
f\£o ^^^-l'/«fl'C.P

Fifth Annual Conference on

Al, Simulation, and Planning

Distributed
Interactive
Simulation
Environments

December 7-9,1994
Gainesville, Florida

Sponsored by
The University of Florida
The Advanced Research Projects Agency (ARPA)
The Army Research Office (ARO)

19951106 077

IEEE Computer Society Press The Institute of Electrical and Electronics Engineers, Inc.

MAÜTEK UUrY ^EE? THIS UOrr FÜR REPRODUCTTONTUKFÜ3ES

RE'PORT DOCUMENTATION PAGE
Farm Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average t hour per response, including the time for reviewing instructions, searching emsting data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0/04-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 199S
3. REPORT TYPE AND DATES COVERED

Flrml—?n Sen qfl . 19 Sop95
4. TITLE AND SUBTITLE

Distributed Interactive Simulation Environments

6. AUTHOR(S)

Paul A. Fishwick

7. PERFORMING ORGANIZATION NAME(S) AND AD

University of Florida
Gainesville, FL 32611

9. SPONSORING/MONITORING AGENCY NAME(S) AND f DDRESS(ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

FUNDING NUMBERS

DAAH04-94-G-0414

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

ARO 33598.1-MA-CF

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

123. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

IZb. UlSlKIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This represents the Fifth AI, Simulation, and Planning Conference for high autonomy systems.
High autonomy systems are large scale dynamic systems involving many interacting intelligent
or controlled entities. Past conferences were held in Tucson (Arizona), Cocoa Beach (Florida);
and Perth, Australia.

Large scale simulation models are increasingly executed within parallel and distributed
computing environments. Distributed Interactive Simulation (DIS) directly involves the human in
the simulation loop, and contains the real-time communication of heterogeneous simulators
spread throughout wide geographical areas. Research in distributed simulation has taken place
across many fronts: (1) Military DIS IEEE standard and workshops; (2) Continuous model
parallelization; and (3) Discrete model (PDES) parallelization. The purpose of this conference is
to focus on basic research problems in the overall area of distributed simulation with an emphasis
on problems occurring in interactive environments.

14. SUBJECT TERMS

DTTG QUALITY INSPECTED 8

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 239-18
298102

Proceedings of the

Fifth Annual Conference on

AI, Simulation, and Planning
in High Autonomy Systems

Distributed Interactive Simulation Environments

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced □
Justification

By
Distribution /

Availability Codes

Dist

m
Avail and/or

Special

Proceedings of the

Fifth Annual Conference on

AI, Simulation, and Planning
in High Autonomy Systems

Distributed Interactive Simulation Environments

December 7-9, 1994
Gainesville, Florida

Sponsored by

University of Florida
The Advanced Research Projects Agency (ARPA)

The Army Research Office (ARO)

IEEE Computer Society Press
Los Alamitos, California

Washington • Brussels • Tokyo

IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number 6440-02
Library of Congress Number 94-76639

ISBN 0-8186-6440-1 (paper)
ISBN 0-8186-6441-X (microfiche)

Additional copies may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264
Tel: +1-714-821-8380
Fax: +1-714-821-4641
Email: cs.books@computer.org

IEEE Computer Society
13, Avenue de l'Aquilon
B-1200 Brussels
BELGIUM
Tel: +32-2-770-2198
Fax: +32-2-770-8505

IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN
Tel: +81-3-3408-3118
Fax: +81-3-3408-3553

Editorial production by Penny Storms

Cover by Joseph Daigle - Schenk/Daigle Studios

Printed in the United States of America by KNI, Inc.

<$■ The Institute of Electrical and Electronics Engineers, Inc.

Table of Contents

Greetings ix
Conference Description x
Committees xi
Reviewers xii

Keynote Address
DIS Concepts and a Potential Role for Academia

James Shiflett, Simulation Training and Instrumentation Command, U.S. Army

TRACK 1

Session 1A: Hybrid Systems

Hybrid Systems and Distributed Interactive Simulations 2
J. James, A. Nerode, W. Kohn, and J. Chandra

Hybrid Systems: Models, Simulation, and Testing 8
N. Coleman, S. Banks, J. James, A. Nerode, and W. Kohn

Distributed Intelligent Control Theory of Hybrid Systems '. 12
X. Ge, A. Nerode, W. Kohn, and J. James

Simulation as a Tool for Hybrid System Design 16
J. Lygeros, D. Godbole, and S. Sastry

Session IB: Modeling and Dynamics

Expressing Intratask Parallelism in Discrete Event Simulation Models 24
A. Radiya

Design of an Efficient Frame-Based Modeling and Simulation Tool 30
L.-P. Chien and R.Y.-M. Huang

Hierarchical, Concurrent State Machines for Behavior Modeling
and Scenario Control 36

O. Ahmad, J. Cremer, J. Kearney, P. Willemsen, and S. Hansen
Fluids in a Distributed Interactive Simulation 43

C. Jinxiong and M. Sartor

Session 1C: Terrain Modeling and Reasoning

Terrain Modeling on High Fidelity Ground Vehicle Simulators 48
Y.E. Papelis

Terrain Reasoning Challenges in the CCTT Dynamic Environment 55
C.E. Campbell and G. McCulley

Design of Terrain Reasoning Database for CCTT 62
J. Watkins and M. Provost

Session ID: Network Analysis

Traffic Characterization of Manned-Simulators and Computer Generated
Forces in DIS Exercises 70

S.E. Cheung and M.L. Loper

Realtime Data Analysis for the Joint Theater Missile Defense
Simulation Network (JTMDSN) 77

M.D. Gray and C.K. Jones

Session IE: Intelligent Agents

Insertion of an Articulated Human into a Networked Virtual Environment 84
D.R. Pratt, P.T. Barham, J. Locke, M.J. Zyda, B. Eastman,
T. Moore, K. Biggers, R. Douglass, S. Jacobsen, M. Rollick,
J. Granieri, H. Ko, and N.I. Badler

Extending DIS for Individual Combatants 91
D.A. Reece

Session IF: Planning and Decision Making I

Automated Battlefield Simulation Command and Control Using
Artificial Neural Networks 100

I.J. Jaszlics, S.L. Jaszlics, and S.H. Jones

"Game Commander" — Applying an Architecture of Game Theory and Tree
Lookahead to the Command and Control Process 106

A. Katz and B. Butler

Incorporating Simulation-Based Models into Planning Systems 113
J.J. Lee and P.A. Fishwick

Session IG: Planning and Decision Making II

Automated Path Planning for Simulation 122
J. Marti and C. Bunn

A Distributed Simulation System for Team Decisionmaking 129
A.A. Song and D.L. Kleinman

The Fire Support Automated Test System (FSATS): An Approach to
Distributed Command and Control Simulation 136

M.D. Howard

Distributed Interactive Simulation for Intelligence Data Dissemination 141
F.D. Magee

TRACK2

Session 2A: DEVS Formalism: Simulation Engines and Performance Modeling

Distributed Simulation of DEVS-Based Multiformalism Models 150
H. Praehofer and G. Reisinger

Abstract Simulator for the Parallel DEVS Formalism 157
A.C. Chow, B.P. Zeigler, and D.H. Kim

VI

An Approach to Object-Oriented Modeling and Performance Evaluation 164
L.-P. Chien and J.W. Rozenblit

The DEVS Formalism: A Framework for Logical Analysis and Performance
Evaluation for Discrete Event Systems 170

G.P. Hong and T.G. Kim

Session 2B: DEVS Formalism: Modelling Methodology

Distributing and Maintaining Knowledge: Agents in Variable
Structure Environments 178

A.M. Uhrmacher and R. Arnold

Variable DEVS — Variable Structure Modeling Formalism: An Adaptive
Computer Architecture Application 185

F.J. Barros, M.T. Mendes, and B.P. Zeigler

Verb Phrase Model Specification via System Entity Structures 192
R.J. Simard, B.P. Zeigler, and J.M. Couretas

A Framework for Hybrid Modeling/Simulation of Discrete Event Systems 199
M.S. Ahn and T.G. Kim

Session 2C: DEVS Formalism: Manufacturing Applications

Interface-Oriented Classification of DEVS Models 208
C. Thomas

Generation, Control, and Simulation of Task Level Actions Based on
Discrete Event Models 214

J.M. Couretas and J.W. Rozenblit

Supervising Manufacturing System Operation by DEVS-Based
Intelligent Control 221

H. Praehofer, G. Jahn, W. Jacak, and G. Haider

Session 2D: DEVS Formalism: Discrete Event Systems

The DEVS Framework for Discrete Event Systems Control 228
HS. Song and T.G. Kim

Performance Modeling and Analysis of Distributed Access Network
System Using DEVSim++ 235

K.H. Lee and T.G. Kim

Session 2E: DEVS Workshop Working Session

Session 2F: Applications I

SmartDb: An Object-Oriented Simulation Framework for Intelligent

Vehicles and Highway Systems 244
A. Göllü, A. Deshpande, P. Hingorani, and P. Varaiya

Modeling the Interactive Mode of SmartPath 251

F.H. Eskafi and D. Khorramabadi

Computing RF Propagation for Use in Simulation, Modeling, and Analysis 257
S. Fehr, D.A. McClung, and G. Nagao

Vll

Session 2G: Applications II

Integration of CGF with Fielded Equipment Using DIS 262
P. Landweer

Fuzzy Finite Automata and Their Application to Speech Recognition 269
T. Van Le

Session 2H: Test and Evaluation

Automatic Performance Monitoring and Evaluation 274
P. Drewes and A. Gonzalez

FSATS: An Object-Based Approach to Distributed Interactive Simulation
for C31 Test and Training 281

E. Evans

Author Index 287

Vlll

Greetings

Welcome to the Fifth Annual Conference on AI, Simulation, and Planning (AIS 94) held at the
University Centre Hotel adjacent to the University of Florida campus. Every year, the AIS
conference adopts a different theme, which targets a central research problem in the area of
computer simulation. This year's theme is "Distributed Interactive Simulation (DIS)
Environments." Since simulation involves intelligent as well as non-intelligent objects, this
conference includes technical themes reflecting a combined simulation/AI approach.

As simulation models are designed with greater numbers of components and sub-components,
simulation researchers need to find ways to efficiently execute models. Moreover, many
simulation models contain a "human in the loop," therefore interactivity plays a key role during
simulation. There are several major technical hurdles in DIS including 1) how to design large-
scale networked models; 2) how to make models operate in real time when training is the
simulation goal; and 3) how to effectively partition the mathematical models and data sets to
reduce network traffic and speed up the simulation. All papers in this proceedings address these
problems, and more, under the umbrella of DIS.

I would like to acknowledge several individuals who have helped to create this conference. In
terms of co-support, I would like to thank two organizations: the Advanced Research Projects
Agency (ARPA) and the Army Research Office (ARO). Without their financial and technical
assistance, this conference would not be possible. Dennis McBride (ARPA) and Jagdish Chandra
(ARO) have made many valuable technical suggestions, and their guidance is greatly
appreciated. Ole Nelson of the University of Florida Department for Continuing
Education/Conferences has been a most valued collaborator for local conference management,
and has offered friendly and timely assistance with all conference-related matters. Edna Straub
and Penny Storms of the IEEE Computer Society have helped to make the hardcopy proceedings
a reality, and I spent many hours with Perri Cline, also with the IEEE Computer Society, on the
technical aspects of storing the proceedings of this conference on an Internet-accessible IEEE
Computer Society node in hypermedia and Postscript. Perri and the IEEE Computer Society are
leading the way for the next generation of online proceedings, where readers can browse full
text/graphics conference articles online using World Wide Web (WWW) client programs.

I wish you a pleasant stay and am sure that you will walk away from the conference with some
original questions answered, and new questions to ponder. Welcome to "Gator Country" —
otherwise known as Gainesville, Florida!

Paul A. Fishwick
Conference Chair
Email: fishwick @cis. ufl. edu

IX

Conference Description

This represents the Fifth AI, Simulation, and Planning Conference for high autonomy systems.
High autonomy systems are large scale dynamic systems involving many interacting intelligent
or controlled entities. Past conferences were held in Tucson (Arizona), Cocoa Beach (Florida);
and Perth, Australia.

Large scale simulation models are increasingly executed within parallel and distributed
computing environments. Distributed Interactive Simulation (DIS) directly involves the human in
the simulation loop, and contains the real-time communication of heterogeneous simulators
spread throughout wide geographical areas. Research in distributed simulation has taken place
across many fronts: (1) Military DIS IEEE standard and workshops; (2) Continuous model
parallelization; and (3) Discrete model (PDES) parallelization. The purpose of this conference is
to focus on basic research problems in the overall area of distributed simulation with an emphasis
on problems occurring in interactive environments.

Committees

Conference Chair

Paul A. Fish wick
University of Florida

Organizing Committee

Jerzy W. Rozenblit
University of Arizona

Bernard P. Zeigler
University of Arizona

Program Committee

Francois E. Cellier, University of Arizona
Sandra Cheung, Institute for Simulation and Training

Paul Davis, Rand Corporation
Tom DeFanti, University of Illinois at Chicago

Stephen Downes-Martin, David Sarnoff Research Center
Adel Elmaghraby, University of Louisville

Richard Fujimoto, Georgia Institute of Technology
Dorota Kieronska, Curtin University of Technology, Australia

Tag Gon Kim, Korea Advanced Institute of Science and Technology
Jason Lin, Bellcore

Sven Erik Mattsson, University of Lund, Sweden
Duncan Miller, Massachusetts Institute of Technology

Michael Moshell, University of Central Florida
David Nicol, College of William and Mary

TuncerOren, University of Ottawa, Canada
Mikel Petty, Institute for Simulation and Training

Herbert Praehofer, University of Linz, Austria
Ashvin Radiya, University of Wichita
Roger Smith, Mystech Associates, Inc.

Scott Smith, Institute for Simulation and Training
Svetha Venkatesh, Curtin University of Technology, Australia

Ben Wise, SAIC Corporation
David Wood, MITRE Corporation

David Zeltzer, Massachusetts Institute of Technology
Michael Zyda, Naval Postgraduate School

XI

Reviewers

Francis E. Cellier
Sandra Cheung

Paul Davis
Tom DeFanti

Stephen Downes-Martin
Adel Elmaghraby
Paul A. Fishwick
Richard Fujimoto
Dorota Kieronska

Tag Gon Kim
Jason Lin

Sven Erik Mattsson
Duncan Miller

Michael Moshell
David Nicol
Tuncer Oren
Mikel Petty

Herbert Praehofer
Ashvin Radiya

Jerzy W. Rozenblit
Roger Smith
Scott Smith

Svetha Venkatesh
Ben Wise

David Wood
David Zeltzer

Bernard P. Zeigler
Michael Zyda

Xll

Session 1A:

Hybrid Systems

Hybrid Systems and Distributed Interactive Simulations

John James
Intermetrics, Inc.

7918 Jones Brauch Dr.
Suite 710

McLean, VA 22102 USA

james@potomac.wash.inmet.com

Anil Nerode
Mathematical Sciences Institute

Whitehall
Cornell University

Ithaca, NY 14853-7901 USA

nerode@mssun7.msi.cornell.edu

WolfKohn
Intermetrics, Inc.

1750 112th Ave NE
Suite D-151

BellevueWA 98004 USA

wfk@minnie.bell.inmet.com

Jagdish Chandra
Director, Mathematical and Computer Sciences Division

Army Research Office
P.O. Box 12211

Research Triangle Park, NC 27709-2211

chandra@aro-emh 1 .army.mil

Abstract: The Army has set a goal of enhancing
battlefield effectiveness by fielding a digital division
by 1998 and has started a sequence of field exercises
to investigate how new applications of digital
technology will affect military operations. These
transition activities are part of preparing the Army to
fight third-wave warfare - information-age warfare.
The result will be a 21st-century Army, digitized and
redesigned to fight the wars of the next century.
Distributed Interactive Simulation (DIS) is seen as a
key technology in determining and analyzing
alternatives for digitizing the battlefield. DIS is a
rapidly changing field. For over twenty years the
Army has been using computer-assisted tactical
engagement simulations and distributed interactive
simulations to enhance training and evaluate
engagement alternatives. Based on this experience,
an emerging vision is the application of advanced
information systems technology to create a shared
situational awareness (visualization) of the
battlefield. Realization of shared awareness will
support faster-paced operations through real-time
force synchronization. The Louisiana Maneuvers
(LAM) initiative will use the joint AMC and
TRADOC Battle Labs to investigate some of the
alternatives. Given the rapid changes in computer
capabilities, communications bandwidth, and
software complexity, it has been unclear what the
mid- and far-term technical opportunities and
challenges are in applying results from the ongoing
information systems revolution to improve battlefield
effectiveness. Substantial improvements in current

DIS technologies are needed to enable professionals
at widely distributed sites to interact simultaneously
through simulators, simulations, and deployed
systems in a common joint synthetic operational
environment. In this article we discuss how one of
the foundational technologies supported by the U. S.
Army Research Office, hybrid systems technology,
can support closing some of the DIS technological
gaps and thus help to analyze alternatives for
realization of Force XXL.

1. Introduction: Army Battle Labs, the National
Simulation Center, and the Louisiana Maneuvers
(LAM) office are principle sources of Army
requirements for DIS. The vision for the future of
Advanced Distributed Simulation (ADS) includes
creation of synthetic theaters of operation shared and
simultaneously operated on by the Services, CINCs,
Joint Task Forces, Joint Staff, and Defense
community. Realization of the vision of a synthetic
theater of war (STOW) fully depends on the creation
of interoperable simulators, simulations, and fielded
systems that realistically represent warfighting
concepts, doctrine, forces and weapon systems of
friendly, neutral and opposing forces [2]. Distributed
Interactive Simulations (DIS) have provided a wide
variety of realistic training and analysis applications,
but cannot currently be relied upon to create the
STOW because the architecture is known to have
problems with synchronization, interoperability and
scalability [3,4,5]. General Gordon R. Sullivan,
Chief of Staff, U. S. Army, has recently asserted that

0-8186-6440-1/94 $04.00 © 1994 IEEE

"Force XXI will represent a new way of thinking for
a new wave of warfare.[6]." Overcoming DIS
technology shortfalls is a necessary step in being able
to analyze alternatives in creation of new formations
that operate at greater performance levels in speed,
space, and time.

1.1. Shortfall in synchronization: Advances in
technology are needed to improve simulation realism
and accuracy by correcting shortfalls in
synchronization of live virtual and constructive
simulations. Currently, information generated by one
simulation is not reliably shared with other
simulations in time to achieve realistic interaction
(such as a tank being simulated in one location
driving smoothly over a crater created by another
simulation, or a tactical radio which depends on line-
of-sight "communicating" with another radio that is
over 200 miles away). Realistic synchronization of
simulations is necessary to engender the level of
confidence in simulation results needed to provide
strategic direction for the Army.

The Army Master Plan for DIS asserts that DIS will
play a key role in strategic direction for the Army by
enabling evaluation and analysis of strategic
concepts, military options and mission needs. The
Louisiana Maneuvers (LAM) process provides a
capability for the Army's senior leadership to guide,
formulate and assess military options for
continuously improving Army capabilities at the
strategic and operational levels of war. To meet
LAM mission needs, future simulations must
represent the complimentary capabilities of all
Services in all missions ranging from a full-scale
theater operation to a small-scale peacekeeping
mission [2]. Given General Sullivan's intent to build
formations that operate at greater performance levels
in speed, space, and time and the shortfall of the
existing DIS architecture to accurately depict
formations maneuvering at current rates,
synchronization of simulations which will enable
analysis of innovative alternatives of future
formations is a priority research issue.

1.2. Shortfall in interoperability: Advances in
technology are needed to improve interoperability of
existing diverse simulations. This will increase
realism and decrease costs of constructing large-scale
simulations like WarBreaker [3]. Many large-scale
simulations similar to Warbreaker will be needed to
support analysis of alternatives for horizontal
technology integration envisioned for STOW.
Excellent efforts are underway to improve
interoperability by implementing standard processes

for Protocol Data Unit (PDU) interfaces and use of
the Aggregate Level Simulation Protocol (ALSP).
However, these efforts to improve the integration
process have been hampered by the fact that there has
not been a mathematical framework for
simultaneously analyzing safety, security, and other
logical requirements, while considering temporal and
spatial constraints. Ongoing ARO research efforts
provide foundational technology for solving basic
problems in the correlation of time and space in the
synthetic environment, thereby achieving
synchronization and interoperability.

Synchronization and interoperability are both key to
Horizontal Technology Integration (HTI). HTI is the
concept for designing major platforms that permit
rapid replacement of common components and
subsystems [2]. HTI requires greater attention early
on to requirements trade-offs, baseline design trade-
offs, and integrated development across platforms
and subsystems. The existing DIS architecture does
not support the level of interoperability needed for
complex and critical trade-offs requiring close
coordination and extensive interaction among combat
development, materiel development, and materiel
acquisition.

1.3. Shortfall in scalability: Advances in
technology are needed to support scalability of
simulations. Two or three orders of magnitude
increase in the scale of the number of objects being
simulated is estimated as being necessary to support
the kinds of simulations envisioned for DIS [3].
Synthetic battlefields must represent the full
dimension of ground, air, maritime and space
operations across the entire spectrum of conflict and
operations other than war [2]. The synthetic
battlefields must expand representations of forces,
units, systems, installations, logistics networks,
terrain, environment, cultural features and people.

Maintaining consistent views of the battlefield at
multiple locations and at multiple levels of
abstraction is a major challenge. High levels of
resolution are required for analysis of environmental
effects on component and systems performance while
low levels of resolution are needed at strategic and
operational levels. Creating, updating, and
interacting with the synthetic environment at both
high- and low-levels of resolution simultaneously
places extreemly difficult constraints on maintaining
consistent interactions among simulations and models
based on widely varying spatial and temporal scales.

1.4. Addressing technical shortfalls and achieving
Verification, Validation and Accreditation The
revolution in military affairs implied by the DIS
vision depends on commanders trusting the
simulation results; verification, validation and
accreditation (VV&A) of new models must be rapid
enough to meet the needs of national decision
makers. DIS may require operation of a nested set of
models or the results of the high-resolution models
may be used as input to higher-order models. The
realistic linkage of models and simulations, the real-
time interaction between models of different levels of
detail, and the need to maintain verification and
validation for confederation of linked models are
essential for DIS [2].

the cost of integrating heterogeneous simulations by
greatly reducing the effort required to perform
verification, validation and accreditation of
incremental changes to trusted DIS components.

A technical shortfall discussed at some length at the
workshop is a barrier to cost-effective
implementation of ADS. The shortfall is lack of an
extractive methodology and an architecture for
flexible interoperability of distributed, real-time
information systems. By extractive methodology we
mean an extraction algorithm, tools and process for
integration of existing simulation system components
which will overcome a primary shortfall of the
current technology which relies on experimentation

Level 4: Integrated environment and modeling & simulation tools for:
• Requirements Definition . Program Planning • Training & Readiness
»Prototyping . Design & Manufacturing ♦ Test & Evaluation

jJLjjiyB^^

1 L\L1 1 tnnhlmi! S^ILITI I. ihnnlngk'«

pbipvf^^

Level 0: Enabling Fundamental Technologie JS:

IperOpc :;
^(»nmuBJcaiio«

fnfcgrawd
Circuits

Software
ll^^lpig." .|;.

Human Behavior
Representation
Models

Environmental
Representation
Models

Figure 1. Simulation Enabling Technologies

During a recent ARO workshop academic,
government and commercial representatives were
informed concerning DIS requirements and technical
shortfalls, and contributed to a technical discussion
which centered around the potential of hybrid systems
to correct some of the shortfalls. Hybrid systems are
represented by models which are compositions of
logic models (digital, linguistic, algebraic or finite-
state-machine models) and evolution models (analog
or differential operator models). A DIS is a hybrid
system. Recent research results in mathematics and
control theory suggest that hybrid systems may offer
a path to high-safety, high assurance systems
composed of trusted modules. The formal nature of
hybrid systems theory supports dramatically lowering

to integrate heterogeneous systems. The new
technology discussed to overcome this barrier is
hybrid systems theory. Hybrid systems are those
systems most appropriately described by an
amalgamation of logical representations and
evolution representations. A network of distributed
interactive simulation (DIS) processes is a hybrid
system. A need was identified to expand the hybrid
systems results achieved thus far and investigate its
application to achieve the interoperability of existing
and future DIS. It was not deemed appropriate to
apply hybrid systems theory to existing simulations
since rewriting these systems would be an enormous
task. Instead, it was thought appropriate to apply the
results of hybrid systems theory to a crucial problem
in cost-effective enhancement of the existing

infrastructure: reactive, scalable interoperability of
current and future simulations.

2. Hybrid systems and integration of
heterogeneous models: A recent Defense Science
Board Summer Task Force studied the impact of
advanced distributed simulation technology on
service and joint readiness. The report of the board
clearly indicated a split in the enabling fundamental
technologies for software development (Level 0 of
Figure 1). The split is the explicit dependence upon
two very different kind of models and simulations:
logical models (human behavior representation
models) and evolution models (environmental
representation models). Engineers, computer
scientists, and mathematicians deliberately trade off
between the two different kinds of models for
different system components (or for different levels
of aggregation of the same component) as part of the
system development process. System integration
often centers around ensuring that the different kinds
of models are compatible for different environmental
operating conditions (modes of operation).

A foundational issue for improving DIS capabilities
is creation of a technology for constructive
integration of diverse models. The integration of
human behavior representation models and
environmental representation models is currently
achieved through expensive experimentation.
Furthermore, this experimentation limits the
scalability of simulation architectures since without
some kind of constructive approach, incremental
expansion of any architecture through addition of
new components must be experimentally verified.
What is needed is a methodology and an architecture
for reliably constructing new versions of an existing
architecture as new components are incrementally
added to the existing architecture. Such a
methodology will be the key to realization of the
requirement for building reconfigurable simulations
in support of "train the way you will fight." It will
also be the key to maintaining consistent data as
diverse models are mixed and matched in the
reconfiguration process and also to the verification
and validation of the confederation of models.

Thus, we believe that one of the most challenging
problems facing DIS, the solution to which is most
likely to lower costs, is the verification of software
systems that use both logical (e.g. human behavior
representation) and evolution (e.g. environmental
representation) algorithms. These models use
fundamentally different mathematical tools.
Cognitive models of human behavior are built using

linguistic tools which depend on the set-based
mathematics of algebraic topology. Models of the
physical environment are built using simulation tools
which support experiments with compositions of set-
based, linguistic (logical) models and continuum-
based models which depend on the mathematics of
differential operators. Experiments are necessary to
determine the behavior of the composition of models
for safety, reliability and performance constraints.
The general approach currently used for verification
is to explore design failure modes and track
correction of bugs in the software until a comfort
level is reached and success is declared. There is a
nagging expectation that not all of the states of the
computer finite-state machine have been visited and
tested. Also, when new capabilities are added, new
failure modes are created so the system must again be
tested.

3. Overview of the Hybrid Systems Approach:
The hybrid systems architecture development process
expects to use software engineering processes and
environments being developed under the ARPA
DSSA program [7,8]. The DSSA approach
emphasizes the role of the domain architect using
CASE tools in the domain development environment
to produce a reference architecture and reusable
software components and the role of the application
engineer using CASE tools in the domain-specific
application development environment to apply the
reference architecture and reusable components to
produce an architecture instantiation. One hybrid
systems architecture being considered consists of a
collection of agents of two types : Simulation Agents
and Demand Agents interconnected via a general
purpose communications network (see Figure 1) [9].
This approach to control of hybrid systems,
developed by Wolf Kohn, addresses the software
design issue by building mathematical foundations
(developed with Anil Nerode) and creating a tool for
implementing a constructive algorithm for building
automata which simultaneously comply with logical
and evolution constraints. Experimentation to
determine system equilibria is still required, as is the
need to experimentally verify that the high-level logic
meets the needs of the users. However, the need for
exhaustive experimentation to analyze the result of
combining high-level logic and low-level evolution
representations is not required. Thus to the extent
that high-level, logic models are "trusted" and low-
level continuous-time models are "trusted", we can
construct automata which are consistent with
constraints from both kinds of models. Furthermore,
if the logic or evolution models are not completely

compatible with the system they are modeling, the
procedure provides for formal mechanisms for tuning
the structure of the logic and evolution models.

While space limitations preclude providing the
scientific basis for hybrid systems claims. We
provide the following summary of results for the
Kohn-Nerode approach to multiple-agent hybrid
control (see Figure 2):

• The formulation gives a precise statement of the
DIS communication network control problem in
terms of multiple agent hybrid declarative control.
The approach characterizes the problem via a
knowledge base of equational rules that describes the
dynamics, constraints and requirements of the
simulations being controlled (channels, switching
modes, customer characteristics, scheduling and

multiple-agent controller for any network
configuration is reduced to a set of agent pairs. This
result supports the synchronization of the simulations
to provide consistent data and the achievement of
scalability.

• One agent of the agent pair maintains coordination
with other agent pairs across the network. The agent
of the pair which represents network information is
called the Thevenin Agent, after the author of a
similar theorem in electrical network theory. The
proof carried out by the Thevenin Agent generates, as
a side effect, coordination rules that define what and
how often to communicate with other agents. These
rules also define what the controller needs from the
agent network to maintain intelligent control of its
physical plant.

• i »

Physical Network

• • I

DEMAND AGENT

SIMULATION AGENT

SIMULAT DN

Figure 2. Multiple-Agent Hybrid Control Architecture for Advanced Distributed Simulation

planning strategies, etc.). This result holds promise
for addressing the current shortfall of the Aggregate
Level Simulation Protocol in reconciling differences
among its component constructive simulations. It
specifically provides the ability to accommodate the
time evolution of simulation elements from those
available today through the time of availability of the
technologies planned and under development since
the architecture emphasizes incremental construction.
• A canonical representation of interacting networks
of controllers has been developed. Given a
connectivity graph with N nodes (controllers) and the
corresponding agent's knowledge bases, a network of
2N agents can be constructed with the same input-
output characteristics, so that each agent interacts
only with another (equivalent) companion agent,
whose knowledge base is an abstraction of the
knowledge in the network. Thus, in general, the

• The hybrid systems approach develops a canonical
way to prove the theorem characterizing the desired
behavior for each agent by constructing and
executing on-line a finite state machine called the
"proof automaton." This result is the basis for
constructing simulations from existing component
simulations and for the belief that the resulting
architecture will support incremental expansion of
new components with greatly reduced requirements
for expensive experimentation to validate the new
architecture. It is not expected that the need for
experimentation will be entirely eliminated since the
degree of "trust" in the newly composed architecture
will depend on the rules for composition of the
components. However, to the degree that the
composition rules are correct, the methodology will
be a formally correct composition of the

components. Thus, the focus of the verification and
validation effort will be raised to the component level
and the results can be reused across the confederation
of components.

In the full paper we will provide the hybrid systems
model for Figure 2.

[1] "Force XXI - Battle Command" , Army, p.
23, May, 1994.

[2] Department of the Army, "Distributed
Interactive Simulation Master Plan" (Draft),
1994.

[3] "Report of the Defense Science Board Task
Force on Simulation, Readiness and
Prototyping", Dr. Joseph V. Braddock and
General Maxwell R. Thurman, Co-
Chairmen, 21 Dec. 1992.

[4] "Proceedings of the U.S. Army Research
Office Workshop on Hybrid Systems and
Distributed Interactive Simulations",
Research Triangle Park, NC, 28 Feb. -1
Mar. 1994.

[5] DIS Steering Committee, "The DIS Vision -
A Map to the Future of Distributed
Simulation" (comment draft), (Margaret
Loper, UCF, Chair; Steve Seidensticker,
SAIC, DIS Vision Document Coordinator),
Oct. 1993.

[6] "Force XXI - A Talk With the Chief, Army,
p. 28-34, May, 1994.

[7] "DSSA Guidelines Draft 0.1", Proceedings
of the DSSA Workshop IX, Teknowledge
Federal Systems, MD, 28-29 March, 1994.

[8] Kohn, W., J. James and Anil Nerode,
"Multiple-Agent Hybrid Control
Architecture for the Target Engagement
Process", Intermetrics Technical Report for
the ARPA Domain-Specific Software
Architectures (DSSA) Program, McLean,
VA, March, 1994.

[9] Kohn, W., J. James, and A. Nerode,
"Multiple-Agent Reactive Control of
Distributed Interactive Simulations (DIS)
Through a Heterogeneous Network",
Proceedings of the U.S. Army Research
Office Workshop on Hybrid Systems and
Distributed Interactive Simulations, p. 100-
140, Research Triangle Park, NC, 28 Feb. -
1 Mar. 1994.

[10] Butler, B., "DIS Architecture for
Interoperability, Special Problem:
Interoperability between Heterogeneous
Visual Systems", Proceedings of the U.S.
Army Research Office Workshop on Hybrid

Systems and Distributed Interactive
Simulations, p. 253-275, Research Triangle
Park, NC, 28 Feb. - 1 Mar. 1994.

[11] Nerode A., Kohn W.," Multiple Agent
Autonomous Control: A Hybrid Systems
Architecture" Logical Methods In Honor of
Anil Nerode's Sixtieth Birthday. N. C.
Crossley , J. B. Remmel, M. E. Sweedler,
Eds., Birkhauser, Boston, 1993.

Hybrid Systems: Models, Simulation, and Testing

Norman Coleman, Steve Banks
Robotics and Automation Laboratory

US Army Armaments Research, Dvelopment and Engineering Center
Building 95

Picatinny Arsenal, NJ 07806-5000

John James
Intermetrics, Inc.

7918 Jones Branch Dr.
Suite 710

McLean, VA 22102 USA

james@potomac.wash.inmet.com

Anil Nerode
Mathematical Sciences Institute

Whitehall
Cornell University

Ithaca, NY 14853-7901 USA

nerode@mssun7.msi.cornell.edu

WolfKohn
Intermetrics, Inc.

1750 112th Ave NE
Suite D-151

BellevueWA 98004 USA

wfk@ minnie.bell.inmet.com

Abstract: Realization of the vision of a synthetic
theater of war (STOW) fully depends on the creation
of interoperable simulators, simulations, and fielded
systems that realistically represent warfighting
concepts, doctrine, forces and weapon systems of
friendly, neutral and opposing forces. Distributed
Interactive Simulations (DIS) have provided a wide
variety of realistic training and analysis applications
but cannot currently be relied upon to create the
STOW because the architecture is known to have
problems with synchronization, interoperability and
scalability.

The revolution in military affairs implied by the DIS
vision depends on commanders trusting the
simulation results. Additionally, the verification,
validation and accreditation (VV&A) of new models
must be rapid enough to meet the needs of national
decision makers. We provide preliminary ideas
concerning how a detailed model being develop as
part of the Automation and Robotics program of the

I User I I User | | User |

Physical Network

U. S. Army Armaments Research, Development and
Engineering Center can be applied to address current
problems in DIS by providing a timely approach to
both simulation implementation and VV&A. Such an
approach can be used to provide standard design
guidance for linking models into seamless simulation
exercises. Existing models can be incorporated by
creating the appropriate simulation agents, thereby
providing backward compatibility.

We will provide an overview of the architecture
being developed and details concerning how such
low-level, detailed models can be integrated into
distributed, agent-based architectures to support early
development of flexible test products. Such test
products can be made to mature with the engineering
design to provide a more realistic set of test products
for VV&A of new systems.

1. Basis for Incremental Verification Validation
and Accreditation: One approach to a scalable

© Demand Agent

© Simulation Agent

0 Simulation

Figure 1. Multiple-Agent Hybrid Control Architecture

0-8186-6440-1/94 $04.00 © 1994 IEEE

Simulation architecture consists of a collection of
Simulation Agents and Demand Agents
interconnected via a general purpose communications
network (see Figure 1). Our approach to control of
hybrid systems addresses the issue of maintaining a
consistent instantiation of the architecture by building
mathematical foundations and creating a tool for
implementing a constructive algorithm for building
automata which simultaneously comply with logical
and evolution constraints. Experimentation to
determine system equilibria is still required, as is the
need to experimentally verify that the high-level logic
meets the needs of the users. However, the need for
exhaustive experimentation to analyze the result of
combining high-level logic and low-level evolution
representations is not required since we generate
programs which are consistent with the logical and
evolution constraints. Thus to the extent that high-
level, logic models are "trusted" and low-level
continuous-time models are "trusted", we can
construct automata which are consistent with
constraints from both kinds of models. Furthermore,
if the logic or evolution models are not completely
compatible with the system they are modeling, the
procedure provides for formal mechanisms for tuning
the structure of the logic and evolution models. The
proof capabilities for each agent in the multiple-agent
architecture allows its to determine whether or not the
local behavior of the system (as viewed by the agent)
satisfies the requirements (the continuity condition)
and if not, to modify reactively its plan so that
requirement satisfaction (agreement set) is achieved.
However, the on-line capabilities do not provide an
effective proof for determining if for the given goal
class, the reachability set of the carrier manifold
trajectories is abundant. By abundant we mean that,
at each decision point, the agreement set is populated
with at least one solution for all the command
actions. This reachability problem is essentially the
problem of the validation of the knowledge base of
the agent.

2. Problem Domain: The Distributed Nature of
Engagement of Multiple Targets by Multiple
Weapon Systems

The Army intends to field a digital division by 1998.
Capabilities of the digital division are yet to be fully
determined. However, it is expected that future
Army combat operations will increasingly involve
coalition forces and that future Army missions will
increasingly require conduct of operations other than
war (OOTW), such as peacemaking, peacekeeping,
humanitarian support, and humanitarian relief.
Current plans to reduce force structure is driving the
Army to investigate increasing flexibility of existing
units to support a wide range of missions.

Innovative use of barriers to decrease mobility of
opposing forces and active use of barriers to cause
opposing forces to move in desired directions has
been a historic discriminator between success and
failure in war. Barriers, such as intelligent mines are
often used to channel opposing forces into an area
where they can be engaged by direct and indirect fire
weapons of the combined arms team. Successful
demonstration of command and control of advanced
mines will provide commanders with a flexible,
lightweight means of increasing combat
effectiveness. The Army experts in mine warfare
determine the critical operational issues and criteria
for success of the intelligent minefield. Future efforts
to coordinate results of our current demonstration of
target engagement with the intelligent minefield
would provide an opportunity to test concepts for
dominating the maneuver battle with concepts for
operational use of intelligent mines.

2.1. Architecture Development: Battlefield
Environment Model

The battlefield environment (see Figure 2) consists of
a Universe (a prespecified region of the plane, i.e. A
closed surface of R^)- two types of objects (Friendly
objects and Foe objects), and the rules which
determine the reaction (the evolution of the state over
time) of friend or foe objects given the current state (
of friend and foe objects) and the context of the
operational situation (set of logical inputs). The set
of possible battlefield scenarios is the set of
sequences of friend and foe actions (from initiation
of the battlefield simulation until the friend and foe
objects are in a terminal state) and associated
contexts . For the purposes of this demonstration, we
will have a limited set of friend objects (always three
objects) and foe objects and a limited number of rules
(equational clauses - see Section 5.1.1 and [44])
which determine the evolution of the state of the
system. The model is deliberately constructed in
order to reflect some of the actual conditions which
occur on the battlefield but only at a level necessary
to demonstrate the reasoning and behavioral
capabilities of multiple-agent hybrid control.

3. Conclusion The structure of the multiple-agent
demonstration and the scope of multiple-agent hybrid
control theory admit the construction of a high-
fidelity model which will not be achieved in the
current multiple-agent demonstration. However, we
are currently implementing the steps necessary to
achieve integration of a detailed, high-fidelity model
of direct and indirect fire weapons with a distributed,
low-fidelity, multiple-agent models of multiple
weapons. A goal of the research is to explicitly
investigate how such a formalism will support

development of test products to assist in more
flexible VV&A of complex simulation models.

[1] Kohn, W., J. James, and A. Nerode, "Multiple-
Agent Reactive Control of Distributed Interactive
Simulations (DIS) Through a Heterogeneous
Network", Proceedings of the U.S. Army Research
Office Workshop on Hybrid Systems and Distributed
Interactive Simulations, p. 100-140, Research
Triangle Park, NC, 28 Feb. -1 Mar. 1994.
[2] Kohn, W., J. James and Anil Nerode, "Multiple-
Agent Hybrid Control Architecture for the Target
Engagement Process", Intermetrics Technical Report

Universe

for the ARPA Domain-Specific Software
Architectures (DSSA) Program, McLean, VA,
March, 1994.
[3] Butler, B., "DIS Architecture for Interoperability,
Special Problem: Interoperability between
Heterogeneous Visual Systems", Proceedings of the
U.S. Army Research Office Workshop on Hybrid
Systems and Distributed Interactive Simulations, p.
253-275, Research Triangle Park, NC, 28 Feb. - 1
Mar. 1994.
[4] Kohn, W., J. James, R. Modes, and A. Nerode,
"Multiple-Agent Reactive Control of Distributed
Interactive Processes (DIS): An Overview",

Foe System

Attack System

&. Information Gatherer

(CA) Control Agent

Scout Object

Active Object

Figure 2. Battlefield Environment

10

Intermetrics, Inc., May, 1994.
[5] "Force XXI - A Talk With the Chief, Army, p.
28-34, May, 1994.
[6] Institute of Land Warfare, "Army Tests Info
War".AUSANews.p. 7, June, 1994.
[7] Nerode A., Kohn W., " Multiple Agent
Autonomous Control: A Hybrid Systems
Architecture" Logical Methods In Honor of Anil
Nerode's Sixtieth Birthday. N. C. Crossley , J. B.
Remmel, M. E. Sweedler, Eds., Birkhauser, Boston,
1993.

li

Distributed Intelligent Control Theory of Hybrid Systems
Xiaolin Ge, Anil Nerode, Wolf Kohn, John James

Abstract: We discuss recent advances in
multiple-agent, distributed control of interactive
processes. Our multiple agent hybrid control
architecture approach is a new technology with
broad applicability since it integrates the
application of logic (set-based) and continuous-
time models of complex system behavior. The
Kohn-Nerode approach for integration of hybrid
systems emphasizes on-line synthesis of
automata which will meet current constraints.
A key feature of the approach is that the
evolution of the behavior trajectory of the
automata (e.g. the behavior trajectory of agent i)
is continuous in the carrier manifold (explained
below). We provide an example of our results
by discussing the case of multiple agents
involved in the engagement of multiple targets,
the agent behavior is continuous with respect to
the multiple engagement process models whose

potentials determine the portion of time the
process is active in a time interval.

1. A New Concept of System State
Hybrid System State: For purposes of our
exposition, there are three cases which need to
be considered in the characterization of unified
information models represented in the computer.
These cases collectively contain the kinds of
information that describe the state of the system.
The cases are: (1) information derived from
monitoring continuous variables, (2)
information derived from monitoring variables
which normally evolve continuously but which
may exhibit logical changes (jumps), and (3)
information which is derived from logical
variables (See Figure 1).

Queries,
Responses,
Decisions

\\\\\\\\\\\\\\\\\\\\\\'H\\\\\\\

Information
System

User -^
Displays,
Observations,
Requests

^^^^^^\\\^^^\\^\^\\^\^\^^^\\^\\

Computational Environment

Transducer

Logical Variables

^v Continuous Variables With ^
^p Logical Changes (jumps) ^j

Continuous Variables

Hybrid System State
Vvv\\v\\\\\v\v\x\ vv\.wv\.w>.v\.v

Analog
to

Digital
Transducer Transducer

Analog
to

Digital Sensors Actuators

Digital
to

Analog
Transducer

1 ■- Continuous Variables

Continuous Variables With
Logical Changes (jumps)

Logical Variables

J

Digital
to

Analog
Transducer

Transducer

Physical Environment
WWVWWVXWWVV.VW vvvvv.vvvv'ivs.vvvvv.vvs.vxvvvvv.vvv.vv.vvv.^s.N.vvwN.vvvN.^N.vvs.v'iV.wvvs.vvvs.v

Figure 1. Hybrid System State Representation

12
0-8186-6440-1/94 $04.00 © 1994 IEEE

To represent the state of the system in a
computable model, the values of continuous
variables must be approximated, as must the
values of variables which are normally
continuous but may occasionally exhibit jumps.
This is achieved by A-D and D-A transducers .
Exact representation of logical variables can be
achieved using transducers. The data structure
of the hybrid system state in the computational
environment is a composition of logical and
evolution variables. The state of the system in
the physical environment is approximated by the
state of the system in the computational
environment (the hybrid system state). The
information system of the user includes direct
observation of the physical system as well as
information available from the user interface of
the computational environment. The hybrid
system state evolves over time as the physical
environment is altered by the user (s) and by the
actuators of the system.

The current technical approach for construction
of computational models for sending signals to
actuators is based on experimentally integrating
logical and evolution models of the physical
environment. The inefficiency in requiring
experimental verification and validation that the

safety, security, and functional system
requirements are satisfied is a fundamental
barrier to lowering the costs of integrating
existing complex information systems. Previous
efforts to improve the integration process have
been hampered by the fact that there has not
been a mathematical framework for
simultaneously analyzing safety, security, and
other logical requirements while also
considering temporal and spatial constraints.
Our creation of the hybrid system state provides
the technical foundation to achieve the
unification of logical and evolution models.
Our multiple-agent declarative control
architecture provides the analytical framework
to simultaneously comply with evolution and
logical constraints.

Attainment and maintenance of a computable
model is accomplished through analysis of the
hybrid system state. The Kohn-Nerode
approach for unification of logical and evolution
models is based on introducing the idea of
continuity of the hybrid state representation.
The continuity argument and the constructive
extraction of automata which comply with the
continuity constraint is accomplished by using
the mathematics of manifolds (see Figure 2). A

CARRIER MANIFOLD
Generic model of a point in the manifold

p(id, proc(proc_data), sim(sim_data), in(synch_data), mp(mult_data))

LOGIC MODEL
(T-zero Topology)

(e.g. DEDS Sampling rule models)

I
EVOLUTION MODEL

(Power series of Lie algebra operators)

(e.g. Differential operators and DEDS models)

CHARTS

COORDINATE MAPS

CONTINUITY

I
BEHAVIOR TRAJECTORIES

Figure 6. Generic model of a point in the carrier manifold

13

Figure 3. Data Flow Model of Points in the Carrier Manifold

point in a manifold supports unification of logic
and evolution models. T-zero topologies have a
one-to-one correspondence with horn clauses of
logical representations. This enables us to
model the Discrete-Event Dynamic System
(DEDS) sampling rule models. Lie algebra
results concerning infinitesimal operators on
smooth functions allow us to consider all the
standard evolution models of differential
operators and DEDS evolution models. We
embed logical models in continuous models in
order to construct automata which comply with
logical and continuum constraints. Details of
the generic unified model are given separately.
The data flow model of points in the carrier
manifold is given in Figure 3. We assert and
emphasize here that for systems which meet the
conditions for creation of a hybrid system state,
the revolutionary nature of our approach has two
benefits:

• Creation of a unified mathematical
foundation for analysis and synthesis of
models which for decades have been
treated separately, and

• Creation of a rigorous process for
incremental expansion of trusted systems

which must comply with stringent safety
and performance constraints.

2. A New Approach to Aggregation and
Disaggregation of Components

Agent characteristics: Each agent of the
declarative control architecture operates as a
real-time theorem prover in the domain of
relaxed variational theory developed by L. C.
Young [13]. A customized version of this
theory, enriched with elements of differential
geometry and equational logic provides a
general representation for the dynamics,
constraints, requirements and logic of complex
computer-controlled systems.

We will provide an overview of a generic
hybrid system architecture and provide a
domain reference architecture for target
engagement.The agents are connected via an
inter-agent network and the effect of each
agent in the global network on a local agent
is obtained through a global-to local
transformation. Inter-agent specification
clauses characterize constraints on the

14

relaxed Lagrangian optimization problem.
Specifically, they express the constraints
imposed by the rest of the network on each
agent. They also characterize the global-to-
local transformations and local-to-global
transformations (see [45]). Finally, they
provide the rules for building a generalized
multiplier for incorporating the inter-agent
constraints into a complete unconstrained
criterion. The multiplier and
transformations are expanded in rational
power series in an algebra discussed in [46].

The conjunction of equational forms for
each global-to-local transformation is
constructed by applying the following
invariant embedding principle:

"For each agent, the actions at given time t
in the current interval are the same actions
computed at t when the formulation is
expanded to include the previous, current,
and next intervals."

By transitivity and convexity of the
criterion, the principle can be analytically
extended to the entire horizon. The
invariant embedding equation has the same
structure as the dynamic programming
equation given in, but with the global
criterion and global Hamiltonians instead of
the corresponding local ones.

The local-to-global transformations are
obtained by inverting the global-to-local
transformations, obtained by expressing the
invariant embedding equation, as an
equational theorem. These inverses exist
because of convexity of the relaxed
Lagrangian and rationality of the power
series.

3. Conclusion: We have provided an
overview of the theory of multiple-agent
hybrid control. We are currently
implementing a multiple-agent hybrid
control architecture for the target
engagement process.

[1] Nerode, A. and Kohn W." Multiple Agent
Declarative Control Architecture" Proc. of the
workshop on Hybrid Systems, Lygby, Denmark,
Oct 19-21, 1992.

[2] Nerode, A. and Kohn W." Foundations Of
Hybrid Systems" In Hybrid Systems, Nerode, A,
R, Grossman Eds. Springer Verlag series In
Computer Science #726, New York, 1993.
[3] Kohn W., and Nerode A., "Multiple-
Agent Hybrid Systems" Proc. IEEE CDC 1992,
vol 4, pp 2956, 2972.
[4] Kohn, W. "declarative Control
Architecture" CACM Aug 1991,Vol34, No8.
[5] W Kohn, Nerode A. " An Autonomous
Systems Control Theory: An Overview" Proc.
IEEE CACSD'92, March 17-19, Napa, Ca.,pp
200-220.
[6] Kohn W„ and Nerode A. "Models For
Hybrid Systems: Automata, Topologies,
Controllability, Observability" Tecnical Report
93-28, MSI, Cornell University, June,1993.
[7] Garcia, H.E. and A. Ray "Nonlinear
Reinforcement Schemes for Learning
Automata" Proceedings of the 29th IEEE CDC
Conference. Vol. 4, pp 2204-2207, Honolulu,
HA, Dec. 5-7, 1990.
[8] Kohn W. and Nerode A. "multiple Agent
Hybrid Control Architecture" MSI Report 93-11
Cornell U.
[9] Kohn, W. "Declarative Hierarchical
Controllers" Proceedings of the Workshop on
Software Tools for Distributed Intelligent
Control Systems, pp 141-163, Pacifica, CA,
July 17-19, 1990.
[10] Kohn, W. and T. Skillman "Hierarchical
Control Systems for Autonomous Space
Robots" Proceedings of AIAA Conference in
Guidance. Navigation and Control, Vol. 1, pp
382-390. Minneapolis, MN, Aug. 15-18, 1988.
[11] Kohn, W. "A Declarative Theory for
Rational Controllers" Proceedings of the 27th
IEEE CDC, Vol. 1, pp 131-136, Dec. 7-9,
1988, Austin, TX.
[12] Kohn W. " Multiple Agent Inference in
Equational Domains Via Infinitesimal
Operators" Proc. Application Specific Symbolic
Techniques in High Performance Computin g
Environment". The Fields Institute, Oct 17-20
1993.
[13] Young, L.C. "Optimal Control Theory"
Chelsea Publishing Co., NY, 1980.
[14] Padawitz, P. "Computing in Horn Clause
Theories" Springer Verlag, NY, 1988.
[15] Kohn W. "Multiple Agent Hybrid Control"
Proc of thhe NASA-ARO Workshop on formal
Models for Intelligent Control, MIT,sept 30-
Oct2, 1193.

15

Simulation as a Tool for Hybrid System Design

John Lygeros, Datta Godbole & Shankar Sastry

Intelligent Machines and Robotics Laboratory
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720
lygeros,godbole,sastry@eecs.berkeley.edu

Abstract

A case study of the use of simulation as a tool
for design and validation of hybrid systems is pre-
sented. We use the Intelligent Vehicle Highway Sys-
tems (IVHS) architecture of [1], a system that involves
both continuous state and discrete event controllers as
our example of a hierarchical hybrid system. We point
out that even though analytical methods do not exist
for verification of hybrid control system, a simulation
tool can be useful to (invalidate that the the hybrid
system operates properly.

1 Introduction

The term hybrid system has been used to describe
a large and rich class of dynamical systems (see for ex-
ample [2]). A typical system of this class is arranged in
a hierarchy of two (or more) layers (Figure 1). At each
layer the system is modeled at a different level of ab-
straction: the lower layer usually contains the physical
plant and the low level controllers and is described in
terms of differential and/or difference equations while
in the higher layers the description is more abstract.
Typical choices of descriptive language for these higher
layers are finite state machines, fuzzy logic, Petri nets,
etc. Clearly an interface is needed to establish commu-
nication between different layers. The interface typi-
cally plays the role of a translator between signals in
the lower layer and symbols in the higher.

In a general hierarchical structure more than two
levels may exist. Usually, as we move up the layers,
the system description becomes more abstract (i.e.,
closer to linguistic), information gets condensed (i.e.,

•Research supported in part by the PATH program, Institute
of Transportation Studies, University of California, Berkeley,
under MOU-135 and ARO under DAAL03-91-G191

Discrete Event System

Finite Stute Machine*, Petri Net*
Rule Based AI, Fuzzy Logic

Generalized

D/A

Converter

Signal

Generator

Events / Symbol

Generator

Generalized

A/D

Converter

Continuous System

(Differential - Difference Equations)

Figure 1: Hybrid System Architecture

a symbol at a higher level encodes many condensed
facts about the lower levels) and the commands be-
come more descriptive (i.e., a single command at a
higher level induces many actions at the lower levels).

Designing controllers in such a multilayered envi-
ronment and analyzing the performance of the result-
ing closed loop system is a formidable task. Years
of research have produced powerful techniques for de-
signing controllers at the individual layers. Standard
designs include linear and nonlinear control techniques
for the lower layer (e.g., optimal, adaptive and ro-
bust control) and supervisory ([3]), fuzzy or other con-
trollers for the higher layers. There is, however, a gap
between these techniques: there are no tools for pre-
dicting and analyzing the performance of the architec-
ture obtained when the individual layers are brought
together. One would expect that if the controllers for
the individual layers were designed properly and the

0-8186-6440-1/94 $04.00 © 1994 IEEE
16

architecture was formed using appropriate interfaces
the overall system would behave predictably. There
are however quite a few examples that suggest that
this need not be the case.

Because of this lack of tools, simulation plays a
very important (if not indispensable) role in the design
of complex, hybrid systems. Even though simulation
can not replace formal proof techniques (analytical or
computational) it can still provide valuable informa-
tion about the system performance. More specifically,
successful results under extensive simulation indicate
that the design is likely to behave well, even though,
usually there is still a lot of room left for situations
where the system behaves poorly. On the other hand,
unsatisfactory performance on the simulation testbed
indicates that the design is not good enough for certain
cases and may suggest improvements that will elimi-
nate these shortcomings. In other words, simulation
results can not be taken as proof that a system works
well in general but they can be taken as proof that it
works in specific cases, or, more importantly, that it
doesn't work in others.

There has been extensive work on the development
of techniques for simulating general hierarchical hy-
brid systems (see e.g. [4] and [5]). Our work is based
on a specific simulation package, SmartPath, devel-
oped for simulation of automated vehicles in an IVHS.
Using the control architecture of IVHS as an example,
we will demonstrate the role of simulation in design
and validation of hybrid systems.

2 Intelligent Vehicle Highway System

An example where the hybrid system structure can
be found is an Intelligent Vehicle Highway System
(IVHS). The goal is to design a system that can sig-
nificantly increase safety and highway capacity with-
out having to build new roads, by adding intelligence
to both the vehicles and the roadside. In order to
achieve this, the notion of "platooning" is introduced.
It is assumed that traffic on the highway is organized
in groups of tightly spaced vehicles, called platoons.
Successful implementation of such a scheme would not
only result in substantial increase in capacity (as high
as four times the current capacity), but it will also en-
hance passenger safety. By having the vehicles within
a platoon follow each other with a small intra-platoon
separation of about 1 meter, we guarantee that if there
is a failure and an impact is unavoidable, the relative
speed of the vehicles involved in the collision will be
small, hence the damage will be minimized. The inter-
platoon separation, on the other hand, is large (of the

NETWORK LAYER

 r-
SUOOESTBD ROUTE HIGHWAY TRAVEL TIMES

DESIRED SPEED,
LANE CHANGE
PROPORTIONS,
PLATOON SIZE

COORDINATION

LAYER

REQUEST TLXOS ft
SENS

"
REGULATION

LAYER

,,
CONTROL

INPUT RAW S

PHYSICAL
LAYER
(plant)

Figure 2: IVHS Architecture

order of 30 meters) to physically isolate the platoons
from each other.

2.1 IVHS Control Architecture

Clearly implementation of such a scheme would re-
quire the vehicles to be automatically controlled, as
human drivers are not fast and reliable enough to be
able to form platoons. In the architecture outlined
in [1] the system is organized in five layers (Figure 2).

The top layer, called the network layer, is respon-
sible for the flow of traffic on the entire highway sys-
tem. Its task is to prevent congestion and maximize
throughput by dynamic routing of traffic along the in-
terconnected network of highways.

The second layer, called the link layer, coordinates
the operation of whole sections (links) of the highway.
Its primary concern is to maximize throughput while
maintaining safe conditions of operation. With these
criteria in mind, it calculates an optimum platoon size
and an optimum velocity for each highway section. It
also decides which lanes the vehicles should follow to
get to their destination as fast as possible. Finally, it

17

monitors incidents on the highway and diverts traffic
in order to minimize the impact of the incident on traf-
fic flow and safety. The link layer design is based on
a fluid flow traffic model, developed and implemented
in simulation by Bobby Rao. It uses aggregate sta-
tistical information about the traffic in a section. As
a consequence the commands it issues are also in ag-
gregate form and are addressed to all the vehicles in
the link. A typical command might be "30% of the
vehicles going to the next exit change lane now". [6]
provides details of a possible link layer design.

The next level of hierarchy below the link layer is
the coordination layer. It's task is to coordinate the
operation of platoons with their neighbors. Coordina-
tion layer controller uses three basic maneuvers (join,
split and lane change) to organize traffic in platoons.
Only a leader or a free agent can initiate a maneu-
ver; a follower needs to request the leader to initiate
a maneuver for it1. In join a leader of the platoon
joins the platoon in front to form a larger platoon; in
split a leader splits the platoon into two at a desig-
nated position; in change lane a free agent changes
lane. The coordination layer controller receives the
link layer commands and translates them to specific
maneuvers that the platoons need to carry out. For
example, it will ask two platoons to join to form a
single platoon whose size is closer to the optimum or,
given a command like "30% of the vehicles going to
the next exit change lane now", it will decide which
vehicles will comprise this 30% and split the platoons
accordingly in order to let them out. The design of [7]
uses protocols, in the form of finite state machines, to
organize the maneuvers in a systematic way. They re-
ceive the commands of the link layer and aggregated
sensor information from the individual vehicles (of the
form "there is a vehicle in the adjacent lane"). They
then use this information to decide on a control policy
and issue commands to the regulation layer. The com-
mands are typically of the form "accelerate to merge
to the preceding platoon" or "decelerate so that an-
other vehicle may move into your lane ahead of you".

Below the coordination layer in the control hierar-
chy lies the regulation layer. Its task is to receive
the coordination layer commands and translate them
to throttle, steering and brake input for the actuators
on the vehicle. For this purpose it utilizes a num-
ber of continuous time feedback control laws (See [8]

Organization of traffic in platoons implies that, at any mo-
ment of time, an automated vehicle is either a leader (lead ve-
hicle of a platoon), a follower or a free agent (single vehicle
platoon).

and references therein) that use the sensor readings to
calculate the actuator inputs required for a particular
maneuver. The regulation layer occasionally needs to
communicate with the coordination layer to inform it
of the outcome of a maneuver.

The bottom layer is not part of the control hierar-
chy. It is called the physical layer and it contains the
actual plant (in this case the vehicles with their sen-
sors, actuators and communication equipment and the
highway topology). For the purposes of simulation it
can be assumed that the physical layer contains mod-
els of the actual physical quantities. From a hybrid
systems point of view, the physical layer is merged
with the regulation layer, as they both use ordinary
differential equations to describe the system.

2.2 Hybrid System Issues

From the outline presented above, it is clear that
the proposed IVHS control architecture fits nicely into
the hierarchical hybrid control framework described in
the introduction. The design process and the analysis
of the proposed hierarchy leads to observations that
relate to fundamental properties of hybrid systems.

2.2.1 Distributed vs. Centralized Control

A key feature of the proposed design is the fact that
the vehicles operate as semi-autonomous agents. Each
one has its own control objectives and implements its
own strategies, but at the same time cooperates with
its neighbors and the roadside in an attempt to opti-
mize the performance of the overall system.

Distributed, decentralized decision making has
many advantages in this case. For one it greatly sim-
plifies the work of the designer as it provides a way of
managing the complexity of the system. The volume
of the information that needs to be processed and the
commands that have to be issued is such that it is
almost impossible to come up with a centralized de-
sign. The complexity is further increased by the fact
that the vehicles need not have identical characteris-
tics. Therefore a decentralized controller, that deals
with vehicles individually, will be easier to design, de-
bug and trouble shoot. In addition to this a decen-
tralized design will provide more gradual degradation
of performance in the presence of faults. On the other
hand, a centralized design is likely to be more efficient
as a centralized controller has access to more informa-
tion and is therefore better suited to assess the overall
system performance. Clearly a compromise between
the two approaches has to be reached.

18

This compromise between centralized and decen-
tralized decision making seems to be a feature of all
systems where efficient utilization of a scarce resource
is needed. In our example the resource is the freeway.
Other examples of such resources include the airport
runways in the case of air traffic control and the dis-
tribution grid in the case of power systems.

2.2.2 Information Flow

The amount of information that is available at each
part of the hierarchy should be determined by the in-
formation that a given layer needs in order to make
a "good" decision. Each layer needs some minimum
amount of data to distinguish a good (e.g. safe or ef-
ficient) strategy from a bad one, in a give situation.
The information that is provided should be kept as
close as possible to this minimum to avoid swamping
the higher layer controllers with unnecessary data.

In addition to specifying what information is
needed at each layer the designer also has to decide
how this information is coded. The choice of descrip-
tive language for the layers of the hierarchy dictates
in what form the information should be passed to the
various subsystems of the design. In the IVHS ex-
ample real numbers (raw sensor data) is used in the
physical and regulation layers, discrete events are used
in the coordination layer and statistical distribution of
the traffic are used in the link layer. In order to op-
timize the flow of information the designer may need
to come up with elaborate quantization and coding
schemes for each descriptive language.

2.2.3 Interface Issues

Closely related to the information flow is the design
of an interface between the various layers. Because
the various layers of the hierarchy use different de-
scriptive languages an interface is needed to formalize
their interaction. The design of the interface should
be done in a way that facilitates the verification of the
combined system.

In our example two interfaces are needed, to pro-
vide interaction between the coordination, regulation
and link layers. [9] describes a possible design for the
coordination-regulation interface. The proposed in-
terface is a finite state machine whose transitions de-
pend upon the commands from the coordination layer,
the readings of the sensors (physical layer responses)
and the state of the continuous controllers. It plays
a dual role. On the one side it acts as a symbol to
signal translator and therefore directly influences the
evolution of the continuous system. It receives the co-

ordination layer commands (symbols) and uses them
to switch between the different continuous layer con-
trollers (signals). In addition it keeps track of which
of these controllers needs to be initialized (symbol)
and carries out this initialization by directly changing
the controller state (signal). In the other direction the
interface acts as a signal to symbol translator. It pro-
cesses the sensory information (signal) and presents it
to the coordination layer in an aggregate form compat-
ible with the finite state machine formalism (symbol).
It also monitors the evolution of the continuous sys-
tem (signal) and decides if the maneuver in progress
is safe or not. If at any stage the maneuver becomes
hazardous it aborts it, notifies the coordination layer
of its decision (symbol) and switches to a different con-
tinuous control law that will get the system back to a
safe configuration.

2.2.4 Verification and Validation Issues

Despite the fact that design and verification tech-
niques are available for the individual layers of the
hierarchy there are still no tools for verifying the over-
all design. The bounds on the physical layer capabil-
ities imply limits of the disturbances that the regu-
lation layer can tolerate. For example, even though
the control law for the leader of a platoon is designed
to maintain "safe" following distance from the vehicle
ahead, it can not safeguard against arbitrary distur-
bances, because the vehicle capabilities (e.g. acceler-
ation bounded by [-5,2] m/s2) and sensor ranges (e.g.
longitudinal distance sensor range is 60m) are limited.
The controller can guarantee that there will be no ac-
cident provided that the vehicle ahead does not start
too close and decelerate too fast at the same time. For
complete verification therefore we need to guarantee
that the disturbances at the lower layers due to the
activity of the higher layers does not go outside these
limits,

Unfortunately the current theory does not support
such verification techniques. Moreover, the cost of
building and maintaining a prototype for the com-
bined system is so great that it makes experimen-
tal verification impractical. Therefore the only pos-
sible way of testing the design is by simulation. The
next section describes how this idea was applied to the
IVHS problem.

3 SmartPath Simulation

In order to test the performance of the combined
system, a dedicated simulator, called SmartPath [10],

19

was developed. The core of the simulator was devel-
oped by Farokh Eskafi and its capabilities were sub-
sequently extended by other researchers. The simu-
lation language CSIM was used as the backbone for
the platform. It provides all the necessary message
passing between and within the layers of the architec-
ture. It also provides a convenient way of coordinating
the operation of functions that need to operate asyn-
chronously and at a different time scale. SmartPath
can be classified as a microscopic traffic simulator, be-
cause it simulates the dynamics of each vehicle indi-
vidually.

3.1 Simulation Setup

Starting from the bottom of the hierarchy, the phys-
ical layer was implemented as a C function coding the
differential equations that describe the dynamics of
each vehicle. This plant was integrated using a fourth
order, variable step Kutta-Merson routine. Therefore
the physical layer essentially operates in continuous
time.

The regulation layer was also implemented in C.
It consists of a number of functions that calculate
the necessary inputs to the physical layer, namely the
throttle, brake and the steering input to the vehicle.
The operation of all these functions is coordinated by
means of an additional, supervisory function that acts
as an interface between the regulation and coordina-
tion layers. The controllers coded in SmartPath were
designed in continuous time and then sampled every
5 ms, a period dictated by the sampling frequency re-
sponse of the actuators that are in use on the real
vehicles.

The coordination layer protocols were implemented
in CSIM. The time frame used here is even slower: the
coordination layer interacts with the regulation layer
every 100ms. This value is dictated by the sampling
frequency response of the communication devices and
the sensors.

Finally, the fluid flow algorithms that specify the
behavior of the link layer were implemented as C func-
tions. Compared to the other layers the rate at which
they operate is very slow. New commands are issued
roughly every 25 seconds of simulation, depending on
the velocity of the vehicles and the length of the high-
way section in question.

The organization of the simulation code mimics the
hierarchical structure of the controller design. Individ-
ual modules for the regulation feedback controllers,
the coordination maneuver protocols and the link al-
gorithms, as well as sensors, actuators and communi-
cation devices exist separately. Their interactions are

determined by the corresponding interactions of the
theoretical design. This approach may be slightly in-
efficient in terms of memory requirements and length
of code, but it facilitates the understanding of the code
and the implementation of modification, whenever the
design is changed. Moreover it allows us to incor-
porate interesting effects to our simulation, such as
sensor noise, actuator dynamics and external distur-
bances (e.g. longitudinal and lateral wind). Finally
the modular arrangement highlights interesting facts
about the hybrid nature of the problem, such as the
information flow, the interface requirements, etc.

3.2 Simulation Results

The development of the simulation platform was
carried out in two stages. First the individual layers
were implemented and tested separately. The results
of these tests demonstrated that the behavior expected
from the formal analysis was indeed obtained. For ex-
ample the regulation layer control laws (like the one
carried out by the leader of a platoon) were simulated
one at a time and they all proved to be stable and dis-
play desirable properties. Similarly the coordination
layer protocols were simulated using a very simple ab-
straction to model the regulation and physical layers.
They also worked well, as expected by the results of
the automatic verification. Finally the link layer de-
sign was also tested and tuned using a different simula-
tion program, called SmartLink (developed by Bobby
Rao). SmartLink carries out a macroscopic simulation
of the highway as it codes the fluid flow traffic model
directly, rather than simulating individual vehicles.

At a second stage the components were combined
using appropriate interfaces and the overall system
was simulated. After many long simulation runs the
results were very encouraging; the system behaved
well in most cases. There were however a few situ-
ations where unacceptable behavior (e.g. high speed
collisions) was observed. These situations were not
predicted by the off-line analysis carried out at the
individual layers. The simulator however allowed us
not only to observe them but also to determine their
causes. Using this information the control design has
been modified to iron out these problems and improve
the performance of the system. We now describe some
of the observed collisions.

Lane change across speed differential
According to the coordination layer design, only free
agents (single vehicle platoons) are allowed to change
lane. Before a vehicle initiates a lane change it looks
(through its sensors) to the adjacent lane to make sure

20

that there is room for it there. If no vehicle is vis-
ible in the sensor range the move is initiated imme-
diately. If a vehicle is found and its distance is less
than the safe inter-platoon spacing, communication is
established to coordinate the maneuver. This goes on
until a gap twice as large as the safe inter-platoon
spacing is found. Then the lane change takes place in
the middle of this gap.

In most situations this arrangement should cause no
problems. Indeed both the protocol that coordinates
the maneuver and the regulation layer controllers that
align the free agent with a gap in the next lane have
been proven to perform well. However, consider the
following scenario. Free agent A switches from a slow
lane to a fast lane. During the change a gap big enough
for A to move into is present in the fast lane (for ex-
ample no vehicle is visible in the sensor range). It
is conceivable however that a vehicle (denoted by B)
is present in the fast lane behind A, which, after the
lane change is complete, finds itself just outside A's
rear sensor range (say 35m) and moving a lot faster
than A (say 30m/s as opposed to 10m/s). It turns out
that the AICC lead controller is incapable of recover-
ing from such drastic initial conditions, so a crash is
inevitable. Similar crashes have been observed crashes
during lane change from a fast to a slow lane.

Joining a decelerating platoon
The feedback control law for 'join' maneuver is de-
signed in two steps in [8]. In the first step, an open
loop trajectory is calculated based on the assumption
that the platoon in front will travel at constant ve-
locity during the maneuver. In the second step, a
feedback control law is used to asymptotically track
this desired trajectory. With this control law, changes
in the velocity of the front platoon should cause no
problem as the state feedback should take care of any
deviations from the desired trajectory. However, the
actual trajectory will deviate from the desired one if
the limits of the actuators (throttle and brake) are
reached. To avoid this possibility, the interface aborts
the maneuver when it detects the danger of actuator
saturation (see [9]). After aborting the maneuver the
system should find itself in a position from which it
can continue safely under the AICC lead control law.
The simulation indicates that under extreme condi-
tions this may not be true and 'join' maneuver may
cause a major hazard.

Such large decelerations were created in the simu-
lation when we asked all cars in a section of one lane
to exit at the same time. This caused a number of
splits in the platoons as the vehicles tried to become

free agents in order to change lanes. The decelera-
tion built up enough to cause saturation of the actu-
ators. Therefore vehicles undergoing 'join' maneuver
upstream of the disruption were forced to abort their
maneuvers. In this case, the vehicles that aborted
join found themselves moving faster than the platoon
ahead and closer than desired safety distance. The ex-
treme decelerations saturated the actuators and thus
caused crashes.

3.3 Analysis of the simulation results

The crashes described above illustrate the impor-
tance of data abstraction, interface design and infor-
mation flow in hierarchical and distributed control sys-
tems. The common feature of all the crashes is that
they are caused by continuous layer performance not
accounted for by the discrete layer. In all cases this
leads to the discrete layer making requests that are
incompatible with the current situation of the contin-
uous layer, such as a potentially dangerous maneuver.

Apart from fixing the problems encountered here,
these observations naturally lead to the question to
what extend can one trust the conventional discrete
and continuous verification techniques when it comes
to hybrid systems. Clearly if any faith is to be placed
in the IVHS design presented here a proof of its perfor-
mance claims is needed. This example indicates that
such a proof is not possible using conventional tools.

3.4 Additional Features

To enhance the capabilities of the basic simulation
platform and to make it more user friendly, some ad-
ditional features were implemented. From the first
stages of the development the simulator was coupled
to an animation program, developed by Delnaz Khor-
ramabadi. Typically a long simulation is executed, the
necessary information is stored and then a movie of the
vehicles as they move along the freeway is displayed.
Among other things, the animation package allows the
user to modify the viewing position, to track a vehicle,
to monitor the communication messages that are ex-
changed and to obtain information about vehicle state.
These features proved very useful, especially in iden-
tifying the causes of high speed collisions, as they al-
lowed us to visualize the traffic conditions rather than
try to infer what is going on from the state trajectories
of individual vehicles. Furthermore, building on the
capabilities of the animation, an interactive version of
the simulator was developed. For this the simulation
and animation are executed simultaneously. The'user

21

is allowed to select a vehicle using the animation dis-
play and to force it to carry out various maneuvers,
like accelerate, decelerate and change lane. This al-
lows us to introduce disturbances to the system and
investigate how the control architecture responds to
abnormal conditions. We are currently working on
extending the simulation capabilities to include var-
ious abnormal conditions on the highway (e.g. rain,
poor visibility, sensor faults etc). Together with the
controller for fault handling this will be useful in ob-
taining qualitative and quantitative measures of safety
(e.g. number of accidents per highway miles) on the
automated highway.

Ultimately we would like to be able to use this
simulation package to investigate the behavior of a
large scale, multihighway system, for example the en-
tire highway system of the San Francisco Bay Area.
Because of the number of vehicles involved and the
fact that each vehicle is simulated independently, a
simulation of this scale will be very time consuming.
To solve this problem, work is currently underway to
produce a parallel version of the SmartPath simulator
that will run on a CM5 connection machine. At the
same time an effort is made to couple SmartPath with
an object oriented data base. This will add a lot of
flexibility to the program, as it will make it easy to
change the highway configuration, add new types of
vehicles, change the control laws and/or the control
architecture and store the state of the system so that
simulations can be stopped and restarted at any point.

4 Conclusions

In this paper, we have shown that simulation can be
a very useful tool in validation of hierarchical hybrid
dynamical systems. We have shown that independent
verification of discrete and continuous layers may not
always guarantee satisfactory performance of the hy-
brid system. The problem arises because of the fact
that the discrete layer can only comprehend abstrac-
tions of the continuous layer. As a result it can not
take sufficiently into account certain continuous layer
parameters, which in our case were the sensor and ac-
tuator ranges and the controller performance bounds.
These observations led to the conclusion that in order
to fully trust the design we need verification tools that
test the performance of the combined hybrid system.
Until such tools are available simulation can be used
to replace them in the verification/redesign process for
hybrid control systems.

Acknowledgement:

The authors would like to thank Farokh Eskafi, Del-
naz Khorramabadi, Dr. Bobby Rao and Prof. Pravin
Varaiya for helpful discussions providing insight into
the problem.

References

[1] P. Varaiya, "Smart cars on smart roads: prob-
lems of control," IEEE Transactions on Auto-
matic Control, vol. AC-38, no. 2, pp. 195-207,
1993.

[2] R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, Hybrid Systems. Springer Verlag,
1993.

[3] P. J. G. Ramadge and W. M. Wonham, "The con-
trol of discrete event dynamical systems," Pro-
ceedings of IEEE, vol. Vol.77, no. 1, pp. 81-98,
1989.

[4] A. Back, J. Guckenheimer, and M. Myers, "A
dynamical simulation facility for hybrid systems,"
Tech. Rep. 92-6, Cornell University, April 1992.

[5] L. Tavernini, "Differential automata and their
simulators," Nonlinear Analysis, Theory, Meth-
ods and Applications, vol. 11(6), pp. 665-683,
1987.

[6] B. S. Y. Rao and P. Varaiya, "Roadside intelli-
gence for flow control in an IVHS," Transporta-
tion Research - C, vol. 2, no. 1, pp. 49-72, 1994.

[7] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya, "Pro-
tocol design for an automated highway system,"
Discrete Event Dynamic Systems, vol. 2, no. 1,
pp. 183-206, 1994.

[8] D. N. Godbole and J. Lygeros, "Longitudinal con-
trol of the lead car of a platoon," in American
Control Conference, pp. 398-402, 1994.

[9] J. Lygeros and D. N. Godbole, "An interface be-
tween continuous and discrete-event controllers
for vehicle automation," in American Control
Conference, pp. 801-805, 1994.

[10] F. Eskafi, D. Khorramabadi, and P. Varaiya,
"Smartpath: An automated highway system sim-
ulator," Tech. Rep. PATH Technical Note UCB-
ITS-94-4, Institute of Transportation Studies,
University of California, Berkeley, 1994.

22

Session IB:

Modeling and Dynamics

Expressing intratask parallelism in discrete event simulation models

Ashvin Radiya
Department of Computer Science

The Wichita State University
Wichita, KS 67260
radiya@ cs.twsu.edu

Abstract

For parallel and distributed simulation, a model
is usually defined to consist of independent tasks
which synchronize by communicating time-stamped
events/messages. In this paper, we define a discrete
event simulation modeling paradigm which supports
explicit expression of intratask parallelism, i.e., paral-
lelism within a task. In this paradigm a task is defined
by a set of rules whose actions are triggered based on
multiple simultaneous event occurrences. New ways
of expressing parallelism in a model emerges because
(1) actions of multiple rules can be executed in paral-
lel and (2) an action of a rule can be defined by data
parallelism on parameter values of simultaneous event
occurrences. The usefulness of the constructs of our
paradigm is illustrated by an example.

1 Introduction

The limitations of even the best of compilers in ex-
tracting parallelism from sequential programs are be-
ing increasingly realized. For complex practical pro-
grams, it is often the case that a programmer can
write efficient parallel programs more easily than a
parallelizing compiler. Hence, it is important to de-
velop parallel programming paradigms and languages
in which parallelism can be explicitly expressed by the
programmers. In a good parallel programming lan-
guage, a problem can not only be solved more effi-
ciently but better solutions can be developed because
the parallelism inherent in the problem is expressible
directly in the programming language. In contrast, if
the programming language is sequential then the in-
herent parallelism in the application known to the pro-
grammer has to be translated into a sequential code
by the programmer which may introduce subtle log-
ical errors. The parallelism expressed directly by a
programmer is referred to as explicit parallelism and

the parallelism not directly expressed but extracted by
a (compiler) technique is referred to as implicit paral-
lelism. This paper defines a new modeling paradigm
that facilitates expression of explicit parallelism in dis-
crete event simulation models.

The key to expressing explicit parallelism (hence-
forth simply referred to as parallelism) in discrete
event simulation models is to identify independent
computations around the dimensions of state and
time. The concept of task, process [Mi86, Fu90], or
component [Ze84, Ze90] provides a basis for defining
independent computations around the dimension of
space. Each task has its own state and interacts with
other tasks by exchanging events (also called signals
or messages). A task is like a black box in the sense
that its state is not visible from the outside. Hence,
tasks can be distributed on separate processors during
simulation, and interactions among tasks are captured
through message passing. This gives rise to intertask
parallelism in which actions modifying states of differ-
ent tasks can be executed in parallel. A language in
which models can be defined as tasks is said to support
expression of explicit intertask parallelism.

The second dimension of time is critical to simula-
tion modeling. Many concepts such as event, activity,
and process have been developed to express time de-
pendent computations. Time related behavior is ex-
pressed by associating simulation clock time with en-
tities such as events, activities, processes, messages,
etc. In the underlying simulation procedure, a list,
called Future Entity List (FEL) of scheduled entities
is maintained. The simulation proceeds by removing
an entity with the earliest time from FEL and exe-
cuting some code based on the removed entity. The
processing of an entity may insert new time-stamped
entities and/or remove existing entities from FEL. If
there are two or more entities with the same earli-
est time then the order in which they are processed
is important because the order may affect the simu-
lation results. The order in which entities with the

0-8186-6440-1/94 $04.00 © 1994 IEEE
24

same time are processed is controlled by the modeler
by assigning priorities to entities.

It is possible that two or more entities from FEL
with the same time, or even different times, can be pro-
cessed in parallel. The parallel simulation community
has mainly focused on developing and studying tech-
niques such as conservative and optimistic simulation
strategies [Mi86, Fu90] which extract parallelism from
models whose basic semantics is sequential as denned
above. In our categorization defined above, these tech-
niques extract implicit parallelism. As it is difficult to
automatically extract parallelism from a model, lan-
guage constructs have also been developed for giving
hints to the compiler by the modeler. However, these
language constructs and parallel simulation strategies
do not change the essential world view of the modeler
who is still required to define a sequential model of in-
herently parallel system. Moreover, now the modeler
is required to give hints to compiler for parallelization.
This requires the modeler to understand the behavior
of the system and the compiler.

In the literature some parallel simulation languages
such as Maisie [BL90] have been developed. However,
these languages allow the modeler to explicitly express
intertask parallelism but not intratask parallelism, i.e.,
the parallelism within a task. Typically, a task is de-
fined by an event scheduling model in which one rou-
tine (method or procedure) is defined for each type
of event (message). The modeler defines a model by
viewing that one event is removed at a time and its
routine is processed. The parallelism within a task is
implicitly extracted by the simulator using the opti-
mistic or conservative simulation strategies.

In this paper, we define a modeling paradigm
in which intratask parallelism can be explicitly ex-
pressed. The modeling paradigm requires the modeler
to think that all events with the same earliest clock
time are removed, and based on the removed events
many computations are triggered in parallel.

2 Intratask parallelism

Explicit expression of intratask parallelism virtu-
ally remains unexplored in simulation modeling. In
this paper, we explore some principles of expressing
intratask parallelism in simulation models. In con-
trast to the intertask parallelism, the elements ex-
pressing intratask parallelism share a common state
and events. It can be argued that intratask paral-
lelism is not required because one can always divide
a task into subtasks and utilize the techniques of in-
tertask parallelism. However, in general this may not

be feasible or desirable because a task is a "logical en-
tity", and decomposing it into subtasks may lead to
artificial and complex decomposition of the state and
events of the task.

Many techniques have been developed for express-
ing intratask parallelism in the parallel programming
literature. One technique is to define a task as an in-
terleaving computation where different "threads" syn-
chronize using devices such as shared memory, mem-
ory locks, and/or semaphores. Another important
technique is to express the data parallelism available
in a task as a Single Program Multiple Data (SPMD)
program. These and other such techniques can be
applied for expressing parallelism in simulation mod-
els as well. However, the applications of these tech-
niques in simulation is limited by the structure of mod-
els. The structure of models defined in the model-
ing paradigm developed in this paper facilitates ap-
plications of the above parallelization techniques in a
broader context.

A task in a simulation model is different from a
task in a nonsimulation program due to the fact that
events and computations in simulation are stamped
with simulation clock time. Hence, it is possible that
more than one event of the same or different type may
occur at an instant. For example, many events of
type arrival(priority) may occur at an instant cor-
responding to simultaneous arrival of customers. The
approach to handling simultaneous event occurrences
is affected by how a task is defined. The common ap-
proach of defining a task is to define one event routine
for each type of event. Then, the routines of simulta-
neously occurred events are executed in the order of
priorities assigned to events.

In our approach a task is defined by a set of rules,
where each rule consists of

a. an event-expression which can refer to multiple
simultaneous event occurrences and state condi-
tions, and

b. an action which defines state modifications and
schedules events.

The action of a rule gets fired whenever the events
referenced in the event-expression of the rule occur at
the same point in time. Once the action of a rule is
fired, it can refer to parameters of one or more events
occurring at the time of firing. This makes it possible
to express intratask parallelism in the following two
forms.

a. The action of a single rule defines data parallelism
on data or parameter values of multiple event oc-
currences.

25

b. The actions of all rules whose event expressions
are satisfied are fired in parallel.

2.1 Referring to multiple simultaneous
event occurrences

Simultaneous event occurrences play an important
role in expressing intratask parallelism. The basic
approach to defining interactions among simultane-
ous event occurrences has been defined in the Logic-
Based Foundation (LBF) of discrete event modeling
and simulation [Ra90, RS94]. In LBF, events are de-
fined to be logical propositions or relations. For exam-
ple, LBF treats the events customer-arrives and cus-
tomer-departs as logical propositions. To claim that
the event customer-arrives occurs at an instant t is to
claim that the proposition customer-arrives is true at
t. The benefit of this view of event is that interac-
tions among simultaneously occurring events can be
defined by logical conditions on events. The conjunc-
tion of two events using &: means that both events
occur together, and the negation of an event using ~
means that the event does not occur. For example,
the condition (customer-arrives & customer-departs)
asserts that both events customer-arrives and cus-
tomer-departs have occurred. Whereas the condition
(customer-arrives k ~ customer-departs) asserts that
the event customer-arrives has occurred but the event
customer-departs has not occurred.

In general, events are parameterized, i.e., events
denote various types of relations which are true for
one or more tuples of values. For example, multi-
ple occurrences of arrival(priority, gender) may de-
note the bag {(low, male), (low, male), (low, female),
(high, female), (high, female)} of values of the pa-
rameters priority and gender corresponding to simul-
taneous arrivals of two low priority male customers
and one low priority and two high priority female cus-
tomers. This example shows that sets and bags of val-
ues are associated with event occurrences. We define
three types of event relations as follows.

primitive — at any instant the event relation is
true for at most one tuple. Typical examples are
the-president-arrives, the -whitehouse -opened,
and NY .stockmarket-fell.

set — at any instant the event relation is true for
at most a finite set of tuples. An example of
this type of event is release-disk(diskjno) de-
noting the release of disk disk-no in a multi-
disk computer system. The type of event relation
release-disk is set because at a particular instant

it can be true for more than one disk but for each
disk-no only one event release-disk(disk-no) can
occur.

bag — at any instant the event relation is true for
at most a finite bag of tuples. A typical example
is customer-arrives(priority) which may be true
for more than one value of the parameter priority
because a high- and a Zow-priority customer may
arrive at the same instant. It is also possible that
more than one customer of the same priority may
arrive at an instant.

In the syntax of LBF's language LDE,
an event-

term consists of an event name followed by a list of
arguments. An argument can be any expression of the
corresponding parameter type, or "_" which indicates
"any value". An event-term can occur in two contexts:
one is in a set-expression and the other is in a condi-
tion. In a set-expression, at a given instant, an event-
term denotes a set of tuples such that for each tuple in
the set, the event relation is true and the evaluation of
arguments of the event-term match the corresponding
components of the tuple. For example, at an instant
t, the event-term arrival(high,-) denotes the bag
{(high, x) | arrival(high, x) is true at t, where x can
be either male or female}, whereas arrival(-,-), or
simply arrival denotes the bag {(x,y) | arrival(x,y)
is true at t, where x can be high or low and y can
be male or female}. An event-term can also occur
in the context of a condition, in which case it denotes
the truth value true iff the event relation is true for
at least one tuple at that instant.

2.2 Parallelism in actions

As mentioned before, the behavior of a task is de-
fined by a set of rules, each of which consists of an
event-expression and an action. The intratask paral-
lelism arises in two ways — (1) the code of an ac-
tion can represent parallelism using the denotation of
any event and (2) the actions of rules whose event-
expressions are satisfied can be executed in parallel.
The parallelism in an action can be expressed by the
technique of data or control parallelism [RDR94]. The
data parallelism is expressed using for-all construct

for-all x in S A

which executes |S|-many instances of action A in par-
allel, where each instance of action A gets a different
value for x from the set denoted by set-expression S.
In LBF, event-terms are set-expressions because they

26

denote a bag of tuples of values. As sets and bags play
a crucial role in expressing parallelism, we provide a
sophisticated type system and powerful set manipu-
lation operations. To allow manipulation of sets, the
database set manipulation operators select, project,
union, difference, and cartesian product are pro-
vided. The implementations of these set operators are
described by Ullman in [U188]. In contrast, the data
parallelism in parallel programming is usually based
on integer arrays, which is also allowed in our frame-
work.

The control parallelism in LDE is expressed by

Ai An

which executes different actions A\, ..., An in parallel.
Note that the explicit parallelism expressed inside

an action can refer to parameters of several event
occurrences. Such parallelism would be difficult to
automatically derive by a compiler from an event-
scheduling model.

In LBF, actions are executed in parallel without
interleaving. Noninterleaving parallel computations
are defined in terms of the concept of "modification"
which defines the changes that must be made to the
state at an instant due to the execution of an action.
In particular, the action is not viewed to define define
a new state. This allows us to determine modifica-
tions corresponding to applications of multiple rules
in parallel. An elaborate theory of modifications has
been developed which defines operations for combin-
ing modifications [RS94].

3 Example
(

A system of colliding balls (CB) defined in [Fi94] is
modeled in LDE to illustrate the concepts defined in
the paper. The CB consists of n perfectly elastic tiny
balls (molecules) which change their direction of mo-
tion upon striking a wall. It is assumed that balls do
not collide with each other, and the containing box is
two dimensional [Fi94]. Although, the balls are mov-
ing continuously, it is desirable to develop a discrete-
event model of CB if we are interested in developing
a fast, real-time display of the movements of balls, or
in counting the number of times the balls hit walls.

The event-scheduling model of CB defined below
is based on the event-scheduling model of CB defined
in [Fi94]. Unlike in [Fi94], our model utilizes a pa-
rameterized event col(bNo, wall) to denote a collision
of a ball bNo colliding with a wall wall. We need to

capture the following in a model of CB: every time
one or more balls collide with a wall, (1) for every
ball, update its position and (2) for every colliding
ball, update its velocity (hence, change the direction)
and schedule the next occurrence of col(bNo, wall) .
However, the fact that more than one ball may collide
at the same time makes the event-scheduling model
complex because events col(bNo, wall) corresponding
to the balls colliding at the same time are processed
sequentially. The basic idea of the event-scheduling
model given below is that only the first of possibly
many simultaneously colliding balls updates positions
of all balls. Also, each simultaneously colliding ball
(including the first) updates the velocity of that ball
and the next col event for that ball. The following is
the pseudo code of an event-scheduling model of CB
which consists of initialization and col event-routines.

Event-scheduling model of CB

event-routine initialization
PrevEventTime := — 1
schedule col(bNo) for each ball

event-routine col(bNo, wall)
I* collision of ball bNo on wall wall */

1. if current_time() > PrevEventTime then com-
pute the time elapsed since last update using
collisionJime(bNo) defined below and update
positions of all balls using the elapsed time.

/* The then-part of this conditional statement is
executed only by the first of the possibly many
simultaneously colliding balls. The time elapsed
since last update is computed using ball bNo's
position and velocity at the time of last update
of positions. Using this elapsed time, positions of
all balls including bNo are updated.*/

2. Update velocity of bNo to account for reflection
at wall.

3. Compute NextCollisionTime and
NextCollidingWall.

4. schedule col(bNo, NextCollidingWall) after
N extCollisionTime

5. PrevEventTime := current_time().

Similar to the above event-scheduling model, only
one rule is required in the LDE model of CB defined
below. This rule is executed when its event-expression
col is satisfied, i.e., when one or more balls collide

27

Ball

Velocity vector

Figure 1: Motion of balls in a two-dimensional box.

walls. In the action of the rule, the technique of data
parallelism is used to accomplish the tasks of (1) up-
dating the position and velocity and scheduling next
col event for each colliding ball in parallel and (2) up-
dating the positions of all noncolliding balls in paral-
lel. The data parallelism is expressed using the for-all
statement. Furthermore, the for-all statements defin-
ing these two tasks are connected by ||, and hence they
can be executed in parallel. Note that the parallel
construct || of LDB defines control parallelism. The
control or data parallelism can also be used to define
the code of procedures, e.g. see update-pos().

An LDB model of CB

Types:

BALLS = l..no-of .balls;

WALLS = {left,right,top,bottom};

Event declarations:

set col(b G BALLS, w G WALLS) — col is a set
type of an event which indicates collision of ball b
with wall w. col's type is set because any two si-
multaneous occurrences of col has different values
of parameters, i.e., there is no duplication.

Variables:

B : set of BALLS
balls.

a set variable to hold a set of

vxl L vv[] — arrays to hold x- and y-components of
the vectors representing velocities of balls.

Procedures:

procedure collision-time(b)
Returns the collision time and the wall of collision for
a ball b using 6's current position and velocity. The
type of this function is collisionMme(b G BALLS) G
R+ x WALLS.

procedure update..pos-vel(t, b, wall)
/* The type of this function is updatejpos-vel(t G
R+,b G BALLS, w G WALLS) G void. It par-
allely updates 6's position (#[&], 2/[6]) and velocity
(t;ar[6],uy[6]) using timef and wall wall. */

x[b] := x[b] +t x vx[b]
|| if (wall = left or wall = right) vx[b] := — vx[b]
II vV>] :=y[b)+t xvy[b]
|| if (wall — top or wall = bottom) vy[b] := —vy[b]

procedure updatejpos(t G R+, b G N) G void — up-
dates 6's position (x[b], y[b]) using time t.

Rules:

whenever col
B :— pr^col);1

for-any 6 in col
{(impact-time, _) := collisionMme(b)};

{for-all (6, old-wall) in col
{update-posjvel(impact-time, 6, old-wall);

x[]> y[] — arrays to hold x- and y-coordinates of
balls.

1pri is a projection function that returns the set containing
first component of tuples in a set (here col). The symbol 0
denotes the operation of difference on sets.

28

(t,wall) := collision J.ime{b);
schedule col(b, wall) after t;}

|| for-all b in BALLS 9 B
{update-pos(impactJime, &)}}

4 Conclusions

The logic-based foundation (LBF) of discrete event
modeling and simulation views that events denote var-
ious types of logical relations. This view makes it pos-
sible to refer to simultaneous multiple occurrences of
events in the conditions which trigger rules and in the
actions of rules. The data or parameter values of si-
multaneously occurring events can be used to express
data and control parallelism in the actions of rules.
In LBF, in addition to the statements within a sin-
gle action, actions of different rules in a task can be
executed in parallel.

Task, Control, and Data Parallelism. Working pa-
per, 1994.

[RS94] A. Radiya and R. G. Sargent. A Logic-based
Foundation of Discrete Event Modeling and Sim-
ulation. ACM Transactions on Modeling and Sim-
ulation, Vol. 4, No. 1, January, 1994, 3-52.

[U188] J. Ullman. Principles of
Database and Knowledge-Base Systems — Clas-
sical Database Systems: Vol. 1. Computer Science
Press Inc, 1988.

[Ze90] Zeigler, B. P., Object Oriented Simulation with
Hierarchical Modular Models, Academic Press,
New York, 1990.

[Ze84] Zeigler, B. P., Multifaceted Modelling and Dis-
crete Event Simulation, Academic Press, New
York, 1984.

References

[BL90] R. L. Bargodia and W. Liao. Maisie User
Manual. Computer Science department, UCLA,
Los Angeles, CA, 1990.

[CZ94] A. C. Chow and B. P. Zeigler. Revised DEVS:
A parallel, hierarchical, modular modeling formal-
ism. Working paper, 1994.

[Fi94] P. A. Fishwick. Simulation model design k ex-
ecution: Building digital worlds. Prentice Hall,
1994.

[Fu90] R. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10): 33-53.

[Mi86] J. Misra. Distributed Discrete-Event Simula-
tion. ACM Computing Surveys, 18,1, March, 1986,
39-65.

[Ra90] A. Radiya. A Logical Approach to Discrete
Event Modeling and Simulation. PhD Disserta-
tion, School of Computer and Information Science,
Syracuse University, 1990.

[Ra93] A. Radiya. On the expressivity of the cancel
construct and the temporal operator unless. The
fourth Annual conference on Artificial Intelligence,
Simulation, Planning in High Autonomy Systems,
Tuscon, Arizona, Sept. 1993.

[RDR94] A. Radiya, V. A. Dixit-Radiya, and Nimish
Radia. Event parallelism and its intergration with

29

Design of An Efficient Frame-Based Modeling And Simulation Tool

Lien-Pharn Chien Ray Yueh-Min Huang

Department of Information Engineering
Kaohsiung Polytechnic Institute

Taiwan

Department of Engineering Science
National Cheng Kung University

Taiwan

Abstract

To accurately trace the dynamic behavior of the sys-
tems to be developed, and to effectively proceed with the
systems' performance measures prior to their imple-
mentation, are getting harder as advanced technology
is employed in the system design process. This situa-
tion drives the functional progress in modern modeling
and simulation supporting environment. Our study to
the trend is concentrated on promoting the efficiency of
modeling and simulating diverse application systems.
The achievement in the research is the establishment
of a frame-based modeling and simulation tool termed
FRAMS. The feature deserved by FRAMS is not just
high reuse of model resource but great simulation time
saving by modeling an application system with a hier-
archical, multilink data structure. Currently, FRAMS
has been implemented more specific to performance
measures on computer systems. However, the design
spirit of FRAMS is for general purposes in extensive
application areas.

1 Introduction

Diverse sorts of modeling and simulation environ-
ments used in extensive areas for specific or general
purposes have been developed within the past few
decades. SIMSCRIPT II.5, GPSS and SLAM II are

ISBN 0-8186-6440-1. Copyright ©1994 IEEE. All rights
reserved. Personal use of this material is permitted.
However, permission to reprint/republish this material
for advertising or promotional purposes or for creat-
ing new collective works for resale or redistribution
must be obtained from the IEEE. For information on
obtaining permission, send a blank email message to
info.pub.permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws
protecting it.

typical examples [1, 7, 8]. Given the existing ones,
newer kinds of modeling and simulation supporting
environments are still being invented. The major rea-
son to reflect the trend is to promote their processing
power and efficiency while new techniques either in
hardware or software are explored out. The related
improvement primarily includes: 1) to automate the
modeling process in order to speed up the ability in
modeling an application system being investigated, 2)
to apply the object-oriented programming scheme in
designing the supporting environment such that mod-
els are objects which can be highly reused, and the
execution of simulation is carried out by the message-
passing method, 3) to shorten the simulation time by
distributing the simulation burden in a loosely coupled
distributed or closely coupled multiprocessor system,
and 4) to adopt an approach of the hierarchical decom-
position and hybrid method so that a subsystem can
be replaced by an equivalent lumped component [10],
and the original larger system model with larger state
space is thus shrunk to its equivalent but smaller size
having much smaller state space; therefore, the time
spent in model simulation is able to be reduced signif-
icantly.

As the goal in the research is targeted for perfor-
mance measures, various sorts of queueing models and
queueing networks introduced in the field of Queueing
Theory [6] become the targets to be modelled by the
proposed modeling and simulation tool. Since these
queueing configurations have the trait of random be-
havior in operation along the time, the simulation time
required to execute an modelled system usually takes
time before the behavior of the system is in equilib-
rium. Hence, how to lower down the unavoidable
problem is the major concern in the paper. By re-
alizing the point and the evolution of modern mod-
eling and simulation designing methodology, an envi-
ronment called FRAMS (FRAme-based Modeling and
Simulation tool) is implemented having the support of
a window-driven user interface. Along with FRAMS,

0-8186-6440-1/94 $04.00 © 1994 IEEE
30

an innovative approach utilizing the object-oriented
concept but no message-passing feature, and the frame
structure [9] is presented. The key idea behind this ap-
proach is to avoid the large portion of time spent in
message passing between models during model simula-
tion. By using the frame's characteristics to represent
objects, and then to form the related frame bases, all
the frames required to construct a complete system
model used in simulation will be organized in a hi-
erarchical, multilink data structure manipulated in a
single process. By means of the processing of a single
process, the simulation time can be effectively reduced
in great scale.

Basically, FRAMS is designed for general purposes.
Even current prototype is more dedicated in setting up
models for computer systems, it is to be expanded to
model communication networks, manufacturing sys-
tems and other application areas. In the ensuing sec-
tions, the way of converting a model (i.e. an object)
to a frame, the data structure of a simulation model
in FRAMS, the operation of the data structure in sim-
ulation, the FRAMS prototype, and a study case are
presented.

2 Models in Frame Configurations

By analyzing the architecture of an application sys-
tem, it is naturally to decompose the system from top
to bottom, i.e., a system is composed of several subsys-
tems. In turn, a subsystem may be partitioned into
some sub-subsystems. To the bottom, the elemen-
tary components are identified. Based on the layer-
by-layer analysis, the architecture can be viewed as
a multilayer-multicomponent configuration. Modern
advanced systems usually have the feature such that
the corresponding simulation models are able to be
created systematically. By following the philosophy,
the models used to construct a complete system model
(which emulates a real system being investigated) will
be organized hierarchically. The hierarchy facilitates
the management of the models and the scheduling
control in simulation. Meanwhile, the object-oriented
programming techniques provides the features of in-
formation hiding, data encapsulation and the method
of message passing. Through the involvement of these
characteristics into a modeling and simulation envi-
ronment, the system modeling process can be easily
and systematically managed. But there is a problem
which may occur at the model simulation stage. This
problem can be profiled from Figure 1 in which the
messages are passed up and down frequently in the hi-
erarchical simulation structure. The path of message

C System Model

(messages) / \ (messages)

(messages)

^"Sy^öjrSub-subsysteniN iil i^psl^Sub-subsysterriN

(messages)

(messages)

Ele EIc Ele Ele Elementary
Mo Mo Mo Mo Model

^9 ^9 ™ ^y ^9

• ••

(messages)

(messages)

Ele Ele Ele Ele Elementary
Mo Mo Mo Mo Model

Figure 1: Message Passing in A Hierarchical Design.

passing turns to longer as the complexity of a system
model increases. The time spent to pass the messages
directly affects the simulation time, especially in the
experiments for the purpose of performance measures.

By utilizing the object-oriented concept but ignor-
ing the message-passing method, the frame configu-
ration introduced in Artificial Intelligence [9] is em-
ployed to describe an object, i.e., a model. A frame
is composed of slots including procedures (or called
functions). The slot structure deserves the advantage
of maintaining all the information related to the at-
tributes of a model and the procedures required to
figure out the performance data expected effectively
and clearly. Furthermore, the hierarchical configura-
tion of an application system can be effectively set up
through the establishment of the relationship between
frames. The slots defined in the FRAMS's frame are
listed below:

• Name: it records the frame name, i.e., the name
of a model.

• Model Type: a frame can be either "composite"
or "atomic" type.

• Models Included: the slot keeps the frames in-
cluded and the corresponding instances required
for a composite frame.

31

• Job Scheduling: the information handles the job
processing sequence in a model.

• Status: it expresses the initial situation of a
model in simulation.

• Mean Service Rate: this is the service rate of the
model.

• Initial Jobs: the jobs set at the beginning of a
simulation is maintained in the slot.

• Size: it is the buffer length in a model.

• Performance Setting: this slot holds the proce-
dure^) used for performance calculation.

• Linking: the coupling information between mod-
els are saved in the slot.

Referring to the example in Figure 2, the System
frame is a composite frame in which the Models In-
cluded and Linking slots tells all the atomic frames
involved and the related connections needed. The
information about the atomic frames CPU, Memory,
Disk, Generator and Monitor are depicted in the fig-
ure. This frame structure simply specifies the two-
layer system architecture. By mapping an atomic
frame to an elementary model, and a composite frame
to other model in Figure 1, more complex application
systems with multilayer and multicomponent organi-
zation is able to be systematically constructed with
the proposed method. All the atomic and compos-
ite frames are kept in Device Frame Base (for short,
DFB) and System Frame Base (for short, SFB), re-
spectively. Both DFB and SFB associated with Per-
formance Frame Base (for short, PFB) which is for
computing performance data will be retrieved to or-
ganize the simulation models required at the Device
Modeling and System Modeling stages explained in the
next section.

s
Name: Generator Name: CPU

Model Type: Atomic Model Type: Atomic

Models Included: None Models Included : None

Job Scheduling: FIFO Job Scheduling: FIFO

Status: Active \ Status: Passive

Mean Service Rate: 8.0 Mean Service Rate: 20.0

Initial lobs: None Initial Jobs: None

Size: Infinite Size: 100

Memory

^HHjMplNotaKiKMiMMb

V
System * /

Name: System

Model Type: Composite

Disk

Name: Memory
l

Model Type: Atomic
: Models Included: {Generator I) (CPU 2)

Models Included: None |
Models Included: None ■

Job Scheduling: FIFO

Status: Passive !■*• Job Scheduling: None <*. Job Scheduling : FIFO j

Mean Service Rate: 30.0 |
Status: Passive

Initial Jobs: None Mean Service Rate: None
Initial Jobs: None j

Size: 40 Size: 60 Initial Jobs: None

Linking : (Generator out CPU J) in)

Monitor

i,
Name: Monitor

Model Type: Atomic

Models Included: None

Job Scheduling: None

Status: Passive

Mean Service Rate : None

Initial Jobs: None I
Performance Selling:

7T1

Figure 2: A System Description in Frames.

3.1 Organization of The Data Structure

The organization of the data structure is illustrated
in Figure 3. The multilink organization is composed of
four kinds of nodes: A, B, C and D types as shown.
Type A keeps the fundamental queueing properties
of a composite model or an atomic model. Types B
and D maintain the timing control and simple job in-
out records. The information about model coupling is
saved into type C's fields. The methodology applied
to achieve the setup is described with two stages as
follows:

3 The Data Structure of A Simulation
Model

As mentioned early, there is no message passing oc-
curred in the design of FRAMS. All the simulation ac-
tivities are done by handling a hierarchical, multilink
data structure built in a single process such that the
simulation time spent compared to the same condi-
tions but in message-passing simulation environment
could be much smaller. This section discusses what
the data structure looks like and how it is to be ma-
nipulated.

Stage 1: Device Modeling The task is necessary
whenever a new elementary device is modelled. The
steps for the modeling are:

1) Assign the name to a device (the name of an atomic
frame).
2) Define the related queueing properties for the de-
vice.
3) Create the atomic frame expected like in Figure 2,
and save it to DFB.

Stage 2: System Modeling It consists of two
parts: first to set up a composite frame, and then

32

System

Al A2 A3 A4 A5 A6 A7 A8

Genr Active FIFO 8.0 200

CPU Passive FIFO 8.0 100

HD Passive FIFO 20.0 100

C1 C2 C3 D1 D2 D3 D4

Al: Model Name

A2: Status

A3: Job Scheduling

A4: Mean Service Rate

A5: Size

A6 : The Pointer to The Initial Jobs,

A7: Tie Pointer to The Models Involved.

A8 : The Pointer to A Model's Runtime Info.

C1 : The Model Connected to It

C2; The Probability of The Connection

C3 : The Pointer to The Next Connected Model

Bl: The Number ofJohs in The Model

B2: The Time of Next Event

B3: The Time of Last Event

B4: Mean number of lobs in The Model So Par

B5: The Pointer to The Connection List from It

B6: The Pointer to Its Job List Processed

Dl: The Job Identification Number

D2: The Arrival Tune of The Job

D3 : The Departure Time of The Job

D4: The Pointer to The Next Job Processed

H xsfanul

A Frame-Based Modeling And Simulation Tool (FRAMS)

@j) (Model Base) (Device Setting (System Setting (fton) (5/^

Meow to UM RMS environ

HUMS it targeted for performance Measures in extensive
application are» such that it is desioned for general-
purpose aodeling and sumlation supporting tool. IBMG
facilitate» iti users to lystautically set op conplex
systems with layer-by^lflyor namor. In cue yon axe not
sure how to proceed wiüi next step, you can click BEL?
to go on your vork.

Figure 4: The Main Menu in FRAMS.

Figure 3: The Data Structure of A Simulation Model
in FRAMS.

to generate the corresponding data structure for sim-
ulation purpose. The primary work includes:

1) Name the system (or a subsystem), i.e., the name
of a composite frame.
2) Specify the required frames from DFB and/or SFB
(which implies the multilayer design), and the number
of instances for them.
3) Set up the connections (the couplings).
4) Construct type A's link list based on l)'s and 2)'s
settings but only Al field contains its name. Type B
nodes are also created and pointed by A8.
5) Look up yli's content to retrieve the atomic frame
from DFB, and update A2 to A6.
6) Based on 3)'s information to set up type C nodes
and to feed the related data into Cl to CS.

After the completion of applying the methodol-
ogy, a data structure which represents the simulation
model to an application system is organized. (The
type D nodes will be created during the processing of
the data structure.)

3.2 Manipulation of The Data Structure

For simplicity of explanation, the same configura-
tion in Figure 2 is considered. The manipulation on

the data structure during model simulation is acti-
vated from the places where A2 fields have the status
of "active". The "active" models can keep on produc-
ing jobs (the system traffic) until the simulation ter-
minates. Each time a job is produced, a type D node
will be created and linked to the place it belongs. The
job will be dispatched to a specific model in terms of
type Cs information. In turn, when a job arrives at
a model, it will be queued into its buffer and wait for
service under the policy of job scheduling. Meanwhile,
a type D node for the job is generated and attached to
the D node link. As soon as a job is completely served,
it will be again based on type Cs information to be
passed to another model. This situation is repeated
to the end of the simulation.

4 The Prototype of FRAMS

In order to enhance the functionality of FRAMS, a
window-driven user interface has been developed. The
interface not just facilitates users in modeling and sim-
ulation processes but encourages users to reuse the re-
sources existing in frame bases. Figure 4 profiles the
main menu with six window-click functions. The Help
function provides a good direction to guide users to
handle FRAMS. The Model Base is used to list the
content in the DFB, SFB and PFB. Both Device Set-
ting and System Setting functions form the modeling
part. A successful operation at each Device Setting cy-

33

g] xsJmul

A Frame-Based Modeling And Simulation Tool (FRAMS)

'Help) (Model Base) (pevfce Setting (System Seffiffg) (flS?) (Qu^

System Setting Box

Data have Seen itved !t
Ketp on stttiüg pnhMKtf
breach detice at right box I!

Sys_name Isysb* 1

Cpujxme jcpff *2 1

St/itch l&il^ |

H/Njname JKetnoi^ 1

Disk_name HD *3 |

Generator Genr |

(5gve)(5e^

Rtoff terpnhtbmti jtvtgokg
hokttoraedevkx»CPtt-t!t

Tojm L 1
To_SNitcl I 1
ToJI/H I0,6- 1
To Disk |0.1.0.1.0.1. |

Done l..l 1
(S0m)(aeaf)

Figure 5: The System Modeling Menu in FRAMS.
Figure 6: The Open-Queueing-Network System.

cle will produce a new atomic frame. Similarly, a com-
posite frame can be created after executing the System
Setting part completely. Model simulation is executed
by clicking Run. The Quit is for leaving the FRAMS
environment. In Figure 5,the detailed System Setting
pop-up window is demonstrated. The Help function in
the window teaches users how to do system modeling.
The data in the left boxes show that the System model
contains two CPUs, one Memory, three HDs and one
Relay in cooperation with a job generator Genr. The
probability settings for the outgoing jobs are specified
in the right boxes. In the figure, only CPU-l's settings
are displayed. Other functions in the main menu are
also driven by the similar pop-up window, and guided
by the proper Help functions.

5 Analysis of The Experiments

As the design motivation in the research is based
on Queueing Theory, the system models constructed
in FRAMS can be classified as queueing networks.
In [2, 4, 5], three fundamental types of queueing net-
works cascaded, open and closed queueing networks
have shown their importance in extensive applica-
tion areas. In order to verify FRAMS, the prop-
erty of Burke's theorem is tested first. By comparing
the FRAMS's simulation outcome to the data calcu-
lated out by analytical approach, the high accuracy is

achieved. Next, in Figure 6, an open queueing net-
work having the following conditions is used to prove
Jackson's theorem in FRAMS. Also, the scheme of
confidence interval [7] is adopted to investigate the
correctness of the simulation results. The conditions
given to the devices in the figure are: 1) The mean ser-
vice rates at CPU, Memory and HD (hard disk) are
50, 60 and 10 jobs/millisecond, respectively, 2) No jobs
are blocked anywhere, 3) The values beside the lines
express the job dispatching probabilities, 4) The gen-
erator Genr can generate jobs with 4 jobs/millisecond,
and 5) Monitor is used to calculate average system
time delay per job. The ideal average system time
delay is 1 millisecond. In comparison with the ideal
value, the outcome collected from multiple simulation
runs shows that 95% confidence interval is carried out.
This implies FRAMS is more reliable. The same re-
sult of testing Gordon-Newell networks is deserved as
well.

The configuration in Figure 6 has been modelled by
DEVS-Scheme [11] for comparison of simulation time
spent. Even the actual time-saving scale is hard to be
measured so far, the efficiency provided by FRAMS is
overwhelming the former.

6 Summary

This paper presents a method of describing models
with the frame configurations, proposes an approach
to greatly shorten simulation time through the setup

34

of the hierarchical, multilink data structure, and intro-
duces the FRAMS prototype. However, further simu-
lation time reduction is possible by employing the hy-
brid approach mentioned in [3, 10], and the scheme of
multithreaded programming in cooperation with dis-
tributed computing. In order to achieve the improve-
ment, the data structure used to form a simulation
model should be adjusted like state-dependent queue-
ing models allowed to be constructed. Both are critical
to the future work. In addition, FRAMS will be en-
hanced to facilitate modeling in extensive application
areas.

References

AUTHOR BIOGRAPHIES

Lien-Pharn Chien is an Associate Professor in De-
partment of Information Engineering at the Kaohsi-
ung Polytechnic Institute, Taiwan. His research in-
terests include design of modeling and simulation sys-
tems, fuzzy logic control, and applications in expert
systems. He is a member of IEEE.

Ray Yueh-Min Huang is an Associate Professor in
Department of Engineering Science at The National
Cheng Kung University, Taiwan. His research inter-
ests are in system simulation, distributed computing
environment and neural fuzzy network. He is a mem-
ber of IEEE.

[1] Reference Handbook, CACI Products Company,
1993.

[2] P.J. Burke, The Output of A Queueing System,
Operations Research, Vol. 4, pp. 699-704, 1956.

[3] K.M. Chandy, U. Herzog and L. Woo, Paramet-
ric Analysis of Queueing Networks, IB W J. Res.
Dev., vol. 19, pp. 36-42, 1975.

[4] W.J. Gordon and G.P. Newell, Closed Queueing
Systems with Exponential Servers, Opns. Res.,
Vol. 15, pp. 254-265, 1967.

[5] J.R. Jackson, Networks of Waiting Lines, Opera-
tions Research, Vol. 5, pp. 518-521, 1957.

[6] L. Kleinrock, Queueing Systems, Vol. I, John Wi-
ley & Sons, Inc., 1975.

[7] A.M. Law and W.D. Kelton, Simulation Model-
ing and Analysis, 2nd Edition, McGraw-Hill, Inc.,
1991.

[8] A.A. Pritsker, Introduction to Simulation and
SLAM-II, Systems Publishing Corp., 1986.

[9] E. Rich, Artificial Intelligence, 2nd Ed. McGraw-
Hill, Inc., 1993.

[10] T.G. Robertazzi, Computer Networks and Sys-
tems: Queueing and Performance Evaluation,
Springer-Verlag New York, 1990.

[11] B.P. Zeigler, Object-Oriented Simulation with Hi-
erarchical, Modular Models - Intelligent Agents
and Endomorphic Systems, Academic Press,
1990.

35

Hierarchical, concurrent state machines for behavior modeling and
scenario control

Omar Ahmad
James Cremer

Joseph Kearney
Peter Willemsen

Computer Science Department
University of Iowa

Iowa City, IA 52242

Stuart Hansen
Department of Mathematics

University of Wisconsin — Stout
Menomonie, Wisconsin 54751

Abstract

This paper presents a framework for behavior mod-
eling and scenario control based on hierarchical, con-
current state machines (HCSM). We present the struc-
ture and informal operational semantics of hierarchi-
cal, concurrent state machines. We describe the use of
HCSM for scenario control in the Iowa Driving Simula-
tor (IDS), a virtual environment for real-time driving
simulation. The paper concludes with an outline of a
forthcoming HCSM-based scenario authoring system
that will permit non-specialists to graphically program
behaviors and design experiments for IDS.

1 Introduction

State machines provide a natural framework for
programming the behavior of synthetic entities in in-
teractive simulation environments. The state machine
methodology has been successfully used in a number of
real-time control domains including robot walking and
reactive systems[2, 3, 7]. Unfortunately, the absence
of tools for abstraction and the lack of concurrency
limits the usefulness of traditional state machines for
programming complex behaviorsfl, 8, 10, 11]. In this
paper, we present a modeling framework based on
hierarchical, concurrent state machines (HCSM) and
demonstrate its usefulness for controlling entity be-
haviors and scenarios in real-time simulation environ-
ments.

Section 2 defines and provides informal semantics
for HCSM. We present the structure of hierarchical,
concurrent state machines and the state machine ex-
ecution algorithm, explaining how output of concur-
rently executing state machines is resolved by higher-

level machines. The execution algorithm is free of or-
der dependencies that cause robustness and stability
problems in behavior modeling. In Section 3, we de-
scribe how HCSMs can be applied to behavior model-
ing and scenario control for virtual environments. In
particular, we describe the use of HCSMs to control
vehicle behavior and to author scenarios for the Iowa
Driving Simulation. In Section 4, we briefly describe a
graphical programming environment for HCSM under
development.

2 Hierarchical, concurrent state ma-
chines

State machines encode context dependent actions
in a set of states. Traditional single-level, non-
concurrent finite state machines can be used to model
and control behavior by attaching output or activity
functions to states. Activity functions implement a
state's control law by computing control variable val-
ues appropriate to the state. At any instant, the single
active state controls behavior by executing its activity
function and returning control variable values. A state
transition, in response to simulation events, yields a
new active control law.

Traditional finite state machines treat all states
with equal status and provide no means to organize
groups of states into independent modules. The lack
of encapsulation mechanisms inhibits reuse of state
machine code. A group of logically related states can
have transitions from any state in the group to any
state outside the group; these transitions are left dan-
gling when the group is surgically removed from the
larger state machine. The inability to partition be-

0-8186-6440-1/94 $04.00 © 1994 IEEE
36

havior into separate modules complicates modification
and extension of state machines; changes tend to prop-
agate throughout the state machine.

The single-minded focus and sequential logic of
non-concurrent state machines make it very difficult to
satisfy the demands of problems that require simulta-
neous attention to many aspects of the environment.
This encompasses much of the behavior we wish to
capture in autonomous or intelligent agents. As the
problem size grows, states proliferate to represent the
response to factors occurring in various combinations
and transitions tend to become dense and tangled. In
the worst case, every existing state must be duplicated
and connected to every other state to incorporate an
intelligent response to a new factor in the environ-
ment.

To remedy these problems, we've extended the state
machine model to include hierarchies of concurrent
state machines. In our model, any state machine
may contain multiple, concurrently executing sub-
state machines. We find that the HCSM programs
are easier to program, modify, and debug than the
corresponding single-level state machine.

2.1 Hierarchical Concurrent State Ma-
chines Viewed as Black Boxes

From the outside, an HCSM state machine can be
treated as a black box with input wires, output wires,
and a control panel that contains buttons and dials.
Information flows into the state machine over the in-
put wires and values flow out of the machine over the
output wires. The state machine is integrated into the
simulation environment by connecting input wires to
constants or variables and output wires to variables.
More often, the input wires can be bound to expres-
sions containing constants or simulation variables.

For example, Figure 1 shows the outermost view of
a state machine for modeling driver behavior in ve-
hicle control. Input wires provide values for driver
aggressiveness and reaction time. The state machine
outputs an acceleration and heading that are bound
to the acceleration and heading of the vehicle. These
values are passed to the dynamics subsystem and used
to determine the position, orientation, and velocity of
the vehicle. The use of input and output parameters
and bindings allows us to design abstract state ma-
chines that are independent of the specific context in
which they are used.

Control panels provide a means for state machines
to communicate with one another during a simulation.
A state machine can send messages to other state ma-
chines; a message can "push a button" on the control

/ <zz> J. J.

" Input Output

.5 — reaction time heading

5/age » aggressiveness acceleration

-:-:-x.x*:-:*>:->>:*:-x-".~wx-:*:.>>>:*:-:-^^

Figure 1: Blackbox view of an HCSM state machine.

panel or adjust a dial on the control panel to one of its
legal settings. For example, we may want a vehicle to
turn right at the next intersection in order to set the
stage for a scenario event. This can be requested by
pushing the "turn right" button on the the vehicle's
control panel. Buttons and dials permit state ma-
chines to interact with other state machines in ways
that cannot be fully anticipated before the simulations
begins. This ability is crucial to the orchestration of
behaviors to create critical events and circumstances.
For example, the traffic light state machine has a but-
ton that causes it to change from red to green.

The only difference between a button and a dial is
in the persistence of their settings. A button is reset
to its default position after it has been processed by
the receiving state machine. A dial maintains its value
until it is reset to another value. This distinction be-
tween transient interactions and influences that persist
for a period of time is useful for behavior control.

2.2 The Structure of a Hierarchical Con-
current State Machine

In this section we present the internal structure
of our hierarchical, concurrent state machines. An
HCSM state machine is a structure of the form

<M,T,F,<I,0>,B,V >

where

• M is a set of state machines (generally referred
to as sub-state machines)

• T is a set of transitions

• F is an activity function

• < /, O > a set of input and output parameters

• B is a set buttons and associated button resolvers

• V is a set of local variables

37

2.2.1 States and transitions

The simplest state machine contains no sub-state ma-
chines and no transitions. Its activity function com-
putes output values based on input values, local vari-
ables, and button and dial settings.

More complex state machines contain sub-state ma-
chines and may be categorized as either sequential or
concurrent. In a concurrent state machine, there are
no transitions — all the sub-state machines are ac-
tive concurrently whenever the parent state machine
is active. In a sequential state machine, exactly one
sub-state machine is active at any instant. Transitions
transfer control from one sub-state machine to another
based on predicates involving the inputs, local vari-
ables and button and dial settings. The distinction
between sequential and concurrent HCSM state ma-
chine's corresponds very closely with the distinction
between AND-state and OR-states in Harel's State-
chart formalism[10].

2.2.2 Activity functions

A state machine's activity function is responsible for
computing output values based on the values returned
from sub-state machines, input parameters, dial and
button settings, and local variables. The activity func-
tions can also send messages to other state machines.

The activity function for a sequential state ma-
chine is often quite simple; output values are com-
puted based on the output values of the single active
sub-state machine. When the sub-state machine out-
puts correspond directly with the parent machine out-
puts, the activity function often directly passes those
values through.

On the other hand, the activity function for a con-
current state machine must compute a set of output
values based on the output values of multiple active
sub-state machines. Infrequently, a concurrent state
machine's outputs are just the disjoint union of the
the sub-state machine outputs; in such cases the cor-
responding activity functions are often simple, as in
the sequential state machine case.

The multiple active sub-state machines usually cor-
respond to competing control goals. Each state ma-
chine provides its own opinion about the values to as-
sign to the control variables. The activity function
implements a resolution method for these competing
goals — it computes a set of outputs for the state ma-
chine based on the outputs of the sub-state machines.
For example, in our driving behavior state machines a
"most conservative" activity function yields good be-
havior in many (though not all) cases. For example,

the top-level driving state machine has linear acceler-
ation as one of its outputs. It contains sub-state ma-
chines that output linear accelerations for cruising, fol-
lowing, passing, and intersection behavior. The driv-
ing state machine's activity function can implement
a "most conservative" rule by simply returning the
minimum of the acceleration outputs of the sub-state
machines.

Figure 2 shows the two views of an example HCSM
state machine. The view on the left side exhibits the
machine's hierarchical and concurrent structure and
its state transitions. The view on the right depicts
the flow of data through the machine, including the
resolution of competing outputs from sub-state ma-
chines.

2.2.3 Information flow, input, and output

A parent state machine specifies how information flows
into its sub-state machines by binding sub-state ma-
chine input parameters to expressions of local vari-
ables, constants, and input parameters. A sub-state
machine receives information only when it is active.
Likewise, sub-state machines produce output values
only when they are active; when inactive, the output
wires are dead.

2.2.4 History

State machines may retain their local state between
activations. Thus, when a state machine is re-
activated after a dormant period, sub-state machine
execution can be reinitialized by activating the start
sub-state machine or execution can proceed from the
most recently active sub-state machine. Local vari-
ables declared to be static retain their values between
activations of the state machine. Other local variables
are reinitialized to default values on reactivation.

2.2.5 Button handling

The buttons and dials on a state machine's control
panel may receive multiple messages simultaneously.
Buttons and dials have resolver functions that are re-
sponsible for arbitrating between competing messages
and ultimately determining button or dial setting.

2.3 Executing HCSM State Machines

The HCSM state machine execution algorithm is
show in Figure 3.

The first step on each iteration is to resolve requests
to set buttons and dials. The resolver function consid-

38

<Q J. A

1

,-»
f < ^^" * X :

/\ „ >

) I *' ^'A-> /* /" " -
/' /' S

\ •=,"'"■

JL

Activity Function i

- - ->■

 ,

£:.tttttttt!.!.!.!-!-^^^

State Transition Diagram Data Flow Diagram

G

G

Figure 2: Two views of concurrent state machine containing three sub-state machines. Two of the sub-state
machines are sequential; the other is a concurrent state machine.

ExecuteHCSM (SM) {

ResolveButtonsAndDials(SM);
ComputeAndExecuteTransitions(SM);
for all sub-state machines SSM of SM do

ExecuteHCSM(SSM);
RunActivityFunction(SM);

Figure 3: Basic HCSM execution algorithm

ers all requests in button and dial queues to determine
settings.

The second step is to update the set of active
state machines. Transitions from all active state ma-
chines are tested to see if their predicates are satisfied.
Whenever a satisfied predicate is found, the predi-
cate's source state machine is deactivated and the des-
tination state machine is activated.

Next, sub-state machines are executed. The value
of the overall state machine computation is indepen-
dent of the execution order of the sub-state machines.
Finally, the activity function is executed; it must pro-
duce state machine output values as a function of the
newly computed sub-state machine outputs, button
and dial settings, and local variable values.

3 Behavior modeling and scenario con-
trol using hierarchical, concurrent
state machines

We developed HCSM to support behavior mod-
eling and scenario control in virtual environments.

In earlier work, we developed a hierarchical, concur-
rent state machine framework, the Conceptual Con-
trol Modeler (CCM), for specifying behaviors of high-
degree-of-freedom mechanisms in rigid-body dynam-
ics simulation [8, 9]. CCM provides control program-
ming tools that are useful for developing animations
and simulations of human, robot, and insect walking,
robotic hand manipulation strategies, and interacting
robots (e.g. robots assembling something or playing
games). CCM was developed for use with the Newton
system [6] and similar rigid-body dynamics simulators.

Our work on HCSM has been strongly influenced
by other research on hierarchical, concurrent state ma-
chines and control methodologies for satisfying of mul-
tiple, concurrent goals. Harel's Statechart formalism
[10, 11] elegantly extends state machines to include
hierarchy and concurrency. Reynold's [12] presents a
method to manage competing goals in his work on
flocking behaviors. Brooks uses hierarchies of state
machines organized by levels of competence to pro-
gram robot walking. [2, 3] Lower level state machines
implement primitive behaviors. Higher levels subsume
levels by inhibiting or suppressing data paths.

Our work is strongly motivated by the needs of
the Iowa Driving Simulator (IDS). The IDS is a high-
fidelity operator-in-the-loop ground vehicle simulator
that incorporates a motion platform, force feedback
and control loading, high-quality visuals, sound, state-
of-the-art real-time multibody dynamics, and scenario
control. A Ford Taurus cab is mounted inside a dome1

on top of the motion platform. High resolution, tex-
tured graphics are projected on screens on the dome
walls — the forward field of view is 191° x 45° and the
rear field of view is 64° x 35°.

The objective of our work is to create a methodol-

1 Other cabs can be installed in the dome —
HMMWV and Saturn cabs for some of its projects.

IDS uses

39

Rce Driving *

£
Forward Gtp

Accept

Wait Signal

T

Stopped

Literal
Gap Accept

Right Turn

I I

Figure 4: Simplified version of first generation IDS
vehicle behavior state machine

ogy for controlling scenarios in IDS. The scenario con-
trol subsystem is responsible for generating and man-
aging traffic, regulating traffic control devices, and set-
ting the lighting and weather conditions. We partition
the scenario control problem into two parts: basic be-
havior modeling and scenario authoring.

3.1 Basic behavior modeling

In the IDS, object behaviors are controlled by au-
tonomous state machines that react to each other as
well as to the motion of the operator's vehicle. A
vehicle's state machine is responsible for controlling
the position of the vehicle at each step in the simu-
lation. A road database maintains information about
the state of the virtual environment that is used by
the state machines to fire state transitions and to set
parameters in control laws that determine vehicle mo-
tions. All state machines are executed in sequence on
a single CPU at 60Hz. At the end of each computa-
tion cycle, the road database is updated and vehicle
locations are reported to the visual subsystem for dis-
play.

In the first implementation of the IDS, scenario con-
trol vehicle behavior was modeled using complex, one-
level state machines. These state machines modeled
driving on an open road, following behind another ve-
hicle, and intersection behavior. Figure 4 shows a sim-
plified version of a state machine used to model typical
driving behavior. The actual state machines used in
IDS are significantly more complex and includes states
for passing and merging behaviors. Using these state
machines, the scenario control subsystem can generate
traffic that has a natural, reactive feel, and in which
phenomena such as jams and clustering emerge. How-
ever, as mentioned in the previous section and detailed

in [4], the model is difficult to modify and debug.
The second generation of scenario control uses

HCSM to model object behaviors [5]. The ability to
organize state machines hierarchically permits coher-
ent activities to be grouped. For example, we have
separate state machines for passing, following, and
merging behaviors. The ability to encapsulate the
logic of one aspect of behavior, such as passing, in a
single state machine simplifies the development, mod-
ification, and debugging of control programs.

The concurrency of our state machines facilitates
the creation of control programs that must simultane-
ously attend to the many factors influencing driving
behavior. Vehicles must obey speed limits, stop at red
signal lights, avoid collisions with nearby traffic, and
be alert to hazards in the roadway. At each instant,
a driver must integrate all the relevant information
and adjust the accelerator and steering wheel to best
accommodate the demands of safe driving.

Figure 5 shows the graphic environment we devel-
oped to aid in testing and debugging HCSM-based
vehicle behaviors. At the top level there are six con-
current state machines controlling the vehicle. At ev-
ery simulation step, each state machine independently
produces a recommended acceleration for the vehicle.
The activity function in parent state machine must
compute a resolved acceleration based on the recom-
mendations of the sub-state machines.

3.2 Scenario authoring

The ultimate goal of scenario control is to cre-
ate a convincing dynamic environment for participant
drivers. In the previous section, we described the tech-
niques used in IDS to model the basic behavior of ve-
hicles and traffic control devices. Using these tech-
niques, we can generate ambient traffic composed of
autonomous reactive vehicles.

Many of the applications for which the driving sim-
ulator is most useful require that drivers be exposed
to specific crash threats. Investigators studying driv-
ing safety want to expose subjects to critical situations
such as cars encroaching into their lane, unexpected
braking by the vehicle in front of the subject's vehi-
cle, and cars illegally driving through red lights. These
experiments require scenario vehicles to perform spe-
cific actions in predetermined situations. Moreover, in
order to compare performance across subject groups,
experimenters demand that circumstances be replica-
ble from trial to trial. The challenge we face is to cre-
ate repeatable events by choreographing the behaviors
of objects without sacrificing the sense of spontane-
ity characteristic of natural driving environments. We

40

Figure 5: Prototype scenario editor and debugger.

want to inconspicuously direct the scenario so that the
subject cannot anticipate upcoming events.

To accomplish this surreptitious control we have
developed behavior controllers that manage situations
by directing the behaviors of vehicles and traffic lights.
Behavior controllers are HCSMs that behave like a
daemon process in an operating system - they monitor
situations and react accordingly. Behavior controllers
influence the behavior of scenario objects by pressing
the objects' buttons and setting dials.

We find it convenient to classify behavior con-
trollers according to how they are activated and how
they interact with other objects. For example, a trig-
ger is a behavior controller that is placed at a specific
location on the roadway and is activated when a vehi-
cle drives over it. The trigger can be specialized so the
it responds only to a specific vehicle or a specific set
of vehicles. When the trigger is activated, it pushes a
button on another object causing it to change its be-
havior. For example, a trigger can be used to initiate
the motion of a vehicle on the shoulder of a highway
as the subject's vehicle approaches it.

The behavior of a trigger is coded as a HCSM. This
makes it simple to construct triggers that fire once or
repeatedly. It is also simple to add delays between

firings or create event sequences by chaining triggers
so that one trigger activates another trigger.

A trigger is connected to a specific object. Some-
times we can't predict which particular objects must
play roles in a creating a situation until the simula-
tion is running. Inevitable differences in subject driv-
ing behavior lead to variations in the traffic that make
it impossible to anticipate how a scenario will evolve.
For these cases, we developed a beacon behavior con-
troller. A beacon radiates messages to nearby vehicles.
The beacon can be placed at a specific location or it
can be attached to a vehicle. For example, a bea-
con can be attached to the subject vehicle and at the
appropriate time instruct the vehicles in front to the
subject to accelerate or change lane in order to create
a clear path for the subject.

A beacon can be used to coordinate the actions of
a number of objects. For example, consider an exper-
iment in which we want to test a subject's response
to a vehicle driving through a red light as the subject
approaches an intersection. For a number reasons, it
is undesirable to choose the vehicle to perform the of-
fense off-line. Because subject drive at different rates
they will arrive at the intersection at different times.
Thus, it is difficult to guarantee that a particular car

41

will be in position at the intersection at the appro-
priate time. Instead, a beacon can be used to watch
for the subject vehicle and conscribe an appropriate
scenario vehicle to run the light. The beacon may
help set conditions for the event by sending "clear the
way" messages to other scenario vehicles. In this way,
behavior controllers can orchestrate complex scenario
situations that retain significant reactive components
and avoid the staleness of scripting.

4 Programming Environments for
HCSM

At present, HCSM programs are coded in C. Pro-
gramming state machines at this level is time consum-
ing, tedious, and error prone. To aid program devel-
opment, we are developing a high-level language for
specifying HCSM state machines, a graphical editor
for designing state machines, and a graphical inspec-
tor for visualizing state machine execution.

A prototype of the state machine visualization soft-
ware is shown in Figure 5. The tool allows program-
mers to interactively inspect state machines as they
execute on a graphic workstation. The tool has proven
to be enormously useful for testing and debugging be-
havior models. Currently, work is under way to allow
experimenters to define new behaviors by graphically
creating state machines.

Acknowledgements

This research was supported in part by NHTSA Co-
operative Agreement No. DTNH22-93-YU-07237 and
by NSF grant CDA-9121985. Michael Booth designed
and implemented the first generation of scenario con-
trol system for the IDS. Michael Klingbeil assisted in
the development of HCSM, evaluating numerous vari-
ants of the basic framework.

References

[1] Jesse Aronson. The SIMCORE tactics represen-
tation and specification language. In Proc. J^th
Computer Generated Forces and Behavioral Rep-
resentation Conference, May 1994.

[2] Rodney A. Brooks. A robust layered control sys-
tem for a mobile robot. IEEE Journal of Robotics
and Automation, RA-2(l):14-23, March 1986.

[3] Rodney A. Brooks. A robot that walks: Emer-
gent behaviors from a carefully evolved network.
In Proceedings of the 1989 IEEE International
Conference on Robotics and Automation, pages
692-696, May 1989.

[4] James F. Cremer and Joseph K. Kearney. Sce-
nario authoring for virtual environments. In Pro-
ceedings of the IMAGE VII Conference, pages
141-149, Tucson, AZ, June 1994.

[5] James F. Cremer, Joseph K. Kearney, Yiannis
Papelis, and Richard Romano. The software ar-
chitecture for scenario control in the Iowa Driv-
ing Simulator. In Proc. fth Computer Gener-
ated Forces and Behavioral Representation Con-
ference, Orlando, FL, May 1994.

[6] James F. Cremer and A. James Stewart. The ar-
chitecture of Newton, a general-purpose dynam-
ics simulator. In Proceedings of the 1989 IEEE In-
ternational Conference on Robotics and Automa-
tion, pages 1806-1811, May 1989.

[7] Marc D. Donner. Real-time Control of Walking.
Progess in Computer Science Series. Birkhauser,
December 1986.

[8] Stuart A. Hansen. Conceptual Control Program-
ming for Physical System Simulation. PhD the-
sis, Computer Science Department, University of
Iowa, May 1993.

[9] Stuart A. Hansen, Joseph Kearney, and James
Cremer. Motion control through communicat-
ing, hierarchical state machines. In Proceedings
of the 5th Eurographics Workshop on Animation
and Simulation, Oslo, September 1994.

[10] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8(3):231-274, June 1987.

[11] David Harel, Hagi Lachover, Amnon Naamad,
Amir Pnueli, Michl Politi, Rivi Sherman, Aharon
Shtull-trauring, and Mark Trakhtenbrot. State-
mate: A working environment for development of
complex reactive systems. IEEE Transactions on
Soßware Engineering, 16(4):403-414, April 1990.

[12] Craig W. Reynolds. Flocks, herds, and schools:
A distributed behavioral model. In Computer
Graphics (SIGGRAPH 87), pages 25-34. ACM,
July 1987.

42

Fluids in a Distributed Interactive Simulation

Chen Jinxiong and Michelle Sartor

Institute for Simulation and Training, University of Central Florida

Abstract

Today's training simulators have dealt mainly with
vehicle dynamics, artillery dynamics and soil
manipulations [9]. Important features such as fluid
surface effects and flow over a terrain surface have been
neglected, decreasing the realism of the simulation. The
modeling and animation of fluids have recently been
pursued vigorously in computer graphics, but fluid in a
real-time networked virtual environment has not been
studied. This paper investigates issues concerning the
implementation of fluids in a Distributed Interactive
Simulation (DIS). Several fluid models and a player/ghost
simulation strategy are examined.

1.0: Introduction

In complex simulation and training systems, such as
those supporting real-time interaction on a battlefield, a
large number of simulation entities and a variety of
geographical features are involved. A simulation training
exercise can be more effective if subjects interact with
their environment. Such environments may provide the
capability to dig a ditch, build an embankment, leave
tracks, generate dust, produce munition craters and crush
vegetation. The addition of fluids to a simulated
environment can increase its realism through affecting a
vehicle's mobility as it fords a stream, allowing buoys and
debris to drift with the current, flooding a landscape with
water as a dam breaks, and generating a wake behind a
boat.

This paper discusses a method for implementing fluids
in a distributed interactive real-time simulation.
Distributed Interactive Simulation (DIS) and the Dynamic
Terrain (DT) project are briefly described to provide the
reader with a background for this work. Three real-time
fluid models of varying complexity are presented. Though
other fluid models exist [5, 7, 12], the selected models
were implemented due to their real-time performance
capabilities. A player/ghost strategy for implementation in
a real-time distributed interactive simulation is examined.

1.1: Distributed Interactive Simulation

Large virtual worlds in which many subjects interact
with each other and their environment is an emerging
capability of real-time simulation. The fruition of this
interactive, simulated environment provides the tools for
training of large-scale forces, rehearsal of missions, testing
of new systems, and development of new tactics. All of
these activities occur with no risk to life and allow replay
of events.

This concept is the vision of the Advanced Distributed
Simulation (ADS) movement sponsored by the Advanced
Research Projects Agency (ARPA), Joint Warfighting
Center (JWFC), Defense Modeling and Simulation Office
(DMSO), and U.S. Army Simulation Training
Instrumentation Command (STRICOM). Distributed
Interactive Simulation evolved in an effort to make ADS a
reality. The DIS community is working towards
establishing a standards infrastructure that allows the
interoperability of heterogeneous simulators on a
distributed network [14].

0-8186-6440-1/94 $04.00 © 1994 IEEE
43

1.2: Dynamic Terrain project 2.0: Fluid models for real-time simulation

The Institute for Simulation and Training (1ST) was
tasked by U.S. Army STRICOM to develop a real-time,
malleable, simulated environment in order to train more
effectively. Ground warfare involves extensive
interaction with the terrain which can involve cratering
from munitions, weather effects such as flooding,
vehicle tread marks, and vehicle mobility. Initial work
focused on real-time modifications to the terrain during
a simulation. Extensions to this work include the
terrain's effect on vehicle mobility and the addition of
fluids to the simulated environment. DT researchers are
exploring fundamental algorithms, data structures, and
architectures that can support these complex models of a
dynamic environment.

DIS Network

C Terrain Service J>

Client Application
(Stealth Viewer)

Client Application
(Crater Model)

I Client Application
I (Bulldozer Simulator)

Physical Machine

Figure 1: Sample DT service

The current DT system-level architecture evolved
from a series of architectures which sought to allow
unscripted entity/environment interactions in a
networked simulation. This DT architecture is a client/
server approach in which a service runs in the
background, providing requested data to its client
applications. Terrain Services is a service currently
implemented in the DT simulation suite (Figure).
Client applications such as a bulldozer simulator, a
cratering model, and a stealth viewer receive
modifications and send updates to an active terrain
database during a simulation exercise via the Terrain
Service. The DT architecture's flexibility allows for a
central server, fully distributed, or hybrid configuration
of the Terrain Services. The selected configuration is
transparent to client applications - a benefit of
encapsulation of the service mechanisms.

The modeling and animation of fluids have captured
the attention of the computer graphics community
resulting in the development of many different fluid
models. However, we are concerned with the trade-off
between realistic and real-time fluid simulations which
can be applied to a DIS environment.

A variety of fluid models can be selected depending
on the desired fidelity and available simulator
computation power. A flat surface can be used to
pictorially represent fluid, a low fidelity model allows
limited fluid appearances, a high fidelity model achieves
realistic fluid surface behaviors. All three fluid models
have been simulated in real-time at 1ST using
commonly available Silicon Graphics workstations, as
powerful as or better than an Indigo. Fluid models
which take significantly longer than real-time were not
considered for DIS. The trade-off between fluid models
is, with a low fidelity model, we have faster calculations
but less realistic fluid behaviors, while with a high
fidelity model, we have complex calculations but with
more realistic fluid behaviors. It is noted that the models
discussed in this paper make simplifications to
accommodate the real-time demand. The
approximations are not well-suited for a scenario which
requires precise fluid dynamics, but they are sufficiently
realistic for DIS applications. These models
accommodate changing bounding edges through volume
conservation. Fluid surface phenomena are achieved
with the low and high fidelity models presented below.

2.1: Flat surface model

A flat surface representation is the simplest
representation of a fluid. There is no surface behavior or
fluid phenomena displayed. The perception of fluid is
conveyed purely by its color. It is displayed as a flat
surface of a particular height. Entities, such as boats, in
the fluid do not generate any surface changes or
fluctuations in boundaries. The fluid surface is merely
lowered and raised on the surrounding terrain.

The advantage of this model is that it requires little
computational power. A fluid surface is simply a
polygon parallel to the X-Y plane. This trivial
representation resembles the fluid's color at a desired
location. This simple model allows a minimum fluid
representation at a small cost to the simulator.

A simulator with little available CPU or without a
need for complex fluid dynamics will find the flat
surface model attractive. An aircraft simulator may only
need fluid location for flight reference and does not
have the additional computational power to expend on
generating the fluid's surface behavior.

44

(a) before breaching dam

Figure 2: DT bulldozer/fluid simulation

(b) after breaching dam

2.2: A low fidelity model

Kass and Miller [8] presented a real-time method for
animating fluid using a simplification of the shallow
water equations. Their method handles wave refractions,
wave reflections, the net transport of water and
boundary changes with changing topology. This model
allows such phenomena as flowing rivers, raindrops
hitting the surface, and waves lapping (not breaking) on
a beach.

Three approximations bring about their simplified
form. First, the water surface is treated as a height field;
thus, it cannot splash or break. The second
approximation ignores the vertical velocity of a particle
of water. This assumption causes the accuracy of the
water model to degenerate if the waves become very
steep. Finally, they treat the horizontal velocity of a
column of water as approximately constant which
breaks down as the water becomes turbulent. These
simplifications approximate the classical linear wave
equation.

Campbell [2] extended Kass' fluid model to accept
floating bodies. This involved fluid displacement and
the creation of ripples to simulate disturbances caused
by floating objects. This model was integrated with a
DT bulldozer. The dam can be broken by the bulldozer,
resulting in a water spill (Figure 2).

The advantage of this model lies in its few
calculations which are linearly proportional to the
number of height-field samples. Though the fluid
behaviors are limited and may not be quite realistic,
animations occur in real-time. We consider this a low
fidelity model because phenomena such as moving
objects (boats) and surface ripple effects are too
computationally expensive for a real-time simulation.
This model exhibits the effects of a generic fluid, water,
independent of its density and viscosity. The Reynold's
number is an indication of these parameters which

distinguishes fluids from one another. These capabilities
are offered by the high-fidelity model.

2.3: A high fidelity model

The Navier-Stokes equations represent Newton's
second law (XF = ma) in fluids and are the governing
equations for general fluid flow [6]. Neither the flat
surface nor the low fidelity implementation used these
equations. The difficulties in a real-time implementation
of these equations can be attributed to the effort
involved in deriving a solution technique and in the run-
time complexity of a solution.

To accomplish a real-time simulation, Jinxiong and
Lobo [4] solved the two dimensional Navier-Stokes
equations for the fluid's surface instead of calculating
the fluid behavior for the full volume. The third
dimension, fluid height, was obtained from the
corresponding pressures in the flow field. When fluid
from neighboring points flows into a single location, the
pressure as well as the height of the fluid surface rise.
When fluid exits a particular location by flowing to
neighboring points, the pressure as well as the height of
the fluid surface drop (Figure 3).

surface drops surface rises

a zi
negative pressure positive pressure

Figure 3: Fluid surface height

45

Session IC:

Terrain Modeling and Reasoning

Terrain Modeling on High-Fidelity Ground Vehicle Simulators

Yiannis E. Papelis
Center for Computer Aided Design

The University of Iowa
Iowa City, Iowa

Abstract

Distributed Interactive Simulation (DIS) involves a large
number of geographically dispersed
operator-in-the-loop simulators interacting in the same
virtual environment. Organized exercises in a DIS
environment allow testing of group-level operations or
procedures that require cooperation among large number
of units. Recently, the ability of DIS is being expanded to
evaluate equipment performance for the purpose of design
modification and eventually, acquisition. This requires use
of simulators that model the behavior of ground vehicles or
other such equipment with enough detail to extract useful
data from the simulator. Terrain modeling and
representation becomes a central issue due to the
significance of properly modeling the ground to vehicle
interaction. This paper discusses design issues associated
with modeling terrain for high-fidelity ground vehicle
simulators. Experiences have been drawn from research
leading to the design and implementation of an arbitrary
resolution terrain model in the Iowa Driving Simulator
(IDS), a high-fidelity ground vehicle simulator that is
being integrated in the DIS network.

1: Introduction

All ground-based simulation models must have some
knowledge of the terrain in which they operate [1]. Here,
the term terrain refers to the physical geometry of the
virtual environment and does not include logical attributes
such as objects, roads or individual features. The degree to
which the terrain needs to be modeled depends on the final
purpose of the simulator. While for certain applications
perfectly flat terrain at an arbitrary elevation may be
sufficient, more often polygonal representations of terrain
are more appropriate and provide more realism for a
modest increase in complexity. Generally, the resolution
of a polygon representation varies, but is often the same as
the resolution of the Computer Image Generator (CIG)
used in the system. In fact, the Height Above Terrain
(HAT) function provided by most CIGs is a convenient
method by which terrain information is negotiated in a
system. As application domains become more demanding

of simulators however, such approaches to the modeling of
terrain become insufficient, and new methods must be
developed for modeling arbitrarily complex terrain. One
such domain is extending the use of the existing DIS
framework and infrastructure to include the design
evaluation, modification and eventually acquisition of
ground-based equipment. Achievement of such a goal
requires integration of high-fidelity, operator-in-the-loop
ground-vehicle simulators into the DIS framework. This
poses several problems stemming from the differing
requirements that have driven the technology of simulators
used in DIS versus high-fidelity simulators traditionally
used for design evaluation and modification.

Evaluating the performance of alternative vehicle
designs without using a physical prototype requires use of
computer models with enough fidelity to provide
engineering-level performance data in the course of a
simulation. Such data can then be used for evaluation and
potential modification of the design followed by
re-evaluation in the same manner. This cycle, often
referred to as virtual prototyping, may replace the
traditional hardware-based design/test/modify iteration.
Due to the tight integration between the human operator
and device under design, achieving this virtual design
cycle requires integration of the human operator in the
simulation process. High-fidelity, operator-in-the- loop
simulators achieve this goal by combining high-fidelity
dynamic models with a rich set of feedback cues that create
the illusion of operating the actual device. In such an
environment, modeling of the interaction between the
device and the operator is at least as important as modeling
the device itself. Elements such as vibrations, large-scale
motion cues, tactile feedback and sounds become an
important part of the overall experience. In ground
vehicles, the cause of such feedback is largely due to
the interaction between the vehicle and the terrain. As a
result, an accurate model of the terrain is a necessary
component of a high-fidelity simulation. Resolution fine
enough to capture the majority of the vehicle-terrain
interaction, categorization of the property of the materials
on the terrain, deterministic real-time interrogation, and
support of arbitrary-complex databases which might
include overlapping terrain are some of the properties that

48
0-8186-6440-1/94 $04.00 © 1994 IEEE

must be associated with a terrain model associated with
high-fidelity ground-vehicle simulators. Due to the lack
of requirements dictating such stringent fidelity in the
terrain model, current DIS terrain implementations lack
some or all of these properties. In typical SIMNET
databases gridded terrain at Level 1 (90 meters), or Level 2
(30 meters), provides linear triangle patches that include
information on the surface type. This information is
sufficient for following the contour of the terrain and for
calculating concealment. In situations where finer
resolution is necessary, micro-terrain can be used [2].
Micro-terrain consists of a network of points that are
joined to create a series of adjacent triangles. Information
associated with each point includes elevation and soil type.
Decoding the information embedded in micro terrain
involves searching the network of triangular patches for
one that includes the requested point and then interpolating
to determine the elevation of arbitrary points within the
patch. The computational cost of performing a terrain
query depends heavily on the implementation, but
generally is not of fixed-time complexity, a necessary
feature for deterministic operation.

Successful integration of high-fidelity simulators in the
DIS framework requires either that the existing facilities be
extended to support the requirements of high-fidelity
simulators, or that new approaches be used to model
terrain. In the latter case, the compatibility among
simulators participating in coordinated DIS exercises
utilizing terrain models of varying capabilities must be
addressed. This paper discusses some of the technical
constraints associated with high-fidelity terrain models
and presents a design that does not depend on facilities
provided by SIMNET databases. The approach described
here has, to some degree, addressed the majority of the
issues associated with arbitrary resolution terrain
modeling.

The remainder of the paper is organized as follows.
Section 2 discusses in detail the requirements that must be
addressed in the design of terrain databases in the scope of
simulation and design evaluation. Section 3 describes the
design of the terrain model used in the IDS [3], a high-
fidelity operator-in-the-loop ground-vehicle simulator
built as a testbed for simulator technology and virtual
prototyping. Finally, section 4 discusses future directions.

simulated time. The term hard indicates the high degree of
importance in maintaining real-time execution. The
consequences of not maintaining real-time execution vary
depending on the software component that failed and the
overall design of the system. Generally, inability to
maintain real-time execution results in events such as
rendering delays or other cue discontinuities that are
distracting to the subject, destroy the overall realism of the
simulator, and can even be the cause of simulator
sickness[4]. Clearly, the ability of the terrain model to
provide deterministic queries is critical in minimizing such
cue discontinuities. Because of the small integration steps
typically utilized by multi-body dynamics, and because
separate queries must be performed for each vehicle
contact point, a terrain model is required to provide queries
at a high rate. For example, a four-wheeled model that
executes at 120Hz interrogates the terrain database at
480Hz. Performing more extreme maneuvers generally
requires that the integration step be lowered. More
complex vehicles also require more than four contact
points to effectively simulate vehicle behavior. Such
requirements eliminate the CIG HAT function as a
plausible solution to the terrain interrogation design
problem.

Another direct implication of the stringent deterministic
execution requirement of a high-fidelity simulator is that
techniques optimizing average performance cannot be
used. For example, cacheing of disk data is often used in
SIMNET terrain implementations as a means of reducing
the average elevation lookup time. Such an approach
makes no guarantee however, about the maximum
execution time of a single elevation query. Scalability is
another implication stemming from the requirement of
deterministic execution. To ensure that the terrain model is
scalable, any algorithm used in the process of resolving a
terrain query must have a computational complexity that is
constant (i.e., independent) to the size of the database. For
example searches through the database would not be an
acceptable solution unless there is a way to guarantee,
before execution, a bound on the time it takes to perform
the search. This bound must be fast enough to ensure
real-time execution.

2.2: Resolution

2: Requirements on high-fidelity terrain
models

2.1: Deterministic execution

One of the central requirements on an
operator-in-the-loop simulator is hard real-time
execution. Here, the term real-time refers to execution of
one iteration of the simulation in less physical time than the

The term resolution here refers to the density of
information contained in the database itself. In general,
whether or not the resolution in a database is adequate is
directly related to the task that the simulator is used for. In
virtual prototyping applications, where simulating and
reproducing the maximum amount of cueing is important,
the terrain database must support enough resolution to
model all features that can cause cues detectable by the
human operator. This includes elements such as general

49

ground or roadway inclination, small hills, burms,
potholes, and even the roughness of the surface. One
design alternative, primarily used in DIS databases, is a
coarse terrain model augmented by an object-based set of
features that model individual elements. One of the
features is micro terrain, a dense mesh of triangular patches
that represents terrain in arbitrarily low resolution. The
approach is targeted primarily for databases that consist of
widely sparse areas with occasional areas of high-
resolution terrain and is not well suited, even though it
could be used, to modeling extended geographical areas
with high-resolution requirements. Such areas include
roadway with banked super-elevated turns, overpasses,
trumpets etc., and closed test courses that intentionally
contain extremely sharp curves or other features that push
the stability and endurance of vehicles. The top view of
Figure 1 illustrates a terrain scene of the former type as
displayed by a CIG. The bottom view of Figure 1
illustrates the terrain elevation grid from a different
viewpoint.

Figure 1: Terrain

Modeling of this type of terrain is important in virtual
prototyping applications because it represents the ideal
conditions under which to test newly designed vehicles. To
capture the basic curvature of such terrain without
detectable aliasing requires resolutions at or below 2
meters, locally with areas as low as .15 meters.

A solution that is often used for generating high-
frequency cues without explicitly modeling the terrain
below a threshold resolution is to use the terrain surface
type as a selection criteria among a set of pre-defined set of
recorded cues. For example, different background sounds,

and different frequencies of vibration could be used when
driving on concrete, asphalt, or grass. At runtime, the
audio and motion simulator components could use the
terrain type to select among the appropriate sound or
vibration frequency. By not depending on the dynamics
model to generate these high-frequency cues, this
approach has many advantages. First, it is efficient, since it
does not cause any runtime overhead and does not increase
the complexity of the terrain modeling system.
Furthermore, the simulator cues can be reproduced by
playing back a recording of the actual cues which yield a
realistic virtual environment and does not increase the
modeling demands on the dynamics subsystem. Despite
these advantages, this method cannot be used exclusively
for terrain modeling, but it must augment an existing
model.

2.3: Correlation with Other Databases

Due to the stringent execution time requirements
imposed on the various simulator components, different
representations of the same virtual environment are often
used in a simulator. This allows customized views of the
same virtual world that are optimized according to the
specific needs of each cueing system. For example, the
visual databases in almost all simulators consist of a
polygonal representation that is specifically built to allow
efficient rendering of the scene and contains a limited set of
information regarding the logical contents of the scene. A
separate object database may serve that purpose and
depending on the application, a separate database could be
used to provide terrain elevation. Representing the same
virtual environment by using more than one representation
allows room for correlation errors. A correlation error
refers to the situation where the various representations
differ. For example, it is not atypical to see polygons that
have no other representation other than inside the CIG
database, a fact evident when the simulated vehicle can
penetrate them without any other cue from the remaining
simulator components. To achieve realism and minimize
the negative results of such distractions, the issue of
correlation must be addressed in the terrain model design.

3: Terrain Implementation in the Iowa
Driving Simulator

The IDS is a high-fidelity ground vehicle simulator
serving as a testbed for the advancement of simulator
technology, and is actively being used for a variety of
purposes, including human sciences experimentation and
virtual prototyping. The IDS is currently being integrated
in the DIS network with interoperability planned for
November, 1994. The IDS uses a multibody dynamic

50

model that, depending on the complexity of the simulated
vehicle and the specific application, executes at 120Hz, or
180Hz. Near-term plans include an increase in the
execution rate of the dynamics to at least 240Hz.

Figure 2: External and internal views of IDS.
Motion cues are generated by a high-payload hexapod
motion base capable of a maximum of lg accelerations at
8Hz. The top view of Figure 2 illustrates an external view
of the motion base. Visual cues are generated by an Evans
and Sutherland ESIG 2000 system that renders the scene at
50 or 60Hz, and audio cues are generated by a multichannel
MIDI sound system. Tactile feedback is generated by a
torque motor driven by the dynamics output that simulates
the steering mechanism. All of these cueing subsystems
are directly or indirectly affected by the tire-terrain
interaction. Audio uses the surface type to modulate the
tire rolling sound, while the tactile feedback is driven by a

first principles simulation of the steering mechanism. The
high bandwidth of the motion base allows it to reproduce
high- frequency cues caused by the interaction of the
terrain with the vehicle including low-frequency
vibrations.

The virtual environments simulated by EDS can be
grouped in two classes. The first includes databases
populated with a variety of standard roadways which meet
highway engineering standards and include banked
superelevated curves. The other class includes models of
actual test courses that consist of non-paved roads with
sharp curves, extreme slopes and specialized areas used for
vehicle stress-testing such as the Churchville Test Course
and the Munson Test Area in Abberdeen, MD. To address
these varying requirements, the IDS terrain database
model supports variable density storage, provides an
efficient and deterministic terrain query that is
independent of the size of the database and supports
overlapping terrain, a feature necessary for modeling
bridges and overpasses.

The variable resolution storage is used to reduce the
overall storage requirements and does not affect the
efficiency of the terrain interrogation algorithm. The
variable density storage is implemented by partitioning the
ground (x-y) plane into datazones. A datazone is an
arbitrary rectangle, aligned on the (x) and (y) axis, that
contains datasets. A dataset includes information about
the terrain at a specific location. This information includes
at least the elevation and the type of terrain at the particular
location. For storage and access efficiency, datasets stored
to disk are organized in buckets, where each bucket is equal
to one or a multiple of a disk block. Datasets are spaced at
regularly distanced intervals within a datazone. The
distance between adjacent datasets is defined as the
resolution of a datazone. To resolve a database query,
linear interpolation among the four datasets that surround
the query point is used. Variable density storage is
achieved by using multiple datazones for modeling a
specific terrain database. Even though the resolution
within a datazone remains constant, different datazones
can have different resolutions. Use of an arbitrary number
of datazones allows modeling terrain in different
resolutions, based on the frequency content of different
areas. Furthermore, datazones can overlap on the (x-y)
plane allowing the modeling of vertically stacked terrain.
An example of how several datazones can be partitioned is
shown in Figure 3. The top figure illustrates a perspective
view of the modeled terrain. The black dots indicate the
endpoints of datazones, while the vertices of the
rectuangular grid indicate location of the datasets. The

51

bottom figure illustrates a top-down view of the datazone
layout.

i

Figure 3: Example of variable resolution terrain

representation in IDS.

3.1: Querying the Database

The input to a database query consists of the points (x),
and (y), and an initial approximate elevation (z). The
approximate elevation is required to resolve which
datazone should be used if more than one datazone covers
the point (x,y). For each datazone, the database stores the
datazone rectangle boundaries, the datazone resolution, an
overlap flag, and a pointer to the group of datasets
associated with the datazone. The overlap flag is set when
a datazone is stacked vertically with another datazone.
The query algorithm proceeds as follows:

A Construct a list of datazones that cover the input
X,Y point. For each of the datazones in the list:

A.l Determine the four datasets that sur-
round the input point

A.2 Retrieve the four datasets

A.3 Apply the interpolation formula and pro-
duce a query output

B Select the query output whose elevation is nearer
the input elevation.

Constructing the list of datazones that cover the input
point as required in step A, requires searching through the
list of all datazones and applying a simple
two-dimensional coverage test to each of them. To limit
the time it takes to search through the potentially large
number of datazones, the database uses a simple

two-dimensional form of a hash table to partition the
datazones based on their geographical location. The area
of the database is divided into square regions called
sectors. The sectors create a square grid that overlays on
top of the terrain so that each datazone belongs to at least
one sector. Associated with each sector is a list of
datazones that belong to that sector. Since all sectors are
square and have the same size, a few simple arithmetic
operations can be used to determine the sector that the
input point belongs to. Following this computation, the 2D
coverage test need only be applied to the datazones that
belong to that sector's list. Given that the sector size can be
changed even after the database has been created, it is
possible to subdivide a database to an arbitrary degree
putting a bound on the maximum sector datazone lists and
thus, putting a bound on the length of a search performed in
step A. Figure 4 illustrates the partitioning of a set of
datazones within sectors. Sectors are labeled with numbers
while datazones are labeled with letters.

Datazone lists
0 1 2 3 4

A

fa
,-j _ . H

9 6 / 0 t

10
r

E 11 12 13 14

15 1fi 171) 18 19

20 21 22 23 24

Sector 0: empty
Sector 1: empty

Sector5: G
Sector 6: G
Sector 7: C
Sector 8: ABC

Figure 4: Sectoring the database

The remaining steps of the algorithm have fixed
complexity that is independent of the size of the database.
Step A. 1 consists of simple indexing operations and has
0(1) complexity to the size of the datazone. Retrieving the
datasets as required in step A.2 is also a simple indexing
operation, but has a potential for a large time penalty
because the datasets are stored to disk. Step A.3 consists of
a deterministic set of arithmetic operations and is of fixed
complexity also.

Step A.2 requires accessing the datasets associated with a
particular datazone in order to perform the interpolation.
To increase disk access efficiency, datasets are packed
together in memory blocks whose size is a multiple of the
disk block (usually 2 or 4K). These memory blocks are
called buckets. Making all buckets memory resident is not
a viable solution given the large size of databases. To
eliminate the disk access delays that would normally be
associated with step A.2, a paging algorithm that predicts
the location of the vehicle and reads buckets from disk
before they are needed for actual queries is used. The
group of buckets that resides in memory at any one time is

52

defined as the working set. During initialization, the
look-ahead algorithm reads enough data in the working set
to cover an area that surrounds the simulator vehicle. At
runtime, the algorithm maintains a bounding box around
the driver and assigns relative priorities to buckets whose
datasets are within the bounding box. These priorities are
adjusted dynamically based on the vehicle's velocity and
turning rate, as is the size, orientation, and position of the
vehicle within the bounding box. For example, during high
speed straight driving the bounding box is long and narrow,
is aligned along the vehicle's path, and the buckets whose
datasets lie immediately ahead of the vehicle are of the
highest priority. An illustration of this configuration is
shown in the top view of Figure 5. If the vehicle is traveling
in slow speed and turning, the bounding box is shorter,
wider and data on the turning side has higher priority. An
illustration of this configuration is shown in the bottom
view of Figure 5.

Arrow indicates
vehicle velocity
vector

shading indicates
working set data

Figure 5: Operation of the Look-Ahead

Algorithm.

The look-ahead algorithm is running as a regularly-
scheduled process during the simulation. At each iteration,
the algorithm computes which buckets are necessary,
orders them according to priority, and compares them to
the ones that are in the working set. If all buckets in the
bounding box are in the working set, the algorithm doubles
the size of the bounding box and then recomputes the

buckets and their priorities. This process proceeds until the
algorithms finds a bucket that is not in the working set and
is of higher priority than the lowest priority bucket in the
working set, or until the bounding box has been doubled a
fixed number of times. In the former case, a disk read
request is issued to fetch the new bucket into the working
set. In the latter case the algorithm remains idle for one
iteration.

Note that under certain assignments of datasets to
buckets, it is possible to suffer internal fragmentation,
where datasets stored within the same bucket cover a large,
potentially non-contiguous geographical area. Such
buckets may pose a problem because even though they
occupy space the working set, only a small part of their
contents contributes towards coverage of the bounding
box. For example, note that in Figure 4 the shaded area,
representing data in the working set, covers regions outside
the bounding box. Internal fragmentation can be
minimized by keeping the bucket size small, and ensuring
that datasets stored in the same bucket cover geographical
areas that are in close proximity.

The algorithm has few changeable parameters which
include the initial size of the bounding box, the factors for
scaling the bounding box according to the vehicle's
movement, and the priority maps used to assign priorities
to the buckets within the bounding box. Changing these
parameters allow performance tuning in cases where
internal bucket fragmentation reduces the effective
coverage of the working set. Nevertheless, operation of
this algorithm is based on the assumption that the
performance bottleneck is disk access latency and not data
throughput. The data throughput can be expressed as
W
res*

DSS where W is the length of an imaginary

sweeping line across which the vehicle must interrogate
the terrain, v is the velocity of the vehicle, res is the terrain
modeling resolution, and DSS is the size of a single dataset.
Applying this formula to a vehicle that covers a 10 meter
lateral area and is traveling at 100 mi/hr (44.7 m/sec) over
terrain modeled at 0.1 meters with 8 bytes per dataset
yields a data throughput of approximately 350Kb/sec.
Such performance is not unreasonable, especially
considering the extremity of the numbers used in the
example. On the other hand, disk access latencies are
routinely quoted at 10 to 15 msecs, and these numbers
represent average performance figures and do not include
any operating system overhead. The high execution rate of
the simulator subsystems and the non-determinism of
accessing a disk makes a read-on-demand approach
infeasible. Use of the look-ahead algorithm decouples the
non-determinism and latencies associated with disk
storage devices from the terrain interrogation.
Furthermore, since the lookahead algorithm does not need

53

to be strictly synchronized with the vehicle dynamics
component and only needs the long-term movement trend
of the vehicle, it can run in parallel with the dynamics.

This approach to modeling and interrogating terrain has
been implemented and exclusively used in the IDS since
the beginning of its operation. A variety of databases have
been modeled, some small enough to fit the working set
while others being a orders of magnitude larger than the
working set. The terrain interrogation has been measured
at below 0.15 milliseconds on a 40Mhz i860 processor, and
that measure is independent of the overall database size.
On the same processor, the lookahead algorithm requires
between 1 and 4 milliseconds, depending on the average
number of buckets per datazone. Reading, a bucket can
take between 5 and 200 milliseconds, and as a result the
lookahead algorithm does not need to execute more often
than 30 Hz.

4: Terrain database construction tools

To address the problem of correlating the terrain database
with other databases used in the simulator, a set of software
tools built within the Center is used to create all databases
from the same specification [5]. This allows creation of
visuals, terrain, and any other separate but correlated
databases that are customized to the specific needs of
various simulator components. Under an agreement with
MultiGen, Inc. (previously known as Software Systems), a
subset of these tools has been incorporated in MultiGen®.
As part of this integration, the output capabilities of
MultiGen® have been extended to include datazones in
the format used by IDS. This integration allows effortless
creation of datazones that are automatically correlated
with a visual database. This method was recently used to
create a variable-density terrain model for the Churchville
Test Course and the Munson Test Area in Abberdeen, MD.
The driveable part of these courses was modeled using
datazones with resolution variances between 6,2, and 0.15
meters yielding more than 3 million datasets for the
Churchville test course.

Terrain databases can also be constructed by translating
an existing terrain database into the internal IDS format.
To ensure correlation with the visual model, the HAT
function of the CIG can be used to sample the terrain at
regular intervals off-line. This data can then be used to
construct datazones. Alternatively, datazones can be
constructed by directly translating the data of the original
database. This method was used to create a terrain
database for Fort Hunter-Liggett, CA, as part of integrating

IDS in the DIS net.

5: Future directions

Tools need to be built that allow small modifications to
the terrain database data following the initial creation of
the database. Such modifications are necessary when the
source data is represented in coarser resolutions such as
DIS Level 1 or 2 databases. In such cases, it would be
useful to have the ability to smooth the
polygon-to-polygon edges and introduce roughness in the
otherwise flat polygons. Smoothing would also be useful
for reducing the feeling of "driving across a driveway,"
which is often encountered on the bases of hills or sides of
mountains. Roughing a flat area would serve the same
purpose as textures do in visual databases, which is to add
content and roughness to an area that inherently is flat and
boring.

Acknowledgement: Research supported by
NSF-Army-NASA Industry/University Cooperative
ResearchCenter for Simulation and Design Optimization
of Mechanical Systems and ARPA.

6: References

[1] T. Stanzione, "Suitability of the Standard
Simulator Database Interchange Format for
Representation of Terrain for Computer
Generated Forces,", In Proceedings of the Fourth
Conference on CGF and Behavioral
Representation, pp. 231-238, May, 1994.

[2] J. E. Smith, "Compact Terrain DataBase Library
User Manual and Report," BBN Systems and
Technologies, Bellevue, WA, 1991.

[3] J. Kuhl, D. Evans, Y. Papelis, R. Romano, and G.
Watson Papelis, The Iowa Driving Simulator: An
Immrsive Environment for Driving-Related
Research and Development, manuscript
submitted for publication, 1994.

[4] R.S. Kennedy, L.J. Hettinger, and M.G.
Lilienthal, Simulator Sickness, Chapter 15 of
Motion and Space Sickness, ed. G.H. Crampton
(Boca Raton: CRC Press, Inc., 1990) pp.
317-341.

[5] D. Evans, "Correlated database generation for
driving simulators," In Proceedings of the
IMAGE IV Conference, pp. 353-361, July, 1992.

54

Terrain Reasoning Challenges in the CCTT Dynamic Environment

Charles E. Campbell and Gene McCulley
Science Applications International Corporation

Orlando, Florida

Abstract

The desire for realism in simulation is obvious. It fol-
lows that the more realistic the simulation environment,
the more effective the training. A dynamic environment,
in which man-made structures can be damaged, excava-
tions are possible, and environmental conditions can
change, is an aspect of simulated training attracting much
attention. However, full implementation of a dynamic en-
vironment in a large scale simulation is not yet feasible.
CCTT is taking the first step toward creating a dynamic
environment in a production simulation system by allow-
ing limited dynamic modifications to the static terrain da-
tabase and environment. This paper details some of the
challenges for terrain reasoning when implementing dy-
namic terrain, and explains the proposed approaches to
solve them in CCTT's real-time networked environment.

1. Introduction

The Close Combat Tactical Trainer (CCTT) is the first
trainer in the Combined Arms Tactical Trainer (CATT)
family of training systems. CCTT is a real-time net-
worked simulation environment designed to provide
training of specific military skills at a fraction of the cost
of an equivalent field exercise. CCTT is composed of sev-
eral different types of systems including Manned Mod-
ules, Workstations, and Semi-Automated Forces (SAF).
Manned Modules consist of crew cabin simulators, in-
cluding MlAls, M2A2s, HMMWVs, and dismounted in-
fantry (DI). Workstations provides simulation capabili-
ties for the battalion support staff, After Action Review,
and simulation support. SAF provides additional friendly
(BLUFOR) and enemy (OPFOR) entities by emulation of
vehicle dynamics and crew behaviors. Each of these sys-
tems communicates using the Distributed Interactive
Simulation (DIS) network protocol. An accurate repre-

sentation of the battlefield terrain shared by all players is
key to the interoperability of these distributed systems.

Increased realism in the networked virtual environ-
ment is essential for increased training effectiveness. The
Institute for Simulation and Training has been researching
the various components (e.g. algorithms, data structures,
network protocols) needed to implement dynamic terrain
for networked simulation [1]. Dynamic environment
models have been implemented for a variety of areas, in-
cluding excavation [2], cloud scenes [3], and water flow
[4]. This level of dynamic terrain is computationally ex-
pensive, and is not yet practical for real-time networked
simulation. As a result, distributed simulations have
traditionally been implemented on static terrain data-
bases, with almost no provisions for dynamic modifica-
tions of terrain components.

This paper provides a "snapshot" of current issues and
future plans. Many issues are still being resolved. At the
time of this writing, no CCTT databases with dynamic at-
tributes have been generated. For more information on
the CCTT SAF database design, see [5]. For more in-
formation on the CCTT visual implementation of the dy-
namic environment, see [6].

2. The dynamic environment

The following sections describe the various aspects of
the dynamic environment to be implemented in CCTT
visual and SAF databases.

2.1 Destructible static features

Destructible static features (DSF), also known as fixed
selectable features, are terrain features which are placed
in the static terrain database, but have normal, damaged,
and destroyed states which may alter their geometry (Fig-
ure 1). All DSFs have a unique identifier to allow them
to be referenced individually. DSFs include buildings
(such as houses, industrial buildings, and water towers)
and bridges.

0-8186-6440-1/94 $04.00 © 1994 IEEE
55

a

Figure 1. Destructible static feature example
(a) normal, (b) damaged, and (c) destroyed

2.2 Dynamically placed features

Dynamically placed features (DPF), also known as re-
locatable objects, are terrain features which can be placed
onto the terrain database during a simulation. DPFs may
be surface obstacles, changes to terrain geometry, or other
trafficability modifiers. DPFs can be damaged, de-
stroyed, or breached. In CCTT, DPFs are placed by Com-
bat Engineering entities to provide mobility, countermo-
bility, and survivability.

A brief description of each DPF scheduled for the
CCTT databases at this time follows. This list is prelimi-
nary, and items may be added, deleted, or modified.

A log crib is a rectangular obstacle made of stacked
trees and used for countermobility. Log cribs can be dam-
aged and destroyed. A destroyed log crib is no longer a
trafficability obstacle.

An abatis is a countermobility obstacle consisting of
felled trees aimed in the direction of the enemy. An abatis
can be destroyed, which effectively clears the obstacle.

A tank ditch is a countermobility obstacle which alters
the terrain skin. A tank ditch can be composed of up to

four segments. Each segment can be 30, 60, 90, or 120
meters in length, and each has its own three dimensional
orientation. A tank ditch can be breached. Breach loca-
tions are 15 meters from an end of the ditch, and every 30
meters thereafter.

A concertina wire fence is placed along a tank ditch to
provide additional countermobility. A concertina wire
fence has the same length, number of segments, and
breach locations as the tank ditch it is associated with.

Fighting positions for DI are simply holes in the ground
which are deep enough to hide a DI's body, yet allow him
to engage the enemy. Fighting positions include infantry
fighting position, overhead covered infantry position, ma-
chine gun prepared position, and covered machine gun
bunker. The exact geometry of each model differs slight-
ly, with berm placement variations. These positions can
each be destroyed, rendering them useless.

A hull defilade is similar to an infantry fighting posi-
tion, except that it is made to accommodate vehicles.
Multiple types of hull defilades will be available to sup-
port the different types of vehicles (Armored Vehicle,
Fighting Vehicle, Tank, Mortar Carrier). The hull defi-
lade hides the vehicle hull while allowing the vehicle to
engage the enemy. Hull defilades have an orientation, and
thus must be entered from the appropriate direction. A
hull defilade can be destroyed, rendering it useless.

A minefield defines a countermobility area in which
explosives have been placed in the ground. Minefields
can be breached to provide a trafficable lane cleared of
mines.

An Armored Vehicle Launched Bridge (AVLB) be-
comes a DPF when launched from its vehicle. An AVLB
is 60 feet in length and is used to cross gaps (rivers,
ditches, etc.). An AVLB can also be used to breach con-
certina wire fences. An AVLB can be destroyed, render-
ing it useless.

Finally, two other DPFs have been discussed, building
rubble and ribbon bridges, but very little about their im-
plementation and use is known at the time of this writing,
and so they will not be discussed here.

2.3 Natural environmental effects

Natural environmental effects describe states of natu-
rally occurring phenomenon. In CCTT, these include
rain, fog, haze, cloud cover, and time of day. All natural
environmental effects in CCTT SAF will be represented
as global, discrete states. For example, rain will be either
on or off for the entire database, and the transition between
on and off is immediate. In CCTT, natural environmental
effects will affect mobility and visibility.

2.4 Man-made environmental effects

Man-made environmental effects describe states of
environmental phenomenon introduced into the environ-

56

ment by a simulated entity. In CCTT, these are flares and
tactical smoke. Man-made environmental effects will be
used to restrict or enhance visibility.

3. The environment manager

A central environment manager will maintain all dy-
namic environment information. This eliminates the need
for each simulator to maintain a copy of some environ-
mental changes by maintaining a central repository of the
information, saving space and time. The environment
manager will communicate with other entities via DIS
Protocol Data Units (PDU). The proposed Synthetic En-
vironment Protocol is described in [7].

The environment manager does not yet keep track of
natural environmental effects. This is because CCTT cur-
rently performs no weather modelling. Weather (and time
of day) are defined as discrete states. If weather is mod-
elled in the future, the environment manager will do the
modelling.

Of the two man-made environmental effects, only tac-
tical smoke is handled by the environment manager. An
entity participating in the exercise tells the environment
manager where to create the smoke. The environment
manager then creates and models the smoke. Modelling
smoke consists of changes in size and density. The envi-
ronment manager broadcasts creation of and updates to
the smoke to all applications in the exercise.

The environment manager monitors the network for
munition impacts on or near DSFs. The environment
manager then assesses damage to the DSF. If the damage
is sufficient to cause a state change to the DSF, the envi-
ronment manager will broadcast an update indicating the
new state of that DSF to all applications in the exercise.

Creation and modification of DPFs is handled in a sim-
ilar fashion. The creating/modifying entity tells the envi-
ronment manager the necessary information to create and
place the DPF. The environment manager stores the in-
formation and broadcasts the new DPF information to all
applications in the exercise.

Finally, the environment manager maintains data for
reset and checkpoint during an exercise. This provides a
single source for environmental data at any checkpoint.
Support for restarting/reconstituting entities is provided
through a unicast send of the latest environment informa-
tion. Unicast responses avoid interrupting every proces-
sor in the exercise.

4. CCTT SAF terrain reasoning

CCTT SAF has terrain reasoning requirements to pro-
vide height of terrain, collision detection, munition im-
pact detection, obstacle avoidance, route planning, line of
sight, and cover and concealment. Dynamic environ-

ments impose new challenges on terrain reasoning, be-
cause it forces SAF entities to be aware of changes to the
environment and adapt functionality to account for the
changes.

For clarity, descriptions for the terrain reasoning terms
and functionality with respect to CCTT SAF are provided.
DSFs and DPFs are referred to collectively as dynamic
features.

4.1 Height of terrain

Height of terrain provides the elevation and surface
type at a given location on the simulation database. This
involves interpolation between three terrain elevation
posts which constitute a terrain polygon. River beds will
be modelled with a simple geometry, such that entities
driving into a river will gradually immerse into the water,
rather than suddenly dropping to the depth of the river.

To lessen the computational expense imposed upon
terrain reasoning by the addition of dynamic terrain fea-
tures, SAF entities will not drive or climb on any features
placed on top of the terrain, with the exception of bridges.
This aids computation for height of terrain by eliminating
the need to calculate elevations on building rubble, abatis
tree trunks, etc.

Height of terrain does, however, handle changes to the
terrain skin such as tank ditches and defilades. Instead of
using the terrain surface, height of terrain must detect that
the query location is in fact on a DPF, place and orient the
model, and interpolate the actual elevation.

CCTT SAF may add overpasses and bridges to the list
of DSFs in the near future. Overpasses create a situation
where one x,y location can have multiple valid elevations.
At these locations, height of terrain must determine which
elevation is desired. Height of terrain must recognize
when a bridge or overpass span is destroyed.

Surface types vary widely throughout the CCTT ter-
rain database. A simulated entity's mobility is altered by
the type of surface it is traversing. Rain has the effect of
saturating the soil, resulting in a different surface type
with altered mobility characteristics.

4.2 Line of sight

Line of sight determines the percent visibility of an en-
tity from a specified eyepoint. Percent visibility indicates
the amount of the 2D projection of the target entity which
is visible from the eyepoint. Visibility is degraded by sol-
id obstructions, such as buildings or terrain skin, and by
terrain features which provide partial transmittance, such
as trees.

Line of sight uses entity and feature bounding volumes
to determine the extent of blockage that entity or feature
incurs. A bounding volume is a three-dimensional rectan-
gular volume which defines the 3D boundary for an ob-
ject, such as an entity or a terrain feature. Bounding vol-

57

umes are useful for defining the extents of an object
without using a complex geometrical representation.

Line of sight (LOS) becomes more complicated with
the addition of dynamic objects. In particular, the irregu-
lar shapes resulting from object destruction present a LOS
nightmare. CCTT has agreed that when objects are dam-
aged, their geometries will not change drastically, and
when objects are destroyed, their rubble will be roughly
consistent in height across the object. This allows LOS to
be simplified in that bounding volumes will not be af-
fected in the damaged state, and destroyed objects (ex-
cluding bridges) will still use a rectangular bounding vol-
ume, although it will be lower. Obviously LOS
calculations across damaged and destroyed objects will
not be entirely accurate, but they will be close. More im-
portantly, these simplifications allow LOS calculations to
be performed efficiently without imposing unrealistic
looking restrictions upon the visuals.

Line of sight is also affected by DPFs. The DPFs which
sit on the surface (e.g. log crib) are simply another ob-
stacle to be taken into consideration. Excavations, how-
ever, allow entities to be hidden partially or totally below
the terrain surface. This is easily handled by LOS, since
the terrain surface is already taken into account. The diffi-
culty lies in the fact that excavations generally create a
"berm" of soil around them. These berms are significant
for fighting positions, in that they provide some degree of
cover. Therefore, these berms cannot be ignored for line
of sight.

Environmental effects can alter line of sight. Smoke,
fog, haze, rain, and darkness degrade visibility. Cloud
cover can completely block line of sight to high flying air-
craft. Flares can increase visibility within the areas they
illuminate.

4.3 Collision detection

Collision detection monitors simulated entities to de-
termine if their bounding volumes intersect those of other
simulated entities and/or terrain features.

In their normal state, dynamic features on top of the ter-
rain have the same effect as single state (non-destructible)
features. All that is needed is the location and state of the
dynamic object (to indicate the object's collision vol-
ume). Thus, a log crib or abatis will block a simulated en-
tity's path.

The interesting situations occur when a dynamic fea-
ture has been destroyed. Destroyed features have differ-
ent bounding volumes than their undamaged counter-
parts. Thus, a low flying aircraft which would collide with
an undamaged building, may not collide with its de-
stroyed version, given identical flight paths.

Collision detection must also be aware of defilade and
ditch positions and orientations. For these DPFs, colli-
sions occur with the ground. Collisions are reported when

an entity enters a defilade from the wrong direction or hits
the steep slope of a tank ditch.

4.4 Munition impact detection

Munition impact detection entails determining the in-
tersections of a munition with objects along its flight path.
For each intersection, the kind of object intersected as
well as the location of the intersection are determined.

Munition impact detection differs from collision
detection in that munition impact detection uses a line
segment instead of a bounding volume to detect intersec-
tions with feature and simulated entity bounding volumes.
The line segment represents the flight path of the munition
during a small slice of time. Also, munition impact detec-
tion can prune out many features from consideration,
since much of a munition's flight path may be above the
highest feature in the area.

Munition impact detection has concerns with dynamic
features similar to those of line of sight, since both trace
a line segment to a specified target area. All DPFs must
be considered to determine if they lie in the munition's
path, with excavation berms presenting the most difficult
challenge (see line of sight). Also, the state of a dynamic
feature may determine whether or not it blocks the path of
a munition.

4.5 Route planning

Route planning is the generation of a cross country
route or a road route. Route planning does not consider
low level obstacles such as individual buildings and trees,
but rather high level obstacles, such as cities, forests, riv-
ers, and mountains.

A waypoint is an x,y location that defines a desired
destination along a route. A set of connected waypoints
define a path. When used in route generation, waypoints
define a general "area" as a destination, rather than a spe-
cific location, thus passing "near" a waypoint is adequate
if obstacles prohibit access to the exact location.

Given a supplied list of waypoints, route planning mo-
difies the waypoints to avoid obstacles, when possible;
otherwise route planning indicates the route is not traffi-
cable for the given waypoints. Route planning can also be
used to verify that the supplied waypoints describe a traf-
ficable route without being modified.

The only dynamic features which have an effect on
route planning are bridges, tank ditches, concertina wire,
and known minefields. Bridges must be considered be-
cause they can be destroyed (thus breaking an otherwise
connected road network), and because AVLBs and ribbon
bridges can be placed during the simulation.

Minefields can be large enough to reach beyond the
scope of obstacle avoidance (see next section), and thus
must be considered by the route planner. In addition, a
minefield may contain a breached lane which could be

58

used to obtain a shorter route distance compared to going
around the minefield.

It is important to note that SAF terrain reasoning will
only take into consideration those minefields which the
routing force is aware of. In other words, an OPFOR unit
will not be aware of a BLUFOR minefield unless the
minefield has already been discovered by the unit or by
another friendly unit. Thus, route planning may plan
paths through undiscovered minefields.

4.6 Obstacle avoidance
Obstacle avoidance is used to determine an unob-

structed path from one location (waypoint) to another.
Low-level obstacles, such as other simulated entities and
individual buildings and trees, are considered.

In their normal state, dynamic features on top of the ter-
rain (e.g. log cribs) are handled in the same manner as
single state (non-destructible) features; they are obstacles
to be avoided. In the breached state, obstacles can be ne-
gotiated. Bridges, of course, can not be traversed when
destroyed.

Obstacle avoidance must recognize hull defilade posi-
tions, covered machine gun bunkers, and infantry fighting
positions in order to determine a path which enters them
from the correct direction and to resist the usual predictive
avoidance of the impending walls when seeking cover.
However, obstacle avoidance should consider these posi-
tions as obstacles when not seeking cover. As with route
planning, obstacle avoidance must take advantage of dy-
namically placed bridges in order to determine the most
direct path to a target location.

4.7 Cover and concealment

Covered and concealed locations are positions which
make an entity harder to see from a specified "enemy"
eyepoint. An entity is "harder to see" when a greater per-
centage of its surface area is blocked as viewed from the
enemy eyepoint. Covered locations are those where the
blockage is provided by a solid material (such as the
ground or a building) which also makes the entity "harder
to damage" with direct fire from the enemy location. Con-
cealed locations are those where the blockage is provided
by a non-solid material (such as tree foliage), which does
not protect the entity from direct fire. Covered and con-
cealed locations which allow the entity to engage the en-
emy are generally preferable over those which merely
hide the entity.

Cover and Concealment must be aware of all dynamic
objects in order to intelligently determine advantageous
positions. Destroyed buildings no longer provide com-
plete cover, while excavated fighting positions are desir-
able when seeking cover. Additionally, tactical smoke
can be used to provide concealment for entities when ap-
propriate.

5. Dynamic environment issues

The need for correlation between the COT SAF and
the visual display imposes a number of restrictions on
both systems, due to the different nature of the databases
used by each. While the visuals are concerned with poly-
gons, colors, and textures to present the most realistic
looking scene possible, SAF is concerned more with three
dimensional surfaces and bounding volumes defining in-
dividual objects throughout the environment. The con-
cept is analogous to "seeing" versus "feeling", causing the
types of information stored in the two databases to be vast-
ly different.

The sections which follow describe some additional
challenges for CCTT with respect to the dynamic environ-
ment.

5.1 Destructible static features

The implementation of DSFs in CCTT requires the
image generator to store each DSF in memory at all times.
The amount of memory which can be spared in the image
generator restricts the number of DSFs in the CCTT data-
bases to 10,000. Since there are many more features in the
database than can be represented as DSFs, decisions must
be made as to which features will be destructible.

The first suggestion was to limit the DSFs to buildings,
bridges, and possibly dams. Still, the number of possible
DSFs exceeds the limit. One suggested solution is to al-
low only certain types of features to be destructible. A
more likely solution is to specify certain areas of the data-
base in which all buildings can be destroyed.

Another challenge to be dealt with is what to do when
a vehicle is on a bridge and the bridge is destroyed.
Should the vehicle fall, or be teleported instantly to the
ground below? If the vehicle falls, the simulation of the
fall may or may not involve orientation changes to the ve-
hicle, but the "out the window" display must match the
dynamics of the fall.

5.2 Dynamically placed features

Correlation between simulation databases and their
corresponding visual databases has traditionally been ex-
tremely difficult to measure [8]. The correlation problem
only gets worse with the addition of features which can be
oriented and placed at run-time.

One of the hardest correlation challenges between SAF
and the visual display is placement of tank ditches. A tank
ditch can be composed of up to four segments. Each seg-
ment can be 30, 60, 90, or 120 meters long, and each has
its own three dimensional orientation. The smallest ter-
rain facet (excluding microterrain) is 30 meters, so it is ob-
vious that situations can arise where a segment of a tank
ditch will cross multiple terrain facets, and thus will not
conform exactly to the terrain. The greater the difference

59

in slope between polygon facets, the less the tank ditch
will conform to the terrain.

The visuals handle this problem by modelling the tank
ditch segments with "skirts" along either side. When
placed, the areas of the ditch which do not conform to the
terrain will show these skirts, giving the visual effect of
dirt piled along the side of the ditch. SAF has the chal-
lenge of simulating the tank ditches in such a way that ter-
rain reasoning functions like height of terrain and line of
sight produce realistic results.

The placement of all DPFs, not just tank ditches, pres-
ents a challenge to SAF. No excavation should be placed
across a river, or under a tree or building. An abatis or log
crib should only be placed where it is realistic to do so (i.e.
there should be enough trees in the immediate vicinity to
support the feature). Also, because of their fixed sizes, log
cribs and abatis must be carefully placed to sufficiently
block the path if they are to serve their countermobility
goal. Finally, relocatable bridges must be accurately
placed such that they will adequately span the obstacle.

Breaches across DPFs are represented as independent
models. Therefore, they must be individually placed, and,
in the case of tank ditches and concertina wire fences,
"snapped" to the proper location. The breach must then
be recognized as taking precedence over the underlying
DPF for mobility purposes.

Another topic being discussed is how to show incre-
mental completion of DPFs to provide incremental results
to combat engineering activities. To accurately show in-
cremental completion of a task, many more models of
DPFs in various stages of construction would have to be
created and managed. A simpler solution has been pro-
posed which uses existing models. For tank ditches, one
segment of the ditch would appear at a time, after an ap-
propriate duration, giving the effect of the ditch being
built a section at a time. Log cribs could at first be placed
below the terrain surface, and then raised over time. The
log crib would appear to become larger in stages. Alterna-
tively, a single model of "wood clutter" could be used to
show incremental completion for a log crib or abatis; and
a single "shallow defilade" model for all defilades.

5.3 Environmental effects

Environmental effects also present correlation chal-
lenges for CCTT. It is extremely difficult, if not impossi-
ble, to simulate what a person would see on the visuals
based upon time of day, or when looking through rain, fog,
haze, or smoke. The SAF database may contain an
approximation of the formula used by the visuals to com-
pute the density of these effects. This formula could then
be used to degrade visibility in an attempt to emulate for
a SAF entity's sensors what a trainee can detect.

6. Conclusion

The addition of dynamic attributes to a terrain database
presents many challenges. Terrain reasoning in a dynamic
environment becomes significantly more difficult and ex-
pensive. A tradeoff must be negotiated to allow run-time
efficiency while maintaining the desired level of fidelity.
The ideas presented here show CCTT's efforts toward this
goal.

The terrain databases for CCTT are still being devel-
oped at this time. The information presented in this paper
is based upon current understanding of the CCTT dynam-
ic environment and how SAF plans to interact with it. Ev-
erything discussed herein is subject to change. However,
a paper describing the final implementation, compared
and contrasted with the issues presented here, is forthcom-
ing.

7. References

[1] Lisle, C, Altman, M., Kilby, M., and Sartor, M.,
"Architectures for Dynamic Terrain and Dynamic Envi-
ronments in Distributed Interactive Simulation", Pro-
ceedings of the Tenth Workshop on the Standards for the
Interoperability of Defense Simulations, March, 1994.

[2] Li, Xin and Moshell, J. Michael, "Modeling Soil:
Realtime Dynamic Models for Soil Slippage and Manipu-
lation", 1993 SIGGRAPH Computer Graphics Proceed-
ings, pp. 361-368,1993.

[3] Cianciolo, Moureen E., "A Cloud Scene Simula-
tion Model for Distributed Interactive Simulation", Pro-
ceedings of the Tenth Workshop on the Standards for the
Interoperability of Defense Simulations, March, 1994.

[4] Campbell, Charles E., "Fluid Dynamics Methodol-
ogies for Computer Graphics", Master's Research Project
Report, Computer Science Department, University of
Central Florida, Orlando, FL, Fall 1991.

[5] Watkins, Jon E. and Provost, Micheline H., "Design
of Terrain Reasoning Database for CCTT", these proceed-
ings.

[6] "Close-Combat Tactical Trainer: Central United
States", Database Design Document, Evans and Suther-
land, Simulation Division, Salt Lake City, UT, February
28, 1994.

[7] Crowley, Jean M. and Moore, Ronald G., "Synthet-
ic Environment Protocol", Proceedings of the Eleventh
Workshop on the Standards for the Interoperability of De-
fense Simulations, September, 1994.

[8] Zvolanek, Budimir and Dillard, Douglas E., "Data-
base Correlation Testing for Simulation Environments",
14th Proceedings of the Interservice/Industry Training
Systems and Education Conference, November, 1992.

60

8. Biographies Forces software. His interests include simulation, graph-
ics, and computational geometry.

Chuck Campbell is a software engineer with SAIC in
Orlando, Florida. He has earned a M.S. in Computer Sei- Gene McCulley is a software engineer with SAIC in
ence from the University of Central Florida and a B.S. in Orlando, Florida. He is an undergraduate student at the
Computer Science from Indiana University. He has over University of Central Florida. He has two years' experi-
four years' experience developing Computer Generated ence developing Computer Generated Forces software.

61

Design of Terrain Reasoning Database for CCTT

Jon Watkins and Micheline Provost
Science Applications International Corporation

Abstract
Terrain reasoning in CGF systems has traditionally

been very expensive both in terms of time and space. Dis-
cussion of terrain reasoning concepts often focuses on al-
gorithms, but the storage scheme for terrain data can also
have a significant impact on performance. A number of
challenges face CGF systems in this area including trad-
ing fidelity for performance, making efficient use of avail-
able memory, and data correlation with the visual display
supplied to the man in the loop. The CCTT terrain reason-
ing database will build upon existing work and introduce
new concepts to address these issues.

1.0 CCTT overview
The Close Combat Tactical Trainer (CCTT) is the first

system in the Combined Arms Tactical Trainer (CATT)
family of training systems. CCTT will utilize the Distrib-
uted Interactive Simulation (DIS) network protocol to
provide a virtual environment for training of armor and
mechanized infantry personnel. CCTT is composed of a
variety of manned modules, an Operations Center (OC),
Semi-Automated Forces (SAF), and several support
workstations. The manned modules are cabin simulations
with virtual out—the—window views for training on ve-
hicles such as the Ml A2, M2A2, and Ml 13. SAF and OC
provide emulated vehicles to populate the battlefield; they
share a common architecture referred to as Computer
Generated Forces (CGF). SAF provides a wide range of
both BLUFOR (friendly) and OPFOR (enemy) entities.
OC provides BLUFOR entities to support battalion staff
training and to add depth to the battlefield with entities
which provide resupply, maintenance, combat engineer-
ing, and fire support capabilities. Both SAF and OC are
controlled via user interfaces provided on the SAF
Workstations and OC Workstations, respectively. The ac-
tual simulation of the SAF and OC entities is provided by
separate CGF processors dedicated to entity simulation.

There are three correlated databases used throughout
the CCTT system: the visual database is used for all out-
the-window visual displays; the PVD ("plan view") data-
base provides a two dimensional plan view for display on
user interfaces; and the "Model Reference" terrain data-
base (or MRTDB) is used for all other terrain operations.
MRTDB is designed first and foremost to support terrain
reasoning operations on the CGF systems; however, the
CCTT manned modules will also utilize this database for
terrain functions such as collision detection, munition im-
pact detection, and height of terrain. This represents a
change from the original design which called for manned
modules to receive terrain data directly from the image
generator providing the out-the-window view.

2.0 Scope of paper

CCTT is utilizing spiral development to mitigate risk
and provide operational incremental drops before contract
completion. Simple terrain operations were provided in
the initial drop of the CCTT SAF system ("Build 2"). This
paper discusses the MRTDB format we propose to imple-
ment in the next system drop involving CGF components
("Build 4"). The MRTDB format implemented in Build
4 will be utilized by SAF Workstations, CGF, and manned
modules. There will continue to be changes and improve-
ments to the terrain storage mechanisms as system level
issues are resolved and more CCTT components are im-
plemented.

Build 4 functionality will include height of/above ter-
rain, collision detection, munition impact detection, and
line of sight. Additional functionality provided in Build
5 and beyond includes high level routing, obstacle avoid-
ance, area intervisibility, cover and concealment, dynamic
terrain effects, and weather. Database structures needed
to support Build 5 operations are not discussed in this pa-
per.

0-8186-6440-1/94 $04.00 © 1994 IEEE
62

3.0 Terrain storage issues

When considering possible storage mechanisms for
CGF terrain databases, one must attempt to balance three
driving requirements:

1. Data must be stored in a compact format
to minimize caching operations at run-
time and to minimize hardware require-
ments.

2. Ideally, the data is stored such that, once
it is in memory, its run—time utilization is
as efficient as possible.

3. Finally, the data must be stored with suf-
ficient fidelity to meet system require-
ments such as fair-fight and correlation
with visual displays.

In many ways, these requirements are mutually antago-
nistic. For example, storage of a point, radius, and height
for tree geometries is compact, but may not provide the re-
quired fidelity. Storage of detailed filters which may re-
duce or eliminate operations supports run-time efficiency
but increases storage requirements, and thus may increase
cache misses.

4.0 Existing terrain representations

Three existing formats for CGF databases are refer-
enced in this paper both as a source of ideas and to provide
standards for comparison with the proposed CCTT
MRTDB format: the Compact Terrain Database (CTDB)
and Quadtree database formats presently used by Mod-
SAF, and their predecessor, the original SIMNET SAF
TDB. Throughout the remainder of this paper, these for-
mats are referred to as MRTDB, CTDB, Quadtree, and
SIMNET TDB.

SIMNET TDB: The SIMNET TDB uses apatch as the
fundamental storage unit which represents all terrain data
for a square area of terrain. Each patch is conceptually
subdivided into 16 square grids and is composed of lists
of vertices, edges, ground polygons, man-made struc-
tures, trees, treelines, and forest canopies. SIMNET TDB
has a number of useful filters such as grid maps (which
provide direct access to certain features by grid and type),
grid masks (which provide rapid filtering of features based
upon grid), minimum and maximum x,y,z values (which
help eliminate features and/or patches from consider-
ation), and patch guards (which can prevent caching of
patches based upon a summary of patch data).

CTDB: CTDB [1][2][3] also uses the patch as the fun-
damental storage unit for terrain features, but it stores ter-
rain skin information separately in pages of 4K chunks.
The "compact" terrain database format lives up to its
name by packing structures down to the bit level, storing
the terrain skin as regularly spaced z-values referred to as

elevation posts, and using a space saving fixed point repre-
sentations that ModS AF refers to as a "fixed point basis".
A given fixed point basis uses a fixed point number to rep-
resent some integral number of units, where the unit is re-
ferred to as the "basis". Some of the filters and organiza-
tional data present in the SIMNET TDB were eliminated
in favor of space savings. CTDB is very successful at
compressing data: the Fort Knox database is approximate-
ly 32M in SIMNET TDB format but only 4M in CTDB for-
mat. This means that there should be few if any cache mis-
ses even with limited memory.

CTDB represents a strong shift in favor of a compact
representation while providing minimal loss to run-time
efficiency. In some cases, compact representation was
given priority over efficient "in-memory" operation as
compared to the SIMNET TDB format. One example is
the elimination of many filters; minimum and maximum
elevation values are no longer stored by patch in CTDB.
Another example is the reduction in organizational data;
for instance, to process the linear features in a patch, it is
necessary to iterate through all other patch features be-
cause linears are stored last and CTDB does not have in-
dices into the feature lists by type. CTDB's use of eleva-
tion posts is both more compact and more efficient than
the polygonal format stored in the original SIMNET TDB.

Quadtree: Quadtree [2] [4] provides terrain feature in-
formation stored in subdivided areas of terrain (quads) and
also stores road and river networks in a connected fashion
well suited to routing. Quadtree stores features in a low-
fidelity manner useful for "plan view" display and route
planning. The CCTT PVD database format will be similar
in many ways to Quadtree. MRTDB will utilize connected
road networks similar to those stored in Quadtree for fu-
ture design in support of routing.

5.0 CCTT challenges
The database formats discussed above provide a num-

ber of useful and innovative ideas for terrain representa-
tion. Because CCTT SAF is attempting to make maxi-
mum use of ModS AF in an effort to reduce development
costs, it was initially believed that we would utilize a com-
bination of ModSAF's CTDB and Quadtree representa-
tions with minimal changes. However, the sharp increase
in visual system capabilities, as compared to SIMNET
visuals, and the stringent system requirements for CCTT
present a number of technical challenges for terrain data-
base representation which required alterations and exten-
sions to ModSAF's databases:

Terrain database density and size: The density of ter-
rain features and resolution of terrain skin are being driven
by the substantial capabilities of the ESIG-3000 which is
the CCTT visual system [5]. The terrain skin will be repre-
sented at 30m spacing, increasing the storage space for
gridded terrain posts by 17 times (as compared to 125 me-

63

ters in most CTDB databases). Microterrain (also known
as "cut and fill") will be used extensively. Detailed repre-
sentations for ground mobility types and placement of
point features (trees, buildings, bridges) will be much
denser than in SIMNET. Indeed, feature densities will be
sufficient to provide reasonable representations of urban
areas. Storage is further impacted by the area covered by
CCTT databases: 100 km x 150 km.

Visual database development is still underway and a
number of fundamental design issues are still outstanding.
However, initial estimates indicate that over 30,000 man-
made structures (10,000 of which will be destructible) and
over a million individual trees will be represented in the
first full-size database. The SIMNET Fort Knox database
has roughly 4,000 man-made objects and 25,000 individ-
ual trees in a database within one quarter of the CCTT ter-
rain area.

Simple dynamic terrain: Some preplaced terrain fea-
tures, referred to as destructible static features (DSFs) will
change their geometry at run time, thus requiring a mecha-
nism for uniquely identifying features and a means to effi-
ciently alter their geometries. In addition, Combat Engi-
neering features (referred to as dynamically placed
features) may be placed before and during the exercise to
provide survivability, counter-mobility, and mobility op-
erations. Dynamically placed features may change the
terrain skin, as represented in the static terrain database,
as well as creating new obstacles where none existed be-
fore. Both destructible static features and dynamically
placed features are discussed in [6] and [7].

Fidelity of representation: Because of the prohibitive
computational load and storage requirements associated
with detailed geometric representation of terrain features,
it will be necessary to use approximations in some cases.
With an eye toward the needs of future CATT systems, we
have developed a database format that will permit variable
fidelity representations with minimal storage requirement
impacts.

Visual database storage techniques: The ESIG-3000
utilizes a number of techniques to reduce run-time data-
base size, such as model libraries, basis sets and cluster
features. We are investigating storage mechanisms which
take advantage of these techniques without tying our-
selves to the E&S visual database implementation.

New feature types: A variety of new feature represen-
tations found in CCTT required us to consider extensions
to CTDB. For example, soil types in CCTT will be repre-
sented as areal features which need not conform to post
boundaries, thus requiring us to store areals rather than
storing soil types at elevation posts. This allows us to ex-
pand the number of soil types supported without increas-
ing the number of bits required for posts. The first CCTT
database will contain 31 soil types and these types may
change at run-time due to rain. In addition, CCTT entities

will detect collisions with tree trunks as opposed to fo-
liage, while foliage effects line of sight, thus requiring us
to store a radius for the trunk and a radius for the foliage;
ModSAF required only one radius per tree instance.
Hedgerows and walls are presently planned for the visual
database; these are lineare with both height and width.
ModSAF required only linears with width (roads & rivers)
and linears with height (treelines).

Many new types of terrain features are still under dis-
cussion at this time. These include penetrable forests,
which are canopies with a high density of trees inside, and
multi-level terrain such as bridges, overpasses, and tun-
nels.

Other Issues: In addition to the above issues which in-
fluenced our design decisions, other factors include Ada
File I/O capabilities, improving caching performance, and
support for different CCTT components such as SAF, OC,
and Manned Modules.

6.0 MRTDB design and format
While considering various representation schemes to

support the above requirements, we started with the excel-
lent foundation provided by SIMNET TDB and Mod-
SAF's CTDB. Future work will make use of QuadTree.
We also drew ideas from the SIF standard, the imple-
mentation of the CCTT Visual Database, and Ada's data
representation strengths and weaknesses.

6.1 Object-oriented design
We used an object—oriented approach in designing and

implementing our terrain database [8] [9]. We designed
our database using Rumbaugh's object-oriented design
methods and implemented it in the Ada language. Figure
1 is the terrain database Object Model using Rumbaugh's
Object Model notation.

The following paragraphs give a brief description of
the object classes shown in Figure 1, starting with the ter-
rain database object class and followed by its component
object classes. Object class names are capitalized within
this section for clarity.

Terrain Database Class Description: This class repre-
sents the terrain database within a CCTT exercise, and is
an aggregation of all of the objects which together form
the Terrain Database.

Page Class Description: The Terrain Database is subdi-
vided into square regions which are represented by this
class. A given Page is further subdivided into a 4x4 array
of Patches, and has header information as well as
associated terrain skin (Elevation Posts) and terrain fea-
tures (Terrain Features and Vertices). The Elevation Posts,
Vertices, and Terrain Features for a given Page are stored
and managed by the Terrain Cache. The Page header con-
tains useful information about the Page including filters
used to improve efficiency when performing terrain rea-

64

Terrain
Database

Cache
V

Page
Number

Store
Posts,

Features
Verts For

Terrain Database

Feature Model Library Patch

Object Model Notation

Class
Name I Is-a I has-a

Multiplicity of Associations:

C|a88 1 Exactly one

Many (^ lass

"i Class I Numerically Specified

Link Attribute:
|Classl|-AssMär\tifln ^^ rgrgggg]

I link attribute

Feature Model

Provides
Model

For

Model
Number

Dynamically Placed
Feature

Terrain Feature

Provides Model
For

Ü

I

vertex

Referenced Feature

Index
.Ousels.

Elevation Post

Provides
Vertices

For

Placed Feature

May Provide Model For

WAodel
urribe

Figure 1. Terrain database object model

soiling algorithms, as well as information used when cach-
ing in from disk the Page's associated terrain skin and fea-
tures.

Patch Class Description: This class represents a square
region within a Page as described above. A given Patch
is conceptually subdivided into a 4x4 array of grids. The
Patch header maintains terrain reasoning filters as well as
structures that allow the Patch to access its Terrain Fea-
tures within its Page's list of Terrain Features. One set of
filters maintained in the Patch header is the set of grid
masks for certain types of features. For instance, a Patch's
building grid mask indicates which of its grids are over-
lapped by one or more buildings. These filters vary from
the CTDB format which stores this information at the post
level.

Terrain Cache Class Description: This class represents
the cache for the Terrain Database, and is responsible for
making optimal use of memory when the memory avail-

able is smaller than the size of the Terrain Database. The
Terrain Cache stores the Terrain Features, Vertices, and
Elevation Posts for Pages, and additionally manages up-
dates to destructible static features.

Feature Model Class Description: This class represents
objects which maintain the information necessary to mod-
el trees, buildings, and linears, where a given feature
instance references a feature model to complete its de-
scription. The Feature Models for a given Terrain Data-
base comprise its Feature Model Library. Since use of
models is the defining characteristic of MRTDB, the Fea-
ture Model Library is further discussed in Section 7.

Terrain Feature Class Description: This abstract class
represents the terrain features and has two concrete sub-
classes, Placed Features and Referenced Features, de-
scribed below. One attribute of a Terrain Feature is wheth-
er it is a destructible static feature. Each Page and Patch
within the Terrain Database manages the Terrain Features

65

which belong to/reside in their regions. Buildings and
trees may cross Patch boundaries, all other Terrain Fea-
tures may not. The "anchor patch" for a Terrain Feature
which crosses Patch boundaries is the Patch which con-
tains the Terrain Feature's "anchor" (a corner for a build-
ing, the tree center for a tree). Each Terrain Feature has
a grid mask which indicates the grids it overlaps within its
respective Patch.

Referenced Feature Class Description: This class rep-
resents those Terrain Features which reference a Feature
Model to complete their definition. Unlike Placed Fea-
tures, Referenced Features do not reference a Vertex List.
An example of a Referenced Feature is a building which
stores an anchor vertex, an orientation (stored using a
fixed point basis), and an index to its building model in the
Feature Model Library. The building model contains the
remaining information necessary to compute the build-
ing's other vertices.

Placed Feature Class Description: This class represents
those Terrain Features which reference a Vertex List. The
term "Placed" comes from the fact that the Placed Fea-
tures have each of their vertices explicitly defined
(placed) in the Terrain Database when it is generated, as
opposed to Referenced Features which have some of their
vertices calculated at run-time. A Placed Feature may ref-
erence a Feature Model to complete its definition.

Dynamically Placed Feature Class Description: This
class represents features which may be added to the Ter-
rain Database at run—time. In addition, these features may
be damaged, destroyed, or breached. Examples include
tank ditches, tank defilades, log cribs, and abatis. These
will be fully implemented in future Builds.

Elevation Post Class Description: This class represents
terrain elevation posts, where the set of all Elevation Posts
for a given Terrain Database defines the base terrain skin.
The terrain skin may be altered by other objects such a mi-
croterrain and Dynamically Placed Features. A Post de-
fines a square that sits parallel to the x and y axes, where
the Post is at the lower left corner of the square. The other
corners of the square are Posts that define their own
squares. A line passes diagonally through a Post's square,
either from Southwest to Northeast, or from Northwest to
Southeast. Regardless of the direction of the diagonal, the
Post is always at the Southwest corner of its square (allow-
ing for a single post traversal algorithm instead of one for
each diagonal direction). Each Post stores a diagonal indi-
cator, a microterrain indicator, and its elevation using the
fixed point basis described below for the Z value of a Ver-
tex.

Vertex Class Description: This class represents (X, Y,
Z) values within the Terrain Database. The (X, Y) values
are in terms of a patch based fixed point basis. The Z val-
ues are in terms of a fixed point basis based on the range
of possible elevations for the given Terrain Database.

6.2 MRTDB file format

The terrain database is stored in three separate files: a
Headers file, a Feature Model Library file, and a Cache
Page file:

Headers file format:
Terrain Database header
All Page headers
All Patch headers
DSFs by Page table
DSF lookup table
Wet—Dry Terrain Type Mapping

Feature Model Library file format:
Number of Building Models
Number of Tree Models
Number of Linear Models
Building Models
Building Model Corners
Tree Models
Linear Models

Cache Page file format:
Posts, Vertices, and Features for Page 1
Posts, Vertices, and Features for Page 2

Posts, Vertices, and Feature for Page N

7.0 Extensions and modifications to CTDB
Below we discuss some of the extensions and modifica-

tions to the CTDB format incorporated into the MRTDB
format as required by the CCTT system. We begin with
a discussion of the primary difference between CTDB and
MRTDB: use of feature models in MRTDB.

7.1 Feature model library
The concept of the Feature Model Library was devel-

oped in an effort to meet one of the key challenges of
CCTT databases: minimizing the overall storage require-
ments while maintaining the level of fidelity needed to fa-
cilitate fair—fight and to correlate with E&S's visual data-
base. The Feature Model Library meets this challenge, as
well as facilitating the implementation of destructible
static features and providing MRTDB databases with
additional flexibility and extendibility. The following dis-
cusses use of the Feature Model Library in Build 4; its
functionality and usefulness will be expanded on in future
Builds.

The Feature Model Library is a set of feature models,
where each model has a unique model ID. Each model
maintains information about a feature that is common
across many features. For instance, a tree model main-
tains the foliage opacity, foliage height, foliage radius, and
trunk radius for a particular kind of tree, for instance a Fir
tree. Each Fir tree in the database can then reference the
Fir tree model (via the model ID) to complete its defini-
tion, and since the model is stored only once, an enormous

space savings can be realized. The table below provides
some statistics.

Table 1. Comparison of MRTDB vs. CTDB: size of fea-
ture instances & total data stored.

Feature MRTDB CTDB

Tree 16 bytes, containing:
Foliage radius
Foliage height
Trunk radius
Foliage opacity

16 bytes, containing:
Foliage radius
Foliage height

Building
(4 sided)

16 bytes, containing:
Anchor Point
Height
3 "placed" vertices
State
Unique ID

36 bytes, containing:
4 Vertices
Height

The Feature Model Library facilitates the implementa-
tion of Destructible Static Feature since to "damage" a
building we can simply modify the building model ID
from the "normal model" ID to the "damaged model" ID.
This is also much faster than performing computations to
alter the geometry. Also, use of the library allows for a da-
tabase modeler to supply the exact model of a damaged
building, instead of describing the alterations that would
need to be performed on a normal building to damage it.
In addition, different buildings may be altered in different
ways based on their damaged models, with no additional
special case implementation.

Finally, since the Feature Model Library is stored in its
own file, it may be swapped out for another library with
the same feature models where some number of the feature
models contain different information. For example, if we
want all the trees to drop their leaves, we can read in a dif-
ferent Feature Model Library where all tree foliage opaci-
ties have been diminished. Furthermore, we can increase
the fidelity of feature representations with little impact on
storage requirements and with disregard for feature densi-
ties, since we only need increase the size of the models, not
the size of each feature instance.

7.2 Header data

As stated in Section 4, CTDB strongly favors compact
storage in contrast to storing structural or filtering data
which is not strictly necessary. This design decision was
invaluable for SIMNET databases which, in CTDB for-
mat, could be read entirely or largely into memory (unlike
the larger SIMNET TDB format). However, CCTT's da-
tabase size and density is such that storage of additional
header data is inconsequential compared to overall data-
base size. As a result, MRTDB page and patch headers
contain a wide range of structural data. For example, both

header types store the maximum Z value of any post or fea-
ture within their regions; this helps eliminate swathes of
terrain from consideration, for instance when performing
line of sight from a ground vehicle to a distant air vehicle.

MRTDB patch headers contain direct indices into their
page's feature array. In order to determine if a given x,y
point is on a road, one need only calculate which patch the
point is in, then directly access the road linear features.
CTDB requires the searcher to sweep through all other
features in a patch, then process linears (both roads and
rivers) in the search for a road.

Because of the large number of posts in CCTT data-
bases, we were forced to compress the post size as much
as possible; we consequently lost CTDB's "features pres-
ent" bits which permitted rapid determination of which
feature types could be found around a post. However, this
data is retained at a grid level in our patch headers.

As CCTT implementation progresses, we may add ab-
stract data to the headers, as needed. For example, we may
need to classify patches and/or pages as "urban", "for-
ested", or "rough". Also, the headers will be used to store
information required to support simple dynamic terrain.

7.3 Independent subdivisions

Both CTDB and MRTDB grid masks store one bit of in-
formation for each of the grids in a patch. Because grid
masks are stored in each feature instance to indicate which
grids the feature overlaps, any change in grid mask size
sharply increases database size and requires fundamental
changes to all feature instances. Because SIMNET data-
bases had 125 meter post spacing, CTDB was able to use
a direct connection between grids and posts per patch (i.e.
each post was also a grid). This provided a useful correla-
tion between "features present" data stored for each post
and grid mask values stored for each feature. CTDB grid
masks contain sufficient bits to allow either 16 or 25 posts
per patch (although 16 is declared as a constant in
libCTDB). Because of the significantly higher density of
posts in CCTT databases, we found it necessary to break
the direct link between posts and grids which are the basic
building block for the patch and page storage structures.
All patches are composed of 16 grids regardless of the
number of posts within the patch, thus the number of bits
required for our grid mask need never change. Further-
more, the posts per grid side can be tailored for a given da-
tabase providing additional flexibility when defining the
page and patch storage structures.

Using CTDB's 4 posts per patch side in a CCTT data-
base (30m posts, 100 km x 150 km) would require storage
of over 1 million patches. Even with CTDB's minimal
storage overhead (12 bytes per "patch group" of 4 patches
and 4 bytes per patch), the page and patch headers would
require 7M in CTDB format. Although MRTDB stores far
more data in its headers, less than 3M would be consumed,

67

given we define there to be 256 posts per patch (480m
patch sides). When we create a correlated version of the
SIMNET Grafenfels database, we will define there to be
16 posts per patch (500m patch sides). Thus, the patch
sides can be tailored to match database-specific needs.

7.4 Other extensions
A number of smaller improvements deserve mention.

The E&S Visual Database utilizes a mixed topology,
which allows the hypotenuse of individual terrain facets
to have either positive or negative slope. Mixed topology
allows higher fidelity representation of terrain by allowing
the terrain skin triangulation to match the direction of
sharp terrain features. Both CTDB and MRTDB rely on
triangulated post areas which must match the source data's
hypotenuse (diagonal) for correlation. All posts in a
CTDB database must have their diagonals going in the
same direction; MRTDB maintains a bit for each post, thus
allowing each post to have one of two triangulation
schemes, thereby supporting E&S's mixed topology.

Both MRTDB and CTDB rely heavily on the use of
fixed point bases, which require a tradeoff between range
of values, accuracy, and number of bits available. CTDB
utilizes a constant elevation range of +/-5000 meters for
the elevation posts. MRTDB stores the actual range of val-
ues present in a given database and uses that for the fixed
point basis range, thus insuring maximum accuracy for a
given number of bits. Both CTDB and MRTDB use a 16
bit fixed point basis referred to as "patch units" for feature
vertex x,y values. We have implemented "expanded"
patch units which use 32 bit integers and store the same
units as patch units, but allow for values outside of a given
patch's boundaries. Thus we can store compact patch
units in feature instances while storing expanded patch
units in models, where use of additional space is not costly.
This permits operations to exceed the normal range of
patch units and permits use of model instances that cross
patch boundaries. The latter is particularly important to
us: CTDB splits patch-crossing features into multiple fea-
tures, but we wished to avoid this due to our use of models
and the desire to maintain the singularity of uniquely iden-
tified destructible static features which can be modified at
run-time.

Ada file I/O limitations imposed a number of design
constraints. For example, we cannot read in an entire page
of posts, features, and vertices because these are different
Ada types; we must either read each type separately or
conduct expensive unchecked conversions when reading
data from disk. However, Ada has provided some benefits
besides facilitating encapsulation and maintainability; we
have experimented with storing some data structures with
sizes that do not align with 32 or 64 bit boundaries. Our
preliminary investigations indicate that there is minimal
performance impact when accessing such structures as

long as they align to byte boundaries. Further timing tests
will be conducted based on our current use of 24 bits per
post (where CTDB uses 32 bits). A one byte savings ini-
tially sounds trivial, but CCTT databases will have well
over 16 million posts. Thus, a byte savings translates to
a roughly 16M reduction in data size.

8.0 Conclusions
The low-level representation of terrain data for use in

terrain reasoning can play a major role in a number of fac-
tors vital to CGF systems: the run-time efficiency of ter-
rain reasoning algorithms; the database's memory require-
ments and need for caching; the database's level of
fidelity; and the database's correlation with other repre-
sentations of the terrain, such as the visual database. We
believe that the MRTDB format represents significant
progress in each of these areas, while meeting CCTT's
stringent requirements. We believe the strengths of this
format (flexibility provided by models, object-oriented
design, and compact representation) will not be fully real-
ized until future CATT systems push requirements and
needs still further.

9.0 References
[1] Smith, J. Compact Terrain Database Library User

Manual and Report. ODIN SAF Documentation. March,
1992.

[2] Stanzione, T, Smith, J., Brock, D., Mar, J., Calder,
R. Terrain Reasoning in the ODIN Semi—Automated
Forces System. Proa of the Third Conference on Comput-
er Generated Forces and Behavioral Representation.
March, 1993. pp. 317-326

[3] Texinfo documentation for libCTDB (libCTDB.in-
fo) contained in ModSAF 1.2 release.

[4] Stanzione, T. Terrain Reasoning in the SIMNET
Semi—Automated Forces System, Proc. of Symposium on
Geographical Information Systems For Command and
Control. October, 1989.

[5] "Close-Combat Tactical Trainer: Central United
States", Database Design Document, Evans and Suther-
land, Simulation Division, February 28,1994.

[6] Crowley, J., Moore, R. "Synthetic Environment
Protocol", Summary Report of the Ilth Workshop on
Statndards for the Interoperability of Defense Simula-
tions. September, 1994.

[7] Campbell, C, McCulley, G. "Terrain Reasoning
Challenges in the CCTT Dynamic Environment", Proc. of
the Fifth Conference on AI, Simulation, and Planning in
High-Autonomy Systems. December, 1994.

[8] Meyer, B., Object-oriented Software Construc-
tion, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[9] Rumbaugh, J., Blaha, M., Premerlani, W, Eddy, F.,
and Lorenson, W, Object-Oriented Modeling and De-
sign, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

68

Session ID:

Network Analysis

Traffic Characterization of Manned-Simulators
and Computer Generated Forces

in DIS Exercises®

Sandra E. Cheung and Margaret L. Loper
Institute for Simulation and Training

3280 Progress Drive
Orlando, Florida 32826

Abstract

Distributed Interactive Simulation (DIS) is an
ambitious attempt to seamlessly integrate heterogeneous
simulators of various fidelity levels via a communications
network to allow them to interact in the same synthetic
environment, by means of standardized messages, known
as DIS Protocol Data Units (PDUs).

DIS traffic analysis has various purposes, one of which
is capacity planning. This can be done effectively by
understanding the traffic patterns of entities under specific
maneuvers and interaction. In this paper, we characterize
the traffic from DIS entities generated from computer
generated forces (CGF) and manned simulators, in two
cases. We will characterize this by the issue rate of Entity
State PDUs, which comprises over 90% of DIS traffic. Our
analysis will show that entities from CGF have a uniform
traffic pattern and can therefore be used to populate a DIS
environment effectively, while being able to plan the
bandwidth required to sustain these entities.

1. Introduction

Distributed Interactive Simulation (DIS) is an
infrastructure that enables heterogeneous simulators to
interoperate in a time and space coherent environment. In
DIS, the virtual world is modeled as a set of entities that
interact with each other by means of events that they cause.
Simulator nodes independently simulate the activities of
one or more entities in the simulation and report their
atttributes and actions of interest to other simulation nodes
(as a point of reference, DIS is often used to simulate

virtual battlefields, where the simulated entities are tanks,
infantry fighting vehicles, combat aircraft, and infantry).
Other entities in the virtual environment in turn are
responsible for "listening" to the messages transmitted by
other entities and determining which ones are of interest to
them. These simulator nodes are linked by a
communication network and communicate entity
information using a set of common network protocols.

1.1 Simulation domains

DIS supports three simulation domains: virtual, live and
constructive. The historical core of DIS has been
continuous, real-time simulations, which have been
designated as "virtual." These simulations include human-
in-the-loop or crewed simulators and Computer Generated
Forces (CGF). Virtual simulations are characterized by their
requirement for real-time delivery, which is on the order of
100 milliseconds [3]. Because of the human in the loop, DIS
assumes that exercise time corresponds with the actual
progression of time.

DIS is also intended to interface with "live" simulations
which include operational platforms and test & evaluation
systems. Interactions between real weapon systems, sensors,
and tactical communication links occur at much faster rates
than virtual simulations, often less than one millisecond.

The last type of simulation is event driven wargames,
called "constructive" simulations. Constructive simulations
differ from the other two domains in that the simulation is at
a higher level than that of a single entity. These simulations
often move faster or slower than real-time. The intervals at

70
0-8186-6440-1/94 $04.00 © 1994 IEEE

which the states of all the participants are updated may be
irregular and minutes may elapse between them.

1.2 Network traffic

As mentioned previously, DIS simulation nodes
communicate using a set of communication protocols. The
DIS protocol architecture, designed in the early 1980's
under the SIMNET program, specifies a set of fixed data
structures that are broadcast to every simulation node on
the network. When high numbers of entities broadcast
information, the DIS network begins to get congested.
And as DIS expands beyond the bounds of SIMNET into
virtual, live and constructive domains, and extends its
capabilities to model things like human figures and
dynamic environment, the network will become even more
overwhelmed. Understanding the composition of this data
and any patterns present in it become an important part of
scaling to meet expanding DIS requirements.

This paper will focus on categorizing DIS network traffic
created by virtual simulations, based on the type of simulator
(manned or CGF). It will examine both manned and CGF
entities to determine if they have regular traffic patterns. If
so, this measure can be used to predict network requirements
for exercises composed of large numbers of entities.
Considering that future DIS exercises are expected to be
comprised of up to 95% CGF [8], determining their traffic
pattern could be an important part of scaling the network.

2. Virtual simulators

Virtual simulations fall into two categories: manned and
CGF. Each has certain attributes which describe it and
objectives that it brings to the virtual environment. The next
sections provide a brief description of each.

2.1 Manned simulators

The primary object of manned simulators is that of
training. The quality of training has been enhanced in recent
years by technological advances. These simulators have the
same look and feel of the actual device and/or environment
being simulated. Another breakthrough in the training
quality enhancement is the interconnection of traditional
stand alone simulators via a DIS network. This allows
training with other humans in the same virtual environment.
For stand alone simulators (which pre-date the DIS era) to be
able to take advantage of the benefits distributed simulator,
an interface is often added as a front-end to make them DIS
compliant. This interface unit then makes a non-DIS system
capable of interoperating with other DIS simulators.

The majority of current DIS simulations are manned
simulators. Manned simulators typically simulate a single
type of entity (such as an Ml tank or an AH-64 Apache

helicopter). These devices require a human-in-the-loop to
operate the simulator, make decisions, respond to human
commands, and interact with the environment (e.g., drive
around trees).

2.2 Computer generated forces

Most DIS exercises have been and will be much larger
than can be practically populated with human-in-the-loop
simulators. Therefore, it is necessary to have many entities
in the exercise that can operate under the loose supervisory
control of human operators. Such Computer Generated
Forces are capable of generating multiple entities (which
may or may not be all of the same kind) and use vehicle
behavior algorithms rather than humans to generate the
actions of the simulated entities. Representation of platform
level entities also includes the command and control
heirarchy representing the missing human commanders.

CGF1 have different requirements and capabilities from
human-in-the-loop simulators, flowing largely from the
differences in cognitive and perceptual abilities of CGF
compared to human operators or commanders. For current
or near-term systems, CGF entities are at the "platform"
level with limited perceptual and cognitive abilities.

CGF form an integral part of team training, by providing
effective opposing forces or by additional friendly forces in
the virtual environment. In this way, the training effect is
enhanced. The savings result primarily in the areas of
personnel, hardware, facilities required to plan the exercises,
setup, execution and analysis. In addition to training, CGF
are also used for analytical purposes, and studies which
involve large numbers of entities.

3. Network analysis

According to [2], future DIS exercises will scale to
100,000 entities2. Numerous sources have identified the
network traffic to be the main bottleneck of future
distributed simulation exercises, namely because the high
orders of entities all broadcast their packets onto the
network. In an analysis of the 1993 I/ITSEC
demonstration, it was shown that over 90% of the DIS
traffic was due to Entity State PDUs[l]. [However, a radio
experiment conducted during the demonstration showed
that 8 radio entities contributed to 16.5% of the total
traffic! Similarly, an electronic warfare experiment
showed that 42 emitting entities generated 15.3% of the

1 In the DIS world, computer generated forces and semi-automated forces
are often used synonymously when actually they refer to two separte
functions. As defined in (Institute for Simulation and Training 1994b),
Computer Generated Forces is the simulation of human entities, human
controlled entities, and human command entities in the virtual battlespace
by a computer. Semi Automtaed Forces are CGF controlled by an operator
through commands and feedback not used in the real world.
2 These entities will be a mix of live, virtual, and constructive.

71

total traffic. This confirms that as new capabilities are
added to DIS, such as human figures, the associated traffic
will grow exponentially]. Since over 90% of current DIS
traffic is Entity State, this specific protocol data unit carries
most of the burden for network congestion and therefore
may provide insight into patterns associated with entity
types.

There are ongoing efforts to reduce network traffic by
filtering [5], compressing [6], multicasting [9], and using
information handlers [7]. However, an additional means to
scale networks is knowing a priori the traffic pattern of the
exercise. This would allow the exercise manager to
distribute resources as necessary, utilize systems more
efficiently, and initialize appropriate groups. The following
sections of this paper will address the issue of traffic
characterization by analyzing data resulting from the 1993
Interservice/Industry Training Systems and Education
Conference (I/TTSEC).

4. Traffic characterization

This section describes the data collection, trace
contents, performance metrics, and analysis methodology
by which the traffic of entities will be characterized.

4.1 Data collection

A total of 44 organizations gathered at the 1993
I/ITSEC for a period of 2 weeks in an effort to conduct
DIS Interoperability Demonstrations. Each organization
had its own individual network connection to a central hub
(thus creating a star topology).

The data on the network was logged (the DIS data
portion amounted to over 2.8 Gigabytes) and analyzed [1].
The data which was analyzed was collected by a single
station on the LAN, and the assumption made is that the
logger dropped none or minimal number of packets.
Additionally, the logger restricted the logging to DIS
PDUs only (logging the other network traffic would have
been too overwhelming).

The purpose of the data logging was to provide overall
I/ITSEC after action traffic analysis, and intended
primarily to plan the capacity of future DIS exercises. For
this purpose, the logger captured all the DIS traffic
originating from the various DIS stations on the local area
network.

4.2 Trace contents

The DIS traffic distribution, given in the average number
of DIS PDUs per second, over the period of two weeks up
and through the Interoperability Demonstrations is given in
Figure 1. Note that the daily average for the first day
(11/22/93) is quite misleading. The relatively high average

obtained is due to the fact that the data logged spanned
only a single hour, when all the stations were busy
practicing PDU transmission.

The first of the two weeks spanning this effort was
dedicated to debugging the network, and rehearsing the
demonstrations. The traffic issued in this week was not
very useful for further analysis.

The demonstrations took place on November 30,
December 1, and 2. Each of them spanned no longer than a
number of minutes. The rest of the time the network was
dedicated to "free play" and for special interest
experiments (such as electronic warfare, radio and network
flooding). Of these special experiments, the network
flooding test was particularly interesting and more on this
analysis can be found in [1].

45i
40 J ■
35- ■ ■ ■ ■
30- 1 ■ ■ ■ I
25 1 ■ ■ ■ ■ ■ I
20J 1 ■ ■ ■ ■ ■ ■
15 ■ ■ ■ ■ ■ ■ ■ ■ ■
10- I ■ ■ | ■ ■ ■ ■ ■ ■
5 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
oJ H. ►■■ f* M- iM. Ä M- M- Ä Ä MH

co co co CO CO CO CO CO CO CO CO
en m en CD en en en en en «? se.
CM en ^r LO CO r>* CO en o S CO CM CM CM CM £L CM CM CO

Figure 1. I/ITSEC Daily PDU Averages

4.3 Performance metrics

The performance metrics of interest to our analysis are:

1. Issue rate of Entity State PDUs per second for a CGF

2. Issue rate of Entity State PDUs per second for a manned
simulator entity.

The above four measures will be obtained for each
specific maneuver defined below:

1. Stationary entity
2. Constant velocity (going in a straight line)

These measures will be obtained for an entity
representative of each of the following venues:

1. Land (for example, an M1 tank)
2. Air (for example, an F-16)
3. Surface (for example, an FFG-7 frigate)

72

4.4 Analysis methodology

The data traces contained all the DIS traffic on the
network, from all the entities which were active during the
time the logging was performed. The primary tool used to
obtain the results of our analysis was the traffic analysis
tool written to obtain general DIS statistics of all the
I/ITSEC data traces.

Determining which entities were generated from CGF
and which were from manned simulators, was not possible
only based on the PDUs. Additional information, such as
the knowledge of pre-assigned IP-addresses and what each
of these companies were participating with (type of
simulator), was used in order to make the search for the
proper data traces easier.

An additional difficulty in using the existing data traces
was the applicability of the data to the type of analysis we
want to perform. In the I/TTSEC data traces, entities were
at best maneuvering in an adhoc fashion (or towards
targets) and not necessarily in a very controlled manner.
We were presented with the problem of wading through
the data traces and find entities which were doing the types
of maneuvers as defined in the performance metrics.

Not only was finding these entities and maneuvers
difficult, it would be very unlikely that the comparison of
the traffic issued by manned simulators and CGF would be
fair. This is especially true for entities operating on or near
the terrain database (such as land vehicles).

The data used for the analysis came from two sources:
demonstrations data traces and compliance test data. It was
not difficult to find stationary land and surface entities in
the demonstration traces. The data collected as part of the
DIS compliance testing, during the months preceding the
demonstrations, however proved to be very useful. Not
only was the finding of the entities much easier (most data
traces contained only a single entity), but the particular
maneuvers which we required were described in the test
procedures.

5. Discussion of results

During the first (of a series of three) DIS demonstration
(data logged between 10:00 -11:00 a.m. Tuesday,
November 30, 1993) there were a total of 149 entities on
the network. The distribution based on the type of entity,
and whether they were CGF generated or from manned
simulators is given in Table 1. As expected, most entities
in the exercise were generated by CGF. The activity in the
demonstration involved primarily ground battle (thus
explaining the predominance in land entities), being fired
upon by air entities. CGF entities are ideal targets, and an
effective manner of populating the environment with a
large number of unfriendly vehicles.

The third column in Table 1 gives the total number of
Entity State PDUs (EsPDUs) issued by the entities of a
particular category, in the entire hour which was logged.
Solely based on this data, it is immediately apparent that
most of the traffic came from the manned simulators, even
though they do not outnumber the CGF entities. For each
category of entity, the manned simulator entities issued a
higher average of EsPDUs during that hour (with air
entities having the largest average of 4744.3).

Type of Entity Entities EsPDUs
Land/CGF 95 53449
Air/CGF 10 5491
Surface/CGF 8 2824
Subsurface/CGF 1 2
Land/Manned 5 7894
Air/Manned 27 128096
Surface/Manned 2 1096
Subsur/Manned 1 2

Table 1. Entity Distribution

5.1 Entity selection

This section describes the manned simulator and CGF
entities used to characterize the traffic of land, air and
surface vehicles. Two different entity types per category
(for example an Ml and a T72 for CGF/Land) will be
selected and an attempt will be made to compare these
with equivalent entities. In other words, ideally an Ml
generated by a CGF will be compared to an Ml generated
by a manned simulator. The selection of compatible
entities also takes into consideration the type of dead-
reckoning algorithm implemented (for our analysis all the
entities had the same algorithm). Another condition placed
on the analysis is that the underlying terrain database was
the same for all entities, and comparable entities were
placed at the same coordinates.

The choices of manned simulator entities (as could be
derived from Table 1) did not vary in all categories. Land
entities include launchers, which are typically not mobile
and would not be interesting for traffic characterization.
There was a better selection of air vehicles, ranging from
fighter planes (FA/18s, F15s, F16s) to helicopters (UH-60s
and AH-64s). One fighter plane and one helicopter was
chosen for this analysis. On the other hand, there was not
an abundance of crewed surface vehicles (in fact during
this demonstration there were only two), and these happen
to be the same ship (FFG-7).

The choices of CGF entities presented a similar
problem. The problem with some CGF is that the entities
may have a preprogrammed behavior, such as a built-in
collision avoidance algorithm. In most cases, whenever a

73

CGF entity is called for, data traces from IST/CGF entities
were obtained.

5.2 Stationary

This section describes the results obtained from the
case in which the entities are stationary. The DIS standard
specifies that when entities have not changed their state
significantly (by changing locations or appearance) the
issue rate of the EsPDUs should be set at 5.0 seconds
(unless otherwise specified).

In Figure 2a the interarrival times of EsPDUs is given
for several land entities generated by CGF, and by manned
simulators. From this Figure it can be seen that the CGF
entities adhere to the 5.0 seconds update rule, but that
entities from manned simulators are issued at a higher
frequency.

For air entities, it may sometimes not be within the
capability of the simulator to remain stationary (unless
parked on the terrain). Others have the capability of being
frozen in mid-air (with a frozen non-zero velocity vector).
Figure 2b shows the interarrival times of EsPDUs issued
by 2 manned fighter jets, 1 manned helicopter, and 2 CGF
helicopters. One of the manned jets had a peculiar
behavior, and would produce two consecutive EsPDUs
every 5 seconds (so in essence there would be periodic
interarrival times of 5 seconds, 0 seconds, 5 seconds, 0
seconds, and so on). It is not known why this simulator
behaved this way.

Surface vehicles generated by CGF have similar issue
rates as those found for land entities. Their manned
equivalent can sometimes be pretty accurate in their issue
rate, though the sample size is smaller than that of land
vehicles. The interarrival times for EsPDUs of 3 frigates
are shown in Figure 2c. One of the manned FFG7
approaches the CGF created FFG7, whereas the other has a
shorter interarrival time.

Figure 2a. Stationary Land Entities

7T

•Jet-
1/Mcmed

•Jet-
2/Mcmed

Helo/Man
ned

Helo-
1/CGF

Helo-
2/ÜGF

PDU #

Figure 2b. Stationary Air Entities

Ott******

E

■a!
> o ■c u
28
o w

4

3 +
13—M—Ü-

H 1 1 1 1 1 1
T-NfOTin(DN(D

PDU #

FFG7/
Man(l
)

FFG7/
Man(2
)

FFG7/
CGF

0)
6 .
Ft?4

•*83

L ps — ■"" ^ ■ -■ |*j ""™föj ■ F^ ™m,m^fi ■ - re*-~™ j^j

Ä2

M2/Mam
ed

M577/Ma
med

Ml/OGF

Ml/CGF

C-J CO T Lf) CO r- OO

PDU #

Figure 2c. Stationary Surface Entities

5.3 Constant velocity

This section describes the result obtained from the case
in which the entities are proceeding at a constant speed.
Again, the DIS standard specifies that in this case, due to
one of the dead-reckoning algorithms, the EsPDU rate
should be that of 1 EsPDU per 5 seconds (by using
standard dead-reckoning algorithms, information that can
be derived/extrapolated need not be transmitted, and
thereby reduce the traffic considerably).

The same entities that were used above for the
stationary case, are examined for their issue rates when
going at a constant velocity. This may be impossible for
some land entities which are permanently stationary (such

74

as the M577 in Figure 2a). In particular, this proves to be a
tremendous task for some manned simulators, because of
the human-in-the-loop operating the vehicle. CGF entities,
on the other hand, can be programmed to go at a given
speed and to maintain this for a period of time.

The terrain becomes of importance in this test, since
land vehicles operating on the terrain are subject to
encountering hills and other obstacles, which in turn can
cause the vehicles to accelerate (when going down hill) or
decelerate (when going up hill or around an obstacle).

Figure 3a shows land entities generated by manned
simulators and by CGF. Here, another manned simulator
entity is used to replace the earlier immobile M577. For
both the crewed simulator tanks, the speed did not remain
constant. In one case, there was a terrain correlation
problem and a flat piece of terrain was not found before
logging the data. In the other case, the lack of constant
velocity was primarily due to the human-in-the-loop factor.
CGF land entities, however, showed a regular traffic
pattern, albeit not always at the expected 5 second
heartbeat rate. The velocity in these vehicles on the other
hand, was maintained consistent throughout.

Figure 3b illustrates the case of air entities undergoing
the same type of maneuver as described above. With
manned simulators it was almost futile to present these
figures, because it was difficult for the operator in the
flight simulators to maintain a constant speed. Though
terrain did not present a problem (they fly high above it) it
was an added difficulty to keep the plane straight and level
(no deviation in the orientation of the vehicle). The
difficulty presented itself more with fixed wing vehicles
(such as MIG-29s, FA/18s) than with rotary wing vehicles,
which managed to maintain a constant speed and heading,
though still issuing at a higher rate than desired (see Figure
3b). The same manned jet which in Figure 2b had a
periodic issue rate, issued EsPDUs at intervals of 0.7
seconds and 0 seconds. This phenomenon is thus obviously
not limited to being in a stationary or frozen state.

Finally, the surface vehicles which underwent the
above mentioned maneuver are given in Figure 3c. The
same manned FFG7 which had an EsPDU update rate of
2.5 seconds in the stationary case (see Figure 2c) managed
to maintain a constant velocity but at an update rate of 0.5
seconds. The other manned FFG7 and the FFG7 produced
by a CGF had equivalent update rates (5 seconds).

0)
E
h (0

■D
«0 C
> 0 u
ha
od
im
OJ

4-

T-(M(TTU5U)N(D

PDU #

Ml/Ma
nned

BMP1/
Manne
d

Ml/OS
F

Ml/OG
F

Figure 3a. Constant Speed Land Entities

£ 5
o u
a AX to 4 --

a
.§ 3
h

§2 +

IS H S ""H H—B"1 '"fit H

LO ÜD r-%. GO

PDU #

Helo/Ma
nned

Jet-
1 /Manne
d

Jet-
2/Manne
d

Helo/OG
F

■Jet/CGF

Figure 3b. Constant Speed Air Entities

£
I- «
si > o ■c u
13 a>

Vt o

FFG7/Ma
nned

FFG7/Ma
nned

FFG7/GG
F

r-wnTmcDNGO

PDU #

Figure 3c. Constant Speed Surface Entities

75

5.4 Discussion of results

The results presented in the previous two sections show
the difficulty of obtaining traffic patterns for DIS entities.
The characterization technique should be one which holds
universally for all entities, which may be a problem (for
example, not all entities can move).

The size of the sampled and analyzed population is far
from ideal. One result prevailed throughout the analysis:
traffic from CGF is regular and predictable (though not
always consistently implemented - see Figure 3 a, the two
CGF Mis have different update rates). It is difficult to
characterize manned simulators as an entire category for
each implementation will vary (in the level of fidelity, for
example). We were successful in obtaining traces for a
minimal set of entities, operating in the same terrain,
placed at the same coordinates, and modeling the same
dead-reckoning algorithm.

6. Conclusions and future work

In this paper, the traffic from manned simulator entities
and CGF entities are characterized, using data traces
collected prior to and during the I/ITSEC 1993 DIS
Interoperability Demonstration. From the data traces alone,
one is, and should not able to tell CGF entities from
manned simulator entities, but with prior knowledge of the
types of systems brought to the demonstration and
adherence to pre-assigned addresses, a traffic analysis tool
is capable of filtering based on the identifiers of these
entities and classifying them based on the type of simulator
which issued them.

The results of the entity distribution (Figure 1) and
stationary tests (Figures 2a-c) indicate that CGF entities
broadcast fewer EsPDUs on the network than manned
simulators. This is an important fact for large scale
exercises which use CGF to populate the battlefield. Using
CGF in the exercise can actually ease network congestion,
compared to using manned simulators. Hence, a useful
scaling tool for exercise developers.

There remains several more ways to further
characterize the entities. The angular velocity can be
maintained constant (yielding a turn at a constant rate).
This paper was unable to show these results for the lack of
adequate data. Manned simulators are hard to control when
asked to perform specific maneuvers, keeping one factor
constant without varying any others. CGF entities on the
other hand, could be pre-programmed to have this kind of
behavior and are not subject to direct human intervention.
Another method of characterizing traffic from these two
classes of virtual simulation entities is by a maneuver
which involves a target, and weapons fire.

The analysis presented in this paper focused on the
characterization of Entity State PDUs. At the present, over

90% of typical DIS exercises are comprised of EsPDUs,
however future work should characterize emerging
capabilities such as radio, emissions, dynamic environment
and human figures, to see if similar patterns emerge.

Bibliography

[1] Cheung, S., "Analysis of I/ITSEC 1993 DIS
Demonstration Data," Technical Report, IST-TR-94-14,
March 31, 1994.

[2] DIS Steering Committee, "The DIS Vision, A Map to
the Future of Distributed Simulation," Version 1, IST-SP-
94-01.

[3] Institute for Simulation and Training. "Standard for
Distributed Interactive Simulation - Communication
Architecture Requirements", IST-CR-94-15, May 1994.

[4] Institute for Simulation and Training. "DIS Lexicon,"
September 1994.

[5] Vanhook, D. and Calvin, J., "Approaches to Relevance
Filtering", Proceedings of the 11th DIS Workshop,
September 26-30, 1994.

[6] Vanhook, D. and Calvin, J., "PICA Performance in a
Lossy Communications Environment", Proceedings of the
11th DIS Workshop, September 26-30, 1994.

[7] Vanhook, D. and Calvin, J., "AGENTS: An
Architectural Construct to Support Distributed
Simulation", Proceedings of the 1.1th DIS Workshop,
September 26-30, 1994.

[8] Vrablik, R. and D. Wilbert, "The Use of Semi-
Automated Forces to Simulate a 10,000 Entity Exercise,"
Proceedings of the Third Conference on Computer
Generated Forces and Behavioral Representation, March
17-19 1993, pp. 169-178.

[9] Zyda, M., Macedonia, M., Pratt, D., and Barham P.
1994. Exploiting Reality with Multicast Groups: A
Network Architecture for Large Scale Virtual
Environments, Proceedings of the 11th DIS Workshop,
Orlando, FL.

Acknowledgment

This research was sponsored by the U.S. \Army
Simulation, Training and Instrumentation Command under
contract N61339-94-C-0024.

76

Realtime Data Analysis for the
Joint Theater Missile Defense Simulation Network

(JTMDSN)

Michael D. Gray, BDMESC
Craig K. Jones, BDMESC

Realtime data collection and analysis processes have
been designed and an initial capability will be
demonstrated for the July, 1994 JTMDSN test data. The
JTMDSN is a one-year, Distributed Interactive
Simulation (DIS) demonstration sponsored by the Defense
Modeling and Simulation Office (DMSO). Detachment 4,
505 Command and Control Evaluation Group (CCEG),
Air Warfare Center, is the project lead. Participants in
this demonstration included the Theater Air Command
and Control Simulation Facility (TACCSF) at Kirtland
AFB, NM; the Navy Research, Evaluation, and Systems
Analysis (RESA) facility at the Naval Command,
Control, and Ocean Surveillance Center, San Diego, CA;
the Space TACTICS Model (STM) and Proof-of-Concept
Aerospace Defense Location (PADL) in Colorado
Springs, CO; and the Theater Battle Arena (TBA) at the
Pentagon.

The JTMDSN built on past TACCSF and RESA DIS
accomplishments such as their War Breaker support, to
make two more major contributions to the DIS
community. First, Army, Navy, Air Force, and National
systems interfaced via tactical data links using Signal
Protocol Data Units (PDUs). Second, data was collected
on-line from PDUs and reduced to records of key events
which could be used to display mission performance and
network performance measures in realtime. This paper
focuses on this data collection and analysis capability.
The JTMDSN DIS Gateway, including the data collection
process, was designed and developed by Martin Marietta
Corporation. Data analysis processes are being
developed by BDM Engineering Services Company.

JTMDSN Operational Architecture

The Joint Force Air Component Commander
(JFACC) at an Air Operations Center (AOC) was the
highest command authority in this air defense exercise.
The JFACC used inputs from tactical ballistic missile
(TBM) sensors such as the Defense Support Program
(DSP), the TPS-75 radar with missile tracker and
correlator, an airborne Advanced Sensor, and AEGIS to
prosecute both active defense of TBMs with Boost Phase
Interceptors (BPI), PATRIOT, and AEGIS; and attack
operations against transporter erector launchers (TELs)
using Joint STARS, F-15E, and F/A-18 aircraft. The
JFACC was assisted by a prototype fusion device for
Launch Point Estimates (LPEs) and Impact Point
Predictions (IPPs) developed by the PADL, called the
Tracking Sensor Suite (TSS); by electronic emission
exploitation inputs from PADL's NWARS model; and by
JTIDS and a Constant Source terminal. A Control and
Reporting Center (CRC), Army Air Defense Brigade, E-3
AW ACS, Navy Battle Group, and E-2C provided lower
echelon command and control, along with standard
defensive counter-air (DCA) surveillance, identification
and engagement capabilities.

DIS Architecture

DIS Gateways and other DIS capable models at each
of the four sites communicated on a wide area network
(WAN) using T-l lines and DIS 2.04 protocol. The
Gateways provided interfaces to models and environment
generators at each site. Gateway processes included:

DIS Interface (DIS IF): Dead reckoning, Entity
State PDU production, PDU receipt and routing, Event
Report PDU production, PDU counting and reporting.

0-8186-6440-1/94 $04.00 © 1994 IEEE
77

Environment Generator (EG): Entity track
maintenance and display, computer generated forces.

Data Link Interface (DL IF): Embedding tactical
data link messages into Signal PDUs, extraction from
Signal PDUs and routing of incoming data link
messages.

Model and Simulation Interfaces (M&S IF):
Provided environment to M&S; provided M&S status
(Entity State), Fire, Detonate, Emissions, and Event
Reports to DIS IF.

Trial Event Generator (TEG): Data extraction and
recording.

Voice communications were also transmitted via
Signal PDU. Entity State, Fire, Detonate, Electronic
Emissions, Signal, Event Report, and Data PDUs were
supported. RESA hosted all Navy assets. PADL/STM
hosted DSP, NWARS, and the TSS. TACCSF hosted
the AOC, CRC with missile tracker/correlator, AW ACS,
Army Brigade with PATRIOT and HAWK Battalions, F-
15Cs, the Advanced Sensor, Joint STARS, and a copy of
PADL's TSS fusion cell. TBA hosted the F-15E and the
F-15C with BPI. Each site provided a portion of the
computer generated threat forces and friendly background
air traffic.

PADL/STM

PADL/STM GATEWAY

DIS IF
EG

DLIF
M&S IF

TSS

NWARS

DSP

DIS IF
EG

M&S IF

F15-E

Figure 1. DIS Architecture

Tactical Data Links

Since TACCSF M&S design had already included
the interchange of actual tactical data link messages, the
DL IF was connected to the existing data link local area
network (DL LAN) to exchange TADIL-J messages. At
RESA, a TADIL-J message capability was developed for
the fleet models and interfaced with the DL IF. At
PADL/STM, the TSS development included the ability
to read TADIL-J and TACELINT messages which were
passed to it by the DL IF. NWARS and DSP sent

TACELINT messages to the DL IF. The DL IF would
embed up to 37 data link messages into a Signal PDU for
DIS transmission and would extract and route data link
messages from incoming Signal PDUs.

Event Report PDUs

The TACCSF MSIM GW picked existing CRC,
PATRIOT, and HAWK target detection reports from the
TACCSF track truth LAN and generated Event Report
PDUs for DIS. Aegis and F/A-18 detections at RESA

78

were supposed to be sent to the DIS GW for Event Report
PDU production. Likewise, DSP detections and
LPE/IPP reports, and TSS allocation orders were planned
to be passed to the PADL/STM GW for Event Report
production. (Thus far, no Event Reports from RESA or
PADL/STM have been found in the data).

Operational Missions

Four missions were evaluated during the planned
two-hour scenarios:

TBM active defense
TBM passive defense
Attack operations
Standard defensive counter-air

Measure of Performance

Measures of Performance (MOPs) are being computed
for each of the four operational missions, such as:

Percent of TBMs killed
Timeliness and accuracy of TBM impact point

predictions (IPPs)
Percent of TELs killed
Percent of penetrating enemy aircraft killed
Timeliness and completeness of sensor detections and

reporting
Timeliness and completeness of resource allocations

In addition to these mission performance measures,
MOPs are being accumulated on the DIS network
performance, such as percent of PDUs received at each
site, T-l loading, and operator feedback on realism of the
exercise.

Data Collection and Analysis

The PDU receiver and transmission processes of the
TACCSF Gateway selected the following PDUs and
forwarded them to the Trial Event Generator (TEG)
process:

Entity State (create and remove entities, including kills)
Electronic Emissions (emitters on/off)
Fire (TBM launches, ordnance releases, engagement of

targets)
Detonate (TBM impact, ordnance impact, missile

outcomes)
Event Report (sensor detections)
Data (activity level, PDUs and PDU bytes sent/received

each second)
The TEG used entity track files, which were

maintained by the TACCSF environment generator, to
obtain track truth information (location and entity type)
on the source, target, and weapon associated with each

event. A standard event record was then constructed and
recorded by the TEG. Each event record contains the
following information:

Time
Event type
Data source
Source identifier (site, application, entity)
Source true location (latitude, longitude, altitude)
Source DIS classification (kind, domain, country,

category, subcat, specific, extra)
Source force ID
Target identifier
Target true location
Target DIS classification
Target force ID
Weapon identifier
Weapon true location
Weapon DIS classification
Weapon force ED
Target perceived position, heading, speed
Error ellipse description (for LPEs and IPPs)
Warhead/detonator type
Result/reason for action

This record provides an interface to the realtime data
analysis processor. The analysis processor uses the
operational performance event records to update summary
tables which can be displayed to the analyst during or
after a trial. A table is maintained for each of the four
missions. Each table contains summary statistics which
capture MOPs, and a time history record of performance
against each target. The analyst can specify the entities of
interest for each mission by selecting appropriate DIS
classification values. The entities of interest for
JTMDSN were as follows:

Threats: TELs, TBMs, enemy aircraft
Sensors: TBM detectors, LPE and IPP reporters, TEL

trackers
BMC4I: TEL allocators, TBM impact warners
Weapons: TBM interceptors, TEL attackers, DC A

aircraft and SAMs
Friendly aircraft (for fratricide measure)

Also, DIS network performance statistics were sent to
the TEG each second via Data PDU. The TEG stored
these PDU transmission and receipt counts, and scenario
activity level counts in a file for posttest processing. A
PV WAVE (Visual Numerics data analysis tool) program
was developed by BDM to extract and display this PDU
count data. The analyst can plot the PDU counts, T-l
volume counts, and number of active entities for a quick
assessment of DIS network health over time. Future
enhancements will enable plotting this DIS network
health data in realtime.

79

Sample of Results

Table 1 shows the active TBM defense results from
one 50 minute exercise. While this data was actually
extracted after exercise completion, the realtime data
analysis process has been designed to maintain a similar
table while the exercise is running. These results are
shown only to illustrate the output of the analysis
process. They have no operational validity due to several
factors, including: 1) model validation and accreditation
was not part of this test; 2) most operators were not
tactically qualified; 3) problems with immature software;
and 4) the need to keep this report unclassified. This

table identifies TBMs by their DIS
Site.Application.Entity identifiers. Times are in seconds
from the start of exercise. The need to automatically
capture times of TBM entries into sensor and weapon
system airspace was recognized, but not implemented for
this exercise. Several TBMs were scripted to enter each
of the PATRIOT and Aegis defended areas. The CRC's
radar was in position to detect TBM trajectories toward
the Aegis areas. TBM launches and engagements were
collected from Fire PDUs. TBM impacts were collected
from Detonate PDUs. TBM kills were evidenced by
Entity State PDUs. PATRIOT and CRC detections were
reported by Event Report PDUs.

ACTIVE TBM DEFENSE: TRIAL JBL08728
LAUNCH AIRSP ENTRY 1ST DETECT AIRSP ENTRY 1ST ENGAGE KILL TBM IMP

TBM TIME TIME SENSOR TIME SENSOR TIME WEAPON TIME WEAPON TIME TIME
51.8.191 182 X AEGIS X AEGIS 580.1
48.8.247 192 X PAT 495.3 PATFU18 X PAT 551 PATFU20 578.3
48.8.248 202 X PAT 510.4 PATFU18 X PAT 544.9 PATFU20 584.5
48.8.249 242 X AEGIS 394.2 CRC X AEGIS 621.1 AEGIS 640.8
11.8.107 265.2 X AEGIS 303.4 CFC X AEGIS 1101.4
51.8.192 362 X PAT 682.3 PATFU18 X PAT 756.9
48.8.250 902 X PAT 1244 PATFU18 X PAT 1304.6
52.1.41 913.6 X AEGIS 1071.4 CFC X AEGIS 1315.8
52.1.42 963.6 X AEGIS 1202.9 CFC X AEGIS 1362
52.1.43 1083.5 X AEGIS 1108 CFC X BPI X BPI 1175.2
11.8.108 1091.4 X PAT 1616.7 PATFU21 X PAT 1672.6
48.8.253 1202 X AEGIS 1223.1 CFC X AEGIS 1601.1
48.8.271 1502 X PAT 1828.9 PATFU18 X PAT 1848 PATFU18 1880.5
48.8.286 1922 X AEGIS 1950 CFC X
52.1.44 1983.5 X PAT 2294.5 PATFU18 X PAT 2382.2
52.1.45 2103.5 X AEGIS 2263.2 CFC X AEGIS 2502.1
52.1.46 2703.5
TOTALS 17 16 16 15 5 4 1 1

X: DATA MISSING

Table 1. Sample Actual TBM Defense Results

Table 2 shows the attack operations results for the
same exercise. TEL launches and engagements were
collected from Fire PDUs. TEL kills were collected from
Entity State PDUs. TEL track updates, LPE reports,

allocations of the TEL attack resources, and commitments
of attack aircraft were collected manually. More
automated data collection via Event Report PDU is being
pursued for future DIS exercises.

ATTACK OPERATIONS: TRIAL JBL08728
LNCH MOVE LAST TRK UPDATE LPE REPORT ALLOCATION ATTACK AC COMMIT «UPDATE BO KILL

re. TIME TIME TIME ACCY SOURCE TIME ACCY SOURCE TIME AOCY DELAY RESOURCE TIME AOCY DELAY RANGE ATTKAO TIME ACCY TIME TIME
51.B.150
18.8.240

1UÜ
192

4DÜ
492

«8.2.241
«8.2.242

202
242

502
542

780 1.7 JSTARS 236
249

0.6
14.1

ADV.SNSR
A0V.SNSR

240 0.6 38 AW4CS 685 1.4 483 66 F15E 860 1.8 1099.3 1108

11.8.62
51.8.162

26S.2
362

565
662

840 0.7 JSTARS 270
383

1.5
28.1

ADV.SNSR
DSP

885 0.9 620 NAVY X X X X X X X

52.1.29 913.6 1214
52.1.34
52.1.37
11.8.66

963.6
1084
1091

1264
1384
1391

1740 1.6 JSTARS 1290
1110

0
2.8

DSP
DSP

1470 0.7 387 AWACS 1631 2.4 548 57 F15E 1998 1.1 2123.6 2131

«8.8.246
«8.8.224

1202
1502

1502
1802

1470
1727

X
38.3

DSP
OCflR

48.8.225
52.1.38
52.1.39

1922
1984
2104

2222
2284
2404

52.1.40 2704
IIHALU 1 1 If a 1.4 U ia.u a u.a 757 59 3 &■ 3 3

Table 2. Sample Attack Operations Results

80

Figure 2 illustrates one method for comparing PDUs
sent with PDUs received, based on the PDU counts
provided via Data PDUs. This data shows the RES A
GW receiving all of the TACCSF GW Entity State PDUs

except when the RESA GW was down. The MSIM GW
received nearly all TACCSF GW Entity State PDUs until
MSIM was terminated in the 45th minute of the exercise.

TRIAL JBL08728
PDUs Sent By TACCSF GW

11 16 21 26

Time, minutes

31 36 41 46 51

- Sent by TACCSF Gateway

■ Rec'd by RESA Gateway

Rec'd by MSIM Gateway

Figure 2. Entity State PDUs Sent and Received

Preliminary Results

Complete results of this experiment will be
published in an October 1994 JTMDSN Test Report.
Even though automated data collection from all models
for all MOPs were not produced in the July 94 test, this
realtime data collection and analysis structure provides the
foundation for processing more detailed data from
additional sources. In the future, much of the manually
collected data will be replaced by automated collection
methods or enhanced by providing on-line manual data
entry methods. The JTMDSN Test Report will include
details of the DIS architecture; and analysis of the tests'
Critical Operational Issues based on data collected,
operator feedback, and software engineer feedback. This
Report will also include details of lessons learned and
recommendations for future DIS projects, such as:

- Challenges in scheduling and testing in a large
distributed environment. There is a need for better
management of WAN hardware. System complexity

causes delays in test initialization and frequent
reliability problems.
The need for early detailed specification of network
design, including agreement on PDU
implementation.

The need for increased event reporting from network
M&S's. Event Report PDUs should include entity
true state information.

• The need for extended TEG functions, including event
filtering, generation of periodic entity position
reports, and generation of airspace volume entry/exit
records.

■ The need for better clock synchronization methods,
both at the start and during the exercise.

■ The utility of the PDU counting and reporting
system.

- The need for DIS support of Identification Friend or
Foe (IFF) models.

81

Session IE:

Intelligent Agents

Insertion of an Articulated Human into a Networked
Virtual Environment

David R. Pratt1, Paul T. Barham, John Locke, Michael J. Zyda
Naval Postgraduate School

Bryant Eastman, Timothy Moore, Klaus Biggers, Robert Douglass, Stephen Jacobsen
SARCOS, Inc.

Michael Hollick, John Granieri, Hyeongseok Ko, Norman I. Badler
University Of Pennsylvania

Most Distributed Interactive Simulation
(DIS) technology demonstrated in recent
years has focused on vehicle interaction.
The dismounted infantryman—the individ-
ual soldier—has been largely ignored or
represented by static models. In six weeks
of development, The Naval Postgraduate
School, SARCOS, Inc., and University of
Pennsylvania, under Army Research Lab-
oratory sponsorship, demonstrated the in-
sertion of a fully articulated human figure
into a DIS environment. This paper de-
scribes the system architecture.

1.0 Introduction
The Simulation Networking (SIMNET)

Project [4][3] connected low-cost, networked,
man-in-the-loop simulations by a common pro-
tocol to simulate an armored battlefield. This
emphasis was practical for several reasons,
functional and technical.2 The U.S. Army, the
prime customer, was prepared for a Soviet land
force in Germany. Experts agreed that the con-

1. Contact author at Department of Computer Science,
Code CS/Pr, Naval Postgraduate School, Monterey,
CA 93943; pratt@cs.nps.navy.mil; (408)656-2865; fax
(408^656-2814

flict, if it led to war, would have pitted armored
units in a large-scale tank battle. In construct-
ing SIMNET, this paradigm simplified deci-
sions. For instance, a tank crew views the world
though small windows. The largest of these has
an 89-degree horizontal Field of View (FoV)
and a much narrower vertical FoV [5]. Com-
pared to the 180-degree-plus horizontal FoV of
a human in the open, the attenuated view limits
the computational load to process visual chan-
nels. Environment simulation was likewise re-
stricted since crew members remained in the
tank. Only the rough experience of being in a
tank, and not the full detail of the surrounding
environment, needed to be simulated for real-
ism. Terrain databases could be constructed
with only features influencing tank warfare.

Distributed Interactive Simulation (DIS)
[2], the successor to SIMNET, likewise empha-
sizes vehicles.

As the New World Order evolved, empha-
sis shifted from large-scale tank battles to small
regional conflicts which rely more on individu-
al soldiers.3 The Dismounted Infantryman (DI)

2. BBN did a superb job with the existing technology.
We in no way minimize their accomplishments.

0-8186-6440-1/94 $04.00 © 1994 IEEE
84

plays several roles in these conflicts, not all of
which are currently feasible to simulate. How-
ever, some roles, like Special Operations Forc-
es (SOF) or Military Operations in Urban Ter-
rain (MOUT), lend themselves to simulation.
These operations require small units of soldiers
to act in close coordination. The team work
used resembles the actions of civil police.
2.0 Protocol Representation of Dl

SIMNET, as described in [1], was the first
standard used in a distributed virtual battle-
field. Since the modeled systems were primari-
ly armored entities, the protocols and displays
were optimized accordingly. The systems were
limited to three basic types: Static (non-mov-
ing), Simple (no articulated parts), and Tank
(two articulated parts, turret and gun). SIM-
NET humans were represented by two meth-
ods. In early systems, a texture map represent-
ed the soldier or fire team. Different postures
(standing, prone, running, etc.) were represent-
ed by different textures. But when the figures
moved they appeared to slide. In later systems,
texture DIs were replaced by fixed models. An-
imations were created for running and crawl-
ing. Limited by fixed speed and stride, at differ-
ent speeds they would "skate" on the terrain.

For DIS [4] articulations, each Degree of
Freedom (DoF) has a 96-bit record, containing
enumerations for articulation type, the chang-

3. Of the three most recent major U.S. campaigns
(Granada, Panama, and Persian Gulf), only one, the
Persian Gulf, involved a large amount of armored vehi-
cles.

ing parameter and value. While flexible for de-
scribing articulation, for entities with large
number of DoFs, it is an expensive use of net-
work bandwidth. Table 1 contains a length
comparison between DIS and our optimized lo-
cal method developed for the project.

3.0 Human Figure
For this project, we used the human figure

model created by the University of Pennsylva-
nia for their Jack Program. The model was con-
verted to MultiGen Flight format to be compat-
ible with the visual system, NPSNET-IV [6],
allowing the model to be loaded by SGI's Per-
former API like other entity models.

The figure has 39 DoFs (Figure 1) in 17
joints. The torso has one joint at the waist. The
neck has joints connected to the torso and head.
Each arm has three joints: shoulder, elbow, and
wrist. Each leg contains four joints: hip, knee,
ankle, and toe.
4.0 System Architecture

The system architecture balances network
loading, computational resources, and system
requirements to optimize available equipment.

All network traffic used a single Ethernet
segment, reducing the number of physical con-
nections otherwise required by the number of
point-to-point logical connections.

The design establishes two logical net-
works (Figure 2), one for point-to-point (TCP/
IP) communications for optimized local for-
mats, another for broadcasting (UDP/IP) DIS.
The single physical network cut down the com-

Component DI_guy DIS 2.0.3 Difference

Header / Body 76 190 114

Articulations 156 624 468

Total 232 814 582

Table 1: Comparison of the PDU byte length to represent a 39-DoF Human Figure

85

putational resources, but it also limits future
growth by maximizing potential system bottle-
necks.

5.0 Component Functions
While each component is itself a complex

system, our discussion considers the interface
between systems, specifically network mes-
sage formats. We will refer to the components
of the DI_DISPLAY_DATA_MESS structure
(Figure 3), the complete set of articulations and
state data for the human icon.

5.1 ISMS VME Hardware Controller
The Individual Soldier Mobility System

(ISMS) controller is a VME-based real-time
computer whose primary functions are physical
hardware control and monitoring of user input
sensors. The user interface consists of three
systems, the mobility platform, the sensor suit,
and the head-mounted display (HMD).

The mobility platform resembles an exer-
cise unicycle with a seat and pedals. The seated
user controls the direction of the icon in the vir-
tual world by swiveling the seat with his hips,
and icon speed with pedal speed. The hardware
applies pedal resistance based upon pedaling
speed and terrain slope. The X-Y location of

Neck
(3 DoF)

Head (3 DoF)

Shoulder (3 DoF)

Elbow (1 DoF)

Waist j*
(3 DoF)/^/

ip (3 DoF)

Ankle
(3 DoF)

Wrist
(3 DoF)

Knee
'(IDoF)

Toe (1 DoF)

Figure 1. DoFs

the soldier in virtual space is computed from
pedal speed and seat torque.

The user wears a sensor suit, a number of
limb attachments that output arm position and
upper body orientation. The ISMS controller
uses the raw input to fill in the ARM_ANGLES
data for the arms and the waist position.

The HMD displays the virtual environ-
ment to the user and outputs head position. The
HMD sensor data and the sensor suit input are
used to compute neck and head position. Eye
position, in world coordinates, is computed
with an offset from the icon's world position
and the computed offset to the head.

5.2 Dl_guy
The ISMS/DIS interface (DI_guy) pro-

cess is a communications server, elevation
server, and a data display device. As a commu-
nications server, it dead reckons the human fig-
ure icons and formats DIS-compliant Protocol
Data Units (PDUs). A copy of the terrain data-
base provides the ISMS with elevation and
slope for a given location. A primary use of
DI_guy is to debug the system by showing cur-
rent location, status, and parameter values.

The ISMS updates the DI_guy process at
60 Hz. DI_guy computes elevation from the X-
Y and the terrain. The normal of the polygon
the virtual soldier stands on is computed and
given to the ISMS to compute resistive pedal
loading. The data then passes to Jack to com-
pute the remaining joint angles. Once Jack fills
in the LEG_ANGLES for both legs, DI_guy
forwards the data to the display devices.

5.3 Jack
Locomotion is computed from the global

velocity vector and compass heading of the sol-
dier. Current time is recorded at each footstep,
and the time at each update determines the
proper frame of the stride to display. A flag in
the update packet indicates whether an entity is
controlled by an ISMS operator, or some other

86

source. If not ISMS-based, the figure's upper
body is animated with a naturalistic arm swing.

Locomotion computations are only per-
formed when the figure is in a standing posture.
The posture can only change when the figure is
not walking; thus a figure must stop to change
posture, and stand up to walk. These restric-
tions avoid undesirable system behavior.

Additionally, a mechanism is provided for
a forced stop. In normal conditions, the figure
stops by slowing down and taking a final step
when velocity drops to zero. Upon colliding
with a fixed object, however, this behavior is
unacceptable. A flag in the update packet indi-
cates a sudden stop. When set, the figure re-
turns to the default standing posture and the
current step is canceled.

Upper body angles of the ISMS operator
are measured by the body suit and sent to Jack,
which performs simple validity checks. The an-
gles are assigned to the corresponding joints.

A special case is the head/neck joint pair.
These are not measured by the suit, but are de-
rived from the viewpoint orientation (measured
with a head-mounted sensor) and torso orienta-
tion. Since viewpoint orientation is in the glo-
bal frame, the head/neck joints are adjusted so
the simulated human's head orientation match-
es that of the viewpoint by subtracting the torso
bend angles from the viewpoint orientation.

A correction is also done on the shoulder
and head joints while the entity is prone, or un-
dergoing a posture transition. Since the opera-
tor is always upright, not all measured joints
correspond to the correct simulated posture.
For example, if an operator firing a rifle goes
prone (indicated by hitting a switch on the ri-
fle), and raw joint angles are used, his arms will
go into the ground since the simulated torso ori-
entation is roughly parallel to the ground plane,
and the simulated human looks into the ground.
To correct, torso orientation is used as a correc-

tion factor for the shoulder and neck joints
while prone (or in transition), thus the simulat-
ed soldier always has arms and head in the cor-
rect global orientation.

5.4 NPSNET-IV
The three display devices, the two HMDs

and the Walk-In Synthetic Environment
(WISE) (Figure 4) use NPSNET-IV [6], a 3D
battlefield simulator, as the visual display tool.
Since the soldiers can see the other non-ISMS
entities in the simulation, they read the DIS net-
work for the status of the other entities. The sta-
tus of the ISMS humans goes over the point-to-
point network.

For our demonstration (at Fort Benning),
we used three variations of NPSNET. The first,
the WISE, incorporated three large screen pro-
jection monitors (Figure 4), providing the user
about 270-degrees FoV, each screen eight feet
wide by six feet tall with 960x680 pixels. The
low resolution produced minimal aliasing arti-
facts. Four speakers surrounded the ISMS,
driven by a process that monitored the network
and computed sound source location and
strength. Together, the sound, force feedback
from the ISMS, and the WISE display, pro-
duced a convincing environment for the user.

The WISE was only large enough for one
solider at a time. The other two soldiers wore
Kaiser Electrooptics HMDs with Polhemus
head-tracking sensors. The two HMDs, one
high and one medium resolution, provided im-
mersive views of the environment.

The final display was the stealth platform
that views the simulation without creating mes-
sage traffic. The stealth sat in front of the sol-
dier in the WISE and mirrored the network rep-
resentation, allowing the soldier to verify upper
body positions during hand and arm signals.

6.0 Network Implementation
With two logical networks, the visual sys-

tems have two paths to receive updates for each

87

ISMS
1

ISMS
2

ISMS
3

Nonstandard packet communications
Point to Point

DI_guy
ISMS/DIS

Interface

NPNSET-DI
HMD-1

NPNSET-DI
HMD-2

Jack
Workstation

. NPNSET-DI
Walk In Synthetic

Environment
(WISE)

Figure 2. Logical Network Connectivity
DI entity, one via the point-to-point connec-
tion, the fully articulated model, the second
from the DIS PDUs put out by DI_guy. To
avoid icon duplication, a filtering system was
set up to discard DIS PDUs coming from
DI_guy.

All ISMS subsystem internal connections
are point-to-point with DIS communication
broadcast. However, the drawback of point-to-
point communications was that a message had
to be sent to each visual system.

The basic message is sent from the
DI_guy process to update the graphics process.
As above, for ISMS systems, Jack fills in the
lower body angles and checks upper body an-
gle limits. The ISMS controller fills in the re-
maining information. On non-ISMS systems,
Jack fills in all joint information and location is
determined from algorithmic computations.

To avoid a needless conversion and "un-
conversion," we rejected the DIS round-world
coordinate system for our 16X16 kilometer vir-
tual area in favor of SIMNET's flat-world sys-
tem.

7.0 Demonstrated Scenarios
At INCOMSS-94, we demonstrated a

multi-soldier system using three scenarios. The
first had two soldiers "dismount" from a Mod-
SAF-controlled M-2 Bradley, run to a building
and check for emptiness. The third ISMS repre-

sented an enemy soldier. Since weapons effects
were not implemented, when the friendlies en-
tered the building, the enemy ran out the back.
The friendlies then returned to the M-2.

The second scenario was similar to the
first except that the virtual building under as-
sault corresponded to the actual building with
our audience. At the end, one of the ISMS op-
erators tossed a grenade though the door.

The final scenario had an ISMS operator
give a series of arm and hand signals. These
three scenarios mark the first time an articulat-
ed icon under human control has been shown in
an DIS environment.

For the demonstration, the exercise net-
work was divided into separate segments for
the DIS and SIMNET protocols, connected by
the LORAL PDU translator whose function
was to convert DIS PDUs into the correspond-
ing SIMNET PDUs and vice versa. On the DIS
side, no noticeable delay between a moving
ISMS soldier and the corresponding action on
the DIS visual displays was observed. Howev-
er, there was a consistent seven second delay
for events on the SIMNET side.

To ensure consistent body orientation and
posture, both ISMS and Jack updated the dis-
plays faster than the frame rate to account for
the asynchronous nature of the SGI graphics
pipeline and to achieve the least possible delay

88

TYPE ARM_ANGLES
wrist[3]
elbowtl]
shoulder[3]

TYPE LEG_ANGLES
toe[l]
ankle[3]
knee[1]
hip[3]

TYPE BODY_ANGLES
D0F_6_ent i ty_origin
D0F_6_view_point
neck[3]
head[3]
waist[3]
LEG_ANGLES left,right
ARM_ANGLES left,right

DI_DISPLAY_DATA_MESS
length
type
entity
BODY_ANGLES body
D0F_6_rifle_location
velocity[3]
status

Figure 3. DI_guy Message Format
between action and display. The ISMS sent out
data as fast a possible--30-60Hz--to the DI_guy
process, overwriting any pending messages.
The same was done from DI_Guy to NPSNET.
While this placed excess packets on the net-
work, it did accommodate different process cy-
cle times and reduced apparent latency.

8.0 Future Work
Efforts to insert an articulated human into

the virtual world are just beginning. Following
are some continuing and potential projects.

8.1 Ship Walkthrough
Ships represent one of the worst possible

situations for a walkthrough. They possess the
complexities of a building, and have to be
smaller, self-contained, more intricate spaces.
We envision two fundamental applications to
ships. The first is human factors design. It is
difficult to get a sense of reading instruments,
say, aboard a swaying, heaving ship. The ISMS
with a HMD can immerse the user in the envi-
ronment with pedal force used to change ship
motion. We could then determine the configu-
ration of spaces and equipment. The second use
would be familiarization. Ships have a large

number of cables, compartments, piping, etc. A
virtual ship model could be created. By turning
systems off, such as the bulkheads (walls) and
highlighting others, such as fire fighting sys-
tems, ship personnel could move through the
environment to get a grasp of the layout.
8.2 Medical Corpsman

We have demonstrated the population of
the world with icons moving under human con-
trol. A side effect of this capability in synthetic
battlefields is that icons will be injured and re-
quire medical care. ARPA has started a pro-
gram to train paramedics in the safety of the
DIS environment. The basic capabilities of the
medic are location of the wounded solider,
wound identification and treatment, and triage.

8.3 Police Training
Many current day police officers require

the same urban combat skills as the military. In-
creasingly, skills like hostage rescue, enemy
identification, situation response, and team
training are becoming a common part of police
training. With the insertion of the human into
the DIS environment, these skills can be prac-
ticed in simulation.
9.0 Conclusions

Fully articulated human figures can be in-
corporated in DIS, but work is required on ar-
ticulation parameters. As shown in Table 1,

8" by 6" Projection Screens

I I Projector

D

Stealth Display

D
Figure 4. WISE Display System

89

582 bytes per message were saved by not using
the DIS messages internally. By using a custom
structure rather than the generic, the number of
bytes needed to describe the articulations can
be reduced by a factor of four. The differences
in length can be attributed to a fundamental dif-
ference in purpose. For instance, we assume
that soldiers will not change sides fifteen times
a second, an eventuality that is fully accounted
for by the DIS protocol.

Due to the number of articulations and hu-
man motion complexity, systems can be ex-
pected to send packets at the frame rate. As-
suming 15-Hz, and considering only packet
size, each soldier produces the network load of
five to eight tanks or three high performance
aircraft, potentially crippling a large scenario.

The computational load of Jack and the
DIS conversation process did not prove exces-
sive. Michael Hollick and John Granieri of UP-
ENN have developed a table-driven Jack more
suited for low resolution display of human fig-
ures. Bryant Eastman and Tim Moore of SAR-
COS have placed the DI_guy functionality into
a heavily modified NPSNET and will be port-
ing the table-driven Jack onto the VME real-
time system in the ISMS. These enhancements
represent a significant reduction of the number
of machines and packets required for the artic-
ulated human.

10.0 Acknowledgments
This project was made possible by the Hu-

man Research and Engineering Directorate,
Army Research Laboratory (ARL). Not only
were they project managers, they originated the
idea, provided technical guidance for the
ISMS, and lent the insight to form, the NPS/UP-
ENN/SARCOS team. We could not have done
it without them. We would like to thank Farid
Mamagahni and Jim Madden for organizing the
Fort Benning demonstration. The terrain data-
base was developed at the Topographic Engi-

neering Center (TEC), Fort Belvior under the
guidance of George Lukes and Jay Banchero.
The HMDs were provided by Kaiser Electroop-
tics with assistance from Frank Hepburn.

11.0 References
[1] Pope, Arthur, "SJMNET Network Proto-

cols," BBN Systems and Technologies,
Report No. 7102,Cambridge, MA, July
1989.

[2] Institute for Simulation and Training,
"Protocol Data Units for Entity Informa-
tion and Entity Interaction in a Distribut-
ed Interactive Simulation (DRAFT),"
Version 2.0.3, IST-PD-90-2,Orlando, FL,
May 1993

[3] Thorpe, Jack A., "The New Technology
of Large Scale Simulator Networking:
Implications for Mastering the Art of
Warfighting," Proceedings of the 9th In-
terservice/Industry Training System Con-
ference, Nov. - Dec 1987.

[4] Institute for Defense Analysis, "SIM-
NET," Draft, Arlington, VA., May 1990.

[5] Perceptronics, "SIMNET M1 Crew Man-
ual," SIMNET Manual No. PTUM 001-
1250-89-10 (rev-2), Woodland Hills, CA.

[6] Macedonia, Michael R. Zyda, Michael J.,
Pratt, David R., Barham, Paul T. and
Zeswitz, Steven, "NPSNET: A Network
Software Architecture for Large Scale
Virtual Environments," Presence, Vol. 3,
No. 4. Fall 1994.

[7] Badler, Norman I., Phillips, Gary B.,
Webber, Bonnie Lynn, "Simulating Hu-
mans," Oxford University Press, New
York, 1993.

90

Extending DIS for Individual Combatants

Douglas A. Reece
Institute for Simulation and Training

University of Central Florida
3280 Progress Drive
Orlando, FL 32826
dreece@ist.ucf.edu

Abstract

The domain of DIS military training simulators has
recently been expanding to the level of individual
combatants. After gaining some experience with an
individual-level simulator, we have identified several
areas of the DIS protocol that need to be expanded or
changed to accommodate individual humans. In the
Entity State PDU, some information in the Entity Type
and Appearance fields should be replaced with
detailed upper body, limb and weapon position
information. An intelligent human figure animation
algorithm should be used to dead reckon the lower
body. Weapons and other objects should gain status
independent of the entity through the use of a
modification of the Destructible Entity protocol.
Finally, the Fire PDU should indicate the scatter
pattern and direction vector of a burst.

1. Introduction

Various users of military training simulators are
becoming interested in creating simulations for
individual combatants. In order to take operate with
other simulation platforms, these systems will be made
compliant with standards for Distributed Interactive
Simulation (DIS). While the existing DIS standard
actually has a mechanism for representing a single
person, this mechanism is crude and is really only an
afterthought to the primary goal of representing tanks
and other vehicles. The Institute for Simulation and
Training (1ST) is currently involved in a project to
develop a training simulator for individual soldiers in

an urban combat environment. As part of this project
we have identified several areas of the DIS design that
are inadequate for such a simulator. In this paper we
discuss several problem areas and possible solutions.
We first describe the training simulator that provides
the motivation for this study of DIS standards. We
next discuss some of the problems with the existing
Entity State Protocol Data Unit (PDU). We have
found that the biggest shortcomings are in the
description of body position and the representation of
objects; the next two sections thus discuss body
position and object representation. The final section
discusses DIS extensions required to represent small
arms fire in individual combatant simulations.

2. A simulator for individual combatants

1ST is currently participating in the Team Target
Engagement Simulator (TTES) project under
sponsorship of the Naval Air Warfare Center Training
Systems Division. The TTES system will be a
training simulator for small units. The application
domain will initially be Marine Corps units in urban
terrain, but could potentially be expanded to Special
Forces operations, hostage rescue missions, etc. IST's
role in the project is to develop computer controlled
hostile and neutral entities.

TTES is intended to meet specific requirements for
simulating combat on an individual level:

• The simulation platform must be reasonably
compact; trainees will be confined to a limited
area.

ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights reserved.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution must be obtained from the IEEE. For information on obtaining permission, send a
blank email message to info.pub.permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

91
0-8186-6440-1/94 $04.00 © 1994 IEEE

• Trainees should be able to stand, crouch, fall
prone, and make other small movements to take
advantage of small but tactically significant terrain
features.
• Trainees should be able to use their weapons in as
natural a way as possible.
• Body positions and movements should be
represented and displayed in enough detail to allow
trainees to recognize important states and actions.
For example, whether another entity's weapon is
deployed for use, where the entity is aiming the
weapon, whether the entity is picking up or
throwing an object, and where the entity is looking.
Eventually, the system might allow trainees to
communicate with arm signals.
• Friendly, hostile, and neutral entities should be
represented.
In the TTES system, an individual soldier will

stand in front of a large projection screen (or screens)
on which is displayed his view of the virtual
environment. Foot switches allow the soldier to move
and rotate his virtual body in the simulation. Position
sensors on the soldier's head allow him to move up
and down, translate, and reorient his virtual body
without using the foot switches. This configuration
allows the trainee to make small translational
movements without using the foot switches. Sensors
on the soldier's weapon detect the aiming point and
allow marksmanship training.

3. The Entity State PDU

The DIS protocol specification (version 2.0.4 [1],
[2]) describes the Entity State PDU. As with many
other aspects of DIS, this PDU was based on an
original design that addressed tank warfare. Several
fields of the Entity State PDU have shortcomings for
individual combatant simulation.

3.1. Force ID and Alternate Entity Type

These fields were originally included to allow
entities to be displayed differently depending on their
Force ID. For example, force 1 trainees would see
other force 1 entities as US Ml tanks, but force 2
entities as T-72 tanks; meanwhile, force 2 trainees
would see force 1 entities as T-72's and force 2
entities as Mi's. Unfortunately, this arrangement is
highly unrealistic for any case where the opposing
entities do not have similar characteristics. For
example, the soldiers on one force may have more
automatic weapons than the soldiers on the other

force. Some soldier will thus appear to one force to
have an automatic weapon while to the other force he
will not. Another problem with guises is that neutral
entities may have to treat different forces differently;
the symmetry of appearance is thereby destroyed.
Since these fields of the PDU are not useful, they can
be ignored or eliminated.

3.2. Entity type

This field is intended to represent static type
information rather than dynamic state information—
for example, whether the entity is a life form or a
vehicle. This information is used to generate an image
of the entity. For individual soldiers, however, much
of the information is dynamic. The domain subfield
(land, air, water, etc.) depends on the current location
of the soldier. It is not really meaningful for
individuals and can be ignored. The subcategory
identifies the [one] weapon carried and is inadequate
for describing the soldier's load. As we describe more
below, this subfield should also be ignored in favor of
a more complete representation of simulation objects
such as weapons. The country could change if the
soldier changed uniforms; perhaps it should be
replaced by a static ethnic type and a dynamic
"clothing state." Other subfields of the entity type
field may be left as is.

3.3. Appearance

This field is intended to contain dynamic state
information describing the observable appearance of
the entity. Part of this field contains vehicle-specific
information and can be ignored. The life form
specific information includes posture state and
primary and secondary weapon status. "Posture" state
is sometimes actually posture (standing, kneeling,
prone), and other times activity (swimming,
parachuting) or movement (walking, running,
crawling, jumping). This set of states is not
sufficiently rich for a detailed simulation; it lacks
important body positions (such as crouching below
cover, or leaning to peek around a corner) and arm
positions (to indicate weapon positions, give signals,
allow throwing motions, etc.). Simulations for
individual combatants will eventually replace postures
with limb positions (or joint angles). These new
human articulated parts will require new enumeration
values in the DIS standard. Postures may be retained
for lower fidelity simulations that do not need to
generate detailed images of human figures.

92

The weapon status portion of the appearance field
allows three states: stowed, deployed, and in firing
position. As with posture, an individual combatant
level simulation will require much more detail. For
example, the immediate threat of a situation may
depend on whether an enemy soldier is aiming his
weapon at the trainee or elsewhere. While it may be
possible to compute weapon position from detailed
arm positions, we believe that a new record should be
added to describe the position and orientation of the
primary weapon.

The secondary weapon status part of the
appearance field is not currently useful, because the
DIS standard only allows only the primary weapon
type to be specified in the entity type field. We
discuss how to expand the treatment of secondary
weapons as objects below.

3.4. Location, velocity, and orientation

The DIS standard specifies that the reference point
for an entity's location is the center of its bounding
volume, excluding its articulated parts. This definition
works neatly for vehicles, which are rigid, but creates
complications for flexible human entities. We will
assume that the upper torso is the core component of
the human entity.

When a human changes postures, its bounding
volume and the center point move. This correlation of
posture and location makes it difficult to maintain an
accurate display of a human's position. Consider the
standing soldier falling prone in Figure 1. While his
location—his upper torso—moves forward and down
continuously, at some point his state changes
instantaneously from Standing to Prone. While he is
still Standing and his location is moving down, it
would appear to remote entities that he is sinking into
the ground. Dead reckoning algorithms that use
velocity exacerbate this problem.

The discrepancy between torso position and posture
can provides even more motivation for eliminating
postures in favor of detailed limb positions in the
Entity State PDU. For lower-fidelity simulations,
however, it is still desirable to use postures. To avoid
the possibly frequent location changes that cause
erroneous displays on remote simulators, we propose
to add new low-fidelity location, velocity and
orientation fields to the PDU. These would indicate
the status of a rigid human figure whose location,
velocity and orientation did not depend on posture.
The existing location, velocity and location fields
would indicate the true status of the upper torso. In
our prototype system we are using a human figure
model that uses a foot as the origin; this is equivalent

Chest
height

Interpreted
Posture

Remote
appearance

^ time

Ground-

Figure 1. Errors in apparent position of entity due to correlation of location and posture.

93

to using the upper torso if all body-part
transformations are known.

4. Position representation

The examination of the Entity State PDU above
revealed the need for an improved representation of
body position for human entities. There are several
aspects to this problem arising from the fact that a DIS
system has several different representations for a
simulated entity. Figure 2 shows these different
representations. The trainee himself is the true
position; sensors provide a measured position for the
simulator platform; the platform forms a DIS position,
which is transmitted to other platforms; remote
platforms used dead reckoning algorithms to
interpolate the trainee's position; and the image
generator produces an image in the virtual world for
the remote entity. In each transformation between
representations there is an opportunity to take
measurements, make abstractions, encode or decode
data, sample the data, interpolate between samples,
add noise, filter noise, compress or expand data,
introduce delays, decode etc.

4.1. DIS representations

The first representation is the human trainee
himself. His or her position must be measured by
sensors to create representation 2. The completeness,

accuracy, and frequency of position sensing
determines what information the rest of the system has
to work with. The simulator platform itself uses the
measured position to recognize movement actions,
determine the viewpoint for the image generator, to
detect collisions, detect throwing actions, and perform
any other modeling tasks necessary. The simulator
may infer some information rather than measuring it
directly; for example, from upper torso position and
hand position, the arm position may be inferred.

The simulator platform must also create the DIS
representation of the soldier's position. With the
current standard, this means that measured body
position must be abstracted to entity location,
orientation, posture and other appearance
characteristics. In the previous section we described
some of the problems with this representation.

Remote simulators use a constant velocity or
constant acceleration dead reckoning algorithm to
compute position and velocity (representation 4)
between Entity State PDU transmissions. The source
vehicle simulator only sends out Entity State PDU's
when the error between the dead reckoned position
and the true position is greater than some threshold.

Finally, the encoded appearance information is
decoded by the image generator to produce a detailed
image of the original entity (representation 5)

Image Generator

Simulator Platform
(Position Interpretation)

Simulator Platform
(Dead Reckoning)

Figure 2. Five forms of entity state representation in a DIS system

94

4.2. Existing DIS coherence limitations

The DIS system only requires new entity state
information to be transmitted when an error threshold
has been exceeded. Thus DIS allows an error between
local and remote position representations in order to
reduce network traffic. When the inaccurate dead
reckoned state is updated with a new Entity State
PDU, the remote entity must either correct the state
instantaneously or move it over a smooth, but false,
trajectory to the correct state. While this error is
unrealistic in any simulation, it may be crucial in a
detailed, individual level simulation. Soldiers fighting
in close quarters may depend on accurate movements
to stay behind covering terrain.

4.3. Advanced dead reckoning algorithms

In the previous sections we described the need for
detailed body position information in the Entity State
PDU. A human figure requires many more variables
to represent than a typical DIS tank, whose position is
typically encoded with a hull location and two
articulated parts (turret and gun). For example, the
human body has about 200 degrees of freedom [3].
The Jack human figure model used in our prototype
system has 73 joints [4]. A recent proposal for an
Entity State PDU for humans suggested 14 articulated
parts [5]. Even more importantly, the normal motion
for human limbs is characterized by frequently
changing accelerations. Thus for the same number of
simulated entities, human figures would easily require
more than an order of magnitude more network
bandwidth than do tanks.

Under the assumption that joint angle information
could not be supported in a large-scale simulation
exercise, several advanced dead reckoning schemes
have been proposed. In our prototype system, the
simulation platform measures head height and applies
thresholds to abstract a posture for the DIS
representation. In addition, foot pedals are used to
control entity speed. At remote platforms, an
animation sequence constructed with Jack is used to
recreate a smooth transition between postures, to
create limb movement for a gait appropriate for the
entity's speed, and to smooth the transition between
gaits.

Even more abstract dead reckoning systems are
possible. Several research groups in the computer
graphics community have investigated functional,
task-level, or goal-directed mechanisms for specifying
human figure movement [3] [6] [7] [8] [9]. For
example, if an entity's task were to walk along a give

line, the animation system could automatically change
the remote entity's movement behavior so that the
human figure steps over or ducks under obstacles. An
intelligent automation algorithm could also be given
the goal of moving to a destination location; this dead
reckoning model would move the entity around
obstacles, turn it to follow corridors, etc. It is not
practical to require the dead reckoning algorithm to do
too much, however, because it becomes necessary for
the simulation platform to sense the trainee's goals as
well as his position.

4.4. Coherence problems with advanced dead
reckoning

Unfortunately, advanced dead reckoning algorithms
can introduce additional correlation errors that are
probably not acceptable. Suppose that the simulator
could detect a trainee's goal destination and that a
remote simulator moved a human figure to that goal.
There is no way to guarantee that the rendered figure
will follow the same path as the trainee. Small
differences in time and space could be crucial to the
survival of the trainee. Even the animated posture
changes currently in use may result in errors between
the trainee's intended position and the position of the
rendered figure.

An even more basic problem with intelligent dead
reckoning is that it does require that a trainee's
intentions can be detected. If a trainee begins to lower
his body, at what point does the simulator platform
decide that he is going to go to a Kneeling or Prone
state? The trainee's simulator platform is in effect
sampling his actions when it computes abstract
postures; the remote platform, as it generates smooth
transitions, is effectively applying a low-pass,
smoothing filter to the samples. Delay is inherent in
this process. The remote simulator can only reflect
the state change after it has already happened.

Clearly, experimentation with the end users will be
necessary to determine an adequate compromise
between network load, smooth visual displays of
moving figures, and coherence between the trainee's
state and the remote visual display. We expect the
compromise to have these characteristics:

• The trainee's lower body will be partly
instrumented, but for the most part will be
abstracted locally and recreated remotely. This is
reasonable because the trainee is constrained to
stay in/on the simulator and cannot actually use his
legs to move realistically. The gait would be

95

reconstructed from the upper body position,
orientation, and velocity.
• The animation sequences for movement will be
based on dynamic models and will [locally]
constrain the trainee in terms of acceleration,
change of direction, and gait change. Actions that
are instantaneous with, say, foot pedal controls will
not necessarily take effect instantaneously, even at
the local platform.
• Movements that the trainee can control with the
position of his body, such as rising and falling, or
quick moves within the range of a head position
sensor, will be reflected as quickly as possible on
the local and remote platforms, even if this causes
a jump in position on the remote display.
• The upper body will be more completely
instrumented to allow throwing motions, object
manipulation, arm signals, head turning, etc.
These motions would not be dead reckoned, but
would be updated at frequent intervals (e.g. 5-
lOhz).
• Network bandwidth requirements will be reduced
through the use of a human-specific Entity State
PDU variant, or data compression, or both.

5. Object representation

The representation of objects in DIS is essentially
limited to entities. Having representations for other
objects would be useful in general, but is especially
needed for individual combatant level simulations.
Soldiers typically carry many pieces of equipment,
supplies, and weapons that they use in combat. They
may carry ammunition for themselves and squad
weapons, pieces of squad weapons, grenades, mines,
entrenching tools, radios, flak jackets, binoculars, etc.
in addition to their own weapons. These objects are
worn in various positions, held in various ways and in
various combinations, used stowed, expended,
dropped, picked up, put in other objects, and given to
other soldiers.

If objects are to be present in the world independent
of entities, then they require a new type of PDU to
indicate their status. DIS 3.0 [10] has introduced the
Destructible Entity protocol which could be used for
dynamic objects. This protocol is intended for
inanimate objects. The object does not itself broadcast
any PDU's; rather, entities which act upon the object
broadcast "Modification" PDU's when they change
the object. Entities can destroy the object. This
protocol would be appropriate with the understanding
that the entity would not have to transmit a continuous

stream of Modification PDU's. The simulator
controlling the carrying entity would become the
temporary owner of all of the carried objects. We
propose that the Modification PDU be extended to
allow an entity to indicate that the objects are
henceforth attached to itself.

If a soldier (or vehicle, for that matter) is carrying
objects, then it should indicate what and where they
are. In the spirit of the Destructible Entity protocol,
the attached objects could be described once and then
not described again in a PDU unless they were
modified somehow (expended, dropped, etc.). The
initial description would have to include the
attachment locations on the entity. Naturally, the
attachment positions and the objects themselves would
be enumerated in the DIS standard.

6. Weapons fire

Weapons fire is represented in DIS with a Fire PDU
followed by a Detonation PDU. Each of these can
indicate in a Burst Descriptor that the event contained
multiple rounds. However, there is no provision to
indicate where each round went. This limitation is
acceptable in a simulation with aggregate entities (e.g.
fireteams), but not in a detailed simulation with
individual soldiers. Each round may be significant.
The rounds in a burst will normally scatter and could
strike multiple targets or impact in distant locations.
At the very least, the Fire PDU should indicate a
standard scatter pattern; detonation PDU's should be
capable of indicating multiple impact locations from
the same fire event.

In addition to impact locations, simulations also
need to know munition trajectories (at least roughly)
because soldiers hear the rounds passing by even if
they don't impact nearby. The trajectories cannot
always be computed from impact locations because
rounds may leave the terrain database before
impacting. Fire PDUs must therefore provide basic
trajectory information.

7. Summary and conclusions

In the process of developing the TTES system we
have discovered several areas where DIS is deficient
for representing individual soldiers.

• The Force ID, Alternate Entity Type, domain and
subcategory parts of Entity Type, and posture,
primary and secondary weapon status parts of
Appearance are not useful for high-fidelity
simulation and can be ignored.

96

• To provide approximate state information for low
fidelity simulations, posture and weapon positions
can shadow the true configuration information;
new fields for low-fidelity location, velocity and
orientation would provide values appropriate for
use with posture.
• Entity location should refer to the upper torso.
Entity state should include detailed upper body
limb positions to allow detailed representation of
entity actions.
• New fields should be added to the Entity State
PDU to describe the position and orientation of the
primary weapon.
• A new dead reckoning algorithm for human
entities should be introduced for animating gaits
based on location (i.e., height) and velocity.
Updates to the location of remote entities should be
instantaneous rather than smoothed.
• A protocol such as the Destructible Entity
protocol should be introduced for representing
objects. However, it should be possible for human
entities to attach objects to themselves and take
ownership of them.
• Fire PDUs should indicate the scatter pattern of
multi-round bursts. In addition, they should
indicate the initial direction vector of the burst.
With these changes we expect that DIS could

support an individual soldier simulation with an
adequate level of simulation fidelity, visual realism,
and network load.

8. References

[1] 1ST. Standard for Distributed Interactive
Simulation—Application Protocols, Version 2.0,
Fourth Draft (Revised). IST-CR-94-50. Institute
for Simulation and Training, University of Central
Florida. 1994.

[2] 1ST. Enumeration and Bit-encoded Values for use
with IEEE 1278.1-1994, Distributed Interactive
Simulation—Application Protocols. IST-CR-93-
46. Institute for Simulation and Training,
University of Central Florida. 1993.

[3] Zeltzer, D. 'Task-level Graphical Simulation:
Abstraction, Representation, and Control." In
Making Them Move. N. Badler, B. Barsky, and D.
Zeltzer, editors. Morgan Kaufmann. 1991.

[4] Granieri, J. "Jack and Virtual Reality". In
Quarterly Progress Report No. 51, N. Badler
editor. Department of Computer and Information
Science, University of Pennsylvania. 1994.

[5] O' Keefe, J. "Protocol Data Units for the
Individual Dismounted Human." To appear in
Proceedings of the Eleventh Workshop on the
Standards for the Interoperability of Defense
Simulations. Institute for Simulation and
Training, University of Central Florida. 1994.

[6] Drewery, K. and J. Tsotsos. "Goal Directed
Animation Using English Motion Commands." In
Proceedings of Graphics Conference '86.
Canadian Information Processing Society.
Toronto, Ontario, pp. 131-135. 1986.

[7] Badler, N. et cd. "Positioning and Animating
Figures in a Task Oriented Environment." The
Visual Computer 1(4), pp. 212-220. 1985.

[8] Calvert, T. "Composition of Realistic Animation
Sequences for Multiple Human Figures." In
Making Them Move. N. Badler, B. Barsky, and D.
Zeltzer, editors. Morgan Kaufmann. 1991.

[9] Badler, N., Webber, B., Kalita, J. and Esakov, J.
"Animation from Instructions." In Making Them
Move. N. Badler, B. Barsky, and D. Zeltzer,
editors. Morgan Kaufmann. 1991.

[10] IST. Standard for Distributed Interactive
Simulation—Application Protocols, Version 3.0,
Working Draft.. IST-CR-94-18. Institute for
Simulation and Training, University of Central
Florida. 1994.

97

Session IF:

Planning and Decision Making I

Automated Battlefield Simulation Command and Control Using
Artificial Neural Networks

Ivan J. Jaszlics, Sheila L. Jaszhcs and Stewart H. Jones
Pathfinder Systems, Inc.

Lakewood, Colorado 80228

Abstract

Contemporary Distributed Interactive Battle
Simulations are becoming increasingly large and
complex and therefore, difficult to manage. The
success of future projects will depend, in part, on
the ability to manage aspects of the command and
control of forces in an automated and highly
predictable manner. Artificial intelligence in
general and Artificial Neural Networks in
particular offer attractive mechanisms to automate
command and control. This paper describes the
Linear Interactive Activation and Competition
(LINIAC) Model Artificial Neural Network, a high-
speed, object-oriented model, for use in several
battle simulations and has demonstrated that this is
a feasible application of this technology.

1. Introduction

A fundamental consideration in designing
battlefield simulations is that they approach realism
as faithfully as possible. One difficulty in
simulating battlefield command and control is
replicating the decision making which it is based
on. The purpose of many simulations is to train a
part of its audience to make acceptable decisions.
Here it is appropriate to have human operators
perform decision making functions. However using
humans to make decisions for the Opposing Forces,
or friendly adjacent and rear forces may be counter-
productive and automated Command and Control
may be highly desirable. To provide such
automation, many current simulations rely heavily
on decision algorithms and rule bases coupled with
human roleplayers to emulate the human element.
Problems may develop because algorithms and rule
bases may not be sufficiently error-free and human
roleplayer resources are sometimes difficult to

commandeer. Automation using algorithms and
rule bases may also lack sufficient flexibility to
meet changing scenario requirements without
elaborate programming. Artificial Neural Networks
(ANNs) offer a cost-effective alternative to
algorithms and rule bases for generating or
replicating human decision making. ANNs are
effective because they are based on examples, rather
than hard-coded implementations.

2. The Need for Flexible AI Command and
Control

There are some obvious difficulties with using
algorithms and rule bases to replicate human
decision making. Typically they are hard-coded and
are difficult to change if the needs of the simulation
change. Recent global military developments, such
as the dissolution of the Soviet and Eastern Block
forces and the emergence of third world military
forces, have changed the command and control
requirements for battle simulations. Today
simulations must be flexible enough to
accommodate a variety of military doctrines and
modes of operation, often requiring rapid
reconfiguration. If it is necessary to implement
algorithms and rule bases using syntactically rigid
programming or data-entry languages, their
development requires programming technicians to
translate the command and control requirements
into the appropriate language syntax. The steps
required to translate the knowledge of experts into a
formalized syntax introduce the possibility of
miscommunication and misunderstanding, which
can result in program errors. Even when good
understanding exists, logic errors can be generated
inadvertently. A significant amount of testing is
required to detect and remove such errors. Finally
rule bases and algorithms usually must account for
all possible contingencies when analyzing a

0-8186-6440-1/94 $04.00 © 1994 IEEE
100

problem so that unaccounted for conditions will not
generate unintended results in the simulation.
Significant engineering effort is needed to ensure
that all reasonable situations are represented in the
code.

Using Artificial Neural Nets for automated
command and control can avoid many of these
limitations. ANNs can be implemented as an object
class with standard interface and decision methods.
A simulation can then create many decision objects
of that class, each with its unique environment
consisting of input information and a 'connection
matrix' which encapsulates the behavior of a
particular ANN. The decision method is a
relatively simple mathematical process which is
valid for a wide variety of decision applications. A
well-designed ANN object can accommodate any
compatible decision base and faithfully replicate the
cognitive reasoning that it has been trained with.

It is possible to design training methods for
ANNs using standard graphical interface
techniques that do not require any programming
expertise on the part of the trainer, so that
knowledge experts can train them directly without
having to rely on a technical interpreter. Experts
can quickly, often intuitively, learn how to use such
interfaces to train ANNs directly in sessions that
last only an hour or two. Experts can also define
the command and control variables using English
words and phrases that make sense both to the
trainer and the training audience. When training
ANNs, it is not necessary to provide examples for
all possible input combinations as it generally is
with algorithms and rule bases. A neural net may
have thousands to hundreds of thousands of
possible input combinations, but a small,
representative sample of the total is sufficient for
adequate training. ANNs are very good at
extrapolating the examples they were trained with
to cover other, similar examples. The key to good
training, of course, is to include examples which
cover the broadest possible range of input
conditions.

If a simulation must be able to accommodate
multiple scenarios to reflect different military
doctrines or modes of operation, then it is possible
to train ANNs for each scenario and initialize
appropriate ANN objects for the specified scenario
with the required behavior when starting the
simulation rather than modifying the simulation
code. This technique also applies to automated
command and control for multiple echelons. The
decision structure for several echelons may be

similar in that each echelon looks at the same set of
conditions and makes equivalent decisions. The
only difference may be that each echelon may use
different reasoning to arrive at comparable
decisions. Therefore it is possible to apply a single
decision structure to several echelons, but have each
echelon uses a set of ANN objects uniquely trained
to reflect its individual reasoning.

Finally it is possible to train neural networks
incrementally. If an ANN demonstrates
inappropriate behavior within a simulation, it is
possible to retrain it quickly. In fact, training
through simulation scenarios is a very effective
training method.

3. The Linear Interactive Activation and
Competition (LINIAC) Model

As part of its research in using ANNs for
command and control applications, Pathfinder
Systems, Inc. has developed the Linear Interactive
Activation and Competition (LINIAC) ANN
Model. Figure 1 illustrates how the LINIAC model
makes decisions. Each LINIAC ANN consists of
an input vector, shown as downward pointing
arrows, an output vector, shown as right-pointing
arrows, and a connection matrix. The input vector
defines a set of input conditions, where each
condition can assume one of two or more states.
The actual number of conditions and states for a
given ANN is arbitrary, but cannot change once the
ANN has been trained without requiring retraining.
In the LINIAC model, each condition may assume
only one state, which is expressed by a 1 value,
while all other states for that condition are
expressed by a 0 value (although weighted
numerical values are also possible). The LINIAC
output vector consists of one condition also with an
arbitrary number of states. The black dots, shown
at the intersection of each horizontal and vertical
arrow, represent the neural connections between
input and output vector elements and the size of
each dot suggests the relative strength or 'weight'
of the connection. The weight determines how
strongly each input state influences the
corresponding state of the output vector. A
LINIAC decision is always selected as the output
state with the greatest cumulative value. The key to
the successful operation of LINIAC is establishing
the values of the connection matrix during training
so that a given input pattern will always produce
the outcome which the trainer has specified.

101

Input Vector

Input
Condition

1
 A

Input
Condition

2

■> r~ ~\r

Input
Condition

5

titrzz-±-±—H§—r

T tl it t t T t T

Output
Con-
dition

Figure 1: LIN I AC Artificial Neural Net Concept

4. Defining and Training LINIAC Neural Nets

To facilitate creating and training LINIAC ANNs,
Pathfinder Systems created the Course of Action
Planner (COAP) application. COAP is a graphic-
based interactive program that provides the ability
to define and train neural nets quickly and easily.
COAP uses two basic views or windows. The first
provides the ability to define and name the
conditions and states for the input and output
vectors. The second enables an 'expert' to train the
ANN and to review and test previous training. A
training session consists of entering sets of
representative examples by selecting a state for each
condition and commanding COAP to learn the
behavior specified in those examples.

ANNs must be trained before they can function
correctly. Training establishes the 'neural'
connection values (weights) between the input and
output vector elements of the network. LINIAC
neural nets retain their training by saving essential
information in an external text file. This output file
is useful both for initializing an instance of a neural
net in a client object (application) or for review and
additional training using COAP. In addition to
defining the connection matrix, this external file
contains information to enable the neural net
engine to map input and output state values to the
correct locations in the input and output vectors.
Training usually requires a few seconds to several
minutes per example to process. The length of time
depends primarily on the number of examples
already incorporated in the network and how

closely a new example replicates a previously
learned example. Since thirty to fifty examples may
be adequate to provide acceptable output decisions
over a wide range of input conditions, a user may
be able to train a network within a period of
several hours. On rare occasions, it is possible for
two training examples to represent patterns which
are inconsistent so that the training algorithm
cannot resolve the differences (i.e. the back
propagation algorithm cannot converge to a
solution). If this happens, it is necessary to review
the training examples, eliminate the anomalies and
retrain the network.

The Review mode enables the trainer to review or
test all previous training. Since COAP preserves
all training examples in its external text file, it is
possible to break training into multiple sessions.
Thus the trainer may review previous training in a
later session for validation or to avoid redundant
input. This also enables a user to retrain or provide
additional training for a neural net if the initial
training proves to be incorrect or inadequate for the
intended application. Another Review mode
function is the Performance Test option. This
option performs a number of sequential executions
of the neural net and displays the average execution
time to the user. On an 33 mHz. 80486 PC the
average time will vary from a few milliseconds to a
few tens of milliseconds, depending on the size of
the vectors (and therefore the number of
connections). This contrasts favorably with many
other current neural net implementations which
require substantial computation times. The speed

102

of LINIAC's computation cycle makes it quite
attractive for many command and control
applications since it can typically perform one to
several orders of magnitudes faster than comparable
rule-based or algorithmic implementations.

5. LINIAC application to Automated Command
and Control: The ROLEPLAYER Model

PSI originally developed the ROLEPLAYER
model to demonstrate the feasibility of using ANNs
rather than human roleplayers to control portions of
a battle simulation. There are many ways to apply
neural nets to automated command and control
ranging from single neural nets to very complex
decision structures composed of layers of neural
nets. Although single LINIAC ANNs consider only
a limited number of input conditions and make
relatively simple decisions, it is possible to group
multiple ANNs into a structure which is capable of
making much more sophisticated decisions. This is
analogous to the way that complex organizational
decisions, particularly battle decisions, are typically
made. The structure approach is also attractive
because it allows the designer to partition complex
decisions into simple components which are much
easier to understand, design, and train. The success
or failure of using LINIAC ANNs for command and
control depends heavily upon the validity of the
design of the decision model. The value of the
LINIAC approach is that simple elements can be
designed, redesigned and connected into a structure
that accurately represents the decision making
process of a real military unit. A workable decision
structure will probably be a hybrid of algorithms,
rules and neural nets working together. Algorithms
are needed to transform simulation data into data
types (command and control variables) that are
appropriate for input into the ANNs of the decision
structure. Of course, not all types of decisions are
best implemented through neural nets - when the
number of input possibilities and the number of
outcomes is small, algorithmic rules should be the
better choice. We tend to use neural nets when the
possible combinations of the inputs, even if they are
not fuz2y, can run into the thousands, or hundreds
of thousands.

The training of a battlefield decision ANN is
almost trivial if it is performed by a subject matter
expert. What is very important is to determine the
overall decision structure for an activity represented
by an ANN (this can be, for example, a specific
human C2 function, such as "armor battalion (BN)
S2 - evaluate the current situation"). It is to be
expected that a decision structure design will
undergo an evolutionary process which will
improve its realism. The principal elements of a
design include the set of decisions (the ANNs) that
the simulation requires at each command and
control point, the structure of each decision process
(the conditions and states of each ANN), the
connections to the simulation data base and the
interconnections between the selected ANNs. How
individual ANNs are trained is of lesser importance
initially, since training or re-training can occur
after implementation.

ROLEPLAYER demonstrates the interaction
between several friendly (Blue) battalions,
controlled by a human operator and several
opposing force (Red) battalions controlled primarily
by ANNs. The model uses six neural nets: three at
the battalion level, two at the company level, and
one at the platoon level. Figure 2 shows the
structure and interaction of the neural nets at the
battalion level. Each net receives a number of input
conditions, which are listed above each net box, and
produces a single outcome decision value. Each
input condition and the output decision are
described as a set of states (the states are not shown
on these figures). For example, the Enemy Move
State condition, which is an input to all three neural
nets, can assume one of the States: Marching,
Attacking, Halted, Defending and Withdrawing.
The ROLEPLAYER model provides state values for
these conditions through conventionally-coded
algorithms.

The Evaluate Intelligence neural net provides
an overall intelligence estimate of the enemy
based on observations encoded in its input
conditions. This network executes periodically,
once every five minutes, to produce a current
assessment. It also can respond to events
indicating sudden changes in the tactical
situation. The net emulates the tactical situation
evaluation activity of the Battalion's Intelligence

103

Operational Order
Air Situation

Air Situation Ground Threat
Strength Ratio Strength Ratio
Enemy Move State Own Losses Operational Order
Enemy Bearing Logistics Enemy Move State
Enemy Deployed Enemy Move State Enemy Bearing

T .*•„<* Distance to Enemy Enemy Bearing Last

Intelligence

J}
Latest Current

Intelligence | | Plan
Course of prag

Action Order

♦ ^ v r ^ v r
Evaluate Operations Planning Generate Battalion

Intellig ence (S2) (S3) Frag Order (BN Cdr)

1 ' v 1'
Intelligence Course of Battalion

Est unate Action Frag Order

Figure 2: Roleplayer Battalion Command and Control

Officer (S2). The appropriate subject matter expert
to train this net would be an actual battalion S2.
Note that the intelligence estimate, "Intel
Estimate", also has a feedback path into the
Evaluate Intelligence neural net and is an input into
the Operational Planning neural net. This
represents communications from the S2 to the
Operations Officer (S3). The feedback of earlier
recommendations into the net itself represent the
fact that situation evaluation is not likely to change
immediately, without considering previous
estimates. Conditions which are output from one
neural net and input into another net must have
state sets which are identical in the number of states
and their order.

The Battalion Operations Planning ANN receives
the Operational Order and Fragmentary
Operational Orders (Frag Orders) from higher
headquarters. It considers this order along with
other conditions including the Latest Intelligence
Estimate output from the Evaluate Intelligence
neural net and determines what course of action to
take at the battalion level. This net executes
periodically, once every five minutes or in response
critical tactical condition changes, to produce a
current course of action. Depending on the input
conditions and the encoded training, the ANN will
recommend to continue carrying out the current
mission, or to follow another, more appropriate,
course of action. It essentially emulates the
immediate operations re-planning and course of
action determination activities of the Battalion
Operations Officer (S3). The optimal subject matter

expert to train this net would be an actual S3 for
Blue forces, or an Intelligence officer familiar with
enemy doctrine, equipment, and tactics for the
Opposing Force (OPFOR). This net also considers
its last recommendation as one of the inputs, and
provides its recommendation to the Battalion Frag
Order net.

The battalion Fragmentary Operational Order
(Frag Order) neural network is responsible for
deciding what Frag Orders the battalion will send
to the company commanders under its command. It
executes periodically, once every five minutes, or in
response to tactical emergencies, to produce a new
Frag Order. It considers the Course of Action
decision, produced by the battalion Operations
Planning ANN, and also its previously issued Frag
Order as a feedback from its previous execution.
The most common outcome from this ANN is a
"Continue" decision, which means that there is no
change to the order which each company is
carrying out. Again, the decision it actually makes
depends on how the network was trained. You may
observe that the input conditions for each of these
neural nets appear to be arbitrary. What is included
as input conditions to a neural net is a decision
which the simulation designer must make jointly
with military subject area experts.

ROLEPLAYER uses similar Frag Order decision
ANNs at the company and platoon levels to provide
equivalent Frag Order command and control
decisions at those levels. The ANN at the company
level executes once every two minutes, or in
response to tactical emergencies, and at the platoon

104

level, once every minute, or in response to tactical
emergencies. The design of these nets is similar to
the design of the battalion Frag Order net, but each
net must be trained independently to behave just as
the company or platoon commander would.

ROLEPLAYER also processes a Fire Support
Request ANN at the company level which requests
external fire support when battle conditions warrant
it. If the ANN decides to request fire support,
ROLEPLAYER passes the request to a
corresponding Battalion Fire Support Coordination
net at the battalion level. The FSC net will,
depending on available assets and on the Battalion
level evaluation of the tactical situation, either
grant or disapprove the request. If the request is
granted, the FSC net also decides the allocation of
appropriate assets (indirect fire or air support) and
sets the execution of the support activity into
motion. Time delays between approval of support
requests and actual support are due to factors which
may be directly a part of the simulation (such as the
movement of aircraft), and factors indirectly
included in the simulation (additional C3 delays,
time required to shift fires, take-off time of ready
aircraft, etc.).

6. Distributed Interactive Simulation (DIS)
Applications

The structure of LINIAC neural net inputs and
outputs are well suited for implementing them in a
DIS environment. Information can be passed to a
neural net in he form of Condition : State value
pairs or Net Name : Condition : State value
triplets. This can easily be implemented in a
Protocol Data Unit (PDU) such as the Signal PDU
in the IEEE standard. Values can be expressed as
character strings, enumeration types or appropriate
integer values. The Net name may not be required
if the command and control application which
utilizes the neural nets can determine which net(s)
to execute from the context of the incoming data.

Another client - server approach has been
implemented by applying LINIAC to the U. S.
Army's EAGLE simulation using an Object
Request Broker (ORB or CORBA) to execute a
decision structure, which itself is processed as an
object. The Object Broker passes a number of
decision variables to the decision object through an
ORB call. The decision object may exist on a
different platform than the simulation, and consists
of a network of ANNs. When it receives an ORB
call, an interface process allocates the included
decision variables to the correct ANN input vectors,

executes the ANN decision making functions and
returns the appropriate outcomes to the client
through the ORB return.

7. Conclusion

This paper has presented a practical approach for
using artificial neural nets to perform automated
decision making in the context of combat
simulations. Neural nets can be much easier to
design and implement than comparable algorithms
or rule bases. A single neural net engine can
function as a server for an arbitrary number of
neural nets. The 'code' required to execute a neural
net can be encapsulated in an external data file,
including both the connection matrix and the
condition/state definitions for the input and output
vectors. Because of this external encoding, the
behavior of a client can be modified simply by
substituting a differently trained input without
changing source code. This greatly reduces the
amount of time and the expense required to design,
implement and maintain decision logic/code for
automated forces. In simulations this provides
essential flexibility because the behavior of
automated forces may need to change to reflect
different scenarios. This also makes it possible to
replace neural nets whose initial training may
contain deficiencies.

Because it is possible to train neural nets using a
relatively simple graphic interface, it is possible to
have 'experts' train them quickly and directly
without requiring intermediate technical personnel
who may inadvertently introduce personal biases
into the decision base. This user interface also
provides the capability to review the training and
behavior of a neural net and thus provides a first
level validation for the behavior of the net. Neural
nets reflect their training examples very faithfully
and avoid unnecessary errors caused by coding
anomalies. They are also very good at exhibiting
behavior for which they have no discrete training by
extrapolating learned examples to cover those
conditions, which greatly reduces the time that
experts must spend in training them.

The LINIAC neural net implementation possesses
a very fast execution speed, and even a structure of
multiple neural nets operating sequentially to
produce a single decision may easily out-perform a
comparable algorithmic or rule-based
implementation. Finally, PSI has verified their
performance, reliability and accuracy in several
demonstration projects.

105

"GAME COMMANDER1—APPLYING AN ARCHITECTURE OF
GAME THEORY AND TREE LOOKAHEAD

TO THE COMMAND AND CONTROL PROCESS

A.Katz
University of Alabama

Tuscaloosa, AL 35487-0280
akatz@ualvm.ua.edu

B. Butler
Loral Advanced Distributed Simulation

Orlando, Fl 32826
butler@orlando.loral.com

Abstract
This paper describes an architecture for emulation of

those portions of the higher-echelon command and
control task which deal with planning and evaluation of
courses of action. (COA). The architecture described
utilizes the technique of tree lookahead with game theory.
Tree lookahead is a technique for computing optimal
decisions. In chess it is now the preferred method in real
time. It is precisely the chess application which
motivates its adoption into an overall command and
control architecture. Chess is the prototypical war game
and the ways that chess players develop their strategies
are not unlike the techniques used by commanders to
reason about, plan, and evaluate courses of action to
pursue in a combat situation. The paper examines
implementation issues associated with this technique. It
reviews some past work on developing this technique for
controlling rotary-wing aircraft. It establishes how this
architecture could be embedded in a virtual simulation
Computer Generated Forces host (e.g. "Modular Semi-
Automated Forces" or ModSAF) that would assume other
command and control functions and thus provide a
broader context for command and control.

1. Introduction

This paper describes an architecture for emulation of
those portions of the higher-echelon command and
control task which involving planning and evaluation of
courses of action (COA). The architecture utilizes the
technique of tree lookahead with game theory. Tree
lookahead is a technique for computing optimal
decisions. It is native to game theory where it serves as a
tool for both theory and practice. In chess it is now the
preferred method in real time. It is precisely the chess
application which motivates its adoption into an overall
command and control architecture. Chess is the
prototypical war game and the ways that chess players
develop their strategies are not unlike the techniques used
by commanders to reason about and plan the course of
action to pursue in a combat situation.

2. Emulation of command and control

Command and control, as defined by the US Army,
encompasses a broad range of tasking which can be

decomposed into four subtasks: (1) Acquire and
communicate information and maintain status, (2) Assess
situation, (3) Determine actions, and (4) Direct and lead
subordinate forces [17]. The lookahead architecture
provides solutions for the emulation of portions of the
subtasks of "Assess situation" and "Determine Actions".

Most direct is the emulation of the subtask of
Determine actions. Of its five component sub-subtasks,
the lookahead architecture can be applied to these four:
develop courses of action, analyze courses of action,
compare courses of action, and select or modify course of
action.

Emulation of the Assess situation subtask is less
direct. Reference [17] describes that this subtask has the
commander "continuously evaluate information
received...to decide whether different actions are required
from the most recent orders issued". In the paradigm of
Army command and control, this subtask is separate from
that of Determine Actions. Its component sub-subtasks
are: (1) Review current situation, and (2) Decide on need
for action or change. Note that in practicality, the
decision not to determine a new action, to instead stay the
course, is an explicit decision. This practical view
captures the spirit of the lookahead. The lookahead will
generate a decision at every decision cycle. The outcome
of the process may be the continuance of the previous
decision. The lookahead executes the second sub-
subtask (Decide on need for action or change) by its
continual review of the current course of action. It also
executes much of the first sub-subtask, with the exception
of the information management portions of that sub-
subtask.

In order to perform the broader task of command and
control, we advocate that the lookahead architecture be
embedded in a virtual Computer Generated Forces (CGF)
simulation capable of performing the full range of
command and control tasking. The paper describes how
this could be done with the "Modular Semi-Automated
Forces" (or ModSAF) CGF.

3. The mathematical theory of games

The problem of decision making by agents with
conflicting goals is addressed by the mathematical theory
of games. The groundwork of game theory was laid by
Von Neumann and others in the first half of the century
[14]. This classical work addressed discrete games.

0-8186-6440-1/94 $04.00 © 1994 IEEE
106

Differential games that deal with continuously varying
systems were added later. In computer applications
everything is discrete. For this reason we will accept that
continuous games can be approached by a limiting
sequence of discrete games, and that a fine enough
discrete game yields an acceptable representation of the
continuous game.

Discrete games come in two varieties: ones with
simultaneous moves and ones with consecutive moves by
the players. Intuitively, it would appear that either kind, if
fine enough, could represent a differential game.
However, the two varieties exhibit vastly different
properties. It is only the games with consecutive moves
that admit deterministic optimal solutions, as do
differential games. For this reason we select the discrete
game with staggered decisions as our basic model of
reality.

We also focus our attention on zero sum games, where
the gain of any party must exactly equal losses by the
others. The assumption of zero sum is inadequate for
most economic and political contexts. A voluntarily-
consummated market transaction could benefit both
parties because of the differing utility functions each
brings to the exchange. Yet in war games it is nearly
true. Objections may be raised to this assumption
(deception, pyrrhic victories, mis-perceptions), but they
can be handled by the mechanics of the lookahead.
Consider deception. A commander may be tasked with
attacking a stronghold, with consequent heavy losses, in
order to deceive the enemy. The lookahead framework
can accommodate this deception by building in
appropriate components of the heuristic evaluation of the
"goodness" of outcomes represented by terminal (or
"leaf) nodes. Pyrrhic victories are possible outcomes in
military conflict, but are never a commander's goal.
Even in the case of deception, a commander would want
to prevail with minimum losses, but understands that
conditions will not permit. It is therefore appropriate to
emulate the commander's thinking in a zero-sum context.
Perceptions may also enter in and color the commander's
evaluation of the tactical situation. Both of the players
may determine that they have lost (one of them wrongly
deciding so) and act accordingly. This could be handled
by separate maintenance of perceptual truth versus "true
truth", and feeding perceptual truth to the lookahead
engine.

Within the framework of assumptions noted above,
classical game theory offers some powerful insights and
tools. It is proved that zero sum, staggered-decision
games possess optimal solutions. The solution may, in
principle, be found by constructing a game tree. It may,
in principle, be stated as a strategy.

A strategy is a set of rules. The rule based approach
that is prevalent in contemporary artificial intelligence
(AI) falls within the realm of approximate strategies.
There is a wide class of problems that lends itself to this
method. The AI community has been busily attacking
these problems over the last two decades. But some

problems are too complex and too rich. One that stands
out is the game of chess. In that area, tree lookahead in
real time is the method of choice, which has been
remarkably successful [13].

The game tree and the strategy are equivalent abstract
tools, which, if expanded exhaustively, embody the
solution of the game. But the game tree and the strategy
are also practical tools for constructing approximate
solutions. The nature and richness of the game determine
which tool is more appropriate for practical use.

We suggest that the wargame problem at the level of
the platoon, company, and battalion commanders falls
outside of the class that yields to the rule-based approach.
It is rather more like that stylized and abstracted wargame
chess, and like chess, its solution must incorporate
lookahead in real time.

4. The lookahead technique applied to the
decision-making commander

4.1 Tree Expansion

Figure 1 illustrates the game tree associated with the
lookahead process. Without loss of generality, assume
that the game tree describes the decision-making process
for the Blue Commander; his opponent being the Red
Commander. Each circle in the diagram (called a "node")
represents a complete battle situation—characterized by
position and disposition of both enemy and friendly
forces. The topmost node (at "ply-level" 0) represents the
current battle condition that calls for a decision from the
Blue Commander. To each potential decision alternative
(represented in the diagram by the tokens "Attack",
"Defend", and "Hold") there corresponds a branch
emanating from the node. Each branch represents the
unfolding battle histories resulting from implementation
of the selected decision.

Nodes immediately below the top-most node are at
ply-level 1 and represent the potential battle outcomes
one ply-interval later. Further development from ply-level
1 proceeds by alternating the turn of the decision-maker
to the Red Commander. All possible decisions by the
Red commander are considered for each node, and
corresponding branches are constructed. These branches
are continued to ply-level 3, where the Blue commander's
decisions are again used for branching. The tree is
recursively developed in this fashion as deeply as
computing and time resources permit. Nodes correspond
to specific points in time. Branches represent the
unfolding development that results in the next-lower node
outcome when starting from the decision-making
commander's decision. The direction of time in the
diagram is down.

When the game tree cannot be exhaustively developed,
the leaf nodes do not represent obvious win-lose-draw
outcomes, but rather intermediate and indeterminate
outcomes. In this situation (which is normal given
resource constraints) the leaf nodes need be assessed by a

107

heuristic score which can conveniently be bounded
between -1 and 1; 1 being best for Blue and worst for
Red. The heuristic score is propagated up the branches to
become a score which valuates the entire decision-
making opportunity. This propagation is done by
simulating the action. Ideally this might be done with full
virtual modeling of the platforms involved.
Considerations of computer resources will usually restrict
these calculations to determining motion and attrition on
an aggregate level.
Time

Leaf Nodes for
the Lookahead

O ■ Derived Tactical Situation

A, D, H = Space of Command Decision
Courses of Action (Example: Attack,
Defend, Hold)

1 = Choose & Evaluate (Play Out) a
Decision Option

H(») = Compute Heuristic Score of Tactical
Situation ("Goodness Of Outcome")

Figure 1: Illustration of the Tree Lookahead with
Technique

Note, however, that the attrition equations, introduced
in [7] and expanded upon for this application, are not
subject to the criticisms that Lanchester's equations
usually raise [6]. This is because the equations are
embedded in the overall decision-making process of
lookahead tree expansion which can adequately respond
to changing positions. The equations are applied only for
the short duration of ply-intervals. Even if some effects of
attrition, such as retreat and regrouping are not
represented inside the ply-intervals, an adequate spectrum
of decisions is available at the nodes to compensate.

As scores are propagated back up the tree, several
branches meet at each node bringing with them varying
scores. If it is a Blue commander's decision node, the
branch that scores highest is selected. If it is the Red
commander's, the branch with the lowest score is

selected. The score of the selected branch becomes the
node score.

The propagation is continued all the way up to the root
node. The score reaching the root becomes the overall
assessment of the situation. The decision engine returns
the command associated with the selected branch.

It has been the experience in chess that the assessment
refined by several levels of tree lookahead is greatly
improved over the original heuristic assessment, and not
sensitive to the details of the heuristic scoring.

Note that the decision made allows for
Red's most effective counter moves. Using
the classical "min-max" process from game

Blue's Turn theory, Blue embarks on a course of action
leading to the "best achievable outcome"—
one that Red cannot prevent.

Even though the selected branches of
the tree represent the unfolding of long

Red'sTurn ranSe plans, only the initial phases of these
plans are put into operation-unless Red
were to behave at each decision point
exactly as predicted. Once a decision is
reached, handed down, and execution
begun, the whole process starts over again.
Actual situations rather than preplanned
moves drive the decision process. Mistakes
by Red are not anticipated (because of the
min-max paradigm), but are exploited as
they occur.

4.2. Score assessment

Two kinds of scores are used in the
lookahead process. We appeal to the
chess analogy to help motivate
understanding of the distinction.

First we look at the branch scores. Both
sides start out with their best possible
scores which are normalized at a value of
one. In the chess analogy, the score may
represent remaining strength. At the start
of the game, no losses have occurred,

hence the score normalized to one means a full
complement of pieces. In the game commander
application, a score of one means all the forces remain
with which one started the decision cycle. As the battle
progresses, losses are occurred and can be measured
directly. In the tabulation of losses, we see clearly the
distinction between the chess analogy, which is a truly
discrete game, and the Game Commander application
which is a continuous game, approximated discretely. In
chess, losses occur at the nodes when pieces are taken.
Hence, branches of the game tree don't represent
intermediate states of the game. Instead they represent
logical connections between nodes. In the Game
Commander application, losses occur at the branches
between the nodes because the nodes represent game
states which are discrete instances of time. Actual

Game Theory

108

combat losses must occur during the branches which
represent time intervals connecting the nodes. In either
case, losses can be measured exactly at the nodes. In the
case of chess, the score is non-increasing with time to
represent the loss of total strength as pieces are taken.
The same hold true in the game commander application.

At leaf nodes, the scoring changes. Terminal scores
are estimates of the situation made necessary because the
game will not be played to any deeper extent. In the
chess analogy, these scores are necessarily heuristic and
account for relative positional advantage between the
players. There is no need to account for relative strength
advantage, because loss of strength has already been
accounted for in playing down to the terminal ply-level.
In the Game Commander, position must also be
accounted for as well as other intangibles such as morale,
fatigue, supply state, etc.

5. Related Work—Aerial Combat

An adaptation of the tree lookahead with game theory
technique has shown promise in the cognitive task of
controlling helicopters in air to air combat close to
terrain.

References [10], [11], and [12] describe work done on
a project called Intelligent Player (IP) which was
intended to exploit the lookahead technique. By 1990 a
prototype of IP was flying against a manned Apache
simulator. More advanced IPs ran off-line, conducting
deeper searches without the burden of real-time.
References [7] and [15] describe the progress of the
work since that time. In particular, [15] addresses some
recent advances in optimizing Intelligent Player's real-
time performance.

A different application of the lookahead technique is
Automan, a program created by Dr. Fred Austin and
others at the Grumman Research Center and installed at
NASA AMES (see [1] and [2]). Automan is the only
existing lookahead that copes with hilly terrain in real
time. Automan also differs significantly from IP in that it
operates by allowing simultaneous turns.

All the prototypes to date were severely limited in
depth of the lookahead—one ply for IP, two plies for
Automan. Off line studies indicated a dramatic
improvement in intelligence at the three-ply level —the
first point at which a plan can be formulated. Reference
[15] concludes that four-ply tree searches are now
feasible for the aerial combat application with PC or
workstation equipment. The time for useful lookahead, in
the aerial combat arena, may be at hand.

It is natural to consider how the success of the
lookahead in command and control at the platform level
will translate to upper-echelon command and control.
Every command level fits into an larger hierarchical
structure. As does a real commander, Game Commander
must be able to take orders or "missions" from echelons
above, formulate a plan, execute the plan by producing

orders for subordinate forces, and monitor plan execution
by receiving and interpreting the status flowing into the
command post. IP operates in this same context. It has a
"mission" to fly, fight, and survive. IP formulates a plan
as a sequence of aerial combat maneuvers. IP executes
this plan by giving commands to the flight model and
weapons systems. IP monitors plan execution by
continually monitoring tactical state. In both
applications, the lookahead decision-making engine does
not produce direct control inputs, but rather a discrete
decision choice that must be adapted through interpreters.
In both applications, the lookahead analyzes a simplified
mathematical model of the combat situation and controls
through selection of a range of discrete control choices
which are sequenced together to formulate a plan.

The differences in the two problems are largely in
scale. Game Commander has a wider range of choices in
plan formulation than that facing IP. Yet IP must respond
to a more swiftly changing situation. In this trade of
decision-space range for reaction time, given the real-
time viability of IP, we believe a real-time
implementation of Game Commander is also viable. See
[3] for additional reference of a real-time model of
platform-level command and control The prototype
FFCS mentioned in this paper also performs in the
domain of air warfare.

6. The Turing test

Will command decisions based on tree lookahead in
real time be indistinguishable from ones made by a
human commander? The following remarks may be in
order:

1. The problem with most current systems is that they
appear dumb and inflexible in comparison with
human decision makers.

2. Once the human level is reached and exceeded, it
should be relatively easy to degrade the tree-
based decision maker by limiting the depth and
breadth of his lookahead. This has been
demonstrated by the computer chess community,
who offer grand master level players degradable
to the level required to instruct and entertain
their amateur owners.

3. High level commanders, like chess players,
actually formulate their decisions by considering
chains of moves and counter moves. This is
reflected in the literature [16] and in some
interactive planning tools [5]. Intuitively, this
lookahead process is continued forward in time
until either the range of possible outcomes is too
broad to accommodate, or the estimation of
likelihoods becomes too degraded due to the
depth of the search. In either case lookahead
ceases and the space of outcomes must be
evaluated as to desirability and to probability of
occurrence. This same process holds true for
chess grand masters. In the chess analogy, the

109

terminal states must be evaluated heuristically,
and one can say that pattern matching is the
obvious evaluation technique. So, like chess
grand masters, commanders employ the
technique of lookahead to formulate possible
courses of action, and the technique of pattern
matching (among others) to evaluate the
possible courses of action.

4. The semi-heuristic scores of leaf nodes are open to
review and refinement by military experts.

5. The whole decision process is open for validation
by running it off line against benchmark
situations and by producing sample strategies by
repeated runs (see Section 7).

6. If a decision engine better than human emerges, it
should prove a valuable spin-off product.

7. Lookahead decision making can accommodate the
modeling of decision making under conditions
of imperfect information. Each decision is made
on the basis of the decision-makers's perception
of the situation, and on his perception of the
knowledge and goals of the opponent.

7. Adaptation and learning

Tree lookahead is a powerful tool for analysis and
learning. In a classical study [1] the Grumman research
team showed how tree lookahead, run off-line, can be
used to formulate an optimal strategy. Starting with a
strategy of random decisions, the tree lookahead was run
repeatedly with the decisions used in winning encounters
reinforced, and the ones figuring in losing engagements
suppressed. This process, applied to air combat,
converged to a strategy that closely matched the one used
by experienced pilots.

In this way the lookahead technique invites review,
critique, and validation. Matching against human
performance is possible even though it is not assumed
that the human experts can always articulate their
expertise in transferable form.

Many variations are possible in which spare compute
time is used to review past engagements. In this way
strategies can be fine tuned for a particular adversary,
rather than the optimal adversary that the pure lookahead
assumes. The reviews can lead to pruning rules that
eliminate enemy responses which are contrary to enemy
doctrine and practice as they manifest themselves in the
building experience of the decision maker.

Pruning rules are subject to off line review by military
experts. It is also possible to inject such rules as a-priori
assumptions.

8. Implementation issues

The major obstacle that any scheme of tree lookahead
in real time must overcome is computer throughput. The
volume of different options that must be explored grows
exponentially with the depth of search. The following

remarks are pertinent.
1. Granularity. The computational burden is

alleviated by limiting the range of discrete
choices of a command decision and by
increasing the time interval by which the
command must be reviewed and a new decision
reached. In the case of the command forces, this
is natural. Commanders normally formulate
discrete decisions (e.g., vvPass norm of hill G7
rather than south"); they often have minutes or
even hours to formulate a major decision; once
put into action, it takes minutes or hours for the
situation to change appreciably. All this tends to
indicate that the problem of discretization will
be less severe in the context of the command
forces than it was in previous work (see Section
5). Still, the proper level of granularity must be
defined. Modulation of granularity is a natural
degradation mechanism for producing more or
less capable commanders. To emulate human
behaviors it must be confirmed that a level of
granularity exists which fits a human
commander.

2. Force modeling. A tree lookahead decision engine
must be able to exercise the forces involved
through many tentative moves as it develops the
game tree. This must be done faster than real
time. The normal ModSAF-style virtual
simulation representation of such forces will,
most likely, prove to be too elaborate and will
not be able to execute fast enough in the service
of even a single decision maker. Different
decision makers will want to manipulate the
same forces at the same time for different
tentative moves. For this reason, the decision
engine must come with its own simplified model
of the forces being commanded, capable of
executing the many tentative moves much faster
than real time. (See the discussion of attrition
computation in Section 4.)

3. All other measures for conserving compute power
notwithstanding, it will be necessary to address
the hardware and software architecture
necessary to optimize the computer resources
involved. Optimization of the supporting
software architecture for the lookahead has been
addressed in [15].

9. Integration into a command architecture

The lookahead technique must be integrated into a
comprehensive architecture for command and control.
This paper sketches some of the problems that must be
solved to accomplish this integration. A notional layout
of the comprehensive architecture is illustrated in Figure
2. It is built around the ModSAF Computer Generated
Forces system and utilizes the messages of the Command
and Control Simulation Interface Language (CCSIL),

no

developed by the Advanced Research Projects Agency
(ARPA) for communication between CGF systems [4].
The architecture embodies explicit representation of
commander perceptions as input for the decision-making
cycle.

•Orders from superiors
• Sensor reports
(expressed in CCSIL)

Perception
Manager

Decision
Space
Narrower

E

i
Alarm
Clock

LOOKAHEAD
ENGINE

Command Decision \ Si
Decision Interpreter

Orders to Subordinate Forces
(expressed in CCSIL) ¥

Computer Generated Forces
Simulation (ModSAF)

Figure 2: Illustration of the Command and
Control Architecture

CCSIL is still nascent and does not yet provide the
functionality we seek. It is the idea behind CCSIL that
we seek to exploit—a standard language for
communication of command and control information
(orders and reports) among software commanders in a
form that is optimized for data processing. This form of
standardization will provide interoperability between the
lookahead engine and other CGF implementations which
could substitute in the ModSAF role.

Inside the gray box of the figure is where the
cognitive processing is concentrated. The lookahead
engine, the center-piece of the architecture, continually
cycles to assess the tactical situation and to produce the
appropriate orders. The orders that issue from it belong
to that discrete range of command options available to the
command emulator. These command options must be
parameterized by the specifics of the current situation and
then translated into operational orders (eventually into
CCSIL format) which can be executed by the CGF.

Feeding into the lookahead are the orders and reports
which shape the environment. We can interpose several
kinds of functions between the lookahead and its input in
order to tailor lookahead operation.

To add realism to the output decisions of the
lookahead by having it decide from perceptions rather
than ground truth, one can interpose a Perception
Manager between the reports coming in and the report
information going to the lookahead. The Perception
Manager would maintain an explicit model of the nature,
degree, and sources of misinformation on the battlefield
and would perturb the inputs to the lookahead to simulate
this misinformation.

To optimize the operation of the lookahead in meeting
real-time constraints, one can interpose a "Decision Space
Narrower" to constrain the development of the decision
tree both in depth and in branching. The Decision Space
Narrower would examine the status and orders inputs
coming into the decision cycle. Firing heuristically-
derived rules, it would block expansion of those parts of
the decision space that show little promise. These
decision space constraints would be conveyed to the
lookahead engine in terms of search limits in depth and in
prohibition of expansion of certain branches of the
lookahead tree.

An alarm clock can also be added to the cognitive
architecture in order to cut short an overly lengthy search
of the decision space. The alarm clock can be set by a
heuristic assessment of the tactical situation to decide
how long Game Commander can wait before it must
produce a decision—i.e. what degree of urgency exists.
The lookahead tree can then be expanded as to most
promising branches and depths first. When the alarm
clock goes off, tree expansion is cut short and the
developed decision options are scored.

The ModSAF CGF provides the simulation action on
the battlefield. The orders produced by the lookahead are
fed into ModSAF to produce plan execution.

Bibliography

1. Austin, F., G. Carbone, M. Falco, and H. Hinz,
"Automated Maneuvering Decisions for Air to Air
Combat", Grumman Report RE-742, November 1987.

2. Austin, F., G. Carbone, M. Falco, H. Hinz, and M.
Lewis, "Game Theory for Automated Maneuvering
During Air to Air Combat", Journal of Guidance,
Control, and Dynamics, Vol. 13, No. 6, 1990, pp. 1143-
1149.

3. Czigler, M., S. Downes-Martin, and D. Panagos,
"Fast Futures Contingency Simulation: A 'What If Tool
for Exploring Alternative Plans", Military, Government
and Aerospace Simulation MultiConference, Society for
Computer Simulation, April, 1994.

4. Dahman, J. S., "Command Forces (CFOR)
Program", presented at the 4th Conference on Computer
Generated Forces and Behavioral Representation,
Orlando, May 1994.

5. Downes-Martin, S., H. Deutsch, and G. Abrett,
"Managing Uncertainty in Time Critical Plan
Evaluation," International Journal in Man-Machine
Studies, Vol 36, pp 337-356 (1992).

in

6. Epstein, J. M., The Calculus of Conventional War,
The Brookings Institution, Washington 1985.

7. Katz, A., "Intelligent Player—First Principle
Foundations", Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation, Institute for Simulation and Training,
Orlando, Florida, March 1993, pp 329-334.

8. Katz, A., "OBD: A Truth Maintaining Inference
Engine implemented in Ada", Artificial Intelligence and
Simulation,, pl88, Society for Computer Simulation
(1988).

9. Katz, A., "Tree Lookahead in Air Combat", to be
published in the Journal of Aircraft (Aug 94).

10. Katz, A. and B. Butler, "A Flight Model for
Unmanned Simulated Helicopters", Journal of Aircraft
29, No. 4, July-August 1992, p521.

11. Katz, A., B. Butler, and D. Allen, "A Computer
Generated Helicopter for Air to Air Combat", AIAA
Simulation Technologies Conference, New Orleans, Aug
1991, p 82.

12. Katz, A. and A. Ross, "One on one Helicopter
Combat Simulated by Chess Type Lookahead", AIAA
Flight Simulation Technologies, Boston, Aug 1989, p
357. Also published in the Journal of Aircraft 28, no. 2,
pl58 (1991).

13. Levy, D. N. L., The Chess Computer Handbook,
Batsford, London, 1984.

14. Neuman, J., and O. Morgenstern, Theory of Games
and Economic Behavior, Princeton: Princeton University
Press, 1944.

15. Schaper, G. A., "Lookahead Limits of Intelligent
Player", Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representations, Orlando May 1994, pp 401-410.

16. M. Shubik, "Game Theory—The Language of
Strategy," Mathematics of Conflict (editor Shubik),
North Holland, Amsterdam 1983.

17. US Army, "Blueprint of the Battlefield", Army
Training and Doctrine Command, TRADOC PAM 11-9,
1990.

112

Incorporating Simulation-Based Models into Planning Systems

Jin Joo Lee and Paul A. Fishwick
Department of Computer and Information Sciences

University of Florida
Gainesville, FL 32611

jll@cis.ufl.edu, fisliwick@cis.ufl.edu

Abstract

General-purpose planners have been proposed but
few have shown to work effectively and efficiently
enough for many domains to be really called general-
purpose. A general-purpose planner that uses a single
methodology is often too restrictive and therefore can-
not plan effectively for all domains. As planning prob-
lems become more complicated, having multiagents of
different types in dynamic environments, evaluating
candidate plans and choosing the best plan becomes
prohibitively complex if not impossible within a single
methodology. To overcome this problem, we propose
simulation-based planning where simulation is used to
evaluate the candidate plans. By allowing appropri-
ate simulation model types to accurately express each
type of agent in the domain, the task of measuring
the success and effects of each candidate plans is sim-
plified and the resulting evaluation will be more accu-
rate since plans are simulated using dynamic models.
We describe an application along with the implemen-
tation of simulation-based planning in the domain of
Mission Planning. Possible future experiments related
to Soar are also discussed.1 [Key Words: Auton-
omy, Mission Planning, Computer Generated
Forces, Multimodeling]

1 Introduction

General-purpose planners [12, 15, 14, 13] claim to
solve planning problems for many different domains.

^SBN 0-8186-6440-1. Copyright(c) 1994 IEEE. All rights
reserved.

Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to
info.pub.permission@ieee.org. By choosing to view this docu-
ment, you agree to all provisions of the copyright laws protect-
ing it.

They may, in fact, be able to solve all the different
planning problems but the problem is that they may
not be able to solve it in an efficient and timely man-
ner. Since many of these general-purpose planners use
a single methodology, they are usually restricted in
their ways of representation and reasoning. There-
fore, they do not have the flexibility to adequately
express and reason about all the different domains in
an efficient way. This is not a problem when the plan-
ner does not have to plan, interact and execute at the
same time. However, for any planner that has to work
in an interactive environment such as the Distributed
Interactive simulation Environments, a planner must
not only plan and react at the same time but it must
do so in a time period that is at least close to real-time.

Our solution is to use simulation-based planning
which uses simulations to evaluate different candidate
plans after they have been generated by the planning
system. A typical way to view the planning process
is to divide it into three steps. The first step is plan
generation where several plans, if possible, are gener-
ated that are likely to be good candidates. Second,
the set of candidate plans are evaluated by perform-
ing a temporal projection into the future in virtual
time and accessing the results prior to the execution.
The results are then compared and a plan is chosen
for execution in the final step. If appropriate models
can be used that best captures the behavior of actions
and reactions of each agent, the evaluation of plans
will be more accurate allowing better selection of the
best plan.

Multimodeling [5, 4, 6, 8] will be used to model pro-
cesses and agents at multiple abstraction levels. Re-
lated work [9] suggests the use of a coordinated set
of methods, each method having different scope and
performance. Some experimental implementations of
this approach has been done on Soar [11].

In section 2, the general concept of Simulation-
based planning is described. We discuss the mission
planning problem as an application in Section 3. Then

113
0-8186-6440-1/94 $04.00 © 1994 IEEE

in section 6, we propose the design of planned future
experiments and finally some conclusions in section 7.

2 Simulation-based Planning

Fishwick [6] defines simulation as " the discipline
of designing a model of an actual or theoretical phys-
ical system, executing the model on a digital com-
puter, and analyzing the execution output". In the
AI planning literature, Dean [3] states that the idea
of using model to formulate sequences of actions is
central to planning and given a sequence of actions, a
robot can use the model to simulate the future as it
would occur if the actions were carried out. So simu-
lation provides the robot with information which can
be used to suggest modifications or to compare the
proposed sequence with alternative sequences. Thus,
simulation-based planning integrates these two ideas.
Simulation has always been used within planning, al-
though in a very abstract way, using operators and
rules for example. The idea is to use more detailed
simulation models originally built for simulation pur-
poses in place of the highly abstract rule-based mod-
els. Therefore, once simulation models are built for a
system, simulation can be used as a tool to provide
the system with information useful for evaluating its
hypothesis which are a set of generated plans.

3 Application: Mission Planning for
Ground Combat

Sitreps

Oporder

1ST SIMULATOR

COMMAND ENTITY (CE)

PLANNER

Dporder

Siueps

Figure 1: Planner Architecture

et al. [1] demonstrates the usefulness of simulation as
a decision tool in military planning.

Through a sample application in the domain of mis-
sion planning for Computer Generated Forces (CGF),
we shall illustrate how we extend the classical planning
method by using simulation of more detailed models,
where the models simulate entity queuing at fords and
bridges as well as engagements. Currently, our en-
gagement simulation uses many of the features of con-
structive models, such as probabilistic combat results
tables, but we will eventually create plans that involve
simulated entity-level interaction since this is the most
accurate way to learn if a plan will fail or succeed.

3.1 Planner Architecture

The Distributed Interactive Simulation Environ-
ment provides the ability to create large virtual worlds
by linking individual simulators, allowing them to in-
teract in real-time. And the Department of Defense
has used these capabilities to revolutionalize the way
the military train their forces, prepare for a combat
and plan and rehearse operational missions. Even
before the DIS revolution, the military has used the
simulation-based approach to planning in the form of
conflict simulation (or wargames). Conflict simula-
tions of the constructive type involve aggregate simu-
lations using discrete time (turns) and space (terrain).
During a planning phase, a commander would perform
"what if scenarios by setting up a course of action on
a hexagonally tiled map of the terrain. Engagements,
instead of being fought with individual entities, are
abstracted using a stochastic method in the form of
a combat results table (CRT) or through Lanchester
equations for force attrition. Related work by Czigler

Figure 1 displays the architecture of our planner
in relation to the Institute for Simulation and Train-
ing (1ST) Computer Generated Forces (CGF) Testbed
[7]. Our mission planner is an integral part of a larger
project of the 1ST called "Intelligent Autonomous Be-
havior by Semi-Automated Forces in Distributed In-
teractive Simulation" which is funded by the U.S.
Army Simulation Training and Instrumentation Com-
mand (STRICOM). The goal of the planner is to au-
tomatically derive plans for a semi-automated force or
CGF, at the company level initially, so that the force
will provide an Army trainee with an effective training
experience. Planning is only a small part of the over-
all project, which includes efficient line of site (LOS)
determination, terrain reasoning, intelligent target ac-
quisition and behavior representation for CGF enti-
ties. The planner takes orders from the battalion level
and translates these orders, with a tight coupling with
the terrain analyzer, into efficient plans for the CGF

114

platoon entities. In addition to planning for its sub-
ordinate units, the planner must also also be able to
monitor the execution of the plan, react to unexpected
situations and replan if necessary.

Each commander in the 1ST testbed is simulated
by a Command Entity (CE) whose major functions
are performed by the Planner. The planner has two
phases: the Reactive phase and the Planning phase.
A Phase is a group of states that collectively display
a behavior. Only one phase is active at any given
time. The starting phase is the Reactive Behavior.
Based on the inputs, the current active phase makes
the decision as to which phase becomes active next.
There is no single 'main' algorithm that controls the
whole process. Thus, the decision is made in a dis-
tributive manner. We will describe each component
of the planner through a demonstration scenario illus-
trated in figure 2. The friendly company unit 1 (the
company entity receiving the Oporder) is situated at
Assembly Area(AA) located at (50000, 52500). Com-
pany unit 1 is made up of 3 platoons: platoon A is
made up of 4 Ml Abrams Main Battle Tanks and each
of the remaining 2 platoons B and C are made up of
4 Bradley Infantry Fighting Vehicles. There are two
enemy platoons: platoon A is made up of 4 Ml tanks
located at (32500, 28750) and platoon B is made up of
4 M2 fighting vehicles located at (45000, 46250). The
Operation order given to company unit 1 is to "SEIZE
the Objective at (32500, 28750)". The company unit
boundaries are given as the rectangular area drawn
in the figure. The goal of the command entity is to
accomplish the mission with minimal loss of strength.

3.1.1 World Database(DB)

The World Database is not a complete spatial repre-
sentation of the battlefield (the Terrain Analyzer(TA)
has this information) but a simplified database which
mainly contains information that is only known to the
CE. Since the TA does not have any information re-
garding the location of enemy or friendly units and
does not keep track of the locations, the planner needs
to keep track of these locations and the status of the
units in the World DB. This database is created as
soon as the CE starts to exist. Initially it contains its
own location and will be updated with new informa-
tion as it becomes available to the CE via Sitreps or
Oporders.

3.1.2 Reactive Behavior

The Reactive Behavior module displays reactive be-
havior necessary for survival when immediate action

is required. The module is initialized with a generic
set of behaviors at the start and may be modified with
any reactive behaviors provided by an Oporder.

3.1.3 Planning Behavior

The Planning Behavior module generates orders for its
subordinate entities from an Oporder given by a higher
level entity. This module is made up of the following
smaller modules where the order in which they are
presented actually coincides with the algorithm steps
of a typical planning process.

1. Sitrep/Oporder Analyzer parses the Situation
Report(Sitrep) or the Operation Order(Oporder)
to update the World DB. In the case of an
Oporder, it is further parsed to generate a list
of task(s) to be achieved. The Situation Ana-
lyzer is called next with this list. In the case of a
Sitrep, it is analyzed to decide if any immediate
action is required, if any replanning is required,
or if any Sitrep needs to be generated. Then, the
Execution Monitor is called with the decision.

2. Situation Analyzer(SA) uses a set of rules
to analyze the given situation using the World
DB and performs a set of alternate calls of
Route-Request and Define_Tactical_Position pro-
ducing a number of alternate routes.

3. Course of Action(COA) Tree Generator,
using the set of alternate routes produced by the
SA, generates a COA Tree where the 1st level con-
tains alternative subunit or platoon combinations
and 2nd level contains alternative route combina-
tions. The following levels can contain other al-
ternatives such as varying the role of platoons in
different formations.

Figure 3 shows the COA tree generated by the
prototype. The SPLIT subtree describes the
course of action for a company where the com-
pany will be split up. Given that a company
has 3 platoons, the number of routes needed is
at most 3. If two platoons go one route and one
platoon go another, two routes are needed in to-
tal. If each platoon goes on a different route,
three different routes will be necessary. The 1st
level of this subtree will contain all the possible
combinations of splitting a 3 platoon company.
The heuristic used in this scenario is not to al-
low Platoon A to travel alone at any time since
Mis are considerably slower and lower power than
M2s. This restricts the SPLIT combination to 4
sets: (AC,B) (B,AC) (C,AB) (AB,C). From these

115

LEGEND

Canopy

31250 — Lake

32500
33750 i i River

^^

350O0 25000

Figure 2: Company mission and routes

combinations, the Create_COA_TREE generates
possible combinations of route sets. Since the
mission is SEIZE, at least one route should lead
the platoons to an ASSAULT.POS. These routes
are 3,4,5 according to figure 2. Thus, the pos-
sible set of route combinations are (3,1), (3,2),
(4,1) (4,2), (5,1), (5,2), (3,4), (3,5), (4,5). The
second level of route combinations in the COA
tree contains the routes that connect each of the
1st level routes to OBJ if possible. For example,
route 6 extends route 3 to OBJ. However, route
1 is not extended to the objective because it's a
SUPPORT_BY_FIRE position. The NO-SPLIT
subtree has a single subunit combination (ABC)
since no split up is allowed in the unit combi-
nation. Therefore only a single route set alter-
natives that lead to an assault positions (3,4,5)
are possible. The second level routes are (6,7,8)
respectively. No pruning is being done in the cur-
rent implementation but heuristics can be used
for pruning when necessary. Next, the COA Tree
Simulator is called with the COA Tree.

by each unit. In the current version, the enemy
unit is simulated in a very limited manner. The
enemy unit is assumed to remain stationary and
only engage in combat when an opposing force
unit has been sighted. The model that is used is
the Aggregate Combat Model [2]. An alternative
method is to allow the enemy units to have the
same planning capabilities as the friendly units
but with different tactics. This method would be
quite realistic, but it can be quite time consum-
ing. If computing capabilities are limited, we can
perform simulation at different levels of abstrac-
tion [8, 4] where each higher level will use less
computational power. The actual simulation al-
gorithm is as follows:

While (planner active) do
Update entity state variables
Perform line of sight (LOS) check
Engagement check
Update current clock time by AT

End While

4. The COA Tree Simulator takes each level of
the COA subtree and simulates each route and
calculates a score for each friendly platoon per
each route. This is done by creating a Simulated
World (SIMDB) and performing the simulation
of friendly and enemy units by time slicing be-
tween actions (move, look, fire) and observation

In low mobility areas or areas with a steep terrain
gradient, the movement is slower. Also, for some
terrain features, as with fords or chokepoints, a
simple queuing model can be executed to keep
track of entities that must wait for entities that
are blocking the path. Service times and speed

116

' n Bif r»n in r Alternative Subunit
„15 B,AC C,AB AB,C Combinations AJ

3,1 3,2 4,1 4,2 5,1 5,2 3,4 3,5 4,5 Alternative Route 3 4 5
Combinations (1)

Alternative Route
6,- 6,- 7,- 7,- 8,- 8.- 6,7 6,8 7,8 Combinations (2) 6 7 8

Figure 3: CO A Tree of the Demonstration Mission

IQI»

values are obtained by sampling from a probabil-
ity distribution appropriate for the blocked area.
A line of sight (LOS) check and range calculation
is done between the entity being simulated and
known enemy locations. If the enemy is within
range of certain weapons (such as a HEAT or
Sabot round), an engagement will ensue. The
simulation proceeds until either the plan has been
fully simulated, or the planner is interrupted.

The simulation result is recorded in the form of
an integer number, the evaluation score, which is
calculated using the following formula:

score = strength of unit + proximity to OBJ{%)

The overall simulation strategy is branch and
bound. Depending on the order of the calls, how-
ever, it is possible to simulate the COA tree in a
somewhat depth-first manner.

There are several advantages to using Simulation
to predict the results of plan execution.

(a) Simulation provides a uniform method with-
out resorting to adhoc solutions. In simula-
tion, each entity in the environment is simu-
lated in a uniform and consistent manner by
using models that represent both the phys-
ical and behavioral properties. Thus, sim-
ulating a plan is a natural consequence of
simulating each of the entities by itself with-
out having to worry about the global state
change as a result of each entities action.

(b) Because there is no central reasoning node
for the simulation but many individual sim-
ulation models for different entities, scalabil-
ity is a natural consequence. Extendibility is
another advantage simulation provides. The
effects of adding a new type of entity will be

clear, only the behavior models of each en-
tity must be updated to recognize and reason
about this new entity.

(c) Similar to how simulation is used for visu-
alization, simulation can be easily used to
perform visual playback of how a plan was
simulated to explain the planner's decision.

5. The Execution Monitor

The Execution Monitor is the main driver of the
Planning Behavior module. It issues a set of
chosen subtasks in the plan to each units in an
Oporder format and executes its own subtask if
there is any. If any Sitrep is received, it up-
dates the world DB with any new information
included in Sitrep such as sightings, destroyed
units and changed location of units. Then it calls
the Sitrep/Oporder Analyzer. If the decision re-
turned calls for immediate action, the control is
given to the REACTIVE behavior module. If it
calls for replanning, the SA is called to start a
planning process with the newly updated World
DB. Finally, if the decision is to give up plan-
ning at the current level, the CE sends a Sitrep
to its higher unit reporting of its current status
and waits for further orders.

3.1.4 Expert System

The mini Expert System module contains rules to
aid the planning process in making decisions such as
choosing routes, choosing best COA tree, performing
analysis of situations, Oporders and Sitreps.

4 Interface between Terrain Analyzer
and Planner

The Terrain Analyzer is the planner's only source
of information where terrain is concerned and thus

117

the planner uses the TA quite extensively dur-
ing the planning process. The TA is responsi-
ble for route planning, finding tactical positions,
computing Line of Sight and answering questions
about terrain features. The interface between the
TA and the planner is established by four types
of calls; Route-Request, Define_Tactical_Position,
Line_Of_Sight and Terrain-Feature.

5 Demonstration Mission Planning
Results

From Figure 2, we observe that any friendly units
traveling on route 4 is likely to engage in combat
with the enemy unit stationed at (45000, 46250). The
friendly unit may not be totally destroyed but consid-
erable amount of strength may be lost during combat
and therefore will result in a lower score. Thus, any
plan that includes route 4 will have lower scores com-
pared to other plans. The evaluation scores produced
by the mission planner for the demonstration mission
are listed below in the order of decreasing scores.

For the NO-SPLIT subtree: (Note that routes 1 and
2 are not considered since they end at Support_By_Fire
positions.)

Route 3 -> 6 : 128.0
Route 5 -> 8 : 128.0
Route 4 -> 7 : 89.8068

For the SPLIT subtree with platoon combination
AC,B: (Note for route combination 3,1 it means pla-
toons A and C travel on route 3 and platoon B travels
on route 1.)

Route 3,1 -> 6,- 158 000000
Route 3,2 -> 6,- 158 000000
Route 5,1 -> 8,- 158 000000
Route 5,2 -> 8,- 158 000000
Route 3,4 -> 6,7 152 525711
Route 3,5 -> 6,8 144 205093
Route 4,5 -> 7,8 116 941719
Route 4,1 -> 7,- 112 500000
Route 4,2 -> 7,- 112 500000

The planner chooses the plan with the highest score
and, in the case above, any one of the four highest
score plans can be chosen. A good approach is to
choose plans at random in such cases to display un-
predictable behavior.

6 Toward an experimental design

Since simulation-based planning is a fairly new
concept, we need to perform more in-depth studies
through various experiments to analyze the method-
ology thoroughly. For the experiment, we propose
to incorporate simulation-based planning into Soar.
The Soar architecture provides a stratified approach
to specifying, designing, and building Knowledge-
Based systems. The system is first described at the
knowledge-level, then at the problem-space level the
system is defined in terms of how the task is compu-
tationally accomplished, and finally at the implemen-
tation level. It supports metalevel reasoning which
allows the system to recursively reason about prob-
lems. Soar also integrates multiple problem-solving
methods and knowledge sources. Soar is well known in
the military simulation field through the Soar/IFOR
project [10] where Soar is being used to generate the
behavior of an automated agent for the Tactical Air
Simulation. No extensive mission planning is involved
in the project; the goal is to simulate the behavior of
a single pilot. A recent attempt by the Soar group
to solve the planning problem produced a methodol-
ogy called Multi-method planning. Realizing that no
one fixed method can solve a wide range of problems,
they proposed the use of different methods for differ-
ent problems. We further extend the idea of using dif-
ferent methods by employing simulation-based models
within the Soar planning framework. Instead of using
rule-based models to simulate and evaluate different
candidate plans, we will use models to simulate and
evaluate.

We will build two planning systems; one that em-
ploys the simulation-based models and one that is en-
tirely rule-based. Then, we will compare the results
through several problem domains. First, we will ex-
periment with classical AI problems such as the blocks
world problem and the machine shop scheduling prob-
lem. We will then experiment with the mission plan-
ning problem. The comparison criteria between the
two systems are (in no particular order):l) Speed -
number of plans generated per unit time. 2) Success
- the rate of success of plans. 3) Model complexity -
how easy is it to design, build and comprehend the
system model? 4) Maintenance - extensibility and
modifiability. 5) Reactiveness - ability to react dur-
ing or after the planning process. 6) Adaptability -
ability to adapt planning to dynamic changes of the
environment during planning.

In order for the experiment to be valid, we must
maintain several variables such as 1) Knowledge: the
set of knowledge that is used in both the planners

118

must come from the same source, 2) Data: the data
provided to the planner such as Terrain Analysis data
must be the same, and 3) Evaluation function: the
same objective function must be used to choose the
best plan. By successfully maintaining the 3 vari-
ables as above, we can ensure the validity of the
experiments—allowing us to observe the strong and
weak points of the systems.

7 Conclusions and Future Work

Through the design and construction of a C-based
simulation module which evaluates candidate plans
created by varying the route and subunit combina-
tions, we have shown how we are able to perform plan-
ning using simulation. By allowing the use of different
simulation models for different domains, the planner
has the potential to solve a wide-range of problems.
The simulation-based planner runs in real-time on an
IBM 486 PC. Our near term plan is to create and
run the experiments that was discussed in section 6
to thoroughly evaluate the simulation-based planning
method. After these experiments, we plan to apply
the simulation-based approach to other areas of plan-
ning such as traffic control.

8 Acknowledgment

This work was originally sponsored by the Institute
for Simulation and Training under contract #307043.

References

[1] M. Czigler, S. Downes-Martin, and D. Panagos.
Fast Futures Contingency Simulation: A "What
If Tool for Exploring Alternative Plans. In Pro-
ceedings of the 1994 SCS Simulation MultiCon-
ference, San Diego, CA, 1994.

[2] Paul Davis. Aggregate Combat Models. Technical
report, RAND Corporation.

[3] T.L. Dean and M.P. Wellman. Planning and Con-
trol. Morgan Kaufmann, 1991.

[4] P. A. Fish wick. An Integrated Approach to Sys-
tem Modelling using a Synthesis of Artificial In-
telligence, Software Engineering and Simulation
Methodologies. ACM Transactions on Modeling
and Computer Simulation, 2(4):307 - 330, 1992.

[5] P. A. Fishwick and B.P. Zeigler. A Multimodel
Methodology for Qualitative Model Engineering.
A CM Transactions on Modeling and Computer
Simulation, 2(1):52-81, 1992.

[6] P.A. Fishwick. Simulation Model Design and Ex-
ecution: Building Digital Worlds. Prentice-Hall,
Inc, 1994.

[7] C.R. Karr, R.W. Franceschini, K.R.S. Perumalla,
and M.D. Petty. Integrating Aggregate and Vehi-
cle Level Simulations. In Proceedings of the Third
Conference on Computer Generated Forces and
Behavioral Representation, pages 231-239, Or-
lando, FL., 1993.

[8] J.J. Lee, W.D. Norris, and P.A. Fishwick. An
Object-Oriented Multimodel Design for Integrat-
ing Simulation and Planning Tasks. Journal of
Systems Engineering, 3:220-235, 1993.

[9] Soowon Lee. Multi-Method Planning. PhD thesis,
Department of Computer Science, University of
Southern California, 1994.

[10] P.S. Rosenbloom, W.L. Johnson, K.B. Schwamb,
and M. Tambe. Intelligent Automated Agents
for Tactical Air Simulation: A Progress Report.
In Proceedings of the Fourth Conference on Com-
puter Generated Forces and Behavioral Represen-
tation, pages 69-78, Orlando, FL., 1994.

[11] P.S. Rosenbloom, J.E. Laird, and A. Newell. A
preliminary analysis of the Soar architecture as
a basis for general intelligence. Aritificial Intelli-
gence, 47:289-325, 1991.

[12] E.D. Sacerdoti. A Structure for Plans and Be-
haviour. Elsevier-North Holland, 1977.

[13] A. Täte. Generating Project Networks. In Fifth
Int. Joint Conference on Artificial Intelligence,
pages 888-893, Cambridge, Massachusetts, 1977.

[14] S. Vere. Planning in Time: Windows and Dura-
tions for Activities and Goals. IEEE Trans, on
Pattern Analysis and Machine Intelligence, pages
246-267, 1983.

[15] D.E. Wilkins. Domain Independent Planning:
Representation and Plan Generation. Aritificial
Intelligence, 22:269-301, 1984.

119

Session IG:

Planning and Decision Making II

Automated Path Planning for Simulation

Jed Marti and Christophe Bunn*
RAND

1700 Main Street, Santa Monica, California 90407

Abstract

Automated route planning over digital synthetic ter-
rain is of importance to systems involving simulated
human entities. Using a route planner whose sole cri-
teria is minimizing distance and elevation change, we
analyze the effects of terrain resolution on path quality,
and compare human and computer generated paths.
We conclude that with some measures, the computer
generated route plans are reasonably difficult to distin-
guish from human generated plans.

1 Introduction

Computer route planning provides the backbone for
automating simulated behavior of man and machines
on synthetic terrain. This paper addresses the effects
of terrain and path resolution on generated path qual-
ity and compares the results of automated planning to
human generated plans.

We are not so much concerned with the route plan-
ning algorithm itself as the data that drives it. Our ap-
proach exploits techniques borrowed from Geographic
Information System (GIS) technology. We empha-
size GIS operations over the limited area covering
the intended route. This allows us to tailor routes
to meet various requirements. We have experimented
with many characteristics such as exploiting available
ground cover to hide and avoiding or using terrain fea-
tures such as roads, rivers, and fords, the experiments
covered by this paper exploit only minimal elevation
change.

Conventional wisdom is that automated route
planning requires very high resolution terrain data.
Our experiments begin to quantify the relations be-
tween resolution, representation, and human gener-
ated plans.

Route planning is an important component of both
computer simulations and real world planning. Com-

* Currently at Logicon Strategic & Information Systems, 222
W. Sixth Street, P.O. Box 471, San Pedro, CA 90733-0471

bat simulations exploit route planning to automate
some of the drudge work normally associated with lay-
ing down many highly detailed plans or provide auto-
matic reactivity to changed situations. This technol-
ogy is also applicable to wild fire simulations, disaster
response planning, herd and swarm simulation, wilder-
ness road planning and the like [1, 2].

2 Background

The literature provides extensive analysis of auto-
mated route planning as a graph manipulation [3, 4,
5, 6, 7, 8]. Our system uses the A* algorithm to com-
pute a route over a uniformly spaced grid using costs
between grid points as the prime determinant. Gen-
eralizations of the algorithm to polygonal terrain have
also been considered [9, 10] and other metrics [11].

Existing GIS based route planning is typically
based on network representations such as that in
ARC/INFO [12]. Though our task can be converted to
a graph representation amenable to processing by such
systems, this poses the additional problem of integrat-
ing the GIS services into a large simulation system or
integrating our model into the GIS.

Similar work has examined robot motion plan-
ning [13]. Here the problem relies on much greater
resolution and vehicle geometry where space between
obstacles becomes a problem amenable to solution by
the Voronoi Diagrams [14, 15]. The dual of this prob-
lem is the mass movement of troops through terrain
with obstacles [16, 17]. Likewise, many modern com-
bat simulations and support tools provide automated
route planning to some degree. ODIN [18] provides
on-road route planning and limited assistance with off-
road planning to minimize river crossings.

Previous work attempted to tune a Neural Network
to emulate human paths taken from tracks recorded
during actual maneuvers [19]. However, this study was
unable to validate routes over terrain that the network
did not recognize. Artificial Neural Networks are also
used to solve navigation problems by modifying the

0-8186-6440-1/94 $04.00 © 1994 IEEE
122

weights of the different terrain features [20]. A study
of reconnaissance planning over polygonal terrain [21]
used a measure of success as the time spent to locate
targets rather than ensuring that human and machine
generated routes looked the same. Our measure of
success is making machine generated routes resemble
human generated routes.

3 Algorithm Structure

Our route planner requires 3 steps: 1) build a
matrix covering route end-points, 2) compute point-
to-point movement costs to meet route quality con-
straints, 3) compute the route plan that minimizes
cost. Our examination covers the characteristics of
steps 1 and 2. Minimal cost algorithms are covered in
the literature.

3.1 The Cost Matrix

We compute the cost matrix by examining terrain
data and the path type constraints. We base all paths
on minimum distance between two points modified by
various path constraints. For the purposes of these
experiments we limit the route planner to minimizing
elevation changes along the path.

The elevation minimizing hueristic assigns expo-
nentially increasing cost to slope. Tuning this slope
constraint to match human performance is the sub-
ject of our final experiment. For a slope weight A,
slope s and distance between two points d, we have a
cost matrix component C^j of:

CiJ=Me'r (1)

where f(d) is a linear function of distance, and the
constant ß is determined to be the greatest slope a
wheeled or tracked vehicle can comfortably climb. For
the purposes of experimentation, we initially chose
A = 10, which multiplies the cost by 10 when s = ß.

A typical route plan requires between 10 and 100
intermediate points. We first experimented with an
unrotated cost matrix that covers both the start and
end points. However, diagonal end points waste space
and time by exploring low likelihood routes far from
the central route. Likewise, the unrotated matrix re-
stricts the search area near the start and end points
for diagonal paths. As seen in Figure 1, rotating the
matrix to cover the start and end points results in
considerable space and time savings.

To minimize the size of the cost matrix, we deter-
mine the best rectangular ratios to cover the path ar-
eas. For a potential path between two end points we

Figure 1: The Rotated Cost Matrix Around Start And
Destination

Figure 2: Rectangular Cost Matrix Size

have the geometry of Figure 2 with the number of ex-
tra cells along the new path /, extra cells across the
path w and distance d in kilometers between the two
end-points Pi and P2.

In our experiment, we compute 1000 random paths
increasing the size of the cost matrix until the path
stabilizes. We establish two important parameters -
the extra elements needed along the path axis and
extra width needed. Over medium relief topography,
for 1000 paths selected at random, we find the maxi-
mum required extensions shown in Figure 3. As can be
noted, the extra length I is not a function of distance,
but w is. We selected,

/ = 3 (2)

w =
2v

+ .5

to increase the width as a function of distance and the
path resolution r. The width must increase because
longer paths cover more terrain and have more options
for divergence from the straight and narrow. We ex-
pect that the extra slop I may need to be increased for
rougher terrain than tested.

123

u- ,..■

8-

6-

4-

2 -

U i

1
1

2
i

3
i

4
i

5
i

6

Extra
grid
cells

d(km)

Figure 3: Width vs Height Experiment Over Moderate
Relief Terrain

200

CPU
seconds

End point distance d (km)

Figure 4: Path Length vs CPU Time

To quantify the advantages of the diagonal ap-
proach, we computed 1000 identical path end-points
with both rotated and unrotated matrices with the
results shown in Figure 4. As can be noted, the ro-
tated version provides superior performance for longer
paths beacuse fewer elements of the cost matrix are
computed and examined.

4 Path Quality Analysis

Our second set of experiments quantifies path qual-
ity by resolution and representation. We attempt to
answer the question, does increasing resolution lead
to convergence on a particular path and where should
the resolution be set? Second, is there a difference be-
tween using grid posts (flat tiles) and smoothed (in-
terpolated) data?

4.1 Comparing Interpolated to Grid Post
Elevations

We first experimented with two different elevation
representations. The simplest form, flat elevation tiles
with elevation at any point determined by rounding
coordinates to the nearest is speed efficient. The
more complex bilinear interpolation computes eleva-
tion from the four nearest points. Other research com-

1
a

-#0,1
•

■#1,1
•

t ■#0,0
•

•#1,0
•

(piu<ru) p <—

Figure 5: Elevation Grid Tiles

paring a quadratic spline representation to bilinear in-
terpolation suggests that results are identical but the
computation cost of the spline greatly exceeds that of
the bilinear interpolation [22].

Elevation values are stored in an array E[x,y].
Each integer point (x,y) corresponds to an average
measurement at a certain latitude and longitude with
the dimensions and coordinates shown in Figure 5.

The flat tile computation retrieves the appropriate
elevation ex,Y at longitude X, latitude Y by:

ex,Y = ■#
X - pu I I Y - <Tn M- (3)

P J L o"
with suitable checks to ensure the point lies within the
array boundaries.

Bilinear interpolation computes the coordinates of
four corner points surrounding the sample point as
shown in Figure 6.

»1,2/1 »2,3/2

X,Y

»0,3/0 »3,3/3

Figure 6: Interpolation Points

We compute elevation ex,Y by the equations:

SCO =
X - pu

,3/o
Y-<ni

»i = »o, 3/i=3/o + l

x2 = 5C0+ 1,4/2 = 3/0 + 1

S3 = »0 + 1, 3/3 = 3/0 (4)

e& = (X - (px0 + pu))

+E[x0, i/o]

et = (X - (px0 + pu))

■#[»3,3/3] - -#[»o, I/o]

#[»2,3/2]--#[»i,3/i]

124

100

50 75 100

Resolution (Meters) posts

Figure 7: Path Divergence Using Elevation Posts

+E[x1>yi]
Gf — Gh

ex,Y = {Y - (OT/O + o-«)) 1" eb (5)

To understand the effects of terrain resolution on
these representations we computed many paths and
compared their differences.

Our first experiment attempts to determine the
effects of terrain and path resolution on computed
paths. We vary the path resolution from 10 to 100
meters in steps of 5 for 30 random paths. We also
vary the terrain data resolution. For 30 paths selected
over a 6 x 6km area of Ft. Hunter-Liggett, we com-
pare path divergence for four terrain resolutions avail-
able: resampled 100m DMA DTED data, 64m, 16m
and 4m PEGASYS data. We computed average diver-
gence from the 10 meter resolution path to the others
for 31 uniformly spaced points on each. That is, if
F(d), G(d) are the locations at distance d along the
two paths, and /, g the path lengths, the divergence
is:

SS, *(&)<*(£)
31 (6)

Using elevation tile data provided the results of Fig-
ure 7. As can be seen, the divergence increases with
lower path and terrain resolution. Figure 8 shows two
example paths with identical end points computed at
25 and 150 meter resolutions over 64m resolution ter-
rain.

However, using the same data with the bilinear in-
terpolating function greatly decreases the effects of
both terrain and path resolution. Figure 9 was com-
puted with the same points and paths. Terrain reso-
lution has much less effect on path divergence when
using the bilinear interpolating function.

Figure 8: Identical End-Points, 25 and 150 Meter Path
Resolution

100

100

Resolution (Meters) interpolated

Figure 9: Path Divergence Using Bilinear Interpolated
Elevation

4.2 Effects of Relief

We now compare paths generated to minimize el-
evation changes with both versions to understand if
relief has an effect on the path divergence. Over the
four subjective terrain types all at 100m resolution we
also compute the standard deviation of terrain eleva-
tions (the number following the type):

High Relief:242 Mountainous desert terrain (Ft.
Irwin Military Reservation)

Medium Relief:35 Semi-mountainous rolling ter-
rain (Ft. Hunter-Liggett)

Medium Relief:39 Rolling terrain with numerous
river and creek valleys (Ft. Hood)

Low Relief:38 Flat with small features (Northeast-
ern Saudi Arabia).

We generated 30 random pairs of points and compared
the divergence of paths generated with both systems.
As before, divergence is the average distance between
the highest resolution path and the inspected path for
30 points evenly spaced on both paths. In Figure 10

125

100

o.2o ^

Avg. 0.15
Div.
km

0 25 50 75 100

Path Resolution (Meters)

Figure 10: Terrain Relief vs Path Resolution

the divergence is much more pronounced in the rugged
terrain of Ft. Irwin and Ft. Hunter-Liggett than the
flatter terrains. Unfortunately, the relationship to the
roughness measure (the standard deviation of all el-
evation points) is less clear. We will investigate the
Natick terrain classification [23] as a better indicator
of terrain roughness.

5 Tuning to Match Human Generated
Routes

Comparing our generated routes to actual human
performance is extremely difficult. We rejected "in
the field" experiments as too expensive and too diffi-
cult to control the route parameters. Likewise paths
generated during field exercises have hidden assump-
tions difficult to quantify in our context.

5.1 Experimental Approach

We opted for a two phase approach using two di-
mensional terrain maps. 23 test subjects were given a
short introduction to the task and a number of prac-
tice routes to familiarize them with the tool. They
were then given 30 start and end points to generate
routes and unlimited time. The subjects were never
shown either the computer generated routes, a pa-
per map, or told where the selected terrain is. The
subjects could backup the route, determine elevations
along the route and view a path elevation profile (see
Figure 11).

The first test compared human path planning with
elevation and distance the sole criteria. Subjects were
told:

"You are to plan the route between START
(point at the end of the green line) and

i! - " J

•

;sh": ■' * r \
11 %kx..\--"-;:: :'-:'-::::v': :'■:>::. ■ ^1:W$£$$Mm I

!:.':V'\ \. ''■'■-■■■■ '■'':'*S[:':'** -S-GrESSSSKiS: :*

Figure 11: Human Generated Route Planner Display

END (point at the end of the red line) for
a medium mobility vehicle for 30 randomly
generated sets of points. Your plan should
be the most efficient route between the two
points (which is not always a straight line).
Most efficient in terms of speed, fuel econ-
omy, driver fatigue, etc. ...

There are no enemy threats within the area."

We accumulated results from 23 human subjects,
21 males, 2 females, with disparate levels of military
and map reading experience. No attempt was made
to recruit a random population. 8 subjects had some
military map reading and route planning experience.
Most of the subjects had some ability to understand
contour maps.

5.2 Results

We first must understand the differences among the
human planners. If the computer route plans do not
differ significantly from humans, we can claim success.
We first compare two planners with the most recent
military route planning experience with the rest of the
subjects. In Figure 12 we compare their 30 routes for
average divergence with the other 22 subjects and sort
the subjects by average divergence. The top gray bar
indicates the maximum divergence range, and the bot-
tom gray bar the minimum divergence range. The sec-
ond planner had one or more routes with radical dif-
ferences to all other planners as indicated by a greater
maximum divergences for nearly all other planners.
This probably indicates that the second planner was
planning routes to avoid potential enemy positions.
His routes were generally quite different than subjects
planning on distance and relief.

We next tune the route planner to minimize its di-
vergence from the 23 human planners. As seen in Fig-
ure 13, the least divergence is at A = 4.0 (see equa-
tion 1).

126

10 15
J L

10 15 20
J I L

Avg.
Div.
(km)

0 5 10 15 20

Subject No. —>

0 5 10 15 20

Subject No. —>

Figure 12: Two Military Planners Compared To Other
Subjects

Avg.
Dist
(m)

10 15

Max. Slope Weight

Figure 13: Adjusting Maximum Slope Constant To
Match Human Plans

Finally, we compare the average divergence for the
A = 4 planner with the 23 human routes and a straight
line between the end points. Each point is an average
divergence between the "player" and all other players
including the computer and the straight line. This
measure of "averageness" is the degree to which a
player differs from all others. As seen in Figure 14,
the computer-generated route plans fall nearer the
"unique" end of the data, but still better than at least
15% of the subjects and the straight line.

6 Conclusions

From these experiments we draw several conclu-
sions:

1. Minimizing cost matrix size provides a significant
reduction in computation time.

2. Using bilinear interpolation of elevation generates
routes less sensitive to orientation and data gran-
ularity.

Avg.
Div.

0.09

0.08

0.07

0.06- Ooooo

0.05

Straight line ■

Computer •
ooooo

,o° ooo

0
"1 1 1 1
5 10 15 20 25

Subject No.

Figure 14: Human vs Computer Route Planning

3. Using higher resolution terrain data provides a
linear improvement in path quality for an expo-
nential increase in data space.

4. Increasing path resolution does not increase path
quality without a corresponding increase in data
resolution.

5. The route planning algorithm must be tuned for
different terrain reliefs (the cost matrix must be
larger for high relief terrain).

6. The route planner can be tuned to match human
performance for some measures.

However, three questions remain to be answered.
Can human subjects differentiate between human and
machine generated routes (the Turing test)? What
measure of terrain roughness can be used to tune the
planner's cost matrix size? Will route smoothing min-
imize differences between human and Machine gener-
ated routes [24]?

Our experiments pointed us to a number of incre-
mental improvements and experiments for the plan-
ner. First, creation of a "tracked vehicle" elevation
cost function that penalizes travel perpendicular to
the slope. Second, adding a cost to sharp turns for
wheeled and tracked vehicles to minimize the effect of
varying path resolution on the generation of switch-
backs. Finally, basing the route planner cost matrix
size on local contour and data roughness.

References

[1] J. Ross, "An expert system for soil erosion mitiga-
tion in logging operations on steep land," AI Ap-
plications in Natural Resources, Agriculture, and
Environmental Sciences, vol. 7, no. 4, pp. 69-70,
1993.

127

[2] D. S. Mackay, V. B. Robinson, and L. E. Band,
"An integrated knowledge-based system for man-
aging spatiotemporal ecological simulations," AI
Applications in Natural Resources, Agriculture,
and Environmental Sciences, vol. 7, no. 1, pp. 29-
36, 1993.

[3] E. B. Feinberg, "Characterizing the shortest path
of an object among obstacles," Information Pro-
cessing Letters, vol. 31, pp. 257-264, June 1989.

[4] R. Gould, Graph Theory. Menlo Park, California:
The Benjamin/Cummings Publishing Company,
Inc., 1988.

[5] D. B. Johnson, "Efficient algorithms for shortest
paths in sparse networks," J. ACM, vol. 24, pp. 1-
13, January 1977.

[6] N. J. Nilsson, Principles of Artificial Intelligence,
ch. 7. Palo Alto: Tioga Publishing Co., 1980.

[7] S. Ntafos, "The robber route problem," Informa-
tion Processing Letters, vol. 34, pp. 59-63, March
1990.

[8] R. A. Wagner, "A shortest path algorithm for
edge-sparse graphs," J. ACM, vol. 23, pp. 50-57,
January 1977.

[9] C. T. Cunningham, "Control of movement in an
arbitrary polygonal terrain," in Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation, pp. 307-315, In-
stitute for Simulation and Training, March 1993.

[10] J. S. Mitchell, "An algorithmic approach to some
problems in terrain navigation," Artificial Intel-
ligence, vol. 37, pp. 171-197, December 1988.

[11] K. Kanchanasut, "A shortest-path algorithm for
manhattan graphs," Information Processing Let-
ters, vol. 49, pp. 21-25, January 1994.

[12] Environmental Systems Research Institute, Inc.,
380 New York Street, Redlands, California, Un-
derstanding GIS The ARC/INFO Method.

[13] C. K. Yap, "Algorithmic motion planning," in
Advances in Robotics: Volume 1 (J. T. Schwartz
and C. K. Yap, eds.), Hillsdale, NJ: Lawrence Erl-
baum Associates, 1987.

[14] G. Voronoi, "Nouvelle application des parame-
ters continus ä la theorie des formes quadratiques.
Deuxieme memoire, recherches sur les paralleloe-
dres primitifs," Z Reine Agnew Math, vol. 134,
pp. 198-287, 1908.

[15] M. S. Chang, N.-F. Huang, and C.-Y. Tang,
"An optimal algorithm for constructing oriented
voronoi diagrams and geographic neighborhood
graphs," Information Processing Letters, vol. 35,
pp. 255-260, August 1990.

[16] L. R. S. Alexander, "Intelligent application of ar-
tificial intelligence," PHALANX, pp. 20-23, De-
cember 1991.

[17] J. B. Marti, "Cooperative autonomous behavior
over large scale terrain," in AI, Simulation and
Planning in High Autonomy Systems, reprinted
as RAND N-3130-DARPA, IEEE, March 1990.

[18] T. Stanzione, J. E. Smith, D. L. Brock, J. M. F.
Mar, and R. B. Calder, "Terrain reasoning in the
ODIN semi-automated forces system," in Pro-
ceedings of the Third Conference on Computer
Generated Forces and Behavioral Representation,
pp. 317-326, Institute for Simulation and Train-
ing, March 1993.

[19] T. Bui, D. Dryer, and M. Laskowski, «A neural-
network based behavioral theory of tank com-
manders," Tech. Rep. NPS-AS-92-015, Naval
Post Graduate School, May 1992.

[20] M. A. Penna and J. Wu, "Models for map build-
ing and navigation," IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 23, pp. 1276-
1301, September/October 1993.

[21] D. R. V. Brackle, M. D. Petty, C. D. Gouge, and
R. D. Hull, "Terrain reasoning for reconnaissance
planning in polygonal terrain," in Proceedings
of the Third Conference on Computer Generated
Forces and Behavioral Representation, pp. 285-
305, Institute for Simulation and Training, March
1993.

[22] D. A. Marlin, "Digital terrain evaluation study,"
tech. rep., Hughes Aircraft Company, P.O. Box
80028, Los Angeles, California, 1992.

[23] US Army Material Systems Analysis Activity,
"The Natick landform classification system,"
Tech. Rep. 100, US Army, Aberdeen Proving
Ground, MD, October 1974.

[24] M. Shah, K. Rangarajan, and P.-S. Tsai, "Mo-
tion trajectories," IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 23, pp. 1138-
1149, July/August 1993.

128

A Distributed Simulation System for Team Decisionmaking

Alan A. Song and David L. Kleinman
Department of Electrical and Systems Engineering

The University of Connecticut
Storrs, CT 06269-3157

Abstract

This paper gives an overview of a unique dis-
tributed, real-time simulation system for studying team
decisionmaking and coordination - the DDD (Dis-
tributed, Dynamic, Decisionmaking) paradigm. The
DDD paradigm captures the essential elements in real-
world decisionmaking problems and integrates them
into a controlled, computer-mediated, laboratory set-
ting. The DDD simulation system is implemented on a
network of UNIX workstations with real-time control,
on-line data acquisition, interactive graphical display,
and a simulated inter-human communication network.
With a highly reconfigurable user interface and a flex-
ible scenario generator, DDD has been used in many
team decisionmaking experiments with different prob-
lem context, including military command and control,
job scheduling, and medical diagnosis.

1 Introduction

In large scale systems that involve humans, ma-
chines, computers, etc., the problem scope and com-
plexity often requires that the decisionmaking func-
tion be distributed over several humans. Quite of-
ten such systems have a team of human decisionmak-
ers who are geographically separated, but who must
coordinate to share their information, resources and
activities in order to attain common goals in what
is generally a dynamic and uncertain task environ-
ment. Although problem contexts can be different
among various systems (e.g., military command and
control, electric power distribution, air traffic control),
the essential elements of decisionmaking remain the
same. In order to study problems such as those above
on a scientific basis, we have developed a unique dis-
tributed simulation system, termed DDD (Distributed
Dynamic Decisionmaking) paradigm, that abstracts
and simulates the essential elements of real world de-
cisionmaking problems.

Unlike existing large scale simulation systems such
as SIMNET [18] which stresses high fidelity, special-
ized, full scale simulation, the DDD paradigm stresses
the small team (typically with less than ten team
members) with an abstracted, low fidelity task envi-
ronment, and emphasizes the basic aspects of interac-
tion and coordination that are central to "teamness".
It simulates the real-world problems in such a manner
as to be amenable to study in a controlled laboratory
setting. The task environment in DDD is reconfig-
urable for different problem context. For example, in
our previous research, the system has been configured
as naval command and control, military situation as-
sessment, medical diagnosis, job scheduling in manu-
facturing systems, etc. The DDD system can be used
as a versatile tool for studying/training small teams
in military or industry.

The DDD paradigm is built upon the body of
knowledge we have accumulated during the last ten
years in performing model-driven, basic experimental
research [1] [2] [3]. As the backbone of our normative-
descriptive research for team decisionmaking and co-
ordination, the DDD paradigm has been used for more
than fifteen team-in-the-loop experiments, and proved
to be a very powerful empirical research and training
tool [6]-[17]. The DDD paradigm is implemented on
a network of UNIX workstations, with facilities pro-
viding real-time control and on-line data acquisition,
an interactive display/interface media, and a comput-
erized inter-human communications and information
network within which delay and occasional failure can
be manipulated. The simulation system can run on
workstations connected by a local area network, or
on remote workstations connected by Internet. Its
Xll/Motif based graphical interface is highly recon-
figurable (viz., for different problem context, the look
and feel can be very different). Currently, it can sup-
port up to seven-person hierarchical or parallel team
(expandable if desired). The DDD simulation system
has the flexibility to examine a variety of ways in which
information processing and resource allocation prob-

0-8186-6440-1/94 $04.00 © 1994 IEEE
129

lems can be solved by a team of decisionmakers (DMs)
under different organizational architectures and infor-
mation structures.

This paper gives an overview of the DDD simula-
tion system with an emphasis on newly developed fea-
tures that are not included in our early report [3]. The
remainder of this paper is organized into two sections
and a conclusion. In section 2, the team decisionmak-
ing environment is described, and the basic elements
of the DDD paradigm including resources, tasks, in-
formation, and responsibility are discussed. Section
3 reviews the main features of the simulation system
including system architecture, user interface, scenario
generator, experimental variables, built-in distributed
database, and training support tools. Finally, section
4 offers concluding remarks.

2 Basic Elements of DDD paradigm

The DDD paradigm is implemented as a computer-
driven interactive game among several decisionmakers
(DMs) who may be geographically separated (see Fig-
ure 1). In a real time simulation session, each DM sits
at a workstation which is capable of displaying the
tactical situation and sending/receiving information
to/from the other players. Team decisionmaking is
formulated as a process of allocating limited resources
to a variety of tasks in a dynamic and uncertain en-
vironment. Thus, the essential elements of team deci-
sionmaking are abstracted as: i) resources (e.g., ma-
chine tools, man powers, sensors, weapons, etc.), ii)
tasks (jobs to process, e.g., parts, unidentified targets,
enemy airplanes, etc.), iii) information (e.g., sensor
measures, intelligent sources, reports, etc.), and iv) re-
sponsibility (i.e., who should do what, at what time).
To achieve the team goal, co-acting DMs must pro-
cess distributed information to: i) estimate/identify
various task attributes, and ii) determine and sched-
ule their resources to process specific tasks. The DMs
are thus required to coordinate their information, ac-
tions, and resources in a timely and accurate manner.
Below we describe in more detail the salient elements
of the DDD paradigm.

2.1 Resources

Resources are basic elements of the system. A re-
source can carry other resources called sub-resource,
for example, a destroyer can carry some helicopters,
and the helicopters can carry some sonobuoys, etc. In
this way the resources can be nested down to any de-
sired level of detail.

Figure 1: The Distributed Dynamic Decisionmaking
Environment

The resources are divided into several classes de-
pending on the design parameters of the experiment.
All resources of a given class will have the same fea-
tures with respect to capacities (i.e., sensor range,
weapon strength, etc.). The only difference among re-
sources in a given class is the number of sub-resources
each carries.

The sub-resources are located on board their par-
ent resource. A sub-resource does not become an in-
dependent resource until it is launched from the par-
ent resource. The DM can launch one or more sub-
resources that will become available after a certain
launch time delay. The sub-resources can only stay
away from their parent for a limited time period. An
industrial example of resource/sub-resource could be
the manager (resource) that hires temporary employ-
ees (sub-resources).

The strength of a resource can be described as a
generalized vector which stands for strength in differ-
ent aspects. Each resource has its effective range. For
example, a sensor resource can have three ranges: a
detection zone, a measurement zone, and a classifica-
tion zone.

Each resource is controlled by the DMs who own
it(a resource can be owned by multiple DMs), and the
control of any resource may be transferred during the
simulation from one DM to another with an attendant

130

transfer time delay. 2.3 Responsibility Structure

2.2 Tasks

A team is presented with multiple tasks having dif-
ferent deadlines, processing times, attributes, and pri-
orities. During the real time experiment, tasks appear,
move/maneuver and disappear according to a scenario
that is under the control of the experiment designer.

The tasks are also divided into classes. For exam-
ple, we can have AA, AB, AN which may correspond
to different air targets such as a backfire bomber, a
bird, or a civilian airplane. The hostility of each task
class, i.e., whether they are threats or neutrals, can be
defined by the experiment designer.

Each task has an attribute vector a with elements
that characterize it quantitatively. For example, the
attributes can include strength, evasiveness, vulnera-
bility, etc. These attributes are random from task to
task, but have a probability distribution (mean and
standard deviation) that is unique to task class. The
resources r required to successfully process a task is a
mapping of the attributes of that task and will gener-
ally depend on task class.

Tasks can be processed in one or more operations,
each operation can be assigned to different DMs. Two
types of processing are possible: sequential and par-
allel. The sequential processing requires two or more
DMs to process in sequence, the next operation cannot
be started before the current one is finished, for exam-
ple, a part in a manufacturing line may need molding,
painting, and assembling. The parallel processing re-
quires two or more DMs (or resources) to process at
the same time, all required operations must be syn-
chronized to complete the processing, for example, to
diagnose a disease, all blood test, X-ray, and urine test
must be finished before the final decision can be made.

The DDD also includes complex tasks such as ac-
tive tasks and dynamically attributed tasks. An ac-
tive task can change its trajectory according to the
current situation and the treatment it received. A
dynamically attributed task can change its attributes
as a function of time and/or location of the task (for
a simple task, the trajectory and true attributes are
set by the scenario generator and remain unchanged
during the real-time session). These complex tasks
provide facilities to investigate team decisionmaking
and coordination issues in more complex and reactive
task environment.

The overlap in task processing responsibilities of
the team members can be adjusted based on the exper-
imental condition. Responsibility can be preassigned
in a variety of ways, e.g., by task class or by geo-
graphical location. Under the conditions of no overlap
we have a disjoint team requiring no coordination in
task processing. As overlap is increased, conflicts in
the overlapping areas of joint responsibility will occur
which will need to be resolved through coordination.
A new feature of the DDD is the ability to modify on-
line task responsibility on a task-by-task basis. Thus,
the responsibility for individual task prosecution can
be (re)assigned dynamically by the team leader.

2.4 Information and Communication

Information and communication are two major as-
pects in team decisionmaking and coordination. Dif-
ferent structures of information/communication and
their impacts on decisionmaking are important re-
search issues. The DDD paradigm provides a variety
of mechanisms to manipulate information and com-
munication.

The information structure of the team can be ma-
nipulated easily via the DDD paradigm. This is imple-
mented by establishing an information network within
the simulation system. Every DMs can be assigned a
level of "tie-in" to the information network depending
on different task. A high level of "tie-in" means that
the DM can get almost all measurements obtained by
other DMs, and a low level of "tie-in" means that the
DM can only rely on his own resources. Therefore, a
centralized, a partially centralized or a decentralized
information structure can be accomplished by setting
different network "tie-in" levels by task type for differ-
ent DMs. Furthermore, different roles in a hierarchical
team may have different levels of information aggrega-
tion. For example, a team leader may have informa-
tion on overall situation without details, in contrast,
a subordinate may have information on detailed local
situation within his responsibility.

Communication among DMs is the major way in
which the team members can share their local infor-
mation, and coordinate actions on resource transfer
and task processing. In DDD paradigm, communica-
tion between different DMs is mainly carried out by
electronic messages (Verbal exchanges based on multi-
person communication/recording system can also be
incorporated to the DDD paradigm, see [16]). In order
to simplify the data analysis, all electronic message are

131

Preformatted. Our underlying model for the commu-
nication channel contains a variety of features that are
important to human decisionmaking. To simulate the
communication and data processing delay in real situ-
ations, a (random and/or fixed) time delay in message
transfer was introduced. To simulate the limitation on
communication capacity (or channel access), the num-
ber of communications (N) in a fixed time window (T)
can be specified. Message loss and information scram-
ble due to the network failure can also be simulated
within the DDD. Finally, the communication network
structure can be defined by a communication matrix,
i.e., who can communicate with whom.

WS/Global
process

5 Network Sf

»I
WS/Local
process1

(
WS/Local
process7

^ 721
«» Locals

User 7
Interface

Figure 2: The Architecture of the DDD Paradigm

3 The Features of DDD Paradigm
3.2 Interactive Display

3.1 System Architecture

The general architecture of the DDD environment is
shown in Figure 2. The DDD paradigm runs on a net-
work of UNIX workstations. In a real-time simulation
session, eight (or more) processes run concurrently on
different Workstations, with all of the control and com-
munication information traffic carried over network.
In the figure, Global is a process that works as the
"control center" for the environment by controlling the
clock and timing, synchronizing the other processes,
and sending out various control messages according to
the experimental scenario. Each Local Process con-
trols execution within a workstation (WS) and inter-
acts with the User Interface and the Global Process.
Each User Interface receives commands from a DM
and displays the dynamic tactical situation. The Sce-
nario Generator is used for assisting the experimental
designer in developing various system parameters for
a given experiment.

In the DDD environment, the global and local
processes are implemented via a message-passing ap-
proach. Each action of the DM is composed of certain
events transferred in the form of messages. For exam-
ple, when a display object receives a "process" com-
mand issued by DM through a mouse/keyboard event,
it sends a message "PROCESS EVENT" to a local
database object that triggers the method "process"
which in turn sends a message to the global process
and then other local processes to update the state of
all relevant objects. Thus, synchronization is achieved
via the LIFO queueing and processing of messages.

The user interface in DDD is very flexible. While
all the facilities for decisionmaking are basically the
same, the look-and-feel can be different according to
different problem contexts of the scenario. Some ex-
amples of display at an individual node are shown in
figure 3 and figure 4. Figure 3 is the screen of our ba-
sic paradigm [2] [3], three types of targets are shown
on the screen: air, surface, and submarine; the re-
sources are ships and airplanes, and sub-resources are
helicopters. Figure 4 is a screen form our REST (Re-
ward Structure) experiment [11], where triangles and
circles represent targets assigned to different decision-
makers (combined triangle and circle means two DMs
are responsible for the target). In these figures, the
screen is divided into four major parts: the main dis-
play, the status panel, the communication panel and
the prompt panel. The main display displays the ob-
jects that represent resources and targets. Different
targets arrive and move according to a experimenter-
defined scenario; targets must be processed within a
limited time window. All commands related to the
objects can be issued by pull-down menus, pop-up
windows or double- click associated with the objects.
The communication panel is composed of an incoming
window which is used to display the messages from
other players, and an outgoing window which is used
to display the feedback information when a message
is sent out. The status panel is used to display the
current time, strength and the dynamics of resource
transfer/utilization. The prompt panel is used to dis-
play prompts or error messages. All the display icons,
menus, windows and messages can be modified or tai-
lored according to different experimental designs.

132

Figure 3: The Screen of the Basic DDD paradigm

-«-

I: Ml: Could you pro»» ti*k
",: Wl: Could you proctat tlik M-M S0DN7
l! Wi! I pim to proem U)k M-37 WKT.

Figure 4: The Screen of the REST Experiment

3.3 Scenario Generator

A scenario generator has been developed to assist
the user in setting up the experiment. It is used to
configure the resources, to define the tasks, and to de-
sign the movements of tasks. The scenario generator
is capable of representing a stochastic and imperfectly
known environment. For example, unexpected or low
probability events can be introduced, and false infor-
mation and/or false threats can be employed to per-
turb the system. The intention is to represent a world
that is difficult to predict, in which a hostile adver-
sary introduces uncertainties into one's estimation of
the current state of the system, thus making inferences
about future states rather unpredictable. All task ar-
rival times, task arrival positions, and task movements

can be either automatically generated according to
a certain random function, or a certain pattern, or
specifically designed on a task by task basis.

Two interfaces are provided for the scenario gener-
ator. The first one is a flexible experiment description
language, XS language, which can be used to define
the "rules" of the DDD game, describe the resource
and the task environment. Three types of items can be
described via XS language, they are: 1) general items;
2) resource information; 3) task information. In gen-
eral items one can set the overall features of the exper-
iment, such as the numbers of DMs, simulation time
and communication delay etc. In resource information
one can describe the characteristics of the resources
such as maximal velocity, strength, and ranges, etc.
In task information one can define task attributes, the
resource required to prosecute the task, the decision-
makers who are able to see or process the task, etc.;
one can also describe the task arrival times, initial po-
sitions, velocities, and the maneuvers of the tasks.

A graphical active database modeling tool for sce-
nario generation has also been developed [5]. This
tool has utilized data modeling techniques to correctly
and precisely specify large amount diverse, intricate,
and interdependent information including the struc-
ture of the decision team, the sharing of data, the in-
teraction and exchange of data among DMs, and the
data required by the different DMs. Furthermore, the
structural information can be graphically specified by
the experimenter, and changes in structural informa-
tion automatically cascades to investigate changes of
related information throughout the experimental sce-
nario, resulting in time saving and consistent design.

3.4 Experimental Variables

The DDD paradigm is powerful enough to manip-
ulate a variety of independent variables(IVs) that al-
low for the study and evaluation of different command
and control configurations. Some of the major IVs
are: i) internal variables (team structure, responsi-
bility structure, information structure, and communi-
cation structure), and ii) external variables (tempo,
uncertainty, resource quantity, information quality).

The number and type of dependent variables (DVs)
this paradigm can handle is quite flexible. To date,
over 100 performance, strategy, coordination, and
workload measures have been collected and analyzed
in various experiments.

All essential operations taken by the DMs are
recorded in a log file. This file can be used to generate
various dependant variables and statistics. Another
important function of this file is that it can be used in

133

play back mode to automatically replay the game for
review.

3.5 Distributed Database

The DDD paradigm includes different resources,
tasks, coordination tools, decision tools, display tools,
and an on-line data acquisition tool. All of these as-
pects involve different kinds of data that are too com-
plex to manage without using proper database tech-
niques. The requirements for the distributed database
can be illustrated by the following DDD features:

• Response Time Requirement: Dynamic decision-
making actions usually have stringent response
time requirements. The conflict between time
limit and the system's response becomes more sig-
nificant due to the network communication delays
and the time necessary to update many graphical
displays and data items.

• Concurrency Control: Several DMs may fre-
quently read/write some related database re-
sources concurrently. Thus, concurrency control
under time pressure is critical to the system.

• Low Computational Overhead: The DDD envi-
ronment is both compute-intensive and data- in-
tensive. The main body of the environment is
devoted to simulation. Thus, the computational
overhead of a database management mechanism
must be kept low so that the system can properly
handle the real-time decisionmaking actions.

• Complex Data Types: The DDD environment
requires a database that handles complex data
types, captures the structure of the data, and
considers the operational semantics of the data
objects.

The built-in database in DDD has considered all
above aspects. To meet the real-time requirements,
the database in DDD was designed as a partially repli-
cated distributed database with a priority based trans-
action management mechanism incorporated. To han-
dle the shared access requirements, we used a hybrid
method that combines a priority based concurrency
control policy with a certain distributed locking mech-
anism, so that the system can process transactions
within soft deadlines while guaranteeing that the data
consistency is not violated. To handle complex data
types, we used the object-oriented data model which
has a clear advantage over the classical data models,
particularly from the perspective of conceptualizing

the information and transitioning from the conceptu-
alization to an implementation. The database man-
agement mechanisms we have used has proved to be
very effective in supporting our real-time distributed
dynamic decisionmaking experiments [4] [5].

3.6 Training Support Features

A global control panel was developed so that the
experimenter can control the pace of an experiment.
Using the control panel, the experimenter can pause
or continue the scenario, speed up or slow down the
game clock. A play back mode with fast play and
slow motion capability was also built in. These fea-
tures provide useful tools for instructors. According to
different training requirement, the feedback informa-
tion can be designed based on the dependent variables
that collected and computed on-line. The information
can be chosen to be displayed on a task by task basis,
on a per game basis, or by time period, with graphical
and/or numerical form. Because of the large amount
of dependent variables collected, we can choose the
optimal feedback information among them according
to different instructional needs. These features have
been proved to be very effective for subject training
in our past experiments.

4 Conclusion

The DDD paradigm we have developed is a generic
paradigm that characterizes team decision processes
in which limited, shareable resources must be allo-
cated to identify and process tasks in a dynamic and
uncertain environment. It is a research/training tool
amenable to systematic and scientific study while re-
taining the essential features of real-world tactical de-
cisionmaking. The DDD paradigm has been used ex-
tensively in our research. In over fifteen experiments,
DDD has been proved to be a flexible, easy to use, yet
versatile tool for studying distributed decisionmaking
in small team configurations. It has enabled us to em-
pirically study numerous issues and test model-driven
hypotheses in distributed decisionmaking and coordi-
nation. The DDD paradigm is currently used as the
main test-bed for our research that studies the adap-
tation of organizational structure to task environment
which is an important step in reaching longer term
goals such as the development of a computational the-
ory of organization design, and the understanding of
how to design organizations of intelligent agents for
high performance.

134

Acknowledgements

The work reported here was supported in part by
the Office of Naval Research under contracts N00014-
90-J-1753 and N00014-93-I-0793.

References

[1] D. L. Kleinman, D. Serfaty, and P. B. Luh, "A Re-
search Paradigm for Multi-Human Decision Mak-
ing," Proc. 1984 American Control Conference ,
pp. 6-11.

[2] A. Song, D. L. Kleinman and D. Serfaty, "A Re-
search Paradigm for Studying Naval Team Deci-
sionmaking," Proc. 7th Annual Workshop on Com-
mand and Control Decision Aiding, April 1990.

[3] D. L. Kleinman and A. Song, "A Research
Paradigm for Studying Team Decisionmaking and
Coordination," Proc. 1990 Symposium on Com-
mand and Control Research, June 1990, pp. 129-
135.

[4] A. Song, S. A. Demurjian and D. L. Kleinman,
"Transaction Management and Object-Oriented
Modeling in a Distributed Dynamic Deisionmaking
Environment," Proc. 1994 ACM Computer Sci-
ence Conference, March 1994.

[5] S. Demurjian, M.-Y. Hu, D. L. Kleinman and A.
Song, "ADAM/DDD - An Application- Specific
Database Design Tool for Dynamic Distributed
Decisionmaking," Proc. IEEE International Con-
ference on Systems, Man and Cybernetics, October
1991, pp. 2079-2084.

[6] J. Shi, P. B. Luh and D. L. Kleinman, "A
Normative-Descriptive Study of Information and
Command Strategy in Distributed Team Resource
Allocation, Part 1: Experiment Design," Proc.
1990 Symposium on Command and Control Re-
search, June 1990, pp. 48-53.

[7] W. P. Wang and P. B. Luh, "Task Sequencing
within a Distributed Human Team: Experimental
Paradigm and Normative Modeling," Proc. IEEE
International Conference on Systems, Man and
Cybernetics, Nov. 1990, pp. 413-417.

[8] P. Nodoushani, D. L. Kleinman and D. Ser-
faty, "Performance Feedback and Cooperation in
Teams," Proc. 1991 Symposium on Command and
Control Research, June 1991, pp. 140-148.

[9] J. A. Effken and R. E. Shaw, "Coordination in
an Intensive Care Setting," Proc. 6th International
Conference on Event Perception and Action, Au-
gust 1991, pp. 289-292.

[10] A. Pete, C. Rossano and K. R. Pattipati, "Dis-
tributed Binary Detection with Different Local Hy-
potheses," Proc. IEEE International Conference
on Systems, Man and Cybernetics, Oct. 1991, pp.
2023-2028.

[11] P. Shi, P. B. Luh and D. L. Kleinman, "Modelling
Human Distributed Decisionmaking with Individ-
ual Objectives," Proc. 30th IEEE Conference on
Decision and Control, Brighton, UK, Dec. 1991,
pp. 1225-26.

[12] T.-M. Tang, P. B. Luh and D. L. Kleinman, "Co-
ordination with Constrained Resources: A Model-
ing Framework," Proc. American Control Confer-
ence, June 1992, pp. 1978-1979.

[13] J. N. Lin, A. Song, D. L. Kleinman and P. B. Luh,
"Hierarchical Team Coordination Under Task Un-
certainty: Experiment Design and Petri Net Mod-
eling," Proc. 1992 Symposium on Command and
Control Research, June 1992, pp. 57-64.

[14] V. Raghavan, K. R. Pattipati and D. L. Klein-
man, "Partial Observability and Information Co-
ordination in Teams (POINT): Experiment and
Modeling Framework," Proc. 1992 Symposium on
Command and Control Research, June 1992, pp.
115-120.

[15] K. A. Majalian, D. L. Kleinman and D. Serfaty,
"The Effects of Team Size on Team Coordination,"
Proc. IEEE International Conference on Systems,
Man and Cybernetics, Oct. 1992, pp. 880-886.

[16] S. P. Kalisetty, D. L. Kleinman, D. Serfaty and
E. E. Entin, "CHIPS: Coordination in Hierarchical
Information Processing Structures - Experiment
and Modeling Framework," Proc. 1993 Symposium
on Command and Control Research, July 1993.

[17] A. Pete, K. R. Pattipati and D. L. Klein-
man, "Team Relative Operating Characteristic: A
Normative-Descriptive Model of Team Decision-
making," IEEE Trans, on Systems, Man and Cy-
bernetics, Vol. 23, No. 6, Nov./Dec. 1993, pp. 1626-
1648.

[18] C. M. Kanarick, "A technical Overview and His-
tory of the SIMNET Project," Proc. SCS Multi-
conference, Jan. 1990, pp.104-111.

135

The Fire Support Automated Test System (FSATS): An Approach to Distributed
Command and Control Simulation

Martin D. Howard
Applied Research Laboratories

The University of Texas at Austin

Abstract

The Fire Support Automated Test System (FSATS) is
being developed by the Program Manager, Instrumenta-
tion, Targets, and Threat Simulators (PMITTS) to provide
a full suite of instrumentation capabilities to support the
technical and operational testing of United States Army
Fire Support Command and Control (C2) Systems. The
keystone of FSATS is the capability to simulate the tactical
messaging of selected C2 nodes and to distribute this sim-
ulation over geographically dispersed hardware platforms
to obtain a realistic distribution of tactical processes and
communications. This simulation is based on a series of
behavioral models specifically developed for use within
this system. The FSATS simulation analyzes the content of
tactical messages received and generates an appropriate
tactical message in response. While principally developed
for the test support role, the benefits and ease of extending
this simulation technology into the training role is clear.

1. Background

Recent years have seen an explosive growth in the use
of simulation technology to achieve low cost solutions to
training problems within the Department of Defense.
Attempts to extend this technology into other technical
areas has met with only moderate success, since a signifi-
cant amount of the emphasis in training simulation has, in
the past, focused on the man-machine interface necessary
to conduct individual training. This feature, although
essential in the individual training role, assumes a lower
priority when applying simulations to service applications
such as collective training, system testing, and evalua-
tions.

Once such application utilizes simulation as an effec-
tive cost reduction mechanism in support of the technical
and operational testing of today's evolving U.S. Army
Command and Control (C2) systems. The Army's develop-
ment of automated C2 systems is critical to meet the
increased tactical efficiency demanded of today's force in
the face of the changing threat and continued downsizing.
These C2 systems are tactically employed in a network of
cells (or nodes) across the operational area, and each is
intended to perform a specific function or series of func-
tions to support the overall battle. Using tactical intelli-
gence and information to provide the basis for decision-
making, C2 nodes are data-driven and utilize tactical mes-
saging as the principle means of exchanging information.

Since tactical communications provide the primary data
path between nodes, the simulation of any portion of the
C2 network must support this data exchange. Hence, a
simulation system which emphasizes a visual-based simu-
lation does not apply. For these reasons, the development
of FSATS pursued a simulation based on the tactical mes-
sages used by the target C2 system. The concept of mes-
sage-based simulation is certainly not founded with
FSATS, but this was the first application of this simulation
approach to support a distributed and reusable simulation.

Past simulations developed to support system testing
and training were hosted on a single mainframe system
which contained multiple established communications
pathways to the tactical C2 system, normally referred to as
the "System Under Test" or SUT. Simulation of this type
were rigid and confined, normally supporting a single
exercise configuration in a controlled environment. While
suitable for technical testing with predefined goals, this
type of simulation does not readily support the needs of

ISBN 0-8186-6440-1. Copyright (C) 1994 IEEE. All rights reserved

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to info.pub.permission@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it.

0-8186-6440-1/94 $04.00 © 1994 IEEE
136

the operational tester or the trainer, who relies upon tacti-
cal realism and multiple excursions and configurations to
fully assess the suitability of the overall C2 system.

FSATS was designed to provide a distributed, message-
based simulation which could be employed in the exercise
environment in a manner similar to that used for the target
C2 system. Therefore, the FSATS design incorporated fea-
tures to address these critical functional needs and to pro-
vide reusability and reconfigurability to it user.

2. Message-Based Simulation

The simulation domain of the FSATS system will even-
tually encompass all tactical messages utilized by existing
and planned Fire Support C2 nodes. A careful analysis of
the functional requirements of each node within this mes-
sage domain will result in a finite set of messages with
which the simulation for each node will need to interact.
These messages may be categorized as either input mes-
sages, to which the simulated node must respond, or as
output messages, which form the individual portions of the
simulated node's response.

A key design goal of tactical C2 systems is to automate
the routine extraction of data from incoming messages and
to manipulate that data into a form which may be clearly
presented to the human operator of the node as a decision-
making aid. These manipulations may take several forms,
such as rearranging or expanding of text for display, con-
version of text into graphical displays, or performing rou-
tine functions designed to replace repetitive processes
normally performed by the operator. Therefore, any simu-
lation of a C2 node's behavior must properly account for
all aspects of this automated data handling, as well as suit-
ably represent the human decisions and actions which
would normally occur. In addition, the output message(s)
normally generated as a result of this decision must be cor-
rectly populated with data, converted to an appropriate
syntax, and properly presented to the message handling
protocol.

Groups of tactical messages between nodes relate to a
single mission being performed in support of the overall
battle. This group of messages represent a single Fire Sup-
port mission, commonly referred to as a "mission thread".
Each of these tactical messages consists of several pieces
of tactical information or data which define the ongoing
state of missions flowing through the overall system. The
nodal simulations must trap and record this information to
be able to access the current state of each individual mis-
sion. Thus, each nodal simulation makes use of a series of
tactical state tables to record the dynamic data associated
with each mission. This same data is also used to populate
the output messages generated by each model.

3. The Nodal Logic Model

The FSATS simulation is based on a conceptual model
derived to meet the needs of a message-based simulation.
The model, shown in Figure 1, is defined in terms of input
events and output events (messages) and/or state changes.
The generic actions shown, when taken as a whole, repre-
sent the interpretive logic inherent within each nodal
model. These logic actions execute serially in response to
the input event received.

Output Event»!

ACTIONS
1. Receive Input
2. Assess State
3. Determine Path

Input ^"| 4. Update State
Event \ 5. Compose Output

6. Transmit
7. Timeout Activity^

Output
Event #2

Output Event #3

Figure 1: The Nodal Logic Model

When an input message is received, the data within the
input message and the current mission state contained in
the tactical state tables is compared against a rule set to
determine the single logical pathway to be followed.
When a specific path is selected, a series of response
actions is instantiated to perform state table updates and to
generate output messages. When the response actions are
completed, the nodal simulation will enter a state waiting
for its next expected event. Each pathway may have a
timeout activity associated with it, which is used to per-

form file cleanup and activities to continue a mission
thread if, for some reason, an expected input event does
not occur.

Extreme care must be taken when defining the logic
contained within the Nodal Logic Models. As C2 systems
move into the realm of more sophisticated communica-
tions and data formatting, consideration must be given to
the data preprocessing which occurs in the systems being
simulated.

The Nodal Logic Model is deterministic in nature,
which is essential to effect a suitable simulation which can
be implemented in software. Nodal simulations must
behave in a predictable manner to ensure exercise repeat-
ability and to properly assess the behavior of the live
nodes which make up the SUT. Random events are not
precluded from the Nodal Logic Model but must be care-
fully integrated into the rule set which is used to determine

137

response pathways. In this manner, random events may be
considered without destroying the overall deterministic
character of the basic model.

4. Design and Implementation Strategy

The development of FSATS is progressing in parallel
with the development of the C2 systems it is intended to
support. The emerging design of these systems, as well as
user requirements, has driven some key design issues
which add benefit and robustness to the resulting simula-
tion.

4.1 General Design Strategy

The FSATS requirements for a reusable and distributed
simulation were key elements in the decision to utilize a
modular, object-oriented approach to the design. Each
nodal simulation is defined as a specific object and can be
allocated to and de-allocated from specific processors at
will. The interfaces between these simulation objects mir-
ror the tactical messages which would be sent between
their respective live nodes.

The current FSATS simulation was implemented using
data-defined logic records which are manipulated by a
runtime interpreter. This decision minimizes the impact of
changes brought about by the emerging design of the sup-
ported C2 system and the emerging logic models them-
selves. The design is therefore easily adaptable to other
applications and to future enhancements. Several enhance-
ments have already been identified to allow this simulation
to meet other needs, such as training.

The deterministic nature of the nodal logic models
lends itself to a reimplementation of this simulation using
a rule-based expert system. Hence, a design was incorpo-
rated which would minimize the workload necessary to
transition to this technology. This design enhancement is
currently under consideration.

Since the simulation consists of many functions which
are repetitive in nature, such as extracting data from mes-
sages and using it to update the tactical state database,
FSATS has emphasized the use of reusable software com-
ponents called common actions. These common actions
are highly modular, which supports the maintainability of
the simulation.

4.2 Maintenance of the State Information Data-
base

FSATS operates as a flexible, distributed simulation
which allows the assignment of simulated objects to the
various FSATS processors. All simulated objects within a
given processor have access to two types of database

tables used to support the simulation. A master set of
tables contain data (normally static) applicable to all simu-
lated objects. A second set of tables contain the dynamic
tactical state information used to affect the logical behav-
ior of the simulation models and populate tactical mes-
sages.

The current FSATS implementation makes a unique set
of the master tables available to each processor. Changes
to these tables are currently limited to those performed
directly by the FSATS operator during planning or during
pauses in the execution of the scenario during runtime.
These limitations are necessary due to a lack of any suit-
able data exchange media to provide either a pathway for
the distributed processors to gain access to a single master
database or a pathway to accurately update any distributed
set. The tactical communications paths cannot be used for
this purpose, since the system requirements dictate that
FSATS not alter the tactical performance of any node or
network. Future versions of FSATS may incorporate an
instrumentation network, which will provide a suitable
means of manipulating a distributed database.

The process used to update the dynamic state tables
must be carefully defined and controlled. Although distrib-
uted simulations normally share database information, this
concept of global access is not applicable to an effective
C2 simulation. Since multiple nodes on a given processor
can see the data within these dynamic tables, the access
must be carefully controlled to ensure that a state update
performed by one node cannot be used by another, prior to
that node receiving a suitable tactical message which
would result in that update taking place in a normal fash-
ion.

For example, if Node A conducts a tactical move and
updates its location within the dynamic tables, Node B
should not be able to access that new location until a mes-
sage is received which indicates to Node B that Node A is
in a new location. This phenomena has required FSATS to
maintain state information peculiar to individual nodes, as
well as other information which represents "ground truth."
For reasons similar to those discussed for the master
tables, the ground truth information will only be accurate
within the data structure which resides on one specific pro-
cessor. The instrumentation network will provide a solu-
tion to this problem as well.

4.3 Event-Driven Reactive Simulation

The nodal logic which forms the basis of FSATS was
created to produce a reactive type simulation, which will
respond in a manner suitable to the current state of node
being simulated and the nature of the input event it is sub-
jected to. This feature of FSATS makes it possible for the
simulation to support a given exercise without the need for

138

operator intervention. Scripted events in the form of a
Time-Ordered Event List (TOEL) may be used by a simu-
lated node to initiate selected missions, but no operator
decisions or actions are required to adequately respond to
the input messages received by the simulation. The TOEL
events merely represent a human decision to identify and
initiate a mission which the overall system need perform,
and to provide a entry route of the mission-related data
into the system to replace the keyboard entry normally
performed by the operator.

4.4 Time Synchronization

Although FSATS operates principally as an event-
driven simulation, the overall simulation functions within
a scenario specified by artificial time limits. Also, a signif-
icant number of the mission threads require a knowledge
of the time in which the controlling nodes operate. Hence,
it is imperative for the distributed simulated nodes to gain
and maintain a single concept of time.

FSATS utilizes the Global Positioning System (GPS) to
maintain time synchronization within the simulated nodes
within a single millisecond accuracy. The Universal Time
Coordinated (UTC) provided by GPS is available to all
FSATS processors, since each target system contains an
antenna and the necessary GPS hardware. An offset value
is calculated to convert this UTC into a valid scenario
time, which is available to all simulated objects.

4.5 Simulation Control

While operator intervention is not desirable to maintain
the simulation's progress, there remains a critical need for
the FSATS user to be able to control the execution of the
exercise being supported. These needs include the ability
to control the pace of the exercise, as well as pausing,
stopping, and resuming the exercise. However, the simula-
tion objects must operate exclusively in real time.

The reactive nature of the simulation models and the
sensitivity of the tactical messages with regard to scenario
time necessitated isolating the software object which con-
trols the injection of the TOEL messages into the scenario.
This software object, known as the TOEL_Server, may be
altered to vary the speed (as a function of percentage of
real time) that the messages required to initiate missions
are injected into the simulated objects. This allows the
user to control the rate of scenario execution without
affecting the real-time performance of the simulated
nodes. Additionally, the TOEL_server (as the object is
known) may be halted independently, which allows the
simulated nodes to continue to respond to the tactical mes-
sages generated by the live node until all mission threads
have been terminated in a normal fashion.

4.6 Simulation Abstraction

As the size of the message domain grows - with the
addition of new systems, formatted messages, and com-
munications protocols, - the simulation must be able to
operate properly in an increasingly complex dynamic
environment. A key to success has been in maintaining the
concept of simulation abstraction, as shown in Figure 2.
This abstraction allows other software components to nor-
malize the incoming tactical message into an internal data
form which may be utilized by the simulation software. In
this manner, the simulation is more adaptable to changes
in tactical messaging and to integration with other sys-
tems, and it is far more easily maintained.

Figure 2: Simulation Abstraction

When an incoming message is received by FSATS, a
software component known as the Tactical System Inter-
face (TSI) performs the routine protocol handling. The
contents of the tactical message are then sent to the Tacti-
cal Message Translator (TMT) which converts the bit
stream received into data types which can be used by the
simulation. Additionally, since FSATS deals with multiple
message formats, data sets, and message handling tech-
niques, the data is normalized to store the state informa-
tion in a single common form.

The simulation engine provides additional abstraction
for the simulation, as well as promoting software reuse
and modularity. The simulation engine consists of two
principal parts. The State Manager controls access to and
performs the read/write operations required of the Tactical
State Database. The Runtime Interpreter uses data from
the input message and from the state manager to interpret
the rule set contained within the Nodal Logic Database.
The common action procedures are then sequentially
instantiated to update state and to build output messages.

139

5. Additional Applications

Although FSATS is being developed to support C2 test-
ing, this type simulation can be adapted to meet other
needs. Any changes required to meet the needs of other
areas may normally be addressed with a minimum of
effort. Some possible applications which are currently
under investigation include the following.

5.3 Collective Training

5.2 Doctrinal Analysis

To explore the impacts of doctrinal changes prior to
implementing these changes within the total force, full
simulations using nodal logic can be run with a variety of
input events and exercise configurations. Also, areas such
as bottlenecks, information gaps, and network overloading
could be identified.

5.3 Interoperability

There is a direct application to the needs of collective
training, since the command post training (CPX) or field
training exercise (FTX) environments are identical to
those used in operational testing. Normally, little adapta-
tion would be required to support training, since it is of
benefit to produce doctrinally correct logic models, which
contain a very detailed rule set to avoid the appearance of
errors in the tactical messages produced.

Since the FSATS simulation is defined in terms of input
and output messages, the internal logic could be simply
defined to translate the input data into another form. In this
way, a simulation of this type could be used to affect an
interface between two existing systems which currently
lack such an interface.

140

Distributed Interactive Simulation
for

Intelligence Data Dissemination

F. D. Magee
P.O. Box 4232, 34645

Abstract

This paper is conceptual in nature, discussing the
application of Distributed Interactive Simulation (DIS)
technology to the dissemination of strategic and tactical
intelligence information to a broad base of military
tactical decision makers and senior leaders. While the
current thrust of DIS development is oriented toward
the support of apriori training, systems acquisition
engineering analysis and mission rehearsal, the
proposed concept advocates DIS as primarily a real
operations decision-making support tool with mission-
concurrent training and incremental mission rehearsal
support capability

Introduction

The view that "the problems endemic to military
intelligence did not arise overnight, and their complexity
defies an instant solution"[l] has recently been echoed in
professional military publications. Maj. Raymond J.
Leach in favoring review of Maj. James P. Marshall's
recent book, Near Real Time Intelligence On The
Tactical Battlefield, "...urges a return or reprioritizing of
our efforts to tactical intelligence support, and suggests
that much of our standard doctrine is outmoded...
Perishable combat intelligence of immediate tactical
value should not be restricted...,but pushed down and
laterally, using the latest technology advances."[l] In
this era of anticipated small unit low intesity conflicts
and multi-national force operations, time critical
intelligence data dissemination to the small unit tactical
decision maker becomes or paramount importance. Also
the burden of intelligence data integration falls heavily
on the tactical decision maker. Textual reports with

varying time stamps require time and the commander's
undivided attention to piece together.

The military "...flies a number of "national level"
collection platforms without receiving a payoff in
[effectively disseminated] tactical information."[l]
Currently, as this raw intelligence data from electro-
optical sensor sources traverses the many gates of filters
and enhancement processes, it ceases to be the pure
reflection of the environment it depicts. The
enhancements are necessary because to the untrained eye
the raw imagery may not be recognizable for its true or
maximum intelligence worth. "Making sure the
imagery gets to the right analyst and with sufficient time
to allow commanders to take advantage of the data to
reposition their forces is far easier to envision than to
incorporate in a functioning system that can be
fielded."[4]

Within the may pixels required to represent an
intelligence image, a subset serve as cues which lead to
real inteligence information. The other pixels may serve
to indicate other non-intelligence related information and
a third class of pixels are virtually worthless from an
intelligence standpoint. Current dissemination schemes
compress and digitize entire images, then send them
across the networks to secondary users and sometimes to
the ultimate users. If the raw imagery is considere to be
a pure reflection of the environment that it depicts, then
after the enhancements and compressions it has moved
more toward a simulation grade of reality representation.

ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights reserved.

Personal use of this material is permitted However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the
IEEE. For information on obtaining permission, send a blank email message to info.pub.permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

0-8186-6440-1/94 $04.00 © 1994 IEEE
141

Today's military application for synthetic environments
is mainly oriented toward training. The air elements
have flight training systems and the ground elements
have tank trainers. Soon, planners will be engineering
ways to place the DIS synthetic environment systems on
field operational platforms for training purposes. A
more comprehensive approach is needed which integrates
the training value of these systems with their at least as
equally valuable intelligence dissemination and mission
rehearsal potentials.

This paper outlines the operational and architectural
concepts for applying DIS to the dissemination of time-
critical intelligence information to the small unit
commander.

Operational Concept

Overview

As image generator computers come down in size and
price, it will become increasingly more practical to place
a dynamically networked image generation and display
system with the small unit tactical commander. With
free viewpoint movement within a limited but large
enough area of interest, the commander will be able to
make synthetic reconnaissance and see discernible
representations of critical intelligence information.
Threat entity states will be updated in near real time.
For instance, a helicopter firing a missile at a tank, and
the tank suddenly changing appearance reflecting the hit,
will be a viewable scene for the commander almost
immediately following the real world event. For small
unit commander too busy to integrate and assimilate the
floods of relevant intelligence data, the intelligence DIS
Field Node will allow the commander to address the
problems at hand while keeping one eye on the 3-D
simulation of the current situation. Friendly and threat
entity states will be updated in near real time. Changes
in the terrain and fixed cultural features will change
periodically to reflect reality. For example, a bridge may
at one moment appear serviceable and at the next
moment be destroyed. Changing weather and
trafficability conditions will be incorporated. This DIS
intelligence dissemination concept involves a system
comprised of five segments; the Central Data Base
Generation Segment (DBGS), the Theater Data Base
Generation Segment, the Transmission Segment, the
Field Node Segment, and the Instrumented Field Entities
Segment. Multiple types of data will flow across the
networks serving the DIS field nodes; environment
database updates, threat entity states, friendly entity
states, aggregated entity states. Voice communication
will be the responsibility of other systems.

In addition to the 3-D free viewpoint image of the
tactical area of interest, the decision maker will have 2-D
sub-window overview of the area with iconic
entity/featural representations. Much of the non-pictoral
intelligence data related to the displayed icons will be
accessible in a windows/menu style user interface
environment. For instance, a bridge icon on the 2-D
overview display may be selectable and information such
as the serviceability status of the bridge, its loading
capacity and the freshness of the supporting intelligence
data, will be displayed. While accessing this
supplemental information, the commander will be able
to continue viewing the tactical situation on the 3-D
display.

Central Data Base Generation Segment

National intelligence collection systems, collect data,
some of which is valuable to the tactical decision maker.
This data may be fused with tactically collected
intelligence by the tactical fusion systems. However,
terrain and cultural environment data and national
weather agency data will augment the data from these
national intelligence sources to create the initial visual
environmental data base. Later this baseline will be used
as the basis for the overlay of tactically collected and
fused data at the theater level (Here, "theater" means the
broad area of tactical operations or interest).

The basic databases will be generated in advance of unit
deployment. It will be important to streamline the
current semi-automated processes for developing these
visual databases because many of the coming crisses
will ill-afford more than a day or two to prepare for
deployment. This basic DIS visual environment
database will be stored for transport on compact
discettes. Over prolonged periods of deployment the
tactical commanders will receive update database discettes
via the normal physical distribution used for other
controlled classified materials.

An example of nationally collected intelligence data is
imagery taken from a reconnaissance satellite of a POW
compound which for specal operations purposes must be
modelled and fixed into the environmental data base.
The Central Data Base Generation Segment would send
this environmental data base to the Theater Data Base
Generation Segment for further processing.

Tactical intelligence collected from theater level
collection assets will be funnelled into tactical fusion
systems such as the Army's AS AS. "The [All Source
Analysis System] ASAS is the Army's portion of a
former joint effort with the Air Force known as the Joint

142

Tactical Fusion Program. The initiative is designed to
gather data from all available sources, including
electronic intelligence (ELINT), signal intelligence
(SIGINT), imagery intelligence (IMINT), human
intelligence (HUMINT). fuse that data with on-going
combat information...". [4] This fused data will overlay
the database provided and updated periodically by the
Central Data Base Generation Segment.

Theater Data Base Generation Segment

At the Theater Data Base Generation Segment, fusion
processes further interpret the imint/photint.data.
Fusion systems integrate them and output products more
conducive to object-orientaiton. Object-orientation of
the intelligence data is critical to the concept of using
"object-oriented environmental servers" to create the
basic common picture for the tactical comanders.
Recently, there has been research done to pave the way
for object-oriented environmental servers which, directed
by the DIS community, will serve the DIS intelligence
community well.[5] Object-orientation allows different
types of intelligence data related to the same
object/entity and coming from vaious sources may be
collected and displayed at the DIS Field Node in multiple
forms. Both threat objects and friendly objects will be
treated as "persistent objects"[6].

The theater level database generation process may be
partitioned into processes which may be automated in
near-real-time and non-automated labor intensive
processes. The building of visual databases, which
provide for geographically specific depiction of the
environment and sometimes includes high resolution
imagery specific texturing of models and features, is
known to be a long labor intensive task for even small
areas. The automization of this process will require
partitioning and parallelization of database generation
tasks. Those tasks which are inescapably labor intensive
such as detailed model building will be accomplished off
line. No doubt, there will continue to be improvements
to the model-building tools in this area. Continuing
with an earlier example, a tactical remotely piloted
vehicle collects more imagery of the compound. The
Theater Data Base Generation Segment will take this
database region modelled at the Central Data Base
Generation Segment and update the model, providing the
scene densities needed for a special operations rescue
mission.

The Theater Data Base Generation Segment will take the
outputs of the multi-source intelligence fusion system,
partition the data into entities and environment classes.
The environmental data base received from the Central

Data Base Generation Segment will be rebuilt
integrating the environment class of filtered intelligence
data. For example, an intelligence report indicates a
direct hit of a missile on a bridge making it
unservicable. A damaged bridge model will be
substituted for the healthy bridge. Dynamic simulation
of weather effects will be treated as universal features or
moving models. While the weather environment will be
included in the data base from the Central Data Base
Generation Segment. The alteration of the baseline
environmental database will occur at the Theater Data
Base Generation Segment

Recompiling of the database will be accomplished
decentrally at the DIS Field Nodes so that only DBGS
software change instructions will be sent in order to
effect an update. In this way minimal communications
bandwidth will be required to support environmental
database updates. There will be a controlled sequencing
of these changes so that DIS nodes will process changes
in chronological order, presenting scenes to the
commander which are held in common by adjacent field
nodes.

Transmission Segment

The Transmission Segment function is to provide
communications, application layer through physical
layer, to effectively support the DIS intelligence
dissemination concept. Entity data (usually threats) will
go a separate route eventuating in DIS PDUs directed
over the DIS net to selective subnets. The DIS
communications network will optimize data flow down
from the central and theater DBGS centers to the Field
Nodes while minimizing the broadcast loads from the the
Field Nodes.

Only entity/environment data which changes will be
communicated. There will be a need for unambiguous
rules of entity data control to preclude inconsistent
representations of entities while maximizing
dissemination of time critical data. The "Persistent
Object Protocol"[6], developed for interfacing semi-
automated force (SAF) systems, will provide a
methodology for intelligence DIS entity information
control. Ownership of an entity/object may change but
there will be well-defined responsibility for updating
information of each entity on a periodic basis.

Field Node Segment

The Field Node Segment will be the hub of all DIS
intelligence data. Intelligence DIS data will be received
by the Field Nodes from the Theater Data Base

143

Generation Segment, the Instrumented Field Entities,
other Field Nodes and occasionally directly from the
Central Data Base Generation Segment. While strategic
intelligence raw data will not traverse the DIS network,
pointers which relate DIS depicted intelligence data to its
raw source(s) will be forwarded within the DIS PDU
structures. These pointers will allow the commander to
verify what is depicted on the 3-D or 2-D display, given
the availability the raw data at the DIS field node
received from the other intelligence dissemination
systems. Most likely, for some time, the availability of
raw strategic imagery to include radar and IR will be
confined to the medium to larger size units, due to
communications and security constraints. Larger units
also will have DIS Field Nodes, but will receive the
annotated enhanced imagery products, compartmentally
disseminated via other systems.

DIS entities will be aggregated by the DIS Field Node
for higher reporting purposes and for the benefit of
senior tactical commanders having DIS nodes. Without
filtering, the 2-D overview display will become cluttered
with icons. While the senior commmander will
definitely want the capability to adjust the DIS node
communications filters to examine closely a small unit
commander's situation, the main emphasis at this level
will be management of the bigger picture which will
require aggregated entity status. The unit status
reporting function of the DIS Field Node wil be of lower
priority than its primary function of downward
intelligence dissemination.

Instrumented Field Entities Segment

Local instrumented entity inputs to the DIS Field Node
will be carried via established tactical digital data
networks. The Field Node Segment will take these DIS
data packets and filter them and integrate them into the
current tactical picture. This host will drive the IG,
activating/deactivating models, repositioning models
which represent entities, and reload area of the
environmental database into the image generator to show
updated terrain and cultural features in the area of interest
to the commander.

Also, the DIS Field Node will form DIS Protocol Data
Packets (PDUs) to output onto the DIS network the
locally known entity state information.

Local instrumented entities will be reporting back to the
small unit commander in PDU packets their positions,
health, logistical states automatically with programmed
periodicities. The DIS Field Node image generator
controller will send the position changes to the image

generator in near-real time. Emphasis will be on
automated intelligence gathering and reporting between
the local friendly entities and the DIS field node, and
between DIS field nodes.

Consider the following scenario. A tank platoon
commander DIS Field Node receives Global Positioning
Satellite (GPS) sourced entity state PDUs from a close
air support DIS instrumented entity. The tank
commander after seeing the simulated battlespace from
the supporting pilot's viewpoint determines that the
pilot's position in deep defilade is insufficiently
supportive. Meanwhile the co-pilot of the supporting
aircraft uses a DIS Field Node to make reconnaissance of
terrain features forward of the tank platoon's position, to
plan for optimal support movement. DIS entity state
traffic illustrates for thet co-pilot and tank platoon of
friendly multi-national force T-72s has moved into
position just over the next ridge, out of line of sight
communications. The T-72 positions had arrived via the
tactical intelligence DIS network.

Field training and mission rehearsal

While the primary focus here is to discuss the concept
and effects of employing DIS technology for intelligence
data dissemination. The current mainstream of DIS
development focuses on training, systems acquisition
engineering analysis, and mission rehearsal
appplications, all of which are consistent with
intelligence DIS concept. For training purposes
fictional intelligence data or scenarios will be served
onto the training exercise DIS network consistent with
the scenarios and visual scenes presented through the
virtual reality manned training simulators. DIS
standardization will make this possible.

During real operations when the activity is in a lull,
constructive simulations local to the DIS Field Node
will feed tailorable scenarios to the tactical planner. A
virtual "what if" game will be played iteratively, as time
permits. These scenarios may involve real entities or
may be confined to the DIS Field Node for analytical
purposes only. Decision support software in tandem
with the DIS Field Node representation of fictitious
tactical scenarios will help prepare the tactical decision
maker for the otherwise unexpected. In the not to distant
future, the system user will use voice activated computer
commands to change viewing parametric values such as
zoom or changing viewpoint.

144

Architectural Concepts

Central DBGS

The strategic level DIS automated DBGS will be a large
processing center in CONUS which will employ in the
near term high bandwidth long lines communications to
update the DIS environment baseline at the Theater Data
Base Generation Segment. From this center, pre-
deployment visual databases will be prepared, packaged
and distributed. This center will be directly associated
with the national level mapping and intelligence
collection resources. While the source data for the DIS
environment will be controlled at TOP SECRET
compartmented security levels, the output database
product will be controlled colaterally at the SECRET
level. No characteristic of the output database will
reveal the sources identities or resolution capabilities
from which it may be derived.

Theater DBGS

There will be a theater level DIS automated DBGS
(theater central environment server) which will be a
shelter sized processing center. The tactical
communications networks indigineous to the hosting
unit will support the DIS traffic. This will involve
multiple types of communications (SHF, UHF, HF,
commercial lines) and multiple link pathways with
redundancy. The intelligence DIS system dissemination
timeliness will be a graceful function of Transmission
Segment service. Entity type prioritization will help
optimize DIS bandwidth utilization.

DIS Field Node

From a users's perspective, the intelligence data
dissemination DIS network would be structured as
follows. In the near term, i.e. 1990's, a desktop
computer will serve as thecommunications front-end
processor and the image generator controller. Also, this
computer will manage non-visual intelligence data and
host constructive simulation software, mission rehearsal
and incremental training scenario generation software.
The IG will require another box. It is basically a special
purpose computer composed of a control processor,
geometry processor and a pixel processor. Within the
last few years, even the high-end real-time IG's have
shrunk from a row of well-populated 72" high cabinets
to a small free standing box. With reasonable confidence
one could speculate that by the year 2000 the high-end
image generator will fit easily on a desk top, and
arguably to small man-pack size by the year 2010.

The display will be a color monitor and in the near
future, by year 2005, be integrated onto the already
marketed helmet mounted display type. 3-D visual free
play on the image generator will be directed through a
joystick control. And the current industry standard
windows type interfacing environment will apply to the
activation of the 2-D overview subwindow and
intelligence data pull-down sub-windows.

In the near future DIS Field Nodes will be present on
battle tanks and aircraft, where GPS will be the primary
source of DIS entity position status. In the far term,
individual personnel position and status on the local DIS
subnet will be a reality.

Communications front end

The communications interface at one end connects to the
communications carrier, military or other. In translates
the signal received from the local carrier across the
various layers of protocol (ISO) up to the application
layer. The application layer protocol, known as the DIS
protocol is a currently developing data packaging
structure which will serve as an excellent baseline for
service to the intelligence DIS dissemination mission.

Filtering

Incoming DIS PDUs will be filtered, allowing only the
PDUs pertinent to the particular DIS Field Node to be
further processed. The majority of these will be Entity
State PDUs. The environment database change PDUs
will be less frequent and more lengthy, but not a
significant drain on the communication resources.

Entity states data received will be adjusted relative to the
age of the data calculated from the time stamp which
will accompany the position, orientation and other data.
This adjustment, called "dead reckoning" is an
extrapolation of entity position (latitude, longitude,
altitude) and orientation (roll, pitch, heading). In DIS
exercises involving manned simulators, it is sometimes
desireable to smooth entity position and orientation
corrections. With Intelligence DIS, data nearest to
reality is welcome even if it means abrupt change in the
scenes. Other range filters may partition the remaining
group of dead reckoned entities into those viewable given
the currently loaded environmental database from those
not immediately viewable but near enough in the
vicinity that they may be viewed and ought to be
tracked. Generally, other processing of this type which
will take place in the DIS Field Node will be executed in
an effort to off-load critical processes or accomodate the
constraints of the image generator.

145

Transformation of the visual data base

The DIS Field Node will also serve as a local Data Base
Generation System(DBGS) for environmental database
updates which arrive via DIS channels. The local-DBGS
process will be fully automated and will be similar to
one of the automated data base generation process
architectures in operation at the Theater Data Base
Generation Segment. The list of data base
transformation instructions successfully executed to
update the visual data base at the Theater level will also
be executed at the Field Node level to maintain visual
data base baseline comonality. Near real time updates
make at the Theater Data Base generation Segment to the
visual environment databse will require databse
transformation instructions. These data base transform
instructions will be communicated to and repeated by the
local-Data Base Generation System to bring up the local
baseline visual database. This will work for changes to
an existing visula data base. New areas will require
physical distribution or lengthy file transfers, given high
bandwidth communications availability.

The visual database will be formatted locally for use
with the image generator. Because, only portions of the
Visual Data Base which will be affected by the changes
will be restructured, the time it will take to reformat
changes will be minimal. Of all the DIS Field Node
processes, the local-DBGS will be the most time
consuming, but will be independent of the time critical
entity state update process.

Non-visual intelligence data management

Other data associated the entities representable by models
on the DIS Field Node display, will be best displayed in
the form of text or symbols. The DIS Field Node will
manage this data and buffer it ready for display in 3-D.
Some symbols will be displayed within the 3-D scene.
The majority of this data will require a button selection
on a display window. The 2-D display sub-window will
depict information symbolically with some alph-
numerics. However, this display with its icons
depicting entities in the view area will get cluttered. The
DIS Field Node will offer 2-D and 3-D loading
parameters which may be set by the operator to optimize
information display.

Image generator control

In order to dynamically change the simulated
environment terrain, sea state and cultural features
without interruption of service to the commander, a two
channel image generation system will be employed with

only one channel displayed at a time (i.e.ping-pong).
This will give the IG a chance to load changes to the
environment off-line. The channel inter-change cycle
period will be approximately 5 minutes, given the local
database recompilation function is performed prior to
loading. Moving model sets will be loaded in similar
fashion, off-line. Activation of multiple instances of a
loaded moving model type will be almost instantaneous,
within the image generator's scene loading constraint.

Operations and display

In the near term, two display CRTs will be necessary for
DIS Field Node operation; an operator terminal and one
for 3-D high resolution display. A joystick will
interface with the image generator allowing the
commander to freely reposition and reorient the 3-D
viewpoint on the 3-D display. A standard keyboard
interface with a mouse will allow the commander to
select windows and Field Node options on a standard
desktop computer terminal. In the near future all
operations and display features both visual and physical
will be resident in one box. In the more distant future
(around year 2010) these functions will be supplied
through the Field Node back-pack and helmet display.

DIS instrumented field entities

The automated status from local networked Instrumented
Field Entities will follow the standard DIS protocol rules
now in development. These entites may be tanks,
planes, personnel etc. and may be outfitted with a variety
of instruments or could be DIS Field Nodes themselves.
With the automation of these field instruments the field
operator will remain free to concentrate on mission
objectives.

Status of threat entity positions/states will, through
voice recognition systems, be automatically relayed to
the DIS Field Node [My thanks goes to Dr. Richard
Economy, Martin Marietta Corporation, Daytona Beach,
for sharing this concept with me].

Areas for Advancement

The DIS concept for intelligence data dissemination
discussed above requires technology advancements in
three areas:

1. The translation of fused tactical
intelligence into entity or featural
object-oriented data; an integration task
probably requiring AI methods.

2. The partitioning of the Environmental

146

Data Base Generation processes;
streamling the labor-intensive off-line
tasks, and automating the near-real
time on-line tasks.

Data Base Generation System software
techniques which allow efficient
compression of the Environmental
Data Base transformation instructions
executable by the DIS Field Node's
local data base generation function.

Summary

There is a need for more effective dissemination of
strategically and tactically collected intelligence to the
small unit tactical decision maker. The simulation
community in their efforts to standardize Distributed
Interactive Simulation protocols and practices for
training and acquisition analysis purposes have also
begun to lay the foundation for the application of DIS to
the dissemination of tactical intelligence information.
The DIS Field Node will allow the commander to
quickly assimilate fused intelligence as it is integrated in
near-real-time onto 3-D joystick geographically specific
display and corresponding 2-D overview map display
environment.

The flow of data to the small unit commander starts at
the strategic level, Central Data Base Generation
System. The tactical level, Theater Data Base
Generation System converts updated fused intelligence
into an updated visual database, building onto what the
central level has established. From this tactical center,
environmental data base update instructions and entity
stat PDUs flow to the DIS Field Nodes.

The DIS Field Nodes receive, process, and display the
simulated operational scenery. The commander will
view the areas of interest and pull up associated
supplemental and verification data to increase operational
awareness and intelligence confidence, respectively. The
DIS Field Node will receive locally generated entity state
data, via PDUs.

This data will be transmitted from locally networked
DIS-instrumented field entities. Aggregation of local
entities states will permit status reporting from the Field
Nodes upward to the theater level. In the near-term a
DIS Field Node architecture will require three terminal-
size boxes. With ASIC technology advancement and the
successful integration of helmet displays, the DIS Field
Node will reduce to man-pack size.

References

[1] Raymond J. Leach, Maj. USMC, "The Information
War", Marine Corps Gazette, Marine Corps
Association, Quantico, VA, September 1994,
p. 107.

[2] James P. Marshall, Maj. USAF, Near Real Time
Intelligence On The Tactical Battlefield.
Air University Press, Maxwell Air Force Base, AL,
1994.

[3] Raymond J. Leach, Maj. USMC, "Information
Support to U.N. Forces", Marine Corps
Gazette, Marine Corps Association, Quantico, VA,
September 1994, p. 49.

[4] Mark Tapscott, "New Pictures Emerging in
Battlefield Intelligence", Defense Electronics,
April 1993, p. 31, 32.

[5] William H. Horan, Michael J. Smith, Curtis R.
Lisle, Marty Altman, "An Object-Oriented
Environment Server for DIS", Institute For
Simulation and Training, University Of Central
Florida, Summary Report, 9th Workshop on
Standards for the Interoperability of Defense
Simulators, Volume I, September 1993, p. A-95.

[6] Joshua E. Smith, Anthony J. Courtemanche,
Richard Schaffer, "The Persistent Object
Protocol", Institute For Simulation and Training,
University Of Central Florida, Summary
Report, 9th Workshop on Standards for the
Interoperability of Defense Simulators, Volume I,
September 1993, p. A-199.

147

Session 2A:

DEVS Formalism: Simulation Engines
and Performance Modeling

Distributed Simulation of DEVS-Based Multiformalism Models *

Herbert Praehofer and Gernot Reisinger

Institute of Systems Science
Systems Theory and Information Engineering

Johannes Kepler University Linz
A-4040 Linz, Austria

Abstract

In this paper we introduce a new approach for par-
allel, distributed simulation of modular, hierarchical
DEVS and DEVS-based combined discrete/'continuous
multiformalism models. The algorithm combines con-
servative and optimistic distributed simulation strate-
gies and is able to optimally exploit lookahead capabil-
ities of the model. The object oriented implementation
in C++ is intended to serve as a powerful simulator
in the STIMS modeling and simulation environment.

1 Introduction and Motivation

The DEVS modeling and simulation [23] approach
is an attractive alternative to conventional message-
based modeling approaches used in distributed sim-
ulation. As expressive as any other discrete event
modeling paradigm, it serves it merits by its set-
theoretical basis, its independence of any computer
language implementation, its independence of any par-
ticular field of application, its modular, hierarchical
modeling methodology, and its clear system theoreti-
cal terminology. In DEVS modeling, complex models
are built by coupling together atomic building blocks,
i.e., connecting the ports of well defined input and
output interfaces. Models can be built in a hierarchi-
cal manner, i.e., coupled models again can serve as
components in more complex coupled models. Simi-
lar to finite state automaton, atomic DEVS models'
dynamic behavior is defined by state sets and state
transition and output functions. DEVS distinguishes
two type of events - internal events are time sched-
uled and handled by the internal transition function,
external events occur upon the arrival of inputs at the
input ports and are handled by the external transition
function. We base our research on the DEVS approach
to discrete event modeling and simulation.

Several implementations of DEVS-based modeling
and simulation concepts have been done [23, 21, 18,

*work supported by Austrian Science Foundation FWF

11]. The STIMS modeling and simulation environ-
ment [18] is a CommonLisp based general purpose en-
vironment also allowing combined discrete/continuous
modelling and simulation.The DEVS extension to
combined discrete/continuous modeling introduced in
[16] provides system theoretic modeling formalisms for
modular, hierarchical combined modeling. STIMS is
a fully integrated, interactive environment organized
into several layers which are targeted to model de-
velopment, simulation execution, and simulation data
analysis. It provides an approach for visual interac-
tive specification of atomic and coupled DEVS-based
models [19].

In the research project presented here we will real-
ize an object oriented implementation of DEVS-based
models in C++ and a distributed simulation protocol.
We introduce a new distributed simulation algorithm
for DEVS-based models and discuss its object oriented
implementation. The algorithm combines conserva-
tive and optimistic strategies. Simulation processes
work conservatively as long as this is possible but will
continue with a riskfree optimistic scheme afterwards.
The scheme is able to optimally exploit lookahead ca-
pabilities of the model by computing accurate esti-
mates for the earliest input to be received at a com-
ponent's input ports. It also allows the distributed
simulation of components which have continuous in-
ternal behavior but interact by events only. The C++
model implementation and simulation protocol is in-
tended to serve as a powerful simulator in the STIMS
modeling and simulation environment.

The simulation protocol has been design with the
following objectives in mind:

• The distributed simulation algorithm should show
good performance on multiprocessor machines
with a low to medium number of high power
processor nodes, like clusters of workstations or
shared memory multiprocessors. Such multi-
processor architectures are widely available and
therefore are suitable for a general purpose simu-
lation environment.

0-8186-6440-1/94 $04.00 © 1994 IEEE
150

• Distributed simulation should require minimum
additional coding from the user. At the current
version of our system, the user has to do the
mapping of components to processes, has to im-
plement methods to pack and unpack objects of
user denned types, and has to provide information
about lookahead characteristics of the models.

• As our scheme supports combined discrete/ con-
tinuous modelling and simulation, also the dis-
tributed simulation algorithm should support it.
Numerical integration of components which only
interact by discrete events can be done in parallel.

In the following we first describe our new approach to
distributed simulation of DEVS-based models. Then
we compare our approach with other approaches to
distributed simulation. Finally we discuss several is-
sues of the object oriented implementation in C++.

2 A New Approach for Parallel Simu-
lation of DEVS-Based Models

In the following we introduce a new approach for
parallel, distributed simulation of modular, hierarchi-
cal DEVS-based models. For distributed simulation
of DEVS-based models, the hierarchical structure is
flattened by resolving the hierarchical coupling struc-
ture to direct couplings of atomic components. Then
the atomic components are divided into several clus-
ters where each cluster is simulated by one parallel
simulator process running on one distinct processor.

Our approach is based on the idea to combine se-
quential, parallel conservative, and parallel optimistic
event processing. As long as possible, i.e., as long as
it can be guaranteed that no inputs will arrive from
other processes with a time earlier than the local event
time, the parallel simulation process can process the
events in sequential order. Then, it will try to exploit
lookahead capabilities in its local components to con-
tinue processing events which are safe. Finally, when
neither sequential nor conservative event processing is
possible, it will continue to process events optimisti-
cally. However, optimistic event processing is done
riskfree, i.e., outputs to other processes are not sent
and in this way effects of optimistic event processing
are kept local to the process.

Crucial to the scheme are input time estimates
which for every input port of atomic components give
lower bounds of the next input to be received at that
port. These time estimates are computed by the influ-
encing components' output time estimates and serve
various purposes. So they are used for global as well
as for local synchronization. First, the time estimates
of the inputs coming from other processes are used to
determine the time until when sequential event pro-
cessing can be done. Second, the input time estimates

determine the time for each atomic component until
when event processing is safe. Third, the time esti-
mates are used in optimistic event processing to man-
age fossil collection. In the following we will describe
the approach in detail.

2.1 Computing Input Time Estimates

Time estimates eitjjp of the earliest input to be
received at the input ports ip of atomic components
j are computed taking the minimum of output time
estimates of the output ports op of components i cou-
pled to ip. Figure 1 gives a cluster of four components
simulated by one process p together with its interpro-
cessor couplings. The minimum of earliest input time
estimates

eitj = mm{eitjip}
ip

for all input ports ip of one component j gives a lower
bound for the next input to be received by component
j. Additionally, the external input time estimate xeitp

giving the earliest input to be received by any com-
ponent of process p can be computed by taking the
minimum over the inputs coming from components of
other processes. Obviously, an event in a component
j with event time t smaller than eitj is safe to pro-
cess. Additionally, a simulation process can process
all events whose event time is smaller than the exter-
nal input time estimate xeitp. The scheme has proven
to avoid causality violations [17].

The output times estimates eot,|0p for component i
are computed exploiting lookahead capabilities of the
model. In case only static lookahead [14], i.e., mini-
mum time delays rf.,tp,op between input at port ip and
outputs at port op of components i, are known, the
output times for a particular output port op can be
derived by

eoti,op = min{tni,mia{eitiip + d,-,,vop}}
»p

where in,- is the time of the next internal event. For
a source component, i.e., a component s without an
input, we define the eit, being equal to infinity. For
such a scheme of computation of the output times we
proved that the simulation does not deadlock under
the constraint that in every feedback loop there is
at least one component with a minimum time delay
di,iP,op strictly greater than zero [17].

Dynamic lookahead [14] is lookahead computed
based on the current state of the component. We can
compute better time estimates eoti>op for an output at
port op by

eotii0p = lookahead(s,trii,eiti)

where lookahead is an arbitrary complex function to
compute the dynamic lookahead for output port op.

151

~1

eUout

i
eofcutl

<*n
«>fcut2

' 1
1 |

n
, ' 1

k 1 ofc
o(n

1 1
' 1

«Mout

u IP_

dfa

l_r_

Figure 1: Times maintained for coupled DEVS model.

Obviously, if at least one of the components uses a
minimum time delay strictly positive in the computa-
tion of its dynamic lookahead, also this scheme is free
of deadlock.

2.2 Local Event Processing

Event processing on one simulator process p is done
in the three stages as described above: first events are
processed sequentially, then conservatively exploiting
lookahead, and finally optimistically. The simulator
process accomplishes its task using the earliest input
time estimates and a list of event times in,- for its
components. The pseudocode below depicts the event
loop for a simulation process. In the indefinite loop
it is tested if the minimum event time in,-* is smaller
than the time estimate xeitp giving a lower bound
of the next input received from a different simulation
process. If so, this event can be processed and all
its resulting outputs can be processed immediately. If
not, then event processing might not be safe because
inputs from other processes might cause causality vio-
lations. However, lookahead can be used to determine
other components which are safe. The next event in
component i with event time trii is safe to be processed
if it has an earliest input time estimate eft,- greater
than trii. This event can be processed. Resulting out-
puts are distributed to the influenced components and
are processed immediately if they are safe. Otherwise,
they are inserted into the event list. In case that no
safe event can be found exploiting lookahead, events
can be processed optimistically. The component with
minimum event time is selected to do so. Resulting
outputs are also processed optimistically for the local
components but are not distributed to other processes.
This means that eventual rollbacks are kept local to
the process and therefore are not too expensive, i.e.,
the scheme is riskfree optimistic.

loop
let tni* := minimum of tni of components i
if tni* < xeitp then

execute the event in i*
distribute outputs to influenced components k

and immediatly process them
elseif exists component j with tnj < eitj then

execute the event in j
distribute outputs to influenced components k
if this external event in k is safe

then immediatly process it
else schedule external event in k

else
optimistically execute the event in i*
distribute outputs to influenced components k
and immediatly process them

endif
endloop

2.3 Global Control Mechanism

The global control mechanism, i.e., synchronization
and event processing between different processors, can
be divided into two tasks: (1) to distribute the output
time estimates to other processes, (2) to distribute the
output values to other processes in case of interproces-
sor couplings.

The first task is similar to null-message passing in
other conservative synchronization mechanisms. It is a
critical point of the scheme. On one side null-message
traffic has to be kept low, on the other side the knowl-
edge of the input time estimates is crucial for progress
in local event processing. Several different strategies
are possible and will be tested. Output time estimates
might be communicated as soon as new values are
available resulting in very accurate estimates but mes-
sage overhead might be high. Output time estimates
might be communicated only with the real output val-
ues. Here message overhead is low but estimates are
not accurate always. Between these two extremes sev-
eral variations are possible and to find a good tradeoff
will be the subject of performance analysis.

Real data will be transmitted to the receiver as soon
as they are safe, i.e., output values produced by events
processed optimistically are not distributed. This has
the advantage that rollbacks are kept local to the pro-
cess and therefore are not too expensive. The inputs
which come from other processes can be processed in
the same way as all other inputs. If the resulting ex-
ternal event is safe to process, it can be processed im-
mediately, if it is not safe, the external event is sched-
uled to occur at the event time. However, inputs from
other processes might result in a rollback. Before the
event is executed, the state of the component is reset
to the value prior to the new external event. Output
events which have been produced by this component
since that time also have to be rolled back. This can
be accomplished by telling the receiving components
to roll back their states to a time prior to the outputs
(which again might propagate the rollback to their
influenced components). In this rollback process out-
puts to other processes, which are queued waiting for
distribution because they are unsafe, might be deleted.

152

2.4 Numerical Integration

The numerical integration of continuous states of
components assigned to different processors can be
done in parallel but each computation requires syn-
chronization and exchange of the numerical data in
the case a continuous coupling between the two com-
ponents exists. However, if no continuous but only
discrete couplings exist between different model parts,
these model parts can be integrated independently
and only have to be synchronized at event times. In
the same way as the sequential simulation scheme [18]
identifies different numerical clusters where numerical
clusters are only coupled through events, the parallel
simulation scheme employs numerical clusters. Nu-
merical clusters can be integrated in parallel only com-
municating and synchronizing at event times. In the
current work we focus on this type of parallelism in
numerical integration.

Numerical integration of continuous behavior of
combined discrete/continuous DEVS-based models
fits nicely into the event processing scheme described
above. It can be done in a similar way as local event
processing. The continuous states are integrated from
one event occurrence to the next. In that, numeri-
cal integration might be safe if the earliest input time
is greater than the integration time. But integration
also continues if it is not safe to do so. That means
that continuous states might have to be rolled back in
the case a straggler input event from another process
occurs. However, optimistic integration should have
a high potential in several applications (as in Sparse
Output DEVS [12]).

3 Relation to Other Distributed Sim-
ulation Protocols

The simulation protocol introduced above came
into being by gathering many ideas emerged in the
past 15 years of distributed simulation research. In
their seminal work, Chandy and Misra introduced ba-
sic concepts for conservative distributed simulation
[1, 2]. They defined causality requirements for cor-
rect distributed execution of events and schemes to
fulfill those. Deadlocks which can occur are either
recovered by a deadlock recovery scheme or avoided
by special synchronization messages - so-called null-
messages. Our conservative mechanisms is based on
those ideas. In particular, conservatively executed
events fulfill the causality requirement and computa-
tion of input time estimates is similar to null-message
based deadlock avoidance.

Several variations of the Chandy-Misra approach
have been developed. These new schemes try to ex-
ploit lookahead capabilities of the models extensively.
Notable impact to our research has had the Bounded
Lag Algorithm of Lubachevsky [13], the global win-

dow synchronization scheme of Nicol [14, 15], the
Yaddes algorithm [5], and the shared memory imple-
mentation of Wagner, Lazowska, and Bershad [22].
Lubachevsky's algorithm is synchronous which, with
every synchronization cycle, computes input time es-
timates for each simulator process based on minimum
propagation delays - static lookahead assumptions -
and opaque periods - dynamic lookahead. To limit the
overhead needed to compute the input time estimates,
the bounded lag restriction bounds the difference in the
local simulation times of all simulator processes from
above by a known finite constant B.

The global window synchronization algorithm [14,
15] is another synchronous algorithm which tries to
exploit static and dynamic lookahead capabilities to
define global time windows during which event pro-
cessing is safe. Similar to our scheme the algorithms
is tailored for low grained parallelism.

The Yaddes algorithm [5] uses a dataflow network
to compute input time estimates to guarantee safe
event processing. The algorithm in particular is tai-
lored for network models which have a lot of feedback
loops, like digital logic models, and therefore are diffi-
cult to parallelize using Chandy-Misra or Time Warp.

Wagner, Lazowska, and Bershad [22] improved the
basic Chandy-Misra approach for implementation on
a shared memory multiprocessor. Access to states of
other processes through shared memory is exploited to
compute better estimates of earliest input times. An
artificial blocking mechanism is built into the run time
kernel of the multiprocessor system to reduce overhead
to awaken blocked processes. A centralized sched-
uler is used to make deadlock detection trivial and
deadlock breaking inexpensive. A similar approach
for parallel simulation on shared memory multiproces-
sors with special emphasis on exploitation of dynamic
lookahead has been developed by Cota and Sargent
[4]-

Optimistic distributed simulation has been intro-
duced by Jefferson [9]. Our optimistic algorithm dif-
fers from the Time Warp approach as it does not send
messages to other processors optimistically. There-
fore, it is a riskfree optimistic scheme related to the
Breathing Time Buckets algorithm of Steinman [20]
and the approach of Dickens and Reynolds [6]. Risk-
free optimistic schemes do not require antimessages to
annihilate incorrect messages. Rollback is kept simple.
Rollback in our scheme is kept local to the process
and therefore can be done in an efficient way similar
to [8]. Our approach also differs from other optimistic
schemes in the way fossil collection is done. Most opti-
mistic schemes base the fossil collection on the Global
Virtual Time (GVT) which is the minimum of the
event times in the system. Our approach takes the
earliest input time of each component as a better es-
timate.

Strong similarities of our approach exist to the

153

ADAPT system recently introduced by Jha and
Bagrodia [10]. ADAPT is a simulation protocol which
combines conservative and optimistic strategies. It
distinguishes a local control mechanism and a global
control mechanism and provides different variants of
those which can be combined freely. Based on the
model and workload characteristics in hand, the pro-
tocol adapts by selecting the most appropriate vari-
ants. One variant for the global control mechanism is
based on computation of earliest input time estimates
in the same way as in our scheme.

Our scheme also has been influenced by former ef-
forts to parallelize simulation of DEVS models. Chris-
tensen [3] has implemented a DEVS simulator in Ada
and the Time Warp operating system. Recently a
new distributed simulation algorithm for networks
of Sparse Output DEVS has been introduced [12].
Sparse Output DEVS are DEVS where outputs oc-
cur infrequently. Simulator processes synchronize at
output times with their superior coordinator. It is
riskfree optimistic with local rollback only.

4 Object Oriented Implementation

The modeling formalism and the parallel simulation
concepts described above are implemented using C++
and PVM. In this section we first discuss major design
decisions of the implementation of the modeling con-
cepts, then some critical points in the realization of the
parallel algorithm using PVM, and finally advantages
of various hardware platforms.

4.1 DEVS-Based Modeling in C++

A major design decision in the realization of the
modeling formalisms was that, in distinction to other
implementations like DEVS-Scheme [23] or STIMS
[18], atomic models are defined by class definitions and
not by instances of formalism classes. This has the
advantage that the concepts of object oriented pro-
gramming, like information hiding, inheritance, and
polymorphism, are ready to use for simulation model-
ing. In this approach hence, input and output ports
and state variables are defined by member variables
and state transition and output functions by member
functions of atomic model classes. In the following the
definition of an atomic model Processor is shown.

class Processor : public AtomicDevs {
public:

Input<int> in;
Output<double> out;
StateVar<int> reg[IREGS];
virtual void ezternalTransFn (double e,

InputPort tinport);
virtual void intemalTransFn (void);
//

};

For input and output port as well as for state vari-
ables declaration generic classes - templates - are pro-
vided which are paramertized by the type of the input,
output, and state variable values. These templates de-
fine access functions for reading and writing of values
which also realize different tasks of the simulation pro-
tocol fully transperant to the modeler. So, the writer
functions to output ports are responsible for the distri-
bution of the output values to their destination input
ports and, consequently, for the execution of the ex-
ternal event in the influenced component. Also, input
and output port objects know methods to pack and
unpack their values for interprocessor communication.
The writer function of state variable objects realizes
an incremental state saving and rollback mechanism.

In distinction to atomic models, modular hierarchi-
cal coupled models are not defined by class definitions
but are defined employing a separate modeling lan-
guage. In this language, which has a similar syntax as
C++ class definitions, the modular hierarchical model
structure and the couplings are defined with references
to atomic model classes at the leaves of the hierarchy.
Modular, hierarchical models specified in the language
are transformed to C++ code. The translation pro-
cess flattens the structure, instantiates only atomic
components, and realizes the couplings by direct port
to port connections. The following shows the defini-
tion of a coupled model ProcBoard from components
of type Processor, Bus, and Memory.

model Processor; // declare
model Bus; // atomic
model Memory; // models

model ProcBoard : Devsletsork {
Output<double> pout, mout;
Memory mem;
Bus bus;
Processor proc;
// define internal couplings
ICO {

proc.out -> bus.pin;
bus.pout -> proc.in;
bus .mout -> mem. in;
mem. out -> bus .min;

}
// define external output couplings
EOCO {

proc.out -> pout;
mem.out -> mout;

} h

4.2 Parallel Simulator using PVM

The parallel simulation system is implemented us-
ing PVM (Parallel Virtual Machine) [7]. PVM is
a defacto standard message passing library designed
for heterogeneous environments and supports a wide
range of hardware platforms.

For parallel simulation, additionally to specifying
the modular hierarchical model, the simulationist is

154

responsible for decomposing the whole model into sev-
eral clusters to run on different processors. For each
cluster, the parser generates an object structure with
simulator objects for each atomic component, special
objects responsible for communication with other pro-
cessors, and one overall coordinator object which man-
ages all the event handling tasks. Figure 2 shows the
object structure for a 4-component model. The simu-
lation protocol is implemented using polymorphism in
such a way that normal atomic components and the
special interprocessor communication objects obey the
same protocol. Hence, in event handling the different
objects can be handled in equal way. Each object
structure is then assigned to one processor and makes
one simulator executable.

PVM is used to spawn the simulator executables on
different machines and for interprocessor communica-
tion. Data, i.e. outputs of atomic models and time
estimates, is sent by PVM messages. Objects have
to provide virtual member functions pack and unpack.
The function pack stores the object into a PVM mes-
sage and unpack rebuilds the objects from the PVM
message. The pack and unpack methods are provided
for all standard types. For user-defined types, the pack
and unpack methods have to be implemented based on
these basic methods.

One great advantage of the state based approach
of system based modeling and the object oriented im-
plementation is that incremental state saving is real-
ized easily. It is implemented fully transperant to the
user in the writer function of the state variable object.
Whenever the writer function is called in a transition
function executed optimistically, the writer function
saves the old state. In that way, only state variables
modified are saved.

4.3 Target Hardware Platforms

The system currently is developed on a cluster of
SUN Workstations. This will also be one of our fa-
vorite hardware platforms since workstation clusters
are wildly available. Workstation clusters satisfy our
objective that the parallel simulator should be used as
a simulator supporting our integrated modeling and
simulation environment.

To show the potential of the event handling scheme,
performance studies on a Sequent Symmetry S81
shared memory computer is planned. Shared-memory
multiprocessor system is a promising architecture for
our simulation scheme. On shared memory architec-
tures, interprocessor communication is fast and la-
tency is low. This allows the different processors to
synchronize frequently.

Another favorite hardware platform for the com-
bined parallel simulation algorithm is a Convex Meta-
Series supercomputer. It combines a high-end work-
station cluster with a vector number cruncher. The

i r

i i
coordinator

a%-.tali tali

l%-

ou!2| in (will -•

ql I,

k

«I*
1 In,

OUlj

OUtlj

.' LE

Figure 2: Object structure for process p.

workstation cluster will be used to do the event pro-
cessing part while the numerical integration will be
done on the vector processor. Through this combi-
nation we hope to dramatically speed up numerical
calculation of the continuous part of the simulation.

5 Summary, Discussion, and Outlook

We have presented a new distributed simulation
strategy for DEVS-based modular, hierarchical mod-
els. The scheme stands out as it combines conservative
and riskfree optimistic strategies and is able to opti-
mally exploit lookahead capablities of the model. Ob-
ject oriented programming is employed to ease simula-
tion modeling and make distributed simulation trans-
parent to the user. The simulation protocol currently
is under development.

Although the simulation protocol is well denned
and the correctness of the conservative strategy has
formally been proved [17], there are still several alter-
natives which will effect the performance of the simula-
tor. One open question is, when and how often the in-
put event estimates should be communicated to other
processors, another, how far in time an optimistically
executing processor should advance. Should it simu-
late without paying attention to the other processes
until a rollback occurs or should processors synchro-
nize. This and further questions will be answered by
performance studies. First results are expected for the
beginning of 1995.

References

[1] K.M. Chandy and J. Misra. Distributed simu-
lation: A case study in design and verification
of distributed systems. IEEE Trans on Software
Eng., 5:440-452, 1979.

[2] K.M. Chandy and J. Misra. Asynchroneous dis-
tributed simulation via a sequence of parallel

155

computations. Comm. ACM, 11:198-205, Nov
1981.

[3] E. R. Christensen and B. P. Zeigler. Hierarchi-
cal, distributed, object oriented and knowledge
based simulation. In 8th Military Operations Re-
search Society Symposium, Annapolis, MD, 1990.
US Naval Academy.

[4] B. A. Cota and R. G. Sargent. Automatic looka-
hed computation for conservative distributed sim-
ulation. Technical report, CASE Center, Syra-
cuse University, Syracuse, NY, 1989.

[5] E. DeBenedictus, S Ghosh, and M.-L-Yu. A novel
algorithm for discrete event simulation. IEEE
Computer, pages 21-33, June 1991.

[6] P. Dickens and P. Reynolds. A performance
model for parallel simulation. In Proc of the
1991 Winter Simulation Conference, pages 618-
626, San Diego, 1991. SCS.

[7] A. Geist et al. PVM 3 user's guide and reference
manual. Technical Report ORNL/TM/12187,
Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831, May 1993.

[8] R. M. Fujimoto. Time warp on a shared mem-
ory multiprocessor. Transaction of the Society of
Computer Simulation, 6(3):211-239, 1990.

[9] D. Jefferson and H. Sowizral. Fast concurrent
simulation using the time warp mechanism. In
Proc of the SCS Distributed Simulation Conf,
pages 63-69, San Diego, 1985. Society of Com-
puter Simulation.

[10] V. Jha and R. L. Bagrodia. A unified framework
for conservative and optimistic distributed simu-
lation. In Proc of the 8th Workshop on Parallel
and Distributed Simulation, pages 12-19, Edin-
burgh, 1994. SCS.

[11] T. G. Kim and S. Park. The DEVS formal-
ism: Hierarchical modular system specification in
C++. In Proc. 1992 European Simulation Mulit-
conf, pages 152-156, York, UK, 1992. SCS.

[12] C. Liao, A. Motaabbed, D. Kim, and B.P. Zeigler.
Distributed simulation algorithms for sparce out-
put devs. In Proc. of AI, Simulation and Planning
in High-Autonomy Systems, Tucson AZ, Sept
1993. IEEE/CS Press.

[13] B. D. Lubachevsky. Efficient distributed event-
driven simulations of multiple loop networks.
Comm of the ACM, 32(1):111-131, 1989.

[14] D. Nicol. Performance bounds on paralel self-
initiating discrete-event simulations. ACM Trans,
on Modelling and Computer Simulation, 1(1):24-
50, 1991.

[15] D. Nicol and S. Roy. Parallel simulation of timed
petri nets. In Proc. of the 1991 Winter Simulation
Conference, pages 574-583, San Diego, Dec 1991.
SCS.

[16] H. Praehofer. System Theoretic Foundations for
Combined Discrete-Continuous System Simula-
tion. PhD thesis, Johannes Kepler University of
Linz, Linz, Austria, 1991.

[17] H. Praehofer. Distributed discrete event simula-
tion. Technical Report TR-93-1, Dept of Systems
Theory, Johanens Kepler University, Linz, Aus-
tria, Jan 1993.

[18] H. Praehofer, F. Auernig, and G. Reisinger.
An environment for DEVS-based multiformalims
simulation in Common Lisp / CLOS. Discrete
Event Dynamic Systems: Theory and Applica-
tion, 3(2):119-149, 1993.

[19] H. Praehofer and D. Pree. Visual modeling
of DEVS-based multiformalism systems based
on Higraphs. In Proc. 1993 Winter Simulation
Conf., pages 595-603, Los Angeles, CA, Dec
1993. SCS.

[20] J. Steinman. SPEEDES: a unified framework to
parallel simulation. In Proc of the 6th Workshop
on Parallel and Distributed Simulation, pages 75-
83, 1992.

[21] C. Thomas. Hierarchical object nets - a method-
ology for graphical modeling of discrete event sys-
tems. In Proc. 1993 Winter Simulation Conf.,
pages 650-656, Los Angeles, CA, Dec 1993.

[22] D. Wagner, E. Lazowska, and B. Bershad. Tech-
niques for efficient shared-memory parallel sim-
ulation. In Distributed Simulation 1989, pages
29-37. SCS Press, 1989.

[23] B. P. Zeigler. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press,
London,1990.

156

Abstract Simulator for the Parallel DEVS Formalism

Alex ChungHen Chow Bernard P. Zeigler
Doo Hwan Kim

Object Technology Products

IBM Corp.
Austin, TX 78758

alexc@austin.ibm.com

Department of
Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721

zeigler@ece.arizona.edu
dhkim@ece.arizona.edu

Abstract

A recent paper introduced the Parallel DEVS for-
malism which exploits the parallelism of transition col-
lisions in the simulation of DEVS models. Here we
present a design for the abstract simulator needed to
prove the formalism's soundness and to serve as a ref-
erence for implementation. The abstract simulator is
composed of cooperating simulation engines, (simula-
tors and co-ordinators) that use bag-like messages to
synchronize the parallel activities that are distributed
across autonomous asynchronous processors. The ap-
proach suggests engines that are efficient in both se-
quential and distributed/parallel environments. After
describing the abstract simulator we briefly discuss a
prototype implementation that affords a high degree
of flexibility by mechanizing the "closure under cou-
pling" property of the Parallel DEVS formalism and
the characteristics of object-oriented systems.
Keywords:
Discrete Event Simulation, DEVS formalism, Object-
Oriented modeling and simulation, Distributed/parallel
simulation.

1 Introduction

Hierarchical modeling capability is increasingly be-
ing recognized. The advantages of hierarchical mod-
eling capability such as reduction in model develop-
ment time, support for reuse of a database of models,
and aid in model verification and validation are be-
coming well accepted[10]. Environments supporting
hierarchical modeling are transitioning from research
[16][7][9] [4] into practice[6][3].

The necessary compute power for executing com-
plex hierarchical models lies in distributed and parallel
simulation[2][8][5]. Thus it is timely to reexamine the
basic formalisms of discrete event modeling in the light
of future high performance simulation requirements.

The Discrete Event System Specification(DEVS)
formalism was introduced in the early 70's and later
extended to enable constructing discrete event simula-
tion models in a hierarchical, modular manner[14][15].
DEVS introduces a strong modularity between model
specification and simulation. Not only does it provide
a powerful modeling methodology but also a frame-
work for model behavior generation via its abstract
simulator concepts[16]. Since it is language and plat-
form independent, DEVS affords an excellent vehicle
for investigating alternative parallel/distributed map-
pings and architectures[17][13] [12].

Parallel DEVS(P-DEVS)[1] is a revision of the hi-
erarchical, modular DEVS modeling formalism. The
revision distinguishes between transition collisions and
ordinary external events in the external transition
function of DEVS models. Such separation enables
us to extend the modeling capability of the collisions.
The revision also does away with the necessity for tie-
breaking of simultaneously scheduled events, as em-
bodied in the select function (a heritage of the se-
quential simulation paradigm in which P-DEVS orig-
inated). The latter is replaced by a well-defined and
consistent formal construct that allows all transitions
to be simultaneously activated. The revision provides
a modeler with both conceptual and parallel-execution
benefits.

An earlier article[l] presented the P-DEVS formal-
ism and showed it to be closed under coupling, thus
preserving hierarchical, modular, construction prop-

0-8186-6440-1/94 $04.00 © 1994 IEEE
157

erties. This construct leads to the definition of its
abstract simulator which correctly implements the for-
malism and exploits the increased parallelism. Here,
we briefly review the P-DEVS formalism and proceed
to discuss the abstract simulator concepts that form
the basis of its concrete implementation.

2 The parallel DEVS

The P-DEVS model is a structure:

M =< X,S,Y, Sint, 6ext, 6con,X,ta,>

X: a set of input events.
S: a set of sequential states.
Y: a set of output events.
bint '■ S —► S: internal transition function.
$ext '■ Q x Xb —► S: external transition function,

Xb is a set of bags over elements in X,
6ext(s, e,<f)) = (s,e).

&con '■ S x Xb —* S: confluent transition function.
A : S —»■ YJ: output function.
ta : S —»• Ä0+-*oo: time advance function,

where Q = {(s, e)\s G S, 0 < e < ta(s)},
e is the elapsed time since last state transition.

The P-DEVS formalism enables a modeler to ex-
plicitly define the collision behavior by using the so-
called confluent transition function, 6con. Scon gives
the modeler complete control over the collision behav-
ior when a component receives events at the time of
its internal transition, e = 0 or e = ta(s). Rather
than serializing model behavior at collision times, the
P-DEVS formalism leaves this decision of what seri-
alization to use, if any, to the modeler. Indeed, if so
desired, the E-DEVS[11] formalism can be recovered
by setting 6con(s,xb) to 6ext(sn,0,xn), where n > 1,
«i = 6i„t(s), sn = 6ext(s„-i, 0,xn-i) when n > 1, and
xn is a desired serialization defined by Order{xb).

The semantics of the Parallel DEVS are as fol-
lows: the internal transitions are carried out at the
next event time for all imminent components receiv-
ing no external events. Also, external events generated
by these imminents trigger external transitions at re-
ceptive non-imminents (those components for which
there are no internal transitions scheduled at the event
receiving time). However, for those components for
which the internal and external transitions collide, the
confluent transition function is employed instead of
either the internal or external transition function to
determine the new state.

The structure of the revised coupled model is —

DN =< X,Y, D, {MihiU}, {Zij} >

X: a set of input events.
Y: a set of output events.
D: a set of components,
for each i in D,

M{ is a component,
for each i in D U {self}, It is the influencees of i.
for each j in /,-,

Zij is a function,
the i-to-j output translation.

The structure is subject to the constraints that for
each i in D,
Mi =< Xi,Si, Y{,6inti,6exU,6coni,ta,i > is a P-DEVS
structure,
Ii is a subset of D U {self}, i is not in I{,
ZSelf,j '■ Xaeif —> Xj,
Zi,self '■ Yi —>■ Yseif,
%i,j '■ Yi —► Xj .

Here self refers to the coupled model itself and is a
device for allowing specification of external input and
external output couplings.

Closure of the P-DEVS formalism under coupling
was done by constructing the resultant of a cou-
pled model and showing it to be a well defined P-
DEVS. The resultant of a coupled model (DN =<
X,Y,D,{Mi},{Ii},{Zi}j} >) is a P-DEVS model
(M =< X, S, Y, 6int,6ext,6con, \,ta >), where
S = xQi where i G D.
ta(s) — minimum{(T,|i g D},

where s G S and o~i = ta(si) — e,.
Let

s = (...,(si,e<),...),
IMM(s) = {i\a{ = ta(s)},
INF(s) = {j\j G Ui6/MM(S) Ii},
CONF(s) = IMM(s) n INF(s),
INT(s) = IMM(s) - INF(s),
EXT(s) = INF(s) - IMM(s).

We partition the components into four sets at any
transition time. INT(s) contains the components
ready to make an internal transition without input
events. EXT(s) contains the components receiving
input events but not scheduled for an internal tran-
sition. CONF(s) contains the components receiving
input events and also scheduled for internal transitions
at the same time. UN(s) contains the remaining com-
ponents. Then,
A(«) = {Zi,.elj(\i(si))\i G IMM{s) A self G J,-}.

158

Sint(s) = (..., (s-,e<),...),
where

(s'i, e'i) = (Sinu(si), 0) for i G INT(s),
M, e{) = {SexU{Si,ei +ta(s), x\), 0) for * G EXT(s),
{s'^e'i) = (Scniisi,!*),0) for i G CONF{s),
(s'j, e{) = (si,e(+ ta(s)) otherwise i G UN(s),

and
x\ = {Z0>i{\0(s0))\o G IMM(s) A i G I0}-

The resultant internal transition comprises of four
kinds of component transitions: internal transitions of
INT(s) components, external transitions of EXT(s)
components, confluent transitions of CONF(s) com-
ponents and the remainder,£/AT(s), whose elapsed
times are merely updated by ta(s).

The 8ext of the resultant is defined by:
6ext(s,e,xb) = (...,(s<,e<),...),
where

(s'i, e'f) = (6exU(si,ei + e, x\), 0) for i G Iseij,
(si> e'i) — (si>e« + e) otherwise,

and
*' = {Zseifti(x)\x G xb A i G Lei/}.

The incoming event bag, xb is translated and routed
to the event bag, xb, of each influenced child, j. The
resultant's external transition comprises all the exter-
nal transitions of the influenced children.

Finally, the 6con of the resultant is defined by:
Let

INF'(s) = {j\j G Uie(/MM(s)u{»eI/}) li},
CONF'(s) = IMM(s) D INF'(s),
INT'(s) = IMM(s) - INF'(s),
EXT'(s) = INF'{s) - IMM(s).

Scon(s,xb) = (...,(s<,ej),...),
where

W,c{) = (W*0,0) for t G IiVT'(S),
(s-,e<) = (6exU(si,ei +ta(s),xb),0)

for i G EXT(s),
(*5,e{) = (5coni(Si,^),0) for t G CONF'(s),
(s'ite'i) = (SJ,e» + <a(s)) otherwise,

and
x\ = {Z0ii{X0(s0))\o G JMM(fi) A i G 70}ö

{^se//,j(a;)la; G x6 A i G /«(/}•

The critical difference in the P-DEVS compared
with the original DEVS is that to establish closure
under coupling, we must also define the 6con of the
resultant. Fortunately, it turns out that the difference
between 6con of the resultant and its 6int is simply the
extra confluent effect produced by the incoming event
bag, xb, at simulation time ta(s). By redefining the
influencee set to INF'(s) that includes the additional

influencees from the incoming couplings, z(self, i), we
come up with three similar groups for 6con. The hierar-
chical consistency is achieved here by the l+J operation
that gathers all external events, whether internally or
externally generated, at the same time into one single
event group.

iFrom the definition of the 8int, 8con, and 6ext, we
see that they are special cases of a more generic transi-
tion function 8(s, e, a;!>)[15]. 6{nt is applied to the cases
when (s,e,xb) = (s,ta(s),<j>), 6con to the cases when
(s,e,xb) = (s,ta(s),xb) where xb ^ <f>, and, 6ext to
(s, e, xb) where 0 < e < ta(s) and xb ^ <j>.

3 The abstract simulator

We now describe the abstract simulator needed to
demonstrate soundness of the P-DEVS formalism. As
in the original definition, we specialize the processors
into two different simulation engines, simulator and
co-ordinator [15].

Both 8con and 6ext depends on the events in the
bag, xb. An event in the bag is a result from an
output function and all the translations on the event
path. An output function depends on a state prior to
a transition at the same instance. It is clear that the
output function must be invoked before any transition
function. We use (@,t) and (done,t) messages to syn-
chronize this activity while (y,t) and (q,t) messages
trasport the output content. We also assume that if
two messages are sent from the same source, the or-
dering between them is preserved at the receiving end.

The simulator attached to an atomic model is given
first:

when a (@,t) message is received
if t = ijv then

V := A(«)
send (y, t) to the parent coordinator
send (done,t) to the parent coordinator

end if
else raise error
end when

when a (q,t) message is received
lock the bag
Add event q to the bag
unlock the bag
send (done,t) to the parent coordinator
end when

when a (=M) message is received

159

case ti <t < ijv and bag is not empty
e := t - tL

s :=6ext(s,e,bag)
empty bag
tL :=t
tN ~tL +ta(s)

end case
case t = tw and bag is empty

s := 6int(s)
tL:=t
tN :=<£ +ta(s)

end case
case t = tw and bag is not empty

s := 6Con(s,bag)
empty fcag

*TV :=^L +ta(s)
end case
case t > tw ox t < tz,

raise error
end case
send (done,tflf) to parent coordinator
end when

The simulator uses one single message, (*,t), to
synchronize three different transitions of the atomic
model. Obviously, other implementations with more
synchronization messages for different transitions can
remove the need of case statements for possibly faster
simulation. The implementation introduced here
serves as an example to indicate the correct semantic
application of each transition function which enables
us to use the generic transition function described
above for a co-ordinator. The implementation of a
co-ordinator is given.

when a (@,t) message is received from parent coor-
dinator
if t = ijv then

tL :=*
for all imminent child processors i with minimum

tN
send (@,t) to child i
cache i in the synchronize set
end for
wait until (done,t)'s are received from all imminent

processors
send (done,t) to the parent coordinator

else raise an error
end when

when a (y, t) message is received from child i

for all influencees, j of child i

9 :=zij(y)
send (q,t) to child j
cache j in the synchronize set

end for
wait until all (done,t)'s are received from j's
if self G h (y is to be transmitted upward) then

y ■■= zi,seif(y)
send (y, t) to the parent coordinator

end if
end when

when a (q,t) message is received from parent coor-
dinator
lock the bag
Add event q to the bag
unlock the bag
end when

(y, t) messages are always processed within the wait
statement when receiving a (@,t) message. This syn-
chronization ensures that the outputs of any model, ei-
ther atomic or coupled, are routed to their immediate
influencees' bags. All children ready for a transition
are cached in a set called synchronize set to eliminate
the activities of UN(s) components. The elapsed time
can always be calculated from the ijr associated with
each component and the absolute global clock, t.

From the construction described in the previous
section, we see that
x\ = {z0ii{X0(s0))\o G IMM(s) A z0>i G Z} Id

After the processing of (@,t) is over, output events
are distributedly stored in input bags of influencees
throughout the hierarchy. Though the first part of
x\ is ready now, the Id with the second part must
be done by sending (q,t) messages to influencees of
self at the beginning of the each (*,t) phase. This
operation assures the uniformity of the hierarchy. All
events are routed down to the atomic influencees by
successive (*,t) phases of nodes from root to atomic
components. A transition is completed when finally
one of the transition functions is invoked at the atomic
level.

when a (*,t) message is received from parent coordi-
nator
if tL <t<tff then

for all receivers, j G ISeif and all q G bag
q--= zseif,j(q)
send (q,t) to j

160

cache j in the synchronize set
end for
empty bag
wait until all (done,t)'s are received
for all i in the synchronize set

send (*,t) to i
end for
wait until all (done,/jv)'s are received

tL:=t
ijv := minimum of components' t^'s
clear the synchronize set
send (done,t) to parent coordinator

else raise an error
end when

Elements in the synchronize set are imminent com-
ponents, influencees or both. Because of the consistent
application, we delay the distinction of a transition
only until the notification arrives at the atomic level.

The implementation of this coordinator routes
down the output events during the (*,t) phases. It
simply reflects the construction of the transition func-
tions of a coupled model. Another implementation
might choose to route the events during the (@,t)
phase directly to the final atomic influencees. The
bag implementation of the coupled model can thus
be omitted. Both implementations are equivalent and
render the same simulation result.

The topmost coordinator is driven by a special co-
ordinator called the root coordinator which constantly
advances the global simulation time to the next sim-
ulation time of a simulation, sends (@,i) and (*,t)
messages to the topmost coordinator, asks the next
simulation time, and repeats until the next simulation
time is infinite.

Root coordinator
t :=tN of the topmost coordinator
while t ^ oo

send (@,t) to the topmost coordinator
wait until (done,t) is received from it
send (*,t) to the topmost coordinator
wait until (done,tN) is received from it

end while
raise simulation completed

The simulation procedure exposes the parallelism
among transitions of elements in synchronize set and
abstract simulator design handles transitory states in
a well defined manner.

^ intjransfn

*** extjransfn

*** outputJn

■^ time_advancefn

"*>* conjransfh

ATOMIC

^ intjransfn

*** extjransfn

^ outputjh

*\s timejidvancefn

^ conjransfh

(user-defined)

(virtual)

COUPLED

*^ intjransfn
— „ (derived from
"v extjransfn user coupieü- model
"^ outputjh definitions)

*^ timejidvancefn

*^ conjransfh

Figure 1: Abstract Class and Inheritance Hierarchy
Exploiting Closure Under Coupling

4 Flexibility of hierarchical model
mappings

The standard mapping of a hierarchical P-DEVS
model onto an abstract simulator results in a hier-
archical architecture with a one-one correspondence
to the models composition tree structure. However,
many alternative mappings exist and some are more
likely much better depending on the model behavior
and the receiving platform characteristics. Some pos-
sibilities have been investigated[17][13]. Here, we note
that closure under coupling enables any coupled model
in the model composition tree to be mapped into an
equivalent resultant model. This mapping, described
above, can be implemented within an object-oriented
framework as illustrated in Figure 1.

Here, atomic model and coupled model objects
present the same interface to clients, one that is ab-
stracted in a devs superclass with virtual transition
functions. This greatly increases the flexibility with
with mappings can be done. In partcular it helps
overcome limitions of conventional high performance
architectures which do not support hierarchical clus-
ters. Only one coordinator process is needed at the top
level for managing the intercommunication and syn-
chronization of nodes. The same simulator processes
run on other nodes and are linked to either atomic or
coupled models, the resultant mapping embodied in
the common interface blinds them to the difference.

We are currently investigating the application of
this concept to large scale ecosystem simulation. As
illustrated in Figure 2, a landscape, such as a wa-
tershed, is represented by a "base" model of a large
number,e.g., one million, of cells. This number is or-
ders of magnitude larger than the number of nodes in
the highest performance massively parallel computers

161

such the 1000 node CM-5. Therefore the base model
cannot be mapped in a one-one manner and some par-
titioning is required as illustrated in Figure 2. To
retain the base model dynamcs, each block becomes
a coupled model over the component cells within its
scope. Using the closure under coupling concept, each
coupled model is represented by its resultant P-DEVS
model and these resultants are coupled together in a
manner preserving the coupling behavior of orginal
base model. The outputs of blocks are collections of
outputs of their enclosed cells and their management
is nicely handled by the bag construct in the P-DEVS
formalism. The block resultants are assigned to sim-
ulators and the coupling of these resultants to a co-
ordinator. The transformation of the base model into
an equivalent coupling of blocks is called "deepening"
and the entire process can be defined formally and
implemented nicely in the object-oriented paradigm.
Partitioning of cells into blocks is not constrained and
indeed, can be performed dynamically during execu-
tion to balance the processor loads as the locus of cel-
lular activity migrates about.

Evapotransportatlon

bedrock

bedrock

air t

JL'
trees /

soil I

so» I

so» i

water t

water t

Block Resultant

CM-5 Processing Nodes Layer

Figure 2: Mapping of landscape base model onto a flat
massively parallel architecture (e.g. CM-5)

5 Conclusions

In the Parallel DEVS formalism, a modeler is ex-
plicitly enabled to supply the confluent transition
function that captures the collision behavior. This
function allows the coupling construction to follow the
semantics of a collision down to the atomic level and
obviates any behavioral difference between a model
and its deepened and flattened restructurings.

The abstract simulator concept leads to many pos-
sible implementations. The well isolated transition
groups add to the existing possibilities to exploit the
parallelism of the hierarchical DEVS models. Since
the abstract simulation engine is based on the assump-
tion of a parallel environment, the implementation on
parallel machines is straightforward. Moreover, clo-
sure under coupling supports flexible restructuring for
more effective mappings, both static and dynamic, to
particular platforms.

Acknowledgements

Some of this research is supported by NSF HPCC
Grand Challenge Application Group Grant ASC-
9318169 with ARPA participation and employs the
CM-5 at NCSA under grant MCA94P02.

References

[1] Alex C. Chow and Bernard P. Zeigler. Parallel
DEVS: A parallel, hierarchical, modular model-
ing formalism. In Winter Simulation Conference
Proceedings, Orlando, Florida, 1994. SCS.

[2] Richard M. Fujimoto. Parallel discrete event sim-
ulation. Communications of the ACM, 33(10):30-
53, 1990.

[3] J. Hu. Cedes: Object-oriented hardware model-
ing & simulation.

[4] Tag Gon Kim. DEVSIM++ User's Manual. Tae-
jon, Korea, 1994.

[5] B. Lubachevesky, A. Weiss, and A. Schwartz.
An analysis of rollback-based simulation. ACM
Transactions on Modeling and Computer Simu-
lation, 1(2), 1991.

[6] C. D. Pegden and D. A. Davis. Arena™ :
A SIMAN/CINEMA based hierarchical modeling
system. In Winter Simulation Conference Pro-
ceedings, Phoenix, AZ, 1992.

162

[7] H. Praehofer. An environment for DEVS-
based multiformalism simulation in common
Lisp/CLOS. Discrete Event Dynamic Systems,
3, 1993.

[8] B. Preiss. The Yaddes distributed discrete event
simulation specification language and execution
environment. In Distributed Simulation 89. SCS
Press, 1989.

[9] J. W. Rozenblit and P. Janknski. An inte-
grated framework for knowledge-based modeling
and simulation of natural systems. Simulation,
57(3), 1990. .

[10] Robert Sargent. Hierarchical modeling for dis-
crete event simulation (panel). In Winter Simu-
lation Conference Proceedings, page 569, Los An-
geles, CA, 1993.

[11] Yung-Hsin Wang and Bernard P. Zeigler. Ex-
tending the DEVS Formalism for Massively Par-
allel Simulation. Discrete Event Dynamic Sys-
tems: Theory and Applications, 3:193-218, 1993.

[12] T.G. Kim Y.R. Seong and K.H. Park. Map-
ping modular, hierarchical discrete event models
in a hypercube multicomputer. In Proceedings
of International Conference on Massively Paral-
lel Proc. Application and Development, 1994.

[13] T.G. Kim Y.R. Seong, S.H. Jung and K.H. Park.
Parallel simulation of hierarchical modular devs
models: A modified time warp approach. Inter-
national Journal of Computer Simulation, (to ap-
pear).

[14] Bernard P. Zeigler. Theory of Modelling and Sim-
ulation. Wiley-Interscience, New York, 1976.

[15] Bernard P. Zeigler. Multifacetted Modelling and
Discrete Event Simulation. Academic Press, Lon-
don, 1984.

[16] Bernard P. Zeigler. Object-Oriented Simulation
with Hierarchical, Modular Models. Academic
Press, San Diego, California, 1990.

[17] B.P. Zeigler and G. Zhang. Mapping hierarchical
discrete event models to multiprocessor systems:
Concepts, algorithm and simulation. Parallel &
Distributed Computing, 10:271-281, 7 1990.

163

An Approach to Object-Oriented Modeling and Performance
Evaluation

Lien-Pharn Chien

Department of Information Engineering
Kaohsiung Polytechnic Institute

Kaohsiung, Taiwan

Jerzy W. Rozenblit

Electrical and Computer Engineering
The University of Arizona
Tucson, AZ 85721, U.S.A.

Abstract

Within the past few decades, diverse modeling and
simulation tools have been applied in extensive applica-
tions. The approaches used range from programming
with a specific simulation description language to au-
tomation using an icon-driven user interface. The ad-
vantage in utilizing simulation is to assess the sys-
tem's performance prior to an actual implementation.
Functionality, maintainability, and expansibility are
the primary criteria used to make a choice of a specific
tool. To strengthen these criteria, a general-purpose
environment called Performance Object-oriented mod-
eling and Simulation Environment (POSE) has been
developed. The objectives of POSE are to automati-
cally construct simulation models for the systems to be
designed, to efficiently define the system performance
measures, and to accurately generate the performance
data expected. The environment is briefly summarized
and an application study for a multiprocessor com-
puter system is presented.

system model in most of existing simulation languages,
users (or system designers) must know the syntax of a
specific language and how to program the model cor-
rectly. The situation motivates our research to devise
a way that allows users to do system modeling without
the knowledge of an underlying simulation language.

Furthermore, the object-oriented (for short, 00)
concept has shown a great potential in extensive appli-
cations, especially the advantages of reuse and main-
tainability. The third characteristic in POSE is to
utilize the 00 concept in cooperation with Queueing
Theory [4] and the structure of DEVS formalism [13]
such that each POSE's model has a concrete config-
uration and is efficient in processing the problems of
system performance measures. Lastly, we strive to
improve POSE to strengthen its functionality and ex-
pansibility. This is achieved through the design of the
hierarchical model-base management. The hierarchi-
cal model bases are established by dividing the model-
ing procedure into two parts: the system-architecture
and the system-performance modeling stages.

1 Introduction

As fiber optics, ultra large-scale integrated circuits,
asynchronous transfer mode, and more advanced tech-
nologies are introduced, new application systems have
become much more complex. The behavior of the sys-
tems is usually of high complexity and is difficult to
evaluate by analytical approaches. It is believed that
if no analytical approaches can be applied, construct-
ing a new, complex system can be expensive, time
consuming, and risky. Therefore, simulation or hybrid
approaches are explored to mitigate the problems [7].
This is the first reason triggering this work. In ad-
dition, it is necessary to construct a model required
before carrying out system simulation. To build the

2 The Design of POSE

As described in detail in [1], the design concept
focuses on automating the simulation model creation
and providing the required performance calculation
and evaluation. POSE's architecture is depicted in
Figure 1. The arrows in the figure show the opera-
tion flow in POSE. Each item beside an asterisk ex-
presses the basic part corresponding to the stage right
above or below it. According to the flow, the require-
ments and constraints of the system to be developed
are considered first. The requirements include per-
formance objects (indices) like throughput, utilization
and turnaround time. After analyzing the system's
requirements and constraints, the AGEF (Automatic

0-8186-6440-1/94 $04.00 © 1994 IEEE
164

* GenericEFBase
»EFModelBase

« 4

AGEF ■
1—►

•*

'

SYSTEM
ANALYSIS

MODEL
INTEGRATION

MODEL
SIMULATION

PERFORMANCE
VALIDATION

AGSM

*

»Requirements * System Model Base * Integrated Model Base *DEVS-Scheme 'Analytic Approach

* Constraints

Figure 1: The Design Flow of POSE.

Generation of Experimental Frame) stage is processed
in order to embed this information into an experimen-
tal frame (for short, EF) for future use [12].

At the System Analysis stage, the system's archi-
tecture is analyzed. For example, when a multipro-
cessor computer system is to be modelled, the infor-
mation about the connections among CPUs, memory
units and 10 units, the characteristics of each unit,
and the partitions of the system, have to be obtained
after the analysis procedure. Based on this informa-
tion, the AGSM (Automatic Generation of System
Model) is invoked to model the computer system. As
soon as the AGEF and the AGSM stages are com-
pleted, the Model Integration (for short, MI) stage
takes place. A complete integrated model is then gen-
erated. This model is able to produce the performance
data for the system in terms of the requirements and
constraints specified in the EF(s).

The output provided by POSE are integrated mod-
els which are useful at the next stage, Model Simu-
lation. All performance data are collected and com-
puted within this stage. These data are used to vali-
date the accuracy of the system models (e.g. the com-
puter model) via mathematical approaches.

Three model bases, Experimental Frame Model
Base (EFMB), System Model Base (SMB), and In-
tegrated Model Base (1MB), along with a perfor-
mance object-based library called Generic Experimen-
tal Frame Base (GEFB), are used to support the hier-

archical modeling-automation flow. These bases have
the hierarchical relationship of 1MB at the root with
two children SMB and EFMB. In turn, EFMB requires
the resource in GEFB. They are originally empty but
become populated as systems are developed in POSE.
The power of POSE is enhanced by maximizing the
flexibility of the execution flow feedback as referred
to in Figure 1 and designing a corresponding inter-
face shown in Figure 2 (where both Node Modeling
and System Modeling functions comprise the AGSM
stage). More details about the environment and its
implementation can be found in [1]. In what follows,
we focus on the model integration and simulation stage
and provide an illustrative example.

3 Model Integration and Simulation

The models in the system model base (SMB) and
the experimental frame model base (EFMB) can be
operated in a stand alone mode with DEVS-Scheme
but no meaningful output is produced. To come up
with the performance metrics required for an applica-
tion system, the function of Model Integration (MI)
is then designed. Figure 3 shows the relationship
among the SMB, EFMB and the integrated model
base (1MB). This figure also points out that only inte-
grated models are allowed to be simulated in POSE.

In order to carry out flexible model integration,

165

Kl POSE H

Start Simulatiot ?l
Quit \EF Modeling \

\ Node Modeling \

\ System Modeling \

[Model Integration |

| Execution

1 Model Bases \

\Exit |

Figure 2: The Function Layout Window in POSE.

EFMB —

'

— SMB

"1
r

Model Integration

Integrated
Nfodel»

1MB

4
Simulation

Figure 3: Model-Base Relationship in Model Integra-
tion.

the schemes of global and distributed experimental
frames [8] are employed at this stage. For instance,
an interconnected network like ARPANET [11] con-
nects many Local Area Networks (LANs) via gate-
ways. Since the role of gateways within the inter-
connected network is very critical and sensitive, per-
formance measures at gateways are particularly im-
portant. In general, throughput and utilization are
factors of greatest concern. This situation requires
attaching different configurations of EFs to the gate-
ways at different geographical areas. This flexibility
has been carried out by using both schemes. Due
to the flexible attachment of an EF to any layer or
component in a system model, the EFs stored in the
EFMB can be retrieved and coupled to the system
model without any restriction during the processing
of the MI function.

The goal of simulation in POSE is to generate per-
formance data for performance evaluation. All the
data expected are gathered and saved in different log
files specified in the transducer(s) during simulation.
Basically, there are three pre-defined log files: job ar-
rival, job finished, and summary, at each transducer.
Both job arrival and finished files keep the so-called
raw performance data consisting of each job name
and its priority with the arrival or departure time, re-
spectively. The log files rather than the pre-defined
ones are for specific purposes such as throughput,
turnaround, etc. The summary file periodically col-
lects all processed performance data such as:

** ef-computer at time 320

throughput
turnaround

2.08524590163934
1.66049869504983

** el-computer at time 340

throughput :: 2.08709677419355
turnaround :: 1.65773744063163

** el-computer at time 360

throughput :: 2.0952380952381
turnaround :: 1.6632224979867

A simulation run is finished as soon as the toler-
ance condition pre-set by employing the technique of
terminating simulation is met [5].

4 The Experiments in POSE

Even though analytical approaches provide efficient
and accurate ways to process performance measures,
the simulation approach offers an alternative when:
1) the complexity of a system prohibits determinis-
tic results, or 2) the complexity is difficult to ana-
lyze mathematically. The Simulation approach also
provides a means for evaluating and comparing new
systems prior to their actual implementation. Never-
theless, analytical approaches can be used to evaluate
the performance outcome generated by POSE.

The following simulation experiments are used to
test POSE's functionality and accuracy. Their simula-
tion results are synthesized through the scheme of con-
fidence interval under the control of terminating sim-
ulation [5]. Also, the results are evaluated by means
of mathematical analysis with queueing theory.

166

Computer

I—**0.1

, ,[—-" 1

•—""o.l

CflOKnt: The values beside circles are their jean job service time (K).

Figure 4: A Multiprocessor Computer System.

A Multiprocessor Computer System: Perfor-
mance evaluation in various computer systems has
been studied extensively [3, 6, 7, 10]. For compar-
ison purposes, a multiprocessor computer system is
designed in POSE. The experiments related to the
proposed computer system shown in Figure 4 are to
determine how the system would perform under vari-
ous changes. Based on the figure, these changes could
be about the input rate (system workload), the service
rates of cpus, (main) memory and disks, and the prob-
ability settings on links (buses). Since the role of the
cpu and memory is more sensitive to the whole sys-
tem, we are primarily concerned with changes in their
rates. Due to the variety, the performance measures
regarding the mean job turnaround time, i.e., aver-
age time delay, in the system are considered. These
performance measures are gathered through execut-
ing the system's model, which is created by POSE, as
shown in Figure 5.

The first experiment examines the quantity changes
in turnaround time by gradually modifying the cpu's
mean service time (the reciprocal of service rate).
Other factors involved here have the following con-
ditions:
1) No jobs are blocked at any receiving unit.
2) Mean job interarrival time to the system :

0.5 millisecond/job
3) Mean service rate of the memory :

0.025 millisecond/job
4) Mean service rate for each disk :

0.2 millisecond/job

«■.I
T Dlsp-eomput»r

stop

CPUO

]

rGEü
T
stop

EC-Computer

DISKO

T
stop

"TDISKI

| »f-computw-tranaducw

stop I

•f-computw-gwrator

Figure 5: A Multiprocessor Computer System.

5) Input jobs are immediately dispatched to each cpu
with equal probability.
6) Cpu's outgoing jobs sent to the two disks, the mem-
ory, and outside of the system with the probabilities,
0.1, 0.1, 0.7, and 0.1, respectively.

By means of multiple simulation runs at each cpu
setting, Figure 6 plots the related confidence interval
with 95% via two curves Simulation-Upper (i.e. the
upper bound of the interval) and Simulation-Lower
(i.e. the lower bound). This area between the up-
per and lower curves shows that POSE provided a
good enough estimate by comparing it to results cal-
culated with the analytical approach. Based on the
same conditions, we proceed with the analytical ap-
proach by using queueing theory. Since the computer
system model is an Open Queueing Network (OQN)
with Poisson input rate, exponential service rates and
infinite buffer sizes at all queues, it can be analyzed
by applying Jackson's theorem [2]. The correspond-
ing analytical curve is marked with Analytical-0.5
for the purpose of evaluation. (The "0.5" expresses
the mean job interarrival time to the system is 0.5
millisecond, i.e., the job input rate is 2 jobs/ millisec-
ond.) From the curve distributions, it is concluded
that:
1) The area specified by the 95% confidence interval
almost covers the analytical curve except for the range
close to 0.08 and up. This exceptional range results
from job congestion occurred in cpus to the extent that

167

Turnaround Time

1 1 1 1 1

14.00 - -

12.00 - AnalvUeaMM 1 -

moo -

8.00 -

6.00 / Aoalylkal/flJ

/ /
-

4.00

0.00

1

Simulation-Upper / ^^''f

^^SSr"
SlmulatloD-Lower

i i i i

-

Turnaround Time

0.00 20.00 40.00 60.00

[Confidence Interval: 95%]

CPU Service Time x 10

Figure 6: The Effect of The CPU's Rate Changes.

3.00 -
1 1 1 1 1

-

2.80 - -

2.60 - -

2.40
Analytlcal-O.W

/ r -

2.20 Simulation-Upper /1
/ -

2.00 -
Simulation-Lower / J*

-

1.80 - V f/f -

1.60
/ /?'

-

1.40

1 !""" 1 1 I 1
-

0.00 10.00 20.00 30.00 40.00 50.00

Memory Service Time x 10
-3

1 Confidence Interval: 95%]

Figure 7: The Effect of The Memory's Rate Changes.

the whole system becomes unstable and the bound
of 95% coverage is no longer obeyed. Therefore, this
evaluation shows a high accuracy and sensitivity for
the simulation approach performed in POSE. (In the
figure, two other analytical curves are drawn for ref-
erence. The Analytical-0.4 curve exhibits serious
job congestion when the mean service time of a cpu
is over 0.06, a situation that does not occur in the
Analytical-1 curve during the changes of cpu time.
This is because a lower input rate is assigned to the
latter.)
2) If the service time of a cpu is less than 0.06, then
higher input rates are suggested unless there is a real-
time factor.

The second experiment investigates how a change
in memory service-time affects job turnaround time
in the proposed system. Figure 7 illustrates the ef-
fect caused by the change. The related conditions set
in the experiment are the same as in the first experi-
ment except that : a) the cpu service-time is fixed at
0.04 millisecond/job, and b) the memory service-time
is adjusted from 0.01 to 0.05 millisecond/job.

The simulation outcome is plotted by two curves
Simulation-Upper and Simulation-Lower with
95% confidence interval. The related mathematical
method is also built according to Jackson's theorem.
The corresponding analytical outcome is drawn for

comparison to the simulation outcome. Due to the
nonexistence of the job congestion problem given the
testing conditions, the Analytical-0.04 curve is com-
pletely covered within the area between the two bound
curves.

The experimental results for the proposed computer
system show that performance outcomes produced by
POSE provide accurate estimates. The same out-
comes of the tests of Gordon-Newell Networks are also
obtained.

5 Conclusions

In POSE, users can systematically construct a com-
plex system model with a multilayer and multicom-
ponent architecture through the interactive window-
driven interface. The architecture facilitates hierarchi-
cal modeling and a hierarchical model-based manage-
ment. By making connections from POSE to DEVS-
Scheme, model simulation and performance data col-
lection and computation are then accomplished. In
conclusion, the contributions of this work to the field
of modeling and simulation automation are in a) hid-
ing of simulation language, b) modeling automation,
c) hierarchical modeling, and d) effective performance

168

measures generation. [13] B.P. Zeigler, Object-Oriented Simulation with Hi-
erarchical, Modular Models - Intelligent Agents
and Endomorphic Systems, Academic Press,

References 199°-

[1] L.P. Chien and J.W. Rozenblit, An Environment
for Automatic System Performance Evaluation,
Proceedings of the 1993 Winter Simulation Con-
ference, pp. 582-588, Los Angeles, CA December
1993.

[2] J.R. Jackson, Networks of Waiting Lines, Opera-
tions Research, Vol. 5, pp. 518-521, 1957.

[3] P.J. King, Computer and Communication Sys-
tems Performance Modelling, Prentice Hall Inter-
national (UK) Ltd., 1990.

[4] L. Kleinrock, Queueing Systems, Vol. I, John Wi-
ley k, Sons, Inc., 1975.

[5] A.M. Law and W.D. Kelton, Simulation Modeling
and Analysis, McGraw-Hill, Inc., 1982.

[6] M.F. Morris and P.F. Roth, Computer Perfor-
mance Evaluation: Tools and Techniques for Ef-
fective Analysis, Van Nostrand Reinhold Com-
pany, 1982.

[7] T.G. Robertazzi, Computer Networks and Sys-
tems: Queueing and Performance Evaluation,
Springer-Verlag New York, 1990.

[8] J.W. Rozenblit, Experimental Frame Specifica-
tion Methodology for Hierarchical Simulation
Modeling, International J. of General Systems,
Vol. 19, No. 3, pp. 317-336, 1991.

[9] J.W. Rozenblit and J. Hu, Experimental Frame
Generation in a Knowledge-Based System De-
sign and Simulation Environment, Modeling and
Simulation Methodology: Knowledge Systems'
Paradigms, (eds.: M. Elzas et.al.), North Hol-
land, pp. 451-466, 1989.

[10] B.W. Stuck and E. Arthurs, A Computer and
Communications Network Performance Analysis
Primer, Bell Telephone Laboratories, Inc., 1985.

[11] A.S. Tanenbaum, Computer Networks, 2nd Edi-
tion, Prentice-Hall, Inc., 1988.

[12] B.P. Zeigler, Multifacetted Modelling and Discrete
Event Simulation, Academic Press, 1984.

169

The DEVS Formalism : A Framework for Logical Analysis and
Performance Evaluation for Discrete Event Systems *

Gyung Pyo Hong and Tag Gon Kim
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
373-1 Kusung-dong Yusung-gu, Taejon 305-701, Korea.

Abstract

This paper proposes a framework which supports
performance evaluation and logical analysis of dis-
crete event systems using a unified formalism, i.e.,
the DEVS(Discrete Event System Specification) for-
malism. For performance evaluation, DEVSim++, a
realization of the DEVS formalism and the associated
simulation algorithms in C++, is used. For logical
analysis, the dual language approach is adopted. We
use the DEVS formalism as an operational formalism
to describe system's behavior. Temporal Logic(TL) is
employed as an assertional formalism to specify sys-
tem 's properties. To reduce states space in logical anal-
ysis, we exploit a projection mechanism. The method
is a mapping of a set of states in models into a state
which obtained from TL assertions. An example of
logical analysis for Alternating Bit Protocol is given.

1 Introduction

Systems development process consists of a formal
specification of requirements, modeling from the spec-
ification, validation of the models, performance evalu-
ation and implementation. A model for performance
evaluation should have time informations between the
communicating entities to analyze average delay time,
throughput, and so on. On the other hand, a model for
validation should have logical informations to prove
that there are no logical conflicts in procedure rules.

*ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights
reserved. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution must be obtained from the IEEE. For
information on obtaining permission, send a blank email mes-
sage to info.pub.permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws pro-
tecting it.

From these different features, the designer has to de-
velop two kinds of models to perform the performance
evaluation and the logical analysis. This is a very te-
dious job.

This paper presents a framework which supports
both performance evaluation and logical analysis
within a unified formalism. Logical analysis tech-
niques can be divided into two approachs, single lan-
guage approach and dual language approach. Reach-
ability analysis is a well known single language ap-
proach. It is practically impossible to perform com-
plete analysis for complex systems [2]. On the other
hand, the dual language approach uses two for-
malisms: operational formalism which describes the
behavior of a system and assertional formalism which
specifies the property of a system. We adopt Tempo-
ral Logic(TL) as an assertional language and DEVS
formalism as a description language.

This paper is organized as follows. Section 2 de-
scribes the proposed framework for the dual language
approach. In section 3, we describe the assertional
language TL and its expansion procedure. And a pro-
jection mechanism for atomic DEVS models and a val-
idation procedure are also described. We conclude this
paper in section 4.

2 Proposed Framework

Figure 1 proposes a framework for logical analysis
and performance evaluation within the unified DEVS
formalism, where the logical analysis exploits the dual
language approach. A modeler should develop DEVS
models to perform performance evaluation. This is re-
fined descriptions from informal requirements of a sys-
tem. The DEVS formalism and the associated simula-
tion algorithms provide sound modeling semantics and
a simulation methodology[8]. Therefore the modeling
and the performance evaluation processes are easily
accomplished by using the DEVSim++[3].

170
0-8186-6440-1/94 $04.00 © 1994 IEEE

Informal
Description of

Systems

DEVS Spec.
■ Entities
■ Procedure rule

TL Assertions
Systems Prop.

DEVS
Model

State
information

State Diagram
of

TL Assertion

State Spate
Projection

Partially
Selected State

Temporal
Constraints
Language

_^# Language
Acceptor

Performance
Evaluation

Logical
Analysis

Figure 1: Overall System Configuration

The main advantage of the dual language approach
is in its flexibility; the use of specification language
provides a uniform notation for expressing a wide va-
riety of correctness properties and it separate mod-
els from reachability assertions[6]. But the dual lan-
guage approach also has the state explosion problem
for complex systems. Therefore partial proof against
given specifications is a reasonable solution to these
problems[4]. The dual language approach with a pro-
jection mechanism can be an efficient method for the
validation of large systems.

Temporal constraints that present temporal prop-
erties of the requirements are also required for logi-
cal analysis. These constraints are expressed by using
Temporal Logic(TL). The temporal logic formula is
translated into a finite state automaton. The state
informations are obtained from the automata. These
informations are applied to the DEVS model, devel-
oped for performance evaluation, to obtain a projected
state space. Logical analysis is performed by using the
projected state space and the finite automata of TL
formulas.

3 Logical Analysis

The DEVS models for performance evaluation
does not have any constraints about the desired
states/events set and global state information of a sys-
tem. For logical analysis, such information should be
added to the DEVS models. The logical constraints
which specify the state sequences of a system can be
expressed in terms of temporal logic formulas. Timing
information does not need for logical analysis. Thus,
the time advance function fro an atomic DEVS model
may not be used for logical analysis. The logical anal-
ysis is basically a searching procedure to find illegal
states. For efficient analysis, there should be a mech-

anism to reduce the state space. We accomplish it
by an extension of the DEVS formalism, i.e, add a
projection function and state set informations derived
from TL assertions into atomic DEVS models. A fa-
cility for global states manipulation is also added to
coupled DEVS models.

3.1 Expression of Temporal Logic

Temporal logic assertions express sequence of states
that should be satisfied during system execution.
Therefore the state information of TL assertions can
be used to project with respect to related states from
the DEVS model of a target system. Temporal logic
is an extended logic by adding the temporal operators
to describe the timing relationship between entities.
It has been widely used to specify discrete event sys-
tems such as concurrent system and communication
protocol. The temporal operators and their meanings
are as follows[l].

• n(always)A: A is true now and will always be
true in the future.

• Q(sometimes)A: A is true now or will be true
sometimes in the future.

• A[)(until)B: B is true now or A is true until B
will be true.

• Q)(next)A: A will be true next time.

To establish correspondence between TL assertions
and a DEVS model, TL assertions are described by
using the state variables and their values defined in
the DEVS model. Let grammar G of the temporal
expression be (VT,VN,P,S). Terminal V? is a set of
atomic formulas which contain no temporal operator.
The non-terminal VN follows the next operator O- A.
given temporal expression, a non-terminal set and a

171

FINAL state constitute a states set S of the gram-
mar. The production rules P for a set of temporal
operators are as follows, where an expression in { } is
a language accepted by the projection rules.

• DA=^A-0(DA){A*}
• OA=>A\->A- O(0A){hA)*A}
• A\JB=>B\AA^B-0(A\JB)){(AA^B)*D}

^A | Oh°A){W}
->A\A- OhDA){A*^A} • -,0,4=*

•-(A\JB)
^B\BA ■>A-OHA\jB)){(BA^Ay^B}

(i) □(£.Error A R.Error = false)
(ii) 0((S.Phase = FM A S.st = 0)

-+ <>(R.Pahse = FA A R.at = 0))
(iii) D((S.Phase = FM A S.st = 1)

-► <>(R.Pahse = FA A Ä.a< = 1))
(iv) □ ((S.PAaae = FM A R.Phase = WAf)

-► (S.Phase = FM A R.Phase = WM)
U (S.Phase = WA A R.Phase = FA))

(v) a((S.Phase = WAA R.Phase = FA)
-> (S.Phase = WA A R.Phase = FA)
U (S.Phase = FM A R.Phase = WM))

A temporal expression which describes a sequence
of states is expanded to a current state condition and
a next state condition using the grammar. This is
based on the decision procedure in [7]. The expansion
procedure for temporal expression is as follows.

(i) Start with application of the production rules
shown above to TL assertions.

(ii) Set the non-terminal to a next state and the ter-
minal to a transition condition. Any formula that
contains only terminals becomes a transition con-
dition for the FINAL state.

(iii) The outmost operator O f°r a nex* state is re-
moved.

(iv) If a new state does not appears, then terminate.
Otherwise go to (i).

After execution of the expansion procedure, a TL
assertion is translated into a finite state automaton R
as

The model of the ABP should be correct if it sat-
isfies the above TL assertions. To prove the property,
we translate TL assertions into a finite state automa-
ton. Figure 2 shows the resultant automata for the TL
assertion (iii). The expansion procedure for this as-
sertion is as follows. Let S.Phase = FMAS.at = 1 be
A, and R.Phase = FAAR.at = 1 be B. The following
is the expansion procedure for the given property.

1st step : apply expansion rule for <$B
->A | 05 = ->A | B | -5 • O(O-S)

2nd step : determine transition conditions
transition to FINAL state : -<A | B
transition to next state(O-B) : ~<B

3th step : apply expansion rules to §B
0B = B\-^B- O(0B)

4th step : determine transition conditions
transition to FINAL state : B
transition to next state(O-B) : -iB

5th step : (0-8) appears again : stop expansion

R=< S,A,<5R >

5 : sequential states set;
A : logical assertions set;
6 : state transition function;

with the following constraints
S, A : finite set;
6R: Sx2A-+2s;

In this paper, we use the alternating bit proto-
col(ABP) as an example system. A detailed descrip-
tion of the ABP appears in [5]. Consider the following
property for the ABP: " Error-free Transmission : If
no transmission errors exist between Sender and Re-
ceiver, then messages are sent infinitely and they have
alternate control bit". The TL assertions of this prop-
erty are as follows.

A = (S.Phase = FM A S.st = 1)

B = (R.Phase = FA A R.at = 1)

Figure 2: Finite State Automaton

The state values set which is related to the given
properties can be extracted from the transition con-
dition 2A of R. This is done by the grouping the
values set used as transition conditions. The state
variables of SENDER and RECEIVER for the

172

above property can be grouped as follows: S.Phase =
{{WA}}, S.st = {{0}}, S.Error = { }, R.Phase =
{FA,{WA}}, R.at = {1,{0}} and R.Error = { }.
Therefore, states that have the same values except for
Error can be treated as an equivalent state. Table 1
represents the values set of state variables of the ABP
ofr the Error-free Transmission property.

Spec # sv SENDER RECEIVER
1 Error false false
2 Phase

st
at

{WA}

{1}

FA, {WM}

o,{i}
3 Phase

st
at

{WA}
{0}

FA, {WM}

MO}
4 Phase {WA}, WA, FM FA, {FA}, WM
5 Phase FM, {FM}, WA {WA}, WM, FA

Table 1. Grouped state variables for TL assertions

3.2 Projection Procedure

The projection is an efficient method to reduce the
space/time complexity of logical analysis. Assume
that a model supports various properties and some
of them are disjoint. Then TL assertions for a cer-
tain property use only a subset of domain of a state
variable. Therefore the states which have the unused
values can be grouped in one state.

Definition. 1 Let M(5,-) be a state variable of an
atomic DEVS model and M{Vi) be domain of M(Si).
Then the set of states of the model is SM = M(Vi) x
M(V2)x ■■■M(Vn).

Definition. 2 Let R(Si) be a state variable that is
used as transition conditions in the automata R and
R(Vi) be a set of grouped value set. Then the set
of states of requirements is SR = R(Vi) x R{V2) x
■■■R(Vn).

Definition. 3 Projection is a mapping of a set of
states in SM into a state in SR based on R(VS).
(i) The states in SM which contain a value in the used
value set Ui<;-^(^) ^s aggregated into a state in SR.

(ii) The states in SM which contain values that does
not appear in the used value set Ui<!-^(^') are re~
moved from SM- The resultant isolated states are also
removed. (Hi) Ifi state variables do not used in the as-
sertions, then the n dimensional state space is mapped
into the n — i dimensional image.

Consider a system shown in Figure 3 (a) that is
described by 2 state variables v\ — {true, false},
V2 = {n | n > 1}. Let states 82,83 and S4 be s2 —
{vi = false, V2 — 2}, S3 = {v\ = false, V2 = 3} and
s3 = {vi = false, V2 = 3}. Assume that state tran-
sition conditions which are obtained from the expan-
sion procedure have a value group V2 = {1, {2,3,4}}.
If a transition condition for TL assertions satisfies
vi = false, then the system can transit to these
states. Therefore these states are equivalent and can
be grouped. Figure 3 (b) shows the results after group-
ing.

If TL assertions do not use the value v\ = false,
then the system never transit to the states that contain
this value. So, these states can be removed from the
original system. Figure 3 (c) shows the result after
removing those states.

(b) Grouping Equivalent States (c) Removing Redundant States

Figure 3: Projection of Example System

The DEVS formalism is extended for logical analy-
sis and projection. The projection function is a map-
ping of states from an atomic DEVS model to a state
in a finite state automaton of a TL assertion. SR is
the states set that is equivalent to the grouped states
of the DEVS model. Formally, the specification of an
atomic mode M is as follows.

M=< X,SM,Y,<5int,<5ext,A,ta,fR)SR>

X : input events set;
SM '■ sequential states set;
Y : output events set;
dint '■ internal transition function;
Sext '■ external transition function;

173

A : output function;
ta : time advance function;
/R : projection function for requitements;
SR : states set of requirements;

with the following constraints,
X,Y,SM '■ infinite but countable set;
bint '■ SM —* SM !
&ext '■ Q x X —+ SM ;

Q = {(s, e)\s€ SM,0 < e < ta(s)};
Q: total state of M,
e: elapsed time after scheduling;

SM -*Y;
: SM —*■ Real;

IsM - SR;

A :
ta :

fR

To validate, the gathering and tracking facilities of
global states of the coupled DEVS model are required.
So a means for manipulating the global states set is
added to the coupled DEVS formalism.

DN =< D, {Mi}, {Ij}, {Zi j}, SELECT, SG> 6DN >

D : component names set;
for each i in D,

Mi : DEVS component i in D;
Ii : set of influencees of i;

for each j in I;,

: i-toj output translation function;
SELECT : 2D -»• D : tie-breaking selector;
SG '■ XSR; : global states set;
&DN '■ SG x 2A —»• 2

SG
 : state transition function;

Figure 4 (a) shows state diagrams of the atomic
models SENDER and RECEIVER. The global state
diagram for the projected atomic models is shown in
(b). The dotted area presents the projected states
with respect to the property Error-free Transmission.
The global state diagram obtained from the projected
atomic models is equivalent to the projection result
of the original coupled model. Therefore application
of the projection on the atomic DEVS model is more
efficient because the state space complexity is reduced.

3.3 Validation Procedure

The logical analysis is performed by an acceptance
checking : check whether a TL assertion accepts the
state transition sequences of a coupled DEVS model.
If the model is correct, then a sequence of states in a

Phase = (Fwd_Ack, Wait_Msg)
Ack_Turn = (O, 1)
Error = {true, false)

(a) Coupled & Projected DEVS Model of ABP

^ (FM.O.f), (WM,0,f)"|-<
?ack_l, !ack_

(WA,l,f>, (PA,l,f)

!msg_0
?msg_0

(WA,0,f>, (FA,0,f)
?ack_0, !ack_0

!msg_l
?msg_l

(FM,l,f>, (WM,l,f>

(b) State Diagram of Coupled DEVS Model

Figure 4: Global State Diagram of Projected ABP

cycle of the model would be accepted by the temporal
constraints language. The validation algorithm is as
follows.

Validation Algorithm

Var
Stack: stack ofG;
gi : global states set : Si x SGJ/

Sn : next states set of FSA;
tn : transition condition of FSA;
5G„ •' next states set of MODEL;

begin
Stack := { };
9i ■= go;
push(go, Stack);
while not-empty (Stack) do begin

&n := o(oi, ti);

SG„ '■= (>DN(SGi,ti);

X74

tfSGn = { } then
go to Label;

9n := Sn x SG„;

for\fgn do
tf {9n $■ Stack) then

push(gni Stack);
else if acceptance-check(gn) = true then

terminate(model is correct);
end for;
Label: gi = pop(Stack);

end while;
terminate(conflict exist);
end;

By using the above algorithm, we can find a loop
from the transitions of a FSA(Finite State Automa-
ton) and a DEVS model in the Figures 2 and 4. The
possible next states gx([2,((WA,0, f),(FA,0,f))])
and ff2([3, ((WA, 0, /), (FA, 0, /))]) are obtained from
the initial stateg0([l, ((FM, 0, /), (WM, 0, /))]). Next
state of g2 becomes g3([l, ((WA, 0, /), (FA, 0, /))]) al-
though 02 is an acceptance state. This is because a cy-
cle of sequences of global states does not exists. And
01 transit into <te([2, ((WA, 0, /), (FA, 0, /))]) because
next state of the model can accept the transition con-
dition of the FSA. The state transition of the model
based on transition condition of the FSA is made until
a cycle of state sequences of the model is detected and
the FSA reaches the acceptance state. If a model has a
deadlock, then it can not proceed at that state. There-
fore the model can not reach the acceptance state until
the algorithm is terminated. The validation algorithm
can also be applied to the negation of a TL assertion.
Such negation of a given TL assertion may increase
validation speed for some cases.

4 Conclusion

This paper presents a unified framework for per-
formance evaluation and logical analysis within the
DEVS formalism. A performance analysis model has
timing informations between the communicating enti-
ties. That is used to analyze time related performance
such as average delay time and throughput, etc. A val-
idation model has logical informations which is used
to prove systems properties or procedure rules. This is
accomplished by an extension of the DEVS formalism.

To solve the state space explosion problem during
the validation phase, we exploit a projection mecha-
nism using external TL assertions. This is a very ef-
ficient method because state reduction is made before

the atomic models are coupled. Then various valida-
tion techniques which are used in the dual language
approach can be applied.

Acknowledgement

The authors would like to thank ETRI(Electronics
and Telecommunications Research Institute) for sup-
porting this research. This research was done in the
context of the ETRI project on ATM network perfor-
mance study.

References

[1] Reinhard Gotzhein, " Temporal logic and applica-
tions - a tutorial," Computer Networks and ISDN
Systems 24, 1992.

[2] Gerard J. Holzmann, Design and Validation of
Computer Protocols, Prentice-Hall, Inc., 1991.

[3] Tag G. Kim, "DEVSIM++ User's Manual:
C++ Based Simulation with Hierarchical Modu-
lar DEVS Models", Computer Engineering Lab.,
Dept. of Electrical Engineering, KAIST, 1994.

[4] Simon S. Lam, A. Udaya Shankar, "Protocol Ver-
ification via Projections", IEEE Transactions on
Software Engineering, Vol. SE-10, No. 4, July
1984,

[5] Jawahar Malhotra, Scott A. Smolka, Alessandro
Giacalone, Robert Shapiro, "Winston : A Tool for
Hierarchical Design and Simulation of Concurrent
Systems, "

[6] Jonathan S. Ostroff, Temporal Logic for Real-Time
Systems, Advanced Software Development Series.
1, Research Studies Press Ltd., 1989.

[7] Pierre Wolper, "Temporal logic can be more ex-
pressive," 22nd Annual Symposium on Foundation
of Computer Science, pp.340-348, 1981.

[8] B.P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation: Academic Press, Orlando, FL,
1984.

175

Session 2B:

DEVS Formalism:
Modeling Methodology

Distributing and Maintaining Knowledge:
Agents in Variable Structure Environments

A.M. Uhrmacher R. Arnold

Department of Computer Science
Institute of Artificial Intelligence

D-89069 Ulm
Germany

Abstract

The maintaining and adaptation of knowledge wi-
thin changing environments is one of the crucial
aspects in decentralized controlled and distributed sy-
stems. To explore different strategies and their conse-
quences, we use an example where processors, struc-
tured in a hierarchy, are hired or fired responding to
the requests of the current work load. The modeling
and simulation approach uses the actor metaphor of
open systems, where the nodes of the hierarchy are
perceived as autonomous agents with an internal ex-
plicit model about their environment. Questions about
the distribution and maintenance of knowledge refer-
ring to the structure of systems, needs for cooperation,
and the change of roles are discussed against the back-
ground of the example and complete the picture about
the specific effects of the single strategies. DEVS, a
knowledge-based simulation environment, constitutes
the background of our exploration.

in a dynamically evolving environment with changing
structures. With those questions we approach the area
of open systems where bounded knowledge and boun-
ded influences are discussed in the context of decen-
tralized control [2].

The knowledge that is required by the single agents
depends typically on the problem that is tackled with
the distributed systems. Often, the desired func-
tionality can be achieved based on concepts of self-
organization which obviate detailed knowledge and re-
asoning capabilities of the involved agents [4]. Besides
the problem itself, the ability of the agents involved
in problem solving and the perspective which shall be
pinpointed by modeling influence the internal model
of agents.

Analyzing different scenarios of a small example the
adaptation of local views will be discussed based on
the concept of endomorphic intelligent agents, which
has been developed to deal with structural changes in
DEVS.

1 Introduction 2 Internal Models in DEVS

To function autonomously in a structural changing
environment entities need knowledge about their sur-
roundings and their own role in this environment. To
describe those entities and their behavior, we equip-
ped an object-oriented modeling scheme with internal
explicit models about the structure, i.e. the composi-
tion and coupling, of their environment, thus following
system-theoretic approaches [6]. Assuming not only
one single entity works autonomously in an environ-
ment but a group of entities, the questions arise how
much knowledge each entity has to possess in order
to guarantee the functioning of the whole system and
how the local internal models are related to each other

In an extension of DEVS, the perception of agents
which may refer to the environment, to the agents
themselves and the existing interrelationships is repre-
sented as internal models [6]. They realize the awaren-
ess about the agent's own embedding in the network of
communication [1], and represent explicit models wi-
thin models, which Zeigler called "Endomorphy" [10].
Actions are based on and directed to these internal
models. Thus a constructivistic view is supported as
the world is changed corresponding to the local views
of the agents.

During changes in the environment internal models
have to be adapted frequently. The adaptation can

178
0-8186-6440-1/94 $04.00 © 1994 IEEE

be initiated by communication with other agents or
by discovering inconsistencies between the local model
and the external world by observing. In the context
of this paper we will concentrate on the former.

Typically models in the discrete event simulation
system, DEVS, are defined either as atomic models
or as coupled models [10]. The behavior of a cou-
pled model is completely determined by the behavior
of the atomic models. This reductionistic modeling
approach inhibits some problems for the realization of
autonomy [6]. To overcome this difficulties, a special
kind of endomorphic agents with structural knowledge
about themselves and their environment has been de-
veloped. Endomorphic intelligent agents responsible
for structural change (Mesa) are described as atomic
models in DEVS whose definition is extended by an
internal model (IMS).

Mesa =df (X,S,IMS,Y,Sint,Sext,X,ta}

X is the set of input ports for receiving external
input events, S is the sequential state set, Y is the set
of output ports for sending the generated outputs as
external events, Sint {Sext) is the internal, respectively
external, transition function dictating state transiti-
ons due to internal (external inputs) events, A is the
output function which generates events as outputs,
and ta is the time advance function. The internal
model IMS expands the state of the atomic model
capturing the structure of the outside world it is con-
trolling. This information about the structure of the
outside world is encoded as a set of abstract structure
models AS.

IMS(a) =df { AS(m, a)+ }
AS(m, a) —df

(RM(m,a), X(m,a), S(m,a), Y(m,a),
CMName,(m,a), CMAs(m,a), C{m,a))

Each abstract structure model comprises the root-
model RM, the model on the highest organization le-
vel the agent is controlling, its input ports X, its state
S, its output ports Y, the names of its components
CMNames, which can also be described as abstract
structure models themselves CM AS, and the coupling
that exists among them C. The abstract structure
model depends not only on the model m that is con-
trolled but also on the model that is controlling, i.e.,
the endomorphic intelligent agent a. In the abstract
structure model the reductionistic view is exchanged
against a more holistic view. Influenced by the mo-
deling system EMSY [5], it allows to attribute a state
and in a future version also rules to the internal mo-
del. With the latter the agents will be able to reason

about the behavior of atomic and coupled models as
well [7, 3]. Abstract structure models do not distin-
guish between atomic and coupled models.

3 Hiring and Firing

To discuss some phenomena in distributing and
maintaining knowledge within a group of endomor-
phic intelligent agents, we will use the "hiring-firing"
example Zeigler introduced in 1989 [9]. Processors are
structured in a hierarchy where the internal nodes are
called managers and the leaves workers. Depending
on the work load, the processor tree will expand or
shrink. The first question is who decides the hiring
and firing process. The answer is directly related to
the problem which of the nodes are considered to be
intelligent. The other question is who is hired and
who is fired. The latter effects the dynamics within
the tree and the role changes that the nodes have to
undergo.

Different strategies are possible to hire and fire no-
des in the processor tree:

• Hiring:

1. Hiring a parent between the leaf and its for-
mer parent.

2. Transforming the leaf to an internal node
and creating a new leaf.

• Firing :

1. Firing the parent and replacing the position
by the leaf.

2. Firing the leaf and transforming the parent
into a leaf.

Hiring 1. in combination with firing 1. implies no
role changes. The entities are staying workers or ma-
nagers through their whole life, workers are living lon-
ger in the hierarchy while their distance to the top
manager as well as their managers vary frequently.
Scenario hiring 2. in combination with firing 1. has
the effect that by hiring leaves, the former workers,
become managers and new workers are hired, while in
the phase of firing the managers are the first that have
to leave.

4 Realization in DEVS

Different possibilities exist to realize the problem
in DEVS. Each pinpoints a different perception of the

179

o coupled model

CD abstract structure model

endomorphic agent 1 l

• internal model of an intelligent agent

coupling

—— composition

Figure 1: Processor Hierarchy Realized by Coupling - "Hiring Workers and Firing Managers" Scenario

problem. One of those possibilities is constituted by
a "flat" representation where all nodes are considered
to be intelligent with the ability to adapt easily to
different roles.

4.1 A Flat Representation

All the processors are described as intelligent agents
and as components of one coupled parent (Fig. 1).
Thus, all nodes of the hierarchy are able to process
jobs, and the hierarchy is constructed by coupling.
The resulting model hierarchy is from the composi-
tional point of view flat. Each agent has output ports
and input ports to communicate with its "coupling-
parent" and its "coupling-children". While the parent
port is only connected to at most one other agent, the
children port can be connected to several agents. In
all scenarios the internal model will typically refer only
to a certain part of the entire processor tree, thereby
establishing a local view of the agent.

In scenario "Hiring Workers and Firing Managers"

the internal model of the agents includes its parent, its
children, itself, and the existing interrelations. As an
agent is only allowed as a worker to hire other workers,
it has to know if it has children of its own. The firing
of parents necessitates the information about the pa-
rent because during the process of firing the parent
might be substituted by the leaf. As the parent is in-
telligent itself, a message sent to the parent with the
requirement to fire itself and substitute its position by
the leaf, leads to a test if there exist any sisters. In
case no sister exist, the parent initiates the structu-
ral change itself. To substitute the couplings correctly
it is necessary for the parent to know its own parent.
Therefore, the information about the parent is needed,
same as the cooperation of the parent.

In addition to knowledge about its parent, itself and
its children, the internal model includes also know-
ledge about the phases of children. As a job reaches a
processor only by passing the parent and each comple-
tion is reported to the parent, parents can easily keep
track of their children's activities. Those phases con-

180

Mesa(ea-12) = (X = {in-parent, in-children},
S = {Phase, ... },
IMS = {AS(cm, ea-12)},
Y = {out-parent, out-children},...)

where

AS(cm, ea-12) =
{RM = cm,
X = {In},
Y = {Out},
CMMames = {ea-1, ea-12, ea-121, ea-122}
CMAS = {{RM = ea-1, X = {in-parent, in-children},Y = {out-parent, out-children}),

{RM — ea-12, X = {in-parent, in-children}, Y = {out-parent, out-children}),
{RM = ea-121, X = {in-parent, in-children}, Y = {out-parent, out-children}),
{RM = ea-122, X = {in-parent, in-children}, Y = {out-parent, out-children})},

C = {(ea-12.out-parent{ea-l.in-children}), (ea-12.in-parent{ea-l.out-children}),
(ea-12.out-children{ea-121.in-parent, ea-122.in-parent}),
(ea-12.in-children {ea-121.out-parent, ea-122.out-parent})})

Figure 2: Extract of the Internal Model - "Hiring Workers and Firing Managers" Scenario

tain the information whether the subtrees whose roots
are represented by the children are entirely occupied or
possess at least one passive node; consequently, they
may not correspond to the actual phases of the child-
ren themselves, i.e. the phase : passive in the abstract
structure model of a child implies not necessarily its
idleness.

According to the internal model, each processor di-
rects the jobs to those children with free capacities.
Actually, the job is sent to all children (Fig. 1), but
each child decides whether it can ignore the message
based on the information which accompanies the mes-
sage: the name of the addressee.

When all children, according to the internal model,
and the processor itself are active, and a job arrives,
the job is passed randomly down the hierarchy until
it reaches a leaf. As the leaf is active itself, it decides
to create a worker and to become a manager (Fig.
3). Hence, leaves are only created when all nodes are
busy. Yet, the strategy does not guarantee a balanced
growth of the tree.

The firing of the managers is initiated by a longer
phase of passiveness by one of the workers, and is em-
ployed by an internal transition function. We stated
before, that based on the assumptions that the mana-
gers are willing to cooperate and all agents have the
same kind of knowledge and abilities, the agents need
to know only about themselves, their children, their
parent and the coupling that exist among them. In

our model the manager is willing to cooperate, i.e. to
put the worker in his position and fire himself, except
he himself is active or other sisters exist; in the latter
case the manager will simply remove the leaf and stay
in his position.

If workers had to initiate the firing of their ma-
nagers without any cooperation, the internal model
would have to include the knowledge about sisters and
about grandparents as well. In our example the inter-
nal model does not include this information, therefore
the firing of managers requires their cooperation to
implement the structural change and to update the
internal models of the effected agents correctly. In
our example the decision of hiring and the decision of
firing are initiated locally based on the internal mo-
dels of the agents. Depending on the strategies how
we resolve the "hiring and firing" question the internal
model will reflect a different view of the world.

Zeigler [9] proposed a "Hiring and Firing of Wor-
kers" in a flat representation where the firing should
be initiated and implemented by the managers, whe-
reas the hiring should be the task of the workers. Ob-
viously, this scenario would require the information
about children and grandchildren while the informa-
tion about the parent would become superfluous. Af-
ter we discussed the "Hiring Workers and Firing Ma-
nagers" scenario in some detail it is easy to fathom
how an implementation of the "Hiring and Firing Wor-
kers" scenario would look like.

181

; when ea receives (job job-name processing-time ea-name) on port in-parent

(let* ((self-name (get-name ea))
(internal-model (get-internal-model ea)))

(if (equal ea-name self-name)
(if (equal (get-phase ea) 'busy)

(if (> MAX-CHILDREN
(number-of-children self-name internal-model))

(let* ((new-name (create-name 'ea))
(new-ea (make-endomorphicmodel

new-name
:internal-model
(make-abstract-structuremodel
:root-model (get-root-model internal-model)
:components (self-name new-name)
:coupling (make-coupling

:ic (((self-name out-children)(new-name in-parent))
((new-name out-parent)(self-name in-children))))))))

(add-component internal-model new-name)
(add-abst-model internal-model

(make-abstract-structuremodel
:root-model new-name
:state '((phase busy))))

(add-coupling internal-model
(make-coupling

:ic (((self out-children)(new-name in-parent))
((new-name out-parent)(self in-children))))))

else (number of children = MAX-CHILDREN) send job to one of your children randomly

else (phase = passive) process job

else (ea-name <> your name) ignore external event

Figure 3: Extract of the External Transition Function Responsible for Hiring

The internal model depends not only on the selec-
ted strategy of hiring and firing, but also on the distri-
bution of "intelligence" within the network of nodes.
The internal model will naturally be different if only
a certain group of agents possesses an internal model
about their environment and themselves.

4.2 A Compositional Representation

If only workers of the hierarchy are considered to be
intelligent, the internal model has to reflect the whole
path from the worker up to the root manager. If we
can guarantee that intelligent coordinators exist on
each hierarchical level, it will be sufficient to capture
only one level up and one level down the hierarchy.
However, both scenarios suggest to leave the flat re-

presentation and to construct the hierarchy of proces-
sors by composition, describing managers as coupled
models.

In the following, we will discuss the hiring and firing
of processors based on intelligent leaves, assuming no
particular arrangement of intelligent leaves and cou-
pled models within the tree. The processor hierarchy
is built by composition representing the internal no-
des as coupled models. Following a reductionistic ap-
proach, coupled models in DEVS have no activity of
their own. They are constituted by input and out-
put ports (X, Y), a set of components (M), a coup-
ling structure (C) and a function to select the compo-
nent (Select) that is allowed to produce its next event

([10])-

182

ea-1111 #1 [ea-1112

Figure 4: Processor Hierarchy Realized by Composition - "Hiring and Firing of Managers" Scenario

CM =4f {X, Y, M, C, Select)

Thereby, the role of managers is reduced to dis-
tribute the work load to the next lower level of the
hierarchy and to structure its communication. Mana-
gers have no ability to decide or to realize anything,
neither hiring nor firing. Thus, the full responsibility
for changing structures and processing jobs is taken by
the workers. This implies that all the information for
structural changes has to be located within the leaves
independently of the strategy we choose for hiring and
firing.

The latter will only influence the dynamics within
the processor tree and the degree of role changes the
single nodes have to undergo. Role changes are obvi-
ously more cost intensive than they are in the context
of the flat representation. In the prior example all no-
des of the processor tree had the ability to hire and
fire on principle. Whereas in this case a role change
means to turn an endomorphic intelligent agent into a
coupled model and vice versa. Only the name remains
as a sign of its identity; yet its internal structure would

change dramatically. Therefore, we choose a strategy
that avoids role changes: parents are hired and placed
between the former parent and the leaf, parents are
fired and replaced by the leaf, if no other sisters exist.

If we do not assume any particular distribution of
intelligent leaves, the internal models of the agents
have to cover the entire path from the top manager
downwards (Fig. 4). As the single agent can not rely
on the informations of other agents, a successive firing
of managers requires to know the path from the top
manager down to the leaf. The information of possible
sisters is important to decide whether the parent can
be fired and substituted or whether the leaf is the one
to be fired itself.

Same as in the "flat" example, the initiating and
realization of structural changes, and the communi-
cation about it can be implemented by a combina-
tion of external, internal and output function. Those
functions are only based on the information which is
locally available in the model. Thus, our approach
fits nicely into the generalframework of DEVS, where
the transition and output functions are based on the
locally available information, and where the communi-

183

cation between models takes place via the output func-
tion and the output ports, only. Unlike other approa-
ches [8] it obviates the need for additional constructs
which might effect the locality and accessibility of in-
formation. This advantage is paid for by keeping and
maintaining information redundantly in the internal
models.

5 Conclusions

Based on the internal local perception of the world,
agents in DEVS are able to handle flexibly variable
structure environments. Different strategies in invo-
king structural changes can be implemented easily ba-
sed on the internal models, in which knowledge about
the structure of systems, their composition and coup-
ling, is expressed explicitly. Based on this concept and
a few scenarios, we could illustrate some of the speci-
fic phenomena in distributing and maintaining know-
ledge between autonomous agents. The more intelli-
gent agents exist, the less important is a global view of
the world because the local views of different agents
have a complementary effect. Even if all agents are
considered to be intelligent the need for cooperation
and communication can be reduced by expanding the
internal model of agents.

Organizing knowledge about the structure of sy-
stems in decentralized internal models leads necessa-
rily to redundancies and inconsistencies. Therefore,
like in other open systems, reasoning and coordinated
action depend on using debate and negotiation to me-
diate between the local views of the involved agents.
It will be the subject of further research to provide
suitable pattern to resolve global inconsistencies for
modeling endomorphic intelligent agents in variable
structure environment.

Acknowledgment

Most of the ideas presented in this paper have been
developed during the stay of the first author as an
visiting scholar of the Alexander von Humboldt Foun-
dation at the Department of Electrical and Computer
Engineering at the University of Arizona in Tucson.
We would like to thank Dr. Bernard Ziegler for many
hours of constructive discussions without which this
paper would not have been possible.

References

[1] Durfee E.H., Lesser V.R., Corkill D.D., 1987: Co-

operation through Communication in a Distri-
buted Problem Solving Network. In: Huhns M.N.
(ed.): Distributed Artificial Intelligence. Morgan
Kaufman, San Mateo., 29-58.

[2] Gasser L., 1991: Social Conceptions of Know-
ledge and Action: DAI Foundations and Open
Systems Semantics. Artificial Intelligence 47, 107-
138.

[3] Praehofer H., Bichler P., Zeigler B.P., 1993: Syn-
thesis of Endomorphic Models for Event-Based
Intelligent Control Employing Combined Dis-
crete/Continuous Simulation. In: AI, Simulation,
and Planning in High Autonomy Systems, Proc.
4. Conference, IEEE Computer Society Press,
San Diego, 120-127.

[4] Steels L., 1990: Cooperation between Distributed
Agents through Self-Organization. In: Deman-
zeau Y. and Müller J.-P., (eds.): Decentralized
AI. Elsevier Publishers B.V., North Holland, 175-
195.

[5] Uhrmacher A.M., 1994: Reasoning about Chan-
ging Structure: A Modeling Concept for Ecolo-
gical Systems. International Journal on Applied
Artificial Intelligence. (To appear).

[6] Uhrmacher A.M., Zeigler B.P., 1994: Variable
Structure Models in Object-Oriented Simulation.
International Journal on General Systems. (To
appear).

[7] Wesson R.B., Hayes-Roth F.A., Bürge J.W.,
Stasz C, Sunshine C.A., 1981: Network Structu-
res for Distributed Situation Assessment." IEEE
Trans. Systems, Man and Cybernetics, Vol. SMC-
11, 5-23.

[8] Zeigler B.P. and Praehofer H., 1989: Systems
Theory Challenges in the Simulation of Variable
Structure and Intelligent Systems." In: Compu-
ter Aided Systems Theory - Lecture Notes. Sprin-
ger, Berlin.

[9] Zeigler B.P., 1989: Concepts for Distributed
Knowledge Maintenance in Variable Structure
Models. In: Elzas M.S., ren T.I., and Zeigler B.P.
(eds.): Modeling and Simulation Methodology -
Knowledge Systems' Paradigms. Science Publis-
hers. (North Holland), 45-54.

[10] Zeigler B.P., 1990: "Object-Oriented Simulation
with Hierarchical, Modular Models - Intelligent
Agents and Endomorphic Systems". Academic
Press, San Diego.

184

Variable DEVS - Variable Structure Modeling Formalism:
An Adaptive Computer Architecture Application

Fernando J. Barros and Maria T. Mendes
Laboratörio de Informätica e Sistemas

Universidade de Coimbra
Urb. Quinta da Boavista Lote 1,1°

P-3000 Coimbra, Portugal

Bernard P. Zeigler
Department of Electrical and Computer

Engineering
University of Arizona

Tucson, AZ 85721

Abstract

Conventional modeling theory gives support only for
representing model behavior, providing little aid for
describing changes in model structure. Some models are
better represented by changes in their structure. Instead
of forcing this changes to be represented at the simple
behavioral level, a strong theoretical support is needed
to allow the representation of structural changes in a
natural way. In this paper we present a modeling
methodology for representing variable structure systems.
Examples of such systems include adaptive computer
architectures, ecological systems, fault tolerating
computers. We describe an application of this
methodology to the modeling and simulation of an
adaptive computer architecture.

1 Introduction

A variable structure model can transform itself in a
model of a variant family. Examples of applications of
systems which exhibits structural changes are:
Reconfigurable computer architectures [1], [2], [3], [4],
[5], fault tolerance computers [6] and ecological systems
[7]. There is currently little support for variable structure
modeling.

Several approaches have been proposed to a
methodology of variable structure modeling. A multilevel
system is described in [8]. In this hierarchical system the
first level represents the conventional behavioral model

where the simulation occurs. The second level controls
the structure of the first level. The structure of second
level can be changed by the third level of this multilevel
hierarchy.

Changes in structure are currently supported by
controlled-models. In these models there are fixed
connections between the controller element and the other
components. Is thus possible to insert or delete
components in controlled models due to the automatic
handling of connections [9].

A broad discussion of variable structure models is
presented in [10]. This approach is based upon
endomorphic agents. These intelligent agents keep an
internal representation of model structure. Endomorphic
agents start changing their own internal representation of
the system using only the external and internal functions
provided by DEVS definition of atomic models,
preserving thus modularity constraints of DEVS
formalism. However, the automatic mapping from
changes in model representation to changes in the
models themselves is a topic of current research.

A coupling formalism called name-directed coupling
[11], can handle changes in connections. However this
formalism does not currently provide support for
add/delete model operations.

This paper focuses the extension of DEVS formalism
with variable structure constructs. We extend DEVS to
support a higher level of control that is able to control the
behavior of the standard simulation level. This higher
layer is compatible With modularity model building. To

ISBN 0-8186-6440-1. Copyright © 1994 IEEE. All rights reserved.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE.
For information on obtaining permission, send a blank email message to info.pub.permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

185
0-8186-6440-1/94 $04.00 © 1994 IEEE

illustrate these concepts we present as an apllication an
adaptive computer architecture.

2 Review of DEVS formalism

ones. Full description of DEVS formalism can be found
in [12], [13].

3 Variable DEVS formalism

DEVS formalism was introduced by Zeigler and is a
systems theory tool for describe discrete event systems. In
DEVS formalism is necessary to define basic models and
how these models are connected. An atomic model is
defined by the 7-tuple:

M = <X,S,Y,8jnt,8eXt,X,ta>, where
X = set of external input events;
S = set of sequential states;
Y = set of output events;
Si«: S -> S s internal transition function;
8ext: Q x X -»S s external transition function;
where Q = {(s,e) I s e S, 0 < e < ta(s)} s total state set;
X: S -» Y = output function;
ta: S -> R* = time advance function.

Atomic models can be connected to form coupled
models. Coupled models are defined in DEVS formalism
by the 5-tuple:
CM s <X,Y,M,C,select>, where
X = set of external ports;
Y = set of internal ports;
M = set of components;

Here we outline an extension of DEVS formalism to
represent structural changes in models. This extension is
named Variable DEVS, V-DEVS. In V-DEVS we define
atomic models as in original DEVS by:

M = <X,S,Y,8jnt)8eX„Ma>
Structure changing is provided by the new variable

coupled model defined by:
V-CMs<X,Y,(?,select>

where X, Y and select have the same meaning as in
DEVS formalism and C is defined by:

e = <X,Y,%,8int&xtXta>
and % is defined by:

% = <M,C>
M and C represent models and connections

respectively, as in DEVS.
G is an atomic model that handles the connections in

the variable coupled model. C acts like the controller of
the coupled model, by keeping composition and
connection information. Changes in structure can be
initiated only by the internal or external transitions of
this element. With this definition V-DEVS keeps the
modular proprieties as defined in original DEVS
formalism.

Figure 1. Channel external function.

C = connections between components;
select = tie break selector.

DEVS provides a powerful mechanism for specifying
hierarchical and modular models. Large models can be
built using atomic models, and these new coupled models
can be used as building blocks to make more complex

4 DEVS environment

DEVS formalism is implemented in the Smalltalk/V
language [14]. Smalltalk is a class-based object-oriented
language. To build new models and to define their
proprieties we use Smalltalk/V browsers, fig. 1. In this

186

modeling environment each model is an instance of a
simulation class. The root class DEVSEntity is
specialized in class DEVSModel and DEVSProcessor.
DEVSModel subclasses are the actual models and
DEVSProcessor subclasses: RootCoOrdinator, Coord-
inator and Simulator implement the abstract processors
described in [12], and necessary to execute the model
implicit behavior.

The class AtomicModel is the root class of all atomic
model and coupled models are implemented in class
CoupledModel. To handle changes in model structure we
have created the new VarCoupledModel class. The co-
ordinator necessary to handle the VarCoupledModel is
implemented by the class VarCoOrdinator.

5 Adaptive computer architecture

One of the most promising application of variable
structure modeling methodology is in modeling and
simulation of adaptive computer architectures. We
describe the modeling of an adaptive computer in V-
DEVS formalism.

5.1 Description

In this section we briefly describe an adaptive
computer architecture system and its modeling in the V-
DEVS formalism previously described. Full details of
this system and simulation results are presented in [15].

This computer architecture consists of a variable
number of flexible computers (FCs) and a variable
number of channels. FCs are connected in a tree like
configuration, fig. 2.

1 R

c FP

/ \ / \
P FP P p |

/ \
P P

R-Root
FP = F-Pa
P = F-Processor
C = Co-Ordinator

Figure 2. Computer architecture tree.

FC in the leaves of the tree (named here by f-
processors) are the only processors that perform
computations. Inner FCs, also called co-ordinators,
redirect problems to the f-processors. This architecture is
able to change its own structure to keep a desired
performance. The number of FCs is increased when the

adaptive architecture
I

arch-dec

CHs
III

CH

pool

ch-s spec

pl-channel 1-channel r-channel c-channel p-channel
r

PCs
III
FC

I
fc-dec

I
T

r

supervisory executive f-processor buffer

sup-dec f-proc-spec
J II

supervisory co-ordinator full 1-half 1-half compiler

coor-spec pec

I I I
MS D&C PL

Figure 3. System entity structure for the adaptive computer architecture.

187

performance is low and is decreased when computer
performance is above an upper limit. These operations
are called hire/fire operations and change the structure of
the computer architecture. FCs are connected by
CHANNELS with an unbounded capacity and a constant
delay.

The System Entity Structure (SES) provides a
formalism for specifying system composition [13]. SES
provides information about decomposition, coupling and
taxonomy. In fig. 3 is represented the SES for the
adaptive computer architecture. Instead of pruning the
SES at the beginning of simulation we start with a single
processor and the structure changes dynamically during
simulation. SES also provides a formal framework for
representing the family of possible structures.

Each FC has four modules: an EXECUTIVE, a
BUFFER, a SUPERVISORY and a F-PROCESSOR. The
EXECUTIVE module handles the hire/fire commands.
The BUFFER stores new processes and is used in FC
changes. The SUPERVISORY is used when the FC is
working as a co-ordinator. The F-PROCESSOR has the
task of packet (problem) processing. A simplified
representation of FC connections is represented in fig. 4.

When the FC is working as a leave processor (f-
processor) the BUFFER sends problems to the F-
PROCESSOR module. Arriving problems are stored in
the BUFFER if the F-PROCESSOR is busy. The F-
PROCESSOR after solving the current problem sends a
done signal asking the BUFFER a new problem.

The FC can also act as a co-ordinator. In this role
arriving packetes are sent from the BUFFER to the
SUPERVISORY component and from this module to one
of the children FCs. The SUPERVISORY is a

composition of a SUPERVISOR and a COORDINATOR.
The SUPERVISOR send new problems to the CO-
ORDINATOR module and solved problems to a high
level processor. There are three different types of
COORDINATORS: multiserver, MS (the problem is sent
to the child processor with smallest queue size), divide &
conquer, D&C (divided problems are sent to the child
processors and partial solutions are sent to a special
processor for final compilation), and PIPELINE, PL
(problems pass through a chain of processors).

Architecture changes are initiated by hire/fire
commands. When an f-processor, FP, receives a hire
command it checks if buffer size is greater than an higher
limit. In this case the FP send an hire command to the
POOL and after receiving the hire confirmation it starts
the hire process. In this transitory state all the incoming
problems are stored in the buffer and a type of CO-
ORDINATOR is chosen in the SUPERVISORY element.
When the F-PROCESSOR module finishes problem
processing, the buffer sends all its stored problems to the
SUPERVISORY for distribution to the new f-processors.
After the hire operation the f-processor becomes an f-
parent.

The fire operation can be performed only by f-parents
(co-ordinators that all its children are f-processors).
When an f-parent receives a fire command it will check
buffer size; if buffer size is lower than a minimum limit
the f-parent begins the fire process. Incoming problems
are stored in the buffer, and the FP waits until all
problems still in the children are solved and sent back to
the CO-ORDINATOR. When all children are empty the
CO-ORDINATOR informs the executive that it can
proceed with fire operation. The EXECUTIVE releases

hire.fire children.out children.in
i i

»l.hire
1 ' hire.fire ' hire.fire

EXECUTIVE SUPERVISORY

hire.fire.
changing

hire.fire.

h
i
ire.
ire

i

'

hire.fire.
changing

i i changing

t
~* out

in
BUFFER F-PROCESSOR J

done

Figure 4. Simplified representation of F-COMPUTER internal coupling.

188

FCs children in the POOL and informs the BUFFER to
start acting in f-processor operation mode. The BUFFER
sends now a problem to the F-PROCESSOR module and
the FC starts the operation as an f-processor.

In order to correctly implement hire/fire policies each
EXECUTIVE must have knowledge of its position in the
computer architecture tree. The current implementation
follows the principles pointed in [13], [16] for knowledge
representation.

Channels provides an unidirectional communication
links between processors themselves and between
processors and the POOL. Each channel is modeled with
a fixed delay and no transmission limits. A p-channel
connects an FC with its parent, a 1/r-channel a co-
ordinator with its right/left processor, a c-channel
connects a D&C co-ordinator with the compiler
processor, and the pl-channel connects an FC with the
POOL.

5.2 Structure change decisions

For supporting changes in structure is necessary to
decide where these changes are generated, how they are
propagated and accepted, and which co-ordinator to be
selected. The hire/fire generation policy determines
where changes commands have their origin. The actual
model supports a centralized policy and a distributed
policy for hire/fire generation. In the distributed policy
hire commands are generated in the leaves f-processor
and fire commands are generated by f-parents. In a
centralized generation policy both hire/fire commands
are generated by the Root processor.

The transmission policy depends on the kind of co-
ordinator. The MS co-ordinator passes hire/fire signals to
the child with the longest/shortest queue length. The
D&C and PL co-ordinators send hire/fire commands to
both r-child and 1-child if the number of problems is
greater/lower than a the hire/fire limit.

The accept policy decides about actually hire/fire
command execution by the lower level processors. An f-
parent decides to accept a fire command if the number of
problems is lower than the fire limit. It sends a fire
message to the POOL and it becomes an f-processor after
its children become idle. In fig. 5 is depicted the changes
in the structure provoked by fire command sent by the
root processor and accepted by an f-parent.

The hire command is accepted by an f-processor if the
number f problems packets is higher than the hire limit.
Upon hire acceptation the f-processor sends a hire
command to the POOL. If there are enough processors in
the pool (2 FCs for MS and PL co-ordinators, and 3 FCs
for D&C co-ordinator) it becomes an f-parent.

53 Implementation

The POOL element is the key for structure change.
This element starts change structure commands in
response to its external function. After receiving a hire
command the POOL checks the number of available
processors. If there are enough free processors the POOL
connects new processors to the hiring f-processor. The
POOL also creates CHANNELS that models the physical
links that exists between processors. Changes in POOL
internal structure are automatically updated in the model.
When the POOL receives the fire command it removes
leave processors and increases the number of free
processors.

fire R

/ \\r
FP

/ \
p FP P P

/ \
p P

I
R

FP FP

/ \ / \
P P P P

Figure 5. Computer architecture after a fire
command.

In fig. 6 is represented an abbreviated version of the
external transition of POOL. The depicted transition
handles hire/fire commands for MS and PL co-
ordinators. For the D&C co-ordinator we have to hire/fire
3 processors instead of 2 required in the other co-
ordinators.

189

external: devs elapsed: elapsedTime port: aPort id: n value:
value

aPort = hire ifTrue: [

left := DEVSEntity fcomputer: (name,'@Left')
random: randomGenerator
bounds: minMax
policy: hireFirePolicy
root: false hireFire: time.

lcPool := Channel pair: (name,'@LCPool')
random: randomGenerator.

lcDown := Channel pair: (name,'@LCDown')
random: randomGenerator.

lcUp := Channel pair: (name,'@LCUp')
random: randomGenerator.

self addChild: left, self addChild: lcDown.
self addChild: lcUp. self addChild: lcPool.

depend := OrderedCollection
with: left with: lcPool
with: lcDown with: lcUp.

tree at: fcomp put: depend.

"Left Down Channel"
self couple: fcomp port: #out to: lcDown port: #out.
self couple: fcomp port: #hf to: lcDown port: #hf.
self couple: lcDown port: #out to: left port: #IN.
self couple: lcDown port: #hf to: left port: #hf.

]•
aPort = #fire ifTrue: [

uProcessors := uProcessors + 2.
dup := (tree at: value) copy,
dup do: [:xl self removeChild: x].
tree removeKey: value.
Aself continue: elapsedTime

Aself error: 'Unknown Port \aPort

Figure 6. Simplified code for Pool, MS and PL,
hire/fire operations.

The method addChild: is used to add new models to
the simulation. To remove models we use the
removeChild:. Connections are established with the
method couple:port:to:port:. When a model is removed
its connections are also removed.

6 Conclusions

We described Variable DEVS an extension of DEVS
formalism that is able to represent structural changes in
simulation models. This formalism keeps modularity as
defined in original DEVS. V-DEVS proved to be able of
modeling a complex adaptive computer architecture. As
future work we plan to incorporate SES with our variable
structure environment for automatic structure change.

References

[1] Zeigler, B.P. and R.G. Reynolds. 1985. 'Towards a
Theory of Adaptive Computer Architectures". Proc. 5th
International Conference on Distributed Computing
Systems. Computer Society Press, 468-475.

[2] Zeigler, B.P. 1986. 'Toward a Simulation Methodology
for Variable Structure Modelling". In Modelling and
Simulation Methodology in the Artificial Intelligence
Era. M.S. Elzas, T.I Ören and B.P. Zeigler, eds. North-
Holland, 195-210.

[3] Zeigler, B.P. 1989. "Concepts for Distributed
Knowledge Maintenance in Variable Structure Models".
In Modelling and Simulation Methodology in the
Artificial Intelligence Era. M.S. Elzas, T.I Ören and B.P.
Zeigler, eds. North-Holland, 45-54.

[4] Kim, J.W. 1994. Hierarchical Asynchronous Genetic
Algorithms for Parallel/Distributed Simulation-Based
Simulation. Ph.D. Dissertation. Department of Electrical
and Computer Engineering. University of Arizona.

[5] Zeigler, B.P. and A. Louri. 1993. "A Simulation
Environment for Intelligent Machine Architecture".
Journal of Parallel and Distributed Computing 18: 77-
88.

[6] Chean, M. and L.A.B. Fortes. 1990. "A Toxonomy of
Reconfigurable Techniques for Fault-Tolerant Processor
Arrays". IEEE Computer 23, no. 1 (Dec): 55-69.

[7] Uhrmacher, A.M. 1993. "Variable Structure Models:
Autonomy and Control - Answers from Two Different
Modeling Approaches". Proc. AI, Simulation, and
Planning in High Autonomy Systems. IEEE Computer
Society Press, 133-139.

[8] Zeigler, B.P. and H. Praehofer. 1989. "Systems Theory
Challenges in the Simulation of Variable Structure and
Intelligent Systems". In CAST-Computer-Aided Systems
Theory. F. Pichler and F. Moreno-Diaz, eds. Springer
Verlag, 41-51.

[9] Vasconcelos M.J.P., J.M.C. Pereira and B.P. Zeigler.
1993. "Simulation of Fire Growth in GIS Using Discrete
Event Hierarchical Modular Models". Proc. Satellite
technology and GIS for Mediterranean Forest Mapping
and Fire Management.

190

[10] Uhrmacher, A.M. and B.P. Zeigler. 1994. "Variable [14]
Structure Models in Object-Oriented Simulation".
International Journal of General Systems. (Accepted for
publication.)

[11] Cho, T.H. 1993. Hierarchical Modular Simulation [15]
Environment for Flexible Manufacturing System
Modeling. Ph.D. Dissertation. Department of Electrical
and Computer Engineering. University of Arizona.

[12] Zeigler, B.P. 1984. Multifaceted Modelling and Discrete [16]
Event Simulation. Academic Press.

[13] Zeigler, B.P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models: Intelligent Agents and
Endomorphic Systems. Academic Press.

Barros, F.J. and M.T. Mendes. 1993. "Modelling and
Simulation of an Integrated Circuit Assembly Flow-Shop
in DEVS-V". Proceedings of the European Simulation
Symposium. SCS publications, 103-108.
Wang, I.Y. 1986. Simulation of a Modular Hierarchical
Adaptive Computer Architecture with Communication
Delay. MS Thesis, Department of Electrical and
Computer Engineering. University of Arizona.
Zeigler, B.P., T.G. Kim and C. Lee. 1991. "Variable
Structure Modelling Methodology: An Adaptive
Computer Architecture Example". Transactions of The
Society for Computer Simulation 7, no. 4: 291-319.

191

Verb Phrase Model Specification via System Entity Structures

Richard J. Simard, Rome Laboratory (USAF)
Bernard P. Zeigler, University of Arizona
Jerry M. Couretas, University of Arizona

Abstract

In investigating front end model development, an
environment is described that allows for model
construction through pruning a domain specific System
Entity Structure. The preformal stages of the model will
be represented by a verb phrase. This representation is
sufficiently detailed to serve as the basis for model
construction and yet sufficiently "soft" to support
knowledge acquisition during model construction. This
paper establishes the adequacy of this representation.

Introduction
There are problems in the current modeling process

associated with model development. Although the
"back-end" of the model-engineering process Fishwick [1]
is well-supported by software tools, the same can hardly
be said for the "front-end" ~ model creation,
construction, or repository-based synthesis.

This paper suggests that such "front-end" problems
can be substantially ameliorated by adopting techniques
that allow the user to narrow down essential components
for model construction. The particular objectives for
model construction that we wish to address are extracted
through a natural language interface.

The goal of this approach is to reduce ambiguity
between the user's requirements and essential model
construction components. Requirements here are
represented by verb phrases. Each one has the potential
to be incorporated into a complete discrete event model.
This natural language process describes a method of
constructing models by users with a limited or
nonexistent formal modeling or programming
background.

Overview
Paradigms for transforming the meaning of sentences

into conceptual modeling structures have been proposed
by Heidorn [2], Howard W. Beck and Paul A. Fishwick

[3]. The intent of this research is directed toward
developing a system for performing simulation analysis
through natural language interaction with a computer.
This work represents a "front-end" ~ model creation,
construction, or repository-based synthesis process.

A natural language interface allows model
specification in terms of a verb phrase. It consists of a
verb, noun, and modifier. An example might be "build
car quickly." In this case the verb is build, the noun is
car, and the modifier is quickly. The verb "build" would
be parameterized by the noun "car." The noun specifies
the domain that the verb interacts with. The term
"parameterized by the noun" is used in our context to
mean the descriptive components (parameters) of the
noun that provide further detail about it's domain. For
example, in "build car quickly," the car would have
parameters such as length, weight, etc. The modifier
"quickly" adds range to the parameterization. This is
similar to Zadeh's [4] use of fuzzy restrictions. An
example verb phrase is shown in Figure 1.

Conceptual realization of a model from a verb phrase
ties in closely with Checkland's [5] idea of having a verb
express the root definition, or core purpose, of a system.
He explains "That core purpose is always expressed as a
transformation process in which some entity, the 'input',
is changed, or transformed, into some new form of that
same entity, the 'output'." Using the verb as a discrete
event model template is an extrapolation of this idea.

With the basic discrete event model defined from the
root definition, or verb, the noun of the verb phrase gives
the user a working domain. The verb phrase's noun
defines the domain of possible action. For example,
"build car" parameterizes the domain in units of the mean
time to build a car. This might be hours for a car. When
applied to a house - "build house," this might be
months.

The modifier adds focus to the noun's domain. For
example, in "build car quickly," the modifier "quickly"
optimizes all car building parameters. The effect of the
modifier could be quantified at the user's discretion.

0-8186-6440-1/94 $04.00 © 1994 IEEE
192

A Proposed Verb Phrase
Decomposition System Concept

Verb Phrase

verb noun mod fier

Discrete Domain Parametric
event parameterization Range
model of the discrete

specification event model

Figure 1. Verb Phrase Decomposition.
With each model represented by a verb phrase, a

system could be decomposed into a semantic
representation as shown in Figure 2. In this case, a
hierarchical car production system goes from production
planning to practical assembly line issues - with each
step represented by a verb phrase. The focus is not so
much on the system or its structure, but on how the
natural language interface allows semantic representation
of the system.

This approach focuses on description of the front end
model construction process. Each system function would
be modeled as a verb phrase. The verb represents the
basic action to be taken, and forms the basis of the
discrete event model. A noun then defines the domain.
The modifier defines how the action will be performed
within the domain. The verb-noun-modifier triplet
defines the verb phrase. Now we will look at this
definition in more detail.

Description of verb phrase extraction
process

The following is a complete description of how the
verb phrase is constructed. Examples of verb definition,
noun parameterization, and modifier parameters of
limitation are given.

I. Verb description
Using Fernald's [6] definition, the verb is transitive in

requiring the verb phrase's noun to complete its meaning.
It is principal in expressing the act to be done. And, its
voice is either active or passive because the subject can
either be acting or acted upon. Using Fernald's
definition, we can develop a description of verb use in
this system.

Verb definition
Verbs are used to describe the two main categories of

system behavior, which we propose to be production and
consumption. These verbs form the basis for each
model. We also propose the verb to represent the basic
discrete event model template.

ELI Applied to Auto Production System
plan auto-production

o o

o
o
o

schedule
parts-delivery

t
fill

chassis
queue

fill exterior fill interior

o o o
o o o
o o o

schedule
assembly-line

position
iols

position
crew tools ere

! t
o
o

Figure 2. ELI representation of
car production system hierarchy.

The first class of verbs, which we call producers,
describe value added activity. This could be anything
from growing crops to stamping sheet metal into
automobile body panels. A producer is active. It models
something that acts on the noun of the verb phrase.

Consumption is less straightforward. Consumption
can be sensory or physical. Sensory consumption is
defined as what we consume or observe. An example of
sensory consumption could be the use of the five senses
in observing one's environment. Physical consumption
might be taking in nutrients for processing into energy.

Verb definition is performed by descending a verb
hierarchy until a satisfactory representation is found. For
example, if one's goal is building, we descend the verb's
hierarchy until choosing "build" under the producer class,
as shown in Figure 3.

Verbs, regardless of their class, are tied to reality by
their domain. For example, the verb "build" can be used
to build a car with its variables describing the action. In
this case of build, the variables might be cycle time, feed
rate, idle time, etc. The user controls the modification of
these variables.

The variables of a verb might be in the form of an
array. For example, the verb "build" might have the
following variables:

build = s[feed-rate] [cycle-time] [idle-time]
In this case, the variables of "build" are: feed-rate,

cycle-time, and die-time. And the numerical parameter
ranges would be filled in when the noun, and its
accompanying domain, is chosen.

We are proposing that each verb is represented by a
discrete event model shell with state variables that can be
used to describe its behavior. These variables would be
open for user modification. In order to simplify the

193

understanding of verb use in this system, we also
propose that they fit into a taxonomy.

Verb Definition

grow

Figure 3. Producer verb build is chosen.

Verb taxonomy
This breakdown of verb classes gives us structure in

thinking about verbs and the actions that they represent.
As shown in Figure 4, the actions of producers and
consumers are different. We believe this breakdown
provides the user added structure when describing system
requirements for model construction.

Verb Taxonomy

verb

produce consume

natural artificial

grow

extract
(mining)

sensory physical

5 senses

transform

build change

Figure 4. Taxonomic breakdown of verb
into classes of production and consumption.

Verb classification
The key to verb classification is what transforms it

and how. Some potential verb representing
transformations are shown in Figure 5.

In looking at Figure 5, we see the following verb
transformations:

Producers - Value is added to the initial state of the
noun. The end state is a transformation from scrap
metal to a useful automobile.

Consumers - The final state of the noun is
transformed from its initial state of an automobile
to scrap metal.

State Change Transformation
of Producers and Consumers

Figure 5. Verb Classification State Changes.

Producers and consumers could work together within a
system. This classification system gives the user a
simple way of classifying almost any process in a
system. In the car production example of Figure 2, an
automotive assembly line consumes component parts and
produces complete automobiles. We know that we are
dealing with a relatively high level system when it has
both classes of verb in its definition. Decomposing this
system, as shown in Figure 6, shows how the different
components act as consumers and producers.

Looking at the above verb classification, we see that
the main difference between producers and consumers is
their relationship to the noun. A producer acts on the
noun and a consumer is acted upon by the noun.

Produce

material > finished product

location(l) > location (2)

information > report

layman > professional

Consume
sensory data >
information

material > energy

land > contaminated soil

young > old (physical
capability)

undeveloped land > building current > obsolete

Suh [7] has a comparable method where each
functional requirement maps into a set of data parameters.
Functional requirements account for the functional space
of the design, while the data parameters account for the
physical space. The mapping between these two is
determined by the design, or verb phrase system
representation. A natural language interface is similar in
that each verb represents a functional requirement. And,
the verb's domain is defined by data parameters. Verb
name specification would result in the system accessing a

194

database of verbs along with their parameterization as
shown below:

verb = < paraml, param2, ... >
build = < feed-rate, cycle-time, queue-time,... >

In this case, the verb "build" is parameterized by feed-
rate, cycle-time, queue-time, etc. This would be the
knowledge based component of the system. Whenever a
verb is called, it would be parameterized as previously
defined. The user would then be free to modify the
parameters given.

Car Production System
with Producers and Consumers

Producer

Feed
Components

t
1

Receive
Components ►

Manufacture
Cars ►

Consumer Producer

Cars

Figure 6. Example system with
different model types.

The verb represents one of the system's actions. It
also represents a basic discrete event model with an
empty set of descriptive variables. These are open for
user modification, and would be parameterized by the
noun.

II. Noun description
The noun is the second component for construction of

the verb phrase. The noun serves as the object of the
verb phrase and thereby establishes its domain
parameterization. The noun's definition and taxonomy
are presented next.

Noun definition
The noun defines the domain in which the verb works.

Each noun has a different domain representation, and thus
has a different parameterization. The noun's domain
knowledge should provide the parameterization necessary
to complete the model. The noun quantifies the verb's
action parameters. For example, the verb "build" could
be parameterized as follows when applied to the noun

This means that the verb phrase "build car" breaks
down to the following numerical parameterization:

feed-rate = 5
cycle-time = 3
idle-time = 1

The noun's domain will define the numerical
parameters of the verb's model. Another view of the
noun is presented by its taxonomy.

Noun taxonomy
The noun decomposes into objects. These can be

classed according to their environment and key
parameters. One decomposition of the nouns might be
physical, mental, man made objects, and natural objects.
Many of the practical things we deal with, such as an
automobile, are found by descending this hierarchy.

In modelling people, both mental and physical
characteristics are of interest. Physical capacity, or how
much force the body can be subjected to, might help
someone designing an ejector seat, or allow checking the
amount of force a person experiences during different
maneuvers. Physical strength might be of interest in
checking the force required to turn a knob or open a door.
Thus, a person's physical modeling could be of either
capacity or strength.

Mental capabilities are also of interest to the modeller.
Certain tasks of abstraction may require modeling to get
the right personnel fit. Also, mental endurance could be
of interest for challenges like operating a vehicle for long
periods of time or withstanding certain environments.
Capacity and endurance are representative of these types
of mental modeling.

Man made structures could be anything people make.
Natural structures include things ranging from the tiniest
crystal on a snowflake to our conception of the universe.

The noun, as shown in Figure 7, decomposes into the
general classes of people and things.

The noun provides focus needed for parameterization
of the verb. With the verb-noun pair, the user has a
complete verb phrase. Further definition to the noun's
parameters could be done with the use of modifiers.
Modifiers are used to change the verb phrase's
parameterization to better fit the user's conception of the
process he wishes to model.

III. Modifier
Modifiers limit the parametric range of the verb

phrase. Similar to Zadeh's [4] fuzzy restrictions, they
help the user construct a better representation of what he
means. Modification also impacts the model's numerical
parameterization.

"car"
build = s[feed-rate] [cycle-time] [idle-time]
build = s[5] [3] [1]

195

Noun Taxonomy

physical! I mental | manmade natural

transportation

car

Figure 7. Noun representation in
different possible classifications.

Modifier definition
The verb phrase's modifier further defines the verb

phrase. Modifiers are placed directly after the noun as
follows:

verb noun mod(n) mod(n-l) ... mod(l)
The user will choose the modifiers) when defining the

verb phrase representation of the model. Each modifier
adds a level of degree to the action performed. For
example,

build car quickly
verb noun modifier(l)

could modify the verb build by increasing the feed
rate, reducing the cycle time, and reducing the idle time.
Adding another modifier,

build car very quickly
verb noun modifier(2) modifier(l)

would result in a further reduction in build parameters,
possibly to their lower limit.

At this point, extension would continue according to
the user's discretion.

Modifier methods
Verb phrase modification comes through increased

narrowing of domain parameters. One way to present
this idea would be to make each modifier a multiplier of
the noun parameters that it will affect. For example,
"build car quickly" could be numerically broken down as
follows:

Parameters build car quickly build car quickly

feed-rate 5 0.6 3.0
cycle-time 3 X 0.6 = = 1.8
idle-time 1 0.6 0.6

In this example, "quickly" translates to 60% of the
normal build time. We are assuming that this is a
simple system where reducing each of the incoming
parameters to 60% of their original value results in an
equivalent reduction in build time.

Another layer of modification might be "build car very
quickly." "Very" serves as an additional parameter
modification as shown below:

Parameters build car very quickly build car very

feed-rate
cycle-time
idle-time

X
0.5
0.5
0.5

0.6
0.6
0.6

quickly

1.5
0.9
0.3

The modification process could be continued on until
the minimum of each parameter limitation is reached.

This is a very simple example of the modifier's ability
to affect the verb phrase parameters. Extensions could be
done in how the parameters are modified, when parameter
modifications occur, etc.

Modifiers affect parameters in correlation with their
semantic meaning. Modifier interpretation would be up
to the user. How much is "very?" or, how fast is
"quickly?" In time, research might show that these
modifiers are generally quantifiable over a range of
domains. But, for now, this will be up to the user.

Verb phase extraction from SES
With the method of constructing a verb phrase clear,

we can now move on to how model construction would
actually occur. The process basically consists of pruning
a domain specific System Entity Structure - Zeigler [8,9].
This stores all models pertinent to a specific domain as
shown in Figure 8.

Once the domain is specified, pruning is a matter of
narrowing down the best representation of each element
of the verb phrase. For example, in narrowing down the
verb, descending the hierarchy to pick the class of the
verb would be done first.

Further definition results in the pruning of the exact
verb to be used. Shown in Figure 9, "build" is chosen
from possibilities, and is moved up the hierarchy to the
verb node.

Similarly, the noun is first pruned in terms of its
class, "thing," and then down to the actual entity. In the
same way, the modifier is extracted by first deciding on
the modifier class, "concentration," and then down to the
actual modifier. This is shown in Figures 10 and 11.

196

System Entity Structure
of Car Manufacturing Domain

Car Manufacturing

Car Manufacturing - decomposition

verb
II

verb
specialization

noun modifier
II M

noun modifier
specialization specialization

proc ucer consumer

r
pick
place■

plan
build

watch listen

dilation concentration

quickly

I
body
panel

thfrig person

engine
I

Engineer Skilled
Tradesperson

car chassis Plant
Supervisor

Figure 8. Simplified domain representation
for car manufacturing.

Verb Pruning in Car Manufacturing Domain SES

Car Manufacturing

Car Manufacturing ■ decomposition

 1
build noun

II
noun

specialization

modifier
II

modifier
specialization

i—"—i
dilation

body
panel

thing
~~I
person

concentration
I

quickly

engine
i—:

Engineer
 1

Skilled
Tradesperson

car chassis Plant
Supervisor

Figure 9. Prune verb "build" from producer
class and replace the verb node with it.

Generating simulation models
With the verb phase pruned, the next step is pruning

the model base of entities that can actually carry out what
the verb phase specifies. This pruning is a two step
process. First, the SES for "build" is accessed. Next,
using Rozenblit and Huang's [10] Frames and Rules

Associated System Entity Structure (FRASES), prune
the exact model specified by the verb phase.

Noun Pruning in Car Manufacturing Domain SES

Car Manufacturing

Car Manufacturing - decomposition

I ' I
build car modifier

II
modifier

specialization

dilation concentration
I

quickly

Figure 10. Noun is pruned down to the "car"
to be operated on by the verb "build".

Modifier Pruning in Car Manufacturing Domain SES

Car Manufacturing

Car Manufacturing - decomposition

I-

build car quickly

Figure 11. Class specialization "concentration"
is replaced by modifier "quickly" in completing

the verb phrase

The "build" SES would be in the following form as
shown in Figure 12.

Build
I

Build - dec

I
Assembly

Line
II

Assembly
Line-spec

geometry
1

geometry
3

Material
Handling

II
Material
Handling

spec

-Y-

Labor

Labor
spec

geometry
2

method
1

method
2

method
3

r-

skill
1

~l
skill

3
skill
2

Figure 12. SES of Build Domain.

Using the FRASES methodology, rules exist at each
context sensitive node. Rules for the assembly line node
might be:

Rl. ifnounacar
then assembly line is geometry 1

R2. if noun is truck or mini-van,
then assembly line is geometry 2

R3. if noun is commercial truck
then assembly line is geometry 3

197

When the assembly line geometry is a scaling
dependent on the type of vehicle being worked on,
Geometry 1, the smallest is used for cars. And geometry
3 would be the largest; used for commercial trucks.

Likewise, example labor rules might be:

Rl. if modifier is slowly
then skill level is skill 1

R2. if modifier is quickly
then skill level is skill 2

R3. if modifier is very quickly
then skill level is skill 3

And, material handling rules could be:

Rl. if modifier is slowly
then coordination method is method 1

R2. if modifier is quickly
then coordination method is method 2

R3. if modifier is very quickly
then coordination method is method 3

A pruned model structure for "build car quickly" then
looks like figure 13.

Build
I

Build - dec

geometry
1

method
2

skill
2

Figure 13. Pruned SES for "Build Car Quickly".
And "build truck slowly" looks like figure 14.

Build
I

Build-dec

I 1 1
geometry method skill

2 1 1

Figure 14. Pruned SES for
"Build Truck Slowly".

Conclusion
The system proposed here allows for complete model

description in terms of a verb phrase. The verb,
representing the action to be performed, accesses a
discrete event model primitive. The verb's state variables
would then be numerically parameterized by the noun's
domain. Further control of the domain comes through
the modifiers. These are placed after the verb-noun pair
and modify the entire verb phrase. The verb phrase
consists of a verb-noun-modifier(s) triplet that represents
a discrete event model.

This method considers four layers of System Entity
Structure in creating a discrete event model from an
English language verb phrase:

1. Sentence clarification SES
2. Domain identification SES
3. Model representation SES

4. Model storage SES
The above shows the inherent organizing power of an

SES. Four level of knowledge representations are
proposed to transform a verb phrase into a discrete event
model.

This representation is not complete. There are quite a
few possibilities for expansion of this system. The verb
phrase could be expanded to add clarification. Verb
phrases could be combined for multiple action. And, the
practical issues of dealing with parameters have not been
addressed. The verb phrase described here is simply a
way to give the user an intuitive model representation.

Using a verb phrase for model representation could
open the domain of modeling to a larger group of users.
We believe that the main barrier between many people
and existing modeling software is their lack of computer
literacy. They might use a natural language interface as a
means of bridging this gap. Verb phrase representation
could create modellers out of people who think
semantically, and have no computer skills.

A semantic representation frees the user to explore the
system on the familiar grounds of natural language. A
verb phrase system might open the way for brain
storming, innovation and proving out of ideas before
they leave the drawing board. In addition, more ideas
could be checked and compared before deciding on the
best option. The potential applications that might result
from expanded use of discrete event modeling are wide
open. And a natural language interface could lead the
way.

References
1. Fishwick, P.A., (1990), "Toward an Integrated

Approach to Simulation Model Engineering," Int. J General
Systems, Vol. 17, pp. 1-19.

2. Heidorn, G.E., (1972), Natural Language Inputs to a
Simulation Programming Language, Ph.D. Dissertation, Yale
University.

3. Fishwick, P.A. and Beck, H.W., (1989), "Incorporating
natural language descriptions into modeling and
simulation" Simulation, Simulation Councils, Inc. Vol.
52:3, pp. 102-109.

4. Zadeh, L.A. (1975), Calculus of Fuzzy Restrictions,
Academic Press, New York, NY.

5. Checkland, Peter, and Scholes, Jim, (1990), Soft
Systems Methodology in Action, John Wiley & Sons, New
York, NY.

6. Fernald, James C, (1957), English Grammar
Simplified, Funk & Wagnalls Company, New York, NY.

7. Suh, Nam P. (1990), "The Principles of Design,"
Oxford University Press, Inc., New York, NY.

8. Zeigler, Bernard P. (1990), "Intelligent Agents and
Endomorphic Systems," Academic Press, London.

9. Zeigler, Bernard P. (1984), "Multifacetted Modelling
and Discrete Event Simulation," Academic Press, London.

10. Rozenblit, J. W. and Y. Huang (1987), "Constraint-
Driven Generation of Model Structures", Proc. of Winter
Simulation Conf., SCS Publications, San Diego, CA.

198

A Framework for Hybrid Modeling/Simulation
of Discrete Event Systems

Myung Soo Ahn and Tag Gon Kim

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology

373-1 Kusong-Dong,Yusong-Gu,Taejon 305-701, Korea

Abstract

This paper presents a hybrid modeling/simulation
framework within which both accuracy in models and
speed in simulation experimentations are obtained.
Based on the Zeigler's DEVS formalism and asso-
ciated system theory, the framework is based on the
transformation of selected DEVS models into equiva-
lent analytic ones to simulate both analytic and simu-
lation models within a single environment. For high-
speed hybrid simulation, we extended DEVSim+ +
which is a realization of the DEVS formalism in C++.
To exemplify the proposed approach, we demonstrate
performance modeling and simulation of a simple com-
munication network.

1 Introduction

Recently discrete event modeling and simulation for
performance evaluation of complex systems becomes
an important research issue in many areas of system
design such as manufacturing systems design, commu-
nication networks design, and realtime systems design.
The main research objective is to devise a framework
for developing accurate performance models and effi-
cient simulation algorithms for fast experimentations
with such models[3, 5]. Such a framework is essential

°ISBN 0-8186-6440-1. Copyright ©1994 IEEE. All rights re-
served.

Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to
info .pub .permission@ieee .org.
By choosing to view this document, you agree to all provisions
of the copyright laws protecting it.

to reduce the computation burden for simulating large
complex systems.

Two types of models, analytic and simulation, have
been applied in system analysis and performance eval-
uation. Although analytic models have limitations in
accuracy due to the unrealistic assumptions made, fast
simulation experimentations are possible by employ-
ing appropriate numerical analysis technique. On the
other hand, simulation models have expressive means
powerful enough to achieve high accuracy. However,
simulation time for such models is extremely slow
compared with that for analytic models due to some
virtual management scheme embedded in a simula-
tion algorithm. Thus, it is highly desirable to com-
bine the advantages from both models in an unified
framework [5].

Up to date, little research has been reported con-
cerning modeling and simulation methodologies which
meet both accuracy in modeling and speed in sim-
ulation within an unified framework. Furthermore,
no simulation language or environment implementing
such methodologies is in place.

The purpose of this paper is to develop a framework
within which both accuracy in models and speed in
simulation experimentations are obtained. To be spe-
cific, for modeling we propose a model transformation
scheme which transforms selected simulation models
into analytic ones as far as accuracy is preserved. For
simulation, we develop a hybrid simulation algorithm
and the associated environment implementing such al-
gorithm. Thus, we can simulate performance models
of a discrete event system, which consists of simulation
models and analytic ones, in a single environment.

We employ the Zeigler's DEVS formalism[8], which
supports hierarchical modular descriptions of discrete
event systems. Though the set-theoretic formalism
has expressive power and the well known simulator al-
gorithm, it lacks of analytic means. To complement

199
0-8186-6440-1/94 $04.00 © 1994 IEEE

this shortage, the model transformation scheme trans-
forms a DEVS model into a behaviorally equivalent
analytic model in steady state. Both DEVS models
and transformed analytic models are simulated in a
combined manner using the developed hybrid simula-
tion engine.

Our approach is novel in the sense that :

• it employs a single modeling formalism. Thus,
it enables the modelers to develop models within
the expressive formalism.

• it is based on the sound mathematical founda-
tions in the behavioral equivalence relation be-
tween the DEVS models and the transformed an-
alytic models.

The developed framework can be used to mea-
sure the performance of a discrete event system with
greatly reduced simulation time. To exemplify the
proposed hybrid modeling and simulation framework,
we demonstrate performance modeling and simulation
of a simple communication network.

The outline of this paper is as follows. Section 2
presents the concepts of hybrid modeling. Section 3
reviews the DEVS formalism and describes our frame-
work. Section 4 gives an example of application and
results. We conclude the paper in section 5.

2 Hybrid Modeling with Hierarchical
Discrete Event Models

Hierarchical constructions of modular models play
an important role in modeling and simulation for de-
sign of complex real world systems. In hierarchi-
cal composition, higher-level models include low-level
models as components. Such higher-level models can
be reused as components of yet higher-level models[6].

In such a construction, an atomic model is a ba-
sic system component that can function as a self-
contained and independent unit. Such a model in-
teracts with other models only through the input and
output interface, thereby achieving modularity. Thus,
an atomic model may well be characterized by a sys-
tem that can be defined by an input/output interface
and state transitions, which represent the behavior of
the model.

Systems may be coupled to build coupled models,
which may themselves be employed as components to
be coupled with other models to form higher level sys-
tems. A coupled model specifies the coupling scheme,
that is, input/output connections between component

models. A simulation model developed by the hierar-
chical composition methodology has the structure of
a tree, called decomposition tree. Figure 1 shows a
hierarchical modeling of a system and associated de-
composition tree.

-Ml 23-

Ml

-M23-

M2 M3

(a) Hierarchical System Model.

M123

CS1

M23
|CS2

Ml

CS1 : Coupling Scheme of M123 r—
CS2: Coupling Scheme of M23 ^ '

(b) Decomposition Tree.

Figure 1: Hierarchical Modular Model.

When such a hierarchical simulation model is given,
it is possible to transform some or all of component
models into the equivalent analytic models. We call
this transforming process as hybrid modeling. The hy-
brid modeling proceeds in bottom-up fashion. That is,
it first transforms the atomic models that meet trans-
formable conditions. After transforming all the possi-
ble atomic models, it then aggregates the transformed
analytic models using the coupling information. Fig-
ure 2 shows an hybrid model which is the result of
transformation and aggregation of M12 in Figure 1.

-M123-

Ml HM23

Ml 23

I CS1

Ml HM23

(a) Hybrid Model. (b) Decomposition Tree.

Figure 2: Hybrid Modeling of Hierarchical Model.

Most analytic models require some constraints to
make mathematically tractable ones. One of such con-
straints is the Markov property in continuous Markov
chain model. Thus, we need assumptions or simpli-
fication methods for transforming atomic simulation
models. Two methods can be considered :

200

• Simplification : state space reduction
- discretization of continuous state variables;
- grouping of states at the activity level;

• Generalization : steady state assumption
- Poisson process assumptions for all event types;
- Exponential distributions of service times.

But, not all atomic models are transformable. Es-
pecially, models representing priority-based processors
can not be transformed. Hybrid modeling does not
transform such models, thereby preserving accuracy
of models. This is the main advantage of hybrid mod-
eling.

The aggregation step at the coupled model level
merges two or more transformed analytic models in
a single model by using the coupling scheme. Con-
sider two models Ml and M2, shown in Figure 3. Ml
acts as a buffer and M2 is a processor. Generally, an
atomic model falls in one of these two classes of mod-
els : buffer or processor. Using the coupling scheme of
two models, we can construct a simple queueing model
by merging Ml and M2.

DEVS Models

^Selective Model Transformation*:

 Ml—

H-l-l
req in

—M2—1

CD
out „ jol\

rJdle# leadx.
: ;

I
■ -»-out -*©"

Figure 3: Merging of Two Models into a Single Model.

We repeatedly apply the aggregation process be-
tween components models. If all component mod-
els are merged into a single model, then the coupled
model is transformed in an analytic model. Other cou-
pling information can be useful for merging the mod-
els. As an example, a tandem connection of queues
can be represented as a single queue[4]. After trans-
forming all the possible models, the hybrid model is
simulated in a combined manner.

3 Hybrid Simulation within the DE-
VSim++ Framework

For hybrid modeling and simulation, we employ the
Zeigler's DEVS formalism[8]. As shown in Figure 4,
we extend DEVSim++[2] by adding two schemes. The
first scheme is a model transformer which transforms

' r ' '
Analytic Models Simulation Models

i '

: ? Hybrid Simulation Enginef::

* ■Extended DEVSim+-r
Results

Figure 4: Hybrid Modeling/Simulation with DEVS
Models.

selected DEVS models into the equivalent analytic
models. The second one is a hybrid simulation engine.
This section briefly reviews the DEVS formalism and
explains our hybrid simulation environment.

3.1 DEVS Formalism

A set-theoretic formalism, the DEVS formalism
specifies discrete event models in a hierarchical, mod-
ular form. Within the formalism, one must specify
1) the basic models from which larger ones are built,
and 2) how these models are connected together in
hierarchical fashion.

A basic model, called an atomic model (or atomic
DEVS), has specification for dynamics of the model.
An atomic model interprets the behavior of a basic
component as a state transition machine. An atomic
model AM is specified by a 7-tuple[8]:

AM =< X, S, Y, Sini, Sext, A,ta >

X : input events set;
S : sequential states set;
Y : output events set;
font '■ S —► S : internal transition function;
&ext '■ QxX->iS: external transition function;

Q = {(s, e) | s € S, 0 < e < ta(s)};
A : S —*■ Y : output function;
ta : S —► Real : time advance function.

The second form of the model, called a coupled
model (or coupled DEVS), defines how to couple (con-
nect) several component models together to form a
new model. This latter model can itself be employed

201

as a component in a larger coupled model, thus giving
rise to construction of complex models in hierarchical
fashion. A coupled model CM is defined as[8]:

CM =< X, Y, M, EIC, EOC, IC, SELECT >

X : input events set;
Y : output events set;
M : DEVS components set;
EIC : external input coupling relation;
EOC : external output coupling relation;
IC : internal coupling relation;
SELECT : tie-breaking selector.

As proven in [8], the result of coupling DEVS com-
ponents in a coupled model is itself a atomic DEVS
whose state set and input set are cartesian products
of all input sets and all total state sets of component
models, respectively. Detail descriptions for the defi-
nitions of the atomic and coupled DEVS can be found
in [8].

3.2 Model Transformation and Simula-
tion Policy

When transforming a simulation model into equiv-
alent analytic one, the transformation should preserve
the input/output behavior of the model. For such
preservation, we apply the notion of isomorphism or
equivalence relation, which is based on one-to-one cor-
respondences between specification structures. If we
observe only the input/output behavior of a system,
two models are said to be isomorphic or relationally
equivalent if input/output behavior of the two cannot
be distinguishable in any way[8].

Using the isomorphism, we can represent the steady
state behavior of an atomic DEVS model as an equiv-
alent CTMC or as an queueing model. If a model in-
cludes a queue for incoming events, it is transformed
into a queueing model. Otherwise, an CTMC is used
to transform the model.

To set up the isomorphism between a CTMC and
the steady state behavior of an atomic DEVS, we make
the followings assumptions on atomic DEVS models :

1) the state space of the model is finite;

2) all event types, including internal events, are Pois-
son process;

3) external and internal transition functions are time-
invariant;

4) every state in the state set is reachable from any
other states.

Assumption 3 and 4 make the CTMC irreducible
and erogodic, thereby solving the CTMC using nu-
merical algorithms. Using the transformed CTMC,
steady state probabilities such as mean sojourn time
and mean waiting time are obtained. Descriptions on
the transformation algorithms can be found in [1].

Analysis of a CTMC with a large state space is very
cumbersome and needs vast amount of computation
costs. Though a coupled DEVS model can be trans-
formed into an equivalent atomic model, our approach
analyzes each atomic DEVS model independently and
use the coupling information to merge the transformed
CTMCs.

Transformation of DEVS models into queueing
models requires some knowledge on the coupling
scheme. Actually, two DEVS models, buffer and pro-
cessor models, are transformed into a queueing net-
work. If we know the rates of incoming jobs of the
queueing model, the model acts as a simple delay for
the jobs. Otherwise, the rate of the jobs is estimated
during the simulation experiments.

Eventually, the transformed analytic models can be
represented using the Input/Output Relation Obser-
vation(IORO) specification. An IORO observes the
behavior of a system in term of input/output relation.
It is a structure[8] :

IORO=<T,X,Q,Y,R>

T : time base set;
X : input events set;
Y : output events set;

Q C (X, T) : input segment set;
R C ti x (Y,T) : I/O relation.

Since the simulation environment manages the sim-
ulation time (clock), we just need to describe the three
components^, Y, R) in the structure. As an example
of specification, consider a queueing model. It can be
represented as :

QUEUEIORO=<X,Y)R>

X = {job};
Y = {out};
R: (job.t)-f (out, t + p + W),

where p, W are average service time and waiting time
in the queue, respectively. In the performance evalu-

202

ation view point, simulation experiments are the pro-
cesses of finding the I/O relations of models such as
p, W in the above model.

For hybrid simulation, we combines the abstract
simulator algorithms of the DEVS formalism and the
analyzers for analytic models. The role of analyzer is
to find the average occurrence rates of incoming events
and to route the events to the simulators which are re-
sponsible for the influencees. To find the influencees,
the input and output relations of the associated ana-
lytic model are used.

-*1* Ml *L- !AM1 M2 Ä-

Ml, M2 : simulation models;
AMI : analytic model;

(a) Hybrid Model.

Ml

xl

ÜAM1!

yi cs

S:M1

M2

x2

:A:AM1I;

y2

S:M2

S:M1, S:M2 : simulator for Ml and M2;
A: AMI : analyzer for AMI.

(b) Association of Models and Simulators.

Figure 5: Hybrid Simulation Strategy.

Figure 5(b) shows the connections between simula-
tors and an analyzer for simulating the model in Fig-
ure 5(a). Whenever an event arrives at the analyzer,
it counts the arrival to determine the average rate of
incoming event. Figure 6 shows the scenario of event
flow when an event enters the models Ml of Figure 5.

M2 receives

Ml receives

"A:AM1 routes

j^ -t2

♦1 . „,„™„„;.„v ♦;„,„ ;„ H/M . simulation clock (t) tl : processing time in Ml; v'
t2 : processing time in M2;

Overall Performance = tl +12 + E[W]

Figure 6: Event Flow during Hybrid Simulation.

After a simulation experiment is finished, the ana-
lytic model determines the I/O relation in the steady
state using the rates. The term E[W] in the perfor-
mance of Figure 6 is the results from AMI in Figure 5.
When a model knows the occurrence rates of events,
the associated analyzer does nothing during the sim-
ulation except the routing of events.

3.3 Extended DEVSim++ Environment

To simulate the transformed analytic models with
simulation models, we extended the DEVSim++ en-
vironment. The original version of DEVSim++[2] re-
alizes the DEVS formalism for modeling and associ-
ated abstract simulator concepts for simulation, all in
C++. DEVSim++ is a result of the combination of
two powerful frameworks for system development: the
DEVS formalism and the object-oriented paradigm.

Since DEVSim++ defines classes for modeling and
those for simulation separately, it can be easily evolved
by developing new classes. Figure 7 shows class hier-
archy of the extended environment. The shaded two
classes are newly defined for hybrid simulation.

■— Models

Object— Entities —

• Atomicjmodels

■ Coupled_models

— Processors

-Analytie^models

- Analyzers
— Simulators

- Root_co_ordinators

Co ordinators

Figure 7: Class Hierarchy of Extended DEVSim++.

The Analytic-models class realizes the transformed
analytic models. It has instance variables correspond-
ing to three elements in IORO representation : X
for input events set, Y for output events set, and R
for input/output relations. To manage the I/O re-
lations, we define a structure for input/output rela-
tions. Analytic-models also defines methods operat-
ing on instance variables. Analyzers is assinged to
Analytic-models in a one-to-one manner.

4 Example and Results

As an application of our approach, we consider a
simple communication network. As shown in Figure

203

8, the system consists of a sending node and a receiv-
ing node and a set of intermediate routing nodes. The
sending node transmits a number of packets to the des-
tination node through the intermediate routing nodes.

Sour
Node

IN -+ IN —► IN Dest
Node

IN: Intermediate Routing Node

Figure 8: Simple Communication Network.

Average Traveling Time (msec)

ffl- -68- -68= {]

Discrete Event Simulation -*—
Hybrid Simulation -S—

l J_

1000 2000 3000 4000 5000
Number of Generated Packets

For comparison of computation time and accuracy
of our approach with discrete event simulation, we
modeled the system within the DEVSim++ environ-
ment. By applying the model transformation method,
we can transform the intermediate routing nodes into
a single queueing network.

We compare the computation times by measuring
the simulation times of both models under the con-
dition that two models generate the same number of
packets. All experiments are performed in a Sun Sparc
1+ machine with 32MB main memory.

Simulation Time (sec)
20

15

10

 1 1 r

Discrete Event Simulation
Hybrid Simulation

1000 2000 3000 4000 5000
Number of Generated Packets

Figure 10: Average Traveling Time of Packets.

are the times between the departure at the source node
and the arrival to the destination. From the results of
Figure 10, we can conclude that there is little differ-
ence between two approaches. Though the simula-
tion model is simple, the results shows practical sig-
nificance of our approach.

Simulation Time (sec)
40

30 h

20

10

0

T"

Discrete Event Simulation
Hybrid Simulation

B- -B- -B- -B-

! _!_
-E]

12 3 4
Number of Intermediate Nodes

Figure 9: Simulation Time for Varying Number of
Generated Packets.

Figure 11: Simulation Time for Varying Number of
Intermediate Nodes.

Figure 9 shows the average simulation times when
the number of generated packets are varying and sys-
tems are configured with two intermediate routing
nodes. Each point takes an average of 5 statistically
independent simulation runs. The results show that
the hybrid approach greatly reduces the computation
time.

To compare accuracy between both approaches, we
measure the average traveling times of packets, which

Figure 11 compares the computation costs when
the number of intermediate routing nodes are vary-
ing. Since the hybrid approach models the tandem-
connected nodes as a single queueing model, the com-
putation costs do not increase no longer. But, those
for the discrete event simulation continuously increase.
From the above results, we can draw a conclusion that
our approach has a practical significance, especially
when simulating complex systems.

204

5 Summary and Conclusions

We have proposed a hybrid modeling and simula-
tion framework for high-speed simulation without los-
ing the accuracy of discrete event simulation. The
approach is based on a transformation of the steady
state behavior of a DEVS model into an equivalent an-
alytic model. For hybrid simulation of the transformed
analytic models and DEVS models, we extended the
DEVSim+-1- environment by adding new classes for
specifying and simulating analytic models.

Also, we validated the proposed approach by com-
paring the results with those obtained from simulation
experiments with only discrete event simulation mod-
els. The results show that our approach can accurately
simulate the behavior of a system with greatly reduced
simulation time.

Though the approach shows some promising re-
sults, there is much work to be done. Currently, an ex-
tension of the model transformation method to more
general and complex cases is underway. In parallel,
we are also extending the DEVSim++ environment
to possible automatic model transformation.

[5] J.G. Shanthikumarand R.G.Sargent, "A Unifying
View of Hybrid Simulation/Analytic Models and
Modeling", Operations Research, Vol. 31, No. 6,
Nov. 1983.

[6] Tag G. Kim and Myung S. Ahn, "Reusable Simu-
lation Models in an Object-Oriented Framework",
to appear in Object-oriented Simulation (ed: G.W.
Zobrist), IEEE Press.

[7] B.P. Zeigler, Theory of Modelling and Simulation,
John Wiley, NY, 1976(Reissued by Krieger Pub.
Co., Malabar, FL. 1985).

[8] B.P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation: Academic Press, Orlando, FL.,
1984.

Acknowledgements

This work was supported by the Korea Science and
Engineering Foundation grant 941-0900-034-2.

References

[1] Myung S. Ahn and Tag G. Kim, "Analysis on
Steady State Behavior of DEVS Models", Proc.
of 4th Annual Conf. on AI, Simulation, and Plan-
ning in High Autonomy SystemsfAIS '93), pp. 142
- 147, Sept. 1993.

[2] Myung S. Ahn and Tag G. Kim, DEVSim+ +
User's Manual, Technical Report, TR-CORE-94-
1, EE, KAIST, 1994.

[3] Kumar K. Goswami and Ravishankar K. Iyer,
"Use of Hybrid and Hierarchical Simulation to
Reduce Computation Costs", Proc. Int. Work-
shop on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MAS-
COTS '93), pp. 197-202, Jan. 1993.

[4] L. Kleinrock, Queueing Systems, Volume II: Com-
puter Applications, Wiley, New York, 1976.

205

Session 2C:

DEVS Formalism:
Manufacturing Applications

Interface-Oriented Classification of DEVS Models

Carsten Thomas

Research and Technology Department
Daimler-Benz AG

Alt-Moabit 91b, 10559 Berlin, Germany

Abstract
Model classification is a way to structure and handle

knowledge about systems. Using the models external
message interface as the classification criterion lays
emphasis on the fact that atomic and coupled DEVS
models are modular and interchangable model compo-
nents. Interface-Oriented Classification is a means to
formalize the conditions of component replacement and
coupling valitity. It can be used as the basis of advanced
modeling methods like multi-modeling and modeling of
structurally variant systems.

an atomic or coupled model or what state variables are
used.

For most of the application areas for classification the
implementation has no significance. Instead, we need to
know about which incoming external events a model can
process, which outgoing external events a model produces
and how it can be coupled to other models. These
properties are what we call the models interface. In the
following sections, we propose a classification scheme
where the models interface is used as a classification
criterion. We call this scheme the Interface-Oriented
Classification of DEVS models.

1. Introduction 2. A brief look at the DEVS formalism

DEVS models contain behavioral and structural
knowledge, i.e. knowledge about state variable values,
functionality, decomposition into components, and the
relations between those components. For the efficient use
of models, especially for model re-use and automated
model synthesis, also a third sort of knowledge is
necessary. This knowledge about common properties of
models and the propagation of properties through
inheritance is called taxonomic knowledge. By use of
taxonomic information, models, which are identical with
respect to some property, can be ordered into groups.
These groups of models are called classes.

A class of models Mc is a subset of the set of all
models M available in some context. The class is denoted
by its class name c , which is a member of the set of class
names C. Classification of models is done using
classification criteria. A classification criterion is a
function/,,, which checks the models for the existence of
the properties under consideration:

/C:M->C and Mc = {me M|/C(m) = c,cec}.

There are various classification criteria to be used with
simulation models. Most often, an implementation
oriented classification is done. In this case, models belong
to the same class if their implementation is equivalent.
Classification criteria are e.g. whether a DEVS model is

Applying the DEVS formalism, models are constructed
in a modular hierarchical manner [6,8]. Atomic models
describe the functionality of basic system entities.
Coupled models correspond to more complex system
entities. The inner structure of the complex entities are
represented by the components of the coupled model and
their coupling. Both, atomic and coupled models can be
used as model components.

Atomic DEVS models describe the dynamics of a
system by means of input and output sets X and Y, a set
of sequential states S, state transition functions 8 , an
output function X and a time advance function % :

M = (X,Y,S,SXi).

Coupled DEVS models consist of a set of component
names D and the corresponding set of models {M,}. The
coupling of every single component is specified by a set of
influencees L, and a set of output/input relations Zy for
every component/influencee pair. A tie-breaking select
function q resolves event processing conflicts among the
components:

N = (D,{Mi},{/J,{z,., },<;).

Usually, ports are used to structure the input and
output sets of models [2]. Then, the input and output sets
of a model are structured sets denoted by

208
0-8186-6440-1/94 $04.00 © 1994 IEEE

Xc{(n,vpeNx,vev}and

Yc{{n,vpeNr,v<=v},

where Nx and NY are the sets of input and output port
names and v e V is additional information contained in
the messages which represent the external events.

When ports are used, the output/input relations of a
model N can be specified in the form

Zilc{({i,nl),{j^i%i^D^dinjeIi,nteNj,nlGN^},

where dK is the identifier of the coupled model [1].
In this approach, no statements can be made about the

validity of a coupling specification, i.e. there is no chance
to ensure that a model is capable of processing the
messages it receives from its predecessors. Also, nothing
can be said about whether a model can replace another
model in a given coupling specification. With Interface-
Oriented Classification of DEVS models we address these
problems.

3. Model interfaces

Expanding the idea of structured input and output sets,
we suggest to use typed messages. Then, a message is
denoted by a tri-tuple (n,u,v), consisting of a port name
n, a message type name u, and an additional
information item v , whichs value is within the range of
the type u. Using this notation, we are able to describe
the input and output sets of a model as

X = {(n,u,v)|neNx,ueU„,v e V.} and

Y = {(n,u,v)\n e Nr ,u e Un,v e V.}

where Nx is the set of names of the input ports of that
model, and Ny is the output port name set. We apply the
restrictions that
(i) types with identical names have identical ranges and
(ii) the range of a given type is constant over time.

Due to these restrictions, the incoming messages a
model can process, and the outgoing messages a model
produces are fully described by the structure

I = (Px,Pr),

where Px = (Nx ,\Un | n e Nx n is the input port set and

PY = (Nr ,{U„ I n e Nr }\ is the set of output ports. The

structure / is called the models interface.

3.1. Interfaces of atomic models

Since there is currently no standardised way of formal
definition for the functionality of a model, namely for the
external event and output functions, we are not able to
extract the interface description automatically for atomic

models. Instead, this description has to be given by the
implementer of the model.

Consider the model of a machine tool which processes
workpieces (figure la). Workpieces are a message type
WP, and its range is {raw, processed]. Then, the

interface of the machine tool is IIIT=(PZT'PLT)
w^

Pir ={{in},{{W}}) and Pi ={{out},{{WP}}).

in
«It

i^ftj&Wftfflfr1:.:

b)
Figure 1. Atomic models of a machine tool MT (a) and an
advanced machine tool AMT (b)

A more advanced machine tool could have an
additional binary output port indicating the state of its
workpiece processing buffer after every event (figure lb).
The interface of this advanced machine tool would be
I^={PL'PL) with PL=Px

m and
Pl„ =\{out,state],{{WP},{Bool}}).

3.2. Interfaces of coupled models

The interface of a coupled model is defined by the
interfaces of its components. Therefore, the port
characteristics (and thus, the interface) of a coupled
model can be computed automatically if the interfaces of
all components and their coupling are given.

The set of message types, which can be accepted by an
input port of a coupled model, is the intersection of the
message type sets of all component input ports connected
to that port:

(k.«J-(''"<))GZ
M'"* ^Nx,nt€Nx. U, =nt/,v«,

The message type sets of the input ports are used to
specify the input set of the coupled model:

X -{(«,«, v)|neJV*,u€£/„,vGK}.

If the message type sets of the connected ports are
disjunct, the message type set of the coupled models input
port is empty. This indicates a modeling error.

The set of message types which can be sent out by an
output port of a coupled model can be computed in the
same way from the message type sets of the connected
component output ports. In this case, the result set is the
union of the component port message type sets:

The output set of the coupled model then is

Y = {{n,u,v)\n eJV'.ue t/„,v e V„}.

209

Consider the model of a buffered machine tool,
consisting of an advanced machine tool as shown in
figure lb and a buffer in which unprocessed workpieces
are stored (figure 2).

wm out mm
c3

out out
-£±>

Figure 2. Coupled model of a buffered machine tool BMT

Let the interface of Buffer be I = (Pl,,PY
M) with

Kf = ({in,next},{{WP},{Bool}}) and

Kf=({out},{{WP}}). The interface of the buffered

machine tool model can be computed from the interfaces
of Buffer and AMT. The result is I = {PL>

P
LT) with

PL ={{in},{{WP}}) and PY
BMT = ({out},{{WP}}).

3.3. Relations over model interfaces

We can formally define relations over model interfaces
as a step to define the classification criterion for Interface-
Oriented Classification.

The equivalence of two models is defined by the
equivalence relation /,=/„.

h=I. iff
N*A=NX

B A U*=U° VneN*

A

Nr=NY
B A UÄ=UB

n\fnsN\ AB n n A

This says, that the interfaces of two models are
equivalent, if the available in- and output ports have
identical names, and for every single of these ports
identical message type sets are defined. It is assumed, that
message types with identical names have identical ranges.

The ordering relation for the interfaces of two models
is defined as

/ </, iff

A U? c t/f Vn e N*

NT
AcNT

B A U^U°VneNY
A,nePB

r:

This says, that the interface of model A is contained
within the interface of model B, if the B -interface at least
contains the names of all ports of A. For all the input
ports of B, at least the message types defined for the
corresponding ports of A must be supported; none of the
output ports of B corresponding to an output port of A is
allowed to use message types not defined for the A -port.

4. Classification and inheritance

By using the relations defined for model interfaces, we
establish the classification criterion for the Interface-
oriented Classification. Two models belong to the same
class Mc, if their interfaces are equivalent:

A.ßeM. »/„=/,=/..

Since the interfaces of models belonging to a class are
equivalent, they also denote the interface Ic of the class
itself. In the example, the interfaces of the simple
machine tool and the buffered machine tool are
equivalent. They form a class of models
classMT = {MT,BMT], while the advanced machine tool
is member of another class class AMT = {AMT}.

Between the classes, interface oriented inheritance
relations can be defined. A class inherits the interface of
another class, if its interface contains the interface of the
predecessor class as described by the ordering
relation /ctort ^/^g. So, the class of advanced machine
tools classAMT inherits the interface of the simpler
machine tools classMT, which is then extended by the
state port. It can be shown, that interface inheritance also
works for multiple base classes.

Class trees are a graphical representation scheme for
inheritance information. In the class tree structure, the
nodes are labelled with class identifiers, and the directed
arcs represent "initial_node is_base_class_of
terminal_node" relations. In figure 3, classMT is shown
to be the base class of classAMT, since classAMT inherits
the interface of classMT.

classWorkFlow

y X
classBuffer classMT

Buffer

•

MT, BMT

classAMT

AMT

Figure 3. Example of a model class tree

In addition to the class hierarchy imposed by the
equivalence and ordering relations, the inheritance tree
can be further structured to emphasise functional
differences between classes. In figure 3, the interfaces of
classWorkFlow and classMT are equivalent. However,
classMT is a special work flow element which shouldn't
be confused with others, so machine tools form a separate
class.

210

5. Application areas

5.1. Model construction and management

With Interface-Oriented Classification, support for
model construction and model management can be
significantly enhanced.

Ensuring syntactical correctness: Models are
considered to be syntactically correct, when the
components are able to process all incoming messages.
When using typed messages, it can be ensured that only
ports with matching message type sets are connected to
each other. Syntactical correctness of the model is
guaranteed when strict matching is ensured, i.e. when

Um c Un Vn, ,.»; ((i>«,),(/,«,)) eZ,

In figure 2, this condition is fulfilled e.g. for the
connection between output port Buf.out and input port
AMT.in, since the port message type sets are equal:
{WP} = {WP}.

However, most often it is not practicable to enforce this
restriction. A weaker version of the condition can be used
to test whether there is at least a possibility that two
communicating components will understand each other:

£/, nUnj *0Vni,nl\({i,ni),{j,ni))zZu.

Testing for interchangeability: Models can replace
other components in coupled models without a change of
the coupling, if the replacing model has an equal or more
extensive functionality regarding the interface. This
requirement is fulfilled if the replacing model
(i) has at least the ports of the replaced component, so

that it can be coupled to the surrounding structure in
the same way,

(ii) is able to process all the message types on the used
input ports, which the replaced component was able
to process, and

(iii) sends only message types on the used output ports,
which also could have been sent by the replaced
component.

All these conditions are satisfied, if the replacing model
belongs to the same class as the replaced component or a
class derived from that class.

A model of class classAMT can replace a component
of class classMT, since it fits well into the given coupling
(figure 4). The input port AMT.in accepts the same
messages as MT.in, and AMT.out doesn't send anything
what might confuse components coupled to that port. The
messages sent from port AMT. state are not used because
the port isn't used.

Figure 4. Replacing a model component (a) with a model
belonging to a derived class (b)

Supporting SES construction: Interface-Oriented
Classification can also be used in combination with the
System Entity Structure (SES), a knowledge
representation scheme for model families introduced by
Zeigler [6,8]. There are two obvious applications in this
field.

An aspect node is associated to a coupling
specification for the decomposition it represents. The
syntactical correctness of this specification can be proved
in the way described above.

A specialization node is followed by entities which are
specialized variants of the predecessor entity of this node.
When the variants are members of the same class as the
predecessor entity or a class derived from that class it is
ensured that all variants fit into couplings where the
preceding entity would fit in. This can be used to partially
prove the consistency of a SES.

5.2. Advanced modeling methods

Interface-Oriented Classification is the basis of our
approach to advanced modeling methods like multi-
modeling and modeling of structurally variant systems.

Multi-modeling: Multi-modeling is a technique which
allows to combine different means of description within
one model. In multi-models, a subsystem can be modeled
using the formalism which fits its nature best [3]. Espe-
cially graphically representable formalisms like queuing
systems and Petri nets are combined in known
approaches.

In our approach, the basic elements of other means of
description are mapped onto DEVS components. For
instance, sources, servers, and sinks in queuing models
are represented by atomic or coupled models. The
integrity of coupled models using such "emulated"
components can be ensured by methods of the Interface-
Oriented Classification.

Consider a special coupled model which is used to
emulate a queuing model. Then, to ensure model
integrity, only queuing model components like sources,
queues, servers, and sinks are allowed. This restriction
can be met automatically by checking whether the
components belong to the respective classes or to
successor classes.

211

Since Interface-Oriented Classification does not
depend on implementation issues, atomic and coupled
models can be used to "emulate" the basic components of
other formalisms. The coupled models emulating such
components in turn can be refined using just another
means of description. Therefore, model refinement using
other formalisms is not limited to one level of
aggregation.

Modeling of structurally variant systems: Often,
systems to be modeled undergo structural changes:
Components are assembled to form products, workers
supervising a machine tool come and go, control
strategies of machines are exchanged. Known techniques
to model such changes often map structural changes to
state changes or directly interfere with the state or
structure of the model to be changed, violating its
modularity [5,7].

Prerequisite for our approach to model structurally
variant systems is a method to instantiate fully defined
atomic or coupled models at simulation time and to delete
them after use. The models instantiated by such a method
are not statically connected to the model structure and
thus are named "free" models. Information about such
free models can be transmitted between components by
messages, and can be stored in state variables of atomic
models.

For the modeling of structure-changing systems, a
facility is needed to dynamically link these free models to
the static model structure. Applying the methods of
Interface-Oriented Classification, a special form of
coupled model, called model variable, can be used for
this.

Model variables are placeholders in static model
structures. They are either empty or filled with one atomic
or coupled component (figure 5). When a component
residing a model variable is replaced by another variant of
this component, the entire model changes its structure.

Figure 5. Object variable dynamically linked to a component

Model variables must have a invariant interface, so
that they can be linked to the static model structure. To
define the interface of a model variable, it has to be
assigned to a class. Then, the model variables interface is
equivalent to the interface of the class: it gets all the ports
the member models of the class have, and the ports accept
or send the message types as defined for the class.

When an information about a free model is received by
the co-ordinator of the model variable, it checks whether
the class of the free model is identical to or derived from
the class of the model variable. If this restriction is met,
the co-ordinator establishes links between the ports of the
model variable and the identically named ports of the free
model, thus dynamically linking it into the static model
structure. The dynamic links are cut when either a new
free model has to be linked in or special control messages
are received by the co-ordinator.

Using interface and class information from the
Interface-Oriented Classification, structural changes of
systems can be easily modeled without violating the
modularity principle of the formalism.

6. Conclusion

Interface-Oriented Classification is a classification
scheme which emphasizes the modularity and
encapsulation principles of the DEVS formalism. With
the information available through this technique, the
modeling process can be supported during coupled model
specification and SES building process. Furthermore,
Interface-Oriented Classification is the formal basis for
our approaches to advanced modeling techniques like
multi-modeling and modeling of structure-changing
systems.

Interface-Oriented Classification methods have been
implemented and used in a prototypical modeling and
simulation system currently under development at
Daimler-Benz [4]. While current applications concentrate
on the design and modeling of systems, further research
will focus on the utilisation of Interface-Oriented
Classification in the operation of model-based
autonomous intelligent systems.

References

[1] Chow, T. H.: A Hierarchical, Modular Simulation
Environment for Flexible Manufacturing System Modeling.
Dissertation, University of Arizona, Tucson (AZ), 1993

[2] Linvy, M.: DELab - A Simulation Laboratory. Proceedings
of the 1987 Winter Simulation Conference. SCS
Publications, San Diego (CA), 1987,486 - 494

[3] Miller, V. T.; Fishwick, P. A.: Graphical Modeling Using
Heterogeneous Hierarchical Models. Proceedings of the
1993 Winter Simulation Conference. SCS Publications,
Los Angeles (CA), 1993,612 - 617

[4] Thomas, C: Hierarchical Object Nets - A Methodology for
Graphical Modeling of Discrete Event Systems.
Proceedings of the 1993 Winter Simulation Conference.
SCS Publications, Los Angeles (CA), 1993, 650 - 656

[5] Uhrmacher, A. M.: Variable Structure Models: Autonomy
and Control - Answers from Two Different Modelling
Approaches. Proceedings of the 4. Annual Conference on
AI, Simulation and Planning in High Autonomy Systems.
IEEE CS Press, Tucson (AZ), 1993,133-139

212

[6] Zeigler, B. P.: Multifaceted Modelling and Discrete Event [8] Zeigler, B. P.: Object-oriented Simulation with
Simulation. Academic Press, London, 1984 Hierarchical, Modular Models - Intelligent Agents and

[7] Zeigler, B. P.; Prähofer, H.: Systems Theory Challenges of Endomorphic Systems. Academic Press, Boston (MA), 1990
Variable Structure and Intelligent Systems, in: Pichler, F.;
Moreno-Diaz, R.: Computer Aided Systems Theory -
EUROCAST '89. Springer, New York, 1989

213

Generation, Control, and Simulation of Task Level Actions Based
on Discrete Event Models

J.M. Couretas J.W. Rozenblit

Department of Electrical and Computer Engineering
The University of Arizona

Tucson, Arizona 85721
{couretas jr}@ece.arizona.edu

Abstract

A model based method for task level command gen-
eration is used here to simulate a pipeline process. Us-
ing a discrete event systems formalism, a method for
describing manufacturing systems is reviewed prior to
constructing the sequential assembly line simulation.
This precedes a study of the entire assembly line model,
its coordination, and performance metrics. An exam-
ple system is then simulated and analyzed for language
generation and system performance.

1 Introduction

Expanding computer power is causing increased in-
terest in modeling and simulation. This is especially
true in engineering where physical prototypes can be
costly and time consuming. One step in this direction
was taken by Zeigler [3] in implementing the Discrete
Event System Specification (DEVS) in a software en-
vironment called DEVS-Scheme [2]. It facilitates the
construction of modular, hierarchical models and their
organization.

Jacak and Rozenblit [1] introduce the exact form
robot and workstation models take to work together in
an assembly line simulation. Their method deals with
a series of workcells, each of which has its own process-
ing program. Moving parts between the workstations
is done by robot pick and place actions. A program of
robot and workstation instructions is then expressed
in a task-oriented robot programming language [4] [5]
(TORPL). This program controls a discrete event sys-
tem simulating the sequential manufacturing process
that is constructed using this methodology. It is then
monitored for performance.

An additional layer is introduced for motion plan-
ning to their manufacturing system representation.

This provides collision free geometrical path planning
and optimal trajectory planning.

2 Background

2.1 Discrete Event Systems Representa-
tion

With the overall goal of achieving a means for rapid
modeling and simulation of the entire technological
line, a representational formalism is required. In this
case, we employ the Discrete Event System Specifica-
tion (DEVS) formalism [3].

DEVS specification consists of external inputs, X,
external outputs, Y, and a set of states, S. States tran-
sitions are due to either an external event or the time
limit, ta(s), elapsing. A state change due to an elapsed
time limit is called an internal transition, 6int. Sim-
ilarly, state changes due to external events are called
external transitions, 6ext. All of these transitions oc-
cur over the system's state set, S.

Interpretation of the DEVS and a full explication
of the semantics of the DEVS are in [3].

2.2 Manufacturing Environment Repre-
sentation

The system presently under consideration is a se-
quential technological process. This consists of robots
and workstations where robots do pick and place ac-
tions between workstations. Robot actions in this sys-
tem occur so that each step has an associated set of
instructions in the task oriented robot programming
language [1], hereafter referred to as TORPL.

The basic macroinstructions of TORPL are:

MOVE<
EMPTY
HOLDING

TOuposition"

214
0-8186-6440-1/94 $04.00 © 1994 IEEE

PICKUP "part" AT "position"
PLACE "part" AT "position"
WAIT FOR "sensor input signal"
START "output signal"

The above instructions synthesize the robot's ac-
tion program. This process requires an introduction
of conditional instructions that depend on the states
of each device of the assembly line. Thus, defining a
program simulator requires modeling conditions that
enable each program instruction. An example assem-
bly line is shown in the Figure 1.

State Dlaoram of Feeder

Robots Movlna Darts Dn Seauential Assembly Line

feed workO workl • • • workn transd

<-~* .t VTV
'•\rowy-' • • • -"Uobnf^

Figure 1: Assembly Line

2.3 Experimental Frame

The experimental frame executes and monitors a
model. It consists of a generator sending inputs to
a model and a transducer that observes the resultant
model behavior. This concept is implemented on the
example assembly line by making the generator a parts
feeder and the last workstation on the assembly line
a transducer. Feed rate of incoming parts is modu-
lated with the internal transition time of the feeder,
and assembly line performance is observed with the
transducer.

The feeder, as shown in Figure 2, feeds parts to the
assembly line at given time intervals. Upon sending a
part to the assembly line, the feeder waits in a pas-
sive state for the specified time period before sending
another part.

The transducer is positioned as the last worksta-
tion in the assembly line. Here, it takes in parts as
they are completed and performs user specified calcu-
lations. The transducer is also responsible for main-
taining the observation time of the overall simulation.
Once this observation time is exceeded, all models stop
work. The transducer is shown in Figure 3.

2.3.1 Robot Definition

As explained in [1], robot states reflect position and
action. Robot position designates where it is on the

skjma->0

e1, or a pick
message's "
delivered
from the
robot

sigma->feedrate

teedrate time is elapsed

Figure 2: State Behavior of Feeder

Diagram of the Transducer(transd.m)

Data comes
into the transducer
from assembly line

Figure 3: State Behavior of transducer

simulated assembly line. Robot actions include pick-
ing up a part, placing a part, or doing nothing.

2.3.2 Robot Operation

Zeigler [2] introduces event-based control as a method
of monitoring an operation. This architecture con-
sists of two models, a sender and receiver. The sender
has a time window in which it expects the receiver to
confirm the sent command's completion. Should the
receiving model's confirmation not return within this
time window, the sender assumes failure.

Event based control is used here to interpret robot
tasks as a state-space [6] representation of actions
needed to complete the task. The event based con-
troller, hereafter referred to as EBC, controls the robot
by sending subsequent actions, upon confirmation that
the previous action is done, until the assigned task is
complete. This is shown in Figure 4.

215

Connection of the EBC and Robot within the Doer Coupled Model

ta»k la delegated
to the ebc-zobot
pall

Figure 4: Internal Robot Behavior

2.3.3 Workstation Definition

«m Behavior ot Workstation

sigma -> processing
time

Figure 5: Internal Workstation Behavior

Workstations have three states. These states are "not
working and free," "not working and not free," and
"working and not free." This is defined in [1].

The workstation transitions between these states by
interacting with the robot. For example, a worksta-
tion in state "not working and free" which gets a part
"placed" on it by a robot goes to state "working and

not free." The workstation will automatically transi-
tion to state "not working and not free" upon com-
pleting the part. Robot "picking" is then required to
return the workstation to the state "not working and
free". This is shown is Figure 5.

3 Modeling Effort

3.1 System Construction

Having decided on the methodology and model
forms, the next step is building the sequential assem-
bly line simulation. This includes constructing and
testing each model independently, organizing models
into an overall structure, coupling them, and deciding
on performance metrics.

Model construction was software implementation of
the sequential assembly line. With the models devel-
oped, the next step was aggregating them into one
overall structure and coupling them. Communication
between the models was achieved through name di-

216

rected coupling. This consists of sending communica-
tions directly to the model via its name.

3.2 System Architecture

The system architecture is centralized. This means
that one central module, the controller, processes all of
the assembly line entity states and positions, and then
decides on work allocation. The system simulator's
architecture is shown in Figure 6.

3.3 Task Formation

The controller's goal is to complete all tasks
presently in the system. Tasks needing attention are
determined by the states of sequential workstations.
Robot and workstation states are communicated to
the controller upon every change.

The controller is a central data repository into
which state updates for all assembly line entities are
directed and stored. Workstation states are tracked
by a service list. It is called a service list because the
workstations are continually monitored for potential
requirement of service. Other lists used are the task
list, robot list, and job list.

The service list contains the states of all worksta-
tions. The service list maintains a state for every
workstation on the assembly line, all the time. When
state updates come in from the assembly line, the ser-
vice list is updated to the new assembly line represen-
tation. An example of the service list is shown below:

service-list = ((0 b)(l a)(2 c)(3 a) ...)

A task is formed whenever two workstations are
sequentially in states "B" and "A". When this hap-
pens, the two addresses are combined to make a task
as shown below:

States: (1 b)(2 a)
Task: (1 2)

A task list could have any number of tasks, and
would take the following form:

Task-list: ((1 2)(3 4) ...)

An example robot list has the following form:

robot-list = ((robl move-while-holding) ...)

Multiple tasks require multiple robots to maximize
system performance. This need is met by allowing any
number of robots to service the assembly line.

Once tasks are formed, a search is made for the clos-
est robot to perform the task. Proximity is measured
both by physical distance and by an estimation of time
to completion from the present task. Physical dis-
tance is the distance from the present location of the
robot to the first workstation in the given task. This
is what is used for free robots - robots that are empty
and waiting for an assignment. If a robot is still com-
pleting an action, distance equivalent approximations
are interpolated from the present robot state. This
approximation is then added to the actual distance
between addresses in order to find the total distance
between the present robot and the first workstation in
the task.

Robots presently working on a task are also evalu-
ated for their proximity to tasks awaiting assignment.
The main reason for this is that a robot close to a task
to be assigned could be nearly finished with its present
work when the nearby task becomes available. If only
idle robots were considered, an idle robot farther away
might be chosen for the task, resulting in a high travel
time. Choosing the robot already working amounts
to not choosing a robot, and waiting until that robot
reports that it is free before assigning the task.

When a task is assigned to a robot, this becomes
a "job." Jobs are sent to the robot designated as the
first element of the job. An example of a job is shown
below:

Available Robot: (robl)
Task: (1 2)
Job: (robl (1 2))

3.4 Robot Application Strategy

An example of control modification is assigning dif-
ferent location prioritization algorithms to the robots.
They are assigned to prioritize service to the beginning
of the assembly line, the end, and the closest available
task. This exercise monitors the system performance
differences of alternative prioritization schemes.

Priority on the beginning and end of the assem-
bly line started off as an algorithmic exercise. Over
time, however, we saw the merits of either of these
in application. Prioritizing the beginning of the as-
sembly line might occur in situations where the line
is, for one reason or another, perpetually starved for
parts. Similarly, priority on the end of the assembly
line, on getting parts out, might occur in a situation
where there is a bottleneck at the end of the assembly
line. Additionally, on a multi-robot assembly line, dif-
ferent robots could be assigned different operational

217

Sonuontlal AaMmblv L Inn with Central Controller

ÜZZ1

W

tran8d.m foed.m

workstation I -^^iti-lhzZL

Central
Controller

Figure 6: Assembly Line Architecture

algorithms for part processing.
Simulating the robots with different prioritization

schemes gives us a trace of the robot movements on
the sequential assembly line. Assuming the simulation
accurately depicts the assembly line, this "trace" is
validated robot code that could be used to control the
actual robots working on an assembly line.

3.5 TORPL Code

TORPL code is sequentially output for each step
taken by the robot model. A task, (0 1), assigned to
robot\ generates the following TORPL code:

robot i move while holding

robot i move while empty

robot i pickup widget at feed

robot i
moves to posi-
tion 0.

roboti picks up
the part at po-
sition 0, the
feeder.

robot i place widget at 1

robot i
moves the part
between work-
stations 0 and
1.

robot i
places the wid-
get at worksta-
tion 1.

This process is carried out in detail for each task
performed. Completing the tasks leads up to complet-
ing entire jobs, and job completion leads us to look at
system performance.

4 Assembly Line Performance Evalua-
tion

In this simulation model, assembly line throughput
was selected as the performance measure. It was cal-
culated on-line by a transducer that totals the number

218

of parts completed and divides this by the total time
that the line is operational.

This measurement is similar to what one finds on
actual assembly lines. The system does an on-line up-
date of throughput, and this allows any internal con-
trol methods that rely on throughput to automatically
evaluate the present state of the system and take ac-
tion.

4.1 Simulation Setup

Setting up the simulation requires deciding the feed
rate of parts coming into the process, the mean pro-
cessing time per workstation, and the robot execution
times. The feedrate, controlled by the feeder, is one
new part into the process every 5 time units. Work-
station processing time is a uniform distribution from
1 to 10 time units. The robot takes 2 time units to
pick up or place a part, while moving takes the same
number of time units as the distance traversed. In this
system, 1 distance unit equals 1 time unit.

4.2 Analysis of Model Results

Looking at throughput data for the 5000 time unit
production run in Figure 7, we see the following
throughput rates:

Robot focusing on the beginning 0.0492
Robot focusing on closest task 0.0494
Robot focusing on the end 0.0455

While the above numbers are relatively close, the
robots prioritizing the closest available task and on the
beginning of the assembly line exceed the performance
of the robot prioritized to the end of the assembly line.

This performance discrepancy by the robot focusing
on the end of the assembly line is due to its increased
travel time between priority workstations at the end of
the line and jobs earlier in the line. The robot focusing
on the closest task has minimal travel time. The robot
focusing on the beginning of the assembly line benefits
from each workstation in the assembly line holding a
completed job before it moves to the end of the line.

4.3 Data Analysis

At 0.0494 jobs per time unit, the robot prioritized
to the closest task was slightly better than the robot
prioritized to the beginning of the assembly line at
0.0492 jobs per time unit. A less intuitive merit of

the robot prioritized to the beginning is that every
workstation sits with a completed job before it starts
completing jobs. So many jobs at the end of the line
results in "spurts" of job completions, exemplified by
throughput oscillations as shown in Figure 7.

The slowest throughput, 0.0455 jobs per time unit,
came from the robot prioritized to the assembly line's
end. Decreased performance with this algorithm re-
sults from its priority on getting jobs to the assembly
line's end. It uses too much travel time going from
end of the line jobs to those earlier in the process.

Algorithms focusing on the beginning of the assem-
bly line, or simply on the closest task at hand, out-
perform the algorithm whose only goal is output. A
focus on the process, instead of only the goal, turned
out to be the winning method.

5 Future Work and Conclusions

Model operation exemplified how TORPL code can*
be generated and verified before implementation in
an actual manufacturing system. The example here
requires both task formation, and assignment of the
task to the robot most suited. Real world scenarios
are rarely so simple. Future systems require planning
to deal with unprecedented difficulties.

Planning is commonly approached in two ways, on-
line and off-line. Off-line planning has merit in that
computation time does not impose upon the present
process. On-line planning benefits the user in its au-
tonomy. Decisions are made and executed on the spot.

ElMaraghy and Rondeau [7] propose "a new envi-
ronment for off-line programming of robot tasks, in-
cluding a feature-based geometric database, an off-line
programming system with a knowledge base, an expert
task and motion planner, and a run-time monitoring
system." This comprehensive planning methodology
would substantially extend control capability in our
system.

Extending task formation in our system to include
the benefits of planning is a natural extension. Sim-
ilarly, extending individual or group robot capability
would take us from pick-and-place robotization to a
myriad of possibilities.

Decentralization of this system would involve mov-
ing task and job formation to the robot level. This is
similar to Jacak and Rozenblit's [1] original conception
of attaching an acceptor to each robot in order to allow
it an immediate state representation of the assembly
line. The difference will be transforming robots into
endomorphic agents as conceived by Zeigler [2].

219

Thrr« inhpi it
Throuohnut v». Tlmy

rob_pres - 0.0494

0.040

0.030

rJ.I- rob_ leg - 0.0491

,/•„-«'-"•■■'' ■"""

/

t / \ Robot f rioritized to end
rj / \
1 ; / \

l;' 1 \
l; / \

of line s
prioritiz
of asse

urpasses robot
3d to beginning
nbly line

* 1
! |
1
1

Robot priori«: ed to nearest
1
I !
I
W

robot prioritiz
assembly line

id to beginning o

! (!
I
1 1
1
1
1

Robot prioritized
to beginning of
assembly line

Robot prioritized
to end of assembly
line

Robot prioritized
to closest
available
workstation

Timfi Units

Figure 7: Assembly Line Throughput Performance

Adding planning and decentralization to assembly
line entities opens up a whole new world of robustness
for the system. Changing robots from simple slaves
of the centralized controller to autonomous operators
would significantly increase this system's versatility.

References

[1] W. Jacak and J.W. Rozenblit, "Automatic Simu-
lation of a Robot Program for a Sequential Man-
ufacturing Process" Robotica, Vol. 10, pp. 45-56,
1992.

[2] B.P. Zeigler, Object-Oriented Simulation with
Hierarchical, Modular Models, Academic Press,
London,1990.

[3] B.P. Zeigler, Multifacetted Modelling and Discrete
Event Simulation Academic Press, London, 1984.

[4] B. Faverjon, "Object Level Programming of In-
dustrial Robots" IEEE Int. Conf. on Robotics
and Automation, Vol. 2, pp. 1406-1411, 1986.

[5] R. Speed, "Off-line Programming for Industrial
Robots" Proc. of ISIR 87, pp. 2110-2123, 1987.

[6] N.J. Nilsson, Principles of Artificial Inteligence,
Tioga, Palo Alto, CA, 1980.

[7] H.A. ElMaraghy and J.M. Rondeau, "Automated
Planning and Programming Environments for
Robots" Robotica, vol. 10, pp. 75-82, 1992.

220

Supervising Manufacturing System Operation by DEVS-Based
Intelligent Control

H. Praehofer, G. Jahn, W. Jacak, G. Haider

Institute of Systems Science
Johannes Kepler University Linz

A-4040 Linz, Austria

Abstract

The purpose of a flexible manufacturing system
(FMS) is to perform a series of well defined opera-
tions on a family of similar parts. The operations
(e.g. milling or drilling) are realized by machines
which are serviced by robots. A cell controller coor-
dinates the flow of parts through the cell. Monitoring,
i.e., to watch the system behavior during its operation
and detect possible anomalies, is an important task of
an intelligent manufacturing controller. This paper
present an approach for manufacturing system mon-
itoring which has its foundation in the DEVS-based
intelligent control paradigm. The work is part of a
bigger research project whose objective is to develop
techniques for automatic synthesis of intelligent flex-
ible manufacturing system controllers. Important ad-
ditional parts of the intelligent control system will pro-
vide fault diagnosis and self repair capabilities.

1 Introduction

The purpose of a flexible manufacturing system
(FMS) is to perform a series of well defined opera-
tions on a family of similar parts. The operations (e.g.
milling or drilling) are realized by machines which are
serviced by robots. In addition, stores within the cell
can hold parts temporarily.

A cell controller coordinates the flow of parts
through the cell and supervises the underlying ma-
chines and robots. The control system of such a work-
cell can be divided into three levels [5]:

• The organization level accepts and interprets re-
lated feedback from the lower levels and defines
the strategies for task sequencing.

• The coordination level realizes the strategies given
by the organization level. It defines part routing
in the logical and geometric aspects and coordi-
nates the activities of workstations and robots.

Additionally, it supervises the lower control lev-
els [5].

The execution level consists of the actual device
controllers which execute the programs generated
by the coordinator.

In [1, 3, 4, 5, 2] an approach for automatic synthesis of
intelligent hierarchical controller for flexible manufac-
turing cells is developed. The approach uses off-line
planning and on-line real-time monitoring and con-
trol. For off-line planning two types of simulation are
employed. Continuous simulation is used for motion
and trajectory planning. A discrete event hierarchical
DEVS simulation model is used for verification and
testing of different variants of task realizations ob-
tained from a route planner.

On-line monitoring and control is accomplished em-
ploying an internal DEVS model of the workcell and
real-time on-line simulation. In [5] a real-time dis-
crete event simulator is described which is used for
predictions of some motion commands of robots and
for monitoring of process flow. In [2] a fuzzy rule based
decision system is applied to create an organizer for
finding optimal strategies for task sequencing.

In this paper we focus on the monitoring task of
the controller. We present a monitoring system which
slightly differs from the approach taken in [5] and
which uses DEVS-based discrete event control as in-
troduced by Zeigler [11, 12]. The approach taken here
minimizes the overhead for controller synchronization
and allows one to make precise decisions about system
malfunctions.

In the following, we first shortly review the DEVS-
based discrete event control paradigm, then we de-
scribe the DEVS-based monitoring system in detail,
we discuss the simulation model set up for testing and
validation of the concepts, and we conclude with a
summary and outlook on future research.

221
0-8186-6440-1/94 $04.00 © 1994 IEEE

2 DEVS-Based Control Reviewed

Conventional discrete event control schemes [9, 10,
7] are based on so-called logical model of discrete event
systems which do not use the concept of holding time,
i.e., the time duration the system stays in a particular
logical state. In contrast to that, Zeigler introduced
the event-based intelligent control paradigm [11, 12].
An event-based controller bases its control actions not
only at the sensor events coming from the system un-
der control but also on the time of the sensor reactions.
In event-based intelligent control the controller exerts
control commands to the real system and expects to
receive confirming responses from the system within a
definite time window - not too early and not too late.
A set of threshold like sensors are used in the real
system to report process evolution. As long as the
sensor responses received are in correspondence with
the expected ones, i.e., the correct sensor responses are
received in the appropriate time window, the process
run is regarded to be correct. The information of the
correct sensor responses is codified in a model internal
to the event-based controller. The internal model is
an abstraction of the real system which is based on
a distinction between normal and abnormal system
behavior. In most applications, parameter variations
in finite intervals may be tolerable and are regarded
as normal. The event-based control model is derived
by considering all system behaviors for all parameter
variations which are accepted as normal.

R

free/]
occupied

workpiece
Info

pick/
place

transport
command

Mag

free/
occupied

Cell Controller

M... machine
B ... buffer place
R... robot
Mag... magazine

.. workpiece flow

.. control flow

Figure 1: Flexible manufacturing cell.

which can be performed on the various workpieces.
The technological task is crucial for the function of
the control system. It consists of a set of operations
together with partial ordering of the operations and a
relation of device or storage assignments. A detailed
formal description of the cell and technological task
realization is given in [4, 5, 6].

3 DEVS-based Controller of FMS

3.1 Robotized FMS Cell

Flexible manufacturing systems under considera-
tion are constructed as depicted in Figure 1. They
consist of a set of NC-programmable machines and
production stores, so-called magazines, connected by
a flexible material handling system, typically a robot
or an automated guided vehicle, and controlled by a
computer system. Machines have a number of buffer
places where robots can place workpieces and from
where workpieces are loaded automatically into the
machine for operation. Buffer places and magazine
places have threshold sensors which signal if a work-
piece is currently stored in the buffer place. Except
one sensor which provides detailed information about
the workpiece upon entrance into the system, these
threshold sensors are the only information the con-
troller receives from the real system. The controller
is mainly responsible for control of the material han-
dling system, the machines are equipped with their
own local control system.

The technological task which is realized by a flexible
manufacturing cell defines the sequence of operations

3.2 Controller of FMS Cell

The controller for a manufacturing cell has to fulfill
the following tasks:

• Generation of transport commands: It has to
generate the transport commands for the robots
based on technological tasks, information about
workpieces waiting to be transported, and strate-
gies for task sequencing.

• Monitoring: It has to monitor if the various tasks
are fulfilled correctly, i.e., if transport of work-
pieces by the robots and the processing of work-
pieces by machines are finished successfully.

• Diagnosis: In case incorrect system behavior is
detected, the controller should find its cause.

• Repair: After diagnosis the controller has to de-
termine how the malfunction can be repaired. In
particular, it should update its own internal state
to a state which corresponds to the system's state
and which allows the controller to continue.

In [5] a method is presented how generation of trans-
port commands can be accomplished so that tasks are

222

free/
occupied

wotkpjece4i
info

M

Cell Controller

transport
command

jftee/
j occupied

Mag

Transport Command
Generator

M ... machine internal model
B ... buffer place internal model
R ... robot internal model
Mag ... magazine internal model

Figure 2: Components of a DEVS-based controller.

realized, deadlock is avoided and systems performance
is optimized for various criteria. In this paper we con-
centrate on the monitoring task of the controller and
show how monitoring can be accomplished employing
the DEVS-based control paradigm reviewed above.

3.3 Monitoring FMS Operations

Figure 2 shows the interface and the various parts
of a DEVS-based controller for monitoring. Inputs to
the controller are the threshold sensors which, for each
place, signal if the place is free or occupied by a work-
piece. Additionally, it has one extra input through
which the controller gets detailed information about
a workpiece when the workpiece enters the system.
In particular, this contains information about the se-
quence of operations which have to be carried out.
Outputs from the controller are the transport com-
mands for the robots.

Most important for the controller is information
about the current state of the real system. This is
represented by internal passive models for the active
components, i.e., robots and machines, and for the
passive places, i.e., machine buffers and magazines.
Based on information provided by the threshold sen-
sor, the controller tries to keep the state of the internal
models in correspondence to the state of the real sys-
tem components. Therefore, the internal models are
passive reacting to the inputs to the controller and to
the transport commands generated.

Additionally to the internal passive models, the
controller employs active monitoring DEVS models for
every place. These monitoring models are used to

check if transport and machining operations for work-
pieces are fulfilled in the correct time. This is accom-
plished based on the DEVS-based control paradigm
as reviewed above. With each transport and machin-
ing operation, the monitoring DEVS is activated to
run through a monitoring cycle. Information about
the timing constraints of various robot transports and
various machining operations has to be provided by
the user and is represented as tabular information in
the internal models of robots and machines.

In the following the various parts are described in
detail.

Transport command generator

The transport command generator examines the infor-
mation about workpieces stored in the internal models
of the places and selects one to be transported next.
The selection process has to be done to meet vari-
ous objectives. First, deadlocks in the manufactur-
ing cell has to be avoided. Then, throughput should
be maximized and turnaround time should be mini-
mized. From the organizing level different strategies
for scheduling operations are provided, e.g. just in
time, maximum waiting time, minimum setup, pull
strategy, first free buffer, or minimum transfer cost
[2]. A transport command generator which accom-
plish this is described in detail in [5, 6].

Robot internal model

The internal model of the robot is depicted in figure
3(a). In correspondence with the real robot, it tra-
verses different phases which show the current state
in fulfillment of the robot's transport task. Upon the
output of a new transport command by the transport
command generator, the internal model transits from
phase idle to phase moving. This represents the source
phase where the real robot moves to the place to pick
the workpiece. This phase terminates when the work-
piece is picked up and the sensor of the place switches
to free. Upon entering the phase moving a monitor-
ing cycle is started for the source place which checks
if this sensor reaction caused by picking up the work-
piece occurs in the right time window.

After phase moving, the phase transporting follows.
This phase terminates when the sensor of the destina-
tion place switches to occupied. The occurrence of the
sensor reaction in the correct time window is checked
by a monitoring cycle for the destination place which
is started when entering phase transporting. The sen-
sor reaction in the destination place makes the internal
robot model to transit to its initial state idle which sig-
nals the transport command generator that the robot
is ready to accept the next transport command. With
that transition we start a control cycle in the destina-
tion place with a time window of 0 to infinity which

223

transportammarri bomsource to destination plaoe

start montoringcydefcrÄWTOe place freeftomsource I

vfafytin-nmet^^ ___^^ start nxniteiing <^ fa ^iriofen place

idle'' ^v^^P^>"^g^-~^wilh [rrun-tnmqxrt4ime,nm-tmnsport-time]

occupiedfrom destination!
start monitoring cycle for destination
withPH

(a) Internal model of roboter

ttanspra&g^)

free fiombufferplace Bl
start monitoring cycle for buffer fi

with \nvn-worktime,max-work-time]

occupied

(c) Internal model of magazine

oceupiedfixxn buffer piaceß

busy

(b) Internal model of machine

ocapied (reserved

(d) Internal model of buffer place

(e) monitDring DEVS model

Figure 3: Transition diagrams of internal models.

224

means that the machine can load the workpiece for
processing any time it wants.

Machine internal model

Figure 3(b) shows the simple phase diagram of the
machines. Machine control is not done by the main
controller but is local in the particular machines. Any
sensor reaction in a buffer place of a machine which
does not correspond with a current transport com-
mand of a robots is considered to be caused by the
machine or is erroneous. As soon as a workpiece is
loaded from a buffer place into the machine, which is
signaled by the sensor switching to free, the internal
model of the machine transits to busy. A control cy-
cle is started to check that processing the workpiece is
finished in the correct time window. When the work-
piece is put back to the place, the machine internal
model transits to idle again.

Buffer place and magazine internal model

The internal model of magazines is shown in figure
3(c). It strictly goes hand in hand with the current
state of the sensor of the magazine. The internal
model also holds detailed information about the work-
piece it holds, in particular, it knows the remaining
operations which have to be performed.

Because robots as well as machines have access to
the buffer places of machines, the internal models of
buffer places are more complicated (Fig. 3(d)). When
a new workpiece is placed on the buffer by the robot,
the internal model transits to waiting. When the sen-
sor goes to free again the workpiece is taken by the
machine to be processed and the internal model goes
to reserved meaning that the place is reserved for the
workpiece currently processed. When the workpiece
is put back after the operation has been performed,
the internal model transits to finished and there waits
that the robot gets the workpiece and transports it to
the next destination. Upon that, the internal model
transits to its original state empty.

Monitoring DEVS model

For each transition in the internal models of places
caused by a sensor reaction, a monitoring cycle of the
respective monitoring DEVS exists. The monitoring
cycles are started with transitions of robot and ma-
chine internal models (see Fig. 3(a) and (b)). Figure
3(e) shows the phase diagram of the monitoring DEVS
models associated with the places. Initially, the model
is in phase none which means that no sensor reaction is
expected. A sensor reaction in this phase means that
an error incorrect sensor reaction is detected. When
the monitoring cycle is started with a time window
\tmin,tmin + twindow] the model transits to phase

wait to wait the time it takes until the sensor val-
ues are expected. This time span is given by tmin,
the minimum time of the time window. An receipt
of a sensor in that phase means that the sensor reac-
tion is too early which causes the controller to transit
to error phase too-early. When tmin time units have
elapsed without any sensor response, the time window
begins where the sensors reactions are expected and
the model will transit to phase window. If the sensor
is received in that phase, the process run is recognized
to be correct and the monitoring cycle is terminated.
The time span for phase window is given by the length
of the time window twindow. A too-late error occurs if
the time for phase window elapses without any sensor
reaction. The error outputs generated in the respec-
tive error phases can be used by a diagnosing unit to
decide on the cause of the error.

4 Simulation Model of FMS

A simulation system has been developed to vali-
date the control scheme. It uses to STIMS mod-
eling and simulation environment [8]. STIMS is a
new simulation environment which is implemented
in CommonLisp/CLOS and which allows modular
hierarchical DEVS and DEVS-based combined dis-
crete/continuous modeling and simulation. The FMS
simulation system will take as input a definition of the
configuration of the FMS and then will synthesize the
simulation model automatically. The definition of the
configuration has to contain information of the set of
machines, robots, magazines together with informa-
tion which machine buffers and which magazines are
serviced by which robots, an assignment of operations
to machines, information of the service times for the
different operations, and time windows for the differ-
ent operations. To test the DEVS-based controllers,
malfunctions, like breakdown of sensors, breakdown
of machines, losses of pieces by robots etc. are built
into the models of the real system. The behavior of
the model can be studied by a simple animation sys-
tem showing movements of parts, malfunctions and
the reactions of the DEVS-based controllers. Figure 4
shows a snapshot of animation of a sample manufac-
turing system. On the right the states of the internal
models are listed.

5 Summary and Outlook

The paper presented an approach for monitor-
ing operations of flexible manufacturing systems
which is based on the DEVS-based intelligent control
paradigm. Based on abstract models of real system
components, the monitoring system is able to detect
anomalies in the system behavior.

225

Stat« of FMS-Placas In Control l«r

Plow
IMPUT
BUFFER-1R
BUFFER-IB
BUFFER-2R
BUFFER-2B
me-i
MRO-2
MBO-3
OUTPUT

statt

OCCUPIED
EMPTY
FINISHED
RESERVED
FINISHED
EMPTY
EMPTY
EMPTY
OCCUPIED

TRSK-NOT-PICKED
UNEXP. -SENSOR

A .HA
R ■ochln«-1 B fl itachln«-2 B

r rjjjjjygrj^
conv«g«r input robot

Mag-1 mog-2 nwg-3

output

J
Figure 4: Animation of FMS monitoring.

The work is part of a bigger research project whose
objective is the development of techniques for auto-
matic synthesis of intelligent flexible manufacturing
system controllers. Solutions for several subtasks like
off-line task and route planning [3], on-line operation
scheduling [5, 6], on-line strategy determination for
task sequencing [2], and system operation monitoring
have been provided. Fault diagnosis and self repair
capabilities in flexible manufacturing is the topic of
an ongoing research project.

Proc. of AI, Simulation and Planning in High-
Autonomy Systems, pages 192-198, Tucson AZ,
Sept 1993. IEEE/CS Press.

[6] W. Jacak and J. Rozenblit. Model-based work-
cell planning and control. IEEE Transactions on
Robotics and Automation, in print.

[7] M.D. Lemmon and P.J. Anstaklis. Hybrid sys-
tems and intelligent control. In Proc. of the
1993 IEEE International Symposium on Intelli-
gent Control, pages 174-179, Chicago, IL, 1993.

[8] H. Praehofer, F. Auernig, and G. Reisinger.
An environment for DEVS-based multiformalims
simulation in Common Lisp / CLOS. Discrete
Event Dynamic Systems: Theory and Applica-
tion, 3(2):119-149, 1993.

[9] P.J.G. Ramadge and W.M. Wohnham. The con-
trol of discrete event systems. Proceedings of the
IEEE, 77(l):81-98, 1989.

[10] J. A. Stiver and P.J. Anstaklis. Extracting dis-
crete event models from hybrid control systems.
In Proc. of the 1993 IEEE International Sym-
posium on Intelligent Control, pages 298-301,
Chicago, IL, 1993.

[11] B. P. Zeigler. DEVS representation of dynami-
cal systems: Event-based intelligent control. Pro-
ceedings of the IEEE, 77(l):72-80, 1989.

[12] B. P. Zeigler. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press,
London,1990.

References

[1] W. Jacak. A discrete kinematic of robot in the
cartesian space. IEEE Transactions on Robotics
and Automation, 5(4):435-446, 1989.

[2] W. Jacak. Fuzzy rule based control of intelligent
robotic workcells. In Cybernetics and Systems,
pages 91-100, Vienna, April 1994. World Scien-
tific.

[3] W. Jacak and J. Rozenblit. Automatic robot pro-
gramming. Robotica, 10(3), 1992.

[4] W. Jacak and J. Rozenblit. Cast tools for intel-
ligent control of manufacturing automation. Lec-
ture Notes in Computer Science, 763:203-219,
1993.

[5] W. Jacak and J. Rozenblit. Virtual process de-
sign techniques for intelligent manufacturing. In

226

Session 2D:

DEVS Formalism:
Discrete Event Systems

The DEVS framework for Discrete Event Systems Control

Hae Sang Song and Tag Gon Kim
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea

tkim@ee.kaist.ac.kr

Abstract

This paper proposes a new methodology for analysis
of discrete event systems and design of discrete event
systems controllers. The methodology is based on the
sound semantics for specification of discrete event sys-
tems called the DEVS formalism. It introduces con-
cepts of inverse DEVS and defines controllability of
discrete event systems expressed in the DEVS formal-
ism. These two concepts, inverse DEVS and control-
lability of discrete event systems, play important roles
in designing a discrete event controller. An example
for appreciating the concepts is presented.

1 Introduction

Discrete event systems (DES) have taken a more
important part in managing the contemporary world,
most of which are man-made systems such as multi-
computer systems, communication networks, traffic
systems and manufacturing systems. In such a DES,
computation is done by interactions between compo-
nents to achieve a given goal. Such a goal can be an
operation range of system behavior or optimization of
system performance. An operation range of a DES
can be specified by a state trajectory which is piece-
wise constant in time function. In the control system's
viewpoint, a DES can be divided into two subsystems,
plant and controller. Thus, the DES control problem
is as follows. Given a DES plant, design a DES con-
troller to meet specified objectives.

»ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights
reserved. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution must be obtained from the IEEE. For
information on obtaining permission, send a blank email mes-
sage to info.pub.permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws pro-
tecting it.

Compared to numerous efforts to develop for-
malisms to specify the discrete event systems, there
are a few researches on design of a discrete event con-
troller (DEC). [1] is the first work in the field, where
a DES plant is specified based on automata theory
and a discrete event controller is designed based on
language theory. The essential feature is that a con-
troller has the desired behavior of a plant with respect
to objectives. The controller supervises output events
occurring in the plant and produce required control
outputs to the plant.

This paper proposes a framework for specification
and design of discrete event systems control based on
the DEVS (discrete event systems specification) for-
malism [2]. Unlike the methodology based on au-
tomata theory [1], we base DES controller design on
the system-theoretic DEVS formalism. DEVS, in na-
ture, has more information than that of automata in
specification, especially timing information. It also
distinguishes state transition into two different ones,
i.e., internal and external transitions and discrimi-
nates input events from output events. Our approach
inherits diverse advantages of the DEVS formalism.

2 Supervisory control of discrete event
systems

Supervisory control [3] is a kind of feedback control
that supervises the behavior of a discrete event plant
to control the plant in desired objectives. It is as-
sumed that the behavior of the plant is known. Thus
the controller can deduce the current behavior of the
plant from observed output events. Then it compares
the behavior with desired one and generates appro-
priate next control outputs. A design problem of a
discrete event controller is as follows: given a discrete
event system with known dynamics and control objec-
tives, design a discrete event controller that satisfies
the control objectives.

228
0-8186-6440-1/94 $04.00 © 1994 IEEE

I DES

plant ; controller:

"T

\

system behavor

Figure 1: Supervisory control of a discrete event sys-
tem

Fig. 1 shows concepts of supervisory control. To
design a discrete event controller, we have to spec-
ify 1) dynamics of a plant 2) controlled behavior of
the plant that satisfies the control objectives. In this
paper, we specify plant behavior based on the DEVS
formalism. We call it a plant DEVS. From informal
control objectives and the plant DEVS, we obtain a
desired state trajectory that satisfies the control ob-
jectives. A discrete event controller would be obtained
by transformation of the desired state trajectory into a
DEVS model. Connecting the plant with the designed
controller through proper interfaces, called ports, re-
sults in an overall control system satisfying the desired
system behavior. We will describe concepts and design
steps in more detail in the following sections.

3 The DEVS formalism

This section briefly reviews the DEVS formalism
and introduces a graphical notations representing the
DEVS formalism.

3.1 Review of the DEVS formalism

The DEVS formalism specifies discrete event mod-
els in a hierarchical, modular form. Formally, an
atomic model M is specified by a 7-tuple :

M =< X,S,Y,Sint,6ext,X,ta >

where

X : input events set;
S : states set
Y : output events set;
&ext '■ Q x X —>• S : external transition function;
bint '■ S —»■ S : internal transition function;

Q = {(s, e)\s G S, 0 < e < ta(s)} : total states;
A : S —► Y : output function;
ta : S —> Real : time advance function.

The four elements in the 7-tuple, namely, 6int, Sext, A,
ta are called characteristic functions, and S is set of
state variables, X(Y) is set of input(output) events.
An atomic model represents a corresponding discrete
event process and connections between processes is
represented by a coupled model DN

DN =< X, Y, M, EIC, EOC, IC, SELECT >

where

X : input events set;
Y : output events set;
M : DEVS components set;
EIC C DN.IN x M.IN : external input

coupling relation;
EOC C M.OUT x DN.OUT: external output

coupling relation;
IC C M.OUT x M.IN : internal coupling relation;
SELECT : 2M - 0 ->• M: tie-breaking selector.

The three elements, EIC, EOC, IC means the con-
nections between set of models M and input, output
ports X, Y. SELECT function acts as a tie-breaking
selector.

3.2 Dynamics of a DEVS model

The dynamics of a discrete event systems specified
in the DEVS formalism can be interpreted by the ab-
stract simulator in [2]. We mention it briefly here and
define some terminologies to be used in the following
sections. The dynamics of an atomic DEVS is deter-
mined by a sequence of internal or external transitions.
An internal transition is spontaneous after fulfilling its
current activity and an external transition is caused by
an external event.

An atomic DEVS M< spontaneously changes its cur-
rent activity(or state) s,- to ^««/(SJ) after completing
the activity at the predefined sojourn time ta(s{). Just
before the transition, M,- produces an output event
A(sj). The stimulus that makes this transition to oc-
cur is generated at which an activity has just com-
pleted. We call the stimulus a * event. It's not visible
to us and other DEVS models, so we call it a hid-
den event. This transition, * —► A(s») —> ö,„((SJ), is
called an internal transition. From the above state-
ment, we can define internal transition relation for a
DEVS Mr as follows: Tri,-„« = {(sj,p!m, SJ)\(S{,SJ) G
Sr,int, P]-m = Ar(sj) G Yr,S{ G Sr}.

229

An output event pilrrii resulting from an internal
transition of M; is converted into an input event pirn
of another DEVS Mj connected with M{ through
the port p. If Mj is ready to receive the in-
put event pirn at the current state Sj, it changes
its state into Sext(sj,p1m). We call the transition
an external transition. We define external transi-
tion relation of a DEVS Mr as follows: Tr<ext =
{(si,p?m, Sj)\(si,p?m, Sj) G 6r>ext,Si G Sr}.

We can see that an external transition of a DEVS
is caused by an output event resulting from an in-
ternal transition of another DEVS stimulated by the
* event. That is, with the * event, two DEVSs are
changing their states at the same time. This phe-
nomenon is concurrency. We deal with concurrency
later in more detail. A pair of input and output events,
Pilrrii, pj?m,j, that make concurrency satisfies the fol-
lowing properties: dom(p) = dom(pi) = dom(pj) and
m = mi = m,j, where dom(p) is the domain of port
p that messages can reside. We call the pair a dual
event.

internal transition consisting of X(s) —*■ 8int. An out-
put event is specified on a dotted line by an output
port followed by a message name with output oper-
ator '!'. For example, an output event outlm means
that a message m is output at the port out. Similarly
an input event is specified on a solid line by an input
port followed by a message name with input operator
'?'. An input event inlm means that a message m is
input at the input port in. The change of values of
state variables are enclosed by '[' and ']'. If it is on
the dotted (solid) line, it represents a state transition
specified by the internal (external) transition function
&int {^ext) of DEVS, respectively. Optionally, transi-
tion condition g can be specified after input or output
event with a seperator notation @. It is natural that
a time advance in a state be attached to the state
node because it represents a sojourn time to fulfill its
activity. An empty output event is denoted by 0.

4 Concurrency

3.3 Graphical notations

An atomic model representing a process is enclosed
by a box with input and output ports in the wall. Such
Ports are entrances or exits for messages on its own to
represent X and Y in DEVS. Combinations of ports
and messages by ?(input) and !(output) represent in-
put events on X and output events on Y, respectively.
Each state variable in the state set S of DEVS is rep-
resented by a small box in the atomic model and has
its name in it. The behavioral description of an atomic
model is represented by an activity transition diagram
or an state transition diagram, which consists of nodes
and two-colored edges. Each node represents an activ-
ity or a state, dotted arc denotes an internal transition
and solid arc an external transition. In Fig. 2, (a)

p'.m

U—£

O— O

(a) *„,(«,-,pirn) = Sj

\{si) — p\m

&-
SJ

►o

o-- «o
(b) A(s;) = p\vn -* 6int(si) = Sj

Figure 2: graphical notation: (a) external transition
(b) internal transition

represents an external transition and (b) denotes an

Consider two atomic models M, and Mj, Mi =
< Xi,oitYi, OijntjOi^xt, Ai,ta.i >, Mj =< Xj,Oj,
Yj,Sjtint,8jtext,\j,taj >. Assume that Mj||Mj be a
composition of Mj and Mj. Let state transitions of
Mi,Mj be (qi,a,n) € (2J - Tj) = Ti,int U Ti>exU

(Qj,b,rj) € (Tj -Ti) = Tiiint U Tjiext. Then state
transition relation T of the composition M;||Mj has
the following transition rules:

(1) if a — p\m and b ^ p?m then
-* {{<li,<lj),P]-m, (n, qj)) £ T, for all qj € Sj

(2) if b = p\m and a ^ plm then
-* ((ft, ?i),p!"i, (qit rj)) G T, for all q{ G Si

(3) if (a = p\m and b = pirn) or (b — p\m and
a = pirn) then

(4) No other transition in T

(3) means if a, b is dual event and connected, then
both are transiting concurrently. That is, if an out-
put event resulting from an internal transition of one
model becomes an input event of the other waiting
for it, then the two models changes their states con-
currently. This is called concurrency and the event
communicating the message is called concurrent event,
denoted by p#m. (1) and (2) represent the cases even
if an output event of one model is produced but the
other one is not waiting for the event in its current
state. In this case, the output event takes no effect on

230

the other model and disappeared. We call the disap-
peared event a dangling event.

The concurrency rules described above will be used
to analyze the dynamics of a system consisting of sev-
eral subsystems.

5 Controllability and inverse DEVS

Controllability of a discrete event system specified
in DEVS is exploited to check if a discrete event con-
troller satisfying a desired state trajectory exists or
not. If controllable, concepts of inverse DEVS would
transform the desired state trajectory into the behav-
ior of a discrete event controller. In this section, we
define these two concepts.

5.1 Controllable DEVS

Let T be the global state trajectory of a discrete
event plant M =< X,S,Y,8int,8ext,\,ta >. Let
ST C T be a desired state trajectory.

Definition 1 (strong controllability)
A desired state trajectory ST is said to be strongly
controllable if the following condition is hold. For all
Si on ST, if 3 Sj = 5jni(sz), then Sj is on ST. A
discrete event plant is said to be strongly controllable
i/V ST C T, ST is strongly controllable.

Definition 2 (weak controllability)
A desired state trajectory ST is said to be weakly con-
trollable if the following condition is hold. For all s»
on ST, if 3 Sj — 6int(s{) not on ST, then 3 at least
one Sjt = 8ext(si,e,p?m) such that sj, is on ST and
e < ta(si). A discrete event plant is said to be weakly
controllable ifV ST C T, ST is weakly controllable.

Note that controllability in Def. 1 does not depend
on time, but Def. 2 is time-dependent.

5.2 Inverse DEVS

Consider two DEVS Mi, Mj operating concur-
rently. If M,-||Mj is running with transitions caused
only by concurrent events (see Section 4), then we call
Mi(Mj) an inverse DEVS of Mj(M2), respectively.

Definition3 (inverse DEVS) Mi(Mj) is said to
be an inverse DEVS of Mj(M{) iff the following prop-
erties are hold:

(i) State set morphism

Oi *" Oj

(ii) Dual I/O events set

Xi = {p'!m\p\meYj}

Yi = {p\m\p1m£Xj}

(iii) Dual transition relation

Ti,int = {(q,plm,r)\(q,p?m,r) £ Tj<ext}

Ti,ext - {(q,P?m,r)\(q,p\m,r)eTjiini}

(i) states that there is one-to-one correspondence be-
tween states of two DEVSs. (ii) indicates that input
events of one would be converted into output events
of the other, and vice versa, (iii) denotes that an in-
ternal transition of one DEVS would be changed to an
external transition of the other.

A transformation from an atomic DEVS M; to Mj
satisfying the above properties is called an inverse
DEVS transformation. The concepts of inverse DEVS
is used to obtain a discrete event controller from a
desired controlled state trajectory.

6 Design methodology for DEC

A methodology for design of a DES controller bases
on the DEVS formalism and the concepts of inverse
DEVS. Fig. 3 shows the steps for design of a dis-
crete event controller. First, a plant is specified in the
DEVS formalism, which consists of one or more atomic
models that are connected each other. We can obtain
a global state space at this step, from which we shall
extract a controlled state trajectory satisfying given
objectives. We call it a desired state trajectory of the
plant. The next step is to check the controllability
of the desired state trajectory by the controllability
definition defined in the paper. And the supervisor
DEVS transformation described above is used to di-
rectly transform the desired state trajectory to a DES
controller. After the transformation we relabel states
of the controller after suitable state reduction. Finally
we can obtain a controller. Note that if a desired state
trajectory of a plant is given, then we can directly ob-
tain a corresponding DES controller from it using the
inverse DEVS transformation.

7 A simple example: control of water
supply system

We will clarify the approach described previous sec-
tions by a simple example of a water supply system.

231

PLANT

DEVS specification

PLANTn

Global State Production

Control Objective

GLOBAL STATE SPACE

Objective Pruning

DESIRED STATE TRAJECTORY

Controllability Analysis

Inverse Transformation

CONTROLLERDEVS

Simulation

Figure 3: Design steps for a discrete event controller

Following subsections show how each step in Fig. 3
performs through the example. We use the graphi-
cal notations rather than set-theoretical notations, for
graphical notations show more clear model descrip-
tions.

7.1 Problem description

An informal problem description is a starting point
for the design of a controller for the water supply sys-
tem. In Fig. 4, a water supply plant consists of two
subsystems, a water pump and a water tank. In the
water tank, there are two water level sensors (low,
high) and a water pipe through which water flows in.
The water pump takes electric energy from outside
world, which can be controlled by a ON/OFF switch.
It fills the water tank through the water pipe.

The purpose of the system is to keep the water level
between the low and high sensors.

7.2 DEVS model of the plant

Specification of a plant in the DEVS formalism is
the first step to design a discrete event controller. In-
put and output events, state variables, output func-

Electric
Power

water

ON/OFF

water

water
level

filled

under filled

high
sensdr

low
sensdr

PUMP WATER TANK

Figure 4: Water pump plant

tion, internal and external transition functions and
time advance function should be identified.

To specify a plant in the view of a discrete event sys-
tem, we have to identify events occuring in the plant.
The events set of the water pump consists of ON/OFF
switching events of the motor, and events that water
starts and stops to flow out through the water pipe.
The events set of the water tank consists of the low
sensor ON/OFF, the high sensor ON/OFF, and events
that water starts and stops flowing in through the wa-
ter pipe.

Fig. 5 shows a DEVS model of the plant. If the wa-
ter pump is turned on ("pw"?ON), it starts pumping
water through the water pipe ("w'MWSTRT). If it is
turned down ("pw"?OFF), it stops pumping and the
flow of water will be stopped ("w'MSTOP). Initially,
the water tank changes INIT state into BS, FS, VS
according to the initial water level producing appropri-
ate sensor signals to outside world. The letter B means
under-filled, F filled, V over-filled and the second letter
S means that the in-flow of water is currently stopped.
While the water level lowers, corresponding level sen-
sor signals would be generated. With water flowing
in, the state is changed into BF, FF, VF generating
proper sensor signals. If the in-flow is continued even
though the water level reaches far over the high sensor,
the water tank eventually overflows (TOP). In the op-
posite case, the water level would reach to the bottom
(BOT).

The two subsystems, the water pump and the wa-
ter tank, are connected through the pipe ("w"). The
dynamics of the composite subsystem can be obtained

232

*pw" ^>

-WATER TANK-

\B(LOW<lev ' -—■--— T

\&lev<HISH)\

(SW.IN)

Figure 5: Specification of the water pump plant

by concurrency analysis.

7.3 Controlled state trajectory

The next step is to get a global state transition di-
agram (GSTD) from the plant specification. It may
be obtained by a Cartesian product of state diagrams
of each subsystem. Alternatively, if we use the con-
currency analysis, we can obtain far less number of
states. In the case of no connection, there would be
4 x 9 = 36 states in the example plant. However, there
is one connection("w") and we obtained a GSTD of
the plant with only 17 states by the concurrency anal-
ysis.

Meanwhile, the informal description of control ob-
jectives is to be re-described based on the DEVS model
of the plant. Let a controlled state trajectory be K,
and s on GSTD be (P.s, W.s), where P.s denotes a
state of the water pump and W.s a state of the water
tank. Then K should satisfy the following conditions:

1. If 3 (x, BS), then eventually (SW, VS), where
x means don't care.

2. 3 no s such that (a:,BOT) or (z.TOP).

3. hysteresis: 3 no transition between (a;,FF)
and (a:,FS)

Now we can extract a controlled state trajectory
from GSTD and the control objectives. Fig. 6 is the

__ /Mpw"?0

-^«»0----™""-<i..r
(PM.BF) (PM.FF) (PM.VF)

(PM.TOP)

Figure 6: desired state trajectory of the plant

desired state trajectory (In the figure, we exclude tran-
sition 1' and 2' from the desired state trajectory, which
were added for convenience to explain controllability.).
Initially, the state is changed into (SW,BS) after a few
internal transitions. Then the motor should be ON,
which is followed by a concurrent event "w"#WSTRT.
If the water level reaches to the over-filled region, the
motor should be OFF. Then, water stops flowing in.
By internal transitions, the water level is to be lowered
again, and then the motor should be ON, and so on.
This state trajectory satisfies the three objectives.

The next step is to check if the desired state tra-
jectory is controllable (strongly controllable). Unfor-
tunately, there are two internal transitions into states
not on the desired state trajectory (1', 2'). We can
not control these transitions to occur because they are
spontaneous. Thus it is impossible to design a discrete
event controller satisfying the desired state trajectory.

However, if water can be supplied or stopped be-
fore those states are reached, then the two internal
transitions, 1' and 2' can be controlled not to occur.
It means that the controls depend on time. By Def.
2, we know the desired state trajectory is weakly con-
trollable. Usually, controllability means strongly con-
trollable unless explicitly specified.

In the following section, we assume that the time
interval necessary to stop the water flow is sufficiently
small, compared to the time interval that the water
tank overflows from the position of the high sensor. Of
cause, we assume that the opposite case is also true.
Then, we know that the internal transitions 1' and
2' could not occur physically and be eliminated from
the plant DEVS. Thus, the desired state trajectory is
controllable with the assumption.

233

Desired State ,A!!^-.,
Trajectory -is-ip'' \ **\«hs>,H
with state / "fe"/L ■
reduction / \s '<

IBSK — --» /svV —.W/H

i
"pw"?OFF

1
(^> WTO» ■'S)

.V.'i.
Transformation

plant controller

?
!

!
?

r-CONTROLLEft

Figure 7: Design of a DES controller

7.4 Getting a discrete event controller

Until now, we specified a discrete event plant in
DEVS, obtained GSTD, re-described the control ob-
jectives based on the plant DEVS, and got a desired
state trajectory satisfying the control objectives. Now,
we can get a discrete event controller from the trajec-
tory using inverse DEVS transformation.

Before the transformation, we can reduce the states
of the desired state trajectory. The upper part of Fig.
7 is obtained by suitable state reduction from the tra-
jectory in Fig. 6.

A discrete event controller is obtained by inverse
DEVS transformation to the desired state trajectory
with reduced states shown in the upper part of the
Fig. 7. The lower part of Fig. 7 shows the discrete
event controller after the transformation. Note that
the transformation is so straightforward and intuitive.

The three subsystems, the controller, the water
pump, and the water tank are to be connected through
ports that have the same name, which results in an
overall system. If we analyze the dynamics of the over-
all system, we know that it follows the desired state
trajectory only with concurrent events.

8 Conclusion

The paper proposes a new approach for analysis of
discrete event systems and design of discrete event sys-
tem controllers based on the DEVS formalism. Con-
trollability and concept of inverse DEVS are defined
and introduced. These two concepts play key roles in
designing a discrete event controller.

A DES controller designed under the framework
will be simulated in a straightforward way using
DEVSim++[4] to analyze the performance of the sys-
tem. But it was omitted here.

More formal description of the methodology and
extension to timed systems are remained as further
research.

References

[1] P. J. Ramadge and W. M. Wonham, "Supervi-
sory control of a class of discrete event processes",
SIAM J. Control and Optimization, vol. 25, no. 1,
pp. 206-230, Jan. 1987.

[2] B. P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation, Academic Press, Orlando, FL,
1984.

[3] Cristos G. Cassandras,
IRWIN, 1993.

Discrete Event Systems,

[4] Tag G. Kim and Sung B. Park, "The DEVS for-
malism: Hierarchical modular systems specifica-
tion in C++", Proc. of the 1992 European Simu-
lation Multiconference, pp. 152-156, 1992.

[5] Bernard P. Zeigler, Theory of Modelling and Sim-
ulation, John Wiley & Sons, Inc., 1985.

234

Performance Modeling and Analysis of Distributed Access Network
System Using DEVSim++ *

Kyou Ho Lee

Dept. of Broadband Comm. Network
ETRI

POB 106, Yusong-Gu
Taejon 305-600, Korea
kyou@winky.etri.re.kr

Tag Gon Kim

Dept. of Electrical Engineering
KAIST

373-1 Kusong-Dong, Yosong-Gu
Taejon 305-701, Korea

tkim@ee.kaist.ac.kr

Abstract

DEVSim++ is a C+ + based, object-oriented mod-
eling/simulation environment which realizes the hier-
archical, modular DEVS formalism for discrete event
systems specification. This paper describes a method-
ology for performance modeling and analysis of a
distributed access network system under development
within the DEVSim++ environment. The methodol-
ogy develops performance models for the system using
the DEVS framework and implement the models in
C++. Performance indices measured are the length
of queues located at connection points of the system
and cell waiting times with respect to QoS grades for
a network bandwidth of 155 Mbps.

1 Introduction

ATM technology based B-ISDN has been expected
as a next generation high speed communication. The
technology will provide end users with a variety of
public services which satisfy different service require-
ments, traffic characteristics, and geographical cover-
age. An interface technique between end users and
ATM local exchanges is one of major issues for the
ATM network. The reference model defined by ITU-T
SG13 consists of three area networks of B-ISDN UNI,

»ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights
reserved. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution must be obtained from the IEEE. For
information on obtaining permission, send a blank email mes-
sage to info.pub.permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws pro-
tecting it.

namely, Customer Premises Network, Access Network,
and Transport Network[2]. We have proposed a dis-
tributed access network architecture as an introduc-
tory phase of B-ISDN [5], which covers urban areas
having various traffic characteristics and service re-
quirements. The proposed system now is under devel-
opment.

Performance modeling and simulation analysis are
essential to optimizing system parameters for new de-
sign as well as existing ones. Especially, as complexity
of systems is increased, simulation modeling may be
the only means to evaluate performance of such sys-
tems. ATM networks are an example of such complex
systems[l][3].

Discrete event simulation has been widely used as
a performance evaluation means in many areas of sys-
tem design including communication networks. In
such performance study, simulation models are much
more reliable and accurate than analytical ones, which
may omit some aspects of the behavior of systems un-
der design. In particular, when temporal issues of
systems are significant, discrete event modeling and
simulation can be considered the best solution.

The DEVS formalism developed by Zeigler sup-
ports specification of discrete event systems in hierar-
chical, modular manner[6]. DEVSim++ is a realiza-
tion of the DEVS formalism in C++, which provides
modelers with facilities for modeling systems within
DEVS semantics and simulating DEVS models in hi-
erarchical fashion[7].

This paper describes performance modeling and
simulation analysis for the distributed access network
system under development. The modeling method-
ology is based on Zeigler's DEVS formalism to ex-
ploit compatibility between the hierarchical, modu-
lar model specification and the hierarchical distributed

235
0-8186-6440-1/94 $04.00 © 1994 IEEE

access network system architecture.
We organize this paper as follows. Section 2

presents a brief review of the DEVS formalism and
DEVSim++ modeling and simulation environment.
Section 3 describes characteristics of the distributed
access network system architecture. Development of
a simulation model for the distributed access network
system is given in Section 4 and simulation results in
Section 5. We conclude this paper in Section 6.

external output coupling relation;
IC C M.OUT x M.IN :

internal coupling relation;
SELECT : 2M - 0 -> M : tie-breaking selector,

where the extensions .IN and .OUT represent the
input ports set and output ports set of
respective DEVS models.

2 DEVS Formalism: A brief review

A set-theoretic formalism, the DEVS formalism,
specifies discrete event models in a hierarchical, mod-
ular form. Within the formalism, one must specify 1)
the basic models from which larger ones are built, and
2) how these models are connected together in hierar-
chical fashion. A basic model, called an atomic model
(or atomic DEVS), has specification for dynamics of
the model. An atomic model AM is specified by a
7-tuple [Zeg84]:

AM =< X,S,Y}6int,8ext,X,ta>

DEVSim-t—|- is a realization of the DEVS formal-
ism in C++. The DEVSim++ environment supports
modelers to develop discrete event models using the
hierarchical composition methodology in an object-
oriented framework. The environment is a result of the
combination of two powerful frameworks for systems
development: the DEVS formalism and the object-
oriented paradigm.

3 Characteristics of Distributed
cess Network System

Ac-

X : input events set;
S : sequential states set;
Y : output events set;
&int '■ S —► S : internal transition function;
f>ext '■ Q x X —> S : external transition function;
A : S —► Y : output function;
ta : S —> Real : time advance function,

where Q = {(s, e) | s G S, 0 < e < ta(s)} :
total state of M.

The second form of the model, called a coupled
model (or coupled DEVS), tells how to couple (con-
nect) several component models together to form a
new model. This latter model can itself be employed
as a component in a larger coupled model thus giving
rise to construction of complex models in hierarchical
fashion. A coupled model CM is defined as [Zeg84]:

CM =< X, Y, M, EIC, EOC, IC, SELECT >

X : input events set;
Y : output events set;
M : DEVS components set;
EIC C CM.IN x M.IN :

external input coupling relation;
EOC C M.OUT x CM.OUT :

A distributed access network system is an interface
system between the local exchange and subscribers.
The system consists of a head node, a collection of
rings, each consisting of a collection of ring nodes.
Each ring node is connected to a number of sub-
scribers.

The head node mainly performs a traffic switch-
ing among ring nodes and local exchanges. Each link
of the head node is based on a STM-1 frame with
155 Mbps bandwidth. The ring node mainly func-
tions multiplexing the traffic from subscribers to the
head node as well as distributing the traffic from the
head node to subscribers through the ring. The traf-
fic from subscribers is based on ATM cells with the
speed of DS-1, DS-3 or STM-1 depending on appli-
cations. For the transmission speed, we consider to
transform the bandwidth into a number of cells. The
STM-1 frame is recommended to have 260 x 9 Bytes
without overheads. One ATM cell has 53 Bytes with-
out overheads. Therefore 44 ATM cells are included in
a STM-1 frame. The transmission mechanism in the
distributed access network system is shown in Figure
1. A cell-by-cell mechanism is used for adding from
and dropping into subscribers in the ring node and
switching in the head node. But the transmission on
the ring and the network is based on the STM-1 frame.

236

^ /
Cell Based Cell Based STM-1 Frame
Connection Switching Based Network

Cell Based Add/Drop

Figure 1: Transmission Mechanism

drop

DOWNWARD

rep^add

UPWARD

ffl a a a a

Figure 3: Coupled Model of RN

4 Models Development

This section describes modelling system architec-
ture and shows development of a distributed access
network system simulation model in DEVSim+-h

4.1 Modeling Overview

The overall distributed access network system ar-
chitecture is shown in Figure 2. At the top level, the
distributed access network system consists of two sub-
systems, a HEAD and a RING. Having the (n x n)
switching function for traffic, the HEAD can connect
n RING's and communicate with n Local Exchange
sites. Each RING comprise a set of identical Ring
Nodes (RN's), each of which has 4 inputs and 4 out-
puts for communicating with subscribers.

RING rdO
HEAD

linO

rd ruf rdl ru] rdj ru] ruO loutO

RNO RN1 RNn

tttt tttt tttt , lilll

O
o
o

loutl

lin2

lout2
RING rdO

rd it} r dj ruf r aM ruO lin3

RNO RN1 RNn lout3

4444 444 4444-

Figure 2: The System Architecture

A RN, as shown in Figure 3, consists of a ring
access (RA) which accesses the ring to add or drop
cells, UPWARD for concentrating cells sent from 4
subscribers into RA and DOWNWARD for distribut-
ing cells dropped from RA into 4 subscribers.

RA consists of two atomic models, DA — to — 2 and
M-2 — to — 1, as shown in Figure 4. DA — to — 1
forwards traffic to the ring if there is no cell dropped
into local subscribers. Otherwise, DA — to — 2 drops
the cell to local subscribers. Likewise, M-2 — to—1
forwards traffic, arrived from DA — to — 2, into the
ring if there is no cell to add on. Being ready to add
on the ring, M_2 — to— 1 inserts a cell being ready into
the empty slot on the frame. If there is no empty slot
on the frame, M-2 — to—I forwards with no adding.

rd

RA

D l-to-2
forward

M 2-to-l

drop ack req_add

Figure 4: Coupled Model of RA

HEAD also includes RA which accesses the ring.
RA in HEAD has input and output channels to receive
and transmit the cell stream from and to SWITCH.
On the other hand, RA in RN has I/O channels to
add and drop a cell from and to subscriber.

4.2 Models Development in DEVSim++

Regarding models development in DEVSim++, we
describe development of an atomic model, M-2—to— 1,
and a coupled model, RA, in DEVSim++.

4.2.1 Atomic Models

The atomic model M-2 — to ■
DEVS semantics as follows:

1 can be represented in

237

X = {?forward, ?ack}
Y = {!ru, !req_add}
S — { phase | phase £

{WAIT, ACTIVE, SEND, ADD}}

dext: dest((WAIT), ?forward) = ACTIVE
dext(A.DD, ?ack) = SEND

dini: c/in<(SEND) = WAIT
dint(ACTIVE) = ADD

ta : ta(ADD) = infinity
ta(WAIT) = infinity
ta(ACTIVE) = active-time
ta(SEND) = sending-time

0 : 0 (ACTIVE) = !req.add
O(SEND) = !ru

Figure 5 shows the state transition diagram of
MJl-to-l. MJL — to—l has two inputs, forward and
ack, and two outputs, ru and req_add. When an input
arrives at the port "?forward", MJ2 -to-I transits
into the phase ACTIVE and stays there for active_time
units. Then it outputs on the port "!req_add" and
then transits to the phase ADD. At the phase ADD,
it waits for an input "?ack" to be arrived. On receiv-
ing the input "?ack", M_2-to-l transits to the phase
SEND and stays there for sending-time units. After
then it returns to the phase WAIT after generating an
output on the port " !ru".

?forward

?ack

!req_add

Figure 5: State Diagram for M_2-to-l

The followings are codes for implementation of
MJl -to-I within DEVSim++.

const int M21_ATV-TIME = 0;
const int M21-SND-TIME = 0;
enum {WAIT, ACTIVE, ADD, SEND};

// external transition function
void m21jext_transfn(State_vars& s,

const timeTypefe, const Messages^ x)

if (*x.get_port() == "forward") {
if (s.get_value("phase") == WAIT) {

s.set.value("phase", ACTIVE);
s.set-value("size", x.get_value());

} else
exit(l);

} else if (*x.get_port() == "ack") {
if (s.get_value("phase") == ADD) {

int global, local;
global = s.get_value("size");
local = x.get_value();
s.set.value("phase", SEND);
s.set_value("size", global + local);

} else
exit(l);

} else
exit(l);

}

// internal transition function
void m21 Jnt_transfn(State_vars& s)

if (s.get-value("phase") == ACTIVE)
s.set_value("phase", ADD);

else if (s.get_value("phase") == SEND)
s.set_value("phase", WAIT);

else
exit (4);

}

// output function
void m21jDutputfn(const State_vars& s,

Messages^ message)

{
int total;
if (s.get_value("phase") == ACTIVE) {

total = s.get_value("size");
message. set("req_add",

MAXCELLS - total);
} else if (s.get-value("phase") == SEND) {

total = s.get_value("size");
message.set("rout", total);

}
}

// time advance function
timeType m21_time_advancefn(const State_vars& s)

if(s.get_value("phase") == ACTIVE)
return M21-ATV-TIME;

if(s.get_value("phase") == SEND)
return M21.SND-TIME;

else
return infinity;

}

238

// routine for creating the model
void create_m21(Atomic_models& m21)

String* name = m21.get_name();

m21 .set-sigma(infinity);

m21.set-state_var(3,"phase","name","size");
m21.set^tate-value("phase", WAIT);
m21.set-state_value("name", name);
m21.set-state_value("size", 0);

m21.setjext_transfn(m21jext_transfn);
m21.setint_transfn(m21int-transfn);
m21.set-outputfn(m21_outputfn);
m21.set_time_advancefn(m21_time_advancefn);

}

4.2.2 Coupled Models

The coupled model RA, shown in Figure 4, consists of
three atomic models. The coupled model RA can be
represented in DEVS semantics as follows:

DN = <X, Y, M, EIC, EOC, IC, SELECT >
X = {?nq, Ird}
Y = {\ru, \drop}
M = {DA -to-2, M-2 - to - 1}

EIC = {{RA.rd, DA -to- 2.rd),
(RA.ack, M-2-to-Lack)}

EOC - {(DA -to- 2.drop, RA.drop),
(M-2 — to - l.reqjidd, RA.req.add),
(M-2 -to- l.ru, RA.ru]

IC = {(DA -to- 2.forward, MJ2 -to- 1.forward)}

The following codes show DEVSim++ implemen-
tations for the coupled model RA.

void create_D12(Atomic_models& D12);
void create_M21(Atomic_models& M21);
void create_GEN(Atomicjnodels& GEN);

void make_RA(Coupled_models& ra)

{
Atomic_models& dl2 =

*(new Atomic_models("D12"));
Atomic_models& m21 =

*(new Atomic_models("M21"));
create.D12(dl2);
create_M21(m21);

ra.addinports(2, "rd", "nq");

ra.add_outports(2, "ru", "drop");
ra.add_children(2, &dl2, &m21);
ra.add.coupling(&ra, "rd", &dl2, "rd");
ra.add_coupling(&ra, "ack", &m21, "ack");
ra.add-coupling(&m21, "ru", &ra, "ru");
ra.add_coupling(&dl2, "forward", &m21,

"forward");
ra.add_coupling(&dl2, "drop", &ra, "drop");
ra.add_coupling(&;m21,"req-add", &ra,

"req^dd");

5 Simulation Experiments and Results

5.1 Simulation Experiments

Two goals for simulation experiments are as follows:

1. to foresee the maximum lengths of queues at: IN-
BUF, CELLPOOL, RA and SWITCH. These give
us important data for cell waiting status during
transmission.

2. to estimate average waiting times of cells with
respect to QoS grade levels, which are waiting in
CELLPOOL.

For the experimentations, several cases of sub-
scribers having different average bandwidths are ap-
plied. Since the transmission speed through a RING
or a SWITCH is upto 155Mbps, if 4 RNs are connected
to one RING and 4 subscribers are included in a RN,
about 10 Mbps in average can be given to one sub-
scriber. Maximum queue lengths and average waiting
time are measured for various subscribers' bandwidths
ranging from 5Mbps to 100Mbps.

A summary of assumptions for simulation modeling
is as follows:

1. 90% of the traffic from a RING is routing
to the network through the SWITCH. And the
rest(10%) is forwarding back into the same RING,
which is destined to the subscribers connecting to
the same RING.

2. The traffic given at any port of the SWITCH
are divided and routed to the rest ports of the
SWITCH with equal probability.

3. Any RN has statistically the same portion of traffic
sent from or added into a RING. If a RING in-
cludes 4 RNs, 25% of the traffic sent from a RING
are dropped to be routed into destined subscriber.
The rest are forwarded into the next stage of a
RN. During forwarding, a new traffic from sub-
scribers is added on, which has the same proba-
bility as dropping.

239

For simulating cell loss rate of 10-12, more than
1012 cells should be generated. A couple of techniques,
such as importance sampling[8] or the generalized ex-
treme value theory[9], has been proposed to deal with
such a problem.

One way is that the value for numbers of cells, in-
stead of cell by cell, are generated and distributed with
given probability density functions. It is an easier way
to handle event messages as well as to implement sim-
ulator. Instead of counting how many events(" cells")
waiting in queues, we just consider the integer value
calculated in queues.

We employed a token passing based simulation
scheme. In the scheme, only one token traverses each
RING. Each token consists of a number of slots. In-
deed, a slot means a message. When a model receives
a token, it can remove/insert messages from/into the
token. But, the total number of slots in a token can-
not exceed a bound. We have already known that 44
slots exist in a frame(125/is) of an 155Mbps RING.
It is natural that a token is responded by n*44 slots.
For simplicity, we set n to 7. Consequently, a token is
composed of 44*7 slots.

The relationship between physical and virtual times
can be acquired easily. Let the RING turnaround
time in virtual time be %. Thus, one unit in virtual
time corresponds to 125*7/Tr \is. Now, we should
discuss about how we can design subscriber models
with given average and maximum bandwidths. Con-
sider that in a RING only one subscriber is active
and others are inactive. Since 155Mbps corresponds
to 44*7 cells during Tr, bandwidth of u corresponds to
44*7/155*w cells. For reducing simulation time com-
plexity, we assume that a subscriber generates cells in
a burst manner. Therefore, if a subscriber generates
a cells at an instance, bandwidth of w corresponds to
44*7/155*w/a times of burst output generation fre-
quency during Tr. Then, the intergeneration time ta
is defined as:

ta
N

*# * *■ 7 * 44 155 a

155 N*a
* .

L)

We set that Tr = 1 and a = 44 * 7. Consequently,

ta
155
u

Assume that the request rate of a subscriber has
a uniform distribution and the maximum and aver-
age bandwidths of the subscriber is u)max and uavg,
respectively. Then the subscriber can be modeled sta-
tistically as:

U[^,2*™ 155
uavg Wr,

where U[a, b] denotes a uniform random number
generator in [a,b].

5.2 Simulation Results

Table 1 shows maximum queue lengths for the given
subscriber's average bandwidths. Each number means
how many cells are waiting in the queue. In other
words, it gives the queue length which should be im-
plemented to avoid cell loss.

Table 1: Maximum Queue Length

wa„j(Mbps) inbuf cellpool head switch

5 308 655 30 280
10 308 3552 171 343
30 770 36334 282 347
50 7392 45584 263 345
100 27643 45815 319 340

Wma:c(Mbps) = 155.

The simulation results for average waiting times
with respect to QoS grade levels are shown in Table 2.
Note that the traffic with lower QoS grades can rarely
be served for.

Table 2: Average Waiting Time

u)avg(Mbps) QoSO QoSl QoS2 QoS3

5 1.96 1.72 1.66 1.61
10 20.79 7.05 4.56 2.97

30 oo oo 64.60 7.47

50 CO CO CO 33.64

100 OO CO oo 68.17

u. mM;(Mbps) = 155.

6 Conclusion

Performance modeling and analysis for the dis-
tributed access network system under development
has been discussed. The objectives of modeling are
not only to analyze dynamic traffics in a transient
state but also to make decisions of architectural pa-
rameters such as queue lengths. By consideration of
the distributed access network system architectural
characteristics, we employ Zeigler's DEVS formalism
and develop model within DEVSim++ environment.
As results of simulation experiments in DEVSim++,
we analysis the length of queues located in connec-
tion points. Also we analysis cell waiting times with
respect to QoS grade levels, which are for the cells
waiting for to be added on a network.

Such results help us to decide the maximum lengths
of queues to avoid cell loss. We can observe that a
queue in the SWITCH is rarely dependent of the sub-
scriber's bandwidth. But queues at the other locations
in the RING is much dependent of each subscriber's
bandwidth.

240

We also observe that the traffic with lower QoS
grade can rarely be served if a subscriber's bandwidth
is more than 30 Mbps.

For future work, we should collect more data for
various situations. From this we can optimize the de-
sign parameters for the system under development.

Acknowledgement

We give special thanks to Dr. Mun-Kee Choi and
Mr. Tae-Soo Chung for their guidence. We are also
very grateful of our colleagues for their helpful com-
ments.

References

[1] A. Chai and S. Ghosh, "Modeling and Dis-
tributed Simulation of a Broadband-ISDN Net-
work," IEEE Computer, September 1993.

[2] W. Stalling, ISDN and Broadband ISDN, Macmil-
lan Publishing Company, 1992.

[3] G. Pujolle and D. Gaiti, "Performance Man-
agement Issues in ATM Networks," Proceedings
of Information Networks and Data Communica-
tions, April 1994.

[4] V. S. Frost and B. Melamed, "Traffic Modeling
For Telecommunications Networks," IEEE Com-
munications Magazine, March 1994.

[5] E. Son, S. Hong, and K. Kim, "Network Architec-
ture for the Introductory Phase Broadband Sub-
scriber Access Network," Proceedings of Informa-
tion Networks and Data Communications, April
1994.

[6] B. P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation, Academic Press, 1984.

[7] T. Kim and S. Park, "The DEVS Formalism:
Hierarchical Modular Systems Specification in
C++," Proceedings of the 1992 European Sim-
ulation Multiconference, June 1992.

[8] Q. Wang and V. S. Frost, "Efficient Estimation
of Cell Blocking Probability for ATM Systems,"
IEEE Trans, on Networking, April 1993.

[9] F. B. Bernabel, "ATM System Buffer Design Un-
der Very Low Cell Loss Probability Constraints,"
Proceedings of IEEE Conf on Computer Com-
munication, INFOCOM'91, April 1991.

241

Session 2E:

DEVS Workshop Working Session

Session 2F:

Applications I

SmartDb: An Object-Oriented Simulation Framework for
Intelligent Vehicles and Highway Systems *

Aleks Göllü, Akash Deshpande, Praveen Hingorani, and Pravin Varaiya
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

Abstract

SmartDB is a framework for the uniform spec-
ification, simulation, optimization, evaluation, and
implementation of Intelligent Vehicle Highway Sys-
tem (IVHS) alternatives. The salient concepts in
SmartDB are: 1) layered control architecture, 2) co-
ordination of distributed control agents through com-
munication, 3) combined discrete and continuous dy-
namical systems, known as hybrid systems, and their
control and verification, 4) object oriented simulation,
and 5) distributed and open architecture. This pa-
per summarizes the first three concepts and describes
in detail the simulation constructs and the distributed
and open architecture of SmartDB.

1 Introduction

Highway congestion is imposing an intolerable bur-
den on many urban residents. It is estimated that lost
productivity due to traffic congestion costs $100 bil-
lion each year in the United States. Alongside conges-
tion, safety continues to be a prime concern. In 1991,
41,000 persons died in traffic accidents, and more than
5 million persons were injured.

•Research supported in part by the National Science Foun-
dation and the California PATH program in cooperation with
the State of California and US DOT. The contents of this re-
port reflects the views of the authors who are responsible for
the facts and accuracy of the data presented herein

ISBN 0-8186-6440-1. Copyright ©1994 IEEE. All
rights reserved.
Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for
advertising or promotional purposes or for creating
new collective works for resale or redistribution must
be obtained from the IEEE. For information on ob-
taining permission, send a blank email message to
info.pub.permission@ieee.org.
By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Intelligent Vehicles and Highway Systems (IVHS) is
a comprehensive program initiated by the U.S. Gov-
ernment under the Intermodal Surface Transporta-
tion Efficiency Act of 1991 to improve safety, reduce
congestion, enhance mobility, minimize environmental
impact, save energy, and promote economic productiv-
ity in the transportation system. The IVHS program
combines several modern technologies, including in-
formation processing, communications, control, and
electronics. IVHS has the following sub-programs.

Advanced Traffic Management Systems
ATMS provides subsystem integration of traffic
management and control systems, and performs
real-time traffic control to respond to dynamic
traffic conditions.

Advanced Traveler Information Systems
ATIS acquires and analyzes information about
transportation network dynamically, and commu-
nicates advisory information to travelers.

Advanced Vehicle Control Systems
AVCS uses computers, communications, and con-
trol systems in the vehicles and the highways to
enhance vehicle control.

Commercial Vehicle Operations
CVO improves the safety and efficiency of com-
mercial vehicle and fleet operations.

Advanced Public Transportation Systems
APTS integrate public transportation with
vehicle-highway systems by using component
technologies from other functional areas.

Apart from the U.S., there is substantial IVHS ac-
tivity in Europe under the PROMETHEUS1 and the
DRIVE2 projects, and in Japan under the RACS3,
AMTICS4 and VICS5 projects.

1 Program for European Traffic with Highest Efficiency and
Unprecedented Safety

2 Dedicated Road Infrastructure for Vehicle Safety in Europe
3 Road/Automobile Communication System
4 Advanced Mobile Traffic Information and Communication

System
5 Vehicle Information and Communication System

0-8186-6440-1/94 $04.00 © 1994 IEEE

244

Modeling and simulation have been identified as im-
portant steps in realizing these transportation initia-
tives. The IVHS strategic plan [4] requires modeling
and simulation in the following areas: urban traffic
network models, traffic system models, vehicle-road
models, driver-vehicle models, traffic models with dy-
namic traffic assignment, driving scenario simulation,
and advanced vehicle control systems (AVCS) archi-
tecture simulation. A framework in which IVHS al-
ternatives can be specified, simulated, and evaluated
uniformly is crucial for objective comparison of the
proposed alternatives. Such a framework must also
aid in the implementation of the selected alternative.

SmartDB is a framework for uniform specification,
simulation, optimization, evaluation, and implementa-
tion of IVHS alternatives. SmartDB is targeted at the
Advanced Vehicle Control Systems (AVCS) functions.
At the same time, it also addresses the automation re-
quirements of the other functional areas. In particular,
SmartDB meets the modeling and simulation needs of
urban traffic network models, traffic system models,
vehicle-road models, traffic models with dynamic traf-
fic assignment, and AVCS architecture simulation.

The concepts for SmartDB have emerged from the
SmartPath project at the California PATH Labora-
tory at the University of California, Berkeley [3].
SmartDB is an object-oriented distributed processing
simulation environment that can be scaled to meet the
performance requirements of large-scale applications.
SmartDB is an open system that can interface with
other simulation environments. SmartDB decomposes
the IVHS modeling and simulation problem into the
following stages:

1. parametrized modeling of the physical system and
the control agents in an object oriented semantic
data model,

2. simulation of the discrete and continuous behav-
ior of all the objects in the model, and optimiza-
tion of the model parameters,

3. evaluation of system performance according to
specified criteria, and

4. model validation and implementation of selected
control strategies for deployment.

These stages are shown in Figure 1.

1.1 Semantic Data Model

The SmartDB semantic data model captures the
relevant aspects of the physical world in a logical
model. The logical model consists of software objects
that represent physical components. For example, it
models vehicles, highway segments, engines, brakes,

Semantic Data Model

I
Simulation and Optimization

1
Performance Evaluation

1
Validation and Deployment

Figure 1: SmartDB Stages.

sensors, and other physical'system components as ob-
jects. The objects in the logical model have semantic
content corresponding to their characteristics, inter-
relationships, constraints, and behaviors.

J..2 Simulation and Optimization

A simulation run occurs when all objects in a given
highway and traffic configuration execute their state
evolution behavior. Since object characteristics are
parametrized, the model parameters can be tuned dur-
ing a simulation run based on specified optimization
criteria. Such a tuning leads to an on-line optimiza-
tion of the control strategy.

1.3 Evaluation

The state evolution of the objects during a sim-
ulation run can be observed using specialized mon-
itor objects. The monitor objects generate perfor-
mance results based on specified evaluation criteria.
These results are used for an objective evaluation and
comparison of alternative control strategies for IVHS.
Once a control architecture is selected, SmartDB can
be used for its rigorous simulation, optimization, and
implementation.

1.4 Validation and Deployment

SmartDB's object-oriented approach simplifies
model validation and modular deployment. Models
for physical objects such as sensors and communica-
tion equipment can be validated by replacing soft-
ware objects in the logical model by the corresponding
physical components. SmartDB behavior in the two
cases—using the software objects and using the phys-
ical components—can then be compared to validate
the logical model and the controller design.

245

Similarly, SmartDB's object-oriented approach
simplifies modular deployment of the selected control
architecture. Once the selected control architecture is
simulated and optimized, each software control object
that models the behavior of a specific control agent in
the physical world can be implemented independently
on physical components for deployment.

2 Concepts and Functions

2.1 SmartDB Concepts

The salient concepts in SmartDB are given below:

1. layered control architecture,

2. coordination of distributed control agents,

3. combined discrete and continuous dynamical sys-
tems, known as hybrid [8] systems, and their con-
trol and verification,

4. object-oriented simulation, and

5. distributed and open architecture.

2.1.1 Layered Control Architecture

In the layered control architecture proposed by
Varaiya and Shladover [7, 6], vehicles perform sim-
ple maneuvers such as merging into platoons, splitting
from platoons, following the leader, changing lanes,
and entry and exit. A vehicle accomplishes com-
plex end-to-end trajectories by performing a sequence
of such simple maneuvers. Efficient transportation
throughput is achieved by tuning traffic parameters
such as platoon size and vehicle speed. The control
strategies for such behavior are organized into the fol-
lowing layers: regulation layer, coordination layer, link
layer, and network layer. These layers are shown in
Figure 2.

Given a maneuver to perform, the vehicle follows
a control strategy that regulates its dynamical behav-
ior to a trajectory permitted by that maneuver. Such
control strategies constitute the regulation layer. The
maneuver to be followed by a vehicle at a given time is
determined by coordinating with other vehicles in the
neighborhood. The control strategies used for such
coordination constitute the coordination layer. The
control strategies adapt their behavior based on infor-
mation about highway traffic conditions. The traffic
conditions on highway segments are monitored and
controlled by road-side control elements. These are
collectively known as the link layer. Finally, informa-
tion from individual highway segments is aggregated,

Roadside
system

Vehicle
system

Network

routing table w n traffic info.

link

path, speed"
pltn size ■*"

i L flow, density,
\ \ ""•'incidents

planning &
coordination Y

coordination
messages

order _fc.
maneuver

^ maneuver
complete

regulation

control _»,
signal

i .4-sensor
signals

vehicle
dyanmics

Neighbor Leader Neighbor

Figure 2: Layered Control Architecture.

and end-to-end routing and congestion control is ac-
complished in the network layer.

SmartDB allows the specification of this and other
layered control architectures.

2.1.2 Coordination of Distributed Control
Agents

The layered scheme described above yields a dis-
tributed control strategy since each vehicle and each
highway segment is responsible for its own control.
At the same time, effective coordination of these dis-
tributed control agents is essential for efficiency and
safety. The agents coordinate by following simple
heuristic rules. For example, when a vehicle senses
another vehicle ahead of it, it requests a merge with
it to form a platoon. Forming a platoon increases the
efficiency of the highway. However, if the leading ve-
hicle is already a part of a large platoon, it may refuse
the merge request since inordinately large platoons
are potentially unsafe. Such coordination strategies
are modeled using a Discrete Event System (DES) ap-
proach. The control agents communicate the discrete
events to each other based on coordination protocols.
Thus, communication mechanisms are essential both
for gathering sensory information and for executing
these coordination protocols.

SmartDB allows the specification of sensors, trans-
mitters and receivers, and of communication proto-
cols.

246

2.1.3 Verification and Control of Hybrid Sys-
tems

Whereas the coordination strategies deal with discrete
events, regulation strategies deal with continuous evo-
lution. For example, if a merge maneuver is to be ex-
ecuted, then the regulation layer controller must first
accelerate the vehicle, close the distance between it-
self and the vehicle ahead of it, and finally decelerate
and follow at the same speed while maintaining a safe
distance in between. It is clear that acceleration and
braking, speed and distance are continuous parame-
ters that evolve in continuous time. Thus, the dis-
crete coordination event corresponding to the merge
command, and the continuous regulation law corre-
sponding to the merge trajectory must be dealt with
together. A hybrid system approach is used to model
the combined discrete and continuous behavior.

SmartDB allows the specification of both discrete
and continuous behavior.

2.1.4 Object-Oriented Simulation

SmartDB is an object-oriented [1, 2] software frame-
work [5]. The object oriented approach is used to con-
struct a logical model of the physical components and
their control agents. The objects in the logical model
have semantic content corresponding to their charac-
teristics, inter-relationships, constraints, and behav-
iors. The object-oriented approach simplifies model
validation and system implementation for deployment.
The object-oriented model is described in section 3.1.

2.1.5 Distributed and Open Architecture

SmartDB is a distributed processing simulation envi-
ronment that can be scaled to meet the performance
requirements of large-scale applications. SmartDB is
an open system that can interface with other simu-
lation environments. The system architecture is de-
scribed in section 3.3.

2.2 SmartDB Functional Categories

SmartDB is designed to perform the following func-
tions:

Configuration Management—
the ability to specify a highway network configu-
ration, the traffic patterns on it, and the vehicle
and traffic control strategies;

Fault Management—
the ability to detect faults and significant events
such as accidents and congestion, and to respond
to them with graceful degradation of highway per-
formance and with automatic fault recovery;

Performance Management—
the ability to track, optimize, and fine-tune the
transportation system performance;

Planning Management—
the ability to specify and simulate alternative
highway and traffic configurations and control
strategies for the purpose of planning;

Resource Management—
the ability to provide an inventory of all highway
and vehicle resources and to schedule them for
preventive maintenance;

Accounting Management—
the ability to specify tolls and taxes, and to ac-
count for highway usage;

System Management—
the ability to manage the resources of the
SmartDB system for multi-user and multi-
processor operation.

3 SmartDB Implementation

3.1 Object Architecture

All SmartDB objects consist of state, state evolu-
tion, interface, input, and output components. This
is shown in Figure 3. An object's external interface is
defined by its input and output specifications. So long
as this interface is met, the state and state evolution
of an object can be reimplemented.

Outputs •

(^State^)

State Evolution

Interface - Inputs

Figure 3: SmartDB Object

SmartDB objects are arranged according to a set of
connection and containment rules to create aggregate
objects. The aggregate objects are also SmartDB ob-
jects except that their state and state evolution com-
ponents are implemented by other objects.

It is envisioned that highway automation will be
achieved by adding sensors, transmitters, receivers,
and control modules to the highway and the vehicles.

247

To this end SmartDB provides a particular aggregate
object called "Smart Object" described in Figure 4.

SmartObject
Dynamic
State

WfWiW

Static
State

Controlen Monitors Sensors Receivers Transmitters

Figure 4: Uniform Representation of IVHS Objects.

Smart objects enable the user to create control and
communication hierarchies in a structured manner and
consist of the following components:

• static state such as lane width, and vehicle weight,
that does not change during a simulation run

• dynamic state such as vehicle speed and lane den-
sity,

• state evolution behavior,

• control objects such as regulation objects that de-
termine speed,

• monitor objects for observing state evolution,
e.g., a gas tank agent that monitors the amount
of carbon-monoxide produced,

• sensors for providing information about the envi-
ronment, e.g., distance to vehicle in front,

• transmitters and receivers for communicating
with neighboring objects,

• inputs and outputs.

3.2 SmartDB Functions

The current version of the SmartDB implemen-
tation supports the configuration, fault, and perfor-
mance management functions of IVHS. We now de-
scribe how the object data model implements these
categories.

3.2.1 Configuration Management

SmartDB provides a set of highway objects that can
be interrelated according to a set of connection and
containment rules. Any possible highway configu-
ration can be created using these objects and their
interrelationships. The transportation system is di-
vided into zones. Each zone contains multiple highway

segments interconnected using junctions. The high-
way segments are terminated using traffic sources and
sinks. The highway segments consist of sections, en-
tries, and exits. Junctions and sections are divided
into lanes. These building blocks and the graphical
editor used to create highway configurations are shown
in Figure 5.

*c >

l"|Entry Section |-H-

-l'-| ExItSocllon [»•■

-»»[In Boundary |-|w-

"l»»|Oiit Bondnaryj-»-

a Sink

•H Lane h\

^— H Lane \ ^

H Lane h""*^

-It- Exit Section --H—IH Section -l>—IM Entry Section M»

Zone
-i

Zone
* 1

Figure 5: SmartDB Graphical Editor for Highway
Building Blocks

Incoming traffic to the automated highway is gen-
erated by traffic generators in the source and entry
objects. Traffic leaving the automated highway is ab-
sorbed by traffic absorbers in the exits and sinks. Traf-
fic generator and absorber objects are parametrized to
create different traffic patterns. When generators and
absorbers are replaced by gateway objects SmartDB
can interface with packages such as NetSim and Inte-
gration.

Vehicle and traffic control strategies are specified
by configuring the control, communication, and sensor
components of the relevant smart objects.

3.2.2 Fault Management

The simulation framework provides fault detection as
well as fault creation mechanisms.

248

If an object fails to remain within system con-
straints corresponding fault events are created. Sys-
tem constraints correspond to states the system should
not enter. For example a vehicle has to stay within
highway boundaries, similarly two vehicles can not
occupy the same space at the same time. SmartDB
creates "accident" events when these constraints are
violated. Other constraints such as maximum accel-
eration or lane change direction in a section can also
be specified by the user. Monitor objects are used to
detect the violation of constraints. For example a lane
change monitor can be used to raise a fault if a vehicle
performs an illegal lane change.

Faults such as communication failures or accidents
can be created to ensure that the control objects can
respond to them with graceful performance degrada-
tion and automatic fault recovery.

3.2.3 Performance Management

Monitor objects are used to collect statistical infor-
mation about the system and to create performance
reports. Monitor objects are like any other SmartDB
objects; they observe the system evolution through
their inputs, process this data through their state evo-
lution, and output the desired statistics.

3.3 Process Architecture

In SmartDB, object state evolution is driven by
passage of time or by occurrence of events. Events
are generated by SmartDB objects as output messages
and are communicated to the addressed objects as in-
put messages. In this section we describe how the
SmartDB architecture guarantees the timely evolution
of each object and the timely communication of events
to objects.

Time passage in SmartDB is represented by a global
clock, which defines the smallest time step of the sys-
tem. All evolution takes place at discrete advance-
ments of this clock.

Each time driven object specifies the time step for
its state evolution as a multiple of the global clock
step. Rapidly evolving objects such as engines change
their state more frequently, while more passive objects
such as a roadside link controllers change their state
at larger time steps.

Event driven objects exercise their behavior only
when events are delivered to them. Coordination ob-
jects in vehicles, for example, respond to "Merge Re-
quest" s coming from other vehicles; the network layer
changes the routing table upon an "accident".

Process layers are used to execute the simulation of
collections of objects that evolve at same time steps.
The process layers themselves can be time or event

driven. Process layers are controlled by a "Process
Coordinator". The process coordinator schedules the
execution of time driven layers based on their time
step and schedules the execution of event driven pro-
cess layers if any events are raised against them.

A process layer can do the following:
• simulate the time driven evolution of all instances

of an object type,

• for all instances of an object type with an out-
standing event, deliver the event and simulate the
event driven evolution.

If event driven objects are put in a time driven pro-
cess layer, event delivery for these objects takes place
only when the corresponding process layer is executed.

In a simulation run the process coordinator exe-
cutes the process layers according to their time step,
which in turn execute the simulation of the objects
they contain.

The process architecture that implements the lay-
ered architecture proposed by Varaiya [7] is shown in
Figure 6.

Process
Coordinator

Physical Model

W Regulation Layer 1

«•{Coordination Layer)-

< Link Layer

—W Network Layer r*~

Figure 6: SmartDB Process Architecture.

The physical layer is time driven and simulates the
time driven engine objects that generate the vehicle
displacements.

The regulation layer is time driven. It contains
event driven regulation supervisors and time driven
maneuver objects. The supervisors switch between
maneuvers based on incoming messages from the co-
ordination layer; the maneuvers control the behavior
of the gas pedal and the steering wheel.

The coordination layer is time driven. It contains
event driven coordination objects. Coordination ob-
jects in different vehicles exchange messages to deter-
mine the maneuver a vehicle should execute. These
decisions are communicated to regulation supervisors
through messages.

The link layer is time driven and contains time
driven link objects that set traffic parameters such as
target speed and average platoon size in highway sec-
tions.

The network layer is event driven. It is executed

249

only if an accident occurs. Upon an accident it recon-
figures the routing tables.

The simulation objects are placed in an object-
oriented database (OODB). The database provides a
natural mechanism to save and store the state of a
simulation.

3.4 Open and Distributed Architecture

SmartDB has an open architecture. SmartDB al-
lows the user to create the desired simulation granu-
larity by configuring a process layer architecture. For
each process layer the user specifies the object types
for time and/or event driven simulation. The OODB
makes the simulation state visible to any user. It has
a well-defined interface, and provides a default mech-
anism for any other simulation package to interface
with SmartDB.

SmartDB supports distributed simulation. Zones
serve as the unit of distribution: different zones can
be distributed to different processors; they have their
own database and their own clock. Since a vehicle
can communicate with and sense other vehicles only
in its neighborhood, communication between the dis-
tributed processors is restricted to objects in adjacent
highway segments. Thus, locality of reference enables
efficient distributed processing. Distributed simula-
tion is depicted in figure 7. The boundary object be-
tween the last section of the previous zone and the the
first section of the next zone coordinates communica-
tion between the processors, ensures synchronization
of simulation clocks on different processors, and con-
trols object migration between databases.

Zone 2
f A

Section H * Section Boundary Section » Section 1

V)

tesi^ """' "*'"' [DB2|

Figure 7: Distributed Simulation

4 Summary

SmartDB is a framework for uniform specification,
simulation, optimization, evaluation, and implemen-
tation of IVHS alternatives.

SmartDB reduces system specification to mixing
and matching of software components. These com-
ponents are used to create highways, traffic patterns,
and control and communication hierarchies.

A simulation run occurs when all objects in a given
highway and traffic configuration execute their state
evolution behavior.

The object behaviors are parametrized, and the
performance of the transportation system being simu-
lated can be optimized by adjusting these parameters
based on specified optimization criteria.

The system performance can be observed and eval-
uated using monitor agents that collect statistical in-
formation about the system and generate performance
reports. Different control alternatives are compared
by simulating them with identical highway configu-
rations and traffic patterns. The performance reports
generated by the monitor agents in the respective sim-
ulations are used for objective comparison and evalu-
ation of the alternatives.

Once a control architecture is selected, the indi-
vidual software components can be implemented as
physical hardware components for deployment .

References

[1] G. Booch. Object Oriented Design with Applica-
tions. Benjamin/Cummings, Redwood City, CA.
1991.

[2] P. Coad and E. Yourdon. Object-Oriented Analy-
sis. Yourdon Press, Englewood Cliffs, NJ. 1991.

[3] F. Eskafi and P. Varaiya. Smartpath: Automatic
Highway Simulator. PATH Technical Memoran-
dum, UC Berkeley. June 1992.

[4] IVHS America. Strategic Plan for Intelligent
Vehicle-Highway Systems in the United States.
Report NO. IVHS-AMER-92-3. 20 May 1992.

[5] R. Jonson. How to Develop Frameworks. OOP-
SLA Tutorial Notes. ACM Press. 1993

[6] S. Shladover et. al. Automated Vehicle Con-
trol Developments in the PATH program. IEEE
Trans. Vehicular Tech. Vol. 40. pp. 114-130. Feb.
1991.

[7] P. Varaiya. Smart Cars on Smart Roads: Prob-
lems of Control. IEEE Trans. Automatic Control
Vol. 38, No 2. Feb. 1993.

[8] A. Göllü, Pravin Varaiya; Hybrid Dynamical Sys-
tems; In Proceedings of the 28th Conference on
Decision and Control, pages 2708 2712, Tampa
FL, December 1989.

250

Modeling the Interactive mode of SmartPath

Farokh H. Eskafi Delnaz Khorramabadi

EECS Department and PATH/ITS
University of California at Berkeley

Berkeley, CA. 94720

EECS Department and PATH/ITS
University of California at Berkeley

Berkeley, CA. 94720 *

Abstract
SmartPath is a highway system simulator. The

program can be used to test, simulate, and evaluate
the performance of the designs of different modules
and instrumentations like engine models, sensors, and
communications. The package consists of two sepa-
rate modules: simulation and animation. The simula-
tion runs on Sun Sparc or Silicon Graphics worksta-
tions. The animation program, runs on Silicon Graph-
ics workstations, and it produces a three-dimensional,
color animation of AHS traffic. SmartPath could be
used in two modes. In the batch mode the simula-
tor is run first to generate data which could then be
viewed using the animator. In the interactive mode,
the simulator and animator run simultaneously allow-
ing the user to control vehicle maneuvers in real time.
This feature allows the system to mix 'manual' and
'automated' vehicles and to test the robustness of the
control algorithms.

In this paper, we describe the modeling of basic
elements of the interactive mode of SmartPath and the
interfaces used to allow interactive control of vehicles.

'Research supported in part by the California Department
of Transportation, through the PATH program, and the Army
Research Office under contract DAAH04-94-G-0026. The con-
tents do not necessarily reflect the official views of the State of
California.

ISBN 0-8186-6440-1. Copyright ©1994 IEEE. All
rights reserved.
Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for
advertising or promotional purposes or for creating
new collective works for resale or redistribution must
be obtained from the IEEE. For information on ob-
taining permission, send a blank email message to
info.pub.permission@ieee.org.
By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

1 Introduction
SmartPath is a highway system simulator. It is de-

signed to provide a framework for simulation and eval-
uation of Intelligent Vehicle Highway System (IVHS)
alternatives. SmartPath can simulate automated,
manual, or mixed mode traffic; it also accommodates
different control, communication, and computing ar-
chitectures.

SmartPath is a micro-simulator, i.e. the functional
elements and the behavior of each vehicle and highway
with respect to normal and degraded mode of opera-
tions are individually modeled. Its evaluation reports
are targeted to microscopic as well as macroscopic per-
formance analysis.

At the macroscopic level SmartPath can be used
to understand the steady-state behavior of the high-
way system, i.e., how the highway system would per-
form under various control policies in terms of high-
way capacity, traffic flow, and other performance mea-
sures of interest to transportation system planners and
engineers.1

At the microscopic level it can be used to analyze
the transient behavior of the highway system and to
test, simulate, and evaluate the performance of differ-
ent modules inside a car like sensors, vehicle engines,
and communication devices. The effects of high level
control policies on vehicles can be observed by tracing
the trajectory of a vehicle during a simulation run.

SmartPath consists of two separate modules: sim-
ulation and animation. The SmartPath animator is a
tool to view and examine the simulated data of the
AHS in the most natural way. The simulation data
provides information about the position, speed, and
maneuvers of each vehicle in the AHS at every unit
of simulation time. In addition, the user can select a
vehicle and view the interaction between the vehicle
and its neighboring vehicles. The user can control the

1 Examples of how SmartPath can be so used are given in [1]
and [2].

251
0-8186-6440-1/94 $04.00 © 1994 IEEE

motion of the helicopter, rewind the animation, and
adjust its speed, the motion of the helicopter can be
restricted to the highway or forced to follow a specific
car.

SmartPath can be used in two modes: batch, and
interactive. In the batch mode, the simulator is run
first to generate data which could then be viewed using
the animator. In the interactive mode, the animator is
synchronized with the simulation and can be used to
send commands to the vehicles being simulated. This
feature allows the user to control the vehicles in real
time. In either mode, the user is provided with a view
about neighboring traffic. This view may be varied to
try to mimic different situations, for example, the view
may be what is visible form the windshield. Figure 4
shows a frame of animation.

In this paper we describe the interactive mode of
SmartPath. Section 2 discusses the multi-layer con-
trol hierarchy used to model the Automated Highway
System (AHS). In this section we also briefly describe
the building blocks of SmartPath. In section 3, we
explain the interactive mode of SmartPath.

2 Elements of an Automated Highway
System

A major objective of the AHS is to increase high-
way capacity and safety. This objective is achieved in
part by organizing the traffic in platoons, which con-
sist of one or more cars traveling together as a group.
The first vehicle in the platoon is called a leader; the
others are followers; a one-vehicle platoon is called a
free agent. At every moment of time, a vehicle under
automatic control is either a leader, a follower, or a
free agent.

The control of a vehicle in AHS is carried out by
the four-layer control hierarchy displayed in figure 1,
which was first proposed by Varaiya and Shladover in
[3].

We now discuss each layer starting from the top.
The network layer controller assigns a path to each

vehicle entering the system. This assignment could
be generated from a static routing technique which
uses distances to find the shortest path from origin
to destination, or a dynamic routing scheme using the
measured and expected flow of the traffic and informa-
tion about incidents to calculate the expected travel
time for the vehicle. In the first case, the path can
be calculated by a navigational device installed in the
vehicle; in the second case, the network controller re-
quires global information with regard to the highway
system and has to be operated from a traffic manage-
ment control center.

Roadside
system

Vehicle
system

Network

routing table n traffic info.

link

path, speed"
pltn size "*"

A flow, density,
i r 1 "'•'incidents

planning &
coordination T

coordination
messages

order _^.
maneuver

i

^ maneuver
complete

regulation

control _fc.
signal

i ^_ sensor
signals

vehicle
dyanmics

Neighbor Leader Neighbor

Figure 1: Control Hierarchy for Highway System

The link layer controllers are responsible for the
smooth flow of traffic in each lane and the distribu-
tion of flow among lanes. It recommends a course of
action to the vehicle, i.e., change-right, change-left, or
stay-in-own-lane. The link layer controllers are on the
road side, but their scope of operation is limited to a
section of highway. In the present traffic condition, it
is the human driver who decides which lane is more
suitable. In either case, the link layer recommenda-
tions are explicit functions of capacity of the highway,
flow of traffic, and destination of the vehicle.

The coordination and planning layer controller of
a vehicle determines which of the three maneuvers -
merge, split, and change lane- to attempt at any time.
In the merge maneuver, two platoons join to form one
platoon; in split, one platoon separates at a designated
position to form two platoons, and in change lane, a
free agent changes lane.

In order to execute a maneuver safely, the coordina-
tion layer controller initiates a structured exchange of
messages—a communication protocol—with the neigh-
boring vehicles. The message passing can be implicit
(looking for a gap to move-in) or explicit (request-
ing a change-lane maneuver by transmitting a packet
with the radio wave). At the end of the exchange, the
coordination layer secures agreement from the neigh-
boring vehicles for safe execution of the maneuver and
instructs the regulation layer to execute the maneuver.

The regulation layer controller implements the re-
quested maneuver. The control action is typically de-

252

composed into longitudinal control which determines
acceleration and braking, and lateral control which de-
termines the steering action needed to maintain the
vehicle in its lane or move the vehicle to an adjacent
lane.

The vehicle dynamics layer in figure 1 receives
steering, throttle and brake actuator commands from
the regulation layer and returns information such as
vehicle's speed, acceleration, engine state, etc., which
are needed to implement the control actions men-
tioned above.

To summarize the highway control hierarchy: the
network layer assigns a route, the link layer provides
en route guidance, the coordination layer selects which
maneuver to execute in order to follow the path as-
signed by the link layer, and the regulation layer im-
plements the maneuver selected by the coordination
layer.

SmartPath implements the control hierarchy de-
scribed above by modeling two basic elements: vehicle
and highway.

Vehicle A vehicle is composed of five independent
and communicating modules: sensors, communica-
tions, regulation, maneuvers, and supervisor. The
sensors module provides information about a vehicle's
surrounding environment; the communications mod-
ule provides the vehicle with facilities for transmitting
to, and receiving from, neighboring vehicles and road-
side link layer controllers; the regulation module im-
plements the feedback laws; and the maneuvers and
supervisor modules together implement the coordina-
tion layer.

Highway In SmartPath, a highway is defined by its
length, maximum number of lanes, number of auto-
mated, manual, and transition lanes (if any), num-
ber of exits and entrances and the locations of exits
and entrances. The physical topology of the highway
(width of the lane, curvature of the road, etc.) is part
of the specification of a highway and must be specified
thoroughly.

A highway is divided into smaller structures called
sections. Each section consists of a certain number of
lanes. A lane has a length, width, curvature, type
(which can be automated, transition, manual, en-
trance, or exit), and some flags which correspond to
the special features that might exist in the lane, e.g.
lane is blocked, or it doesn't have a right or left adja-
cent lane.

For a multi-highway simulation, a junction struc-
ture is used to define the interconnections among the

lanes of connecting highways.
The internal architecture of SmartPath, its time

and event driven simulation modes, and how evolution
of individual processes is synchronized, is described in
[4]-

3 SmartPath Interactive Mode
Every vehicle in SmartPath operates in the "auto-

mated" , "intelligent manual", or "manual" mode. By
using the SmartPath animation interface, one can se-
lect a vehicle and change its mode of operation from
one to another. The default mode is automated.

Automated (Au) In this mode, the vehicle has the
ability to sense its neighboring vehicles, communicate
with the roadside to receive the routing information,
coordinate with other vehicles within its sensor range
to perform maneuvers, and become a member of a
platoon (as leader or follower). For a complete de-
scription of an automated vehicle, see [4, 5].

Intelligent manual (IM) In this mode, the vehi-
cle operates like an automated vehicle, i.e., it commu-
nicates with other vehicles to coordinate the maneu-
vers, and it can become part of a platoon. However,
it doesn't communicate with the linklayer controller,
and the functionality of the link layer is transferred
to the user, who can issue recommendations using the
interface panel shown in figure 2.

Change Lane

Target Speed

lp Automatic]

Figure 2: Control Panel for IM Mode

When a vehicle operates in IM mode, the user is

253

allowed to make the selected vehicle change lane to
right or left, one lane at a time, by pressing the + or
- buttons. The selected vehicle then tries to perform
the maneuver. It is possible that the vehicle is in the
midst of a maneuver, when the user sends a change-
lane request to the vehicle; in this case, the coordina-
tion layer of the vehicle will abort the maneuver it is
involved in and, then, initiates the change lane maneu-
ver. The user is also allowed to change the optimum
velocity of the selected vehicle using the control panel.
Speed changes are not instantaneous and occur under
the control of the regulation layer feedback laws [6].
Also, note that a follower will not achieve its assigned
optimum speed until it becomes a leader. IM mode
allows testing of the different maneuvers and control
laws proposed for an automated vehicle.

Manual (Ma) In the manual mode, the user con-
trols all the functionalities of a vehicle. The anima-
tion module, as in the IM mode, provides the interface.
With this interface, the user provides acceleration or
deceleration and the steering angle for the vehicle, and
effectively "drives" the car. The regulation layer of the
vehicle calculates the longitudinal and lateral position
and speed of the vehicle accordingly. With this mode,
one can build different scenarios like a stopped car or
an accident and observe their effects on the simulated
traffic. Also, one can devise and test routines for the
interaction between the automated and manual cars.

The three modes of operation described above are
completely decoupled from each other; so, every mode
has its own supervisor and a set of supporting modules
that it requires. For example, the Ma mode doesn't
need communication, sensors, and maneuver modules,
but it needs the regulation layer for calculation of the
car trajectories, IM mode doesn't need the car-to-link
communication facility, but it has all other modules,
and the Au mode has all the modules. Since it is
possible to switch from one mode to another during
the simulation (by selecting a vehicle and changing its
mode through animation interface), we need to have a
mechanism for switching from an old mode to a new
one which we explain next.

Sma.rtPa.th creates a car in the highway by initial-
izing the supervisor module of the operational mode.
A generalized state diagram for a supervisor module
is shown in figure 3.

After initialization, the supervisor module activates
the other modules which it needs. In the second state,
it operates as a supervisor of the vehicle's maneuvers
and activities. When the user decides to change the
mode of the car, the animation module sets an event

else

/ supervise \ \
\ maneuvers/_ y

event= switch-mode

Figure 3: Supervisor's State Diagram

for the supervisor requesting the mode switching. This
event causes the supervisor to move to its third state
which is to prepare the vehicle for the next mode. The
complexity of this state depends on the new mode as
well as the current mode. Ther are no preparation
tasks for mode switching from Au mode to IM mode
and from Ma to either IM or Au, since the Au and
IM modes have the same range of operation, and they
both cover the Ma range. Switching from Au or IM
mode to the Ma mode is fairly complex, since the Ma
mode doesn't support platooning. Therefore, before
the initialization of Ma supervisor, the vehicle has to
become a free agent a one-car platoon2. Also, the
supervisor has to process all its pending messages and
send an appropriate reply to each one. If the free
agent maneuver is not successful, there is a fault in
the system and the simulation stops.

After the current supervisor prepares the vehicle for
mode switching, it deactivates its supporting modules,
initializes the new supervisor, and terminates itself.

4 Conclusion
SmartPath at its present state is a simulation pack-

age for an AHS, and is directed toward the control hi-
erarchy discribed in section 2. The interactive mode
of SmartPath provides the ability to select a vehicle,
change its mode of operation, and if desired, "drive"

2 Free agent maneuver is described in [5]

254

Figure 4: A Frame of Animation

255

the car. This produces much desired flexibility within
the simulation, and allows the user to study and ex-
periment with various control laws and vehicle models.

In its future revisions, SmartPath will be extended
to include different control strategies which may be
proposed for AHS.

Acknowledgement
We are grateful to Prof. Pravin Varaiya, Datta

godbole, and John Lygeros for their comments and
insights which improved the design of the interactive
mode.

References
[1] B.S.Y. Rao and P. Varaiya, "Roadside intelligence

for flow control in an IVHS," Transportation Re-
search Journal, part C, vol. 2, no. 1, pp. 49-72,
1994.

[2] B.S.Y. Rao, P. Varaiya, and F. Eskafi, "Investiga-
tions into achievable capacity and stream stability
with coordinated intelligent vehicles." Transporta-
tion Research Board, 1993.

[3] P. Varaiya and S. Shladover, "Sketch of an IVHS
systems architecture," in Proceedings of the Vehi-
cle Navigation and Information Systems Confer-
ence, (Dearborn, MI), pp. 909-922, October 20-23
1991.

[4] F. Eskafi, D. Khorramabadi, and P. Varaiya,
"SmartPath: an Automated Highway System Sim-
ulator," tech. rep., PATH Technical Note UCB-
ITS-94-4, Institute of Transportation Studies, Uni-
versity of California, Berkeley, CA 94720, 1994.

[5] A. Hsu, S. Sachs, F. Eskafi, and P. Varaiya, "The
design of platoon maneuvers protocols for IVHS,"
tech. rep., UCB-ITS-PRR-91-6, Institute of Trans-
poration Studies, University of California, Berke-
ley, CA 94720, April 1991.

[6] D. Godbole and J. Lygeros, "An interface between
continuous and discrete-event controllers for vehi-
cle automation," tech. rep., PATH Memorandom
93-8, Institute of Transportation Studies, Univer-
sity of California, Berkeley, CA 94720, August
1993.

256

Computing RF Propagation for Use in Simulation, Modeling, and Analysis

Scott Fehr, David A. McClung, and Greg Nagao
Applied Research Laboratories

The University of Texas at Austin

Abstract
The Radio Frequency Mission Planner (RFMP) pro-

vides analysis and simulation of communication links
based on RF propagation models to more accurately
assess performance and capability of transmitters and
receivers for command and control warfare (C2W) mis-
sions. RFMP processing is dependent on equipment
parameters, environmental factors, topography, and force
structure. Two and three dimensional displays of results
allow an operator to quickly evaluate RF propagation
possibilities for determining the probability of maintaining
connections.

1: Introduction
Communications connectivity and radio frequency

(RF) wave propagation for warfare simulation have basi-
cally been ignored, or at best have been approximated with
equipment planning ranges. It is now possible to provide
analysis and simulation of communication links based on
RF propagation models to more accurately assess perfor-
mance and capability of transmitters and receivers for
command and control warfare (C2W) missions. The Radio
Frequency Mission Planner (RFMP) under development at
the Applied Research Laboratories, the University of
Texas at Austin (ARL:UT), can now provide simulation-
based analysis of RF coverage and connectivity problems.
RFMP processing is dependent on equipment parameters,
environmental factors, topography, and force structure.
Two and three dimensional displays of results allow an
operator to quickly evaluate RF propagation possibilities
for determining the probability of maintaining connec-
tions. RF analysis will also include the ability to view
footprints and ground tracks of up to eight satellites. For
geolocation, RFMP will provide an estimate of an error

ellipse for a global positioning system (GPS) based time
difference of arrival system. The operator will be able to
visualize and understand how an 'optimum' geometry
results in a minimum geolocation error.

Data sources. RFMP currently receives real-time and
historical data through extensive connection to both exter-
nal and local communication feeds and databases. Exter-
nal data sources are accessed via integration under the
Unified Build component of the U.S. Navy Joint Maritime
Command Information System (JMCIS). JMCIS provides
a single integrated communications system for major
Naval command centers and auxiliary commands. A cen-
tral database server is integrated with an automated mes-
sage handling system for rapid access to reference/tactical
databases with technical and operational information on
emitters, receivers, environment, and status of forces mes-
sage validation and parsing. Local data sources will pro-
vide real-time parameters from GPS based Total Electron
Content (TEC), Computerized Ionospheric Tomography
(CIT), and environmental noise collection components
which are under development at ARL:UT. Defense Map-
ping Agency digital terrain elevation data is used to pro-
vide path profiles for terrain dependent calculations.
Environmental parameters are extracted from other JMCIS
sources such as the Naval Integrated Tactical Environmen-
tal System.

For example, an RF reception mission requires spatially
positioning one or more RF sensors to detect the emissions
of a transmitter at a known position (with a possible asso-
ciated geolocation error). Transmitter characteristics (fre-
quency, bandwidth, modulation,...) and characteristics of
the medium (atmosphere, terrain) through which the RF
energy is to propagate must be known or approximated.
Digital Terrain Elevation Data (DTED) provides terrain

ISBN 0-8186-6440-1. Copyright (C) 1994 IEEE. All rights reserved

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to info.pub.permission@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it.

257
0-8186-6440-1/94 $04.00 © 1994 IEEE

relief information. Environmental noise values are pro-
vided by either models or actual noise measurements.
Propagation path loss models are then run to calculate the
field strength at potential receiver locations. Threshold
values are set to clearly illustrate good sensor locations on
an electronic map. Plans are underway to include anoma-
lous propagation modes such as transequatorial, sporadic-
E, and meteor scatter.

2: RFMP Operational Areas
RFMP will run as a tactical decision aid under JMCIS

and is being developed to serve primarily as an RF propa-
gation planning, management, and analysis tool for the
Naval Security Group. The mission types supported
include: COMMS (communicate between own forces)
and EVADE (avoid detection by non-friendly forces).

In an operational environment, RFMP supports four
activities summarized here. Familiarization: familiarize
the analyst with RF propagation in the expected area of
operations and lead the operator to understand salient geo-
graphical and environmental properties as they relate to
RF propagation. Planning: categorized into long-range,
medium-range, and short-range mission planning. RFMP
will identify candidate locations, platforms, and configura-
tions required for the mission types, and will lead the ana-
lyst through the planning process. Future development
includes the ability to recommend a locally optimum set of
taskings based on command requirements and available
resources. Management: monitor, control, and manage
electronic assets during the course of an operation. Evalu-
ation: during and after the conduct of the mission, assets
provide reports back to the RFMP. The RFMP will evalu-
ate performance and will provide possible explanations for
deviation from predicted performance. To support a dis-
tributed training/planning situation like DISE, a variation
of these activities may be more appropriate. In the remain-
ing paragraphs of section two, we illustrate the application
of RFMP to three important electronic missions.

COMMUNICATIONS: (Primarily for communications-
electronics staff.)

Familiarization: Communications-electronics (CE)
staffs familiarize themselves with propagation in the area
of interest. Coverage for specific communications equip-
ment is explored. If a commander is considering a specific
location for a command post, the coverage to subordinate
elements for tactical AM and FM radios is very quickly
analyzed. Visual representation of HF propagation varia-
tions due to time of day or sunspot cycles is provided.
Link coverage is also explored for microwave systems and
backbone systems such as Mobile Subscriber Equipment.

Planning: Having become familiar with characteris-
tics for a specific area, CE planners use RFMP to deter-

mine best locations for various types of connectivity.
Given the simulated deployment and organic assets, net
coverage for HF and VHF is displayed. Access areas for
MSE Radio Access Units and connectivity along a route of
attack is also shown. HF frequency assignments are veri-
fied for time of day and sunspot cycle, alerting planners to
requirements for additional frequencies before the fact.
The best HF antenna application for each station is veri-
fied. Transmitted power required to close each link is
determined so that lower power levels are used where pos-
sible to minimize vulnerability to detection by opposing
forces. Location adjustments are explored to use terrain
blocking where feasible to also minimize vulnerability to
detection and jamming. Finally, planners identify require-
ments for additional assets such as repeaters or tactical sat-
ellite communications equipment to ensure adequate
communications capacity to units for successful command
and control.

Evaluation: During the conduct of the simulation, the
RFMP provides players and controllers with an analysis of
the simulated nets helping players to better understand and
apply proper ECCM techniques as well as actions that will
optimize connectivity while minimizing vulnerability.
Controllers use similar analyses to prevent the use of com-
munications systems that would not be able to cover
ranges or topography in a real tactical situation similar to
the simulated deployment.

EVASION: (For operations, intelligence, and CE staff)
Familiarization: RFMP allows all fighters to explore

options of visual and electronic cover and concealment.
Evasion is particularly critical to reconnaissance units,
special warfare units, and aircraft routes deep into enemy
territory. Based on the estimate of the situation, visual and
electronic coverage of the battlefield is depicted. Routes
and locations are then identified which minimize detec-
tion.

Planning: In the planning phase, all staff members
are concerned with visual and electronic cover and con-
cealment of movements and locations. Based on the esti-
mate of the enemy situation, realistic coverage of sensors
and observation posts are depicted to aid in the selection
into and out of opponent areas. Further, checkpoints are
identified along the routes that provide communications
connectivity to command authorities while offering the
maximum protection against detection. (The identification
of key terrain such as a mountain to shield emanations
from opposing sensors is just one such example.)

Evaluation: Evaluation of evasive tactics is a control-
ler function. The controllers use RFMP to analyze deci-
sions and actions of commanders and staffs as well as
movement of units to determine when actual detection or
direction finding is likely to occur by opposing forces.

258

Such analysis adds realism to the simulation as controllers
can point to specific opposing units or assets that made the
detection. Controllers are also able to more authentically
illustrate actions that may have avoided detection.

3: RFMP Functional Description
Each type of RF propagation analysis performed by

RFMP can be described in terms of a hierarchy of analysis
functions which serves a dual purpose. Traversed from
highest-to-lowest level functionality, this hierarchy gener-
ates a requirements specification for the analysis in which
raw data input requirements are at the lowest/terminal
nodes of the hierarchy. Traversed from lowest-to-highest
level functionality, the hierarchy generates a data flow
model for the computation.

The hierarchy naturally decomposes into two parts: 1)
RF propagation - an analysis of how the electromagnetic
radiation propagates from a source to various locations
through interactions with the environment; and 2) Signal
reception - an analysis of a received signal for the purpose
of extracting information about its source (direction-find-
ing) and/or its content (signal analysis). Propagation path
loss models, such as TIREM [1], Advanced PROPHET
[2], FFACTR [3], and RPO [4], are the core functions
within the RF propagation subsystem. These models pro-
vide path loss and field strength estimates from 3 MHz to
20 GHz over a geographical volume of interest which may
include land and water.

As an example, consider the use of the propagation
models to calculate a mission analysis called the "proba-
bility of detection". Starting with the power of the trans-
mitter PT, we use the propagation models to calculate the
propagation loss PL, use PL to calculate the field strength
FS, integrate FS over the receiver antenna configuration to
give the signal strength SS, calculate the received signal
power SP, and signal power level SPL, and finally evaluate
the results through the probability of detection POL Dia-
grammatically, we have

PT --> PL --> FS ->II->SS ->SP -> SPL --> POI
where the double bar II indicates the division between

the propagation and signal reception analysis. The RFMP
uses HF, VHF, and UHF propagation models to help per-
form the RF propagation analysis. The main modules of
these propagation models evaluate the effect of environ-
mental interactions with RF electromagnetic propagation.
The various outputs of these models, such as propagation
loss PL may generally be used to calculate FS associated
with the transmission due to a give source. Once the RF
propagation analysis has been performed, further analysis
can be performed on the data to help determine where
receivers of different characteristics (such as antennas,
sensitivity, signal-to-noise ratios, etc.) are most likely to
"hear" the given transmitter. This information may be

evaluated in the context of the probability of detection
function.

The above analysis provides strong constraints on the
interface between the propagation models, environmental
data, and the analysis types. The mathematical formulation
of the constraints on the interfaces provides a strong basis
in which to evaluate the interplay between the various sub-
systems which compose the RFMP. In particular, the inter-
faces to the propagation model outputs can be
mathematically specified based on its role in the analysis,
and the model input parameters requirements can in turn
be mathematically specified. Further, based on the mathe-
matical formulation of constraints on model parameters,
the effect of environmental parameter uncertainties on the
RFMP probability analysis can be determined.

4: Evaluation of RF Mission Success
RF analysis is combined with noise levels from mod-

els or actual measurements and interference on frequen-
cies of interest to provide a statistically based estimate, or
probability, of RF mission success. This feature allows
the operator to visualize the stochastic nature of RF propa-
gation modeling results and provides an estimate of how
changes in environmental conditions and geometry affect
the probability of mission success. RFMP will correlate
predictions to actual performance and will provide expla-
nations for possible causes of differences. Recommenda-
tions to improve performance, such as repositioning
assets, will be provided. The evaluation process may also
reinforce the conclusion that for a given set of circum-
stances, accomplishment of the mission is simply not pos-
sible.

5: Adapting RFMP for DIS
As stated, the RFMP is connected to both local and

external (via integration under JMCIS) communication
feeds and databases. In this configuration, RFMP acquires
data needed for RF problem simulation directly (under its
control) via the JMCIS Client-Server Architecture, using
APIs for database servers (e.g. CDBS), or from broadcast
sources such as JMCIS messages.

Adapting RFMP to DIS will require redirecting its
external API model to rely on other DIS server objects as
sources for data, replacing local JMCIS APIs. The DIS
interface will replace the JMCIS Comms module as the
source of tactical message traffic and database updates.
The combination of operator/analyst inputs and RFMP
database queries will no longer be required to specify the
current problem; instead, DIS servers will provide data as
part of Ground Truth and Update broadcasts for the cur-
rent simulation. Under DIS, the role of the operator/ana-
lyst will be to monitor the RFMP concept of the game, and

259

interpret RFMP results based on graphics and textual anal-
ysis, then construct the RFMP analysis PDU and send to
DIS.

The JMCIS Chart Server would be replaced by the
new DIS block format to transfer DTED terrain data. The
DIS API will differ in form from the JMCIS Client-Server
Architecture, but data element formats within DIS PDUs
should be the same as from JMCIS databases, since DIS
and JMCIS are moving toward a common standard.

This paper presents an available austere swivel-chair
type interface between RFMP and DIS. A more desirable,
automated interface would allow RF analyses to govern
transmittal of messages even between commands of units
played totally within the simulation thus eliminating the
need for an umpire to censor unlikely connectivity. The
specification of at least three PDUs for such an interface is
an open issue. One PDU would be necessary to pass the
analysis requirement and specification to RFMP. Another
is required for the high resolution measurement data
needed for RFMP probability based analysis. A third
would return results to DIS. The RFMP team should play
and active role in this PDU definition, and in the specifica-
tion of an RFMP output PDU to return the results of
RFMP analysis to DIS.

[2] Operational Users Manual for Advanced Prophet Version 4,
Naval Command, Control, & Ocean Surveillance Center,
RDT&E Division, Signals Exploitation Branch, August
1985.

[3] Engineer's Refractive Effects Prediction System (EREPS)
Revision 2.0, Report # NOSC TD-1342, by Patterson,
W.L., et al, Naval Ocean Systems Center, February 1990.

[4] Radio Physical Optic CSCI Software Documents, Report #:
TD-2403, by Patterson, W.L. and Hitney, H.V., Naval Com-
mand, Control and Ocean Surveillance Center, R&D, T&E
Division, December 1992.

6: Conclusion
Almost since its inception, the Signal Corps has pro-

fessed that when others go to the field to train, signal sol-
diers go to the field to do their job. While tacticians plan in
potential hostile regions, communicators and IEW units
install, operate, and maintain assets as deployed rather
than as simulated. A tool is available today to allow simu-
lation of RF challenges faced by planners and operators of
the electronic battlefield. RFMP will enhance the synthetic
environment to identify assets to overcome electronic and
propagation obstacles much the same as transportation and
engineer assets are now identified to overcome physical
obstacles. An austere, yet sophisticated, interface can be
realized immediately to provide commands and staffs with
a realistic representation of the RF environment and its
impact on command, control, and communications.

7: Acknowledgment
The authors thank the Naval Security Group for their

support of this project under Contract N00039-91-C-0082-
6-81-1.

8: References
[1] TIREM/SEM Handbook, Report # ECAC-HDBK-93-076, by

Epplink, D. and Kuebler, W., IIT Research Institute, March
1994.

260

Session 2G:

Applications II

Integration of CGF with
Fielded Equipment Using DIS

Phil Landweer
BDM Federal

Abstract

A unique application of a Computer Generated Force
(CGF) was conducted in December of 1993 at the Depth
and Simultaneous Attack Battle Lab in Ft. Sill,
Oklahoma. The CGF simulated afire support scenario
with tanks, infantry fighting vehicles, artillery units,
counter-battery radars, and associated command and
control elements. A tactical situation display showed
the locations of all combatants, as well as activities of
interest such as detections, weapon firings, detonations,
and communications as the simulated battle progressed
in real-time. A DIS-compliant interface allowed the
CGF to interact with actual fire support equipment,
both sending and receiving PDUs to a variety of
systems. These systems included a DMD at the
simulated Fire Support Element, FEDs at the forward
observer and fire support team, LCUs serving as an
FDS or FDDM interface for the FDC and MLRS
Battalion, respectively, and an MLRS Fire Control
Panel Trainer. Thus, a seamless simulation was
provided between constructive, virtual, and live
simulations.

1. Application overview

This project was conducted at the Depth and
Simultaneous Attack Battle Lab (D&SA BL). The U.S.
Army uses its Battle Labs to quickly investigate the
utility of candidate systems, architectures, and tactics.
The D&SA BL focuses on those systems which can be
used for attacking the enemy from long distances or in a
coordinated fashion, such as fire support systems.

The purpose of this project was two-fold. First, the
Army Research Laboratory (ARL) Ft. Sill Field
Element, which sponsored this effort, wanted to
investigate how mission performance improved for
beginning Artillery School students. Each student used

a Multiple Launch Rocket System (MLRS) Fire
Control Panel Trainer (FCPT) to execute Call for Fire
missions within a simulated battle. Each student
participated in the battle three times, and the timeliness
with which the fire mission was executed was measured.
The other purpose of the project was to determine how
well Distributed Interactive Simulation (DIS) Protocol
Data Units (PDUs) could be used to integrate fielded
equipment with each other as well as with constructive
and virtual simulations.

2. CGF description

The CGF system used was CIMUL8™/
SPECT8™/DISIP8, a commercial off-the-shelf
(COTS) software product. CIMUL8 is the simulation
engine, and models tactically representative behaviors
based upon user inputs. CIMUL8 also has a self-
contained pre-processor for building up units and
scenarios, as well as a post-processor for analyzing
battle outcomes. SPECT8 is a graphical display
system, and may be used to preview, replay, or watch a
CIMUL8 run as it progresses. Finally, DISIP8 is a
DIS-compliant interface used to both send and receive
PDUs between CIMUL8 and other assets. SPECT8 can
also be used to display the occurrence and effects of
received PDUs.

3. Simulation characteristics

CIMUL8 models both physical phenomena and
cognitive processes. This combination allows all
pertinent areas of a battle to be simulated. An object-
oriented approach is used, wherein real-world entities are
modeled as coherent collections of physical and
cognitive objects.

ISBN 0-8186-6440-1. Copyright (c) 1994 IEEE. All rights reserved.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE,
information on obtaining permission, send a blank email message to info.pub.permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

For

0-8186-6440-1/94 $04.00 © 1994 IEEE
262

3.1 Physical modeling

The six object classes within the physical domain are
Sense, Talk, Move, Shoot, Disrupt, and Replenish.
Sense models the generalized concept of non-cooperative
information exchange. Non-cooperative means that the
sensed object is not doing anything intentional in
sending information to the sensor. Radars, thermal
tracking devices, and the human eye are all examples of
Sense objects. Talk, on the other hand, models
cooperative information exchange. Radios, modems,
and digital SatCom links would all be modeled using
Talk objects. Move allows a simulated unit to change
its location within the simuland. This includes driving
across the surface, flying through the air, and navigating
the oceans. Shoot models the generalized concept of
lethal engagements wherein the actor is attempting to
physically harm the target. Bullets, shells, and directed
energy devices are examples of Shoot objects. Disrupt
is the converse of Shoot in that it is used to model non-
lethal engagements of other players. The intent of a
Disrupt object is to deny some other entity the use of
its Sense, Talk, or other objects. Smoke, chaff, and
active radio jammers are examples of Disrupt objects.
Note that using a Disrupt object against cognitive
objects allows for psychological operations to be
simulated. Finally, a Replenish object models the
generalized concept of material exchange. This includes
repairing damaged objects, resupplying ordnance or fuel
to maneuver units, and performing routine maintenance.

3.2 Cognitive modeling

The advantage of using cognitive objects to represent
behaviors within the simulation is that it decouples
"reality" within the simulated battlespace from the
"perceived reality" that is used by the personnel and
units within the simuland. Without this decoupling,
the modeled entities would directly use ground truth, and
thus conduct themselves as though they were
omniscient. Of course, real-world combat as well as
exercises don't work this way. At the D&SA BL, this
feature of CIMUL8 allowed the students to be placed in
a very realistic environment. There are also six
cognitive objects within CIMUL8: Notice, Digest,
React, Review, Plan, and Adapt.

A notice object models the perceptual recognition of a
stimulus. This includes noticing the receipt of a
message over a communications device, noticing that an
OPFOR unit has just come into view from behind a
building, or noticing the effects of ordnance either on
oneself or against an enemy. The notice objects are
explicitly linked to the provider of the stimulus within

CIMUL8. This adds an extra degree of realism onto the
simulation, and prevents an object from noticing
something that it wouldn't have access to. A notice
object moves an image from iconic memory into short
term memory. Once there, a digest object will operate
on the data.

A digest object models the correlation, fusion, and
assimilation of new information with information
already on hand. Thus, digest takes the data content of
an item from short term memory and moves it into
medium term memory. Medium term memory is where
the current perception of the battlefield is held for each
unit within the simulation. This includes the perceived
location of both the enemy's and one's own units, the
status of organic and attached units, and the current
perceived intent of the enemy. As new data is
synthesized into the present body of knowledge for a
unit, incorrect perceptions may be formed in a number
of ways. The incoming stimulus that was noticed may
have errors, the filters may produce incorrect deductions,
or the uncertainties may be mitigated in the "wrong"
way. And if the perception of the battlefield in medium
term memory is incorrect, then mistakes will be
manifested by a react object, as discussed below.

A review object is somewhat of the converse of the
digest object, in that it is responsible for managing the
"length" and "veracity" of medium term memory. A
review object performs the functions of discarding
information that is out of date, "known" to be incorrect,
or no longer needed due to changed conditions. Review
does this by evaluating the quality of information over
time using moving averages of an n-dimensional
perception space, where n is specifiable by the user.
Based on the evaluation, a review object may throw
away perceptions, draw new conclusions, or request
additional information. Thus, review will either delete
items from medium term memory, or cause a series of
events that (hopefully) results in new stimuli to be
noticed.

A react object evaluates the present perception of the
battlefield using the present contents of medium term
memory, makes a decision, and then may do something
based on the decision made. The decision space is
countably infinite, using geometrical, status, intent, and
relational parameters built up into rule sets of variable
resolution. The rule sets are used to dictate the
behaviors of units for movement, command and control
decisions, weapons usage, countermeasure employment,
resupply and repair, and system status changes. Since
combat activities which result from these decisions are
based upon the perceptual view of the battlefield,
incorrect perceptions may generate mistakes in a
simulated unit's behavior.

263

A plan object measures a unit's progress towards its
goals and assesses the need for changed strategy. The
goals along with candidate plans are stored in long term
memory within the simulation. The present plan and
goal(s) are stored in medium term memory. Combining
these with the perceptions which are also in medium
term memory, progress is measured along some user-
specified n-dimensional metric. The same criteria used
by a react object are also available to a plan object for
measuring progress. As a unit's plan object decides to
change a current plan, the current plan in medium term
memory is replaced by a plan from long term memory.

Finally, an adapt object can modify a plan (or
"strategy") that exists within long term memory. The
adapt object can thus alter the way an entity evaluates
and reacts to situations. These objects allow entities to
"learn" from simulated combat experience. Again,
measurable criteria from those used by the react object
are used by an adapt object to assess whether or not a
given combat outcome is "good" or "bad".

3.3 Event Scheduling

Within CIMUL8, both physical and cognitive events
are scheduled dynamically as the battle progresses. This

provides a natural means of simulating battlefield
activity, since any combatant can be represented as
some collection of the physical and cognitive objects
described above. In addition, the event driven nature of
CIMUL8 allows for other simulations (either
constructive, virtual, or live) to be easily integrated into
the overall scenario by injecting their events into the
simulation.

Figure 1 shows how the physical and cognitive
objects interact with one another to simulate the
behavior of an entity, such as an MLRS launcher. The
physical objects are shown in white, with the cognitive
objects shaded. Starting near the center at the top of the
figure, the MLRS might get a Call for Fire message
from the FDC, which is its commander. A Notice
object will notice the receipt of the message, which
would then get processed by a Digest object to discern
the message content. If the message were a move order,
then the MLRS might decide to start movement using
its Move object, and continue to move until the
objective was reached. Note that this movement might
cause the MLRS to come into view of other entities'
sensors, which would give them the chance to see the
MLRS. This is depicted by the thick arrow labeled "to
other Sensors." However, since the message was a Call

to Target

to Commander

Figure 1: Even Scheduling between Physical and Cognitive Objects

264

for Fire, the MLRS' React object will be schedule to
consider engaging the target. Should the MLRS do so,
the React object will have the MLRS report its status
back to the FDC, using a Talk object to model the
communication. Upon the decision to fire, a Shoot
object will simulate a weapon firing at the target. Our
example ends with the target's Notice object noticing
that it is under attack!

4. Scenario descriptions

A ground combat scenario was simulated for this
project. The "Blue" Forces (BLUFOR) consisted of an
Ml tank platoon accompanied by an M2 Infantry
Fighting Vehicle and two Improved TOW Vehicles
(ITVs). Fire Support units including a Forward
Observer (FO), Fire Support Team (FIST), Fire
Direction Center (FDC), Fire Support Element (FSE)
with a TPQ-36 fire-finder radar, MLRS Battalion, and
MLRS Self-Propelled Loader Launcher (SPLL) were in
direct support. The Opposing Force (OPFOR) had a
Motorized Rifle Company with BMPs and T-80 tanks,
a Self-Propelled Howitzer (SPH) Battery, and associated
FDC.

Depending on the particular configuration used, these
combatants were simulated using some combination of
CIMUL8 (a constructive simulation), the FCPT (a
virtual simulation), and fielded equipment (live
simulations). The fielded equipment included Field
Entry Devices (FEDs), a Digital Message Device
(DMD), Low-cost Computer Units (LCUs), and a Fire
Direction Data Manager (FDDM). For each situation, a
configuration file instructed CIMUL8 how the
simulated activity was to be distributed across these
domains.

One interesting facet of this project was discovered
upon arriving at the D&SA BL three days before the
first demonstration was to occur. Initially, the scenario
within CIMUL8 was located within northern Europe.
Unfortunately, the FCPT could only execute fire
missions using coordinates from the Ft. Sill firing
range. So, the entire simulated battle was "moved"
from a European battlefield to the Ft. Sill area. This
translation was accomplished in a single afternoon, and
included repositioning all combatants into realistic
positions and ensuring that the required interactions
would occur for the project. Figure 2 shows the relative

A
FDC

\
OPFOR S3

A
FIST

m SPH Btry

'■-•... MRC

ESI |oI
M2 Sqd M1 Pit rj§]

ITV A
FDC

^3

A
Forward

Observer

BLUFOR

MLRS Bn TPQ-36

MLRS SPLL
Figure 2: Lay down of the Simulated Forces

265

from the north, with the BLUFOR in a defensive
posture.

5. DIS protocols used

DIS 2.0.3 PDUs were used to interface the
simulations with each other. Specifically, Entity State,
Firing, Detonation, Transmit, and Signal PDUs were
used. Transmit and Signal PDUs were used to send
TACFTRE messages between the various assets. A PC-
based DIS interface developed by CAE-Link was used to
transform tactical communications into DIS PDUs and
vice versa. In this manner, the fielded equipment
performed just as it would in a real combat
environment.

6. Asset configurations

Four different configurations of the basic ground
combat scenario were used at the D&SA BL. Each of
these will be described in turn. First, the aspects which
are common to each scenario will be described.

6.0 Common aspects

CIMUL8 simulated the movement, signatures,
sensing, command and control, communications,
engagements, firing, and lethality effects of all OPFOR
units as well as the BLUFOR tanks, IFV, and ITVs.
The movement of the vehicles followed pre-planned
maneuver profiles specified by the scenario designers.
Signatures included both the normal visual cross section
of the vehicles, as well as increased signatures in the
visual and IR spectra whenever a round of ammunition
was fired. In turn, the visual and thermal sensing
systems would allow the simulated combatants to detect
the apparent position of the vehicles. These detections
would lead to perceptions of the battlefield being
formed, and used for cß or engagement purposes. The
command and control, engagement, and firing
procedures were specified via rule sets to CIMUL8.
These rule sets make up a context-sensitive language
that allows the simulated entities to behave in very
realistic, user-specified ways. Should a situation arise
requiring a commander to direct a subordinate in the
battle, tactical communications were simulated as VHF
radios with point-to-point signal transmissions.
Finally, battlefield effects were modeled using direct- or
indirect-fire lethality assessment tables.

Whenever Transmit and Signal PDUs were generated
by the live or virtual simulations, SPECT8 would
display these events as green star bursts around the

transmitting unit. This allowed everyone to watch the
information flows as the battle progressed.

6.1 First situation: FO, FIST, FDC, and FCPT

The FO's viewer was modeled within CIMUL8. As
the OPFOR targets came into view, the targets were
visually acquired within the simulation. SPECT8 was
used to display this event by placing a large diamond
around the acquired targets on the tactical situation
display. This served as the triggering event for an
operator to enter the target coordinates into the FO FED
and send an FR Grid TACFIRE message to the FIST
FED. This message was actually transmitted as a set of
Transmit and Signal PDUs via Ethernet. Upon receipt
of the message, the FIST operator would then pass the
target coordinates on to the FDC. Another TACFIRE
message was sent from the FIST FED to the FDC
LCU, which was configured as a Fire Direction System
(FDS). The FDC operator then generated a fire mission
for the MLRS, and sent a Call for Fire message to the
FCPT. The MLRS operator would then execute the
mission, and fire upon the OPFOR within the
simulated environment. Fire and Detonation PDUs
were generated by the FCPT, which would damage or
destroy the targets within CIMUL8.

6.2 Second situation: DMD, FDDM, FDC, and
constructive MLRS

In this set-up, CIMUL8 was again used to start
things off. A TPQ-36 fire finder radar was modeled, and
could detect the OPFOR howitzers firing. As this
happened, a large diamond was displayed around the
targets on the SPECT8 screen. The target coordinates
were then entered into the DMD by an operator, and a
TACFIRE message sent via Transmit and Signal PDUs
to the MLRS Battalion's FDDM. Upon receipt of the
target by it's LCU, the Battalion would then task the
FDC with a fire mission. TACFIRE messages were
sent between the LCUs. Upon the FDC sending a Call
for Fire message to the MLRS, SPECT8 would display
this message transmission. This cued an operator to
use SPECT8's "Personal Control" capability to execute
the fire mission. Thus, a constructive simulation was
triggered by fielded equipment to complete the mission.
Upon firing, the simulated rockets went to the targets
and damaged or destroyed some of the OPFOR
howitzers.

266

6.3 Third situation: FO, FIST, FDDM, FDC,
and FCPT

This case was essentially a combination of the
previous two. CIMUL8 modeled the acquisition of the
OPFOR by the FO, with TACFIRE then being sent
from the FO FED to the FIST FED. Then, the FIST
would pass on the target to the FDDM. The FDDM
would task the FDC, which then passed on the Call for
Fire message to the MLRS FCPT. The operator would
then execute the mission, which would damage or
destroy the OPFOR vehicles.

6.4 Fourth situation: constructive FR grid,
FDC, and FCPT

This was the set-up used for the actual ARL
experiments. Figure 3 shows this configuration, with
the laydown of the forces given using the same icons as
in Figure 2. The quartered circles indicate whether or
not the modeled entities can move, shoot/assign, sense,
and/or communicate. The shading within each quarter
indicates whether the simulated function was performed
via constructive, virtual, or live simulation. The FO
and FIST were wholly modeled within CIMUL8,
including their acquisition and communication
activities. After the FIST received the target, an FR

Grid TACFIRE message was generated by CIMUL8,
with DISIP8 sending out Transmit and Signal PDUs.
This is shown in the figure using the solid arrow
labeled "FR Grid." The FDC would receive these, with
the operator then sending a Call for Fire to the MLRS
FCPT. The student would then execute the mission,
with the results of the firing effecting the overall battle
outcome. All relevant data was captured within
CIMUL8. This allowed CIMUL8's post-processor to
measure the timeliness of the students' actions for
quantitative analysis. SPECT8 could also be used
immediately after each trial to replay the battle, thereby
providing immediate feedback to the student.

7. Future applications

This seamless simulation technology may now be
used for a variety of purposes. With additional FEDs,
LCUs, and FCPTs, a large training exercise could be
conducted within the U.S. Army Field Artillery School.
Another potential application would be to integrate
National Guard and Army Reserve MLRS units with an
FDDM. The Guardsmen and Reservists could train at
their home locations, with the overall simulation and
FDDM located at Ft. Sill. This is particularly
important for realistic training, since MLRS units
would receive fire missions from an FDDM during

FR Grid

BSD GÜEI

Ö

Constructive
Virtual
Live

Figure 3: Distribution of Modeled Behaviors Used in Situat on #4

267

combat, but Guard and Reserve MLRS units don't have
FDDMs as part of their equipment. Finally, T-NET
could be used as an enabling technology to link
geographically distant equipment with each other, with
DIS PDUs being passed from one location to the other
via commercial satellite communications. Such
technology could directly support Distance Learning
projects.

8. Lessons learned

As the integrated simulation was used by the MLRS
students, their proficiency in executing the Fire Mission
improved. Such a result is to be expected. It was
reassuring to see that DIS can be used to provide
positive feedback and achieve training objectives, even
when "high tech" systems are used. Probably the most
challenging part of this project was getting all of the
TACFIRE messages right so that the fielded equipment
would operate properly. The Signal PDU is sufficiently
flexible to contain any type of TACFIRE message.
However, certain bytes of the FR Grid and Call for Fire
formats are very critical! Also, the timing of
TACFIRE message transmissions and acknowledgments
must be closely adhered to if live simulations are to be
integrated with each other and constructive and virtual
simulations.

When using distributed simulation, one never knows
which modeled units and associated behaviors should be
simulated by constructive simulations, virtual
simulators, or live simulation. The four situations
described above allowed for a diverse assortment of
virtual battlefields to be simulated by a mix of these
three simulation domains. To meet the needs of the
training or analytical effort being supported by
simulation, the underlying architecture needs to be
sufficiently flexible and reconfigurable. The success of
this effort at the D&SA BL was due in part to this
flexibility.

Biography

Phil Landweer works for BDM Federal, Inc. as the
manager for Advanced Simulation. He has used digital
modeling and distributed simulation for concept
exploration, requirements analysis, pre-test analysis,
test planning, test and evaluation, and tactics
development to support a variety of government and
industry organizations. His specific areas of interest
include object-oriented simulation, functional modeling,
and integrated computer graphics. Prior to joining
BDM, he was an analyst at the Air Force Operational
Test and Evaluation Center, where he used modeling and
simulation to support a variety of Operational Test and
Evaluation programs.

268

Fuzzy Finite Automata And Their
Application To Speech Recognition

T. Van Le

Faculty of Information Sciences & Engineering,

University of Canberra,
PO Box 1, Belconnen, ACT 2616, Australia.

Abstract

A fuzzy pattern matching machine for speech recogni-

tion is simulated. Monosounds extracted from a set of

keywords are stored in a fuzzy nondeterministic finite

automaton, and a fuzzy pattern matching procedure

is employed to activate the automaton for detection of

the predetermined keywords in a given speech.

1 Introduction

The classical Aho-Corasick pattern matching machine

(in [1]) detects predetermined keywords in a text by

using a deterministic finite automaton supported by

a backtracking procedure (which is called the failure

function in [1]). In [3], I presented a method of im-

plementing the Aho-Corasick matching machine as a

nondeterministic finite automaton, using Prolog's au-

tomatic backtracking mechanism.

The recognition of keywords in a speech is more dif-

ficult, however, because sounds normally do not per-

fectly match like characters in a text string. Therefore,

it is necessary to employ some fuzzy matching pro-

cedure to perform the approximate matching of two

similar sound waves.

In this paper, I present a fuzzy pattern matching

machine that follows the idea of Aho-Corasick [1] and

that employs the technique of fuzzy pattern matching

in [4] to detect predefined keywords in a speech.

The paper has the following sections. Section 2 de-

scribes the construction of nondeterministic finite au-

tomata to store the monosounds extracted from a set

of given keywords. Section 3 presents the fuzzy pat-

tern matching machine that will be used to activate

the automata for detection of the keywords. The last

section, Section 4, describes some experiments on a

simulated pattern matching machine and presents the

simulation results.

2 Fuzzy finite automata of monosound
waves

Consider a set of keywords {u>i, ...,wn}, in which each

word Wi is composed of a sequence of monosounds

xa, ■ ■ -,Xiki- In general, a monosound can be de-

composed into a finite number of sine waves, and is
represented by a matrix of wave amplitudes. For

convenience, let 4>(s) denote the set of input signals

(which are, in our case, the matrices representing the

monosounds) that will transform the machine from

state s to another state, and for each x € <£(s), let

next(s,x) denote the set of states tranformed from s

by the input signal x. Also, let r(x,y) denote the

matching degree of two monosounds x and y.

The following algorithm establishes a fuzzy nonde-

terministic finite automaton for the purpose of detect-

ing the given keywords {wi,..., w„} in a speech. Here,

a represents a predetermined threshold for matching

degree. Also, if there is a sequence of state transmis-

sions

O'l . *2 _ «3
 ► Si ► «2 ►

Xh
Sk

then the sequence xi,...,X). is called a route from

the initial state 0 to the state Sk, and is denoted by

route (sjt). Note from the following algorithm that, ini-

tially, each set next (s, x) contains at most one state,

and each route (s) is unique.

269
0-8186-6440-1/94 $04.00 © 1994 IEEE

Algorithm 1:

Set up the initial state 0;

Let <f>(0) = [] and m = 1;

For i from 1 ton do

Start with state s = 0;

For j from 1 to ki do

If <j)(s) ^ 0 and max*e*(s) T(xij'z) = ß > a

then find y in <p(s) such that r(x,j, y) = /?;

and let [s] = next(s, y)

else let </>(s) = <j>(s) U [a?,-j];

next(s,Xij) = [m];

*("») = 0;
s = m;

m = m + 1;

endfor;

endfor;

For each state s such that cf>(s) ^ \\ do

For each x £ <^(s) and each s' £ nearf(s,a:) do

Find the set F of all states SQ such that

route(so) is a suffix of route(s');

then let next(s, x) = next(s, x)U F

else let next(s, x) — next(s, x) U [0];

endfor;

endfor;

The output of Algorithm 1 is a fuzzy nondeterministic

finite automaton that stores the monosounds extracted

from the keywords w\,..., wn.

3 The fuzzy pattern matching machine
for speech recognition

The fuzzy finite automaton described in Section 2 is

used as a knowledge base for our fuzzy pattern match-

ing machine. The purpose of the machine is to detect

the predetermined keywords (stored in the automa-

ton) in a speech, which is represented as a sequence

of monosounds. Here, the matching degree of two

monosounds x and y (which are represented by two

matrices) is defined by

r(x,2/) = e-Hx-2'll.

Two monosounds x and y are regarded as similar if

r(x,y) > a, where a is a predetermined threshold for

matching degree. At any state s of the machine, if the

set keyword(s) of the keywords occuring in route(s) is

nonempty, then the detected keywords are recorded.

The activation of the machine is expressed in the fol-

lowing algorithm.

Algorithm 2:

Set the initial state s = 0 and index i = 1;

Repeat

Get the next monosound x;

Find y G <j)(s) such that T(X, y) — maxJ€^,)T(a!, z);

If T(X, y)> a (the threshold)

then select an s' 6 next(s, y) and let s = s'\

li keyword(s) ^ []

then store the keywords and

their location i;

else backtrack to the previous selection;

Let i = i + 1;
Until end of speech;

Ouput the stored keywords and their detected

locations.

4 Simulation results

A fuzzy nondeterministic finite automaton is estab-

lished to store the keywords fire, firebomb, fighter, and

bonfire. The automaton is depicted in the diagram of

Figure 1.

re,ghter

Figure 1

The soundwaves of the given keywords are shown in

Figure 2. From these waveforms, monosounds are ex-

tracted by using a sound editor, and various bandpass

filters are used to reduce the monosounds' frequencies

270

to specific ranges before they are converted into fre-

quency spectra (some of which are shown in Figure

3) by using the fast Fourier transform. The Fourier

transforms of each monosound are stored as a matrix

of real values. Algorithm 1 is then executed to gen-

erate a nondeterministic finite automaton that stores

the monosounds, which are linked to their matricial

representations in the knowledge base.

ut ;.3*f*:\i.t üiihmm fJMmuinimilUUtstmjmmtictii: '••

Figure 2: Waveforms of the words fire, firebomb,

fighter, bonfire.

Figure 3: Frequency spectra of the

monosounds fi, re, bomb, ter.

271

A simulated speech is generated in the form of a se-

quence of matrices representing the monosounds in the

speech, in which the sounds fi-re, fi-re-bomb, figh-ter,

and bon-fi-re are included at random locations, and

with ten percent randomly damaged. The fuzzy pat-

tern matching machine was activated and the detected

keywords were recorded. This simulation was repeated

50 times and the results are recorded in the following

table.

Keyword correct incorrect non

detection detection detection

fire 38 4 8

firebomb 32 5 13

fighter 36 3 11

bonfire 35 5 10

Thus, on average, the successful rate of the machine

in detecting a predetermined keyword is around 70%,

which is quite encouraging.

References
1. Aho, A. and Corasick, M. (1975). Efficient string

matching: an aid to bibliographic search. Com-

munications of the ACM, Vol. 18, No. 6, 333-340.

2. Furui, S. (1989). Digital Speech Processing, Syn-

thesis, and Recognition. Marcel Dekker, New

York, 54-55.

3. Le, T.V. (1993). Techniques of Prolog program-

ming. John Wiley & Sons, New York, 199-203.

4. Le, T.V. (1993). Fuzzy pattern matching and

its application to system simulation. In Proceed-

ings of the Fourth Annual Conf. on AI, Simula-

tion, and Planning in High Autonomy Systems,

Sept. 1993, Tucson, Arizona. IEEE Computer

Soc. Press, 54-58.

5. Markel, J.D. and Gray, Jr. A.H. (1976). Lin-

ear Prediction of Speech. Springer-Verlag, Berlin,

159-160.

6. Weiner, K. (1993). Sound Effects Playhouse.

Waite Group Press, Corte Madera, CA.

272

Session 2H:

Test and Evaluation

Automatic Performance Monitoring and Evaluation

Peter Drewes
Statistica Ine

Orlando, Florida

Avelino Gonzalez, Ph.D.
University of Central Florida

Orlando, Florida

Abstract

With Distributed Interactive Simulation (DIS) there is
an opportunity for large scale Computer Based Training
(CBT). As more simulators interact through DIS, the
complexity of the training systems increases. This, in turn,
increases the work load on the instructor. Students are
performing more complex tasks that cannot be viewed at a
glance to determine their state. If an instructor has several
students to monitor, it is difficult to track what each student
is doing at any given time. One solution to this is to offload
the instructor by interpreting and evaluating the student
actions via computer programs. This can be accomplished
through the use of advanced computer interpretation
techniques. This interpretation will present to the instructor
information concerning what and how the student is doing,
without the need for the instructor to directly monitor the
student.

Introduction

There are four major elements in the monitoring and
evaluation of the CBT system: 1) How to automatically
determine the optimal course of action to take under a
particular set of circumstances (called the "goal standard");
2) how to- interpret what the student is doing; 3) how to
compare what the student does compared to the goal
standard, and; 4) how to control or give feedback to the
students concerning their performance compared to the goal
standards. Fortunately, most goal standards are defined and
in place. Control and feedback to the student can be handled
by the instructor; however, the difficulty lies in determining
what the student is doing, and comparing it to what the
student is supposed to be doing.

Rule-based systems appear to be a good means to

interpret what the student action is, and how it relates to the
goals of the CBT. But there are severe limitations
concerning what a rule-based system can do. If a flight
simulator is used as an example, there are many rules that
would need to be incorporated to effectively monitor what
a student is doing. An alternative to a rule-based system is
a template-based approach. In this approach, which is the
subject of this paper, templates represent small portions of
the entire environment and can be directly related to some
portion of the computer-based training goals. These
templates are used to track student actions as they relate to
the training goals. The student will progress through
templates much as they would progress through scenarios in
lessons. This direct student monitoring and evaluation can
provide real-time feedback that is available for the
instructor. By presenting the current template status, an
instructor may view the student's progress and performance
through the lessons.

Background

In the early days of computer modelling, the modelling
process itself took most, if not all of the computer's
resources. This left little capacity for carrying out auxiliary
tasks. As the speed and efficiency of computers increased,
the focus become how to optimize the training of the
student. The instructor was left to monitor the student
directly. This is especially true in flight simulation where the
student-to-instructor ratio has almost always been one-to-
one. The conventional means to convey information to the
instructor about the student's progress through lessons or
scenarios has been to present the instructor with what the
student sees. This is done through visual repeaters, or
instrument duplicators. There are also overview maps, or
God's Eye view of simulations to assist the instructor in
seeing the big picture. However, the instructor must still

274
0-8186-6440-1/94 $04.00 © 1994 IEEE

analyze what the student sees and compare it to the
instructor's own knowledge. This can later be applied against
what the training goals were. The largest drawback is that
the instructor cannot monitor more than one student at a
time. If there are several students in a classroom, most will
go unmonitored. When an instructor changes from one
student to another, he must transition from the original
student's lesson and performance to the that of a new
student. During this transition time, the instructor may not be
able to monitor any students, and may become frustrated and
ineffective if bombarded with help requests, or other
distractions while trying to transition to the new student.

Problem Definition

The process of monitoring a student consists of four
separate steps:

1) Determining the goals of the lesson or scenario that are
being monitored - what the student should be doing.

2) Interpreting what the student is actually doing from his
actions.

3) Comparing what the student is doing against the goals
that were set out in step 1.

4) Providing feedback to the student. In other words, if the
student has deviated from the goals, how can the
training goals still be met.

The first step is to determine the goals of the lessons or
scenarios. These goals are typically defined by the CBT.
The objectives of the computer based training system
become the high level goals of the system. For example, if
the CBT was a flight trainer for student Instrument Flight
Rules (IFR) practice, this would become the main goal.
Subgoals that could be derived from the main goal is the
desire to not stall the aircraft, i.e. slow down so much that
the wings cannot support the weight of the aircraft. Even
though it is possible to complete the Instrument Landing
System (ILS) practice safely while stalling the aircraft, it is
not desirable to do so. Subgoals should be kept to a
minimum, and at such a level so that they do not hinder the
original training goals.

The second step is to determine what a student is doing.
This involves knowing what the student should be doing
which relates back to the goals of the CBT. It is possible to
look at all of the inputs that are provided to the student, and
the output that the student gives. However it is difficult to
analyze all of the information at once. There would be
several solutions to this problem including duplication of the
simulation code at another place to interpret what is

happening, embedding the interpretation program within the
simulator's program, or determining a way to interpret what
the student should be doing from the normal output of the
simulation.

The third step is to compare the student actions against
the goal standards. This is done by comparing the
interpreted student action from the second step with the
goals of the CBT. Since the student actions are being
analyzed from the standpoint of the training goals, it is
possible to relate certain student functions to invalid steps,
or goal violations. It is not desirable to compare each
student action, as this could create an overly complex
monitoring program. Moreover, from a training standpoint,
certain things may not be important. By concentrating only
on certain aspects of the training goals, and relating the
student actions to these goals, a minimal monitoring
program may be created that is still effective.

The fourth step is to solve the problem of what should
be related back to the student; in other words, student
feedback. If the student cannot perform the task properly,
should the training environment be made easier? It is
possible to create large tables or performance comparisons
to determine what should be presented to the student.
However, this becomes another difficult task. The instructor
is a valuable part of the training environment, if the
instructor can be provided with information from sections
one through three, then this summary of events can make
the transition from one student to another much easier. It
allows the instructor to monitor the monitoring program to
oversee what is going on within his or her classroom.

It is possible to attack this problem using an expert
system. This system would create a set of rules or guidelines
based on the actions of expert instructors. However, the
decisions of an expert instructor are difficult to duplicate in
a real-time environment. There are many rules and special
cases that would have to be taken into consideration. This
approach could yield an effective training environment, but
not without a large effort in trying to duplicate instructor
knowledge in the area.

Solution Outline

The first step in solving this problem is to determine the
optimal course of action that the student should take under
a particular set of circumstances. This area is basically
covered through the creation of the CBT system. The
training goals are defined here, at least on a high level. The
training goals must be broken down into subgoals until they
are independent of any other goal in the CBT. The idea is to
have defined unique goals. The breakdown of the goals will

275

not be discussed further, since it is not the focus of this
paper.

One approach to the problems described in items two
and three above is to represent the domain knowledge as a
series of templates, each of which defines a task or
procedure within the domain. These templates become a
collection of generic information about student actions.
These actions that may be combined to create a package that
can describe what the student is specifically doing, based on
generic events. An example in the automobile driving
domain would be a template containing the actions: 1)
Student pushes automobile clutch to floor, and 2) Student
turns key in ignition switch. The first event does not
specifically indicate that the automobile is to be started, the
clutch is also used to change gears. The second event does
not specifically indicate that die automobile is going to be
started, it may be the student's desire to turn on the radio,
which also involves the key in the ignition switch. By
combining the two actions, there is a very high probability
that if both actions take place, then the student is trying to
start the car.

We will refer to a program which incorporates these
templates as an Artificial Intelligent Instructor (All). These
templates can be used to guide the monitoring program
through different segments of the training scenario, looking
for things that cause either training violations, or transitions
to another segment of the scenario. This is continued until
the scenario is complete, or the student has left the training
area of the CBT. The third step of the solution is comparing
what the student is doing against the goals of the CBT. This
is the first level breakdown of the training goals. The second
step of interpreting what the student is doing. This involves
breaking down the goals into events and will be discussed
later.

The third step involves tracking the scenarios through
the templates and providing the information to the instructor
about what the student is doing. This in turn can be used to
determine if the student is on or off course with respect to
the training goals. If the student deviates from a training
goal, he would leave an acceptable template, and move to a
transitional template. This template would indicate a
condition has been created that is in potential conflict with
the training goals. An example of this in the flight
instruction domain would be a student attempting to perform
a pre-landing functionality check before reaching the
destination airport. A condition exists that could result in
training violations if it continues. This becomes a translation
zone. The All program would indicate to the instructor that
the student is now in the translation zone, because of the task
that may be incorrect for this phase of flight. If the student's

altitude returns to an acceptable value, the All would
indicate this to the instructor, and the program would
transition back to the acceptable template. Once this
happens, the All would stop reporting, since it is within the
same template. If the student performed an unacceptable
training task, the All would determine that a condition has
occurred, and will report the information to the instructor.
It would be up to the instructor (or another program) to
determine when the simulation needs to be stopped and the
student informed of the situation.

The basis for the template guideline is determining what
is important at what time. By determining different phases
of the CBT lesson, it is possible to then break the overall
training goals into sub-goals which support the training
goals. These subgoals make up part of the template. What
things should be of concern now. For example, if the IFR
flight is used in the cruise phase of flight, only altitude and
position are of relative concern. If the altitude or position
deviates from the desired path should something be
presented to the instructor. It does not matter that the student
is making fuel/air mixture adjustments, or recalibrating the
navigation instrumentation at this time. These events may be
important for other phases of the training environment, but
here they are not. All system output variables are effectively
ignored, until a template that is concerned with the variables
wakes up and analyzes them. Certain system constraints are
kept within a separate group of templates that are checked
each time. These include things like exceeding structural
limits, crashing into the ground, or other system violations

1. Start L- —± Improper |

2. Taxi Too Fast

|3. Pretakeoff

I 4. Takeoffk

~*1 Improper

Improper |

Too Fast I« 4s. CUmbouth -\ Too Slow

High *—»| 6. Cruise * «■[Low
1_

Fast |-—*\ 7. Descent * Slow

8. Initial Approach]*--! Improper]

High ~H—H°. Approach*
X

Low

10. Landing Improper |

Figure 1 - Transition Template

that do not depend on the phase of training. In this way each
template may be kept generic, and possibly reused in

276

another area of the monitoring. Each template would then
have information concerning what happens when a
parameter is invalid, or some other constraint exists that
would cause the template to no longer be valid. The cruise
template would not be valid as the student approaches the
airport and begins to descend. The descent and/or proximity
to the airport would trigger the template to release
monitoring to the next template, which might be initial
approach phase. This template would be concerned with
reaching a particular approach point at a given altitude and
velocity. Different system parameters would be evaluated
against the sub-goals. Each of the subgoals relates back to
the goal of the CBT, in this case, the practice of IFR flight
with approach to landing.

Cruise Path

Airport Area

Landing Areas

NDBIAP

ILSIAP
VORIAP

Figure 2 - Sample Airport

Through the examination of transitions between the
subgoals a basic transition template can be created. This
transition template is used to follow what is happening
relative to the training goals. This is displayed in Figure 1.
From the cruise template, it is possible to transition to the
descent template, or invalid regions indicated by the altitude
too low/high templates. For this case the cruise template
would contain information about the simulation necessary to
transition to the next template. Since the template is kept
generic, information may not always be strict information.
The cruise template may not have cruise values of 7000 feet
minimum and 8000 feet maximum, but may have
information passed from previous template, such as cruise
value of ClimboutTemplateCruise - 500 feet minimum to
Climbout_Template_Cruise + 500 feet. The
Climbout_Template_Cruise is the altitude that was
necessary to leave the climbout template and enter the cruise
template. This tracking of transitions is done until the
simulation is complete. By presenting the status of the

current template, the instructor is able to determine what the
student progress is within the training goals.

The second problem, interpreting what the student is
doing, depends on the training goals, and is a breakdown on
the third problem. The template list in Figure 1 describes
different high level events that may take place in an
instrument flight trainer. However, within those events, there
needs to be a way to determine what the student is trying to
do, and even predict what the student may be doing next.
This is done to provide as must information about what is
happening in the CBT without actually watching the student
at all times. Using the instrument flight trainer example,
there are several ways to approach an airport. The
transitional point from cruise to approach to landing is
called the initial approach point (LAP). For any given
airport, there may be several IAPs. In Figure 1 the IAP is
listed as a transition from descent to approach. However,
since there may be several points to transition to, and several
approaches that may be accomplished, the student actions
and more importantly intentions must be determined. The
diagram of the cruise path past a sample airport is listed in
Figure 2. This describes an airport with three different
types of landing facilities: Non Directional Beacon (NDB),
Instrument Landing System (ILS) and Very-high Omni
Range (VOR). These instruments can guide the pilot to the
desired runway for landing. If the student is flying northeast
(lower left to upper right) and begins to descend, it is
possible that several things are happening: an NDB, ILS or
VOR approach is about to take place, the student sees the
airport and is going to land without instrument assistance, or
the descent does not mean anything to this airport, the
student is descending for another reason. If the student's path
also changes as in Figure 3. Then it is possible that the

tudent Path

VORIAP

Figure 3 - Student Path

277

Student is implementing the NDB approach, since the
student passed the Initial Approach Point (IAP) of the NDB
approach. This would be the indication as the student passes
the NDB IAP. However, as the student's path is tracked, the
student is not flying the pre-determined path for the NDB

NDB

Figure 4 - Approach Paths

approach as illustrated in Figure 4. The path is similar to
both the NDB and the ILS approach, and it does not appear
that the student is attempting a VOR approach. However, the
other two cases may still be possible. The student may be
flying without the aid of the instruments, or may have
changed course and altitude for reasons not dealing with the
approach. Other parameters would be used to fill out each
template. Since each of the above approaches uses different
radio frequencies, these may be part of the templates. If the
student is only tuned to the NDB frequency, that increases
the probability that it is an NDB approach. However, if all
of the frequencies are being monitored, all of the templates
may continue to be filled in. Since there is not enough
information here to determine what is happening, the
template monitoring system must wait until something
happens to make a decision on the events. As the student
passes the airport at an altitude of 500 feet above the airport,
a determination may be made at this point. Since the
altitude is within the airspace of the airport, the general
assumption is that the student must have been trying to land.
With the radio frequencies tuned in, indicating a possible
approach, a determination that the student was not
implementing a VOR approach may be made because of his
position. A further examination would require the instrument
readings. If the ILS instruments are properly tuned for the
approach, the student was executing an ILS approach, if
both the NDB and ILS instruments are properly tuned, then

the student was also probably executing an ILS approach,
even thought the IAP point was missed, the approach was
closer to the ILS than the NDB approach. This
determination is made because the flight path is closer to the
ILS than the NDB approaches (Figure 4). The rest of both
the ILS and NDB templates are equal. Thus, the template
that most resembles the student's observed actions will be
deemed to represent his intentions. However, this conclusion
is based on student actions, in the current environment. It is
possible that the student wasn't using the instruments, and
was only flying according to what he saw. However, the
templates do provide a good measure of determining what
the student is trying to do without interrupting the student's
training to ask them.

Using templates does not eliminate the need for a rule-
based system, only diminishes it. The templates look at the
rules from the training standpoint. From that perspective,
important training parameters may be grouped. If the CBT
does not care about certain functions or procedures that the
simulation may perform, then it is not monitored. However,
there must exist certain guideline parameters that would be
enclosed in the base templates. These would be the general
rules that the CBT must follow. For instance, If the student
was descending because he was out of fuel, and the course
and altitude deviations were due to this, we would not want
to ignore these important conditions. However, these
conditions may not be part of any of the training goals. The
training goal may be landing practice, this may not include
the need for fuel management. If outside parameters will be
modelled, they would be included here. These parameters
would be part of the base template structure, and would
allow the other templates to be as generic as possible. The
general processing of the information would include the
gathering of information from the simulation, comparison
with the generic templates, then comparison with the base
templates. The base templates would be of the same nature
as the generic templates, but they may not be the same for
different trainers. The generic template would be good for
any aircraft that contained NDB, ILS or VOR instruments.
However, fuel starvation conditions and responses would be
different for different aircraft.

The fourth problem is providing feedback to the
student. This presents an interesting challenge. Since the
second and third problems provide a good estimation on
what the student is doing, a follow-on program could be
used to present information back to the student concerning
his or her progress and deviations. However, this is an
estimate against the training goals. It would be better to
provide this information to the instructor to interpret and in
turn present to the student concerning the performance at the

278

CBT system. The information concerning student
performance could be used to simplify the scenarios in real
time if the student is struggling, or make it more difficult if
the student is doing well.

System Integration

There are a large number of CBT environments for
which the All could provide productive assistance.
However, the largest difficulty is integrating this new
system into an existing trainer. There are two ways of
integrating the system: at the simulator, or at the instructor
station.

By integrating the All at the simulator, it has access to
everything that the simulation generates. This provides a
thorough exposure to all variables within the simulation.
There would be minimal time lags at the All due to its close
computational proximity to the information. It could actually
be scheduled within the simulation time frame to provide as
little impact as possible on the overall simulation. This
approach suits well simulations that are changing rapidly,
and the analysis of events needs more information than is
currently being passed to the instructor. There is a larger
time lag in presenting the information to the instructor, since
the information must be passed from the simulation back to
the instructor. However, the cpu load of the All would be
split between the simulator and the instructor station.

Integrating the AH at the instructor station provides a
smaller system impact. If the simulation is real-time, it will
not be affected by the All running at the instructor station.
However, the appropriate data must be transferred from the
simulation to the instructor station already to make sure
there is no system impact. For instance, if there is a digital
repeater of the flight instruments in the instruments flight
trainer, the information that is being passed to the
instructor's station has all of the necessary information to
determine the student's course of action. The All would
intercept the information and summarize it for the instructor.
The cpu load of the All would be taken completely by the
instructor station, and not effect the simulation at all.

Summary

The template based monitoring systems allows the
instructor to see what is going on within the classroom
without the problem of examining every step that each
student takes. A sample of the All transition is shown below:

Start
Taxi
Takeoff
Climbout
Cruise
Descent
Reached NDBIAP
Course most like ILS approach
Left Fuel Tank starvation

Since this simulation is time-based, each transition would
have time stamp information. This transition would indicate
that the student is potentially having problems with fuel
management. This could be observed by looking at the fuel
tank when the fuel ran out. However, by looking at the time
stamp for the different transitions, an analysis of what phase
took longer than was expected. The fuel starvation phase of
flight can be made without the need for direct instructor
intervention in the CBT. The instructor could be informed
of the situation without viewing the student's instruments.
This concept applies to not only Instrument Flight Practice,
but to any area of simulation based training where the goals
are defined. If it is applied to a maintenance trainer, the goal
may be to measure the output frequency of a piece of
equipment. This becomes one of the subgoals. There are
many ways to perform maintenance, and it is not feasible to
try and cover all of the possibilities. By subdividing the
system goals into manageable sections, the All can view the
CBT from the goals standpoint, and provide a summary of
student actions. It is not realistic to attempt to model all of
the different ways that two aircraft can engage each other.
However, if the goal is the engaging and destroying the
enemy, this provides a more defined goal set.

As the number of non-generic rules increases, the base
templates will increase to handle the special cases. As the
base templates become larger than the generic templates,
then the system has reverted back into a pure rule based
system, and either the training goals must be re-evaluated, or
another system will be needed. The template system does
have the need to understand the training goals thoroughly
before any system modeling can begin. Since the entire
system is based on presenting the training goals to the
instructor, as performed by the student, a complete
requirements analysis must be done.

279

References

1. Levi, S., Real Time System Design, McGraw-Hill
Publishing, 1990

2. Gonzalez, A. and Myler, H., An Intelligent Instructor
Support System for Training Simulators, Proceedings of the
Society of Computer Simulation Multi-Conference, March
1988

5. Rich, E. and Knight, K., Artificial Intelligence, McGraw-
Hill Publishing, 1991.

6. Lin, S. and Dean, T., Exploiting Locality in Temporal
Reasoning, Brown University/National Science Foundation,
1993

7. Riesbeck, C. and Schänk, R., Inside Case-Based
Reasoning, Lawrence Erlbaum Associates, 1989

3. Thurman, R, Applying Artificial Intelligence to Training 8. Santos, E., A Linear Constraint Satisfaction Approach to
Air Combat Maneuvering: The Potential, The Pitfalls, The Cyclicity, Brown University/Office of Naval Research,
Products, Air Force Armstrong Laboratory. 1992 1992,

4. Smith, C. and Corripio, A., Principles and Practice of
Automatic Process Control, Wiley Publishing, 1985

280

FSATS: an Object-Based Approach to Distributed Interactive Simulation
for C3I Test and Training

Eric Evans
Applied Research Laboratories

The University of Texas at Austin

Abstract

FSATS is a tool designed to support both testing and
training for C3I systems. It provides the capabilities for
collecting C3I tactical message traffic, reducing it for
later evaluation, and interactively simulating C3I units.
FSATS hardware consists of a variable number of LAN-
based processors, and its software may be distributed
among these processors in a range of possible configura-
tions. The software is developed using an object-oriented
model, where application-level functions are implemented
as distinct object classes. FSATS interactively simulates
C3I units by modelling each type as a set of logic tables
and state data. Each such model is implemented by an
object class. Object interaction is mapped onto a FSATS-
provided message-delivery service. Objects invoke opera-
tions on each other by sending request messages, and the
results may be returned in response messages. FSATS's
object interaction model will probably migrate in the
future toward compliance with industry standards, in
order to take advantage of third-party software.

Background

The Fire Support Automated Test System (FSATS) is
a distributed hardware and software system. It is used as a
tool to support both testing and training for military Com-
mand, Control, Communications, and Intelligence (C3I)
Systems. FSATS's sponsor is the Army Program Manager
for Instrumentation, Targets, and Threat Simulators
(PMITTS), and its intended users are the military fire sup-
port test and training community. FSATS was originally
developed to support the testing and evaluation of the new
Advanced Field Artillery Tactical Data System

(AFATDS), an enhanced C3I system sponsored by the
Army Program Manager for Field Artillery Tactical Data
Systems (PMFATDS).

C3I systems can be complex and therefore costly to
test. Reasonable test objectives for a C3I system might
easily require battalion- or brigade-sized deployments of
personnel and equipment to approximate the conditions in
which the System Under Test (SUT) is to be used. Several
different kinds of tactical communication networks may
be involved, and there may be many instances of each.
Further resources may be needed for monitoring and col-
lecting data on the test itself. FSATS addresses this prob-
lem with its three main capabilities: (1) monitoring tactical
communication networks and collecting the resulting tac-
tical message traffic; (2) archiving the message traffic and
reducing the collected data to a manageable form so that
the SUT's performance can be evaluated; and (3) interac-
tively simulating fire support units for the purpose of
reducing the personnel and equipment resources needed to
thoroughly exercise the SUT (thereby reducing the overall
cost of the test). This paper focuses on FSATS's interac-
tive simulation capability.

In addition to supporting the testing of C3I systems
themselves, FSATS's simulation capability could also be
used in a training role to "surround" a live player with
simulated units. It could be configured to reinforce specific
desired actions and procedures on the part of the live
player. It could also help to fill out a battalion-, brigade-,
or division-sized training laydown, providing the neces-
sary realism at a reduced cost.

FSATS has been used by its customers to support sev-
eral AFATDS tests in 1993 and 1994. Some of the lessons
learned about FSATS during these tests are discussed
throughout the paper. FSATS has not yet been employed in
a training capacity.

ISBN 0-8186-6440-1. Copyright (C) 1994 IEEE. All rights reserved

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to info.pub.permission@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it.

281
0-8186-6440-1/94 $04.00 © 1994 IEEE

Architecture

There are three dominant aspects of FSATS architec-
ture: it is distributed, it is highly configurable, and its soft-
ware is object-oriented. Its distributed nature is apparent in
both hardware and software. FSATS hardware generally
consists of a collection of UNIX workstations1 intercon-
nected by a standard IEEE 802.3 local-area network
(LAN). At runtime, FSATS software consists of separately
executing programs that communicate primarily by
exchanging messages. These programs may execute on the
same host or on different hosts on the network. Currently
FSATS uses standard transport facilities provided by the
UNIX operating system for this message delivery2. Some
information is also shared via a commercial database man-
agement system (DBMS) that is accessible across the net-
work3.

FSATS may be used in a wide range of hardware and
software configurations. This flexibility is required so that
it can accommodate the many possible SUT configura-
tions as well as the different functions required for various
test or training scenarios. A given FSATS hardware con-
figuration may be as simple as a single workstation with
an interface to a single SUT tactical network, or it may
consist of many networked workstations attached to many
tactical networks. FSATS software may be configured
using its test planning feature to determine whether certain
functions must be present and how they should be allo-
cated to processors for a given test or training scenario.
The resulting configuration is then constructed when
FSATS execution begins.

FSATS software was designed using an object-ori-
ented development model. This model was chosen early in
the project because the advantages of object-oriented
design (especially modularity and code reuse) were obvi-
ously useful in the development of a complex, large-scale
software application like FSATS. The FSATS object
model is essentially the same as the Core Object Model
described in the Object Management Group's (OMG)
Object Management Architecture (OMA) [2]. An FSATS
object is a software entity that maintains its own state, and
provides a well-defined set of operations that it will per-
form if requested to. A particular object is an instance of
an object class and is specified by its unique object identi-
fier. Objects of a given class provide the same set of opera-
tions, but each object maintains its own state. An
operation is essentially a procedure which may require
input parameters upon invocation, and may also provide

1. SCO Open Desktop 2.0, on Intel x86-based workstations.
2. The Internet User Datagram Protocol (UDP) [1], accessed via the

UNIX Transport Layer Interface (TLI).
3. Oracle 6.36 for SCO UNIX

output parameters upon completion. A client (usually an
object itself) invokes a given operation on a particular
object by specifying the object identifier, the operation,
and any input parameters for that operation. The client
may also receive output parameters in return if the opera-
tion provides them.

The FSATS object model is not identical to the OMA
Core Object Model, however. The main difference is that
FSATS provides no mechanism for inheritance. The
FSATS object model was developed during the early
design and prototype phase of the project in 1990, without
knowledge of the OMG's work. However, both models
were designed to achieve very similar goals and were
influenced by many of the same developments in software
research and industry during the same period.

The various capabilities of FSATS are decomposed
into distinct functions, each of which is then implemented
as its own object class. FSATS can create an instance of a
function by creating an instance of its corresponding
object class. This allows an FSATS configuration to con-
tain only those functions needed for a given test or training
scenario, and to allocate them to specific processors. There
are object classes that implement functions such as col-
lecting data from SUT networks, logging collected data to
secondary storage media, acquiring position and global
time data from Global Positioning System (GPS) tran-
sponders, and managing internal FSATS resources.
Finally, there are object classes that implement the C3I
simulation models used in FSATS's interactive simulation
capability.

Interactive simulation

FSATS simulation is based upon a set of requirements
known in the fire support community as Operational Facil-
ity (OPFAC) Logic, which has primarily been provided to
ARL:UT as Government Furnished Information (GFI).
OPFACs are the fire support units that together comprise
the echelons responsible for initiating, directing, and
implementing artillery fire on the battlefield. They are
interconnected by any of several different kinds of tactical
networks, and they interact by exchanging "tactical mes-
sages" among themselves. From a simulation perspective,
any OPFAC can be modelled as an entity that maintains its
own state, accepts input events (usually tactical mes-
sages), and produces output events (also usually tactical
messages). FSATS simulates various types of OPFACs in
the categories of sensor, command and control, and firing
units. Real OPFACs and FSATS simulated OPFACs inter-
act solely through the exchange of tactical messages.

Each type of simulated OPFAC model is implemented
as a FSATS object class, which employs its own subset of
OPFAC Logic to determine its behavior. A simulated

282

OPFAC receives each input event as an operation request
from another object. This request may convey a tactical
message sent by another OPFAC, which may be real or
simulated. It may also be an FSATS-internal request, such
as a command to initialize or shut down sent by a resource
manager object. Based upon the received request and its
parameters, and upon its own current state, the simulated
OPFAC uses its portion of OPFAC Logic to determine
which actions to perform. These may include changing the
model's state and/or making requests of other objects.
Each such request may itself convey a tactical message
that is sent to another real or simulated OPFAC.

Simulated OPFACs may be stimulated by tactical
messages from two sources: (1) other OPFACs (real or
simulated); and (2) the Time Ordered Event List (TOEL).
A TOEL is a list of tactical messages that are to be deliv-
ered to simulated OPFACs at scheduled times. TOELs are
in essence "scenario scripts" that permit some control over
the inputs to a test or training scenario. An object class
called the "TOEL server" reads the TOEL and dispatches
the specified tactical message to the given OPFAC at the
given time.

Some of the simulated OPFAC models are complex
and may store much of their OPFAC logic tables and state
data in the DBMS. The DBMS currently used in FSATS is
accessible from across the network, but it has only a sin-
gle, central server. This has led to contention among simu-
lated OPFAC objects for access to the DBMS server,
especially during the start-up phase of FSATS when most
of these objects are being created and are trying to initial-
ize their model state data. Therefore, some of the perfor-
mance advantage of implementing the simulated OPFAC
models as distributed objects has been negated by the fact
that a critical resource they all use is not itself distributed.
Future FSATS work will investigate the use of DBMS
strategies such as data replication to alleviate this bottle-
neck.

The types and formats of the tactical messages and the
FSATS control messages exchanged by simulated
OPFACs do not currently comply with the standards being
developed for Distributed Interactive Simulation (DIS) by
the Workshops on Standards for the Interoperability of
Defense Simulations [3]. This compliance was not speci-
fied as a requirement for the initial version of FSATS, but
future work will include studying these standards for their
applicability and possible benefits to FSATS and its users.

Object interaction

The software component of FSATS that supports
object interaction is called the Distributed Object Environ-
ment (DOE). The DOE provides a message-passing ser-
vice that objects use to request operations upon each other,

as follows. A message key is defined for every possible
type of DOE message, which may contain one particular
data type. A given operation on an object may map to one
or two DOE message types: one key for the message that
contains the operation request, and another for the mes-
sage that contains its response, if there is one. The data
type conveyed by a DOE message therefore contains
either the input or output parameters of an operation. An
example of this mapping is expressed in Figure 1, for a
hypothetical operation opl.

Operation declared as:

void op1 (in typel argl,

in type2 arg2,

out type3 arg3)

Corresponds to:

Request message with: Key = keyl Data = (argl, arg2)

Response message with: Key = key2 Data = (arg3)

Figure 1

The DOE message-passing service provides object
location transparency (clients need only know the identi-
fier for a given object, not where that object resides) and
both synchronous and asynchronous modes of operation.
A client invokes an operation on an object by creating a
DOE message which contains the object identifier, the cor-
rect message key for the request, and the "in" arguments
for that operation. It then sends the request message using
one of the DOE SEND primitives. One form of SEND
blocks the client until the object's response message
returns, which bears the "out" arguments of the requested
operation. The other form of SEND just delivers the
request without blocking the client. This is used for opera-
tions that have no "out" parameters.

Object implementations contain the subprograms, or
methods, that actually perform the requested operations.
Each object implementation also contains code that
receives each operation request message (using one of the
DOE RECEIVE primitives), extracts the message key,
then invokes the correct method for the given key, passing
it the "in" arguments from the request message. If there
are "out" parameters for the operation, then the object will
also build the response message containing those results
and send it back to the requesting client.

During execution, FSATS objects reside within exe-
cutable programs as shown in Figure 2. In addition to the
object implementation software, each program links in the
DOE procedures which objects use for exchanging DOE
messages. When a client sends a message to another

283

Host

FSATS Program
• \

Objects

FSATS Program

^pbject§

DOE

UNIX and Transport

• • •

Via Network

Figure 2

Host

FSATS Proqrar

-Objected

r

Tl

L DOE J

JUNIX and Transport

object, the client-side DOE code provides location trans-
parency by looking up the destination object identifier in
DOE's Object Directory (OD) service. This returns the
location of the object's implementation. If the destination
object is implemented in the same program, the request is
delivered to it directly in memory (Figure 2, A). Otherwise
the request message is relayed to the target object's server
program via the UNIX-provided transport service (Figure
2, B and C). All messages sent via the transport are
encoded using the standard External Data Representation
(XDR) [4] so that they may be independent of different
host data representations.

The DOE OD maps each object identifier in FSATS to
that object's location (i.e., the transport address of its
server program). Therefore, each object must register its
identifier with the OD before any clients can send DOE
messages to it. DOE's current OD implementation has no
central server. The OD is replicated among all of the
server programs. Each program contains an OD agent. A
special protocol is used to ensure that all such agents com-
prising the OD quickly converge toward mutual consis-
tency whenever an object changes its status, or whenever
some inconsistency is detected. An object may change its
status by registering or deregistering itself, in which case
its local OD agent will notify all the others. If a client tries
to send a message to an object identifier that is unknown to
the client's local OD agent, that agent will broadcast a
query for that object to all other OD agents. If the object in
question has registered anywhere in the FSATS, its own
OD agent will respond with the needed information. An
OD agent will detect a routing error when a DOE message
is delivered to an FSATS program which does not contain
the destination object. It then sends a special message back
to the source program notifying it of the error. The source
OD agent will then use the query mechanism to resolve
the error. OD agents can also detect attempts to register
object identifiers which are already registered, in which

case the source agent is notified.
Since the OD has no central server, there is no single

point of failure in the system. Programs can be terminated
during FSATS execution without disturbing anything but
the objects that resided there and the objects that were
interacting with them. We have found the OD protocol to
be quite robust and nimble in dealing with OD changes
and inconsistencies. However, this protocol relies heavily
on the availability of a broadcast mechanism that can dis-
tribute a single message to all OD agents. This approach
works very well in FSATS's current communications envi-
ronment, since the Internet Protocol [5] provides a special
broadcast address that can be used within a network, and
the IEEE 802.3 LAN technology provides true broadcast
support in hardware. Nevertheless, it would not scale well
to FSATS configurations which included many hundreds
of objects or more, and would be inefficient in a network
that did not support true broadcasting.

In any case, DOE and its OD may be replaced in
future versions of FSATS by third-party standards-based
products. Like the FSATS object model with respect to the
OMG's OMA, DOE was designed and implemented in the
period 1990-1993, roughly the same time that OMG's
Common Object Request Broker Architecture (CORBA)
[6] was evolving. Because of the similarity in their design
goals, DOE provides most of the services of an Object
Request Broker (ORB) as described by CORBA, although
it obviously does not comply with its specifications.

The ways in which DOE falls short of being a
CORBA-style ORB are related to some persistent soft-
ware development problems in FSATS. FSATS objects are
currently not required to have explicit, well-defined inter-
faces. There is nothing like the Interface Definition
Language (IDL) defined by CORBA. This means that a
very useful feature provided by a CORBA ORB cannot be
provided by DOE: automatic generation of the software
that maps object operations to the underlying message-

284

passing service. FSATS object implementors must write
the so-called skeleton software that receives each DOE
message, interprets its contents, invokes the correct
method, and builds and sends the reply message. Client
implementors must write each stub procedure that builds
and sends the request message for a given operation, waits
for the response, and returns the results. But given an
explicit, well-defined object interface, both the client stub
and object skeleton source code could be generated auto-
matically. Client implementors would then need only use a
procedure-call interface to invoke an operation on an
object. Object implementors would only have to provide
the actual methods for each operation. CORBA defines a
tool called the IDL compiler, which takes an object inter-
face defined in IDL and generates the client stubs and
object skeleton. This source code can then be compiled
and linked in to the client and object implementations
respectively.

Automatic generation of the stub and skeleton source
code would provide two important benefits for the devel-
opment of the distributed object software in FSATS. For
one, programmers would no longer need to write stub and
skeleton source code by hand, which is a rather mechani-
cal and error-prone process anyway. For another, it would
provide a mechanism which enforces consistency between
the operations that an object actually provides and the
operations a client expects that object to provide. FSATS
client programmers currently must rely on non-source
code specifications, usually provided in comments. With
an IDL compiler, both client and object implementation
would start with the same interface definition for the
object, so changes to the object's interface would be
forced upon the client when the stub procedures are regen-
erated and re-linked.

Our realization of DOE's shortcomings compared to
the emerging model for distributed objects has led us to
develop an approach for moving FSATS towards industry
standards in this area. We have chosen the CORBA stan-
dards as our target, because of the similarity to FSATS's
object model, its industry support, and its source language
bindings: C and C++ (for reasons outside the scope of this
paper, future FSATS objects are likely to be developed in
C++ rather than the currently used Ada).

The ultimate goal is to make future FSATS objects
source-code-portable to any host/operating system plat-
form for which there is an ORB implementation with the
desired language binding. The main benefit of achieving
this would be to provide FSATS the option of replacing
our home-grown DOE with a commercially available and
supported ORB. This would include replacing DOE's OD
with one based on the Naming Service Specification
defined in the OMG's Common Object Services Specifica-
tion [7]. It would also allow FSATS to execute on a greater

range of potential host and operating system platforms.
An important interim goal is to allow a migration

period during which the old FSATS objects can still inter-
act with newly-developed FSATS objects that expect a
CORBA-compliant ORB. During this period, the new
FSATS objects would actually use a CORBA-compliant
version of DOE, which could still interoperate with the old
DOE using the old DOE message-passing protocols. How-
ever, once all of the old FSATS objects have been dis-
carded or ported to the new CORBA-compliant DOE, that
DOE itself could be replaced with any third-party CORBA
ORB.

Conclusions

In general, we have found that a distributed object
architecture works well for supporting the distributed
interactive simulation capabilities required of FSATS.
Notwithstanding minor bottlenecks like the DBMS, per-
formance has been satisfactory in the simulations to date.
The flexibility of configuration inherent in the architecture
has allowed FSATS to support different simulation scenar-
ios, and has enabled the tuning of simulation performance
by balancing the load of model objects across host proces-
sors.

The DOE system software that supports FSATS's dis-
tributed objects has worked very well for all of FSATS's
functions, including distributed interactive simulation.
Object interaction via DOE is fast and reliable enough that
the overhead of object distribution has not been a problem.
The distributed object directory is robust and adapts to
changes quickly. However, experience during the last two
years has highlighted areas which should be improved.
The current object directory design would probably
decline noticeably in efficiency as the size and complexity
of the FSATS configuration grew. Also, DOE is lacking
somewhat in the support of object software development
and management. Therefore, future FSATS work will
likely focus on migrating FSATS objects to work over any
CORBA-compliant ORB, ultimately allowing FSATS to
replace its proprietary DOE with whatever third-party
ORB works on a required host and operating system plat-
form.

References

[1] Postel, J.B. "User Datagram Protocol" (Internet RFC 768),
1980.

[2] Object Management Group. "Object Management Archi-
tecture Guide" (OMG 92.11.1), Object Management
Group, Framingham, MA, 1992.

285

[3] UCF Institute for Simulation and Training. Distributed [6] Object Management Group. "The Common Object Request
Interactive Simulation Standards (series), UCF Institute for Broker: Architecture and Specification" (OMG 91.12.1),
Simulation and Training, Orlando, FL. Object Management Group, Framingham, MA, 1991.

[4] Sun Microsystems, Inc. "XDR: External Data Representa- [7] Object Management Group. "Common Object Services
tion Standard" (Internet RFC 1014), 1987. Specification - Volume 1" (OMG 94.1.1), Object Manage-

ment Group, Framingham, MA, 1994.
[5] Postel, J.B. "DoD Standard Internet Protocol" (Internet

RFC 760), 1980.

286

Author Index

Ahmad, 0 36
Ahn, M.S 199
Arnold, R 178
Badler, N.I 84
Banks, S 8
Barham, P.T 84
Barros, F.J 185
Biggers, K 84
Bunn, C 122
Butler, B 106
Campbell, C.E 55
Chandra, J 2
Cheung, S.E 70
Chien, L.-P ...30,164
Chow, A.C 157
Coleman, N 8
Couretas, J.M 192, 214
Cremer, J 36
Deshpande, A 244
Douglass, R 84
Drewes, P 274
Eastman, B 84
Eskafi,F.H 251
Evans, E 281
Fehr,S 257
Fishwick, P.A 113
Ge, X 12
Godbole, D 16
Göllü, A 244
Gonzalez, A 274
Granieri, J 84
Gray, M.D 77
Haider, G 221
Hansen, S 36
Hingorani, P 244
Hollick,M 84
Hong,G.P 170
Howard, M.D 136
Huang, R.Y.-M 30
Jacak,W 221
Jacobsen, S 84
Jahn, G 221
James, J 2, 8,12
Jaszlics, I.J 100
Jaszlics, S.L 100
Jinxiong, C 43

Jones, C.K 77
Jones, S.H 100
Katz,A 106
Kearney, J 36
Khorramabadi, D 251
Kim, D.H 157
Kim, T.G 170, 199, 228, 235
Kleinman, D.L 129
Ko,H 84
Kohn, W 2, 8,12
Landweer, P 262
Lee,J.J 113
Lee, KH 235
Locke, J 84
Loper, M.L 70
Lygeros, J 16
Magee, F.D 141
Marti, J 122
McClung,D.A 257
McCulley, G 55
Mendes, M.T 185
Moore, T 84
Nagao, G 257
Nerode, A 2, 8,12
Papelis, Y.E 48
Praehofer, H 150, 221
Pratt, D.R 84
Provost, M 62
Radiya,A 24
Reece, D.A 91
Reisinger, G 150
Rozenblit, J.W 164,214
Sartor, M 43
Sastry, S 16
Simard, R.J 192
Song,A.A 129
Song, H.S 228
Thomas, C 208
Uhrmacher, A.M 178
VanLe,T 269
Varaiya, P 244
Watkins, J 62
Willemsen, P 36
Zeigler,B.P 157, 185,192
Zyda,M.J 84

287

Notes

IEEE Computer Society Press
Press Activities Board

Vice President: Joseph Boykin, GTE Laboratories
Jon T. Butler, Naval Postgraduate School

Elliot J. Chikofsky, Northeastern University
James J. Farrell III, VLSI Technology Inc.
I. Mark Haas, Bell Northern Research, Inc.

Lansing Hatfield, Lawrence Livermore National Laboratory
Ronald G. Hoelzeman, University of Pittsburgh

Gene F. Hoffnagle, IBM Corporation
John R. Nicol, GTE Laboratories

Yale N. Patt, University of Michigan
Benjamin W. Wah, University of Illinois

Press Editorial Board
Advances in Computer Science and Engineering
Editor-in-Chief: Jon T. Butler, Naval Postgraduate School

Assoc. EIC/Acquisitions: Pradip K. Srimani, Colorado State University
Dharma P. Agrawal, North Carolina State University

Carl K. Chang, University of Illinois
Vyay K. Jain, University of South Florida

Yutaka Kanayama, Naval Postgraduate School
Gerald M. Masson, The Johns Hopkins University

Sudha Ram, University of Arizona
David C. Rine, George Mason University

A.R.K. Sastry, Rockwell International Science Center
Abhyit Sengupta, University of South Carolina

Mukesh Singhal, Ohio State University
Scott M. Stevens, Carnegie Mellon University

Michael Roy Williams, The University of Calgary
Ronald D. Williams, University of Virginia

Press Staff
T. Michael Elliott, Executive Director

H. True Seaborn, Publisher
Matthew S. Loeb, Assistant Publisher
Catherine Harris, Managing Editor

Mary E. Kavanaugh, Production Editor
Lisa O'Conner, Production Editor

Regina Spencer Sipple, Production Editor
Penny Storms, Production Editor
Edna Straub, Production Editor

Robert Werner, Production Editor
Perri Cline, Electronic Publishing Manager
Frieda Koester, Marketing/Sales Manager

Thomas Fink, Advertising/Promotions Manager

Offices of the IEEE Computer Society
Headquarters Office

1730 Massachusetts Avenue, N.W.
Washington, DC 20036-1903

Phone: (202) 371-0101 — Fax: (202) 728-9614
Publications Office

P.O. Box 3014
10662 Los Vaqueros Circle

Los Alamitos, CA 90720-1264
Membership and General Information: (714) 821-8380

Publication Orders: (800) 272-6657 — Fax: (714) 821-4010
European Office

13, avenue de l'Aquilon
B-1200 Brussels, BELGIUM

Phone: 32-2-770-21-98 — Fax: 32-2-770-85-05

Asian Office
Ooshima Building

2-19-1 Minami-Aoyama, Minato-ku
Tokyo 107, JAPAN

Phone: 81-3-408-3118 — Fax: 81-3-408-3553

IEEE Computer Society

IEEE Computer Society Press Publications

Monographs: A monograph is an authored book consisting of 100-
percent original material.

Tutorials: A tutorial is a collection of original materials prepared

by the editors and reprints of the best articles published in a subject
area. Tutorials must contain at least five percent of original material

(although we recommend 15 to 20 percent of original material).
Reprint collections: A reprint collection contains reprints (divided
into sections) with a preface, table of contents, and section introduc-
tions discussing the reprints and why they were selected. Collections

contain less than five percent of original material.

Technology series: Each technology series is a brief reprint

collection — approximately 126-136 pages and containing 12 to 13

papers, each paper focusing on a subset of a specific discipline, such

as networks, architecture, software, or robotics.
Submission of proposals: For guidelines on preparing CS Press
books, write the Managing Editor, IEEE Computer Society Press,
P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA

90720-1264, or telephone (714) 821-8380.

Purpose

The IEEE Computer Society advances the theory and practice of
computer science and engineering, promotes the exchange of tech-

nical information among 100,000 members worldwide, and provides
a wide range of services to members and nonmembers.

Membership

All members receive the acclaimed monthly magazine Computer,

discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate society

members, and others seriously interested in the computer field.

Publications and Activities

Computer magazine: An authoritative, easy-to-read magazine

containing tutorials and in-depth articles on topics across the com-

puter field, plus news, conference reports, book reviews, calendars,
calls for papers, interviews, and new products.

Periodicals: The society publishes six magazines and five re-

search transactions. For more details, refer to our membership
application or request information as noted above.

Conference proceedings, tutorial texts, and standards docu-
ments: The IEEE Computer Society Press publishes more than 100
titles every year.

Standards working groups: Over 100 of these groups produce
IEEE standards used throughout the industrial world.

Technical committees: Over 30 TCs publish newsletters, pro-

vide interaction with peers in specialty areas, and directly influence

standards, conferences, and education.
Conferences/Education: The society holds about 100 confer-

ences each year and sponsors many educational activities, including
computing science accreditation.

Chapters: Regular and student chapters worldwide provide the

opportunity to interact with colleagues, hear technical experts, and
serve the local professional community.

