, based on the frequency content of different 
areas. Furthermore, datazones can overlap on the (x-y) 
plane allowing the modeling of vertically stacked terrain. 
An example of how several datazones can be partitioned is 
shown in Figure 3. The top figure illustrates a perspective 
view of the modeled terrain. The black dots indicate the 
endpoints of datazones, while the vertices of the 
rectuangular grid indicate location of the datasets.   The 
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bottom figure illustrates a top-down view of the datazone 
layout. 

i 

Figure 3: Example of variable resolution terrain 

representation in IDS. 

3.1: Querying the Database 

The input to a database query consists of the points (x), 
and (y), and an initial approximate elevation (z). The 
approximate elevation is required to resolve which 
datazone should be used if more than one datazone covers 
the point (x,y). For each datazone, the database stores the 
datazone rectangle boundaries, the datazone resolution, an 
overlap flag, and a pointer to the group of datasets 
associated with the datazone. The overlap flag is set when 
a datazone is stacked vertically with another datazone. 
The query algorithm proceeds as follows: 

A    Construct a list of datazones that cover the input 
X,Y point. For each of the datazones in the list: 

A.l        Determine the four datasets that sur- 
round the input point 

A.2       Retrieve the four datasets 

A.3        Apply the interpolation formula and pro- 
duce a query output 

B Select the query output whose elevation is nearer 
the input elevation. 

Constructing the list of datazones that cover the input 
point as required in step A, requires searching through the 
list of all datazones and applying a simple 
two-dimensional coverage test to each of them. To limit 
the time it takes to search through the potentially large 
number   of  datazones,   the   database   uses   a   simple 

two-dimensional form of a hash table to partition the 
datazones based on their geographical location. The area 
of the database is divided into square regions called 
sectors. The sectors create a square grid that overlays on 
top of the terrain so that each datazone belongs to at least 
one sector. Associated with each sector is a list of 
datazones that belong to that sector. Since all sectors are 
square and have the same size, a few simple arithmetic 
operations can be used to determine the sector that the 
input point belongs to. Following this computation, the 2D 
coverage test need only be applied to the datazones that 
belong to that sector's list. Given that the sector size can be 
changed even after the database has been created, it is 
possible to subdivide a database to an arbitrary degree 
putting a bound on the maximum sector datazone lists and 
thus, putting a bound on the length of a search performed in 
step A. Figure 4 illustrates the partitioning of a set of 
datazones within sectors. Sectors are labeled with numbers 
while datazones are labeled with letters. 

Datazone lists 
0 1 2 3 4 

A 

fa 
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9 6 / 0 t 
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15 1fi 171) 18 19 

20 21 22 23 24 

Sector 0: empty 
Sector 1: empty 

Sector5: G 
Sector 6: G 
Sector 7: C 
Sector 8: ABC 

Figure 4: Sectoring the database 

The remaining steps of the algorithm have fixed 
complexity that is independent of the size of the database. 
Step A. 1 consists of simple indexing operations and has 
0(1) complexity to the size of the datazone. Retrieving the 
datasets as required in step A.2 is also a simple indexing 
operation, but has a potential for a large time penalty 
because the datasets are stored to disk. Step A.3 consists of 
a deterministic set of arithmetic operations and is of fixed 
complexity also. 

Step A.2 requires accessing the datasets associated with a 
particular datazone in order to perform the interpolation. 
To increase disk access efficiency, datasets are packed 
together in memory blocks whose size is a multiple of the 
disk block (usually 2 or 4K). These memory blocks are 
called buckets. Making all buckets memory resident is not 
a viable solution given the large size of databases. To 
eliminate the disk access delays that would normally be 
associated with step A.2, a paging algorithm that predicts 
the location of the vehicle and reads buckets from disk 
before they are needed for actual queries is used. The 
group of buckets that resides in memory at any one time is 
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defined as the working set. During initialization, the 
look-ahead algorithm reads enough data in the working set 
to cover an area that surrounds the simulator vehicle. At 
runtime, the algorithm maintains a bounding box around 
the driver and assigns relative priorities to buckets whose 
datasets are within the bounding box. These priorities are 
adjusted dynamically based on the vehicle's velocity and 
turning rate, as is the size, orientation, and position of the 
vehicle within the bounding box. For example, during high 
speed straight driving the bounding box is long and narrow, 
is aligned along the vehicle's path, and the buckets whose 
datasets lie immediately ahead of the vehicle are of the 
highest priority. An illustration of this configuration is 
shown in the top view of Figure 5. If the vehicle is traveling 
in slow speed and turning, the bounding box is shorter, 
wider and data on the turning side has higher priority. An 
illustration of this configuration is shown in the bottom 
view of Figure 5. 

Arrow indicates 
vehicle velocity 
vector 

shading indicates 
working set data 

Figure 5: Operation of the Look-Ahead 

Algorithm. 

The look-ahead algorithm is running as a regularly- 
scheduled process during the simulation. At each iteration, 
the algorithm computes which buckets are necessary, 
orders them according to priority, and compares them to 
the ones that are in the working set. If all buckets in the 
bounding box are in the working set, the algorithm doubles 
the size of the bounding box and then recomputes the 

buckets and their priorities. This process proceeds until the 
algorithms finds a bucket that is not in the working set and 
is of higher priority than the lowest priority bucket in the 
working set, or until the bounding box has been doubled a 
fixed number of times. In the former case, a disk read 
request is issued to fetch the new bucket into the working 
set. In the latter case the algorithm remains idle for one 
iteration. 

Note that under certain assignments of datasets to 
buckets, it is possible to suffer internal fragmentation, 
where datasets stored within the same bucket cover a large, 
potentially non-contiguous geographical area. Such 
buckets may pose a problem because even though they 
occupy space the working set, only a small part of their 
contents contributes towards coverage of the bounding 
box. For example, note that in Figure 4 the shaded area, 
representing data in the working set, covers regions outside 
the bounding box. Internal fragmentation can be 
minimized by keeping the bucket size small, and ensuring 
that datasets stored in the same bucket cover geographical 
areas that are in close proximity. 

The algorithm has few changeable parameters which 
include the initial size of the bounding box, the factors for 
scaling the bounding box according to the vehicle's 
movement, and the priority maps used to assign priorities 
to the buckets within the bounding box. Changing these 
parameters allow performance tuning in cases where 
internal bucket fragmentation reduces the effective 
coverage of the working set. Nevertheless, operation of 
this algorithm is based on the assumption that the 
performance bottleneck is disk access latency and not data 
throughput.   The data throughput can be expressed as 
W 
res* 

DSS where W is the length of an imaginary 

sweeping line across which the vehicle must interrogate 
the terrain, v is the velocity of the vehicle, res is the terrain 
modeling resolution, and DSS is the size of a single dataset. 
Applying this formula to a vehicle that covers a 10 meter 
lateral area and is traveling at 100 mi/hr (44.7 m/sec) over 
terrain modeled at 0.1 meters with 8 bytes per dataset 
yields a data throughput of approximately 350Kb/sec. 
Such performance is not unreasonable, especially 
considering the extremity of the numbers used in the 
example. On the other hand, disk access latencies are 
routinely quoted at 10 to 15 msecs, and these numbers 
represent average performance figures and do not include 
any operating system overhead. The high execution rate of 
the simulator subsystems and the non-determinism of 
accessing a disk makes a read-on-demand approach 
infeasible. Use of the look-ahead algorithm decouples the 
non-determinism and latencies associated with disk 
storage devices from the terrain interrogation. 
Furthermore, since the lookahead algorithm does not need 

53 



to be strictly synchronized with the vehicle dynamics 
component and only needs the long-term movement trend 
of the vehicle, it can run in parallel with the dynamics. 

This approach to modeling and interrogating terrain has 
been implemented and exclusively used in the IDS since 
the beginning of its operation. A variety of databases have 
been modeled, some small enough to fit the working set 
while others being a orders of magnitude larger than the 
working set. The terrain interrogation has been measured 
at below 0.15 milliseconds on a 40Mhz i860 processor, and 
that measure is independent of the overall database size. 
On the same processor, the lookahead algorithm requires 
between 1 and 4 milliseconds, depending on the average 
number of buckets per datazone. Reading, a bucket can 
take between 5 and 200 milliseconds, and as a result the 
lookahead algorithm does not need to execute more often 
than 30 Hz. 

4: Terrain database construction tools 

To address the problem of correlating the terrain database 
with other databases used in the simulator, a set of software 
tools built within the Center is used to create all databases 
from the same specification [5]. This allows creation of 
visuals, terrain, and any other separate but correlated 
databases that are customized to the specific needs of 
various simulator components. Under an agreement with 
MultiGen, Inc. (previously known as Software Systems), a 
subset of these tools has been incorporated in MultiGen®. 
As part of this integration, the output capabilities of 
MultiGen® have been extended to include datazones in 
the format used by IDS. This integration allows effortless 
creation of datazones that are automatically correlated 
with a visual database. This method was recently used to 
create a variable-density terrain model for the Churchville 
Test Course and the Munson Test Area in Abberdeen, MD. 
The driveable part of these courses was modeled using 
datazones with resolution variances between 6,2, and 0.15 
meters yielding more than 3 million datasets for the 
Churchville test course. 

Terrain databases can also be constructed by translating 
an existing terrain database into the internal IDS format. 
To ensure correlation with the visual model, the HAT 
function of the CIG can be used to sample the terrain at 
regular intervals off-line. This data can then be used to 
construct datazones. Alternatively, datazones can be 
constructed by directly translating the data of the original 
database. This method was used to create a terrain 
database for Fort Hunter-Liggett, CA, as part of integrating 

IDS in the DIS net. 

5: Future directions 

Tools need to be built that allow small modifications to 
the terrain database data following the initial creation of 
the database. Such modifications are necessary when the 
source data is represented in coarser resolutions such as 
DIS Level 1 or 2 databases. In such cases, it would be 
useful to have the ability to smooth the 
polygon-to-polygon edges and introduce roughness in the 
otherwise flat polygons. Smoothing would also be useful 
for reducing the feeling of "driving across a driveway," 
which is often encountered on the bases of hills or sides of 
mountains. Roughing a flat area would serve the same 
purpose as textures do in visual databases, which is to add 
content and roughness to an area that inherently is flat and 
boring. 
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Abstract 

The desire for realism in simulation is obvious. It fol- 
lows that the more realistic the simulation environment, 
the more effective the training. A dynamic environment, 
in which man-made structures can be damaged, excava- 
tions are possible, and environmental conditions can 
change, is an aspect of simulated training attracting much 
attention. However, full implementation of a dynamic en- 
vironment in a large scale simulation is not yet feasible. 
CCTT is taking the first step toward creating a dynamic 
environment in a production simulation system by allow- 
ing limited dynamic modifications to the static terrain da- 
tabase and environment. This paper details some of the 
challenges for terrain reasoning when implementing dy- 
namic terrain, and explains the proposed approaches to 
solve them in CCTT's real-time networked environment. 

1. Introduction 

The Close Combat Tactical Trainer (CCTT) is the first 
trainer in the Combined Arms Tactical Trainer (CATT) 
family of training systems. CCTT is a real-time net- 
worked simulation environment designed to provide 
training of specific military skills at a fraction of the cost 
of an equivalent field exercise. CCTT is composed of sev- 
eral different types of systems including Manned Mod- 
ules, Workstations, and Semi-Automated Forces (SAF). 
Manned Modules consist of crew cabin simulators, in- 
cluding MlAls, M2A2s, HMMWVs, and dismounted in- 
fantry (DI). Workstations provides simulation capabili- 
ties for the battalion support staff, After Action Review, 
and simulation support. SAF provides additional friendly 
(BLUFOR) and enemy (OPFOR) entities by emulation of 
vehicle dynamics and crew behaviors. Each of these sys- 
tems communicates using the Distributed Interactive 
Simulation (DIS) network protocol.  An accurate repre- 

sentation of the battlefield terrain shared by all players is 
key to the interoperability of these distributed systems. 

Increased realism in the networked virtual environ- 
ment is essential for increased training effectiveness. The 
Institute for Simulation and Training has been researching 
the various components (e.g. algorithms, data structures, 
network protocols) needed to implement dynamic terrain 
for networked simulation [1]. Dynamic environment 
models have been implemented for a variety of areas, in- 
cluding excavation [2], cloud scenes [3], and water flow 
[4]. This level of dynamic terrain is computationally ex- 
pensive, and is not yet practical for real-time networked 
simulation. As a result, distributed simulations have 
traditionally been implemented on static terrain data- 
bases, with almost no provisions for dynamic modifica- 
tions of terrain components. 

This paper provides a "snapshot" of current issues and 
future plans. Many issues are still being resolved. At the 
time of this writing, no CCTT databases with dynamic at- 
tributes have been generated. For more information on 
the CCTT SAF database design, see [5]. For more in- 
formation on the CCTT visual implementation of the dy- 
namic environment, see [6]. 

2. The dynamic environment 

The following sections describe the various aspects of 
the dynamic environment to be implemented in CCTT 
visual and SAF databases. 

2.1 Destructible static features 

Destructible static features (DSF), also known as fixed 
selectable features, are terrain features which are placed 
in the static terrain database, but have normal, damaged, 
and destroyed states which may alter their geometry (Fig- 
ure 1). All DSFs have a unique identifier to allow them 
to be referenced individually. DSFs include buildings 
(such as houses, industrial buildings, and water towers) 
and bridges. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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Figure 1. Destructible static feature example 
(a) normal, (b) damaged, and (c) destroyed 

2.2 Dynamically placed features 

Dynamically placed features (DPF), also known as re- 
locatable objects, are terrain features which can be placed 
onto the terrain database during a simulation. DPFs may 
be surface obstacles, changes to terrain geometry, or other 
trafficability modifiers. DPFs can be damaged, de- 
stroyed, or breached. In CCTT, DPFs are placed by Com- 
bat Engineering entities to provide mobility, countermo- 
bility, and survivability. 

A brief description of each DPF scheduled for the 
CCTT databases at this time follows. This list is prelimi- 
nary, and items may be added, deleted, or modified. 

A log crib is a rectangular obstacle made of stacked 
trees and used for countermobility. Log cribs can be dam- 
aged and destroyed. A destroyed log crib is no longer a 
trafficability obstacle. 

An abatis is a countermobility obstacle consisting of 
felled trees aimed in the direction of the enemy. An abatis 
can be destroyed, which effectively clears the obstacle. 

A tank ditch is a countermobility obstacle which alters 
the terrain skin. A tank ditch can be composed of up to 

four segments. Each segment can be 30, 60, 90, or 120 
meters in length, and each has its own three dimensional 
orientation. A tank ditch can be breached. Breach loca- 
tions are 15 meters from an end of the ditch, and every 30 
meters thereafter. 

A concertina wire fence is placed along a tank ditch to 
provide additional countermobility. A concertina wire 
fence has the same length, number of segments, and 
breach locations as the tank ditch it is associated with. 

Fighting positions for DI are simply holes in the ground 
which are deep enough to hide a DI's body, yet allow him 
to engage the enemy. Fighting positions include infantry 
fighting position, overhead covered infantry position, ma- 
chine gun prepared position, and covered machine gun 
bunker. The exact geometry of each model differs slight- 
ly, with berm placement variations. These positions can 
each be destroyed, rendering them useless. 

A hull defilade is similar to an infantry fighting posi- 
tion, except that it is made to accommodate vehicles. 
Multiple types of hull defilades will be available to sup- 
port the different types of vehicles (Armored Vehicle, 
Fighting Vehicle, Tank, Mortar Carrier). The hull defi- 
lade hides the vehicle hull while allowing the vehicle to 
engage the enemy. Hull defilades have an orientation, and 
thus must be entered from the appropriate direction. A 
hull defilade can be destroyed, rendering it useless. 

A minefield defines a countermobility area in which 
explosives have been placed in the ground. Minefields 
can be breached to provide a trafficable lane cleared of 
mines. 

An Armored Vehicle Launched Bridge (AVLB) be- 
comes a DPF when launched from its vehicle. An AVLB 
is 60 feet in length and is used to cross gaps (rivers, 
ditches, etc.). An AVLB can also be used to breach con- 
certina wire fences. An AVLB can be destroyed, render- 
ing it useless. 

Finally, two other DPFs have been discussed, building 
rubble and ribbon bridges, but very little about their im- 
plementation and use is known at the time of this writing, 
and so they will not be discussed here. 

2.3 Natural environmental effects 

Natural environmental effects describe states of natu- 
rally occurring phenomenon. In CCTT, these include 
rain, fog, haze, cloud cover, and time of day. All natural 
environmental effects in CCTT SAF will be represented 
as global, discrete states. For example, rain will be either 
on or off for the entire database, and the transition between 
on and off is immediate. In CCTT, natural environmental 
effects will affect mobility and visibility. 

2.4 Man-made environmental effects 

Man-made environmental effects describe states of 
environmental phenomenon introduced into the environ- 
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ment by a simulated entity. In CCTT, these are flares and 
tactical smoke. Man-made environmental effects will be 
used to restrict or enhance visibility. 

3. The environment manager 

A central environment manager will maintain all dy- 
namic environment information. This eliminates the need 
for each simulator to maintain a copy of some environ- 
mental changes by maintaining a central repository of the 
information, saving space and time. The environment 
manager will communicate with other entities via DIS 
Protocol Data Units (PDU). The proposed Synthetic En- 
vironment Protocol is described in [7]. 

The environment manager does not yet keep track of 
natural environmental effects. This is because CCTT cur- 
rently performs no weather modelling. Weather (and time 
of day) are defined as discrete states. If weather is mod- 
elled in the future, the environment manager will do the 
modelling. 

Of the two man-made environmental effects, only tac- 
tical smoke is handled by the environment manager. An 
entity participating in the exercise tells the environment 
manager where to create the smoke. The environment 
manager then creates and models the smoke. Modelling 
smoke consists of changes in size and density. The envi- 
ronment manager broadcasts creation of and updates to 
the smoke to all applications in the exercise. 

The environment manager monitors the network for 
munition impacts on or near DSFs. The environment 
manager then assesses damage to the DSF. If the damage 
is sufficient to cause a state change to the DSF, the envi- 
ronment manager will broadcast an update indicating the 
new state of that DSF to all applications in the exercise. 

Creation and modification of DPFs is handled in a sim- 
ilar fashion. The creating/modifying entity tells the envi- 
ronment manager the necessary information to create and 
place the DPF. The environment manager stores the in- 
formation and broadcasts the new DPF information to all 
applications in the exercise. 

Finally, the environment manager maintains data for 
reset and checkpoint during an exercise. This provides a 
single source for environmental data at any checkpoint. 
Support for restarting/reconstituting entities is provided 
through a unicast send of the latest environment informa- 
tion. Unicast responses avoid interrupting every proces- 
sor in the exercise. 

4. CCTT SAF terrain reasoning 

CCTT SAF has terrain reasoning requirements to pro- 
vide height of terrain, collision detection, munition im- 
pact detection, obstacle avoidance, route planning, line of 
sight, and cover and concealment.   Dynamic environ- 

ments impose new challenges on terrain reasoning, be- 
cause it forces SAF entities to be aware of changes to the 
environment and adapt functionality to account for the 
changes. 

For clarity, descriptions for the terrain reasoning terms 
and functionality with respect to CCTT SAF are provided. 
DSFs and DPFs are referred to collectively as dynamic 
features. 

4.1 Height of terrain 

Height of terrain provides the elevation and surface 
type at a given location on the simulation database. This 
involves interpolation between three terrain elevation 
posts which constitute a terrain polygon. River beds will 
be modelled with a simple geometry, such that entities 
driving into a river will gradually immerse into the water, 
rather than suddenly dropping to the depth of the river. 

To lessen the computational expense imposed upon 
terrain reasoning by the addition of dynamic terrain fea- 
tures, SAF entities will not drive or climb on any features 
placed on top of the terrain, with the exception of bridges. 
This aids computation for height of terrain by eliminating 
the need to calculate elevations on building rubble, abatis 
tree trunks, etc. 

Height of terrain does, however, handle changes to the 
terrain skin such as tank ditches and defilades. Instead of 
using the terrain surface, height of terrain must detect that 
the query location is in fact on a DPF, place and orient the 
model, and interpolate the actual elevation. 

CCTT SAF may add overpasses and bridges to the list 
of DSFs in the near future. Overpasses create a situation 
where one x,y location can have multiple valid elevations. 
At these locations, height of terrain must determine which 
elevation is desired. Height of terrain must recognize 
when a bridge or overpass span is destroyed. 

Surface types vary widely throughout the CCTT ter- 
rain database. A simulated entity's mobility is altered by 
the type of surface it is traversing. Rain has the effect of 
saturating the soil, resulting in a different surface type 
with altered mobility characteristics. 

4.2 Line of sight 

Line of sight determines the percent visibility of an en- 
tity from a specified eyepoint. Percent visibility indicates 
the amount of the 2D projection of the target entity which 
is visible from the eyepoint. Visibility is degraded by sol- 
id obstructions, such as buildings or terrain skin, and by 
terrain features which provide partial transmittance, such 
as trees. 

Line of sight uses entity and feature bounding volumes 
to determine the extent of blockage that entity or feature 
incurs. A bounding volume is a three-dimensional rectan- 
gular volume which defines the 3D boundary for an ob- 
ject, such as an entity or a terrain feature. Bounding vol- 
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umes are useful for defining the extents of an object 
without using a complex geometrical representation. 

Line of sight (LOS) becomes more complicated with 
the addition of dynamic objects. In particular, the irregu- 
lar shapes resulting from object destruction present a LOS 
nightmare. CCTT has agreed that when objects are dam- 
aged, their geometries will not change drastically, and 
when objects are destroyed, their rubble will be roughly 
consistent in height across the object. This allows LOS to 
be simplified in that bounding volumes will not be af- 
fected in the damaged state, and destroyed objects (ex- 
cluding bridges) will still use a rectangular bounding vol- 
ume, although it will be lower. Obviously LOS 
calculations across damaged and destroyed objects will 
not be entirely accurate, but they will be close. More im- 
portantly, these simplifications allow LOS calculations to 
be performed efficiently without imposing unrealistic 
looking restrictions upon the visuals. 

Line of sight is also affected by DPFs. The DPFs which 
sit on the surface (e.g. log crib) are simply another ob- 
stacle to be taken into consideration. Excavations, how- 
ever, allow entities to be hidden partially or totally below 
the terrain surface. This is easily handled by LOS, since 
the terrain surface is already taken into account. The diffi- 
culty lies in the fact that excavations generally create a 
"berm" of soil around them. These berms are significant 
for fighting positions, in that they provide some degree of 
cover. Therefore, these berms cannot be ignored for line 
of sight. 

Environmental effects can alter line of sight. Smoke, 
fog, haze, rain, and darkness degrade visibility. Cloud 
cover can completely block line of sight to high flying air- 
craft. Flares can increase visibility within the areas they 
illuminate. 

4.3 Collision detection 

Collision detection monitors simulated entities to de- 
termine if their bounding volumes intersect those of other 
simulated entities and/or terrain features. 

In their normal state, dynamic features on top of the ter- 
rain have the same effect as single state (non-destructible) 
features. All that is needed is the location and state of the 
dynamic object (to indicate the object's collision vol- 
ume). Thus, a log crib or abatis will block a simulated en- 
tity's path. 

The interesting situations occur when a dynamic fea- 
ture has been destroyed. Destroyed features have differ- 
ent bounding volumes than their undamaged counter- 
parts. Thus, a low flying aircraft which would collide with 
an undamaged building, may not collide with its de- 
stroyed version, given identical flight paths. 

Collision detection must also be aware of defilade and 
ditch positions and orientations. For these DPFs, colli- 
sions occur with the ground. Collisions are reported when 

an entity enters a defilade from the wrong direction or hits 
the steep slope of a tank ditch. 

4.4 Munition impact detection 

Munition impact detection entails determining the in- 
tersections of a munition with objects along its flight path. 
For each intersection, the kind of object intersected as 
well as the location of the intersection are determined. 

Munition impact detection differs from collision 
detection in that munition impact detection uses a line 
segment instead of a bounding volume to detect intersec- 
tions with feature and simulated entity bounding volumes. 
The line segment represents the flight path of the munition 
during a small slice of time. Also, munition impact detec- 
tion can prune out many features from consideration, 
since much of a munition's flight path may be above the 
highest feature in the area. 

Munition impact detection has concerns with dynamic 
features similar to those of line of sight, since both trace 
a line segment to a specified target area. All DPFs must 
be considered to determine if they lie in the munition's 
path, with excavation berms presenting the most difficult 
challenge (see line of sight). Also, the state of a dynamic 
feature may determine whether or not it blocks the path of 
a munition. 

4.5 Route planning 

Route planning is the generation of a cross country 
route or a road route. Route planning does not consider 
low level obstacles such as individual buildings and trees, 
but rather high level obstacles, such as cities, forests, riv- 
ers, and mountains. 

A waypoint is an x,y location that defines a desired 
destination along a route. A set of connected waypoints 
define a path. When used in route generation, waypoints 
define a general "area" as a destination, rather than a spe- 
cific location, thus passing "near" a waypoint is adequate 
if obstacles prohibit access to the exact location. 

Given a supplied list of waypoints, route planning mo- 
difies the waypoints to avoid obstacles, when possible; 
otherwise route planning indicates the route is not traffi- 
cable for the given waypoints. Route planning can also be 
used to verify that the supplied waypoints describe a traf- 
ficable route without being modified. 

The only dynamic features which have an effect on 
route planning are bridges, tank ditches, concertina wire, 
and known minefields. Bridges must be considered be- 
cause they can be destroyed (thus breaking an otherwise 
connected road network), and because AVLBs and ribbon 
bridges can be placed during the simulation. 

Minefields can be large enough to reach beyond the 
scope of obstacle avoidance (see next section), and thus 
must be considered by the route planner. In addition, a 
minefield may contain a breached lane which could be 
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used to obtain a shorter route distance compared to going 
around the minefield. 

It is important to note that SAF terrain reasoning will 
only take into consideration those minefields which the 
routing force is aware of. In other words, an OPFOR unit 
will not be aware of a BLUFOR minefield unless the 
minefield has already been discovered by the unit or by 
another friendly unit. Thus, route planning may plan 
paths through undiscovered minefields. 

4.6 Obstacle avoidance 
Obstacle avoidance is used to determine an unob- 

structed path from one location (waypoint) to another. 
Low-level obstacles, such as other simulated entities and 
individual buildings and trees, are considered. 

In their normal state, dynamic features on top of the ter- 
rain (e.g. log cribs) are handled in the same manner as 
single state (non-destructible) features; they are obstacles 
to be avoided. In the breached state, obstacles can be ne- 
gotiated. Bridges, of course, can not be traversed when 
destroyed. 

Obstacle avoidance must recognize hull defilade posi- 
tions, covered machine gun bunkers, and infantry fighting 
positions in order to determine a path which enters them 
from the correct direction and to resist the usual predictive 
avoidance of the impending walls when seeking cover. 
However, obstacle avoidance should consider these posi- 
tions as obstacles when not seeking cover. As with route 
planning, obstacle avoidance must take advantage of dy- 
namically placed bridges in order to determine the most 
direct path to a target location. 

4.7 Cover and concealment 

Covered and concealed locations are positions which 
make an entity harder to see from a specified "enemy" 
eyepoint. An entity is "harder to see" when a greater per- 
centage of its surface area is blocked as viewed from the 
enemy eyepoint. Covered locations are those where the 
blockage is provided by a solid material (such as the 
ground or a building) which also makes the entity "harder 
to damage" with direct fire from the enemy location. Con- 
cealed locations are those where the blockage is provided 
by a non-solid material (such as tree foliage), which does 
not protect the entity from direct fire. Covered and con- 
cealed locations which allow the entity to engage the en- 
emy are generally preferable over those which merely 
hide the entity. 

Cover and Concealment must be aware of all dynamic 
objects in order to intelligently determine advantageous 
positions. Destroyed buildings no longer provide com- 
plete cover, while excavated fighting positions are desir- 
able when seeking cover. Additionally, tactical smoke 
can be used to provide concealment for entities when ap- 
propriate. 

5. Dynamic environment issues 

The need for correlation between the COT SAF and 
the visual display imposes a number of restrictions on 
both systems, due to the different nature of the databases 
used by each. While the visuals are concerned with poly- 
gons, colors, and textures to present the most realistic 
looking scene possible, SAF is concerned more with three 
dimensional surfaces and bounding volumes defining in- 
dividual objects throughout the environment. The con- 
cept is analogous to "seeing" versus "feeling", causing the 
types of information stored in the two databases to be vast- 
ly different. 

The sections which follow describe some additional 
challenges for CCTT with respect to the dynamic environ- 
ment. 

5.1 Destructible static features 

The implementation of DSFs in CCTT requires the 
image generator to store each DSF in memory at all times. 
The amount of memory which can be spared in the image 
generator restricts the number of DSFs in the CCTT data- 
bases to 10,000. Since there are many more features in the 
database than can be represented as DSFs, decisions must 
be made as to which features will be destructible. 

The first suggestion was to limit the DSFs to buildings, 
bridges, and possibly dams. Still, the number of possible 
DSFs exceeds the limit. One suggested solution is to al- 
low only certain types of features to be destructible. A 
more likely solution is to specify certain areas of the data- 
base in which all buildings can be destroyed. 

Another challenge to be dealt with is what to do when 
a vehicle is on a bridge and the bridge is destroyed. 
Should the vehicle fall, or be teleported instantly to the 
ground below? If the vehicle falls, the simulation of the 
fall may or may not involve orientation changes to the ve- 
hicle, but the "out the window" display must match the 
dynamics of the fall. 

5.2 Dynamically placed features 

Correlation between simulation databases and their 
corresponding visual databases has traditionally been ex- 
tremely difficult to measure [8]. The correlation problem 
only gets worse with the addition of features which can be 
oriented and placed at run-time. 

One of the hardest correlation challenges between SAF 
and the visual display is placement of tank ditches. A tank 
ditch can be composed of up to four segments. Each seg- 
ment can be 30, 60, 90, or 120 meters long, and each has 
its own three dimensional orientation. The smallest ter- 
rain facet (excluding microterrain) is 30 meters, so it is ob- 
vious that situations can arise where a segment of a tank 
ditch will cross multiple terrain facets, and thus will not 
conform exactly to the terrain. The greater the difference 

59 



in slope between polygon facets, the less the tank ditch 
will conform to the terrain. 

The visuals handle this problem by modelling the tank 
ditch segments with "skirts" along either side. When 
placed, the areas of the ditch which do not conform to the 
terrain will show these skirts, giving the visual effect of 
dirt piled along the side of the ditch. SAF has the chal- 
lenge of simulating the tank ditches in such a way that ter- 
rain reasoning functions like height of terrain and line of 
sight produce realistic results. 

The placement of all DPFs, not just tank ditches, pres- 
ents a challenge to SAF. No excavation should be placed 
across a river, or under a tree or building. An abatis or log 
crib should only be placed where it is realistic to do so (i.e. 
there should be enough trees in the immediate vicinity to 
support the feature). Also, because of their fixed sizes, log 
cribs and abatis must be carefully placed to sufficiently 
block the path if they are to serve their countermobility 
goal. Finally, relocatable bridges must be accurately 
placed such that they will adequately span the obstacle. 

Breaches across DPFs are represented as independent 
models. Therefore, they must be individually placed, and, 
in the case of tank ditches and concertina wire fences, 
"snapped" to the proper location. The breach must then 
be recognized as taking precedence over the underlying 
DPF for mobility purposes. 

Another topic being discussed is how to show incre- 
mental completion of DPFs to provide incremental results 
to combat engineering activities. To accurately show in- 
cremental completion of a task, many more models of 
DPFs in various stages of construction would have to be 
created and managed. A simpler solution has been pro- 
posed which uses existing models. For tank ditches, one 
segment of the ditch would appear at a time, after an ap- 
propriate duration, giving the effect of the ditch being 
built a section at a time. Log cribs could at first be placed 
below the terrain surface, and then raised over time. The 
log crib would appear to become larger in stages. Alterna- 
tively, a single model of "wood clutter" could be used to 
show incremental completion for a log crib or abatis; and 
a single "shallow defilade" model for all defilades. 

5.3 Environmental effects 

Environmental effects also present correlation chal- 
lenges for CCTT. It is extremely difficult, if not impossi- 
ble, to simulate what a person would see on the visuals 
based upon time of day, or when looking through rain, fog, 
haze, or smoke. The SAF database may contain an 
approximation of the formula used by the visuals to com- 
pute the density of these effects. This formula could then 
be used to degrade visibility in an attempt to emulate for 
a SAF entity's sensors what a trainee can detect. 

6. Conclusion 

The addition of dynamic attributes to a terrain database 
presents many challenges. Terrain reasoning in a dynamic 
environment becomes significantly more difficult and ex- 
pensive. A tradeoff must be negotiated to allow run-time 
efficiency while maintaining the desired level of fidelity. 
The ideas presented here show CCTT's efforts toward this 
goal. 

The terrain databases for CCTT are still being devel- 
oped at this time. The information presented in this paper 
is based upon current understanding of the CCTT dynam- 
ic environment and how SAF plans to interact with it. Ev- 
erything discussed herein is subject to change. However, 
a paper describing the final implementation, compared 
and contrasted with the issues presented here, is forthcom- 
ing. 
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Design of Terrain Reasoning Database for CCTT 

Jon Watkins and Micheline Provost 
Science Applications International Corporation 

Abstract 
Terrain reasoning in CGF systems has traditionally 

been very expensive both in terms of time and space. Dis- 
cussion of terrain reasoning concepts often focuses on al- 
gorithms, but the storage scheme for terrain data can also 
have a significant impact on performance. A number of 
challenges face CGF systems in this area including trad- 
ing fidelity for performance, making efficient use of avail- 
able memory, and data correlation with the visual display 
supplied to the man in the loop. The CCTT terrain reason- 
ing database will build upon existing work and introduce 
new concepts to address these issues. 

1.0 CCTT overview 
The Close Combat Tactical Trainer (CCTT) is the first 

system in the Combined Arms Tactical Trainer (CATT) 
family of training systems. CCTT will utilize the Distrib- 
uted Interactive Simulation (DIS) network protocol to 
provide a virtual environment for training of armor and 
mechanized infantry personnel. CCTT is composed of a 
variety of manned modules, an Operations Center (OC), 
Semi-Automated Forces (SAF), and several support 
workstations. The manned modules are cabin simulations 
with virtual out—the—window views for training on ve- 
hicles such as the Ml A2, M2A2, and Ml 13. SAF and OC 
provide emulated vehicles to populate the battlefield; they 
share a common architecture referred to as Computer 
Generated Forces (CGF). SAF provides a wide range of 
both BLUFOR (friendly) and OPFOR (enemy) entities. 
OC provides BLUFOR entities to support battalion staff 
training and to add depth to the battlefield with entities 
which provide resupply, maintenance, combat engineer- 
ing, and fire support capabilities. Both SAF and OC are 
controlled via user interfaces provided on the SAF 
Workstations and OC Workstations, respectively. The ac- 
tual simulation of the SAF and OC entities is provided by 
separate CGF processors dedicated to entity simulation. 

There are three correlated databases used throughout 
the CCTT system: the visual database is used for all out- 
the-window visual displays; the PVD ("plan view") data- 
base provides a two dimensional plan view for display on 
user interfaces; and the "Model Reference" terrain data- 
base (or MRTDB) is used for all other terrain operations. 
MRTDB is designed first and foremost to support terrain 
reasoning operations on the CGF systems; however, the 
CCTT manned modules will also utilize this database for 
terrain functions such as collision detection, munition im- 
pact detection, and height of terrain. This represents a 
change from the original design which called for manned 
modules to receive terrain data directly from the image 
generator providing the out-the-window view. 

2.0 Scope of paper 

CCTT is utilizing spiral development to mitigate risk 
and provide operational incremental drops before contract 
completion. Simple terrain operations were provided in 
the initial drop of the CCTT SAF system ("Build 2"). This 
paper discusses the MRTDB format we propose to imple- 
ment in the next system drop involving CGF components 
("Build 4"). The MRTDB format implemented in Build 
4 will be utilized by SAF Workstations, CGF, and manned 
modules. There will continue to be changes and improve- 
ments to the terrain storage mechanisms as system level 
issues are resolved and more CCTT components are im- 
plemented. 

Build 4 functionality will include height of/above ter- 
rain, collision detection, munition impact detection, and 
line of sight. Additional functionality provided in Build 
5 and beyond includes high level routing, obstacle avoid- 
ance, area intervisibility, cover and concealment, dynamic 
terrain effects, and weather. Database structures needed 
to support Build 5 operations are not discussed in this pa- 
per. 
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3.0 Terrain storage issues 

When considering possible storage mechanisms for 
CGF terrain databases, one must attempt to balance three 
driving requirements: 

1. Data must be stored in a compact format 
to minimize caching operations at run- 
time and to minimize hardware require- 
ments. 

2. Ideally, the data is stored such that, once 
it is in memory, its run—time utilization is 
as efficient as possible. 

3. Finally, the data must be stored with suf- 
ficient fidelity to meet system require- 
ments such as fair-fight and correlation 
with visual displays. 

In many ways, these requirements are mutually antago- 
nistic. For example, storage of a point, radius, and height 
for tree geometries is compact, but may not provide the re- 
quired fidelity. Storage of detailed filters which may re- 
duce or eliminate operations supports run-time efficiency 
but increases storage requirements, and thus may increase 
cache misses. 

4.0 Existing terrain representations 

Three existing formats for CGF databases are refer- 
enced in this paper both as a source of ideas and to provide 
standards for comparison with the proposed CCTT 
MRTDB format: the Compact Terrain Database (CTDB) 
and Quadtree database formats presently used by Mod- 
SAF, and their predecessor, the original SIMNET SAF 
TDB. Throughout the remainder of this paper, these for- 
mats are referred to as MRTDB, CTDB, Quadtree, and 
SIMNET TDB. 

SIMNET TDB: The SIMNET TDB uses apatch as the 
fundamental storage unit which represents all terrain data 
for a square area of terrain. Each patch is conceptually 
subdivided into 16 square grids and is composed of lists 
of vertices, edges, ground polygons, man-made struc- 
tures, trees, treelines, and forest canopies. SIMNET TDB 
has a number of useful filters such as grid maps (which 
provide direct access to certain features by grid and type), 
grid masks (which provide rapid filtering of features based 
upon grid), minimum and maximum x,y,z values (which 
help eliminate features and/or patches from consider- 
ation), and patch guards (which can prevent caching of 
patches based upon a summary of patch data). 

CTDB: CTDB [1][2][3] also uses the patch as the fun- 
damental storage unit for terrain features, but it stores ter- 
rain skin information separately in pages of 4K chunks. 
The "compact" terrain database format lives up to its 
name by packing structures down to the bit level, storing 
the terrain skin as regularly spaced z-values referred to as 

elevation posts, and using a space saving fixed point repre- 
sentations that ModS AF refers to as a "fixed point basis". 
A given fixed point basis uses a fixed point number to rep- 
resent some integral number of units, where the unit is re- 
ferred to as the "basis". Some of the filters and organiza- 
tional data present in the SIMNET TDB were eliminated 
in favor of space savings. CTDB is very successful at 
compressing data: the Fort Knox database is approximate- 
ly 32M in SIMNET TDB format but only 4M in CTDB for- 
mat. This means that there should be few if any cache mis- 
ses even with limited memory. 

CTDB represents a strong shift in favor of a compact 
representation while providing minimal loss to run-time 
efficiency. In some cases, compact representation was 
given priority over efficient "in-memory" operation as 
compared to the SIMNET TDB format. One example is 
the elimination of many filters; minimum and maximum 
elevation values are no longer stored by patch in CTDB. 
Another example is the reduction in organizational data; 
for instance, to process the linear features in a patch, it is 
necessary to iterate through all other patch features be- 
cause linears are stored last and CTDB does not have in- 
dices into the feature lists by type. CTDB's use of eleva- 
tion posts is both more compact and more efficient than 
the polygonal format stored in the original SIMNET TDB. 

Quadtree: Quadtree [2] [4] provides terrain feature in- 
formation stored in subdivided areas of terrain (quads) and 
also stores road and river networks in a connected fashion 
well suited to routing. Quadtree stores features in a low- 
fidelity manner useful for "plan view" display and route 
planning. The CCTT PVD database format will be similar 
in many ways to Quadtree. MRTDB will utilize connected 
road networks similar to those stored in Quadtree for fu- 
ture design in support of routing. 

5.0 CCTT challenges 
The database formats discussed above provide a num- 

ber of useful and innovative ideas for terrain representa- 
tion. Because CCTT SAF is attempting to make maxi- 
mum use of ModS AF in an effort to reduce development 
costs, it was initially believed that we would utilize a com- 
bination of ModSAF's CTDB and Quadtree representa- 
tions with minimal changes. However, the sharp increase 
in visual system capabilities, as compared to SIMNET 
visuals, and the stringent system requirements for CCTT 
present a number of technical challenges for terrain data- 
base representation which required alterations and exten- 
sions to ModSAF's databases: 

Terrain database density and size: The density of ter- 
rain features and resolution of terrain skin are being driven 
by the substantial capabilities of the ESIG-3000 which is 
the CCTT visual system [5]. The terrain skin will be repre- 
sented at 30m spacing, increasing the storage space for 
gridded terrain posts by 17 times (as compared to 125 me- 
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ters in most CTDB databases). Microterrain (also known 
as "cut and fill") will be used extensively. Detailed repre- 
sentations for ground mobility types and placement of 
point features (trees, buildings, bridges) will be much 
denser than in SIMNET. Indeed, feature densities will be 
sufficient to provide reasonable representations of urban 
areas. Storage is further impacted by the area covered by 
CCTT databases: 100 km x 150 km. 

Visual database development is still underway and a 
number of fundamental design issues are still outstanding. 
However, initial estimates indicate that over 30,000 man- 
made structures (10,000 of which will be destructible) and 
over a million individual trees will be represented in the 
first full-size database. The SIMNET Fort Knox database 
has roughly 4,000 man-made objects and 25,000 individ- 
ual trees in a database within one quarter of the CCTT ter- 
rain area. 

Simple dynamic terrain: Some preplaced terrain fea- 
tures, referred to as destructible static features (DSFs) will 
change their geometry at run time, thus requiring a mecha- 
nism for uniquely identifying features and a means to effi- 
ciently alter their geometries. In addition, Combat Engi- 
neering features (referred to as dynamically placed 
features) may be placed before and during the exercise to 
provide survivability, counter-mobility, and mobility op- 
erations. Dynamically placed features may change the 
terrain skin, as represented in the static terrain database, 
as well as creating new obstacles where none existed be- 
fore. Both destructible static features and dynamically 
placed features are discussed in [6] and [7]. 

Fidelity of representation: Because of the prohibitive 
computational load and storage requirements associated 
with detailed geometric representation of terrain features, 
it will be necessary to use approximations in some cases. 
With an eye toward the needs of future CATT systems, we 
have developed a database format that will permit variable 
fidelity representations with minimal storage requirement 
impacts. 

Visual database storage techniques: The ESIG-3000 
utilizes a number of techniques to reduce run-time data- 
base size, such as model libraries, basis sets and cluster 
features. We are investigating storage mechanisms which 
take advantage of these techniques without tying our- 
selves to the E&S visual database implementation. 

New feature types: A variety of new feature represen- 
tations found in CCTT required us to consider extensions 
to CTDB. For example, soil types in CCTT will be repre- 
sented as areal features which need not conform to post 
boundaries, thus requiring us to store areals rather than 
storing soil types at elevation posts. This allows us to ex- 
pand the number of soil types supported without increas- 
ing the number of bits required for posts. The first CCTT 
database will contain 31 soil types and these types may 
change at run-time due to rain. In addition, CCTT entities 

will detect collisions with tree trunks as opposed to fo- 
liage, while foliage effects line of sight, thus requiring us 
to store a radius for the trunk and a radius for the foliage; 
ModSAF required only one radius per tree instance. 
Hedgerows and walls are presently planned for the visual 
database; these are lineare with both height and width. 
ModSAF required only linears with width (roads & rivers) 
and linears with height (treelines). 

Many new types of terrain features are still under dis- 
cussion at this time. These include penetrable forests, 
which are canopies with a high density of trees inside, and 
multi-level terrain such as bridges, overpasses, and tun- 
nels. 

Other Issues: In addition to the above issues which in- 
fluenced our design decisions, other factors include Ada 
File I/O capabilities, improving caching performance, and 
support for different CCTT components such as SAF, OC, 
and Manned Modules. 

6.0 MRTDB design and format 
While considering various representation schemes to 

support the above requirements, we started with the excel- 
lent foundation provided by SIMNET TDB and Mod- 
SAF's CTDB. Future work will make use of QuadTree. 
We also drew ideas from the SIF standard, the imple- 
mentation of the CCTT Visual Database, and Ada's data 
representation strengths and weaknesses. 

6.1 Object-oriented design 
We used an object—oriented approach in designing and 

implementing our terrain database [8] [9]. We designed 
our database using Rumbaugh's object-oriented design 
methods and implemented it in the Ada language. Figure 
1 is the terrain database Object Model using Rumbaugh's 
Object Model notation. 

The following paragraphs give a brief description of 
the object classes shown in Figure 1, starting with the ter- 
rain database object class and followed by its component 
object classes. Object class names are capitalized within 
this section for clarity. 

Terrain Database Class Description: This class repre- 
sents the terrain database within a CCTT exercise, and is 
an aggregation of all of the objects which together form 
the Terrain Database. 

Page Class Description: The Terrain Database is subdi- 
vided into square regions which are represented by this 
class. A given Page is further subdivided into a 4x4 array 
of Patches, and has header information as well as 
associated terrain skin (Elevation Posts) and terrain fea- 
tures (Terrain Features and Vertices). The Elevation Posts, 
Vertices, and Terrain Features for a given Page are stored 
and managed by the Terrain Cache. The Page header con- 
tains useful information about the Page including filters 
used to improve efficiency when performing terrain rea- 
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Figure 1. Terrain database object model 

soiling algorithms, as well as information used when cach- 
ing in from disk the Page's associated terrain skin and fea- 
tures. 

Patch Class Description: This class represents a square 
region within a Page as described above. A given Patch 
is conceptually subdivided into a 4x4 array of grids. The 
Patch header maintains terrain reasoning filters as well as 
structures that allow the Patch to access its Terrain Fea- 
tures within its Page's list of Terrain Features. One set of 
filters maintained in the Patch header is the set of grid 
masks for certain types of features. For instance, a Patch's 
building grid mask indicates which of its grids are over- 
lapped by one or more buildings. These filters vary from 
the CTDB format which stores this information at the post 
level. 

Terrain Cache Class Description: This class represents 
the cache for the Terrain Database, and is responsible for 
making optimal use of memory when the memory avail- 

able is smaller than the size of the Terrain Database. The 
Terrain Cache stores the Terrain Features, Vertices, and 
Elevation Posts for Pages, and additionally manages up- 
dates to destructible static features. 

Feature Model Class Description: This class represents 
objects which maintain the information necessary to mod- 
el trees, buildings, and linears, where a given feature 
instance references a feature model to complete its de- 
scription. The Feature Models for a given Terrain Data- 
base comprise its Feature Model Library. Since use of 
models is the defining characteristic of MRTDB, the Fea- 
ture Model Library is further discussed in Section 7. 

Terrain Feature Class Description: This abstract class 
represents the terrain features and has two concrete sub- 
classes, Placed Features and Referenced Features, de- 
scribed below. One attribute of a Terrain Feature is wheth- 
er it is a destructible static feature. Each Page and Patch 
within the Terrain Database manages the Terrain Features 
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which belong to/reside in their regions. Buildings and 
trees may cross Patch boundaries, all other Terrain Fea- 
tures may not. The "anchor patch" for a Terrain Feature 
which crosses Patch boundaries is the Patch which con- 
tains the Terrain Feature's "anchor" (a corner for a build- 
ing, the tree center for a tree). Each Terrain Feature has 
a grid mask which indicates the grids it overlaps within its 
respective Patch. 

Referenced Feature Class Description: This class rep- 
resents those Terrain Features which reference a Feature 
Model to complete their definition. Unlike Placed Fea- 
tures, Referenced Features do not reference a Vertex List. 
An example of a Referenced Feature is a building which 
stores an anchor vertex, an orientation (stored using a 
fixed point basis), and an index to its building model in the 
Feature Model Library. The building model contains the 
remaining information necessary to compute the build- 
ing's other vertices. 

Placed Feature Class Description: This class represents 
those Terrain Features which reference a Vertex List. The 
term "Placed" comes from the fact that the Placed Fea- 
tures have each of their vertices explicitly defined 
(placed) in the Terrain Database when it is generated, as 
opposed to Referenced Features which have some of their 
vertices calculated at run-time. A Placed Feature may ref- 
erence a Feature Model to complete its definition. 

Dynamically Placed Feature Class Description: This 
class represents features which may be added to the Ter- 
rain Database at run—time. In addition, these features may 
be damaged, destroyed, or breached. Examples include 
tank ditches, tank defilades, log cribs, and abatis. These 
will be fully implemented in future Builds. 

Elevation Post Class Description: This class represents 
terrain elevation posts, where the set of all Elevation Posts 
for a given Terrain Database defines the base terrain skin. 
The terrain skin may be altered by other objects such a mi- 
croterrain and Dynamically Placed Features. A Post de- 
fines a square that sits parallel to the x and y axes, where 
the Post is at the lower left corner of the square. The other 
corners of the square are Posts that define their own 
squares. A line passes diagonally through a Post's square, 
either from Southwest to Northeast, or from Northwest to 
Southeast. Regardless of the direction of the diagonal, the 
Post is always at the Southwest corner of its square (allow- 
ing for a single post traversal algorithm instead of one for 
each diagonal direction). Each Post stores a diagonal indi- 
cator, a microterrain indicator, and its elevation using the 
fixed point basis described below for the Z value of a Ver- 
tex. 

Vertex Class Description: This class represents (X, Y, 
Z) values within the Terrain Database. The (X, Y) values 
are in terms of a patch based fixed point basis. The Z val- 
ues are in terms of a fixed point basis based on the range 
of possible elevations for the given Terrain Database. 

6.2 MRTDB file format 

The terrain database is stored in three separate files: a 
Headers file, a Feature Model Library file, and a Cache 
Page file: 

Headers file format: 
Terrain Database header 
All Page headers 
All Patch headers 
DSFs by Page table 
DSF lookup table 
Wet—Dry Terrain Type Mapping 

Feature Model Library file format: 
Number of Building Models 
Number of Tree Models 
Number of Linear Models 
Building Models 
Building Model Corners 
Tree Models 
Linear Models 

Cache Page file format: 
Posts, Vertices, and Features for Page 1 
Posts, Vertices, and Features for Page 2 

Posts, Vertices, and Feature for Page N 

7.0 Extensions and modifications to CTDB 
Below we discuss some of the extensions and modifica- 

tions to the CTDB format incorporated into the MRTDB 
format as required by the CCTT system. We begin with 
a discussion of the primary difference between CTDB and 
MRTDB: use of feature models in MRTDB. 

7.1 Feature model library 
The concept of the Feature Model Library was devel- 

oped in an effort to meet one of the key challenges of 
CCTT databases: minimizing the overall storage require- 
ments while maintaining the level of fidelity needed to fa- 
cilitate fair—fight and to correlate with E&S's visual data- 
base. The Feature Model Library meets this challenge, as 
well as facilitating the implementation of destructible 
static features and providing MRTDB databases with 
additional flexibility and extendibility. The following dis- 
cusses use of the Feature Model Library in Build 4; its 
functionality and usefulness will be expanded on in future 
Builds. 

The Feature Model Library is a set of feature models, 
where each model has a unique model ID. Each model 
maintains information about a feature that is common 
across many features. For instance, a tree model main- 
tains the foliage opacity, foliage height, foliage radius, and 
trunk radius for a particular kind of tree, for instance a Fir 
tree. Each Fir tree in the database can then reference the 
Fir tree model (via the model ID) to complete its defini- 
tion, and since the model is stored only once, an enormous 



space savings can be realized. The table below provides 
some statistics. 

Table 1. Comparison of MRTDB vs. CTDB: size of fea- 
ture instances & total data stored. 

Feature MRTDB CTDB 

Tree 16 bytes, containing: 
Foliage radius 
Foliage height 
Trunk radius 
Foliage opacity 

16 bytes, containing: 
Foliage radius 
Foliage height 

Building 
(4 sided) 

16 bytes, containing: 
Anchor Point 
Height 
3 "placed" vertices 
State 
Unique ID 

36 bytes, containing: 
4 Vertices 
Height 

The Feature Model Library facilitates the implementa- 
tion of Destructible Static Feature since to "damage" a 
building we can simply modify the building model ID 
from the "normal model" ID to the "damaged model" ID. 
This is also much faster than performing computations to 
alter the geometry. Also, use of the library allows for a da- 
tabase modeler to supply the exact model of a damaged 
building, instead of describing the alterations that would 
need to be performed on a normal building to damage it. 
In addition, different buildings may be altered in different 
ways based on their damaged models, with no additional 
special case implementation. 

Finally, since the Feature Model Library is stored in its 
own file, it may be swapped out for another library with 
the same feature models where some number of the feature 
models contain different information. For example, if we 
want all the trees to drop their leaves, we can read in a dif- 
ferent Feature Model Library where all tree foliage opaci- 
ties have been diminished. Furthermore, we can increase 
the fidelity of feature representations with little impact on 
storage requirements and with disregard for feature densi- 
ties, since we only need increase the size of the models, not 
the size of each feature instance. 

7.2 Header data 

As stated in Section 4, CTDB strongly favors compact 
storage in contrast to storing structural or filtering data 
which is not strictly necessary. This design decision was 
invaluable for SIMNET databases which, in CTDB for- 
mat, could be read entirely or largely into memory (unlike 
the larger SIMNET TDB format). However, CCTT's da- 
tabase size and density is such that storage of additional 
header data is inconsequential compared to overall data- 
base size. As a result, MRTDB page and patch headers 
contain a wide range of structural data. For example, both 

header types store the maximum Z value of any post or fea- 
ture within their regions; this helps eliminate swathes of 
terrain from consideration, for instance when performing 
line of sight from a ground vehicle to a distant air vehicle. 

MRTDB patch headers contain direct indices into their 
page's feature array. In order to determine if a given x,y 
point is on a road, one need only calculate which patch the 
point is in, then directly access the road linear features. 
CTDB requires the searcher to sweep through all other 
features in a patch, then process linears (both roads and 
rivers) in the search for a road. 

Because of the large number of posts in CCTT data- 
bases, we were forced to compress the post size as much 
as possible; we consequently lost CTDB's "features pres- 
ent" bits which permitted rapid determination of which 
feature types could be found around a post. However, this 
data is retained at a grid level in our patch headers. 

As CCTT implementation progresses, we may add ab- 
stract data to the headers, as needed. For example, we may 
need to classify patches and/or pages as "urban", "for- 
ested", or "rough". Also, the headers will be used to store 
information required to support simple dynamic terrain. 

7.3 Independent subdivisions 

Both CTDB and MRTDB grid masks store one bit of in- 
formation for each of the grids in a patch. Because grid 
masks are stored in each feature instance to indicate which 
grids the feature overlaps, any change in grid mask size 
sharply increases database size and requires fundamental 
changes to all feature instances. Because SIMNET data- 
bases had 125 meter post spacing, CTDB was able to use 
a direct connection between grids and posts per patch (i.e. 
each post was also a grid). This provided a useful correla- 
tion between "features present" data stored for each post 
and grid mask values stored for each feature. CTDB grid 
masks contain sufficient bits to allow either 16 or 25 posts 
per patch (although 16 is declared as a constant in 
libCTDB). Because of the significantly higher density of 
posts in CCTT databases, we found it necessary to break 
the direct link between posts and grids which are the basic 
building block for the patch and page storage structures. 
All patches are composed of 16 grids regardless of the 
number of posts within the patch, thus the number of bits 
required for our grid mask need never change. Further- 
more, the posts per grid side can be tailored for a given da- 
tabase providing additional flexibility when defining the 
page and patch storage structures. 

Using CTDB's 4 posts per patch side in a CCTT data- 
base (30m posts, 100 km x 150 km) would require storage 
of over 1 million patches. Even with CTDB's minimal 
storage overhead (12 bytes per "patch group" of 4 patches 
and 4 bytes per patch), the page and patch headers would 
require 7M in CTDB format. Although MRTDB stores far 
more data in its headers, less than 3M would be consumed, 
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given we define there to be 256 posts per patch (480m 
patch sides). When we create a correlated version of the 
SIMNET Grafenfels database, we will define there to be 
16 posts per patch (500m patch sides). Thus, the patch 
sides can be tailored to match database-specific needs. 

7.4 Other extensions 
A number of smaller improvements deserve mention. 

The E&S Visual Database utilizes a mixed topology, 
which allows the hypotenuse of individual terrain facets 
to have either positive or negative slope. Mixed topology 
allows higher fidelity representation of terrain by allowing 
the terrain skin triangulation to match the direction of 
sharp terrain features. Both CTDB and MRTDB rely on 
triangulated post areas which must match the source data's 
hypotenuse (diagonal) for correlation. All posts in a 
CTDB database must have their diagonals going in the 
same direction; MRTDB maintains a bit for each post, thus 
allowing each post to have one of two triangulation 
schemes, thereby supporting E&S's mixed topology. 

Both MRTDB and CTDB rely heavily on the use of 
fixed point bases, which require a tradeoff between range 
of values, accuracy, and number of bits available. CTDB 
utilizes a constant elevation range of +/-5000 meters for 
the elevation posts. MRTDB stores the actual range of val- 
ues present in a given database and uses that for the fixed 
point basis range, thus insuring maximum accuracy for a 
given number of bits. Both CTDB and MRTDB use a 16 
bit fixed point basis referred to as "patch units" for feature 
vertex x,y values. We have implemented "expanded" 
patch units which use 32 bit integers and store the same 
units as patch units, but allow for values outside of a given 
patch's boundaries. Thus we can store compact patch 
units in feature instances while storing expanded patch 
units in models, where use of additional space is not costly. 
This permits operations to exceed the normal range of 
patch units and permits use of model instances that cross 
patch boundaries. The latter is particularly important to 
us: CTDB splits patch-crossing features into multiple fea- 
tures, but we wished to avoid this due to our use of models 
and the desire to maintain the singularity of uniquely iden- 
tified destructible static features which can be modified at 
run-time. 

Ada file I/O limitations imposed a number of design 
constraints. For example, we cannot read in an entire page 
of posts, features, and vertices because these are different 
Ada types; we must either read each type separately or 
conduct expensive unchecked conversions when reading 
data from disk. However, Ada has provided some benefits 
besides facilitating encapsulation and maintainability; we 
have experimented with storing some data structures with 
sizes that do not align with 32 or 64 bit boundaries. Our 
preliminary investigations indicate that there is minimal 
performance impact when accessing such structures as 

long as they align to byte boundaries. Further timing tests 
will be conducted based on our current use of 24 bits per 
post (where CTDB uses 32 bits). A one byte savings ini- 
tially sounds trivial, but CCTT databases will have well 
over 16 million posts. Thus, a byte savings translates to 
a roughly 16M reduction in data size. 

8.0 Conclusions 
The low-level representation of terrain data for use in 

terrain reasoning can play a major role in a number of fac- 
tors vital to CGF systems: the run-time efficiency of ter- 
rain reasoning algorithms; the database's memory require- 
ments and need for caching; the database's level of 
fidelity; and the database's correlation with other repre- 
sentations of the terrain, such as the visual database. We 
believe that the MRTDB format represents significant 
progress in each of these areas, while meeting CCTT's 
stringent requirements. We believe the strengths of this 
format (flexibility provided by models, object-oriented 
design, and compact representation) will not be fully real- 
ized until future CATT systems push requirements and 
needs still further. 
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Abstract 

Distributed Interactive Simulation (DIS) is an 
ambitious attempt to seamlessly integrate heterogeneous 
simulators of various fidelity levels via a communications 
network to allow them to interact in the same synthetic 
environment, by means of standardized messages, known 
as DIS Protocol Data Units (PDUs). 

DIS traffic analysis has various purposes, one of which 
is capacity planning. This can be done effectively by 
understanding the traffic patterns of entities under specific 
maneuvers and interaction. In this paper, we characterize 
the traffic from DIS entities generated from computer 
generated forces (CGF) and manned simulators, in two 
cases. We will characterize this by the issue rate of Entity 
State PDUs, which comprises over 90% of DIS traffic. Our 
analysis will show that entities from CGF have a uniform 
traffic pattern and can therefore be used to populate a DIS 
environment effectively, while being able to plan the 
bandwidth required to sustain these entities. 

1. Introduction 

Distributed Interactive Simulation (DIS) is an 
infrastructure that enables heterogeneous simulators to 
interoperate in a time and space coherent environment. In 
DIS, the virtual world is modeled as a set of entities that 
interact with each other by means of events that they cause. 
Simulator nodes independently simulate the activities of 
one or more entities in the simulation and report their 
atttributes and actions of interest to other simulation nodes 
(as a point of reference, DIS is often used to simulate 

virtual battlefields, where the simulated entities are tanks, 
infantry fighting vehicles, combat aircraft, and infantry). 
Other entities in the virtual environment in turn are 
responsible for "listening" to the messages transmitted by 
other entities and determining which ones are of interest to 
them. These simulator nodes are linked by a 
communication network and communicate entity 
information using a set of common network protocols. 

1.1 Simulation domains 

DIS supports three simulation domains: virtual, live and 
constructive. The historical core of DIS has been 
continuous, real-time simulations, which have been 
designated as "virtual." These simulations include human- 
in-the-loop or crewed simulators and Computer Generated 
Forces (CGF). Virtual simulations are characterized by their 
requirement for real-time delivery, which is on the order of 
100 milliseconds [3]. Because of the human in the loop, DIS 
assumes that exercise time corresponds with the actual 
progression of time. 

DIS is also intended to interface with "live" simulations 
which include operational platforms and test & evaluation 
systems. Interactions between real weapon systems, sensors, 
and tactical communication links occur at much faster rates 
than virtual simulations, often less than one millisecond. 

The last type of simulation is event driven wargames, 
called "constructive" simulations. Constructive simulations 
differ from the other two domains in that the simulation is at 
a higher level than that of a single entity. These simulations 
often move faster or slower than real-time. The intervals at 
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which the states of all the participants are updated may be 
irregular and minutes may elapse between them. 

1.2 Network traffic 

As mentioned previously, DIS simulation nodes 
communicate using a set of communication protocols. The 
DIS protocol architecture, designed in the early 1980's 
under the SIMNET program, specifies a set of fixed data 
structures that are broadcast to every simulation node on 
the network. When high numbers of entities broadcast 
information, the DIS network begins to get congested. 
And as DIS expands beyond the bounds of SIMNET into 
virtual, live and constructive domains, and extends its 
capabilities to model things like human figures and 
dynamic environment, the network will become even more 
overwhelmed. Understanding the composition of this data 
and any patterns present in it become an important part of 
scaling to meet expanding DIS requirements. 

This paper will focus on categorizing DIS network traffic 
created by virtual simulations, based on the type of simulator 
(manned or CGF). It will examine both manned and CGF 
entities to determine if they have regular traffic patterns. If 
so, this measure can be used to predict network requirements 
for exercises composed of large numbers of entities. 
Considering that future DIS exercises are expected to be 
comprised of up to 95% CGF [8], determining their traffic 
pattern could be an important part of scaling the network. 

2. Virtual simulators 

Virtual simulations fall into two categories: manned and 
CGF. Each has certain attributes which describe it and 
objectives that it brings to the virtual environment. The next 
sections provide a brief description of each. 

2.1 Manned simulators 

The primary object of manned simulators is that of 
training. The quality of training has been enhanced in recent 
years by technological advances. These simulators have the 
same look and feel of the actual device and/or environment 
being simulated. Another breakthrough in the training 
quality enhancement is the interconnection of traditional 
stand alone simulators via a DIS network. This allows 
training with other humans in the same virtual environment. 
For stand alone simulators (which pre-date the DIS era) to be 
able to take advantage of the benefits distributed simulator, 
an interface is often added as a front-end to make them DIS 
compliant. This interface unit then makes a non-DIS system 
capable of interoperating with other DIS simulators. 

The majority of current DIS simulations are manned 
simulators. Manned simulators typically simulate a single 
type of entity (such as an Ml tank or an AH-64 Apache 

helicopter). These devices require a human-in-the-loop to 
operate the simulator, make decisions, respond to human 
commands, and interact with the environment (e.g., drive 
around trees). 

2.2 Computer generated forces 

Most DIS exercises have been and will be much larger 
than can be practically populated with human-in-the-loop 
simulators. Therefore, it is necessary to have many entities 
in the exercise that can operate under the loose supervisory 
control of human operators. Such Computer Generated 
Forces are capable of generating multiple entities (which 
may or may not be all of the same kind) and use vehicle 
behavior algorithms rather than humans to generate the 
actions of the simulated entities. Representation of platform 
level entities also includes the command and control 
heirarchy representing the missing human commanders. 

CGF1 have different requirements and capabilities from 
human-in-the-loop simulators, flowing largely from the 
differences in cognitive and perceptual abilities of CGF 
compared to human operators or commanders. For current 
or near-term systems, CGF entities are at the "platform" 
level with limited perceptual and cognitive abilities. 

CGF form an integral part of team training, by providing 
effective opposing forces or by additional friendly forces in 
the virtual environment. In this way, the training effect is 
enhanced. The savings result primarily in the areas of 
personnel, hardware, facilities required to plan the exercises, 
setup, execution and analysis. In addition to training, CGF 
are also used for analytical purposes, and studies which 
involve large numbers of entities. 

3. Network analysis 

According to [2], future DIS exercises will scale to 
100,000 entities2. Numerous sources have identified the 
network traffic to be the main bottleneck of future 
distributed simulation exercises, namely because the high 
orders of entities all broadcast their packets onto the 
network. In an analysis of the 1993 I/ITSEC 
demonstration, it was shown that over 90% of the DIS 
traffic was due to Entity State PDUs[l]. [However, a radio 
experiment conducted during the demonstration showed 
that 8 radio entities contributed to 16.5% of the total 
traffic! Similarly, an electronic warfare experiment 
showed that 42 emitting entities generated 15.3% of the 

1 In the DIS world, computer generated forces and semi-automated forces 
are often used synonymously when actually they refer to two separte 
functions. As defined in (Institute for Simulation and Training 1994b), 
Computer Generated Forces is the simulation of human entities, human 
controlled entities, and human command entities in the virtual battlespace 
by a computer. Semi Automtaed Forces are CGF controlled by an operator 
through commands and feedback not used in the real world. 
2 These entities will be a mix of live, virtual, and constructive. 
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total traffic. This confirms that as new capabilities are 
added to DIS, such as human figures, the associated traffic 
will grow exponentially]. Since over 90% of current DIS 
traffic is Entity State, this specific protocol data unit carries 
most of the burden for network congestion and therefore 
may provide insight into patterns associated with entity 
types. 

There are ongoing efforts to reduce network traffic by 
filtering [5], compressing [6], multicasting [9], and using 
information handlers [7]. However, an additional means to 
scale networks is knowing a priori the traffic pattern of the 
exercise. This would allow the exercise manager to 
distribute resources as necessary, utilize systems more 
efficiently, and initialize appropriate groups. The following 
sections of this paper will address the issue of traffic 
characterization by analyzing data resulting from the 1993 
Interservice/Industry Training Systems and Education 
Conference (I/TTSEC). 

4. Traffic characterization 

This section describes the data collection, trace 
contents, performance metrics, and analysis methodology 
by which the traffic of entities will be characterized. 

4.1 Data collection 

A total of 44 organizations gathered at the 1993 
I/ITSEC for a period of 2 weeks in an effort to conduct 
DIS Interoperability Demonstrations. Each organization 
had its own individual network connection to a central hub 
(thus creating a star topology). 

The data on the network was logged (the DIS data 
portion amounted to over 2.8 Gigabytes) and analyzed [1]. 
The data which was analyzed was collected by a single 
station on the LAN, and the assumption made is that the 
logger dropped none or minimal number of packets. 
Additionally, the logger restricted the logging to DIS 
PDUs only (logging the other network traffic would have 
been too overwhelming). 

The purpose of the data logging was to provide overall 
I/ITSEC after action traffic analysis, and intended 
primarily to plan the capacity of future DIS exercises. For 
this purpose, the logger captured all the DIS traffic 
originating from the various DIS stations on the local area 
network. 

4.2 Trace contents 

The DIS traffic distribution, given in the average number 
of DIS PDUs per second, over the period of two weeks up 
and through the Interoperability Demonstrations is given in 
Figure 1. Note that the daily average for the first day 
(11/22/93) is quite misleading. The relatively high average 

obtained is due to the fact that the data logged spanned 
only a single hour, when all the stations were busy 
practicing PDU transmission. 

The first of the two weeks spanning this effort was 
dedicated to debugging the network, and rehearsing the 
demonstrations. The traffic issued in this week was not 
very useful for further analysis. 

The demonstrations took place on November 30, 
December 1, and 2. Each of them spanned no longer than a 
number of minutes. The rest of the time the network was 
dedicated to "free play" and for special interest 
experiments (such as electronic warfare, radio and network 
flooding). Of these special experiments, the network 
flooding test was particularly interesting and more on this 
analysis can be found in [1]. 
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Figure 1. I/ITSEC Daily PDU Averages 

4.3 Performance metrics 

The performance metrics of interest to our analysis are: 

1. Issue rate of Entity State PDUs per second for a CGF 

2. Issue rate of Entity State PDUs per second for a manned 
simulator entity. 

The above four measures will be obtained for each 
specific maneuver defined below: 

1. Stationary entity 
2. Constant velocity (going in a straight line) 

These   measures   will   be   obtained   for   an   entity 
representative of each of the following venues: 

1. Land (for example, an M1 tank) 
2. Air (for example, an F-16) 
3. Surface (for example, an FFG-7 frigate) 
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4.4 Analysis methodology 

The data traces contained all the DIS traffic on the 
network, from all the entities which were active during the 
time the logging was performed. The primary tool used to 
obtain the results of our analysis was the traffic analysis 
tool written to obtain general DIS statistics of all the 
I/ITSEC data traces. 

Determining which entities were generated from CGF 
and which were from manned simulators, was not possible 
only based on the PDUs. Additional information, such as 
the knowledge of pre-assigned IP-addresses and what each 
of these companies were participating with (type of 
simulator), was used in order to make the search for the 
proper data traces easier. 

An additional difficulty in using the existing data traces 
was the applicability of the data to the type of analysis we 
want to perform. In the I/TTSEC data traces, entities were 
at best maneuvering in an adhoc fashion (or towards 
targets) and not necessarily in a very controlled manner. 
We were presented with the problem of wading through 
the data traces and find entities which were doing the types 
of maneuvers as defined in the performance metrics. 

Not only was finding these entities and maneuvers 
difficult, it would be very unlikely that the comparison of 
the traffic issued by manned simulators and CGF would be 
fair. This is especially true for entities operating on or near 
the terrain database (such as land vehicles). 

The data used for the analysis came from two sources: 
demonstrations data traces and compliance test data. It was 
not difficult to find stationary land and surface entities in 
the demonstration traces. The data collected as part of the 
DIS compliance testing, during the months preceding the 
demonstrations, however proved to be very useful. Not 
only was the finding of the entities much easier (most data 
traces contained only a single entity), but the particular 
maneuvers which we required were described in the test 
procedures. 

5. Discussion of results 

During the first (of a series of three) DIS demonstration 
(data logged between 10:00 -11:00 a.m. Tuesday, 
November 30, 1993) there were a total of 149 entities on 
the network. The distribution based on the type of entity, 
and whether they were CGF generated or from manned 
simulators is given in Table 1. As expected, most entities 
in the exercise were generated by CGF. The activity in the 
demonstration involved primarily ground battle (thus 
explaining the predominance in land entities), being fired 
upon by air entities. CGF entities are ideal targets, and an 
effective manner of populating the environment with a 
large number of unfriendly vehicles. 

The third column in Table 1 gives the total number of 
Entity State PDUs (EsPDUs) issued by the entities of a 
particular category, in the entire hour which was logged. 
Solely based on this data, it is immediately apparent that 
most of the traffic came from the manned simulators, even 
though they do not outnumber the CGF entities. For each 
category of entity, the manned simulator entities issued a 
higher average of EsPDUs during that hour (with air 
entities having the largest average of 4744.3). 

Type of Entity Entities EsPDUs 
Land/CGF 95 53449 
Air/CGF 10 5491 
Surface/CGF 8 2824 
Subsurface/CGF 1 2 
Land/Manned 5 7894 
Air/Manned 27 128096 
Surface/Manned 2 1096 
Subsur/Manned 1 2 

Table 1. Entity Distribution 

5.1 Entity selection 

This section describes the manned simulator and CGF 
entities used to characterize the traffic of land, air and 
surface vehicles. Two different entity types per category 
(for example an Ml and a T72 for CGF/Land) will be 
selected and an attempt will be made to compare these 
with equivalent entities. In other words, ideally an Ml 
generated by a CGF will be compared to an Ml generated 
by a manned simulator. The selection of compatible 
entities also takes into consideration the type of dead- 
reckoning algorithm implemented (for our analysis all the 
entities had the same algorithm). Another condition placed 
on the analysis is that the underlying terrain database was 
the same for all entities, and comparable entities were 
placed at the same coordinates. 

The choices of manned simulator entities (as could be 
derived from Table 1) did not vary in all categories. Land 
entities include launchers, which are typically not mobile 
and would not be interesting for traffic characterization. 
There was a better selection of air vehicles, ranging from 
fighter planes (FA/18s, F15s, F16s) to helicopters (UH-60s 
and AH-64s). One fighter plane and one helicopter was 
chosen for this analysis. On the other hand, there was not 
an abundance of crewed surface vehicles (in fact during 
this demonstration there were only two), and these happen 
to be the same ship (FFG-7). 

The choices of CGF entities presented a similar 
problem. The problem with some CGF is that the entities 
may have a preprogrammed behavior, such as a built-in 
collision avoidance algorithm. In most cases, whenever a 
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CGF entity is called for, data traces from IST/CGF entities 
were obtained. 

5.2 Stationary 

This section describes the results obtained from the 
case in which the entities are stationary. The DIS standard 
specifies that when entities have not changed their state 
significantly (by changing locations or appearance) the 
issue rate of the EsPDUs should be set at 5.0 seconds 
(unless otherwise specified). 

In Figure 2a the interarrival times of EsPDUs is given 
for several land entities generated by CGF, and by manned 
simulators. From this Figure it can be seen that the CGF 
entities adhere to the 5.0 seconds update rule, but that 
entities from manned simulators are issued at a higher 
frequency. 

For air entities, it may sometimes not be within the 
capability of the simulator to remain stationary (unless 
parked on the terrain). Others have the capability of being 
frozen in mid-air (with a frozen non-zero velocity vector). 
Figure 2b shows the interarrival times of EsPDUs issued 
by 2 manned fighter jets, 1 manned helicopter, and 2 CGF 
helicopters. One of the manned jets had a peculiar 
behavior, and would produce two consecutive EsPDUs 
every 5 seconds (so in essence there would be periodic 
interarrival times of 5 seconds, 0 seconds, 5 seconds, 0 
seconds, and so on). It is not known why this simulator 
behaved this way. 

Surface vehicles generated by CGF have similar issue 
rates as those found for land entities. Their manned 
equivalent can sometimes be pretty accurate in their issue 
rate, though the sample size is smaller than that of land 
vehicles. The interarrival times for EsPDUs of 3 frigates 
are shown in Figure 2c. One of the manned FFG7 
approaches the CGF created FFG7, whereas the other has a 
shorter interarrival time. 

Figure 2a. Stationary Land Entities 
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Figure 2c. Stationary Surface Entities 

5.3 Constant velocity 

This section describes the result obtained from the case 
in which the entities are proceeding at a constant speed. 
Again, the DIS standard specifies that in this case, due to 
one of the dead-reckoning algorithms, the EsPDU rate 
should be that of 1 EsPDU per 5 seconds (by using 
standard dead-reckoning algorithms, information that can 
be derived/extrapolated need not be transmitted, and 
thereby reduce the traffic considerably). 

The same entities that were used above for the 
stationary case, are examined for their issue rates when 
going at a constant velocity. This may be impossible for 
some land entities which are permanently stationary (such 
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as the M577 in Figure 2a). In particular, this proves to be a 
tremendous task for some manned simulators, because of 
the human-in-the-loop operating the vehicle. CGF entities, 
on the other hand, can be programmed to go at a given 
speed and to maintain this for a period of time. 

The terrain becomes of importance in this test, since 
land vehicles operating on the terrain are subject to 
encountering hills and other obstacles, which in turn can 
cause the vehicles to accelerate (when going down hill) or 
decelerate (when going up hill or around an obstacle). 

Figure 3a shows land entities generated by manned 
simulators and by CGF. Here, another manned simulator 
entity is used to replace the earlier immobile M577. For 
both the crewed simulator tanks, the speed did not remain 
constant. In one case, there was a terrain correlation 
problem and a flat piece of terrain was not found before 
logging the data. In the other case, the lack of constant 
velocity was primarily due to the human-in-the-loop factor. 
CGF land entities, however, showed a regular traffic 
pattern, albeit not always at the expected 5 second 
heartbeat rate. The velocity in these vehicles on the other 
hand, was maintained consistent throughout. 

Figure 3b illustrates the case of air entities undergoing 
the same type of maneuver as described above. With 
manned simulators it was almost futile to present these 
figures, because it was difficult for the operator in the 
flight simulators to maintain a constant speed. Though 
terrain did not present a problem (they fly high above it) it 
was an added difficulty to keep the plane straight and level 
(no deviation in the orientation of the vehicle). The 
difficulty presented itself more with fixed wing vehicles 
(such as MIG-29s, FA/18s) than with rotary wing vehicles, 
which managed to maintain a constant speed and heading, 
though still issuing at a higher rate than desired (see Figure 
3b). The same manned jet which in Figure 2b had a 
periodic issue rate, issued EsPDUs at intervals of 0.7 
seconds and 0 seconds. This phenomenon is thus obviously 
not limited to being in a stationary or frozen state. 

Finally, the surface vehicles which underwent the 
above mentioned maneuver are given in Figure 3c. The 
same manned FFG7 which had an EsPDU update rate of 
2.5 seconds in the stationary case (see Figure 2c) managed 
to maintain a constant velocity but at an update rate of 0.5 
seconds. The other manned FFG7 and the FFG7 produced 
by a CGF had equivalent update rates (5 seconds). 
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5.4 Discussion of results 

The results presented in the previous two sections show 
the difficulty of obtaining traffic patterns for DIS entities. 
The characterization technique should be one which holds 
universally for all entities, which may be a problem (for 
example, not all entities can move). 

The size of the sampled and analyzed population is far 
from ideal. One result prevailed throughout the analysis: 
traffic from CGF is regular and predictable (though not 
always consistently implemented - see Figure 3 a, the two 
CGF Mis have different update rates). It is difficult to 
characterize manned simulators as an entire category for 
each implementation will vary (in the level of fidelity, for 
example). We were successful in obtaining traces for a 
minimal set of entities, operating in the same terrain, 
placed at the same coordinates, and modeling the same 
dead-reckoning algorithm. 

6. Conclusions and future work 

In this paper, the traffic from manned simulator entities 
and CGF entities are characterized, using data traces 
collected prior to and during the I/ITSEC 1993 DIS 
Interoperability Demonstration. From the data traces alone, 
one is, and should not able to tell CGF entities from 
manned simulator entities, but with prior knowledge of the 
types of systems brought to the demonstration and 
adherence to pre-assigned addresses, a traffic analysis tool 
is capable of filtering based on the identifiers of these 
entities and classifying them based on the type of simulator 
which issued them. 

The results of the entity distribution (Figure 1) and 
stationary tests (Figures 2a-c) indicate that CGF entities 
broadcast fewer EsPDUs on the network than manned 
simulators. This is an important fact for large scale 
exercises which use CGF to populate the battlefield. Using 
CGF in the exercise can actually ease network congestion, 
compared to using manned simulators. Hence, a useful 
scaling tool for exercise developers. 

There remains several more ways to further 
characterize the entities. The angular velocity can be 
maintained constant (yielding a turn at a constant rate). 
This paper was unable to show these results for the lack of 
adequate data. Manned simulators are hard to control when 
asked to perform specific maneuvers, keeping one factor 
constant without varying any others. CGF entities on the 
other hand, could be pre-programmed to have this kind of 
behavior and are not subject to direct human intervention. 
Another method of characterizing traffic from these two 
classes of virtual simulation entities is by a maneuver 
which involves a target, and weapons fire. 

The analysis presented in this paper focused on the 
characterization of Entity State PDUs. At the present, over 

90% of typical DIS exercises are comprised of EsPDUs, 
however future work should characterize emerging 
capabilities such as radio, emissions, dynamic environment 
and human figures, to see if similar patterns emerge. 
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Realtime Data Analysis for the 
Joint Theater Missile Defense Simulation Network 

(JTMDSN) 

Michael D. Gray, BDMESC 
Craig K. Jones, BDMESC 

Realtime data collection and analysis processes have 
been designed and an initial capability will be 
demonstrated for the July, 1994 JTMDSN test data. The 
JTMDSN is a one-year, Distributed Interactive 
Simulation (DIS) demonstration sponsored by the Defense 
Modeling and Simulation Office (DMSO). Detachment 4, 
505 Command and Control Evaluation Group (CCEG), 
Air Warfare Center, is the project lead. Participants in 
this demonstration included the Theater Air Command 
and Control Simulation Facility (TACCSF) at Kirtland 
AFB, NM; the Navy Research, Evaluation, and Systems 
Analysis (RESA) facility at the Naval Command, 
Control, and Ocean Surveillance Center, San Diego, CA; 
the Space TACTICS Model (STM) and Proof-of-Concept 
Aerospace Defense Location (PADL) in Colorado 
Springs, CO; and the Theater Battle Arena (TBA) at the 
Pentagon. 

The JTMDSN built on past TACCSF and RESA DIS 
accomplishments such as their War Breaker support, to 
make two more major contributions to the DIS 
community. First, Army, Navy, Air Force, and National 
systems interfaced via tactical data links using Signal 
Protocol Data Units (PDUs). Second, data was collected 
on-line from PDUs and reduced to records of key events 
which could be used to display mission performance and 
network performance measures in realtime. This paper 
focuses on this data collection and analysis capability. 
The JTMDSN DIS Gateway, including the data collection 
process, was designed and developed by Martin Marietta 
Corporation. Data analysis processes are being 
developed by BDM Engineering Services Company. 

JTMDSN Operational Architecture 

The Joint Force Air Component Commander 
(JFACC) at an Air Operations Center (AOC) was the 
highest command authority in this air defense exercise. 
The JFACC used inputs from tactical ballistic missile 
(TBM) sensors such as the Defense Support Program 
(DSP), the TPS-75 radar with missile tracker and 
correlator, an airborne Advanced Sensor, and AEGIS to 
prosecute both active defense of TBMs with Boost Phase 
Interceptors (BPI), PATRIOT, and AEGIS; and attack 
operations against transporter erector launchers (TELs) 
using Joint STARS, F-15E, and F/A-18 aircraft. The 
JFACC was assisted by a prototype fusion device for 
Launch Point Estimates (LPEs) and Impact Point 
Predictions (IPPs) developed by the PADL, called the 
Tracking Sensor Suite (TSS); by electronic emission 
exploitation inputs from PADL's NWARS model; and by 
JTIDS and a Constant Source terminal. A Control and 
Reporting Center (CRC), Army Air Defense Brigade, E-3 
AW ACS, Navy Battle Group, and E-2C provided lower 
echelon command and control, along with standard 
defensive counter-air (DCA) surveillance, identification 
and engagement capabilities. 

DIS Architecture 

DIS Gateways and other DIS capable models at each 
of the four sites communicated on a wide area network 
(WAN) using T-l lines and DIS 2.04 protocol. The 
Gateways provided interfaces to models and environment 
generators at each site. Gateway processes included: 

DIS Interface (DIS IF): Dead reckoning, Entity 
State PDU production, PDU receipt and routing, Event 
Report PDU production, PDU counting and reporting. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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Environment Generator (EG): Entity track 
maintenance and display, computer generated forces. 

Data Link Interface (DL IF): Embedding tactical 
data link messages into Signal PDUs, extraction from 
Signal PDUs and routing of incoming data link 
messages. 

Model and Simulation Interfaces (M&S IF): 
Provided environment to M&S; provided M&S status 
(Entity State), Fire, Detonate, Emissions, and Event 
Reports to DIS IF. 

Trial Event Generator (TEG): Data extraction and 
recording. 

Voice communications were also transmitted via 
Signal PDU. Entity State, Fire, Detonate, Electronic 
Emissions, Signal, Event Report, and Data PDUs were 
supported. RESA hosted all Navy assets. PADL/STM 
hosted DSP, NWARS, and the TSS. TACCSF hosted 
the AOC, CRC with missile tracker/correlator, AW ACS, 
Army Brigade with PATRIOT and HAWK Battalions, F- 
15Cs, the Advanced Sensor, Joint STARS, and a copy of 
PADL's TSS fusion cell. TBA hosted the F-15E and the 
F-15C with BPI. Each site provided a portion of the 
computer generated threat forces and friendly background 
air traffic. 

PADL/STM 

PADL/STM GATEWAY 

DIS IF 
EG 

DLIF 
M&S IF 

TSS 

NWARS 

DSP 

DIS IF 
EG 

M&S IF 

F15-E 

Figure 1. DIS Architecture 

Tactical Data Links 

Since TACCSF M&S design had already included 
the interchange of actual tactical data link messages, the 
DL IF was connected to the existing data link local area 
network (DL LAN) to exchange TADIL-J messages. At 
RESA, a TADIL-J message capability was developed for 
the fleet models and interfaced with the DL IF. At 
PADL/STM, the TSS development included the ability 
to read TADIL-J and TACELINT messages which were 
passed to it by the DL IF.   NWARS and DSP sent 

TACELINT messages to the DL IF. The DL IF would 
embed up to 37 data link messages into a Signal PDU for 
DIS transmission and would extract and route data link 
messages from incoming Signal PDUs. 

Event Report PDUs 

The TACCSF MSIM GW picked existing CRC, 
PATRIOT, and HAWK target detection reports from the 
TACCSF track truth LAN and generated Event Report 
PDUs for DIS.   Aegis and F/A-18 detections at RESA 
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were supposed to be sent to the DIS GW for Event Report 
PDU production. Likewise, DSP detections and 
LPE/IPP reports, and TSS allocation orders were planned 
to be passed to the PADL/STM GW for Event Report 
production. (Thus far, no Event Reports from RESA or 
PADL/STM have been found in the data). 

Operational Missions 

Four missions were evaluated during the planned 
two-hour scenarios: 

TBM active defense 
TBM passive defense 
Attack operations 
Standard defensive counter-air 

Measure of Performance 

Measures of Performance (MOPs) are being computed 
for each of the four operational missions, such as: 

Percent of TBMs killed 
Timeliness  and accuracy  of TBM  impact point 

predictions (IPPs) 
Percent of TELs killed 
Percent of penetrating enemy aircraft killed 
Timeliness and completeness of sensor detections and 

reporting 
Timeliness and completeness of resource allocations 

In addition to these mission performance measures, 
MOPs are being accumulated on the DIS network 
performance, such as percent of PDUs received at each 
site, T-l loading, and operator feedback on realism of the 
exercise. 

Data Collection and Analysis 

The PDU receiver and transmission processes of the 
TACCSF Gateway selected the following PDUs and 
forwarded them to the Trial Event Generator (TEG) 
process: 

Entity State (create and remove entities, including kills) 
Electronic Emissions (emitters on/off) 
Fire (TBM launches, ordnance releases, engagement of 

targets) 
Detonate (TBM impact, ordnance impact, missile 

outcomes) 
Event Report (sensor detections) 
Data (activity level, PDUs and PDU bytes sent/received 

each second) 
The TEG used entity track files, which were 

maintained by the TACCSF environment generator, to 
obtain track truth information (location and entity type) 
on the source, target, and weapon associated with each 

event. A standard event record was then constructed and 
recorded by the TEG. Each event record contains the 
following information: 

Time 
Event type 
Data source 
Source identifier (site, application, entity) 
Source true location (latitude, longitude, altitude) 
Source DIS classification (kind, domain, country, 

category, subcat, specific, extra) 
Source force ID 
Target identifier 
Target true location 
Target DIS classification 
Target force ID 
Weapon identifier 
Weapon true location 
Weapon DIS classification 
Weapon force ED 
Target perceived position, heading, speed 
Error ellipse description (for LPEs and IPPs) 
Warhead/detonator type 
Result/reason for action 

This record provides an interface to the realtime data 
analysis processor. The analysis processor uses the 
operational performance event records to update summary 
tables which can be displayed to the analyst during or 
after a trial. A table is maintained for each of the four 
missions. Each table contains summary statistics which 
capture MOPs, and a time history record of performance 
against each target. The analyst can specify the entities of 
interest for each mission by selecting appropriate DIS 
classification values. The entities of interest for 
JTMDSN were as follows: 

Threats: TELs, TBMs, enemy aircraft 
Sensors: TBM detectors, LPE and IPP reporters, TEL 

trackers 
BMC4I: TEL allocators, TBM impact warners 
Weapons:   TBM interceptors, TEL attackers, DC A 

aircraft and SAMs 
Friendly aircraft (for fratricide measure) 

Also, DIS network performance statistics were sent to 
the TEG each second via Data PDU. The TEG stored 
these PDU transmission and receipt counts, and scenario 
activity level counts in a file for posttest processing. A 
PV WAVE (Visual Numerics data analysis tool) program 
was developed by BDM to extract and display this PDU 
count data. The analyst can plot the PDU counts, T-l 
volume counts, and number of active entities for a quick 
assessment of DIS network health over time. Future 
enhancements will enable plotting this DIS network 
health data in realtime. 
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Sample of Results 

Table 1 shows the active TBM defense results from 
one 50 minute exercise. While this data was actually 
extracted after exercise completion, the realtime data 
analysis process has been designed to maintain a similar 
table while the exercise is running. These results are 
shown only to illustrate the output of the analysis 
process. They have no operational validity due to several 
factors, including: 1) model validation and accreditation 
was not part of this test; 2) most operators were not 
tactically qualified; 3) problems with immature software; 
and 4) the need to keep this report unclassified.   This 

table identifies TBMs by their DIS 
Site.Application.Entity identifiers. Times are in seconds 
from the start of exercise. The need to automatically 
capture times of TBM entries into sensor and weapon 
system airspace was recognized, but not implemented for 
this exercise. Several TBMs were scripted to enter each 
of the PATRIOT and Aegis defended areas. The CRC's 
radar was in position to detect TBM trajectories toward 
the Aegis areas. TBM launches and engagements were 
collected from Fire PDUs. TBM impacts were collected 
from Detonate PDUs. TBM kills were evidenced by 
Entity State PDUs. PATRIOT and CRC detections were 
reported by Event Report PDUs. 

ACTIVE TBM DEFENSE: TRIAL JBL08728 
LAUNCH AIRSP ENTRY 1ST DETECT AIRSP ENTRY 1ST ENGAGE KILL TBM IMP 

TBM TIME TIME SENSOR TIME SENSOR TIME WEAPON TIME WEAPON TIME TIME 
51.8.191 182 X AEGIS X AEGIS 580.1 
48.8.247 192 X PAT 495.3 PATFU18 X PAT 551 PATFU20 578.3 
48.8.248 202 X PAT 510.4 PATFU18 X PAT 544.9 PATFU20 584.5 
48.8.249 242 X AEGIS 394.2 CRC X AEGIS 621.1 AEGIS 640.8 
11.8.107 265.2 X AEGIS 303.4 CFC X AEGIS 1101.4 
51.8.192 362 X PAT 682.3 PATFU18 X PAT 756.9 
48.8.250 902 X PAT 1244 PATFU18 X PAT 1304.6 
52.1.41 913.6 X AEGIS 1071.4 CFC X AEGIS 1315.8 
52.1.42 963.6 X AEGIS 1202.9 CFC X AEGIS 1362 
52.1.43 1083.5 X AEGIS 1108 CFC X BPI X BPI 1175.2 
11.8.108 1091.4 X PAT 1616.7 PATFU21 X PAT 1672.6 
48.8.253 1202 X AEGIS 1223.1 CFC X AEGIS 1601.1 
48.8.271 1502 X PAT 1828.9 PATFU18 X PAT 1848 PATFU18 1880.5 
48.8.286 1922 X AEGIS 1950 CFC X 
52.1.44 1983.5 X PAT 2294.5 PATFU18 X PAT 2382.2 
52.1.45 2103.5 X AEGIS 2263.2 CFC X AEGIS 2502.1 
52.1.46 2703.5 
TOTALS 17 16 16 15 5 4 1 1 

X: DATA MISSING 

Table 1. Sample Actual TBM Defense Results 

Table 2 shows the attack operations results for the 
same exercise. TEL launches and engagements were 
collected from Fire PDUs. TEL kills were collected from 
Entity State PDUs. TEL track updates, LPE reports, 

allocations of the TEL attack resources, and commitments 
of attack aircraft were collected manually. More 
automated data collection via Event Report PDU is being 
pursued for future DIS exercises. 

ATTACK OPERATIONS: TRIAL JBL08728 
LNCH MOVE LAST TRK UPDATE LPE REPORT ALLOCATION ATTACK AC COMMIT «UPDATE BO    KILL 

re. TIME TIME TIME ACCY     SOURCE TIME ACCY SOURCE TIME     AOCY DELAY      RESOURCE TIME   AOCY DELAY RANGE ATTKAO TIME ACCY TIME   TIME 
51.B.150 
18.8.240 

1UÜ 
192 

4DÜ 
492 

«8.2.241 
«8.2.242 

202 
242 

502 
542 

780 1.7      JSTARS 236 
249 

0.6 
14.1 

ADV.SNSR 
A0V.SNSR 

240         0.6        38           AW4CS 685       1.4 483 66 F15E 860 1.8 1099.3   1108 

11.8.62 
51.8.162 

26S.2 
362 

565 
662 

840 0.7      JSTARS 270 
383 

1.5 
28.1 

ADV.SNSR 
DSP 

885         0.9     620              NAVY X          X X X X X X 

52.1.29 913.6 1214 
52.1.34 
52.1.37 
11.8.66 

963.6 
1084 
1091 

1264 
1384 
1391 

1740 1.6      JSTARS 1290 
1110 

0 
2.8 

DSP 
DSP 

1470        0.7     387            AWACS 1631        2.4 548 57 F15E 1998 1.1 2123.6  2131 

«8.8.246 
«8.8.224 

1202 
1502 

1502 
1802 

1470 
1727 

X 
38.3 

DSP 
OCflR 

48.8.225 
52.1.38 
52.1.39 

1922 
1984 
2104 

2222 
2284 
2404 

52.1.40 2704 
IIHALU 1 1 If a 1.4 U ia.u a    u.a 757 59 3  &■ 3         3 

Table 2. Sample Attack Operations Results 
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Figure 2 illustrates one method for comparing PDUs 
sent with PDUs received, based on the PDU counts 
provided via Data PDUs. This data shows the RES A 
GW receiving all of the TACCSF GW Entity State PDUs 

except when the RESA GW was down. The MSIM GW 
received nearly all TACCSF GW Entity State PDUs until 
MSIM was terminated in the 45th minute of the exercise. 

TRIAL JBL08728 
PDUs Sent By TACCSF GW 

11 16 21 26 

Time, minutes 

31 36 41 46 51 

- Sent by TACCSF Gateway 

■ Rec'd by RESA Gateway 

Rec'd by MSIM Gateway 

Figure 2. Entity State PDUs Sent and Received 

Preliminary Results 

Complete results of this experiment will be 
published in an October 1994 JTMDSN Test Report. 
Even though automated data collection from all models 
for all MOPs were not produced in the July 94 test, this 
realtime data collection and analysis structure provides the 
foundation for processing more detailed data from 
additional sources. In the future, much of the manually 
collected data will be replaced by automated collection 
methods or enhanced by providing on-line manual data 
entry methods. The JTMDSN Test Report will include 
details of the DIS architecture; and analysis of the tests' 
Critical Operational Issues based on data collected, 
operator feedback, and software engineer feedback. This 
Report will also include details of lessons learned and 
recommendations for future DIS projects, such as: 

- Challenges in scheduling and testing in a large 
distributed environment. There is a need for better 
management of WAN hardware. System complexity 

causes delays in test initialization and frequent 
reliability problems. 
The need for early detailed specification of network 
design, including agreement on PDU 
implementation. 

The need for increased event reporting from network 
M&S's. Event Report PDUs should include entity 
true state information. 

• The need for extended TEG functions, including event 
filtering, generation of periodic entity position 
reports, and generation of airspace volume entry/exit 
records. 

■ The need for better clock synchronization methods, 
both at the start and during the exercise. 

■ The utility of the PDU counting and reporting 
system. 

- The need for DIS support of Identification Friend or 
Foe (IFF) models. 
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Insertion of an Articulated Human into a Networked 
Virtual Environment 

David R. Pratt1, Paul T. Barham, John Locke, Michael J. Zyda 
Naval Postgraduate School 

Bryant Eastman, Timothy Moore, Klaus Biggers, Robert Douglass, Stephen Jacobsen 
SARCOS, Inc. 

Michael Hollick, John Granieri, Hyeongseok Ko, Norman I. Badler 
University Of Pennsylvania 

Most Distributed Interactive Simulation 
(DIS) technology demonstrated in recent 
years has focused on vehicle interaction. 
The dismounted infantryman—the individ- 
ual soldier—has been largely ignored or 
represented by static models. In six weeks 
of development, The Naval Postgraduate 
School, SARCOS, Inc., and University of 
Pennsylvania, under Army Research Lab- 
oratory sponsorship, demonstrated the in- 
sertion of a fully articulated human figure 
into a DIS environment. This paper de- 
scribes the system architecture. 

1.0        Introduction 
The Simulation Networking (SIMNET) 

Project [4][3] connected low-cost, networked, 
man-in-the-loop simulations by a common pro- 
tocol to simulate an armored battlefield. This 
emphasis was practical for several reasons, 
functional and technical.2 The U.S. Army, the 
prime customer, was prepared for a Soviet land 
force in Germany. Experts agreed that the con- 

1. Contact author at Department of Computer Science, 
Code CS/Pr, Naval Postgraduate School, Monterey, 
CA 93943; pratt@cs.nps.navy.mil; (408)656-2865; fax 
(408^656-2814 

flict, if it led to war, would have pitted armored 
units in a large-scale tank battle. In construct- 
ing SIMNET, this paradigm simplified deci- 
sions. For instance, a tank crew views the world 
though small windows. The largest of these has 
an 89-degree horizontal Field of View (FoV) 
and a much narrower vertical FoV [5]. Com- 
pared to the 180-degree-plus horizontal FoV of 
a human in the open, the attenuated view limits 
the computational load to process visual chan- 
nels. Environment simulation was likewise re- 
stricted since crew members remained in the 
tank. Only the rough experience of being in a 
tank, and not the full detail of the surrounding 
environment, needed to be simulated for real- 
ism. Terrain databases could be constructed 
with only features influencing tank warfare. 

Distributed Interactive Simulation (DIS) 
[2], the successor to SIMNET, likewise empha- 
sizes vehicles. 

As the New World Order evolved, empha- 
sis shifted from large-scale tank battles to small 
regional conflicts which rely more on individu- 
al soldiers.3 The Dismounted Infantryman (DI) 

2. BBN did a superb job with the existing technology. 
We in no way minimize their accomplishments. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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plays several roles in these conflicts, not all of 
which are currently feasible to simulate. How- 
ever, some roles, like Special Operations Forc- 
es (SOF) or Military Operations in Urban Ter- 
rain (MOUT), lend themselves to simulation. 
These operations require small units of soldiers 
to act in close coordination. The team work 
used resembles the actions of civil police. 
2.0        Protocol Representation of Dl 

SIMNET, as described in [1], was the first 
standard used in a distributed virtual battle- 
field. Since the modeled systems were primari- 
ly armored entities, the protocols and displays 
were optimized accordingly. The systems were 
limited to three basic types: Static (non-mov- 
ing), Simple (no articulated parts), and Tank 
(two articulated parts, turret and gun). SIM- 
NET humans were represented by two meth- 
ods. In early systems, a texture map represent- 
ed the soldier or fire team. Different postures 
(standing, prone, running, etc.) were represent- 
ed by different textures. But when the figures 
moved they appeared to slide. In later systems, 
texture DIs were replaced by fixed models. An- 
imations were created for running and crawl- 
ing. Limited by fixed speed and stride, at differ- 
ent speeds they would "skate" on the terrain. 

For DIS [4] articulations, each Degree of 
Freedom (DoF) has a 96-bit record, containing 
enumerations for articulation type, the chang- 

3. Of the three most recent major U.S. campaigns 
(Granada, Panama, and Persian Gulf), only one, the 
Persian Gulf, involved a large amount of armored vehi- 
cles. 

ing parameter and value. While flexible for de- 
scribing articulation, for entities with large 
number of DoFs, it is an expensive use of net- 
work bandwidth. Table 1 contains a length 
comparison between DIS and our optimized lo- 
cal method developed for the project. 

3.0       Human Figure 
For this project, we used the human figure 

model created by the University of Pennsylva- 
nia for their Jack Program. The model was con- 
verted to MultiGen Flight format to be compat- 
ible with the visual system, NPSNET-IV [6], 
allowing the model to be loaded by SGI's Per- 
former API like other entity models. 

The figure has 39 DoFs (Figure 1) in 17 
joints. The torso has one joint at the waist. The 
neck has joints connected to the torso and head. 
Each arm has three joints: shoulder, elbow, and 
wrist. Each leg contains four joints: hip, knee, 
ankle, and toe. 
4.0       System Architecture 

The system architecture balances network 
loading, computational resources, and system 
requirements to optimize available equipment. 

All network traffic used a single Ethernet 
segment, reducing the number of physical con- 
nections otherwise required by the number of 
point-to-point logical connections. 

The design establishes two logical net- 
works (Figure 2), one for point-to-point (TCP/ 
IP) communications for optimized local for- 
mats, another for broadcasting (UDP/IP) DIS. 
The single physical network cut down the com- 

Component DI_guy DIS 2.0.3 Difference 

Header / Body 76 190 114 

Articulations 156 624 468 

Total 232 814 582 

Table 1: Comparison of the PDU byte length to represent a 39-DoF Human Figure 
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putational resources, but it also limits future 
growth by maximizing potential system bottle- 
necks. 

5.0 Component Functions 
While each component is itself a complex 

system, our discussion considers the interface 
between systems, specifically network mes- 
sage formats. We will refer to the components 
of the DI_DISPLAY_DATA_MESS structure 
(Figure 3), the complete set of articulations and 
state data for the human icon. 

5.1 ISMS VME Hardware Controller 
The Individual Soldier Mobility System 

(ISMS) controller is a VME-based real-time 
computer whose primary functions are physical 
hardware control and monitoring of user input 
sensors. The user interface consists of three 
systems, the mobility platform, the sensor suit, 
and the head-mounted display (HMD). 

The mobility platform resembles an exer- 
cise unicycle with a seat and pedals. The seated 
user controls the direction of the icon in the vir- 
tual world by swiveling the seat with his hips, 
and icon speed with pedal speed. The hardware 
applies pedal resistance based upon pedaling 
speed and terrain slope. The X-Y location of 

Neck 
(3 DoF) 

Head (3 DoF) 

Shoulder (3 DoF) 

Elbow (1 DoF) 

Waist   j* 
(3 DoF)/^/ 

ip (3 DoF) 

Ankle 
(3 DoF) 

Wrist 
(3 DoF) 

Knee 
'(IDoF) 

Toe (1 DoF) 

Figure 1. DoFs 

the soldier in virtual space is computed from 
pedal speed and seat torque. 

The user wears a sensor suit, a number of 
limb attachments that output arm position and 
upper body orientation. The ISMS controller 
uses the raw input to fill in the ARM_ANGLES 
data for the arms and the waist position. 

The HMD displays the virtual environ- 
ment to the user and outputs head position. The 
HMD sensor data and the sensor suit input are 
used to compute neck and head position. Eye 
position, in world coordinates, is computed 
with an offset from the icon's world position 
and the computed offset to the head. 

5.2 Dl_guy 
The ISMS/DIS interface (DI_guy) pro- 

cess is a communications server, elevation 
server, and a data display device. As a commu- 
nications server, it dead reckons the human fig- 
ure icons and formats DIS-compliant Protocol 
Data Units (PDUs). A copy of the terrain data- 
base provides the ISMS with elevation and 
slope for a given location. A primary use of 
DI_guy is to debug the system by showing cur- 
rent location, status, and parameter values. 

The ISMS updates the DI_guy process at 
60 Hz. DI_guy computes elevation from the X- 
Y and the terrain. The normal of the polygon 
the virtual soldier stands on is computed and 
given to the ISMS to compute resistive pedal 
loading. The data then passes to Jack to com- 
pute the remaining joint angles. Once Jack fills 
in the LEG_ANGLES for both legs, DI_guy 
forwards the data to the display devices. 

5.3 Jack 
Locomotion is computed from the global 

velocity vector and compass heading of the sol- 
dier. Current time is recorded at each footstep, 
and the time at each update determines the 
proper frame of the stride to display. A flag in 
the update packet indicates whether an entity is 
controlled by an ISMS operator, or some other 
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source. If not ISMS-based, the figure's upper 
body is animated with a naturalistic arm swing. 

Locomotion computations are only per- 
formed when the figure is in a standing posture. 
The posture can only change when the figure is 
not walking; thus a figure must stop to change 
posture, and stand up to walk. These restric- 
tions avoid undesirable system behavior. 

Additionally, a mechanism is provided for 
a forced stop. In normal conditions, the figure 
stops by slowing down and taking a final step 
when velocity drops to zero. Upon colliding 
with a fixed object, however, this behavior is 
unacceptable. A flag in the update packet indi- 
cates a sudden stop. When set, the figure re- 
turns to the default standing posture and the 
current step is canceled. 

Upper body angles of the ISMS operator 
are measured by the body suit and sent to Jack, 
which performs simple validity checks. The an- 
gles are assigned to the corresponding joints. 

A special case is the head/neck joint pair. 
These are not measured by the suit, but are de- 
rived from the viewpoint orientation (measured 
with a head-mounted sensor) and torso orienta- 
tion. Since viewpoint orientation is in the glo- 
bal frame, the head/neck joints are adjusted so 
the simulated human's head orientation match- 
es that of the viewpoint by subtracting the torso 
bend angles from the viewpoint orientation. 

A correction is also done on the shoulder 
and head joints while the entity is prone, or un- 
dergoing a posture transition. Since the opera- 
tor is always upright, not all measured joints 
correspond to the correct simulated posture. 
For example, if an operator firing a rifle goes 
prone (indicated by hitting a switch on the ri- 
fle), and raw joint angles are used, his arms will 
go into the ground since the simulated torso ori- 
entation is roughly parallel to the ground plane, 
and the simulated human looks into the ground. 
To correct, torso orientation is used as a correc- 

tion factor for the shoulder and neck joints 
while prone (or in transition), thus the simulat- 
ed soldier always has arms and head in the cor- 
rect global orientation. 

5.4        NPSNET-IV 
The three display devices, the two HMDs 

and the Walk-In Synthetic Environment 
(WISE) (Figure 4) use NPSNET-IV [6], a 3D 
battlefield simulator, as the visual display tool. 
Since the soldiers can see the other non-ISMS 
entities in the simulation, they read the DIS net- 
work for the status of the other entities. The sta- 
tus of the ISMS humans goes over the point-to- 
point network. 

For our demonstration (at Fort Benning), 
we used three variations of NPSNET. The first, 
the WISE, incorporated three large screen pro- 
jection monitors (Figure 4), providing the user 
about 270-degrees FoV, each screen eight feet 
wide by six feet tall with 960x680 pixels. The 
low resolution produced minimal aliasing arti- 
facts. Four speakers surrounded the ISMS, 
driven by a process that monitored the network 
and computed sound source location and 
strength. Together, the sound, force feedback 
from the ISMS, and the WISE display, pro- 
duced a convincing environment for the user. 

The WISE was only large enough for one 
solider at a time. The other two soldiers wore 
Kaiser Electrooptics HMDs with Polhemus 
head-tracking sensors. The two HMDs, one 
high and one medium resolution, provided im- 
mersive views of the environment. 

The final display was the stealth platform 
that views the simulation without creating mes- 
sage traffic. The stealth sat in front of the sol- 
dier in the WISE and mirrored the network rep- 
resentation, allowing the soldier to verify upper 
body positions during hand and arm signals. 

6.0        Network Implementation 
With two logical networks, the visual sys- 

tems have two paths to receive updates for each 
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ISMS 
1 

ISMS 
2 

ISMS 
3 

Nonstandard packet communications 
Point to Point 

DI_guy 
ISMS/DIS 

Interface 

NPNSET-DI 
HMD-1 

NPNSET-DI 
HMD-2 

Jack 
Workstation 

.   NPNSET-DI 
Walk In Synthetic 

Environment 
(WISE) 

Figure 2. Logical Network Connectivity 
DI entity, one via the point-to-point connec- 
tion, the fully articulated model, the second 
from the DIS PDUs put out by DI_guy. To 
avoid icon duplication, a filtering system was 
set up to discard DIS PDUs coming from 
DI_guy. 

All ISMS subsystem internal connections 
are point-to-point with DIS communication 
broadcast. However, the drawback of point-to- 
point communications was that a message had 
to be sent to each visual system. 

The basic message is sent from the 
DI_guy process to update the graphics process. 
As above, for ISMS systems, Jack fills in the 
lower body angles and checks upper body an- 
gle limits. The ISMS controller fills in the re- 
maining information. On non-ISMS systems, 
Jack fills in all joint information and location is 
determined from algorithmic computations. 

To avoid a needless conversion and "un- 
conversion," we rejected the DIS round-world 
coordinate system for our 16X16 kilometer vir- 
tual area in favor of SIMNET's flat-world sys- 
tem. 

7.0        Demonstrated Scenarios 
At INCOMSS-94, we demonstrated a 

multi-soldier system using three scenarios. The 
first had two soldiers "dismount" from a Mod- 
SAF-controlled M-2 Bradley, run to a building 
and check for emptiness. The third ISMS repre- 

sented an enemy soldier. Since weapons effects 
were not implemented, when the friendlies en- 
tered the building, the enemy ran out the back. 
The friendlies then returned to the M-2. 

The second scenario was similar to the 
first except that the virtual building under as- 
sault corresponded to the actual building with 
our audience. At the end, one of the ISMS op- 
erators tossed a grenade though the door. 

The final scenario had an ISMS operator 
give a series of arm and hand signals. These 
three scenarios mark the first time an articulat- 
ed icon under human control has been shown in 
an DIS environment. 

For the demonstration, the exercise net- 
work was divided into separate segments for 
the DIS and SIMNET protocols, connected by 
the LORAL PDU translator whose function 
was to convert DIS PDUs into the correspond- 
ing SIMNET PDUs and vice versa. On the DIS 
side, no noticeable delay between a moving 
ISMS soldier and the corresponding action on 
the DIS visual displays was observed. Howev- 
er, there was a consistent seven second delay 
for events on the SIMNET side. 

To ensure consistent body orientation and 
posture, both ISMS and Jack updated the dis- 
plays faster than the frame rate to account for 
the asynchronous nature of the SGI graphics 
pipeline and to achieve the least possible delay 
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TYPE ARM_ANGLES 
wrist[3] 
elbowtl] 
shoulder[3] 

TYPE LEG_ANGLES 
toe[l] 
ankle[3] 
knee[1] 
hip[3] 

TYPE BODY_ANGLES 
D0F_6_ent i ty_origin 
D0F_6_view_point 
neck[3] 
head[3] 
waist[3] 
LEG_ANGLES left,right 
ARM_ANGLES left,right 

DI_DISPLAY_DATA_MESS 
length 
type 
entity 
BODY_ANGLES body 
D0F_6_rifle_location 
velocity[3] 
status 

Figure 3. DI_guy Message Format 
between action and display. The ISMS sent out 
data as fast a possible--30-60Hz--to the DI_guy 
process, overwriting any pending messages. 
The same was done from DI_Guy to NPSNET. 
While this placed excess packets on the net- 
work, it did accommodate different process cy- 
cle times and reduced apparent latency. 

8.0 Future Work 
Efforts to insert an articulated human into 

the virtual world are just beginning. Following 
are some continuing and potential projects. 

8.1 Ship Walkthrough 
Ships represent one of the worst possible 

situations for a walkthrough. They possess the 
complexities of a building, and have to be 
smaller, self-contained, more intricate spaces. 
We envision two fundamental applications to 
ships. The first is human factors design. It is 
difficult to get a sense of reading instruments, 
say, aboard a swaying, heaving ship. The ISMS 
with a HMD can immerse the user in the envi- 
ronment with pedal force used to change ship 
motion. We could then determine the configu- 
ration of spaces and equipment. The second use 
would be familiarization. Ships have a large 

number of cables, compartments, piping, etc. A 
virtual ship model could be created. By turning 
systems off, such as the bulkheads (walls) and 
highlighting others, such as fire fighting sys- 
tems, ship personnel could move through the 
environment to get a grasp of the layout. 
8.2 Medical Corpsman 

We have demonstrated the population of 
the world with icons moving under human con- 
trol. A side effect of this capability in synthetic 
battlefields is that icons will be injured and re- 
quire medical care. ARPA has started a pro- 
gram to train paramedics in the safety of the 
DIS environment. The basic capabilities of the 
medic are location of the wounded solider, 
wound identification and treatment, and triage. 

8.3 Police Training 
Many current day police officers require 

the same urban combat skills as the military. In- 
creasingly, skills like hostage rescue, enemy 
identification, situation response, and team 
training are becoming a common part of police 
training. With the insertion of the human into 
the DIS environment, these skills can be prac- 
ticed in simulation. 
9.0       Conclusions 

Fully articulated human figures can be in- 
corporated in DIS, but work is required on ar- 
ticulation parameters. As shown in Table 1, 

8" by 6" Projection Screens 

I       I  Projector 

D 

Stealth Display 

D 
Figure 4. WISE Display System 
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582 bytes per message were saved by not using 
the DIS messages internally. By using a custom 
structure rather than the generic, the number of 
bytes needed to describe the articulations can 
be reduced by a factor of four. The differences 
in length can be attributed to a fundamental dif- 
ference in purpose. For instance, we assume 
that soldiers will not change sides fifteen times 
a second, an eventuality that is fully accounted 
for by the DIS protocol. 

Due to the number of articulations and hu- 
man motion complexity, systems can be ex- 
pected to send packets at the frame rate. As- 
suming 15-Hz, and considering only packet 
size, each soldier produces the network load of 
five to eight tanks or three high performance 
aircraft, potentially crippling a large scenario. 

The computational load of Jack and the 
DIS conversation process did not prove exces- 
sive. Michael Hollick and John Granieri of UP- 
ENN have developed a table-driven Jack more 
suited for low resolution display of human fig- 
ures. Bryant Eastman and Tim Moore of SAR- 
COS have placed the DI_guy functionality into 
a heavily modified NPSNET and will be port- 
ing the table-driven Jack onto the VME real- 
time system in the ISMS. These enhancements 
represent a significant reduction of the number 
of machines and packets required for the artic- 
ulated human. 
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Abstract 

The domain of DIS military training simulators has 
recently been expanding to the level of individual 
combatants. After gaining some experience with an 
individual-level simulator, we have identified several 
areas of the DIS protocol that need to be expanded or 
changed to accommodate individual humans. In the 
Entity State PDU, some information in the Entity Type 
and Appearance fields should be replaced with 
detailed upper body, limb and weapon position 
information. An intelligent human figure animation 
algorithm should be used to dead reckon the lower 
body. Weapons and other objects should gain status 
independent of the entity through the use of a 
modification of the Destructible Entity protocol. 
Finally, the Fire PDU should indicate the scatter 
pattern and direction vector of a burst. 

1. Introduction 

Various users of military training simulators are 
becoming interested in creating simulations for 
individual combatants. In order to take operate with 
other simulation platforms, these systems will be made 
compliant with standards for Distributed Interactive 
Simulation (DIS). While the existing DIS standard 
actually has a mechanism for representing a single 
person, this mechanism is crude and is really only an 
afterthought to the primary goal of representing tanks 
and other vehicles. The Institute for Simulation and 
Training (1ST) is currently involved in a project to 
develop a training simulator for individual soldiers in 

an urban combat environment. As part of this project 
we have identified several areas of the DIS design that 
are inadequate for such a simulator. In this paper we 
discuss several problem areas and possible solutions. 
We first describe the training simulator that provides 
the motivation for this study of DIS standards. We 
next discuss some of the problems with the existing 
Entity State Protocol Data Unit (PDU). We have 
found that the biggest shortcomings are in the 
description of body position and the representation of 
objects; the next two sections thus discuss body 
position and object representation. The final section 
discusses DIS extensions required to represent small 
arms fire in individual combatant simulations. 

2. A simulator for individual combatants 

1ST is currently participating in the Team Target 
Engagement Simulator (TTES) project under 
sponsorship of the Naval Air Warfare Center Training 
Systems Division. The TTES system will be a 
training simulator for small units. The application 
domain will initially be Marine Corps units in urban 
terrain, but could potentially be expanded to Special 
Forces operations, hostage rescue missions, etc. IST's 
role in the project is to develop computer controlled 
hostile and neutral entities. 

TTES is intended to meet specific requirements for 
simulating combat on an individual level: 

• The simulation platform must be reasonably 
compact;   trainees will be confined to a limited 
area. 
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• Trainees should be able to stand, crouch, fall 
prone, and make other small movements to take 
advantage of small but tactically significant terrain 
features. 
• Trainees should be able to use their weapons in as 
natural a way as possible. 
• Body positions and movements should be 
represented and displayed in enough detail to allow 
trainees to recognize important states and actions. 
For example, whether another entity's weapon is 
deployed for use, where the entity is aiming the 
weapon, whether the entity is picking up or 
throwing an object, and where the entity is looking. 
Eventually, the system might allow trainees to 
communicate with arm signals. 
• Friendly, hostile, and neutral entities should be 
represented. 
In the TTES system, an individual soldier will 

stand in front of a large projection screen (or screens) 
on which is displayed his view of the virtual 
environment. Foot switches allow the soldier to move 
and rotate his virtual body in the simulation. Position 
sensors on the soldier's head allow him to move up 
and down, translate, and reorient his virtual body 
without using the foot switches. This configuration 
allows the trainee to make small translational 
movements without using the foot switches. Sensors 
on the soldier's weapon detect the aiming point and 
allow marksmanship training. 

3. The Entity State PDU 

The DIS protocol specification (version 2.0.4 [1], 
[2]) describes the Entity State PDU. As with many 
other aspects of DIS, this PDU was based on an 
original design that addressed tank warfare. Several 
fields of the Entity State PDU have shortcomings for 
individual combatant simulation. 

3.1. Force ID and Alternate Entity Type 

These fields were originally included to allow 
entities to be displayed differently depending on their 
Force ID. For example, force 1 trainees would see 
other force 1 entities as US Ml tanks, but force 2 
entities as T-72 tanks; meanwhile, force 2 trainees 
would see force 1 entities as T-72's and force 2 
entities as Mi's. Unfortunately, this arrangement is 
highly unrealistic for any case where the opposing 
entities do not have similar characteristics. For 
example, the soldiers on one force may have more 
automatic weapons than the soldiers on the other 

force. Some soldier will thus appear to one force to 
have an automatic weapon while to the other force he 
will not. Another problem with guises is that neutral 
entities may have to treat different forces differently; 
the symmetry of appearance is thereby destroyed. 
Since these fields of the PDU are not useful, they can 
be ignored or eliminated. 

3.2. Entity type 

This field is intended to represent static type 
information rather than dynamic state information— 
for example, whether the entity is a life form or a 
vehicle. This information is used to generate an image 
of the entity. For individual soldiers, however, much 
of the information is dynamic. The domain subfield 
(land, air, water, etc.) depends on the current location 
of the soldier. It is not really meaningful for 
individuals and can be ignored. The subcategory 
identifies the [one] weapon carried and is inadequate 
for describing the soldier's load. As we describe more 
below, this subfield should also be ignored in favor of 
a more complete representation of simulation objects 
such as weapons. The country could change if the 
soldier changed uniforms; perhaps it should be 
replaced by a static ethnic type and a dynamic 
"clothing state." Other subfields of the entity type 
field may be left as is. 

3.3. Appearance 

This field is intended to contain dynamic state 
information describing the observable appearance of 
the entity. Part of this field contains vehicle-specific 
information and can be ignored. The life form 
specific information includes posture state and 
primary and secondary weapon status. "Posture" state 
is sometimes actually posture (standing, kneeling, 
prone), and other times activity (swimming, 
parachuting) or movement (walking, running, 
crawling, jumping). This set of states is not 
sufficiently rich for a detailed simulation; it lacks 
important body positions (such as crouching below 
cover, or leaning to peek around a corner) and arm 
positions (to indicate weapon positions, give signals, 
allow throwing motions, etc.). Simulations for 
individual combatants will eventually replace postures 
with limb positions (or joint angles). These new 
human articulated parts will require new enumeration 
values in the DIS standard. Postures may be retained 
for lower fidelity simulations that do not need to 
generate detailed images of human figures. 
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The weapon status portion of the appearance field 
allows three states: stowed, deployed, and in firing 
position. As with posture, an individual combatant 
level simulation will require much more detail. For 
example, the immediate threat of a situation may 
depend on whether an enemy soldier is aiming his 
weapon at the trainee or elsewhere. While it may be 
possible to compute weapon position from detailed 
arm positions, we believe that a new record should be 
added to describe the position and orientation of the 
primary weapon. 

The secondary weapon status part of the 
appearance field is not currently useful, because the 
DIS standard only allows only the primary weapon 
type to be specified in the entity type field. We 
discuss how to expand the treatment of secondary 
weapons as objects below. 

3.4. Location, velocity, and orientation 

The DIS standard specifies that the reference point 
for an entity's location is the center of its bounding 
volume, excluding its articulated parts. This definition 
works neatly for vehicles, which are rigid, but creates 
complications for flexible human entities. We will 
assume that the upper torso is the core component of 
the human entity. 

When a human changes postures, its bounding 
volume and the center point move. This correlation of 
posture and location makes it difficult to maintain an 
accurate display of a human's position. Consider the 
standing soldier falling prone in Figure 1. While his 
location—his upper torso—moves forward and down 
continuously, at some point his state changes 
instantaneously from Standing to Prone. While he is 
still Standing and his location is moving down, it 
would appear to remote entities that he is sinking into 
the ground. Dead reckoning algorithms that use 
velocity exacerbate this problem. 

The discrepancy between torso position and posture 
can provides even more motivation for eliminating 
postures in favor of detailed limb positions in the 
Entity State PDU. For lower-fidelity simulations, 
however, it is still desirable to use postures. To avoid 
the possibly frequent location changes that cause 
erroneous displays on remote simulators, we propose 
to add new low-fidelity location, velocity and 
orientation fields to the PDU. These would indicate 
the status of a rigid human figure whose location, 
velocity and orientation did not depend on posture. 
The existing location, velocity and location fields 
would indicate the true status of the upper torso. In 
our prototype system we are using a human figure 
model that uses a foot as the origin; this is equivalent 

Chest 
height 

Interpreted 
Posture 

Remote 
appearance 

^ time 

Ground- 

Figure 1. Errors in apparent position of entity due to correlation of location and posture. 
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to    using    the    upper    torso    if    all    body-part 
transformations are known. 

4. Position representation 

The examination of the Entity State PDU above 
revealed the need for an improved representation of 
body position for human entities. There are several 
aspects to this problem arising from the fact that a DIS 
system has several different representations for a 
simulated entity. Figure 2 shows these different 
representations. The trainee himself is the true 
position; sensors provide a measured position for the 
simulator platform; the platform forms a DIS position, 
which is transmitted to other platforms; remote 
platforms used dead reckoning algorithms to 
interpolate the trainee's position; and the image 
generator produces an image in the virtual world for 
the remote entity. In each transformation between 
representations there is an opportunity to take 
measurements, make abstractions, encode or decode 
data, sample the data, interpolate between samples, 
add noise, filter noise, compress or expand data, 
introduce delays, decode etc. 

4.1. DIS representations 

The first representation is the human trainee 
himself. His or her position must be measured by 
sensors to create representation 2. The completeness, 

accuracy, and frequency of position sensing 
determines what information the rest of the system has 
to work with. The simulator platform itself uses the 
measured position to recognize movement actions, 
determine the viewpoint for the image generator, to 
detect collisions, detect throwing actions, and perform 
any other modeling tasks necessary. The simulator 
may infer some information rather than measuring it 
directly; for example, from upper torso position and 
hand position, the arm position may be inferred. 

The simulator platform must also create the DIS 
representation of the soldier's position. With the 
current standard, this means that measured body 
position must be abstracted to entity location, 
orientation, posture and other appearance 
characteristics. In the previous section we described 
some of the problems with this representation. 

Remote simulators use a constant velocity or 
constant acceleration dead reckoning algorithm to 
compute position and velocity (representation 4) 
between Entity State PDU transmissions. The source 
vehicle simulator only sends out Entity State PDU's 
when the error between the dead reckoned position 
and the true position is greater than some threshold. 

Finally, the encoded appearance information is 
decoded by the image generator to produce a detailed 
image of the original entity (representation 5) 

Image Generator 

Simulator Platform 
(Position Interpretation) 

Simulator Platform 
(Dead Reckoning) 

Figure 2. Five forms of entity state representation in a DIS system 
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4.2. Existing DIS coherence limitations 

The DIS system only requires new entity state 
information to be transmitted when an error threshold 
has been exceeded. Thus DIS allows an error between 
local and remote position representations in order to 
reduce network traffic. When the inaccurate dead 
reckoned state is updated with a new Entity State 
PDU, the remote entity must either correct the state 
instantaneously or move it over a smooth, but false, 
trajectory to the correct state. While this error is 
unrealistic in any simulation, it may be crucial in a 
detailed, individual level simulation. Soldiers fighting 
in close quarters may depend on accurate movements 
to stay behind covering terrain. 

4.3. Advanced dead reckoning algorithms 

In the previous sections we described the need for 
detailed body position information in the Entity State 
PDU. A human figure requires many more variables 
to represent than a typical DIS tank, whose position is 
typically encoded with a hull location and two 
articulated parts (turret and gun). For example, the 
human body has about 200 degrees of freedom [3]. 
The Jack human figure model used in our prototype 
system has 73 joints [4]. A recent proposal for an 
Entity State PDU for humans suggested 14 articulated 
parts [5]. Even more importantly, the normal motion 
for human limbs is characterized by frequently 
changing accelerations. Thus for the same number of 
simulated entities, human figures would easily require 
more than an order of magnitude more network 
bandwidth than do tanks. 

Under the assumption that joint angle information 
could not be supported in a large-scale simulation 
exercise, several advanced dead reckoning schemes 
have been proposed. In our prototype system, the 
simulation platform measures head height and applies 
thresholds to abstract a posture for the DIS 
representation. In addition, foot pedals are used to 
control entity speed. At remote platforms, an 
animation sequence constructed with Jack is used to 
recreate a smooth transition between postures, to 
create limb movement for a gait appropriate for the 
entity's speed, and to smooth the transition between 
gaits. 

Even more abstract dead reckoning systems are 
possible. Several research groups in the computer 
graphics community have investigated functional, 
task-level, or goal-directed mechanisms for specifying 
human figure movement [3] [6] [7] [8] [9]. For 
example, if an entity's task were to walk along a give 

line, the animation system could automatically change 
the remote entity's movement behavior so that the 
human figure steps over or ducks under obstacles. An 
intelligent automation algorithm could also be given 
the goal of moving to a destination location; this dead 
reckoning model would move the entity around 
obstacles, turn it to follow corridors, etc. It is not 
practical to require the dead reckoning algorithm to do 
too much, however, because it becomes necessary for 
the simulation platform to sense the trainee's goals as 
well as his position. 

4.4. Coherence problems with advanced dead 
reckoning 

Unfortunately, advanced dead reckoning algorithms 
can introduce additional correlation errors that are 
probably not acceptable. Suppose that the simulator 
could detect a trainee's goal destination and that a 
remote simulator moved a human figure to that goal. 
There is no way to guarantee that the rendered figure 
will follow the same path as the trainee. Small 
differences in time and space could be crucial to the 
survival of the trainee. Even the animated posture 
changes currently in use may result in errors between 
the trainee's intended position and the position of the 
rendered figure. 

An even more basic problem with intelligent dead 
reckoning is that it does require that a trainee's 
intentions can be detected. If a trainee begins to lower 
his body, at what point does the simulator platform 
decide that he is going to go to a Kneeling or Prone 
state? The trainee's simulator platform is in effect 
sampling his actions when it computes abstract 
postures; the remote platform, as it generates smooth 
transitions, is effectively applying a low-pass, 
smoothing filter to the samples. Delay is inherent in 
this process. The remote simulator can only reflect 
the state change after it has already happened. 

Clearly, experimentation with the end users will be 
necessary to determine an adequate compromise 
between network load, smooth visual displays of 
moving figures, and coherence between the trainee's 
state and the remote visual display. We expect the 
compromise to have these characteristics: 

• The trainee's lower body will be partly 
instrumented, but for the most part will be 
abstracted locally and recreated remotely. This is 
reasonable because the trainee is constrained to 
stay in/on the simulator and cannot actually use his 
legs to move realistically.    The gait would be 
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reconstructed from the upper body position, 
orientation, and velocity. 
• The animation sequences for movement will be 
based on dynamic models and will [locally] 
constrain the trainee in terms of acceleration, 
change of direction, and gait change. Actions that 
are instantaneous with, say, foot pedal controls will 
not necessarily take effect instantaneously, even at 
the local platform. 
• Movements that the trainee can control with the 
position of his body, such as rising and falling, or 
quick moves within the range of a head position 
sensor, will be reflected as quickly as possible on 
the local and remote platforms, even if this causes 
a jump in position on the remote display. 
• The upper body will be more completely 
instrumented to allow throwing motions, object 
manipulation, arm signals, head turning, etc. 
These motions would not be dead reckoned, but 
would be updated at frequent intervals (e.g. 5- 
lOhz). 
• Network bandwidth requirements will be reduced 
through the use of a human-specific Entity State 
PDU variant, or data compression, or both. 

5. Object representation 

The representation of objects in DIS is essentially 
limited to entities. Having representations for other 
objects would be useful in general, but is especially 
needed for individual combatant level simulations. 
Soldiers typically carry many pieces of equipment, 
supplies, and weapons that they use in combat. They 
may carry ammunition for themselves and squad 
weapons, pieces of squad weapons, grenades, mines, 
entrenching tools, radios, flak jackets, binoculars, etc. 
in addition to their own weapons. These objects are 
worn in various positions, held in various ways and in 
various combinations, used stowed, expended, 
dropped, picked up, put in other objects, and given to 
other soldiers. 

If objects are to be present in the world independent 
of entities, then they require a new type of PDU to 
indicate their status. DIS 3.0 [10] has introduced the 
Destructible Entity protocol which could be used for 
dynamic objects. This protocol is intended for 
inanimate objects. The object does not itself broadcast 
any PDU's; rather, entities which act upon the object 
broadcast "Modification" PDU's when they change 
the object. Entities can destroy the object. This 
protocol would be appropriate with the understanding 
that the entity would not have to transmit a continuous 

stream of Modification PDU's. The simulator 
controlling the carrying entity would become the 
temporary owner of all of the carried objects. We 
propose that the Modification PDU be extended to 
allow an entity to indicate that the objects are 
henceforth attached to itself. 

If a soldier (or vehicle, for that matter) is carrying 
objects, then it should indicate what and where they 
are. In the spirit of the Destructible Entity protocol, 
the attached objects could be described once and then 
not described again in a PDU unless they were 
modified somehow (expended, dropped, etc.). The 
initial description would have to include the 
attachment locations on the entity. Naturally, the 
attachment positions and the objects themselves would 
be enumerated in the DIS standard. 

6. Weapons fire 

Weapons fire is represented in DIS with a Fire PDU 
followed by a Detonation PDU. Each of these can 
indicate in a Burst Descriptor that the event contained 
multiple rounds. However, there is no provision to 
indicate where each round went. This limitation is 
acceptable in a simulation with aggregate entities (e.g. 
fireteams), but not in a detailed simulation with 
individual soldiers. Each round may be significant. 
The rounds in a burst will normally scatter and could 
strike multiple targets or impact in distant locations. 
At the very least, the Fire PDU should indicate a 
standard scatter pattern; detonation PDU's should be 
capable of indicating multiple impact locations from 
the same fire event. 

In addition to impact locations, simulations also 
need to know munition trajectories (at least roughly) 
because soldiers hear the rounds passing by even if 
they don't impact nearby. The trajectories cannot 
always be computed from impact locations because 
rounds may leave the terrain database before 
impacting. Fire PDUs must therefore provide basic 
trajectory information. 

7. Summary and conclusions 

In the process of developing the TTES system we 
have discovered several areas where DIS is deficient 
for representing individual soldiers. 

• The Force ID, Alternate Entity Type, domain and 
subcategory parts of Entity Type, and posture, 
primary and secondary weapon status parts of 
Appearance are not useful for high-fidelity 
simulation and can be ignored. 
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• To provide approximate state information for low 
fidelity simulations, posture and weapon positions 
can shadow the true configuration information; 
new fields for low-fidelity location, velocity and 
orientation would provide values appropriate for 
use with posture. 
• Entity location should refer to the upper torso. 
Entity state should include detailed upper body 
limb positions to allow detailed representation of 
entity actions. 
• New fields should be added to the Entity State 
PDU to describe the position and orientation of the 
primary weapon. 
• A new dead reckoning algorithm for human 
entities should be introduced for animating gaits 
based on location (i.e., height) and velocity. 
Updates to the location of remote entities should be 
instantaneous rather than smoothed. 
• A protocol such as the Destructible Entity 
protocol should be introduced for representing 
objects. However, it should be possible for human 
entities to attach objects to themselves and take 
ownership of them. 
• Fire PDUs should indicate the scatter pattern of 
multi-round bursts. In addition, they should 
indicate the initial direction vector of the burst. 
With these changes we expect that DIS could 

support an individual soldier simulation with an 
adequate level of simulation fidelity, visual realism, 
and network load. 
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Abstract 

Contemporary Distributed Interactive Battle 
Simulations are becoming increasingly large and 
complex and therefore, difficult to manage. The 
success of future projects will depend, in part, on 
the ability to manage aspects of the command and 
control of forces in an automated and highly 
predictable manner. Artificial intelligence in 
general and Artificial Neural Networks in 
particular offer attractive mechanisms to automate 
command and control. This paper describes the 
Linear Interactive Activation and Competition 
(LINIAC) Model Artificial Neural Network, a high- 
speed, object-oriented model, for use in several 
battle simulations and has demonstrated that this is 
a feasible application of this technology. 

1. Introduction 

A fundamental consideration in designing 
battlefield simulations is that they approach realism 
as faithfully as possible. One difficulty in 
simulating battlefield command and control is 
replicating the decision making which it is based 
on. The purpose of many simulations is to train a 
part of its audience to make acceptable decisions. 
Here it is appropriate to have human operators 
perform decision making functions. However using 
humans to make decisions for the Opposing Forces, 
or friendly adjacent and rear forces may be counter- 
productive and automated Command and Control 
may be highly desirable. To provide such 
automation, many current simulations rely heavily 
on decision algorithms and rule bases coupled with 
human roleplayers to emulate the human element. 
Problems may develop because algorithms and rule 
bases may not be sufficiently error-free and human 
roleplayer resources  are  sometimes  difficult to 

commandeer. Automation using algorithms and 
rule bases may also lack sufficient flexibility to 
meet changing scenario requirements without 
elaborate programming. Artificial Neural Networks 
(ANNs) offer a cost-effective alternative to 
algorithms and rule bases for generating or 
replicating human decision making. ANNs are 
effective because they are based on examples, rather 
than hard-coded implementations. 

2. The Need for Flexible AI Command and 
Control 

There are some obvious difficulties with using 
algorithms and rule bases to replicate human 
decision making. Typically they are hard-coded and 
are difficult to change if the needs of the simulation 
change. Recent global military developments, such 
as the dissolution of the Soviet and Eastern Block 
forces and the emergence of third world military 
forces, have changed the command and control 
requirements for battle simulations. Today 
simulations must be flexible enough to 
accommodate a variety of military doctrines and 
modes of operation, often requiring rapid 
reconfiguration. If it is necessary to implement 
algorithms and rule bases using syntactically rigid 
programming or data-entry languages, their 
development requires programming technicians to 
translate the command and control requirements 
into the appropriate language syntax. The steps 
required to translate the knowledge of experts into a 
formalized syntax introduce the possibility of 
miscommunication and misunderstanding, which 
can result in program errors. Even when good 
understanding exists, logic errors can be generated 
inadvertently. A significant amount of testing is 
required to detect and remove such errors. Finally 
rule bases and algorithms usually must account for 
all   possible   contingencies   when   analyzing   a 
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problem so that unaccounted for conditions will not 
generate unintended results in the simulation. 
Significant engineering effort is needed to ensure 
that all reasonable situations are represented in the 
code. 

Using Artificial Neural Nets for automated 
command and control can avoid many of these 
limitations. ANNs can be implemented as an object 
class with standard interface and decision methods. 
A simulation can then create many decision objects 
of that class, each with its unique environment 
consisting of input information and a 'connection 
matrix' which encapsulates the behavior of a 
particular ANN. The decision method is a 
relatively simple mathematical process which is 
valid for a wide variety of decision applications. A 
well-designed ANN object can accommodate any 
compatible decision base and faithfully replicate the 
cognitive reasoning that it has been trained with. 

It is possible to design training methods for 
ANNs using standard graphical interface 
techniques that do not require any programming 
expertise on the part of the trainer, so that 
knowledge experts can train them directly without 
having to rely on a technical interpreter. Experts 
can quickly, often intuitively, learn how to use such 
interfaces to train ANNs directly in sessions that 
last only an hour or two. Experts can also define 
the command and control variables using English 
words and phrases that make sense both to the 
trainer and the training audience. When training 
ANNs, it is not necessary to provide examples for 
all possible input combinations as it generally is 
with algorithms and rule bases. A neural net may 
have thousands to hundreds of thousands of 
possible input combinations, but a small, 
representative sample of the total is sufficient for 
adequate training. ANNs are very good at 
extrapolating the examples they were trained with 
to cover other, similar examples. The key to good 
training, of course, is to include examples which 
cover the broadest possible range of input 
conditions. 

If a simulation must be able to accommodate 
multiple scenarios to reflect different military 
doctrines or modes of operation, then it is possible 
to train ANNs for each scenario and initialize 
appropriate ANN objects for the specified scenario 
with the required behavior when starting the 
simulation rather than modifying the simulation 
code. This technique also applies to automated 
command and control for multiple echelons. The 
decision structure for several echelons may be 

similar in that each echelon looks at the same set of 
conditions and makes equivalent decisions. The 
only difference may be that each echelon may use 
different reasoning to arrive at comparable 
decisions. Therefore it is possible to apply a single 
decision structure to several echelons, but have each 
echelon uses a set of ANN objects uniquely trained 
to reflect its individual reasoning. 

Finally it is possible to train neural networks 
incrementally. If an ANN demonstrates 
inappropriate behavior within a simulation, it is 
possible to retrain it quickly. In fact, training 
through simulation scenarios is a very effective 
training method. 

3. The Linear Interactive Activation and 
Competition (LINIAC) Model 

As part of its research in using ANNs for 
command and control applications, Pathfinder 
Systems, Inc. has developed the Linear Interactive 
Activation and Competition (LINIAC) ANN 
Model. Figure 1 illustrates how the LINIAC model 
makes decisions. Each LINIAC ANN consists of 
an input vector, shown as downward pointing 
arrows, an output vector, shown as right-pointing 
arrows, and a connection matrix. The input vector 
defines a set of input conditions, where each 
condition can assume one of two or more states. 
The actual number of conditions and states for a 
given ANN is arbitrary, but cannot change once the 
ANN has been trained without requiring retraining. 
In the LINIAC model, each condition may assume 
only one state, which is expressed by a 1 value, 
while all other states for that condition are 
expressed by a 0 value (although weighted 
numerical values are also possible). The LINIAC 
output vector consists of one condition also with an 
arbitrary number of states. The black dots, shown 
at the intersection of each horizontal and vertical 
arrow, represent the neural connections between 
input and output vector elements and the size of 
each dot suggests the relative strength or 'weight' 
of the connection. The weight determines how 
strongly each input state influences the 
corresponding state of the output vector. A 
LINIAC decision is always selected as the output 
state with the greatest cumulative value. The key to 
the successful operation of LINIAC is establishing 
the values of the connection matrix during training 
so that a given input pattern will always produce 
the outcome which the trainer has specified. 
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Figure 1: LIN I AC Artificial Neural Net Concept 

4. Defining and Training LINIAC Neural Nets 

To facilitate creating and training LINIAC ANNs, 
Pathfinder Systems created the Course of Action 
Planner (COAP) application. COAP is a graphic- 
based interactive program that provides the ability 
to define and train neural nets quickly and easily. 
COAP uses two basic views or windows. The first 
provides the ability to define and name the 
conditions and states for the input and output 
vectors. The second enables an 'expert' to train the 
ANN and to review and test previous training. A 
training session consists of entering sets of 
representative examples by selecting a state for each 
condition and commanding COAP to learn the 
behavior specified in those examples. 

ANNs must be trained before they can function 
correctly. Training establishes the 'neural' 
connection values (weights) between the input and 
output vector elements of the network. LINIAC 
neural nets retain their training by saving essential 
information in an external text file. This output file 
is useful both for initializing an instance of a neural 
net in a client object (application) or for review and 
additional training using COAP. In addition to 
defining the connection matrix, this external file 
contains information to enable the neural net 
engine to map input and output state values to the 
correct locations in the input and output vectors. 
Training usually requires a few seconds to several 
minutes per example to process. The length of time 
depends primarily on the number of examples 
already  incorporated  in  the  network  and  how 

closely a new example replicates a previously 
learned example. Since thirty to fifty examples may 
be adequate to provide acceptable output decisions 
over a wide range of input conditions, a user may 
be able to train a network within a period of 
several hours. On rare occasions, it is possible for 
two training examples to represent patterns which 
are inconsistent so that the training algorithm 
cannot resolve the differences (i.e. the back 
propagation algorithm cannot converge to a 
solution). If this happens, it is necessary to review 
the training examples, eliminate the anomalies and 
retrain the network. 

The Review mode enables the trainer to review or 
test all previous training. Since COAP preserves 
all training examples in its external text file, it is 
possible to break training into multiple sessions. 
Thus the trainer may review previous training in a 
later session for validation or to avoid redundant 
input. This also enables a user to retrain or provide 
additional training for a neural net if the initial 
training proves to be incorrect or inadequate for the 
intended application. Another Review mode 
function is the Performance Test option. This 
option performs a number of sequential executions 
of the neural net and displays the average execution 
time to the user. On an 33 mHz. 80486 PC the 
average time will vary from a few milliseconds to a 
few tens of milliseconds, depending on the size of 
the vectors (and therefore the number of 
connections). This contrasts favorably with many 
other current neural net implementations which 
require substantial computation times.   The speed 
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of LINIAC's computation cycle makes it quite 
attractive for many command and control 
applications since it can typically perform one to 
several orders of magnitudes faster than comparable 
rule-based or algorithmic implementations. 

5. LINIAC application to Automated Command 
and Control: The ROLEPLAYER Model 

PSI originally developed the ROLEPLAYER 
model to demonstrate the feasibility of using ANNs 
rather than human roleplayers to control portions of 
a battle simulation. There are many ways to apply 
neural nets to automated command and control 
ranging from single neural nets to very complex 
decision structures composed of layers of neural 
nets. Although single LINIAC ANNs consider only 
a limited number of input conditions and make 
relatively simple decisions, it is possible to group 
multiple ANNs into a structure which is capable of 
making much more sophisticated decisions. This is 
analogous to the way that complex organizational 
decisions, particularly battle decisions, are typically 
made. The structure approach is also attractive 
because it allows the designer to partition complex 
decisions into simple components which are much 
easier to understand, design, and train. The success 
or failure of using LINIAC ANNs for command and 
control depends heavily upon the validity of the 
design of the decision model. The value of the 
LINIAC approach is that simple elements can be 
designed, redesigned and connected into a structure 
that accurately represents the decision making 
process of a real military unit. A workable decision 
structure will probably be a hybrid of algorithms, 
rules and neural nets working together. Algorithms 
are needed to transform simulation data into data 
types (command and control variables) that are 
appropriate for input into the ANNs of the decision 
structure. Of course, not all types of decisions are 
best implemented through neural nets - when the 
number of input possibilities and the number of 
outcomes is small, algorithmic rules should be the 
better choice. We tend to use neural nets when the 
possible combinations of the inputs, even if they are 
not fuz2y, can run into the thousands, or hundreds 
of thousands. 

The training of a battlefield decision ANN is 
almost trivial if it is performed by a subject matter 
expert. What is very important is to determine the 
overall decision structure for an activity represented 
by an ANN (this can be, for example, a specific 
human C2 function, such as "armor battalion (BN) 
S2 - evaluate the current situation"). It is to be 
expected that a decision structure design will 
undergo an evolutionary process which will 
improve its realism. The principal elements of a 
design include the set of decisions (the ANNs) that 
the simulation requires at each command and 
control point, the structure of each decision process 
(the conditions and states of each ANN), the 
connections to the simulation data base and the 
interconnections between the selected ANNs. How 
individual ANNs are trained is of lesser importance 
initially, since training or re-training can occur 
after implementation. 

ROLEPLAYER demonstrates the interaction 
between several friendly (Blue) battalions, 
controlled by a human operator and several 
opposing force (Red) battalions controlled primarily 
by ANNs. The model uses six neural nets: three at 
the battalion level, two at the company level, and 
one at the platoon level. Figure 2 shows the 
structure and interaction of the neural nets at the 
battalion level. Each net receives a number of input 
conditions, which are listed above each net box, and 
produces a single outcome decision value. Each 
input condition and the output decision are 
described as a set of states (the states are not shown 
on these figures). For example, the Enemy Move 
State condition, which is an input to all three neural 
nets, can assume one of the States: Marching, 
Attacking, Halted, Defending and Withdrawing. 
The ROLEPLAYER model provides state values for 
these conditions through conventionally-coded 
algorithms. 

The Evaluate Intelligence neural net provides 
an overall intelligence estimate of the enemy 
based on observations encoded in its input 
conditions. This network executes periodically, 
once every five minutes, to produce a current 
assessment. It also can respond to events 
indicating sudden changes in the tactical 
situation. The net emulates the tactical situation 
evaluation activity of the Battalion's Intelligence 
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Figure 2: Roleplayer Battalion Command and Control 

Officer (S2). The appropriate subject matter expert 
to train this net would be an actual battalion S2. 
Note that the intelligence estimate, "Intel 
Estimate", also has a feedback path into the 
Evaluate Intelligence neural net and is an input into 
the Operational Planning neural net. This 
represents communications from the S2 to the 
Operations Officer (S3). The feedback of earlier 
recommendations into the net itself represent the 
fact that situation evaluation is not likely to change 
immediately, without considering previous 
estimates. Conditions which are output from one 
neural net and input into another net must have 
state sets which are identical in the number of states 
and their order. 

The Battalion Operations Planning ANN receives 
the Operational Order and Fragmentary 
Operational Orders (Frag Orders) from higher 
headquarters. It considers this order along with 
other conditions including the Latest Intelligence 
Estimate output from the Evaluate Intelligence 
neural net and determines what course of action to 
take at the battalion level. This net executes 
periodically, once every five minutes or in response 
critical tactical condition changes, to produce a 
current course of action. Depending on the input 
conditions and the encoded training, the ANN will 
recommend to continue carrying out the current 
mission, or to follow another, more appropriate, 
course of action. It essentially emulates the 
immediate operations re-planning and course of 
action determination activities of the Battalion 
Operations Officer (S3). The optimal subject matter 

expert to train this net would be an actual S3 for 
Blue forces, or an Intelligence officer familiar with 
enemy doctrine, equipment, and tactics for the 
Opposing Force (OPFOR). This net also considers 
its last recommendation as one of the inputs, and 
provides its recommendation to the Battalion Frag 
Order net. 

The battalion Fragmentary Operational Order 
(Frag Order) neural network is responsible for 
deciding what Frag Orders the battalion will send 
to the company commanders under its command. It 
executes periodically, once every five minutes, or in 
response to tactical emergencies, to produce a new 
Frag Order. It considers the Course of Action 
decision, produced by the battalion Operations 
Planning ANN, and also its previously issued Frag 
Order as a feedback from its previous execution. 
The most common outcome from this ANN is a 
"Continue" decision, which means that there is no 
change to the order which each company is 
carrying out. Again, the decision it actually makes 
depends on how the network was trained. You may 
observe that the input conditions for each of these 
neural nets appear to be arbitrary. What is included 
as input conditions to a neural net is a decision 
which the simulation designer must make jointly 
with military subject area experts. 

ROLEPLAYER uses similar Frag Order decision 
ANNs at the company and platoon levels to provide 
equivalent Frag Order command and control 
decisions at those levels. The ANN at the company 
level executes once every two minutes, or in 
response to tactical emergencies, and at the platoon 
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level, once every minute, or in response to tactical 
emergencies. The design of these nets is similar to 
the design of the battalion Frag Order net, but each 
net must be trained independently to behave just as 
the company or platoon commander would. 

ROLEPLAYER also processes a Fire Support 
Request ANN at the company level which requests 
external fire support when battle conditions warrant 
it. If the ANN decides to request fire support, 
ROLEPLAYER passes the request to a 
corresponding Battalion Fire Support Coordination 
net at the battalion level. The FSC net will, 
depending on available assets and on the Battalion 
level evaluation of the tactical situation, either 
grant or disapprove the request. If the request is 
granted, the FSC net also decides the allocation of 
appropriate assets (indirect fire or air support) and 
sets the execution of the support activity into 
motion. Time delays between approval of support 
requests and actual support are due to factors which 
may be directly a part of the simulation (such as the 
movement of aircraft), and factors indirectly 
included in the simulation (additional C3 delays, 
time required to shift fires, take-off time of ready 
aircraft, etc.). 

6. Distributed Interactive Simulation (DIS) 
Applications 

The structure of LINIAC neural net inputs and 
outputs are well suited for implementing them in a 
DIS environment. Information can be passed to a 
neural net in he form of Condition : State value 
pairs or Net Name : Condition : State value 
triplets. This can easily be implemented in a 
Protocol Data Unit (PDU) such as the Signal PDU 
in the IEEE standard. Values can be expressed as 
character strings, enumeration types or appropriate 
integer values. The Net name may not be required 
if the command and control application which 
utilizes the neural nets can determine which net(s) 
to execute from the context of the incoming data. 

Another client - server approach has been 
implemented by applying LINIAC to the U. S. 
Army's EAGLE simulation using an Object 
Request Broker (ORB or CORBA) to execute a 
decision structure, which itself is processed as an 
object. The Object Broker passes a number of 
decision variables to the decision object through an 
ORB call. The decision object may exist on a 
different platform than the simulation, and consists 
of a network of ANNs. When it receives an ORB 
call, an interface process allocates the included 
decision variables to the correct ANN input vectors, 

executes the ANN decision making functions and 
returns the appropriate outcomes to the client 
through the ORB return. 

7. Conclusion 

This paper has presented a practical approach for 
using artificial neural nets to perform automated 
decision making in the context of combat 
simulations. Neural nets can be much easier to 
design and implement than comparable algorithms 
or rule bases. A single neural net engine can 
function as a server for an arbitrary number of 
neural nets. The 'code' required to execute a neural 
net can be encapsulated in an external data file, 
including both the connection matrix and the 
condition/state definitions for the input and output 
vectors. Because of this external encoding, the 
behavior of a client can be modified simply by 
substituting a differently trained input without 
changing source code. This greatly reduces the 
amount of time and the expense required to design, 
implement and maintain decision logic/code for 
automated forces. In simulations this provides 
essential flexibility because the behavior of 
automated forces may need to change to reflect 
different scenarios. This also makes it possible to 
replace neural nets whose initial training may 
contain deficiencies. 

Because it is possible to train neural nets using a 
relatively simple graphic interface, it is possible to 
have 'experts' train them quickly and directly 
without requiring intermediate technical personnel 
who may inadvertently introduce personal biases 
into the decision base. This user interface also 
provides the capability to review the training and 
behavior of a neural net and thus provides a first 
level validation for the behavior of the net. Neural 
nets reflect their training examples very faithfully 
and avoid unnecessary errors caused by coding 
anomalies. They are also very good at exhibiting 
behavior for which they have no discrete training by 
extrapolating learned examples to cover those 
conditions, which greatly reduces the time that 
experts must spend in training them. 

The LINIAC neural net implementation possesses 
a very fast execution speed, and even a structure of 
multiple neural nets operating sequentially to 
produce a single decision may easily out-perform a 
comparable algorithmic or rule-based 
implementation. Finally, PSI has verified their 
performance, reliability and accuracy in several 
demonstration projects. 
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Abstract 
This paper describes an architecture for emulation of 

those portions of the higher-echelon command and 
control task which deal with planning and evaluation of 
courses of action. (COA). The architecture described 
utilizes the technique of tree lookahead with game theory. 
Tree lookahead is a technique for computing optimal 
decisions. In chess it is now the preferred method in real 
time. It is precisely the chess application which 
motivates its adoption into an overall command and 
control architecture. Chess is the prototypical war game 
and the ways that chess players develop their strategies 
are not unlike the techniques used by commanders to 
reason about, plan, and evaluate courses of action to 
pursue in a combat situation. The paper examines 
implementation issues associated with this technique. It 
reviews some past work on developing this technique for 
controlling rotary-wing aircraft. It establishes how this 
architecture could be embedded in a virtual simulation 
Computer Generated Forces host (e.g. "Modular Semi- 
Automated Forces" or ModSAF) that would assume other 
command and control functions and thus provide a 
broader context for command and control. 

1. Introduction 

This paper describes an architecture for emulation of 
those portions of the higher-echelon command and 
control task which involving planning and evaluation of 
courses of action (COA). The architecture utilizes the 
technique of tree lookahead with game theory. Tree 
lookahead is a technique for computing optimal 
decisions. It is native to game theory where it serves as a 
tool for both theory and practice. In chess it is now the 
preferred method in real time. It is precisely the chess 
application which motivates its adoption into an overall 
command and control architecture. Chess is the 
prototypical war game and the ways that chess players 
develop their strategies are not unlike the techniques used 
by commanders to reason about and plan the course of 
action to pursue in a combat situation. 

2. Emulation of command and control 

Command and control, as defined by the US Army, 
encompasses a broad range of tasking which can be 

decomposed into four subtasks: (1) Acquire and 
communicate information and maintain status, (2) Assess 
situation, (3) Determine actions, and (4) Direct and lead 
subordinate forces [17]. The lookahead architecture 
provides solutions for the emulation of portions of the 
subtasks of "Assess situation" and "Determine Actions". 

Most direct is the emulation of the subtask of 
Determine actions. Of its five component sub-subtasks, 
the lookahead architecture can be applied to these four: 
develop courses of action, analyze courses of action, 
compare courses of action, and select or modify course of 
action. 

Emulation of the Assess situation subtask is less 
direct. Reference [17] describes that this subtask has the 
commander "continuously evaluate information 
received...to decide whether different actions are required 
from the most recent orders issued". In the paradigm of 
Army command and control, this subtask is separate from 
that of Determine Actions. Its component sub-subtasks 
are: (1) Review current situation, and (2) Decide on need 
for action or change. Note that in practicality, the 
decision not to determine a new action, to instead stay the 
course, is an explicit decision. This practical view 
captures the spirit of the lookahead. The lookahead will 
generate a decision at every decision cycle. The outcome 
of the process may be the continuance of the previous 
decision. The lookahead executes the second sub- 
subtask (Decide on need for action or change) by its 
continual review of the current course of action. It also 
executes much of the first sub-subtask, with the exception 
of the information management portions of that sub- 
subtask. 

In order to perform the broader task of command and 
control, we advocate that the lookahead architecture be 
embedded in a virtual Computer Generated Forces (CGF) 
simulation capable of performing the full range of 
command and control tasking. The paper describes how 
this could be done with the "Modular Semi-Automated 
Forces" (or ModSAF) CGF. 

3. The mathematical theory of games 

The problem of decision making by agents with 
conflicting goals is addressed by the mathematical theory 
of games. The groundwork of game theory was laid by 
Von Neumann and others in the first half of the century 
[14]. This classical work addressed discrete games. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
106 



Differential games that deal with continuously varying 
systems were added later. In computer applications 
everything is discrete. For this reason we will accept that 
continuous games can be approached by a limiting 
sequence of discrete games, and that a fine enough 
discrete game yields an acceptable representation of the 
continuous game. 

Discrete games come in two varieties: ones with 
simultaneous moves and ones with consecutive moves by 
the players. Intuitively, it would appear that either kind, if 
fine enough, could represent a differential game. 
However, the two varieties exhibit vastly different 
properties. It is only the games with consecutive moves 
that admit deterministic optimal solutions, as do 
differential games. For this reason we select the discrete 
game with staggered decisions as our basic model of 
reality. 

We also focus our attention on zero sum games, where 
the gain of any party must exactly equal losses by the 
others. The assumption of zero sum is inadequate for 
most economic and political contexts. A voluntarily- 
consummated market transaction could benefit both 
parties because of the differing utility functions each 
brings to the exchange. Yet in war games it is nearly 
true. Objections may be raised to this assumption 
(deception, pyrrhic victories, mis-perceptions), but they 
can be handled by the mechanics of the lookahead. 
Consider deception. A commander may be tasked with 
attacking a stronghold, with consequent heavy losses, in 
order to deceive the enemy. The lookahead framework 
can accommodate this deception by building in 
appropriate components of the heuristic evaluation of the 
"goodness" of outcomes represented by terminal (or 
"leaf) nodes. Pyrrhic victories are possible outcomes in 
military conflict, but are never a commander's goal. 
Even in the case of deception, a commander would want 
to prevail with minimum losses, but understands that 
conditions will not permit. It is therefore appropriate to 
emulate the commander's thinking in a zero-sum context. 
Perceptions may also enter in and color the commander's 
evaluation of the tactical situation. Both of the players 
may determine that they have lost (one of them wrongly 
deciding so) and act accordingly. This could be handled 
by separate maintenance of perceptual truth versus "true 
truth", and feeding perceptual truth to the lookahead 
engine. 

Within the framework of assumptions noted above, 
classical game theory offers some powerful insights and 
tools. It is proved that zero sum, staggered-decision 
games possess optimal solutions. The solution may, in 
principle, be found by constructing a game tree. It may, 
in principle, be stated as a strategy. 

A strategy is a set of rules. The rule based approach 
that is prevalent in contemporary artificial intelligence 
(AI) falls within the realm of approximate strategies. 
There is a wide class of problems that lends itself to this 
method. The AI community has been busily attacking 
these problems over the last two decades. But some 

problems are too complex and too rich. One that stands 
out is the game of chess. In that area, tree lookahead in 
real time is the method of choice, which has been 
remarkably successful [13]. 

The game tree and the strategy are equivalent abstract 
tools, which, if expanded exhaustively, embody the 
solution of the game. But the game tree and the strategy 
are also practical tools for constructing approximate 
solutions. The nature and richness of the game determine 
which tool is more appropriate for practical use. 

We suggest that the wargame problem at the level of 
the platoon, company, and battalion commanders falls 
outside of the class that yields to the rule-based approach. 
It is rather more like that stylized and abstracted wargame 
chess, and like chess, its solution must incorporate 
lookahead in real time. 

4. The lookahead technique applied to the 
decision-making commander 

4.1 Tree Expansion 

Figure 1 illustrates the game tree associated with the 
lookahead process. Without loss of generality, assume 
that the game tree describes the decision-making process 
for the Blue Commander; his opponent being the Red 
Commander. Each circle in the diagram (called a "node") 
represents a complete battle situation—characterized by 
position and disposition of both enemy and friendly 
forces. The topmost node (at "ply-level" 0) represents the 
current battle condition that calls for a decision from the 
Blue Commander. To each potential decision alternative 
(represented in the diagram by the tokens "Attack", 
"Defend", and "Hold") there corresponds a branch 
emanating from the node. Each branch represents the 
unfolding battle histories resulting from implementation 
of the selected decision. 

Nodes immediately below the top-most node are at 
ply-level 1 and represent the potential battle outcomes 
one ply-interval later. Further development from ply-level 
1 proceeds by alternating the turn of the decision-maker 
to the Red Commander. All possible decisions by the 
Red commander are considered for each node, and 
corresponding branches are constructed. These branches 
are continued to ply-level 3, where the Blue commander's 
decisions are again used for branching. The tree is 
recursively developed in this fashion as deeply as 
computing and time resources permit. Nodes correspond 
to specific points in time. Branches represent the 
unfolding development that results in the next-lower node 
outcome when starting from the decision-making 
commander's decision. The direction of time in the 
diagram is down. 

When the game tree cannot be exhaustively developed, 
the leaf nodes do not represent obvious win-lose-draw 
outcomes, but rather intermediate and indeterminate 
outcomes. In this situation (which is normal given 
resource constraints) the leaf nodes need be assessed by a 
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heuristic score which can conveniently be bounded 
between -1 and 1; 1 being best for Blue and worst for 
Red. The heuristic score is propagated up the branches to 
become a score which valuates the entire decision- 
making opportunity. This propagation is done by 
simulating the action. Ideally this might be done with full 
virtual modeling of the platforms involved. 
Considerations of computer resources will usually restrict 
these calculations to determining motion and attrition on 
an aggregate level. 
Time 

Leaf Nodes for 
the Lookahead 

O ■ Derived Tactical Situation 

A, D, H    = Space of Command Decision 
Courses of Action (Example: Attack, 
Defend, Hold) 

1 = Choose & Evaluate (Play Out) a 
Decision Option 

H(») = Compute Heuristic Score of Tactical 
Situation ("Goodness Of Outcome") 

Figure 1: Illustration of the Tree Lookahead with 
Technique 

Note, however, that the attrition equations, introduced 
in [7] and expanded upon for this application, are not 
subject to the criticisms that Lanchester's equations 
usually raise [6]. This is because the equations are 
embedded in the overall decision-making process of 
lookahead tree expansion which can adequately respond 
to changing positions. The equations are applied only for 
the short duration of ply-intervals. Even if some effects of 
attrition, such as retreat and regrouping are not 
represented inside the ply-intervals, an adequate spectrum 
of decisions is available at the nodes to compensate. 

As scores are propagated back up the tree, several 
branches meet at each node bringing with them varying 
scores. If it is a Blue commander's decision node, the 
branch that scores highest is selected. If it is the Red 
commander's, the branch with the lowest score is 

selected. The score of the selected branch becomes the 
node score. 

The propagation is continued all the way up to the root 
node. The score reaching the root becomes the overall 
assessment of the situation. The decision engine returns 
the command associated with the selected branch. 

It has been the experience in chess that the assessment 
refined by several levels of tree lookahead is greatly 
improved over the original heuristic assessment, and not 
sensitive to the details of the heuristic scoring. 

Note that the decision made allows for 
Red's most effective counter moves. Using 
the classical "min-max" process from game 

Blue's Turn theory, Blue embarks on a course of action 
leading to the "best achievable outcome"— 
one that Red cannot prevent. 

Even though the selected branches of 
the tree represent the unfolding of long 

Red'sTurn ranSe plans, only the initial phases of these 
plans are put into operation-unless Red 
were to behave at each decision point 
exactly as predicted. Once a decision is 
reached, handed down, and execution 
begun, the whole process starts over again. 
Actual situations rather than preplanned 
moves drive the decision process. Mistakes 
by Red are not anticipated (because of the 
min-max paradigm), but are exploited as 
they occur. 

4.2.      Score assessment 

Two kinds of scores are used in the 
lookahead process. We appeal to the 
chess analogy to help motivate 
understanding of the distinction. 

First we look at the branch scores. Both 
sides start out with their best possible 
scores which are normalized at a value of 
one. In the chess analogy, the score may 
represent remaining strength. At the start 
of the game, no losses have occurred, 

hence the score normalized to one means a full 
complement of pieces. In the game commander 
application, a score of one means all the forces remain 
with which one started the decision cycle. As the battle 
progresses, losses are occurred and can be measured 
directly. In the tabulation of losses, we see clearly the 
distinction between the chess analogy, which is a truly 
discrete game, and the Game Commander application 
which is a continuous game, approximated discretely. In 
chess, losses occur at the nodes when pieces are taken. 
Hence, branches of the game tree don't represent 
intermediate states of the game. Instead they represent 
logical connections between nodes. In the Game 
Commander application, losses occur at the branches 
between the nodes because the nodes represent game 
states which are discrete instances of time.   Actual 
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combat losses must occur during the branches which 
represent time intervals connecting the nodes. In either 
case, losses can be measured exactly at the nodes. In the 
case of chess, the score is non-increasing with time to 
represent the loss of total strength as pieces are taken. 
The same hold true in the game commander application. 

At leaf nodes, the scoring changes. Terminal scores 
are estimates of the situation made necessary because the 
game will not be played to any deeper extent. In the 
chess analogy, these scores are necessarily heuristic and 
account for relative positional advantage between the 
players. There is no need to account for relative strength 
advantage, because loss of strength has already been 
accounted for in playing down to the terminal ply-level. 
In the Game Commander, position must also be 
accounted for as well as other intangibles such as morale, 
fatigue, supply state, etc. 

5.  Related Work—Aerial Combat 

An adaptation of the tree lookahead with game theory 
technique has shown promise in the cognitive task of 
controlling helicopters in air to air combat close to 
terrain. 

References [10], [11], and [12] describe work done on 
a project called Intelligent Player (IP) which was 
intended to exploit the lookahead technique. By 1990 a 
prototype of IP was flying against a manned Apache 
simulator. More advanced IPs ran off-line, conducting 
deeper searches without the burden of real-time. 
References [7] and [15] describe the progress of the 
work since that time. In particular, [15] addresses some 
recent advances in optimizing Intelligent Player's real- 
time performance. 

A different application of the lookahead technique is 
Automan, a program created by Dr. Fred Austin and 
others at the Grumman Research Center and installed at 
NASA AMES (see [1] and [2]). Automan is the only 
existing lookahead that copes with hilly terrain in real 
time. Automan also differs significantly from IP in that it 
operates by allowing simultaneous turns. 

All the prototypes to date were severely limited in 
depth of the lookahead—one ply for IP, two plies for 
Automan. Off line studies indicated a dramatic 
improvement in intelligence at the three-ply level —the 
first point at which a plan can be formulated. Reference 
[15] concludes that four-ply tree searches are now 
feasible for the aerial combat application with PC or 
workstation equipment. The time for useful lookahead, in 
the aerial combat arena, may be at hand. 

It is natural to consider how the success of the 
lookahead in command and control at the platform level 
will translate to upper-echelon command and control. 
Every command level fits into an larger hierarchical 
structure. As does a real commander, Game Commander 
must be able to take orders or "missions" from echelons 
above, formulate a plan, execute the plan by producing 

orders for subordinate forces, and monitor plan execution 
by receiving and interpreting the status flowing into the 
command post. IP operates in this same context. It has a 
"mission" to fly, fight, and survive. IP formulates a plan 
as a sequence of aerial combat maneuvers. IP executes 
this plan by giving commands to the flight model and 
weapons systems. IP monitors plan execution by 
continually monitoring tactical state. In both 
applications, the lookahead decision-making engine does 
not produce direct control inputs, but rather a discrete 
decision choice that must be adapted through interpreters. 
In both applications, the lookahead analyzes a simplified 
mathematical model of the combat situation and controls 
through selection of a range of discrete control choices 
which are sequenced together to formulate a plan. 

The differences in the two problems are largely in 
scale. Game Commander has a wider range of choices in 
plan formulation than that facing IP. Yet IP must respond 
to a more swiftly changing situation. In this trade of 
decision-space range for reaction time, given the real- 
time viability of IP, we believe a real-time 
implementation of Game Commander is also viable. See 
[3] for additional reference of a real-time model of 
platform-level command and control The prototype 
FFCS mentioned in this paper also performs in the 
domain of air warfare. 

6.  The Turing test 

Will command decisions based on tree lookahead in 
real time be indistinguishable from ones made by a 
human commander? The following remarks may be in 
order: 

1. The problem with most current systems is that they 
appear dumb and inflexible in comparison with 
human decision makers. 

2. Once the human level is reached and exceeded, it 
should be relatively easy to degrade the tree- 
based decision maker by limiting the depth and 
breadth of his lookahead. This has been 
demonstrated by the computer chess community, 
who offer grand master level players degradable 
to the level required to instruct and entertain 
their amateur owners. 

3. High level commanders, like chess players, 
actually formulate their decisions by considering 
chains of moves and counter moves. This is 
reflected in the literature [16] and in some 
interactive planning tools [5]. Intuitively, this 
lookahead process is continued forward in time 
until either the range of possible outcomes is too 
broad to accommodate, or the estimation of 
likelihoods becomes too degraded due to the 
depth of the search. In either case lookahead 
ceases and the space of outcomes must be 
evaluated as to desirability and to probability of 
occurrence. This same process holds true for 
chess grand masters. In the chess analogy, the 
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terminal states must be evaluated heuristically, 
and one can say that pattern matching is the 
obvious evaluation technique. So, like chess 
grand masters, commanders employ the 
technique of lookahead to formulate possible 
courses of action, and the technique of pattern 
matching (among others) to evaluate the 
possible courses of action. 

4. The semi-heuristic scores of leaf nodes are open to 
review and refinement by military experts. 

5. The whole decision process is open for validation 
by running it off line against benchmark 
situations and by producing sample strategies by 
repeated runs (see Section 7). 

6. If a decision engine better than human emerges, it 
should prove a valuable spin-off product. 

7. Lookahead decision making can accommodate the 
modeling of decision making under conditions 
of imperfect information. Each decision is made 
on the basis of the decision-makers's perception 
of the situation, and on his perception of the 
knowledge and goals of the opponent. 

7. Adaptation and learning 

Tree lookahead is a powerful tool for analysis and 
learning. In a classical study [1] the Grumman research 
team showed how tree lookahead, run off-line, can be 
used to formulate an optimal strategy. Starting with a 
strategy of random decisions, the tree lookahead was run 
repeatedly with the decisions used in winning encounters 
reinforced, and the ones figuring in losing engagements 
suppressed. This process, applied to air combat, 
converged to a strategy that closely matched the one used 
by experienced pilots. 

In this way the lookahead technique invites review, 
critique, and validation. Matching against human 
performance is possible even though it is not assumed 
that the human experts can always articulate their 
expertise in transferable form. 

Many variations are possible in which spare compute 
time is used to review past engagements. In this way 
strategies can be fine tuned for a particular adversary, 
rather than the optimal adversary that the pure lookahead 
assumes. The reviews can lead to pruning rules that 
eliminate enemy responses which are contrary to enemy 
doctrine and practice as they manifest themselves in the 
building experience of the decision maker. 

Pruning rules are subject to off line review by military 
experts. It is also possible to inject such rules as a-priori 
assumptions. 

8. Implementation issues 

The major obstacle that any scheme of tree lookahead 
in real time must overcome is computer throughput. The 
volume of different options that must be explored grows 
exponentially with the depth of search.  The following 

remarks are pertinent. 
1. Granularity. The computational burden is 

alleviated by limiting the range of discrete 
choices of a command decision and by 
increasing the time interval by which the 
command must be reviewed and a new decision 
reached. In the case of the command forces, this 
is natural. Commanders normally formulate 
discrete decisions (e.g., vvPass norm of hill G7 
rather than south"); they often have minutes or 
even hours to formulate a major decision; once 
put into action, it takes minutes or hours for the 
situation to change appreciably. All this tends to 
indicate that the problem of discretization will 
be less severe in the context of the command 
forces than it was in previous work (see Section 
5). Still, the proper level of granularity must be 
defined. Modulation of granularity is a natural 
degradation mechanism for producing more or 
less capable commanders. To emulate human 
behaviors it must be confirmed that a level of 
granularity exists which fits a human 
commander. 

2. Force modeling. A tree lookahead decision engine 
must be able to exercise the forces involved 
through many tentative moves as it develops the 
game tree. This must be done faster than real 
time. The normal ModSAF-style virtual 
simulation representation of such forces will, 
most likely, prove to be too elaborate and will 
not be able to execute fast enough in the service 
of even a single decision maker. Different 
decision makers will want to manipulate the 
same forces at the same time for different 
tentative moves. For this reason, the decision 
engine must come with its own simplified model 
of the forces being commanded, capable of 
executing the many tentative moves much faster 
than real time. (See the discussion of attrition 
computation in Section 4.) 

3. All other measures for conserving compute power 
notwithstanding, it will be necessary to address 
the hardware and software architecture 
necessary to optimize the computer resources 
involved. Optimization of the supporting 
software architecture for the lookahead has been 
addressed in [15]. 

9.  Integration into a command architecture 

The lookahead technique must be integrated into a 
comprehensive architecture for command and control. 
This paper sketches some of the problems that must be 
solved to accomplish this integration. A notional layout 
of the comprehensive architecture is illustrated in Figure 
2. It is built around the ModSAF Computer Generated 
Forces system and utilizes the messages of the Command 
and Control Simulation Interface Language (CCSIL), 
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developed by the Advanced Research Projects Agency 
(ARPA) for communication between CGF systems [4]. 
The architecture embodies explicit representation of 
commander perceptions as input for the decision-making 
cycle. 

•Orders from superiors 
• Sensor reports 
(expressed in CCSIL) 

Perception 
Manager 

Decision 
Space 
Narrower 

E 

i 
Alarm 
Clock 

LOOKAHEAD 
ENGINE 

Command Decision \ Si 
Decision Interpreter 

Orders to Subordinate Forces 
(expressed in CCSIL) ¥ 

Computer Generated Forces 
Simulation (ModSAF) 

Figure 2:    Illustration of the Command and 
Control Architecture 

CCSIL is still nascent and does not yet provide the 
functionality we seek. It is the idea behind CCSIL that 
we seek to exploit—a standard language for 
communication of command and control information 
(orders and reports) among software commanders in a 
form that is optimized for data processing. This form of 
standardization will provide interoperability between the 
lookahead engine and other CGF implementations which 
could substitute in the ModSAF role. 

Inside the gray box of the figure is where the 
cognitive processing is concentrated. The lookahead 
engine, the center-piece of the architecture, continually 
cycles to assess the tactical situation and to produce the 
appropriate orders. The orders that issue from it belong 
to that discrete range of command options available to the 
command emulator. These command options must be 
parameterized by the specifics of the current situation and 
then translated into operational orders (eventually into 
CCSIL format) which can be executed by the CGF. 

Feeding into the lookahead are the orders and reports 
which shape the environment. We can interpose several 
kinds of functions between the lookahead and its input in 
order to tailor lookahead operation. 

To add realism to the output decisions of the 
lookahead by having it decide from perceptions rather 
than ground truth, one can interpose a Perception 
Manager between the reports coming in and the report 
information going to the lookahead. The Perception 
Manager would maintain an explicit model of the nature, 
degree, and sources of misinformation on the battlefield 
and would perturb the inputs to the lookahead to simulate 
this misinformation. 

To optimize the operation of the lookahead in meeting 
real-time constraints, one can interpose a "Decision Space 
Narrower" to constrain the development of the decision 
tree both in depth and in branching. The Decision Space 
Narrower would examine the status and orders inputs 
coming into the decision cycle. Firing heuristically- 
derived rules, it would block expansion of those parts of 
the decision space that show little promise. These 
decision space constraints would be conveyed to the 
lookahead engine in terms of search limits in depth and in 
prohibition of expansion of certain branches of the 
lookahead tree. 

An alarm clock can also be added to the cognitive 
architecture in order to cut short an overly lengthy search 
of the decision space. The alarm clock can be set by a 
heuristic assessment of the tactical situation to decide 
how long Game Commander can wait before it must 
produce a decision—i.e. what degree of urgency exists. 
The lookahead tree can then be expanded as to most 
promising branches and depths first. When the alarm 
clock goes off, tree expansion is cut short and the 
developed decision options are scored. 

The ModSAF CGF provides the simulation action on 
the battlefield. The orders produced by the lookahead are 
fed into ModSAF to produce plan execution. 
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Abstract 

General-purpose planners have been proposed but 
few have shown to work effectively and efficiently 
enough for many domains to be really called general- 
purpose. A general-purpose planner that uses a single 
methodology is often too restrictive and therefore can- 
not plan effectively for all domains. As planning prob- 
lems become more complicated, having multiagents of 
different types in dynamic environments, evaluating 
candidate plans and choosing the best plan becomes 
prohibitively complex if not impossible within a single 
methodology. To overcome this problem, we propose 
simulation-based planning where simulation is used to 
evaluate the candidate plans. By allowing appropri- 
ate simulation model types to accurately express each 
type of agent in the domain, the task of measuring 
the success and effects of each candidate plans is sim- 
plified and the resulting evaluation will be more accu- 
rate since plans are simulated using dynamic models. 
We describe an application along with the implemen- 
tation of simulation-based planning in the domain of 
Mission Planning. Possible future experiments related 
to Soar are also discussed.1 [Key Words: Auton- 
omy, Mission Planning, Computer Generated 
Forces, Multimodeling] 

1    Introduction 

General-purpose planners [12, 15, 14, 13] claim to 
solve planning problems for many different domains. 
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They may, in fact, be able to solve all the different 
planning problems but the problem is that they may 
not be able to solve it in an efficient and timely man- 
ner. Since many of these general-purpose planners use 
a single methodology, they are usually restricted in 
their ways of representation and reasoning. There- 
fore, they do not have the flexibility to adequately 
express and reason about all the different domains in 
an efficient way. This is not a problem when the plan- 
ner does not have to plan, interact and execute at the 
same time. However, for any planner that has to work 
in an interactive environment such as the Distributed 
Interactive simulation Environments, a planner must 
not only plan and react at the same time but it must 
do so in a time period that is at least close to real-time. 

Our solution is to use simulation-based planning 
which uses simulations to evaluate different candidate 
plans after they have been generated by the planning 
system. A typical way to view the planning process 
is to divide it into three steps. The first step is plan 
generation where several plans, if possible, are gener- 
ated that are likely to be good candidates. Second, 
the set of candidate plans are evaluated by perform- 
ing a temporal projection into the future in virtual 
time and accessing the results prior to the execution. 
The results are then compared and a plan is chosen 
for execution in the final step. If appropriate models 
can be used that best captures the behavior of actions 
and reactions of each agent, the evaluation of plans 
will be more accurate allowing better selection of the 
best plan. 

Multimodeling [5, 4, 6, 8] will be used to model pro- 
cesses and agents at multiple abstraction levels. Re- 
lated work [9] suggests the use of a coordinated set 
of methods, each method having different scope and 
performance. Some experimental implementations of 
this approach has been done on Soar [11]. 

In section 2, the general concept of Simulation- 
based planning is described. We discuss the mission 
planning problem as an application in Section 3. Then 
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in section 6, we propose the design of planned future 
experiments and finally some conclusions in section 7. 

2    Simulation-based Planning 

Fishwick [6] defines simulation as " the discipline 
of designing a model of an actual or theoretical phys- 
ical system, executing the model on a digital com- 
puter, and analyzing the execution output". In the 
AI planning literature, Dean [3] states that the idea 
of using model to formulate sequences of actions is 
central to planning and given a sequence of actions, a 
robot can use the model to simulate the future as it 
would occur if the actions were carried out. So simu- 
lation provides the robot with information which can 
be used to suggest modifications or to compare the 
proposed sequence with alternative sequences. Thus, 
simulation-based planning integrates these two ideas. 
Simulation has always been used within planning, al- 
though in a very abstract way, using operators and 
rules for example. The idea is to use more detailed 
simulation models originally built for simulation pur- 
poses in place of the highly abstract rule-based mod- 
els. Therefore, once simulation models are built for a 
system, simulation can be used as a tool to provide 
the system with information useful for evaluating its 
hypothesis which are a set of generated plans. 

3    Application:    Mission Planning for 
Ground Combat 

Sitreps 

Oporder 

1ST SIMULATOR 

COMMAND ENTITY (CE) 

PLANNER 

Dporder 

Siueps 

Figure 1: Planner Architecture 

et al. [1] demonstrates the usefulness of simulation as 
a decision tool in military planning. 

Through a sample application in the domain of mis- 
sion planning for Computer Generated Forces (CGF), 
we shall illustrate how we extend the classical planning 
method by using simulation of more detailed models, 
where the models simulate entity queuing at fords and 
bridges as well as engagements. Currently, our en- 
gagement simulation uses many of the features of con- 
structive models, such as probabilistic combat results 
tables, but we will eventually create plans that involve 
simulated entity-level interaction since this is the most 
accurate way to learn if a plan will fail or succeed. 

3.1    Planner Architecture 

The Distributed Interactive Simulation Environ- 
ment provides the ability to create large virtual worlds 
by linking individual simulators, allowing them to in- 
teract in real-time. And the Department of Defense 
has used these capabilities to revolutionalize the way 
the military train their forces, prepare for a combat 
and plan and rehearse operational missions. Even 
before the DIS revolution, the military has used the 
simulation-based approach to planning in the form of 
conflict simulation (or wargames). Conflict simula- 
tions of the constructive type involve aggregate simu- 
lations using discrete time (turns) and space (terrain). 
During a planning phase, a commander would perform 
"what if scenarios by setting up a course of action on 
a hexagonally tiled map of the terrain. Engagements, 
instead of being fought with individual entities, are 
abstracted using a stochastic method in the form of 
a combat results table (CRT) or through Lanchester 
equations for force attrition. Related work by Czigler 

Figure 1 displays the architecture of our planner 
in relation to the Institute for Simulation and Train- 
ing (1ST) Computer Generated Forces (CGF) Testbed 
[7]. Our mission planner is an integral part of a larger 
project of the 1ST called "Intelligent Autonomous Be- 
havior by Semi-Automated Forces in Distributed In- 
teractive Simulation" which is funded by the U.S. 
Army Simulation Training and Instrumentation Com- 
mand (STRICOM). The goal of the planner is to au- 
tomatically derive plans for a semi-automated force or 
CGF, at the company level initially, so that the force 
will provide an Army trainee with an effective training 
experience. Planning is only a small part of the over- 
all project, which includes efficient line of site (LOS) 
determination, terrain reasoning, intelligent target ac- 
quisition and behavior representation for CGF enti- 
ties. The planner takes orders from the battalion level 
and translates these orders, with a tight coupling with 
the terrain analyzer, into efficient plans for the CGF 
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platoon entities. In addition to planning for its sub- 
ordinate units, the planner must also also be able to 
monitor the execution of the plan, react to unexpected 
situations and replan if necessary. 

Each commander in the 1ST testbed is simulated 
by a Command Entity (CE) whose major functions 
are performed by the Planner. The planner has two 
phases: the Reactive phase and the Planning phase. 
A Phase is a group of states that collectively display 
a behavior. Only one phase is active at any given 
time. The starting phase is the Reactive Behavior. 
Based on the inputs, the current active phase makes 
the decision as to which phase becomes active next. 
There is no single 'main' algorithm that controls the 
whole process. Thus, the decision is made in a dis- 
tributive manner. We will describe each component 
of the planner through a demonstration scenario illus- 
trated in figure 2. The friendly company unit 1 (the 
company entity receiving the Oporder) is situated at 
Assembly Area(AA) located at (50000, 52500). Com- 
pany unit 1 is made up of 3 platoons: platoon A is 
made up of 4 Ml Abrams Main Battle Tanks and each 
of the remaining 2 platoons B and C are made up of 
4 Bradley Infantry Fighting Vehicles. There are two 
enemy platoons: platoon A is made up of 4 Ml tanks 
located at (32500, 28750) and platoon B is made up of 
4 M2 fighting vehicles located at (45000, 46250). The 
Operation order given to company unit 1 is to "SEIZE 
the Objective at (32500, 28750)". The company unit 
boundaries are given as the rectangular area drawn 
in the figure. The goal of the command entity is to 
accomplish the mission with minimal loss of strength. 

3.1.1 World Database(DB) 

The World Database is not a complete spatial repre- 
sentation of the battlefield (the Terrain Analyzer(TA) 
has this information) but a simplified database which 
mainly contains information that is only known to the 
CE. Since the TA does not have any information re- 
garding the location of enemy or friendly units and 
does not keep track of the locations, the planner needs 
to keep track of these locations and the status of the 
units in the World DB. This database is created as 
soon as the CE starts to exist. Initially it contains its 
own location and will be updated with new informa- 
tion as it becomes available to the CE via Sitreps or 
Oporders. 

3.1.2 Reactive Behavior 

The Reactive Behavior module displays reactive be- 
havior necessary for survival when immediate action 

is required. The module is initialized with a generic 
set of behaviors at the start and may be modified with 
any reactive behaviors provided by an Oporder. 

3.1.3    Planning Behavior 

The Planning Behavior module generates orders for its 
subordinate entities from an Oporder given by a higher 
level entity. This module is made up of the following 
smaller modules where the order in which they are 
presented actually coincides with the algorithm steps 
of a typical planning process. 

1. Sitrep/Oporder Analyzer parses the Situation 
Report(Sitrep) or the Operation Order(Oporder) 
to update the World DB. In the case of an 
Oporder, it is further parsed to generate a list 
of task(s) to be achieved. The Situation Ana- 
lyzer is called next with this list. In the case of a 
Sitrep, it is analyzed to decide if any immediate 
action is required, if any replanning is required, 
or if any Sitrep needs to be generated. Then, the 
Execution Monitor is called with the decision. 

2. Situation Analyzer(SA) uses a set of rules 
to analyze the given situation using the World 
DB and performs a set of alternate calls of 
Route-Request and Define_Tactical_Position pro- 
ducing a number of alternate routes. 

3. Course of Action(COA)  Tree  Generator, 
using the set of alternate routes produced by the 
SA, generates a COA Tree where the 1st level con- 
tains alternative subunit or platoon combinations 
and 2nd level contains alternative route combina- 
tions. The following levels can contain other al- 
ternatives such as varying the role of platoons in 
different formations. 

Figure 3 shows the COA tree generated by the 
prototype. The SPLIT subtree describes the 
course of action for a company where the com- 
pany will be split up. Given that a company 
has 3 platoons, the number of routes needed is 
at most 3. If two platoons go one route and one 
platoon go another, two routes are needed in to- 
tal. If each platoon goes on a different route, 
three different routes will be necessary. The 1st 
level of this subtree will contain all the possible 
combinations of splitting a 3 platoon company. 
The heuristic used in this scenario is not to al- 
low Platoon A to travel alone at any time since 
Mis are considerably slower and lower power than 
M2s. This restricts the SPLIT combination to 4 
sets: (AC,B) (B,AC) (C,AB) (AB,C). From these 
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Figure 2: Company mission and routes 

combinations, the Create_COA_TREE generates 
possible combinations of route sets. Since the 
mission is SEIZE, at least one route should lead 
the platoons to an ASSAULT.POS. These routes 
are 3,4,5 according to figure 2. Thus, the pos- 
sible set of route combinations are (3,1), (3,2), 
(4,1) (4,2), (5,1), (5,2), (3,4), (3,5), (4,5). The 
second level of route combinations in the COA 
tree contains the routes that connect each of the 
1st level routes to OBJ if possible. For example, 
route 6 extends route 3 to OBJ. However, route 
1 is not extended to the objective because it's a 
SUPPORT_BY_FIRE position. The NO-SPLIT 
subtree has a single subunit combination (ABC) 
since no split up is allowed in the unit combi- 
nation. Therefore only a single route set alter- 
natives that lead to an assault positions (3,4,5) 
are possible. The second level routes are (6,7,8) 
respectively. No pruning is being done in the cur- 
rent implementation but heuristics can be used 
for pruning when necessary. Next, the COA Tree 
Simulator is called with the COA Tree. 

by each unit. In the current version, the enemy 
unit is simulated in a very limited manner. The 
enemy unit is assumed to remain stationary and 
only engage in combat when an opposing force 
unit has been sighted. The model that is used is 
the Aggregate Combat Model [2]. An alternative 
method is to allow the enemy units to have the 
same planning capabilities as the friendly units 
but with different tactics. This method would be 
quite realistic, but it can be quite time consum- 
ing. If computing capabilities are limited, we can 
perform simulation at different levels of abstrac- 
tion [8, 4] where each higher level will use less 
computational power. The actual simulation al- 
gorithm is as follows: 

While (planner active) do 
Update entity state variables 
Perform line of sight (LOS) check 
Engagement check 
Update current clock time by AT 

End While 

4. The COA Tree Simulator takes each level of 
the COA subtree and simulates each route and 
calculates a score for each friendly platoon per 
each route. This is done by creating a Simulated 
World (SIMDB) and performing the simulation 
of friendly and enemy units by time slicing be- 
tween actions (move, look, fire) and observation 

In low mobility areas or areas with a steep terrain 
gradient, the movement is slower. Also, for some 
terrain features, as with fords or chokepoints, a 
simple queuing model can be executed to keep 
track of entities that must wait for entities that 
are blocking the path.   Service times and speed 
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Figure 3: CO A Tree of the Demonstration Mission 
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values are obtained by sampling from a probabil- 
ity distribution appropriate for the blocked area. 
A line of sight (LOS) check and range calculation 
is done between the entity being simulated and 
known enemy locations. If the enemy is within 
range of certain weapons (such as a HEAT or 
Sabot round), an engagement will ensue. The 
simulation proceeds until either the plan has been 
fully simulated, or the planner is interrupted. 

The simulation result is recorded in the form of 
an integer number, the evaluation score, which is 
calculated using the following formula: 

score = strength of unit + proximity to OBJ{%) 

The overall simulation strategy is branch and 
bound. Depending on the order of the calls, how- 
ever, it is possible to simulate the COA tree in a 
somewhat depth-first manner. 

There are several advantages to using Simulation 
to predict the results of plan execution. 

(a) Simulation provides a uniform method with- 
out resorting to adhoc solutions. In simula- 
tion, each entity in the environment is simu- 
lated in a uniform and consistent manner by 
using models that represent both the phys- 
ical and behavioral properties. Thus, sim- 
ulating a plan is a natural consequence of 
simulating each of the entities by itself with- 
out having to worry about the global state 
change as a result of each entities action. 

(b) Because there is no central reasoning node 
for the simulation but many individual sim- 
ulation models for different entities, scalabil- 
ity is a natural consequence. Extendibility is 
another advantage simulation provides. The 
effects of adding a new type of entity will be 

clear, only the behavior models of each en- 
tity must be updated to recognize and reason 
about this new entity. 

(c) Similar to how simulation is used for visu- 
alization, simulation can be easily used to 
perform visual playback of how a plan was 
simulated to explain the planner's decision. 

5. The Execution Monitor 

The Execution Monitor is the main driver of the 
Planning Behavior module. It issues a set of 
chosen subtasks in the plan to each units in an 
Oporder format and executes its own subtask if 
there is any. If any Sitrep is received, it up- 
dates the world DB with any new information 
included in Sitrep such as sightings, destroyed 
units and changed location of units. Then it calls 
the Sitrep/Oporder Analyzer. If the decision re- 
turned calls for immediate action, the control is 
given to the REACTIVE behavior module. If it 
calls for replanning, the SA is called to start a 
planning process with the newly updated World 
DB. Finally, if the decision is to give up plan- 
ning at the current level, the CE sends a Sitrep 
to its higher unit reporting of its current status 
and waits for further orders. 

3.1.4    Expert System 

The mini Expert System module contains rules to 
aid the planning process in making decisions such as 
choosing routes, choosing best COA tree, performing 
analysis of situations, Oporders and Sitreps. 

4    Interface between Terrain Analyzer 
and Planner 

The Terrain Analyzer is the planner's only source 
of information where terrain is concerned and thus 

117 



the planner uses the TA quite extensively dur- 
ing the planning process. The TA is responsi- 
ble for route planning, finding tactical positions, 
computing Line of Sight and answering questions 
about terrain features. The interface between the 
TA and the planner is established by four types 
of calls; Route-Request, Define_Tactical_Position, 
Line_Of_Sight and Terrain-Feature. 

5    Demonstration    Mission    Planning 
Results 

From Figure 2, we observe that any friendly units 
traveling on route 4 is likely to engage in combat 
with the enemy unit stationed at (45000, 46250). The 
friendly unit may not be totally destroyed but consid- 
erable amount of strength may be lost during combat 
and therefore will result in a lower score. Thus, any 
plan that includes route 4 will have lower scores com- 
pared to other plans. The evaluation scores produced 
by the mission planner for the demonstration mission 
are listed below in the order of decreasing scores. 

For the NO-SPLIT subtree: (Note that routes 1 and 
2 are not considered since they end at Support_By_Fire 
positions.) 

Route 3 -> 6 : 128.0 
Route 5 -> 8 : 128.0 
Route 4 -> 7   :   89.8068 

For the SPLIT subtree with platoon combination 
AC,B: (Note for route combination 3,1 it means pla- 
toons A and C travel on route 3 and platoon B travels 
on route 1.) 

Route 3,1 -> 6,- 158 000000 
Route 3,2 -> 6,- 158 000000 
Route 5,1 -> 8,- 158 000000 
Route 5,2 -> 8,- 158 000000 
Route 3,4 -> 6,7 152 525711 
Route 3,5 -> 6,8 144 205093 
Route 4,5 -> 7,8 116 941719 
Route 4,1 -> 7,- 112 500000 
Route 4,2 -> 7,- 112 500000 

The planner chooses the plan with the highest score 
and, in the case above, any one of the four highest 
score plans can be chosen. A good approach is to 
choose plans at random in such cases to display un- 
predictable behavior. 

6    Toward an experimental design 

Since simulation-based planning is a fairly new 
concept, we need to perform more in-depth studies 
through various experiments to analyze the method- 
ology thoroughly. For the experiment, we propose 
to incorporate simulation-based planning into Soar. 
The Soar architecture provides a stratified approach 
to specifying, designing, and building Knowledge- 
Based systems. The system is first described at the 
knowledge-level, then at the problem-space level the 
system is defined in terms of how the task is compu- 
tationally accomplished, and finally at the implemen- 
tation level. It supports metalevel reasoning which 
allows the system to recursively reason about prob- 
lems. Soar also integrates multiple problem-solving 
methods and knowledge sources. Soar is well known in 
the military simulation field through the Soar/IFOR 
project [10] where Soar is being used to generate the 
behavior of an automated agent for the Tactical Air 
Simulation. No extensive mission planning is involved 
in the project; the goal is to simulate the behavior of 
a single pilot. A recent attempt by the Soar group 
to solve the planning problem produced a methodol- 
ogy called Multi-method planning. Realizing that no 
one fixed method can solve a wide range of problems, 
they proposed the use of different methods for differ- 
ent problems. We further extend the idea of using dif- 
ferent methods by employing simulation-based models 
within the Soar planning framework. Instead of using 
rule-based models to simulate and evaluate different 
candidate plans, we will use models to simulate and 
evaluate. 

We will build two planning systems; one that em- 
ploys the simulation-based models and one that is en- 
tirely rule-based. Then, we will compare the results 
through several problem domains. First, we will ex- 
periment with classical AI problems such as the blocks 
world problem and the machine shop scheduling prob- 
lem. We will then experiment with the mission plan- 
ning problem. The comparison criteria between the 
two systems are (in no particular order):l) Speed - 
number of plans generated per unit time. 2) Success 
- the rate of success of plans. 3) Model complexity - 
how easy is it to design, build and comprehend the 
system model? 4) Maintenance - extensibility and 
modifiability. 5) Reactiveness - ability to react dur- 
ing or after the planning process. 6) Adaptability - 
ability to adapt planning to dynamic changes of the 
environment during planning. 

In order for the experiment to be valid, we must 
maintain several variables such as 1) Knowledge: the 
set of knowledge that is used in both the planners 
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must come from the same source, 2) Data: the data 
provided to the planner such as Terrain Analysis data 
must be the same, and 3) Evaluation function: the 
same objective function must be used to choose the 
best plan. By successfully maintaining the 3 vari- 
ables as above, we can ensure the validity of the 
experiments—allowing us to observe the strong and 
weak points of the systems. 

7    Conclusions and Future Work 

Through the design and construction of a C-based 
simulation module which evaluates candidate plans 
created by varying the route and subunit combina- 
tions, we have shown how we are able to perform plan- 
ning using simulation. By allowing the use of different 
simulation models for different domains, the planner 
has the potential to solve a wide-range of problems. 
The simulation-based planner runs in real-time on an 
IBM 486 PC. Our near term plan is to create and 
run the experiments that was discussed in section 6 
to thoroughly evaluate the simulation-based planning 
method. After these experiments, we plan to apply 
the simulation-based approach to other areas of plan- 
ning such as traffic control. 
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Abstract 

Automated route planning over digital synthetic ter- 
rain is of importance to systems involving simulated 
human entities. Using a route planner whose sole cri- 
teria is minimizing distance and elevation change, we 
analyze the effects of terrain resolution on path quality, 
and compare human and computer generated paths. 
We conclude that with some measures, the computer 
generated route plans are reasonably difficult to distin- 
guish from human generated plans. 

1    Introduction 

Computer route planning provides the backbone for 
automating simulated behavior of man and machines 
on synthetic terrain. This paper addresses the effects 
of terrain and path resolution on generated path qual- 
ity and compares the results of automated planning to 
human generated plans. 

We are not so much concerned with the route plan- 
ning algorithm itself as the data that drives it. Our ap- 
proach exploits techniques borrowed from Geographic 
Information System (GIS) technology. We empha- 
size GIS operations over the limited area covering 
the intended route. This allows us to tailor routes 
to meet various requirements. We have experimented 
with many characteristics such as exploiting available 
ground cover to hide and avoiding or using terrain fea- 
tures such as roads, rivers, and fords, the experiments 
covered by this paper exploit only minimal elevation 
change. 

Conventional wisdom is that automated route 
planning requires very high resolution terrain data. 
Our experiments begin to quantify the relations be- 
tween resolution, representation, and human gener- 
ated plans. 

Route planning is an important component of both 
computer simulations and real world planning. Com- 

* Currently at Logicon Strategic & Information Systems, 222 
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bat simulations exploit route planning to automate 
some of the drudge work normally associated with lay- 
ing down many highly detailed plans or provide auto- 
matic reactivity to changed situations. This technol- 
ogy is also applicable to wild fire simulations, disaster 
response planning, herd and swarm simulation, wilder- 
ness road planning and the like [1, 2]. 

2    Background 

The literature provides extensive analysis of auto- 
mated route planning as a graph manipulation [3, 4, 
5, 6, 7, 8]. Our system uses the A* algorithm to com- 
pute a route over a uniformly spaced grid using costs 
between grid points as the prime determinant. Gen- 
eralizations of the algorithm to polygonal terrain have 
also been considered [9, 10] and other metrics [11]. 

Existing GIS based route planning is typically 
based on network representations such as that in 
ARC/INFO [12]. Though our task can be converted to 
a graph representation amenable to processing by such 
systems, this poses the additional problem of integrat- 
ing the GIS services into a large simulation system or 
integrating our model into the GIS. 

Similar work has examined robot motion plan- 
ning [13]. Here the problem relies on much greater 
resolution and vehicle geometry where space between 
obstacles becomes a problem amenable to solution by 
the Voronoi Diagrams [14, 15]. The dual of this prob- 
lem is the mass movement of troops through terrain 
with obstacles [16, 17]. Likewise, many modern com- 
bat simulations and support tools provide automated 
route planning to some degree. ODIN [18] provides 
on-road route planning and limited assistance with off- 
road planning to minimize river crossings. 

Previous work attempted to tune a Neural Network 
to emulate human paths taken from tracks recorded 
during actual maneuvers [19]. However, this study was 
unable to validate routes over terrain that the network 
did not recognize. Artificial Neural Networks are also 
used to solve navigation problems by modifying the 
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weights of the different terrain features [20]. A study 
of reconnaissance planning over polygonal terrain [21] 
used a measure of success as the time spent to locate 
targets rather than ensuring that human and machine 
generated routes looked the same. Our measure of 
success is making machine generated routes resemble 
human generated routes. 

3    Algorithm Structure 

Our route planner requires 3 steps: 1) build a 
matrix covering route end-points, 2) compute point- 
to-point movement costs to meet route quality con- 
straints, 3) compute the route plan that minimizes 
cost. Our examination covers the characteristics of 
steps 1 and 2. Minimal cost algorithms are covered in 
the literature. 

3.1    The Cost Matrix 

We compute the cost matrix by examining terrain 
data and the path type constraints. We base all paths 
on minimum distance between two points modified by 
various path constraints. For the purposes of these 
experiments we limit the route planner to minimizing 
elevation changes along the path. 

The elevation minimizing hueristic assigns expo- 
nentially increasing cost to slope. Tuning this slope 
constraint to match human performance is the sub- 
ject of our final experiment. For a slope weight A, 
slope s and distance between two points d, we have a 
cost matrix component C^j of: 

CiJ=Me'r (1) 

where f(d) is a linear function of distance, and the 
constant ß is determined to be the greatest slope a 
wheeled or tracked vehicle can comfortably climb. For 
the purposes of experimentation, we initially chose 
A = 10, which multiplies the cost by 10 when s = ß. 

A typical route plan requires between 10 and 100 
intermediate points. We first experimented with an 
unrotated cost matrix that covers both the start and 
end points. However, diagonal end points waste space 
and time by exploring low likelihood routes far from 
the central route. Likewise, the unrotated matrix re- 
stricts the search area near the start and end points 
for diagonal paths. As seen in Figure 1, rotating the 
matrix to cover the start and end points results in 
considerable space and time savings. 

To minimize the size of the cost matrix, we deter- 
mine the best rectangular ratios to cover the path ar- 
eas. For a potential path between two end points we 

Figure 1: The Rotated Cost Matrix Around Start And 
Destination 

Figure 2: Rectangular Cost Matrix Size 

have the geometry of Figure 2 with the number of ex- 
tra cells along the new path /, extra cells across the 
path w and distance d in kilometers between the two 
end-points Pi and P2. 

In our experiment, we compute 1000 random paths 
increasing the size of the cost matrix until the path 
stabilizes. We establish two important parameters - 
the extra elements needed along the path axis and 
extra width needed. Over medium relief topography, 
for 1000 paths selected at random, we find the maxi- 
mum required extensions shown in Figure 3. As can be 
noted, the extra length I is not a function of distance, 
but w is. We selected, 

/    =    3 (2) 

w   = 
2v 

+ .5 

to increase the width as a function of distance and the 
path resolution r. The width must increase because 
longer paths cover more terrain and have more options 
for divergence from the straight and narrow. We ex- 
pect that the extra slop I may need to be increased for 
rougher terrain than tested. 
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Figure 4: Path Length vs CPU Time 

To quantify the advantages of the diagonal ap- 
proach, we computed 1000 identical path end-points 
with both rotated and unrotated matrices with the 
results shown in Figure 4. As can be noted, the ro- 
tated version provides superior performance for longer 
paths beacuse fewer elements of the cost matrix are 
computed and examined. 

4    Path Quality Analysis 

Our second set of experiments quantifies path qual- 
ity by resolution and representation. We attempt to 
answer the question, does increasing resolution lead 
to convergence on a particular path and where should 
the resolution be set? Second, is there a difference be- 
tween using grid posts (flat tiles) and smoothed (in- 
terpolated) data? 

4.1     Comparing Interpolated to Grid Post 
Elevations 

We first experimented with two different elevation 
representations. The simplest form, flat elevation tiles 
with elevation at any point determined by rounding 
coordinates to the nearest is speed efficient. The 
more complex bilinear interpolation computes eleva- 
tion from the four nearest points. Other research com- 
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Figure 5: Elevation Grid Tiles 

paring a quadratic spline representation to bilinear in- 
terpolation suggests that results are identical but the 
computation cost of the spline greatly exceeds that of 
the bilinear interpolation [22]. 

Elevation values are stored in an array E[x,y]. 
Each integer point (x,y) corresponds to an average 
measurement at a certain latitude and longitude with 
the dimensions and coordinates shown in Figure 5. 

The flat tile computation retrieves the appropriate 
elevation ex,Y at longitude X, latitude Y by: 

ex,Y = ■# 
X - pu I    I Y - <Tn M- (3) 

P     J    L     o" 
with suitable checks to ensure the point lies within the 
array boundaries. 

Bilinear interpolation computes the coordinates of 
four corner points surrounding the sample point as 
shown in Figure 6. 

»1,2/1 »2,3/2 

X,Y 

»0,3/0 »3,3/3 

Figure 6: Interpolation Points 

We compute elevation ex,Y by the equations: 

SCO = 
X - pu 

,3/o 
Y-<ni 

»i = »o, 3/i=3/o + l 

x2 = 5C0+ 1,4/2 = 3/0 + 1 

S3 = »0 + 1, 3/3 = 3/0 (4) 

e&    =    (X - (px0 + pu)) 

+E[x0, i/o] 

et    =    (X - (px0 + pu)) 

■#[»3,3/3] - -#[»o, I/o] 

#[»2,3/2]--#[»i,3/i] 
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Figure 7: Path Divergence Using Elevation Posts 

+E[x1>yi] 
Gf — Gh 

ex,Y    =    {Y - (OT/O + o-«)) 1" eb (5) 

To understand the effects of terrain resolution on 
these representations we computed many paths and 
compared their differences. 

Our first experiment attempts to determine the 
effects of terrain and path resolution on computed 
paths. We vary the path resolution from 10 to 100 
meters in steps of 5 for 30 random paths. We also 
vary the terrain data resolution. For 30 paths selected 
over a 6 x 6km area of Ft. Hunter-Liggett, we com- 
pare path divergence for four terrain resolutions avail- 
able: resampled 100m DMA DTED data, 64m, 16m 
and 4m PEGASYS data. We computed average diver- 
gence from the 10 meter resolution path to the others 
for 31 uniformly spaced points on each. That is, if 
F(d), G(d) are the locations at distance d along the 
two paths, and /, g the path lengths, the divergence 
is: 

SS, *(&)<*(£) 
31 (6) 

Using elevation tile data provided the results of Fig- 
ure 7. As can be seen, the divergence increases with 
lower path and terrain resolution. Figure 8 shows two 
example paths with identical end points computed at 
25 and 150 meter resolutions over 64m resolution ter- 
rain. 

However, using the same data with the bilinear in- 
terpolating function greatly decreases the effects of 
both terrain and path resolution. Figure 9 was com- 
puted with the same points and paths. Terrain reso- 
lution has much less effect on path divergence when 
using the bilinear interpolating function. 

Figure 8: Identical End-Points, 25 and 150 Meter Path 
Resolution 

100 

100 

Resolution (Meters) interpolated 

Figure 9: Path Divergence Using Bilinear Interpolated 
Elevation 

4.2    Effects of Relief 

We now compare paths generated to minimize el- 
evation changes with both versions to understand if 
relief has an effect on the path divergence. Over the 
four subjective terrain types all at 100m resolution we 
also compute the standard deviation of terrain eleva- 
tions (the number following the type): 

High Relief:242 Mountainous  desert   terrain   (Ft. 
Irwin Military Reservation) 

Medium Relief:35 Semi-mountainous  rolling  ter- 
rain (Ft. Hunter-Liggett) 

Medium Relief:39 Rolling terrain with numerous 
river and creek valleys (Ft. Hood) 

Low Relief:38 Flat with small features (Northeast- 
ern Saudi Arabia). 

We generated 30 random pairs of points and compared 
the divergence of paths generated with both systems. 
As before, divergence is the average distance between 
the highest resolution path and the inspected path for 
30 points evenly spaced on both paths. In Figure 10 
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Figure 10: Terrain Relief vs Path Resolution 

the divergence is much more pronounced in the rugged 
terrain of Ft. Irwin and Ft. Hunter-Liggett than the 
flatter terrains. Unfortunately, the relationship to the 
roughness measure (the standard deviation of all el- 
evation points) is less clear. We will investigate the 
Natick terrain classification [23] as a better indicator 
of terrain roughness. 

5    Tuning to Match Human Generated 
Routes 

Comparing our generated routes to actual human 
performance is extremely difficult. We rejected "in 
the field" experiments as too expensive and too diffi- 
cult to control the route parameters. Likewise paths 
generated during field exercises have hidden assump- 
tions difficult to quantify in our context. 

5.1    Experimental Approach 

We opted for a two phase approach using two di- 
mensional terrain maps. 23 test subjects were given a 
short introduction to the task and a number of prac- 
tice routes to familiarize them with the tool. They 
were then given 30 start and end points to generate 
routes and unlimited time. The subjects were never 
shown either the computer generated routes, a pa- 
per map, or told where the selected terrain is. The 
subjects could backup the route, determine elevations 
along the route and view a path elevation profile (see 
Figure 11). 

The first test compared human path planning with 
elevation and distance the sole criteria. Subjects were 
told: 

"You are to plan the route between START 
(point  at the  end of the  green  line) and 
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Figure 11: Human Generated Route Planner Display 

END (point at the end of the red line) for 
a medium mobility vehicle for 30 randomly 
generated sets of points. Your plan should 
be the most efficient route between the two 
points (which is not always a straight line). 
Most efficient in terms of speed, fuel econ- 
omy, driver fatigue, etc. ... 

There are no enemy threats within the area." 

We accumulated results from 23 human subjects, 
21 males, 2 females, with disparate levels of military 
and map reading experience. No attempt was made 
to recruit a random population. 8 subjects had some 
military map reading and route planning experience. 
Most of the subjects had some ability to understand 
contour maps. 

5.2     Results 

We first must understand the differences among the 
human planners. If the computer route plans do not 
differ significantly from humans, we can claim success. 
We first compare two planners with the most recent 
military route planning experience with the rest of the 
subjects. In Figure 12 we compare their 30 routes for 
average divergence with the other 22 subjects and sort 
the subjects by average divergence. The top gray bar 
indicates the maximum divergence range, and the bot- 
tom gray bar the minimum divergence range. The sec- 
ond planner had one or more routes with radical dif- 
ferences to all other planners as indicated by a greater 
maximum divergences for nearly all other planners. 
This probably indicates that the second planner was 
planning routes to avoid potential enemy positions. 
His routes were generally quite different than subjects 
planning on distance and relief. 

We next tune the route planner to minimize its di- 
vergence from the 23 human planners. As seen in Fig- 
ure 13, the least divergence is at A = 4.0 (see equa- 
tion 1). 
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Figure 12: Two Military Planners Compared To Other 
Subjects 
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Figure 13:   Adjusting Maximum Slope Constant To 
Match Human Plans 

Finally, we compare the average divergence for the 
A = 4 planner with the 23 human routes and a straight 
line between the end points. Each point is an average 
divergence between the "player" and all other players 
including the computer and the straight line. This 
measure of "averageness" is the degree to which a 
player differs from all others. As seen in Figure 14, 
the computer-generated route plans fall nearer the 
"unique" end of the data, but still better than at least 
15% of the subjects and the straight line. 

6    Conclusions 

From these experiments we draw several conclu- 
sions: 

1. Minimizing cost matrix size provides a significant 
reduction in computation time. 

2. Using bilinear interpolation of elevation generates 
routes less sensitive to orientation and data gran- 
ularity. 
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Figure 14: Human vs Computer Route Planning 

3. Using higher resolution terrain data provides a 
linear improvement in path quality for an expo- 
nential increase in data space. 

4. Increasing path resolution does not increase path 
quality without a corresponding increase in data 
resolution. 

5. The route planning algorithm must be tuned for 
different terrain reliefs (the cost matrix must be 
larger for high relief terrain). 

6. The route planner can be tuned to match human 
performance for some measures. 

However, three questions remain to be answered. 
Can human subjects differentiate between human and 
machine generated routes (the Turing test)? What 
measure of terrain roughness can be used to tune the 
planner's cost matrix size? Will route smoothing min- 
imize differences between human and Machine gener- 
ated routes [24]? 

Our experiments pointed us to a number of incre- 
mental improvements and experiments for the plan- 
ner. First, creation of a "tracked vehicle" elevation 
cost function that penalizes travel perpendicular to 
the slope. Second, adding a cost to sharp turns for 
wheeled and tracked vehicles to minimize the effect of 
varying path resolution on the generation of switch- 
backs. Finally, basing the route planner cost matrix 
size on local contour and data roughness. 
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Abstract 

This paper gives an overview of a unique dis- 
tributed, real-time simulation system for studying team 
decisionmaking and coordination - the DDD (Dis- 
tributed, Dynamic, Decisionmaking) paradigm. The 
DDD paradigm captures the essential elements in real- 
world decisionmaking problems and integrates them 
into a controlled, computer-mediated, laboratory set- 
ting. The DDD simulation system is implemented on a 
network of UNIX workstations with real-time control, 
on-line data acquisition, interactive graphical display, 
and a simulated inter-human communication network. 
With a highly reconfigurable user interface and a flex- 
ible scenario generator, DDD has been used in many 
team decisionmaking experiments with different prob- 
lem context, including military command and control, 
job scheduling, and medical diagnosis. 

1    Introduction 

In large scale systems that involve humans, ma- 
chines, computers, etc., the problem scope and com- 
plexity often requires that the decisionmaking func- 
tion be distributed over several humans. Quite of- 
ten such systems have a team of human decisionmak- 
ers who are geographically separated, but who must 
coordinate to share their information, resources and 
activities in order to attain common goals in what 
is generally a dynamic and uncertain task environ- 
ment. Although problem contexts can be different 
among various systems (e.g., military command and 
control, electric power distribution, air traffic control), 
the essential elements of decisionmaking remain the 
same. In order to study problems such as those above 
on a scientific basis, we have developed a unique dis- 
tributed simulation system, termed DDD (Distributed 
Dynamic Decisionmaking) paradigm, that abstracts 
and simulates the essential elements of real world de- 
cisionmaking problems. 

Unlike existing large scale simulation systems such 
as SIMNET [18] which stresses high fidelity, special- 
ized, full scale simulation, the DDD paradigm stresses 
the small team (typically with less than ten team 
members) with an abstracted, low fidelity task envi- 
ronment, and emphasizes the basic aspects of interac- 
tion and coordination that are central to "teamness". 
It simulates the real-world problems in such a manner 
as to be amenable to study in a controlled laboratory 
setting. The task environment in DDD is reconfig- 
urable for different problem context. For example, in 
our previous research, the system has been configured 
as naval command and control, military situation as- 
sessment, medical diagnosis, job scheduling in manu- 
facturing systems, etc. The DDD system can be used 
as a versatile tool for studying/training small teams 
in military or industry. 

The DDD paradigm is built upon the body of 
knowledge we have accumulated during the last ten 
years in performing model-driven, basic experimental 
research [1] [2] [3]. As the backbone of our normative- 
descriptive research for team decisionmaking and co- 
ordination, the DDD paradigm has been used for more 
than fifteen team-in-the-loop experiments, and proved 
to be a very powerful empirical research and training 
tool [6]-[17]. The DDD paradigm is implemented on 
a network of UNIX workstations, with facilities pro- 
viding real-time control and on-line data acquisition, 
an interactive display/interface media, and a comput- 
erized inter-human communications and information 
network within which delay and occasional failure can 
be manipulated. The simulation system can run on 
workstations connected by a local area network, or 
on remote workstations connected by Internet. Its 
Xll/Motif based graphical interface is highly recon- 
figurable (viz., for different problem context, the look 
and feel can be very different). Currently, it can sup- 
port up to seven-person hierarchical or parallel team 
(expandable if desired). The DDD simulation system 
has the flexibility to examine a variety of ways in which 
information processing and resource allocation prob- 
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lems can be solved by a team of decisionmakers (DMs) 
under different organizational architectures and infor- 
mation structures. 

This paper gives an overview of the DDD simula- 
tion system with an emphasis on newly developed fea- 
tures that are not included in our early report [3]. The 
remainder of this paper is organized into two sections 
and a conclusion. In section 2, the team decisionmak- 
ing environment is described, and the basic elements 
of the DDD paradigm including resources, tasks, in- 
formation, and responsibility are discussed.   Section 
3 reviews the main features of the simulation system 
including system architecture, user interface, scenario 
generator, experimental variables, built-in distributed 
database, and training support tools. Finally, section 
4 offers concluding remarks. 

2    Basic Elements of DDD paradigm 

The DDD paradigm is implemented as a computer- 
driven interactive game among several decisionmakers 
(DMs) who may be geographically separated (see Fig- 
ure 1). In a real time simulation session, each DM sits 
at a workstation which is capable of displaying the 
tactical situation and sending/receiving information 
to/from the other players. Team decisionmaking is 
formulated as a process of allocating limited resources 
to a variety of tasks in a dynamic and uncertain en- 
vironment. Thus, the essential elements of team deci- 
sionmaking are abstracted as: i) resources (e.g., ma- 
chine tools, man powers, sensors, weapons, etc.), ii) 
tasks (jobs to process, e.g., parts, unidentified targets, 
enemy airplanes, etc.), iii) information (e.g., sensor 
measures, intelligent sources, reports, etc.), and iv) re- 
sponsibility (i.e., who should do what, at what time). 
To achieve the team goal, co-acting DMs must pro- 
cess distributed information to: i) estimate/identify 
various task attributes, and ii) determine and sched- 
ule their resources to process specific tasks. The DMs 
are thus required to coordinate their information, ac- 
tions, and resources in a timely and accurate manner. 
Below we describe in more detail the salient elements 
of the DDD paradigm. 

2.1    Resources 

Resources are basic elements of the system. A re- 
source can carry other resources called sub-resource, 
for example, a destroyer can carry some helicopters, 
and the helicopters can carry some sonobuoys, etc. In 
this way the resources can be nested down to any de- 
sired level of detail. 

Figure 1: The Distributed Dynamic Decisionmaking 
Environment 

The resources are divided into several classes de- 
pending on the design parameters of the experiment. 
All resources of a given class will have the same fea- 
tures with respect to capacities (i.e., sensor range, 
weapon strength, etc.). The only difference among re- 
sources in a given class is the number of sub-resources 
each carries. 

The sub-resources are located on board their par- 
ent resource. A sub-resource does not become an in- 
dependent resource until it is launched from the par- 
ent resource. The DM can launch one or more sub- 
resources that will become available after a certain 
launch time delay. The sub-resources can only stay 
away from their parent for a limited time period. An 
industrial example of resource/sub-resource could be 
the manager (resource) that hires temporary employ- 
ees (sub-resources). 

The strength of a resource can be described as a 
generalized vector which stands for strength in differ- 
ent aspects. Each resource has its effective range. For 
example, a sensor resource can have three ranges: a 
detection zone, a measurement zone, and a classifica- 
tion zone. 

Each resource is controlled by the DMs who own 
it(a resource can be owned by multiple DMs), and the 
control of any resource may be transferred during the 
simulation from one DM to another with an attendant 
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transfer time delay. 2.3    Responsibility Structure 

2.2    Tasks 

A team is presented with multiple tasks having dif- 
ferent deadlines, processing times, attributes, and pri- 
orities. During the real time experiment, tasks appear, 
move/maneuver and disappear according to a scenario 
that is under the control of the experiment designer. 

The tasks are also divided into classes. For exam- 
ple, we can have AA, AB, AN which may correspond 
to different air targets such as a backfire bomber, a 
bird, or a civilian airplane. The hostility of each task 
class, i.e., whether they are threats or neutrals, can be 
defined by the experiment designer. 

Each task has an attribute vector a with elements 
that characterize it quantitatively. For example, the 
attributes can include strength, evasiveness, vulnera- 
bility, etc. These attributes are random from task to 
task, but have a probability distribution (mean and 
standard deviation) that is unique to task class. The 
resources r required to successfully process a task is a 
mapping of the attributes of that task and will gener- 
ally depend on task class. 

Tasks can be processed in one or more operations, 
each operation can be assigned to different DMs. Two 
types of processing are possible: sequential and par- 
allel. The sequential processing requires two or more 
DMs to process in sequence, the next operation cannot 
be started before the current one is finished, for exam- 
ple, a part in a manufacturing line may need molding, 
painting, and assembling. The parallel processing re- 
quires two or more DMs (or resources) to process at 
the same time, all required operations must be syn- 
chronized to complete the processing, for example, to 
diagnose a disease, all blood test, X-ray, and urine test 
must be finished before the final decision can be made. 

The DDD also includes complex tasks such as ac- 
tive tasks and dynamically attributed tasks. An ac- 
tive task can change its trajectory according to the 
current situation and the treatment it received. A 
dynamically attributed task can change its attributes 
as a function of time and/or location of the task (for 
a simple task, the trajectory and true attributes are 
set by the scenario generator and remain unchanged 
during the real-time session). These complex tasks 
provide facilities to investigate team decisionmaking 
and coordination issues in more complex and reactive 
task environment. 

The overlap in task processing responsibilities of 
the team members can be adjusted based on the exper- 
imental condition. Responsibility can be preassigned 
in a variety of ways, e.g., by task class or by geo- 
graphical location. Under the conditions of no overlap 
we have a disjoint team requiring no coordination in 
task processing. As overlap is increased, conflicts in 
the overlapping areas of joint responsibility will occur 
which will need to be resolved through coordination. 
A new feature of the DDD is the ability to modify on- 
line task responsibility on a task-by-task basis. Thus, 
the responsibility for individual task prosecution can 
be (re)assigned dynamically by the team leader. 

2.4    Information and Communication 

Information and communication are two major as- 
pects in team decisionmaking and coordination. Dif- 
ferent structures of information/communication and 
their impacts on decisionmaking are important re- 
search issues. The DDD paradigm provides a variety 
of mechanisms to manipulate information and com- 
munication. 

The information structure of the team can be ma- 
nipulated easily via the DDD paradigm. This is imple- 
mented by establishing an information network within 
the simulation system. Every DMs can be assigned a 
level of "tie-in" to the information network depending 
on different task. A high level of "tie-in" means that 
the DM can get almost all measurements obtained by 
other DMs, and a low level of "tie-in" means that the 
DM can only rely on his own resources. Therefore, a 
centralized, a partially centralized or a decentralized 
information structure can be accomplished by setting 
different network "tie-in" levels by task type for differ- 
ent DMs. Furthermore, different roles in a hierarchical 
team may have different levels of information aggrega- 
tion. For example, a team leader may have informa- 
tion on overall situation without details, in contrast, 
a subordinate may have information on detailed local 
situation within his responsibility. 

Communication among DMs is the major way in 
which the team members can share their local infor- 
mation, and coordinate actions on resource transfer 
and task processing. In DDD paradigm, communica- 
tion between different DMs is mainly carried out by 
electronic messages (Verbal exchanges based on multi- 
person communication/recording system can also be 
incorporated to the DDD paradigm, see [16]). In order 
to simplify the data analysis, all electronic message are 
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Preformatted. Our underlying model for the commu- 
nication channel contains a variety of features that are 
important to human decisionmaking. To simulate the 
communication and data processing delay in real situ- 
ations, a (random and/or fixed) time delay in message 
transfer was introduced. To simulate the limitation on 
communication capacity (or channel access), the num- 
ber of communications (N) in a fixed time window (T) 
can be specified. Message loss and information scram- 
ble due to the network failure can also be simulated 
within the DDD. Finally, the communication network 
structure can be defined by a communication matrix, 
i.e., who can communicate with whom. 

WS/Global 
process 

5 Network Sf 

»I 
WS/Local 
process1 

( 
WS/Local 
process7 

^ 721 
«»      Locals 

User 7 
Interface 

Figure 2: The Architecture of the DDD Paradigm 

3    The Features of DDD Paradigm 
3.2    Interactive Display 

3.1    System Architecture 

The general architecture of the DDD environment is 
shown in Figure 2. The DDD paradigm runs on a net- 
work of UNIX workstations. In a real-time simulation 
session, eight (or more) processes run concurrently on 
different Workstations, with all of the control and com- 
munication information traffic carried over network. 
In the figure, Global is a process that works as the 
"control center" for the environment by controlling the 
clock and timing, synchronizing the other processes, 
and sending out various control messages according to 
the experimental scenario. Each Local Process con- 
trols execution within a workstation (WS) and inter- 
acts with the User Interface and the Global Process. 
Each User Interface receives commands from a DM 
and displays the dynamic tactical situation. The Sce- 
nario Generator is used for assisting the experimental 
designer in developing various system parameters for 
a given experiment. 

In the DDD environment, the global and local 
processes are implemented via a message-passing ap- 
proach. Each action of the DM is composed of certain 
events transferred in the form of messages. For exam- 
ple, when a display object receives a "process" com- 
mand issued by DM through a mouse/keyboard event, 
it sends a message "PROCESS EVENT" to a local 
database object that triggers the method "process" 
which in turn sends a message to the global process 
and then other local processes to update the state of 
all relevant objects. Thus, synchronization is achieved 
via the LIFO queueing and processing of messages. 

The user interface in DDD is very flexible. While 
all the facilities for decisionmaking are basically the 
same, the look-and-feel can be different according to 
different problem contexts of the scenario. Some ex- 
amples of display at an individual node are shown in 
figure 3 and figure 4. Figure 3 is the screen of our ba- 
sic paradigm [2] [3], three types of targets are shown 
on the screen: air, surface, and submarine; the re- 
sources are ships and airplanes, and sub-resources are 
helicopters. Figure 4 is a screen form our REST (Re- 
ward Structure) experiment [11], where triangles and 
circles represent targets assigned to different decision- 
makers (combined triangle and circle means two DMs 
are responsible for the target). In these figures, the 
screen is divided into four major parts: the main dis- 
play, the status panel, the communication panel and 
the prompt panel. The main display displays the ob- 
jects that represent resources and targets. Different 
targets arrive and move according to a experimenter- 
defined scenario; targets must be processed within a 
limited time window. All commands related to the 
objects can be issued by pull-down menus, pop-up 
windows or double- click associated with the objects. 
The communication panel is composed of an incoming 
window which is used to display the messages from 
other players, and an outgoing window which is used 
to display the feedback information when a message 
is sent out. The status panel is used to display the 
current time, strength and the dynamics of resource 
transfer/utilization. The prompt panel is used to dis- 
play prompts or error messages. All the display icons, 
menus, windows and messages can be modified or tai- 
lored according to different experimental designs. 
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Figure 3: The Screen of the Basic DDD paradigm 
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Figure 4: The Screen of the REST Experiment 

3.3    Scenario Generator 

A scenario generator has been developed to assist 
the user in setting up the experiment. It is used to 
configure the resources, to define the tasks, and to de- 
sign the movements of tasks. The scenario generator 
is capable of representing a stochastic and imperfectly 
known environment. For example, unexpected or low 
probability events can be introduced, and false infor- 
mation and/or false threats can be employed to per- 
turb the system. The intention is to represent a world 
that is difficult to predict, in which a hostile adver- 
sary introduces uncertainties into one's estimation of 
the current state of the system, thus making inferences 
about future states rather unpredictable. All task ar- 
rival times, task arrival positions, and task movements 

can be either automatically generated according to 
a certain random function, or a certain pattern, or 
specifically designed on a task by task basis. 

Two interfaces are provided for the scenario gener- 
ator. The first one is a flexible experiment description 
language, XS language, which can be used to define 
the "rules" of the DDD game, describe the resource 
and the task environment. Three types of items can be 
described via XS language, they are: 1) general items; 
2) resource information; 3) task information. In gen- 
eral items one can set the overall features of the exper- 
iment, such as the numbers of DMs, simulation time 
and communication delay etc. In resource information 
one can describe the characteristics of the resources 
such as maximal velocity, strength, and ranges, etc. 
In task information one can define task attributes, the 
resource required to prosecute the task, the decision- 
makers who are able to see or process the task, etc.; 
one can also describe the task arrival times, initial po- 
sitions, velocities, and the maneuvers of the tasks. 

A graphical active database modeling tool for sce- 
nario generation has also been developed [5]. This 
tool has utilized data modeling techniques to correctly 
and precisely specify large amount diverse, intricate, 
and interdependent information including the struc- 
ture of the decision team, the sharing of data, the in- 
teraction and exchange of data among DMs, and the 
data required by the different DMs. Furthermore, the 
structural information can be graphically specified by 
the experimenter, and changes in structural informa- 
tion automatically cascades to investigate changes of 
related information throughout the experimental sce- 
nario, resulting in time saving and consistent design. 

3.4    Experimental Variables 

The DDD paradigm is powerful enough to manip- 
ulate a variety of independent variables(IVs) that al- 
low for the study and evaluation of different command 
and control configurations. Some of the major IVs 
are: i) internal variables (team structure, responsi- 
bility structure, information structure, and communi- 
cation structure), and ii) external variables (tempo, 
uncertainty, resource quantity, information quality). 

The number and type of dependent variables (DVs) 
this paradigm can handle is quite flexible. To date, 
over 100 performance, strategy, coordination, and 
workload measures have been collected and analyzed 
in various experiments. 

All essential operations taken by the DMs are 
recorded in a log file. This file can be used to generate 
various dependant variables and statistics. Another 
important function of this file is that it can be used in 
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play back mode to automatically replay the game for 
review. 

3.5    Distributed Database 

The DDD paradigm includes different resources, 
tasks, coordination tools, decision tools, display tools, 
and an on-line data acquisition tool. All of these as- 
pects involve different kinds of data that are too com- 
plex to manage without using proper database tech- 
niques. The requirements for the distributed database 
can be illustrated by the following DDD features: 

• Response Time Requirement: Dynamic decision- 
making actions usually have stringent response 
time requirements. The conflict between time 
limit and the system's response becomes more sig- 
nificant due to the network communication delays 
and the time necessary to update many graphical 
displays and data items. 

• Concurrency Control: Several DMs may fre- 
quently read/write some related database re- 
sources concurrently. Thus, concurrency control 
under time pressure is critical to the system. 

• Low Computational Overhead: The DDD envi- 
ronment is both compute-intensive and data- in- 
tensive. The main body of the environment is 
devoted to simulation. Thus, the computational 
overhead of a database management mechanism 
must be kept low so that the system can properly 
handle the real-time decisionmaking actions. 

• Complex Data Types: The DDD environment 
requires a database that handles complex data 
types, captures the structure of the data, and 
considers the operational semantics of the data 
objects. 

The built-in database in DDD has considered all 
above aspects. To meet the real-time requirements, 
the database in DDD was designed as a partially repli- 
cated distributed database with a priority based trans- 
action management mechanism incorporated. To han- 
dle the shared access requirements, we used a hybrid 
method that combines a priority based concurrency 
control policy with a certain distributed locking mech- 
anism, so that the system can process transactions 
within soft deadlines while guaranteeing that the data 
consistency is not violated. To handle complex data 
types, we used the object-oriented data model which 
has a clear advantage over the classical data models, 
particularly from the perspective of conceptualizing 

the information and transitioning from the conceptu- 
alization to an implementation. The database man- 
agement mechanisms we have used has proved to be 
very effective in supporting our real-time distributed 
dynamic decisionmaking experiments [4] [5]. 

3.6    Training Support Features 

A global control panel was developed so that the 
experimenter can control the pace of an experiment. 
Using the control panel, the experimenter can pause 
or continue the scenario, speed up or slow down the 
game clock. A play back mode with fast play and 
slow motion capability was also built in. These fea- 
tures provide useful tools for instructors. According to 
different training requirement, the feedback informa- 
tion can be designed based on the dependent variables 
that collected and computed on-line. The information 
can be chosen to be displayed on a task by task basis, 
on a per game basis, or by time period, with graphical 
and/or numerical form. Because of the large amount 
of dependent variables collected, we can choose the 
optimal feedback information among them according 
to different instructional needs. These features have 
been proved to be very effective for subject training 
in our past experiments. 

4    Conclusion 

The DDD paradigm we have developed is a generic 
paradigm that characterizes team decision processes 
in which limited, shareable resources must be allo- 
cated to identify and process tasks in a dynamic and 
uncertain environment. It is a research/training tool 
amenable to systematic and scientific study while re- 
taining the essential features of real-world tactical de- 
cisionmaking. The DDD paradigm has been used ex- 
tensively in our research. In over fifteen experiments, 
DDD has been proved to be a flexible, easy to use, yet 
versatile tool for studying distributed decisionmaking 
in small team configurations. It has enabled us to em- 
pirically study numerous issues and test model-driven 
hypotheses in distributed decisionmaking and coordi- 
nation. The DDD paradigm is currently used as the 
main test-bed for our research that studies the adap- 
tation of organizational structure to task environment 
which is an important step in reaching longer term 
goals such as the development of a computational the- 
ory of organization design, and the understanding of 
how to design organizations of intelligent agents for 
high performance. 
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Abstract 

The Fire Support Automated Test System (FSATS) is 
being developed by the Program Manager, Instrumenta- 
tion, Targets, and Threat Simulators (PMITTS) to provide 
a full suite of instrumentation capabilities to support the 
technical and operational testing of United States Army 
Fire Support Command and Control (C2) Systems. The 
keystone of FSATS is the capability to simulate the tactical 
messaging of selected C2 nodes and to distribute this sim- 
ulation over geographically dispersed hardware platforms 
to obtain a realistic distribution of tactical processes and 
communications. This simulation is based on a series of 
behavioral models specifically developed for use within 
this system. The FSATS simulation analyzes the content of 
tactical messages received and generates an appropriate 
tactical message in response. While principally developed 
for the test support role, the benefits and ease of extending 
this simulation technology into the training role is clear. 

1. Background 

Recent years have seen an explosive growth in the use 
of simulation technology to achieve low cost solutions to 
training problems within the Department of Defense. 
Attempts to extend this technology into other technical 
areas has met with only moderate success, since a signifi- 
cant amount of the emphasis in training simulation has, in 
the past, focused on the man-machine interface necessary 
to conduct individual training. This feature, although 
essential in the individual training role, assumes a lower 
priority when applying simulations to service applications 
such as collective training, system testing, and evalua- 
tions. 

Once such application utilizes simulation as an effec- 
tive cost reduction mechanism in support of the technical 
and operational testing of today's evolving U.S. Army 
Command and Control (C2) systems. The Army's develop- 
ment of automated C2 systems is critical to meet the 
increased tactical efficiency demanded of today's force in 
the face of the changing threat and continued downsizing. 
These C2 systems are tactically employed in a network of 
cells (or nodes) across the operational area, and each is 
intended to perform a specific function or series of func- 
tions to support the overall battle. Using tactical intelli- 
gence and information to provide the basis for decision- 
making, C2 nodes are data-driven and utilize tactical mes- 
saging as the principle means of exchanging information. 

Since tactical communications provide the primary data 
path between nodes, the simulation of any portion of the 
C2 network must support this data exchange. Hence, a 
simulation system which emphasizes a visual-based simu- 
lation does not apply. For these reasons, the development 
of FSATS pursued a simulation based on the tactical mes- 
sages used by the target C2 system. The concept of mes- 
sage-based simulation is certainly not founded with 
FSATS, but this was the first application of this simulation 
approach to support a distributed and reusable simulation. 

Past simulations developed to support system testing 
and training were hosted on a single mainframe system 
which contained multiple established communications 
pathways to the tactical C2 system, normally referred to as 
the "System Under Test" or SUT. Simulation of this type 
were rigid and confined, normally supporting a single 
exercise configuration in a controlled environment. While 
suitable for technical testing with predefined goals, this 
type of simulation does not readily support the needs of 
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the operational tester or the trainer, who relies upon tacti- 
cal realism and multiple excursions and configurations to 
fully assess the suitability of the overall C2 system. 

FSATS was designed to provide a distributed, message- 
based simulation which could be employed in the exercise 
environment in a manner similar to that used for the target 
C2 system. Therefore, the FSATS design incorporated fea- 
tures to address these critical functional needs and to pro- 
vide reusability and reconfigurability to it user. 

2. Message-Based Simulation 

The simulation domain of the FSATS system will even- 
tually encompass all tactical messages utilized by existing 
and planned Fire Support C2 nodes. A careful analysis of 
the functional requirements of each node within this mes- 
sage domain will result in a finite set of messages with 
which the simulation for each node will need to interact. 
These messages may be categorized as either input mes- 
sages, to which the simulated node must respond, or as 
output messages, which form the individual portions of the 
simulated node's response. 

A key design goal of tactical C2 systems is to automate 
the routine extraction of data from incoming messages and 
to manipulate that data into a form which may be clearly 
presented to the human operator of the node as a decision- 
making aid. These manipulations may take several forms, 
such as rearranging or expanding of text for display, con- 
version of text into graphical displays, or performing rou- 
tine functions designed to replace repetitive processes 
normally performed by the operator. Therefore, any simu- 
lation of a C2 node's behavior must properly account for 
all aspects of this automated data handling, as well as suit- 
ably represent the human decisions and actions which 
would normally occur. In addition, the output message(s) 
normally generated as a result of this decision must be cor- 
rectly populated with data, converted to an appropriate 
syntax, and properly presented to the message handling 
protocol. 

Groups of tactical messages between nodes relate to a 
single mission being performed in support of the overall 
battle. This group of messages represent a single Fire Sup- 
port mission, commonly referred to as a "mission thread". 
Each of these tactical messages consists of several pieces 
of tactical information or data which define the ongoing 
state of missions flowing through the overall system. The 
nodal simulations must trap and record this information to 
be able to access the current state of each individual mis- 
sion. Thus, each nodal simulation makes use of a series of 
tactical state tables to record the dynamic data associated 
with each mission. This same data is also used to populate 
the output messages generated by each model. 

3. The Nodal Logic Model 

The FSATS simulation is based on a conceptual model 
derived to meet the needs of a message-based simulation. 
The model, shown in Figure 1, is defined in terms of input 
events and output events (messages) and/or state changes. 
The generic actions shown, when taken as a whole, repre- 
sent the interpretive logic inherent within each nodal 
model. These logic actions execute serially in response to 
the input event received. 

Output Event»! 

ACTIONS 
1. Receive Input 
2. Assess State 
3. Determine Path 

Input    ^"|      4. Update State 
Event         \     5. Compose Output 

6. Transmit 
7. Timeout Activity^ 

Output 
Event #2 

Output Event #3 

Figure 1: The Nodal Logic Model 

When an input message is received, the data within the 
input message and the current mission state contained in 
the tactical state tables is compared against a rule set to 
determine the single logical pathway to be followed. 
When a specific path is selected, a series of response 
actions is instantiated to perform state table updates and to 
generate output messages. When the response actions are 
completed, the nodal simulation will enter a state waiting 
for its next expected event. Each pathway may have a 
timeout activity associated with it, which is used to per- 

form file cleanup and activities to continue a mission 
thread if, for some reason, an expected input event does 
not occur. 

Extreme care must be taken when defining the logic 
contained within the Nodal Logic Models. As C2 systems 
move into the realm of more sophisticated communica- 
tions and data formatting, consideration must be given to 
the data preprocessing which occurs in the systems being 
simulated. 

The Nodal Logic Model is deterministic in nature, 
which is essential to effect a suitable simulation which can 
be implemented in software. Nodal simulations must 
behave in a predictable manner to ensure exercise repeat- 
ability and to properly assess the behavior of the live 
nodes which make up the SUT. Random events are not 
precluded from the Nodal Logic Model but must be care- 
fully integrated into the rule set which is used to determine 
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response pathways. In this manner, random events may be 
considered without destroying the overall deterministic 
character of the basic model. 

4. Design and Implementation Strategy 

The development of FSATS is progressing in parallel 
with the development of the C2 systems it is intended to 
support. The emerging design of these systems, as well as 
user requirements, has driven some key design issues 
which add benefit and robustness to the resulting simula- 
tion. 

4.1 General Design Strategy 

The FSATS requirements for a reusable and distributed 
simulation were key elements in the decision to utilize a 
modular, object-oriented approach to the design. Each 
nodal simulation is defined as a specific object and can be 
allocated to and de-allocated from specific processors at 
will. The interfaces between these simulation objects mir- 
ror the tactical messages which would be sent between 
their respective live nodes. 

The current FSATS simulation was implemented using 
data-defined logic records which are manipulated by a 
runtime interpreter. This decision minimizes the impact of 
changes brought about by the emerging design of the sup- 
ported C2 system and the emerging logic models them- 
selves. The design is therefore easily adaptable to other 
applications and to future enhancements. Several enhance- 
ments have already been identified to allow this simulation 
to meet other needs, such as training. 

The deterministic nature of the nodal logic models 
lends itself to a reimplementation of this simulation using 
a rule-based expert system. Hence, a design was incorpo- 
rated which would minimize the workload necessary to 
transition to this technology. This design enhancement is 
currently under consideration. 

Since the simulation consists of many functions which 
are repetitive in nature, such as extracting data from mes- 
sages and using it to update the tactical state database, 
FSATS has emphasized the use of reusable software com- 
ponents called common actions. These common actions 
are highly modular, which supports the maintainability of 
the simulation. 

4.2 Maintenance of the State Information Data- 
base 

FSATS operates as a flexible, distributed simulation 
which allows the assignment of simulated objects to the 
various FSATS processors. All simulated objects within a 
given processor have access to two types of database 

tables used to support the simulation. A master set of 
tables contain data (normally static) applicable to all simu- 
lated objects. A second set of tables contain the dynamic 
tactical state information used to affect the logical behav- 
ior of the simulation models and populate tactical mes- 
sages. 

The current FSATS implementation makes a unique set 
of the master tables available to each processor. Changes 
to these tables are currently limited to those performed 
directly by the FSATS operator during planning or during 
pauses in the execution of the scenario during runtime. 
These limitations are necessary due to a lack of any suit- 
able data exchange media to provide either a pathway for 
the distributed processors to gain access to a single master 
database or a pathway to accurately update any distributed 
set. The tactical communications paths cannot be used for 
this purpose, since the system requirements dictate that 
FSATS not alter the tactical performance of any node or 
network. Future versions of FSATS may incorporate an 
instrumentation network, which will provide a suitable 
means of manipulating a distributed database. 

The process used to update the dynamic state tables 
must be carefully defined and controlled. Although distrib- 
uted simulations normally share database information, this 
concept of global access is not applicable to an effective 
C2 simulation. Since multiple nodes on a given processor 
can see the data within these dynamic tables, the access 
must be carefully controlled to ensure that a state update 
performed by one node cannot be used by another, prior to 
that node receiving a suitable tactical message which 
would result in that update taking place in a normal fash- 
ion. 

For example, if Node A conducts a tactical move and 
updates its location within the dynamic tables, Node B 
should not be able to access that new location until a mes- 
sage is received which indicates to Node B that Node A is 
in a new location. This phenomena has required FSATS to 
maintain state information peculiar to individual nodes, as 
well as other information which represents "ground truth." 
For reasons similar to those discussed for the master 
tables, the ground truth information will only be accurate 
within the data structure which resides on one specific pro- 
cessor. The instrumentation network will provide a solu- 
tion to this problem as well. 

4.3 Event-Driven Reactive Simulation 

The nodal logic which forms the basis of FSATS was 
created to produce a reactive type simulation, which will 
respond in a manner suitable to the current state of node 
being simulated and the nature of the input event it is sub- 
jected to. This feature of FSATS makes it possible for the 
simulation to support a given exercise without the need for 
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operator intervention. Scripted events in the form of a 
Time-Ordered Event List (TOEL) may be used by a simu- 
lated node to initiate selected missions, but no operator 
decisions or actions are required to adequately respond to 
the input messages received by the simulation. The TOEL 
events merely represent a human decision to identify and 
initiate a mission which the overall system need perform, 
and to provide a entry route of the mission-related data 
into the system to replace the keyboard entry normally 
performed by the operator. 

4.4 Time Synchronization 

Although FSATS operates principally as an event- 
driven simulation, the overall simulation functions within 
a scenario specified by artificial time limits. Also, a signif- 
icant number of the mission threads require a knowledge 
of the time in which the controlling nodes operate. Hence, 
it is imperative for the distributed simulated nodes to gain 
and maintain a single concept of time. 

FSATS utilizes the Global Positioning System (GPS) to 
maintain time synchronization within the simulated nodes 
within a single millisecond accuracy. The Universal Time 
Coordinated (UTC) provided by GPS is available to all 
FSATS processors, since each target system contains an 
antenna and the necessary GPS hardware. An offset value 
is calculated to convert this UTC into a valid scenario 
time, which is available to all simulated objects. 

4.5 Simulation Control 

While operator intervention is not desirable to maintain 
the simulation's progress, there remains a critical need for 
the FSATS user to be able to control the execution of the 
exercise being supported. These needs include the ability 
to control the pace of the exercise, as well as pausing, 
stopping, and resuming the exercise. However, the simula- 
tion objects must operate exclusively in real time. 

The reactive nature of the simulation models and the 
sensitivity of the tactical messages with regard to scenario 
time necessitated isolating the software object which con- 
trols the injection of the TOEL messages into the scenario. 
This software object, known as the TOEL_Server, may be 
altered to vary the speed (as a function of percentage of 
real time) that the messages required to initiate missions 
are injected into the simulated objects. This allows the 
user to control the rate of scenario execution without 
affecting the real-time performance of the simulated 
nodes. Additionally, the TOEL_server (as the object is 
known) may be halted independently, which allows the 
simulated nodes to continue to respond to the tactical mes- 
sages generated by the live node until all mission threads 
have been terminated in a normal fashion. 

4.6 Simulation Abstraction 

As the size of the message domain grows - with the 
addition of new systems, formatted messages, and com- 
munications protocols, - the simulation must be able to 
operate properly in an increasingly complex dynamic 
environment. A key to success has been in maintaining the 
concept of simulation abstraction, as shown in Figure 2. 
This abstraction allows other software components to nor- 
malize the incoming tactical message into an internal data 
form which may be utilized by the simulation software. In 
this manner, the simulation is more adaptable to changes 
in tactical messaging and to integration with other sys- 
tems, and it is far more easily maintained. 

Figure 2: Simulation Abstraction 

When an incoming message is received by FSATS, a 
software component known as the Tactical System Inter- 
face (TSI) performs the routine protocol handling. The 
contents of the tactical message are then sent to the Tacti- 
cal Message Translator (TMT) which converts the bit 
stream received into data types which can be used by the 
simulation. Additionally, since FSATS deals with multiple 
message formats, data sets, and message handling tech- 
niques, the data is normalized to store the state informa- 
tion in a single common form. 

The simulation engine provides additional abstraction 
for the simulation, as well as promoting software reuse 
and modularity. The simulation engine consists of two 
principal parts. The State Manager controls access to and 
performs the read/write operations required of the Tactical 
State Database. The Runtime Interpreter uses data from 
the input message and from the state manager to interpret 
the rule set contained within the Nodal Logic Database. 
The common action procedures are then sequentially 
instantiated to update state and to build output messages. 
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5. Additional Applications 

Although FSATS is being developed to support C2 test- 
ing, this type simulation can be adapted to meet other 
needs. Any changes required to meet the needs of other 
areas may normally be addressed with a minimum of 
effort. Some possible applications which are currently 
under investigation include the following. 

5.3 Collective Training 

5.2 Doctrinal Analysis 

To explore the impacts of doctrinal changes prior to 
implementing these changes within the total force, full 
simulations using nodal logic can be run with a variety of 
input events and exercise configurations. Also, areas such 
as bottlenecks, information gaps, and network overloading 
could be identified. 

5.3 Interoperability 

There is a direct application to the needs of collective 
training, since the command post training (CPX) or field 
training exercise (FTX) environments are identical to 
those used in operational testing. Normally, little adapta- 
tion would be required to support training, since it is of 
benefit to produce doctrinally correct logic models, which 
contain a very detailed rule set to avoid the appearance of 
errors in the tactical messages produced. 

Since the FSATS simulation is defined in terms of input 
and output messages, the internal logic could be simply 
defined to translate the input data into another form. In this 
way, a simulation of this type could be used to affect an 
interface between two existing systems which currently 
lack such an interface. 
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Abstract 

This paper is conceptual in nature, discussing the 
application of Distributed Interactive Simulation (DIS) 
technology to the dissemination of strategic and tactical 
intelligence information to a broad base of military 
tactical decision makers and senior leaders. While the 
current thrust of DIS development is oriented toward 
the support of apriori training, systems acquisition 
engineering analysis and mission rehearsal, the 
proposed concept advocates DIS as primarily a real 
operations decision-making support tool with mission- 
concurrent training and incremental mission rehearsal 
support capability 

Introduction 

The view that "the problems endemic to military 
intelligence did not arise overnight, and their complexity 
defies an instant solution"[l] has recently been echoed in 
professional military publications. Maj. Raymond J. 
Leach in favoring review of Maj. James P. Marshall's 
recent book, Near Real Time Intelligence On The 
Tactical Battlefield, "...urges a return or reprioritizing of 
our efforts to tactical intelligence support, and suggests 
that much of our standard doctrine is outmoded... 
Perishable combat intelligence of immediate tactical 
value should not be restricted...,but pushed down and 
laterally, using the latest technology advances."[l] In 
this era of anticipated small unit low intesity conflicts 
and multi-national force operations, time critical 
intelligence data dissemination to the small unit tactical 
decision maker becomes or paramount importance. Also 
the burden of intelligence data integration falls heavily 
on the tactical decision maker. Textual reports with 

varying time stamps require time and the commander's 
undivided attention to piece together. 

The military "...flies a number of "national level" 
collection platforms without receiving a payoff in 
[effectively disseminated] tactical information."[l] 
Currently, as this raw intelligence data from electro- 
optical sensor sources traverses the many gates of filters 
and enhancement processes, it ceases to be the pure 
reflection of the environment it depicts. The 
enhancements are necessary because to the untrained eye 
the raw imagery may not be recognizable for its true or 
maximum intelligence worth. "Making sure the 
imagery gets to the right analyst and with sufficient time 
to allow commanders to take advantage of the data to 
reposition their forces is far easier to envision than to 
incorporate in a functioning system that can be 
fielded."[4] 

Within the may pixels required to represent an 
intelligence image, a subset serve as cues which lead to 
real inteligence information. The other pixels may serve 
to indicate other non-intelligence related information and 
a third class of pixels are virtually worthless from an 
intelligence standpoint. Current dissemination schemes 
compress and digitize entire images, then send them 
across the networks to secondary users and sometimes to 
the ultimate users. If the raw imagery is considere to be 
a pure reflection of the environment that it depicts, then 
after the enhancements and compressions it has moved 
more toward a simulation grade of reality representation. 
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Today's military application for synthetic environments 
is mainly oriented toward training. The air elements 
have flight training systems and the ground elements 
have tank trainers. Soon, planners will be engineering 
ways to place the DIS synthetic environment systems on 
field operational platforms for training purposes. A 
more comprehensive approach is needed which integrates 
the training value of these systems with their at least as 
equally valuable intelligence dissemination and mission 
rehearsal potentials. 

This paper outlines the operational and architectural 
concepts for applying DIS to the dissemination of time- 
critical intelligence information to the small unit 
commander. 

Operational Concept 

Overview 

As image generator computers come down in size and 
price, it will become increasingly more practical to place 
a dynamically networked image generation and display 
system with the small unit tactical commander. With 
free viewpoint movement within a limited but large 
enough area of interest, the commander will be able to 
make synthetic reconnaissance and see discernible 
representations of critical intelligence information. 
Threat entity states will be updated in near real time. 
For instance, a helicopter firing a missile at a tank, and 
the tank suddenly changing appearance reflecting the hit, 
will be a viewable scene for the commander almost 
immediately following the real world event. For small 
unit commander too busy to integrate and assimilate the 
floods of relevant intelligence data, the intelligence DIS 
Field Node will allow the commander to address the 
problems at hand while keeping one eye on the 3-D 
simulation of the current situation. Friendly and threat 
entity states will be updated in near real time. Changes 
in the terrain and fixed cultural features will change 
periodically to reflect reality. For example, a bridge may 
at one moment appear serviceable and at the next 
moment be destroyed. Changing weather and 
trafficability conditions will be incorporated. This DIS 
intelligence dissemination concept involves a system 
comprised of five segments; the Central Data Base 
Generation Segment (DBGS), the Theater Data Base 
Generation Segment, the Transmission Segment, the 
Field Node Segment, and the Instrumented Field Entities 
Segment. Multiple types of data will flow across the 
networks serving the DIS field nodes; environment 
database updates, threat entity states, friendly entity 
states, aggregated entity states. Voice communication 
will be the responsibility of other systems. 

In addition to the 3-D free viewpoint image of the 
tactical area of interest, the decision maker will have 2-D 
sub-window overview of the area with iconic 
entity/featural representations. Much of the non-pictoral 
intelligence data related to the displayed icons will be 
accessible in a windows/menu style user interface 
environment. For instance, a bridge icon on the 2-D 
overview display may be selectable and information such 
as the serviceability status of the bridge, its loading 
capacity and the freshness of the supporting intelligence 
data, will be displayed. While accessing this 
supplemental information, the commander will be able 
to continue viewing the tactical situation on the 3-D 
display. 

Central Data Base Generation Segment 

National intelligence collection systems, collect data, 
some of which is valuable to the tactical decision maker. 
This data may be fused with tactically collected 
intelligence by the tactical fusion systems. However, 
terrain and cultural environment data and national 
weather agency data will augment the data from these 
national intelligence sources to create the initial visual 
environmental data base. Later this baseline will be used 
as the basis for the overlay of tactically collected and 
fused data at the theater level (Here, "theater" means the 
broad area of tactical operations or interest). 

The basic databases will be generated in advance of unit 
deployment. It will be important to streamline the 
current semi-automated processes for developing these 
visual databases because many of the coming crisses 
will ill-afford more than a day or two to prepare for 
deployment. This basic DIS visual environment 
database will be stored for transport on compact 
discettes. Over prolonged periods of deployment the 
tactical commanders will receive update database discettes 
via the normal physical distribution used for other 
controlled classified materials. 

An example of nationally collected intelligence data is 
imagery taken from a reconnaissance satellite of a POW 
compound which for specal operations purposes must be 
modelled and fixed into the environmental data base. 
The Central Data Base Generation Segment would send 
this environmental data base to the Theater Data Base 
Generation Segment for further processing. 

Tactical intelligence collected from theater level 
collection assets will be funnelled into tactical fusion 
systems such as the Army's AS AS. "The [All Source 
Analysis System] ASAS is the Army's portion of a 
former joint effort with the Air Force known as the Joint 
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Tactical Fusion Program. The initiative is designed to 
gather data from all available sources, including 
electronic intelligence (ELINT), signal intelligence 
(SIGINT), imagery intelligence (IMINT), human 
intelligence (HUMINT). fuse that data with on-going 
combat information...". [4] This fused data will overlay 
the database provided and updated periodically by the 
Central Data Base Generation Segment. 

Theater Data Base Generation Segment 

At the Theater Data Base Generation Segment, fusion 
processes further interpret the imint/photint.data. 
Fusion systems integrate them and output products more 
conducive to object-orientaiton. Object-orientation of 
the intelligence data is critical to the concept of using 
"object-oriented environmental servers" to create the 
basic common picture for the tactical comanders. 
Recently, there has been research done to pave the way 
for object-oriented environmental servers which, directed 
by the DIS community, will serve the DIS intelligence 
community well.[5] Object-orientation allows different 
types of intelligence data related to the same 
object/entity and coming from vaious sources may be 
collected and displayed at the DIS Field Node in multiple 
forms. Both threat objects and friendly objects will be 
treated as "persistent objects"[6]. 

The theater level database generation process may be 
partitioned into processes which may be automated in 
near-real-time and non-automated labor intensive 
processes. The building of visual databases, which 
provide for geographically specific depiction of the 
environment and sometimes includes high resolution 
imagery specific texturing of models and features, is 
known to be a long labor intensive task for even small 
areas. The automization of this process will require 
partitioning and parallelization of database generation 
tasks. Those tasks which are inescapably labor intensive 
such as detailed model building will be accomplished off 
line. No doubt, there will continue to be improvements 
to the model-building tools in this area. Continuing 
with an earlier example, a tactical remotely piloted 
vehicle collects more imagery of the compound. The 
Theater Data Base Generation Segment will take this 
database region modelled at the Central Data Base 
Generation Segment and update the model, providing the 
scene densities needed for a special operations rescue 
mission. 

The Theater Data Base Generation Segment will take the 
outputs of the multi-source intelligence fusion system, 
partition the data into entities and environment classes. 
The environmental data base received from the Central 

Data Base Generation Segment will be rebuilt 
integrating the environment class of filtered intelligence 
data. For example, an intelligence report indicates a 
direct hit of a missile on a bridge making it 
unservicable. A damaged bridge model will be 
substituted for the healthy bridge. Dynamic simulation 
of weather effects will be treated as universal features or 
moving models. While the weather environment will be 
included in the data base from the Central Data Base 
Generation Segment. The alteration of the baseline 
environmental database will occur at the Theater Data 
Base Generation Segment 

Recompiling of the database will be accomplished 
decentrally at the DIS Field Nodes so that only DBGS 
software change instructions will be sent in order to 
effect an update. In this way minimal communications 
bandwidth will be required to support environmental 
database updates. There will be a controlled sequencing 
of these changes so that DIS nodes will process changes 
in chronological order, presenting scenes to the 
commander which are held in common by adjacent field 
nodes. 

Transmission   Segment 

The Transmission Segment function is to provide 
communications, application layer through physical 
layer, to effectively support the DIS intelligence 
dissemination concept. Entity data (usually threats) will 
go a separate route eventuating in DIS PDUs directed 
over the DIS net to selective subnets. The DIS 
communications network will optimize data flow down 
from the central and theater DBGS centers to the Field 
Nodes while minimizing the broadcast loads from the the 
Field Nodes. 

Only entity/environment data which changes will be 
communicated. There will be a need for unambiguous 
rules of entity data control to preclude inconsistent 
representations of entities while maximizing 
dissemination of time critical data. The "Persistent 
Object Protocol"[6], developed for interfacing semi- 
automated force (SAF) systems, will provide a 
methodology for intelligence DIS entity information 
control. Ownership of an entity/object may change but 
there will be well-defined responsibility for updating 
information of each entity on a periodic basis. 

Field Node Segment 

The Field Node Segment will be the hub of all DIS 
intelligence data. Intelligence DIS data will be received 
by the Field Nodes from the Theater Data Base 
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Generation Segment, the Instrumented Field Entities, 
other Field Nodes and occasionally directly from the 
Central Data Base Generation Segment. While strategic 
intelligence raw data will not traverse the DIS network, 
pointers which relate DIS depicted intelligence data to its 
raw source(s) will be forwarded within the DIS PDU 
structures. These pointers will allow the commander to 
verify what is depicted on the 3-D or 2-D display, given 
the availability the raw data at the DIS field node 
received from the other intelligence dissemination 
systems. Most likely, for some time, the availability of 
raw strategic imagery to include radar and IR will be 
confined to the medium to larger size units, due to 
communications and security constraints. Larger units 
also will have DIS Field Nodes, but will receive the 
annotated enhanced imagery products, compartmentally 
disseminated via other systems. 

DIS entities will be aggregated by the DIS Field Node 
for higher reporting purposes and for the benefit of 
senior tactical commanders having DIS nodes. Without 
filtering, the 2-D overview display will become cluttered 
with icons. While the senior commmander will 
definitely want the capability to adjust the DIS node 
communications filters to examine closely a small unit 
commander's situation, the main emphasis at this level 
will be management of the bigger picture which will 
require aggregated entity status. The unit status 
reporting function of the DIS Field Node wil be of lower 
priority than its primary function of downward 
intelligence dissemination. 

Instrumented Field Entities Segment 

Local instrumented entity inputs to the DIS Field Node 
will be carried via established tactical digital data 
networks. The Field Node Segment will take these DIS 
data packets and filter them and integrate them into the 
current tactical picture. This host will drive the IG, 
activating/deactivating models, repositioning models 
which represent entities, and reload area of the 
environmental database into the image generator to show 
updated terrain and cultural features in the area of interest 
to the commander. 

Also, the DIS Field Node will form DIS Protocol Data 
Packets (PDUs) to output onto the DIS network the 
locally known entity state information. 

Local instrumented entities will be reporting back to the 
small unit commander in PDU packets their positions, 
health, logistical states automatically with programmed 
periodicities. The DIS Field Node image generator 
controller will send the position changes to the image 

generator in near-real time. Emphasis will be on 
automated intelligence gathering and reporting between 
the local friendly entities and the DIS field node, and 
between DIS field nodes. 

Consider the following scenario. A tank platoon 
commander DIS Field Node receives Global Positioning 
Satellite (GPS) sourced entity state PDUs from a close 
air support DIS instrumented entity. The tank 
commander after seeing the simulated battlespace from 
the supporting pilot's viewpoint determines that the 
pilot's position in deep defilade is insufficiently 
supportive. Meanwhile the co-pilot of the supporting 
aircraft uses a DIS Field Node to make reconnaissance of 
terrain features forward of the tank platoon's position, to 
plan for optimal support movement. DIS entity state 
traffic illustrates for thet co-pilot and tank platoon of 
friendly multi-national force T-72s has moved into 
position just over the next ridge, out of line of sight 
communications. The T-72 positions had arrived via the 
tactical intelligence DIS network. 

Field training and mission rehearsal 

While the primary focus here is to discuss the concept 
and effects of employing DIS technology for intelligence 
data dissemination. The current mainstream of DIS 
development focuses on training, systems acquisition 
engineering analysis, and mission rehearsal 
appplications, all of which are consistent with 
intelligence DIS concept. For training purposes 
fictional intelligence data or scenarios will be served 
onto the training exercise DIS network consistent with 
the scenarios and visual scenes presented through the 
virtual reality manned training simulators. DIS 
standardization will make this possible. 

During real operations when the activity is in a lull, 
constructive simulations local to the DIS Field Node 
will feed tailorable scenarios to the tactical planner. A 
virtual "what if" game will be played iteratively, as time 
permits. These scenarios may involve real entities or 
may be confined to the DIS Field Node for analytical 
purposes only. Decision support software in tandem 
with the DIS Field Node representation of fictitious 
tactical scenarios will help prepare the tactical decision 
maker for the otherwise unexpected. In the not to distant 
future, the system user will use voice activated computer 
commands to change viewing parametric values such as 
zoom or changing viewpoint. 
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Architectural Concepts 

Central DBGS 

The strategic level DIS automated DBGS will be a large 
processing center in CONUS which will employ in the 
near term high bandwidth long lines communications to 
update the DIS environment baseline at the Theater Data 
Base Generation Segment. From this center, pre- 
deployment visual databases will be prepared, packaged 
and distributed. This center will be directly associated 
with the national level mapping and intelligence 
collection resources. While the source data for the DIS 
environment will be controlled at TOP SECRET 
compartmented security levels, the output database 
product will be controlled colaterally at the SECRET 
level. No characteristic of the output database will 
reveal the sources identities or resolution capabilities 
from which it may be derived. 

Theater DBGS 

There will be a theater level DIS automated DBGS 
(theater central environment server) which will be a 
shelter sized processing center. The tactical 
communications networks indigineous to the hosting 
unit will support the DIS traffic. This will involve 
multiple types of communications (SHF, UHF, HF, 
commercial lines) and multiple link pathways with 
redundancy. The intelligence DIS system dissemination 
timeliness will be a graceful function of Transmission 
Segment service. Entity type prioritization will help 
optimize DIS bandwidth utilization. 

DIS Field Node 

From a users's perspective, the intelligence data 
dissemination DIS network would be structured as 
follows. In the near term, i.e. 1990's, a desktop 
computer will serve as thecommunications front-end 
processor and the image generator controller. Also, this 
computer will manage non-visual intelligence data and 
host constructive simulation software, mission rehearsal 
and incremental training scenario generation software. 
The IG will require another box. It is basically a special 
purpose computer composed of a control processor, 
geometry processor and a pixel processor. Within the 
last few years, even the high-end real-time IG's have 
shrunk from a row of well-populated 72" high cabinets 
to a small free standing box. With reasonable confidence 
one could speculate that by the year 2000 the high-end 
image generator will fit easily on a desk top, and 
arguably to small man-pack size by the year 2010. 

The display will be a color monitor and in the near 
future, by year 2005, be integrated onto the already 
marketed helmet mounted display type. 3-D visual free 
play on the image generator will be directed through a 
joystick control. And the current industry standard 
windows type interfacing environment will apply to the 
activation of the 2-D overview subwindow and 
intelligence data pull-down sub-windows. 

In the near future DIS Field Nodes will be present on 
battle tanks and aircraft, where GPS will be the primary 
source of DIS entity position status. In the far term, 
individual personnel position and status on the local DIS 
subnet will be a reality. 

Communications front end 

The communications interface at one end connects to the 
communications carrier, military or other. In translates 
the signal received from the local carrier across the 
various layers of protocol (ISO) up to the application 
layer. The application layer protocol, known as the DIS 
protocol is a currently developing data packaging 
structure which will serve as an excellent baseline for 
service to the intelligence DIS dissemination mission. 

Filtering 

Incoming DIS PDUs will be filtered, allowing only the 
PDUs pertinent to the particular DIS Field Node to be 
further processed. The majority of these will be Entity 
State PDUs. The environment database change PDUs 
will be less frequent and more lengthy, but not a 
significant drain on the communication resources. 

Entity states data received will be adjusted relative to the 
age of the data calculated from the time stamp which 
will accompany the position, orientation and other data. 
This adjustment, called "dead reckoning" is an 
extrapolation of entity position (latitude, longitude, 
altitude) and orientation (roll, pitch, heading). In DIS 
exercises involving manned simulators, it is sometimes 
desireable to smooth entity position and orientation 
corrections. With Intelligence DIS, data nearest to 
reality is welcome even if it means abrupt change in the 
scenes. Other range filters may partition the remaining 
group of dead reckoned entities into those viewable given 
the currently loaded environmental database from those 
not immediately viewable but near enough in the 
vicinity that they may be viewed and ought to be 
tracked. Generally, other processing of this type which 
will take place in the DIS Field Node will be executed in 
an effort to off-load critical processes or accomodate the 
constraints of the image generator. 
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Transformation of the visual data base 

The DIS Field Node will also serve as a local Data Base 
Generation System(DBGS) for environmental database 
updates which arrive via DIS channels. The local-DBGS 
process will be fully automated and will be similar to 
one of the automated data base generation process 
architectures in operation at the Theater Data Base 
Generation Segment. The list of data base 
transformation instructions successfully executed to 
update the visual data base at the Theater level will also 
be executed at the Field Node level to maintain visual 
data base baseline comonality. Near real time updates 
make at the Theater Data Base generation Segment to the 
visual environment databse will require databse 
transformation instructions. These data base transform 
instructions will be communicated to and repeated by the 
local-Data Base Generation System to bring up the local 
baseline visual database. This will work for changes to 
an existing visula data base. New areas will require 
physical distribution or lengthy file transfers, given high 
bandwidth communications availability. 

The visual database will be formatted locally for use 
with the image generator. Because, only portions of the 
Visual Data Base which will be affected by the changes 
will be restructured, the time it will take to reformat 
changes will be minimal. Of all the DIS Field Node 
processes, the local-DBGS will be the most time 
consuming, but will be independent of the time critical 
entity state update process. 

Non-visual intelligence data management 

Other data associated the entities representable by models 
on the DIS Field Node display, will be best displayed in 
the form of text or symbols. The DIS Field Node will 
manage this data and buffer it ready for display in 3-D. 
Some symbols will be displayed within the 3-D scene. 
The majority of this data will require a button selection 
on a display window. The 2-D display sub-window will 
depict information symbolically with some alph- 
numerics. However, this display with its icons 
depicting entities in the view area will get cluttered. The 
DIS Field Node will offer 2-D and 3-D loading 
parameters which may be set by the operator to optimize 
information display. 

Image generator control 

In order to dynamically change the simulated 
environment terrain, sea state and cultural features 
without interruption of service to the commander, a two 
channel image generation system will be employed with 

only one channel displayed at a time ( i.e.ping-pong). 
This will give the IG a chance to load changes to the 
environment off-line. The channel inter-change cycle 
period will be approximately 5 minutes, given the local 
database recompilation function is performed prior to 
loading. Moving model sets will be loaded in similar 
fashion, off-line. Activation of multiple instances of a 
loaded moving model type will be almost instantaneous, 
within the image generator's scene loading constraint. 

Operations and display 

In the near term, two display CRTs will be necessary for 
DIS Field Node operation; an operator terminal and one 
for 3-D high resolution display. A joystick will 
interface with the image generator allowing the 
commander to freely reposition and reorient the 3-D 
viewpoint on the 3-D display. A standard keyboard 
interface with a mouse will allow the commander to 
select windows and Field Node options on a standard 
desktop computer terminal. In the near future all 
operations and display features both visual and physical 
will be resident in one box. In the more distant future 
(around year 2010) these functions will be supplied 
through the Field Node back-pack and helmet display. 

DIS instrumented field entities 

The automated status from local networked Instrumented 
Field Entities will follow the standard DIS protocol rules 
now in development. These entites may be tanks, 
planes, personnel etc. and may be outfitted with a variety 
of instruments or could be DIS Field Nodes themselves. 
With the automation of these field instruments the field 
operator will remain free to concentrate on mission 
objectives. 

Status of threat entity positions/states will, through 
voice recognition systems, be automatically relayed to 
the DIS Field Node [My thanks goes to Dr. Richard 
Economy, Martin Marietta Corporation, Daytona Beach, 
for sharing this concept with me]. 

Areas for Advancement 

The DIS concept for intelligence data dissemination 
discussed above requires technology advancements in 
three areas: 

1. The translation of fused tactical 
intelligence into entity or featural 
object-oriented data; an integration task 
probably requiring AI methods. 

2. The partitioning of the Environmental 
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Data Base Generation processes; 
streamling the labor-intensive off-line 
tasks, and automating the near-real 
time on-line tasks. 

Data Base Generation System software 
techniques which allow efficient 
compression of the Environmental 
Data Base transformation instructions 
executable by the DIS Field Node's 
local data base generation function. 

Summary 

There is a need for more effective dissemination of 
strategically and tactically collected intelligence to the 
small unit tactical decision maker. The simulation 
community in their efforts to standardize Distributed 
Interactive Simulation protocols and practices for 
training and acquisition analysis purposes have also 
begun to lay the foundation for the application of DIS to 
the dissemination of tactical intelligence information. 
The DIS Field Node will allow the commander to 
quickly assimilate fused intelligence as it is integrated in 
near-real-time onto 3-D joystick geographically specific 
display and corresponding 2-D overview map display 
environment. 

The flow of data to the small unit commander starts at 
the strategic level, Central Data Base Generation 
System. The tactical level, Theater Data Base 
Generation System converts updated fused intelligence 
into an updated visual database, building onto what the 
central level has established. From this tactical center, 
environmental data base update instructions and entity 
stat PDUs flow to the DIS Field Nodes. 

The DIS Field Nodes receive, process, and display the 
simulated operational scenery. The commander will 
view the areas of interest and pull up associated 
supplemental and verification data to increase operational 
awareness and intelligence confidence, respectively. The 
DIS Field Node will receive locally generated entity state 
data, via PDUs. 

This data will be transmitted from locally networked 
DIS-instrumented field entities. Aggregation of local 
entities states will permit status reporting from the Field 
Nodes upward to the theater level. In the near-term a 
DIS Field Node architecture will require three terminal- 
size boxes. With ASIC technology advancement and the 
successful integration of helmet displays, the DIS Field 
Node will reduce to man-pack size. 
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Abstract 

In this paper we introduce a new approach for par- 
allel, distributed simulation of modular, hierarchical 
DEVS and DEVS-based combined discrete/'continuous 
multiformalism models. The algorithm combines con- 
servative and optimistic distributed simulation strate- 
gies and is able to optimally exploit lookahead capabil- 
ities of the model. The object oriented implementation 
in C++ is intended to serve as a powerful simulator 
in the STIMS modeling and simulation environment. 

1    Introduction and Motivation 

The DEVS modeling and simulation [23] approach 
is an attractive alternative to conventional message- 
based modeling approaches used in distributed sim- 
ulation. As expressive as any other discrete event 
modeling paradigm, it serves it merits by its set- 
theoretical basis, its independence of any computer 
language implementation, its independence of any par- 
ticular field of application, its modular, hierarchical 
modeling methodology, and its clear system theoreti- 
cal terminology. In DEVS modeling, complex models 
are built by coupling together atomic building blocks, 
i.e., connecting the ports of well defined input and 
output interfaces. Models can be built in a hierarchi- 
cal manner, i.e., coupled models again can serve as 
components in more complex coupled models. Simi- 
lar to finite state automaton, atomic DEVS models' 
dynamic behavior is defined by state sets and state 
transition and output functions. DEVS distinguishes 
two type of events - internal events are time sched- 
uled and handled by the internal transition function, 
external events occur upon the arrival of inputs at the 
input ports and are handled by the external transition 
function. We base our research on the DEVS approach 
to discrete event modeling and simulation. 

Several implementations of DEVS-based modeling 
and simulation concepts have been done [23, 21, 18, 
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11]. The STIMS modeling and simulation environ- 
ment [18] is a CommonLisp based general purpose en- 
vironment also allowing combined discrete/continuous 
modelling and simulation.The DEVS extension to 
combined discrete/continuous modeling introduced in 
[16] provides system theoretic modeling formalisms for 
modular, hierarchical combined modeling. STIMS is 
a fully integrated, interactive environment organized 
into several layers which are targeted to model de- 
velopment, simulation execution, and simulation data 
analysis. It provides an approach for visual interac- 
tive specification of atomic and coupled DEVS-based 
models [19]. 

In the research project presented here we will real- 
ize an object oriented implementation of DEVS-based 
models in C++ and a distributed simulation protocol. 
We introduce a new distributed simulation algorithm 
for DEVS-based models and discuss its object oriented 
implementation. The algorithm combines conserva- 
tive and optimistic strategies. Simulation processes 
work conservatively as long as this is possible but will 
continue with a riskfree optimistic scheme afterwards. 
The scheme is able to optimally exploit lookahead ca- 
pabilities of the model by computing accurate esti- 
mates for the earliest input to be received at a com- 
ponent's input ports. It also allows the distributed 
simulation of components which have continuous in- 
ternal behavior but interact by events only. The C++ 
model implementation and simulation protocol is in- 
tended to serve as a powerful simulator in the STIMS 
modeling and simulation environment. 

The simulation protocol has been design with the 
following objectives in mind: 

• The distributed simulation algorithm should show 
good performance on multiprocessor machines 
with a low to medium number of high power 
processor nodes, like clusters of workstations or 
shared memory multiprocessors. Such multi- 
processor architectures are widely available and 
therefore are suitable for a general purpose simu- 
lation environment. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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• Distributed simulation should require minimum 
additional coding from the user. At the current 
version of our system, the user has to do the 
mapping of components to processes, has to im- 
plement methods to pack and unpack objects of 
user denned types, and has to provide information 
about lookahead characteristics of the models. 

• As our scheme supports combined discrete/ con- 
tinuous modelling and simulation, also the dis- 
tributed simulation algorithm should support it. 
Numerical integration of components which only 
interact by discrete events can be done in parallel. 

In the following we first describe our new approach to 
distributed simulation of DEVS-based models. Then 
we compare our approach with other approaches to 
distributed simulation. Finally we discuss several is- 
sues of the object oriented implementation in C++. 

2    A New Approach for Parallel Simu- 
lation of DEVS-Based Models 

In the following we introduce a new approach for 
parallel, distributed simulation of modular, hierarchi- 
cal DEVS-based models. For distributed simulation 
of DEVS-based models, the hierarchical structure is 
flattened by resolving the hierarchical coupling struc- 
ture to direct couplings of atomic components. Then 
the atomic components are divided into several clus- 
ters where each cluster is simulated by one parallel 
simulator process running on one distinct processor. 

Our approach is based on the idea to combine se- 
quential, parallel conservative, and parallel optimistic 
event processing. As long as possible, i.e., as long as 
it can be guaranteed that no inputs will arrive from 
other processes with a time earlier than the local event 
time, the parallel simulation process can process the 
events in sequential order. Then, it will try to exploit 
lookahead capabilities in its local components to con- 
tinue processing events which are safe. Finally, when 
neither sequential nor conservative event processing is 
possible, it will continue to process events optimisti- 
cally. However, optimistic event processing is done 
riskfree, i.e., outputs to other processes are not sent 
and in this way effects of optimistic event processing 
are kept local to the process. 

Crucial to the scheme are input time estimates 
which for every input port of atomic components give 
lower bounds of the next input to be received at that 
port. These time estimates are computed by the influ- 
encing components' output time estimates and serve 
various purposes. So they are used for global as well 
as for local synchronization. First, the time estimates 
of the inputs coming from other processes are used to 
determine the time until when sequential event pro- 
cessing can be done. Second, the input time estimates 

determine the time for each atomic component until 
when event processing is safe. Third, the time esti- 
mates are used in optimistic event processing to man- 
age fossil collection. In the following we will describe 
the approach in detail. 

2.1    Computing Input Time Estimates 

Time estimates eitjjp of the earliest input to be 
received at the input ports ip of atomic components 
j are computed taking the minimum of output time 
estimates of the output ports op of components i cou- 
pled to ip. Figure 1 gives a cluster of four components 
simulated by one process p together with its interpro- 
cessor couplings. The minimum of earliest input time 
estimates 

eitj = mm{eitjip} 
ip 

for all input ports ip of one component j gives a lower 
bound for the next input to be received by component 
j. Additionally, the external input time estimate xeitp 

giving the earliest input to be received by any com- 
ponent of process p can be computed by taking the 
minimum over the inputs coming from components of 
other processes. Obviously, an event in a component 
j with event time t smaller than eitj is safe to pro- 
cess. Additionally, a simulation process can process 
all events whose event time is smaller than the exter- 
nal input time estimate xeitp. The scheme has proven 
to avoid causality violations [17]. 

The output times estimates eot,|0p for component i 
are computed exploiting lookahead capabilities of the 
model. In case only static lookahead [14], i.e., mini- 
mum time delays rf.,tp,op between input at port ip and 
outputs at port op of components i, are known, the 
output times for a particular output port op can be 
derived by 

eoti,op = min{tni,mia{eitiip + d,-,,vop}} 
»p 

where in,- is the time of the next internal event. For 
a source component, i.e., a component s without an 
input, we define the eit, being equal to infinity. For 
such a scheme of computation of the output times we 
proved that the simulation does not deadlock under 
the constraint that in every feedback loop there is 
at least one component with a minimum time delay 
di,iP,op strictly greater than zero [17]. 

Dynamic lookahead [14] is lookahead computed 
based on the current state of the component. We can 
compute better time estimates eoti>op for an output at 
port op by 

eotii0p = lookahead(s,trii,eiti) 

where lookahead is an arbitrary complex function to 
compute the dynamic lookahead for output port op. 
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Figure 1: Times maintained for coupled DEVS model. 

Obviously, if at least one of the components uses a 
minimum time delay strictly positive in the computa- 
tion of its dynamic lookahead, also this scheme is free 
of deadlock. 

2.2    Local Event Processing 

Event processing on one simulator process p is done 
in the three stages as described above: first events are 
processed sequentially, then conservatively exploiting 
lookahead, and finally optimistically. The simulator 
process accomplishes its task using the earliest input 
time estimates and a list of event times in,- for its 
components. The pseudocode below depicts the event 
loop for a simulation process. In the indefinite loop 
it is tested if the minimum event time in,-* is smaller 
than the time estimate xeitp giving a lower bound 
of the next input received from a different simulation 
process. If so, this event can be processed and all 
its resulting outputs can be processed immediately. If 
not, then event processing might not be safe because 
inputs from other processes might cause causality vio- 
lations. However, lookahead can be used to determine 
other components which are safe. The next event in 
component i with event time trii is safe to be processed 
if it has an earliest input time estimate eft,- greater 
than trii. This event can be processed. Resulting out- 
puts are distributed to the influenced components and 
are processed immediately if they are safe. Otherwise, 
they are inserted into the event list. In case that no 
safe event can be found exploiting lookahead, events 
can be processed optimistically. The component with 
minimum event time is selected to do so. Resulting 
outputs are also processed optimistically for the local 
components but are not distributed to other processes. 
This means that eventual rollbacks are kept local to 
the process and therefore are not too expensive, i.e., 
the scheme is riskfree optimistic. 

loop 
let tni* := minimum of tni of components i 
if tni* < xeitp then 

execute the event in i* 
distribute outputs to influenced components k 

and immediatly process them 
elseif exists component j with tnj < eitj then 

execute the event in j 
distribute outputs to influenced components k 
if this external event in k is safe 

then immediatly process it 
else schedule external event in k 

else 
optimistically execute the event in i* 
distribute outputs to influenced components k 
and immediatly process them 

endif 
endloop 

2.3    Global Control Mechanism 

The global control mechanism, i.e., synchronization 
and event processing between different processors, can 
be divided into two tasks: (1) to distribute the output 
time estimates to other processes, (2) to distribute the 
output values to other processes in case of interproces- 
sor couplings. 

The first task is similar to null-message passing in 
other conservative synchronization mechanisms. It is a 
critical point of the scheme. On one side null-message 
traffic has to be kept low, on the other side the knowl- 
edge of the input time estimates is crucial for progress 
in local event processing. Several different strategies 
are possible and will be tested. Output time estimates 
might be communicated as soon as new values are 
available resulting in very accurate estimates but mes- 
sage overhead might be high. Output time estimates 
might be communicated only with the real output val- 
ues. Here message overhead is low but estimates are 
not accurate always. Between these two extremes sev- 
eral variations are possible and to find a good tradeoff 
will be the subject of performance analysis. 

Real data will be transmitted to the receiver as soon 
as they are safe, i.e., output values produced by events 
processed optimistically are not distributed. This has 
the advantage that rollbacks are kept local to the pro- 
cess and therefore are not too expensive. The inputs 
which come from other processes can be processed in 
the same way as all other inputs. If the resulting ex- 
ternal event is safe to process, it can be processed im- 
mediately, if it is not safe, the external event is sched- 
uled to occur at the event time. However, inputs from 
other processes might result in a rollback. Before the 
event is executed, the state of the component is reset 
to the value prior to the new external event. Output 
events which have been produced by this component 
since that time also have to be rolled back. This can 
be accomplished by telling the receiving components 
to roll back their states to a time prior to the outputs 
(which again might propagate the rollback to their 
influenced components). In this rollback process out- 
puts to other processes, which are queued waiting for 
distribution because they are unsafe, might be deleted. 
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2.4    Numerical Integration 

The numerical integration of continuous states of 
components assigned to different processors can be 
done in parallel but each computation requires syn- 
chronization and exchange of the numerical data in 
the case a continuous coupling between the two com- 
ponents exists. However, if no continuous but only 
discrete couplings exist between different model parts, 
these model parts can be integrated independently 
and only have to be synchronized at event times. In 
the same way as the sequential simulation scheme [18] 
identifies different numerical clusters where numerical 
clusters are only coupled through events, the parallel 
simulation scheme employs numerical clusters. Nu- 
merical clusters can be integrated in parallel only com- 
municating and synchronizing at event times. In the 
current work we focus on this type of parallelism in 
numerical integration. 

Numerical integration of continuous behavior of 
combined discrete/continuous DEVS-based models 
fits nicely into the event processing scheme described 
above. It can be done in a similar way as local event 
processing. The continuous states are integrated from 
one event occurrence to the next. In that, numeri- 
cal integration might be safe if the earliest input time 
is greater than the integration time. But integration 
also continues if it is not safe to do so. That means 
that continuous states might have to be rolled back in 
the case a straggler input event from another process 
occurs. However, optimistic integration should have 
a high potential in several applications (as in Sparse 
Output DEVS [12]). 

3    Relation to Other Distributed Sim- 
ulation Protocols 

The simulation protocol introduced above came 
into being by gathering many ideas emerged in the 
past 15 years of distributed simulation research. In 
their seminal work, Chandy and Misra introduced ba- 
sic concepts for conservative distributed simulation 
[1, 2]. They defined causality requirements for cor- 
rect distributed execution of events and schemes to 
fulfill those. Deadlocks which can occur are either 
recovered by a deadlock recovery scheme or avoided 
by special synchronization messages - so-called null- 
messages. Our conservative mechanisms is based on 
those ideas. In particular, conservatively executed 
events fulfill the causality requirement and computa- 
tion of input time estimates is similar to null-message 
based deadlock avoidance. 

Several variations of the Chandy-Misra approach 
have been developed. These new schemes try to ex- 
ploit lookahead capabilities of the models extensively. 
Notable impact to our research has had the Bounded 
Lag Algorithm of Lubachevsky [13], the global win- 

dow synchronization scheme of Nicol [14, 15], the 
Yaddes algorithm [5], and the shared memory imple- 
mentation of Wagner, Lazowska, and Bershad [22]. 
Lubachevsky's algorithm is synchronous which, with 
every synchronization cycle, computes input time es- 
timates for each simulator process based on minimum 
propagation delays - static lookahead assumptions - 
and opaque periods - dynamic lookahead. To limit the 
overhead needed to compute the input time estimates, 
the bounded lag restriction bounds the difference in the 
local simulation times of all simulator processes from 
above by a known finite constant B. 

The global window synchronization algorithm [14, 
15] is another synchronous algorithm which tries to 
exploit static and dynamic lookahead capabilities to 
define global time windows during which event pro- 
cessing is safe. Similar to our scheme the algorithms 
is tailored for low grained parallelism. 

The Yaddes algorithm [5] uses a dataflow network 
to compute input time estimates to guarantee safe 
event processing. The algorithm in particular is tai- 
lored for network models which have a lot of feedback 
loops, like digital logic models, and therefore are diffi- 
cult to parallelize using Chandy-Misra or Time Warp. 

Wagner, Lazowska, and Bershad [22] improved the 
basic Chandy-Misra approach for implementation on 
a shared memory multiprocessor. Access to states of 
other processes through shared memory is exploited to 
compute better estimates of earliest input times. An 
artificial blocking mechanism is built into the run time 
kernel of the multiprocessor system to reduce overhead 
to awaken blocked processes. A centralized sched- 
uler is used to make deadlock detection trivial and 
deadlock breaking inexpensive. A similar approach 
for parallel simulation on shared memory multiproces- 
sors with special emphasis on exploitation of dynamic 
lookahead has been developed by Cota and Sargent 
[4]- 

Optimistic distributed simulation has been intro- 
duced by Jefferson [9]. Our optimistic algorithm dif- 
fers from the Time Warp approach as it does not send 
messages to other processors optimistically. There- 
fore, it is a riskfree optimistic scheme related to the 
Breathing Time Buckets algorithm of Steinman [20] 
and the approach of Dickens and Reynolds [6]. Risk- 
free optimistic schemes do not require antimessages to 
annihilate incorrect messages. Rollback is kept simple. 
Rollback in our scheme is kept local to the process 
and therefore can be done in an efficient way similar 
to [8]. Our approach also differs from other optimistic 
schemes in the way fossil collection is done. Most opti- 
mistic schemes base the fossil collection on the Global 
Virtual Time (GVT) which is the minimum of the 
event times in the system. Our approach takes the 
earliest input time of each component as a better es- 
timate. 

Strong similarities of our approach exist to the 
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ADAPT system recently introduced by Jha and 
Bagrodia [10]. ADAPT is a simulation protocol which 
combines conservative and optimistic strategies. It 
distinguishes a local control mechanism and a global 
control mechanism and provides different variants of 
those which can be combined freely. Based on the 
model and workload characteristics in hand, the pro- 
tocol adapts by selecting the most appropriate vari- 
ants. One variant for the global control mechanism is 
based on computation of earliest input time estimates 
in the same way as in our scheme. 

Our scheme also has been influenced by former ef- 
forts to parallelize simulation of DEVS models. Chris- 
tensen [3] has implemented a DEVS simulator in Ada 
and the Time Warp operating system. Recently a 
new distributed simulation algorithm for networks 
of Sparse Output DEVS has been introduced [12]. 
Sparse Output DEVS are DEVS where outputs oc- 
cur infrequently. Simulator processes synchronize at 
output times with their superior coordinator. It is 
riskfree optimistic with local rollback only. 

4    Object Oriented Implementation 

The modeling formalism and the parallel simulation 
concepts described above are implemented using C++ 
and PVM. In this section we first discuss major design 
decisions of the implementation of the modeling con- 
cepts, then some critical points in the realization of the 
parallel algorithm using PVM, and finally advantages 
of various hardware platforms. 

4.1    DEVS-Based Modeling in C++ 

A major design decision in the realization of the 
modeling formalisms was that, in distinction to other 
implementations like DEVS-Scheme [23] or STIMS 
[18], atomic models are defined by class definitions and 
not by instances of formalism classes. This has the 
advantage that the concepts of object oriented pro- 
gramming, like information hiding, inheritance, and 
polymorphism, are ready to use for simulation model- 
ing. In this approach hence, input and output ports 
and state variables are defined by member variables 
and state transition and output functions by member 
functions of atomic model classes. In the following the 
definition of an atomic model Processor is shown. 

class Processor : public AtomicDevs { 
public: 

Input<int> in; 
Output<double> out; 
StateVar<int> reg[IREGS]; 
virtual void ezternalTransFn (double e, 

InputPort tinport); 
virtual void intemalTransFn (void); 
// 

}; 

For input and output port as well as for state vari- 
ables declaration generic classes - templates - are pro- 
vided which are paramertized by the type of the input, 
output, and state variable values. These templates de- 
fine access functions for reading and writing of values 
which also realize different tasks of the simulation pro- 
tocol fully transperant to the modeler. So, the writer 
functions to output ports are responsible for the distri- 
bution of the output values to their destination input 
ports and, consequently, for the execution of the ex- 
ternal event in the influenced component. Also, input 
and output port objects know methods to pack and 
unpack their values for interprocessor communication. 
The writer function of state variable objects realizes 
an incremental state saving and rollback mechanism. 

In distinction to atomic models, modular hierarchi- 
cal coupled models are not defined by class definitions 
but are defined employing a separate modeling lan- 
guage. In this language, which has a similar syntax as 
C++ class definitions, the modular hierarchical model 
structure and the couplings are defined with references 
to atomic model classes at the leaves of the hierarchy. 
Modular, hierarchical models specified in the language 
are transformed to C++ code. The translation pro- 
cess flattens the structure, instantiates only atomic 
components, and realizes the couplings by direct port 
to port connections. The following shows the defini- 
tion of a coupled model ProcBoard from components 
of type Processor, Bus, and Memory. 

model Processor;  // declare 
model Bus;       // atomic 
model Memory;     // models 

model ProcBoard : Devsletsork { 
Output<double> pout, mout; 
Memory mem; 
Bus bus; 
Processor proc; 
// define internal couplings 
ICO { 

proc.out -> bus.pin; 
bus.pout -> proc.in; 
bus .mout -> mem. in; 
mem. out -> bus .min; 

} 
// define external output couplings 
EOCO { 

proc.out -> pout; 
mem.out -> mout; 

} h 

4.2    Parallel Simulator using PVM 

The parallel simulation system is implemented us- 
ing PVM (Parallel Virtual Machine) [7]. PVM is 
a defacto standard message passing library designed 
for heterogeneous environments and supports a wide 
range of hardware platforms. 

For parallel simulation, additionally to specifying 
the modular hierarchical model, the simulationist is 
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responsible for decomposing the whole model into sev- 
eral clusters to run on different processors. For each 
cluster, the parser generates an object structure with 
simulator objects for each atomic component, special 
objects responsible for communication with other pro- 
cessors, and one overall coordinator object which man- 
ages all the event handling tasks. Figure 2 shows the 
object structure for a 4-component model. The simu- 
lation protocol is implemented using polymorphism in 
such a way that normal atomic components and the 
special interprocessor communication objects obey the 
same protocol. Hence, in event handling the different 
objects can be handled in equal way. Each object 
structure is then assigned to one processor and makes 
one simulator executable. 

PVM is used to spawn the simulator executables on 
different machines and for interprocessor communica- 
tion. Data, i.e. outputs of atomic models and time 
estimates, is sent by PVM messages. Objects have 
to provide virtual member functions pack and unpack. 
The function pack stores the object into a PVM mes- 
sage and unpack rebuilds the objects from the PVM 
message. The pack and unpack methods are provided 
for all standard types. For user-defined types, the pack 
and unpack methods have to be implemented based on 
these basic methods. 

One great advantage of the state based approach 
of system based modeling and the object oriented im- 
plementation is that incremental state saving is real- 
ized easily. It is implemented fully transperant to the 
user in the writer function of the state variable object. 
Whenever the writer function is called in a transition 
function executed optimistically, the writer function 
saves the old state. In that way, only state variables 
modified are saved. 

4.3    Target Hardware Platforms 

The system currently is developed on a cluster of 
SUN Workstations. This will also be one of our fa- 
vorite hardware platforms since workstation clusters 
are wildly available. Workstation clusters satisfy our 
objective that the parallel simulator should be used as 
a simulator supporting our integrated modeling and 
simulation environment. 

To show the potential of the event handling scheme, 
performance studies on a Sequent Symmetry S81 
shared memory computer is planned. Shared-memory 
multiprocessor system is a promising architecture for 
our simulation scheme. On shared memory architec- 
tures, interprocessor communication is fast and la- 
tency is low. This allows the different processors to 
synchronize frequently. 

Another favorite hardware platform for the com- 
bined parallel simulation algorithm is a Convex Meta- 
Series supercomputer. It combines a high-end work- 
station cluster with a vector number cruncher.   The 
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Figure 2: Object structure for process p. 

workstation cluster will be used to do the event pro- 
cessing part while the numerical integration will be 
done on the vector processor. Through this combi- 
nation we hope to dramatically speed up numerical 
calculation of the continuous part of the simulation. 

5    Summary, Discussion, and Outlook 

We have presented a new distributed simulation 
strategy for DEVS-based modular, hierarchical mod- 
els. The scheme stands out as it combines conservative 
and riskfree optimistic strategies and is able to opti- 
mally exploit lookahead capablities of the model. Ob- 
ject oriented programming is employed to ease simula- 
tion modeling and make distributed simulation trans- 
parent to the user. The simulation protocol currently 
is under development. 

Although the simulation protocol is well denned 
and the correctness of the conservative strategy has 
formally been proved [17], there are still several alter- 
natives which will effect the performance of the simula- 
tor. One open question is, when and how often the in- 
put event estimates should be communicated to other 
processors, another, how far in time an optimistically 
executing processor should advance. Should it simu- 
late without paying attention to the other processes 
until a rollback occurs or should processors synchro- 
nize. This and further questions will be answered by 
performance studies. First results are expected for the 
beginning of 1995. 
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Abstract 

A recent paper introduced the Parallel DEVS for- 
malism which exploits the parallelism of transition col- 
lisions in the simulation of DEVS models. Here we 
present a design for the abstract simulator needed to 
prove the formalism's soundness and to serve as a ref- 
erence for implementation. The abstract simulator is 
composed of cooperating simulation engines, (simula- 
tors and co-ordinators) that use bag-like messages to 
synchronize the parallel activities that are distributed 
across autonomous asynchronous processors. The ap- 
proach suggests engines that are efficient in both se- 
quential and distributed/parallel environments. After 
describing the abstract simulator we briefly discuss a 
prototype implementation that affords a high degree 
of flexibility by mechanizing the "closure under cou- 
pling" property of the Parallel DEVS formalism and 
the characteristics of object-oriented systems. 
Keywords: 
Discrete Event Simulation, DEVS formalism, Object- 
Oriented modeling and simulation, Distributed/parallel 
simulation. 

1    Introduction 

Hierarchical modeling capability is increasingly be- 
ing recognized. The advantages of hierarchical mod- 
eling capability such as reduction in model develop- 
ment time, support for reuse of a database of models, 
and aid in model verification and validation are be- 
coming well accepted[10]. Environments supporting 
hierarchical modeling are transitioning from research 
[16][7][9] [4] into practice[6][3]. 

The necessary compute power for executing com- 
plex hierarchical models lies in distributed and parallel 
simulation[2][8][5]. Thus it is timely to reexamine the 
basic formalisms of discrete event modeling in the light 
of future high performance simulation requirements. 

The Discrete Event System Specification(DEVS) 
formalism was introduced in the early 70's and later 
extended to enable constructing discrete event simula- 
tion models in a hierarchical, modular manner[14][15]. 
DEVS introduces a strong modularity between model 
specification and simulation. Not only does it provide 
a powerful modeling methodology but also a frame- 
work for model behavior generation via its abstract 
simulator concepts[16]. Since it is language and plat- 
form independent, DEVS affords an excellent vehicle 
for investigating alternative parallel/distributed map- 
pings and architectures[17][13] [12]. 

Parallel DEVS(P-DEVS)[1] is a revision of the hi- 
erarchical, modular DEVS modeling formalism. The 
revision distinguishes between transition collisions and 
ordinary external events in the external transition 
function of DEVS models. Such separation enables 
us to extend the modeling capability of the collisions. 
The revision also does away with the necessity for tie- 
breaking of simultaneously scheduled events, as em- 
bodied in the select function (a heritage of the se- 
quential simulation paradigm in which P-DEVS orig- 
inated). The latter is replaced by a well-defined and 
consistent formal construct that allows all transitions 
to be simultaneously activated. The revision provides 
a modeler with both conceptual and parallel-execution 
benefits. 

An earlier article[l] presented the P-DEVS formal- 
ism and showed it to be closed under coupling, thus 
preserving hierarchical, modular, construction prop- 
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erties. This construct leads to the definition of its 
abstract simulator which correctly implements the for- 
malism and exploits the increased parallelism. Here, 
we briefly review the P-DEVS formalism and proceed 
to discuss the abstract simulator concepts that form 
the basis of its concrete implementation. 

2    The parallel DEVS 

The P-DEVS model is a structure: 

M =< X,S,Y, Sint, 6ext, 6con,X,ta,> 

X: a set of input events. 
S: a set of sequential states. 
Y: a set of output events. 
bint '■ S —► S: internal transition function. 
$ext '■ Q x Xb —► S: external transition function, 

Xb is a set of bags over elements in X, 
6ext(s, e,<f)) = (s,e). 

&con '■ S x Xb —* S: confluent transition function. 
A : S —»■ YJ: output function. 
ta : S —»• Ä0+-*oo: time advance function, 

where Q = {(s, e)\s G S, 0 < e < ta(s)}, 
e is the elapsed time since last state transition. 

The P-DEVS formalism enables a modeler to ex- 
plicitly define the collision behavior by using the so- 
called confluent transition function, 6con. Scon gives 
the modeler complete control over the collision behav- 
ior when a component receives events at the time of 
its internal transition, e = 0 or e = ta(s). Rather 
than serializing model behavior at collision times, the 
P-DEVS formalism leaves this decision of what seri- 
alization to use, if any, to the modeler. Indeed, if so 
desired, the E-DEVS[11] formalism can be recovered 
by setting 6con(s,xb) to 6ext(sn,0,xn), where n > 1, 
«i = 6i„t(s), sn = 6ext(s„-i, 0,xn-i) when n > 1, and 
xn is a desired serialization defined by Order{xb). 

The semantics of the Parallel DEVS are as fol- 
lows: the internal transitions are carried out at the 
next event time for all imminent components receiv- 
ing no external events. Also, external events generated 
by these imminents trigger external transitions at re- 
ceptive non-imminents (those components for which 
there are no internal transitions scheduled at the event 
receiving time). However, for those components for 
which the internal and external transitions collide, the 
confluent transition function is employed instead of 
either the internal or external transition function to 
determine the new state. 

The structure of the revised coupled model is — 

DN =< X,Y, D, {MihiU}, {Zij} > 

X: a set of input events. 
Y: a set of output events. 
D: a set of components, 
for each i in D, 

M{ is a component, 
for each i in D U {self},    It is the influencees of i. 
for each j in /,-, 

Zij is a function, 
the i-to-j output translation. 

The structure is subject to the constraints that for 
each i in D, 
Mi =< Xi,Si, Y{,6inti,6exU,6coni,ta,i > is a P-DEVS 
structure, 
Ii is a subset of D U {self}, i is not in I{, 
ZSelf,j '■ Xaeif —> Xj, 
Zi,self '■ Yi —>■ Yseif, 
%i,j '■ Yi —► Xj . 

Here self refers to the coupled model itself and is a 
device for allowing specification of external input and 
external output couplings. 

Closure of the P-DEVS formalism under coupling 
was done by constructing the resultant of a cou- 
pled model and showing it to be a well defined P- 
DEVS. The resultant of a coupled model (DN =< 
X,Y,D,{Mi},{Ii},{Zi}j} >) is a P-DEVS model 
(M =< X, S, Y, 6int,6ext,6con, \,ta >), where 
S = xQi where i G D. 
ta(s) — minimum{(T,|i g D}, 

where s G S and o~i = ta(si) — e,. 
Let 

s = (...,(si,e<),...), 
IMM(s) = {i\a{ = ta(s)}, 
INF(s) = {j\j G Ui6/MM(S) Ii}, 
CONF(s) = IMM(s) n INF(s), 
INT(s) = IMM(s) - INF(s), 
EXT(s) = INF(s) - IMM(s). 

We partition the components into four sets at any 
transition time. INT(s) contains the components 
ready to make an internal transition without input 
events. EXT(s) contains the components receiving 
input events but not scheduled for an internal tran- 
sition. CONF(s) contains the components receiving 
input events and also scheduled for internal transitions 
at the same time. UN(s) contains the remaining com- 
ponents. Then, 
A(«) = {Zi,.elj(\i(si))\i G IMM{s) A self G J,-}. 
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Sint(s) = (..., (s-,e<),...), 
where 

(s'i, e'i) = (Sinu(si), 0) for i G INT(s), 
M, e{) = {SexU{Si,ei +ta(s), x\), 0) for * G EXT(s), 
{s'^e'i) = (Scniisi,!*),0) for i G CONF{s), 
(s'j, e{) = (si,e( + ta(s)) otherwise i G UN(s), 

and 
x\ = {Z0>i{\0(s0))\o G IMM(s) A i G I0}- 

The resultant internal transition comprises of four 
kinds of component transitions: internal transitions of 
INT(s) components, external transitions of EXT(s) 
components, confluent transitions of CONF(s) com- 
ponents and the remainder,£/AT(s), whose elapsed 
times are merely updated by ta(s). 

The 8ext of the resultant is defined by: 
6ext(s,e,xb) = (...,(s<,e<),...), 
where 

(s'i, e'f) = (6exU(si,ei + e, x\), 0) for i G Iseij, 
(si> e'i) — (si>e« + e) otherwise, 

and 
*' = {Zseifti(x)\x G xb A i G Lei/}. 

The incoming event bag, xb is translated and routed 
to the event bag, xb, of each influenced child, j. The 
resultant's external transition comprises all the exter- 
nal transitions of the influenced children. 

Finally, the 6con of the resultant is defined by: 
Let 

INF'(s) = {j\j G Uie(/MM(s)u{»eI/}) li}, 
CONF'(s) = IMM(s) D INF'(s), 
INT'(s) = IMM(s) - INF'(s), 
EXT'(s) = INF'{s) - IMM(s). 

Scon(s,xb) = (...,(s<,ej),...), 
where 

W,c{) = (W*0,0) for t G IiVT'(S), 
(s-,e<) = (6exU(si,ei +ta(s),xb),0) 

for i G EXT(s), 
(*5,e{) = (5coni(Si,^),0) for t G CONF'(s), 
(s'ite'i) = (SJ,e» + <a(s)) otherwise, 

and 
x\ = {Z0ii{X0(s0))\o G JMM(fi) A i G 70}ö 

{^se//,j(a;)la; G x6 A i G /«(/}• 

The critical difference in the P-DEVS compared 
with the original DEVS is that to establish closure 
under coupling, we must also define the 6con of the 
resultant. Fortunately, it turns out that the difference 
between 6con of the resultant and its 6int is simply the 
extra confluent effect produced by the incoming event 
bag, xb, at simulation time ta(s). By redefining the 
influencee set to INF'(s) that includes the additional 

influencees from the incoming couplings, z(self, i), we 
come up with three similar groups for 6con. The hierar- 
chical consistency is achieved here by the l+J operation 
that gathers all external events, whether internally or 
externally generated, at the same time into one single 
event group. 

iFrom the definition of the 8int, 8con, and 6ext, we 
see that they are special cases of a more generic transi- 
tion function 8(s, e, a;!>)[15]. 6{nt is applied to the cases 
when (s,e,xb) = (s,ta(s),<j>), 6con to the cases when 
(s,e,xb) = (s,ta(s),xb) where xb ^ <f>, and, 6ext to 
(s, e, xb) where 0 < e < ta(s) and xb ^ <j>. 

3    The abstract simulator 

We now describe the abstract simulator needed to 
demonstrate soundness of the P-DEVS formalism. As 
in the original definition, we specialize the processors 
into two different simulation engines, simulator and 
co-ordinator [15]. 

Both 8con and 6ext depends on the events in the 
bag, xb. An event in the bag is a result from an 
output function and all the translations on the event 
path. An output function depends on a state prior to 
a transition at the same instance. It is clear that the 
output function must be invoked before any transition 
function. We use (@,t) and (done,t) messages to syn- 
chronize this activity while (y,t) and (q,t) messages 
trasport the output content. We also assume that if 
two messages are sent from the same source, the or- 
dering between them is preserved at the receiving end. 

The simulator attached to an atomic model is given 
first: 

when a (@,t) message is received 
if t = ijv then 

V := A(«) 
send (y, t) to the parent coordinator 
send (done,t) to the parent coordinator 

end if 
else raise error 
end when 

when a (q,t) message is received 
lock the bag 
Add event q to the bag 
unlock the bag 
send (done,t) to the parent coordinator 
end when 

when a (=M) message is received 
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case ti <t < ijv and bag is not empty 
e := t - tL 

s :=6ext(s,e,bag) 
empty bag 
tL :=t 
tN ~tL +ta(s) 

end case 
case t = tw and bag is empty 

s := 6int(s) 
tL:=t 
tN :=<£ +ta(s) 

end case 
case t = tw and bag is not empty 

s := 6Con(s,bag) 
empty fcag 

*TV :=^L +ta(s) 
end case 
case t > tw ox t < tz, 

raise error 
end case 
send (done,tflf) to parent coordinator 
end when 

The simulator uses one single message, (*,t), to 
synchronize three different transitions of the atomic 
model. Obviously, other implementations with more 
synchronization messages for different transitions can 
remove the need of case statements for possibly faster 
simulation. The implementation introduced here 
serves as an example to indicate the correct semantic 
application of each transition function which enables 
us to use the generic transition function described 
above for a co-ordinator. The implementation of a 
co-ordinator is given. 

when a (@,t) message is received from parent coor- 
dinator 
if t = ijv then 

tL :=* 
for all imminent child processors i with minimum 

tN 
send (@,t) to child i 
cache i in the synchronize set 
end for 
wait until (done,t)'s are received from all imminent 

processors 
send (done,t) to the parent coordinator 

else raise an error 
end when 

when a (y, t) message is received from child i 

for all influencees, j of child i 

9 :=zij(y) 
send (q,t) to child j 
cache j in the synchronize set 

end for 
wait until all (done,t)'s are received from j's 
if self G h (y is to be transmitted upward) then 

y ■■= zi,seif(y) 
send (y, t) to the parent coordinator 

end if 
end when 

when a (q,t) message is received from parent coor- 
dinator 
lock the bag 
Add event q to the bag 
unlock the bag 
end when 

(y, t) messages are always processed within the wait 
statement when receiving a (@,t) message. This syn- 
chronization ensures that the outputs of any model, ei- 
ther atomic or coupled, are routed to their immediate 
influencees' bags. All children ready for a transition 
are cached in a set called synchronize set to eliminate 
the activities of UN(s) components. The elapsed time 
can always be calculated from the ijr associated with 
each component and the absolute global clock, t. 

From the construction described in the previous 
section, we see that 
x\   =   {z0ii{X0(s0))\o   G   IMM(s) A z0>i   G   Z} Id 

After the processing of (@,t) is over, output events 
are distributedly stored in input bags of influencees 
throughout the hierarchy. Though the first part of 
x\ is ready now, the Id with the second part must 
be done by sending (q,t) messages to influencees of 
self at the beginning of the each (*,t) phase. This 
operation assures the uniformity of the hierarchy. All 
events are routed down to the atomic influencees by 
successive (*,t) phases of nodes from root to atomic 
components. A transition is completed when finally 
one of the transition functions is invoked at the atomic 
level. 

when a (*,t) message is received from parent coordi- 
nator 
if tL <t<tff then 

for all receivers, j G ISeif and all q G bag 
q--= zseif,j(q) 
send (q,t) to j 
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cache j in the synchronize set 
end for 
empty bag 
wait until all (done,t)'s are received 
for all i in the synchronize set 

send (*,t) to i 
end for 
wait until all (done,/jv)'s are received 

tL:=t 
ijv := minimum of components' t^'s 
clear the synchronize set 
send (done,t) to parent coordinator 

else raise an error 
end when 

Elements in the synchronize set are imminent com- 
ponents, influencees or both. Because of the consistent 
application, we delay the distinction of a transition 
only until the notification arrives at the atomic level. 

The implementation of this coordinator routes 
down the output events during the (*,t) phases. It 
simply reflects the construction of the transition func- 
tions of a coupled model. Another implementation 
might choose to route the events during the (@,t) 
phase directly to the final atomic influencees. The 
bag implementation of the coupled model can thus 
be omitted. Both implementations are equivalent and 
render the same simulation result. 

The topmost coordinator is driven by a special co- 
ordinator called the root coordinator which constantly 
advances the global simulation time to the next sim- 
ulation time of a simulation, sends (@,i) and (*,t) 
messages to the topmost coordinator, asks the next 
simulation time, and repeats until the next simulation 
time is infinite. 

Root coordinator 
t :=tN of the topmost coordinator 
while t ^ oo 

send (@,t) to the topmost coordinator 
wait until (done,t) is received from it 
send (*,t) to the topmost coordinator 
wait until (done,tN) is received from it 

end while 
raise simulation completed 

The simulation procedure exposes the parallelism 
among transitions of elements in synchronize set and 
abstract simulator design handles transitory states in 
a well defined manner. 

^ intjransfn 

*** extjransfn 

*** outputJn 

■^ time_advancefn 

"*>* conjransfh 

ATOMIC 

*^* intjransfn 

*** extjransfn 

^ outputjh 

*\s timejidvancefn 

*^* conjransfh 

(user-defined) 

(virtual) 

COUPLED 

*^ intjransfn 
— „       (derived from 
"v extjransfn       user coupieü- model 
"^ outputjh definitions) 

*^ timejidvancefn 

*^ conjransfh 

Figure 1:  Abstract Class and Inheritance Hierarchy 
Exploiting Closure Under Coupling 

4    Flexibility   of   hierarchical    model 
mappings 

The standard mapping of a hierarchical P-DEVS 
model onto an abstract simulator results in a hier- 
archical architecture with a one-one correspondence 
to the models composition tree structure. However, 
many alternative mappings exist and some are more 
likely much better depending on the model behavior 
and the receiving platform characteristics. Some pos- 
sibilities have been investigated[17][13]. Here, we note 
that closure under coupling enables any coupled model 
in the model composition tree to be mapped into an 
equivalent resultant model. This mapping, described 
above, can be implemented within an object-oriented 
framework as illustrated in Figure 1. 

Here, atomic model and coupled model objects 
present the same interface to clients, one that is ab- 
stracted in a devs superclass with virtual transition 
functions. This greatly increases the flexibility with 
with mappings can be done. In partcular it helps 
overcome limitions of conventional high performance 
architectures which do not support hierarchical clus- 
ters. Only one coordinator process is needed at the top 
level for managing the intercommunication and syn- 
chronization of nodes. The same simulator processes 
run on other nodes and are linked to either atomic or 
coupled models, the resultant mapping embodied in 
the common interface blinds them to the difference. 

We are currently investigating the application of 
this concept to large scale ecosystem simulation. As 
illustrated in Figure 2, a landscape, such as a wa- 
tershed, is represented by a "base" model of a large 
number,e.g., one million, of cells. This number is or- 
ders of magnitude larger than the number of nodes in 
the highest performance massively parallel computers 
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such the 1000 node CM-5. Therefore the base model 
cannot be mapped in a one-one manner and some par- 
titioning is required as illustrated in Figure 2. To 
retain the base model dynamcs, each block becomes 
a coupled model over the component cells within its 
scope. Using the closure under coupling concept, each 
coupled model is represented by its resultant P-DEVS 
model and these resultants are coupled together in a 
manner preserving the coupling behavior of orginal 
base model. The outputs of blocks are collections of 
outputs of their enclosed cells and their management 
is nicely handled by the bag construct in the P-DEVS 
formalism. The block resultants are assigned to sim- 
ulators and the coupling of these resultants to a co- 
ordinator. The transformation of the base model into 
an equivalent coupling of blocks is called "deepening" 
and the entire process can be defined formally and 
implemented nicely in the object-oriented paradigm. 
Partitioning of cells into blocks is not constrained and 
indeed, can be performed dynamically during execu- 
tion to balance the processor loads as the locus of cel- 
lular activity migrates about. 

Evapotransportatlon 

bedrock 

bedrock 

air   t 

JL' 
trees / 

soil   I 

so»   I 

so»   i 

water t 

water t 

Block Resultant 

CM-5 Processing Nodes Layer 

Figure 2: Mapping of landscape base model onto a flat 
massively parallel architecture (e.g. CM-5) 

5    Conclusions 

In the Parallel DEVS formalism, a modeler is ex- 
plicitly enabled to supply the confluent transition 
function that captures the collision behavior. This 
function allows the coupling construction to follow the 
semantics of a collision down to the atomic level and 
obviates any behavioral difference between a model 
and its deepened and flattened restructurings. 

The abstract simulator concept leads to many pos- 
sible implementations. The well isolated transition 
groups add to the existing possibilities to exploit the 
parallelism of the hierarchical DEVS models. Since 
the abstract simulation engine is based on the assump- 
tion of a parallel environment, the implementation on 
parallel machines is straightforward. Moreover, clo- 
sure under coupling supports flexible restructuring for 
more effective mappings, both static and dynamic, to 
particular platforms. 
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Abstract 

Within the past few decades, diverse modeling and 
simulation tools have been applied in extensive applica- 
tions. The approaches used range from programming 
with a specific simulation description language to au- 
tomation using an icon-driven user interface. The ad- 
vantage in utilizing simulation is to assess the sys- 
tem's performance prior to an actual implementation. 
Functionality, maintainability, and expansibility are 
the primary criteria used to make a choice of a specific 
tool. To strengthen these criteria, a general-purpose 
environment called Performance Object-oriented mod- 
eling and Simulation Environment (POSE) has been 
developed. The objectives of POSE are to automati- 
cally construct simulation models for the systems to be 
designed, to efficiently define the system performance 
measures, and to accurately generate the performance 
data expected. The environment is briefly summarized 
and an application study for a multiprocessor com- 
puter system is presented. 

system model in most of existing simulation languages, 
users (or system designers) must know the syntax of a 
specific language and how to program the model cor- 
rectly. The situation motivates our research to devise 
a way that allows users to do system modeling without 
the knowledge of an underlying simulation language. 

Furthermore, the object-oriented (for short, 00) 
concept has shown a great potential in extensive appli- 
cations, especially the advantages of reuse and main- 
tainability. The third characteristic in POSE is to 
utilize the 00 concept in cooperation with Queueing 
Theory [4] and the structure of DEVS formalism [13] 
such that each POSE's model has a concrete config- 
uration and is efficient in processing the problems of 
system performance measures. Lastly, we strive to 
improve POSE to strengthen its functionality and ex- 
pansibility. This is achieved through the design of the 
hierarchical model-base management. The hierarchi- 
cal model bases are established by dividing the model- 
ing procedure into two parts: the system-architecture 
and the system-performance modeling stages. 

1    Introduction 

As fiber optics, ultra large-scale integrated circuits, 
asynchronous transfer mode, and more advanced tech- 
nologies are introduced, new application systems have 
become much more complex. The behavior of the sys- 
tems is usually of high complexity and is difficult to 
evaluate by analytical approaches. It is believed that 
if no analytical approaches can be applied, construct- 
ing a new, complex system can be expensive, time 
consuming, and risky. Therefore, simulation or hybrid 
approaches are explored to mitigate the problems [7]. 
This is the first reason triggering this work. In ad- 
dition, it is necessary to construct a model required 
before carrying out system simulation. To build the 

2    The Design of POSE 

As described in detail in [1], the design concept 
focuses on automating the simulation model creation 
and providing the required performance calculation 
and evaluation. POSE's architecture is depicted in 
Figure 1. The arrows in the figure show the opera- 
tion flow in POSE. Each item beside an asterisk ex- 
presses the basic part corresponding to the stage right 
above or below it. According to the flow, the require- 
ments and constraints of the system to be developed 
are considered first. The requirements include per- 
formance objects (indices) like throughput, utilization 
and turnaround time. After analyzing the system's 
requirements and constraints, the AGEF (Automatic 
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Figure 1: The Design Flow of POSE. 

Generation of Experimental Frame) stage is processed 
in order to embed this information into an experimen- 
tal frame (for short, EF) for future use [12]. 

At the System Analysis stage, the system's archi- 
tecture is analyzed. For example, when a multipro- 
cessor computer system is to be modelled, the infor- 
mation about the connections among CPUs, memory 
units and 10 units, the characteristics of each unit, 
and the partitions of the system, have to be obtained 
after the analysis procedure. Based on this informa- 
tion, the AGSM (Automatic Generation of System 
Model) is invoked to model the computer system. As 
soon as the AGEF and the AGSM stages are com- 
pleted, the Model Integration (for short, MI) stage 
takes place. A complete integrated model is then gen- 
erated. This model is able to produce the performance 
data for the system in terms of the requirements and 
constraints specified in the EF(s). 

The output provided by POSE are integrated mod- 
els which are useful at the next stage, Model Simu- 
lation. All performance data are collected and com- 
puted within this stage. These data are used to vali- 
date the accuracy of the system models (e.g. the com- 
puter model) via mathematical approaches. 

Three model bases, Experimental Frame Model 
Base (EFMB), System Model Base (SMB), and In- 
tegrated Model Base (1MB), along with a perfor- 
mance object-based library called Generic Experimen- 
tal Frame Base (GEFB), are used to support the hier- 

archical modeling-automation flow. These bases have 
the hierarchical relationship of 1MB at the root with 
two children SMB and EFMB. In turn, EFMB requires 
the resource in GEFB. They are originally empty but 
become populated as systems are developed in POSE. 
The power of POSE is enhanced by maximizing the 
flexibility of the execution flow feedback as referred 
to in Figure 1 and designing a corresponding inter- 
face shown in Figure 2 (where both Node Modeling 
and System Modeling functions comprise the AGSM 
stage). More details about the environment and its 
implementation can be found in [1]. In what follows, 
we focus on the model integration and simulation stage 
and provide an illustrative example. 

3    Model Integration and Simulation 

The models in the system model base (SMB) and 
the experimental frame model base (EFMB) can be 
operated in a stand alone mode with DEVS-Scheme 
but no meaningful output is produced. To come up 
with the performance metrics required for an applica- 
tion system, the function of Model Integration (MI) 
is then designed. Figure 3 shows the relationship 
among the SMB, EFMB and the integrated model 
base (1MB). This figure also points out that only inte- 
grated models are allowed to be simulated in POSE. 

In order to carry out flexible model integration, 
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Figure 3: Model-Base Relationship in Model Integra- 
tion. 

the schemes of global and distributed experimental 
frames [8] are employed at this stage. For instance, 
an interconnected network like ARPANET [11] con- 
nects many Local Area Networks (LANs) via gate- 
ways. Since the role of gateways within the inter- 
connected network is very critical and sensitive, per- 
formance measures at gateways are particularly im- 
portant. In general, throughput and utilization are 
factors of greatest concern. This situation requires 
attaching different configurations of EFs to the gate- 
ways at different geographical areas. This flexibility 
has been carried out by using both schemes. Due 
to the flexible attachment of an EF to any layer or 
component in a system model, the EFs stored in the 
EFMB can be retrieved and coupled to the system 
model without any restriction during the processing 
of the MI function. 

The goal of simulation in POSE is to generate per- 
formance data for performance evaluation. All the 
data expected are gathered and saved in different log 
files specified in the transducer(s) during simulation. 
Basically, there are three pre-defined log files: job ar- 
rival, job finished, and summary, at each transducer. 
Both job arrival and finished files keep the so-called 
raw performance data consisting of each job name 
and its priority with the arrival or departure time, re- 
spectively. The log files rather than the pre-defined 
ones are for specific purposes such as throughput, 
turnaround, etc. The summary file periodically col- 
lects all processed performance data such as: 

** ef-computer at time 320 

throughput 
turnaround 

2.08524590163934 
1.66049869504983 

** el-computer at time 340 

throughput  ::   2.08709677419355 
turnaround ::   1.65773744063163 

** el-computer at time 360 

throughput  ::   2.0952380952381 
turnaround  ::   1.6632224979867 

A simulation run is finished as soon as the toler- 
ance condition pre-set by employing the technique of 
terminating simulation is met [5]. 

4    The Experiments in POSE 

Even though analytical approaches provide efficient 
and accurate ways to process performance measures, 
the simulation approach offers an alternative when: 
1) the complexity of a system prohibits determinis- 
tic results, or 2) the complexity is difficult to ana- 
lyze mathematically. The Simulation approach also 
provides a means for evaluating and comparing new 
systems prior to their actual implementation. Never- 
theless, analytical approaches can be used to evaluate 
the performance outcome generated by POSE. 

The following simulation experiments are used to 
test POSE's functionality and accuracy. Their simula- 
tion results are synthesized through the scheme of con- 
fidence interval under the control of terminating sim- 
ulation [5]. Also, the results are evaluated by means 
of mathematical analysis with queueing theory. 
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Figure 4: A Multiprocessor Computer System. 

A Multiprocessor Computer System: Perfor- 
mance evaluation in various computer systems has 
been studied extensively [3, 6, 7, 10]. For compar- 
ison purposes, a multiprocessor computer system is 
designed in POSE. The experiments related to the 
proposed computer system shown in Figure 4 are to 
determine how the system would perform under vari- 
ous changes. Based on the figure, these changes could 
be about the input rate (system workload), the service 
rates of cpus, (main) memory and disks, and the prob- 
ability settings on links (buses). Since the role of the 
cpu and memory is more sensitive to the whole sys- 
tem, we are primarily concerned with changes in their 
rates. Due to the variety, the performance measures 
regarding the mean job turnaround time, i.e., aver- 
age time delay, in the system are considered. These 
performance measures are gathered through execut- 
ing the system's model, which is created by POSE, as 
shown in Figure 5. 

The first experiment examines the quantity changes 
in turnaround time by gradually modifying the cpu's 
mean service time (the reciprocal of service rate). 
Other factors involved here have the following con- 
ditions: 
1) No jobs are blocked at any receiving unit. 
2) Mean job interarrival time to the system : 

0.5 millisecond/job 
3) Mean service rate of the memory : 

0.025 millisecond/job 
4) Mean service rate for each disk : 

0.2 millisecond/job 
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Figure 5: A Multiprocessor Computer System. 

5) Input jobs are immediately dispatched to each cpu 
with equal probability. 
6) Cpu's outgoing jobs sent to the two disks, the mem- 
ory, and outside of the system with the probabilities, 
0.1, 0.1, 0.7, and 0.1, respectively. 

By means of multiple simulation runs at each cpu 
setting, Figure 6 plots the related confidence interval 
with 95% via two curves Simulation-Upper (i.e. the 
upper bound of the interval) and Simulation-Lower 
(i.e. the lower bound). This area between the up- 
per and lower curves shows that POSE provided a 
good enough estimate by comparing it to results cal- 
culated with the analytical approach. Based on the 
same conditions, we proceed with the analytical ap- 
proach by using queueing theory. Since the computer 
system model is an Open Queueing Network (OQN) 
with Poisson input rate, exponential service rates and 
infinite buffer sizes at all queues, it can be analyzed 
by applying Jackson's theorem [2]. The correspond- 
ing analytical curve is marked with Analytical-0.5 
for the purpose of evaluation. (The "0.5" expresses 
the mean job interarrival time to the system is 0.5 
millisecond, i.e., the job input rate is 2 jobs/ millisec- 
ond.) From the curve distributions, it is concluded 
that: 
1) The area specified by the 95% confidence interval 
almost covers the analytical curve except for the range 
close to 0.08 and up. This exceptional range results 
from job congestion occurred in cpus to the extent that 
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Figure 7: The Effect of The Memory's Rate Changes. 

the whole system becomes unstable and the bound 
of 95% coverage is no longer obeyed. Therefore, this 
evaluation shows a high accuracy and sensitivity for 
the simulation approach performed in POSE. (In the 
figure, two other analytical curves are drawn for ref- 
erence. The Analytical-0.4 curve exhibits serious 
job congestion when the mean service time of a cpu 
is over 0.06, a situation that does not occur in the 
Analytical-1 curve during the changes of cpu time. 
This is because a lower input rate is assigned to the 
latter.) 
2) If the service time of a cpu is less than 0.06, then 
higher input rates are suggested unless there is a real- 
time factor. 

The second experiment investigates how a change 
in memory service-time affects job turnaround time 
in the proposed system. Figure 7 illustrates the ef- 
fect caused by the change. The related conditions set 
in the experiment are the same as in the first experi- 
ment except that : a) the cpu service-time is fixed at 
0.04 millisecond/job, and b) the memory service-time 
is adjusted from 0.01 to 0.05 millisecond/job. 

The simulation outcome is plotted by two curves 
Simulation-Upper and Simulation-Lower with 
95% confidence interval. The related mathematical 
method is also built according to Jackson's theorem. 
The corresponding analytical outcome is drawn for 

comparison to the simulation outcome. Due to the 
nonexistence of the job congestion problem given the 
testing conditions, the Analytical-0.04 curve is com- 
pletely covered within the area between the two bound 
curves. 

The experimental results for the proposed computer 
system show that performance outcomes produced by 
POSE provide accurate estimates. The same out- 
comes of the tests of Gordon-Newell Networks are also 
obtained. 

5    Conclusions 

In POSE, users can systematically construct a com- 
plex system model with a multilayer and multicom- 
ponent architecture through the interactive window- 
driven interface. The architecture facilitates hierarchi- 
cal modeling and a hierarchical model-based manage- 
ment. By making connections from POSE to DEVS- 
Scheme, model simulation and performance data col- 
lection and computation are then accomplished. In 
conclusion, the contributions of this work to the field 
of modeling and simulation automation are in a) hid- 
ing of simulation language, b) modeling automation, 
c) hierarchical modeling, and d) effective performance 
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Abstract 

This paper proposes a framework which supports 
performance evaluation and logical analysis of dis- 
crete event systems using a unified formalism, i.e., 
the DEVS(Discrete Event System Specification) for- 
malism. For performance evaluation, DEVSim++, a 
realization of the DEVS formalism and the associated 
simulation algorithms in C++, is used. For logical 
analysis, the dual language approach is adopted. We 
use the DEVS formalism as an operational formalism 
to describe system's behavior. Temporal Logic(TL) is 
employed as an assertional formalism to specify sys- 
tem 's properties. To reduce states space in logical anal- 
ysis, we exploit a projection mechanism. The method 
is a mapping of a set of states in models into a state 
which obtained from TL assertions. An example of 
logical analysis for Alternating Bit Protocol is given. 

1    Introduction 

Systems development process consists of a formal 
specification of requirements, modeling from the spec- 
ification, validation of the models, performance evalu- 
ation and implementation. A model for performance 
evaluation should have time informations between the 
communicating entities to analyze average delay time, 
throughput, and so on. On the other hand, a model for 
validation should have logical informations to prove 
that there are no logical conflicts in procedure rules. 

*ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights 
reserved. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for 
resale or redistribution must be obtained from the IEEE. For 
information on obtaining permission, send a blank email mes- 
sage to info.pub.permissions@ieee.org. By choosing to view this 
document, you agree to all provisions of the copyright laws pro- 
tecting it. 

From these different features, the designer has to de- 
velop two kinds of models to perform the performance 
evaluation and the logical analysis. This is a very te- 
dious job. 

This paper presents a framework which supports 
both performance evaluation and logical analysis 
within a unified formalism. Logical analysis tech- 
niques can be divided into two approachs, single lan- 
guage approach and dual language approach. Reach- 
ability analysis is a well known single language ap- 
proach. It is practically impossible to perform com- 
plete analysis for complex systems [2]. On the other 
hand, the dual language approach uses two for- 
malisms: operational formalism which describes the 
behavior of a system and assertional formalism which 
specifies the property of a system. We adopt Tempo- 
ral Logic(TL) as an assertional language and DEVS 
formalism as a description language. 

This paper is organized as follows. Section 2 de- 
scribes the proposed framework for the dual language 
approach. In section 3, we describe the assertional 
language TL and its expansion procedure. And a pro- 
jection mechanism for atomic DEVS models and a val- 
idation procedure are also described. We conclude this 
paper in section 4. 

2    Proposed Framework 

Figure 1 proposes a framework for logical analysis 
and performance evaluation within the unified DEVS 
formalism, where the logical analysis exploits the dual 
language approach. A modeler should develop DEVS 
models to perform performance evaluation. This is re- 
fined descriptions from informal requirements of a sys- 
tem. The DEVS formalism and the associated simula- 
tion algorithms provide sound modeling semantics and 
a simulation methodology[8]. Therefore the modeling 
and the performance evaluation processes are easily 
accomplished by using the DEVSim++[3]. 
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The main advantage of the dual language approach 
is in its flexibility; the use of specification language 
provides a uniform notation for expressing a wide va- 
riety of correctness properties and it separate mod- 
els from reachability assertions[6]. But the dual lan- 
guage approach also has the state explosion problem 
for complex systems. Therefore partial proof against 
given specifications is a reasonable solution to these 
problems[4]. The dual language approach with a pro- 
jection mechanism can be an efficient method for the 
validation of large systems. 

Temporal constraints that present temporal prop- 
erties of the requirements are also required for logi- 
cal analysis. These constraints are expressed by using 
Temporal Logic(TL). The temporal logic formula is 
translated into a finite state automaton. The state 
informations are obtained from the automata. These 
informations are applied to the DEVS model, devel- 
oped for performance evaluation, to obtain a projected 
state space. Logical analysis is performed by using the 
projected state space and the finite automata of TL 
formulas. 

3    Logical Analysis 

The DEVS models for performance evaluation 
does not have any constraints about the desired 
states/events set and global state information of a sys- 
tem. For logical analysis, such information should be 
added to the DEVS models. The logical constraints 
which specify the state sequences of a system can be 
expressed in terms of temporal logic formulas. Timing 
information does not need for logical analysis. Thus, 
the time advance function fro an atomic DEVS model 
may not be used for logical analysis. The logical anal- 
ysis is basically a searching procedure to find illegal 
states. For efficient analysis, there should be a mech- 

anism to reduce the state space. We accomplish it 
by an extension of the DEVS formalism, i.e, add a 
projection function and state set informations derived 
from TL assertions into atomic DEVS models. A fa- 
cility for global states manipulation is also added to 
coupled DEVS models. 

3.1    Expression of Temporal Logic 

Temporal logic assertions express sequence of states 
that should be satisfied during system execution. 
Therefore the state information of TL assertions can 
be used to project with respect to related states from 
the DEVS model of a target system. Temporal logic 
is an extended logic by adding the temporal operators 
to describe the timing relationship between entities. 
It has been widely used to specify discrete event sys- 
tems such as concurrent system and communication 
protocol. The temporal operators and their meanings 
are as follows[l]. 

• n(always)A:  A is true now and will always be 
true in the future. 

• Q(sometimes)A:   A is true now or will be true 
sometimes in the future. 

• A[)(until)B: B is true now or A is true until B 
will be true. 

• Q)(next)A: A will be true next time. 

To establish correspondence between TL assertions 
and a DEVS model, TL assertions are described by 
using the state variables and their values defined in 
the DEVS model. Let grammar G of the temporal 
expression be (VT,VN,P,S). Terminal V? is a set of 
atomic formulas which contain no temporal operator. 
The non-terminal VN follows the next operator O- A. 
given temporal expression, a non-terminal set and a 
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FINAL state constitute a states set S of the gram- 
mar. The production rules P for a set of temporal 
operators are as follows, where an expression in { } is 
a language accepted by the projection rules. 

• DA=^A-0(DA){A*} 
• OA=>A\->A- O(0A){hA)*A} 
• A\JB=>B\AA^B-0(A\JB)){(AA^B)*D} 

^A | Oh°A){W} 
->A\A- OhDA){A*^A} • -,0,4=* 

•-(A\JB) 
^B\BA ■>A-OHA\jB)){(BA^Ay^B} 

(i) □(£.Error A R.Error = false) 
(ii) 0((S.Phase = FM A S.st = 0) 

-+ <>(R.Pahse = FA A R.at = 0)) 
(iii) D((S.Phase = FM A S.st = 1) 

-► <>(R.Pahse = FA A Ä.a< = 1)) 
(iv) □ ((S.PAaae = FM A R.Phase = WAf) 

-► (S.Phase = FM A R.Phase = WM) 
U (S.Phase = WA A R.Phase = FA)) 

(v) a((S.Phase = WAA R.Phase = FA) 
-> (S.Phase = WA A R.Phase = FA) 
U (S.Phase = FM A R.Phase = WM)) 

A temporal expression which describes a sequence 
of states is expanded to a current state condition and 
a next state condition using the grammar. This is 
based on the decision procedure in [7]. The expansion 
procedure for temporal expression is as follows. 

(i) Start with application of the production rules 
shown above to TL assertions. 

(ii) Set the non-terminal to a next state and the ter- 
minal to a transition condition. Any formula that 
contains only terminals becomes a transition con- 
dition for the FINAL state. 

(iii) The outmost operator O f°r a nex* state is re- 
moved. 

(iv) If a new state does not appears, then terminate. 
Otherwise go to (i). 

After execution of the expansion procedure, a TL 
assertion is translated into a finite state automaton R 
as 

The model of the ABP should be correct if it sat- 
isfies the above TL assertions. To prove the property, 
we translate TL assertions into a finite state automa- 
ton. Figure 2 shows the resultant automata for the TL 
assertion (iii). The expansion procedure for this as- 
sertion is as follows. Let S.Phase = FMAS.at = 1 be 
A, and R.Phase = FAAR.at = 1 be B. The following 
is the expansion procedure for the given property. 

1st step : apply expansion rule for <$B 
->A | 05 = ->A | B | -5 • O(O-S) 

2nd step : determine transition conditions 
transition to FINAL state : -<A | B 
transition to next state(O-B) : ~<B 

3th step : apply expansion rules to §B 
0B = B\-^B- O(0B) 

4th step : determine transition conditions 
transition to FINAL state : B 
transition to next state(O-B) : -iB 

5th step : (0-8) appears again : stop expansion 

R=< S,A,<5R > 

5 : sequential states set; 
A : logical assertions set; 
6 : state transition function; 

with the following constraints 
S, A : finite set; 
6R: Sx2A-+2s; 

In this paper, we use the alternating bit proto- 
col(ABP) as an example system. A detailed descrip- 
tion of the ABP appears in [5]. Consider the following 
property for the ABP: " Error-free Transmission : If 
no transmission errors exist between Sender and Re- 
ceiver, then messages are sent infinitely and they have 
alternate control bit". The TL assertions of this prop- 
erty are as follows. 

A = (S.Phase = FM A S.st = 1) 

B = (R.Phase = FA A R.at = 1) 

Figure 2: Finite State Automaton 

The state values set which is related to the given 
properties can be extracted from the transition con- 
dition 2A of R. This is done by the grouping the 
values set used as transition conditions. The state 
variables of SENDER and RECEIVER for the 
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above property can be grouped as follows: S.Phase = 
{{WA}}, S.st = {{0}}, S.Error = { }, R.Phase = 
{FA,{WA}}, R.at = {1,{0}} and R.Error = { }. 
Therefore, states that have the same values except for 
Error can be treated as an equivalent state. Table 1 
represents the values set of state variables of the ABP 
ofr the Error-free Transmission property. 

Spec # sv SENDER RECEIVER 
1 Error false false 
2 Phase 

st 
at 

{WA} 

{1} 

FA, {WM} 

o,{i} 
3 Phase 

st 
at 

{WA} 
{0} 

FA, {WM} 

MO} 
4 Phase {WA}, WA, FM FA, {FA}, WM 
5 Phase FM, {FM}, WA {WA}, WM, FA 

Table 1. Grouped state variables for TL assertions 

3.2     Projection Procedure 

The projection is an efficient method to reduce the 
space/time complexity of logical analysis. Assume 
that a model supports various properties and some 
of them are disjoint. Then TL assertions for a cer- 
tain property use only a subset of domain of a state 
variable. Therefore the states which have the unused 
values can be grouped in one state. 

Definition. 1 Let M(5,-) be a state variable of an 
atomic DEVS model and M{Vi) be domain of M(Si). 
Then the set of states of the model is SM = M(Vi) x 
M(V2)x ■■■M(Vn). 

Definition. 2 Let R(Si) be a state variable that is 
used as transition conditions in the automata R and 
R(Vi) be a set of grouped value set. Then the set 
of states of requirements is SR = R(Vi) x R{V2) x 
■■■R(Vn). 

Definition. 3 Projection is a mapping of a set of 
states in SM into a state in SR based on R(VS). 
(i) The states in SM which contain a value in the used 
value set Ui<;-^(^) ^s aggregated into a state in SR. 

(ii) The states in SM which contain values that does 
not appear in the used value set Ui<!-^(^') are re~ 
moved from SM- The resultant isolated states are also 
removed. (Hi) Ifi state variables do not used in the as- 
sertions, then the n dimensional state space is mapped 
into the n — i dimensional image. 

Consider a system shown in Figure 3 (a) that is 
described by 2 state variables v\ — {true, false}, 
V2 = {n | n > 1}. Let states 82,83 and S4 be s2 — 
{vi = false, V2 — 2}, S3 = {v\ = false, V2 = 3} and 
s3 = {vi = false, V2 = 3}. Assume that state tran- 
sition conditions which are obtained from the expan- 
sion procedure have a value group V2 = {1, {2,3,4}}. 
If a transition condition for TL assertions satisfies 
vi = false, then the system can transit to these 
states. Therefore these states are equivalent and can 
be grouped. Figure 3 (b) shows the results after group- 
ing. 

If TL assertions do not use the value v\ = false, 
then the system never transit to the states that contain 
this value. So, these states can be removed from the 
original system. Figure 3 (c) shows the result after 
removing those states. 

(b) Grouping Equivalent States (c) Removing Redundant States 

Figure 3: Projection of Example System 

The DEVS formalism is extended for logical analy- 
sis and projection. The projection function is a map- 
ping of states from an atomic DEVS model to a state 
in a finite state automaton of a TL assertion. SR is 
the states set that is equivalent to the grouped states 
of the DEVS model. Formally, the specification of an 
atomic mode M is as follows. 

M=< X,SM,Y,<5int,<5ext,A,ta,fR)SR> 

X : input events set; 
SM '■ sequential states set; 
Y : output events set; 
dint '■ internal transition function; 
Sext '■ external transition function; 
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A : output function; 
ta : time advance function; 
/R : projection function for requitements; 
SR : states set of requirements; 

with the following constraints, 
X,Y,SM '■ infinite but countable set; 
bint '■ SM —* SM ! 
&ext '■ Q x X —+ SM ; 

Q = {(s, e)\s€ SM,0 < e < ta(s)}; 
Q: total state of M, 
e: elapsed time after scheduling; 

SM -*Y; 
: SM —*■ Real; 

IsM - SR; 

A : 
ta : 

fR 

To validate, the gathering and tracking facilities of 
global states of the coupled DEVS model are required. 
So a means for manipulating the global states set is 
added to the coupled DEVS formalism. 

DN =< D, {Mi}, {Ij}, {Zi j}, SELECT, SG> 6DN > 

D : component names set; 
for each i in D, 

Mi : DEVS component i in D; 
Ii : set of influencees of i; 

for each j in I;, 

: i-toj output translation function; 
SELECT : 2D -»• D : tie-breaking selector; 
SG '■ XSR; : global states set; 
&DN '■ SG x 2A —»• 2

SG
 : state transition function; 

Figure 4 (a) shows state diagrams of the atomic 
models SENDER and RECEIVER. The global state 
diagram for the projected atomic models is shown in 
(b). The dotted area presents the projected states 
with respect to the property Error-free Transmission. 
The global state diagram obtained from the projected 
atomic models is equivalent to the projection result 
of the original coupled model. Therefore application 
of the projection on the atomic DEVS model is more 
efficient because the state space complexity is reduced. 

3.3    Validation Procedure 

The logical analysis is performed by an acceptance 
checking : check whether a TL assertion accepts the 
state transition sequences of a coupled DEVS model. 
If the model is correct, then a sequence of states in a 

Phase = (Fwd_Ack, Wait_Msg) 
Ack_Turn = (O, 1) 
Error = {true, false) 

(a) Coupled  & Projected DEVS Model of ABP 

^ (FM.O.f), (WM,0,f)"|-< 
?ack_l, !ack_ 

(WA,l,f>, (PA,l,f) 

!msg_0 
?msg_0 

(WA,0,f>, (FA,0,f) 
?ack_0, !ack_0 

!msg_l 
?msg_l 

(FM,l,f>, (WM,l,f> 

(b) State Diagram of Coupled DEVS Model 

Figure 4: Global State Diagram of Projected ABP 

cycle of the model would be accepted by the temporal 
constraints language. The validation algorithm is as 
follows. 

Validation Algorithm 

Var 
Stack: stack ofG; 
gi : global states set : Si x SGJ/ 

Sn : next states set of FSA; 
tn : transition condition of FSA; 
5G„ •' next states set of MODEL; 

begin 
Stack := { }; 
9i ■= go; 
push(go, Stack); 
while not-empty (Stack) do begin 

&n  := o(oi, ti); 

SG„   '■= (>DN(SGi,ti); 

X74 



tfSGn = { } then 
go to Label; 

9n := Sn x SG„; 

for\fgn do 
tf {9n   $■  Stack) then 

push(gni Stack); 
else if acceptance-check(gn) = true then 

terminate(model is correct); 
end for; 
Label: gi = pop(Stack); 

end while; 
terminate(conflict exist); 
end; 

By using the above algorithm, we can find a loop 
from the transitions of a FSA(Finite State Automa- 
ton) and a DEVS model in the Figures 2 and 4. The 
possible next states gx([2,((WA,0, f),(FA,0,f))]) 
and ff2([3, ((WA, 0, /), (FA, 0, /))]) are obtained from 
the initial stateg0([l, ((FM, 0, /), (WM, 0, /))]). Next 
state of g2 becomes g3([l, ((WA, 0, /), (FA, 0, /))]) al- 
though 02 is an acceptance state. This is because a cy- 
cle of sequences of global states does not exists. And 
01 transit into <te([2, ((WA, 0, /), (FA, 0, /))]) because 
next state of the model can accept the transition con- 
dition of the FSA. The state transition of the model 
based on transition condition of the FSA is made until 
a cycle of state sequences of the model is detected and 
the FSA reaches the acceptance state. If a model has a 
deadlock, then it can not proceed at that state. There- 
fore the model can not reach the acceptance state until 
the algorithm is terminated. The validation algorithm 
can also be applied to the negation of a TL assertion. 
Such negation of a given TL assertion may increase 
validation speed for some cases. 

4    Conclusion 

This paper presents a unified framework for per- 
formance evaluation and logical analysis within the 
DEVS formalism. A performance analysis model has 
timing informations between the communicating enti- 
ties. That is used to analyze time related performance 
such as average delay time and throughput, etc. A val- 
idation model has logical informations which is used 
to prove systems properties or procedure rules. This is 
accomplished by an extension of the DEVS formalism. 

To solve the state space explosion problem during 
the validation phase, we exploit a projection mecha- 
nism using external TL assertions. This is a very ef- 
ficient method because state reduction is made before 

the atomic models are coupled. Then various valida- 
tion techniques which are used in the dual language 
approach can be applied. 
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Abstract 

The maintaining and adaptation of knowledge wi- 
thin changing environments is one of the crucial 
aspects in decentralized controlled and distributed sy- 
stems. To explore different strategies and their conse- 
quences, we use an example where processors, struc- 
tured in a hierarchy, are hired or fired responding to 
the requests of the current work load. The modeling 
and simulation approach uses the actor metaphor of 
open systems, where the nodes of the hierarchy are 
perceived as autonomous agents with an internal ex- 
plicit model about their environment. Questions about 
the distribution and maintenance of knowledge refer- 
ring to the structure of systems, needs for cooperation, 
and the change of roles are discussed against the back- 
ground of the example and complete the picture about 
the specific effects of the single strategies. DEVS, a 
knowledge-based simulation environment, constitutes 
the background of our exploration. 

in a dynamically evolving environment with changing 
structures. With those questions we approach the area 
of open systems where bounded knowledge and boun- 
ded influences are discussed in the context of decen- 
tralized control [2]. 

The knowledge that is required by the single agents 
depends typically on the problem that is tackled with 
the distributed systems. Often, the desired func- 
tionality can be achieved based on concepts of self- 
organization which obviate detailed knowledge and re- 
asoning capabilities of the involved agents [4]. Besides 
the problem itself, the ability of the agents involved 
in problem solving and the perspective which shall be 
pinpointed by modeling influence the internal model 
of agents. 

Analyzing different scenarios of a small example the 
adaptation of local views will be discussed based on 
the concept of endomorphic intelligent agents, which 
has been developed to deal with structural changes in 
DEVS. 

1    Introduction 2    Internal Models in DEVS 

To function autonomously in a structural changing 
environment entities need knowledge about their sur- 
roundings and their own role in this environment. To 
describe those entities and their behavior, we equip- 
ped an object-oriented modeling scheme with internal 
explicit models about the structure, i.e. the composi- 
tion and coupling, of their environment, thus following 
system-theoretic approaches [6]. Assuming not only 
one single entity works autonomously in an environ- 
ment but a group of entities, the questions arise how 
much knowledge each entity has to possess in order 
to guarantee the functioning of the whole system and 
how the local internal models are related to each other 

In an extension of DEVS, the perception of agents 
which may refer to the environment, to the agents 
themselves and the existing interrelationships is repre- 
sented as internal models [6]. They realize the awaren- 
ess about the agent's own embedding in the network of 
communication [1], and represent explicit models wi- 
thin models, which Zeigler called "Endomorphy" [10]. 
Actions are based on and directed to these internal 
models. Thus a constructivistic view is supported as 
the world is changed corresponding to the local views 
of the agents. 

During changes in the environment internal models 
have to be adapted frequently.   The adaptation can 
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be initiated by communication with other agents or 
by discovering inconsistencies between the local model 
and the external world by observing. In the context 
of this paper we will concentrate on the former. 

Typically models in the discrete event simulation 
system, DEVS, are defined either as atomic models 
or as coupled models [10]. The behavior of a cou- 
pled model is completely determined by the behavior 
of the atomic models. This reductionistic modeling 
approach inhibits some problems for the realization of 
autonomy [6]. To overcome this difficulties, a special 
kind of endomorphic agents with structural knowledge 
about themselves and their environment has been de- 
veloped. Endomorphic intelligent agents responsible 
for structural change (Mesa) are described as atomic 
models in DEVS whose definition is extended by an 
internal model (IMS). 

Mesa =df (X,S,IMS,Y,Sint,Sext,X,ta} 

X is the set of input ports for receiving external 
input events, S is the sequential state set, Y is the set 
of output ports for sending the generated outputs as 
external events, Sint {Sext) is the internal, respectively 
external, transition function dictating state transiti- 
ons due to internal (external inputs) events, A is the 
output function which generates events as outputs, 
and ta is the time advance function. The internal 
model IMS expands the state of the atomic model 
capturing the structure of the outside world it is con- 
trolling. This information about the structure of the 
outside world is encoded as a set of abstract structure 
models AS. 

IMS(a)     =df { AS(m, a)+ } 
AS(m, a)    —df 

(RM(m,a), X(m,a), S(m,a), Y(m,a), 
CMName,(m,a), CMAs(m,a), C{m,a)) 

Each abstract structure model comprises the root- 
model RM, the model on the highest organization le- 
vel the agent is controlling, its input ports X, its state 
S, its output ports Y, the names of its components 
CMNames, which can also be described as abstract 
structure models themselves CM AS, and the coupling 
that exists among them C. The abstract structure 
model depends not only on the model m that is con- 
trolled but also on the model that is controlling, i.e., 
the endomorphic intelligent agent a. In the abstract 
structure model the reductionistic view is exchanged 
against a more holistic view. Influenced by the mo- 
deling system EMSY [5], it allows to attribute a state 
and in a future version also rules to the internal mo- 
del. With the latter the agents will be able to reason 

about the behavior of atomic and coupled models as 
well [7, 3]. Abstract structure models do not distin- 
guish between atomic and coupled models. 

3    Hiring and Firing 

To discuss some phenomena in distributing and 
maintaining knowledge within a group of endomor- 
phic intelligent agents, we will use the "hiring-firing" 
example Zeigler introduced in 1989 [9]. Processors are 
structured in a hierarchy where the internal nodes are 
called managers and the leaves workers. Depending 
on the work load, the processor tree will expand or 
shrink. The first question is who decides the hiring 
and firing process. The answer is directly related to 
the problem which of the nodes are considered to be 
intelligent. The other question is who is hired and 
who is fired. The latter effects the dynamics within 
the tree and the role changes that the nodes have to 
undergo. 

Different strategies are possible to hire and fire no- 
des in the processor tree: 

• Hiring: 

1. Hiring a parent between the leaf and its for- 
mer parent. 

2. Transforming the leaf to an internal node 
and creating a new leaf. 

• Firing : 

1. Firing the parent and replacing the position 
by the leaf. 

2. Firing the leaf and transforming the parent 
into a leaf. 

Hiring 1. in combination with firing 1. implies no 
role changes. The entities are staying workers or ma- 
nagers through their whole life, workers are living lon- 
ger in the hierarchy while their distance to the top 
manager as well as their managers vary frequently. 
Scenario hiring 2. in combination with firing 1. has 
the effect that by hiring leaves, the former workers, 
become managers and new workers are hired, while in 
the phase of firing the managers are the first that have 
to leave. 

4    Realization in DEVS 

Different possibilities exist to realize the problem 
in DEVS. Each pinpoints a different perception of the 
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o coupled model 

CD abstract structure model 

endomorphic agent 1        l 

• internal model of an intelligent agent 

coupling 

—— composition 

Figure 1: Processor Hierarchy Realized by Coupling - "Hiring Workers and Firing Managers" Scenario 

problem. One of those possibilities is constituted by 
a "flat" representation where all nodes are considered 
to be intelligent with the ability to adapt easily to 
different roles. 

4.1    A Flat Representation 

All the processors are described as intelligent agents 
and as components of one coupled parent (Fig. 1). 
Thus, all nodes of the hierarchy are able to process 
jobs, and the hierarchy is constructed by coupling. 
The resulting model hierarchy is from the composi- 
tional point of view flat. Each agent has output ports 
and input ports to communicate with its "coupling- 
parent" and its "coupling-children". While the parent 
port is only connected to at most one other agent, the 
children port can be connected to several agents. In 
all scenarios the internal model will typically refer only 
to a certain part of the entire processor tree, thereby 
establishing a local view of the agent. 

In scenario "Hiring Workers and Firing Managers" 

the internal model of the agents includes its parent, its 
children, itself, and the existing interrelations. As an 
agent is only allowed as a worker to hire other workers, 
it has to know if it has children of its own. The firing 
of parents necessitates the information about the pa- 
rent because during the process of firing the parent 
might be substituted by the leaf. As the parent is in- 
telligent itself, a message sent to the parent with the 
requirement to fire itself and substitute its position by 
the leaf, leads to a test if there exist any sisters. In 
case no sister exist, the parent initiates the structu- 
ral change itself. To substitute the couplings correctly 
it is necessary for the parent to know its own parent. 
Therefore, the information about the parent is needed, 
same as the cooperation of the parent. 

In addition to knowledge about its parent, itself and 
its children, the internal model includes also know- 
ledge about the phases of children. As a job reaches a 
processor only by passing the parent and each comple- 
tion is reported to the parent, parents can easily keep 
track of their children's activities. Those phases con- 
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Mesa(ea-12)  =  (X = {in-parent, in-children}, 
S = {Phase, ... }, 
IMS = {AS(cm, ea-12)}, 
Y = {out-parent, out-children},...) 

where 

AS(cm, ea-12) = 
{RM = cm, 
X = {In}, 
Y = {Out}, 
CMMames = {ea-1, ea-12, ea-121, ea-122} 
CMAS = {{RM = ea-1, X = {in-parent, in-children},Y = {out-parent, out-children}), 

{RM — ea-12, X = {in-parent, in-children}, Y = {out-parent, out-children}), 
{RM = ea-121, X = {in-parent, in-children}, Y = {out-parent, out-children}), 
{RM = ea-122, X = {in-parent, in-children}, Y = {out-parent, out-children})}, 

C = {(ea-12.out-parent{ea-l.in-children}), (ea-12.in-parent{ea-l.out-children}), 
(ea-12.out-children{ea-121.in-parent, ea-122.in-parent}), 
(ea-12.in-children {ea-121.out-parent, ea-122.out-parent})}) 

Figure 2: Extract of the Internal Model - "Hiring Workers and Firing Managers" Scenario 

tain the information whether the subtrees whose roots 
are represented by the children are entirely occupied or 
possess at least one passive node; consequently, they 
may not correspond to the actual phases of the child- 
ren themselves, i.e. the phase : passive in the abstract 
structure model of a child implies not necessarily its 
idleness. 

According to the internal model, each processor di- 
rects the jobs to those children with free capacities. 
Actually, the job is sent to all children (Fig. 1), but 
each child decides whether it can ignore the message 
based on the information which accompanies the mes- 
sage: the name of the addressee. 

When all children, according to the internal model, 
and the processor itself are active, and a job arrives, 
the job is passed randomly down the hierarchy until 
it reaches a leaf. As the leaf is active itself, it decides 
to create a worker and to become a manager (Fig. 
3). Hence, leaves are only created when all nodes are 
busy. Yet, the strategy does not guarantee a balanced 
growth of the tree. 

The firing of the managers is initiated by a longer 
phase of passiveness by one of the workers, and is em- 
ployed by an internal transition function. We stated 
before, that based on the assumptions that the mana- 
gers are willing to cooperate and all agents have the 
same kind of knowledge and abilities, the agents need 
to know only about themselves, their children, their 
parent and the coupling that exist among them.   In 

our model the manager is willing to cooperate, i.e. to 
put the worker in his position and fire himself, except 
he himself is active or other sisters exist; in the latter 
case the manager will simply remove the leaf and stay 
in his position. 

If workers had to initiate the firing of their ma- 
nagers without any cooperation, the internal model 
would have to include the knowledge about sisters and 
about grandparents as well. In our example the inter- 
nal model does not include this information, therefore 
the firing of managers requires their cooperation to 
implement the structural change and to update the 
internal models of the effected agents correctly. In 
our example the decision of hiring and the decision of 
firing are initiated locally based on the internal mo- 
dels of the agents. Depending on the strategies how 
we resolve the "hiring and firing" question the internal 
model will reflect a different view of the world. 

Zeigler [9] proposed a "Hiring and Firing of Wor- 
kers" in a flat representation where the firing should 
be initiated and implemented by the managers, whe- 
reas the hiring should be the task of the workers. Ob- 
viously, this scenario would require the information 
about children and grandchildren while the informa- 
tion about the parent would become superfluous. Af- 
ter we discussed the "Hiring Workers and Firing Ma- 
nagers" scenario in some detail it is easy to fathom 
how an implementation of the "Hiring and Firing Wor- 
kers" scenario would look like. 
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; when ea receives (job job-name processing-time ea-name) on port in-parent 

(let* ((self-name (get-name ea)) 
(internal-model (get-internal-model ea))) 

(if  (equal ea-name self-name) 
(if  (equal (get-phase ea)   'busy) 

(if   (> MAX-CHILDREN 
(number-of-children self-name internal-model)) 

(let* ((new-name (create-name 'ea)) 
(new-ea (make-endomorphicmodel 

new-name 
:internal-model 
(make-abstract-structuremodel 
:root-model (get-root-model internal-model) 
:components (self-name new-name) 
:coupling (make-coupling 

:ic  (((self-name out-children)(new-name in-parent)) 
((new-name out-parent)(self-name in-children)))))))) 

(add-component internal-model new-name) 
(add-abst-model internal-model 

(make-abstract-structuremodel 
:root-model new-name 
:state  '((phase busy)))) 

(add-coupling internal-model 
(make-coupling 

:ic     (((self out-children)(new-name in-parent)) 
((new-name out-parent)(self in-children)))))) 

else (number of children = MAX-CHILDREN)    send job to one of your children randomly 

else (phase = passive) process job 

else (ea-name <> your name)  ignore external event 

Figure 3: Extract of the External Transition Function Responsible for Hiring 

The internal model depends not only on the selec- 
ted strategy of hiring and firing, but also on the distri- 
bution of "intelligence" within the network of nodes. 
The internal model will naturally be different if only 
a certain group of agents possesses an internal model 
about their environment and themselves. 

4.2    A Compositional Representation 

If only workers of the hierarchy are considered to be 
intelligent, the internal model has to reflect the whole 
path from the worker up to the root manager. If we 
can guarantee that intelligent coordinators exist on 
each hierarchical level, it will be sufficient to capture 
only one level up and one level down the hierarchy. 
However, both scenarios suggest to leave the flat re- 

presentation and to construct the hierarchy of proces- 
sors by composition, describing managers as coupled 
models. 

In the following, we will discuss the hiring and firing 
of processors based on intelligent leaves, assuming no 
particular arrangement of intelligent leaves and cou- 
pled models within the tree. The processor hierarchy 
is built by composition representing the internal no- 
des as coupled models. Following a reductionistic ap- 
proach, coupled models in DEVS have no activity of 
their own. They are constituted by input and out- 
put ports (X, Y), a set of components (M), a coup- 
ling structure (C) and a function to select the compo- 
nent (Select) that is allowed to produce its next event 

([10])- 
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ea-1111 #1 [ea-1112 

Figure 4: Processor Hierarchy Realized by Composition - "Hiring and Firing of Managers" Scenario 

CM =4f {X, Y, M, C, Select) 

Thereby, the role of managers is reduced to dis- 
tribute the work load to the next lower level of the 
hierarchy and to structure its communication. Mana- 
gers have no ability to decide or to realize anything, 
neither hiring nor firing. Thus, the full responsibility 
for changing structures and processing jobs is taken by 
the workers. This implies that all the information for 
structural changes has to be located within the leaves 
independently of the strategy we choose for hiring and 
firing. 

The latter will only influence the dynamics within 
the processor tree and the degree of role changes the 
single nodes have to undergo. Role changes are obvi- 
ously more cost intensive than they are in the context 
of the flat representation. In the prior example all no- 
des of the processor tree had the ability to hire and 
fire on principle. Whereas in this case a role change 
means to turn an endomorphic intelligent agent into a 
coupled model and vice versa. Only the name remains 
as a sign of its identity; yet its internal structure would 

change dramatically. Therefore, we choose a strategy 
that avoids role changes: parents are hired and placed 
between the former parent and the leaf, parents are 
fired and replaced by the leaf, if no other sisters exist. 

If we do not assume any particular distribution of 
intelligent leaves, the internal models of the agents 
have to cover the entire path from the top manager 
downwards (Fig. 4). As the single agent can not rely 
on the informations of other agents, a successive firing 
of managers requires to know the path from the top 
manager down to the leaf. The information of possible 
sisters is important to decide whether the parent can 
be fired and substituted or whether the leaf is the one 
to be fired itself. 

Same as in the "flat" example, the initiating and 
realization of structural changes, and the communi- 
cation about it can be implemented by a combina- 
tion of external, internal and output function. Those 
functions are only based on the information which is 
locally available in the model. Thus, our approach 
fits nicely into the generalframework of DEVS, where 
the transition and output functions are based on the 
locally available information, and where the communi- 
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cation between models takes place via the output func- 
tion and the output ports, only. Unlike other approa- 
ches [8] it obviates the need for additional constructs 
which might effect the locality and accessibility of in- 
formation. This advantage is paid for by keeping and 
maintaining information redundantly in the internal 
models. 

5    Conclusions 

Based on the internal local perception of the world, 
agents in DEVS are able to handle flexibly variable 
structure environments. Different strategies in invo- 
king structural changes can be implemented easily ba- 
sed on the internal models, in which knowledge about 
the structure of systems, their composition and coup- 
ling, is expressed explicitly. Based on this concept and 
a few scenarios, we could illustrate some of the speci- 
fic phenomena in distributing and maintaining know- 
ledge between autonomous agents. The more intelli- 
gent agents exist, the less important is a global view of 
the world because the local views of different agents 
have a complementary effect. Even if all agents are 
considered to be intelligent the need for cooperation 
and communication can be reduced by expanding the 
internal model of agents. 

Organizing knowledge about the structure of sy- 
stems in decentralized internal models leads necessa- 
rily to redundancies and inconsistencies. Therefore, 
like in other open systems, reasoning and coordinated 
action depend on using debate and negotiation to me- 
diate between the local views of the involved agents. 
It will be the subject of further research to provide 
suitable pattern to resolve global inconsistencies for 
modeling endomorphic intelligent agents in variable 
structure environment. 
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Abstract 

Conventional modeling theory gives support only for 
representing model behavior, providing little aid for 
describing changes in model structure. Some models are 
better represented by changes in their structure. Instead 
of forcing this changes to be represented at the simple 
behavioral level, a strong theoretical support is needed 
to allow the representation of structural changes in a 
natural way. In this paper we present a modeling 
methodology for representing variable structure systems. 
Examples of such systems include adaptive computer 
architectures, ecological systems, fault tolerating 
computers. We describe an application of this 
methodology to the modeling and simulation of an 
adaptive computer architecture. 

1 Introduction 

A variable structure model can transform itself in a 
model of a variant family. Examples of applications of 
systems which exhibits structural changes are: 
Reconfigurable computer architectures [1], [2], [3], [4], 
[5], fault tolerance computers [6] and ecological systems 
[7]. There is currently little support for variable structure 
modeling. 

Several approaches have been proposed to a 
methodology of variable structure modeling. A multilevel 
system is described in [8]. In this hierarchical system the 
first level represents the conventional behavioral model 

where the simulation occurs. The second level controls 
the structure of the first level. The structure of second 
level can be changed by the third level of this multilevel 
hierarchy. 

Changes in structure are currently supported by 
controlled-models. In these models there are fixed 
connections between the controller element and the other 
components. Is thus possible to insert or delete 
components in controlled models due to the automatic 
handling of connections [9]. 

A broad discussion of variable structure models is 
presented in [10]. This approach is based upon 
endomorphic agents. These intelligent agents keep an 
internal representation of model structure. Endomorphic 
agents start changing their own internal representation of 
the system using only the external and internal functions 
provided by DEVS definition of atomic models, 
preserving thus modularity constraints of DEVS 
formalism. However, the automatic mapping from 
changes in model representation to changes in the 
models themselves is a topic of current research. 

A coupling formalism called name-directed coupling 
[11], can handle changes in connections. However this 
formalism does not currently provide support for 
add/delete model operations. 

This paper focuses the extension of DEVS formalism 
with variable structure constructs. We extend DEVS to 
support a higher level of control that is able to control the 
behavior of the standard simulation level. This higher 
layer is compatible With modularity model building. To 
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illustrate these concepts we present as an apllication an 
adaptive computer architecture. 

2 Review of DEVS formalism 

ones. Full description of DEVS formalism can be found 
in [12], [13]. 

3 Variable DEVS formalism 

DEVS formalism was introduced by Zeigler and is a 
systems theory tool for describe discrete event systems. In 
DEVS formalism is necessary to define basic models and 
how these models are connected. An atomic model is 
defined by the 7-tuple: 

M = <X,S,Y,8jnt,8eXt,X,ta>, where 
X = set of external input events; 
S = set of sequential states; 
Y = set of output events; 
Si«: S -> S s internal transition function; 
8ext: Q x X -»S s external transition function; 
where Q = {(s,e) I s e S, 0 < e < ta(s)} s total state set; 
X: S -» Y = output function; 
ta: S -> R* = time advance function. 

Atomic models can be connected to form coupled 
models. Coupled models are defined in DEVS formalism 
by the 5-tuple: 
CM s <X,Y,M,C,select>, where 
X = set of external ports; 
Y = set of internal ports; 
M = set of components; 

Here we outline an extension of DEVS formalism to 
represent structural changes in models. This extension is 
named Variable DEVS, V-DEVS. In V-DEVS we define 
atomic models as in original DEVS by: 

M = <X,S,Y,8jnt)8eX„Ma> 
Structure changing is provided by the new variable 

coupled model defined by: 
V-CMs<X,Y,(?,select> 

where X, Y and select have the same meaning as in 
DEVS formalism and C is defined by: 

e = <X,Y,%,8int&xtXta> 
and % is defined by: 

% = <M,C> 
M and C represent models and connections 

respectively, as in DEVS. 
G is an atomic model that handles the connections in 

the variable coupled model. C acts like the controller of 
the coupled model, by keeping composition and 
connection information. Changes in structure can be 
initiated only by the internal or external transitions of 
this element. With this definition V-DEVS keeps the 
modular proprieties as defined in original DEVS 
formalism. 

Figure 1. Channel external function. 

C = connections between components; 
select = tie break selector. 

DEVS provides a powerful mechanism for specifying 
hierarchical and modular models. Large models can be 
built using atomic models, and these new coupled models 
can be used as building blocks to make more complex 

4 DEVS environment 

DEVS formalism is implemented in the Smalltalk/V 
language [14]. Smalltalk is a class-based object-oriented 
language. To build new models and to define their 
proprieties we use Smalltalk/V browsers, fig. 1. In this 
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modeling environment each model is an instance of a 
simulation class. The root class DEVSEntity is 
specialized in class DEVSModel and DEVSProcessor. 
DEVSModel subclasses are the actual models and 
DEVSProcessor subclasses: RootCoOrdinator, Coord- 
inator and Simulator implement the abstract processors 
described in [12], and necessary to execute the model 
implicit behavior. 

The class AtomicModel is the root class of all atomic 
model and coupled models are implemented in class 
CoupledModel. To handle changes in model structure we 
have created the new VarCoupledModel class. The co- 
ordinator necessary to handle the VarCoupledModel is 
implemented by the class VarCoOrdinator. 

5 Adaptive computer architecture 

One of the most promising application of variable 
structure modeling methodology is in modeling and 
simulation of adaptive computer architectures. We 
describe the modeling of an adaptive computer in V- 
DEVS formalism. 

5.1 Description 

In this section we briefly describe an adaptive 
computer architecture system and its modeling in the V- 
DEVS formalism previously described. Full details of 
this system and simulation results are presented in [15]. 

This computer architecture consists of a variable 
number of flexible computers (FCs) and a variable 
number of channels. FCs are connected in a tree like 
configuration, fig. 2. 

1  R 

c FP 

/ \ /   \ 
P                FP P                 p   | 

/   \ 
P                 P 

R-Root 
FP = F-Pa 
P = F-Processor 
C = Co-Ordinator 

Figure 2. Computer architecture tree. 

FC in the leaves of the tree (named here by f- 
processors) are the only processors that perform 
computations. Inner FCs, also called co-ordinators, 
redirect problems to the f-processors. This architecture is 
able to change its own structure to keep a desired 
performance. The number of FCs is increased when the 

adaptive architecture 
I 

arch-dec 

CHs 
III 

CH 

pool 

ch-s spec 

pl-channel   1-channel   r-channel  c-channel  p-channel 
r 

PCs 
III 
FC 

I 
fc-dec 

I 
T 

r 

supervisory  executive   f-processor   buffer 

sup-dec                    f-proc-spec 
J       II        

supervisory co-ordinator  full    1-half    1-half    compiler 

coor-spec pec 

I      I       I 
MS D&C PL 

Figure 3. System entity structure for the adaptive computer architecture. 
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performance is low and is decreased when computer 
performance is above an upper limit. These operations 
are called hire/fire operations and change the structure of 
the computer architecture. FCs are connected by 
CHANNELS with an unbounded capacity and a constant 
delay. 

The System Entity Structure (SES) provides a 
formalism for specifying system composition [13]. SES 
provides information about decomposition, coupling and 
taxonomy. In fig. 3 is represented the SES for the 
adaptive computer architecture. Instead of pruning the 
SES at the beginning of simulation we start with a single 
processor and the structure changes dynamically during 
simulation. SES also provides a formal framework for 
representing the family of possible structures. 

Each FC has four modules: an EXECUTIVE, a 
BUFFER, a SUPERVISORY and a F-PROCESSOR. The 
EXECUTIVE module handles the hire/fire commands. 
The BUFFER stores new processes and is used in FC 
changes. The SUPERVISORY is used when the FC is 
working as a co-ordinator. The F-PROCESSOR has the 
task of packet (problem) processing. A simplified 
representation of FC connections is represented in fig. 4. 

When the FC is working as a leave processor (f- 
processor) the BUFFER sends problems to the F- 
PROCESSOR module. Arriving problems are stored in 
the BUFFER if the F-PROCESSOR is busy. The F- 
PROCESSOR after solving the current problem sends a 
done signal asking the BUFFER a new problem. 

The FC can also act as a co-ordinator. In this role 
arriving packetes are sent from the BUFFER to the 
SUPERVISORY component and from this module to one 
of   the   children   FCs.   The   SUPERVISORY   is   a 

composition of a SUPERVISOR and a COORDINATOR. 
The SUPERVISOR send new problems to the CO- 
ORDINATOR module and solved problems to a high 
level processor. There are three different types of 
COORDINATORS: multiserver, MS (the problem is sent 
to the child processor with smallest queue size), divide & 
conquer, D&C (divided problems are sent to the child 
processors and partial solutions are sent to a special 
processor for final compilation), and PIPELINE, PL 
(problems pass through a chain of processors). 

Architecture changes are initiated by hire/fire 
commands. When an f-processor, FP, receives a hire 
command it checks if buffer size is greater than an higher 
limit. In this case the FP send an hire command to the 
POOL and after receiving the hire confirmation it starts 
the hire process. In this transitory state all the incoming 
problems are stored in the buffer and a type of CO- 
ORDINATOR is chosen in the SUPERVISORY element. 
When the F-PROCESSOR module finishes problem 
processing, the buffer sends all its stored problems to the 
SUPERVISORY for distribution to the new f-processors. 
After the hire operation the f-processor becomes an f- 
parent. 

The fire operation can be performed only by f-parents 
(co-ordinators that all its children are f-processors). 
When an f-parent receives a fire command it will check 
buffer size; if buffer size is lower than a minimum limit 
the f-parent begins the fire process. Incoming problems 
are stored in the buffer, and the FP waits until all 
problems still in the children are solved and sent back to 
the CO-ORDINATOR. When all children are empty the 
CO-ORDINATOR informs the executive that it can 
proceed with fire operation. The EXECUTIVE releases 

hire.fire children.out children.in 
i i 

»l.hire 
1 ' hire.fire ' hire.fire 

EXECUTIVE SUPERVISORY 

hire.fire. 
changing 

hire.fire. 

h 
i 
ire. 
ire 

i 

' 

hire.fire. 
changing 

i i changing 

t 
~*   out 

in 
BUFFER F-PROCESSOR J 

done 

Figure 4. Simplified representation of F-COMPUTER internal coupling. 
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FCs children in the POOL and informs the BUFFER to 
start acting in f-processor operation mode. The BUFFER 
sends now a problem to the F-PROCESSOR module and 
the FC starts the operation as an f-processor. 

In order to correctly implement hire/fire policies each 
EXECUTIVE must have knowledge of its position in the 
computer architecture tree. The current implementation 
follows the principles pointed in [13], [16] for knowledge 
representation. 

Channels provides an unidirectional communication 
links between processors themselves and between 
processors and the POOL. Each channel is modeled with 
a fixed delay and no transmission limits. A p-channel 
connects an FC with its parent, a 1/r-channel a co- 
ordinator with its right/left processor, a c-channel 
connects a D&C co-ordinator with the compiler 
processor, and the pl-channel connects an FC with the 
POOL. 

5.2 Structure change decisions 

For supporting changes in structure is necessary to 
decide where these changes are generated, how they are 
propagated and accepted, and which co-ordinator to be 
selected. The hire/fire generation policy determines 
where changes commands have their origin. The actual 
model supports a centralized policy and a distributed 
policy for hire/fire generation. In the distributed policy 
hire commands are generated in the leaves f-processor 
and fire commands are generated by f-parents. In a 
centralized generation policy both hire/fire commands 
are generated by the Root processor. 

The transmission policy depends on the kind of co- 
ordinator. The MS co-ordinator passes hire/fire signals to 
the child with the longest/shortest queue length. The 
D&C and PL co-ordinators send hire/fire commands to 
both r-child and 1-child if the number of problems is 
greater/lower than a the hire/fire limit. 

The accept policy decides about actually hire/fire 
command execution by the lower level processors. An f- 
parent decides to accept a fire command if the number of 
problems is lower than the fire limit. It sends a fire 
message to the POOL and it becomes an f-processor after 
its children become idle. In fig. 5 is depicted the changes 
in the structure provoked by fire command sent by the 
root processor and accepted by an f-parent. 

The hire command is accepted by an f-processor if the 
number f problems packets is higher than the hire limit. 
Upon hire acceptation the f-processor sends a hire 
command to the POOL. If there are enough processors in 
the pool (2 FCs for MS and PL co-ordinators, and 3 FCs 
for D&C co-ordinator) it becomes an f-parent. 

53 Implementation 

The POOL element is the key for structure change. 
This element starts change structure commands in 
response to its external function. After receiving a hire 
command the POOL checks the number of available 
processors. If there are enough free processors the POOL 
connects new processors to the hiring f-processor. The 
POOL also creates CHANNELS that models the physical 
links that exists between processors. Changes in POOL 
internal structure are automatically updated in the model. 
When the POOL receives the fire command it removes 
leave processors and increases the number of free 
processors. 

fire R 

/ \\r 
FP 

/  \ 
p FP P P 

/ \ 
p P 

I 
R 

FP FP 

/  \ /  \ 
P P P P 

Figure 5. Computer architecture after a fire 
command. 

In fig. 6 is represented an abbreviated version of the 
external transition of POOL. The depicted transition 
handles hire/fire commands for MS and PL co- 
ordinators. For the D&C co-ordinator we have to hire/fire 
3 processors instead of 2 required in the other co- 
ordinators. 
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external: devs elapsed: elapsedTime port: aPort id: n value: 
value 

aPort = hire ifTrue: [ 

left := DEVSEntity fcomputer: (name,'@Left') 
random: randomGenerator 
bounds: minMax 
policy: hireFirePolicy 
root: false hireFire: time. 

lcPool := Channel pair: (name,'@LCPool') 
random: randomGenerator. 

lcDown := Channel pair: (name,'@LCDown') 
random: randomGenerator. 

lcUp := Channel pair: (name,'@LCUp') 
random: randomGenerator. 

self addChild: left, self addChild: lcDown. 
self addChild: lcUp. self addChild: lcPool. 

depend := OrderedCollection 
with: left with: lcPool 
with: lcDown with: lcUp. 

tree at: fcomp put: depend. 

"Left Down Channel" 
self couple: fcomp port: #out to: lcDown port: #out. 
self couple: fcomp port: #hf to: lcDown port: #hf. 
self couple: lcDown port: #out to: left port: #IN. 
self couple: lcDown port: #hf to: left port: #hf. 

]• 
aPort = #fire ifTrue: [ 

uProcessors := uProcessors + 2. 
dup := (tree at: value) copy, 
dup do: [:xl self removeChild: x]. 
tree removeKey: value. 
Aself continue: elapsedTime 

Aself error: 'Unknown Port \aPort 

Figure 6. Simplified code for Pool, MS and PL, 
hire/fire operations. 

The method addChild: is used to add new models to 
the simulation. To remove models we use the 
removeChild:. Connections are established with the 
method couple:port:to:port:. When a model is removed 
its connections are also removed. 

6 Conclusions 

We described Variable DEVS an extension of DEVS 
formalism that is able to represent structural changes in 
simulation models. This formalism keeps modularity as 
defined in original DEVS. V-DEVS proved to be able of 
modeling a complex adaptive computer architecture. As 
future work we plan to incorporate SES with our variable 
structure environment for automatic structure change. 
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Verb Phrase Model Specification via System Entity Structures 
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Abstract 

In investigating front end model development, an 
environment is described that allows for model 
construction through pruning a domain specific System 
Entity Structure. The preformal stages of the model will 
be represented by a verb phrase. This representation is 
sufficiently detailed to serve as the basis for model 
construction and yet sufficiently "soft" to support 
knowledge acquisition during model construction. This 
paper establishes the adequacy of this representation. 

Introduction 
There are problems in the current modeling process 

associated with model development. Although the 
"back-end" of the model-engineering process Fishwick [1] 
is well-supported by software tools, the same can hardly 
be said for the "front-end" ~ model creation, 
construction, or repository-based synthesis. 

This paper suggests that such "front-end" problems 
can be substantially ameliorated by adopting techniques 
that allow the user to narrow down essential components 
for model construction. The particular objectives for 
model construction that we wish to address are extracted 
through a natural language interface. 

The goal of this approach is to reduce ambiguity 
between the user's requirements and essential model 
construction components. Requirements here are 
represented by verb phrases. Each one has the potential 
to be incorporated into a complete discrete event model. 
This natural language process describes a method of 
constructing models by users with a limited or 
nonexistent formal modeling or programming 
background. 

Overview 
Paradigms for transforming the meaning of sentences 

into conceptual modeling structures have been proposed 
by Heidorn [2], Howard W. Beck and Paul A. Fishwick 

[3]. The intent of this research is directed toward 
developing a system for performing simulation analysis 
through natural language interaction with a computer. 
This work represents a "front-end" ~ model creation, 
construction, or repository-based synthesis process. 

A natural language interface allows model 
specification in terms of a verb phrase. It consists of a 
verb, noun, and modifier. An example might be "build 
car quickly." In this case the verb is build, the noun is 
car, and the modifier is quickly. The verb "build" would 
be parameterized by the noun "car." The noun specifies 
the domain that the verb interacts with. The term 
"parameterized by the noun" is used in our context to 
mean the descriptive components (parameters) of the 
noun that provide further detail about it's domain. For 
example, in "build car quickly," the car would have 
parameters such as length, weight, etc. The modifier 
"quickly" adds range to the parameterization. This is 
similar to Zadeh's [4] use of fuzzy restrictions. An 
example verb phrase is shown in Figure 1. 

Conceptual realization of a model from a verb phrase 
ties in closely with Checkland's [5] idea of having a verb 
express the root definition, or core purpose, of a system. 
He explains "That core purpose is always expressed as a 
transformation process in which some entity, the 'input', 
is changed, or transformed, into some new form of that 
same entity, the 'output'." Using the verb as a discrete 
event model template is an extrapolation of this idea. 

With the basic discrete event model defined from the 
root definition, or verb, the noun of the verb phrase gives 
the user a working domain. The verb phrase's noun 
defines the domain of possible action. For example, 
"build car" parameterizes the domain in units of the mean 
time to build a car. This might be hours for a car. When 
applied to a house - "build house," this might be 
months. 

The modifier adds focus to the noun's domain. For 
example, in "build car quickly," the modifier "quickly" 
optimizes all car building parameters. The effect of the 
modifier could be quantified at the user's discretion. 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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A Proposed Verb Phrase 
Decomposition System Concept 

Verb Phrase 

verb noun mod fier 

Discrete Domain         Parametric 
event parameterization     Range 
model of the discrete 

specification event model 

Figure 1. Verb Phrase Decomposition. 
With each model represented by a verb phrase, a 

system could be decomposed into a semantic 
representation as shown in Figure 2. In this case, a 
hierarchical car production system goes from production 
planning to practical assembly line issues - with each 
step represented by a verb phrase. The focus is not so 
much on the system or its structure, but on how the 
natural language interface allows semantic representation 
of the system. 

This approach focuses on description of the front end 
model construction process. Each system function would 
be modeled as a verb phrase. The verb represents the 
basic action to be taken, and forms the basis of the 
discrete event model. A noun then defines the domain. 
The modifier defines how the action will be performed 
within the domain. The verb-noun-modifier triplet 
defines the verb phrase. Now we will look at this 
definition in more detail. 

Description   of verb   phrase   extraction 
process 

The following is a complete description of how the 
verb phrase is constructed. Examples of verb definition, 
noun parameterization, and modifier parameters of 
limitation are given. 

I. Verb description 
Using Fernald's [6] definition, the verb is transitive in 

requiring the verb phrase's noun to complete its meaning. 
It is principal in expressing the act to be done. And, its 
voice is either active or passive because the subject can 
either be acting or acted upon. Using Fernald's 
definition, we can develop a description of verb use in 
this system. 

Verb definition 
Verbs are used to describe the two main categories of 

system behavior, which we propose to be production and 
consumption. These verbs form the basis for each 
model. We also propose the verb to represent the basic 
discrete event model template. 

ELI Applied to Auto Production System 
plan auto-production 

o o 

o 
o 
o 

schedule 
parts-delivery 

t 
fill 

chassis 
queue 

fill exterior      fill interior 

o o o 
o o o 
o        o       o 

schedule 
assembly-line 

position 
iols 

position 
crew tools       ere 

!   t 
o 
o 

Figure 2. ELI representation of 
car production system hierarchy. 

The first class of verbs, which we call producers, 
describe value added activity. This could be anything 
from growing crops to stamping sheet metal into 
automobile body panels. A producer is active. It models 
something that acts on the noun of the verb phrase. 

Consumption is less straightforward. Consumption 
can be sensory or physical. Sensory consumption is 
defined as what we consume or observe. An example of 
sensory consumption could be the use of the five senses 
in observing one's environment. Physical consumption 
might be taking in nutrients for processing into energy. 

Verb definition is performed by descending a verb 
hierarchy until a satisfactory representation is found. For 
example, if one's goal is building, we descend the verb's 
hierarchy until choosing "build" under the producer class, 
as shown in Figure 3. 

Verbs, regardless of their class, are tied to reality by 
their domain. For example, the verb "build" can be used 
to build a car with its variables describing the action. In 
this case of build, the variables might be cycle time, feed 
rate, idle time, etc. The user controls the modification of 
these variables. 

The variables of a verb might be in the form of an 
array. For example, the verb "build" might have the 
following variables: 

build = s[feed-rate] [cycle-time] [idle-time] 
In this case, the variables of "build" are: feed-rate, 

cycle-time, and die-time. And the numerical parameter 
ranges would be filled in when the noun, and its 
accompanying domain, is chosen. 

We are proposing that each verb is represented by a 
discrete event model shell with state variables that can be 
used to describe its behavior. These variables would be 
open for user modification.   In order to simplify the 
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understanding of verb use in this system, we also 
propose that they fit into a taxonomy. 

Verb Definition 

grow 

Figure 3. Producer verb build is chosen. 

Verb taxonomy 
This breakdown of verb classes gives us structure in 

thinking about verbs and the actions that they represent. 
As shown in Figure 4, the actions of producers and 
consumers are different. We believe this breakdown 
provides the user added structure when describing system 
requirements for model construction. 

Verb Taxonomy 

verb 

produce consume 

natural artificial 

grow 

extract 
(mining) 

sensory physical 

5 senses 

transform 

build      change 

Figure 4. Taxonomic breakdown of verb 
into classes of production and consumption. 

Verb classification 
The key to verb classification is what transforms it 

and how. Some potential verb representing 
transformations are shown in Figure 5. 

In looking at Figure 5, we see the following verb 
transformations: 

Producers - Value is added to the initial state of the 
noun. The end state is a transformation from scrap 
metal to a useful automobile. 

Consumers - The final state of the noun is 
transformed from its initial state of an automobile 
to scrap metal. 

State Change Transformation 
of Producers and Consumers 

Figure 5. Verb Classification State Changes. 

Producers and consumers could work together within a 
system. This classification system gives the user a 
simple way of classifying almost any process in a 
system. In the car production example of Figure 2, an 
automotive assembly line consumes component parts and 
produces complete automobiles. We know that we are 
dealing with a relatively high level system when it has 
both classes of verb in its definition. Decomposing this 
system, as shown in Figure 6, shows how the different 
components act as consumers and producers. 

Looking at the above verb classification, we see that 
the main difference between producers and consumers is 
their relationship to the noun. A producer acts on the 
noun and a consumer is acted upon by the noun. 

Produce 

material > finished product 

location(l) > location (2) 

information > report 

layman > professional 

Consume 
sensory data > 
information 

material > energy 

land > contaminated soil 

young > old (physical 
capability) 

undeveloped land > building   current > obsolete 

Suh [7] has a comparable method where each 
functional requirement maps into a set of data parameters. 
Functional requirements account for the functional space 
of the design, while the data parameters account for the 
physical space. The mapping between these two is 
determined by the design, or verb phrase system 
representation. A natural language interface is similar in 
that each verb represents a functional requirement. And, 
the verb's domain is defined by data parameters. Verb 
name specification would result in the system accessing a 
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database of verbs along with their parameterization as 
shown below: 

verb = < paraml, param2, ... > 
build = < feed-rate, cycle-time, queue-time,... > 

In this case, the verb "build" is parameterized by feed- 
rate, cycle-time, queue-time, etc. This would be the 
knowledge based component of the system. Whenever a 
verb is called, it would be parameterized as previously 
defined. The user would then be free to modify the 
parameters given. 

Car Production System 
with Producers and Consumers 

Producer 

Feed 
Components 

t 
1 

Receive 
Components ► 

Manufacture 
Cars ► 

Consumer Producer 

Cars 

Figure 6. Example system with 
different model types. 

The verb represents one of the system's actions. It 
also represents a basic discrete event model with an 
empty set of descriptive variables. These are open for 
user modification, and would be parameterized by the 
noun. 

II. Noun description 
The noun is the second component for construction of 

the verb phrase. The noun serves as the object of the 
verb phrase and thereby establishes its domain 
parameterization. The noun's definition and taxonomy 
are presented next. 

Noun definition 
The noun defines the domain in which the verb works. 

Each noun has a different domain representation, and thus 
has a different parameterization. The noun's domain 
knowledge should provide the parameterization necessary 
to complete the model. The noun quantifies the verb's 
action parameters. For example, the verb "build" could 
be parameterized as follows when applied to the noun 

This means that the verb phrase "build car" breaks 
down to the following numerical parameterization: 

feed-rate = 5 
cycle-time = 3 
idle-time = 1 

The noun's domain will define the numerical 
parameters of the verb's model. Another view of the 
noun is presented by its taxonomy. 

Noun taxonomy 
The noun decomposes into objects. These can be 

classed according to their environment and key 
parameters. One decomposition of the nouns might be 
physical, mental, man made objects, and natural objects. 
Many of the practical things we deal with, such as an 
automobile, are found by descending this hierarchy. 

In modelling people, both mental and physical 
characteristics are of interest. Physical capacity, or how 
much force the body can be subjected to, might help 
someone designing an ejector seat, or allow checking the 
amount of force a person experiences during different 
maneuvers. Physical strength might be of interest in 
checking the force required to turn a knob or open a door. 
Thus, a person's physical modeling could be of either 
capacity or strength. 

Mental capabilities are also of interest to the modeller. 
Certain tasks of abstraction may require modeling to get 
the right personnel fit. Also, mental endurance could be 
of interest for challenges like operating a vehicle for long 
periods of time or withstanding certain environments. 
Capacity and endurance are representative of these types 
of mental modeling. 

Man made structures could be anything people make. 
Natural structures include things ranging from the tiniest 
crystal on a snowflake to our conception of the universe. 

The noun, as shown in Figure 7, decomposes into the 
general classes of people and things. 

The noun provides focus needed for parameterization 
of the verb. With the verb-noun pair, the user has a 
complete verb phrase. Further definition to the noun's 
parameters could be done with the use of modifiers. 
Modifiers are used to change the verb phrase's 
parameterization to better fit the user's conception of the 
process he wishes to model. 

III. Modifier 
Modifiers limit the parametric range of the verb 

phrase. Similar to Zadeh's [4] fuzzy restrictions, they 
help the user construct a better representation of what he 
means. Modification also impacts the model's numerical 
parameterization. 

"car" 
build = s[feed-rate]  [cycle-time] [idle-time] 
build = s[    5     ]   [      3      ] [      1    ] 
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Noun Taxonomy 

physical!   I mental |   manmade     natural 

transportation 

car 

Figure 7. Noun representation in 
different possible classifications. 

Modifier definition 
The verb phrase's modifier further defines the verb 

phrase. Modifiers are placed directly after the noun as 
follows: 

verb noun mod(n) mod(n-l)    ...   mod(l) 
The user will choose the modifiers) when defining the 

verb phrase representation of the model. Each modifier 
adds a level of degree to the action performed. For 
example, 

build car quickly 
verb noun modifier(l) 

could modify the verb build by increasing the feed 
rate, reducing the cycle time, and reducing the idle time. 
Adding another modifier, 

build car very quickly 
verb        noun      modifier(2)     modifier(l) 

would result in a further reduction in build parameters, 
possibly to their lower limit. 

At this point, extension would continue according to 
the user's discretion. 

Modifier methods 
Verb phrase modification comes through increased 

narrowing of domain parameters. One way to present 
this idea would be to make each modifier a multiplier of 
the noun parameters that it will affect. For example, 
"build car quickly" could be numerically broken down as 
follows: 

Parameters build car quickly build car quickly 

feed-rate 5 0.6 3.0 
cycle-time 3 X 0.6     = =      1.8 
idle-time 1 0.6 0.6 

In this example, "quickly" translates to 60% of the 
normal build time. We are assuming that this is a 
simple system where reducing each of the incoming 
parameters to 60% of their original value results in an 
equivalent reduction in build time. 

Another layer of modification might be "build car very 
quickly." "Very" serves as an additional parameter 
modification as shown below: 

Parameters build car very   quickly   build car very 

feed-rate 
cycle-time 
idle-time 

X 
0.5 
0.5 
0.5 

0.6 
0.6 
0.6 

quickly 

1.5 
0.9 
0.3 

The modification process could be continued on until 
the minimum of each parameter limitation is reached. 

This is a very simple example of the modifier's ability 
to affect the verb phrase parameters. Extensions could be 
done in how the parameters are modified, when parameter 
modifications occur, etc. 

Modifiers affect parameters in correlation with their 
semantic meaning. Modifier interpretation would be up 
to the user. How much is "very?" or, how fast is 
"quickly?" In time, research might show that these 
modifiers are generally quantifiable over a range of 
domains. But, for now, this will be up to the user. 

Verb phase extraction from SES 
With the method of constructing a verb phrase clear, 

we can now move on to how model construction would 
actually occur. The process basically consists of pruning 
a domain specific System Entity Structure - Zeigler [8,9]. 
This stores all models pertinent to a specific domain as 
shown in Figure 8. 

Once the domain is specified, pruning is a matter of 
narrowing down the best representation of each element 
of the verb phrase. For example, in narrowing down the 
verb, descending the hierarchy to pick the class of the 
verb would be done first. 

Further definition results in the pruning of the exact 
verb to be used. Shown in Figure 9, "build" is chosen 
from possibilities, and is moved up the hierarchy to the 
verb node. 

Similarly, the noun is first pruned in terms of its 
class, "thing," and then down to the actual entity. In the 
same way, the modifier is extracted by first deciding on 
the modifier class, "concentration," and then down to the 
actual modifier. This is shown in Figures 10 and 11. 
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System Entity Structure 
of Car Manufacturing Domain 

Car Manufacturing 

Car Manufacturing - decomposition 

verb 
II 

verb 
specialization 

noun modifier 
II M 

noun modifier 
specialization specialization 

proc ucer   consumer 

r 
pick 
place■ 

plan 
build 

watch listen 

dilation   concentration 

quickly 

I 
body 
panel 

thfrig person 

engine 
I  

Engineer Skilled 
Tradesperson 

car      chassis Plant 
Supervisor 

Figure 8. Simplified domain representation 
for car manufacturing. 

Verb Pruning in Car Manufacturing Domain SES 

Car Manufacturing 

Car Manufacturing ■ decomposition 

 1 
build noun 

II 
noun 

specialization 

modifier 
II 

modifier 
specialization 

i—"—i 
dilation 

body 
panel 

thing 
~~I 
person 

concentration 
I 

quickly 

engine 
i—: 

Engineer 
 1 

Skilled 
Tradesperson 

car      chassis Plant 
Supervisor 

Figure 9. Prune verb "build" from producer 
class and replace the verb node with it. 

Generating simulation models 
With the verb phase pruned, the next step is pruning 

the model base of entities that can actually carry out what 
the verb phase specifies. This pruning is a two step 
process. First, the SES for "build" is accessed. Next, 
using Rozenblit and Huang's [10] Frames and Rules 

Associated System Entity Structure (FRASES), prune 
the exact model specified by the verb phase. 

Noun Pruning in Car Manufacturing Domain SES 

Car Manufacturing 

Car Manufacturing - decomposition 

I ' I 
build car modifier 

II 
modifier 

specialization 

dilation   concentration 
I 

quickly 

Figure 10. Noun is pruned down to the "car" 
to be operated on by the verb "build". 

Modifier Pruning in Car Manufacturing Domain SES 

Car Manufacturing 

Car Manufacturing - decomposition 

I- 

build car quickly 

Figure 11. Class specialization "concentration" 
is replaced by modifier "quickly" in completing 

the verb phrase 

The "build" SES would be in the following form as 
shown in Figure 12. 

Build 
I 

Build - dec 

I  
Assembly 

Line 
II 

Assembly 
Line-spec 

geometry 
1 

geometry 
3 

Material 
Handling 

II 
Material 
Handling 

spec 

-Y- 

Labor 

Labor 
spec 

geometry 
2 

method 
1 

method 
2 

method 
3 

r- 

skill 
1 

~l 
skill 

3 
skill 
2 

Figure 12. SES of Build Domain. 

Using the FRASES methodology, rules exist at each 
context sensitive node. Rules for the assembly line node 
might be: 

Rl. ifnounacar 
then assembly line is geometry 1 

R2. if noun is truck or mini-van, 
then assembly line is geometry 2 

R3. if noun is commercial truck 
then assembly line is geometry 3 
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When the assembly line geometry is a scaling 
dependent on the type of vehicle being worked on, 
Geometry 1, the smallest is used for cars. And geometry 
3 would be the largest; used for commercial trucks. 

Likewise, example labor rules might be: 

Rl. if modifier is slowly 
then skill level is skill 1 

R2. if modifier is quickly 
then skill level is skill 2 

R3. if modifier is very quickly 
then skill level is skill 3 

And, material handling rules could be: 

Rl. if modifier is slowly 
then coordination method is method 1 

R2. if modifier is quickly 
then coordination method is method 2 

R3. if modifier is very quickly 
then coordination method is method 3 

A pruned model structure for "build car quickly" then 
looks like figure 13. 

Build 
I 

Build - dec 

geometry 
1 

method 
2 

skill 
2 

Figure 13. Pruned SES for "Build Car Quickly". 
And "build truck slowly" looks like figure 14. 

Build 
I 

Build-dec 

I 1 1 
geometry method skill 

2 1 1 

Figure 14. Pruned SES for 
"Build Truck Slowly". 

Conclusion 
The system proposed here allows for complete model 

description in terms of a verb phrase. The verb, 
representing the action to be performed, accesses a 
discrete event model primitive. The verb's state variables 
would then be numerically parameterized by the noun's 
domain. Further control of the domain comes through 
the modifiers. These are placed after the verb-noun pair 
and modify the entire verb phrase. The verb phrase 
consists of a verb-noun-modifier(s) triplet that represents 
a discrete event model. 

This method considers four layers of System Entity 
Structure in creating a discrete event model from an 
English language verb phrase: 

1. Sentence clarification SES 
2. Domain identification SES 
3. Model representation SES 

4. Model storage SES 
The above shows the inherent organizing power of an 

SES. Four level of knowledge representations are 
proposed to transform a verb phrase into a discrete event 
model. 

This representation is not complete. There are quite a 
few possibilities for expansion of this system. The verb 
phrase could be expanded to add clarification. Verb 
phrases could be combined for multiple action. And, the 
practical issues of dealing with parameters have not been 
addressed. The verb phrase described here is simply a 
way to give the user an intuitive model representation. 

Using a verb phrase for model representation could 
open the domain of modeling to a larger group of users. 
We believe that the main barrier between many people 
and existing modeling software is their lack of computer 
literacy. They might use a natural language interface as a 
means of bridging this gap. Verb phrase representation 
could create modellers out of people who think 
semantically, and have no computer skills. 

A semantic representation frees the user to explore the 
system on the familiar grounds of natural language. A 
verb phrase system might open the way for brain 
storming, innovation and proving out of ideas before 
they leave the drawing board. In addition, more ideas 
could be checked and compared before deciding on the 
best option. The potential applications that might result 
from expanded use of discrete event modeling are wide 
open. And a natural language interface could lead the 
way. 
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Abstract 

This paper presents a hybrid modeling/simulation 
framework within which both accuracy in models and 
speed in simulation experimentations are obtained. 
Based on the Zeigler's DEVS formalism and asso- 
ciated system theory, the framework is based on the 
transformation of selected DEVS models into equiva- 
lent analytic ones to simulate both analytic and simu- 
lation models within a single environment. For high- 
speed hybrid simulation, we extended DEVSim+ + 
which is a realization of the DEVS formalism in C++. 
To exemplify the proposed approach, we demonstrate 
performance modeling and simulation of a simple com- 
munication network. 

1    Introduction 

Recently discrete event modeling and simulation for 
performance evaluation of complex systems becomes 
an important research issue in many areas of system 
design such as manufacturing systems design, commu- 
nication networks design, and realtime systems design. 
The main research objective is to devise a framework 
for developing accurate performance models and effi- 
cient simulation algorithms for fast experimentations 
with such models[3, 5]. Such a framework is essential 
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to reduce the computation burden for simulating large 
complex systems. 

Two types of models, analytic and simulation, have 
been applied in system analysis and performance eval- 
uation. Although analytic models have limitations in 
accuracy due to the unrealistic assumptions made, fast 
simulation experimentations are possible by employ- 
ing appropriate numerical analysis technique. On the 
other hand, simulation models have expressive means 
powerful enough to achieve high accuracy. However, 
simulation time for such models is extremely slow 
compared with that for analytic models due to some 
virtual management scheme embedded in a simula- 
tion algorithm. Thus, it is highly desirable to com- 
bine the advantages from both models in an unified 
framework [5]. 

Up to date, little research has been reported con- 
cerning modeling and simulation methodologies which 
meet both accuracy in modeling and speed in sim- 
ulation within an unified framework. Furthermore, 
no simulation language or environment implementing 
such methodologies is in place. 

The purpose of this paper is to develop a framework 
within which both accuracy in models and speed in 
simulation experimentations are obtained. To be spe- 
cific, for modeling we propose a model transformation 
scheme which transforms selected simulation models 
into analytic ones as far as accuracy is preserved. For 
simulation, we develop a hybrid simulation algorithm 
and the associated environment implementing such al- 
gorithm. Thus, we can simulate performance models 
of a discrete event system, which consists of simulation 
models and analytic ones, in a single environment. 

We employ the Zeigler's DEVS formalism[8], which 
supports hierarchical modular descriptions of discrete 
event systems. Though the set-theoretic formalism 
has expressive power and the well known simulator al- 
gorithm, it lacks of analytic means.  To complement 
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this shortage, the model transformation scheme trans- 
forms a DEVS model into a behaviorally equivalent 
analytic model in steady state. Both DEVS models 
and transformed analytic models are simulated in a 
combined manner using the developed hybrid simula- 
tion engine. 

Our approach is novel in the sense that : 

• it employs a single modeling formalism. Thus, 
it enables the modelers to develop models within 
the expressive formalism. 

• it is based on the sound mathematical founda- 
tions in the behavioral equivalence relation be- 
tween the DEVS models and the transformed an- 
alytic models. 

The developed framework can be used to mea- 
sure the performance of a discrete event system with 
greatly reduced simulation time. To exemplify the 
proposed hybrid modeling and simulation framework, 
we demonstrate performance modeling and simulation 
of a simple communication network. 

The outline of this paper is as follows. Section 2 
presents the concepts of hybrid modeling. Section 3 
reviews the DEVS formalism and describes our frame- 
work. Section 4 gives an example of application and 
results. We conclude the paper in section 5. 

2    Hybrid Modeling with Hierarchical 
Discrete Event Models 

Hierarchical constructions of modular models play 
an important role in modeling and simulation for de- 
sign of complex real world systems. In hierarchi- 
cal composition, higher-level models include low-level 
models as components. Such higher-level models can 
be reused as components of yet higher-level models[6]. 

In such a construction, an atomic model is a ba- 
sic system component that can function as a self- 
contained and independent unit. Such a model in- 
teracts with other models only through the input and 
output interface, thereby achieving modularity. Thus, 
an atomic model may well be characterized by a sys- 
tem that can be defined by an input/output interface 
and state transitions, which represent the behavior of 
the model. 

Systems may be coupled to build coupled models, 
which may themselves be employed as components to 
be coupled with other models to form higher level sys- 
tems. A coupled model specifies the coupling scheme, 
that is, input/output connections between component 

models. A simulation model developed by the hierar- 
chical composition methodology has the structure of 
a tree, called decomposition tree. Figure 1 shows a 
hierarchical modeling of a system and associated de- 
composition tree. 

-Ml 23- 

Ml 

-M23- 

M2 M3 

(a) Hierarchical System Model. 

M123 

CS1 

M23 
|CS2 

Ml 

CS1 : Coupling Scheme of M123  r— 
CS2: Coupling Scheme of M23 ^ ' 

(b) Decomposition Tree. 

Figure 1: Hierarchical Modular Model. 

When such a hierarchical simulation model is given, 
it is possible to transform some or all of component 
models into the equivalent analytic models. We call 
this transforming process as hybrid modeling. The hy- 
brid modeling proceeds in bottom-up fashion. That is, 
it first transforms the atomic models that meet trans- 
formable conditions. After transforming all the possi- 
ble atomic models, it then aggregates the transformed 
analytic models using the coupling information. Fig- 
ure 2 shows an hybrid model which is the result of 
transformation and aggregation of M12 in Figure 1. 

-M123- 

Ml HM23 

Ml 23 

I CS1 

Ml HM23 

(a) Hybrid Model. (b) Decomposition Tree. 

Figure 2: Hybrid Modeling of Hierarchical Model. 

Most analytic models require some constraints to 
make mathematically tractable ones. One of such con- 
straints is the Markov property in continuous Markov 
chain model. Thus, we need assumptions or simpli- 
fication methods for transforming atomic simulation 
models. Two methods can be considered : 

200 



• Simplification : state space reduction 
- discretization of continuous state variables; 
- grouping of states at the activity level; 

• Generalization : steady state assumption 
- Poisson process assumptions for all event types; 
- Exponential distributions of service times. 

But, not all atomic models are transformable. Es- 
pecially, models representing priority-based processors 
can not be transformed. Hybrid modeling does not 
transform such models, thereby preserving accuracy 
of models. This is the main advantage of hybrid mod- 
eling. 

The aggregation step at the coupled model level 
merges two or more transformed analytic models in 
a single model by using the coupling scheme. Con- 
sider two models Ml and M2, shown in Figure 3. Ml 
acts as a buffer and M2 is a processor. Generally, an 
atomic model falls in one of these two classes of mod- 
els : buffer or processor. Using the coupling scheme of 
two models, we can construct a simple queueing model 
by merging Ml and M2. 

DEVS Models 

^Selective Model Transformation*: 

 Ml— 

H-l-l 
req           in 

—M2—1 

CD 
out „ jol\ 

rJdle# leadx. 
: ; 

I 
■ -»-out -*©" 

Figure 3: Merging of Two Models into a Single Model. 

We repeatedly apply the aggregation process be- 
tween components models. If all component mod- 
els are merged into a single model, then the coupled 
model is transformed in an analytic model. Other cou- 
pling information can be useful for merging the mod- 
els. As an example, a tandem connection of queues 
can be represented as a single queue[4]. After trans- 
forming all the possible models, the hybrid model is 
simulated in a combined manner. 

3    Hybrid Simulation within the DE- 
VSim++ Framework 

For hybrid modeling and simulation, we employ the 
Zeigler's DEVS formalism[8]. As shown in Figure 4, 
we extend DEVSim++[2] by adding two schemes. The 
first scheme is a model transformer which transforms 

' r                             ' ' 
Analytic Models Simulation Models 

i ' 

: ? Hybrid Simulation Enginef:: 

* ■Extended DEVSim+-r 
Results 

Figure 4:   Hybrid Modeling/Simulation with DEVS 
Models. 

selected DEVS models into the equivalent analytic 
models. The second one is a hybrid simulation engine. 
This section briefly reviews the DEVS formalism and 
explains our hybrid simulation environment. 

3.1    DEVS Formalism 

A set-theoretic formalism, the DEVS formalism 
specifies discrete event models in a hierarchical, mod- 
ular form. Within the formalism, one must specify 
1) the basic models from which larger ones are built, 
and 2) how these models are connected together in 
hierarchical fashion. 

A basic model, called an atomic model (or atomic 
DEVS), has specification for dynamics of the model. 
An atomic model interprets the behavior of a basic 
component as a state transition machine. An atomic 
model AM is specified by a 7-tuple[8]: 

AM =< X, S, Y, Sini, Sext, A,ta > 

X : input events set; 
S : sequential states set; 
Y : output events set; 
font  '■  S —► S : internal transition function; 
&ext  '■ QxX->iS: external transition function; 

Q = {(s, e) | s € S, 0 < e < ta(s)}; 
A : S —*■ Y : output function; 
ta : S —► Real : time advance function. 

The second form of the model, called a coupled 
model (or coupled DEVS), defines how to couple (con- 
nect) several component models together to form a 
new model. This latter model can itself be employed 
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as a component in a larger coupled model, thus giving 
rise to construction of complex models in hierarchical 
fashion. A coupled model CM is defined as[8]: 

CM =< X, Y, M, EIC, EOC, IC, SELECT > 

X : input events set; 
Y : output events set; 
M : DEVS components set; 
EIC : external input coupling relation; 
EOC : external output coupling relation; 
IC : internal coupling relation; 
SELECT : tie-breaking selector. 

As proven in [8], the result of coupling DEVS com- 
ponents in a coupled model is itself a atomic DEVS 
whose state set and input set are cartesian products 
of all input sets and all total state sets of component 
models, respectively. Detail descriptions for the defi- 
nitions of the atomic and coupled DEVS can be found 
in [8]. 

3.2    Model  Transformation  and   Simula- 
tion Policy 

When transforming a simulation model into equiv- 
alent analytic one, the transformation should preserve 
the input/output behavior of the model. For such 
preservation, we apply the notion of isomorphism or 
equivalence relation, which is based on one-to-one cor- 
respondences between specification structures. If we 
observe only the input/output behavior of a system, 
two models are said to be isomorphic or relationally 
equivalent if input/output behavior of the two cannot 
be distinguishable in any way[8]. 

Using the isomorphism, we can represent the steady 
state behavior of an atomic DEVS model as an equiv- 
alent CTMC or as an queueing model. If a model in- 
cludes a queue for incoming events, it is transformed 
into a queueing model. Otherwise, an CTMC is used 
to transform the model. 

To set up the isomorphism between a CTMC and 
the steady state behavior of an atomic DEVS, we make 
the followings assumptions on atomic DEVS models : 

1) the state space of the model is finite; 

2) all event types, including internal events, are Pois- 
son process; 

3) external and internal transition functions are time- 
invariant; 

4) every state in the state set is reachable from any 
other states. 

Assumption 3 and 4 make the CTMC irreducible 
and erogodic, thereby solving the CTMC using nu- 
merical algorithms. Using the transformed CTMC, 
steady state probabilities such as mean sojourn time 
and mean waiting time are obtained. Descriptions on 
the transformation algorithms can be found in [1]. 

Analysis of a CTMC with a large state space is very 
cumbersome and needs vast amount of computation 
costs. Though a coupled DEVS model can be trans- 
formed into an equivalent atomic model, our approach 
analyzes each atomic DEVS model independently and 
use the coupling information to merge the transformed 
CTMCs. 

Transformation of DEVS models into queueing 
models requires some knowledge on the coupling 
scheme. Actually, two DEVS models, buffer and pro- 
cessor models, are transformed into a queueing net- 
work. If we know the rates of incoming jobs of the 
queueing model, the model acts as a simple delay for 
the jobs. Otherwise, the rate of the jobs is estimated 
during the simulation experiments. 

Eventually, the transformed analytic models can be 
represented using the Input/Output Relation Obser- 
vation(IORO) specification. An IORO observes the 
behavior of a system in term of input/output relation. 
It is a structure[8] : 

IORO=<T,X,Q,Y,R> 

T : time base set; 
X : input events set; 
Y : output events set; 

Q C (X, T) : input segment set; 
R C ti x (Y,T) : I/O relation. 

Since the simulation environment manages the sim- 
ulation time (clock), we just need to describe the three 
components^, Y, R) in the structure. As an example 
of specification, consider a queueing model. It can be 
represented as : 

QUEUEIORO=<X,Y)R> 

X = {job}; 
Y = {out}; 
R: (job.t)-f (out, t + p + W), 

where p, W are average service time and waiting time 
in the queue, respectively. In the performance evalu- 
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ation view point, simulation experiments are the pro- 
cesses of finding the I/O relations of models such as 
p, W in the above model. 

For hybrid simulation, we combines the abstract 
simulator algorithms of the DEVS formalism and the 
analyzers for analytic models. The role of analyzer is 
to find the average occurrence rates of incoming events 
and to route the events to the simulators which are re- 
sponsible for the influencees. To find the influencees, 
the input and output relations of the associated ana- 
lytic model are used. 

-*1*   Ml *L- !AM1 M2   Ä- 

Ml, M2 : simulation models; 
AMI      : analytic model; 

(a) Hybrid Model. 

Ml 

xl 

ÜAM1! 

yi cs 

S:M1 

M2 

x2 

:A:AM1I; 

y2 

S:M2 

S:M1, S:M2 : simulator for Ml and M2; 
A: AMI       : analyzer for AMI. 

(b) Association of Models and Simulators. 

Figure 5: Hybrid Simulation Strategy. 

Figure 5(b) shows the connections between simula- 
tors and an analyzer for simulating the model in Fig- 
ure 5(a). Whenever an event arrives at the analyzer, 
it counts the arrival to determine the average rate of 
incoming event. Figure 6 shows the scenario of event 
flow when an event enters the models Ml of Figure 5. 

M2 receives 

Ml receives 

"A:AM1 routes 

j^ -t2  

♦1 . „,„™„„;.„v ♦;„,„ ;„ H/M .   simulation clock (t) tl : processing time in Ml; v' 
t2 : processing time in M2; 

Overall Performance = tl +12 + E[W] 

Figure 6: Event Flow during Hybrid Simulation. 

After a simulation experiment is finished, the ana- 
lytic model determines the I/O relation in the steady 
state using the rates. The term E[W] in the perfor- 
mance of Figure 6 is the results from AMI in Figure 5. 
When a model knows the occurrence rates of events, 
the associated analyzer does nothing during the sim- 
ulation except the routing of events. 

3.3    Extended DEVSim++ Environment 

To simulate the transformed analytic models with 
simulation models, we extended the DEVSim++ en- 
vironment. The original version of DEVSim++[2] re- 
alizes the DEVS formalism for modeling and associ- 
ated abstract simulator concepts for simulation, all in 
C++. DEVSim++ is a result of the combination of 
two powerful frameworks for system development: the 
DEVS formalism and the object-oriented paradigm. 

Since DEVSim++ defines classes for modeling and 
those for simulation separately, it can be easily evolved 
by developing new classes. Figure 7 shows class hier- 
archy of the extended environment. The shaded two 
classes are newly defined for hybrid simulation. 

■— Models 

Object— Entities — 

• Atomicjmodels 

■ Coupled_models 

— Processors 

-Analytie^models 

- Analyzers 
— Simulators 

- Root_co_ordinators 

Co ordinators 

Figure 7: Class Hierarchy of Extended DEVSim++. 

The Analytic-models class realizes the transformed 
analytic models. It has instance variables correspond- 
ing to three elements in IORO representation : X 
for input events set, Y for output events set, and R 
for input/output relations. To manage the I/O re- 
lations, we define a structure for input/output rela- 
tions. Analytic-models also defines methods operat- 
ing on instance variables. Analyzers is assinged to 
Analytic-models in a one-to-one manner. 

4    Example and Results 

As an application of our approach, we consider a 
simple communication network.  As shown in Figure 
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8, the system consists of a sending node and a receiv- 
ing node and a set of intermediate routing nodes. The 
sending node transmits a number of packets to the des- 
tination node through the intermediate routing nodes. 

Sour 
Node 

IN -+ IN —► IN Dest 
Node 

IN: Intermediate Routing Node 

Figure 8: Simple Communication Network. 
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1000       2000       3000       4000       5000 
Number of Generated Packets 

For comparison of computation time and accuracy 
of our approach with discrete event simulation, we 
modeled the system within the DEVSim++ environ- 
ment. By applying the model transformation method, 
we can transform the intermediate routing nodes into 
a single queueing network. 

We compare the computation times by measuring 
the simulation times of both models under the con- 
dition that two models generate the same number of 
packets. All experiments are performed in a Sun Sparc 
1+ machine with 32MB main memory. 

Simulation Time (sec) 
20 

15 

10 

 1 1 r 

Discrete Event Simulation 
Hybrid Simulation 

1000       2000       3000       4000       5000 
Number of Generated Packets 

Figure 10: Average Traveling Time of Packets. 

are the times between the departure at the source node 
and the arrival to the destination. From the results of 
Figure 10, we can conclude that there is little differ- 
ence between two approaches. Though the simula- 
tion model is simple, the results shows practical sig- 
nificance of our approach. 

Simulation Time (sec) 
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Figure 9:   Simulation Time for Varying Number of 
Generated Packets. 

Figure 11:  Simulation Time for Varying Number of 
Intermediate Nodes. 

Figure 9 shows the average simulation times when 
the number of generated packets are varying and sys- 
tems are configured with two intermediate routing 
nodes. Each point takes an average of 5 statistically 
independent simulation runs. The results show that 
the hybrid approach greatly reduces the computation 
time. 

To compare accuracy between both approaches, we 
measure the average traveling times of packets, which 

Figure 11 compares the computation costs when 
the number of intermediate routing nodes are vary- 
ing. Since the hybrid approach models the tandem- 
connected nodes as a single queueing model, the com- 
putation costs do not increase no longer. But, those 
for the discrete event simulation continuously increase. 
From the above results, we can draw a conclusion that 
our approach has a practical significance, especially 
when simulating complex systems. 
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5    Summary and Conclusions 

We have proposed a hybrid modeling and simula- 
tion framework for high-speed simulation without los- 
ing the accuracy of discrete event simulation. The 
approach is based on a transformation of the steady 
state behavior of a DEVS model into an equivalent an- 
alytic model. For hybrid simulation of the transformed 
analytic models and DEVS models, we extended the 
DEVSim+-1- environment by adding new classes for 
specifying and simulating analytic models. 

Also, we validated the proposed approach by com- 
paring the results with those obtained from simulation 
experiments with only discrete event simulation mod- 
els. The results show that our approach can accurately 
simulate the behavior of a system with greatly reduced 
simulation time. 

Though the approach shows some promising re- 
sults, there is much work to be done. Currently, an ex- 
tension of the model transformation method to more 
general and complex cases is underway. In parallel, 
we are also extending the DEVSim++ environment 
to possible automatic model transformation. 

[5] J.G. Shanthikumarand R.G.Sargent, "A Unifying 
View of Hybrid Simulation/Analytic Models and 
Modeling", Operations Research, Vol. 31, No. 6, 
Nov. 1983. 

[6] Tag G. Kim and Myung S. Ahn, "Reusable Simu- 
lation Models in an Object-Oriented Framework", 
to appear in Object-oriented Simulation (ed: G.W. 
Zobrist), IEEE Press. 

[7] B.P. Zeigler, Theory of Modelling and Simulation, 
John Wiley, NY, 1976(Reissued by Krieger Pub. 
Co., Malabar, FL. 1985). 

[8] B.P. Zeigler, Multifacetted Modeling and Discrete 
Event Simulation: Academic Press, Orlando, FL., 
1984. 

Acknowledgements 

This work was supported by the Korea Science and 
Engineering Foundation grant 941-0900-034-2. 

References 

[1] Myung S. Ahn and Tag G. Kim, "Analysis on 
Steady State Behavior of DEVS Models", Proc. 
of 4th Annual Conf. on AI, Simulation, and Plan- 
ning in High Autonomy SystemsfAIS '93), pp. 142 
- 147, Sept. 1993. 

[2] Myung S. Ahn and Tag G. Kim, DEVSim+ + 
User's Manual, Technical Report, TR-CORE-94- 
1, EE, KAIST, 1994. 

[3] Kumar K. Goswami and Ravishankar K. Iyer, 
"Use of Hybrid and Hierarchical Simulation to 
Reduce Computation Costs", Proc. Int. Work- 
shop on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems (MAS- 
COTS '93), pp. 197-202, Jan. 1993. 

[4] L. Kleinrock, Queueing Systems, Volume II: Com- 
puter Applications, Wiley, New York, 1976. 

205 



Session 2C: 

DEVS Formalism: 
Manufacturing Applications 



Interface-Oriented Classification of DEVS Models 

Carsten Thomas 

Research and Technology Department 
Daimler-Benz AG 

Alt-Moabit 91b, 10559 Berlin, Germany 

Abstract 
Model classification is a way to structure and handle 

knowledge about systems. Using the models external 
message interface as the classification criterion lays 
emphasis on the fact that atomic and coupled DEVS 
models are modular and interchangable model compo- 
nents. Interface-Oriented Classification is a means to 
formalize the conditions of component replacement and 
coupling valitity. It can be used as the basis of advanced 
modeling methods like multi-modeling and modeling of 
structurally variant systems. 

an atomic or coupled model or what state variables are 
used. 

For most of the application areas for classification the 
implementation has no significance. Instead, we need to 
know about which incoming external events a model can 
process, which outgoing external events a model produces 
and how it can be coupled to other models. These 
properties are what we call the models interface. In the 
following sections, we propose a classification scheme 
where the models interface is used as a classification 
criterion. We call this scheme the Interface-Oriented 
Classification of DEVS models. 

1. Introduction 2. A brief look at the DEVS formalism 

DEVS models contain behavioral and structural 
knowledge, i.e. knowledge about state variable values, 
functionality, decomposition into components, and the 
relations between those components. For the efficient use 
of models, especially for model re-use and automated 
model synthesis, also a third sort of knowledge is 
necessary. This knowledge about common properties of 
models and the propagation of properties through 
inheritance is called taxonomic knowledge. By use of 
taxonomic information, models, which are identical with 
respect to some property, can be ordered into groups. 
These groups of models are called classes. 

A class of models Mc is a subset of the set of all 
models M available in some context. The class is denoted 
by its class name c , which is a member of the set of class 
names C. Classification of models is done using 
classification criteria. A classification criterion is a 
function/,,, which checks the models for the existence of 
the properties under consideration: 

/C:M->C and Mc = {me M|/C(m) = c,cec}. 

There are various classification criteria to be used with 
simulation models. Most often, an implementation 
oriented classification is done. In this case, models belong 
to the same class if their implementation is equivalent. 
Classification criteria are e.g. whether a DEVS model is 

Applying the DEVS formalism, models are constructed 
in a modular hierarchical manner [6,8]. Atomic models 
describe the functionality of basic system entities. 
Coupled models correspond to more complex system 
entities. The inner structure of the complex entities are 
represented by the components of the coupled model and 
their coupling. Both, atomic and coupled models can be 
used as model components. 

Atomic DEVS models describe the dynamics of a 
system by means of input and output sets X and Y, a set 
of sequential states S, state transition functions 8 , an 
output function X and a time advance function % : 

M = (X,Y,S,SXi). 

Coupled DEVS models consist of a set of component 
names D and the corresponding set of models {M,}. The 
coupling of every single component is specified by a set of 
influencees L, and a set of output/input relations Zy for 
every component/influencee pair. A tie-breaking select 
function q resolves event processing conflicts among the 
components: 

N = (D,{Mi},{/J,{z,., },<;). 

Usually, ports are used to structure the input and 
output sets of models [2]. Then, the input and output sets 
of a model are structured sets denoted by 
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Xc{(n,vpeNx,vev}and 

Yc{{n,vpeNr,v<=v}, 

where Nx and NY are the sets of input and output port 
names and v e V is additional information contained in 
the messages which represent the external events. 

When ports are used, the output/input relations of a 
model N can be specified in the form 

Zilc{({i,nl),{j^i%i^D^dinjeIi,nteNj,nlGN^}, 

where dK is the identifier of the coupled model [1]. 
In this approach, no statements can be made about the 

validity of a coupling specification, i.e. there is no chance 
to ensure that a model is capable of processing the 
messages it receives from its predecessors. Also, nothing 
can be said about whether a model can replace another 
model in a given coupling specification. With Interface- 
Oriented Classification of DEVS models we address these 
problems. 

3.       Model interfaces 

Expanding the idea of structured input and output sets, 
we suggest to use typed messages. Then, a message is 
denoted by a tri-tuple (n,u,v), consisting of a port name 
n, a message type name u, and an additional 
information item v , whichs value is within the range of 
the type u. Using this notation, we are able to describe 
the input and output sets of a model as 

X = {(n,u,v)|neNx,ueU„,v e V.} and 

Y = {(n,u,v)\n e Nr ,u e Un,v e V.} 

where Nx is the set of names of the input ports of that 
model, and Ny is the output port name set. We apply the 
restrictions that 
(i)   types with identical names have identical ranges and 
(ii) the range of a given type is constant over time. 

Due to these restrictions, the incoming messages a 
model can process, and the outgoing messages a model 
produces are fully described by the structure 

I = (Px,Pr), 

where Px = (Nx ,\Un | n e Nx n is the input port set and 

PY = (Nr ,{U„ I n e Nr }\ is the set of output ports. The 

structure / is called the models interface. 

3.1.      Interfaces of atomic models 

Since there is currently no standardised way of formal 
definition for the functionality of a model, namely for the 
external event and output functions, we are not able to 
extract the interface description automatically for atomic 

models. Instead, this description has to be given by the 
implementer of the model. 

Consider the model of a machine tool which processes 
workpieces (figure la). Workpieces are a message type 
WP,  and its range is   {raw, processed].  Then,  the 

interface of   the machine tool is IIIT=(PZT'PLT) 
w^ 

Pir ={{in},{{W}}) and Pi ={{out},{{WP}}). 

in 
«It 

i^ftj&Wftfflfr1:.: 

b) 
Figure 1. Atomic models of a machine tool MT (a) and an 
advanced machine tool AMT (b) 

A more advanced machine tool could have an 
additional binary output port indicating the state of its 
workpiece processing buffer after every event (figure lb). 
The interface of this advanced machine tool would be 
I^={PL'PL) with PL=Px

m and 
Pl„ =\{out,state],{{WP},{Bool}}). 

3.2.      Interfaces of coupled models 

The interface of a coupled model is defined by the 
interfaces of its components. Therefore, the port 
characteristics (and thus, the interface) of a coupled 
model can be computed automatically if the interfaces of 
all components and their coupling are given. 

The set of message types, which can be accepted by an 
input port of a coupled model, is the intersection of the 
message type sets of all component input ports connected 
to that port: 

(k.«J-(''"<))GZ
M'"* ^Nx,nt€Nx. U, =nt/,v«, 

The message type sets of the input ports are used to 
specify the input set of the coupled model: 

X -{(«,«, v)|neJV*,u€£/„,vGK}. 

If the message type sets of the connected ports are 
disjunct, the message type set of the coupled models input 
port is empty. This indicates a modeling error. 

The set of message types which can be sent out by an 
output port of a coupled model can be computed in the 
same way from the message type sets of the connected 
component output ports. In this case, the result set is the 
union of the component port message type sets: 

The output set of the coupled model then is 

Y = {{n,u,v)\n eJV'.ue t/„,v e V„}. 
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Consider the model of a buffered machine tool, 
consisting of an advanced machine tool as shown in 
figure lb and a buffer in which unprocessed workpieces 
are stored (figure 2). 

wm out mm 
c3 

out       out 
-£±> 

Figure 2. Coupled model of a buffered machine tool BMT 

Let the interface of Buffer be I = (Pl,,PY
M) with 

Kf = ({in,next},{{WP},{Bool}}) and 

Kf=({out},{{WP}}). The interface of the buffered 

machine tool model can be computed from the interfaces 
of Buffer and AMT. The result is I = {PL>

P
LT) with 

PL ={{in},{{WP}}) and PY
BMT = ({out},{{WP}}). 

3.3.      Relations over model interfaces 

We can formally define relations over model interfaces 
as a step to define the classification criterion for Interface- 
Oriented Classification. 

The equivalence of two models is defined by the 
equivalence relation /,=/„. 

h=I.     iff 
N*A=NX

B    A   U*=U° VneN* 

A 

Nr=NY
B    A   UÄ=UB

n\fnsN\ AB n n A 

This says, that the interfaces of two models are 
equivalent, if the available in- and output ports have 
identical names, and for every single of these ports 
identical message type sets are defined. It is assumed, that 
message types with identical names have identical ranges. 

The ordering relation for the interfaces of two models 
is defined as 

/ </, iff 

A   U? c t/f Vn e N* 

NT
AcNT

B    A   U^U°VneNY
A,nePB

r: 

This says, that the interface of model A is contained 
within the interface of model B, if the B -interface at least 
contains the names of all ports of A. For all the input 
ports of B, at least the message types defined for the 
corresponding ports of A must be supported; none of the 
output ports of B corresponding to an output port of A is 
allowed to use message types not defined for the A -port. 

4.        Classification and inheritance 

By using the relations defined for model interfaces, we 
establish the classification criterion for the Interface- 
oriented Classification. Two models belong to the same 
class Mc, if their interfaces are equivalent: 

A.ßeM. »/„=/,=/.. 

Since the interfaces of models belonging to a class are 
equivalent, they also denote the interface Ic of the class 
itself. In the example, the interfaces of the simple 
machine tool and the buffered machine tool are 
equivalent. They form a class of models 
classMT = {MT,BMT], while the advanced machine tool 
is member of another class class AMT = {AMT}. 

Between the classes, interface oriented inheritance 
relations can be defined. A class inherits the interface of 
another class, if its interface contains the interface of the 
predecessor class as described by the ordering 
relation /ctort ^/^g. So, the class of advanced machine 
tools classAMT inherits the interface of the simpler 
machine tools classMT, which is then extended by the 
state port. It can be shown, that interface inheritance also 
works for multiple base classes. 

Class trees are a graphical representation scheme for 
inheritance information. In the class tree structure, the 
nodes are labelled with class identifiers, and the directed 
arcs represent "initial_node is_base_class_of 
terminal_node" relations. In figure 3, classMT is shown 
to be the base class of classAMT, since classAMT inherits 
the interface of classMT. 

classWorkFlow 

y X 
classBuffer classMT 

Buffer 

• 

MT, BMT 

classAMT 

AMT 

Figure 3. Example of a model class tree 

In addition to the class hierarchy imposed by the 
equivalence and ordering relations, the inheritance tree 
can be further structured to emphasise functional 
differences between classes. In figure 3, the interfaces of 
classWorkFlow and classMT are equivalent. However, 
classMT is a special work flow element which shouldn't 
be confused with others, so machine tools form a separate 
class. 
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5.        Application areas 

5.1.      Model construction and management 

With Interface-Oriented Classification, support for 
model construction and model management can be 
significantly enhanced. 

Ensuring syntactical correctness: Models are 
considered to be syntactically correct, when the 
components are able to process all incoming messages. 
When using typed messages, it can be ensured that only 
ports with matching message type sets are connected to 
each other. Syntactical correctness of the model is 
guaranteed when strict matching is ensured, i.e. when 

Um c Un Vn, ,.»; ((i>«,),(/,«,)) eZ, 

In figure 2, this condition is fulfilled e.g. for the 
connection between output port Buf.out and input port 
AMT.in, since the port message type sets are equal: 
{WP} = {WP}. 

However, most often it is not practicable to enforce this 
restriction. A weaker version of the condition can be used 
to test whether there is at least a possibility that two 
communicating components will understand each other: 

£/, nUnj *0Vni,nl\({i,ni),{j,ni))zZu. 

Testing for interchangeability: Models can replace 
other components in coupled models without a change of 
the coupling, if the replacing model has an equal or more 
extensive functionality regarding the interface. This 
requirement is fulfilled if the replacing model 
(i)   has at least the ports of the replaced component, so 

that it can be coupled to the surrounding structure in 
the same way, 

(ii) is able to process all the message types on the used 
input ports, which the replaced component was able 
to process, and 

(iii) sends only message types on the used output ports, 
which also could have been sent by the replaced 
component. 

All these conditions are satisfied, if the replacing model 
belongs to the same class as the replaced component or a 
class derived from that class. 

A model of class classAMT can replace a component 
of class classMT, since it fits well into the given coupling 
(figure 4). The input port AMT.in accepts the same 
messages as MT.in, and AMT.out doesn't send anything 
what might confuse components coupled to that port. The 
messages sent from port AMT. state are not used because 
the port isn't used. 

Figure 4. Replacing a model component (a) with a model 
belonging to a derived class (b) 

Supporting SES construction: Interface-Oriented 
Classification can also be used in combination with the 
System Entity Structure (SES), a knowledge 
representation scheme for model families introduced by 
Zeigler [6,8]. There are two obvious applications in this 
field. 

An aspect node is associated to a coupling 
specification for the decomposition it represents. The 
syntactical correctness of this specification can be proved 
in the way described above. 

A specialization node is followed by entities which are 
specialized variants of the predecessor entity of this node. 
When the variants are members of the same class as the 
predecessor entity or a class derived from that class it is 
ensured that all variants fit into couplings where the 
preceding entity would fit in. This can be used to partially 
prove the consistency of a SES. 

5.2.      Advanced modeling methods 

Interface-Oriented Classification is the basis of our 
approach to advanced modeling methods like multi- 
modeling and modeling of structurally variant systems. 

Multi-modeling: Multi-modeling is a technique which 
allows to combine different means of description within 
one model. In multi-models, a subsystem can be modeled 
using the formalism which fits its nature best [3]. Espe- 
cially graphically representable formalisms like queuing 
systems and Petri nets are combined in known 
approaches. 

In our approach, the basic elements of other means of 
description are mapped onto DEVS components. For 
instance, sources, servers, and sinks in queuing models 
are represented by atomic or coupled models. The 
integrity of coupled models using such "emulated" 
components can be ensured by methods of the Interface- 
Oriented Classification. 

Consider a special coupled model which is used to 
emulate a queuing model. Then, to ensure model 
integrity, only queuing model components like sources, 
queues, servers, and sinks are allowed. This restriction 
can be met automatically by checking whether the 
components belong to the respective classes or to 
successor classes. 
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Since Interface-Oriented Classification does not 
depend on implementation issues, atomic and coupled 
models can be used to "emulate" the basic components of 
other formalisms. The coupled models emulating such 
components in turn can be refined using just another 
means of description. Therefore, model refinement using 
other formalisms is not limited to one level of 
aggregation. 

Modeling of structurally variant systems: Often, 
systems to be modeled undergo structural changes: 
Components are assembled to form products, workers 
supervising a machine tool come and go, control 
strategies of machines are exchanged. Known techniques 
to model such changes often map structural changes to 
state changes or directly interfere with the state or 
structure of the model to be changed, violating its 
modularity [5,7]. 

Prerequisite for our approach to model structurally 
variant systems is a method to instantiate fully defined 
atomic or coupled models at simulation time and to delete 
them after use. The models instantiated by such a method 
are not statically connected to the model structure and 
thus are named "free" models. Information about such 
free models can be transmitted between components by 
messages, and can be stored in state variables of atomic 
models. 

For the modeling of structure-changing systems, a 
facility is needed to dynamically link these free models to 
the static model structure. Applying the methods of 
Interface-Oriented Classification, a special form of 
coupled model, called model variable, can be used for 
this. 

Model variables are placeholders in static model 
structures. They are either empty or filled with one atomic 
or coupled component (figure 5). When a component 
residing a model variable is replaced by another variant of 
this component, the entire model changes its structure. 

Figure 5. Object variable dynamically linked to a component 

Model variables must have a invariant interface, so 
that they can be linked to the static model structure. To 
define the interface of a model variable, it has to be 
assigned to a class. Then, the model variables interface is 
equivalent to the interface of the class: it gets all the ports 
the member models of the class have, and the ports accept 
or send the message types as defined for the class. 

When an information about a free model is received by 
the co-ordinator of the model variable, it checks whether 
the class of the free model is identical to or derived from 
the class of the model variable. If this restriction is met, 
the co-ordinator establishes links between the ports of the 
model variable and the identically named ports of the free 
model, thus dynamically linking it into the static model 
structure. The dynamic links are cut when either a new 
free model has to be linked in or special control messages 
are received by the co-ordinator. 

Using interface and class information from the 
Interface-Oriented Classification, structural changes of 
systems can be easily modeled without violating the 
modularity principle of the formalism. 

6. Conclusion 

Interface-Oriented Classification is a classification 
scheme which emphasizes the modularity and 
encapsulation principles of the DEVS formalism. With 
the information available through this technique, the 
modeling process can be supported during coupled model 
specification and SES building process. Furthermore, 
Interface-Oriented Classification is the formal basis for 
our approaches to advanced modeling techniques like 
multi-modeling and modeling of structure-changing 
systems. 

Interface-Oriented Classification methods have been 
implemented and used in a prototypical modeling and 
simulation system currently under development at 
Daimler-Benz [4]. While current applications concentrate 
on the design and modeling of systems, further research 
will focus on the utilisation of Interface-Oriented 
Classification in the operation of model-based 
autonomous intelligent systems. 
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Abstract 

A model based method for task level command gen- 
eration is used here to simulate a pipeline process. Us- 
ing a discrete event systems formalism, a method for 
describing manufacturing systems is reviewed prior to 
constructing the sequential assembly line simulation. 
This precedes a study of the entire assembly line model, 
its coordination, and performance metrics. An exam- 
ple system is then simulated and analyzed for language 
generation and system performance. 

1    Introduction 

Expanding computer power is causing increased in- 
terest in modeling and simulation. This is especially 
true in engineering where physical prototypes can be 
costly and time consuming. One step in this direction 
was taken by Zeigler [3] in implementing the Discrete 
Event System Specification (DEVS) in a software en- 
vironment called DEVS-Scheme [2]. It facilitates the 
construction of modular, hierarchical models and their 
organization. 

Jacak and Rozenblit [1] introduce the exact form 
robot and workstation models take to work together in 
an assembly line simulation. Their method deals with 
a series of workcells, each of which has its own process- 
ing program. Moving parts between the workstations 
is done by robot pick and place actions. A program of 
robot and workstation instructions is then expressed 
in a task-oriented robot programming language [4] [5] 
(TORPL). This program controls a discrete event sys- 
tem simulating the sequential manufacturing process 
that is constructed using this methodology. It is then 
monitored for performance. 

An additional layer is introduced for motion plan- 
ning to their manufacturing system representation. 

This provides collision free geometrical path planning 
and optimal trajectory planning. 

2    Background 

2.1 Discrete Event Systems Representa- 
tion 

With the overall goal of achieving a means for rapid 
modeling and simulation of the entire technological 
line, a representational formalism is required. In this 
case, we employ the Discrete Event System Specifica- 
tion (DEVS) formalism [3]. 

DEVS specification consists of external inputs, X, 
external outputs, Y, and a set of states, S. States tran- 
sitions are due to either an external event or the time 
limit, ta(s), elapsing. A state change due to an elapsed 
time limit is called an internal transition, 6int. Sim- 
ilarly, state changes due to external events are called 
external transitions, 6ext. All of these transitions oc- 
cur over the system's state set, S. 

Interpretation of the DEVS and a full explication 
of the semantics of the DEVS are in [3]. 

2.2 Manufacturing  Environment  Repre- 
sentation 

The system presently under consideration is a se- 
quential technological process. This consists of robots 
and workstations where robots do pick and place ac- 
tions between workstations. Robot actions in this sys- 
tem occur so that each step has an associated set of 
instructions in the task oriented robot programming 
language [1], hereafter referred to as TORPL. 

The basic macroinstructions of TORPL are: 

MOVE< 
EMPTY 
HOLDING 

TOuposition" 
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PICKUP "part" AT "position" 
PLACE "part" AT "position" 
WAIT FOR "sensor input signal" 
START "output signal" 

The above instructions synthesize the robot's ac- 
tion program. This process requires an introduction 
of conditional instructions that depend on the states 
of each device of the assembly line. Thus, defining a 
program simulator requires modeling conditions that 
enable each program instruction. An example assem- 
bly line is shown in the Figure 1. 

State Dlaoram of Feeder 

Robots Movlna Darts Dn Seauential Assembly Line 

feed workO workl •  •  • workn transd 

<-~* .t VTV 
'•\rowy-'     • • • -"Uobnf^ 

Figure 1: Assembly Line 

2.3    Experimental Frame 

The experimental frame executes and monitors a 
model. It consists of a generator sending inputs to 
a model and a transducer that observes the resultant 
model behavior. This concept is implemented on the 
example assembly line by making the generator a parts 
feeder and the last workstation on the assembly line 
a transducer. Feed rate of incoming parts is modu- 
lated with the internal transition time of the feeder, 
and assembly line performance is observed with the 
transducer. 

The feeder, as shown in Figure 2, feeds parts to the 
assembly line at given time intervals. Upon sending a 
part to the assembly line, the feeder waits in a pas- 
sive state for the specified time period before sending 
another part. 

The transducer is positioned as the last worksta- 
tion in the assembly line. Here, it takes in parts as 
they are completed and performs user specified calcu- 
lations. The transducer is also responsible for main- 
taining the observation time of the overall simulation. 
Once this observation time is exceeded, all models stop 
work. The transducer is shown in Figure 3. 

2.3.1    Robot Definition 

As explained in [1], robot states reflect position and 
action.  Robot position designates where it is on the 

skjma->0 

e1, or a pick 
message's " 
delivered 
from the 
robot 

sigma->feedrate 

teedrate time is elapsed 

Figure 2: State Behavior of Feeder 

Diagram of the Transducer(transd.m) 

Data comes 
into the transducer 
from assembly line 

Figure 3: State Behavior of transducer 

simulated assembly line. Robot actions include pick- 
ing up a part, placing a part, or doing nothing. 

2.3.2    Robot Operation 

Zeigler [2] introduces event-based control as a method 
of monitoring an operation. This architecture con- 
sists of two models, a sender and receiver. The sender 
has a time window in which it expects the receiver to 
confirm the sent command's completion. Should the 
receiving model's confirmation not return within this 
time window, the sender assumes failure. 

Event based control is used here to interpret robot 
tasks as a state-space [6] representation of actions 
needed to complete the task. The event based con- 
troller, hereafter referred to as EBC, controls the robot 
by sending subsequent actions, upon confirmation that 
the previous action is done, until the assigned task is 
complete. This is shown in Figure 4. 
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Connection of the EBC and Robot within the Doer Coupled Model 

ta»k la delegated 
to the ebc-zobot 
pall 

Figure 4: Internal Robot Behavior 

2.3.3    Workstation Definition 

«m Behavior ot Workstation 

sigma -> processing 
time 

Figure 5: Internal Workstation Behavior 

Workstations have three states. These states are "not 
working and free," "not working and not free," and 
"working and not free." This is defined in [1]. 

The workstation transitions between these states by 
interacting with the robot. For example, a worksta- 
tion in state "not working and free" which gets a part 
"placed" on it by a robot goes to state "working and 

not free." The workstation will automatically transi- 
tion to state "not working and not free" upon com- 
pleting the part. Robot "picking" is then required to 
return the workstation to the state "not working and 
free". This is shown is Figure 5. 

3    Modeling Effort 

3.1     System Construction 

Having decided on the methodology and model 
forms, the next step is building the sequential assem- 
bly line simulation. This includes constructing and 
testing each model independently, organizing models 
into an overall structure, coupling them, and deciding 
on performance metrics. 

Model construction was software implementation of 
the sequential assembly line. With the models devel- 
oped, the next step was aggregating them into one 
overall structure and coupling them. Communication 
between the models was achieved through name di- 
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rected coupling. This consists of sending communica- 
tions directly to the model via its name. 

3.2 System Architecture 

The system architecture is centralized. This means 
that one central module, the controller, processes all of 
the assembly line entity states and positions, and then 
decides on work allocation. The system simulator's 
architecture is shown in Figure 6. 

3.3 Task Formation 

The controller's goal is to complete all tasks 
presently in the system. Tasks needing attention are 
determined by the states of sequential workstations. 
Robot and workstation states are communicated to 
the controller upon every change. 

The controller is a central data repository into 
which state updates for all assembly line entities are 
directed and stored. Workstation states are tracked 
by a service list. It is called a service list because the 
workstations are continually monitored for potential 
requirement of service. Other lists used are the task 
list, robot list, and job list. 

The service list contains the states of all worksta- 
tions. The service list maintains a state for every 
workstation on the assembly line, all the time. When 
state updates come in from the assembly line, the ser- 
vice list is updated to the new assembly line represen- 
tation. An example of the service list is shown below: 

service-list = ((0 b)(l a)(2 c)(3 a) ...) 

A task is formed whenever two workstations are 
sequentially in states "B" and "A". When this hap- 
pens, the two addresses are combined to make a task 
as shown below: 

States: (1 b)(2 a) 
Task:    (1 2) 

A task list could have any number of tasks, and 
would take the following form: 

Task-list: ((1 2)(3 4) ... ) 

An example robot list has the following form: 

robot-list = ((robl move-while-holding) ...) 

Multiple tasks require multiple robots to maximize 
system performance. This need is met by allowing any 
number of robots to service the assembly line. 

Once tasks are formed, a search is made for the clos- 
est robot to perform the task. Proximity is measured 
both by physical distance and by an estimation of time 
to completion from the present task. Physical dis- 
tance is the distance from the present location of the 
robot to the first workstation in the given task. This 
is what is used for free robots - robots that are empty 
and waiting for an assignment. If a robot is still com- 
pleting an action, distance equivalent approximations 
are interpolated from the present robot state. This 
approximation is then added to the actual distance 
between addresses in order to find the total distance 
between the present robot and the first workstation in 
the task. 

Robots presently working on a task are also evalu- 
ated for their proximity to tasks awaiting assignment. 
The main reason for this is that a robot close to a task 
to be assigned could be nearly finished with its present 
work when the nearby task becomes available. If only 
idle robots were considered, an idle robot farther away 
might be chosen for the task, resulting in a high travel 
time. Choosing the robot already working amounts 
to not choosing a robot, and waiting until that robot 
reports that it is free before assigning the task. 

When a task is assigned to a robot, this becomes 
a "job." Jobs are sent to the robot designated as the 
first element of the job. An example of a job is shown 
below: 

Available Robot: (robl) 
Task: (1 2) 
Job: (robl (1 2)) 

3.4    Robot Application Strategy 

An example of control modification is assigning dif- 
ferent location prioritization algorithms to the robots. 
They are assigned to prioritize service to the beginning 
of the assembly line, the end, and the closest available 
task. This exercise monitors the system performance 
differences of alternative prioritization schemes. 

Priority on the beginning and end of the assem- 
bly line started off as an algorithmic exercise. Over 
time, however, we saw the merits of either of these 
in application. Prioritizing the beginning of the as- 
sembly line might occur in situations where the line 
is, for one reason or another, perpetually starved for 
parts. Similarly, priority on the end of the assembly 
line, on getting parts out, might occur in a situation 
where there is a bottleneck at the end of the assembly 
line. Additionally, on a multi-robot assembly line, dif- 
ferent robots could be assigned different operational 
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Figure 6: Assembly Line Architecture 

algorithms for part processing. 
Simulating the robots with different prioritization 

schemes gives us a trace of the robot movements on 
the sequential assembly line. Assuming the simulation 
accurately depicts the assembly line, this "trace" is 
validated robot code that could be used to control the 
actual robots working on an assembly line. 

3.5    TORPL Code 

TORPL code is sequentially output for each step 
taken by the robot model. A task, (0 1), assigned to 
robot\ generates the following TORPL code: 

robot i move while holding 

robot i move while empty 

robot i pickup widget at feed 

robot i 
moves to posi- 
tion 0. 

roboti picks up 
the part at po- 
sition 0, the 
feeder. 

robot i place widget at 1 

robot i 
moves the part 
between work- 
stations 0 and 
1. 

robot i 
places the wid- 
get at worksta- 
tion 1. 

This process is carried out in detail for each task 
performed. Completing the tasks leads up to complet- 
ing entire jobs, and job completion leads us to look at 
system performance. 

4    Assembly Line Performance Evalua- 
tion 

In this simulation model, assembly line throughput 
was selected as the performance measure. It was cal- 
culated on-line by a transducer that totals the number 
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of parts completed and divides this by the total time 
that the line is operational. 

This measurement is similar to what one finds on 
actual assembly lines. The system does an on-line up- 
date of throughput, and this allows any internal con- 
trol methods that rely on throughput to automatically 
evaluate the present state of the system and take ac- 
tion. 

4.1 Simulation Setup 

Setting up the simulation requires deciding the feed 
rate of parts coming into the process, the mean pro- 
cessing time per workstation, and the robot execution 
times. The feedrate, controlled by the feeder, is one 
new part into the process every 5 time units. Work- 
station processing time is a uniform distribution from 
1 to 10 time units. The robot takes 2 time units to 
pick up or place a part, while moving takes the same 
number of time units as the distance traversed. In this 
system, 1 distance unit equals 1 time unit. 

4.2 Analysis of Model Results 

Looking at throughput data for the 5000 time unit 
production run in Figure 7, we see the following 
throughput rates: 

Robot focusing on the beginning 0.0492 
Robot focusing on closest task 0.0494 
Robot focusing on the end 0.0455 

While the above numbers are relatively close, the 
robots prioritizing the closest available task and on the 
beginning of the assembly line exceed the performance 
of the robot prioritized to the end of the assembly line. 

This performance discrepancy by the robot focusing 
on the end of the assembly line is due to its increased 
travel time between priority workstations at the end of 
the line and jobs earlier in the line. The robot focusing 
on the closest task has minimal travel time. The robot 
focusing on the beginning of the assembly line benefits 
from each workstation in the assembly line holding a 
completed job before it moves to the end of the line. 

4.3    Data Analysis 

At 0.0494 jobs per time unit, the robot prioritized 
to the closest task was slightly better than the robot 
prioritized to the beginning of the assembly line at 
0.0492 jobs per time unit.   A less intuitive merit of 

the robot prioritized to the beginning is that every 
workstation sits with a completed job before it starts 
completing jobs. So many jobs at the end of the line 
results in "spurts" of job completions, exemplified by 
throughput oscillations as shown in Figure 7. 

The slowest throughput, 0.0455 jobs per time unit, 
came from the robot prioritized to the assembly line's 
end. Decreased performance with this algorithm re- 
sults from its priority on getting jobs to the assembly 
line's end. It uses too much travel time going from 
end of the line jobs to those earlier in the process. 

Algorithms focusing on the beginning of the assem- 
bly line, or simply on the closest task at hand, out- 
perform the algorithm whose only goal is output. A 
focus on the process, instead of only the goal, turned 
out to be the winning method. 

5    Future Work and Conclusions 

Model operation exemplified how TORPL code can* 
be generated and verified before implementation in 
an actual manufacturing system. The example here 
requires both task formation, and assignment of the 
task to the robot most suited. Real world scenarios 
are rarely so simple. Future systems require planning 
to deal with unprecedented difficulties. 

Planning is commonly approached in two ways, on- 
line and off-line. Off-line planning has merit in that 
computation time does not impose upon the present 
process. On-line planning benefits the user in its au- 
tonomy. Decisions are made and executed on the spot. 

ElMaraghy and Rondeau [7] propose "a new envi- 
ronment for off-line programming of robot tasks, in- 
cluding a feature-based geometric database, an off-line 
programming system with a knowledge base, an expert 
task and motion planner, and a run-time monitoring 
system." This comprehensive planning methodology 
would substantially extend control capability in our 
system. 

Extending task formation in our system to include 
the benefits of planning is a natural extension. Sim- 
ilarly, extending individual or group robot capability 
would take us from pick-and-place robotization to a 
myriad of possibilities. 

Decentralization of this system would involve mov- 
ing task and job formation to the robot level. This is 
similar to Jacak and Rozenblit's [1] original conception 
of attaching an acceptor to each robot in order to allow 
it an immediate state representation of the assembly 
line. The difference will be transforming robots into 
endomorphic agents as conceived by Zeigler [2]. 
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Figure 7: Assembly Line Throughput Performance 

Adding planning and decentralization to assembly 
line entities opens up a whole new world of robustness 
for the system. Changing robots from simple slaves 
of the centralized controller to autonomous operators 
would significantly increase this system's versatility. 
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Abstract 

The purpose of a flexible manufacturing system 
(FMS) is to perform a series of well defined opera- 
tions on a family of similar parts. The operations 
(e.g. milling or drilling) are realized by machines 
which are serviced by robots. A cell controller coor- 
dinates the flow of parts through the cell. Monitoring, 
i.e., to watch the system behavior during its operation 
and detect possible anomalies, is an important task of 
an intelligent manufacturing controller. This paper 
present an approach for manufacturing system mon- 
itoring which has its foundation in the DEVS-based 
intelligent control paradigm. The work is part of a 
bigger research project whose objective is to develop 
techniques for automatic synthesis of intelligent flex- 
ible manufacturing system controllers. Important ad- 
ditional parts of the intelligent control system will pro- 
vide fault diagnosis and self repair capabilities. 

1    Introduction 

The purpose of a flexible manufacturing system 
(FMS) is to perform a series of well defined opera- 
tions on a family of similar parts. The operations (e.g. 
milling or drilling) are realized by machines which are 
serviced by robots. In addition, stores within the cell 
can hold parts temporarily. 

A cell controller coordinates the flow of parts 
through the cell and supervises the underlying ma- 
chines and robots. The control system of such a work- 
cell can be divided into three levels [5]: 

• The organization level accepts and interprets re- 
lated feedback from the lower levels and defines 
the strategies for task sequencing. 

• The coordination level realizes the strategies given 
by the organization level. It defines part routing 
in the logical and geometric aspects and coordi- 
nates the activities of workstations and robots. 

Additionally, it supervises the lower control lev- 
els [5]. 

The execution level consists of the actual device 
controllers which execute the programs generated 
by the coordinator. 

In [1, 3, 4, 5, 2] an approach for automatic synthesis of 
intelligent hierarchical controller for flexible manufac- 
turing cells is developed. The approach uses off-line 
planning and on-line real-time monitoring and con- 
trol. For off-line planning two types of simulation are 
employed. Continuous simulation is used for motion 
and trajectory planning. A discrete event hierarchical 
DEVS simulation model is used for verification and 
testing of different variants of task realizations ob- 
tained from a route planner. 

On-line monitoring and control is accomplished em- 
ploying an internal DEVS model of the workcell and 
real-time on-line simulation. In [5] a real-time dis- 
crete event simulator is described which is used for 
predictions of some motion commands of robots and 
for monitoring of process flow. In [2] a fuzzy rule based 
decision system is applied to create an organizer for 
finding optimal strategies for task sequencing. 

In this paper we focus on the monitoring task of 
the controller. We present a monitoring system which 
slightly differs from the approach taken in [5] and 
which uses DEVS-based discrete event control as in- 
troduced by Zeigler [11, 12]. The approach taken here 
minimizes the overhead for controller synchronization 
and allows one to make precise decisions about system 
malfunctions. 

In the following, we first shortly review the DEVS- 
based discrete event control paradigm, then we de- 
scribe the DEVS-based monitoring system in detail, 
we discuss the simulation model set up for testing and 
validation of the concepts, and we conclude with a 
summary and outlook on future research. 
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2    DEVS-Based Control Reviewed 

Conventional discrete event control schemes [9, 10, 
7] are based on so-called logical model of discrete event 
systems which do not use the concept of holding time, 
i.e., the time duration the system stays in a particular 
logical state. In contrast to that, Zeigler introduced 
the event-based intelligent control paradigm [11, 12]. 
An event-based controller bases its control actions not 
only at the sensor events coming from the system un- 
der control but also on the time of the sensor reactions. 
In event-based intelligent control the controller exerts 
control commands to the real system and expects to 
receive confirming responses from the system within a 
definite time window - not too early and not too late. 
A set of threshold like sensors are used in the real 
system to report process evolution. As long as the 
sensor responses received are in correspondence with 
the expected ones, i.e., the correct sensor responses are 
received in the appropriate time window, the process 
run is regarded to be correct. The information of the 
correct sensor responses is codified in a model internal 
to the event-based controller. The internal model is 
an abstraction of the real system which is based on 
a distinction between normal and abnormal system 
behavior. In most applications, parameter variations 
in finite intervals may be tolerable and are regarded 
as normal. The event-based control model is derived 
by considering all system behaviors for all parameter 
variations which are accepted as normal. 
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Figure 1: Flexible manufacturing cell. 

which can be performed on the various workpieces. 
The technological task is crucial for the function of 
the control system. It consists of a set of operations 
together with partial ordering of the operations and a 
relation of device or storage assignments. A detailed 
formal description of the cell and technological task 
realization is given in [4, 5, 6]. 

3    DEVS-based Controller of FMS 

3.1    Robotized FMS Cell 

Flexible manufacturing systems under considera- 
tion are constructed as depicted in Figure 1. They 
consist of a set of NC-programmable machines and 
production stores, so-called magazines, connected by 
a flexible material handling system, typically a robot 
or an automated guided vehicle, and controlled by a 
computer system. Machines have a number of buffer 
places where robots can place workpieces and from 
where workpieces are loaded automatically into the 
machine for operation. Buffer places and magazine 
places have threshold sensors which signal if a work- 
piece is currently stored in the buffer place. Except 
one sensor which provides detailed information about 
the workpiece upon entrance into the system, these 
threshold sensors are the only information the con- 
troller receives from the real system. The controller 
is mainly responsible for control of the material han- 
dling system, the machines are equipped with their 
own local control system. 

The technological task which is realized by a flexible 
manufacturing cell defines the sequence of operations 

3.2    Controller of FMS Cell 

The controller for a manufacturing cell has to fulfill 
the following tasks: 

• Generation of transport commands: It has to 
generate the transport commands for the robots 
based on technological tasks, information about 
workpieces waiting to be transported, and strate- 
gies for task sequencing. 

• Monitoring: It has to monitor if the various tasks 
are fulfilled correctly, i.e., if transport of work- 
pieces by the robots and the processing of work- 
pieces by machines are finished successfully. 

• Diagnosis: In case incorrect system behavior is 
detected, the controller should find its cause. 

• Repair: After diagnosis the controller has to de- 
termine how the malfunction can be repaired. In 
particular, it should update its own internal state 
to a state which corresponds to the system's state 
and which allows the controller to continue. 

In [5] a method is presented how generation of trans- 
port commands can be accomplished so that tasks are 
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Figure 2: Components of a DEVS-based controller. 

realized, deadlock is avoided and systems performance 
is optimized for various criteria. In this paper we con- 
centrate on the monitoring task of the controller and 
show how monitoring can be accomplished employing 
the DEVS-based control paradigm reviewed above. 

3.3    Monitoring FMS Operations 

Figure 2 shows the interface and the various parts 
of a DEVS-based controller for monitoring. Inputs to 
the controller are the threshold sensors which, for each 
place, signal if the place is free or occupied by a work- 
piece. Additionally, it has one extra input through 
which the controller gets detailed information about 
a workpiece when the workpiece enters the system. 
In particular, this contains information about the se- 
quence of operations which have to be carried out. 
Outputs from the controller are the transport com- 
mands for the robots. 

Most important for the controller is information 
about the current state of the real system. This is 
represented by internal passive models for the active 
components, i.e., robots and machines, and for the 
passive places, i.e., machine buffers and magazines. 
Based on information provided by the threshold sen- 
sor, the controller tries to keep the state of the internal 
models in correspondence to the state of the real sys- 
tem components. Therefore, the internal models are 
passive reacting to the inputs to the controller and to 
the transport commands generated. 

Additionally to the internal passive models, the 
controller employs active monitoring DEVS models for 
every place.    These monitoring models are used to 

check if transport and machining operations for work- 
pieces are fulfilled in the correct time. This is accom- 
plished based on the DEVS-based control paradigm 
as reviewed above. With each transport and machin- 
ing operation, the monitoring DEVS is activated to 
run through a monitoring cycle. Information about 
the timing constraints of various robot transports and 
various machining operations has to be provided by 
the user and is represented as tabular information in 
the internal models of robots and machines. 

In the following the various parts are described in 
detail. 

Transport command generator 

The transport command generator examines the infor- 
mation about workpieces stored in the internal models 
of the places and selects one to be transported next. 
The selection process has to be done to meet vari- 
ous objectives. First, deadlocks in the manufactur- 
ing cell has to be avoided. Then, throughput should 
be maximized and turnaround time should be mini- 
mized. From the organizing level different strategies 
for scheduling operations are provided, e.g. just in 
time, maximum waiting time, minimum setup, pull 
strategy, first free buffer, or minimum transfer cost 
[2]. A transport command generator which accom- 
plish this is described in detail in [5, 6]. 

Robot internal model 

The internal model of the robot is depicted in figure 
3(a). In correspondence with the real robot, it tra- 
verses different phases which show the current state 
in fulfillment of the robot's transport task. Upon the 
output of a new transport command by the transport 
command generator, the internal model transits from 
phase idle to phase moving. This represents the source 
phase where the real robot moves to the place to pick 
the workpiece. This phase terminates when the work- 
piece is picked up and the sensor of the place switches 
to free. Upon entering the phase moving a monitor- 
ing cycle is started for the source place which checks 
if this sensor reaction caused by picking up the work- 
piece occurs in the right time window. 

After phase moving, the phase transporting follows. 
This phase terminates when the sensor of the destina- 
tion place switches to occupied. The occurrence of the 
sensor reaction in the correct time window is checked 
by a monitoring cycle for the destination place which 
is started when entering phase transporting. The sen- 
sor reaction in the destination place makes the internal 
robot model to transit to its initial state idle which sig- 
nals the transport command generator that the robot 
is ready to accept the next transport command. With 
that transition we start a control cycle in the destina- 
tion place with a time window of 0 to infinity which 

223 



transportammarri bomsource to destination plaoe 

start montoringcydefcrÄWTOe place freeftomsource I 

vfafytin-nmet^^ ___^^    start nxniteiing <^ fa ^iriofen place 

idle'' ^v^^P^>"^g^-~^wilh [rrun-tnmqxrt4ime,nm-tmnsport-time] 

occupiedfrom destination! 
start monitoring cycle for destination 
withPH 

(a) Internal model of roboter 

ttanspra&g^) 

free fiombufferplace Bl 
start monitoring cycle for buffer fi 

with \nvn-worktime,max-work-time] 

occupied 

(c) Internal model of magazine 

oceupiedfixxn buffer piaceß 

busy 

(b) Internal model of machine 

ocapied (reserved 

(d) Internal model of buffer place 

(e) monitDring DEVS model 

Figure 3: Transition diagrams of internal models. 
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means that the machine can load the workpiece for 
processing any time it wants. 

Machine internal model 

Figure 3(b) shows the simple phase diagram of the 
machines. Machine control is not done by the main 
controller but is local in the particular machines. Any 
sensor reaction in a buffer place of a machine which 
does not correspond with a current transport com- 
mand of a robots is considered to be caused by the 
machine or is erroneous. As soon as a workpiece is 
loaded from a buffer place into the machine, which is 
signaled by the sensor switching to free, the internal 
model of the machine transits to busy. A control cy- 
cle is started to check that processing the workpiece is 
finished in the correct time window. When the work- 
piece is put back to the place, the machine internal 
model transits to idle again. 

Buffer place and magazine internal model 

The internal model of magazines is shown in figure 
3(c). It strictly goes hand in hand with the current 
state of the sensor of the magazine. The internal 
model also holds detailed information about the work- 
piece it holds, in particular, it knows the remaining 
operations which have to be performed. 

Because robots as well as machines have access to 
the buffer places of machines, the internal models of 
buffer places are more complicated (Fig. 3(d)). When 
a new workpiece is placed on the buffer by the robot, 
the internal model transits to waiting. When the sen- 
sor goes to free again the workpiece is taken by the 
machine to be processed and the internal model goes 
to reserved meaning that the place is reserved for the 
workpiece currently processed. When the workpiece 
is put back after the operation has been performed, 
the internal model transits to finished and there waits 
that the robot gets the workpiece and transports it to 
the next destination. Upon that, the internal model 
transits to its original state empty. 

Monitoring DEVS model 

For each transition in the internal models of places 
caused by a sensor reaction, a monitoring cycle of the 
respective monitoring DEVS exists. The monitoring 
cycles are started with transitions of robot and ma- 
chine internal models (see Fig. 3(a) and (b)). Figure 
3(e) shows the phase diagram of the monitoring DEVS 
models associated with the places. Initially, the model 
is in phase none which means that no sensor reaction is 
expected. A sensor reaction in this phase means that 
an error incorrect sensor reaction is detected. When 
the monitoring cycle is started with a time window 
\tmin,tmin + twindow] the model transits to phase 

wait to wait the time it takes until the sensor val- 
ues are expected. This time span is given by tmin, 
the minimum time of the time window. An receipt 
of a sensor in that phase means that the sensor reac- 
tion is too early which causes the controller to transit 
to error phase too-early. When tmin time units have 
elapsed without any sensor response, the time window 
begins where the sensors reactions are expected and 
the model will transit to phase window. If the sensor 
is received in that phase, the process run is recognized 
to be correct and the monitoring cycle is terminated. 
The time span for phase window is given by the length 
of the time window twindow. A too-late error occurs if 
the time for phase window elapses without any sensor 
reaction. The error outputs generated in the respec- 
tive error phases can be used by a diagnosing unit to 
decide on the cause of the error. 

4    Simulation Model of FMS 

A simulation system has been developed to vali- 
date the control scheme. It uses to STIMS mod- 
eling and simulation environment [8]. STIMS is a 
new simulation environment which is implemented 
in CommonLisp/CLOS and which allows modular 
hierarchical DEVS and DEVS-based combined dis- 
crete/continuous modeling and simulation. The FMS 
simulation system will take as input a definition of the 
configuration of the FMS and then will synthesize the 
simulation model automatically. The definition of the 
configuration has to contain information of the set of 
machines, robots, magazines together with informa- 
tion which machine buffers and which magazines are 
serviced by which robots, an assignment of operations 
to machines, information of the service times for the 
different operations, and time windows for the differ- 
ent operations. To test the DEVS-based controllers, 
malfunctions, like breakdown of sensors, breakdown 
of machines, losses of pieces by robots etc. are built 
into the models of the real system. The behavior of 
the model can be studied by a simple animation sys- 
tem showing movements of parts, malfunctions and 
the reactions of the DEVS-based controllers. Figure 4 
shows a snapshot of animation of a sample manufac- 
turing system. On the right the states of the internal 
models are listed. 

5    Summary and Outlook 

The paper presented an approach for monitor- 
ing operations of flexible manufacturing systems 
which is based on the DEVS-based intelligent control 
paradigm. Based on abstract models of real system 
components, the monitoring system is able to detect 
anomalies in the system behavior. 
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Figure 4: Animation of FMS monitoring. 

The work is part of a bigger research project whose 
objective is the development of techniques for auto- 
matic synthesis of intelligent flexible manufacturing 
system controllers. Solutions for several subtasks like 
off-line task and route planning [3], on-line operation 
scheduling [5, 6], on-line strategy determination for 
task sequencing [2], and system operation monitoring 
have been provided. Fault diagnosis and self repair 
capabilities in flexible manufacturing is the topic of 
an ongoing research project. 
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Abstract 

This paper proposes a new methodology for analysis 
of discrete event systems and design of discrete event 
systems controllers. The methodology is based on the 
sound semantics for specification of discrete event sys- 
tems called the DEVS formalism. It introduces con- 
cepts of inverse DEVS and defines controllability of 
discrete event systems expressed in the DEVS formal- 
ism. These two concepts, inverse DEVS and control- 
lability of discrete event systems, play important roles 
in designing a discrete event controller. An example 
for appreciating the concepts is presented. 

1    Introduction 

Discrete event systems (DES) have taken a more 
important part in managing the contemporary world, 
most of which are man-made systems such as multi- 
computer systems, communication networks, traffic 
systems and manufacturing systems. In such a DES, 
computation is done by interactions between compo- 
nents to achieve a given goal. Such a goal can be an 
operation range of system behavior or optimization of 
system performance. An operation range of a DES 
can be specified by a state trajectory which is piece- 
wise constant in time function. In the control system's 
viewpoint, a DES can be divided into two subsystems, 
plant and controller. Thus, the DES control problem 
is as follows. Given a DES plant, design a DES con- 
troller to meet specified objectives. 

»ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights 
reserved. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for 
resale or redistribution must be obtained from the IEEE. For 
information on obtaining permission, send a blank email mes- 
sage to info.pub.permissions@ieee.org. By choosing to view this 
document, you agree to all provisions of the copyright laws pro- 
tecting it. 

Compared to numerous efforts to develop for- 
malisms to specify the discrete event systems, there 
are a few researches on design of a discrete event con- 
troller (DEC). [1] is the first work in the field, where 
a DES plant is specified based on automata theory 
and a discrete event controller is designed based on 
language theory. The essential feature is that a con- 
troller has the desired behavior of a plant with respect 
to objectives. The controller supervises output events 
occurring in the plant and produce required control 
outputs to the plant. 

This paper proposes a framework for specification 
and design of discrete event systems control based on 
the DEVS (discrete event systems specification) for- 
malism [2]. Unlike the methodology based on au- 
tomata theory [1], we base DES controller design on 
the system-theoretic DEVS formalism. DEVS, in na- 
ture, has more information than that of automata in 
specification, especially timing information. It also 
distinguishes state transition into two different ones, 
i.e., internal and external transitions and discrimi- 
nates input events from output events. Our approach 
inherits diverse advantages of the DEVS formalism. 

2    Supervisory control of discrete event 
systems 

Supervisory control [3] is a kind of feedback control 
that supervises the behavior of a discrete event plant 
to control the plant in desired objectives. It is as- 
sumed that the behavior of the plant is known. Thus 
the controller can deduce the current behavior of the 
plant from observed output events. Then it compares 
the behavior with desired one and generates appro- 
priate next control outputs. A design problem of a 
discrete event controller is as follows: given a discrete 
event system with known dynamics and control objec- 
tives, design a discrete event controller that satisfies 
the control objectives. 
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Figure 1: Supervisory control of a discrete event sys- 
tem 

Fig. 1 shows concepts of supervisory control. To 
design a discrete event controller, we have to spec- 
ify 1) dynamics of a plant 2) controlled behavior of 
the plant that satisfies the control objectives. In this 
paper, we specify plant behavior based on the DEVS 
formalism. We call it a plant DEVS. From informal 
control objectives and the plant DEVS, we obtain a 
desired state trajectory that satisfies the control ob- 
jectives. A discrete event controller would be obtained 
by transformation of the desired state trajectory into a 
DEVS model. Connecting the plant with the designed 
controller through proper interfaces, called ports, re- 
sults in an overall control system satisfying the desired 
system behavior. We will describe concepts and design 
steps in more detail in the following sections. 

3    The DEVS formalism 

This section briefly reviews the DEVS formalism 
and introduces a graphical notations representing the 
DEVS formalism. 

3.1     Review of the DEVS formalism 

The DEVS formalism specifies discrete event mod- 
els in a hierarchical, modular form. Formally, an 
atomic model M is specified by a 7-tuple : 

M =< X,S,Y,Sint,6ext,X,ta > 

where 

X : input events set; 
S : states set 
Y : output events set; 
&ext '■ Q x X —>• S : external transition function; 
bint '■ S —»■ S : internal transition function; 

Q = {(s, e)\s G S, 0 < e < ta(s)} : total states; 
A : S —► Y : output function; 
ta : S —> Real : time advance function. 

The four elements in the 7-tuple, namely, 6int, Sext, A, 
ta are called characteristic functions, and S is set of 
state variables, X(Y) is set of input(output) events. 
An atomic model represents a corresponding discrete 
event process and connections between processes is 
represented by a coupled model DN 

DN =< X, Y, M, EIC, EOC, IC, SELECT > 

where 

X : input events set; 
Y : output events set; 
M : DEVS components set; 
EIC C DN.IN x M.IN : external input 

coupling relation; 
EOC C M.OUT x DN.OUT: external output 

coupling relation; 
IC C M.OUT x M.IN : internal coupling relation; 
SELECT : 2M - 0 ->• M: tie-breaking selector. 

The three elements, EIC, EOC, IC means the con- 
nections between set of models M and input, output 
ports X, Y. SELECT function acts as a tie-breaking 
selector. 

3.2    Dynamics of a DEVS model 

The dynamics of a discrete event systems specified 
in the DEVS formalism can be interpreted by the ab- 
stract simulator in [2]. We mention it briefly here and 
define some terminologies to be used in the following 
sections. The dynamics of an atomic DEVS is deter- 
mined by a sequence of internal or external transitions. 
An internal transition is spontaneous after fulfilling its 
current activity and an external transition is caused by 
an external event. 

An atomic DEVS M< spontaneously changes its cur- 
rent activity(or state) s,- to ^««/(SJ) after completing 
the activity at the predefined sojourn time ta(s{). Just 
before the transition, M,- produces an output event 
A(sj). The stimulus that makes this transition to oc- 
cur is generated at which an activity has just com- 
pleted. We call the stimulus a * event. It's not visible 
to us and other DEVS models, so we call it a hid- 
den event. This transition, * —► A(s») —> ö,„((SJ), is 
called an internal transition. From the above state- 
ment, we can define internal transition relation for a 
DEVS Mr as follows: Tri,-„« = {(sj,p!m, SJ)\(S{,SJ) G 
Sr,int, P]-m = Ar(sj) G Yr,S{ G Sr}. 
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An output event pilrrii resulting from an internal 
transition of M; is converted into an input event pirn 
of another DEVS Mj connected with M{ through 
the port p. If Mj is ready to receive the in- 
put event pirn at the current state Sj, it changes 
its state into Sext(sj,p1m). We call the transition 
an external transition. We define external transi- 
tion relation of a DEVS Mr as follows: Tr<ext = 
{(si,p?m, Sj)\(si,p?m, Sj) G 6r>ext,Si G Sr}. 

We can see that an external transition of a DEVS 
is caused by an output event resulting from an in- 
ternal transition of another DEVS stimulated by the 
* event. That is, with the * event, two DEVSs are 
changing their states at the same time. This phe- 
nomenon is concurrency. We deal with concurrency 
later in more detail. A pair of input and output events, 
Pilrrii, pj?m,j, that make concurrency satisfies the fol- 
lowing properties: dom(p) = dom(pi) = dom(pj) and 
m = mi = m,j, where dom(p) is the domain of port 
p that messages can reside. We call the pair a dual 
event. 

internal transition consisting of X(s) —*■ 8int. An out- 
put event is specified on a dotted line by an output 
port followed by a message name with output oper- 
ator '!'. For example, an output event outlm means 
that a message m is output at the port out. Similarly 
an input event is specified on a solid line by an input 
port followed by a message name with input operator 
'?'. An input event inlm means that a message m is 
input at the input port in. The change of values of 
state variables are enclosed by '[' and ']'. If it is on 
the dotted (solid) line, it represents a state transition 
specified by the internal (external) transition function 
&int {^ext) of DEVS, respectively. Optionally, transi- 
tion condition g can be specified after input or output 
event with a seperator notation @. It is natural that 
a time advance in a state be attached to the state 
node because it represents a sojourn time to fulfill its 
activity. An empty output event is denoted by 0. 

4    Concurrency 

3.3    Graphical notations 

An atomic model representing a process is enclosed 
by a box with input and output ports in the wall. Such 
Ports are entrances or exits for messages on its own to 
represent X and Y in DEVS. Combinations of ports 
and messages by ?(input) and !(output) represent in- 
put events on X and output events on Y, respectively. 
Each state variable in the state set S of DEVS is rep- 
resented by a small box in the atomic model and has 
its name in it. The behavioral description of an atomic 
model is represented by an activity transition diagram 
or an state transition diagram, which consists of nodes 
and two-colored edges. Each node represents an activ- 
ity or a state, dotted arc denotes an internal transition 
and solid arc an external transition.   In Fig.   2, (a) 

p'.m 

U—£ 

O— O 

(a) *„,(«,-,pirn) = Sj 

\{si) — p\m 

&- 
SJ 

►o 

o-- «o 
(b)   A(s;) = p\vn -* 6int(si) = Sj 

Figure 2: graphical notation:  (a) external transition 
(b) internal transition 

represents an external transition and (b) denotes an 

Consider two atomic models M, and Mj, Mi = 
<   Xi,oitYi,   OijntjOi^xt, Ai,ta.i   >,   Mj    =<   Xj,Oj, 
Yj,Sjtint,8jtext,\j,taj >. Assume that Mj||Mj be a 
composition of Mj and Mj. Let state transitions of 
Mi,Mj be (qi,a,n) € (2J - Tj) = Ti,int U Ti>exU 

(Qj,b,rj) € (Tj -Ti) = Tiiint U Tjiext. Then state 
transition relation T of the composition M;||Mj has 
the following transition rules: 

(1) if a — p\m and b ^ p?m then 
-* {{<li,<lj),P]-m, (n, qj)) £ T, for all qj € Sj 

(2) if b = p\m and a ^ plm then 
-* ((ft, ?i),p!"i, (qit rj)) G T, for all q{ G Si 

(3) if (a = p\m and b = pirn) or (b — p\m and 
a = pirn) then 

(4) No other transition in T 

(3) means if a, b is dual event and connected, then 
both are transiting concurrently. That is, if an out- 
put event resulting from an internal transition of one 
model becomes an input event of the other waiting 
for it, then the two models changes their states con- 
currently. This is called concurrency and the event 
communicating the message is called concurrent event, 
denoted by p#m. (1) and (2) represent the cases even 
if an output event of one model is produced but the 
other one is not waiting for the event in its current 
state. In this case, the output event takes no effect on 
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the other model and disappeared. We call the disap- 
peared event a dangling event. 

The concurrency rules described above will be used 
to analyze the dynamics of a system consisting of sev- 
eral subsystems. 

5    Controllability and inverse DEVS 

Controllability of a discrete event system specified 
in DEVS is exploited to check if a discrete event con- 
troller satisfying a desired state trajectory exists or 
not. If controllable, concepts of inverse DEVS would 
transform the desired state trajectory into the behav- 
ior of a discrete event controller. In this section, we 
define these two concepts. 

5.1 Controllable DEVS 

Let T be the global state trajectory of a discrete 
event plant M =< X,S,Y,8int,8ext,\,ta >. Let 
ST C T be a desired state trajectory. 

Definition 1 (strong controllability) 
A desired state trajectory ST is said to be strongly 
controllable if the following condition is hold. For all 
Si on ST, if 3 Sj = 5jni(sz), then Sj is on ST. A 
discrete event plant is said to be strongly controllable 
i/V ST C T, ST is strongly controllable. 

Definition 2 (weak controllability) 
A desired state trajectory ST is said to be weakly con- 
trollable if the following condition is hold. For all s» 
on ST, if 3 Sj — 6int(s{) not on ST, then 3 at least 
one Sjt = 8ext(si,e,p?m) such that sj, is on ST and 
e < ta(si). A discrete event plant is said to be weakly 
controllable ifV ST C T, ST is weakly controllable. 

Note that controllability in Def. 1 does not depend 
on time, but Def. 2 is time-dependent. 

5.2 Inverse DEVS 

Consider two DEVS Mi, Mj operating concur- 
rently. If M,-||Mj is running with transitions caused 
only by concurrent events (see Section 4), then we call 
Mi(Mj) an inverse DEVS of Mj(M2), respectively. 

Definition3 (inverse DEVS) Mi(Mj) is said to 
be an inverse DEVS of Mj(M{) iff the following prop- 
erties are hold: 

(i) State set morphism 

Oi      *" Oj 

(ii) Dual I/O events set 

Xi = {p'!m\p\meYj} 

Yi = {p\m\p1m£Xj} 

(iii) Dual transition relation 

Ti,int = {(q,plm,r)\(q,p?m,r) £ Tj<ext} 

Ti,ext - {(q,P?m,r)\(q,p\m,r)eTjiini} 

(i) states that there is one-to-one correspondence be- 
tween states of two DEVSs. (ii) indicates that input 
events of one would be converted into output events 
of the other, and vice versa, (iii) denotes that an in- 
ternal transition of one DEVS would be changed to an 
external transition of the other. 

A transformation from an atomic DEVS M; to Mj 
satisfying the above properties is called an inverse 
DEVS transformation. The concepts of inverse DEVS 
is used to obtain a discrete event controller from a 
desired controlled state trajectory. 

6    Design methodology for DEC 

A methodology for design of a DES controller bases 
on the DEVS formalism and the concepts of inverse 
DEVS. Fig. 3 shows the steps for design of a dis- 
crete event controller. First, a plant is specified in the 
DEVS formalism, which consists of one or more atomic 
models that are connected each other. We can obtain 
a global state space at this step, from which we shall 
extract a controlled state trajectory satisfying given 
objectives. We call it a desired state trajectory of the 
plant. The next step is to check the controllability 
of the desired state trajectory by the controllability 
definition defined in the paper. And the supervisor 
DEVS transformation described above is used to di- 
rectly transform the desired state trajectory to a DES 
controller. After the transformation we relabel states 
of the controller after suitable state reduction. Finally 
we can obtain a controller. Note that if a desired state 
trajectory of a plant is given, then we can directly ob- 
tain a corresponding DES controller from it using the 
inverse DEVS transformation. 

7    A simple example: control of water 
supply system 

We will clarify the approach described previous sec- 
tions by a simple example of a water supply system. 
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Figure 3: Design steps for a discrete event controller 

Following subsections show how each step in Fig. 3 
performs through the example. We use the graphi- 
cal notations rather than set-theoretical notations, for 
graphical notations show more clear model descrip- 
tions. 

7.1 Problem description 

An informal problem description is a starting point 
for the design of a controller for the water supply sys- 
tem. In Fig. 4, a water supply plant consists of two 
subsystems, a water pump and a water tank. In the 
water tank, there are two water level sensors (low, 
high) and a water pipe through which water flows in. 
The water pump takes electric energy from outside 
world, which can be controlled by a ON/OFF switch. 
It fills the water tank through the water pipe. 

The purpose of the system is to keep the water level 
between the low and high sensors. 

7.2 DEVS model of the plant 

Specification of a plant in the DEVS formalism is 
the first step to design a discrete event controller. In- 
put and output events, state variables, output func- 

Electric 
Power 

water 

ON/OFF 

water 

water 
level 

filled 

under filled 

high 
sensdr 

low 
sensdr 

PUMP WATER TANK 

Figure 4: Water pump plant 

tion, internal and external transition functions and 
time advance function should be identified. 

To specify a plant in the view of a discrete event sys- 
tem, we have to identify events occuring in the plant. 
The events set of the water pump consists of ON/OFF 
switching events of the motor, and events that water 
starts and stops to flow out through the water pipe. 
The events set of the water tank consists of the low 
sensor ON/OFF, the high sensor ON/OFF, and events 
that water starts and stops flowing in through the wa- 
ter pipe. 

Fig. 5 shows a DEVS model of the plant. If the wa- 
ter pump is turned on ("pw"?ON), it starts pumping 
water through the water pipe ("w'MWSTRT). If it is 
turned down ("pw"?OFF), it stops pumping and the 
flow of water will be stopped ("w'MSTOP). Initially, 
the water tank changes INIT state into BS, FS, VS 
according to the initial water level producing appropri- 
ate sensor signals to outside world. The letter B means 
under-filled, F filled, V over-filled and the second letter 
S means that the in-flow of water is currently stopped. 
While the water level lowers, corresponding level sen- 
sor signals would be generated. With water flowing 
in, the state is changed into BF, FF, VF generating 
proper sensor signals. If the in-flow is continued even 
though the water level reaches far over the high sensor, 
the water tank eventually overflows (TOP). In the op- 
posite case, the water level would reach to the bottom 
(BOT). 

The two subsystems, the water pump and the wa- 
ter tank, are connected through the pipe ("w"). The 
dynamics of the composite subsystem can be obtained 
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Figure 5: Specification of the water pump plant 

by concurrency analysis. 

7.3     Controlled state trajectory 

The next step is to get a global state transition di- 
agram (GSTD) from the plant specification. It may 
be obtained by a Cartesian product of state diagrams 
of each subsystem. Alternatively, if we use the con- 
currency analysis, we can obtain far less number of 
states. In the case of no connection, there would be 
4 x 9 = 36 states in the example plant. However, there 
is one connection("w") and we obtained a GSTD of 
the plant with only 17 states by the concurrency anal- 
ysis. 

Meanwhile, the informal description of control ob- 
jectives is to be re-described based on the DEVS model 
of the plant. Let a controlled state trajectory be K, 
and s on GSTD be (P.s, W.s), where P.s denotes a 
state of the water pump and W.s a state of the water 
tank. Then K should satisfy the following conditions: 

1. If 3 (x,  BS), then eventually (SW,  VS), where 
x means don't care. 

2. 3 no s such that (a:,BOT) or  (z.TOP). 

3. hysteresis:   3 no transition between (a;,FF) 
and (a:,FS) 

Now we can extract a controlled state trajectory 
from GSTD and the control objectives. Fig. 6 is the 

__  /Mpw"?0 

-^«»0----™""-<i..r 
(PM.BF) (PM.FF) (PM.VF) 

(PM.TOP) 

Figure 6: desired state trajectory of the plant 

desired state trajectory (In the figure, we exclude tran- 
sition 1' and 2' from the desired state trajectory, which 
were added for convenience to explain controllability.). 
Initially, the state is changed into (SW,BS) after a few 
internal transitions. Then the motor should be ON, 
which is followed by a concurrent event "w"#WSTRT. 
If the water level reaches to the over-filled region, the 
motor should be OFF. Then, water stops flowing in. 
By internal transitions, the water level is to be lowered 
again, and then the motor should be ON, and so on. 
This state trajectory satisfies the three objectives. 

The next step is to check if the desired state tra- 
jectory is controllable (strongly controllable). Unfor- 
tunately, there are two internal transitions into states 
not on the desired state trajectory (1', 2'). We can 
not control these transitions to occur because they are 
spontaneous. Thus it is impossible to design a discrete 
event controller satisfying the desired state trajectory. 

However, if water can be supplied or stopped be- 
fore those states are reached, then the two internal 
transitions, 1' and 2' can be controlled not to occur. 
It means that the controls depend on time. By Def. 
2, we know the desired state trajectory is weakly con- 
trollable. Usually, controllability means strongly con- 
trollable unless explicitly specified. 

In the following section, we assume that the time 
interval necessary to stop the water flow is sufficiently 
small, compared to the time interval that the water 
tank overflows from the position of the high sensor. Of 
cause, we assume that the opposite case is also true. 
Then, we know that the internal transitions 1' and 
2' could not occur physically and be eliminated from 
the plant DEVS. Thus, the desired state trajectory is 
controllable with the assumption. 
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Figure 7: Design of a DES controller 

7.4     Getting a discrete event controller 

Until now, we specified a discrete event plant in 
DEVS, obtained GSTD, re-described the control ob- 
jectives based on the plant DEVS, and got a desired 
state trajectory satisfying the control objectives. Now, 
we can get a discrete event controller from the trajec- 
tory using inverse DEVS transformation. 

Before the transformation, we can reduce the states 
of the desired state trajectory. The upper part of Fig. 
7 is obtained by suitable state reduction from the tra- 
jectory in Fig. 6. 

A discrete event controller is obtained by inverse 
DEVS transformation to the desired state trajectory 
with reduced states shown in the upper part of the 
Fig. 7. The lower part of Fig. 7 shows the discrete 
event controller after the transformation. Note that 
the transformation is so straightforward and intuitive. 

The three subsystems, the controller, the water 
pump, and the water tank are to be connected through 
ports that have the same name, which results in an 
overall system. If we analyze the dynamics of the over- 
all system, we know that it follows the desired state 
trajectory only with concurrent events. 

8    Conclusion 

The paper proposes a new approach for analysis of 
discrete event systems and design of discrete event sys- 
tem controllers based on the DEVS formalism. Con- 
trollability and concept of inverse DEVS are defined 
and introduced. These two concepts play key roles in 
designing a discrete event controller. 

A DES controller designed under the framework 
will be simulated in a straightforward way using 
DEVSim++[4] to analyze the performance of the sys- 
tem. But it was omitted here. 

More formal description of the methodology and 
extension to timed systems are remained as further 
research. 
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Abstract 

DEVSim++ is a C+ + based, object-oriented mod- 
eling/simulation environment which realizes the hier- 
archical, modular DEVS formalism for discrete event 
systems specification. This paper describes a method- 
ology for performance modeling and analysis of a 
distributed access network system under development 
within the DEVSim++ environment. The methodol- 
ogy develops performance models for the system using 
the DEVS framework and implement the models in 
C++. Performance indices measured are the length 
of queues located at connection points of the system 
and cell waiting times with respect to QoS grades for 
a network bandwidth of 155 Mbps. 

1    Introduction 

ATM technology based B-ISDN has been expected 
as a next generation high speed communication. The 
technology will provide end users with a variety of 
public services which satisfy different service require- 
ments, traffic characteristics, and geographical cover- 
age. An interface technique between end users and 
ATM local exchanges is one of major issues for the 
ATM network. The reference model defined by ITU-T 
SG13 consists of three area networks of B-ISDN UNI, 

»ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights 
reserved. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for 
resale or redistribution must be obtained from the IEEE. For 
information on obtaining permission, send a blank email mes- 
sage to info.pub.permissions@ieee.org. By choosing to view this 
document, you agree to all provisions of the copyright laws pro- 
tecting it. 

namely, Customer Premises Network, Access Network, 
and Transport Network[2]. We have proposed a dis- 
tributed access network architecture as an introduc- 
tory phase of B-ISDN [5], which covers urban areas 
having various traffic characteristics and service re- 
quirements. The proposed system now is under devel- 
opment. 

Performance modeling and simulation analysis are 
essential to optimizing system parameters for new de- 
sign as well as existing ones. Especially, as complexity 
of systems is increased, simulation modeling may be 
the only means to evaluate performance of such sys- 
tems. ATM networks are an example of such complex 
systems[l][3]. 

Discrete event simulation has been widely used as 
a performance evaluation means in many areas of sys- 
tem design including communication networks. In 
such performance study, simulation models are much 
more reliable and accurate than analytical ones, which 
may omit some aspects of the behavior of systems un- 
der design. In particular, when temporal issues of 
systems are significant, discrete event modeling and 
simulation can be considered the best solution. 

The DEVS formalism developed by Zeigler sup- 
ports specification of discrete event systems in hierar- 
chical, modular manner[6]. DEVSim++ is a realiza- 
tion of the DEVS formalism in C++, which provides 
modelers with facilities for modeling systems within 
DEVS semantics and simulating DEVS models in hi- 
erarchical fashion[7]. 

This paper describes performance modeling and 
simulation analysis for the distributed access network 
system under development. The modeling method- 
ology is based on Zeigler's DEVS formalism to ex- 
ploit compatibility between the hierarchical, modu- 
lar model specification and the hierarchical distributed 
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access network system architecture. 
We organize this paper as follows. Section 2 

presents a brief review of the DEVS formalism and 
DEVSim++ modeling and simulation environment. 
Section 3 describes characteristics of the distributed 
access network system architecture. Development of 
a simulation model for the distributed access network 
system is given in Section 4 and simulation results in 
Section 5. We conclude this paper in Section 6. 

external output coupling relation; 
IC C M.OUT x M.IN : 

internal coupling relation; 
SELECT : 2M - 0 -> M : tie-breaking selector, 

where the extensions .IN and .OUT represent the 
input ports set and output ports set of 
respective DEVS models. 

2    DEVS Formalism: A brief review 

A set-theoretic formalism, the DEVS formalism, 
specifies discrete event models in a hierarchical, mod- 
ular form. Within the formalism, one must specify 1) 
the basic models from which larger ones are built, and 
2) how these models are connected together in hierar- 
chical fashion. A basic model, called an atomic model 
(or atomic DEVS), has specification for dynamics of 
the model. An atomic model AM is specified by a 
7-tuple [Zeg84]: 

AM =< X,S,Y}6int,8ext,X,ta> 

DEVSim-t—|- is a realization of the DEVS formal- 
ism in C++. The DEVSim++ environment supports 
modelers to develop discrete event models using the 
hierarchical composition methodology in an object- 
oriented framework. The environment is a result of the 
combination of two powerful frameworks for systems 
development: the DEVS formalism and the object- 
oriented paradigm. 

3    Characteristics   of Distributed 
cess Network System 

Ac- 

X : input events set; 
S : sequential states set; 
Y : output events set; 
&int  '■ S —► S : internal transition function; 
f>ext  '■  Q x X —> S : external transition function; 
A : S —► Y : output function; 
ta : S —> Real : time advance function, 

where Q = {(s, e) | s G S, 0 < e < ta(s)} : 
total state of M. 

The second form of the model, called a coupled 
model (or coupled DEVS), tells how to couple (con- 
nect) several component models together to form a 
new model. This latter model can itself be employed 
as a component in a larger coupled model thus giving 
rise to construction of complex models in hierarchical 
fashion. A coupled model CM is defined as [Zeg84]: 

CM =< X, Y, M, EIC, EOC, IC, SELECT > 

X : input events set; 
Y : output events set; 
M : DEVS components set; 
EIC C CM.IN x M.IN : 

external input coupling relation; 
EOC C M.OUT x CM.OUT : 

A distributed access network system is an interface 
system between the local exchange and subscribers. 
The system consists of a head node, a collection of 
rings, each consisting of a collection of ring nodes. 
Each ring node is connected to a number of sub- 
scribers. 

The head node mainly performs a traffic switch- 
ing among ring nodes and local exchanges. Each link 
of the head node is based on a STM-1 frame with 
155 Mbps bandwidth. The ring node mainly func- 
tions multiplexing the traffic from subscribers to the 
head node as well as distributing the traffic from the 
head node to subscribers through the ring. The traf- 
fic from subscribers is based on ATM cells with the 
speed of DS-1, DS-3 or STM-1 depending on appli- 
cations. For the transmission speed, we consider to 
transform the bandwidth into a number of cells. The 
STM-1 frame is recommended to have 260 x 9 Bytes 
without overheads. One ATM cell has 53 Bytes with- 
out overheads. Therefore 44 ATM cells are included in 
a STM-1 frame. The transmission mechanism in the 
distributed access network system is shown in Figure 
1. A cell-by-cell mechanism is used for adding from 
and dropping into subscribers in the ring node and 
switching in the head node. But the transmission on 
the ring and the network is based on the STM-1 frame. 
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4    Models Development 

This section describes modelling system architec- 
ture and shows development of a distributed access 
network system simulation model in DEVSim+-h 

4.1     Modeling Overview 

The overall distributed access network system ar- 
chitecture is shown in Figure 2. At the top level, the 
distributed access network system consists of two sub- 
systems, a HEAD and a RING. Having the (n x n) 
switching function for traffic, the HEAD can connect 
n RING's and communicate with n Local Exchange 
sites. Each RING comprise a set of identical Ring 
Nodes (RN's), each of which has 4 inputs and 4 out- 
puts for communicating with subscribers. 

RING rdO 
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rd    ruf rdl   ru]                rdj   ru] ruO loutO 
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4444 444 4444- 

Figure 2: The System Architecture 

A RN, as shown in Figure 3, consists of a ring 
access (RA) which accesses the ring to add or drop 
cells, UPWARD for concentrating cells sent from 4 
subscribers into RA and DOWNWARD for distribut- 
ing cells dropped from RA into 4 subscribers. 

RA consists of two atomic models, DA — to — 2 and 
M-2 — to — 1, as shown in Figure 4. DA — to — 1 
forwards traffic to the ring if there is no cell dropped 
into local subscribers. Otherwise, DA — to — 2 drops 
the cell to local subscribers. Likewise, M-2 — to—1 
forwards traffic, arrived from DA — to — 2, into the 
ring if there is no cell to add on. Being ready to add 
on the ring, M_2 — to— 1 inserts a cell being ready into 
the empty slot on the frame. If there is no empty slot 
on the frame, M-2 — to—I forwards with no adding. 

rd 

RA 

D l-to-2 
forward 

M 2-to-l 

drop      ack req_add 

Figure 4: Coupled Model of RA 

HEAD also includes RA which accesses the ring. 
RA in HEAD has input and output channels to receive 
and transmit the cell stream from and to SWITCH. 
On the other hand, RA in RN has I/O channels to 
add and drop a cell from and to subscriber. 

4.2     Models Development in DEVSim++ 

Regarding models development in DEVSim++, we 
describe development of an atomic model, M-2—to— 1, 
and a coupled model, RA, in DEVSim++. 

4.2.1     Atomic Models 

The atomic model M-2 — to ■ 
DEVS semantics as follows: 

1 can be represented in 
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X = {?forward, ?ack} 
Y = {!ru, !req_add} 
S — { phase | phase £ 

{WAIT, ACTIVE, SEND, ADD}} 

dext: dest((WAIT), ?forward) = ACTIVE 
dext(A.DD, ?ack) = SEND 

dini: c/in<(SEND) = WAIT 
dint(ACTIVE) = ADD 

ta : ta(ADD) = infinity 
ta(WAIT) = infinity 
ta(ACTIVE) = active-time 
ta(SEND) = sending-time 

0 : 0 (ACTIVE) = !req.add 
O(SEND) = !ru 

Figure 5 shows the state transition diagram of 
MJl-to-l. MJL — to—l has two inputs, forward and 
ack, and two outputs, ru and req_add. When an input 
arrives at the port "?forward", MJ2 -to-I transits 
into the phase ACTIVE and stays there for active_time 
units. Then it outputs on the port "!req_add" and 
then transits to the phase ADD. At the phase ADD, 
it waits for an input "?ack" to be arrived. On receiv- 
ing the input "?ack", M_2-to-l transits to the phase 
SEND and stays there for sending-time units. After 
then it returns to the phase WAIT after generating an 
output on the port " !ru". 

?forward 

?ack 

!req_add 

Figure 5: State Diagram for M_2-to-l 

The followings are codes for implementation of 
MJl -to-I within DEVSim++. 

const int M21_ATV-TIME = 0; 
const int M21-SND-TIME = 0; 
enum {WAIT, ACTIVE, ADD, SEND}; 

// external transition function 
void m21jext_transfn(State_vars& s, 

const timeTypefe, const Messages^ x) 

if (*x.get_port() == "forward") { 
if (s.get_value("phase") == WAIT) { 

s.set.value("phase", ACTIVE); 
s.set-value("size", x.get_value()); 

} else 
exit(l); 

} else if (*x.get_port() == "ack") { 
if (s.get_value("phase") == ADD) { 

int global, local; 
global = s.get_value("size"); 
local = x.get_value(); 
s.set.value("phase", SEND); 
s.set_value("size", global + local); 

} else 
exit(l); 

} else 
exit(l); 

} 

// internal transition function 
void m21 Jnt_transfn(State_vars& s) 

if (s.get-value("phase") == ACTIVE) 
s.set_value("phase", ADD); 

else if (s.get_value("phase") == SEND) 
s.set_value("phase", WAIT); 

else 
exit (4); 

} 

// output function 
void m21jDutputfn(const State_vars& s, 

Messages^ message) 

{ 
int total; 
if (s.get_value("phase") == ACTIVE) { 

total = s.get_value("size"); 
message. set("req_add", 

MAXCELLS - total); 
} else if (s.get-value("phase") == SEND) { 

total = s.get_value("size"); 
message.set("rout", total); 

} 
} 

// time advance function 
timeType m21_time_advancefn(const State_vars& s) 

if(s.get_value("phase") == ACTIVE) 
return M21-ATV-TIME; 

if(s.get_value("phase") == SEND) 
return M21.SND-TIME; 

else 
return infinity; 

} 

238 



// routine for creating the model 
void create_m21(Atomic_models& m21) 

String* name = m21.get_name(); 

m21 .set-sigma(infinity); 

m21.set-state_var(3,"phase","name","size"); 
m21.set^tate-value("phase", WAIT); 
m21.set-state_value("name", name); 
m21.set-state_value("size", 0); 

m21.setjext_transfn(m21jext_transfn); 
m21.setint_transfn(m21int-transfn); 
m21.set-outputfn(m21_outputfn); 
m21.set_time_advancefn(m21_time_advancefn); 

} 

4.2.2    Coupled Models 

The coupled model RA, shown in Figure 4, consists of 
three atomic models. The coupled model RA can be 
represented in DEVS semantics as follows: 

DN = <X, Y, M, EIC, EOC, IC, SELECT > 
X = {?nq, Ird} 
Y = {\ru, \drop} 
M = {DA -to-2, M-2 - to - 1} 

EIC = {{RA.rd, DA -to- 2.rd), 
(RA.ack, M-2-to-Lack)} 

EOC - {(DA -to- 2.drop, RA.drop), 
(M-2 — to - l.reqjidd, RA.req.add), 
(M-2 -to- l.ru, RA.ru] 

IC = {(DA -to- 2.forward, MJ2 -to- 1.forward)} 

The following codes show DEVSim++ implemen- 
tations for the coupled model RA. 

void create_D12(Atomic_models& D12); 
void create_M21(Atomic_models& M21); 
void create_GEN(Atomicjnodels& GEN); 

void make_RA(Coupled_models& ra) 

{ 
Atomic_models& dl2 = 

*(new Atomic_models("D12")); 
Atomic_models& m21 = 

*(new Atomic_models("M21")); 
create.D12(dl2); 
create_M21(m21); 

ra.addinports(2, "rd", "nq"); 

ra.add_outports(2, "ru", "drop"); 
ra.add_children(2, &dl2, &m21); 
ra.add.coupling(&ra, "rd", &dl2, "rd"); 
ra.add_coupling(&ra, "ack", &m21, "ack"); 
ra.add-coupling(&m21, "ru", &ra, "ru"); 
ra.add_coupling(&dl2, "forward", &m21, 

"forward"); 
ra.add_coupling(&dl2, "drop", &ra, "drop"); 
ra.add_coupling(&;m21,"req-add", &ra, 

"req^dd"); 

5    Simulation Experiments and Results 

5.1     Simulation Experiments 

Two goals for simulation experiments are as follows: 

1. to foresee the maximum lengths of queues at: IN- 
BUF, CELLPOOL, RA and SWITCH. These give 
us important data for cell waiting status during 
transmission. 

2. to estimate average waiting times of cells with 
respect to QoS grade levels, which are waiting in 
CELLPOOL. 

For the experimentations, several cases of sub- 
scribers having different average bandwidths are ap- 
plied. Since the transmission speed through a RING 
or a SWITCH is upto 155Mbps, if 4 RNs are connected 
to one RING and 4 subscribers are included in a RN, 
about 10 Mbps in average can be given to one sub- 
scriber. Maximum queue lengths and average waiting 
time are measured for various subscribers' bandwidths 
ranging from 5Mbps to 100Mbps. 

A summary of assumptions for simulation modeling 
is as follows: 

1. 90% of the traffic from a RING is routing 
to the network through the SWITCH. And the 
rest(10%) is forwarding back into the same RING, 
which is destined to the subscribers connecting to 
the same RING. 

2. The traffic given at any port of the SWITCH 
are divided and routed to the rest ports of the 
SWITCH with equal probability. 

3. Any RN has statistically the same portion of traffic 
sent from or added into a RING. If a RING in- 
cludes 4 RNs, 25% of the traffic sent from a RING 
are dropped to be routed into destined subscriber. 
The rest are forwarded into the next stage of a 
RN. During forwarding, a new traffic from sub- 
scribers is added on, which has the same proba- 
bility as dropping. 
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For simulating cell loss rate of 10-12, more than 
1012 cells should be generated. A couple of techniques, 
such as importance sampling[8] or the generalized ex- 
treme value theory[9], has been proposed to deal with 
such a problem. 

One way is that the value for numbers of cells, in- 
stead of cell by cell, are generated and distributed with 
given probability density functions. It is an easier way 
to handle event messages as well as to implement sim- 
ulator. Instead of counting how many events(" cells") 
waiting in queues, we just consider the integer value 
calculated in queues. 

We employed a token passing based simulation 
scheme. In the scheme, only one token traverses each 
RING. Each token consists of a number of slots. In- 
deed, a slot means a message. When a model receives 
a token, it can remove/insert messages from/into the 
token. But, the total number of slots in a token can- 
not exceed a bound. We have already known that 44 
slots exist in a frame(125/is) of an 155Mbps RING. 
It is natural that a token is responded by n*44 slots. 
For simplicity, we set n to 7. Consequently, a token is 
composed of 44*7 slots. 

The relationship between physical and virtual times 
can be acquired easily. Let the RING turnaround 
time in virtual time be %. Thus, one unit in virtual 
time corresponds to 125*7/Tr \is. Now, we should 
discuss about how we can design subscriber models 
with given average and maximum bandwidths. Con- 
sider that in a RING only one subscriber is active 
and others are inactive. Since 155Mbps corresponds 
to 44*7 cells during Tr, bandwidth of u corresponds to 
44*7/155*w cells. For reducing simulation time com- 
plexity, we assume that a subscriber generates cells in 
a burst manner. Therefore, if a subscriber generates 
a cells at an instance, bandwidth of w corresponds to 
44*7/155*w/a times of burst output generation fre- 
quency during Tr. Then, the intergeneration time ta 
is defined as: 

ta 
N 

*# * *■      7 * 44 155       a 

155      N*a 
* . 

L) 

We set that Tr = 1 and a = 44 * 7. Consequently, 

ta 
155 
u 

Assume that the request rate of a subscriber has 
a uniform distribution and the maximum and aver- 
age bandwidths of the subscriber is u)max and uavg, 
respectively. Then the subscriber can be modeled sta- 
tistically as: 

U[^,2*™ 155 
uavg Wr, 

where U[a, b] denotes a uniform random number 
generator in [a,b]. 

5.2     Simulation Results 

Table 1 shows maximum queue lengths for the given 
subscriber's average bandwidths. Each number means 
how many cells are waiting in the queue. In other 
words, it gives the queue length which should be im- 
plemented to avoid cell loss. 

Table 1: Maximum Queue Length 

wa„j(Mbps) inbuf cellpool head switch 

5 308 655 30 280 
10 308 3552 171 343 
30 770 36334 282 347 
50 7392 45584 263 345 
100 27643 45815 319 340 

Wma:c(Mbps) =  155. 

The simulation results for average waiting times 
with respect to QoS grade levels are shown in Table 2. 
Note that the traffic with lower QoS grades can rarely 
be served for. 

Table 2: Average Waiting Time 

u)avg(Mbps) QoSO QoSl QoS2 QoS3 

5 1.96  1.72  1.66 1.61 
10 20.79  7.05  4.56 2.97 

30 oo   oo  64.60 7.47 

50 CO      CO      CO 33.64 

100 OO     CO     oo 68.17 

u. mM;(Mbps) = 155. 

6    Conclusion 

Performance modeling and analysis for the dis- 
tributed access network system under development 
has been discussed. The objectives of modeling are 
not only to analyze dynamic traffics in a transient 
state but also to make decisions of architectural pa- 
rameters such as queue lengths. By consideration of 
the distributed access network system architectural 
characteristics, we employ Zeigler's DEVS formalism 
and develop model within DEVSim++ environment. 
As results of simulation experiments in DEVSim++, 
we analysis the length of queues located in connec- 
tion points. Also we analysis cell waiting times with 
respect to QoS grade levels, which are for the cells 
waiting for to be added on a network. 

Such results help us to decide the maximum lengths 
of queues to avoid cell loss. We can observe that a 
queue in the SWITCH is rarely dependent of the sub- 
scriber's bandwidth. But queues at the other locations 
in the RING is much dependent of each subscriber's 
bandwidth. 
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We also observe that the traffic with lower QoS 
grade can rarely be served if a subscriber's bandwidth 
is more than 30 Mbps. 

For future work, we should collect more data for 
various situations. From this we can optimize the de- 
sign parameters for the system under development. 
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Abstract 

SmartDB is a framework for the uniform spec- 
ification, simulation, optimization, evaluation, and 
implementation of Intelligent Vehicle Highway Sys- 
tem (IVHS) alternatives. The salient concepts in 
SmartDB are: 1) layered control architecture, 2) co- 
ordination of distributed control agents through com- 
munication, 3) combined discrete and continuous dy- 
namical systems, known as hybrid systems, and their 
control and verification, 4) object oriented simulation, 
and 5) distributed and open architecture. This pa- 
per summarizes the first three concepts and describes 
in detail the simulation constructs and the distributed 
and open architecture of SmartDB. 

1    Introduction 

Highway congestion is imposing an intolerable bur- 
den on many urban residents. It is estimated that lost 
productivity due to traffic congestion costs $100 bil- 
lion each year in the United States. Alongside conges- 
tion, safety continues to be a prime concern. In 1991, 
41,000 persons died in traffic accidents, and more than 
5 million persons were injured. 

•Research supported in part by the National Science Foun- 
dation and the California PATH program in cooperation with 
the State of California and US DOT. The contents of this re- 
port reflects the views of the authors who are responsible for 
the facts and accuracy of the data presented herein 

ISBN 0-8186-6440-1. Copyright ©1994 IEEE. All 
rights reserved. 
Personal use of this material is permitted. How- 
ever, permission to reprint/republish this material for 
advertising or promotional purposes or for creating 
new collective works for resale or redistribution must 
be obtained from the IEEE. For information on ob- 
taining permission, send a blank email message to 
info.pub.permission@ieee.org. 
By choosing to view this document, you agree to all 
provisions of the copyright laws protecting it. 

Intelligent Vehicles and Highway Systems (IVHS) is 
a comprehensive program initiated by the U.S. Gov- 
ernment under the Intermodal Surface Transporta- 
tion Efficiency Act of 1991 to improve safety, reduce 
congestion, enhance mobility, minimize environmental 
impact, save energy, and promote economic productiv- 
ity in the transportation system. The IVHS program 
combines several modern technologies, including in- 
formation processing, communications, control, and 
electronics. IVHS has the following sub-programs. 

Advanced Traffic Management Systems 
ATMS provides subsystem integration of traffic 
management and control systems, and performs 
real-time traffic control to respond to dynamic 
traffic conditions. 

Advanced Traveler Information Systems 
ATIS acquires and analyzes information about 
transportation network dynamically, and commu- 
nicates advisory information to travelers. 

Advanced Vehicle Control Systems 
AVCS uses computers, communications, and con- 
trol systems in the vehicles and the highways to 
enhance vehicle control. 

Commercial Vehicle Operations 
CVO improves the safety and efficiency of com- 
mercial vehicle and fleet operations. 

Advanced Public Transportation Systems 
APTS integrate public transportation with 
vehicle-highway systems by using component 
technologies from other functional areas. 

Apart from the U.S., there is substantial IVHS ac- 
tivity in Europe under the PROMETHEUS1 and the 
DRIVE2 projects, and in Japan under the RACS3, 
AMTICS4 and VICS5 projects. 

1 Program for European Traffic with Highest Efficiency and 
Unprecedented Safety 

2 Dedicated Road Infrastructure for Vehicle Safety in Europe 
3 Road/Automobile Communication System 
4 Advanced Mobile Traffic Information and Communication 

System 
5 Vehicle Information and Communication System 

0-8186-6440-1/94 $04.00 © 1994 IEEE 
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Modeling and simulation have been identified as im- 
portant steps in realizing these transportation initia- 
tives. The IVHS strategic plan [4] requires modeling 
and simulation in the following areas: urban traffic 
network models, traffic system models, vehicle-road 
models, driver-vehicle models, traffic models with dy- 
namic traffic assignment, driving scenario simulation, 
and advanced vehicle control systems (AVCS) archi- 
tecture simulation. A framework in which IVHS al- 
ternatives can be specified, simulated, and evaluated 
uniformly is crucial for objective comparison of the 
proposed alternatives. Such a framework must also 
aid in the implementation of the selected alternative. 

SmartDB is a framework for uniform specification, 
simulation, optimization, evaluation, and implementa- 
tion of IVHS alternatives. SmartDB is targeted at the 
Advanced Vehicle Control Systems (AVCS) functions. 
At the same time, it also addresses the automation re- 
quirements of the other functional areas. In particular, 
SmartDB meets the modeling and simulation needs of 
urban traffic network models, traffic system models, 
vehicle-road models, traffic models with dynamic traf- 
fic assignment, and AVCS architecture simulation. 

The concepts for SmartDB have emerged from the 
SmartPath project at the California PATH Labora- 
tory at the University of California, Berkeley [3]. 
SmartDB is an object-oriented distributed processing 
simulation environment that can be scaled to meet the 
performance requirements of large-scale applications. 
SmartDB is an open system that can interface with 
other simulation environments. SmartDB decomposes 
the IVHS modeling and simulation problem into the 
following stages: 

1. parametrized modeling of the physical system and 
the control agents in an object oriented semantic 
data model, 

2. simulation of the discrete and continuous behav- 
ior of all the objects in the model, and optimiza- 
tion of the model parameters, 

3. evaluation of system performance according to 
specified criteria, and 

4. model validation and implementation of selected 
control strategies for deployment. 

These stages are shown in Figure 1. 

1.1     Semantic Data Model 

The SmartDB semantic data model captures the 
relevant aspects of the physical world in a logical 
model. The logical model consists of software objects 
that represent physical components. For example, it 
models vehicles, highway segments, engines, brakes, 

Semantic Data Model 

I 
Simulation and Optimization 

1 
Performance Evaluation 

1 
Validation and Deployment 

Figure 1: SmartDB Stages. 

sensors, and other physical'system components as ob- 
jects. The objects in the logical model have semantic 
content corresponding to their characteristics, inter- 
relationships, constraints, and behaviors. 

J..2    Simulation and Optimization 

A simulation run occurs when all objects in a given 
highway and traffic configuration execute their state 
evolution behavior. Since object characteristics are 
parametrized, the model parameters can be tuned dur- 
ing a simulation run based on specified optimization 
criteria. Such a tuning leads to an on-line optimiza- 
tion of the control strategy. 

1.3 Evaluation 

The state evolution of the objects during a sim- 
ulation run can be observed using specialized mon- 
itor objects. The monitor objects generate perfor- 
mance results based on specified evaluation criteria. 
These results are used for an objective evaluation and 
comparison of alternative control strategies for IVHS. 
Once a control architecture is selected, SmartDB can 
be used for its rigorous simulation, optimization, and 
implementation. 

1.4 Validation and Deployment 

SmartDB's object-oriented approach simplifies 
model validation and modular deployment. Models 
for physical objects such as sensors and communica- 
tion equipment can be validated by replacing soft- 
ware objects in the logical model by the corresponding 
physical components. SmartDB behavior in the two 
cases—using the software objects and using the phys- 
ical components—can then be compared to validate 
the logical model and the controller design. 
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Similarly, SmartDB's object-oriented approach 
simplifies modular deployment of the selected control 
architecture. Once the selected control architecture is 
simulated and optimized, each software control object 
that models the behavior of a specific control agent in 
the physical world can be implemented independently 
on physical components for deployment. 

2    Concepts and Functions 

2.1    SmartDB Concepts 

The salient concepts in SmartDB are given below: 

1. layered control architecture, 

2. coordination of distributed control agents, 

3. combined discrete and continuous dynamical sys- 
tems, known as hybrid [8] systems, and their con- 
trol and verification, 

4. object-oriented simulation, and 

5. distributed and open architecture. 

2.1.1    Layered Control Architecture 

In the layered control architecture proposed by 
Varaiya and Shladover [7, 6], vehicles perform sim- 
ple maneuvers such as merging into platoons, splitting 
from platoons, following the leader, changing lanes, 
and entry and exit. A vehicle accomplishes com- 
plex end-to-end trajectories by performing a sequence 
of such simple maneuvers. Efficient transportation 
throughput is achieved by tuning traffic parameters 
such as platoon size and vehicle speed. The control 
strategies for such behavior are organized into the fol- 
lowing layers: regulation layer, coordination layer, link 
layer, and network layer. These layers are shown in 
Figure 2. 

Given a maneuver to perform, the vehicle follows 
a control strategy that regulates its dynamical behav- 
ior to a trajectory permitted by that maneuver. Such 
control strategies constitute the regulation layer. The 
maneuver to be followed by a vehicle at a given time is 
determined by coordinating with other vehicles in the 
neighborhood. The control strategies used for such 
coordination constitute the coordination layer. The 
control strategies adapt their behavior based on infor- 
mation about highway traffic conditions. The traffic 
conditions on highway segments are monitored and 
controlled by road-side control elements. These are 
collectively known as the link layer. Finally, informa- 
tion from individual highway segments is aggregated, 
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Figure 2: Layered Control Architecture. 

and end-to-end routing and congestion control is ac- 
complished in the network layer. 

SmartDB allows the specification of this and other 
layered control architectures. 

2.1.2     Coordination   of   Distributed   Control 
Agents 

The layered scheme described above yields a dis- 
tributed control strategy since each vehicle and each 
highway segment is responsible for its own control. 
At the same time, effective coordination of these dis- 
tributed control agents is essential for efficiency and 
safety. The agents coordinate by following simple 
heuristic rules. For example, when a vehicle senses 
another vehicle ahead of it, it requests a merge with 
it to form a platoon. Forming a platoon increases the 
efficiency of the highway. However, if the leading ve- 
hicle is already a part of a large platoon, it may refuse 
the merge request since inordinately large platoons 
are potentially unsafe. Such coordination strategies 
are modeled using a Discrete Event System (DES) ap- 
proach. The control agents communicate the discrete 
events to each other based on coordination protocols. 
Thus, communication mechanisms are essential both 
for gathering sensory information and for executing 
these coordination protocols. 

SmartDB allows the specification of sensors, trans- 
mitters and receivers, and of communication proto- 
cols. 
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2.1.3 Verification and Control of Hybrid Sys- 
tems 

Whereas the coordination strategies deal with discrete 
events, regulation strategies deal with continuous evo- 
lution. For example, if a merge maneuver is to be ex- 
ecuted, then the regulation layer controller must first 
accelerate the vehicle, close the distance between it- 
self and the vehicle ahead of it, and finally decelerate 
and follow at the same speed while maintaining a safe 
distance in between. It is clear that acceleration and 
braking, speed and distance are continuous parame- 
ters that evolve in continuous time. Thus, the dis- 
crete coordination event corresponding to the merge 
command, and the continuous regulation law corre- 
sponding to the merge trajectory must be dealt with 
together. A hybrid system approach is used to model 
the combined discrete and continuous behavior. 

SmartDB allows the specification of both discrete 
and continuous behavior. 

2.1.4 Object-Oriented Simulation 

SmartDB is an object-oriented [1, 2] software frame- 
work [5]. The object oriented approach is used to con- 
struct a logical model of the physical components and 
their control agents. The objects in the logical model 
have semantic content corresponding to their charac- 
teristics, inter-relationships, constraints, and behav- 
iors. The object-oriented approach simplifies model 
validation and system implementation for deployment. 
The object-oriented model is described in section 3.1. 

2.1.5 Distributed and Open Architecture 

SmartDB is a distributed processing simulation envi- 
ronment that can be scaled to meet the performance 
requirements of large-scale applications. SmartDB is 
an open system that can interface with other simu- 
lation environments. The system architecture is de- 
scribed in section 3.3. 

2.2    SmartDB Functional Categories 

SmartDB is designed to perform the following func- 
tions: 

Configuration Management— 
the ability to specify a highway network configu- 
ration, the traffic patterns on it, and the vehicle 
and traffic control strategies; 

Fault Management— 
the ability to detect faults and significant events 
such as accidents and congestion, and to respond 
to them with graceful degradation of highway per- 
formance and with automatic fault recovery; 

Performance Management— 
the ability to track, optimize, and fine-tune the 
transportation system performance; 

Planning Management— 
the ability to specify and simulate alternative 
highway and traffic configurations and control 
strategies for the purpose of planning; 

Resource Management— 
the ability to provide an inventory of all highway 
and vehicle resources and to schedule them for 
preventive maintenance; 

Accounting Management— 
the ability to specify tolls and taxes, and to ac- 
count for highway usage; 

System Management— 
the ability to manage the resources of the 
SmartDB system for multi-user and multi- 
processor operation. 

3    SmartDB Implementation 

3.1     Object Architecture 

All SmartDB objects consist of state, state evolu- 
tion, interface, input, and output components. This 
is shown in Figure 3. An object's external interface is 
defined by its input and output specifications. So long 
as this interface is met, the state and state evolution 
of an object can be reimplemented. 

Outputs • 

(^State^) 

State Evolution 

Interface - Inputs 

Figure 3: SmartDB Object 

SmartDB objects are arranged according to a set of 
connection and containment rules to create aggregate 
objects. The aggregate objects are also SmartDB ob- 
jects except that their state and state evolution com- 
ponents are implemented by other objects. 

It is envisioned that highway automation will be 
achieved by adding sensors, transmitters, receivers, 
and control modules to the highway and the vehicles. 
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To this end SmartDB provides a particular aggregate 
object called "Smart Object" described in Figure 4. 

SmartObject 
Dynamic 
State 

WfWiW 

Static 
State 

Controlen Monitors Sensors Receivers Transmitters 

Figure 4: Uniform Representation of IVHS Objects. 

Smart objects enable the user to create control and 
communication hierarchies in a structured manner and 
consist of the following components: 

• static state such as lane width, and vehicle weight, 
that does not change during a simulation run 

• dynamic state such as vehicle speed and lane den- 
sity, 

• state evolution behavior, 

• control objects such as regulation objects that de- 
termine speed, 

• monitor objects for observing state evolution, 
e.g., a gas tank agent that monitors the amount 
of carbon-monoxide produced, 

• sensors for providing information about the envi- 
ronment, e.g., distance to vehicle in front, 

• transmitters and receivers for communicating 
with neighboring objects, 

• inputs and outputs. 

3.2     SmartDB Functions 

The current version of the SmartDB implemen- 
tation supports the configuration, fault, and perfor- 
mance management functions of IVHS. We now de- 
scribe how the object data model implements these 
categories. 

3.2.1     Configuration Management 

SmartDB provides a set of highway objects that can 
be interrelated according to a set of connection and 
containment rules. Any possible highway configu- 
ration can be created using these objects and their 
interrelationships. The transportation system is di- 
vided into zones. Each zone contains multiple highway 

segments interconnected using junctions. The high- 
way segments are terminated using traffic sources and 
sinks. The highway segments consist of sections, en- 
tries, and exits. Junctions and sections are divided 
into lanes. These building blocks and the graphical 
editor used to create highway configurations are shown 
in Figure 5. 
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Figure 5:   SmartDB Graphical Editor for Highway 
Building Blocks 

Incoming traffic to the automated highway is gen- 
erated by traffic generators in the source and entry 
objects. Traffic leaving the automated highway is ab- 
sorbed by traffic absorbers in the exits and sinks. Traf- 
fic generator and absorber objects are parametrized to 
create different traffic patterns. When generators and 
absorbers are replaced by gateway objects SmartDB 
can interface with packages such as NetSim and Inte- 
gration. 

Vehicle and traffic control strategies are specified 
by configuring the control, communication, and sensor 
components of the relevant smart objects. 

3.2.2    Fault Management 

The simulation framework provides fault detection as 
well as fault creation mechanisms. 
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If an object fails to remain within system con- 
straints corresponding fault events are created. Sys- 
tem constraints correspond to states the system should 
not enter. For example a vehicle has to stay within 
highway boundaries, similarly two vehicles can not 
occupy the same space at the same time. SmartDB 
creates "accident" events when these constraints are 
violated. Other constraints such as maximum accel- 
eration or lane change direction in a section can also 
be specified by the user. Monitor objects are used to 
detect the violation of constraints. For example a lane 
change monitor can be used to raise a fault if a vehicle 
performs an illegal lane change. 

Faults such as communication failures or accidents 
can be created to ensure that the control objects can 
respond to them with graceful performance degrada- 
tion and automatic fault recovery. 

3.2.3     Performance Management 

Monitor objects are used to collect statistical infor- 
mation about the system and to create performance 
reports. Monitor objects are like any other SmartDB 
objects; they observe the system evolution through 
their inputs, process this data through their state evo- 
lution, and output the desired statistics. 

3.3    Process Architecture 

In SmartDB, object state evolution is driven by 
passage of time or by occurrence of events. Events 
are generated by SmartDB objects as output messages 
and are communicated to the addressed objects as in- 
put messages. In this section we describe how the 
SmartDB architecture guarantees the timely evolution 
of each object and the timely communication of events 
to objects. 

Time passage in SmartDB is represented by a global 
clock, which defines the smallest time step of the sys- 
tem. All evolution takes place at discrete advance- 
ments of this clock. 

Each time driven object specifies the time step for 
its state evolution as a multiple of the global clock 
step. Rapidly evolving objects such as engines change 
their state more frequently, while more passive objects 
such as a roadside link controllers change their state 
at larger time steps. 

Event driven objects exercise their behavior only 
when events are delivered to them. Coordination ob- 
jects in vehicles, for example, respond to "Merge Re- 
quest" s coming from other vehicles; the network layer 
changes the routing table upon an "accident". 

Process layers are used to execute the simulation of 
collections of objects that evolve at same time steps. 
The process layers themselves can be time or event 

driven. Process layers are controlled by a "Process 
Coordinator". The process coordinator schedules the 
execution of time driven layers based on their time 
step and schedules the execution of event driven pro- 
cess layers if any events are raised against them. 

A process layer can do the following: 
• simulate the time driven evolution of all instances 

of an object type, 

• for all instances of an object type with an out- 
standing event, deliver the event and simulate the 
event driven evolution. 

If event driven objects are put in a time driven pro- 
cess layer, event delivery for these objects takes place 
only when the corresponding process layer is executed. 

In a simulation run the process coordinator exe- 
cutes the process layers according to their time step, 
which in turn execute the simulation of the objects 
they contain. 

The process architecture that implements the lay- 
ered architecture proposed by Varaiya [7] is shown in 
Figure 6. 

Process 
Coordinator 

Physical Model 

W Regulation Layer 1 

«•{Coordination Layer)- 

< Link Layer 

—W   Network Layer    r*~ 

Figure 6: SmartDB Process Architecture. 

The physical layer is time driven and simulates the 
time driven engine objects that generate the vehicle 
displacements. 

The regulation layer is time driven. It contains 
event driven regulation supervisors and time driven 
maneuver objects. The supervisors switch between 
maneuvers based on incoming messages from the co- 
ordination layer; the maneuvers control the behavior 
of the gas pedal and the steering wheel. 

The coordination layer is time driven. It contains 
event driven coordination objects. Coordination ob- 
jects in different vehicles exchange messages to deter- 
mine the maneuver a vehicle should execute. These 
decisions are communicated to regulation supervisors 
through messages. 

The link layer is time driven and contains time 
driven link objects that set traffic parameters such as 
target speed and average platoon size in highway sec- 
tions. 

The network layer is event driven.   It is executed 

249 



only if an accident occurs. Upon an accident it recon- 
figures the routing tables. 

The simulation objects are placed in an object- 
oriented database (OODB). The database provides a 
natural mechanism to save and store the state of a 
simulation. 

3.4    Open and Distributed Architecture 

SmartDB has an open architecture. SmartDB al- 
lows the user to create the desired simulation granu- 
larity by configuring a process layer architecture. For 
each process layer the user specifies the object types 
for time and/or event driven simulation. The OODB 
makes the simulation state visible to any user. It has 
a well-defined interface, and provides a default mech- 
anism for any other simulation package to interface 
with SmartDB. 

SmartDB supports distributed simulation. Zones 
serve as the unit of distribution: different zones can 
be distributed to different processors; they have their 
own database and their own clock. Since a vehicle 
can communicate with and sense other vehicles only 
in its neighborhood, communication between the dis- 
tributed processors is restricted to objects in adjacent 
highway segments. Thus, locality of reference enables 
efficient distributed processing. Distributed simula- 
tion is depicted in figure 7. The boundary object be- 
tween the last section of the previous zone and the the 
first section of the next zone coordinates communica- 
tion between the processors, ensures synchronization 
of simulation clocks on different processors, and con- 
trols object migration between databases. 

Zone 2 
f A 

Section    H *   Section Boundary Section »   Section 1 

V ) 

tesi^ """' "*'"' [DB2| 

Figure 7: Distributed Simulation 

4    Summary 

SmartDB is a framework for uniform specification, 
simulation, optimization, evaluation, and implemen- 
tation of IVHS alternatives. 

SmartDB reduces system specification to mixing 
and matching of software components. These com- 
ponents are used to create highways, traffic patterns, 
and control and communication hierarchies. 

A simulation run occurs when all objects in a given 
highway and traffic configuration execute their state 
evolution behavior. 

The object behaviors are parametrized, and the 
performance of the transportation system being simu- 
lated can be optimized by adjusting these parameters 
based on specified optimization criteria. 

The system performance can be observed and eval- 
uated using monitor agents that collect statistical in- 
formation about the system and generate performance 
reports. Different control alternatives are compared 
by simulating them with identical highway configu- 
rations and traffic patterns. The performance reports 
generated by the monitor agents in the respective sim- 
ulations are used for objective comparison and evalu- 
ation of the alternatives. 

Once a control architecture is selected, the indi- 
vidual software components can be implemented as 
physical hardware components for deployment . 
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Abstract 
SmartPath is a highway system simulator. The 

program can be used to test, simulate, and evaluate 
the performance of the designs of different modules 
and instrumentations like engine models, sensors, and 
communications. The package consists of two sepa- 
rate modules: simulation and animation. The simula- 
tion runs on Sun Sparc or Silicon Graphics worksta- 
tions. The animation program, runs on Silicon Graph- 
ics workstations, and it produces a three-dimensional, 
color animation of AHS traffic. SmartPath could be 
used in two modes. In the batch mode the simula- 
tor is run first to generate data which could then be 
viewed using the animator. In the interactive mode, 
the simulator and animator run simultaneously allow- 
ing the user to control vehicle maneuvers in real time. 
This feature allows the system to mix 'manual' and 
'automated' vehicles and to test the robustness of the 
control algorithms. 

In this paper, we describe the modeling of basic 
elements of the interactive mode of SmartPath and the 
interfaces used to allow interactive control of vehicles. 

'Research supported in part by the California Department 
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tents do not necessarily reflect the official views of the State of 
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1    Introduction 
SmartPath is a highway system simulator. It is de- 

signed to provide a framework for simulation and eval- 
uation of Intelligent Vehicle Highway System (IVHS) 
alternatives. SmartPath can simulate automated, 
manual, or mixed mode traffic; it also accommodates 
different control, communication, and computing ar- 
chitectures. 

SmartPath is a micro-simulator, i.e. the functional 
elements and the behavior of each vehicle and highway 
with respect to normal and degraded mode of opera- 
tions are individually modeled. Its evaluation reports 
are targeted to microscopic as well as macroscopic per- 
formance analysis. 

At the macroscopic level SmartPath can be used 
to understand the steady-state behavior of the high- 
way system, i.e., how the highway system would per- 
form under various control policies in terms of high- 
way capacity, traffic flow, and other performance mea- 
sures of interest to transportation system planners and 
engineers.1 

At the microscopic level it can be used to analyze 
the transient behavior of the highway system and to 
test, simulate, and evaluate the performance of differ- 
ent modules inside a car like sensors, vehicle engines, 
and communication devices. The effects of high level 
control policies on vehicles can be observed by tracing 
the trajectory of a vehicle during a simulation run. 

SmartPath consists of two separate modules: sim- 
ulation and animation. The SmartPath animator is a 
tool to view and examine the simulated data of the 
AHS in the most natural way. The simulation data 
provides information about the position, speed, and 
maneuvers of each vehicle in the AHS at every unit 
of simulation time. In addition, the user can select a 
vehicle and view the interaction between the vehicle 
and its neighboring vehicles. The user can control the 

1 Examples of how SmartPath can be so used are given in [1] 
and [2]. 
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motion of the helicopter, rewind the animation, and 
adjust its speed, the motion of the helicopter can be 
restricted to the highway or forced to follow a specific 
car. 

SmartPath can be used in two modes: batch, and 
interactive. In the batch mode, the simulator is run 
first to generate data which could then be viewed using 
the animator. In the interactive mode, the animator is 
synchronized with the simulation and can be used to 
send commands to the vehicles being simulated. This 
feature allows the user to control the vehicles in real 
time. In either mode, the user is provided with a view 
about neighboring traffic. This view may be varied to 
try to mimic different situations, for example, the view 
may be what is visible form the windshield. Figure 4 
shows a frame of animation. 

In this paper we describe the interactive mode of 
SmartPath. Section 2 discusses the multi-layer con- 
trol hierarchy used to model the Automated Highway 
System (AHS). In this section we also briefly describe 
the building blocks of SmartPath. In section 3, we 
explain the interactive mode of SmartPath. 

2    Elements of an Automated Highway 
System 

A major objective of the AHS is to increase high- 
way capacity and safety. This objective is achieved in 
part by organizing the traffic in platoons, which con- 
sist of one or more cars traveling together as a group. 
The first vehicle in the platoon is called a leader; the 
others are followers; a one-vehicle platoon is called a 
free agent. At every moment of time, a vehicle under 
automatic control is either a leader, a follower, or a 
free agent. 

The control of a vehicle in AHS is carried out by 
the four-layer control hierarchy displayed in figure 1, 
which was first proposed by Varaiya and Shladover in 
[3]. 

We now discuss each layer starting from the top. 
The network layer controller assigns a path to each 

vehicle entering the system. This assignment could 
be generated from a static routing technique which 
uses distances to find the shortest path from origin 
to destination, or a dynamic routing scheme using the 
measured and expected flow of the traffic and informa- 
tion about incidents to calculate the expected travel 
time for the vehicle. In the first case, the path can 
be calculated by a navigational device installed in the 
vehicle; in the second case, the network controller re- 
quires global information with regard to the highway 
system and has to be operated from a traffic manage- 
ment control center. 
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Figure 1: Control Hierarchy for Highway System 

The link layer controllers are responsible for the 
smooth flow of traffic in each lane and the distribu- 
tion of flow among lanes. It recommends a course of 
action to the vehicle, i.e., change-right, change-left, or 
stay-in-own-lane. The link layer controllers are on the 
road side, but their scope of operation is limited to a 
section of highway. In the present traffic condition, it 
is the human driver who decides which lane is more 
suitable. In either case, the link layer recommenda- 
tions are explicit functions of capacity of the highway, 
flow of traffic, and destination of the vehicle. 

The coordination and planning layer controller of 
a vehicle determines which of the three maneuvers - 
merge, split, and change lane- to attempt at any time. 
In the merge maneuver, two platoons join to form one 
platoon; in split, one platoon separates at a designated 
position to form two platoons, and in change lane, a 
free agent changes lane. 

In order to execute a maneuver safely, the coordina- 
tion layer controller initiates a structured exchange of 
messages—a communication protocol—with the neigh- 
boring vehicles. The message passing can be implicit 
(looking for a gap to move-in) or explicit (request- 
ing a change-lane maneuver by transmitting a packet 
with the radio wave). At the end of the exchange, the 
coordination layer secures agreement from the neigh- 
boring vehicles for safe execution of the maneuver and 
instructs the regulation layer to execute the maneuver. 

The regulation layer controller implements the re- 
quested maneuver. The control action is typically de- 
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composed into longitudinal control which determines 
acceleration and braking, and lateral control which de- 
termines the steering action needed to maintain the 
vehicle in its lane or move the vehicle to an adjacent 
lane. 

The vehicle dynamics layer in figure 1 receives 
steering, throttle and brake actuator commands from 
the regulation layer and returns information such as 
vehicle's speed, acceleration, engine state, etc., which 
are needed to implement the control actions men- 
tioned above. 

To summarize the highway control hierarchy: the 
network layer assigns a route, the link layer provides 
en route guidance, the coordination layer selects which 
maneuver to execute in order to follow the path as- 
signed by the link layer, and the regulation layer im- 
plements the maneuver selected by the coordination 
layer. 

SmartPath implements the control hierarchy de- 
scribed above by modeling two basic elements: vehicle 
and highway. 

Vehicle A vehicle is composed of five independent 
and communicating modules: sensors, communica- 
tions, regulation, maneuvers, and supervisor. The 
sensors module provides information about a vehicle's 
surrounding environment; the communications mod- 
ule provides the vehicle with facilities for transmitting 
to, and receiving from, neighboring vehicles and road- 
side link layer controllers; the regulation module im- 
plements the feedback laws; and the maneuvers and 
supervisor modules together implement the coordina- 
tion layer. 

Highway In SmartPath, a highway is defined by its 
length, maximum number of lanes, number of auto- 
mated, manual, and transition lanes (if any), num- 
ber of exits and entrances and the locations of exits 
and entrances. The physical topology of the highway 
(width of the lane, curvature of the road, etc.) is part 
of the specification of a highway and must be specified 
thoroughly. 

A highway is divided into smaller structures called 
sections. Each section consists of a certain number of 
lanes. A lane has a length, width, curvature, type 
(which can be automated, transition, manual, en- 
trance, or exit), and some flags which correspond to 
the special features that might exist in the lane, e.g. 
lane is blocked, or it doesn't have a right or left adja- 
cent lane. 

For a multi-highway simulation, a junction struc- 
ture is used to define the interconnections among the 

lanes of connecting highways. 
The internal architecture of SmartPath, its time 

and event driven simulation modes, and how evolution 
of individual processes is synchronized, is described in 
[4]- 

3    SmartPath Interactive Mode 
Every vehicle in SmartPath operates in the "auto- 

mated" , "intelligent manual", or "manual" mode. By 
using the SmartPath animation interface, one can se- 
lect a vehicle and change its mode of operation from 
one to another. The default mode is automated. 

Automated (Au) In this mode, the vehicle has the 
ability to sense its neighboring vehicles, communicate 
with the roadside to receive the routing information, 
coordinate with other vehicles within its sensor range 
to perform maneuvers, and become a member of a 
platoon (as leader or follower). For a complete de- 
scription of an automated vehicle, see [4, 5]. 

Intelligent manual (IM) In this mode, the vehi- 
cle operates like an automated vehicle, i.e., it commu- 
nicates with other vehicles to coordinate the maneu- 
vers, and it can become part of a platoon. However, 
it doesn't communicate with the linklayer controller, 
and the functionality of the link layer is transferred 
to the user, who can issue recommendations using the 
interface panel shown in figure 2. 

Change Lane 

Target Speed 

lp Automatic] 

Figure 2: Control Panel for IM Mode 

When a vehicle operates in IM mode, the user is 
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allowed to make the selected vehicle change lane to 
right or left, one lane at a time, by pressing the + or 
- buttons. The selected vehicle then tries to perform 
the maneuver. It is possible that the vehicle is in the 
midst of a maneuver, when the user sends a change- 
lane request to the vehicle; in this case, the coordina- 
tion layer of the vehicle will abort the maneuver it is 
involved in and, then, initiates the change lane maneu- 
ver. The user is also allowed to change the optimum 
velocity of the selected vehicle using the control panel. 
Speed changes are not instantaneous and occur under 
the control of the regulation layer feedback laws [6]. 
Also, note that a follower will not achieve its assigned 
optimum speed until it becomes a leader. IM mode 
allows testing of the different maneuvers and control 
laws proposed for an automated vehicle. 

Manual (Ma) In the manual mode, the user con- 
trols all the functionalities of a vehicle. The anima- 
tion module, as in the IM mode, provides the interface. 
With this interface, the user provides acceleration or 
deceleration and the steering angle for the vehicle, and 
effectively "drives" the car. The regulation layer of the 
vehicle calculates the longitudinal and lateral position 
and speed of the vehicle accordingly. With this mode, 
one can build different scenarios like a stopped car or 
an accident and observe their effects on the simulated 
traffic. Also, one can devise and test routines for the 
interaction between the automated and manual cars. 

The three modes of operation described above are 
completely decoupled from each other; so, every mode 
has its own supervisor and a set of supporting modules 
that it requires. For example, the Ma mode doesn't 
need communication, sensors, and maneuver modules, 
but it needs the regulation layer for calculation of the 
car trajectories, IM mode doesn't need the car-to-link 
communication facility, but it has all other modules, 
and the Au mode has all the modules. Since it is 
possible to switch from one mode to another during 
the simulation (by selecting a vehicle and changing its 
mode through animation interface), we need to have a 
mechanism for switching from an old mode to a new 
one which we explain next. 

Sma.rtPa.th creates a car in the highway by initial- 
izing the supervisor module of the operational mode. 
A generalized state diagram for a supervisor module 
is shown in figure 3. 

After initialization, the supervisor module activates 
the other modules which it needs. In the second state, 
it operates as a supervisor of the vehicle's maneuvers 
and activities. When the user decides to change the 
mode of the car, the animation module sets an event 

else 

/ supervise \ \ 
\ maneuvers/_     y 

event= switch-mode 

Figure 3: Supervisor's State Diagram 

for the supervisor requesting the mode switching. This 
event causes the supervisor to move to its third state 
which is to prepare the vehicle for the next mode. The 
complexity of this state depends on the new mode as 
well as the current mode. Ther are no preparation 
tasks for mode switching from Au mode to IM mode 
and from Ma to either IM or Au, since the Au and 
IM modes have the same range of operation, and they 
both cover the Ma range. Switching from Au or IM 
mode to the Ma mode is fairly complex, since the Ma 
mode doesn't support platooning. Therefore, before 
the initialization of Ma supervisor, the vehicle has to 
become a free agent a one-car platoon2. Also, the 
supervisor has to process all its pending messages and 
send an appropriate reply to each one. If the free 
agent maneuver is not successful, there is a fault in 
the system and the simulation stops. 

After the current supervisor prepares the vehicle for 
mode switching, it deactivates its supporting modules, 
initializes the new supervisor, and terminates itself. 

4    Conclusion 
SmartPath at its present state is a simulation pack- 

age for an AHS, and is directed toward the control hi- 
erarchy discribed in section 2. The interactive mode 
of SmartPath provides the ability to select a vehicle, 
change its mode of operation, and if desired, "drive" 

2 Free agent maneuver is described in [5] 
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Figure 4: A Frame of Animation 
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the car. This produces much desired flexibility within 
the simulation, and allows the user to study and ex- 
periment with various control laws and vehicle models. 

In its future revisions, SmartPath will be extended 
to include different control strategies which may be 
proposed for AHS. 
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Abstract 
The Radio Frequency Mission Planner (RFMP) pro- 

vides analysis and simulation of communication links 
based on RF propagation models to more accurately 
assess performance and capability of transmitters and 
receivers for command and control warfare (C2W) mis- 
sions. RFMP processing is dependent on equipment 
parameters, environmental factors, topography, and force 
structure. Two and three dimensional displays of results 
allow an operator to quickly evaluate RF propagation 
possibilities for determining the probability of maintaining 
connections. 

1: Introduction 
Communications connectivity and radio frequency 

(RF) wave propagation for warfare simulation have basi- 
cally been ignored, or at best have been approximated with 
equipment planning ranges. It is now possible to provide 
analysis and simulation of communication links based on 
RF propagation models to more accurately assess perfor- 
mance and capability of transmitters and receivers for 
command and control warfare (C2W) missions. The Radio 
Frequency Mission Planner (RFMP) under development at 
the Applied Research Laboratories, the University of 
Texas at Austin (ARL:UT), can now provide simulation- 
based analysis of RF coverage and connectivity problems. 
RFMP processing is dependent on equipment parameters, 
environmental factors, topography, and force structure. 
Two and three dimensional displays of results allow an 
operator to quickly evaluate RF propagation possibilities 
for determining the probability of maintaining connec- 
tions. RF analysis will also include the ability to view 
footprints and ground tracks of up to eight satellites. For 
geolocation, RFMP will provide an estimate of an error 

ellipse for a global positioning system (GPS) based time 
difference of arrival system. The operator will be able to 
visualize and understand how an 'optimum' geometry 
results in a minimum geolocation error. 

Data sources. RFMP currently receives real-time and 
historical data through extensive connection to both exter- 
nal and local communication feeds and databases. Exter- 
nal data sources are accessed via integration under the 
Unified Build component of the U.S. Navy Joint Maritime 
Command Information System (JMCIS). JMCIS provides 
a single integrated communications system for major 
Naval command centers and auxiliary commands. A cen- 
tral database server is integrated with an automated mes- 
sage handling system for rapid access to reference/tactical 
databases with technical and operational information on 
emitters, receivers, environment, and status of forces mes- 
sage validation and parsing. Local data sources will pro- 
vide real-time parameters from GPS based Total Electron 
Content (TEC), Computerized Ionospheric Tomography 
(CIT), and environmental noise collection components 
which are under development at ARL:UT. Defense Map- 
ping Agency digital terrain elevation data is used to pro- 
vide path profiles for terrain dependent calculations. 
Environmental parameters are extracted from other JMCIS 
sources such as the Naval Integrated Tactical Environmen- 
tal System. 

For example, an RF reception mission requires spatially 
positioning one or more RF sensors to detect the emissions 
of a transmitter at a known position (with a possible asso- 
ciated geolocation error). Transmitter characteristics (fre- 
quency, bandwidth, modulation,...) and characteristics of 
the medium (atmosphere, terrain) through which the RF 
energy is to propagate must be known or approximated. 
Digital Terrain Elevation Data (DTED) provides terrain 
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relief information. Environmental noise values are pro- 
vided by either models or actual noise measurements. 
Propagation path loss models are then run to calculate the 
field strength at potential receiver locations. Threshold 
values are set to clearly illustrate good sensor locations on 
an electronic map. Plans are underway to include anoma- 
lous propagation modes such as transequatorial, sporadic- 
E, and meteor scatter. 

2: RFMP Operational Areas 
RFMP will run as a tactical decision aid under JMCIS 

and is being developed to serve primarily as an RF propa- 
gation planning, management, and analysis tool for the 
Naval Security Group. The mission types supported 
include: COMMS (communicate between own forces) 
and EVADE (avoid detection by non-friendly forces). 

In an operational environment, RFMP supports four 
activities summarized here. Familiarization: familiarize 
the analyst with RF propagation in the expected area of 
operations and lead the operator to understand salient geo- 
graphical and environmental properties as they relate to 
RF propagation. Planning: categorized into long-range, 
medium-range, and short-range mission planning. RFMP 
will identify candidate locations, platforms, and configura- 
tions required for the mission types, and will lead the ana- 
lyst through the planning process. Future development 
includes the ability to recommend a locally optimum set of 
taskings based on command requirements and available 
resources. Management: monitor, control, and manage 
electronic assets during the course of an operation. Evalu- 
ation: during and after the conduct of the mission, assets 
provide reports back to the RFMP. The RFMP will evalu- 
ate performance and will provide possible explanations for 
deviation from predicted performance. To support a dis- 
tributed training/planning situation like DISE, a variation 
of these activities may be more appropriate. In the remain- 
ing paragraphs of section two, we illustrate the application 
of RFMP to three important electronic missions. 

COMMUNICATIONS: (Primarily for communications- 
electronics staff.) 

Familiarization: Communications-electronics (CE) 
staffs familiarize themselves with propagation in the area 
of interest. Coverage for specific communications equip- 
ment is explored. If a commander is considering a specific 
location for a command post, the coverage to subordinate 
elements for tactical AM and FM radios is very quickly 
analyzed. Visual representation of HF propagation varia- 
tions due to time of day or sunspot cycles is provided. 
Link coverage is also explored for microwave systems and 
backbone systems such as Mobile Subscriber Equipment. 

Planning: Having become familiar with characteris- 
tics for a specific area, CE planners use RFMP to deter- 

mine best locations for various types of connectivity. 
Given the simulated deployment and organic assets, net 
coverage for HF and VHF is displayed. Access areas for 
MSE Radio Access Units and connectivity along a route of 
attack is also shown. HF frequency assignments are veri- 
fied for time of day and sunspot cycle, alerting planners to 
requirements for additional frequencies before the fact. 
The best HF antenna application for each station is veri- 
fied. Transmitted power required to close each link is 
determined so that lower power levels are used where pos- 
sible to minimize vulnerability to detection by opposing 
forces. Location adjustments are explored to use terrain 
blocking where feasible to also minimize vulnerability to 
detection and jamming. Finally, planners identify require- 
ments for additional assets such as repeaters or tactical sat- 
ellite communications equipment to ensure adequate 
communications capacity to units for successful command 
and control. 

Evaluation: During the conduct of the simulation, the 
RFMP provides players and controllers with an analysis of 
the simulated nets helping players to better understand and 
apply proper ECCM techniques as well as actions that will 
optimize connectivity while minimizing vulnerability. 
Controllers use similar analyses to prevent the use of com- 
munications systems that would not be able to cover 
ranges or topography in a real tactical situation similar to 
the simulated deployment. 

EVASION: (For operations, intelligence, and CE staff) 
Familiarization: RFMP allows all fighters to explore 

options of visual and electronic cover and concealment. 
Evasion is particularly critical to reconnaissance units, 
special warfare units, and aircraft routes deep into enemy 
territory. Based on the estimate of the situation, visual and 
electronic coverage of the battlefield is depicted. Routes 
and locations are then identified which minimize detec- 
tion. 

Planning: In the planning phase, all staff members 
are concerned with visual and electronic cover and con- 
cealment of movements and locations. Based on the esti- 
mate of the enemy situation, realistic coverage of sensors 
and observation posts are depicted to aid in the selection 
into and out of opponent areas. Further, checkpoints are 
identified along the routes that provide communications 
connectivity to command authorities while offering the 
maximum protection against detection. (The identification 
of key terrain such as a mountain to shield emanations 
from opposing sensors is just one such example.) 

Evaluation: Evaluation of evasive tactics is a control- 
ler function. The controllers use RFMP to analyze deci- 
sions and actions of commanders and staffs as well as 
movement of units to determine when actual detection or 
direction finding is likely to occur by opposing forces. 
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Such analysis adds realism to the simulation as controllers 
can point to specific opposing units or assets that made the 
detection. Controllers are also able to more authentically 
illustrate actions that may have avoided detection. 

3: RFMP Functional Description 
Each type of RF propagation analysis performed by 

RFMP can be described in terms of a hierarchy of analysis 
functions which serves a dual purpose. Traversed from 
highest-to-lowest level functionality, this hierarchy gener- 
ates a requirements specification for the analysis in which 
raw data input requirements are at the lowest/terminal 
nodes of the hierarchy. Traversed from lowest-to-highest 
level functionality, the hierarchy generates a data flow 
model for the computation. 

The hierarchy naturally decomposes into two parts: 1) 
RF propagation - an analysis of how the electromagnetic 
radiation propagates from a source to various locations 
through interactions with the environment; and 2) Signal 
reception - an analysis of a received signal for the purpose 
of extracting information about its source (direction-find- 
ing) and/or its content (signal analysis). Propagation path 
loss models, such as TIREM [1], Advanced PROPHET 
[2], FFACTR [3], and RPO [4], are the core functions 
within the RF propagation subsystem. These models pro- 
vide path loss and field strength estimates from 3 MHz to 
20 GHz over a geographical volume of interest which may 
include land and water. 

As an example, consider the use of the propagation 
models to calculate a mission analysis called the "proba- 
bility of detection". Starting with the power of the trans- 
mitter PT, we use the propagation models to calculate the 
propagation loss PL, use PL to calculate the field strength 
FS, integrate FS over the receiver antenna configuration to 
give the signal strength SS, calculate the received signal 
power SP, and signal power level SPL, and finally evaluate 
the results through the probability of detection POL Dia- 
grammatically, we have 

PT --> PL --> FS ->II->SS ->SP -> SPL --> POI 
where the double bar II indicates the division between 

the propagation and signal reception analysis. The RFMP 
uses HF, VHF, and UHF propagation models to help per- 
form the RF propagation analysis. The main modules of 
these propagation models evaluate the effect of environ- 
mental interactions with RF electromagnetic propagation. 
The various outputs of these models, such as propagation 
loss PL may generally be used to calculate FS associated 
with the transmission due to a give source. Once the RF 
propagation analysis has been performed, further analysis 
can be performed on the data to help determine where 
receivers of different characteristics (such as antennas, 
sensitivity, signal-to-noise ratios, etc.) are most likely to 
"hear" the given transmitter. This information may be 

evaluated in the context of the probability of detection 
function. 

The above analysis provides strong constraints on the 
interface between the propagation models, environmental 
data, and the analysis types. The mathematical formulation 
of the constraints on the interfaces provides a strong basis 
in which to evaluate the interplay between the various sub- 
systems which compose the RFMP. In particular, the inter- 
faces to the propagation model outputs can be 
mathematically specified based on its role in the analysis, 
and the model input parameters requirements can in turn 
be mathematically specified. Further, based on the mathe- 
matical formulation of constraints on model parameters, 
the effect of environmental parameter uncertainties on the 
RFMP probability analysis can be determined. 

4: Evaluation of RF Mission Success 
RF analysis is combined with noise levels from mod- 

els or actual measurements and interference on frequen- 
cies of interest to provide a statistically based estimate, or 
probability, of RF mission success. This feature allows 
the operator to visualize the stochastic nature of RF propa- 
gation modeling results and provides an estimate of how 
changes in environmental conditions and geometry affect 
the probability of mission success. RFMP will correlate 
predictions to actual performance and will provide expla- 
nations for possible causes of differences. Recommenda- 
tions to improve performance, such as repositioning 
assets, will be provided. The evaluation process may also 
reinforce the conclusion that for a given set of circum- 
stances, accomplishment of the mission is simply not pos- 
sible. 

5: Adapting RFMP for DIS 
As stated, the RFMP is connected to both local and 

external (via integration under JMCIS) communication 
feeds and databases. In this configuration, RFMP acquires 
data needed for RF problem simulation directly (under its 
control) via the JMCIS Client-Server Architecture, using 
APIs for database servers (e.g. CDBS), or from broadcast 
sources such as JMCIS messages. 

Adapting RFMP to DIS will require redirecting its 
external API model to rely on other DIS server objects as 
sources for data, replacing local JMCIS APIs. The DIS 
interface will replace the JMCIS Comms module as the 
source of tactical message traffic and database updates. 
The combination of operator/analyst inputs and RFMP 
database queries will no longer be required to specify the 
current problem; instead, DIS servers will provide data as 
part of Ground Truth and Update broadcasts for the cur- 
rent simulation. Under DIS, the role of the operator/ana- 
lyst will be to monitor the RFMP concept of the game, and 
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interpret RFMP results based on graphics and textual anal- 
ysis, then construct the RFMP analysis PDU and send to 
DIS. 

The JMCIS Chart Server would be replaced by the 
new DIS block format to transfer DTED terrain data. The 
DIS API will differ in form from the JMCIS Client-Server 
Architecture, but data element formats within DIS PDUs 
should be the same as from JMCIS databases, since DIS 
and JMCIS are moving toward a common standard. 

This paper presents an available austere swivel-chair 
type interface between RFMP and DIS. A more desirable, 
automated interface would allow RF analyses to govern 
transmittal of messages even between commands of units 
played totally within the simulation thus eliminating the 
need for an umpire to censor unlikely connectivity. The 
specification of at least three PDUs for such an interface is 
an open issue. One PDU would be necessary to pass the 
analysis requirement and specification to RFMP. Another 
is required for the high resolution measurement data 
needed for RFMP probability based analysis. A third 
would return results to DIS. The RFMP team should play 
and active role in this PDU definition, and in the specifica- 
tion of an RFMP output PDU to return the results of 
RFMP analysis to DIS. 

[2] Operational Users Manual for Advanced Prophet Version 4, 
Naval Command, Control, & Ocean Surveillance Center, 
RDT&E Division, Signals Exploitation Branch, August 
1985. 

[3] Engineer's Refractive Effects Prediction System (EREPS) 
Revision 2.0, Report # NOSC TD-1342, by Patterson, 
W.L., et al, Naval Ocean Systems Center, February 1990. 

[4] Radio Physical Optic CSCI Software Documents, Report #: 
TD-2403, by Patterson, W.L. and Hitney, H.V., Naval Com- 
mand, Control and Ocean Surveillance Center, R&D, T&E 
Division, December 1992. 

6: Conclusion 
Almost since its inception, the Signal Corps has pro- 

fessed that when others go to the field to train, signal sol- 
diers go to the field to do their job. While tacticians plan in 
potential hostile regions, communicators and IEW units 
install, operate, and maintain assets as deployed rather 
than as simulated. A tool is available today to allow simu- 
lation of RF challenges faced by planners and operators of 
the electronic battlefield. RFMP will enhance the synthetic 
environment to identify assets to overcome electronic and 
propagation obstacles much the same as transportation and 
engineer assets are now identified to overcome physical 
obstacles. An austere, yet sophisticated, interface can be 
realized immediately to provide commands and staffs with 
a realistic representation of the RF environment and its 
impact on command, control, and communications. 
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Abstract 

A unique application of a Computer Generated Force 
(CGF) was conducted in December of 1993 at the Depth 
and Simultaneous Attack Battle Lab in Ft. Sill, 
Oklahoma. The CGF simulated afire support scenario 
with tanks, infantry fighting vehicles, artillery units, 
counter-battery radars, and associated command and 
control elements. A tactical situation display showed 
the locations of all combatants, as well as activities of 
interest such as detections, weapon firings, detonations, 
and communications as the simulated battle progressed 
in real-time. A DIS-compliant interface allowed the 
CGF to interact with actual fire support equipment, 
both sending and receiving PDUs to a variety of 
systems. These systems included a DMD at the 
simulated Fire Support Element, FEDs at the forward 
observer and fire support team, LCUs serving as an 
FDS or FDDM interface for the FDC and MLRS 
Battalion, respectively, and an MLRS Fire Control 
Panel Trainer. Thus, a seamless simulation was 
provided between constructive, virtual, and live 
simulations. 

1. Application overview 

This project was conducted at the Depth and 
Simultaneous Attack Battle Lab (D&SA BL). The U.S. 
Army uses its Battle Labs to quickly investigate the 
utility of candidate systems, architectures, and tactics. 
The D&SA BL focuses on those systems which can be 
used for attacking the enemy from long distances or in a 
coordinated fashion, such as fire support systems. 

The purpose of this project was two-fold. First, the 
Army Research Laboratory (ARL) Ft. Sill Field 
Element, which sponsored this effort, wanted to 
investigate how mission performance improved for 
beginning Artillery School students. Each student used 

a Multiple Launch Rocket System (MLRS) Fire 
Control Panel Trainer (FCPT) to execute Call for Fire 
missions within a simulated battle. Each student 
participated in the battle three times, and the timeliness 
with which the fire mission was executed was measured. 
The other purpose of the project was to determine how 
well Distributed Interactive Simulation (DIS) Protocol 
Data Units (PDUs) could be used to integrate fielded 
equipment with each other as well as with constructive 
and virtual simulations. 

2. CGF description 

The CGF system used was CIMUL8™/ 
SPECT8™/DISIP8, a commercial off-the-shelf 
(COTS) software product. CIMUL8 is the simulation 
engine, and models tactically representative behaviors 
based upon user inputs. CIMUL8 also has a self- 
contained pre-processor for building up units and 
scenarios, as well as a post-processor for analyzing 
battle outcomes. SPECT8 is a graphical display 
system, and may be used to preview, replay, or watch a 
CIMUL8 run as it progresses. Finally, DISIP8 is a 
DIS-compliant interface used to both send and receive 
PDUs between CIMUL8 and other assets. SPECT8 can 
also be used to display the occurrence and effects of 
received PDUs. 

3. Simulation characteristics 

CIMUL8 models both physical phenomena and 
cognitive processes. This combination allows all 
pertinent areas of a battle to be simulated. An object- 
oriented approach is used, wherein real-world entities are 
modeled as coherent collections of physical and 
cognitive objects. 
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3.1 Physical modeling 

The six object classes within the physical domain are 
Sense, Talk, Move, Shoot, Disrupt, and Replenish. 
Sense models the generalized concept of non-cooperative 
information exchange. Non-cooperative means that the 
sensed object is not doing anything intentional in 
sending information to the sensor. Radars, thermal 
tracking devices, and the human eye are all examples of 
Sense objects. Talk, on the other hand, models 
cooperative information exchange. Radios, modems, 
and digital SatCom links would all be modeled using 
Talk objects. Move allows a simulated unit to change 
its location within the simuland. This includes driving 
across the surface, flying through the air, and navigating 
the oceans. Shoot models the generalized concept of 
lethal engagements wherein the actor is attempting to 
physically harm the target. Bullets, shells, and directed 
energy devices are examples of Shoot objects. Disrupt 
is the converse of Shoot in that it is used to model non- 
lethal engagements of other players. The intent of a 
Disrupt object is to deny some other entity the use of 
its Sense, Talk, or other objects. Smoke, chaff, and 
active radio jammers are examples of Disrupt objects. 
Note that using a Disrupt object against cognitive 
objects allows for psychological operations to be 
simulated. Finally, a Replenish object models the 
generalized concept of material exchange. This includes 
repairing damaged objects, resupplying ordnance or fuel 
to maneuver units, and performing routine maintenance. 

3.2 Cognitive modeling 

The advantage of using cognitive objects to represent 
behaviors within the simulation is that it decouples 
"reality" within the simulated battlespace from the 
"perceived reality" that is used by the personnel and 
units within the simuland. Without this decoupling, 
the modeled entities would directly use ground truth, and 
thus conduct themselves as though they were 
omniscient. Of course, real-world combat as well as 
exercises don't work this way. At the D&SA BL, this 
feature of CIMUL8 allowed the students to be placed in 
a very realistic environment. There are also six 
cognitive objects within CIMUL8: Notice, Digest, 
React, Review, Plan, and Adapt. 

A notice object models the perceptual recognition of a 
stimulus. This includes noticing the receipt of a 
message over a communications device, noticing that an 
OPFOR unit has just come into view from behind a 
building, or noticing the effects of ordnance either on 
oneself or against an enemy. The notice objects are 
explicitly linked to the provider of the stimulus within 

CIMUL8. This adds an extra degree of realism onto the 
simulation, and prevents an object from noticing 
something that it wouldn't have access to. A notice 
object moves an image from iconic memory into short 
term memory. Once there, a digest object will operate 
on the data. 

A digest object models the correlation, fusion, and 
assimilation of new information with information 
already on hand. Thus, digest takes the data content of 
an item from short term memory and moves it into 
medium term memory. Medium term memory is where 
the current perception of the battlefield is held for each 
unit within the simulation. This includes the perceived 
location of both the enemy's and one's own units, the 
status of organic and attached units, and the current 
perceived intent of the enemy. As new data is 
synthesized into the present body of knowledge for a 
unit, incorrect perceptions may be formed in a number 
of ways. The incoming stimulus that was noticed may 
have errors, the filters may produce incorrect deductions, 
or the uncertainties may be mitigated in the "wrong" 
way. And if the perception of the battlefield in medium 
term memory is incorrect, then mistakes will be 
manifested by a react object, as discussed below. 

A review object is somewhat of the converse of the 
digest object, in that it is responsible for managing the 
"length" and "veracity" of medium term memory. A 
review object performs the functions of discarding 
information that is out of date, "known" to be incorrect, 
or no longer needed due to changed conditions. Review 
does this by evaluating the quality of information over 
time using moving averages of an n-dimensional 
perception space, where n is specifiable by the user. 
Based on the evaluation, a review object may throw 
away perceptions, draw new conclusions, or request 
additional information. Thus, review will either delete 
items from medium term memory, or cause a series of 
events that (hopefully) results in new stimuli to be 
noticed. 

A react object evaluates the present perception of the 
battlefield using the present contents of medium term 
memory, makes a decision, and then may do something 
based on the decision made. The decision space is 
countably infinite, using geometrical, status, intent, and 
relational parameters built up into rule sets of variable 
resolution. The rule sets are used to dictate the 
behaviors of units for movement, command and control 
decisions, weapons usage, countermeasure employment, 
resupply and repair, and system status changes. Since 
combat activities which result from these decisions are 
based upon the perceptual view of the battlefield, 
incorrect perceptions may generate mistakes in a 
simulated unit's behavior. 
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A plan object measures a unit's progress towards its 
goals and assesses the need for changed strategy. The 
goals along with candidate plans are stored in long term 
memory within the simulation. The present plan and 
goal(s) are stored in medium term memory. Combining 
these with the perceptions which are also in medium 
term memory, progress is measured along some user- 
specified n-dimensional metric. The same criteria used 
by a react object are also available to a plan object for 
measuring progress. As a unit's plan object decides to 
change a current plan, the current plan in medium term 
memory is replaced by a plan from long term memory. 

Finally, an adapt object can modify a plan (or 
"strategy") that exists within long term memory. The 
adapt object can thus alter the way an entity evaluates 
and reacts to situations. These objects allow entities to 
"learn" from simulated combat experience. Again, 
measurable criteria from those used by the react object 
are used by an adapt object to assess whether or not a 
given combat outcome is "good" or "bad". 

3.3 Event Scheduling 

Within CIMUL8, both physical and cognitive events 
are scheduled dynamically as the battle progresses. This 

provides a natural means of simulating battlefield 
activity, since any combatant can be represented as 
some collection of the physical and cognitive objects 
described above. In addition, the event driven nature of 
CIMUL8 allows for other simulations (either 
constructive, virtual, or live) to be easily integrated into 
the overall scenario by injecting their events into the 
simulation. 

Figure 1 shows how the physical and cognitive 
objects interact with one another to simulate the 
behavior of an entity, such as an MLRS launcher. The 
physical objects are shown in white, with the cognitive 
objects shaded. Starting near the center at the top of the 
figure, the MLRS might get a Call for Fire message 
from the FDC, which is its commander. A Notice 
object will notice the receipt of the message, which 
would then get processed by a Digest object to discern 
the message content. If the message were a move order, 
then the MLRS might decide to start movement using 
its Move object, and continue to move until the 
objective was reached. Note that this movement might 
cause the MLRS to come into view of other entities' 
sensors, which would give them the chance to see the 
MLRS. This is depicted by the thick arrow labeled "to 
other Sensors." However, since the message was a Call 

to Target 

to Commander 

Figure 1:    Even Scheduling between Physical and Cognitive Objects 

264 



for Fire, the MLRS' React object will be schedule to 
consider engaging the target. Should the MLRS do so, 
the React object will have the MLRS report its status 
back to the FDC, using a Talk object to model the 
communication. Upon the decision to fire, a Shoot 
object will simulate a weapon firing at the target. Our 
example ends with the target's Notice object noticing 
that it is under attack! 

4. Scenario descriptions 

A ground combat scenario was simulated for this 
project. The "Blue" Forces (BLUFOR) consisted of an 
Ml tank platoon accompanied by an M2 Infantry 
Fighting Vehicle and two Improved TOW Vehicles 
(ITVs). Fire Support units including a Forward 
Observer (FO), Fire Support Team (FIST), Fire 
Direction Center (FDC), Fire Support Element (FSE) 
with a TPQ-36 fire-finder radar, MLRS Battalion, and 
MLRS Self-Propelled Loader Launcher (SPLL) were in 
direct support. The Opposing Force (OPFOR) had a 
Motorized Rifle Company with BMPs and T-80 tanks, 
a Self-Propelled Howitzer (SPH) Battery, and associated 
FDC. 

Depending on the particular configuration used, these 
combatants were simulated using some combination of 
CIMUL8 (a constructive simulation), the FCPT (a 
virtual simulation), and fielded equipment (live 
simulations). The fielded equipment included Field 
Entry Devices (FEDs), a Digital Message Device 
(DMD), Low-cost Computer Units (LCUs), and a Fire 
Direction Data Manager (FDDM). For each situation, a 
configuration file instructed CIMUL8 how the 
simulated activity was to be distributed across these 
domains. 

One interesting facet of this project was discovered 
upon arriving at the D&SA BL three days before the 
first demonstration was to occur. Initially, the scenario 
within CIMUL8 was located within northern Europe. 
Unfortunately, the FCPT could only execute fire 
missions using coordinates from the Ft. Sill firing 
range. So, the entire simulated battle was "moved" 
from a European battlefield to the Ft. Sill area. This 
translation was accomplished in a single afternoon, and 
included repositioning all combatants into realistic 
positions and ensuring that the required interactions 
would occur for the project. Figure 2 shows the relative 
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Figure 2:   Lay down of the Simulated Forces 
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from the north, with the BLUFOR in a defensive 
posture. 

5. DIS protocols used 

DIS 2.0.3 PDUs were used to interface the 
simulations with each other. Specifically, Entity State, 
Firing, Detonation, Transmit, and Signal PDUs were 
used. Transmit and Signal PDUs were used to send 
TACFTRE messages between the various assets. A PC- 
based DIS interface developed by CAE-Link was used to 
transform tactical communications into DIS PDUs and 
vice versa. In this manner, the fielded equipment 
performed just as it would in a real combat 
environment. 

6. Asset configurations 

Four different configurations of the basic ground 
combat scenario were used at the D&SA BL. Each of 
these will be described in turn. First, the aspects which 
are common to each scenario will be described. 

6.0 Common aspects 

CIMUL8 simulated the movement, signatures, 
sensing, command and control, communications, 
engagements, firing, and lethality effects of all OPFOR 
units as well as the BLUFOR tanks, IFV, and ITVs. 
The movement of the vehicles followed pre-planned 
maneuver profiles specified by the scenario designers. 
Signatures included both the normal visual cross section 
of the vehicles, as well as increased signatures in the 
visual and IR spectra whenever a round of ammunition 
was fired. In turn, the visual and thermal sensing 
systems would allow the simulated combatants to detect 
the apparent position of the vehicles. These detections 
would lead to perceptions of the battlefield being 
formed, and used for cß or engagement purposes. The 
command and control, engagement, and firing 
procedures were specified via rule sets to CIMUL8. 
These rule sets make up a context-sensitive language 
that allows the simulated entities to behave in very 
realistic, user-specified ways. Should a situation arise 
requiring a commander to direct a subordinate in the 
battle, tactical communications were simulated as VHF 
radios with point-to-point signal transmissions. 
Finally, battlefield effects were modeled using direct- or 
indirect-fire lethality assessment tables. 

Whenever Transmit and Signal PDUs were generated 
by the live or virtual simulations, SPECT8 would 
display these events as green star bursts around the 

transmitting unit. This allowed everyone to watch the 
information flows as the battle progressed. 

6.1 First situation: FO, FIST, FDC, and FCPT 

The FO's viewer was modeled within CIMUL8. As 
the OPFOR targets came into view, the targets were 
visually acquired within the simulation. SPECT8 was 
used to display this event by placing a large diamond 
around the acquired targets on the tactical situation 
display. This served as the triggering event for an 
operator to enter the target coordinates into the FO FED 
and send an FR Grid TACFIRE message to the FIST 
FED. This message was actually transmitted as a set of 
Transmit and Signal PDUs via Ethernet. Upon receipt 
of the message, the FIST operator would then pass the 
target coordinates on to the FDC. Another TACFIRE 
message was sent from the FIST FED to the FDC 
LCU, which was configured as a Fire Direction System 
(FDS). The FDC operator then generated a fire mission 
for the MLRS, and sent a Call for Fire message to the 
FCPT. The MLRS operator would then execute the 
mission, and fire upon the OPFOR within the 
simulated environment. Fire and Detonation PDUs 
were generated by the FCPT, which would damage or 
destroy the targets within CIMUL8. 

6.2 Second situation: DMD, FDDM, FDC, and 
constructive MLRS 

In this set-up, CIMUL8 was again used to start 
things off. A TPQ-36 fire finder radar was modeled, and 
could detect the OPFOR howitzers firing. As this 
happened, a large diamond was displayed around the 
targets on the SPECT8 screen. The target coordinates 
were then entered into the DMD by an operator, and a 
TACFIRE message sent via Transmit and Signal PDUs 
to the MLRS Battalion's FDDM. Upon receipt of the 
target by it's LCU, the Battalion would then task the 
FDC with a fire mission. TACFIRE messages were 
sent between the LCUs. Upon the FDC sending a Call 
for Fire message to the MLRS, SPECT8 would display 
this message transmission. This cued an operator to 
use SPECT8's "Personal Control" capability to execute 
the fire mission. Thus, a constructive simulation was 
triggered by fielded equipment to complete the mission. 
Upon firing, the simulated rockets went to the targets 
and damaged or destroyed some of the OPFOR 
howitzers. 
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6.3 Third situation:   FO, FIST, FDDM, FDC, 
and FCPT 

This case was essentially a combination of the 
previous two. CIMUL8 modeled the acquisition of the 
OPFOR by the FO, with TACFIRE then being sent 
from the FO FED to the FIST FED. Then, the FIST 
would pass on the target to the FDDM. The FDDM 
would task the FDC, which then passed on the Call for 
Fire message to the MLRS FCPT. The operator would 
then execute the mission, which would damage or 
destroy the OPFOR vehicles. 

6.4 Fourth situation: constructive FR grid, 
FDC, and FCPT 

This was the set-up used for the actual ARL 
experiments. Figure 3 shows this configuration, with 
the laydown of the forces given using the same icons as 
in Figure 2. The quartered circles indicate whether or 
not the modeled entities can move, shoot/assign, sense, 
and/or communicate. The shading within each quarter 
indicates whether the simulated function was performed 
via constructive, virtual, or live simulation. The FO 
and FIST were wholly modeled within CIMUL8, 
including their acquisition and communication 
activities. After the FIST received the target, an FR 

Grid TACFIRE message was generated by CIMUL8, 
with DISIP8 sending out Transmit and Signal PDUs. 
This is shown in the figure using the solid arrow 
labeled "FR Grid." The FDC would receive these, with 
the operator then sending a Call for Fire to the MLRS 
FCPT. The student would then execute the mission, 
with the results of the firing effecting the overall battle 
outcome. All relevant data was captured within 
CIMUL8. This allowed CIMUL8's post-processor to 
measure the timeliness of the students' actions for 
quantitative analysis. SPECT8 could also be used 
immediately after each trial to replay the battle, thereby 
providing immediate feedback to the student. 

7. Future applications 

This seamless simulation technology may now be 
used for a variety of purposes. With additional FEDs, 
LCUs, and FCPTs, a large training exercise could be 
conducted within the U.S. Army Field Artillery School. 
Another potential application would be to integrate 
National Guard and Army Reserve MLRS units with an 
FDDM. The Guardsmen and Reservists could train at 
their home locations, with the overall simulation and 
FDDM located at Ft. Sill. This is particularly 
important for realistic training, since MLRS units 
would receive fire missions from an FDDM during 

FR Grid 

BSD      GÜEI 

Ö 

Constructive 
Virtual 
Live 

Figure 3:   Distribution of Modeled Behaviors Used in Situat on #4 
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combat, but Guard and Reserve MLRS units don't have 
FDDMs as part of their equipment. Finally, T-NET 
could be used as an enabling technology to link 
geographically distant equipment with each other, with 
DIS PDUs being passed from one location to the other 
via commercial satellite communications. Such 
technology could directly support Distance Learning 
projects. 

8. Lessons learned 

As the integrated simulation was used by the MLRS 
students, their proficiency in executing the Fire Mission 
improved. Such a result is to be expected. It was 
reassuring to see that DIS can be used to provide 
positive feedback and achieve training objectives, even 
when "high tech" systems are used. Probably the most 
challenging part of this project was getting all of the 
TACFIRE messages right so that the fielded equipment 
would operate properly. The Signal PDU is sufficiently 
flexible to contain any type of TACFIRE message. 
However, certain bytes of the FR Grid and Call for Fire 
formats are very critical! Also, the timing of 
TACFIRE message transmissions and acknowledgments 
must be closely adhered to if live simulations are to be 
integrated with each other and constructive and virtual 
simulations. 

When using distributed simulation, one never knows 
which modeled units and associated behaviors should be 
simulated by constructive simulations, virtual 
simulators, or live simulation. The four situations 
described above allowed for a diverse assortment of 
virtual battlefields to be simulated by a mix of these 
three simulation domains. To meet the needs of the 
training or analytical effort being supported by 
simulation, the underlying architecture needs to be 
sufficiently flexible and reconfigurable. The success of 
this effort at the D&SA BL was due in part to this 
flexibility. 
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Abstract 

A fuzzy pattern matching machine for speech recogni- 

tion is simulated. Monosounds extracted from a set of 

keywords are stored in a fuzzy nondeterministic finite 

automaton, and a fuzzy pattern matching procedure 

is employed to activate the automaton for detection of 

the predetermined keywords in a given speech. 

1    Introduction 

The classical Aho-Corasick pattern matching machine 

(in [1]) detects predetermined keywords in a text by 

using a deterministic finite automaton supported by 

a backtracking procedure (which is called the failure 

function in [1]). In [3], I presented a method of im- 

plementing the Aho-Corasick matching machine as a 

nondeterministic finite automaton, using Prolog's au- 

tomatic backtracking mechanism. 

The recognition of keywords in a speech is more dif- 

ficult, however, because sounds normally do not per- 

fectly match like characters in a text string. Therefore, 

it is necessary to employ some fuzzy matching pro- 

cedure to perform the approximate matching of two 

similar sound waves. 

In this paper, I present a fuzzy pattern matching 

machine that follows the idea of Aho-Corasick [1] and 

that employs the technique of fuzzy pattern matching 

in [4] to detect predefined keywords in a speech. 

The paper has the following sections. Section 2 de- 

scribes the construction of nondeterministic finite au- 

tomata to store the monosounds extracted from a set 

of given keywords. Section 3 presents the fuzzy pat- 

tern matching machine that will be used to activate 

the automata for detection of the keywords. The last 

section, Section 4, describes some experiments on a 

simulated pattern matching machine and presents the 

simulation results. 

2    Fuzzy finite automata of monosound 
waves 

Consider a set of keywords {u>i, ...,wn}, in which each 

word Wi is composed of a sequence of monosounds 

xa, ■ ■ -,Xiki- In general, a monosound can be de- 

composed into a finite number of sine waves, and is 
represented by a matrix of wave amplitudes. For 

convenience, let 4>(s) denote the set of input signals 

(which are, in our case, the matrices representing the 

monosounds) that will transform the machine from 

state s to another state, and for each x € <£(s), let 

next(s,x) denote the set of states tranformed from s 

by the input signal x. Also, let r(x,y) denote the 

matching degree of two monosounds x and y. 

The following algorithm establishes a fuzzy nonde- 

terministic finite automaton for the purpose of detect- 

ing the given keywords {wi,..., w„} in a speech. Here, 

a represents a predetermined threshold for matching 

degree. Also, if there is a sequence of state transmis- 

sions 

O'l     .        *2     _        «3 
 ► Si  ► «2  ► 

Xh 
Sk 

then the sequence xi,...,X). is called a route from 

the initial state 0 to the state Sk, and is denoted by 

route (sjt). Note from the following algorithm that, ini- 

tially, each set next (s, x) contains at most one state, 

and each route (s) is unique. 
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Algorithm 1: 

Set up the initial state 0; 

Let <f>(0) = [] and m = 1; 

For i from 1 ton do 

Start with state s = 0; 

For j from 1 to ki do 

If <j)(s) ^ 0 and max*e*(s) T(xij'z) = ß > a 

then find y in <p(s) such that r(x,j, y) = /?; 

and let [s] = next(s, y) 

else   let </>(s) = <j>(s) U [a?,-j]; 

next(s,Xij) = [m]; 

*("») = 0; 
s = m; 

m = m + 1; 

endfor; 

endfor; 

For each state s such that cf>(s) ^ \\ do 

For each x £ <^(s) and each s' £ nearf(s,a:) do 

Find the set F of all states SQ such that 

route(so) is a suffix of route(s'); 

then let next(s, x) = next(s, x)U F 

else   let next(s, x) — next(s, x) U [0]; 

endfor; 

endfor; 

The output of Algorithm 1 is a fuzzy nondeterministic 

finite automaton that stores the monosounds extracted 

from the keywords w\,..., wn. 

3    The fuzzy pattern matching machine 
for speech recognition 

The fuzzy finite automaton described in Section 2 is 

used as a knowledge base for our fuzzy pattern match- 

ing machine. The purpose of the machine is to detect 

the predetermined keywords (stored in the automa- 

ton) in a speech, which is represented as a sequence 

of monosounds. Here, the matching degree of two 

monosounds x and y (which are represented by two 

matrices) is defined by 

r(x,2/) = e-Hx-2'll. 

Two monosounds x and y are regarded as similar if 

r(x,y) > a, where a is a predetermined threshold for 

matching degree. At any state s of the machine, if the 

set keyword(s) of the keywords occuring in route(s) is 

nonempty, then the detected keywords are recorded. 

The activation of the machine is expressed in the fol- 

lowing algorithm. 

Algorithm 2: 

Set the initial state s = 0 and index i = 1; 

Repeat 

Get the next monosound x; 

Find y G <j)(s) such that T(X, y) — maxJ€^,)T(a!, z); 

If T(X, y)> a (the threshold) 

then select an s' 6 next(s, y) and let s = s'\ 

li keyword(s) ^ [] 

then store the keywords and 

their location i; 

else   backtrack to the previous selection; 

Let i = i + 1; 
Until end of speech; 

Ouput the stored keywords and their detected 

locations. 

4    Simulation results 

A fuzzy nondeterministic finite automaton is estab- 

lished to store the keywords fire, firebomb, fighter, and 

bonfire. The automaton is depicted in the diagram of 

Figure 1. 

re,ghter 

Figure 1 

The soundwaves of the given keywords are shown in 

Figure 2. From these waveforms, monosounds are ex- 

tracted by using a sound editor, and various bandpass 

filters are used to reduce the monosounds' frequencies 
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to specific ranges before they are converted into fre- 

quency spectra (some of which are shown in Figure 

3) by using the fast Fourier transform. The Fourier 

transforms of each monosound are stored as a matrix 

of real values. Algorithm 1 is then executed to gen- 

erate a nondeterministic finite automaton that stores 

the monosounds, which are linked to their matricial 

representations in the knowledge base. 

ut ;.3*f*:\i.t üiihmm fJMmuinimilUUtstmjmmtictii: '•• 

Figure 2:  Waveforms of the words fire, firebomb, 

fighter, bonfire. 

Figure 3:  Frequency spectra of the 

monosounds fi, re, bomb, ter. 
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A simulated speech is generated in the form of a se- 

quence of matrices representing the monosounds in the 

speech, in which the sounds fi-re, fi-re-bomb, figh-ter, 

and bon-fi-re are included at random locations, and 

with ten percent randomly damaged. The fuzzy pat- 

tern matching machine was activated and the detected 

keywords were recorded. This simulation was repeated 

50 times and the results are recorded in the following 

table. 

Keyword correct incorrect non 

detection detection detection 

fire 38 4 8 

firebomb 32 5 13 

fighter 36 3 11 

bonfire 35 5 10 

Thus, on average, the successful rate of the machine 

in detecting a predetermined keyword is around 70%, 

which is quite encouraging. 
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Abstract 

With Distributed Interactive Simulation (DIS) there is 
an opportunity for large scale Computer Based Training 
(CBT). As more simulators interact through DIS, the 
complexity of the training systems increases. This, in turn, 
increases the work load on the instructor. Students are 
performing more complex tasks that cannot be viewed at a 
glance to determine their state. If an instructor has several 
students to monitor, it is difficult to track what each student 
is doing at any given time. One solution to this is to offload 
the instructor by interpreting and evaluating the student 
actions via computer programs. This can be accomplished 
through the use of advanced computer interpretation 
techniques. This interpretation will present to the instructor 
information concerning what and how the student is doing, 
without the need for the instructor to directly monitor the 
student. 

Introduction 

There are four major elements in the monitoring and 
evaluation of the CBT system: 1) How to automatically 
determine the optimal course of action to take under a 
particular set of circumstances (called the "goal standard"); 
2) how to- interpret what the student is doing; 3) how to 
compare what the student does compared to the goal 
standard, and; 4) how to control or give feedback to the 
students concerning their performance compared to the goal 
standards. Fortunately, most goal standards are defined and 
in place. Control and feedback to the student can be handled 
by the instructor; however, the difficulty lies in determining 
what the student is doing, and comparing it to what the 
student is supposed to be doing. 

Rule-based systems appear to be a good means to 

interpret what the student action is, and how it relates to the 
goals of the CBT. But there are severe limitations 
concerning what a rule-based system can do. If a flight 
simulator is used as an example, there are many rules that 
would need to be incorporated to effectively monitor what 
a student is doing. An alternative to a rule-based system is 
a template-based approach. In this approach, which is the 
subject of this paper, templates represent small portions of 
the entire environment and can be directly related to some 
portion of the computer-based training goals. These 
templates are used to track student actions as they relate to 
the training goals. The student will progress through 
templates much as they would progress through scenarios in 
lessons. This direct student monitoring and evaluation can 
provide real-time feedback that is available for the 
instructor. By presenting the current template status, an 
instructor may view the student's progress and performance 
through the lessons. 

Background 

In the early days of computer modelling, the modelling 
process itself took most, if not all of the computer's 
resources. This left little capacity for carrying out auxiliary 
tasks. As the speed and efficiency of computers increased, 
the focus become how to optimize the training of the 
student. The instructor was left to monitor the student 
directly. This is especially true in flight simulation where the 
student-to-instructor ratio has almost always been one-to- 
one. The conventional means to convey information to the 
instructor about the student's progress through lessons or 
scenarios has been to present the instructor with what the 
student sees. This is done through visual repeaters, or 
instrument duplicators. There are also overview maps, or 
God's Eye view of simulations to assist the instructor in 
seeing the big picture. However, the instructor must still 
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analyze what the student sees and compare it to the 
instructor's own knowledge. This can later be applied against 
what the training goals were. The largest drawback is that 
the instructor cannot monitor more than one student at a 
time. If there are several students in a classroom, most will 
go unmonitored. When an instructor changes from one 
student to another, he must transition from the original 
student's lesson and performance to the that of a new 
student. During this transition time, the instructor may not be 
able to monitor any students, and may become frustrated and 
ineffective if bombarded with help requests, or other 
distractions while trying to transition to the new student. 

Problem Definition 

The process of monitoring a student consists of four 
separate steps: 

1) Determining the goals of the lesson or scenario that are 
being monitored - what the student should be doing. 

2) Interpreting what the student is actually doing from his 
actions. 

3) Comparing what the student is doing against the goals 
that were set out in step 1. 

4) Providing feedback to the student. In other words, if the 
student has deviated from the goals, how can the 
training goals still be met. 

The first step is to determine the goals of the lessons or 
scenarios. These goals are typically defined by the CBT. 
The objectives of the computer based training system 
become the high level goals of the system. For example, if 
the CBT was a flight trainer for student Instrument Flight 
Rules (IFR) practice, this would become the main goal. 
Subgoals that could be derived from the main goal is the 
desire to not stall the aircraft, i.e. slow down so much that 
the wings cannot support the weight of the aircraft. Even 
though it is possible to complete the Instrument Landing 
System (ILS) practice safely while stalling the aircraft, it is 
not desirable to do so. Subgoals should be kept to a 
minimum, and at such a level so that they do not hinder the 
original training goals. 

The second step is to determine what a student is doing. 
This involves knowing what the student should be doing 
which relates back to the goals of the CBT. It is possible to 
look at all of the inputs that are provided to the student, and 
the output that the student gives. However it is difficult to 
analyze all of the information at once. There would be 
several solutions to this problem including duplication of the 
simulation code at another place to interpret what is 

happening, embedding the interpretation program within the 
simulator's program, or determining a way to interpret what 
the student should be doing from the normal output of the 
simulation. 

The third step is to compare the student actions against 
the goal standards. This is done by comparing the 
interpreted student action from the second step with the 
goals of the CBT. Since the student actions are being 
analyzed from the standpoint of the training goals, it is 
possible to relate certain student functions to invalid steps, 
or goal violations. It is not desirable to compare each 
student action, as this could create an overly complex 
monitoring program. Moreover, from a training standpoint, 
certain things may not be important. By concentrating only 
on certain aspects of the training goals, and relating the 
student actions to these goals, a minimal monitoring 
program may be created that is still effective. 

The fourth step is to solve the problem of what should 
be related back to the student; in other words, student 
feedback. If the student cannot perform the task properly, 
should the training environment be made easier? It is 
possible to create large tables or performance comparisons 
to determine what should be presented to the student. 
However, this becomes another difficult task. The instructor 
is a valuable part of the training environment, if the 
instructor can be provided with information from sections 
one through three, then this summary of events can make 
the transition from one student to another much easier. It 
allows the instructor to monitor the monitoring program to 
oversee what is going on within his or her classroom. 

It is possible to attack this problem using an expert 
system. This system would create a set of rules or guidelines 
based on the actions of expert instructors. However, the 
decisions of an expert instructor are difficult to duplicate in 
a real-time environment. There are many rules and special 
cases that would have to be taken into consideration. This 
approach could yield an effective training environment, but 
not without a large effort in trying to duplicate instructor 
knowledge in the area. 

Solution Outline 

The first step in solving this problem is to determine the 
optimal course of action that the student should take under 
a particular set of circumstances. This area is basically 
covered through the creation of the CBT system. The 
training goals are defined here, at least on a high level. The 
training goals must be broken down into subgoals until they 
are independent of any other goal in the CBT. The idea is to 
have defined unique goals. The breakdown of the goals will 
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not be discussed further, since it is not the focus of this 
paper. 

One approach to the problems described in items two 
and three above is to represent the domain knowledge as a 
series of templates, each of which defines a task or 
procedure within the domain. These templates become a 
collection of generic information about student actions. 
These actions that may be combined to create a package that 
can describe what the student is specifically doing, based on 
generic events. An example in the automobile driving 
domain would be a template containing the actions: 1) 
Student pushes automobile clutch to floor, and 2) Student 
turns key in ignition switch. The first event does not 
specifically indicate that the automobile is to be started, the 
clutch is also used to change gears. The second event does 
not specifically indicate that die automobile is going to be 
started, it may be the student's desire to turn on the radio, 
which also involves the key in the ignition switch. By 
combining the two actions, there is a very high probability 
that if both actions take place, then the student is trying to 
start the car. 

We will refer to a program which incorporates these 
templates as an Artificial Intelligent Instructor (All). These 
templates can be used to guide the monitoring program 
through different segments of the training scenario, looking 
for things that cause either training violations, or transitions 
to another segment of the scenario. This is continued until 
the scenario is complete, or the student has left the training 
area of the CBT. The third step of the solution is comparing 
what the student is doing against the goals of the CBT. This 
is the first level breakdown of the training goals. The second 
step of interpreting what the student is doing. This involves 
breaking down the goals into events and will be discussed 
later. 

The third step involves tracking the scenarios through 
the templates and providing the information to the instructor 
about what the student is doing. This in turn can be used to 
determine if the student is on or off course with respect to 
the training goals. If the student deviates from a training 
goal, he would leave an acceptable template, and move to a 
transitional template. This template would indicate a 
condition has been created that is in potential conflict with 
the training goals. An example of this in the flight 
instruction domain would be a student attempting to perform 
a pre-landing functionality check before reaching the 
destination airport. A condition exists that could result in 
training violations if it continues. This becomes a translation 
zone. The All program would indicate to the instructor that 
the student is now in the translation zone, because of the task 
that may be incorrect for this phase of flight. If the student's 

altitude returns to an acceptable value, the All would 
indicate this to the instructor, and the program would 
transition back to the acceptable template. Once this 
happens, the All would stop reporting, since it is within the 
same template. If the student performed an unacceptable 
training task, the All would determine that a condition has 
occurred, and will report the information to the instructor. 
It would be up to the instructor (or another program) to 
determine when the simulation needs to be stopped and the 
student informed of the situation. 

The basis for the template guideline is determining what 
is important at what time. By determining different phases 
of the CBT lesson, it is possible to then break the overall 
training goals into sub-goals which support the training 
goals. These subgoals make up part of the template. What 
things should be of concern now. For example, if the IFR 
flight is used in the cruise phase of flight, only altitude and 
position are of relative concern. If the altitude or position 
deviates from the desired path should something be 
presented to the instructor. It does not matter that the student 
is making fuel/air mixture adjustments, or recalibrating the 
navigation instrumentation at this time. These events may be 
important for other phases of the training environment, but 
here they are not. All system output variables are effectively 
ignored, until a template that is concerned with the variables 
wakes up and analyzes them. Certain system constraints are 
kept within a separate group of templates that are checked 
each time. These include things like exceeding structural 
limits, crashing into the ground, or other system violations 

1. Start      L- —±  Improper | 

2. Taxi Too Fast 

|3. Pretakeoff 

I  4. Takeoffk 

~*1 Improper 

Improper | 

Too Fast    I« 4s. CUmbouth -\ Too Slow 

High \*—»| 6. Cruise   \* «■[    Low 
1_ 

Fast |-—*\ 7. Descent \* Slow 

8. Initial Approach]*--!    Improper ] 

High     ~H—H°. Approach* 
X 

Low 

10. Landing Improper | 

Figure 1 -  Transition Template 

that do not depend on the phase of training. In this way each 
template may be kept generic, and possibly reused in 
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another area of the monitoring. Each template would then 
have information concerning what happens when a 
parameter is invalid, or some other constraint exists that 
would cause the template to no longer be valid. The cruise 
template would not be valid as the student approaches the 
airport and begins to descend. The descent and/or proximity 
to the airport would trigger the template to release 
monitoring to the next template, which might be initial 
approach phase. This template would be concerned with 
reaching a particular approach point at a given altitude and 
velocity. Different system parameters would be evaluated 
against the sub-goals. Each of the subgoals relates back to 
the goal of the CBT, in this case, the practice of IFR flight 
with approach to landing. 

Cruise Path 

Airport Area 

Landing Areas 

NDBIAP 

ILSIAP 
VORIAP 

Figure 2 - Sample Airport 

Through the examination of transitions between the 
subgoals a basic transition template can be created. This 
transition template is used to follow what is happening 
relative to the training goals. This is displayed in Figure 1. 
From the cruise template, it is possible to transition to the 
descent template, or invalid regions indicated by the altitude 
too low/high templates. For this case the cruise template 
would contain information about the simulation necessary to 
transition to the next template. Since the template is kept 
generic, information may not always be strict information. 
The cruise template may not have cruise values of 7000 feet 
minimum and 8000 feet maximum, but may have 
information passed from previous template, such as cruise 
value of ClimboutTemplateCruise - 500 feet minimum to 
Climbout_Template_Cruise +    500     feet.     The 
Climbout_Template_Cruise is the altitude that was 
necessary to leave the climbout template and enter the cruise 
template. This tracking of transitions is done until the 
simulation is complete. By presenting the status of the 

current template, the instructor is able to determine what the 
student progress is within the training goals. 

The second problem, interpreting what the student is 
doing, depends on the training goals, and is a breakdown on 
the third problem. The template list in Figure 1 describes 
different high level events that may take place in an 
instrument flight trainer. However, within those events, there 
needs to be a way to determine what the student is trying to 
do, and even predict what the student may be doing next. 
This is done to provide as must information about what is 
happening in the CBT without actually watching the student 
at all times. Using the instrument flight trainer example, 
there are several ways to approach an airport. The 
transitional point from cruise to approach to landing is 
called the initial approach point (LAP). For any given 
airport, there may be several IAPs. In Figure 1 the IAP is 
listed as a transition from descent to approach. However, 
since there may be several points to transition to, and several 
approaches that may be accomplished, the student actions 
and more importantly intentions must be determined. The 
diagram of the cruise path past a sample airport is listed in 
Figure 2. This describes an airport with three different 
types of landing facilities: Non Directional Beacon (NDB), 
Instrument Landing System (ILS) and Very-high Omni 
Range (VOR). These instruments can guide the pilot to the 
desired runway for landing. If the student is flying northeast 
(lower left to upper right) and begins to descend, it is 
possible that several things are happening: an NDB, ILS or 
VOR approach is about to take place, the student sees the 
airport and is going to land without instrument assistance, or 
the descent does not mean anything to this airport, the 
student is descending for another reason. If the student's path 
also changes as in Figure 3. Then it is possible that the 

tudent Path 

VORIAP 

Figure 3 - Student Path 
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Student is implementing the NDB approach, since the 
student passed the Initial Approach Point (IAP) of the NDB 
approach. This would be the indication as the student passes 
the NDB IAP. However, as the student's path is tracked, the 
student is not flying the pre-determined path for the NDB 

NDB 

Figure 4 - Approach Paths 

approach as illustrated in Figure 4. The path is similar to 
both the NDB and the ILS approach, and it does not appear 
that the student is attempting a VOR approach. However, the 
other two cases may still be possible. The student may be 
flying without the aid of the instruments, or may have 
changed course and altitude for reasons not dealing with the 
approach. Other parameters would be used to fill out each 
template. Since each of the above approaches uses different 
radio frequencies, these may be part of the templates. If the 
student is only tuned to the NDB frequency, that increases 
the probability that it is an NDB approach. However, if all 
of the frequencies are being monitored, all of the templates 
may continue to be filled in. Since there is not enough 
information here to determine what is happening, the 
template monitoring system must wait until something 
happens to make a decision on the events. As the student 
passes the airport at an altitude of 500 feet above the airport, 
a determination may be made at this point. Since the 
altitude is within the airspace of the airport, the general 
assumption is that the student must have been trying to land. 
With the radio frequencies tuned in, indicating a possible 
approach, a determination that the student was not 
implementing a VOR approach may be made because of his 
position. A further examination would require the instrument 
readings. If the ILS instruments are properly tuned for the 
approach, the student was executing an ILS approach, if 
both the NDB and ILS instruments are properly tuned, then 

the student was also probably executing an ILS approach, 
even thought the IAP point was missed, the approach was 
closer to the ILS than the NDB approach. This 
determination is made because the flight path is closer to the 
ILS than the NDB approaches (Figure 4). The rest of both 
the ILS and NDB templates are equal. Thus, the template 
that most resembles the student's observed actions will be 
deemed to represent his intentions. However, this conclusion 
is based on student actions, in the current environment. It is 
possible that the student wasn't using the instruments, and 
was only flying according to what he saw. However, the 
templates do provide a good measure of determining what 
the student is trying to do without interrupting the student's 
training to ask them. 

Using templates does not eliminate the need for a rule- 
based system, only diminishes it. The templates look at the 
rules from the training standpoint. From that perspective, 
important training parameters may be grouped. If the CBT 
does not care about certain functions or procedures that the 
simulation may perform, then it is not monitored. However, 
there must exist certain guideline parameters that would be 
enclosed in the base templates. These would be the general 
rules that the CBT must follow. For instance, If the student 
was descending because he was out of fuel, and the course 
and altitude deviations were due to this, we would not want 
to ignore these important conditions. However, these 
conditions may not be part of any of the training goals. The 
training goal may be landing practice, this may not include 
the need for fuel management. If outside parameters will be 
modelled, they would be included here. These parameters 
would be part of the base template structure, and would 
allow the other templates to be as generic as possible. The 
general processing of the information would include the 
gathering of information from the simulation, comparison 
with the generic templates, then comparison with the base 
templates. The base templates would be of the same nature 
as the generic templates, but they may not be the same for 
different trainers. The generic template would be good for 
any aircraft that contained NDB, ILS or VOR instruments. 
However, fuel starvation conditions and responses would be 
different for different aircraft. 

The fourth problem is providing feedback to the 
student. This presents an interesting challenge. Since the 
second and third problems provide a good estimation on 
what the student is doing, a follow-on program could be 
used to present information back to the student concerning 
his or her progress and deviations. However, this is an 
estimate against the training goals. It would be better to 
provide this information to the instructor to interpret and in 
turn present to the student concerning the performance at the 
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CBT system. The information concerning student 
performance could be used to simplify the scenarios in real 
time if the student is struggling, or make it more difficult if 
the student is doing well. 

System Integration 

There are a large number of CBT environments for 
which the All could provide productive assistance. 
However, the largest difficulty is integrating this new 
system into an existing trainer. There are two ways of 
integrating the system: at the simulator, or at the instructor 
station. 

By integrating the All at the simulator, it has access to 
everything that the simulation generates. This provides a 
thorough exposure to all variables within the simulation. 
There would be minimal time lags at the All due to its close 
computational proximity to the information. It could actually 
be scheduled within the simulation time frame to provide as 
little impact as possible on the overall simulation. This 
approach suits well simulations that are changing rapidly, 
and the analysis of events needs more information than is 
currently being passed to the instructor. There is a larger 
time lag in presenting the information to the instructor, since 
the information must be passed from the simulation back to 
the instructor. However, the cpu load of the All would be 
split between the simulator and the instructor station. 

Integrating the AH at the instructor station provides a 
smaller system impact. If the simulation is real-time, it will 
not be affected by the All running at the instructor station. 
However, the appropriate data must be transferred from the 
simulation to the instructor station already to make sure 
there is no system impact. For instance, if there is a digital 
repeater of the flight instruments in the instruments flight 
trainer, the information that is being passed to the 
instructor's station has all of the necessary information to 
determine the student's course of action. The All would 
intercept the information and summarize it for the instructor. 
The cpu load of the All would be taken completely by the 
instructor station, and not effect the simulation at all. 

Summary 

The template based monitoring systems allows the 
instructor to see what is going on within the classroom 
without the problem of examining every step that each 
student takes. A sample of the All transition is shown below: 

Start 
Taxi 
Takeoff 
Climbout 
Cruise 
Descent 
Reached NDBIAP 
Course most like ILS approach 
Left Fuel Tank starvation 

Since this simulation is time-based, each transition would 
have time stamp information. This transition would indicate 
that the student is potentially having problems with fuel 
management. This could be observed by looking at the fuel 
tank when the fuel ran out. However, by looking at the time 
stamp for the different transitions, an analysis of what phase 
took longer than was expected. The fuel starvation phase of 
flight can be made without the need for direct instructor 
intervention in the CBT. The instructor could be informed 
of the situation without viewing the student's instruments. 
This concept applies to not only Instrument Flight Practice, 
but to any area of simulation based training where the goals 
are defined. If it is applied to a maintenance trainer, the goal 
may be to measure the output frequency of a piece of 
equipment. This becomes one of the subgoals. There are 
many ways to perform maintenance, and it is not feasible to 
try and cover all of the possibilities. By subdividing the 
system goals into manageable sections, the All can view the 
CBT from the goals standpoint, and provide a summary of 
student actions. It is not realistic to attempt to model all of 
the different ways that two aircraft can engage each other. 
However, if the goal is the engaging and destroying the 
enemy, this provides a more defined goal set. 

As the number of non-generic rules increases, the base 
templates will increase to handle the special cases. As the 
base templates become larger than the generic templates, 
then the system has reverted back into a pure rule based 
system, and either the training goals must be re-evaluated, or 
another system will be needed. The template system does 
have the need to understand the training goals thoroughly 
before any system modeling can begin. Since the entire 
system is based on presenting the training goals to the 
instructor, as performed by the student, a complete 
requirements analysis must be done. 
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Abstract 

FSATS is a tool designed to support both testing and 
training for C3I systems. It provides the capabilities for 
collecting C3I tactical message traffic, reducing it for 
later evaluation, and interactively simulating C3I units. 
FSATS hardware consists of a variable number of LAN- 
based processors, and its software may be distributed 
among these processors in a range of possible configura- 
tions. The software is developed using an object-oriented 
model, where application-level functions are implemented 
as distinct object classes. FSATS interactively simulates 
C3I units by modelling each type as a set of logic tables 
and state data. Each such model is implemented by an 
object class. Object interaction is mapped onto a FSATS- 
provided message-delivery service. Objects invoke opera- 
tions on each other by sending request messages, and the 
results may be returned in response messages. FSATS's 
object interaction model will probably migrate in the 
future toward compliance with industry standards, in 
order to take advantage of third-party software. 

Background 

The Fire Support Automated Test System (FSATS) is 
a distributed hardware and software system. It is used as a 
tool to support both testing and training for military Com- 
mand, Control, Communications, and Intelligence (C3I) 
Systems. FSATS's sponsor is the Army Program Manager 
for Instrumentation, Targets, and Threat Simulators 
(PMITTS), and its intended users are the military fire sup- 
port test and training community. FSATS was originally 
developed to support the testing and evaluation of the new 
Advanced    Field    Artillery    Tactical    Data    System 

(AFATDS), an enhanced C3I system sponsored by the 
Army Program Manager for Field Artillery Tactical Data 
Systems (PMFATDS). 

C3I systems can be complex and therefore costly to 
test. Reasonable test objectives for a C3I system might 
easily require battalion- or brigade-sized deployments of 
personnel and equipment to approximate the conditions in 
which the System Under Test (SUT) is to be used. Several 
different kinds of tactical communication networks may 
be involved, and there may be many instances of each. 
Further resources may be needed for monitoring and col- 
lecting data on the test itself. FSATS addresses this prob- 
lem with its three main capabilities: (1) monitoring tactical 
communication networks and collecting the resulting tac- 
tical message traffic; (2) archiving the message traffic and 
reducing the collected data to a manageable form so that 
the SUT's performance can be evaluated; and (3) interac- 
tively simulating fire support units for the purpose of 
reducing the personnel and equipment resources needed to 
thoroughly exercise the SUT (thereby reducing the overall 
cost of the test). This paper focuses on FSATS's interac- 
tive simulation capability. 

In addition to supporting the testing of C3I systems 
themselves, FSATS's simulation capability could also be 
used in a training role to "surround" a live player with 
simulated units. It could be configured to reinforce specific 
desired actions and procedures on the part of the live 
player. It could also help to fill out a battalion-, brigade-, 
or division-sized training laydown, providing the neces- 
sary realism at a reduced cost. 

FSATS has been used by its customers to support sev- 
eral AFATDS tests in 1993 and 1994. Some of the lessons 
learned about FSATS during these tests are discussed 
throughout the paper. FSATS has not yet been employed in 
a training capacity. 
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Architecture 

There are three dominant aspects of FSATS architec- 
ture: it is distributed, it is highly configurable, and its soft- 
ware is object-oriented. Its distributed nature is apparent in 
both hardware and software. FSATS hardware generally 
consists of a collection of UNIX workstations1 intercon- 
nected by a standard IEEE 802.3 local-area network 
(LAN). At runtime, FSATS software consists of separately 
executing programs that communicate primarily by 
exchanging messages. These programs may execute on the 
same host or on different hosts on the network. Currently 
FSATS uses standard transport facilities provided by the 
UNIX operating system for this message delivery2. Some 
information is also shared via a commercial database man- 
agement system (DBMS) that is accessible across the net- 
work3. 

FSATS may be used in a wide range of hardware and 
software configurations. This flexibility is required so that 
it can accommodate the many possible SUT configura- 
tions as well as the different functions required for various 
test or training scenarios. A given FSATS hardware con- 
figuration may be as simple as a single workstation with 
an interface to a single SUT tactical network, or it may 
consist of many networked workstations attached to many 
tactical networks. FSATS software may be configured 
using its test planning feature to determine whether certain 
functions must be present and how they should be allo- 
cated to processors for a given test or training scenario. 
The resulting configuration is then constructed when 
FSATS execution begins. 

FSATS software was designed using an object-ori- 
ented development model. This model was chosen early in 
the project because the advantages of object-oriented 
design (especially modularity and code reuse) were obvi- 
ously useful in the development of a complex, large-scale 
software application like FSATS. The FSATS object 
model is essentially the same as the Core Object Model 
described in the Object Management Group's (OMG) 
Object Management Architecture (OMA) [2]. An FSATS 
object is a software entity that maintains its own state, and 
provides a well-defined set of operations that it will per- 
form if requested to. A particular object is an instance of 
an object class and is specified by its unique object identi- 
fier. Objects of a given class provide the same set of opera- 
tions, but each object maintains its own state. An 
operation is essentially a procedure which may require 
input parameters upon invocation, and may also provide 

1. SCO Open Desktop 2.0, on Intel x86-based workstations. 
2. The Internet User Datagram Protocol (UDP) [1], accessed via the 

UNIX Transport Layer Interface (TLI). 
3. Oracle 6.36 for SCO UNIX 

output parameters upon completion. A client (usually an 
object itself) invokes a given operation on a particular 
object by specifying the object identifier, the operation, 
and any input parameters for that operation. The client 
may also receive output parameters in return if the opera- 
tion provides them. 

The FSATS object model is not identical to the OMA 
Core Object Model, however. The main difference is that 
FSATS provides no mechanism for inheritance. The 
FSATS object model was developed during the early 
design and prototype phase of the project in 1990, without 
knowledge of the OMG's work. However, both models 
were designed to achieve very similar goals and were 
influenced by many of the same developments in software 
research and industry during the same period. 

The various capabilities of FSATS are decomposed 
into distinct functions, each of which is then implemented 
as its own object class. FSATS can create an instance of a 
function by creating an instance of its corresponding 
object class. This allows an FSATS configuration to con- 
tain only those functions needed for a given test or training 
scenario, and to allocate them to specific processors. There 
are object classes that implement functions such as col- 
lecting data from SUT networks, logging collected data to 
secondary storage media, acquiring position and global 
time data from Global Positioning System (GPS) tran- 
sponders, and managing internal FSATS resources. 
Finally, there are object classes that implement the C3I 
simulation models used in FSATS's interactive simulation 
capability. 

Interactive simulation 

FSATS simulation is based upon a set of requirements 
known in the fire support community as Operational Facil- 
ity (OPFAC) Logic, which has primarily been provided to 
ARL:UT as Government Furnished Information (GFI). 
OPFACs are the fire support units that together comprise 
the echelons responsible for initiating, directing, and 
implementing artillery fire on the battlefield. They are 
interconnected by any of several different kinds of tactical 
networks, and they interact by exchanging "tactical mes- 
sages" among themselves. From a simulation perspective, 
any OPFAC can be modelled as an entity that maintains its 
own state, accepts input events (usually tactical mes- 
sages), and produces output events (also usually tactical 
messages). FSATS simulates various types of OPFACs in 
the categories of sensor, command and control, and firing 
units. Real OPFACs and FSATS simulated OPFACs inter- 
act solely through the exchange of tactical messages. 

Each type of simulated OPFAC model is implemented 
as a FSATS object class, which employs its own subset of 
OPFAC Logic to determine its behavior. A simulated 
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OPFAC receives each input event as an operation request 
from another object. This request may convey a tactical 
message sent by another OPFAC, which may be real or 
simulated. It may also be an FSATS-internal request, such 
as a command to initialize or shut down sent by a resource 
manager object. Based upon the received request and its 
parameters, and upon its own current state, the simulated 
OPFAC uses its portion of OPFAC Logic to determine 
which actions to perform. These may include changing the 
model's state and/or making requests of other objects. 
Each such request may itself convey a tactical message 
that is sent to another real or simulated OPFAC. 

Simulated OPFACs may be stimulated by tactical 
messages from two sources: (1) other OPFACs (real or 
simulated); and (2) the Time Ordered Event List (TOEL). 
A TOEL is a list of tactical messages that are to be deliv- 
ered to simulated OPFACs at scheduled times. TOELs are 
in essence "scenario scripts" that permit some control over 
the inputs to a test or training scenario. An object class 
called the "TOEL server" reads the TOEL and dispatches 
the specified tactical message to the given OPFAC at the 
given time. 

Some of the simulated OPFAC models are complex 
and may store much of their OPFAC logic tables and state 
data in the DBMS. The DBMS currently used in FSATS is 
accessible from across the network, but it has only a sin- 
gle, central server. This has led to contention among simu- 
lated OPFAC objects for access to the DBMS server, 
especially during the start-up phase of FSATS when most 
of these objects are being created and are trying to initial- 
ize their model state data. Therefore, some of the perfor- 
mance advantage of implementing the simulated OPFAC 
models as distributed objects has been negated by the fact 
that a critical resource they all use is not itself distributed. 
Future FSATS work will investigate the use of DBMS 
strategies such as data replication to alleviate this bottle- 
neck. 

The types and formats of the tactical messages and the 
FSATS control messages exchanged by simulated 
OPFACs do not currently comply with the standards being 
developed for Distributed Interactive Simulation (DIS) by 
the Workshops on Standards for the Interoperability of 
Defense Simulations [3]. This compliance was not speci- 
fied as a requirement for the initial version of FSATS, but 
future work will include studying these standards for their 
applicability and possible benefits to FSATS and its users. 

Object interaction 

The software component of FSATS that supports 
object interaction is called the Distributed Object Environ- 
ment (DOE). The DOE provides a message-passing ser- 
vice that objects use to request operations upon each other, 

as follows. A message key is defined for every possible 
type of DOE message, which may contain one particular 
data type. A given operation on an object may map to one 
or two DOE message types: one key for the message that 
contains the operation request, and another for the mes- 
sage that contains its response, if there is one. The data 
type conveyed by a DOE message therefore contains 
either the input or output parameters of an operation. An 
example of this mapping is expressed in Figure 1, for a 
hypothetical operation opl. 

Operation declared as: 

void  op1 (  in        typel argl, 

in        type2 arg2, 

out type3 arg3 ) 

Corresponds to: 

Request message with:     Key = keyl Data = (argl, arg2) 

Response message with: Key = key2 Data = (arg3) 

Figure 1 

The DOE message-passing service provides object 
location transparency (clients need only know the identi- 
fier for a given object, not where that object resides) and 
both synchronous and asynchronous modes of operation. 
A client invokes an operation on an object by creating a 
DOE message which contains the object identifier, the cor- 
rect message key for the request, and the "in" arguments 
for that operation. It then sends the request message using 
one of the DOE SEND primitives. One form of SEND 
blocks the client until the object's response message 
returns, which bears the "out" arguments of the requested 
operation. The other form of SEND just delivers the 
request without blocking the client. This is used for opera- 
tions that have no "out" parameters. 

Object implementations contain the subprograms, or 
methods, that actually perform the requested operations. 
Each object implementation also contains code that 
receives each operation request message (using one of the 
DOE RECEIVE primitives), extracts the message key, 
then invokes the correct method for the given key, passing 
it the "in" arguments from the request message. If there 
are "out" parameters for the operation, then the object will 
also build the response message containing those results 
and send it back to the requesting client. 

During execution, FSATS objects reside within exe- 
cutable programs as shown in Figure 2. In addition to the 
object implementation software, each program links in the 
DOE procedures which objects use for exchanging DOE 
messages. When a client sends a message to another 
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object, the client-side DOE code provides location trans- 
parency by looking up the destination object identifier in 
DOE's Object Directory (OD) service. This returns the 
location of the object's implementation. If the destination 
object is implemented in the same program, the request is 
delivered to it directly in memory (Figure 2, A). Otherwise 
the request message is relayed to the target object's server 
program via the UNIX-provided transport service (Figure 
2, B and C). All messages sent via the transport are 
encoded using the standard External Data Representation 
(XDR) [4] so that they may be independent of different 
host data representations. 

The DOE OD maps each object identifier in FSATS to 
that object's location (i.e., the transport address of its 
server program). Therefore, each object must register its 
identifier with the OD before any clients can send DOE 
messages to it. DOE's current OD implementation has no 
central server. The OD is replicated among all of the 
server programs. Each program contains an OD agent. A 
special protocol is used to ensure that all such agents com- 
prising the OD quickly converge toward mutual consis- 
tency whenever an object changes its status, or whenever 
some inconsistency is detected. An object may change its 
status by registering or deregistering itself, in which case 
its local OD agent will notify all the others. If a client tries 
to send a message to an object identifier that is unknown to 
the client's local OD agent, that agent will broadcast a 
query for that object to all other OD agents. If the object in 
question has registered anywhere in the FSATS, its own 
OD agent will respond with the needed information. An 
OD agent will detect a routing error when a DOE message 
is delivered to an FSATS program which does not contain 
the destination object. It then sends a special message back 
to the source program notifying it of the error. The source 
OD agent will then use the query mechanism to resolve 
the error. OD agents can also detect attempts to register 
object identifiers which are already registered, in which 

case the source agent is notified. 
Since the OD has no central server, there is no single 

point of failure in the system. Programs can be terminated 
during FSATS execution without disturbing anything but 
the objects that resided there and the objects that were 
interacting with them. We have found the OD protocol to 
be quite robust and nimble in dealing with OD changes 
and inconsistencies. However, this protocol relies heavily 
on the availability of a broadcast mechanism that can dis- 
tribute a single message to all OD agents. This approach 
works very well in FSATS's current communications envi- 
ronment, since the Internet Protocol [5] provides a special 
broadcast address that can be used within a network, and 
the IEEE 802.3 LAN technology provides true broadcast 
support in hardware. Nevertheless, it would not scale well 
to FSATS configurations which included many hundreds 
of objects or more, and would be inefficient in a network 
that did not support true broadcasting. 

In any case, DOE and its OD may be replaced in 
future versions of FSATS by third-party standards-based 
products. Like the FSATS object model with respect to the 
OMG's OMA, DOE was designed and implemented in the 
period 1990-1993, roughly the same time that OMG's 
Common Object Request Broker Architecture (CORBA) 
[6] was evolving. Because of the similarity in their design 
goals, DOE provides most of the services of an Object 
Request Broker (ORB) as described by CORBA, although 
it obviously does not comply with its specifications. 

The ways in which DOE falls short of being a 
CORBA-style ORB are related to some persistent soft- 
ware development problems in FSATS. FSATS objects are 
currently not required to have explicit, well-defined inter- 
faces. There is nothing like the Interface Definition 
Language (IDL) defined by CORBA. This means that a 
very useful feature provided by a CORBA ORB cannot be 
provided by DOE: automatic generation of the software 
that maps object operations to the underlying message- 
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passing service. FSATS object implementors must write 
the so-called skeleton software that receives each DOE 
message, interprets its contents, invokes the correct 
method, and builds and sends the reply message. Client 
implementors must write each stub procedure that builds 
and sends the request message for a given operation, waits 
for the response, and returns the results. But given an 
explicit, well-defined object interface, both the client stub 
and object skeleton source code could be generated auto- 
matically. Client implementors would then need only use a 
procedure-call interface to invoke an operation on an 
object. Object implementors would only have to provide 
the actual methods for each operation. CORBA defines a 
tool called the IDL compiler, which takes an object inter- 
face defined in IDL and generates the client stubs and 
object skeleton. This source code can then be compiled 
and linked in to the client and object implementations 
respectively. 

Automatic generation of the stub and skeleton source 
code would provide two important benefits for the devel- 
opment of the distributed object software in FSATS. For 
one, programmers would no longer need to write stub and 
skeleton source code by hand, which is a rather mechani- 
cal and error-prone process anyway. For another, it would 
provide a mechanism which enforces consistency between 
the operations that an object actually provides and the 
operations a client expects that object to provide. FSATS 
client programmers currently must rely on non-source 
code specifications, usually provided in comments. With 
an IDL compiler, both client and object implementation 
would start with the same interface definition for the 
object, so changes to the object's interface would be 
forced upon the client when the stub procedures are regen- 
erated and re-linked. 

Our realization of DOE's shortcomings compared to 
the emerging model for distributed objects has led us to 
develop an approach for moving FSATS towards industry 
standards in this area. We have chosen the CORBA stan- 
dards as our target, because of the similarity to FSATS's 
object model, its industry support, and its source language 
bindings: C and C++ (for reasons outside the scope of this 
paper, future FSATS objects are likely to be developed in 
C++ rather than the currently used Ada). 

The ultimate goal is to make future FSATS objects 
source-code-portable to any host/operating system plat- 
form for which there is an ORB implementation with the 
desired language binding. The main benefit of achieving 
this would be to provide FSATS the option of replacing 
our home-grown DOE with a commercially available and 
supported ORB. This would include replacing DOE's OD 
with one based on the Naming Service Specification 
defined in the OMG's Common Object Services Specifica- 
tion [7]. It would also allow FSATS to execute on a greater 

range of potential host and operating system platforms. 
An important interim goal is to allow a migration 

period during which the old FSATS objects can still inter- 
act with newly-developed FSATS objects that expect a 
CORBA-compliant ORB. During this period, the new 
FSATS objects would actually use a CORBA-compliant 
version of DOE, which could still interoperate with the old 
DOE using the old DOE message-passing protocols. How- 
ever, once all of the old FSATS objects have been dis- 
carded or ported to the new CORBA-compliant DOE, that 
DOE itself could be replaced with any third-party CORBA 
ORB. 

Conclusions 

In general, we have found that a distributed object 
architecture works well for supporting the distributed 
interactive simulation capabilities required of FSATS. 
Notwithstanding minor bottlenecks like the DBMS, per- 
formance has been satisfactory in the simulations to date. 
The flexibility of configuration inherent in the architecture 
has allowed FSATS to support different simulation scenar- 
ios, and has enabled the tuning of simulation performance 
by balancing the load of model objects across host proces- 
sors. 

The DOE system software that supports FSATS's dis- 
tributed objects has worked very well for all of FSATS's 
functions, including distributed interactive simulation. 
Object interaction via DOE is fast and reliable enough that 
the overhead of object distribution has not been a problem. 
The distributed object directory is robust and adapts to 
changes quickly. However, experience during the last two 
years has highlighted areas which should be improved. 
The current object directory design would probably 
decline noticeably in efficiency as the size and complexity 
of the FSATS configuration grew. Also, DOE is lacking 
somewhat in the support of object software development 
and management. Therefore, future FSATS work will 
likely focus on migrating FSATS objects to work over any 
CORBA-compliant ORB, ultimately allowing FSATS to 
replace its proprietary DOE with whatever third-party 
ORB works on a required host and operating system plat- 
form. 
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IEEE Computer Society Press Publications 

Monographs: A monograph is an authored book consisting of 100- 
percent original material. 

Tutorials: A tutorial is a collection of original materials prepared 

by the editors and reprints of the best articles published in a subject 
area. Tutorials must contain at least five percent of original material 

(although we recommend 15 to 20 percent of original material). 
Reprint collections: A reprint collection contains reprints (divided 
into sections) with a preface, table of contents, and section introduc- 
tions discussing the reprints and why they were selected. Collections 

contain less than five percent of original material. 

Technology series: Each technology series is a brief reprint 

collection — approximately 126-136 pages and containing 12 to 13 

papers, each paper focusing on a subset of a specific discipline, such 

as networks, architecture, software, or robotics. 
Submission of proposals: For guidelines on preparing CS Press 
books, write the Managing Editor, IEEE Computer Society Press, 
P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA 

90720-1264, or telephone (714) 821-8380. 

Purpose 

The IEEE Computer Society advances the theory and practice of 
computer science and engineering, promotes the exchange of tech- 

nical information among 100,000 members worldwide, and provides 
a wide range of services to members and nonmembers. 

Membership 

All members receive the acclaimed monthly magazine Computer, 

discounts, and opportunities to serve (all activities are led by volunteer 
members). Membership is open to all IEEE members, affiliate society 

members, and others seriously interested in the computer field. 

Publications and Activities 

Computer magazine: An authoritative, easy-to-read magazine 

containing tutorials and in-depth articles on topics across the com- 

puter field, plus news, conference reports, book reviews, calendars, 
calls for papers, interviews, and new products. 

Periodicals: The society publishes six magazines and five re- 

search transactions. For more details, refer to our membership 
application or request information as noted above. 

Conference proceedings, tutorial texts, and standards docu- 
ments: The IEEE Computer Society Press publishes more than 100 
titles every year. 

Standards working groups: Over 100 of these groups produce 
IEEE standards used throughout the industrial world. 

Technical committees: Over 30 TCs publish newsletters, pro- 

vide interaction with peers in specialty areas, and directly influence 

standards, conferences, and education. 
Conferences/Education: The society holds about 100 confer- 

ences each year and sponsors many educational activities, including 
computing science accreditation. 

Chapters: Regular and student chapters worldwide provide the 

opportunity to interact with colleagues, hear technical experts, and 
serve the local professional community. 


