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I. Introduction 

In many applications such as high speed digital signal processing, reliable simulations of dynamical systems, 
digital implementation and simulation of chaotic systems, etc., effects of finite wordlength are a critical 
issue. The process of actual digital computer implementation of a given ideal dynamical system can be 
characterized by several open parameters that have a critical impact on the performance of the actually 
implemented algorithm: 

1. The realization (in the linear case, the system matrices): This determines the coefficients involved, the 
order of computation, etc. There are infinitely many realizations for implementing the same dynamical 
system. 

2. The arithmetic format: This determines the type of arithmetic used (fixed point, floating point, etc.), 
the register lengths, and the type of quantization operations in the reformatting processes. 

For the class of linear, time-invariant systems, ^-operator based implementations were shown to perform 
superior relative to their g-operator based counterparts, if the sampling rate is chosen sufficiently small [1,2]. 
These advantages of the 6-operator, especially in high speed, real-time applications, were demonstrated 
with respect to quantization noise at system output and differential sensitivity of the frequency response 
with respect to coefficients of system realization [1-4]. In addition, the use of (^-operators allows a unified 
treatment of both the continuous and discrete time cases. These properties make (5-operator based systems 
an attractive alternative to conventional system realizations. 
However, a number of questions on 6-operator based implementations remained unanswered: 

1. Do the advantages that have been demonstrated for the linear time-invariant case carry over to the 2-D, 
m-D, and possibly nonlinear cases? If so, 6-operator based numerical schemes can provide a completely 
novel, simple, widely applicable, yet more reliable methodology for system simulation and realization. 
The fundamental importance of such an investigation was identified at the very outset by the Pi's. 

2. What about asymptotic stability of 5-operator systems and the possibility of limit cycles? Although 
quantization noise at the output was shown to be smaller for 6-system realizations, this does not au- 
tomatically preclude the existence of limit cycles. In fixed point implementations, the existence of 
prohibitively large limit cycles was evident. Although in almost all applications such behavior is unac- 
ceptable, no attention had been directed towards this seemingly generic phenomena of «^-systems. 

The above questions are at the core of this research project. This report, which provides a description of the 
work carried out under this research project, is structured as follows: In Section II, a brief description of the 
proposed tasks is outlined. In Section III, the results obtained are briefly described on a qualitative level for 
each of the problem areas tackled. Section IV offers conclusions and summarizes the accomplishments and 
their significance. Section V contains pertinent references. More detailed technical decriptions of the results 
in Section III may be found in several technical papers, and these are included in Appendix A. It contains 
all those papers that have already been published in or submitted to journals or conferences as well as all 
material (such as, presentations, summaries, etc.) that has been submitted to ONR. Appendix B contains 
those technical papers that have some peripheral relevance to the proposed research, and those in which 
acknowledgement of ONR support is given. 



II. Brief Description Tasks 

The proposed work was divided into three major tasks: 

Tl: Analysis and design of finite wordlength implementations of linear time-invariant 6-systems. 
T2: Analysis of nonlinear circuits through 6-operator based schemes. 
T3: 2-D and ra-D <5-system models. 

Task 1 reveals some fundamental difficulties in the implementation of <5-systems with fixed point arith- 
metic. It focuses mainly on zero convergence of the free system response and exposes the existence of limit 
cycles as well as effects of sampling time A quantization. 

Task 2 is a study of whether the superior finite wordlength properties associated with certain linear 
time-invariant system realizations also extend to nonlinear systems. This work was mainly motivated by 
some very promising simulation results of chaotic systems. 

Task 3 develops the formalisms for 2-D and m-D system descriptions in ^-operator form. It also investi- 
gates sensitivity properties of these proposed m-D ^-models and compares them with conventional g-models. 



III. Results and Accomplishments 

This section offers brief qualitative descriptions of the results obtained during this project period. A more 
rigorous quantitative analysis of these results are to be found in Appendix A which contains all relevant 
technical papers. 

111.1 Task 1: Analysis and Design of Finite Wordlength Implementations of Linear Time- 
Invariant ^-Systems 

We have exposed a serious limitation of 6-operator based realizations of discrete time systems: they cannot 
be free of limit-cycles when used with small sampling times and fixed point arithmetic! In particular, DC 
limit cycles are always present when sampling time is smaller than 0.5 for rounding, and 1.0 for truncation. 
In other words, under these conditions, nonzero initial conditions can be found, such that the asymptotic 
response converges to an incorrect equilibrium point different from the origin [5]. This in fact is a generic 
problem with <5-systems in the sense that it is independent of the margin of stability (of the ideal linear 
system) and its realization. The main cause of this lies in the update equation where multiplication by 
sampling time (which is typically small) occurs. This results in a difference vector that quantizes to zero. 

The use of novel quantization schemes with smaller deadzones was also shown to be ineffective: Although 
quantizers that significantly reduce DC limit cycle amplitude may be selected, new oscillatory limit cycles 
are usually created. A newly developed computer-aided search algorithm for the existence of limit cycles 
may be effectively used to investigate this phenomenon [6]. Through construction of deadband regions and 
simple bounding hypercubes, these limit cycle amplitudes have been shown to grow with increasing sampling 
rate [6,7]. Using results on necessary 1-D conditions for stability of m-D systems [8], m-D <5-systems were 
also shown to produce similar limit cycle behavior [7,9]. 

Another drawback of fixed point <5-operator implementations is the required high dynamic range of 
coefficients and signals. This is due to the fact that, given a g-system, in obtaining the corresponding 8- 
system, a division by A (which is typically small) is involved. Hence, additional bits in coefficient/signal 
registers are generally required to avoid overflow [10]. 

The above investigations produced the following unavoidable conclusion: Since «^-operator formulated 
discrete time systems are superior to their g-operator counterparts only when the sampling rate is chosen to 
be significantly smaller than one, fixed point arithmetic is not a suitable format for ^-system implementations. 

The situation is refreshingly different in floating point arithmetic: The above mentioned problems (en- 
countered under fixed point arithmetic) vanish and 5-systems produce significant advantages under high 
speed conditions. We show that, under floating point format, a stable linear system (independent of realiza- 
tion) can always be implemented limit cycle free in the regular dynamic range [11]. Equivalently, limit cycles 
can always be restricted into underflow conditions. Such limit cycles are acceptable for most applications. 
Furthermore, the large dynamic range requirements of 6-systems may easily be accommodated in floating 
point arithmetic. 

For both fixed and floating point systems, new differential sensitivity measures which are widely applica- 
ble even to nonlinear and time-variant systems were developed [10,12]. Instead of using sensitivity measures 
related to frequency response (as is the usual practice), a time domain approach using state space methods 
was developed. Sensitivity of state trajectory with respect to system coefficients and initial conditions was 
investigated. For linear time-invariant systems, 6-operator based implementations have been shown to yield 
lower (by a factor A) sensitivity than their g-operator based counterparts. Sensitivities with respect to initial 
conditions are shown to be identical for both implementations. 

111.2 Task 2: Analysis of Nonlinear Circuits Through ^-Operator Based Schemes 

The following aspects of nonlinear ^-systems were addressed in detail: 

(a) Sensitivity of state response with respect to coefficients of the nonlinear equation: This analysis was 
carried out for various types of nonlinearities as well as for both fixed and floating point schemes [10,12]. 

(b) Bounds on quantization error magnitudes, required dynamic range and construction of majorant systems 
for the response of 6-operator based implemented nonlinear systems [10]. 



In part (a), the concept of differential sensitivity of state response with respect to coefficients of the nonlinear 
equation was developed. The proposed sensitivity measures were evaluated for linear systems, piece-wise 
linear systems, systems with C1 nonlinearities and systems with piecewise C1 nonlinearities. 

For all these types of nonlinear systems, sensitivity of a 6-system with respect to coefficients was shown 
to be smaller (by a factor A) than that for its corresponding g-system under fixed point arithmetic. For 
piece-wise linear and piece-wise C1 nonlinear systems, development of a quantitative measure for sensitivity 
of state trajectory with respect to initial conditions was required as well. This is due to how the piecewise 
characteristics of the nonlinearity is modelled. This proposed sensitivity measure was shown to be comparable 
for both q- and 6-systems. 

Of course, nonlinear 6-systems, implemented in fixed point arithmetic, can be shown to suffer from 
the same generic problem: Existence of incorrect equilibria. Since this is a serious problem especially in 
implementation and simulation of nonlinear systems, floating point arithmetic was also intensively analyzed 
as an alternative. Suitable sensitivity measures were developed and evaluated for the nonlinear system types 
mentioned above. A comparison with corresponding g-operator based systems revealed what we believe to be 
a very important observation: Under mild conditions on the coefficients of the g-system, the state trajectory 
of the corresponding 6-system is less sensitive than that of the g-system. These conditions turn out to be 
routinely satisfied if the nonlinear discrete time system is obtained through sampling of a given continuous 
time system with a high sampling rate! 

In part (b), a comparison between q- and 6-systems was conducted via quantization error bounds. For 
the fixed point case, the g-system is always inferior to the 6-system, i.e., it produces larger quantization 
error bounds whenever single length accumulators are used or when the number of computations in the state 
equation significantly exceeds the number of computations in the update equation. 

Systems with polynomial type nonlinearities has been investigated in great detail. For this class of 
nonlinearities, recommendations for the sampling rate which would provide an optimal balance between 
(a) the gains obtained from a reduced sampling period, and (b) the increased expense from a higher sampling 
frequency, are made. For sector bounded nonlinearities, majorant systems for the state response were 
constructed. When the sampling time is much smaller than 1, at each time instant, these majorant systems 
for 6-systems produce smaller state responses than those corresponding to g-systems. 

For floating point arithmetic, <$-systems produce smaller quantization error bounds than corresponding 
g-systems only when the nonlinearities satisfy certain magnitude conditions relative to the state vector. It 
was shown that, these conditions are always satisfied if the discrete time system is produced by sampling the 
underlying continuous time system at a very high rate. Note that, this is in accordance with our previous 
results on sensitivity. The underlying reason for these advantages of 6-systems is due to its implicit operand 
sorting. In other words, operands of similar 'size' are grouped together in the state equation of 6-systems, 
whereas, in the g-operator case, such a grouping is not implicit and a mix of operands of different 'sizes' is 
created. 

III.3 Task 3: 2-D and m-D <5-System Models 

In this task, the 6-operator counterpart to the 2-D Roesser g-model was developed [13]. It was shown that, 
for small sampling 'times' in both directions of propagation, the proposed 2-D and m-D models possess 
similar properties as the 1-D model. For example, fixed point implementations are still plagued by limit 
cycles and not recommended; however, floating point implementations can yield extremely attractive finite 
wordlength properties. 

The usual system theoretic notions such as characteristic equation, transfer function, stability [14], 
etc., have been developed for the proposed 2-D 6-models. Furthermore, the notions of gramians, balanced 
realizations, and also its computation, were introduced. 

To investigate coefficient sensitivity properties of the 2-D 6-models, sensitivity measures appropriate 
for fixed and floating point arithmetic schemes were developed. This analysis was carried out for the more 
general multi-input, multi-output case. The resulting conclusions may be summarized as follows: 

1. In the fixed point case, 6-models yield smaller coefficient sensitivity than the corresponding g-models 
when the sampling 'times' are small. Balanced realizations exhibit minimum coefficient sensitivity. This 
parallels the situation encountered in g-operator case. However, note that, generic limit cycle problems 
persist. 



2. In the floating point case, 6-models consistently offer superior coefficient sensitivity when the corre- 
sponding g-models' coefficients satisfy certain mild conditions. These conditions are routinely satisfied 
when the implementing high-Q, digital filters at high speeds. In most situations, 2-4 mantissa bits of 
an advantage is possible. 

Furthermore, computation of balanced realizations has also been addressed. A simple relationship between 
balanced forms of corresponding q- and 6-system realizations has been established [13]. This makes it possible 
to derive balanced realizations using those algorithms that are applicable for the ^-operator case. 



IV. Conclusion 

In summary, results obtained during the course of this funding period show that, 6-operator implementations 
of discrete time systems can be quite superior to their g-operator counterparts if they are used correctly. We 
have shown that, great gains can be achieved in the case when a continuous time system is sampled at a very 
high rate and is implemented in floating point arithmetic. Similar comments are applicable to nonlinear and 
m-D systems as well. 

Based on this work, we may make the following conclusion: <5-operator based implementations offer a 
number of unique and desirable properties which are essential in high performance applications, such as, 
high speed DSP and reliable simulations of dynamical systems. For such applications (where traditional q- 
operator based implementations are known to be ill-conditioned), <5-operator based schemes provide a general 
and easily applicable technique for reliable implementation of discrete time systems. 
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PRELIMINARIES 

OPERATORS 
• For x G &m, q[-] is the operator 

g[x](n) = x(n + 1). 

• For x e &m, <$[•] is the operator 

*r u  N     x(n + 1) - x(n)      g[x](n)-x(n) 
6[x](n) = - = Ä • 

Here, A is a positive constant (usually the sampling time). 
• q[-] and 6[-] are related by 

q = 1 + A<5. 

o-OPERATOR BASED STATE-SPACE MODEL 
g-operator based model {Aq,Bq,Cq,Dq} of a linear, shift-invariant, 
causal, p-input, g-output discrete-time system: 

g[x](n) = Aqx(n) + Bqu(n); 

* y(n) = Cqx(n) + Dqu(n). 

^-OPERATOR BASED STATE-SPACE MODEL 
Corresponding 6-operator based model {As,Bs,Cs,Ds}: 
Intermediate equation 

<5[x](n) = A^x(n) + B6u(n); 

y(n) = Csx{n) + D6u(n). 

Update equation 

g[x](n) = x(n) + A-<5[x](n). 

• {Aq, £g, Cq, £>J and {A*, £*, Cs, Dg} are related by 

Aq = I + AAS',    Bq = AB6;    Cq = C6;    Dq = D6. 



[Tl] LINEAR, SHIFT-INVARIANT DISCRETE-TIME SYSTEMS 

»OBJECTIVE 
• How do <5-systems perform under fast sampling/short wordlength 

conditions? What are their properties regarding limit cycles, 
quantization errors, coefficient sensitivity, and dynamic range? 

»ACCOMPLISHMENTS 
Both FXP (fixed-point) and FLP (floating-point) schemes are tackled. 

»LIMIT CYCLES 
• FXP case: ^-systems (with small A) always exhibit limit cycles. 
• FLP case: Similar to g-systems, with sufficient mantissa length, 

limit cycles occur only in underflow. 

»QUANTIZATION ERROR PROPAGATION 
• FXP case: ^-systems possess smaller bounds for quantization 

after multiplication. Otherwise, both q- and ^-systems are com- 
parable. 

• FLP case: In general, ^-systems are better than or equal to q- 
systems. If <5-system is the digital equivalent of a continuous-time 
system with fast sampling, it offers superior performance. 

»COEFFICIENT SENSITIVITY 
• FXP case: <5-systems are superior with fast sampling. 
• FLP case: In general, 6-systems are better than or equal to q- 

systems. If <5-system is the digital equivalent of a continuous-time 
system with fast sampling, it offers superior performance. 

»DYNAMIC RANGE CONSTRAINTS 
• FXP case: If <5-system is the digital equivalent of a continuous- 

time system, both q- and ^-systems are comparable. If a g-system 
is simply converted to a <5-system, the latter requires a larger 
dynamic range. 

• FLP case: If ^-system is the digital equivalent of a continuous- 
time system, it is superior. If a g-system is simply converted to 
a <5-system, the latter requires a slightly larger dynamic range. 



LIMIT CYCLES 
The ideal linear system is taken to be asymptotically stable.   We 
consider the zero input case. 

FXP Case 
A (5-system implementation, under finite wordlength, becomes 

<5[x](n) = Q{A6x(n)}- 

g[x](n) = x(n) + Q{A-<5[x](n)}. 

Here, Q{-} is the quantization nonlinearity. 

Accomylishments 
• (5-systems exhibit DC limit cycles if 

A < 0.5    for rounding;     A < 1.0    for truncation. 

Fundamental reason for these limit cycles is the deadzone of quan- 
tizer. This creates deadbands for both 6[x] and x. 

• In fact, limit cycle free <5-system implementations do not exist! 
• A smaller sampling time A yields a larger deadband for <5[x]. 
• Construction of this deadband for various arithmetic schemes 

have been performed. 
• Structure of system matrix As has a major effect on geometry of 

deadband for x. 
• Reduction of quantizer deadzone reduces size of deadband, thus 

reducing DC limit cycle amplitude. But, this increases other 
(oscillatory) limit cycles. 

• Neither the use of unconventional quantization nonlinearities nor 
scaling techniques overcome this difficulty. 

FLP Case 
Accomylishments 

• If mantissa length is sufficiently large, response will always con- 
verge into underflow. 

• Hence limit cycles may occur only in underflow. This is usu- 
ally acceptable if dynamic range of underflow is sufficiently small 
(that is, smallest representable exponent is sufficiently small). 



QUANTIZATION ERROR PROPAGATION 
Quantization error propagation is investigated via error envelopes. 

FXP Case 
Accomplishments 

• Error envelopes for <5-systems are lower than for corresponding 
g-systems if quantization occurs after multiplication. Otherwise, 
they are comparable. 

FLP Case 
Accomplishments 

• In general, error envelopes <5-systems are better than or equal to 
^-systems. 

• However, when ^-system matrix Aq is of the form 

Aq = I+{€ij}, 

where the matrix elements €{j satisfy 

I €ij |« 1, 

<5-system provides superior performance. This situation occurs, 
when a digital equivalent of a continuous-time system is obtained 
with fast sampling. 

• In this situation, «^-operator implementation achieves 'operand 
sorting' (which is known to tremendously reduce quantization 
errors in FLP realizations). 

• Generalized versions of <5-operator, that can tackle situations 
where Aq does not satisfy the above condition, have been de- 
veloped. These provide superior performance than g-systems. 



COEFFICIENT SENSITIVITY 
Coefficient sensitivity is investigated via differential sensitivity mea- 
sures. Small perturbations are assumed. 

• Frequency response sensitivity have been investigated by others. 
• Time response or orbit sensitivity arises as a special case of our 

work in Task [T2] below. 

FXP Case 
Accomplishments 

• <5-systems offer superior performance, in particular, with fast 
sampling. 

FLP Case 
Accomylishments 

• In general, ^-systems are better than or equal to the correspond- 
ing ^-systems. 

• Conditions under which ^-systems perform better are derived. In 
particular, if the <5-system is a digital equivalent of a continuous- 
time system obtained with fast sampling, it offers superior per- 
formance. 

DYNAMIC RANGE CONSTRAINTS 
FXP Case 

Accomplishments 
• If the 6-system is obtained by discretization of a continuous-time 

system, the dynamic range requirements of corresponding q- and 
<5-systems are comparable. 

• If the <5-system is obtained by simply converting a g-system, it 
typically requires a larger dynamic range, larger coefficient reg- 
isters, and larger accumulators. 

FLP Case 
Accomylishments 

• Wordlength requirements for q- and <5-systems are comparable. 
• If the 6-system is obtained by discretization of a continuous-time 

system with fast sampling, its zero convergence can be guaranteed 
with less number of bits. 



[T2] DIGITAL SIMULATION OF NONLINEAR SYSTEMS 

»OBJECTIVE 
• Can one perform reliable digital simulations of nonlinear systems 

using <5-operator based numerical schemes? 
• If so, just as for linear systems, would one get superior finite 

wordlength properties? 
• The resulting impact and consequences in high performance com- 

puting (for example, in digital simulation of nonlinear systems, 
signal processing, and control) can be significant. 

♦ACCOMPLISHMENTS 
Several important types of nonlinearities were considered. 

♦LIMIT CYCLES 
This is quite similar to the linear case. See our work in Task [Tl]. 

♦QUANTIZATION ERROR PROPAGATION 
• FXP case: Due to possibility of incorrect equilibria, FXP imple- 

mentation is not recommended. 
• FLP case: Conditions under which <5-systems are superior are 

derived. 

♦COEFFICIENT SENSITIVITY 
• FXP case: With small grid size, <5-operator based numerical 

schemes are superior than the conventional ^-operator schemes. 
• FLP case: Conditions under which coefficient sensitivity of 6- 

systems are superior are derived. Typical digital equivalents of 
nonlinear systems under small grid size routinely satisfy these 
conditions. 

♦DYNAMIC RANGE CONSTRAINTS 
This is quite similar to the linear case. See our work in Task [Tl]. 



o-OPERATOR BASED NONLINEAR SYSTEM 

g[x](n) = fq(x(n),a,). 

• aq = [ai ,... ,a,M ]T are the coefficients that are actually stored 
in computer. 

«^-OPERATOR BASED NONLINEAR SYSTEM 
We propose the following: 
Intermediate equation 

<5[x](n) = f(5(x(n),aÄ). 

Update equation 

g[x](n)=x(n) + A-<5[x](n). 

• 

• 

6[x](n) = (g[x](n) - x(n))/A and f« = (f9 - x)/A.- 
A is an arbitrary positive constant (usually the grid size). 
a<§ = [asl,..., asM]T are the coefficients that are actually stored. 

QUANTIZATION ERROR PROPAGATION 
FXP Case 

Accomplishments 
• (5-systems offer superior performance if quantization is performed 

after multiplication or if polynomial nonlinearities of higher order 
are to be implemented. 

• However, in FXP, (5-systems may converge to incorrect equilib- 
ria (see comments in [Tl]). Hence, FXP implementation is not 
recommended. 

FLP Case 
Accomplishments 

• ^-systems show significantly reduced quantization error bounds 
if <5[x](n) = f«(x(n)) where ||A • f«(x(n))|| « ||x(n)|J. 

• Under fast sampling, similar to the linear case, this condition 
is routinely satsified. Hence, ^-operator based discretization 
schemes, in FLP, can drastically reduce quantizations errors with 
fast sampling. 



COEFFICIENT SENSITIVITY 
For this presentation, the nonlinearity is taken to belong to C1, that is, 
it possesses first partial derivatives. Small perturbations are assumed. 

FXP Case 
Coefficient perturbation is approximately independent of its nominal 
value.   Hence, a good sensitivity measure of orbit x is dx/da|n = 
dx(n)/da. 

Accomplishments 
• Comparison of q- and <5-systems: <9x/daq|n = A • &x./da.s\n- 

Hence, «^-operator based schemes offer superior coefficient sen- 
sitivity when A is small. 

• Similar comments hold true for linear systems, piecewise Cl non- 
linear systems, and piecewise linear systems. 

FLP Case 
Coefficient perturbation is approximately proportional to its nominal 
value. Hence, a good sensitivity measure of orbit x is 

<9x 
<9a/aln 

;T-r— x(n) 

7J—^ x(n) 

Accomplishments 
• Comparison of q- and <5-systems: We have shown that, ^-operator 

based schemes offer superior coefficient sensitivity if 

K -II < |a;J, Vi=l,...m. 

Here, at-   indicates the 'linear' term in the i-th equation of fq. 
• Similar comments hold true for linear systems, piecewise C1 non- 

linear systems, and piecewise linear systems. 
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Example: Lorenz Equation 
Consider the digital simulation of Lorenz equation: 

x^\t) = anxi(t) + a12x2(t); 

x2
l\t) = a2ix1(t) + a22x2(t) + a2i3^i W^sW; 

x^(i) = a33x3(t) + 0312^1 W^W- 

Here, an = -<7, ai2 = cr, a2i = p, &TL = —1> °2i3 = -1? °33 = —ß, 
and 0312 = 1. 

q-overator based forward Euler scheme with A = le - 04 

q[xiq](n) = aii,*i,(n) + ai2q^2q(n); 
<Ax2q]{p) = a2i,si, W + 022,2:2, (n) + a2i3,*i,(ra)33,(rc); 

g[33,](") = 033,33,(n) + 0312,3l,32,(n). 

Here, an, = 1-Acr, a12, = ACT, a2i, = A/>, a22, = 1-Ä, a2i3, = -A, 
a330 = 1 ~ A/3, and a3i2   = A. 

6-overator based forward Euler scheme with A = le — 04 

%i«](n) = anÄ3iÄ(n) + ai26:E26(rc); 
6[x26]{n) = a2i6xi6(n) + a22sx2/>(n) + a2i36xu(n)x3s(n)', 

6[x3q](n) = a336336(n) + a312sxl6x26(n). 

Here, an, = an, a126 = a12, a2i6 = a2i, a22/5 = a22, 0213« = ^213, 
033« = a33, and a3i26 = a3i2. 

Simulation data 
• Nominal coefficient values: a = 10; p = 28; ß = 8/3. This system 

exhibits chaotic behavior. 
• Initial conditions: x,(0) = x$(0) = [0,5,75]T. 
• Data type: Two simulations were implemented in C using both 

FLOAT (32-bit FLP) and DOUBLE (64-bit FLP) data types. 
• Comparison: DOUBLE simulations until 8 s (where both q- and 

6- DOUBLE schemes are identical) were taken as a benchmark 
for comparison of FLOAT simulations. Clearly, the computed 
orbit from the 6-scheme is more reliable for a longer duration! 
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[T3] 2-D AND m-D DISCRETE-TIME SYSTEMS 

»OBJECTIVE 
• Do the superior finite wordlength properties hold true if 2-D and 

m-D discrete-time systems are implemented using «5-operator? 
• If so, such implementations are useful in high performance, real- 

time applications that use fast sampling/short wordlength. 

»ACCOMPLISHMENTS 
»FUNDAMENTAL SYSTEM THEORETIC CONCEPTS 

• <5-operator analog of the 2-D Roesser g-model. 
• Notions of characteristic equation, transfer function, stability, 

etc., have been developed. 
• Algorithm to check stability, notions of gramians and balanced 

realizations have been developed. 

»COEFFICIENT SENSITIVITY 
• FXP case: Balanced realizations possess 'minimum' coefficient 

sensitivity. 
• FLP case: Conditions under which 6-systems perform better are 

derived. Typically, narrowband high speed digital filters satisfy 
these requirements. 

FUNDAMENTAL SYSTEM THEORETIC CONCEPTS 
Operators 

• Define operators qh[-] and qv[-] as 

qh[y](ij) = x(i + 1, j)    and    gv[x](i, j) = x(i, j + 1). 

• Propose operators 6h[-] and 8V[-] as 

Mx](i, J) = x~. ' 

MXKM) = 
gvM(i,j)-x(t,j) 

»V 

Here, A& and Av are positive constants (that are the counterparts 
of sampling time). 
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q-Oerator Based Roesser Model 
g-operator based Roesser model {Aq,Bq,Cq, Dq} of a linear, shift- 
invariant, strictly causal, p-input, g-output 2-D discrete-time system: 

$fc[xÄ](*\i) 
_qv[xv](ij) 4(3)     M 

h 

xh(ij) + 
■n(Dl r>q 

r>q    j 

y(f,i) = [c™ 

Lxv(i,i)j 

cta)] 
xfc(t\j) 
xw(t',i)J 

.xw(*\i)J 

+ [Bju(*\j); 

+ [Z>Ju(t,j) 

+ [£>Ju(t,j). 

u(*,i) 

xfc(i,i) 
xv(f,i) 

^-Operator Based Roesser Model 
We propose the following ^-operator based Roesser model: 
Intermediate equation 

6h[xh](iJ) 
A[xv](t,i). 

r41} 42) 

A(V        AW A 

= [A, 

6    J 

xfc(t,j) 
.xv(z,i) 

'xfc(»,i) 
xu(i,i) 

+ si111 
u(i,j) 

+ [-BÄ]u(iJi); 

y(^) = [c^ ^][^yjj 

= [cy 
xfc(t,i) 
xv(i,i) 

+ [£>«]u(i,j) 

+ [£>*]u(i,j). 

Uydate equation 

qh[xh](i,j) = xft(i,j) + A* • 6h[xh](i,j); 

qv[xv](ij) = x*(x,i) + Av • (5v[xv](i,i). 

{Aq, Bq, Cq, Dq} and {A$, J3.5, C$, D5} are related by 

Aq = I+ TA6;    Bq = TBS\    Cq = C6;    Dq = D6. 

Here, r = [AhI ® AVT\. 
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Gramians 
Analogous to the 1-D and 2-D g-operator cases, reachability and ob- 
servability gramian are proposed as: 

P = 

Q = 

p(l)      p(2) 
p(3)      p(4) 

QW      OP) 

(27TJ)2 % 

dch dcv 
FF* , 

T2 1 + Ahch 1 + Avcv 

dch dcv 
G*G 

T7 1 + AhCh 1 + Avcv 

Here, F{ch,cv) = (I - A«)"1^ and G^c) = C«(I - A«)"1, 
denotes stability boundary. 

1? 

Balanced Realizations 
It is proposed to call {As, Bs,Cs,Ds} balanced if 

p(I) = Q(" = diag{a(1)
1...,<7W}; 

J*> = QW = diag{<7{4\..., <#.>}• 

Accomylishments 
• Characteristic equation and transfer function, relationship with 

g-model, equivalent transformations, algorithm to check stability, 
etc., are developed. 

• Computation of gramians is addressed. For separable systems, 
they are block diagonal and may be computed via solution of 
four Lyapunov equations. 

13 



COEFFICIENT SENSITIVITY 
Coefficient sensitivity of proposed model is investigated via suitable 
differential sensitivity measures. Small perturbations are assumed. 

FXP Case 
Coefficient perturbation is approximately independent of its nominal 
value. Hence, define 

MFXP = ||S* ||? + i||Sj»,||i + -q\\ScAl + ^SDAI 

Here, SA6 = dHs/dAs, etc. Hs is the transfer function. 

Accomplishments 
• Realizations that are bound optimal with respect to MFXP axe 

in fact balanced. 
• When A/i < 1 and Av < 1, that is, with fast 'sampling', balanced 

<5-model is better than its corresponding g-model. 

FLP Case 
Coefficient perturbation is approximately proportional to its nominal 
value. Hence, define 

MFLP = ||SAJ? + ±\\SB6\\l + -q\\Sc6\\l + ±\\SDA\1 

Here, SAs = J2Y^aiJ6dHs/daiJ6J etc. 

Accomylishments 
• Realization that are bound optimal with respect to MFLP are 

better than its corresponding g-model if 

HA, - lfF < \\AqfF. 

• High speed narrowband digital filters typically satisfy this re- 
quirement. 

14 



Example: Narrowband 5h-5v 2-D separable digital filter 
The corresponding g-Roesser model and transfer function are denoted 
as {Aq,Bq,Cq,Dq} and Hq(zh,zv), respectively. 

• Let {Aq,Bq,Cq,Dq} denote the corresponding balanced q- 
system. Under finite wordlength, let the transfer function be 
Hq(zh,zv). 

• Let {As,Bs,Cs,Ds} denote the corresponding balanced 6- 
system.   Under finite wordlength, let the transfer function be 

Simulation Data 
• Mantissa length: Hq and Hs were implemented with different 

mantissa lengths (for the coefficients) to see the effects of coeffi- 
cient sensitivity. 
Plot shows log[£max] versus mantissa length. Here, log[£max] = 
\Hq - Hq\ (for the g-system) or log[£max] = \H6 - Hq\ (for the 
<5-system). Hq is implemented with 'infinite' wordlength. 
Clearly, balanced 6-system performs better than the balanced 
^-system (which is 'optimal' with respect to the g-system coun- 
terpart of sensitivity measure Mpxp)! 

HKMmCE RESPONSE OF II O^.z^ 

{•Infinit»' «rflfi^th) UEf^P VERStG ». OF MANTISSA BITS 
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COMPARISON OF IMPLEMENTATIONS 

FXP CASE FLP CASE 

Quantization error bounds   5-systems mostly superior   5-systems better than or 
General system equal to ^-systems 

Quantization error bounds    5-systems mostly superior   5-systems superior 
Digital equivalent of 
continuous-time system 
with short sampling time 

Limit cycles 5-systems exhibit limit        q- and 5-systems both 
cycles exhibit limit cycles only 

in underflow 

Dynamic range constraints   5-systems more likely to 
Register overflow cause overflow 

Coefficient sensitivity 
General system 

Coefficient sensitivity 
Digital equivalent of 
continuous-time system 
with short sampling time 

Hardware requirements 
Implementation of 5"' 
requires additional sum 
and product 

5-systems superior 

5-systems superior 

Unlikely in both q- and 
5-systems 

5-systems better than or 
equal to ^-systems 

5-systems superior 

5-systems require longer 
registers (for both 
coefficients and signals) 

q- and 5-systems 
comparable 
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PROJECT TITLE: 

High-speed fixed- and floating-point implementation of delta-operator formu- 

lated discrete-time systems 
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• Peter H. Bauer 
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Grant No: N00014-94-1-0387; R&T Project Code: 3148509—01. 

SUMMARY OF PHASE P2 RESULTS 

The work described in this report is related to the following 

[T2] Task T2: Analysis of nonlinear circuits through ^-operator based schemes. 

Problems Posed in Task T2: 

Regarding the proposals associated with the above grants, within Task T2, the following 

questions were raised: 

1. With the desirable properties of ^-systems applicable to linear systems in mind, does 

the same carry over if nonlinear systems are implemented with ^-operator based 

schemes? 

2. In particular, issues concerning coefficient sensitivity and quantization noise is of spe- 

cial importance in such systems. 

3. If a (5-operator based scheme offers significant improvements over its g-operator coun- 

terpart, the consequences in nonlinear signal processing, nonlinear control, and digital 

simulation of nonlinear dynamics can be significant. . 

In fact, the superior finite wordlength performance of the discrete simulation of Chua's 

Circuit in the grant proposals using the ^-operator, instead of the more conventional q- 

operator, provided the impetus for the work proposed in Task T2. The work described 

herein justifies our preliminary optimism and show that this superior performance can be 

expected with ^-operator based implementations. 



This task was proposed to be carried out during Phase P2 with close collaboration 

between the two Pi's. During the whole project duration, both Pi's have been in con- 

stant contact. In particular, a considerable portion of the work described herein was seen 

to maturity during a one-week research stay at University of Notre Dame during August 

09-16, 1994. During this time, important results that address coefficient sensitivity and 

quantization error bounds applicable to ^-operator based implementation of nonlinear sys- 

tems were developed. A description of those Phase P2 results pertaining to coefficient 

sensitivity follows. 

Task T2: Results Pertaining to Coefficient Sensitivity—Summary 

Briefly, conclusions drawn from this work may be summarized as follows: We have investi- 

gated orbits of linear and nonlinear systems. Several important types of nonlinearities—C1 

nonlinearities, piecewise C1 nonlinearities, and piecewise linear—were looked into. 

• The Fixed-Point Arithmetic (FXP) Case: 

With small step.size, ^-systems provide superior coefficient sensitivity performance. 

• The Floating-Point Arithmetic (FLP) Case: 

Conditions under which ^-systems provide superior coefficient sensitivity were derived. 

Typical digital equivalents of nonlinear systems derived for simulation purposes in fact 

routinely satisfy these conditions when the step size is small. 



Task T2; Results Pertaining to Coefficient Sensitivity—Brief Description 

Consider the following ^-operator based implementation of a nonlinear system: 

g[x](n) = fg(x(n),a8), (1) 

where q[x] = x(n + 1). Here, x(n) is the state x € 3ftm at time instant n and a? = 

[aqi,. ..,aqM]T € KM refers to the system parameters that are actually stored within the 

computer. 

The corresponding ^-operator based scheme of the same nonlinear system is of the 

form 
£[x](n) = f5(x(n),ag)    (Intermediate equation) 

(2) 
</[x](n) = x(n) + A • 6[x](n)    (Update equation) 

where £[x](n) = (q[x](n) — x(n))/A and 

ft(»(n),a,)=W0-%>-,W. (3) 

Here, A 6 9ft is an arbitrary positive real parameter and a« = [a^,..., asM]T £ 3JM again 

refers to the system parameters that are actually stored within the computer. 

To see the relationship between a? and a<5, let the z-th equation in (1) be 

?[*t](n) =/}i(ii(n),-.im(n)l
fl!i "w). i = l,...,m. (4) 

Then, we may encounter one of two situations: 

1. There is a linear term corresponding to X{, that is, a term of the nature a.KXi(n), on 

the RHS of (4). Then, we need to store 

^S_       forz = {l,...,M}\A'; 

^—,    for i = K. 
a»< = <l   «juzT1      r~ .• _ TT (5) 

2. There is no linear term corresponding to a;,- on the RHS of (4). Then, we need to store 

aSi = ^-, forz' = {l,...,M},    and    -. (6) 

Remark. 

1.    Of course, in an infinite wordlength implementation, there simply is no difference 



between the q- and ^-operator based schemes in (1) and (2). In fact, the latter requires 

a modest increase in the number of computations. However, what we address is the 

performance under finite wordlength high-speed conditions. 

2. Discretization of a nonlinear system of the form 

x(1)(0 = f(x(i),a) (7) 

can give rise to equations of the type in (1) and (2). Here, x^ is the i-th. derivative of x. 

3. In what follows, f(x, a) £ C1 denotes a nonlinear function that possesses first partial 

derivatives. 

Now, which of the schemes (1) or (2) yield superior coefficient sensitivity properties 

of its orbit with respect to perturbations of ag or a$, respectively? This consideration is 

crucial in high-speed applications where a shorter wordlength is the avenue of choice. 

In what follows, the following standing assumptions are made: 

1. All perturbations are small. 

2. Comparison between q- and ^-operator based implementations are done with respect 

to upper bounds (constructed through appropriate norms) on possible errors due to 

coefficient sensitivity. 



FXP CASE 

In the FXP case, a good indication of the coefficient sensitivity of the orbit x is its first 

partial derivative with respect to the stored coefficient vector a, that is, 

dx 
da. 

= ^-x(n) € &mM. (8) 

I. C1 nonlinear system 

q-operator case 

For this case, we can show the following 

THEOREM 1. For the 5-operator based implementation in (1), 

dx 

da.a n+1 

n—1   / n 

E '«»n [Hi ■■ ] 
j=Q   \ i=j+l 

where IM denotes the identity matrix of size M x M and 

df„ 
daa j     daq 

r dfq dfq 

Sin. ] . = (äfrW Ölm« 
fq(i)}e$mxm; 

di„ 

da.o da., MJ) e & mM 

8-operator case 

For brevity, we only consider the case in (5). Note that, 

dx 

das 

dx 

da0 
A. 0) 

In addition, we need to consider the sensitivity of the orbit with respect to A (due to the 

update equation in (2)). However, if we assume an exact FXP representation for A, this 

term could be ignored. 
« 

Using, for instance, a norm to compare the sensitivity measures, we conclude that, the 

^-operator based implementation will provide superior coefficient sensitivity performance. 

Remark. We obtain similar results when considering the case in (6). Here, one may need 

to consider sensitivity with respect to 1/A as well. Again, we may assume that 1/A (and 

A) have exact FXP representations. Even if this is not the case, <5-system is still likely to 

be superior since the reduction in sensitivity gained through other terms is A-fold. 



II. Linear system 

The superior coefficient sensitivity of the frequency response of ^-operator based systems 

is thoroughly investigated in Li and Gevers (1990). However, no result exists that address 

the coefficient sensitivity of the orbit. 

q-operator case 

With the more general result in Theorem 1, we can show the following 

THEOREM 2. For the ^-operator based implementation x(n + 1) = Agx(n), Aq £ 9£mXm, 

p. n—l 

-^- =y"(Im®A"-j)Tjmxm(Im<S>x)      +ÜmXm(Im®x)     , 
OAa   n+1 -n J n 

where UqXp = £?=i EJ=i E^Xp) ® E\qXp) € W***\ E\]Xp) = e^e^* € «**'. Here, 

e-     € 3ftn is the unit vector with 1 on its i-th row (Brewer 1978). 

8-operator case 

The corresponding ^-system's intermediate equation is £[x](n)  = Asu^n) where As  = 

(Aq — -0/A. The update equation of course is as in (2). 

Again, as in Section I, we can show that, the <S-operator based implementation will 

provide superior coefficient sensitivity performance. 

HI. Piecewise C1 nonlinear system 

Consider a nonlinearity that is piecewise and possesses first partial derivatives within each 

'piece'.  To address its coefficient sensitivity, we model the dynamics of such a system as 

follows: 

1. Within each 'piece', the system dynamics is a C1 nonlinearity. 

2. Each instant of the orbit's 'entry' into another 'piece' is modeled as a perturbation in 

the initial conditions. 

Regarding item 1, as previous results indicate, the ^-operator based implementation 

will be superior within each 'piece'. Regarding item 2, we need to investigate the orbit's 

coefficient sensitivity with respect to initial conditions. This is addressed now. 

q-operator case 

A reasonable sensitivity measure is 

Öx 

dx(0) n     dx(0) 

6 

d   x(n)€3fT2. (10) 



Then, we can show the following 

THEOREM 3. For the ^-operator based implementation in (1), 

Ox 
0x(O) n+1 XXL an dim 

i=0 "Wo) 

6-operator case 

One may show that, Theorem 3 is equally applicable for the 6-operator case as well. 

Hence, regarding sensitivity due to initial conditions, both q- and 6-operator based 

implementations are expected to be provide comparable results. 

This implies that, in totality, 6-operator based implementations will provide superior 

results. 

IV. Piecewise linear system 

Again, we address the coefficient sensitivity of the orbit with respect to the initial condi- 

tions. 

q-operator case 

As in Section II, with the more general result in Theorem 3, we can show the following 

THEOREM 4. For the g-operator based implementation of x(n + 1) = Agx(n), 

Ox 
dx(0) 

in+l \r& c   A 
n+l 

8-operator case 

Again, one may show that, Theorem 4 is equally applicable for the 6-operator case as well. 

Hence, as in Section III, 6-operator based implementations will provide superior re- 

sults. 



FLP CASE 

In the FLP case, representable values are spaced farther apart at higher values of the pa- 

rameter. Hence, instead of that used for the FXP case (see (8)), a more realistic sensitivity- 

measure is (see Li and Gevers (1990)) 

r  _d 

dx 
da/ a 

7r4— x(n) 

^x(n) 
ddM JO.M ' 

eft mM 
(11) 

I. C1 nonlinear system 

q-operator case 

For this case, we can show the following 

THEOREM 5. For the g-operator based implementation in (1), 

dx 
daJa ?/"? 

n-1 

n+1 E '«»n t& 8*3. 
dfa 

j=0 i=j+l 
i J    daq/aq j     daq/a 

+ dfa 

S-operator case 

Again, we only consider the case in (5). Also, let us assume that, the elements in ag are 

enumerated such that, for each i = 1,..., m, a; is the 'linear' element of the i-th. equation. 

Then, note that, 

dx 

da6 /as 

„       dx 

dx 
6M d*sM 

Kx-i)ro 
3x_ 

it 

a, ox 
9m+i Öa «m+l 

n -JtX 
alM da «M 

(12) 

where we have used (5) and (9). As before, we may ignore the effect of A. 

Again, we use a norm to compare the sensitivity measures. For instance, using the 1- 

or oo-norm, we conclude that, the ^-operator based implementation will provide superior 
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coefficient sensitivity performance if 

K.-1|<KJ, V» = l,...,m. (13) 

But, how practical is this restriction? In other words, how often, if at all, is it satisfied 

in practice? To address this, consider the following 

Example. Lorenz equation. Consider the state-space description of the Lorenz equation: 

x[1\t) = -a(x1(t)-x2(t)); 

x2
l\t) = px^t) - x2(t) - xi(*)ar3(*); 

x?\t) = x1{t)x2(t)-ßx3(t). 

For digital simulation of the corresponding orbit, we use the forward Euler scheme with 

step size A. This yields 

ari(n + l) = (1 - Aa)xi(n) + Aa x2(n); 

x2{n + 1) = Apxi(n) + (1 - A) x2(n) - Axi(n)x3(n); 

x3(n + 1) = (1 - Aß) x3(n) + Ax1(n)x2(n). 

We at once observe the following: For a small step size A, 

1. Linear terms are close to 1. 

2. Other terms are very small. 

Hence, the condition in (13) is in fact satisfied! 

In fact, when digital simulation of nonlinear systems are carried out, (13) is often 

satisfied for a small step size (which denotes fast sampling). Hence, we conclude that, 

a ^-operator based implementation of such a simulation will provide superior coefficient 

sensitivity performance!! 

II. Linear system 

Again, no result that addresses coefficient sensitivity of the orbit of linear systems imple- 

mented using FLP arithmetic is available. 

Without delving into much detail, we simply state the relevant result: Consider the 

^-operator based implementation x(n + 1) = Aqx(n) and its corresponding ^-operator 

based implementation. With respect to the FLP coefficient sensitivity measure introduced 



above, the coefficient sensitivity of the 6-system is superior (in terms of the norm being 

used) than that for the corresponding g-system if 

||Ag-I||<K||. (14) 

It is not hard to show the following: 

\Xi[Aq] - 1| < \\i[Aq]\, Vi = 1,...,m <=► ||A, - I\\F < \\Aq\\F] (15a) 

\Xi[Aq] - 1| < \Xj[Aq]l Vi, j = 1,... ,m *=* \\Aq - I\\2 < \\Ag\\2. (15b) 

|diagi[A,] - 1| < |diagi[Ag]|, Vi = 1,. • •,m <^ \\Aq - I\\1>00 < K||1)00.     (15c) 

Here, Xi[Aq] denotes the z'-th eigenvalue of Aq and diagjAg] denotes the i-th diagonal 

element of Aq. 

Hence, if any one of the above conditions are satisfied, the <5-operator based imple- 

mentation will provide superior coefficient sensitivity performance. 

Remark. Li and Gevers (1993) refers to the region in condition (15a) as the Middleton- 

Goodwin (MG) Region. They have shown that, if (15a) is satisfied, the ^-operator based 

implementation will provide superior coefficient sensitivity of its frequency response. 

Regarding systems corresponding to those in Sections III and IV of the FXP case, ^-systems 

offer similar advantages. 

Example, continued. Lorenz equation. To justify and validate the results above, a digital 

simulation of the Lorenz equation was carried out using both q- and (^-operator schemes 

with FLP. The results are summarized in the series of graphs. 

1. Nominal coefficient values: a = 10; p = 28; ß = 8/3. 

2. Initial conditions: [a:1(0),x2(0),x3(0)]r = [0,5,75]T. 

3. Coefficient representation: FLP arithmetic with the number of bits used for the man- 

tissa indicated on each graph. 

4. Integration scheme: Forward Euler with step size A = le - 03. 

5. Number of time steps is 25,000. 

6. Only projection onto (xi,x2)-plane is shown. 

10 



It is important to note that, when only 4 bits are allowed on the mantissa, the qualitative 

behavior of the g-system is completely different than what is expected. Hoever, the 8- 

system still provides satisfactory results. Hence, one may use a shorter wordlength for 

coefficient representation with the latter without affecting performance. The implications 

on speed, number of components, cost, reliability, etc., are obvious. 
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HIGH SPEED FIXED- AND FLOATING-POINT 
IMPLEMENTATION OF DELTA-OPERATOR 
FORMULATED DISCRETE-TIME SYSTEMS 

Peter H. Bauer and Kamal Premaratne 

Focus: Effects of Quantization Errors in Nonlinear 
Q- and A-Operator Systems 

Abstract 

Absolute quantization error bounds are constructed 
for q- and ^-operator implementations of the nonlin- 
ear system xn+i — f(xn). Various assumptions on the 
type of the nonlinearity /(•) are made and both fixed 
and floating point formats are investigated. A compar- 
ison between the advantages and disadvantages of the 
two implementation schemes is introduced. Finally, an 
outlook concerning future work is given. 



I. Absolute Bounds on Quantization Errors 

LI. Nonlinearities of the Polynomial Type 

1.1.1. Fixed Point Case 

Q-operator case: 

• System description: 

.    xn+1 = f(xn),   /(-):SM^SRM 

where 

/(asn) = 
fl{xi,-'m>xM) 

fj{xi,---,XM) 

3 

Ni  m H XM 

• Assumptions: 
- single precision (i.e., single length accumulators) 
- quantization step: q 

• Computed Orbit: 
x(n) 



• Error model for the computed orbit: 

il=0        «M
=

0 

where 

w = x:#+i: $ + •••+? ^ 
and 

\eji\   <  kq (truncation) 

|CJ?|   <  ^2 (rounding) 

• If the nonlinearity fj(-) is known, the number 
of nonzero terms in the polynomial is known 
and therefore the number of terms in the 
summations of e-terms. Hence an absolute 
bound on JJ,J can be constructed: 

\fij\ < Cjq (truncation) 

where Cj = h + 2/2 + • • • + M • NJIM-NJ 

l„, v = 1, • • •, MNj being the number of terms 
present in the summation Ei efi . 



6-operator case: 

• system description: 

8x(n) 

6xj(n) 

J \X_n )       2Ln 

A 
x(n + 1) = x(n) + A6[x(n)]. 

N. 

21=0 iM—Q A 
rJM xM 

xj 

A 
N>      *   m —   v ... v   h\J) ■  T

: 

il=0 «M=0 

n 

where 

b (i) *b"VM 

,0') a?' ■    -1 
ry       for (*I,-",*M)   5.t/i. 

2j = 1, and i„ = 0 for 

%rTM      otherwise . A 

• Assumptions (same as in ^-operator case): 
- single precision 
- quantization step: q 

• Computed Orbit: 

x(n) 



• Error model for the computed orbit: 

6[&j]= £••-.£ c-^i1 #ä+p? 

where 

i i i 

and 

\fjfji\   <  k • q (truncation) 

1/4? I   <   2 '^ (rounding) 

• Upper bound on /xj ^: 

1/4;  I < (Cj + 1) * Q   worst case 

where Cj is defined as in the g-operator case. 

• Error in the computation of the next state: 

xj(n + 1)  = Xj(n) + A<5[x»] = £ • • ■. E   <L^x? • • • s^ 

+ A^f(n)+^)(n) 
where 

I^Aj{n)\   <  Q f°r truncation 

A*AJ(n)l  <  ö f°r rounding 



Comparison: 8- vs. q-operator: 

Error term bound for the g-operator: 

\fJ>j\ <Cj-q (truncation) 

Error term bound for the ^-operator: 

|A-/xf+/42-| < {Cj + l)qA + q = ^[C^ + IJA + I)   (truncation) 

• <5-operator formulation has a smaller absolute 
error bound for: 

2L^>A, torj = l,...,M 
L>j + 1 

Usually Cj » 1 and hence for 

1-€>A, 

the ^-operator system is preferable. 
(For high speed systems we typically have A << 1.) 



Reasonable choice of A (from an error bound per- 
spective): 

1 

error 

2a — 

<? 

A< 
CJmax +1 

■4- ,a 

•??-JZ:--V 

Remarks: 
• ^-operator implementations in FXP format 

seem to produce a significantly smaller 
bound than g-operator implementations, if 
A« 1. 

• A ^-operator implementation requires a 
larger dynamic range than the q-operator 
implementation, if A << 1. =^ the chance of 
overflow increases. 

• To avoid overflow problems, the ^-operator 
system needs to be implemented with a 
larger wordlength. 



Forced Response Case: 

System description for the g-operator: 

5Ln+l    =   J \2Lni2Jm) 

J \2Lni Vtn) 

K fM{xi,--',xM,Ui,--,UK) 

where the /^'s are again multivariate polynomials in 
up to M + K variables. 

System description for the ^-operator: 

C[Xn\    =    ^  

Xn+i    =   Xn + A6[xn] 

• Using a similar error model as in the 
zero-input case, the computation of xn+i in 
the g-operator case and the computation of 
6xn in the 6- op er at or case produce bounds of 
similar magnitude. 

• If A << 1, the ^-operator system again has an 
advantage over the g-operator system, since 
the errors of the first equation are much 
larger than the ones produced in the update 
equation. 



1.1.2. The Floating Point Case 

Q-Operator model — ideal case: 

*,-(„ + 1) = £ • • • £ a^..,M z'1 • • • a# (1) 
»1 !M 

^-operator model — ideal case: 

fa»=E-E^t41-*ijr-5 (2a) 
^■(n + 1) = Xj(n) + A6[xj(n)] (2b) 

Model for floating point errors due to multiplication 
and addition: 

x 0 y = xy(l + e) 
x@y = x(l + c) + y(l + €2) 

Consider two cases: 
(a) aih...jM ~ 1 with iv = 0 for v = 1, • • •, M, v ^ j 

and ij = 1. 
Iau • *'MI 

<<; ^ ^or a^ °ther combinations of (ii, • • •, %M) 
x(n)e[-l,+l]M 

(b) condition (a) is not satisfied. 



Case (a): 

^-operator bounds on quantization error are much 
smaller than g-operator bounds. 

Qualitative explanation: 
For case (a), all partial sums and products in 
the computation of A • 6[xj(n)] are much 
smaller than Xj(n). Therefore the errors in 
the computation of A6[xj(n)] are smaller 
compared to the final addition error in (2b). 
Therefore the ^-operator model implicitely 
performs operand sorting, which is known to 
reduce quantization errors in floating point 
arithmetic. 

Case (b): 

^-operator error bounds are slightly larger 
than ^-operator bounds. 

_UL 



Other classes of nonlinear systems exist which also 
perform better using a ^-operator formulation. One 
such class is the weakly nonlinear functions satisfying: 

with \€J(XI,---,XM)\ « \xj\ 

(If fj(xi, • •, xM) is of polynomial type, the system has 
to operate on a hypercuboid or another finite subspace 
of 3£M since polynomials cannot be weakly nonlinear in 
the above sense for all £;e3£.) 

Note: 

If equations (1) or (2) arise from quantizing a con- 
tinuous time system with a very short sampling time, 
then the condition 

|iCj(n)| >> \A6xj(n)\ 

can be satisfied giving the 6- op er at or formulation an 
advantage over the q- op er at or. 

U, 



1.1.3. A Generalized Delta-Operator Model for Linear 
and Nonlinear Systems 

Linear Case: 

Assume the system is given by: 

x(n + 1) = Aqx(n) + Bqu(n) 

Consider the modified A-operator form: 

%(«)]  = ^^(n) + ^V*) 
x(n + 1)  = A0x(n) + BQU(TI) + A6[x(n)} 

with AQ and BQ being integer matrices closest to Aq 

and Bq respectively. 

Advantages 

• The dynamic range of the A8 and B8 

matrices becomes smaller and the chance of 
overflow is reduced. 

• The delta operator realization has the same 
improved sensitivity as in the regular 
delta-operator case. 

• In floating point arithmetic, the condition 
Aq ~ I is not necessary for improved error 
behavior of the delta-op er at or system. 
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Nonlinear Case: 

A similar argument as in the linear case can be made 
for weakly nonlinear systems of the form: 

x(n + 1) = Aqx(n) + Bqu(n) + e(x(n), u(n)) 

where 

|| €(x(n),u(n)) ||«|| x(n) \\ 
and      || e(x(n),u(n)) \\«\\ u(n) \\ 

13 



1.2. Nonlinear it ies of Piece wise Linear Form 

1.2.1. The Fixed Point Case 

Although a piecewise linear continuous scalar func- 
tion /: 3£ —► 3£ can be represented as 

f{x) = E(|z - IM\o.i)+b, 
i 

a computationally more efficient realization is: 

f(x) = CiX + d{ for Xi < x < Xi (1) 

Therefore, the resulting system xn+i = f(xn) can be 
written in form of several linear state space equations 
with a driving term, and the driving terms being known 
a priori: 

8 — operator: 
8[xn] = A\xn + 34? 
xn+i =xn + A6[xn], i = l,'-',K 

q — operator: 

Conclusion: 

• For single precision (quantization after 
products) the absolute error bounds for the 
^-operator realization are smaller than for 
the q- op er at or realization. 

• For double precision (quantization after 
summation) the absolute error bounds for 
the ^-operator realization are approximately 
the same as for the q- op er at or. 
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1.2.2. The Floating Point Case 

Due to (1), the system can be modeled as a time- 
variant linear system with a known, piece wise constant 
input. Therefore the same conclusions apply as in the 
linear t.i.v. case with regard to absolute error bounds: 

• 

• 

Generally, absolute error bounds of the 6- 
and g-operator system are of similar size. 

If the resulting A-matrices of the piecewise 
linear system are all 'close' to the identity 
matrix I, then the ^-operator system will 
perform superior to the g-operator. (see 
comments in 1.1.2.). This requires that the 
driving terms are also small relative to the 
states. 

il 



1.3. Sector Bounded Nonlinear Functions 

1.3.1. The Fixed Point Case 

System description: 

Xi(n + 1)  = Tii[anxi(n)] H h Tim[aimxm(n)\ 
i = 1,-•-,ra. 

Sector conditions on T\ ]: 

If €ij(n) is the error affiliated with the computation 
of Fij[-], the response of the q and ^-operator system 
can be absolutely bounded by the following majorant 
system: 

q-operator: 
m m 

xf(n + 1) = E mfjxfin) + E 4(n)>   i = 1, • • •, m 
.7=1 J=l 

where 

raj  = max{ | fcZJ- a2j1, | kij a^-1} 

16 



6-operator 

xf{n + 1)  =   E rntjxf(n) + A   ej(n) + E  4j{n)   + 4», 

i = l,"' ,m 

where 

e+ (n)  =  |eup(n)|,   €Up(n) :  error occurring in update equation 

e+(n)  =  |eA(n)|,   eA(n) :   error due to division by A. 

Comparison: 

The bound for the ^-operator implementation is lower 
if 

max 
m 

A(€+(n)+EeJ(n)) + €+p(n) 
i=i 

< max 
( m      , \ 
E e£(n) 

Vi=i / 

• Since the bound for |e^(n)| is typically much 
larger than for |ej(n)| or |e+,(n)|, it is obvious 
that for A << 1, the above condition is always 
satisfied. 

• A similar result holds if the nonlinear it ies T 
enter the system in a different form, i.e., if 
they have arguments which consist of partial 
sums. 

• A similar comparison arises for other fixed 
point quantization formats. 
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1.3.2. The Floating Point Case 

Generally, the ^-operator implementation is not su- 
perior to the g-operator implementation if one com- 
pares absolute error bounds. However, as stated be- 
fore (1.1.2, 1.2.2), if the condition 

\Xi(n)\ » \A6{xi(n))\ 

holds true for all states {i = 1, • • •, m), then the ^-operator 
implementation has a significantly smaller error bound. 

A class of systems satisfying the above condition is 
given by: 

Xi(n + l)  = Fa[aiixi(n)] + • - • + Fim[aimxm{n)] 

where 

Tij(x)  = kijX,   kij € [eij^ij] for i ^ j, 
ku e[l- €a, 1 + en] otherwise, 

|€y| « 1 for i,i = l,---,m. 

Again, such a system could arise from a continuous 
time system with a high sampling rate. 
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II. Comparison of Implementations 

FXP-case FLP-case BFLP-case* 

general   system:     q- 
error bounds 

^-operator is mostly 
superior 

8 and ^-operator are 
comparable 

similar to FXP case? 

<jr-error bounds for a 
short sampling time 
in the discretization 
process 

^-operator is mostly 
superior 

8 operator is superior similar to FXP case? 

limit   cycles   (linear 
case only) 

^-operator   produces 
incorrect equilibria 

limit cycles in under- 
flow for both q and 8- 
operator 

similar to FLP case 

hardware       require- 
ments for small A 

^-operator     requires 
longer registers than 
^-operators 

independent of A 

overflow effects ^-operator                is 
more likely to cause 
overflow 

in    both    operators 
unlikely 

similar to FLP case 

general sensitivity 8 operator superior (^-operator 
better than or equal 
to g-operator 

similar to FXP case? 

sensitivity for a short 
sampling time in dis- 
cretization process 

^-operator superior 8 operator superior similar to FXP case? 

has not been analyzed in detail yet, expected results. 
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SEMIANNUAL PERFORMANCE REPORT 

GRANT NO's: N00014-94-1-0387 

Summary of Phase Pi Results 

Phase PI consists of two tasks: 

[Tl] Task Tl:  Analysis and design of finite wordlength implementations of linear, time- 

invariant ^-Systems. 

[T3] Task T3: 2-D and m-D ^-system models. 

The major part of task Tl was carried out at the University of Notre Dame by Dr. 

Peter H. Bauer while the major part of task T3 was carried out at the University of 

Miami by Dr. Kamal Premaratne under grant No. N00014-94-1-0454. The project being 

an extensive collaborative effort, the two Pi's have been in constant contact during this 

research effort. 

The following is a summary of the phase PI results. 

Task Tl: Analysis and Design of Finite Wordlength Implementations of Linear, 

Time-Invariant ^-Systems 

The conclusions drawn from the work conducted for task Tl may be summarized as follows: 

1. The Fixed-Point Arithmetic Case: When limit cycle performance is crucial, the q- 

operator implementation is preferrable. The ^-operator implementation is superior 

with regard to coefficient sensitivity issues. 

2. The Floating-Point Arithmetic Case: Generally, the ^-operator implementation out- 

performs its g-operator counterpart. In particular, in high-order and high-speed ap- 

plications, the ^-operator implementation is the best choice. 

Prior to a more detailed exposition, first we provide qualitative justification for the 

above conclusion. The state equations of a ^-operator system can be written as: 

<5[x](n) = A6x(n) + B6u(n); 

q[x](n) = x(n) + A • S[x](n). 

where x and u are the state and input vectors, respectively. Here, A denote a positive real 
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constant (typically, the sampling time). The symbol S[-] denotes the ^-operator, that is, 

f W(B) = «M(">A-»(") . i^ix(n), (T1.2) 

and q[-] denotes the usual g-operator, that is, 

q[x}(n) = x(n + 1). (T1.3) 

The corresponding formulation of (Tl.l) in terms of the ^-operator is 

q[x](n) = Aqx(n) + Bqu(n), (T1.4) 

where 

Aq = I + A-As^As = ^Z^-    and   Bq = A • Bs ^=> B5 = ?±. (T1.5) 

Now, given x and u, both representations compute q[x\ with a certain accuracy. 

Consider the ^-operator formulation in (Tl.l). Here we encounter two errors: 

1. The first is due to the computation of <5[x], that is, the first equation in (Tl.l). We 

will refer to this equation as the intermediate equation. 

2. The second is due to the eventual computation of q[x\, that is, the second equation 

in (Tl.l). We will refer to this equation as the update equation. 

Let us assume that the total error in computing q[x] is mainly due to the intermediate 

equation in (Tl.l) (rather than the update equation). Then, by choosing A sufficiently 

small, the total error in computing g[x] will be approximately the error created by the 

update equation which is small!. In this case, the ^-operator representation has better 

finite wordlength properties than its g-operator counterpart in (T1.4). 

If, however, the errors accumulated in the intermediate and the update equations in 

(Tl.l) are comparable, g[x] computed through the ^-operator representation will show 

approximately the same error as that computed through its ^-operator counterpart as- 

suming A is sufficiently small. If A is not sufficiently smaller than one, the ^-operator 

representation will actually perform worse than the ^-operator representation! 

If the error introduced in the update equation is larger than that in the intermediate 

equation, the ^-operator representation would consistently perform worse!! In reality, this 

case is very unlikely to occur. 



Next, a more detailed exposition follows. 

Tl.l The Fixed-Point Arithmetic Case 

We now discuss some of the results regarding the fixed-point (FXP) case. Here, our results 

in fact indicate that, in case limit cycle behavior is crucial, the ^-operator representation 

is NOT suitable with this arithmetic scheme [1]. Such a case may occur when nonlinear 

systems are implemented through FXP ^-operator based schemes. 

Zero-input limit cycles. Independent of A, zero-input limit cycles cannot be avoided 

in FXP ^-implementations. This is easily explained as follows: If A is chosen very small, 

the contribution from the intermediate equation being small (since £[x] is being multiplied 

by A), during the update equation, <jr[x] can be quantized to x creating a DC limit cycle, 

that is, an incorrect equilibrium point different from zero results. We emphasize that, most 

of the desirable properties of ^-operator implementations are based on a small A. We may 

also show that, if A is chosen larger (this case is of course somewhat less important), DC 

limit cycles will still exist. Hence, ^-operator representations cannot be implemented limit 

cycle free in FXP format! This fact is independent of the particular realization of the 

system. 

Deadband size. Since ^-systems cannot be implemented limit cycle free in FXP format, 

it is of interest to investigate te the size of such limit cycles since, in certain situations, 

such small limit cycle amplitudes can be tolerated. It can be shown that, the magnitude of 

A determines the magnitude of the limit cycle. The smaller the A, the larger will be the 

deadband and hence the limit cycle magnitude. An approximate relationship regarding 

this is 

A x size of deadband = 1, (T1.6) 

where the size of deadband is measured in multiples of the quantization step size. Here, 

the deadband corresponds to that obtained by considering the quantization of A • 6[x]. 

Therefore, the usual choice of a small A creates a larger deadband! 

The input driven case. Although the input driven case is not part of the originally 

proposed work, some interesting results have been obtained. For small values of A, there 

exists a bounded input signal that does not allow control of the state trajectory. In other 

words, given sufficiently small A, the state trajectory may not be influenced by such an 

input signal. 

The influence of the realization. First, it was necessary to develop a suitable scheme 



to investigate the effect of realization on the presence or absence of limit cycles. In this di- 

rection, for the g-operator case, a computer-based exhaustive search algorithm that checks 

for limit cycles (DC and/or oscillatory) has been developed [5]. 

As discussed before, we have shown that, a stable linear time-invariant J-system cannot 

be implemented limit cycle free in FXP. The size of the deadband however also depends on 

the particular realization, that is, the structure of As. Given a system transfer function, 

there are forms which minimize this deadband size with respect to some appropriately 

chosen measure. For example, in order to minimize DC limit cycle amplitude, one may 

choose the normal form (in terms of As) as a suitable candidate. 

The influence of quantization nonlinearity and its deadzone. Since a larger deadzone 

implies larger DC limit cycle amplitudes, the use of quantizers with reduced, or even 

zero, deadzone was therefore proposed. In investigating first-order systems, by reducing 

the deadzone, it was found that, existence of DC limit cycles can indeed be reduced. 

Unfortunately, other oscillatory limit cycles will be created. This phenomenon is due to 

the increased gain exhibited towards small input signals by the quantizer. 

Scaling. As discussed above, we have shown that, independent of either the form of 

As or the magnitude of A, a FXP implemented ^-system cannot be free of zero-input limit 

cycles. Hence, scaling cannot be offered as a possible solution. 

T1.2 The Floating-Point Arithmetic Case 

The floating-point (FLP) implementation of ^-systems is currently under investigation. 

The results obtained so far are very encouraging, and indicate that, quantization errors 

due to FLP arithmetic have a much smaller effect on the system behavior than in the FXP 

case. In fact, preliminary results show that, for ^-systems of order three and higher, errors 

in computing <j[x] can be made significantly smaller than for the corresponding 5-systems. 

This is because, for a FLP implementation of such a system, errors created through the 

intermediate equation are larger than those created through the update equation. As 

previously mentioned, in this situation, ^-systems behave better than their g-operator 

counterparts! 

Limit cycles. In FLP arithmetic, a linearly stable time invariant system, under zero- 

input conditions, may exhibit four types of responses: A diverging response, an oscillatory 

periodic response of arbitrary magnitude, an oscillatory periodic response in underflow, 

or an asymptotically stable response. Only the last two response types are acceptable in 

practice. It is well known that, the last response type is in fact a very stringent requirement 



and is often not required in practice. Results so far obtained show that, when the require- 

ments for a response in underflow are compared, the ^-system requires less wordlength 

than its g-system counterpart! This advantage in fact grows with the order of the system!! 

Once the system reaches underflow conditions, the ^-system again exhibits DC limit 

cycles. However, if the exponent register is chosen sufficiently large, the amplitude of these 

oscillations can be made extremely small and hence, for all practical purposes, this problem 

is solved. 

Deadband size. If the condition on the mantissa length that guarantees convergence 

into underflow is satisfied, then the deadband size will be very small. Hence, it can be 

neglected for all practical purposes. This assumes a properly chosen exponent register 

length since the exponent register length determines the dynamic range of underflow. 

The Influence of the Nonlinearity. Unlike the FXP case, the characteristic of the 

nonlinearity has only a minor effect on the system behavior, significant differences being 

present only in underflow conditions 

The Underflow case. In underflow, the ^-system seems to behave worse than its q~ 

operator counterpart. This is mainly due to the fact that, a FLP system in underflow 

essentially performs very similar to a FXP system. However, as mentioned above, if the 

dynamic range of underflow is chosen properly, the system behavior in underflow is of little 

practical interest. 

Block Floating-Point Arithmetic. Even for the g-operator case, results regarding block 

FLP implementations are lacking. Hence, investigations regarding block FLP implemen- 

tation of ^-systems is in its early stages. In order to obtain a comparison between the two 

types of implementations, current research is geared towards obtaining results applicable 

for the ^-operator case. 

T1.3 The Multi-Dimensional Case 

The results on one-dimensional (1-D) ^-operator implementations in FXP arithmetic di- 

rectly carry over to the multi-dimensional (m-D) case. The existence of non-converging 

responses along the boundary of the causality region can easily be proven using the same 

type of argument used in the 1-D case. Consequently, ^-operator based implementations 

of m-D systems cannot be implemented limit cycle free in FXP. 

Task T3; 2-D and m-D 6-system models 



Discrete-time systems implemented using the ^-operator, as is clear from the discussion 

above, exhibit superior finite wordlength properties with FLP arithmetic. In the case of 

FXP arithmetic, they still provide superior coefficient sensitivity. The development of 2-D 

and m-D models applicable for ^-operator implementations was hence motivated with the 

expectation that these properties would still hold true. 

The conclusions drawn from the work conducted for task T3 may be summarized as 

follows: Similar to the 1-D case, under FLP arithmetic, the ^-operator implementation of 

2-D and m-D discrete-time systems provides the best choice. Again, this is particularly 

true in high-order and high-speed applications. 

State-space models. In Roesser local s.s. model of ^-operator formulated 2-D discrete- 

time systems takes the form 

qh[xh](ij) 
9«M(*,i). 

AD       A2) 

(3)      A(*) 
L9 -"-q 

rh xft(*\j) 
x"(«,j) 

A: 

= [Aq] 

y(i,j)=[c?>  c<2>] 

±[c9] 

x"(»,j) 
+ ? 

(2) u(«',i) 

xfc(i,i) 
x"(i,j) 

+ [Bq]u(i,j); 

+ [Dq]u(i,j) 

+ [Dq]u(i,j), 

xA(i,i) 
xr(«,i) 

(T3.1) 

where Aq^ is of size nh x nh, Ag
4) is of size nv x n„, etc. Also, ?/,[•] and qv[-] denote the 

horizontal and vertical shift operators, that is, 

qh[x](i,j) = x(i + l,j)    and    qv[x\(i,j) = x(i, j + 1). (T3.2) 

To exploit the advantages of ^-operator implementations, analogous to the 1-D case, 

we define the operators 

sh[x](i,j) = 
x(» + l,j)-x(i,j) _ gft[x](i,j)-x(i,j) 

Afc Aft 

x(»,j + l)-x(»,j) _ gv[x](i,j)-x(i,j) 
Av Av 

(T3.3) 

where A/, and A„ are two positive real constants. The corresponding ^-operator s.s. model 
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may then be obtained as 

**[x*](i,j) 
Mxv](i,j) 

AW      A(2) 

xÄ(i,i) 
x"(«',i) 

L*"(«.i)J 
+ u(*,i) 

x*(»\j) 
xw(:,i) 

+ [B]u(i,j); 

+ [D]u(i,j) 

+ [D]u(i,j). 

xfc(i,j) 
[x-(t,j)J 

(T3.4) 

This is the 2-D version of the intermediate equation mentioned earlier. In addition, as for 

the 1-D case, we have the following update equations: 

qh[xh](i,j) = xA(i,i) + Aft • 6h[xh](i,j); 

qv[xv](iJ) = x"(i,i) + Av ■ 6v[xv](i,j). 
(T3.5) 

Note that, 
L-i 1+ A ■ As <=> As = A~L • (Aq - In); 

Bq = A-B <=► Bs = A'1 ■ Bg; 

Cn = Cs    "^^   Cs = Cq] 
(T3.6) 

DQ = DS Ds = Da. 

Here, A = [AhInh © A„I„ J is of size (rih + nv) x {nu + nv). 

The associated system theoretic notions, such as, transition matrix, transfer function, 

characteristic equation, etc., have also been introduced. This s.s. model is the basis for 

designing 2-D filters with superior finite wordlength properties. The design procedures 

developed are expected to be extremely useful in obtaining high-Q 2-D and m-D digital 

filters that are suitable for high-speed applications. 

Stability. In the 1-D case, it has been shown that, direct techniques with no recourse 

to transformations (that first converts a given 6-system to its g-system counterpart) can 

provide numerically more reliable stability checking algorithms. With this in mind, for the 

2-D case, a direct stability checking technique applicable to the corresponding ^-system 

transfer function has been introduced. For this purpose, a recently developed tabular form 

was extended to the complex coefficient case and the notion of Schur-Cohn minors was 

introduced to the ^-operator case. 

Gramians and balanced realization. The notions of reachability and observability 

gramians and balanced realization have been introduced for the ^-operator case. In order 



Ts ' '     " (T3.7) 
de 

to do this, first, the relationship between the gramians for the S- and ^-operator cases, as 

defined in the literature, was established. The reachability and controllability gramians, 

that is, P and Q, respectively, for 1-D 5-systems were found to satisfy 

P = ^i i(cI ~ A^BW ~ A»-lTTÄS 

where Ts is the stability boundary applicable for ^-systems, that is, 7« = {c € S : \c + 

1/A| = 1/A}. An extension of this is then used to define the 2-D gramians of ^-systems 

represented in the Roesser model developed above. 

For the important class of separable (that is, separable-in-denominator) systems, it 

is shown that these gramians may be computed through the solution of four Lyapunov 

equations. These notions and results are useful in many applications, such as, in extracting 

reduced order models of (^-systems. 

Sensitivity. Measures that indicate coefficient sensitivity of the ^-models developed 

above have been introduced. Unlike what is available in literature, this development is 

applicable to the MIMO case as well. With these sensitivity measures as a guide, devel- 

opment of minimum sensitivity structures has been carried out. The connection with the 

corresponding balanced realizations has been pointed out. 

Roundoff noise. With the use of a noise model that takes into account the roundoff 

error propagation in the s.s. model developed above, structures that minimize roundoff 

noise have been developed. 
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ABSTRACT 

This paper analyzes the problem of global asymptotic 
stability of delta-operator formulated discrete-time sys- 
tems implemented in fixed-point arithmetic. It is shown 
that the free response of such a system tends to pro- 
duce period one limit cycles if conventional quantization 
arithmetic schemes are used. Explicit necessary con- 
ditions for global asymptotic stability are derived, and 
these demonstrate that, in almost all cases, fixed-point 
arithmetic does not allow for global asymptotic stability 
in delta-operator formulated discrete-time systems that 
use a short sampling time. 

I. INTRODUCTION 

Recently, discrete-time systems formulated with the in- 
cremental difference operator (or, 6-operator) have been 
receiving considerable attention in the technical litera- 
ture [1-4]. Most of this work focus on its superior per- 
formance under finite wordlength conditions when com- 
pared with those formulated with the shift-operator (or, 
^-operator). In particular, investigations of coefficient 
sensitivity and quantization noise properties have re- 
vealed that 6-operator formulations usually perform sig- 
nificantly better than their q-operator counterparts [1- 
4]. This is especially true for high-speed applications 
where the sampling rate is much larger than the un- 
derlying system bandwidth. Under these conditions, q- 
operator formulated discrete-time systems tend to be- 
come ill-conditioned [1-2]. 

Although a large amount of work is available on the 
effects of coefficientsensitivity and quantization noise, a 
deterministic study of the nonlinear behavior of discrete- 
time systems formulated with the <5-operator has not 
been undertaken. In the case of floating-point (FLP) 
arithmetic, some results for feedback system are avail- 

able in [2]. 

In this work, we focus on the convergence behavior of the 
unforced system response and global asymptotic stabil- 
ity of <5-operator formulated discrete-time systems imple- 
mented in fixed-point (FXP) arithmetic. In particular, 
via necessary conditions for stability, it will be shown 
that such systems tend to produce DC limit cycles. 

The structure of this article is as follows: In Section II, 
we introduce notation and nomenclature. The model for 
6-operator formulated discrete-time systems, with and 
without quantization nonlinearities, is briefly discussed. 
Section III addresses the problem of asymptotic stability 
when FXP arithmetic is used for the implementation. 
In terms of ensuing DC limit cycles, necessary condi- 
tions for global asymptotic stability are formulated. It 
is shown that, when FXP arithmetic is used, stability 
of the linear system is often lost. Section IV provides 
concluding remarks. 

II. NOTATION AND NOMENCLATURE 

Since our focus is on investigation of stability proper- 
ties of (5-operator formbdated discrete-time systems un- 
der unforced conditions, the state equations of the sys- 
tem under zero-input will be considered. 

In the linear case, the general m-th order state-space 
representation is given by 

6[x](n) = A6x(n); 

x(n+ 1) =x(n) + A -6[x](n), 
(1) 
(2) 

where x(n) = [n(n), .. . , xm(n)]T is the state vector at 
instant n, A6  = {a6

{j} € 3RmXm is the system matrix, 
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and A > 0 is the sampling time. Moreover, <5[] repre- 
sents the 6-operator, that is, 

6[Xv}(n)=X*{n + 1)
A-

XAn\v» = l m,      (3) 

and S[x](n) = [6[xi](n),... , 6[xm](n)}T. The actual im- 
plementation of (1) and (2) in FXP format gives rise to 
nonlinear quantization operations that occur at various 
locations depending on the hardware realization. 

Eqn. (1) can be implemented either by using single 
wordlength accumulators (creating a quantization error 
after each multiplication) or by using double wordlength 
accumulators (creating a quantization error only after 
summation). We will only consider the latter option 
since practically all modern DSP machines implement 
this. Eqn. (1) can then be written as 

5[x](n) = Q{A*x(n)}, (4) 

where Q is a vector-valued quantization nonlinearity of 
the form ,     ,     , . 

/Q{*i}\ 

<?{x} = : (5) 

\Q{Xrn}J 

Here, Q{x„} denotes magnitude truncation, two's com- 
plement truncation, or rounding. 

Eqn. (2) can be implemented in two different ways: 

x(n + l)=x(n)+Q{A-6[x](n)}, (6) 

III. NECESSARY CONDITIONS 
FOR STABILITY 

First, we will consider the system described by {(4), (6)}. 
From the definition for global asymptotic stability as 
stated in the previous section, it is necessary that 

Q{A ■ <5[x](n)} £ 0,     for any    x(n) ^ 0.        (8) 

This is just one of a finite set of conditions that is re- 
quired to ensure global asymptotic stability of a FXP 
implementation of a linearly stable system [5]. 

In the case of rounding, condition (8) is violated if 

|A -%„](n)| < -,     for any    j/ = l,...,m.      (9) 

The sampling time A in a 6-operator formulated imple- 
mentation is typically very small. With A = It and (9), 
we have 

l«M(«)l < Yi'   forany   " = i.•••."».      (10) 

where / is a positive integer. 

In the case of magnitude truncation, (10) takes the form 

|<5M(n)| < j,     forany    j/=l,...m.        (11) 

Accordingly, for two's complement truncation, we have 

x = Q{x(n) + A-6[x](n)}. (7) 

Eqn. (6) corresponds to quantization after multiplication 
while (7) corresponds to quantization after summation. 
In contrast to (1), for (2), it is not clear which of the 
two quantization schemes in (6) and (7) is preferable. 
We will therefore consider both possibilities. 

Throughout this paper, we will use the following defini- 
tion of stability: 

Definition. The discrete-time system in {(4), (6)} 
or {(4), (7)} is globally asymptotically stable if and 
only if, for any initial condition x(0), the state vec- 
tor x asymptotically reaches zero, that is, x(n) —► 0 
for n —»co. 

Comment. Since the FXP systems considered are in fact 
finite state machines, the condition x(n) —► 0 for n —♦ oo 
may be restated as x(7V) = 0 for some finite N [5]. 

Finally, the symbol I is used to denote the quantization 
step. 

0 < 6[xv](n) < -,     forany    u=\,...,m.        (12) 

Conditions (10-12) describe the deadband, in terms 
of <5[x], for which a DC limit cycle occurs. Such a limit 
cycle can be avoided if (10-12) are satisfied by the zero 
vector only. In the case of rounding, we therefore require 

or, equivalently, 

<>£• 

A > (13) 

which is impractical. Similarly, for magnitude and two's 
complement truncation, we obtain 

> - <=> A > 1, (14) 

which again is equally impractical. 

This result is summarized in the following theorem. 
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Theorem 1. A necessary condition for stability of the 
(5-operator formulated discrete-time system in {(4), (6)} 
is A > 0.5 for rounding and A > 1 for truncation. 

The above theorem sfcows that high-speed <5-operator 
formulated implementations that possess a small sam- 
pling time cannot be realized limit cycle free in FXP 
format! 

A second necessary condition for the system in {(4), (6)} 
can be obtained by noting that 

<5[x](n) = 0 (15) 

can occur in (4) even though the state vector x(n) ^ 0. 

Therefore, for rounding, no nonzero state vector x(n) 
that satisfies 

/f\ 

\u 
< A6 -x(n) < + 

/i\ 

\U 

(16) 

may be allowed to exist. Here, the inequality has to 
hold elementwise. Taking norms on both sides of (16) 
one gets an algebraic condition on the system matrix A6 

that always support DC limit cycles. Eqn. (16) has the 
following interesting interpretations: 

1. Each of the resulting m inequalities can be geomet- 
rically interpreted as the intersection of two half 
spaces in 5Rm. These intersections are symmetric 
about the origin and have parallel boundaries. The 
normal vector to the boundaries is given by the 
particular row vector of A6. Only if the intersec- 
tion of all such m half spaces contains a nonzero 
point in 5Jm, and if it belongs to the quantization 
lattice, will there exist a nonzero state vector that 
is an equilibrium point of the system. 

2. Eqn. (16) can also be interpreted from an eigen- 
value/eigenvector viewpoint. In high-speed digi- 
tal filters where the sampling frequency is typically 
much higher than the bandwidth of the processed 
signal, a (/-operator implementation's eigenvalues 
cluster around the point z — 1 [l]. The correspond- 
ing 6-operator implementation for large sampling 
times has eigenvalues clustered around zero. How- 
ever, as the sampling time becomes small, these 
eigenvalues move towards the eigenvalues of the 
underlying continuous-time system [1]. In other 
words, for large sampling times, the system matrix 
will be ill-conditioned, that is, vectors x(n) ^ 0 
exist such that A6 -x(n) is close to the zero vector. 
According to (16), this is likely to cause a DC limit 
cycle. For small sampling times, this problem may 
not occur; however, in this case, the conditions in 
Theorem 1 are not satisfied! 

In the case of the remaining two quantization schemes, 
the inequalities corresponding to (16) are given as fol- 
lows: For two's complement truncation, 

0 < AS ■ x(n) < 

fe\ 

w 
, x(n)*0,        (17) 

and, for magnitude truncation, 

: | < A6 x(n) < +    : , x(n)^0.   (18) 

A similar analysis can be conducted for the system 
in {(4), (7)}. Since (4) is common to both realizations, 
(16-18) are still valid and provide conditions under which 
the finite difference is quantized to zero and a DC limit 
cycle is produced. We will now briefly discuss neces- 
sary conditions for global asymptotic stability obtained 
from (7). 

For rounding, proceeding as in (9), we have 

|A • <5[a,v](n)| < -,     for any     v — 1,. 

and therefore 

|(5[x,/](n)| < —,     for any    v = l,...,m. (19) 

For magnitude truncation, we obtain 

0 <S[x„](n) < -, W[z„] > 0, (20) 

md 

 < 6[xv](n) < 0, V6[xu] < 0. (21) 

In the case of two's complement truncation, the condi- 
tion for a DC limit cycle is given by 

0 < 6[Xl/](n) < -, Vi/ = l,...,m. (22) 

With A = / ■ (., I being a 'small' integer, we come to the 
same conclusion as for the previously considered system: 

A > —     for rounding; 
^2 8 

A > 1    for truncation. 

Therefore, Theorem 1 also holds for the system repre- 
sentation in {(4),(7)}. 
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IV. CONCLUSION 

Via a set of necessary conditions for global asymptotic 
stability, it has been shown that high-speed, limit cycle 
free 6-operator implementations of linear discrete-time 
systems cannot be realized. This is due to the tendency 
of such a realization to produce period one limit cycles. 
This situation arises from small values in the finite dif- 
ference being quantized to zero. Hence, convergence to 
the 'wrong' equilibrium point is very likely. Conditions 
on the system matrix and the sampling time if such limit 
cycle behavior is to be avoided have been provided. The 
results indicate that, in high-speed applications, these 
conditions cannot be satisfied with conventional quanti- 
zation schemes. 
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FIXED-POINT IMPLEMENTATION OF MULTI-DIMENSIONAL 
DELTA-OPERATOR FORMULATED DISCRETE-TIME SYSTEMS: 

DIFFICULTIES IN CONVERGENCE 

Peter H. Bauer, PhD 
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Notre Dame, IN 46556 

Abstract— In this paper, the convergence 
properties of linearly stable multi-dimensional 
systems are investigated for the case of delta- 
operator implementations in fixed-point format. 
It is shown that zero-convergence is almost never 
achieved, if the sampling time is small. Using a 
one-dimensional analysis, it is demonstrated that 
zero-convergence cannot be guaranteed along the 
axis of the first hyper-quadrant for a first hyper- 
quadrant causal system. This limits the use 
of delta-operators for solving partial differential 
equations in discrete time with fixed-point arith- 
metic. 

I. INTRODUCTION 

Delta-operator (or, 6-operator) implementations of 
discrete-time systems have been the topic of a number 
of research papers within the last decade. A compre- 
hensive treatment of the properties of (5-operator imple- 
mentations can be found in [1]. It is well known that 
6-operators outperform shift-operators (or, ^-operators) 
in terms of their finite wordlength properties [2]. In par- 
ticular, its quantization noise and sensitivity properties 
make the 6-operator an interesting alternative to the q- 
operator in areas such as digital control, digital signal 
processing, and generally discrete-time simulation of dy- 
namical systems described by differential equations [1], 

[3]- .   .   . 
In   this   paper,   we   will   perform   a   deterministic 

analysis of the finite wordlength properties of multi- 
dimensional (m-D) 6-operator implemented discrete- 
time systems. In particular, we will investigate the zero- 
convergence of 6-operator fixed-point implementations of 
one-dimensional (1-D) and m-D systems. Although it is 
of vital importance, this problem has not been investi- 
gated thus far in the literature. After all, asymptotic 
stability and convergence to the true equilibrium points 
are some of the most fundamental requirements for any 
discrete-time system realization. 

This article is organized in the following way: Sec- 
tion II introduces the notation. The m-D 6-operator 
model will be introduced and briefly discussed. This 
section will also provide the problem formulation. Sec- 
tion III provides necessary 1-D stability conditions for 
m-D first hyper-quadrant causal systems with nonlin- 
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earities. Using these necessary conditions, section IV 
provides a stability and convergence analysis for m-D 
systems. It will be shown that the resulting 1-D systems 
cannot ensure zero-convergence. Section V contains con- 
cluding remarks. 

II. NOTATION AND PROBLEM FORMULATION 

The   m-D   Roesser   model   has   the   following   6- 
operator formulation [4]: 

^[xd'Kn) 

6(»0[x(m)](n)_ 

r    A& 

A6 

'lm c^Hn) 

x(m>(n) 

+ 

B[ 

u(n); (1) 

«^[x^Kn) 

,(m)[x(m)](n)_ 

x(1)(n) 

r("0 

+ A 

(n) 

6(D[x(1)](n) 

_6(m)[x(m)](n) 

• 

(2) 

The input-state equations in (1) and (2) describe a first 
hyper-quadrant causal m-D system with a uniform sam- 
pling period of A in all directions. The operators q('> 
and 6^ represent the shift- and delta-operator in the 
direction specified by the axis n,. In particular 

qW[xli))(n) 

= x(,)("i, • • • ,«i-i,»i + l,"i+i, ■ 

6(;>[x(i)](n) 

i)   (3a) 
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= —(x(,)(«li-->«t-i,rJ,- + l,n,-+1,...,nm) 

-x(i,(n)). (3b) 

Here, (n) = (r»i,..-,nm) denotes a point in the first 
hyper-quandrant, x' )(n) is the portion of the state vec- 
tor propagating in the direction specified by the axis n,-, 
u(n) is the m-D input vector, and Af- and B6

{ , fort = 
1,..., m, j — 1,..., m, are the submatrices of the sys- 
tem and input matrices, respectively. 

If (1) is realized in fixed-point arithmetic, it takes 
the following form under zero-input conditions: 

Ä^fx^Kn) 

.^[x^Kn). 

Mm 

'ml 

x*x>(n) 

As
nm\   Lx(-)(n)J 

(4) 

/<?{*i}\ /xi 
where Q{x} =1 j   with x=  I 

\Q{xm}J \xm 

Equation (4) assumes quantization after summa- 
tion; since practically all modern DSP machines imple- 
ment this quantization scheme, we utilize this. The 
vector-valued quantization nonlinearity Q{} may rep- 
resent any one of the conventional schemes, viz., magni- 
tude truncation, magnitude rounding, two's complement 
truncation, and two's complement rounding. 

Equation (2) can be implemented in two different 
forms: 

9(1)[x('')](n) 

or 

.<?(
m)[x(m)](n) 

.x<m>(n)_ 

^'llxl'lfn) 

_9(m)Jx(m)](n^ 

x(1)(n) 

+ Q< A 

6(1'[x(1)](n) 

_<5(m)[x(m)](n). 

(5) 

= Q 

x(m)(n)J 

+ A- 

6(m)[x(m)](n). 

>(6) 

Equation (5) corresponds to quantization after multi- 
plication, whereas (6) corresponds to quantization after 
addition. In contrast to (1), for (2), it is not obvious 
which of the two forms stated above is preferable. 

The following definition for asymptotic stability [5] 
will be used throughout this paper. 

Definition. An m-D first hyper-quadrant causal discrete- 
time system is asymptotically stable under all finitely 
extended bounded input signals u(n) where 

|u(n)| < 5,     for    m + ■■■ + nm < D; (7) 

u(n) =0,     for    m + ■ ■ ■ + nm > D, (8) 

if all the states of the m-D discrete-time system asymp- 
totically reach zero for ni + ■ ■ ■ + nm —- oo. Here, 
nv > 0, v — 1,. . ., m, S is a nonnegative real number, 
and D is a positive integer. 

Since the fixed-point systems considered are in fact 
finite state machines, the condition 

cO)(n) 

for ni + \-n„ 
strengthened to 

,x(m)(n), 

oo,  n„ > 0,  v — 1,..., m, can be 

x(')(n) 

.x(m)(n). 

0, 

for all points nx -\ \- nm > c,  n„ > 0,  v - 1, . . . , m, 
where c is some finite integer. 

Problem Formulation. Analyze the asymptotic zero- 
convergence of the state response of systems in (4,5) 
and (4,6) under the assumption that the underlying lin- 
ear system is asymptotically stable. 

III. NECESSARY CONDITIONS FOR 
GLOBAL ASYMPTOTIC STABILITY 

OF m-D SYSTEMS 

In this section, we present some necessary condi- 
tions for stability of a first hyper-quadrant causal m- 
D discrete-time system represented in its Roesser local 
state-space model in (1,2). These necessary conditions 
are formulated in terms of 1-D conditions. This theorem 
follows directly from a result in [6] which was formulated 
for ^-operator implemented discrete-time systems. The 
proof of the theorem rests on the fact that a first hyper- 
quadrant m-D system can be described by a 1-D system 
for those locations that are along the m coordinate axes 
of the boundary of the hyper-quadrant. Reformulating 
the result in [6] for 6-operator systems produces the fol- 
lowing theorem: 
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Theorem 1. 
(a) A necessary condition for global asymptotic sta- 

bility of the system in (4,5) is that each of the following 
1-D systems in (9,10) is globally asymptotically stable: 

6(»)[x(i)](n,) = Q{[^,]x(')(^)}; (9) 

,W[x(0](ni) = x(0(ni) + Q { A • 6(i)[x(')](ni)} (10) 

where t = 1,.. . , m. 
(b) A necessary condition for global asymptotic sta- 

bility of the system in (4,6) is that each of the following 
in 1-D systems in (11,12) is globally asymptotically sta- 

ble: 

6(')[x(*')](n,) = Q{[Af,]x(')(n.)}; (11) 

g(')[x(')](n.) = Q {xWfo) + A • «(i»[x(,)]K)) (12) 

where i = 1,... ,m. 

Proof. For a detailed proof, and generalizations to higher 
sub-dimensional systems, the reader is referred to [6]. ■ 

Theorem 1 can be viewed as an extension of the 
concept of practical BIBO stability to asymptotic sta- 
bility of nonlinear systems. It is particularly useful in 
proving instability in m-D nonlinear systems. 

IV. NECESSARY CONDITIONS FOR 
GLOBAL ASYMPTOTIC STABILITY 

OF 1-D SYSTEMS 

Let us rewrite (9), (10), and (12) as 1-D matrix- 
equations of order K. In this case, (9), (10), and (12) 
yield (13), (14), and (15), respectively: 

«[*!](«) 

Now, we are in a position to formulate the second theo- 
rem which presents a necessary condition for stability of 

1-D systems. 

Theorem 2. A necessary condition for global asymptotic 
stability of the system in (13,14) or (13,15) is given by 

A > 0.5,     for magnitude rounding; 

A > 1,     for truncating. 

Proof. For global asymptotic stability of (13,14), it is 
necessary that 

%«■](")_ 

'IK 
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xi(n) 

X
-
K(«) 

;(13) 

xK(n + 1)_ 

xi(n) 

+ Q< A 

6[*i](n) 

6[xK](n)] 

;   (14) 

+ A 

6[xi]{n) 

6[xK]{n) 

Q< A 

6[xi](n) 

_6[xK](n) 

9*0, (16) 

xi (n) 

for any *0. 

■   (15) 

X*K("). 
First, we will address the case of magnitude round- 

ing. Obviously, condition (16) is violated if, for xv ^ 0, 

\A-6[xv](n)\ < -,     for    u = l,...,K,        (17) 

where I is the quantization step.   Expressing the sam- 
pling time A as an integer multiple of I, we have 

It, (18) 

where / is some (typically small) positive integer. 
With (17) and (18), we obtain the following condition 
for instability: 

\6[xv](n)\<±j,,;=l,...,m, (19) 

for xv ^ 0, u—\,...,m. 
Condition (19) is not satisfied for any nonzero value 

of xv (that is, the condition for instability is not satisfied) 
if I > 1/21, or equivalently, 

A > -. 
~ 2 

(20) 

This proves the theorem for magnitude rounding. 
For the case of magnitude truncating, (17) takes 

the form 

\A ■ 6{xv}(n)\ < I,     for    i/=l,...,/C. (21) 

Therefore, (19) becomes 

!%,](")! < j (22) 

i 
I 
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This finally yields 
A > 1. (23) 

For two's complement, (17) takes the form 

0 < A • 6[xu]{n) <t,     for    u= \,...,K. (24) 

This results in 

(25) 
1 

0 < 6[xv}(n) < - 

and consequently, A > 1. This proves the theorem for 
the system in (13,14). A similar argument can be used 
for the system in (13,15) by considering the cases for 
which 

+ A 

S[xi]{n) 

6[xK]{n) 

xi(n) 
(26) 

Xf<(n) 

for nonzero state vectors. I 

We can now combine Theorems 1 and 2 to formu- 
late a necessary condition for stability of m-D first hyper- 
quadrant causal 6-operator formulations of the general- 
ized Roesser model. 

Corollary 3. A necessary condition for global asymptotic 
stability of the m-D systems in (4,5) or (4,6) is 

A > 0.5,     for magnitude rounding; 

A > 1,     for truncatiing. 

Proof. The proof follows from Theorems 1 and 2. I 

Comments. 
1. Theorem 2 and Corollary 3 are also essentially ap- 

plicable to the case where the sampling time varies 
with the direction of propagation. In this case, the 
inequalities in Theorem 2 and Corollary 3 would 
have to be replaced by 

A,- > 0.5,     for magnitude rounding; 

A; > 1,     for truncating, 

for i = 1,... ,m. 
2. Most of the previous results on the superior fi- 

nite wordlength properties of <5-operators depend 
on choosing a very small sampling time A. In such 
a case, Theorem 2 and Corollary 3 show that the 
system response will not converge to zero for the 
unforced case. 

3. Our analysis is limited to the zero-input case for 
which DC limit cycles were used to derive condi- 
tions for non-convergence. If one includes other 
types of limit cycles in the analysis, the require- 
ments for A may become even more severe. 

4. Theorem 2 and Corollary 3 show that fixed-point 
implementations of 1-D and m-D 6-operator sys- 
tems cannot be realized limit cycle free, if good coef- 
ficient sensitivity and quantization noise measures 
have to be achieved. See also [7]. 

V. CONCLUSION 

In this paper, it was shown that fixed-point imple- 
mentations of 1-D and m-D 6-operator systems are not 
limit cycle free even if the underlying linear system is 
stable and the sampling time is chosen small. This non- 
convergent behavior can be explained by the quantiza- 
tion of the <5-term to zero which leaves the state vector 
unchanged. The smaller the sampling time, the more 
severe this effect is. Therefore, the practical value of 
6-operators for fixed-point implementations of 1-D and 
m-D systems is questionable. There are however indica- 
tions that this effect is much less severe in floating-point 
implementations. 

6-operator implemented discrete-time systems rep- 
resent a class of systems where the quantization noise 
at the output can be small compared to other realiza- 
tions. However, as was shown above, such realizations 
will invariably exhibit limit cycle, that is, highly cor- 
related quantization noise, behavior. Therefore, in this 
case, typical measures for quantization noise are of very 
limited use for obtaining any insight into the likelihood 
of limit cycles and vice versa. 
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Abstract. The recent interest in delta-operator (or, 6-operator) formulated discrete-time systems (or, 
(S-systems) is due mainly to (a) their superior finite wordlength characteristics as compared to their more 
conventional shift-operator (or, g-operator) counterparts (or, g-systems), and (b) the possibility of a more 
unified treatment of both continuous- and discrete-time systems. With such advantages, design, analysis, 
and implementation of two-dimensional (2-D) discrete-time systems using the <5-operator is indeed war- 
ranted. Towards this end, the work in this paper addresses the development of an easily implement able 
direct algorithm for stability checking of 2-D 6-system transfer function models. Indirect methods that 
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1. Introduction 

The increased interest in <5-systems during the recent years (see [1-6], and references 

therein) is due mainly to two reasons: (a) ^-systems provide superior finite wordlength 

properties with respect to roundoff noise propagation [5] and coefficient sensitivity [1], [5], 

[7], as compared to their ^-system counterparts, and (b) the ^-operator yields the differ- 

ential operator as a limiting case when sampling time approaches zero enabling a unified 

treatment of both continuous- and discrete-time systems [1]. 

With such advantages in mind, development of 2-D and multi-dimensional (m-D) 6- 

system models must clearly be undertaken. Such research can, for example, provide m-D 

digital filters with superior roundoff error and coefficient sensitivity performance allowing 

their implementation to be carried out in a shorter wordlength environment. This is 

especially crucial in real-time applications, such as, in implementing narrow bandwidth 

filters under high sampling rates (for example, in current wide bandwidth communication 

system applications) where traditional g-operator implementations perform poorly [8]. 

In applications mentioned above, and those dealing with high-speed processing of 2-D 

and m-D data (for instance, in weather, seismic, gravitational photographs, video images, 

systems with mutliple sampling rates, etc.), ensuring stability is an important consideration 

(see [9], and references therein). Given the characteristic polynomial of a ^-system, to 

determine stability, one may first use a variable transformation that yields a more familiar 

stability region, for instance, the unit bi-circle. Then, an existing technique (see [9-10], 

and references therein) may be applied. However, such techniques are known to be prone 

to numerically ill-conditioning [1], [6]. In the 1-D case, direct stability checking methods 

for ^-system polynomials are in [6] (where a tabular method based on the work in [11] 

is given) and [12] (where a Hermite-Bieler-like Theorem is utilized). Hence, our purpose 

here is to develop a direct easily implementable stability checking technique applicable 

to m-D 5-systems. As usual, for notational simplicity, we concentrate on the 2-D case, the 

extension to the m-D case being quite straight-forward. 

In checking stability of bivariate characteristic polynomials, two conditions must be 

2 
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satisfied. 

(a) Condition I involves a 1-D stability check of a polynomial with real-valued coefficients. 

One may use the table form in [6]. Alternately, one may utilize an explicit root location 

scheme. 

(b) Condition II involves a stability check of a polynomial with complex-valued coefficients 

where the latter are dependent on a parameter taking values on a certain circle in the 

complex plane. Explicit root location schemes are now ineffective, and the value of tabular 

methods becomes apparent. Note that, in such a situation, compared to Nyquist-like 

techniques [13], tabular methods are known to provide certain numerical advantages as 

well [14]. 

In checking condition II for 2-D ^-systems, an effective technique involves checking 

positive definiteness of the Hermitian Schur-Cohn matrix [15]. This lets one use an impor- 

tant simplification due to Siljak [16]. The tabular form in [15] takes full use of this since it 

provides the Schur-Cohn minors (that is, the principal minors of the Hermitian Schur-Cohn 

matrix) directly from its entries [15], [17]. A similar simplification applicable to ^-systems 

is clearly possible if condition II may be reduced to checking positive definiteness of a 

Hermitian matrix. 

With the above in mind, we develop the following in this paper: (a) Tabular form 

for stability checking of ^-system characteristic polynomials possessing complex-valued 

coefficients, (b) Analogs of Schur-Cohn minors and a corresponding Hermitian matrix 

applicable for such systems, and (c) a direct stability checking algorithm for 2-D 6-system 

transfer function models. 

The paper is organized as follows. Section 2 introduces the notation used throughout 

and a brief review of previous results. Section 3 develops a tabular form for stability 

checking of ^-systems with complex-valued coefficients and some important relevant results. 

Section 4 presents quantities that may be regarded as the analogs of Schur-Cohn minors 

for (^-systems. The 2-D stability checking algorithm in Section 5 is based on the tabular 

form for real-valued coefficients [6]. Since only little extra work is needed, results in both 
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Sections 3 and 4 however are developed for the more general complex-coefficient case. 

Section 6 presents an example to validate the results. Section 7 contains the conclusion 

and some final remarks. 



2. Preliminaries 

2.1. Notation 

9?, ö     Real and complex number fields. 

Sßpx?5 Cjpxq      ge(. 0£ matrices 0f size pxq over 9£ and ö, respectively. 

var{-}      Number of sign changes in the sequence {•} of real 
numbers. 

Re[-], Im[-]     Real part and imaginary part of [•] 6 ö. 

[•]      Complex conjugate of [•] G S. 

AT, A, A* Transpose, complex conjugate, and complex conjugate 
transpose of i £ 5pX', respectively. 

Set of univariate polynomials of degree n (with re- 
spect to the indeterminate w  £  3) over 9£ and ö, 
respectively. 

9£(u>)      Set of rational univariate polynomials (that is, quo- 
tient of univariate polynomials) over 3£. 

^[^llni [t^lns      Set of bivariate polynomials of relative degrees nx 

and n2 (with respect to the indeterminates u>i  6 S 
and w2 G Ö, respectively) over 9?. 

^R.(wi,w2)      Set of rational bivariate polynomials over 3?. 

z, c     Indeterminates of q- and ^-systems, respectively. 

r      Real positive number, usually the sampling time. 

The transformation relationship between corresponding g-and ^-systems is 

6 = -  <=> c = . (2.i; 

[•]      ^-system quantity analogous to its corresponding 6- 
system quantity [•]; for example, transfer function 
of a given discrete-time system is either H(c) if im- 
plemented based on the «^-operator or H{z) if imple- 
mented based on the g-operator. 

H(c)\c^z      H(c)\c={z_l)/r 

G(z)\z^c      G(z)\z=l+TC 

H(cuc2)\c^z      H(cuc2)\c;=(zi-1)/Tti=lt2 

G(zi,Z2)\z->c        G(z\, Z2)|z,- = l + rci,i=:l,2 
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Stability studies of 1-D and 2-D q- and ^-systems involve the following regions: 

Uq, U\      {z G 9 : \z\ < 1}, {(21,22) G S2 : \z%\ < 1, i = 1,2}. 

Üq,lfq      {2GÖ:|z|<l}, {(zi,^)GÖ2: \zt\ < 1, i = 1, 2}. 

r?, T,2      {2 G 3 : |z| = 1}, {(zuz2) G 32 : N = 1, i = 1,2}. 

U6, U}      (ce3: |c + l/r| < 1/r}, {(Cl,c2) G 32 : |ct- + l/r| < 
1/r, i = 1,2}. 

Us,ü\      {ceS: |c + l/r| < 1/r}, {(cuc2) G S2 : |c, + l/r| < 
1/r, t = 1,2}. 

T6,T/      {cGÖ: |c + l/r| = l/r}, {(Cl,c2)G92 : |c, + l/r| = 
1/r, i = 1,2}. 

To avoid unnecessary notational complications, the sampling time in both horizontal and 

vertical directions is taken to be equal to r > 0. 

To emphasize the degree of F(w)  =  X^o ak   wk   £  ^[Hn, we sometimes denote it 

as F(w)n as well. 

F(w)      Conjugate polynomial of F(w), that is, X^Jc=o ^k   w 

F$(z)      Reciprocal polynomial of F(z), that is, znF(l/z) 

F$(c)      Reciprocal polynomial of F(c), that is, (1 + rc)n 

A g-system polynomial is q-symmetric if F(z) = F$(z).    A 5-system polynomial is 6- 

symmetric if F(c) = F\c). 

Tabular forms of stability checking of a polynomial in ^[a;]« typically employ a sequence 

of polynomials each of descending order. The first row of such a tabular form is denoted 

as row #n, the second row is row #n — 1, and so on. 

JT, MJT     Jury table [18], modified Jury table [15], [17]. 

real-^-BT      Bistritz table for ^-system polynomials with real- 
valued coefficients [11]. 

complex-g-BT     Bistritz table for ^-system polynomials with complex- 
valued coefficients [19]. 

real-6-BT     Table form for ^-system polynomials with real-valued 
coefficients [6]. 

complex-<5-BT      Table form for ^-system polynomials with complex- 
valued coefficients (this paper). 
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A g-system polynomial with all its roots in Uq (for the 1-D case) or Ug (for the 2-D case) 

is said to be stable. The corresponding regions for a ^-system polynomial are Us (for the 

1-D case) or U\ (for the 2-D case), respectively. 

2.2. Review of complex-q-BT 

The complex-5-BT introduced in Section 3 is based on the complex-5-BT, and hence, we 

briefly review it now. For more details, see [10]. Let the characteristic polynomial of a 

^-system be 

n 

F(z) = Y/a[n)zk £%{z]n    with    F(l)6»    and    F(l) ^ 0. (2.2) 

The complex-g-BT is formed using the symmetric polynomial sequence {T(z);}"_0 

where [19] 

(F(z)n + F*(z)n, 

T{z)i 
F(z)n-F*{z)n 

z-\ ' 

w. here 

for i = n; 

for i = n — 1; 

(6i+2+Sl+2z)nz)t+1-T(z)l+2^   fori- = n_2jn_3,...,0, 

i+2 = *7Ä\ = ^Ö' * = «-2,n-3,...,0. 
1 (U);+i        t 

(2.3) 

(2.4) 

As in [11] and [19], equating similar powers on either side, we may also get the following 

determinental rule: For k = 0,1,..., i, and i = n — 2, n — 3,..., 0, 

<-1-      — 

1 
K» + l) t A.-+1 

+ 
y(i+2)       Y(i+2) 
li+2 lfc+l 

Li+1 Llc 

,   K«+2) 
"T" lk+l    ■ (2.5) 

Remark. The computational advantage of BT is due to T(z),- being g-symmetric. This 

implies ijj/ = £,-_£ , k = 0,1,... , i, and hence, it is necessary to evaluate only half the 

coefficients of each row. 

Using (12-13), (16), and Theorem 6 of [19], we get 
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THEOREM 2.1. [19] The polynomial F(z) G $s[z]n is ^-stable iff 

I. £5    ^ 0, i = n — 1, n — 2,..., 0, and 

II. i/n = var{f(l)„,f(l)n_1,...,f(l)o} = 0. 

2.3. Some results on 2-D stability 

Consider the 2-D g-system transfer function 

H(zi,z2)=
I*ZuZ2le9t(zuz2) (2.6) 
F{zuz2) 

where E(zi,z2) G ^[-?i]m[^2]n2 and F(zi,z2) G 9U[«i]ni[^2]n2- The 2-D z-transform is 

taken using positive powers of Z{. For a comprehensive discussion regarding stability of 

such systems, see [9-10], and references therein. Hence, for reasons of brevity, only some 

analog results applicable to 2-D ^-systems are provided. It is only necessary to observe 

that the corresponding <5-system H(cx,c2) satisfies 

H(cuc2) = ^
Cl,C2\ = H(zuz2)\z^c G 3J(cljC2) (2.7) 

where E(ci,c2) G 3J[ci]ni[c2]n2 and F(ci,c2) G 3?[ci]ni[c2]n2. In the remainder of this pa- 

per, we will only be dealing with transfer functions H{c\, c2) that are devoid of nonessential 

singularities of the second kind on Tg   and the pair E(ci,c2) and F(ci,c2) is taken to be 
 2 

coprime. If the 2-D polynomial F(cljc2) ^ 0, \f(ci,c2) G U6, it is said to be 6-stable. After 

using (2.1), the following result follows directly from [20]: 

THEOREM 2.2. The 2-D ^-system in (2.7) is 6-stable iff 

I. F(cu -1/r) ^ 0, Vci G Us, and 

II. F(cuc2) + 0, VCl G Ts, Vc2 G Us. 

The following result, which allows one to use the real-6-BT, is directly from [21-22] 

after using (2.1): 

THEOREM 2.3. The 2-D <5-system in (2.7) is 6-stable iff 

I. F(cu -1/r) ^ 0, Vci G U6, and 
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II. G(x,c2) ^ 0, Vz e [-2/r,0], Vc2 e W«. 

Here G(x,c2) = F(c!, c2)F(ci, c2) 
i=(c1+el)/2 

2.4- Schur-Cohn minors 

In stability checking of 2-D g-systems, the following result is important: 

THEOREM 2.4. [15], [23-24] The polynomial F(z) e 5[z}n is stable iff Ä,- > 0, i = 

1,2,... , n, where A; is the principal minor of the Hermitian Schur-Cohn matrix f = f * = 

{jij} 6 3nxn defined as 

i 

lij — 2_^(an-i+kan-j+k - äi-ka,j_k),     for    i < j. 
Jfc=i 

Stability checking of 2-D ^-systems then involves positivity checking of all Schur-Cohn 

minors A,-(z), Vz = l,2,...,ra, V|z| — 1. A necessary and sufficient condition for this is 

positivity of A;(l), Vz = 1,2, ...,n, and An(z), \/\z\ = 1. This is the simplification due 

to [16] that has been effectively utilized in applying the MJT [15]. The advantage of the 

latter is that its entries yield the Schur-Cohn minors directly. The fact that complex-^-BT's 

entries also yield the Schur-Cohn minors was only recently shown. 

THEOREM 2.5. [10], [25] The Schur-Cohn minors of F(z) are the principal minors of 

the (n x n) tridiagonal Hermitian matrix 

A = 

" Ref^e -!1}] 
iri<"--i)i<™-2)1 
2l'n-l     l0            J 0 0 0 

1 r^i-1)^™ 
2 1-0            Si- r2

2)] Re^-^fc^] ir){»-2)r(»-3)] 
2ln-2     l0           1 0 0 

0 Uy<™-2)><n-3)1 
2 L 0           ('n-3    J Re[^-2)er3

3)] 0 0 

0 

0 

0 

0 

0 

0 ••   M«0)] 



3. Complex-£-BT 

With no loss of generality, consider the ^-system characteristic polynomial 

n 

F(c) = ^4n)
c*e3[c]n, (3.1) 

Jfc=0 

where 

a(
0
n) E &    and    a(

0
n) > 0. (3.2) 

We now construct the complex-<S-BT with the use of the ^-symmetric polynomial se- 

quence {T(c)i}™=0 where 

( F(c)n + F«(c)n, i = n; 

T(c)i = { (3.3) 

(6i+2 + Sl+2(l + rc))T(c)i+1 - T(c)i+2 
1 + TC '   % ~ U ~ Z- 

Here 

6r+2=V}   MT?'+2, i = n-2,n-3,...,0. (3.4) 

The normal conditions required to complete the sequence are 

T(-l/r)i^0, i = l,2,...,n-l. (3.5) 

Remarks. 

1. To determine ^-stability of F(c), one may of course first obtain F(z) = F(c)\c^z and 

then determine its ^-stability by applying familiar stability checking algorithms (e.g., BT 

or MJT). The possible shortcomings of such a scheme are outlined in [1] and [6]. The 

purpose here is to obtain a direct check for ^-stability. 

2. We follow the work in [6] and [19], and hence, for brevity, all details are omitted. 

3. The conditions T(—1/r),- = 0, for some i = 1, 2,... n — 1, imply certain singular condi- 

tions on the root distribution of F(c) [11], [19]. The equivalent singular conditions for the 

real-<5-BTis in [6]. 

4. Using ^-symmetry, it is easy to show that 

T(-1/T)i = -£-, i = 0,l,...,n. (3.6) 

10 
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Therefore 
1 ^'+2) 

^+2 = 7lSy' *' = n-2,n-3,...,0. (3.7) 

The normal conditions in (3.5) may now be expressed as 

t^ ^ 0, i = n - 2, n - 3,..., 0. (3.8) 

Analogous to [6], [11], and [19], we then have 

THEOREM 3.1. The polynomial F(c) e S[c]n is stable iff 

I. t\    ^ 0, i = n — 1, n — 2,..., 1, and 

II. vn = var{T(0)n,T(0)n_1,... ,T(0)0} = 0. 

One of the main advantages of the complex-g-BT is that all computations may be 

carried out through real arithmetic only [19]. The same holds true for the the complex-6- 

BT introduced above as well. To see this, let 

T(c)i = S(c)i + jA(c)i    with    St = Re[St] + jha[Si], (3.9) 

for i = 2, 3,..., n. It is easy to show that 5(c),-'s and .A(c),-'s form sequences of «^-symmetric 

and ^-antisymmetric polynomials, respectively. Now, (3.3) may be expressed as 

S{c)i-2 = —^— [Re[Si}(2 + re) ■ S^c)^ + lm[St]rc ■ A(c)t^ - S{c){\; 
1 + TC 

A(c)i-2 = —!— [-lm[Si}rc ■ S(c)i^ + (2 + rc)Re[£] • ^(c),--! - A{c)t), 
1 -\- TC 

(3.10) 

for i; = 2, 3,..., n. 

Remark. Note that, T(0),- = 5(0),- + jA(0)t = 5(0),-. 

In the real-£-BT construction, a certain 'scaling' of {T(c)t}"_0 was useful [6]. We 

use the same technique in the complex-<5-BT case as well, thus providing the following 

advantages: (a) Terms containing r are avoided during construction, (b) 6i and V{ may be 

deduced by simple inspection, and thus (c) computational effort is reduced. 

11 
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The sequence of polynomials that incorporates 'scaling' is {^(C)i}f=o where 

fc=0 

for i = 0,1,..., n. Thus, from (3.3), we get, for i = n - 2,n - 3,... 0, 

u (0     /c .,x..^\Ji+1)^Ji+2) 
0 

re i    c        \    K'f1) V' 

(3.12) 

«i° = (5i+2 + ^+2)u
(

fc
i+1) - WÄ" - 4'+2) + «&i, * = 1,2,.:. i. 

Note that 
7<i+2) (t+2) 

^ = ife = -5grT,' = "-2."-3,...,0, (3.13) 
Zi+1 Ui+1 

and 

^n = var{T(0)a?=0 = var{u<0}JL0. (3.14) 

Therefore, condition II of Theorem 3.1 may be checked by inspecting the constant coeffi- 

cients of MC)i}"=o- 

Remark. One may use the same 'scaling' strategy in an implementation that uses only real 

arithmetic. 

Relationship between complex-q-BT and complex-8-BT 

As was agreed upon previously, given F{c)n  G  $s[z], let us use the notation F(z)n  to 

indicate 

F(z)n = \F{c)n (3-15) 

w here A G dt is a possible scaling constant. The establishment of the relationship be- 

tween the rows of complex-g-BT of F(z), i.e., {T(z);}JL0, and complex-6-BT of F(c), i.e., 

{T(c)i} -L0, which is the subject of this section, is useful later in obtaining the Schur-Cohn 

minors from the latter. 

CLAIM 3.2. 

12 
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Proof. Note that 

F\z)n = znF (-)    = \znF(c) 

F*{c)n =(l + rc)nF 
1+TC 

= \Z»F(
1
-^ 

c->z \     TZ 

The claim is thus proven. ■ 

THEOREM 3.3. The rows of the complex-g-BT of F(z) and the complex-6-BT of F(c) are 

related by 

T(z)i = 
\T(c)i , i = n,n — 2,...; 

, i = n — l,n — 3,.... 

Proof. First, using Claim 3.2, note that 

f(z)n = AT(c)n 

Thus, Theorem 3.3 is established for i = n.  i = n - 1 may also be established directly. 

For i = n - 2, n - 3,..., 0, use (2.3) and (3.3). ■ 

COROLLARY 3.4. 

i(0 _ 

ff) = 

±t(i\       for i = n,n- 2,...; 

^4°,    for i = n- l,n-3,..., 

4#\        for i = n,n-2,...; 

7^°,    fori = n-l, n 3,.... 

Proof. This follows directly from Theorem 3.3. 
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4. Schur-Cohn Minors for <S-Systems 

We now develop quantities that may be considered the analogs of Schur-Cohn minors for 

6-system polynomials. 

LEMMA 4.1. The relationship between the complex-6-BT of F(c)n € ö[c]„ and the Schur- 

Cohn minors A;, i = 1,2,... ,n, of F(z)n E 5s[z]n is 

A2 
A     — (An-i+l)i(n-i)       i<n-t+l) ,(n-t')\ X . 

'  ~~   O   2(n-t+l)    [ v   n-«+l       "-'      "^ tn-i+l       n-t"    ^»-l 

A u(n-i+l)^(n-t)|2X 
2r2(n-i+l) |r"-«+l      "-'    '        l~2 , A0 = 1, Aj = 0, i < 0. 

Proo/. Note that, the relationship between the complex-g-BT of F(z)n and its Schur-Cohn 

minors are given by [25] 

A,- = (*0 *n-t     +*n-«+l    *0 iA'-l ~~ 9 I 'n-t+1    tn-i    I   At-2 

with Ao = 1 and A; = 0, z < 0. Now, the claim follows from Corollary 3.4. 

Let 

£ = diag(— ,^-,...,11 erxn. 

Then, from Lemma 4.1, A in Theorem 2.5 is given by 

A = A2 • D ■ A • D 

w here 

A = 

Re[4'"<Ui 
rri<n-l),(n-2)1 

2 L6n — 1     V-2    J 
(n)-(n-l) 

L™    ln-l 

ifc^e-^] ^[fc^fc25] yfc2)e-3
3) 

0 0 

0 

0 

(1)1(0)1 

(4.1) 

(4.2) 

(4.3) 

0 0 0 •••    Re[q1J^ 

Clearly, positive definiteness of A and A are equivalent statements.   Hence, we may 

consider the principal minors of A to be the Schur-Cohn minors of F(c). 
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DEFINITION 4.1. The Schur-Cohn minors of F(c) G ^s[c]n are the principal minors of the 

tridiagonal Hermitian matrix A in (4.3). 

Therefore, from Theorem 2.4, we have 

THEOREM 4.2. The polynomial F(c) € ^s[c]n is stable iff At- > 0, i = 1, 2,..., n, where A; 

is the (i x i)-principal minor of A in (4.3). 

Remarks. 

1. Tridiagonal Hermitian matrices constitute an important class of matrices that have 

been extensively investigated in matrix theory literature [26]. See also [10]. 

2. Since the Schur-Cohn minor A; obtained from the complex-g-BT are necessarily 

proper [10], [25], the Schur-Cohn minors defined above for ^-systems are proper as well. 

In terms of the 'scaled' sequence of polynomials {U(()i}™=0, Theorem 4.2 may be 

stated as 

COROLLARY 4.3.    The polynomial F(c)  £ ö[c]n is stable iff Ä;  > 0,   i =  1,2, ...,n, 

where Aj- is the (z x z)-principal minor of 

A = 

-Rein^ni^) 

2 !■"Ti-l     Un-2    J 

2L"n-l     "ra-2    J 

(n-l)_(n-2)1 

*      -1     "n-2    1 

2l
Un-2     "n-3     J 

.Ir,i(n-2)„("-3)i 

-Re[«(n-2)«(n-3)] L   n— 2        n—3    -> 

■Re^^i0»] 

(4-3) 

Proof.   Using (3.11), and factoring out the appropriate diagonal matrices, the result im- 

mediately follows. B 

Remark. Again, notice how the use of the 'scaled' sequence simplifies the entries. 
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5. Algorithm for Checking Stability of 2-D ^-Systems 

To check condition II of Theorem 2.2, we may adopt the following approach: 

(a) Express F(ci,c2) E 3£[ci]ni [c2]„2 as a polynomial in Q^Jn., so that its coefficients, as 

well as the corresponding Schur-Cohn minors, are parameterized by c\ £ T&. Here, we 

have assumed that n\ > n2; otherwise, the roles of ni and n2 may be interchanged. 

(b) Check positivity of each of the Schur-Cohn minors, or positive definiteness of the 

tridiagonal Hermitian matrix A E O^*7^ for all c\ E Ts (see condition II of Theorem 2.2 

and Theorem 4.2). These checks may be simplified by applying a direct extension of Siljak's 

result [16]. 

However, construction of the complex-£-BT and the entries of A require complex 

conjugation of certain entries that are functions of C\ £ 7^. This of course complicates the 

scheme since C\ = —c\j{\ + rci), Vci £ Tß. On the other hand, in dealing with 2-D q- 

system stability, we have z\ = \/z\, Wi E Tq. This simple relationship has led to stability 

checking schemes that use the complex forms of tabular forms [10] that incorporate the 

■polynomial array method [27]. To circumvent the above difficulty, the algorithm given 

below uses the real-^-BT in order to check Theorem 2.3. In the appendix, an easily 

implementable algorithm that yields 

G(X,C2) =G(x)ni(c2)2n2= F(CUC2)F(CUC2)\       cl€Ts E $[x]ni[
C2hn2 (5.1) 

^ = (c1+e1)/2 

is provided. Note that 

CleT6   4=>  xe [-2/r,0]. (5.2) 

Before proceeding, however, it is important to note that tabular methods are useful 

in checking for no roots to be outside the stability region. However, since in typical 2-D 

stability studies the 2-D transforms are taken with positive powers [9-10], prior to applying 

the stability check, the following 'preparation' must be done: 

(a) Condition I in Theorem 2.3 may be checked by explicitly finding the roots or applying 

the real-(*)-BT to ensure 

FJ(Cl)(-l/r) = (1 + rcx)^F (j~^j ("^) + 0, VCl 69\M« (5.3) 
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(that is, polynomial is reciprocated with respect to c\). 

(b) First form 

2«2 nl 

G(x)ni(c2)2n2 = Y,9?U2\M e nx}ni[c2]2n2     where    fff "2)(z) = J^Ä"*^* e »MM-     (5-4) 
1=0 k=0 

Here x G [—2/r, 0]. Now, condition II in Theorem 2.3 may be checked by applying the 

real-<$-BT to ensure 

2ri2 "1 

G(x)ni(c2)2„2 = Y,9?n2)^)4     where    #n*\x) = J^g^x" € »[x]B1 

(5-5) 
= G(X)«(C2) 

= (l+TC2)
2n*G(x)(-^—) /0, Vx€[-2/r,0], Vc2 ^\W{ 

VI + rc2/ 

(that is, polynomial is reciprocated with respect to c2). Again, x 6 [—2/r,0]. 

We will hence implicitly assume that the given 2-D «^-polynomial has already been ap- 

propriately 'prepared' as above. In addition, the construction of the real-<S-BT for G(x)(c2) 

requires ensuring [11] 

^2na)(x)^0    and    g^a)>0,     Vx€[-2/r,0]. (5.6) 

Violation of the first condition in (5.6) is equivalent to 

F(ci)(0) = 0    for some    cx 6 Ts. (5.7) 

Assuming, with no loss of generality, fi^n" > ® ^or some x £ [—2/r, 0], violation of the 

second condition in (5.6) is equivalent to 

F(CI)(-1/T) = 0    for some    cx^7b. (5.8) 

Therefore, each of these violations imply instability. Verifying condition (5.7) must be 

included in the algorithm. Condition (5.8) is automatically verified when condition I in 

Theorem 2.3 is checked (see (5.3)). 
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Then, we have the following 

THEOREM 5.1. The 2-D 6-system in (2.7) is stable iff 

I. F(Cl)(-l/r) ^ 0, Vci g U6, and 

II. F(ci)(0)^0, Vcx gT6,and 

III. A,-(0) > 0, V» = 1, 2,..., 2n2, and 

IV. A2„2(a;) > 0, Vx g [-2/T,0], which is satisfied whenever A2ri2(x) ^ 0, Vx g [-2/T,0], 

together with condition III. 

Here, A is the Hermitian matrix mentioned in Theorem 4.2 corresponding to G(x)(c2) 

where x g [—2/r, 0]. 

Conditions I and II in Theorem 5.1 are easy to carry out (they may in fact be verified 

by explicitly finding the roots). Condition III and IV require construction of the real-6-BT 

and the Schur-Cohn minors for which we now develop polynomial arrays [27]. We also 

provide a scaling scheme so that the numerical reliability of the resulting algorithm is 

enhanced. 

5.1. Polynomial array for entries of real-5-BT 

Express G(x)(c2) as 

G(x)(c2) = x^)T-G.cf"2) (5.9) 

where x^>   =   [x^,x^~\ ..., if,  cf^   =  [C
2"',C

2"-\ . .., if,  and G  =   {gltJ}   g 

S£(n1+i)x(2n2+i) ig the coefficient matrix. Then, it is easy to show that [6] 

G(x)(c2) = x(ni)T-G-cfn2)    where    G = GT^^P^M
2
"'*. (5.10) 

Here 

T+2n2) =diag{r2n2,r2n2-1,...,l} g Sft(2»2 + i)x(2n2 + i). 

P(2"2)  =  {pij}  g SR(2n2 + l)x(2„2 + 1)       where      p._(_1)2„2 + 1_,^_ 

The elements ptj, which in fact are those of the Pascal's triangle, are given by 

(5.11) 

0, for i < j; 

Pij - \  1, for i = j; (5.12 
Pi-i,j-i + Pi-ij, elsewhere. 
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The real-6-BT is constructed using the 'scaled' polynomial sequence in (3.11-14). Let 

ff(y)(C) = G(s)(C2)|c2=-c/,; 

H(y)(() = G(X)»(C2)  | c2=-C/r = G(x)(c2)  | ea = -</r   . 
x = -y/r I = -K/T 

Note that, a; G [-2/r,0] iff y G [0,2].  Now, using (5.9-12), row #2n2 and 2n2 - 1 of the 

corresponding 'scaled' real-<f>-BT are given by 

2n2 

t%)(C)2„2 = £ «?Ba)C = ^(v)(0 + H(y)(0 

_ y("0T . ■jJt"irlGr(2n2)~l(.f(2n2) + p(2"2)) • ^2ns); 

^(y)(C)2na-i = 2^ ut       t z^/7  

(5.14) 

e=o 

y(«i)T  .^ni)_1
rGTj(2n2rl(/(2n2) -P(2"2>)      r^2n2_1) 0 

o 

where C(2na) = [C2"2, C2"2"1, • ■ •, 1]T, and 

^ni)=diag{(-r)ni,(-r)"1-1,...,l}G^(ni+1)x(ni+1); 

I<2n*> = diag{(-l)2n2, (-I)2"2"1, . . . , 1} G SR(2n2 + l)x(2n2+l). (5_lg) 

p(2"2)  =  {p0.}  £ Sß(2n2 + l)x(2n2 + l)       where      &,-  = (-1)«+^-. 

Each element of the remaining rows is of the form 

^°(y) = ^y^, ^ = 0,l,...,i, i = 2n2,2n2-l,...,0, (5.16) 

where n^(y) G 3%]<r(.-) and d(t)(y) G 3J[y]c(o-   Substituting in (3.12), it is easy to show 

that, for i = 0,1,. . ., i, 

n?-) = "iS2^1* - 2n?'+1)) - n^1^'^ + "&,     for    z = 2n2 - 2,..., 0; 

1, fori = 2ra2,2ra2-l, (5-17) 
d(° " { d^n%l\    for z = 2?i2 - 2,... ,0. 

Note that ui2n2) = n?n,) and u^ni~l) = nf "2~1). Moreover 

n1? for i = 2n2,2n2 — 1, 
o-(«-+2) +<T(i+i)>    for i = 2n2 -2,...,0 

(,-) _ f 0, for z = 2?z2,2n2 - 1, 
| a(1' — n-i,    for i = 2n2 — 2,..., 0. 

19 
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Scaling scheme.   Let us scale rows #2n2 and #(2n2 — 1) so that each coefficient takes 

values in [—1,1]. Correspondingly, for £ = 0,1,..., i; i = 2n2,2n2 — 1, let 

(5.19) 

where A^^*)   > 0,   i = 2n2,2n2 — 1, are the scaling constants and [:] denote scaled 

quantities. Note that 
n(2n2) A(2n2)   .(2„a) 

^(2n2) 7(2n2) J(2„2) ' 

n(2n2-l) A(2n2_1}   ,.<2n,-l) (5.20) 

d(2n2-l) 7(2n2-l)  J(2n2-1) * 

Now, substituting in (5.17-18), we get 

(2n2-2) _(2nj-2) 
nl  _     (2n2)/_(2n2-l)       0   (2n2-lK        -(2n2-l)    (2n2) nf-l 

(5.21) 
A(2n2)A(2n2-l)   ~ ™2n2    l^-l ^ J       n2n2-l    ne + A(2n2) A(2n2-1) 

j(2n2-2) 

7(2n2)A(2n2-l)   ~ ° n2n2-l    ■ 

It can now be seen that, it is only necessary to compute the quantities on the left hand 

side of (5.21). Then, one may scale these to get 

n(2n2-2)  = A(2n2)A(2n2-1)A(2n2-2)^(2n2-2);        • 

(5.22) 
d(2n2-2) =     (2n2)    (2n2-2)^(2n2-l)J(2na-2)> 

Note that 
n(2n2-2) A(2n2)A(2n2_2)^(2n2-2) 

^(2n2-2) 7(2n2)7(2n2-2) J(2n2-2) ' (5.-.3) 

Continuing in this manner, the computation of the entries of real-^-BT may be summarized 

as follows: 

(a) From (5.14), compute n(   ,d^\ i = 2ra2,2?i2 — 1- 

(b) From (5.19), use scaling constants \^l\^l\  i = 2n2,2n2 — 1, to get n\   ,d^\   i = 

2n2,2ri2 - 1- 

(c) From (5.21), for I = 0,1,..., i; i = 2n2 — 2,..., 0, compute 

ni;)   - n&^in^ - 2n(;+1)) - n<äV/'+2) + "^ • (i) — "i+2   ve-i       ^'"e      >     "i+i   "■(.       ^     (,-) > 
An n (5.24) 
d S^n^K 
K? ~   ' ,+1 
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and use scaling constants A(i),7(l), t = 2n2 - 2,... ,0, to get n\l\Sl), i = 2n2 - 2,... ,0. 

Here, A„    and K^    are constants, 

(d) Notice the relationships 

4° _  I   ^n2)^na-a)..4(.-)iö'       forz = 2n2,2n2-2,...,0; üL = < .   - -   -      .   -■■ 
J(0 I     A(2n2-l)A(2n2-3),..A(.)  ft(0 

(5.25) 

7(2n2-l)7(2n2-3)...7(0^(7T>       lor  Z   -   2fl2 1,^2 d,...,l. 

5.2. Polynomial array for Schur-Cohn minors 

Each Schur-Cohn minor obtained from the table, in general, will be of the form 

Ai(y) = ^g G Ä(y), i = 1,2,..., 2n2, (5.26) 

where iV(i)(y) G &[t/]p(o and Z>w(y) G 3£[y]e(0. From Corollary 4.3, we get 

A    I    \ (2n2-i+l)    (2n2-i) A 1     (2n2-i+l)2    (2n2-i)2
A „'in 9^ tK07\ 

Ai(y) = -W2n2-i+l    U2n2-i    A'~l ~ ^n.-i+l      U2na-i      A,-,,   I = l,2,...,2n2,    (5.27) 

where A0 = 1 and A,- = 0, \/i < 0. 

Remark. Actually, as in [10], one may show that, for stability determination purposes, only 

the numerator polynomials of A,- need be computed. However, to contain the orders of the 

resulting polynomials, and hence improve numerically conditioning, we do not recommend 

this scheme. 

Scaling scheme. Due to the scaling of entries of the real-6-BT, computation of A;, i = 

1,2,..., 2n2, may be modified as follows: Let 

^1  —       "2n2     "2n2-l 

A(2«a)A(2«a-i) n^n^J^ (5-28) 

^(n22)^(2n2-l)   J(2n2) J(2n2-1) ' 

Hence, it is only necessary to compute the quantity 

Ax  =  _n2n2    n2n2-l ^2g) 

_(2n2).(2n2-l) 
n2n2    n2n2-l 
J(2n2)J(2n2-l) 
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Continuing in this manner, the computation of the Schur-Cohn minors may be summarized 

as follows: Prom (5.27), for i = 1, 2,... ,2n2, compute 

•,(2n2-i+l)~(2n2-0 
A . —       n2n2-i+l    n2n2-i 

{ ~       ^(2n2-i+l)J(2n2-i) 

where Ä0 = 1 and Ä; = 0, Vz < 0 

i- ä
K
    

2    ' n2n2_i+1   n2n2-i 
47(2n2-i)  J(2n2-i+l)J(2n2- 

A ,    ^ ''     Zn2-i+l    "27!;-.     A (5.30) 

Remark. Note that, since A,(y) is necessarily a proper polynomial (that is,.denominator di- 

vides numerator properly with no remainder), and not a rational polynomial (see Remark 2 

after Theorem 4.2), it is easy to see that J(2na-,-+i)^2n2-0 must divide n^^n^? 

exactly. 

5.3. Algorithm 

The following result, which is the basis of the stability checking algorithm, is now obvious 

from [10] and Theorem 5.1: 

THEOREM 5.4. The 2-D 6-system in (2.7) is stable iff 

I. F(cx,-l/r)^0, Vci GW6,and 

II. F(ci)(0) ^ 0, Vci G Ts, and 

III. A,(0) > 0, Vt = 1, 2,. .. , 2n2, and 

IV. A2n2(y)^0, Vye[0,2]. 

The 2-D stability checking algorithm may now be summarized as follows: 

GIVEN. 

A 2-D ^-polynomial F{cuc2) G ^[ci]ni [c2]„2. Without any loss of generality, assume 

that ni > n2, and express F{cuc2) as F(ci)rei(c2)„2. 

STEP I. Condition I of Theorem 5.4: 

Apply an explicit root location procedure.   If result is satisfactory, proceed; otherwise, 

system is unstable. 

STEP II. Condition II of Theorem 5.4: 
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Apply an explicit root location procedure. If result is satisfactory, proceed; otherwise, 

system is unstable. 

STEP III. 

Form   G(y)(c2)   using   the   algorithm   in   the   appendix;    then   form   U(y)(()2n2   and 

t%)(C)2n2-i from (5.14). These yield nfn2) and nf "2_1). Of course, S2n^ = S2n'~^ = 

1. 

From   (5.19),   obtain   nfn2\   nfn2_1),    and   the   associated   scaling   constants   A(2nz) 

and A^2-1). Of course, dS2n^ = J(2»»-1) = 1 and ^2n^ = ^"'"D = 1. 

STEP IV. Condition III of Theorem 5.4: 

Form Ai(y) from (5.30) and check whether Ai(0) > 0. 

If result is satisfactory, form n^2™2 and J(2n2-2) and the associated scaling constants 

A(2n2-2) and T(2n2-2) from (5.24). Form Ä2(y) from (5.30) and check whether Ä2(0) > 0. 

If result is satisfactory, proceed likewise until Ä2„2(0) > 0 is checked. Note that, this re- 

quires checking of only the constant coefficients. If result is satisfactory, proceed; otherwise, 

if the check fails at any i — 1,2,..., 2n2, system is unstable. 

STEP V. Condition IV of Theorem 5.4: 

Apply an explit root location procedure to check whether A2rl2(y) ^ 0, Vy G [0,2]. 

Remarks. The possible numerical difficulties that may arise in using explit root location 

procedures may be avoided as follows: (a) Steps I and II may be verified using the real-6- 

BT [6], and (b) step V may be verified by the Sturm sequence method. 
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6. Example 

The stability checking algorithm presented in the previous section is now illustrated 

through an example. Polynomial entries are denoted using a self-explanatory shorthand 

notation where the highest degree coefficient is written first. Moreover, only four decimal 

digital on the mantissa are shown. 

Consider the 2-D polynomial 

F(ci,c2) = [c\    a    1 

with the sampling time r = 0.1 s. 

1   50    740 
52  2700  38480 

740 38480 547600 
C2 

1 

STEP I. Condition I of Theorem 5.4: 

By applying an explicit root location procedure, one can show that 

F(ci)(-l/r) = 340c? + 16680^ + 236800 ^ 0, Vcx 6 Us. 

STEP II. Condition II of Theorem 5.4: 

By applying an explicit root location procedure, one can show that 

F(ci)(0) = 740c? + 38480ci + 547600 ^ 0, Vcx G T6. 

STEP III. Using the algorithm in Appendix, we get 

G(y)(0 = [y2   y   i 
1.2800e + 03 1.2992e + 05 5.1904e + 06 9.6141e + 07 7.0093e + 08 
5.2480e + 04 5.4011c + 06 2.1662e + 08 3.9968e + 09 2.8738e + 10 
5.4760e + 05    5.6950e + 07    2.2912e + 09    4.2143e + 10    2.9987e + 11 

After scaling, rows #4 and #3 are computed as follows: 

räj° = [1.2859e - 02, -5.0693e - 02, 5.1315e - 02]; 

n$4) = [-7.9833e - 02, 3.1991e - 01, -3.2798e - 01]; 

44) = [1.9671e - 01, -7.9909e - 01, 8.2798e - 01]; 

n[4) = [-2.3375c - 01, 9.5836e - 01, -l.OOOOe + 00]; 

n {0
4) = [1.1687e - 01, -4.7918e - 01, 5.0000e - 01], 
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with A<4> = 1.1995e + 12, and 

r43) = [-2.4050e - 02, 9.4053e - 02, -9.4595e - 02]; 

n{
2
3) = [1.3044e - 01, -5.1542e - 01, 5.2252e - 01]; 

nf] = [-2.4703e - 01, 9.8194e - 01, -l.OOOOe + 00]; 

n<3) = [1.6469e - 01, -6.5463e - 01, 6.6667e - 01], 

with A<3> = 5.3490e + 10. Of course, d^ = d^ = 1 with 7<4) = 7<3) = 1. 

STEP IV. Condition III of Theorem 5.4: 

We get 

Äi = [3.0926e - 04, -2.4286e - 03, 7.2184e - 03, -9.6217e - 03, 4.8541e - 03]. 

Clearly, Ai(0) = 4.8541e - 03 > 0. 

Now, row #2 is computed as follows: 

42) = [-8.8619e - 03, 6.8253e - 02, -1.9920e - 01, 2.6099e - 01, -1.2957e - 01]; 

nf] = [3.3584e - 02, -2.5969e - 01, 7.6068e - 01, -l.OOOOe + 00, 4.9793e - 01]; 

nj2) = [-3.3584e - 02, 2.5969e - 01, -7.6068e - 01, l.OOOOe + OOi -4.9793e - 01], 

with A<2> = 4.2420e - 02. Also, 

d{2) = [-2.5424e - 01, 9.9428e - 01, -l.OOOOe + 00], 

with 7<2> = 9.4595e - 02. We get 

Ä2 = [1.8046e - 07, -2.8190e - 06, 1.9343e - 05, -7.6148e - 05, 1.8810e - 04, 

- 2.9857e - 04, 2.9737e - 04, -1.6992e - 04, 4.2654e - 05]. 

Clearly, Ä2(0) = 4.2654e - 05 > 0. 

Now, row ^1 is computed as follows: 

n{1] = [2.5168e - 03, -2.8515e - 02, 1.3555e - 01, -3.4597e - 01, 5.0000e - 01, 

-3.8792e-01, 1.2623e - 01]; 

n(
0
1] = [-5.0336e - 03, 5.7031e - 02, -2.7110e - 01, 6.9194e - 01, -l.OOOOe + 00, 

7.7584e-01, -2.5246e - 01], 
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with A*1) = 3.0980e - 02. Also, 

J(!) = [-3.3954e - 02, 2.6151e - 01, -7,6322e - 01, l.OOOOe + 00, -4.9646e - 01], 

with 7(1) = 2.6099e - 01. We get 

Ä3 = [4.0500e - 10, -9.3525e - 09, 9.9260e - 08, -6.4020e - 07, 2.7947e - 06, 

- 8.6990e - 06, 1.9797e - 05, -3.3188e - 05, 4.0679e - 05, -3.5552e - 05, 

2.1029e - 05, -7.5594e - 06, 1.2489e - 06]. 

Clearly, Ä3(0) = 1.2489e - 06 > 0. 

Now, row #0 is computed as follows: 

n{
0
0) = [-1.0487e - 04, 1.9379e - 03, -1.6174e - 02, 8.0291e - 02, -2.6251e - 01, 

5.9070e - 01, -9.2642e - 01, l.OOOOe + 00, -7.1104e - 01, 3.0076e - 01, 

- 5.7473e - 02], 

with A<°> = 4.4719e - 02. Also, 

J(°) = [-6.7946e - 04, 1.0355e - 02, -6.9373e - 02, 2.6679e - 01, -6.4420e - 01, 

l.OOOOe + 00, -9.7458e - 01, 5.4519e - 01, -1.3404e - 01], 

with 7<°) = 9.4174e - 01. We get 

A4 = [4.3531e - 12, -1.3058e - 10, 1.8400e - 09, -1.6166e - 08, 9.9118e - 08, 

- 4.4970e - 07, 1.5618e - 06, -4.2352e - 06, 9.0628e - 06, -1.5355e - 05, 

2.0530e - 05, -2.1433e - 05, 1.7129e - 05, -1.0130e - 05, 4.1814e - 06, 

-1.0762e-06, 1.3014e - 07]. 

Clearly, Ä4(0) = 1.3014e - 07 > 0. 

STEP V. Condition IV of Theorem 5.4: 

By applying an explicit root location procedure, one can show that 

Ä4(y)^0, Vj/6[0,2]. 

Thus, we conclude that F(ci,C2) is stable. 
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7. Conclusion and Final Remarks 

In this paper, we have developed an efficient stability checking algorithm applicable for 2- 

D ^-system characteristic polynomials. Our purpose here is to obtain a direct algorithm 

due to the possible numerical disadvantages associated with indirect methods that utilize 

transformation techniques. 

In arriving at the algorithm, the following contributions have been made: (a) Tab- 

ular method of stability checking applicable for ^-system polynomials possibly possessing 

complex-valued coefficients, (b) quantities that may be regarded as the Schur-Cohn minors 

applicable for such systems, and (c) polynomial arrays for computing both table entries 

and Schur-Cohn minors. 

The proposed Schur-Cohn minors lets one use a Siljak-like simplification [16] in the 

stability check. Although the algorithm utilizes only the real-£-BT, results regarding the 

Schur-Cohn minors are in fact valid for the more general complex-valued coefficient case 

as well. 

As in [10], it is possible to develop the algorithm such that only the numerator poly- 

nomials of the entries of the real-<5-BT and the Schur-Cohn minors are computed. Then, 

we do not require polynomial division operations. However, our experience has been that 

such a scheme is prone to be numerically unreliable. This is mainly due to the explosion 

of polynomial degree especially in computing the Schur-Cohn minors. To avoid these dif- 

ficulties and enhance numerical reliability, we have (a) introduced a scaling scheme, and 

(b) used polynomial division to contain the polynomial degree. The latter is not new; in 

fact, MJT also uses this. If the user is interested in implementing the algorithm using 

PRO-MATLAB [28], these polynomial division operations may be conveniently performed 

using the routine deconv. 

We believe that a suitable scaling strategy can improve the numerical reliability of 

the MJT as well. The authors are currently looking into this. 

The algorithm developed is easily implementable on a computer.   The authors have 
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implemented it via a C-language routine that the interested reader may request from the 

second author. 
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Appendix. Algorithm to obtain G(x)ni(c2)2n2 from F(a)ni(c2)n2 

Given 
«2 «l 

^(cOnxCca)^ = ^ft{cx)-4    where    //(ci) = J^fk,e • cf, c: e T«, (a.l) 
£=0 t=0 

we now develop an algorithm that yields 

2n2 

G(x)ni(c2)2n2 = Y^,9j(x) ■ 4 = ^(ci)ni(c2)n2 • F(Cl)ni(c2)n2, Cl G Ts. (a.2) 
i=o 

First, we see 
n2    n2 

"2   n2+£ 2n2     j" (a-^) 

= EE ftMfj-ifa) ■ 4 = E E/<(ci)/;-<(ci) • 4 

(quantities with negative subscripts are taken to be zero).  Hence, comparing (a.2-3), we 

get 

where 

9j(x) = Ylf'Mfj-fa) = E 
e=o 

E 

e=o 

"i   «1 

EE/I^H-^ 

«I 

k=0t=0 

nt     ni 

E fk,*fk,j-t ■ (cicj)* + J2 E /*,</.-,.,■-< • ci si 
Jfc=0 fc=0  ■'=<> 

3      «l 
= EE^,H'(vif+^ 

f=0 fc=0 

J    "1 

* = EE 
£=0 fc=0 

"1 

E /*,</•-,>-< • cicj + E A-.'/«".i-< ■ ci'5i 
i = 0 

E 

= E 

ni       k 

i = k 
ijtk 

E E /*.</.-,.,■-< • cM + E E hth.i-t • cic"i 

<?=0 

ni       k 

k=0  •"=<> 

ii!      k 

k=0 '=o 
ijtk 

E E (fk,ifi,i-i ■ Ar1+fi,ifkj-i ■ ckr) ■ (wy 
k=0  «=o 

ijtk 

E E^)*" E [Mi,i-t ■ ckr + fitj-tfkit ■ ökr]. 
k=0 i=0 e=o 

(a.4) 

(a.5) 
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Let us use the notation 

n   i   -n »  _   C\l+C 
ci" =   ' 2 

J\ ci eTÄ, n = 0,l,. 

Noting that, for Ci E Tg, 

it is easy to show that 

Substituting in (a.5), we get 

c\ 
c\ 

1 + TCl ' 

Z    (1) 

(a.6) 

(a.7) 

(a.8) 

e=o ik=o t=o 

Substituting in (a.4), we get 

nx   k — 1 

EEwy-«T  •4,r4t-'') (a.9) 

3      ni 

»w = EE 
f=0 k=0 

k k-1 ,     „.   ; 
.(!)*   ,   Y-or      r ^~2Y      (1 fk,tfk,j-ii — ) -c[l) +Y,Vk,tfi,j-t 

i=0 
(a.10) 

Now,  in order to develop the algorithm,  we need a recursive procedure to c 

pute c\ ', n = 0,1,.... To proceed, we note that 

com- 

ci     = 

241)MB-1) + ^"-a)Vn = 2>3l. 
(a.ll) 

Let 

where 

» in) = £4 
iz=0 

c<1} = X. 

fa.12] 

(a.13) 

Remark. Note that 

c$0) = 1. 

Substituting (a.12) in (a.ll), and equating similar coefficients, we get 

*)=2(^:V + ^V?),i = 0,...1n,n = 2>3,.. 

(a.14) 

(a. 15) 
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For instance, c\n , n = 0,l,...,5, may be conveniently obtained from 

r (0)-, 
H 
(1) 
H 
(2) 
H 
(3) 
H 
(4) 
H 
(5) 

Lcx J 

1 r 1 -i 

0  1 X 

0 2/r 2 x2 

0  0 6/r 4 xA 

0  0 4/r2 16/r 8 X4 

0  0 0 20/r2 40/r 16J [xb\ 
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Abstract. Recently, delta-operator based implementation of one-dimensional 

discrete-time systems has been the focus of considerable research activity. This 

is due mainly to its superior finite wordlength properties and the possibility of 

providing a unified treatment of both continuous- and discrete-time systems. 

In this paper, we investigate the delta-operator formulated implementation of 

two-dimensional discrete-time systems. For this purpose, a local state-space 

realization that is analogous to the Roesser model is introduced. Reachability 

and observability gramians and the notion of a balanced realization for such 

a model are defined. Coefficient sensitivity properties of the resulting imple- 

mentations, under both fixed- and floating-point arithmetic, are also carried 

out. 
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I. Introduction 

Current interest in <5-systems is due mainly to two reasons: (a) <5-systems provide possess 

superior roundoff noise propagation (Li and Gevers 1993) and coefficient sensitivity (Li 

and Gevers 1990, Premaratne, et. al. 1994) properties, and (b) the ^-operator makes it 

possible to treat both continuous- and discrete-time systems in a unified manner since it 

yields the differential operator as a limiting case (Middleton and Goodwin 1990, Vijayan, 

et. al. 1991). 

Hence, implementation of two-dimensional (2-D) and multi-dimensional (m-D) using 

the «^-operator can be expected to provide digital niters that perform better in a shorter 

wordlength environment. If this is the case, such implementations can find widespread use 

in real-time applications, such as, use of narrow bandwidth filters with high sampling rates 

where traditional g-operator implementations perform poorly (Likourezos 1991). 

With the above in mind, research directed towards developing models for 2-D and m- 

D «^-systems is warranted. This paper presents a local state-space model that is completely 

analogous to the well known g-operator Roesser model (Roesser 1975). We also define the 

notions of gramians and balanced realization, and with these tools in hand, investigate 

coefficient sensitivity properties of this model. Indeed, implementation of 2-D and m-D 

systems using this Roesser 8-moiel, under mild conditions, is shown to provide superior 

coefficient sensitivity properties compared with the more conventional implementation of 

Roesser q-model. As usual, for notational simplicity, we concentrate only on the 2-D case, 

the extension to the m-D case being quite straight-forward. 

The paper is organized as follows: Section II contains nomenclature and some prelim- 

inary and a brief review of relevant results. Section III contains the development of the 

Roesser 5-model and some important system theoretic notions. In particular, after estab- 

lishing the connection between the gramians of one-dimensional (1-D) q- and ^-systems, 

we define the notion of gramians for 2-D 5-systems. The relationship between these and 

those corresponding to 2-D ^-systems, gramian computation for separable systems, and the 

notion of a balanced (BL) realization are then presented. Investigation of the coefficient 

sensitivity of the <5-model is in Section IV. Addresing the more general multi-input multi- 

output (MIMO) case, for this purpose, two sensitivity measures applicable for fixed-point 

(FXP) and floating-point (FLP) arithmetic schemes are proposed. In the case of FXP 

arithmetic, we show that, BL realizations possess excellent coefficient sensitivity proper- 

ties. Section V contains an example. Section VI is reserved for concluding remarks. 



II. Nomenclature and Preliminaries 

2.2. Nomenclature 

3J, ö, K     Real numbers, complex numbers, and nonnegative 
integers, respectively. 

Sftgxp^ c£?xp     get 0£ matriCes of size qxp over 9? and ö, respectively. 

3£[iü]n, ö[tü]n     Set of univariate polynomials of degree n (with re- 
spect to the indeterminate w  G  ö) over 3? and 5, 
respectively. 

3£(ty)ra     Set of rational univariate polynomials of degree n 
(with respect to the indeterminate u>£ Ö) over 3£. 

9£[iüft]nh [u>t,]n„      Set of bivariate polynomials of relative degrees n^ and 
nv (with respect to the indeterminates Wh G ö and 
wv G 3, respectively) over 3?. 

3t(wk)nh {wv)nv      Set of rational bivariate polynomials of relative de- 
grees rih and nv (with respect to the indeterminates 
ti)),e3 and wv G Ö, respectively) over ÜR. 

In      Unit matrix of size n x n. 

{aij}      Elements of matrix A. 

A*, AT     Complex conjugate transpose and transpose of matrix 
A. 

trace[A], A,-[A]      Trace and z-th eigenvalue of matrix A. 

©, <g)     Matrix Kronecker sum and product operators, 
respectively. 

e- Unit vector in 3£n with 1 on the i-th. row. 

ü'L zu zu Etxp) ® 4rp) ^?2 xp2 • 
|| A|| F     Fröbenius norm of A. 

In dealing with g-systems, the conventional indeterminate z (with or without a subscript) 

is used; for ^-systems, we use the indeterminate c (with or without a subscript). For 1-D 

systems, the transformation relationship between corresppnding q- and ^-systems is 

5 = <$=> c = , 
r r 

where r is a positive real constant, usually the sampling time. 



For 2-D systems, the subscripts h and v denote the horizontally propagating (h.p.) and 

vertically propagating (v.p.) subsystems of the corresponding Roesser local state-space 

models. 
Tk, rv     Positive real constants denoting the 'sampling times' 

along the h.p. v.p. directions, respectively. 
e, s   rhinh e rvinv € 3Txn, rhinhq e rjnvq e &n9Xn9. 

rih, nv     Integer valued symbols denoting the sizes of the real- 
ization of the h.p. and v.p. subsystems, respectively. 

n     nh + nv. 

For 2-D systems, the transformation relationships between corresponding q- and ^-systems 

is 
qh -1 zh-l 

Ch - 

Sv = 

Th rh 

qv - 1 zv -1 

g-system quantity analogous to its corresponding 5-system quantity [•] is denoted by [■]; 
for example, state-space realization of a given discrete-time system is either {A, B,C,D} 

if implemented based on the ^-operator or {A, B, C, D} if implemented based on the q- 

operator. 

H(ch,cv)\c^z      H(ch,cv)\ch=(*h-i)/rh. 
t0=(2ll-')/''« 

G(zh,Zv)\z-+c G(Zh,Zv)\*k=l+Thch. 
Zv=l+Tvcv 

Stability studies of 2-D q- and ^-systems involve the following regions: 

Ul U\, Tq
2      {(zh,zv) e 32 : \zh\ < 1, \zv\ <s 1}, {(zh,zv) 6 S2 : 

\zh\ < 1, \zv\ < 1}, {(zh,zv) € ö2 : \zh\ = 1, \zv\ = 1}. 

Wf, Ü), T6
2      {(ch,cv) € 32 : \ch + l/rfc| < l/rh, \cv + l/r„| < 1}, 

{(cA,c„) e 32 : |cfc + l/rA| < 1/TA, |C„ + l/r„| < 1}, 
{(cA,c„) G S2 : |cA + 1/TA| = 1/rfc, |c„ + 1/T„| = 1}. 

A ^-system polynomial with all its roots in Uq (for the 1-D case) or Uq (for the 2-D case) 

is said to be stable. The corresponding regions for a ^-system polynomial are Us (for the 

1-D case) and U\ (for the 2-D case), respectively. 



2.2. Preliminaries 
First, we provide a brief introduction to the Roesser local state-space model applicable to 

2-D ^-operator based discrete-time systems (Roesser 1975). 

DEFINITION 2.1. The following partial ordering in N2 is used: 

(M) <(*,J) 

(h,k) < (i,j) 

h <i    and    k < j; 

h = i    and    k = j; 

(h,k)<(i,j)    and    (h,k)^(i,j). 

The 2-D dynamical systems under consideration are assumed to be linear, shift- 

invariant, and strictly causal. Moreover, they are taken to be modeled by a set of first-order 

vector difference equations over 3R. Given such a p-input and ^-output 2-D system, its n^h- 

nvv Roesser local s.s. model takes the following form (Roesser 1975): 

?&[xfc](i,i) 
9v[x"](i,j) 

i(D     i<2) 
i(3)     ^(4) 

xfc(i,j) 

x"(i,i) 
+ 

5(1) 
u(^i) 

= [A] 

y(i,j) = [6(1)    C(2) 

- \r\ [xfc(*\J) _[CJ[^,i) 

+ [B]u(z,j); 

+ [D]u(i,j) 

+ [D]u(i,j), 

xh(i,j) 
x"(i,i) 

(2.1) 

where u G &*, X* G &"", x» G &n% and y G &?.   Also, i*1) G 3^xn\ A<2) G &n"xn", 
A(3)  g SJJ"«Xn/,5 A(4)  £ Sß^xn^ jg(l)  g SßnftXP^ _g(2)  g ftn.X^ £(1)  g Sft?*^ £(2)  g Sß?Xn% 

I) G 3£9Xp, and (i,j) G K2. The operators qh[-] and qv[-\ denote 

9ft [x](i,i) = x(z + l,j)    and    qv[x)(i,j) = x(ij + l). (2.2) 

The s.s. model in (2.1) is typically denoted by the quadruple {Ä,B,C,D}. The corre- 

sponding 2-D characteristic equation and the 2-D transfer function it realizes are given 

det[Iz - A] = det[zhInh © zvIUv - A] G &[zh]nh [zv)nv\ 

H(zh,zv) = C'(I2 - A)-lB +De %{zh)nk{zv)nv, 

where zh,zv G 5. In the literature, xh and x" are referred to as the horizontally 

propagating (h.p.) and vertically propagating (v.p.) local state vectors of the s.s. 

model {Ä,B,C,D}. 

(2.3) 



Assuming no nonessential singularities of the second kind on Tq
2, for BIBO stability 

of the s.s. model above, it is necessary and sufficient that (see Jury 1986, and references 

therein) 
det[/z-A]^0, V(zk,zv)eÜ2

q. (2.4) 

For investigating coefficient sensitivity properties, we will use certain relationships 

encountered in Kronecker products and matrix differentiation. The following are from 

Brewer (1978). 

The derivative of A = {ay} E $qXp with respect to b G 3£ is 

d A      day 
db        db 

eW Xp 

Hence 
dA 
db 

q     p 

, = E£(^ 

(2.5) 

(2.6) 

The derivative of A = {ay} £ %qXp with respect to B = {bki G $lsXr is the partitioned 

matrix whose (k,£)-th partition is dA/dbke, that is, 

Hence 

3A 
dB 

dA 

dA 
dblx 

dA 
db3l 

dA 
dblr 

dA 
dbar -I 

£% qsXpr 

dB 

q       p       s       r 
(dajjX 

2-j Z^ z_. 2^ I dbke) 
i=i j=\ fc=i e=i ^    Kt/ 

(2.7) 

(2.8) 



III. State-Space Model for 6-Operator Implementation 

3.1. Local state-space model 

To exploit the superior finite wordlength properties of «^-operator implementations, analo- 

gous to the 1-D case, let us define the operators Sh[-] and Sv[-] as follows: 

c . ...  ..      x(t + l,j)-x(»,j)      g&[x](t>j)-x(»,j)i 
*ft[x](r,j) = = 

' a Th (3.1) 
. r  w.   .x      x(t,j + l)-x(i,j)      gwM(»,j)-x(i,j) 
<MXKM) = = ; ' 

where rh and r„ are two positive real numbers.   Hence, the following relationships are 

applicable: 
qh -1 

6h 

Sv — 

Th 

qv -1 

qh = l + ThSh] 

qv — 1 + rv8v. 

(3.2) 

Remark. When r^ and r„ are the 'sampling times' corresponding to the horizontal and 

vertical spatial directions, the operators Sh and 6V in fact provide the first-order forward 

Euler approximants of the derivatives along their corresponding directions. When rh -> 0 

and TV —>• 0, the operators 6h and Sv yield these derivatives. In the 1-D case, this is 

the reason for the possibility of a unified treatment of both continuous- and discrete-time 

systems (Middleton and Goodwin 1990). 

With (3.2) in mind, we get 

Sk[xh](i,j) 
Mx"](i,j) 

= £ 
-l (Qh ~ l)Inh 0 

0 (qv ~ l)2n„ 

?fc[xfc](i,i) 
9v[x1(i,i) = /n+^ 

Xfc(i,j)" 
_x"(i,j)_ 

0       ^J,,,, 
xfc(i,j) 

x'(*'.i) 

Here, 

e = [rfc/nfcer1,jB.]e»nXB. 

Using (3.3) in (2.1), it is easy to get the following: 

(3.3) 

(3.4) 

&h[xk](i,j) 
Sv[x.v](iJ) 

[A] 

A(3)      A(4) 

"xfc(i,j) 

*v(i,j) 

xfc(t,j) 
x"(i,i) 

+ ß(2) u(*,j) 

xA0,j) 
x"(i,i) 

+ [B]u(i,i); 

+ [D]u(i,j) 

+ [Z>]u(i,j). 

xh(i,j) 

x"(*,J) 

(3.5) 



(3.7) 

In addition, as opposed to its corresponding ^-operator implementation, in a ^-operator 

implementation, one must perform the following computations: 

x*(i + 1, j) = xh(i,j) + rh ■ 6h[xh](i,j); 

x"(i, j + 1) = x"(»,i) + rv ■ 6v[xv](i,j). 

Here, 
A = C\Ä-In) <=^ A = In+£A- 

B = CXB <=> B = £B; 

C = C <?=> C = C; 

D = D «=* D = D. 

The size of each submatrix in (3.5) is equal to the corresponding submatrix of the realiza- 

tion in (2.1). In the sequel, the realization {Ä,B,C,D} in (1.1) will be referred to as the 

q-model, while the realization {A,B,C, D} in (3.5) will be referred to as the S-model. 

3.2. Properties of the £-model 

The general response equation of the <5-model may be derived in a manner that is exactly 

analogous to that in Roesser (1975). Hence, in what follows, only the salient results are 

given, detailed derivations being omitted for the sake of brevity. 

The general response of the £-model is given by 

j rxh(0,k) 
0 

xfc(i,j) 
x"(*,j) E^' 

k=0 

+ 

+ E Ai~h- 

y(i,j) = [C™    C& 

(0,0)<(h,k)<(i,j) 

x&(»,j) 
X"(M) 

0 
x"(/i,0) 

BW 
0 

i   Ai-h,j-k-lc 0 
BW 

u(h,k); 

+ [D]u(i,j). 

(3.8) 

Here, Ai,j refers to the transition matrix of the 5-model. With the partial ordering in K2 

agreed upon previously (Definition 2.1), it may be recursively computed as follows: 

0    0 

Al'J 

0    0 

Inh 0 
o    /„„ 

0      0 

0      0 
0    In.. 

A(D A(2) 

0 0 

0 0 
A(3) A(4) 

^ A1'°AI'-1'J' + A°'1Ai>i-1, 

8 

for(i,j)<(0,0); 

for(z,;) = (0,0); 

for (»,;) = (1,0); 

for(z,i) = (0,l); 

elsewhere. 

(3.9) 



Remarks. 

1. A1'0 + A0-1 = I + £A <=► A = r1^1,0 + A°'1 ~ J)- 
2. A'-0 = (A1-0)1', V» > 1, and A0-' = (A0'1)'', V; > 1. 

The 2-D ^-model's characteristic equation and transfer function, and their relation- 

ships to those of the corresponding g-model are as follows: 

det[Jc - A] = det [chInh @ cvInv - A] = —-f^det[Iz - A]|z_c G »[cfc]nk[c„]ni(; 
det[£] (3.10) 

H(ch,cv) = C(Ic - A)_15 + D = #(*/>, ^)U-c G K(cft)„fc(<:„)„„, 

where 
zh — *■ , 

c/j =    <$=>  Zft = 1 + Thch; 

z„ - 1 
(3-11) 

C-i)  — 

Tv 
Zy  —  IT TvCy. 

As for the g-model, it is easy to show that, 2-D equivalent transformations of the type 

'ih(ijy 
.x"(i,j). 

= C 
»      0   ' 

j(4) 
"xfc(i,i)" 
.xu(^,i). 

= [ T] "xA(i,j)" 
.xu(i,i). > 

(3.12) 

where T(1) G •R"'1*7*'' and T(4) G SR™"*"" are nonsingular, yield the equivalent 2-D state- 

space realization {A,B,C,D} where 

A = TAT~\    B = TB,     C = CT~\    and    D = D. (3.13) 

The transfer function of the realization {A, B, C, D) is the same as that for the realization 

{A,B,C,D}. 

We will also assume that 

det[Jc-A]^0, V(ch,cv)eU6. (3.14) 

Due to (2.4) and (3.14), assuming no nonessential singularities of the second kind on T6", 

this implies BIBO stability of the 2-D <5-model (see Premaratne and Boujarwah 1994, and 

references therein). 

3.3. Gramians 
In the 2-D ^-operator case, the reachability and observability gramians are typically taken 

9 



to be natural extensions of the integral expressions of their 1-D counterparts (see Pre- 

maratne, et. al. 1990, and references therein). In order to adopt a similar approach for 

the 5-operator case, we first need to investigate the 1-D gramians for the 5-operator case 

as defined in Middleton and Goodwin (1990). 

1-D case. We quote the relevant definitions from Middleton and Goodwin (1990), p. 194 

and 200: 

DEFINITION 3.1. (Middleton and Goodwin 1990). Consider the 1-D stable ^-system 

{A, B,C, D}. The reachability gramian P and observability gramian Q are defined such 

that they satisfy the following Lyapunov equations: 

AP + PA* + £ ■ APA* = -BB*; 

ATQ + QA + Z- ATQA = -C*C. 

We now provide the integral representations of P and Q: 

LEMMA 3.1. Consider the 1-D stable ^-system {A, B,C, D) with gramians P and Q. Let 

{A, B,C,D} with gramians P and Q be the analogous 1-D stable g-system. Then 

Q=^<f G\c)G{c) - 
dc 

+ (c 

Moreover 

Q = ZQ  ^  Q=±Q. 

Proof. Note that, A = In + (A, B = £B, C = C, and D = D (Middleton and Good- 

win 1990). Substitute these relationships in the Lyapunov equation for P in Definition 3.1 

to get 

A*PA* -P = -jBB*. 

Noting that P must satisfy 

A*PA* -P = -BB*, 

we have P = P/i- Moreover, the integral expression for P is 

10 



where F(z) = (zln - i)~x5 (Lu, et. al. 1986). The claim regarding P now follows. The 

proof regarding Q follows in a similar manner. ■ 

2-D case. With Lemma 3.1 in mind, we now present the following 

DEFINITION 3.2. Consider the 2-D stable 5-system {A, B, C,D}. The reachability gramian 

P and observability gramian Q are defined as 

'p(i)    pWl If-,, .„*, x     dch dcv —T? <P   F(ch,cv)F*{ch,cv)—  ; 
ff;)2 JT2 1 + TfcCfc 1 + T„C„ 

P = p(3)      p(4) (27T;)2 

0(1)    Q(2)l 1       jf   ^*/ ^ N     dch dcv 

QW      QWJ        (2TTJ)
2
 J-j-2 l + ThChl + TvCv 

where 
r f * II 

^cfc.c^^c/c-ii)-^ -in - 
f* r2 

GaftnXP(CA)»k(c»)nv; 

G(ch,Cv) = C(IC- A)'1  =[gi      g2      •••      gn]G5ß,Xn(Cfc)nÄ(c„)„„. 

1. Note that, fj(cfc, c„) € 5P, Vi = 1,..., n, and gj(cfc, c„) G 9«, Vj = 1,..., n. 

2. To eventually compare the performance of the 6-model and its corresponding g-model, 

the following relationships will be useful: 

(Ic-A)-1\e-+a = (Ig-Ä)-1b 

F(ch,cv)\e^z = F(zh,zv)<^fj(ch,cv)\c^ = ij,     for    j = l,...,n; 

M nt \   c ,-+     < M _\Th&n    for i = l,..., nh; 
G(cfc, cv)\c^z = G(zfc) *„) ■ cf <=> g^cfc, cvJ|c_z - j ^    for i = nfe + 1, • • •, n. 

(3.15) 

3. The above definition is completely analogous to the 1-D and 2-D g-operator cases. In the 

latter case, these gramians have been extremely useful in, and hence, have been extensively 

used for, investigating coefficient sensitivity, roundoff noise propagation, model reduction, 

etc. For instance, see Lin, et. al. (1986), (1987), Lu, et. al. (1986), Premaratne, et. 

al. (1990), and references therein. 

LEMMA 3.2. Consider the 2-D stable ^-system {A,B,C\D} with gramians P and Q. Let 

{A,B,C,i>} with gramians P and Q be the analogous 2-D stable g-system. Then 

1    - 

ThTv 

Q = — £& 
1~hTv 

P = rkTvP; 

Q = Thrvc
lQZ-1- 

11 



Proof. Consider the integral expression for P in Definition 3.2. With the variable change 

c —► z and (3.15), we get 

dzh dzv 
P=    l        *   2 i £   F(zh,zv)F*{zh,zv) 

Zfi    zv 

However (Premaratne, et. al. 1990), 

(2*j)2 J JV 

F(zh,zv)F*(zh,zv) 
dzh dzv 

(2TTJ)
2
 J  JT2    V       N    Zh   zv 

Hence, the claim regarding P follows. The proof regarding Q is similar. 

COROLLARY 3.3. The block matrices of the gramians are related as follows: 

p(l)      p(2) 
p(3)      p(4) 

Q™   Q(2) 

Th.Tv 

p(l)       p(2)' 
p(3)       p(4) 

^g(i)       Q(2) 

. g(3)    ^g(4)J Th 

p(l)      p(2) 
p(3)      p(4) 

Q(3)    g(4) 

TAT-« 

p(l)      p(2) 
p(3)      p(4) 

i.Q(D Q(2)    ■ 
/Q(3)      a.g(4)   • 

Proof. This follows directly from Lemma 3.2. 

With the above results in mind, we now make some pertinent statements that are 

in complete analogy with the 2-D g-operator case. These may be easily verified/justified 

from the corresponding results for the latter (see Premaratne, et. al. 1990, and references 

therein). 

LEMMA 3.4. The gramians may be represented as follows: 

oo     oo 

i=0 j=0 

oo     oo 

W here 

Mij 

Q = 

o, 

ThTv 
—(■Y,J2Ai,i'c*CAi'j'^ 
I.  I   1) . 

.   for(z,j) = (0,0); 

i=o j=o 

0 
+ Ai'j-1Z 0 

p(2) ,    for(i,j)>(0,0). 

LEMMA 3.5. Consider the 2-D stable 6-model {A,B,C, D} with gramians P and Q. Let 

{Ä, B, C, D} with gramians P and Q be an equivalent system obtained with a nonsingular 

transformation of the type in (3.12-13). Then, 

p = TPT*    and    Q = T~1'QT~l. 

12 



Moreover, the eigenvalues of PQ are invariant under such a transformation. 

DEFINITION 3.3. The 2-D <5-model {A, B,C, D) is said to be balanced if its gramians P 

and Q satisfy 

pW=QW=SW=diag{a<1),41)
J...,<7iV}; 

p(4)=^(4)^E(4)=diag{(T(4)?(T(4))    ^?a(4)}_ 

If the principal block diagonal matrices of P and Q are each positive definite, a cor- 

responding balanced realization may be obtained through a simultaneous diagonalization 

procedure (Laub, et. al. 1987). Regarding this, we have 

LEMMA 3.6. Local reachability and observability of the <5-model {A, B,C, D} and its 

corresponding g-model {A, B, C, D} are equivalent. Moreover, when {A, B,C,D} is locally 

reachable and observable, P^\ P^\ Q^\ and Q^ are each positive definite. 

Separable systems. A separable (in denominator) 2-D g-system has the property that 

A^ — 0 (or, equivalently, A^ = 0). For such a system, Premaratne, et. al. (1990) has 

shown that, the off-diagonal submatrices of P and Q are all zero. Moreover, the diagonal 

submatrices may be conveniently computed through the solution of two pairs of Lyapunov 

equations. 

From (3.7), it is clear that, a separable 2-D g-system gives rise to a separable 2-D 

^-system. Regarding the corresponding gramians, we may state the following 

THEOREM 3.7. Consider the separable 2-D 5-system {A,B,C, D} with gramians P and 

Q. Then, 
pM=Q(2)=0      and     p(3)=Q(3)=a 

Moreover, the diagonal block matrices of P and Q may be computed through the solution 

of the following two pairs of Lyapunov equations: 

A(Dp(D +p(i)AW +rhA^P^A^' = -l-B^BM'; 

A^'Q^ + Q^A^+rhA
(iyQ{1)A(l) = --[C^    RWAW]*[CW    J2<4>A<3>]; 

Tv 

A(4)p(4)+p(4)A(4)-+rüA(4)p(4)A(4)'   =_1[B(2)       AWSW][BW       A^ S^ }* ; 

A(4)-Q(4) +g(4)A(4) +ruA(4)-g(4)A(4)  =  _1C(2)'C(2) 

where i?<4>' J2<4) = rhrvQ^ and S^S^' = rkrvP^. 

13 



Proof. The results regarding the off-diagonal submatrices are obsious from Corollary 3.3. 

Regarding the diagonal submatrices, the claim may be shown using Theorem 3.2.2 of 

Premaratne, et. al. 1990. For instance, consider the Lypaunov equation 

i(D*g(i)A(D _ QW = _c-<i)-c<i> _ Ä{3)'Q(4)Ä{3\ 

Using (3.7) and Corollary 3.3, the second Lyapunov equation in the claim results. The 

rest follows in a similar manner. ■ 
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IV. Coefficient Sensitivity 

Coefficient sensitivity is an important criterion on which one state-space realization may 

be preferred over another. In practice, effects of coefficient sensitivity appears in the 

system frequency response. Hence, it is important to study the quantities dH/dA, dH/dB, 

dH/dC and dH/dD. 

By generalizing a certain sensitivity measure in Tavsanoglu and Thiele (1984), Lutz 

and Hakimi (1988) have addressed sensitivity minimization of MIMO 1-D continuous-time 

systems. The 2-D g-operator case appears in Lin, et. al. (1987), and references therein. 

This work, applicable only to the SISO case, has revealed that realizations possessing mini- 

mum coefficient sensitivity are equivalent to balanced (modulo a block orthogonal similarity 

transformation) realizations (see Premaratne, et. al. 1990, and references therein). 

In what follows, we study the coefficient sensitivity properties of the 2-D <5-model 

introduced in Section III. Both FXP and FLP arithmetic implementations are addressed. 

We follow a more direct approach approach through the use of Kronecker product for- 

mulation and, as a result, the results are applicable to the more general MIMO case. 

Relationships regarding matrix Kronecker products are taken from the excellent treatise of 

Brewer (1978) and, for the readers' convenience, where appropriate, the equation numbers 

of Brewer (1978)—these begin with the letter T—are indicated. 

First, 

d „, d t„,r      jwl 

SA(ch,c) = QXH(Ch'Cv) = dA[C{Ic ~ A)        + D] 

= [In ® C)[In ® (Ic - A)'1} • A[/c _ A] ■ [In ® (Ic - A)-l}[In ® B] 

from (T4.3) and (T5.5) 

= [In ® C(IC - A)'1] -Ünxn- [In ® (Ic - Ay'B] 

from (T2.4) and (T5.1). 

Hence 

Second, 

SA(ck,Cv) = [In ® G] ■ Unxn ■ [In ®F)e ^XUP. (4.1) 

SB(cn,cv) = J^X(ck,cv) = j^[C(Ie - A)-*B + D) = -^[GB] 

BB 
= [/n®G]-^    from(T4.3). 
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Hence 

Third, 

Hence 

Fourth, 

Hence 

SB(cfl,cv) = [Iri®G]-UnxP£Z C*nqxp 

Sc(ch,cv) = i^H(ch, cv) = ^{C(IC - A)~lB + D] 

~ dC 

= äc'CF> 
[In ® F]    from (T4.3). 

Sc(ch,cv) = Uqxn ■ [In® F] e$q x np 

SD(ch,cv) = ^-H(ch,cv) = ^-{C(IC- Ay'B + D] 
3D 

8D 

dDx 

sD(ck,cv) = uqxpeW xp 

(4.2) 

(4.3) 

(4.4) 

LEMMA 4.1 The quantities SA(CII,CV), SB^, CV), Scic^,^), and Sz^c^c,,) of the <5-model 

are given as follows: 

SA(C>I,CV) = 

gi 
g2 

[fr  f2*   •••  SI; 

^(C/JJCI,) 

•SCKQUC«) = 

So{ch,cv) 

[gS11 

gi" 

(2) si     •• 
(2) 

§2          •■ 

.gi1» (2) 
gn         •• ■   g«. 

rf(i)* f(l)' 
*2 
f(2)* 
*2 

fw 
in 
f(2)* 

f(?)* 
L Li 

Aq)' 
l2 

Aq)' 
* 

r^i.i -^1,2      • '"    &i,p 
£/9   I J^2,2      • • •    E2,P 

E q,p Eqt\       EQt2       ■ 

Here, f,- denotes a (q x p) null matrix except its j-th row which is f*, g\J denotes a 

(q x p) null matrix except its j-th column which is gi, and E{j are (n x p) elementary- 

matrices. 
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Proof.  The relationship for SD follows immediately from (4.4).  To show the remainder, 

note that 

[In®F] 

F    0 
0    F 

0    0 

0 
0 

6 5" Xnpand[In®G] 

G    0 
0    G 

0    0 

0 
0 

€S cvngxn 

Here, [In ® F] and [In <g> G] each has (n x n) blocks. The claim now follows through simple 

yet tedious algebraic manipulations. ■ 

COROLLARY 4.2. The quantities SA(ch,cv), SB(CII,CV), 5c(c/i,ct)), and So{ch,Cv) of the 

<S-model and the quantities £4(2/1, zv), Sß{zh,zv), S^.{zh,zv), and Sp(zh,zv) of the corre- 

sponding g-model are related through the following: 

S^c/n c„)|c_z = ES^(zh,zv); Sß{ch-,cv)\c^z = ESg(zh, zv); 

Sc(ch,cv)\c^z = Sc(zh,zv); S,£)(cfc,c„)|c_z = S^Zh.Zy), 

where E = [rfc/nh, 0 r„ !„„,]. 

Proof. This is immediate when (3.15) is applied to Lemma 4.1. ■ 

To proceed further, we utilize the following 

DEFINITION 4.1. Let H(ch,cv) be a bivariate matrix-valued function that is analytic on 

Ts
2. Then, 

\\H(ch,cv) 
(27TJ) 

-— * * ^ ||.H'(CA,C1,)|C->«||F 
dzh dzv 

Zh      Zv 

r2n        /.2TT 

——-  I I        \\H(ck,cv)\c^z\\pFduhdujv 
{^)    Juh=0 Juv-Q 

Remark. This matrix norm is extensively utilized in work related to coefficient sensitivity 

(see Lin, et. al. 1987, and references therein) due mainly to the fact that it leads to tractable 

results. This, and our desire to make a comparison with the corresponding 3-model, are 

the primary reasons for its use here. 

FXP Arithmetic Case 

Assuming the actual implementation is carried out using FXP arithmetic, we now define an 
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absolute sensitivity measure that takes into account the variations in the transfer function 

H(ch,cv) with respect to perturbations in A, B, C, and D as follows: 

^-(EES' + KEESy + KEEg 
+ pq{z2z2ddij) 

= \\sA\\l + 1-\\SB\\i + l-\\Sc\\l + ^q\\sD\\l 

(4.5) 

Remarks. 

1. The use of different norms is for mathematical feasibility and tractability, and is typ- 

ical in coefficient sensitivity studies (Lin, et. al. 1987, Li and Gevers 1990). Given a 

^-model {A,B,C, D}, the objective is to characterize those realizations belonging to the 

class {Ä,B,C,D} = {TAT-l,TB,CT-\D}, where T is a nonsingular equivalent trans- 

formation of the type in (3.12), that minimize MFXP- 

2. The weights associated with each term in (4.5) may be thought of as averaging factors. 

The ensuing measure then may be thought of as an average sensitivity per input/output. 

3. In a ^-operator implementation, due to the necessity of performing the computation in 

(3.6), coefficient sensitivity will be affected by perturbation of T^ and rv as well. Hence, 

MFXP must be modified to contain terms of the nature ||SVJ|2 and ||SVJ|2- However, the 

selection of r/4 and rv may be done somewhat arbitrarily so that they possess exact binary 

FXP representations. If so, the corresponding sensitivity terms may be neglected. In what 

follows, we therefore assume that r/t and rv have been selected as above. 

Now, we are in a position to attempt to obtain an expression for MFXP 
as follows: 

2 

WSAWI = 
l 

V 

< 

(27rjy 

(2^)2 J   JV 

gi 

gl 

gn 

:s 5] 

dzh dzv 

, Zh    zv 

dzh dzv 

, zh    zv 

VVJYJ JT? 

c* f * i i        i|2 ®Zh dzv 

= trace 

Zh     zv 

r,*< \ni M ^h   dzv 
a    wrr    G \ch,cv)G{Ck,cv)\c^m—--— 
\2TTJY J  JJ-2 zu    zv 
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trace 
dzh. dzv Iff dzh dzx 

-—6 6   F(ch,cv)F*(ch,cv)\c-+z— — 
(27TJ) 

To get the first inequality, we have used the mutual consistency of Fröbenius norm, that 

is, \\AB\\F < \\A\\F ■ \\B\\F, and Cauchy-Schwarz inequality; the last equality follows due 

to \\A\\2F = trace[A*A] (Golub and Van Loan 1983). Hence, using (3.15), 

\\SA\\l < trace[P] • trace[£Q£] = {rhrv)
2 ■ trace[P] • trace[Q]. (4.6a) 

Next, 

ll^fllll = 
TT;)2 J JT? 

si (i) 

in 
(2*;) 

= p ■ trace 

r(p) 
>i dzh dzv 

. Zfi     zv 

zIlF 
dz\i dzv 

Zh      Zv 

Hence, 

Similarly, we get 

and 

dzk dzv 

r  r    G*(cfc,c„)G(cA,c„)|c->z— — 

\\SB\\1 = P ■ trace[£Q£] = prhrv ■ trace[Q]. 

\\Sc\\l = q ■ trace[P] = qrhrv ■ trace[P], 

\\SD\\l=pq. 

(4.6b) 

(4.6c) 

(4.6d) 

Remark.  In a manner that parallels the above, corresponding to (4.6), for the g-system 

counterpart, we have 

||SA ||i < trace[P] • trace[Q] 

= (rhrv)
2 ■ trace[P] • trace^-1^-1]; 

\\Sß\\l = p ■ trace[Q] 

= prftrt;-trace[r1Qr1];(4.7b) 

||5e||i=5-trace[P] 

= qfhTv • trace[P]; 

II ^D III = P9- 

(4.7.a) 

(4.7.c) 

(4.7d) 

19 



Combining (4.5) with (4.6), we get the following upper bound for MFXP: 

MFXP < MFXP = (trace[P] + l)(trace[£Q£] + 1) (4 g) 

= (rhrv ■ trace[P] + l){rhTv ■ trace[Q] + 1). 

Due to difficulties associated with minimization of MFXP, itis customary to perform a 

minimization of MFXP- Hence, one attempts to characterize those realization {A, B, C, D} 

that are 'bound optimal' with respect to the sensitivity measure MFXP • 

For reasons of brevity, we do not attempt to perform this since the procedure is exactly 

analogous to the 2-D g-operator case (see Lin, et. al. 1987, and references therein). For 

instance, one may show that any realization that is balanced modulo an orthogonal non- 

singular transformation is bound optimal with regards to the sensitivity measure defined 

in (4.5). 

Remark. In a manner that parallels the above, corresponding to (4.8), for the ^-system 

counterpart, we have 

MFXP < MFXP = (trace[P] + l)(trace[Q] + 1) 

= (rhrv • trace[P] + 1)(TäT„ ■ trace^QC1] + !)■ 

However, it is instructive to note that, compared to a ^-operator implementation, its 

6-model implementation will always yield a smaller MFXP whenever 

trace[Q] > trace[£Q£] 

& (1 - rl) • traced] + (1 - T
2

V) ■ trace[Q(4)] > 0. 

Note that, with the local reachability and observability assumption of {A, B,C, D} (and 

hence {A,B,C,D}), positive definiteness of Q™ and Q^ (and hence Q^ and Q(4)) 

are guaranteed. This implies strict positivity of trace[Q(1)] and trace[Q(4)] (and hence 

trace[Q(1)] and trace[Q(4)]). Thus, (4.10) is satisfied, that's, the ^-operator implementation 

is superior with regards to coefficient sensitivity, whenever 

Th < 1    and    rv < 1. (4.11) 

FLP Arithmetic Case 

If the actual implementation is carried out using FLP arithmetic, the absolute stability 
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measure in (4.5) may not be the most appropriate. This is because, in FLP implementa- 

tions, possible perturbation of a particular coefficient will be in fact approximately pro- 

portional to its nominal value. Due to this, Li and Gevers (1990), in addressing the 1-D 

^-system coefficient sensitivity, utilizes a certain relative absolute measure. In the same 

spirit, a more suitable sensitivity measure for the FLP case will be 

^<EE«,0^EE>,0+KEE<,0 
^(EE^,£)2 ^ 

= l^|i; + i||5B||l + i||5c||? + i||Sz,||l, 

where SA = X) Y2o.ijdH/daij, etc. Using Definition 4.1, one may now show that 

\\SA\\P<\\A\\F'\\SA\\P; 

II^IIP<II-5||F-||5B||P; 

\\Sc\\P<\\c\\F-\\sc\\P; 

\\SD\\P<\\D\\F-\\SD\\P. 

Hence, substituting from (3.7), we get 

(4.14) 

To proceed farther, let us assume r^ = rv = r for convenience. Then, we get 

1 
||r1(A-J)||2p = ;i||A-/||2F; 

WC'BW? = ±\\B\\F. 
(4.15) 

Combining (4.14) with (4.15), we get the following upper bound for MFLP: 

MFLP < MFLP = ||A - I||2F • trace[P]trace[Q] + ||P||2F • tracefQ] + ||C||J. • trace[P] + \\D\\2F. 

_ (4-16) 

Again, we perform a minimization of MFLP- 

Remark.  In a manner that parallels the above, corresponding to (4.16), for the (^-system 

counterpart, we have 

MFLP < MFLP = ||i||F-trace[P]trace[QW|B||^ (4.17) 
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Hence, compared to a ^-operator implementation, its <5-model implementation will 

yield a smaller MFLP whenever 

||A-/||2F<||A||F. (4.18) 

Clearly, 

|A,-[A] - 1| < |Ai[^ll, Vx = 1 n =*  ||i-/||F<||i||2F, (4.19) 

where Xi[A] denotes the i-th eigenvalue of A. 

Remark. Li and Gevers (1990) refers to the above region (where the eigenvalues of A 

should lie) as the Middleton-Goodwin (MG) region. They show that, for the 1-D case, 

frequency response of a 6-system will be less sensitive to coefficient perturbations if the 

system eigenvalues lie within the MG region. 
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V. Example 

To illustrate the notions presented previously, let us consider the following stable 2h-2v 

2-D digital filter in its Roesser model {Ä,B,C,D}, where 

A = 

r 1.8890 
1.0000 
0.0277 

L-0.0258 

-0.9122 
0 

-0.0258 
0.0243 

C = [0.1444    -0.0456 

-1.0000 
0 

1.8890 
-0.9122 

-0.1095   0' 

0 
0 

1.0000 
0 

:    D = 

B = 

0.1095 
0 

-0.0144 
0.0456 J 

[0]. 

The magnitude response of this system is shown in Fig. (1). The gramians are computed 

as 

yields the BL ^-system 

Ab = 

r 21.7931 21.3143      0.4100 -0.38481 

p = 
21.3143 
0.4100 

21.7931      0.3303 
0.3303      0.2836 

-0.3083 
-0.2589 j 

L -0.3848 -0.3083    -0.2589 0.2434 J 

r 2.8358 -2.5893     3.9702 3.0934 • 

Q = 
-2.5893 
3.9702 

2.4168     -3.7574 
-3.7574    159.8513 

-2.8971 
155.8357 

L 3.0934 -2.8971    155.8357 159.8513 

msformation 

r 2.1813 -3.6709         0 0      I 

T = 
1.5578 

0 
-4.1949         0 

0           0.4021 
0 

-0.1581 
L   o 0          -0.3473 0.2247 J 

/■stem 

r 0.9664       0.1279 -0.4915    0.19321 r0.1339 
-0.1611     0.9226 
0.0463       0.0088 

-0.1825    0.0718 
0.9774     0.1747 

;   Bb = 
0.0497 
0.1118 

L-0.01C 3 -0.0181 7    -0.1214   0.9116J L 0.3757 

Cb = [0.2440    -0.3389    -0.0440    0.0173];    Db = [0}. 

Next, we attempt to obtain the corresponding 6-systems. 

FXP Implementation 
In FXP, rh and TV usually determine the range of numbers of the «^-system's s.s. represen- 

tation. If they are too small, due to (3.7), coefficient values in the ^-system may be too 

large; if they are too large, the advantages to be gained in terms of coefficient sensitivity 

may vanish. Hence, these parameters should be carefully selected. 
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By inspecting the BL g-system, the minimum value for both Th and rv were selected 

as 0.5. The corresponding ^-system obtained then has numerical values that are within 

approximately the same range as for the g-system. Direct conversion of the BL g-system 

to its correspondiong ^-system gives 

A = 

-0.0672 0.2557 
-0.3222 -0.1548 
0.0926 0.0177 

-0.0207 -0.0374 

C = [0.2440    -0.3389    - 

-0.9830 0.3864 I r 0.2678 

-0.3651 
-0.0452 

0.1435 
0.3494 

; B = 
0.0995 
0.2235 

-0.2428 -0.1768 J Lo.7514 

-0.0440   0.0173];    D = [0]. 

This system is not BL in the sense in Definition 3.3. The BL ^-system is 

At 

r -0.0672 -0.2557 
0.3222 -0.1548 
0.0926 -0.0177 
0.0207 -0.0374 

-0.9830 -0.3864 
0.3651       0.1435 

-0.0452 -0.3494 
0.2428 -0.1768 J 

Bh 

r 0.1894 
-0.0703 
0.1581 
-0.5313 

Cb = [0.3451    0.4793    -0.0623    -0.0245];    Db = [0]. 

The BL q- and ^-systems so obtained were implemented in finite precision using FXP. For 

comparison purposes, the following measures were computed: 

£n 

Es 

= ||ff(e>'w0-#FXp(eiw')lloo,     and 
N-l 

i=Q 

where u>i = 2iri/N, N being a sufficiently large positive integer, were computed. Here, 

H{e^UJi) is the frequency response in infinite precision and i?FXp(e'7u'') is the frequency 

response in FXP. The results are shown in Fig. (2). 

FLP Implementation 

In FLP, a large dynamic range is available. Hence, there is no restriction on the choice of 

Th. and TV. We select r/t = rv = 1/8. The resulting BL ^-system is 

A,, 

Cb = [0.6902    0.9586    -0.1246    -0.0490];    Db = [0]. 

Again, the BL q- and c5-systems so obtained were implemented in finite precision using 

FLP. Measures corresponding to -Emax- and Esum were also computed. The results are 

shown in Fig. (3). 

r -0.2687 -1.0230 -3.9321 -1.54571 r 0.3788 
1.2888 -0.6194 1.4602 0.5740 

; Bb = 
-0.1407 

0.3704 -0.0707 -0.1807 -1.3975 0.3161 

L 0.0827 -0.1494 0.9710 -O.7074J L -1.0627 
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VII. Conclusion and Final Remarks 

In this paper, we have developed a 5-operator based counterpart to the more conventional 

g-operator based Roesser s.s. model. The motivation for such a development lies in 

the superior finite wordlength properties exhibited by 1-D ^-operator based discrete-time 

systems. 

The corresponding notions of gramians and BL realization are proposed. For both 

FXP and FLP implementations, conditions under which the ^-operator formulated system 

behaves better than its ^-operator counterpart are derived. These results indicate that, in 

most situations, the 6-system, as expected, can be expected to provide superior coefficient 

sensitivity properties. 

In a FXP implementation, however, due to the limited dynamic range available, care 

must be taken in selecting the 'sampling times' Th and r„. Of course, in a FLP implemen- 

tation, such a difficulty does not arise. 

This work only addresses the coefficient sensitivity issues. The authors are currently 

completing work regarding the roundoff error properties of the <5-model developed, where, 

as in 1-D case, improvements over the corresponding g-model are expected. 

We must mention that certain difficulties regarding limit cycles are inherent in 5- 

systems when FXP arithmetic is used (Premaratne and Bauer 1993). However, this prob- 

lem is, for all practical purposes, nonexistent in the FLP arithmetic case. Hence, in our 

opinion, for FLP high-speed applications, the ^-model developed provides an extremely at- 

tractive solution that avoids the numrical ill-conditions typically associated with g-systems. 
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Checking Limit Cycle Behavior Of Digital 

Filters 
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Abstract :-The presence of limit cycles that may arise in fixed-point 
arithmetic implementation of a digital filter can significantly impair its per- 
formance. The work in this paper presents an algorithm that can be utilized 
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I    Introduction 

A digital filter may be realized using either a general purpose digital com- 
puter or special purpose digital hardware. In either case, the coefficients 
and intermediate results of computations must be stored in binary form in 
registers of finite wordlength. Limit cycle oscillations are a direct result of 
this limitation, and care must be taken to suppress them while performing a 
digital filter design. 

For the past several years, this in fact has been a research topic of inter- 
est, and a significant amount of insight and research results are now available 
[1]-[10]. In an implementation of a higher order digital filter, as shown in [11], 
a cascade or parallel form composed of first-order and second-order subfilters 
is preferable over any direct form realization. Therefore the results are sum- 
marized for the second order realizations. Most existing results focus on the 
effects of signed magnitude rounding and truncation quantization schemes 
with regard to the existence of limit cycles. Recently, some work addressing 
the two's complement truncation scheme has also appeared [12]-[14]. 

This work proposes an algorithm that may be used to check for limit cycles 
of a given digital filter implemented using fixed-point arithmetic. It possesses 
a wide scope of applicability: The digital filter to be tested may be of any 
order; the quantization scheme may be arbitrary, including truncation and 
rounding schemes corresponding to signed magnitude and two's complement; 
and the accumulator may be of single- or double-length. 

Given a digital filter, we develop bounds on the amplitude and period of 
possible limit cycles. The algorithm is based on an exhaustive search proce- 
dure over all these possibilities. In addition, extending the same procedure 
to the entire linear stability region, one may utilize it to obtain regions in 
the filter coefficient space where the given filter is globally asymptotically 
stable (g.a.s.). For this purpose, the robustness of the algorithm in terms of 
presence or absence of limit cycles with respect ko filter coefficient pertur- 
bations is also verified. A similar concept has been used before for checking 
limit cycle behavior of digital filters implemented in direct form [10], [15]- 
[18]. The major advantage of the proposed method is that it is applicable 
for the more general state-space implementations. Of course, the direct form 



implementation then follows as a special case. 

The paper is organized as follows. Section II contains the nomenclature 
used throughout the paper. Section III provides bounds on the amplitude 
and period of limit cycles of a given general digital filter. Section IV dis- 
cusses the algorithm and its computational aspects. Section V addresses the 
robustness of the algorithm with respect to perturbations of filter coefficients. 
Section VI contains some situations where the algorithm developed has been 
used effectively. Finally, Section VII contains the concluding remarks. 

II    Nomenclature 

The following notation will be used throughout the paper. 
3£, Z Set of reals, set of integers. 
C Set of complex numbers. 
Z+ Nonnegative integers. 
3JmXn, Zmxn   Set of matrices of size m x n over the reals and integers. 
SR(z)m)(„ Set of matrices of size m x n over the rational polynomials in 

the indeterminate z € C. 
K\\ Cardinality of set [•]. 
ü{j (i,j)-t\i element of the matrix A = {a.j}. 
/, 0 Identity matrix and null matrix of appropriate sizes. 
x(&) Filter state vector at instant k. 
Xi(k) z'-th component of the state vector x(&). 
|| • ||oo The infinity norm. For x = {x,} G 9£m, ||x||oo = max,- |s,-|; 

for A = K) e 5RmXn, HAIloo = max,E-=1 Kl- 
Mi Upper bound for absolute value of amplitude of x,-(fc), k € Z+. 

M{ Largest integer less than or equal to M,-. 
8{k) Dirac delta function. 
Hij(z) (i,j)-th element, that is, the (i,j)-th transfer function, of the 

MIMO transfer function H(z).       „ 
hij(k) Impulse response of Hij(z). 
Pi z-th. pole (accounting for multiplicity) of Hij(z). 
Kij Constant term in the partial fraction expansion of Hij(z). 
rfj k-th. residue of Hij(z). 



q Quantization step size. 
Q[-] Quantization nonlinearity operator. 
g Normalized quantization error. For instance, for roundoff, g = 0.5, 

and for truncation, g = 1. 
N Number of nonlinearities in a realization. 
e(k) Quantization error vector. 

Ill    Amplitude and Period Bounds on Limit 
Cycles. 

In general, the quantization nonlinearity satisfies 

\x - Q[x]\ < g ■ q,     VzGft, (1) 

where g is the normalized quantization error. In particular, for roundoff 
quantization, g = 0.5, and for truncation quantization, g = 1. Note that, 
all the filter parameters may be expressed as integer multiples of the quan- 
tization step size q. Hence, for convenience, we normalize q to unity for all 
calculations. The quantization nonlinearity thus becomes an integer valued 
function, viz., 

Q : ft -+ Z (2) 

In general, for all quantization schemes of interest, Q[0] = 0. 

We consider a digital filter of order m in its minimal state-space repre- 
sentation {A,B,C, D}, that is, 

x(k + 1) = A ■ x(fc) + B ■ u(fc); (3) 

y(k) = C-x(k) + D-u(k), (4) 

where x € 3£m is the state, u is the input, an9 y is the output. Also, 
A € 3£mXm. For addressing limit cycle performance, we consider the zero 
input recursive state equation 

K(k+l)=A-x(k). (5) 



Unless otherwise stated, we only consider linearly stable filters.  Hence, all 
eigenvalues of A are inside the unit circle in C. 

Now, under finite wordlength conditions, the appearance of the pertinent 
quantization nonlinearity in (5) may be modeled as 

x(fc + l) = Q[A.x(fc)]. (6) 

Depending on whether the result of a product can be stored with full pre- 
cision or whether quantization is performed immediately after each product 
is computed determines the effect of this nonlinearity. Considering (5) and 
noting that x(fc) = {x,} € &m and A = {atJ} € &mXm, we get the following: 

If the products can be stored with full precision, that is, if a double-length 
accumulator is available, 

x(fc + l) (7) 

and, on the other hand, if the product is quantized immediately after each 
product is performed, that is, if only a single-length accumulator is available, 

x(fc+l) = 

/   Q[au-xl(k)] + Q[a12-x2(k)] + ... + Q[alm-xm{k))   > 

^ Q[am\ ■ zi(fc)] + Q[am2 • x2{k)] + ... + Q[amm • xm(k)] ) 
(8) 

Since q has been normalized to unity, noting (1), (7) and (8) may be 
expressed in a unified manner as 

:(Jb + 1) = A • x(fc) + e(fc),    with    |e,-(&)| < N- g, (9) 

where e(Jfc) = {e,-(Jfc)} € 3^m and e,-(Ar) € 3?.  Note»that, if (7) is applicable, 
N = 1; if (8) is applicable, N — m. 

We note that, (9) is a description of a linear system driven by the bounded 
quantization error input e(fc). Hence, we have in fact converted the nonlinear 



systems in (7) and (8) into the linear system in (9). Now, the transfer function 
between e(k) and x(fc) is 

X(*) 
E(z) 

= {z-I- A)-1 € Ä(z) mXmi (10) 

where X and E are the z-transforms of x and e, respectively.  This, when 
expanded, may be expressed as 

X(z) 
E(*) 

( Hu(z)    H12(z)    ...    Hlm(z) \ 

\ Hmi(z)   Hm2{z)   ...   Hmm{z) ) 

where Hij(z) G 3?(z). Hence, 

Xi(z) = 2 #;(*) • Ej(z), i = 1,2,..., m, 
i=i 

(11) 

where X(z) = {Xi} and E(z) = {JEJ}.   Taking inverse z-transform of the 
above, we get 

m 
xi(k) = ]CÄ«'i(k)*ej(fe)> i = 1,2, ...,m, 

where hij(k) is the impulse response of Hij(z). Hence 

xi(k) = ZU! Mr) • ei(& ~ r)> » = 1,2,..., m. 
j=l r=0 

(12) 

Combining (12) with the fact that |ej(fc)| < N • g, for j = 1,2, ...,m, we 
obtain 

m    oo 

1x^)1 <Jv.ff.SElM*)|. (13) 
j=rl fc=0 

Eqn. (13) may now be used to provide upper bounds for each state vector a;,- 
as follows: 

M = W-0-££lM*)l. « = 1,2,...,m. (14) 



We realize that, in order to estimate a useful upper bound for x,-, we need to 
compute X^! T,T=o l^y'WI f°r a given filter. We address this now. Consider 
the transfer function Hij(z). 

All poles of Hij(z) are distinct: 

In this case, Hij(z) may be expressed as 

(i) ("0 

where r\f,P^q) G C and K{j € », for i,j,l,p,q = 1,2,... ,m. Taking the 
inverse z-transform, we have 

h{j(k) = tfy • S(k) + rWlpVf + ... + r^[P^]\ 

where 6(k) is the Dirac delta function. Therefore 

EIM*)I    ^    £{1^11 WI + |rg)|[|A(1)|]* + .-. + |r&l)|[|Pim)|]*} 
fc=0 fc=o 

=    |/Cil + |rg>|(l - IP^I)"1 + ... + \r\f\(l - IP^I)-1. 

This, when expanded, gives 

m    oo "i 

EEIM*)I< E-Lil^l +(i-IA(1)ir1-El^)l + --- 
jn 

+...   +(i-i/im>iri-Ei'-ir)i. 

for i = 1,2,..., m. Hence 

\xi{k)\ <   N-g- {E?=1 |Ä«I + (1 " lA^I)-1 ■ E£=i |rg>| + • • • 

•••+(i-i^m)i)-i-Er=ik!r)i}. (is) 
for i = 1,2,..., m. Note that, convergence of the above is guaranteed due to 
linear stability of the digital filter. 

Remark. The method adopted in [10] tends to be easier to implement and 
more general with regards to its capability of handling the presence of poles 



of higher multiplicity. However, our experience has been that the technique 
described above often leads to lower upper bounds. Note that, the technique 
in [10] utilizes an interpretation that involves a cascade of first-order sections 
to obtain a bound for |x,|; the technique above utilizes an interpretation that 
involves a parallel combination. Of course, no one technique will provide a 
lower bound for all situations. If computer cost is of concern, one can run 
both techniques and utilize the lower value of the bound. 

Hij(z) contains a pole with multiplicity 7: 

Let this pole of multiplicity 7 be P. Then, Hij(z) may be expressed as 

Hij{z) = Kij + ^ _ p2_i) + (1 _ pz-iy + ' * * + (l-Pz-1)^' 

This analysis differs from the one given above for the general term 

r(0 
«j   

(l-Pz-^y 

where £ = 2,3,... ,7. 

At this point, due mainly to its ease of implementation, we utilize the 
technique in [10] where the above expression is interpreted as a cascade of 
C first-order sections. For each first-order section, the inverse z-transform is 
taken using the theory outlined in the distinct pole case. Consider 

JO JO 
' ij J3  

(1 - Pz-lY      (1 - Pz-X){l - Pz-1)... (1 - Pz-1) 

Taking the inverse z-transform, we get 

.(0 r»i'  JO = r.-j 
(l-Pz-1)(l-Pz-1)...{l-Pz-1)       ,J Em 

k=0 

C 
_ JO . 1 

1-|P| 

This expression is now substituted for the pole of multiplicity 7. 

Lemma 1:  The zero input response of the state x(fc) of the digital filter 
described by eqn (7) or (8) is periodic. Its period T satisfies 

m 

T < 11(2 • Mi + 1) = Tmar, (16) 
{=1 



where M,- is the largest integer not more than M; in eqn (14). 

Proof: Consider eqn (7) or (8). The steady-state solution of each state X{(k) 
will satisfy 

\xi(k)\<Mi,    VAr, » = 1,2...,m. 

Under fixed-point arithmetic, x(k) € Zm, and hence, 

\xi(k)\<Mi, VM = l,2...,m. 
A 

X{(k) can therefore take only a finite number of values, namely, (2 • M,- + 1). 
As a result of this, x(&) can take only a finite number of values, namely, 

m 

11(2 • ^+ 1). 
t=i 

Note that, the current state vector x(Ar) uniquely determines the next state 
vector x(fc + 1) through the function £>[•]. Thus, x(&) must be periodic in k. 
Its period is in fact bounded by 

m 

Tmar = n(2-M + 1). (17) 
1=1 

D 
We now have bounds on the amplitude as well as the period on the possible 
limit cycles. This information will be invaluable for developing our search 
algorithm. 

IV    Algorithm Description and Its Compu- 
tational Aspects 

In this section, we formulate the theoretical ba§is for the algorithm and 
discuss some of its computational aspects. 

Definition 1: The digital filter realization in (9) is said to be globally asymp- 
totically stable (g.a.s.)  if and only if, for any initial state x(0) € Zm with 

9 



||x(0)||oo < B, where B € Z+, there exists L e Z+ such that x(fc) = 0 for 
k>L. 

Remark. Typically, g.a.s. is taken to hold when x(fc) —> 0 as k —> 
oo (under the conditions above). However, due to the finite wordlength 
available in each register, the digital filter behaves as a finite state machine, 
and Definition 1 suffices. 

Lemma 2: Consider 77 > 0 and any initial state vector x(0) such that 

\xi(0)\<Bi,    for   z = l,2,...,m, 

with B{ > Mi, for i = 1,2, ...,m. Then, there exists a sufficiently large 
positive number C such that the digital filter in (7) or (8) satisfies 

\xi(k)\ <Mi + T], \/k>£, 

for i = 1,2,... , m. 

Proof: Since the eigenvalues of A are assumed to lie inside the unit circle 
in the complex plane, the digital filter in eqn. (9) is in fact g.a.s. Hence, 
eqn. (9) will yield a set of nonhomogeneous linear shift-invariant difference 
equations which will have its solution in two parts: A steady-state solution 
s(k) and a transient solution t(k). Clearly, with g.a.s., given 77 > 0, we can 
choose k sufficiently large, say, k > C, such that 

max|£,-(fc)| < r/,    for    i = l,2,..., m. 

Since Mi € Z+, for k > £, Mi + 77 will therefore act as a true upperbound 
for X{(k) in eqn. (9).        □ 

Hence, it suffices to check the state vectors in the set S^°\ where 

S{0) = {x{k)eZm\\xi{k)\ <Mi,   i=^l,2,...,m}, (18) 

to see if they are mapped to the zero vector by eqn. (9) after a finite number 
of mappings. 

10 



Computational Aspects 

The computations within the algorithm are carried out in two stages. 
Initially, all vectors x(fc) € S(0) which map to 0 in less than Tmax recursions— 
(after all, if limit cycles exist, the maximum period is Tmax)—are eliminated 
from <S(0) as they are now known to be stable. The remaining vectors in <S(0) 

are then further checked for convergence (see Section B). 

Section A. Consider the set V^, where 

V*1* = {x(Jfe) € SW\Q[A • x(fc)] = 0} , (19) 

Hence, V(1) consists of all the vectors x(fc) € <S(0) that map to 0 in one and 
only one iteration of equation (7) or (8). Note that, any other stable vector in 
<S(0) must map to V(1) prior to reaching 0. Hence, for further computations, 

we form 
5(1) = 5(0) \ VM (20) 

Note that, K[SM] = fC[S^} - /C[V(1)]. In fact, one immediately notices that 

£[S<°>] = Tmax. 

Furthermore, any vector in S^ which is mapped to V^ by (7) or (8) in 
one iteration will also converge to 0. Hence, we form the set V(2), where 

V& = {x(Jfc) € SW\Q[A ■ x(Jfc)] € V<x>} . (21) 

Hence, V(2) consists of all the vectors x(fc) 6 S(1) that map to 0 in exactly 
two iterations of equation (7) or (8).   Hence, for further computations, we 
form 

5(2) = 5(1) \ VW (22) 

Note that, IC[S^} = JC[S^] - /C[V<X>] - £[V<2>]. 

Likewise, we get the following sets: For L = 1,2,...,Tmax, 

y W = {x(fc) € <S(L-1}|Q[A • x(fc)] € V^"1*} , (23) 

and 
S(L) = 5(L-i) y V(L)_ (24) 

11 



Note that, £[<S<L>] = £[5<°>] - Ef=i £[V(i)l- 

The conditions under which this construction is terminated and their impli- 
cations are as follows: 

(1) If 
/C[<S(L)] = 0,    for some   L = 1,2,... ,Tmax - 1, (25) 

all vectors in <S(°) are convergent. 

(2) If 
/C[V(I,)] = 0,    for some   L = 1,2,.. .Tmax, (26) 

then 
5(0 = 5(1-1),    for   i = L,I + l,...,rmax. (27) 

Under this situation, the remaining vectors in 5(£,_1)-there are £[«S(L_1)] of 
them-w.ill be further checked for convergence (see Section B). 

Remark. Upon a little reflection, one notices that V(Tmai) must either be 
empty or contain one and only one vector from S^°K 

Section B. Although the reverse mapping procedure outline above reduces 
the computational complexity considerably, it may not capture all the vec- 
tors in V(L), 1 = 1,2,..., Tmax, that map to 0 within Tmax iterations. This 
is due to the fact that, there may be vectors in V(L) that map to 0 through 
a vector not belonging to £(°M Hence, when encountered with condition (2) 
above, convergence of each remaining vector in <S^L_1^ is determined by check- 
ing whether it is mapped to 0 in less than Tmax through either (7) or (8), 
whichever is applicable. This exhaustive technique is in fact an extension of 
that given in [10] to digital filters represented in their state-space realization. 
However, we must emphasize the significant computational advantage gained 
by first invoking the reverse mapping construction procedure in Section A. 

Assuming condition (2) has occurred, let 

5^ = {xiL); i = 1,2,...,fC[S^}}. (28) 

Note that, when condition (2) has occurred, from (27), <S(L_1) = <S(L). For 
each vector xjL) € <S(Z,), construct the orbit ö\L) consisting of all state vectors 

12 



xSL)(i), for j = 1,2,... ,Tmax, that are consecutively generated by (7) or (8) 

(whichever is applicable) with xt- ' as the initial state, that is, xt-    = X;   (0). 

For each i - 1,2,..., /C[<5(L)], the conditions under which the construction 

of each orbit O^ is terminated and their implications are as follows: 

(l)If 
xjL)(;) = 0,    for some   j = 1,2,... ,Tmax, (29) 

then x|L) together with each vector in the orbit ö\L) is convergent. 

(2) If 
xiL)(i) = xiL)(fc),    for   j#*. (30) 

then x[ ' gives rise to limit cycles.. 

Remark. These are in fact the only conditions that can occur when either 
(7) or (8) generate the orbit. 

V    Perturbation of Filter Coefficient Matrix 

In constructing the region of g.a.s. in the coefficient space, perturbations 
incurred in storing each filter coefficient must also be considered. Such per- 
turbations are typically due to finite wordlength effects that require rounding 
or truncation of the true coefficient value. 

The algorithm described in the previous section provides information re- 
garding g.a.s. of a given filter with a nominal coefficient matrix A = {a,j} £ 
sjjmxm^ Once this is done, we now consider a small perturbation Aatj of each 
coefficient about its nominal value a,j. However, for a given state vector x(fc), 
this perturbation may not necessarily alter the next state x(k + 1) obtained 
since it is entirely possible that 

x(Jfc + 1) = Q[(A + AA) ■ x(fc)] = Q[A ■ x{k)}, (31) 

where A A = {Aa{j} G &mXm. 

Depending on the number of quantizers per row, that is, depending on 
whether a double- or single-length accumulator is available, (31) is inter- 
preted differently. 

13 



Double-length accumulator 

It is evident that the upper bound Mi estimated for the nominal value of 
the coefficient matrix {a,-,-} € 3£mXm will no longer be valid for a perturbed 
system {%' + Aa.j} € 5Rmxm . If for a filter with a nominal coefficient matrix 
{a,j}, the upper bound valid for all systems described by the coefficient 
matrices {aij + Aa.j}, be Mv (v = 1,2, ...,m), this then could be used 
to estimate the robustness region as explained below. The choice of Mv Js 
critical. To determine the robustness region we need an estimate for M„ 
which will be valid for all systems with {AatJ} perturbations, an vise versa. 
From eqn. (32) we see that Q can only be determined after a suitable Mv 

is chosen. If the chosen Mv is large the region Q will decrease. If a small 
value for Mu is chosen the region Q will become large and Mv will no longer 
be a valid upper bound for systems {a,j + Aa,j}. In such a situation the 
robustness region will be an intersection of the computed Q and the region 
formed by {atJ +Aa,_/} in the parameter space where M„ is still a valid upper 
bound. 

Consider the robustness region 

Q   =   {Aauj\Q J2("ij + Aa.i) • Xj(k)    = Q 

for i = 1,2,..., m, and Vx(fc) € <S}, 

j=1 

(32) 

where 
S = {x\\xv\<Mv,   i/ = l,2,...,m; x <E £m} . 

Here, Mv is an upper bound valid for all filters described by the coefficient 
matrices {a,-j + AatJ}. 

Hence we can assume that S is valid for all systems described by (7) with 
coefficients {a^ + AatJ}. 

To proceed, it is convenient to identify the discontinuities associated with 
the nonlinearity Q[-]. 
For sign-magnitude roundoff, 

Vr = Ur € 3? | K = r + -, r G £ j ; (33) 

14 



for sign-magnitude truncation quantization, 

Vmt = {br€U\br = r,r£Z\{0}}] 

for two's complement truncation quantization, 

Vtwo = {br€&\br = r,reZ}. 

(34) 

(35) 

For each x € S, a region Qx corresponding to the robustness region in 
eqn. (32) applicable to the pertinent quantization schemes in (33), (34), or 
(35) is defined. Let the region corresponding to the u-th. state xv of x be 

Qx . Then, we have the following: 

For sign-magnitude roundoff quantization, 

for 6r_i < ££=i aujXj < bk and r > 1 

G¥ = < {Aauj\   6r_x - Zf=i a»ixi < EyLi Aa"ixi ^ b* ~ ££=i a"ixi> 
for ör_i < Y%=i aujxi < bk and r < -1 

{Aauj\   6_x - Z?=i "vjXj < EjLi ^ujXj <b0- ZT=i a»ixj} 
for 6_i < EjLi a„jXj < b0 

where    bT G XV; (36) 

for sign-magnitude truncation quantization, 

f (Aa^-I    6r_x - Z?=i °-»ixi < EjLi Aa*ixi <br- EjLi a"ixj}  ' 
for 6r_i < ££=a a„ja:j < bk and r > 2 

#> = < for 6r_i < £jLi aV;Xj < 6jt and r < -1 

{Aa^|   6_! - EiLi o^-xj < Ef=i Aavix/< 6+i - £?=1 <V/*j} 
for 6_i < EjLi aj/j^i < b+i 

where    br € £\n<; (37) 
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for two's complement truncation quantization, 

tf> , f {Auw|   6 JJ < j,,   ^ < ^ _ o^ 
I lor 6r_! < £\=10i/iari < bk \ 

where    6r € X>( ttuo- (38) 

eFl%P6 Wat1 Tr™? t Tt0r ** the regi0n Can be ComPuted «** eqns.(36) , (37) and (38). For all x € S the total robustness region is given 
by 

G=nox- 
xes 

From (36) (37) and (38), we may estimate suitable values for the r 
robustness for each quantization scheme. For the twos complement 
won quantization scheme from eqn. (38), let 

m ( m 

E A«.,», < mm | IJ, - f a^A, |Jr_, - £„„.*., I 
v J-1 j=l ) 

The left hand side of (40) will be given by, 

(39) 

e region of 
trunca- 

(40) 

J2 &aviXj 
i=i 

^ElA^i-N 
J=I 

(41) 

IfM 
max is the maximum value of Mu for all i/, then |x,| < Mm    for all i is 

true. eqn.(41) then can be simplified to, J 

E Aa^-ar,- 
J=I 

<Mmax.f2\&auj\ 
J=I 

(42) 

If we estimate the perturbations Aauj such that 

m ( m 
Mmax ■ g JAa^-l < mm | \br - £ G^|, |V_X _ £ ^.x., 

ElAa, . I I _ÜL m ' 
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J=l 

(43) 

(44) 



Using the approximation in eqn. (44) we can estimate a region G, where Q is 
given by, 

Q = {Aavj\ HAa^Hi < 
jyimax 

■ min^flk - ££i avjXj\, |6r_x - ££=i avjXj\}}. (45) 

Clearly, Q C Q. 
From eqn.(45) it is observed that in a degenerate case Q may only contain the 
zero perturbation vector. Generally not all perturbations Aa„j are zero. To 
find the region of robustness for the sign-magnitude truncation and roundoff 
schemes a similar analysis can be carried out. 

In the case of sign-magnitude roundoff, 

{m m ] I 

3=1 3=1 J l 

Then the maximum perturbation region, Qmax is given by, 

Gmax = \ &auj\ IIAa^Hx <—^-;     v = l,2...,m\ (47) 

Where Mv for v = 1,2..., m are the upper bounds computed for the nominal 
value {aij}. Since Mmax > Mv > Mv , Q C Qmax- Therefore eqn. (47) can 
be used to obtain a valid upper bound in this case. 

To compute the region described above requires a complex algorithm, the 
computation load can be greatly reduced by following the guidelines given 
below. 

Initially if vectors with comparatively higher upper bounds are used in 
the computation, the robustness region will initially converge faster and the 
number of added vertices to the formation of the* total region will be very 
little due to vectors with comparatively lower upper bounds. It is observed 
from eqn.(32) that when the upper bound is small the region described by Q 
tends to become larger. 
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Observation: 

If Mu < 1 for all v we observe that S will only contain 0. It follows that for 
a digital filter implementation given by eqn. (7) 

ff-£EIM*)l<Ä,<i (48) 

for v = 1,2... ,m 
Since, 

m    oo 

EEIMt)l>i (49) 
j=l Jt=0 

Eqn. (48) can only be satisfied if g< 1. For sign magnitude roundoff quan- 
tization g = 1/2, therefore from eqn. (48), 

£I>y(*)l<2 
j=l fc=0 

(50) 

Therefore we conclude that a digital filter in double length accumulator en- 
vironment satisfying eqn. (50), is globally asymptotically stable. 

Single-length accumulator 

If there are m quantizers per row as in (8), robustness region is defined 
in the following manner: 

g = {Aaij\Q J2(aa + Aa«i) • XJ Q 
Li=1 

Vx€5iL   (51) 

As in the double length accumulator implementation we define a upper bound 
valid for all systems given by eqn. (8), and define a set Si. 

Si = {x |ar,- < Mi ;    » = l,2,...,m;    x € Zm) (52) 

Where M,- is an upper bound valid for all filters described by the coefficient 
matrix {a,j + Aa.j}. Let the robustness region corresponding to element a,y 

in the coefficient matrix for a particular state vector x be Qx . Then, we 
have the following: 
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For sign-magnitude roundoff quantization, 

' {Aa,j|   6r_i — aij • Xj < Aa.j • Xj < br — atJ • Xj} 
for 6r_i < aij • Xj <bk and r > 1 

{Aa,j|   6r_i — aij • Xj < Aa.j • Xj <bT — a,j • Xj} 
for 6r_i < ajj • Xj < 6fc and r < — 1 

{Aa,j|   6_i — a,-j • Xj < Aa,j • Xj < b0 — a^ • Xj} 
for 6_i < aij ■ Xj < bQ 

where    br G X>r,    Vx G S\] 

gM = 

(53) 

for sign-magnitude truncation quantization, 

' {Aa,j|    6r_i — a^ • Xj < Aa,-j • Xj < bT — a^ ■ Xj) 
for 6r_i < a^ ■ Xj < bk and r > 2 

0<W> = 
{Aa,j|   6r_i — a^ ■ XJ < Aa.j • Xj <bT — a^ ■ Xj} 

for 6r_i < a,j • Xj < bk and r < — 1 

{Aatj|   i_i — a,j • Xj < Aa,j • Xj < 6+i — a,j • Xj} 
for 6_i < a,j • XJ < 6+i 

where    fer G X*m4    Vx G <Si (54) 

For two's complement truncation quantization, 

Q{i,i) = { {^a«'il   br-\ - o-ij • Xj < Aa,-j • Xj < bT - a{j ■ Xj) 1 
x \ for &r_i < aij • Xj <bk j 

where   br € A™   Vx G |i- (55) 

Hence g.a.s. can be gaurenteed for the region 

Q = n sp- (56) 
V(i,j) 
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Using a similar argument as in the case of a double-length accumulator, 
we can estimate a region of robustness for each quantization scheme. The 
estimated region for the sign magnitude roundoff will be given by, 

Q = { Aati |Aa,-i|<—^-;    t = l,2,...,mj (57) 

VI    Some Examples 

In this section the proposed search algorithm is applied to a dense grid in 
the coefficient space to obtain the total global asymptotic stability region 
for a digital filter with zero input. The dense grid will provide a reasonably 
good approximation to the g.a.s region, since it is not possible to consider all 
points in the linear stability region. Note that each point in the coefficient 
space is associated with a neighborhood where the filter is stable. A 10 Bit 
wordlength is assume for all computations, therefore the filter coefficients 
are quantized to a multiple of 2-10. Within the linear stability region dark 
areas indicate points where limit cycles of some period exists. It should be 
noted that the linear stability region does not have a common boundary 
with the global asymptotic stability region obtained through this algorithm. 
Therefore in all figures, the boundary line which delimits the stability region 
from the unstable region does not belong to the stability region. 

The most commonly encountered quantization schemes are analyzed, they 
are namely, sign magnitude roundoff quantization scheme, sign-magnitude 
truncation quantization scheme and the two's complement truncation quan- 
tization scheme. In all quantization schemes the single- and the double-length 
accumulator implementation results are provided. All results are provided 
for the {a,ij} € 3£2x2 coefficient matrix. All existing results for the named 
quantization schemes were verified. For a direct form digital filter in state 
space formulation (the coefficient matrix is given by eqn.(58) 

A = 
0     1 
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Figure.(la) shows the region obtained by the proposed algorithm the sign 
magnitude roundoff quantization scheme in an double length accumulator 
environment. 

0   ai     1 2 -2-1 0    al 
(a)    | _ _ (b). 

Figure 1: Region where a direct form digital filter is limit cycle free for cases 
(a) Double length accumulator, (b) single length accumulator 

The region obtained is identical to the results given in [10]. For the same 
quantization scheme and single length accumulator the region obtained is 
given in Figure.(lb). The region matches exactly with the ones found in [10]. 
The regions for the two's complement and the sign magnitude truncation 
schemes were also verified. The regions obtained by the proposed algorithm 
matches with the regions given in [10]. 

Results for minimum norm realization of digital filters 

1 

u) 

0 

-1 
1 0*1 -10 

(a) (b) 
Figure 2: The region where a minimum norm realization of a digital filter is 
free of limit cycles for double- and single-length accumulator environments, 
(a) sign magnitude roundoff (b) sign magnitude Truncation 

The stability of digital filters in its minimum norm form for the coefficient 
matrix, {a,j} G 3£2x2 case was also investigated.  The coefficient matrix is 
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given by eqn.(59). 

A = 
a 

—u a 
(59) 

The results for the sign magnitude roundoff scheme for the single- and the 
double-length accumulator environment is given in Figure. (2a) This region 
matches with the region given in [7]. The stable region for the sign mag- 
nitude truncation scheme in a single length or double length accumulator 
environment spans the entire region where a2 + u2 < 1. results are given in 
Figure.(2b). This supports the results obtained in [ ]. 

For the two's complement truncation quantization, with double length 
accumulator the global asymptotic region is given in Figure. (3a). This sup- 
ports and also improves on the previously known results given in [19]. To the 
authors knowledge no previous results are available for the two's complement 
truncation quantization in a single length accumulator environment. The re- 
gion of global asymptotic stability is summarized in Figure.(3b). Note that 

Figure 3: Region where Two's complement truncation implementation of a 
minimum norm digital filter is limit cycle free (a) Single length accumulator 
(b) double length accumulator 

for the Two's complement quantization scheme in a double length accumu- 
lator environment, series of points extend from the stability region into the 
instability region such that, 

cr < 0    and    w = ±<r (60) 

The following coefficient matrix can be cited as an'example, 

A = 

672 672 
1024 1024 

672 672 
1024 1024 

(61) 
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VII     Conclusion 

A new algorithm capable of determining global asymptotic stability of any 
fixed point digital filter represented in its state space formulation, under zero 
input conditions has been presented. The search algorithm is independent 
of the type of nonlinearity, the number of nonlinearities and it has been 
generalized to handle a digital filter of order m in its state space represented 
form. 

The proposed algorithm is found to provide tighter bounds on the ampli- 
tude of limit cycles in most cases, and it will always determine the stability 
or instability of a particular digital filter. Significant improvement over the 
existing results for the two's complement truncation schemes in both single- 
and double length accumulator environments have been presented. 

The current research is directed towards the following problems. 
(1) Establishing regions within which limit cycles of a pre-specified period 
exists. 
(2) Establish regions within which limit cycles that are under a pre-specified 
bound exist. 
(3) Extension of the algorithm for ^-operator formulated systems. In Fixed- 
point arithmetic it is known that such systems always exhibit limit cycle 
behavior [20]. Therefore in actual applications the regions similar to the 
ones mentioned in items (1) and (2) may be of importance. 
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ABSTRACT 

In this paper, the problem of global asymptotic stability of 6-operator formulated one- 

dimensional (1-D) and multi-dimensional (m-D) discrete-time systems is analyzed for the 

case of fixed point implementations. It is shown that the free response of such a sys- 

tem tends to produce incorrect equilibrium points if conventional quantization arithmetic 

schemes such as truncation or rounding are used. Explicit necessary conditions for global 

asymptotic stability are derived in terms of the sampling period. These conditions demon- 

strate that, in almost all cases, fixed-point arithmetic does not allow for global asymptotic 

stability in 6-operator formulated discrete-time systems that use a short sampling time. 

This is true for the 1-D as well as the m-D case. 



I. INTRODUCTION 

Discrete-time systems formulated in terms of the incremental difference operator (or, 6- 

operator) have recently been receiving considerable attention in the technical literature [1- 

4]. Most of this work focuses on the superior performance of the «-operator under fi- 

nite wordlength conditions when compared with the shift-operator (or, g-operator). In 

particular, investigations of coefficient sensitivity and quantization noise properties have 

revealed that S-operator formulations usually perform significantly better than their q- 

operator counterparts [1-4]. This is especially true for high-speed applications where the 

sampling rate is much larger than the underlying system bandwidth. Under these condi- 

tions, g-operator formulated discrete-time systems tend to become ill-conditioned [1-2]. 

Although a large amount of work is available on the effects of coefficient sensitivity and 

quantization noise, a deterministic study of the nonlinear behavior of discrete-time sys- 

tems formulated with the 6-operator has not been undertaken. In the case of floating- 

point (FLP) arithmetic, some results for feedback system are available in [2]. 

In this work, we focus on the convergence behavior of the unforced system response and 

global asymptotic stability of 5-operator formulated discrete-time systems implemented in 

fixed-point (FXP) arithmetic. In particular, via necessary conditions for stability, it will 

be shown that such systems tend to produce DC limit cycles. We will also perform a 

deterministic analysis of the finite wordlength properties of multi-dimensional 5-operator 

implemented discrete time systems. The stability behavior in the m-D case has not been 

previously investigated, although convergence to the true equilibrium point(s) is one of the 

most fundamental requirements for any discrete time system realization. 

The structure of this article is as follows: In Section II, we introduce notation and nomen- 

clature for the 1-D case. The model for 1-D 5-operator formulated discrete-time systems, 

with and without quantization nonlinearities, is briefly discussed. Section III addresses 

the problem of asymptotic stability for the 1-D case. In terms of ensuing DC limit cy- 

cles, necessary conditions for global asymptotic stability are formulated. It is shown that, 

when FXP arithmetic is used, stability of the linear system is often lost. Bounds on the 



size of the deadbands are also provided. In section IV, the multidimensional case is investi- 

gated using sets of 1-D conditions for asymptotic stability. Section V provides concluding 

remarks. 

H. NOTATION AND NOMENCLATURE 

Since our focus is the investigation of stability properties of 6-operator formulated discrete- 

time systems under unforced conditions, the state equations of the system under zero-input 

will be considered. 

In the linear case, the general m-th order state-space representation is given by 

6[x](n) = A*x(n); W 

x(n + 1) = x(n) + A • 6[x](n), (2) 

where *(») = [*!(»),...,««(»)]* is the state vector at instant „,.A« = {<•} 6 ®m*m is the 

system matrix, and A > 0 is the sampling time.  Moreover, «[•] represents the 6-operator, 

that is, 

Mre)=^Hl)-^),W=l ., (3) 

and *[x](n) = [«[«!](«),...,«[-m](n)]T.   A 6 -system is stable, if and only if the following 

condition on the eigenvalues Xs. of the matrix As is satisfied [1]: 

\XSi -A"1 |< A-1,     i = l,---,m. 

Therefore a stable system matrix cannot be defective, i.e. it cannot have a zero eigenvalue. 

The actual implementation of (1) and (2) in FXP format gives rise to nonlinear quan- 

tization operations that occur at various locations depending on the hardware realization. 

Eqn. (1) can be implemented either by using single wordlength accumulators (creating 

a quantization error after each multiplication) or by using double wordlength accumula- 

tors (creating a quantization error only after summation). We will only consider the latter 

option since practically all modern DSP machines offer double precision accumulators. 
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Eqn. (1) can then be written as 

fi[x](n) = Q{A*x(n)}, (4) 

where Q is a vector-valued quantization nonlinearity of the form 

/QM\ 
QM =        : (5) 

\Q{*m}J 

Here, Q{xv} can denote magnitude truncation, two's complement truncation, or rounding. 

Eqn. (2) can be implemented in two different ways: 

x(n + l) = x(n)+Q{A-S[x](n)}, (6) 

or 

x(n + 1) = QMn) + A • 6[x](n)}. (7) 

Eqn. (6) corresponds to quantization after multiplication while (7) corresponds to quan- 

tization after summation. In contrast to (1), for equation (2), it is not clear which of 

the two quantization schemes in (6) and (7) is preferable. We will therefore consider both 

possibilities. 

Throughout this paper, we will use the following definition of stability: 

Definition. The discrete-time system in (4,6) or (4,7) is globally asymptotically stable if and 

only if, for any initial condition x(0), the state vector x asymptotically reaches zero, that 

is, x(n) —► 0 for n —* oo. 

Comment. Since the FXP systems considered are in fact finite state machines, the condi- 

tion x(n) -»Oforn^oo may be strengthened to x(iV) = 0 for some finite N [5]. 

The following additional symbols will be used: 

/: quantization step size 

0,1: Vector with all elements being zero or one, respectively. 
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Int(x): the largest integer function, i.e. the largest integer smaller than or equal to x. 

V^T,Vf,Vjwo: Deadbands in terms of the incremental difference vector for magnitude 

truncation, rounding and two's complement, respectively. 

V%fT,V*,T>Two; Deadbands in terms of the state vector x for magnitude truncation, 

rounding and two's complement truncation, respectively. 

A^T,Af,Ajwo: corresponding deadband for the unquantized difference vector. 

H1gT: largest hypercube embedded in V^T. 

H™T: smallest hypercube embedding V™T. 

III.   NECESSARY CONDITIONS FOR GLOBAL ASYMPTOTIC STABILITY 

III.l   DC Limit Cycles 

First, we will consider the system described by (4,6). From the definition for global asymp- 

totic stability as stated in the previous section, it is necessary that 

Q{A ■ «5[x](n)} ^ 0,     for any    x(n) ± o. (8) 

This is just one of a finite set of conditions that is required to ensure global asymptotic 

stability of a FXP implementation of a linearly stable system [5]. 

The following theorem on global asymptotic stability of delta-operator formulated discrete 

time systems provides conditions on the sampling time: 

Theorem l. A necessary condition for global asymptotic stability of the 6-operator formu- 

lated discrete-time system in (4,6) is A > 0.5 for rounding and A > 1 for truncation. 

Proof:   At first, we will address the case of magnitude rounding: The necessary condition 
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for global asymptotic stability (8) is violated, if 

| A ■ «[*„](n) |< !     for     v = \,--,m. (9) 

and *[x](n) ^ 0. With 

6[x„](n) = /     /or     i/ = l)---,m, (10) 

we can rewrite (9) as 

A<±. (11) 
2 

If the sampling time is chosen according to (11), then condition (9) is satisfied and hence, 

the system will exhibit a period one limit cycle. Therefore, in order to avoid a period one 

limit cycle we require 

A > - (12) _ 2 

(Additional constraints will have to be imposed on A in order to guarantee the absence of 

limit cycles with a period other than one.) This proves the Theorem for rounding. 

In the case of magnitude truncation, equation(9) becomes: 

|A-6[x„](n)|<Z for     i/ = l,---,m (13) 

with o"[x](n) ^ 0 With (13) and (10), one arrives at the following condition, which excludes 

period one limit cycles: 

A > 1 (14) 

For two's complement truncation, equation (9) takes the form: 

0 < A • 6[xv](n) < I (15) 

Together with (10), the above equation also results in (14), which proves the Theorem. 

The above theorem shows that high-speed <5-operator formulated implementations that 

possess a small sampling time cannot be realized limit cycle free in FXP format! Since the 

advantages of delta-operator systems with respect to coefficient sensitivity and quantization 



noise require a short sampling time much smaller than one, this requirement cannot be 

met if limit cycles have to be avoided. 

A second necessary condition for the system in {(4), (6)} can be obtained by noting that 

6[x}(n) = 0 (16) 

can occur in (4) even though the state vector x(n) ^ 0. 

Therefore, for magnitude rounding, no nonzero state vector x(n) that belongs to the quan- 

tization lattice and satisfies 

(17) 

(!) 

< As • x(n) < + 

(i\ 

u 1 \i) 
may be allowed to exist. In (17), the inequality has to hold elementwise. 

Equation (17) has the following geometric interpretation: 

Each of the resulting m inequalities can be geometrically interpreted in the state space as 

the intersection of two half spaces in Um. These intersections are symmetric about the 

origin and have parallel boundaries. The normal vector to the boundaries is given by the 

particular row vector of A6. Only if the intersection of all such m half spaces contains at 

least one nonzero point in 3?m on the quantization lattice, will there exist a nonzero state 

vector that is an equilibrium point of the system due to equation (16). Since we only 

consider A6 matrices, which are stable, the system matrix As is always invertible. One 

can therefore rewrite (1) to obtain a sufficient condition for the existence of non-zero state 

vectors, which are equilibrium points due to equation (16): 

x(n)=(A*)"16[x](n)     with 6[x](n) £ {-1/2, l/2)m (18) 

In order to obtain bounds for each of the components of x(n) we use the infinity norm: 

II x(n) ||oo<|| (A6)'1 Hooll 6[x](n) ||oo<|| (A*)"1 ||oo \ (19) 



The perallelepiped described by (18) is therefore imbedded in the hypercuboid described 

by (19). If (19) does not permit any points x(n) of the sampling lattice, instability due to 

(16) cannot occur. From (19), this is the case if 

|| (A6)-1 ||eo< 2. (20) 

Eqn. (16) can also be interpreted from an eigenvalue/eigenvector viewpoint. In high-speed 

digital filters where the sampling frequency is typically much higher than the bandwidth 

of the processed signal, the eigenvalues of a g-operator implementation cluster around the 

point z = 1 [1]. The corresponding 6-operator implementation for large sampling times has 

eigenvalues clustered around zero. However, as the sampling time becomes small, these 

eigenvalues move towards the eigenvalues of the underlying continuous-time system [1]. In 

other words, for large sampling times, the system matrix will be ill-conditioned, that is, 

vectors x(n) ^ 0 exist such that As • x(n) is close to the zero vector. According to (16), 

this is likely to cause a DC limit cycle. For small sampling times, this problem may not 

occur; however, in this case, the conditions in Theorem 1 are not satisfied and the system 

is already known to produce limit cycles. 

In the case of the remaining two quantization schemes, the inequalities corresponding 

to (17) are given below: For two's complement truncation, 

r 0<AS- x(n) <      :   | , x(n) ± 0, (21) 

and, for magnitude truncation, 

<A*-x(n)< +      :      , x(n)j£0. (22) 

Again, the above inequalities have to interpreted elementwise. The embedding hypercubes 

can be constructed for the perallelepiped in (21) and (22) in a similar fashion as for 

rounding in (18). 

So far, we only addressed the system described by (4,6). A similar analysis can be 

conducted for the system in (4,7).   Since (4) is common to both realizations, equations 
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(17,21,22) are still valid and provide conditions under which the finite difference is quan- 

tized to zero and a DC limit cycle is produced. We will now briefly discuss necessary 

conditions for global asymptotic stability obtained from (7). 

A period one limit cycle exists, if the condition 

x = Q(x + A6[x](n)) (23) 

is satisfied for x # 0. Using a similar argument as in the proof of Theorem 1, for rounding, 

equation (23) is satisfied if: 

--<A«[x„](n)<^ for     xv > 0 (24) 

-- < AS[x„](n)< l- for     z„ < 0 (25) 

-- < AS[x„](n) < l- for     xu = 0 (26) 

Therefore 

v = 1, ■■• ,m 

A > - (27) 
2 

is required to exclude period one limit cycles. 

For magnitude truncation, (23) is satisfied, if 

0 < A8[xv](n) <l for     xv > 0 (28) 

-/ < A8[x„](n) < 0 for     xv<0 (29) 

-/ < A6[xv](n) <l for     xv=Q (30) 

v = 1, • • • ,m 

In the case of two's complement truncation, the condition for a DC limit cycle is simply 

given by 

0<A6[xv](n)<l, i/ = l,-",m. (31) 
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The conditions (28-30) and (31) again result in the condition A > 1 for the absence of 

period one limit cycles. 

We therefore obtain almost the same conclusion as for the previously considered system: 

A > -    for magnitude rounding; 

A > 1    for truncation. 

Therefore, Theorem 1 also holds for the system representation in {(4), (7)}, if the condition 

for rounding is slightly changed to A > \. 

Upto now, we provided necessary conditions for stability of delta-operator fomulated 

discrete time systems in fixed point arithmetic. Since it has been established, that for 

small sampling periods, the delta-operator systems always exhibits period one limit cycles, 

one needs to examine the amplitude of these limit cycles for a given sampling time in order 

to obtain further insight into the practical impact of this problem. In what follows, bounds 

on the deadbands will be derived as a function of the A*-matrix and the sampling time A. 

III.2 Deadband Bounds 

This subsection provides an answer to the question of the size of the limit cycle 

amplitudes. Given a sampling time A and a system matrix A6, bounds for the deadbands 

as well as the deadband geometry will be described. This will be done in detail for the 

case of magnitude truncation. For magnitude rounding and two's complement truncation, 

the results will be stated briefly without proof. Since the results for the system (4,7) are 

very similar to the results for the system(4,6), this subsection focuses only on the latter. 

For each quantization scheme, we will provide the geometry of the deadband in terms 

of the incremental difference vector as well as the state vector. Two hypercubes, which 

bound the deadband region from the inside and the outside are also derived for each case. 

Theorem 2: 

For the system (4,6) implemented in magnitude truncation, the deadband (in terms of 
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period one limit cycles) in the incremental difference vector space is given by: 

V^T = {S[x]\     || «[x] I!«, < [Jn<(A"1 )-l]-/} for     Int(*r1) = *rl (32) 

and 

VfT = {6[x]\     IKMHoo^/nfCA-1)-/} for     /^(A"1) ? A"1. (33) 

The corresponding period one limit cycle deadband in the state space is given by 

X)fT = {x|x=(A*)-16[x],     6[x]eAfT} (34) 

where 

A^T = {S[x]\     ||6[x]||00<[/n<(A-1) + l]./} for     /^(A"1) # A"1 (35) 

and 

AfT = {6[x]\     ||5[x]||00</n<(A-1)-/} for     In^A"1) = A"1 (36) 

Proof: 

The proof will be carried out for /n^A"1) ^ A"1, since the case /n^A"1) = A"1 follows in a 

similar fashion. From (13), the expression for period one limit cycles can be expressed as 

||A«[x](n)||00</. (37) 

Solving (37) for <5[x] and considering, that 6[x] produced by equation (4) is an integer 

multiple of the quantization step /, one obtains 

II^MHHoo^/n^A-1)-/ (38) 

for Jn<(A_1) ji A-1 which is the hypercube in (33).   Now consider the following slightly 

larger hypercube AfT in 6[x]: 

AfT = {6[x]\     ||6[x]||00<[/nt(A-1) + l]/} (39) 

AfT ; describes the open set of all incremental difference vectors, which, after quantization 

will be mapped into the hypercube VfT , i.e. 

Q(6[x}) £ VfT,     V6[x] € AfT. 
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Therefore the deadband in terms of x can simply be found by determining the set of all x, 

which satisfy 

Asx € AfT. 

Since As was assumed to be linearly stable, it is also invertible . Therefore the deadband 

in the state space is obtained by 

V™T = {x | x = (A')-H[x],     6[x] € A?T} 

This completes the proof for Jn*(A_1) ^A'1. 

The following Corollary provides the largest hypercube in the state space, which is con- 

tained in the perallelepiped v?T.  This result allows to obtain the largest magnitude of 

state vector components, which can still belong to the deadband. It also provides a simple 

upper bound on the volume of the deadband. 

Corollary 3: 

The largest hypercube H™T embedded in V™T is given by: 

*r = {*|     ll-Wlloo<[/n|J^1
||
) + 1]/}         for    7„«(A-*)*A-i (40) 

and by 

«fT = {x|     Hx(n)||oo<f,f^"1)/}          for     7n^(A-1) = A-1 

II A    lloo 
(41) 

Proof: 

Assume lnt(A  x) ^ A"1.  From (1) we obtain for the unquantized incremental difference 

vector: 

ll*MI|oo<||A*||oo||x||oo (42) 

Since AfT describes the set of unquantized difference vectors, which after quantization 

maps into the deadband region VfT, one can use the right side of (42) to ensure, that 

equation (39) is satisfied and obtain: 

IM*||00||x||00<[/^(A-1) + i]./ (43) 
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Solving (43) for || x ||co produces the desired result. Since WfT is a hypercube centered at 

the origin, there exists a x € M™T, such that 

II S[x] ||oo=|| As ||oo • || x ||oo . (44) 

Hence this is the largest such hypercube.  The proof for the case In<(A-x) = A"1 follows 

from (43) in a similar fashion. 

The next Corollary provides the smallest hypercube in the state space, which still 

contains V^T. This provides a lower bound on the volume of the deadband: 

Corollary 4: 

The smallest hypercube H^T containing V™T is given by 

7i^T = {x|     ||x||00<||(A*)-1||oo(/nt(A-1) + l)-/} for     /^(A"1) ^ A"1 (45) 

and 

tt£fT = {x|     || x ||oo<|| (A6)"1 Hoo J«<(A-X) - /} for     Jnt(A-1)=A"1 (46) 

Proof: 

At first consider the case Int(A~l) ± A"1:  From (1) we have for the unquantized state 

vector: 

x=(As)~16[x] (47) 

Taking norms and using the inequality in (35), we obtain the following open hypercube, 

which contains V%IT: 

II x ||oo<|| (A*)"1 Hooll *[x] ||oo<|| (A6)-1 Hoc [/^(A-1) + 1] • / 

Since VfT is a hypercube centered at the origin, there exists a 6[x], such that 

II (A8)'1 Hooll «M ||oo = || x Hoc • 

Hence H™T is the smallest such hypercube.   The proof for the case Jnt(A-1) = A"1 is 

identical and requires the use of (36) instead of (35). 
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Remarks: 

1. Since || (A6)-1 || • || (A*) ||> 1, we have H^T C H^T. For matrices which satisfy 

II (A*)"1 Hoc -II A* H^l (48) 

the two hypercubes are identical and coincide with the deadband region V^T, i.e. 

'LiMT _ i/MT _ -nMT 
"•V      ~ nL      ~ ^x     ■ 

2. VfT is a closed m-D hypercube, centered around the origin. Its boundary coincides 

with points of the quantization lattice. The faces of the hypercube are orthogonal to 

the corresponding axis of the incremental difference vector space. 

3. VfT is an open parallelepiped. V^T describes the deadband for period one limit 

cycles in terms of the state vector. 

4. The total deadband includes the region VfT ( V*fT) for the incremental difference 

vector (the state vector.) 

5. A useful measure of the deadband size in terms of the state vector x is the volume in 

the state space. The 'volume' Vols of the deadband in 6[x] is easily computable due to 

the hypercube geometry. From (47) we obtain for the volume Volx in the state space 

of x: 

Volx = det((AS)-1)-Vols (49) 

6. Given a realization, increasing the sampling rate (A-1) will result in a larger deadband. 

The relationships for the deadband of quantization schemes other than magnitude trunca- 

tion are given below: 

Magnitude Rounding: 

*>? = {«MI     llfiMlloo^lJnt^A-1)-!]-/} for     In^A"1) = ^A"1 (50) 
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and 

Pf = {*WI     HÄMIIoo^/n^iA-1)-/} for     Int(±&-1) ± ^A"1 (51) 

For the deadband in terms of the state vector we have: 

V* = {x | x = (A*)-1^],S[x] € Af) (52) 

where 

•*? = {«Ml     ll«[x]||oo<[Jnf(lA-1)-i]-/} /or     In^A"1) = ^A"1 (53) 

and 

A? = {6[*}\     ||6[x]||oo<[/n<(iA-1) + ^]-/} /or     Ini^A"1) * ^A"1 (54) 

Two's Complement Truncation: 

Vjwo = {S[x\ | 0 < 6[x] < 1 ■ [/««(A"1) - 1] • /} /or     Jn^A"1) = A"1 (55) 

and 

Vjwo = {5[x]\0<6[x]<l-Int(A-1)-l} for     Ira^A"1) # A"1. (56) 

For the deadband in terms of the state vector we have: 

VT
x
wo = {x | x = (A'r^x],     5[x] € .4^°} (57) 

where 

Ajwo={6[x] |0<6[x]<l-/nf(A-1)-/} /or     Jn^A"1) = A"1 (58) 

and 

.4™° = {6[x] | 0 < 6[x] < 1 • [Int(A"1) + 1] ■ /} for     Int{A"1) ^ A"1. (59) 

In the above set definitions, all inequalities are to be interpreted elementwise, i.e. x < y 

with x,y 6 Hm means x{ < y,-, i = l,--,m. Furthermore, the notation 0,1 stands for the 

zero vector and the vector with component values of one, respectively. 
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IV. THE M-D CASE 

IV.l Additional Notation for the m-D Case 

The m-D Roesser model has the following ^-operator formulation [7]: 

r ^(x^Kn) 

.£(*») [x(™)](n) 

^[x^Kn) 

g<m>[x<m>](n) 

Mi A6 

rX(x)(n) 

" x<x)(n) - 
\B{\ 

• + * 

.x<m>(n). W 
u(n); (60) 

xSm>(n) 

+ A 

^[x^Kn) 

.«("») [x<m>](n) 

(61) 

The input-state equations in (60) and (61) describe a first hyper-quadrant causal m-D 

system with a.uniform sampling period of A in all directions. The operators q(l> and £(,) 

represent the shift- and delta-operator in the direction specified by the axis nj. In particular 

9(i)[x(,)](n) = x(,)(nx,..., n,-_i, n{ + 1, ni+i,..., nm) (62) 

^[x%) = ^(ni)...I^1,ni + l)ni+1,...1nm)-x«(n)). (63) 

Here, (n) = (rci,... ,nm) denotes a point in the first hyper-quandr ant, x^(n) is the portion 

of the state vector propagating in the direction specified by the axis n;, u(n) is the m-D 

input vector, and Af • and Bf, for i = 1,..., m, j = 1,..., m, are the submatrices of the 

system and input matrices, respectively. 

If (60) is realized in fixed-point arithmetic, it takes the following form under zero-input 

conditions: 

r ^[x^Kn) 

$("0[x<m>](n). 

Q 

A5 

A6 

Aim 1  r x(1)(n) 

As x(m>(n)J 

(64) 

Equation (64)  assumes quantization after summation;  since practically all mod- 

ern DSP machines implement this quantization scheme, we only consider this format. The 
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vector-valued quantization nonlinearity Q{-} niay represent any one of the conventional 

schemes, viz., magnitude truncation, magnitude rounding, two's complement truncation, 

and two's complement rounding. 

Equation (61) can be implemented in two different forms: 

g(1)[x(i)](n) r x<1)(n) 

+ Q    A 

or 

g("»)[x(m)](n)J       Lx(m>(n). 

x^)(n) r ^[x^Kn) I 

.g(m)[X(m)](n). x<m>(n) 

+ A 

^[x^Kn) 1 

£(m)[x(m)](n) 

^1)[x(1)](n) 

£(m)[x(™)](n) 

(65) 

(66) 

Equation (65) corresponds to quantization after multiplication, whereas (66) corresponds 

to quantization after addition. In contrast to (60), for (61), it is not obvious which of the 

two forms stated above is preferable. 

The following definition for asymptotic stability [8] will be used throughout this paper. 

Definition. An m-D first hyper-quadrant causal discrete-time system is asymptotically 

stable under all finitely extended bounded input signals u(n) where 

\u(n)\ < 5,    for    n\ -\ +nm<D; 

tt(n) = 0,    for    ni H \- nm > D, 

(67) 

(68) 

if all the states of the m-D discrete-time system asymptotically reach zero for n\ + • • • + 

nm —* oo. Here, nv > 0, u = 1,..., m, S is a nonnegative real number, and D is a positive 

integer. 

Since the fixed-point systems considered are in fact finite state machines, the condition 

/x(1)(n)\ 

0, 

\x(m)(n)/ 
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for n\ H + nm —> oo, n„ > 0, 1/ = 1,..., m, can be strengthened to 

/x(1)(n)\ 

: =0, 

\x(m)(n)/ 

for all points ni + • • • + nm > c, n„ > 0, i/ = 1,..., m, where c is some finite integer. 

IV.2 Necessary Conditions for Global Asymptotic Stability 

In this section, we present some necessary conditions for stability of a first hyper- 

quadrant causal m-D discrete-time system represented in its Roesser local state-space 

model in (60,61). These necessary conditions are formulated in terms of 1-D conditions. 

This theorem follows directly from a result in [6] which was formulated for ^-operator 

implemented discrete-time systems. The proof of the theorem rests on the fact that a first 

hyper-quadrant m-D system can be described by a 1-D system for those locations that are 

along the m coordinate axes of the boundary of the hyper-quadrant. Reformulating the 

result in [6] for ^-operator systems produces the following theorem: 

Theorem 5. 

(a) A necessary condition for global asymptotic stability of the system in (64,65) is 

that each of the following 1-D systems in (69,70) is globally asymptotically stable: 

^)[x(i)](ni) = Q{[AfJ.]x(')(ni)}; (69) 

S(°[x<°]M = x(0(n,-) + Q {A • 6< V0]^.-)} » (7°) 

where i = 1,... ,m. 

(b) A necessary condition for global asymptotic stability of the system in (64,66) is 

that each of the following in 1-D systems in (71,72) is globally asymptotically stable: 

*<i>[x«](n0 = Q{[Aji]x<«>(n0}; (71) 

9( V^KnO = Q {x(i)(«0 + A • S^[^}(m)} , (72) 

where i = 1,... ,m. 
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Proof.   For a detailed proof, and generalizations to higher sub-dimensional systems, the 

reader is referred to [6]. 

Theorem 5 can be viewed as an extension of the concept of practical BIBO stability 

to asymptotic stability of nonlinear systems. It is particularly useful in proving instability 

in m-D nonlinear systems. 

We can now combine Theorem 1 and Theorem 5 to formulate a necessary condition 

for stability of m-D first hyper-quadrant causal (^-operator formulations of the generalized 

Roesser model. 

Corollary 6. 

(a) A necessary condition for global asymptotic stability of the m-D systems in (64,65) is 

A > 0.5,    for magnitude rounding; 

A > 1,     for truncation. 

(b) A necessary condition for global asymptotic stability of the m—D system in  (64,66) is 

A > 0.5,    for magnitude rounding; 

A > 1,    for truncation. 

Proof. The proof follows from Theorems 1 and 5. 

Remarks: 

1. Corollary 6 is also essentially applicable to the case where the sampling time varies 

with the direction of propagation. In the case of the system description (64,65), the 

inequalities in Corollary 6 would have to be replaced by 

Ai > 0.5,    for magnitude rounding; 

A,- > 1,    for truncating, 

for i = 1,..., m. The conditions for the system (64,66) are analogous. 
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2. Our analysis is limited to the zero-input case for which DC limit cycles along the axis 

were used to derive conditions for non-convergence. If one includes other types of limit 

cycles in the analysis or even response types, which are not periodic and are known 

to exist only in the m-D case, the requirements for A may become even more severe. 

3. Corollary 6 shows that fixed-point implementations of 1-D and m-D ^-operator sys- 

tems cannot be realized limit cycle free, if good coefficient sensitivity and quantization 

noise measures have to be achieved. 

V. CONCLUSION 

In this paper, it was shown that fixed-point implementations of 1-D and m-D 6- 

operator systems are not limit cycle free even if the underlying linear system is stable and 

the sampling time is chosen small. This non-convergent behavior can be explained by the 

quantization of the S-texm to zero which leaves the state vector unchanged. The smaller 

the sampling time, the more severe this effect. The size of the deadband increases with 

a decreasing sampling time. Therefore, the practical value of ^-operators for fixed-point 

implementations of 1-D and m-D systems is questionable. There are however indications 

that this effect is much less severe in floating-point implementations. 

6-operator implemented discrete-time systems represent a class of systems where the 

quantization noise at the output can be small compared to other realizations. However, 

as was shown above, such realizations will invariably exhibit limit cycles, which are highly 

correlated quantization noise. Therefore, in this case, typical measures for quantization 

noise are of very limited use for obtaining any insight into the likelihood of limit cycles 

and vice versa. 
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Abstract: 

Zero input asymptotic response behavior of general order 2-D digital filters with floating 

point arithmetic is investigated. In particular, conditions for the absence of so-called Rl 

and R2 responses (large amplitude limit cycles) are provided for 2-D first quarter-plane 

causal filters. 



I. Introduction 

Recently, floating point arithmetic has become popular for a number of digital signal 

processing applications. The implementation of digital filters in floating point format is 

especially attractive due to the high dynamical range and the high-level programming tools 

available. 

Previous work on the convergence behavior of floating point digital filters concentrated 

on 1-D second order system [1]. Some results on direct form filters are also available [2]. 

However, to the authors' knowledge, the case of general order 1-D or 2-D state space models 

has not been tackled. 

This paper provides such an analysis which can be applied to any digital filter structure 

of arbitrary order and dimension one or two. In order to avoid distinguishing among a num- 

ber of reformatting and quantization schemes, the result introduced in this paper takes a 

parameterization approach to the error description. This allows to apply the derived result 

to any type of floating point format. 

II. Preliminaries 

Consider the Roesser model for the first quarter-plane causal 2-D system: 

£Ä(m + l,n2) \ = ( Ahh   Ahv \   ( xh(ni,n2) \ ,^ 

i"(ni,n2 + l)   I       V A"h    A™ )   \ tv(nun2) ) 

(2) A   =    ( Ahh   Ahv   |    A G sß(Ari+iV2)x(iVl+iV2) 
\ Avh    Avv J 

A      a X>N2xN2 

The submatrices Avh and Ahv are of the appropriate dimensions.  The vectors x   and xv 

are horizontally and vertically propagating state vectors of the ideal system, respectively. 

For floating point realizations of (1), the following error model describes the system 

behavior: 

( xh(ni + l,n2)\ = ( Ahh   Ahv \   ( xh{nun2) \      ( eh(ni,n2) \ . . 
{ xv(ni,n2 + 1) )      { Avh   Avv J   { xv(nun2) )^{ ev(nun2) J { } 

where eh(nlyn2) G 3?^,   ev(n1,n2) G $N2 are the error vectors for the horizontally and 

vertically propagating states, respectively. 



We also need to define the following transfer matrices: 

Xh(z1,z2) 
Kv(z1,z2) 

_ ( Hhh(z1,z2)   H
hv(zuz2) 

~ { H"h(zuz2)   H
w(Zl,z2) 

Eh(Zl,z2) 
Ev(zuz2) 

(4) 

where 
z\h ( Hhh(zuz2)   H

h°(z1,zi)\ = l    zih      <p       _A\ (5) 

\H"h{zx,z2)   H
vv(zuz2) )      {[    <j>     z2I2\        ) 

In Equation (4), Xh(z1,z2) and Xv(zuz2) are the ^-transforms of the states xh{nun2) and 

xv{nun2), respectively. The transforms Hhh{zu z2),H
hv{zu z2), H

vh{zuz2) and Hvv{Zl,z2) 

are transfer submatrices of dimensions Nt x JVls JVj x N2, N2 x NUN2 x iV2, respectively. 

Eh(z1,z2) and 2T(zi,*2) are the 2-D z-transforms of the error signal vectors eh(n1,n2) 

and ev(ni,n2), respectively. Furthermore, in (5), h and I2 denote identity matrices of 

dimensions Nt x Nx and N2 x N2, respectively. 

The components Hhh{z1,z2),H
hv{z1,z2),H

vh{z1,z2) and Evv{z^z2) are 2-D transforms 

denoted by Hzf(z1,z2),H^(zuz2),H^h(z1,z2) and H%(zx,z2), respectively. 

Denoting Z{-} as the 2-D z-transform, we define the following impulse responses: 

H^(zuz2) = Z{^(nun2)h   i = h 

H£(Zl,z2) = Z{h%(nun2)}; i = l,- 

H#(zuz2) = Z{hlh(ni,n2)}; i = l,- 

H%(zuz2) = Z{h%(ni,n2)}; * = !,• 

,Nn   j = i, 

,iV2;    j = l, 

,iV2;    j = l,- 

(6) 

(7) 

(8) 

(9) 

Next, we define the h-measures for each component of the transfer function submatrices: 

(10) 

(11) 

TTVV =  E E 1^/(^1,^2)1; «,i = i, 
ni=0   «2=0 

Ä ■/iu E EI^K^)!; «' = 1. 
ni=0   ri2=0 

Ä vh =  E EW « = !,■•• 

Ä? 

.„ lni,W2ji, 
ni=0  7i2=0 

CO 00 

=  E E |Ay(m»^)l; *>i = 1> 
ni=0   ri2=0 

iV2;    j = l, 

,N2. 

Also: 
iVi iV2 

# = E^ + E^i" 
J/=I       i/=i 

H] E^ + E^ vv 
V 

(12) 

(13) 

(14) 

(15) 
v-\ I/=l 



From [1,2] it is known that the following four state response types are encountered in float- 

ing point digital filters under zero input, if the linear filter is stable: 

Rl 

R2 

R3 

R4 

an unbounded state response, eventually leading to overflow conditions. 

a bounded state response 

a bounded state response in underflow 

a zero-convergent response 

III. The Main Result 

The following theorem can now be formulated: 

Theorem: A floating point implementation of the system in (1) for any finitely extended 

input signal and/or non-zero finitely extended initial conditions will produce a response 

type R3, if the mantissa length lm satisfies 

/m>2 + log2Jff + log2C (16) 

where H = maxij(.H'/l,.ff'J) and C is an implementation dependent constant. 

Proof: The proof is rather lengthy and will be supplied in the final version of the paper. 

Formally, this result is similar to previous results on direct forms [1] and second order 

state-space systems [2]. In this case, the stability margin enters the inequality through H, 

which is a somewhat complicated measure of the degree of stability of the system. For an 

unstable system H -> oo, and for any stable system we have H < oo. The constant C 

relates the magnitude of the state-variables to the error bound. This number is usually 

small and is directly affected by the entries of the A-matrix and the floating point format. 

IV. Conclusion 

This paper presents a condition on the mantissa length of a 2-D floating point digital 

filter of arbitrary order, which ensures convergence of the state-response into underflow, 

independent of the initial conditions. The mantissa length is linked to the margin of sta- 

bility of the linear system as measured by H. It is also dependent on the realization itself. 

It should be noted that the response types R2 and R3 in the 2-D (and m-D) case do not 



need to be periodic [3]. 
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INTRODUCTION 

Traditional control and signal processing algorithms based on shift-operator (or, q- 
operator) are ill-conditioned in high performance applications that involve fast sam- 
pling/shorter wordlength [l]. In these situations, g-operator based discrete-time imple- 
mentations (or, ^-systems) are extremely sensitive to uncertainties inherent in modelling 
and parameter representation (in particular, with shorter wordlength). 

Use of incremental difference operator or delta-operator (or, ^-operator) can provide 
an effective solution to such difficulties [1]. Compared to ^-systems, ^-operator based im- 
plementations (or, 5-systems) can provide superior performance with respect to (a) coeffi- 
cient sensitivity of frequency response [1], and (b) quantization noise propagation [2]. Due 
mainly to these, and also due to the possibility of a unified treatment of both continuous- 
and discrete-time systems, work on 5-systems has recently attracted considerable attention 
(see [1-5], and references therein). 

PROBLEM STATEMENT 

Since ^'-operator can offer several important advantages over g-operator for linear, time- 
invariant one-dimensional (1-D) systems, would similar advantages hold true for more 
general classes of systems? Work on linear, multi-dimensional (m-D) systems indicate 
that this may indeed be the case [5]. In this paper, we investigate the applicability of 
^-operator based numerical schemes for simulation of nonlinear systems. 

DELTA-OPER.ATOR BASED NUMERICAL SCHEME 

q-Operator Based Numerical Scheme. We consider the computation of solution orbit of a 
nonlinear system of the type 

g[x](n) = f?(x(n),a?), (1) 

where </[x](n)  =  x(n + 1).    Here, x(n) ,is the state orbit x  6  &m at instant n and 

Kanial Premaratne and Peter H. Bauer gratefully acknowledge the support provided by the Office of 
Naval Research (ONR) through the grants N00014-94-1-0454 and N00014-94-1-0387, respectively. 



ag = [ai ,..., a\i ]T 6 5RW refer to system parameters that are actually stored within 
the computer while performing the iteration. 

S-Operator Based Numerical Scheme. The proposed ^-operator based scheme of the same 
nonlinear system in (1) is 

£[x](n) = f{(x(n), a$)    (Intermediate equation) 

g[x](n) = x(n) + A • £[x](n)    (Update equation), 

where 6{x](n) = (g[x](n)-x(n))/A and f^x^a*) = (f,(x(n),ag)-x(n))/A. Here, A is 
an arbitrary positive real parameter (usually the grid size) and a« = [a^,..., asM ]    € 3£ 
again refer to system parameters that are actually stored within the computer. 

Now, which of the schemes (1) or (2) yield superior coefficient sensitivity of its orbit 
with respect to perturbation of a9 or a^, respectively? This consideration is crucial in high 
performance, real-time applications that may require fast sampling/shorter wordlength. Of 
course, with infinite wordlength, both (1) and (2) yield identical results. In our develop- 
ment, the nonlinearity is taken to belong to C1, that is, it possesses first partial derivatives. 
Small perturbations are assumed. 

CONTRIBUTIONS 

The contributions of this paper are the following: 
1. Development of coefficient sensitivity measures MFXP and MFLP for fixed-point (FXP) 

and floating-point (FLP), repectively. These take into account that in FXP, coefficient 
perturbation is approximately independent of its nominal value, while in FLP, it is 
approximately proportional. 

2. FXP: Mpxp f°r ^-system is A times MFXP for ^-system. Hence, J-system is superior 
under small grid size. 

3. FLP: MFLP for 5-system is superior than MFLP for g-system if [a^ — 1| < \a.iq |, Vi = 
1,..., M. Here, a,- indicates the 'linear' term in the i-th equation of fq. We show 
that, typical digital equivalents of continuous-time nonlinear systems obtained under 
fast sampling routinely satsify this condition. 

4. Similar comments hold true for linear systems, piecewise C1 nonlinear systems, and 
piecewise linear systems. 
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ABSTRACT 
Delta-operator based implementations can avoid the numer- 
ical ill-conditioning usually associated with high speed shift- 
operator based implementations of discrete-time systems. 
Moreover, it provides a unified methodology for tackling 
both continuous- and discrete-time systems. In particular, 
it has been shown that, delta-operator based balanced re- 
alizations can offer superior coefficient sensitivity properties 
under fixed-point arithmetic. In this work, we address com- 
putation of balanced realizations. For this purpose, given a 
discrete-time system, the relationship between its shift- and 
delta-operator formulated balanced realizations is presented. 

I. INTRODUCTION 
Current interest in delta-systems (5-systems) is due mainly 
to two reasons: (a) 5-systems provide superior roundoff noise 
[1-2] and coefficient sensitivity [3-4] properties, and (b) 8- 
operator makes it possible to treat both continuous-time 
(CT) and discrete-time (DT) systems in a unified man- 
ner [5]. Recent work on «5-operator based implementation 
of two-dimensional (2-D) DT systems contain the counter- 
part to the shift-operator (^-operator) based Roesser lo- 
cal state-space (s.s.) model [6]. Balanced (BL) realiza- 
tion of such models and coefficient sensitivity properties 
were also investigated. Indeed, given a 2-D DT system, 
under fixed-point (FXP) arithmetic (and mild conditions), 
Roesser <$-model was shown to be superior to the Roesser 
g-model. In this paper, we reveal the relationship be- 
tween BL realizations of Roesser 6- and g-models. This 
makes it possible to use techniques available for compu- 
tation of </-BL models for computation of <5-BL models. 

II. NOMENCLATURE AND PRELIMINARIES 
2.1. Nomenclature 
5ft, 9, and K denote the reals, complex numbers, and non- 
negative integers, respectively. 3??xp and Q?

X
P are the sets 

of matrices of size q x p over 3? and Q, respectively. 

/„ is the unit matrix of size n x n; 0 is the null matrix of 
size q x p. A* and AT denote the complex conjugate trans- 
pose and transpose of matrix A G $lgxp; trace[A] and \i[A] 
denote its trace and z-th eigenvalue. \\A\\F is its Fröbenius 
norm. 

In the 1-D case, corresponding q- and 6-systems are re- 
lated by 8 = (q - 1)/A -<=> c = (z - 1)/A. Here, A is a 
positive real constant (usually the sampling time). For 2-D 
systems, subscripts h and v denote horizontally propagating 
(h.p.) and vertically propagating (v.p.) subsystems of the 
corresponding Roesser local s.s. models. «/, and nv denote 
the sizes of these h.p. and v.p. subsystems. We use n to 
denote n = rih + nv. Ah and Av are positive real constants 
denoting 'sampling times' along h.p. and v.p. directions. 

We use£ to denote AhInh®AvInv G 3inxn. Also, Iz and 
Ic denote zhI„h © zvIn„ G 9nx" and chInh © c„/„„ G Snx", 
respectively. 

Corresponding 2-D q- and ^-systems are related by 8h 
(qh -1)/Ah <=>ch = (zh - I)/Ah and 8V = (qv - 1)/A„ 
cv = (zv — f)/At,. We use subscripts 8 and q to differentiate 
between corresponding 8- and g-systems; for example, s.s. 
realization of a given DT system is either {Ai,Bj,Cs,D(} 
if implemented based on <5-operator or {Aq, Bq, Cq,Dq} if 
implemented based on ^-operator. The following notation 
is also used:    H(ch,cv)\c^z   -   H{ch, cv)\Ch=(tk-i)/&h   and 

G{zh,zv)\z^c - G(zh,zv) 
•=«=(* -i)M„ 

Stability studies of q- and (5-systems involve the follow- 



ing regions: Uq = {z G 9 : \z\ < 1}; U\ = {(zh,zv) G 92 : 
W < l,\*v\ <l};W« = {c£9: \e+ 1/A| < 1/A}; W| = 
{(ch,cv) G 92 : \ch + 1/AÄ| < 1/Ahl|c„ + 1/A„| < 1}. The 
corresponding distinguished boundaries are denoted with let- 
ter T.;U.l)T. is denoted by U.. A ^-system polynomial with 
all its roots in Uq (for the 1-D case) or Z/2 (for the 2-D case) is 
said to be stable. The corresponding regions for a <5-system 
polynomial are Us (for the 1-D case) and Uj (for the 2-D 
case), respectively. 

2.2. Preliminaries 
First, we provide a brief overview of relevant material. 

Roesser q-model. The 2-D dynamical system under consider- 
ation is assumed to be linear, shift-in variant, strictly causal, 
and modeled by a set of first-order vector difference equa- 
tions over 5ft. Given such a p-input and g-output system, its 
n/,h-n„v Roesser local s.s. model {Aq, Bq, Cq,Dq} is of the 
form [7] 

Qh[xh](i,j) = 

9v[xv](iJ) 

AP   AP 
43)      A(4)J   x«(iji) 

X*(t,j) + 
,(1) 

B,(2) 

B 

LßjJ 
u(i,j) 

±[A,]^fi+[BMi>J); 

(2.1) 

where u G 3?p, xh G 3*n", x" G »"', and y G ft«.   Also, 
Aq

1] G ftn"x"\ 44) G &n»x"", etc. Here, (t,j) G K2 and 

C«,D«} has been proposed [6]: 

«fc[xfc](t-,j) 
*0[x"](«'.i) 

41} 42) 

,43) 44) 
xft(i,j) 
x"(»,i) 

+ u(«',i) 

ixft(i,j 
= [^]C„)'<<+[S«M*'.J); 

'x-(^JP') 

x"(i,i) 

(2.6) 
where 

A« = C\Aq~In)\ Bs = r'B,; C6 = Cg; £>« = D,. (2.7) 

Here, £ = [AA7„k 0 A„/„J G ftnxn. Note that, as opposed 
to its corresponding Roesser g-model, here, one must also 
perform the following computations: 

qh[xh] = xh + Ah- 8h[xh};    qv{xv](i,j) = x* + A0 • «„[*"]• 
(2.8) 

In [6], several properties of this Roesser £-model (such as, 
general response equation, transition matrix, characteristic 
equation, transfer function) are elaborated. Also, it is easy to 
see that, as for the g-model, 2-D equivalent transformations 
of the type 

xh(i,j) 
x"(t,j) 

TW      0 
0    T(4) 

xh(»,j) 

x"(M) = m xh(i,j) 
x"(i,i)J' 

(2.9) 
where T^ G ft""™* and T^ G Kn"x"" are nonsingular, 
yield an equivalent 2-D s.s. realization {As,B&,Cs,Ds], 
where 

qh[x](i,j) = x(i+l,j)    and    «„M(i,i) = x(t,j + l). (2.2) i« = T^T"1; B« = TBS] Cs = QT"1; Ds = Df.  (2.10) 

Usually, xh and x" are called the h.p. and v.p. local state 
vectors of {Aq,Bq,Cq,Dq}. With no nonessential singulari- 
ties of the second kind on Tq

2, for BIBO stability, one requires 

[8] 

(2.3) 
TT2 

det[7z - Aq] # 0, V(zh,z„)£U 

Roesser 6-model. To exploit the superior finite wordlength 
properties of «^-operator implementations, analogous to the 
1-D case, in [6], the following operators are defined: 

h[x](i,j) = 

öv[x](i,j) = 

x(z-H,j)-x(z,j) _ qh[x](i,j)-x(i,j) 

Aft Ah 

x(t,j+ l)-x(i,j) _ g„[x](i,j) -x(i,j) 

Av Ay 
(2.4) 

where A/, and A„ are two positive real numbers. Hence, the 
following relationships are applicable: 

6h = "AT'     '• = "AT- (2.5) 

Using (2.4-5) in (2.1), the following Roesser <5-model {A6,BS, 

Also, {Ä6,B6,C6,DS} and {A6,BS,C6,DS} have the same 
transfer function. With no nonessential singularities of the 
second kind on T6

2, for BIBO stability, one requires 

^r2 
det[7c - As] # 0, V(ch,cv)elts. (2.11) 

III. GRAMIANS AND BL REALIZATIONS 
3.1. Gramians 
For the Roesser g-model, gramians are taken to be natu- 
ral extensions of the integral expressions of their 1-D coun- 
terparts [9-10]. The work in [6] adopts a similar approach 
in proposing gramians for the <5-operator case as defined in 
[5]. In what follows, {A6,Bs,Cs,Ds} (with gramians P6 and 
Qs) and {Aq,Bq,Cg, Dq} (with gramians Pq and Qq) de- 
note a given stable 2-D DT system's 8- and g-operator based 
Roesser models, respectively. 

DEFINITION 3.1. [9-10]. 
1. Gramians of {Aq,Bq,Cq, Dq} are 

V*j)2 / % 

Qq = 
(2*j) 

F y* dzh dzv 

7-2 Zh    zv 

n*n   dzh dzv 
O- q(jq  

T2 zh     Zv 



•   'where Fq(zh,zv)  =  (Iz - Aq)   lBq and Gq(zh,zv) 
cq{iz-Aqy

l. 
2. Gramians of {As, B$, Cs, Dg} are 

Pi 

Qdd 

■^2/   F'F'T *3r JT?       1 

dch dcv 

(2TTJ)
2
 JT2 *°*" 1 + Ahch 1 + Avcv ' 

1      I   n*r       dch dcv 
. + Ahch 1 + A„c„ ' 

For convenience, we use the following notation: 

{A,B,C,D}-^{A,B,C,D}: Here, Ä = TAT'1, B = TB, 
C = CT-1, and D = D, where T is of type (2.9-10). 

{Aq,B9,C9,Dq}
9-^i{As,Bs,Cs,Ds}:    This   is   the  corre- 

sponding (5-system obtained by applying (2.7). 

{As,Bs,Cs,Ds} -^{Aq,Bq,Cq,Dq}:    This   is   the  corre- 
sponding g-system obtained by applying (2.7). 

where Fs(ch,cv)  =   (Ic - As)   XB6 and Gs(ch,cv)  = 
Cs(Ic-As)~l. 

LEMMA 3.1. [6]. The relationship between the above grami- 
ans are 

PA = 
AAA„   " 

Qs AhAv 
■tQ,t- 

With appropriate partitions incorporated, this is equivalent 
to 

r pC1)   P(2) 
p(3)      p(4) 

Q?   Q(
6
4) 

1 
AftA„ 

p(l)      p(2) fq      rq 

Pi3)    Pa
(4) 

Ak(0(l) 

Moreover, we use the following: 
{AqB,BqB,CqB,DqB}:   BL realization of {Aq, Bq,Cq,Dq} 

T 
obtained via {Aq,Bq,Cq,Dq} —L>{AqB,BqB,CqB,DqB}. 
{A5s,BsB,CsB,D6B}:   BL realization of {As,B6,Cs,Ds} 

obtained via {As,Bs,Cs,Ds}—^{ASB,BSB,CSB, DSB}. 

{A6B2q,BSB2q,CsB2q,DsB2q}-       g-system    obtained    via 

{ASB , Biß , CSB , DöB }  >{AsB2q , Bsß2q , CfiB2q , DsB2q}- 
{AqB2s,BqB2s,CqB26,DqB2s}-       5-system    obtained    via 

?-<5, 
[AqB, BqB,CqB,DqB) >{AqB26, BqB2i,CqB2S,DqB26}- 

LEMMA 3.3. The following relationships are true: 

{Aq, Bq, Cq, Dq} —>{AsB2q, BsB2q, C$B2q, DsB2q}; 
T 

{As,B},C6,Ds}  >-{AqB26,BqB2S, CqB26,DqB2i}- 

LEMMA 3.2. [6]. The realization {Äs, Bs,Cs,Ds} obtained 
with a nonsingular transformation of the type in (2.9-10) 
yields the gramians Ps = TP6T* and Qs = T-vQsT~l. 
Eigenvalues of PsQs are invariant under such a transforma- 
tion. The situation regarding Roesser g-model is completely 
equivalent. 

DEFINITION 3.2. [10]. Roesser <5-model {As,Bs,Cs,Ds} is 
said to be balanced (BL) if 

3(i) 
s 

3(4) 

-(1)_ ^ = E^ = diag{^,...,<  } (i) .(!) 

Q 
(4) ^ -(4) _ (4) E^diagK',...,^}. ,W 

Proof. Note that, A6B2q = In + £A5B = In + ZTsAsTf1 = 
In+£TsCl(Aq - In)Td

l = TfAgTf1, since fltf"1 = Tt. 
The remainder may proven in a similar manner. ■ 

LEMMA 3.4. The following relationships are true: 

{AsB2q,BsB2q, CsB2q,P>SB2q} 

—► {AqB, BqB, CqB,DqB}\ 

{AqB2S,BqB2S, CqB2S,DqB2s] 
^1/2 

—>-{AsB,BsB,CsB, DsB}. 

We refer to cry,', i = l,...,nh, and cry', j = l,...,nv, 
as the Hankel singular values of h.p. and v.p. subsystems, 
repectively. The situation regarding Roesser g-model is com- 
pletely equivalent. 

3.2. Computation of BL Realizations 
Computation of gramians and obtaining BL realizations for 
g-systems have been investigated quite thoroughly. In the 
1-D and 2-D separable cases, one may solve Lyapunov equa- 
tions and use Laub's algorithm [10-11]. In the 2-D non- 
separable case, this computation is not that easy; however, 
several techniques have been developed [10], [12]. 

In this section, we provide the relationship between BL 
realizations of corresponding 6- and g-models. This allows all 
available techniques for gramian computation of g-systems to 
be utilized for ^-systems as well. To the authors' knowledge, 
such a relationship is not available even for the 1-D case. 
Although we concentrate on the 2-D case, a similar argument 
may be developed for the 1-D case. 

Proof.      Note   that,   {AsBlBsB,CsB, DsB}   has   following 
gramians: 

PiB = 
V(l)       p(2) 
^6 r6B 

P (3)       V(4) 
SB 

;    QSB = 
y(l) n(2> 
^6 ^6B 
r>(3) y(4) 
^SB ^S 

Hence, from Lemma 3.1, {ASB2q, BsB2q,CsB2q, D6B2q} has 
the following gramians: 

PsB2q — A/,A„ 
rv(i) P(2) 

^6 r6B 
p(3) v(4) 
UB ^6 

Q bB2q 

(1) o(2) 
^SB 

n(3) AiV(4) 
^SB A„-^< 

To get {AqB,BqB,CqB,DqB}, we need to simultaneously 

diagonalize the two pairs {AhAvT,\ , (Au/A/^E^ } and 

{AAA„S(
4
4),(Ah/A„)E^4)}.   By applying Laub's algorithm, 

—1/2 we   get   these   two   transformations   to   be   Ah      Inh   and 



A'V
V^2I„ .   This proves the first part.   The remainder fol- 

lows in a similar manner. ■ 

COROLLARY 3.5.   The systems {AqB, BqB, CqB, DqB} and 
{ASB, B6B, C6B, D6B) are related as follows: 

ASB = r1,2(AqB ~ In)C1/2\ BSB = C1/2BqB; 

CSB = CqB£~1/2; DSB — DqB- 

Proof. Note that, from Lemma 3.4, AIB = £  l{.At,B2q-In) = 
z-\el2AqBfi2 - /„) = r1,2(AqB - /„)r1/2- The rest 
follows in a similar manner. ■ 

IV. EXAMPLE 
We now consider a stable 3h-3v 2-D separable digital filter. 

4.1. Computations 
Numerical values are displayed via FORMAT SHORT E of 
MATLAB [13] which was used for all computations. Note 

that, since system being considered has A\' = 0 (instead of 
Aq = 0), relevant equations must be appropriately modi- 
fied. 

Given q-model {Aq, Bq,Cq,Dq}. 

i 

A<?> = 

0 
0 

0 1.0000e + 00 
0 l.OOOOe + 00 

3.8315e-01    -1.3861e + 00    1.9067e + 00 

-6.8280e-02     6.1900e - 02       6.5400e - 03 
3.9560e - 02     -2.2480e - 02 
-5.7092e-01     2.0587e + 00 

l.OOOOe + 00 0 
0 l.OOOOe+ 00 

-1.3818e + 00    1.9025e + 00 

-2.8100e - 02 
1.2445e + 00 

0 
AqV = 0^rAq^   0 

[_3.8238e 

BW = [Q    0    1]T; 

B^ = [0    0    if; 

01 

c™ [1.1410e 

Cf} = [1.1640e 

Dq = [9.4300e 

02 

02 

031 

-5.4000e 

-5.4500e 

03 

■03 

1.9560e-02] 

1.9600e — 021 

BL q-model {AqB,BqB,CqB,DqB}. 

,(i) _ 
AqB — 

A (2) 
qB 

8.6478e - 01       2.6806e - 01     -3.4799e - 02 
-2.6806e-01     5.8766e - 01       3.8402e - 01 
-3.4797e-02    -3.8401e - 01     4.5427e - 01 

4.2940e-01 -3.3765e - 01 1.2689e - 01 
3.3771e-01 -2.6511e - 01 1.0134e - 01 
1.2732e-01    -9.7518e - 02    3.2423e - 02 

AqB  -  U> 

,(4)_ 
AqB - 

D(1) _ 
BqB   ~ 

R(2) _ BqB   - 

8.6486e - 01 
-2.6760e - 01 
-3.4952e - 02 

2.6760e - 
5.8692e - 

-3.8661e 

01     -3.4949e - 02 
01       3.8661e-01 
■01     4.5071e-01 

T 
[6.3568e-02   4.9879e - 02    1.8565c - 02 

[6.5595e-01    5.1555e - 01    1.9416e - 01 

C$ = [6.5590e - 01    -5.1574e 

CfB
] = [6.3592e • 02    -4.9875e 

■01    1.9341e-01]; 

•02    1.8540e-02]; 

DqB - [9.4300e-03]. 

Corresponding 8-model {As, Bs,Cs,Ds}. Let us select A^ 
Deltav = 2.5000e — 01. Acoordingly, we get 

41} = 

A8     - 

d(3) 

44) = 
?(i) 

-4.0000e + 00 
0 

1.5326e + 00 

-2.7312e-01 
-1.1240e-01 
4.9780e + 00 

-4.0000e + 00 
0 

1.5295e + 00 

4.0000e + 00 0 
-4.0000e + 00    4.0000e + 00 
-5.5444e + 00    3.6268e + 00_ 

2.6160e-02 2.4760e - 01 
1.5824e - 01 

-2.2837e + 00 

4.0000e + 00 

-8.9920e-02 
8.2348e + 00 

0 
-4.0000e + 00    4.0000e + 00 
-5.5272e + 00    3.6100e + 00 

By> = [0    0   4]J J6 

?(2) BY' = [0   0   A}1 

C^1J = [1.1410c 

C m "1.1640c 

■02 

■02 

-5.4000e 

-5.4500e 

03 

03 

1.9560e-02; 

1.9600e-02' 

Ds = [9.4300e-03] 

BL 6-model {AsB,BsB,CsB,DsB}. 

1(1) lSB 

l(2) iÖB 

«(3) i6B 

-5.4089e-01     1.0722e + 00     —1.3919e -01 
-1.0722e + 00    -1.6494e + 00     1.5361e + 00 
-1.3919e-01    -1.5361e + 00    -2.1829e + 00 

1.7176e + 00 -1.3506e + 00 5.0755e - 01 
1.3508e + 00 -1.0604e + 00 4.0537e - 01 
5.0926e-01    -3'.9007e - 01    1.2969e - 01 

0; 

A*) - A6B ~ 

"-5.4054e-01      1.0704e + 00      -1.3980e - 01 
-1.0704e + 00    -1.6523e + 00      1.5464e + 00 
-1.3981e-01    -1.5464e + 00    -2.1971e + 00 

B^ = [1.2714e-01    9.9759e - 02    3.7129e - 02 ]T ; 

JB^ = [ 1.3119c+ 00    1.0311e + 00    3.8833e - 01]T ; 

C^ = [ 1.3118c+ 00    -1.0315e + 00    3.8682e-01]; 

C{2
B

] = [1.2718e - 01    -9.9750e-02    3.7080e-02]; 

DSB = [9.4300e-03]. 

4.2. Sim ulations 
Normalized frequency response of {Aq, Bq, Cq, Dq } is 
Hq (e^',ejUj) and that of {As, B6,C6, Ds} is H6((e

jw>-I)/ 
A/,, (eJu;2 — 1)/At,). Frequency responses are evaluated on 
Q2 = {(wi,w2) € 3?2 : w,- = rii x TT/N, n,- = [-N :l: N], i = 
1,2} with N = 32. For comparison purposes, the following 
measure was also evaluated: For (21,22) = (eJWl, e3"2) and 
(Cl,c2) = ((e^ - 1)/Ah,(e>"> - 1)/A„), 

^max — 
max^2 

maxg2 

H(z1,z2)- H(zx,z2 

H(ci,c2) -H(c1,c2) 

,    for g-models; 

for <5-models. 



Here, H denotes the 'ideal' frequency response where each 
, 'coefficient is represented in 'infinite' precision; H denotes 

the 'actual' frequency response where each coefficient is rep- 
resented in finite precision. 

Fig. (1) shows ^max versus number of fractional bits 
where each coefficient is represented in FXP and its frac- 
tional part is truncated at different lengths; integral part is 
represented exactly. Advantage gained by BL 6-model over 
BL g-model is about 3 bits. 

Fig. (2) shows Emax versus total number of bits where 
each coefficient is represented in FXP and its total (in- 
tegral+fractional) number of bits is truncated at different 
lengths. Advantage gained by BL <5-model over BL g-model 
is only about 1 bit. This modest improvement is due to the 
large Ah and A„ being used. More dramatic improvements 
require smaller Ah and A„ [6]. But, this makes (5-model's 
coefficients to occupy a larger dynamic range. To circum- 
vent this, we believe, careful scaling of filter coefficients is 
necessary. We are currently investigating this possibility. 

Fig. (3) shows £max versus number of mantissa bits 
where each coefficient is represented in FLP and its num- 
ber of mantissa bits is truncated at different lengths. Of 
course, in FLP, dynamic range is usually of no threat. 

V. CONCLUSION 
In this work, we have presented the relationship between BL 
realizations of corresponding S- and g-models. This, in turn, 
addresses computation of gramians and BL realizations of 
<5-models. 

In the FXP case, 6-model is better whenever Ah < 1 
and A„ < 1 [6]. However, this choice must be carefully done 
since, in FXP, ^-models tend to occupy a larger dynamic 
range. The authors are currently investigating the possibil- 
ity of incorporating scaling of coefficients so that low values 
of Ah and A„ may be used to expose and exploit the ad- 
vantages of 5-systems. In the FLP case, such a limitation 
does not usually arise, and <5-models are better whenever the 
system matrix eigenvalues lie within a certain region called 
the MG-region [14]. This condition is typically true for high 
Q, narrowband digital filters operating under high sampling 
rates. These observations indicate that, in FLP, for compar- 
ative performance (with respect to coefficient sensitivity), 
(5-models require a shorter mantissa length. The ensuing im- 
plications regarding low power consumption, low cost and 
weight, and high speed cannot be overemphasized. The au- 
thors are currently completing work regarding quantization 
noise properties of the <5-model developed, where, as in 1- 
D case, improvements over the corresponding g-model are 
expected. 

We must mention that certain difficulties regarding limit 
cycles are inherent in 5-systems when FXP arithmetic is used 
[15]. However, this problem is, for all practical purposes, 
nonexistent in FLP arithmetic. Hence, in our opinion, for 
FLP high performance applications, the <5-modeI developed 
provides an extremely attractive solution that avoids numer- 
ical ill-conditioning typically associated with high speed q- 

systems. 
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Abstract—-By developing the «-operator ana- 
log of the Roesser model, state-space realiza- 
tion of two- and multi-dimensional «5-systems 
is investigated. The corresponding notions 
of gramians and balanced realization are also 
defined. It is shown that, discrete-time sys- 
tem implementation using this model can 
yield superior coefficient sensitivity proper- 
ties. 

I. Introduction 
Judging by its performance in the one-dimensional (1- 

D) case [2], [5-6], one is led to expect superior coeffi- 
cient sensitivity and roundoff noise performance with 8- 
operator implementation of two-dimensional (2-D) and 
multi-dimensional (m-D) discrete-time (DT) systems. 
With this in mind, (5-operator analog of the (/-operator 
Roesser local state-space (s.s.) model [12] is developed. 
We also propose the notions of gramians and balanced 
(BL) realization. As expected, realization using this 
model can provide superior coefficient sensitivity prop- 
erties. 

II. Nomenclature and Preliminaries 
A. Nomenclature 
ft: Reals; Ö: Complex numbers; ft«xP, Ö«x?: Matri- 
ces of size q X p over ft and Ö; In: n X n unit ma- 
trix; A*, trace[A], ||A||F: Conjugate transpose, trace, 

and Fröbenius norm of matrix A; e^ ^     •   Unit vector in 

ft" ?xp _    (g)Ap)* 

U 

with 1 on the i-th row; £?xp = e)q)e)v>    G ft?Xp; 

»XP = ELi E;=I 4?r) ® 4iXP) 6 a«8*'2. 
For q- and «-systems, we use the indeterminates z and 

c, respectively.  For 1-D systems, « = (</ — l)/r ^=> c = 
(z — 1)/T,  where r is a positive real constant, usually 

 •> 
the sampling time. Let W6 = {(c(,,cv) G 92 : \ch + 
l/Th\ < l/Th,\cv + I/-*"»! < 1}- Tf is its boundary. 
The corresponding (/-system regions are denoted witli the 
subscript q. 

K.P. and P.H.B. gratefully acknowledge the support received 

from the Office of Naval Research (ONR ) through the grants 

N00014-94-1-0454 and N00014-94-1-0387, respectively. 

B. Preliminaries 
Consider a linear, shift-invariant, strictly causal, p-input 
g-output 2-D DT system. Its n^h-n^v Roesser local s.s. 
model {Ä,B,C,D} takes the form [12]: 

9fc[xfc](«,j) 
Qv[xv](i,j) [Ä] 

y(iJ) = [c] 

xfc(t,j) 

x"(«',i)J 
xh(iJ) 
x"(«".j) 

+ [B]u(i,j); 

+ [D]u(iJ), 
(2.1) 

where u G W, xh G ft71* , x* G ft"", and y G ft9. xfe 

and x.v are the h.p. and v.p. local state vectors. Take 
n = n^ + nv. Also, 

%M(i,i) = x(i+ 1,j);     qv[x](i,j) = x(z, j + 1).  (2.2) 

In what follows, we use matrix partitioning that con- 

form to A A(D     AC2) 
i(3)      ^(4) B SO) and C = 

C'1), C^>   , The corresponding 2-D characteristic equa- 
tion and transfer function are 

det[7* - A] = det[zkInh ® zvIn%J - A]; 

H(zh,zv) = C(Iz - Ä)-lB + D, 
(2.3) 

where zh,zv e3^ = zhInh ® zvInv G SnXn. With no 
nonessential singularities of the second kind (NSSK) on 
T2, {Ä,B,C,D} is BIBO stable iff [3] 

det[Iz-Ä]?0,V(zh,zv)eU-. (2.4) 

III. 2-D «-Model 
A. Local s.s.  model 
Analogous to the 1-D case, define «/t[-] and «„[■] as 

^M(i,i) 

MX](J'.J) 

x(«'+ l,i) - x(i,i)  _ qh[x)(i,j) - x(i,j) 

x(i,i + 1) - x(i, j) _ qv[x]{i,j) - x(z, j) 

Tt- 

(3.1) 



Here T^ and TV are positive real constants denoting the 
'sampling times' along h.p. and v.p. directions, respec- 
tively. Note that 

where f(u) = £(o,o)<(M)<<.\.0<A,'~fc~1'i~*T 

+ Ai-h,j-k-i^ 0 
ß(2) 

0 

)u(h,k). 

qh = 1 + i~h6h,;    qv = l + rv 6V, 

and letting r = [rhInh ©r„/nJ € 3ln*n, 

(3.2) 

Qh[xh](i,3) 
L9t.[x"](»',i) 

Using (3.3) in (2.1), we get 

&hTnh 

0 <5„/nL 

xfc(i,j)' 
x"(t,j)J • 

(3.3) 

Let 7C = cfc/„fc 0 c„/n„   G Ö"Xn.   Then, the 2-D 6- 
model's characteristic equation and transfer function are 

det[/e - A] = ——det[/, - i]|z_c; 
detM (3.9) 

inhere 

H{ch,cv) = H(zh,zv)\z 

zh = 1 + ThCh\       zv = 1 + TVCV. (3.10) 

[6v[x«](i,j) 
= [A] 

x\i,i) 

+ [B]u(»,i); 

+ [r>]u(*,j), 

(3.4) 

Prom now on, the variable transformation in (3.10) is 
denoted by c —» z or z —► c whatever is appropriate. 

Nonsingular transformations of the type 

where A  = 
AC3)    A<4> ,  ß   = 

BW 
ß(2) 

and  C   = 

**(«". i) [T] xfc(»-,i)" 
Lx*(«,i)j ■ (3.11) 

IcWjC^2) I. In addition, we need to perform 

qh[xh]=X
h+Th-6h[xh}; qv[x

v] = xv+Tv-Sv[xv]. (3.5) 

Here, 

A = In+rA; B = TB; C = C; D = D. (3.6) 

5. Properties of the 2-D 6-model 
Most of the following properties may be derived in a man- 
ner that is exactly analogous to that in [12]. 

The transition matrix  A''3   of the 6-model,  may be 
recursively computed from 

where T = [T^ ® T<4)], yield the equivalent 2-D s.s. 
realization {A, B,C,D}. Here, 

Ä = TAT~l; B = TB; C = CT~l; D = D.      (3.12) 

With no NSSK on T/, {A, B, C, D} is BIBO stable iff 

det[Jc -A]jt0, V(ch,cv) £U6. (3.13) 

(0,(t\j) = (0,0); 
[Inh ©/nj,(i,i) = (0,0); 

Inh       0 
0       0 

0      0 
0      In,, 

+ T 

+ T 

Ad) A(2)] 
0 0 
0 0 

A(3) A(4)j 

.(«>i) = (l,0); 

.(*.J') = (0,1); 

, A1'0A*'-1'-'' + A°'1A'--'-1, elsewhere. 

The general response of the <5-model is 
(3.7) 

xfc(i,i) 
*"(«'. i) = E*' j-fc x/l(0,fc) 

fc = 0 
(3.8) 

C. Gramians 
The gramians of 2-D (jr-systems are taken to be natural 
extensions of the integral expressions of their 1-D coun- 
terparts [11]. We will adopt a similar approach. In what 
follows, we consider the 1-D (or 2-D) stable <5-system 
{A,B,C, D} with gramians P and Q. The correspond- 
ing ^r-system is {Ä,B,C, D} with gramians P and Q. 

1-D case. The gramians are defined in [10]. 
Definition 3.1.   [10].   The gramians are the solutions to 
the Lyapunov equations 

AP + PA* + T ■ APA* = -BB*; 

A*Q + QA + r ■ A*QA = -C*C. 

Lemma 3.1. The gramians satisfy the integral expres- 
sions 

P=~i    FF*-^;Q=-^l   G*G-^L 
27T, JT 1 + rc 2nj   JT. 1 + re ' 

To T„ 

E"'- .x»(/»,o) + f(u), where F(c) = (c/„ - A)~l B and G(c) = C{cln - A)"1. 
Moreover, P - rP and Q = Q/r. 



Proof. Substitute A = J„ + TA, B = TB, C = C, and 
D = D [10] in the equations in Definition 3.1, and note 
the integral expressions for P and Q in [8]. ■ 

2-D case. With Lemma 3.1 in mind, we have 
Definition 3.2. The gramians are 

(2TJ) i\2 
FP* 

c/Cfc dc„ 

n 1 + r/l Cft   1 + T„ C„ ' 

(27rJ)   ir2 x + r/lCft 1 + TvCv 

/here  P   = 
pW     p(2) 
p(3)     p(4) and  Q   = Q(3)     Q(4) 

Also,   F(cfc,c„)   =   (/c - A)-J5   =   [fi,...,fn]*   and 
G(ch,cv) = C(Ic-A)-1 =[gi,...,g„]. 
Äemar&s. 
1. Note that, (Jc - A)-1|c^z = (Iz - A)~

1
T, and 

F|c_z = F; G\c^z =G-r. (3.14) 

2. Definition 3.2 is completely analogous to the 1-D and 
2-D (^-systems [7], [11]. 
Lemma 3.2. P = T^TVP and Q = T/1TVT~

1
QT~

1
 . 

Proof.  Consider P in Definition 3.2.  Use c —► z, (3.14), 
and definition of gramians for 2-D ^-systems [11]. ■ 

The following  are in complete analogy  with 2-D  q- 
systems. 
Lemma 3.3. The gramians may be represented as 

1 
OO OO 

P=^1^1.M^M^ 

Q 

t = 0   j=0 

OO OO 

1 v-^x-^ 

ThTv 
i = 0 j = 0 

A1'3   C*CAi'i • r. 

/here, for (i,j) = (0, 0), Mitj = 0, and, for (i,j) > (0, 0), 

Mij = Al-l'i; 
0 

+ Ai'i-1; 0 

Lemma 3.J,. Let {A, B, C, D} with gramians P and Q be 
an equivalent system as in (3.10-11). Then, P = TPT* 
and Q = T^1 QT~l. Moreover, the eigenvalues of PQ 
and PQ are invariant. 
Definition 3.3. {A, B,C, D} is said to be balanced if 
p(i)   =   Q(I)   =   E(i)   =  diag^1),^1),...,^}  and 

(4)   „(4) P(4) = Q(4) =E(4)=dlag{^4J,<r; 

If the diagonal submatrices of P and Q are each posi- 
tive definite (p.d.), a BL realization may be obtained [4]. 
Regarding this, we have 
Lemma  3.5.      Local   reachability   and  observability   of 
{A, B, C, D} and {A, B, C, D} are equivalent. Moreover, 

when {A, B,C, D} is locally reachable and observable, 
PO), p(4)) Q(I)) and Q(4) are each pd 

Separable systems. A separable (in denominator) 2-D 
^-system will have A^ = 0 (and/or Ä(3) = 0) and all 
off-diagonal submatrices of P and Q are zero. The di- 
agonal submatrices may be computed through two pairs 
of Lyapunov equations [11]. Clearly, a separable 2-D q- 
system yields a separable 2-D <5-system. 
Theorem 3.6. Let {A, B, C, D} be separable with A^ = 
0. Then, P<2) = Q(2) = 0 and P(3) = Q(3) = 0, and 

A(Dp(i) +P(i)A(D* + rfcA<1>P<1>A<1>* 

= -BWBW/TV; 

AW&V + QWAW + THAWQWAW 

=-[cw   RWAW]* [cw   RWAW]/TV] 

A(4)p(4) + p(4)A(4)'  + Tv A(4)p(4)A(4)' 

= -[p(2)     AWSW] [fi(J)     A(3)sC)]'/ri; 

= _C(2)*c(2)/rft. 

Here, R.W&*) = rhrvQW and S^SC1)* = r^r^C). 

IV. Coefficient Sensitivity 
By generalizing a certain sensitivity measure, Lutz and 

Hakimi [9] have addressed sensitivity minimization of 
MIMO 1-D CT systems. The SISO 2-D ^-operator case 
is in [7]. In what follows, we study the coefficient sen- 
sitivity of the 2-D 6-model in section III. We follow a 
more direct approach using Kronecker product formula- 
tion and, hence, the results are applicable to the more 
general MIMO case. Using [1], we may show 

SA(ch,c„) = [In®G]-VnXn -[In®F] (4.1) 

•     SB(ch,cv) - [In ®G] -Tlnxp (4.2) 

Sc(ch,cv)=T7qXn-[In®F] (4.3) 

SD(CII,CV) = UqXj> (4.4) 

Lemma 4.1. The quantities in (4.1-4.4) are given as 

gi 

gn 

sR = 

Sc = 

fg^ 

LK(1) 

"f;   ■•■  f*' 

&1 

r(i)* 

(•(<?)* 

f(i)* 

F(?)* 



sD = 
#1,1    •■■    EI,T 

E, <?,i JQ,P J 

Here, f ^ denotes a (q x p) null matrix except its j-th 

row which is f* and g)1' denotes a (q X p) null matrix 
except its j-th column which is g,. 
Proof. This may be shown through the results in [1] and 
simple yet tedious algebraic manipulations. ■ 
Corollary J.2. The quantities SA, Sg , Sc, and So of the 
6-model and the quantities 5^, SB, Sg, and Sp of the 

corresponding g-model are related by SA\C-^Z = TS^, 

SBU-Z = TSä, 5c|c-« = Sd, and SD\C^Z = S&, 
where T= rhInhq @rvInvq € ft"«*"«. 
Proof. Apply (3.14) to Lemma 4.1. ■ 
To proceed further, we utilize the following 
Definition 4.1.    Let  H(ch,cv)  be a bivariate matrix- 

valued function that is analytic on Tj2. Then, 

\\H(ch,cv) 
(2vrj): 

\\H(ch,cv)\c. 
dzh dzv 

Zh     zv 

Remark. This norm is extensively utilized in related work 
[7] due mainly to the fact that it leads to tractable re- 
sults. This, and our desire to make a comparison with 
the corresponding g-model, are the primary reasons for 

its use here. 
We now define the absolute sensitivity measure 

M= 115 A\h + 1 
-||5cl 
1 pq 

\s Dili- (4.5) 

Remarks. 
1. The use of different norms is for mathematical feasi- 
bility and tractability [7], [5]. 
2. The weights associated with each term in (4.5) may 
be thought of as averaging factors per input/output. 
3. Due to (3.5), M should contain ||SrJ| and ||5rJ|. 
However, we assume that r^ and rv are selected such 
that each possess exact binary representations. Hence, 
these additional terms are neglected. 

Using an argument similar to that in [7], one may show 
the following: 

!|5A||i < trace[P] • trace[rQr] 

\SB\\l = p ■ trace[rQr] 

\l 
\SD\\l =P<? 

\Sc\\l = 9 • traced] 
|2 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Combining (4.5) with (4.6-9), we get 

M < M = (trace[P] + l)(trace[rQr] 4- 1).        (4.10) 

It is customary to perform a minimization of M. Hence, 
one attempts to characterize those {A, B, C, D} that are 
'bound optimal' with respect to M. Analogous to 2-D 
<j-systems case [7], one may for instance show that a BL 
realization (modulo an orthogonal nonsingular transfor- 
mation) is 'bound optimal' with respect to M. 

Compared  to  a g-system,   its  <5-system  counterpart 
yields a smaller M whenever trace[Q] > trace[rQr], that 

(1 -rl). traced] + (1 rl) traced4)] > 0.  (4.11) 

Note that, with the local reachability and observability 
assumption of {A, B, C, D}, p.d. of Q^1) and Q(4' (and 
hence of Q1-1^ and Q^) are guaranteed. Thus, (4.11) is 
satisfied if r^ < 1 and rv < 1. 

VII. Conclusion 
We have developed the 5-operator analog of the 

Roesser local s.s. model. Notions of gramians and BL 
realization are also proposed. As is expected, under mild 
conditions, this model offers superior coefficient sensitiv- 
ity properties. 
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Abstract 

This paper addresses the robust asymptotic and BIBO (bounded-input bounded-output) stability of a class 

of linear shift-variant multidimensional systems. Using a shift-invariant comparison system, necessary and 

sufficient conditions for the stability of the entire family of systems are derived. 

1    Introduction 

Results addressing the robust stability problem for 1-D discrete interval polynomials have generated interest 

in analogous results for the m-D case. Yet even in the work on shift-invariant m-D systems, only a few 

results address the m > 2 case [1, 2]. As for 1-D systems, conditions for the robust stability of shift-variant 

m-D systems are more restrictive than for the shift-invariant case. Some recent results concerning the robust 

stability of shift-variant m-D systems can be found in [3, 4, 5]. 

This work was supported in part by funds from the Office of Naval Research Grant #N00014-94-l-0387 and the SAE 

Foundation. 



In [6], the authors investigated the BIBO stability of a dass of shift-invariant 2-D systems having a 

nonessential singularity of the second kind (NSSK) on the distinguished boundary of the unit bidisk. This 

paper addresses what happens when we consider a shift-variant uncertain m-D system. In particular, we 

wish to determine whether a member of the family of shift-variant systems represented by a corresponding 

interval system may have a singularity on the distinguished boundary of the unit polydisk (T"1) and still be 

asymptotically and/or BIBO stable. 

2    Notation 

The work that follows requires some definitions and notation. 

tfg1        The first m-D hyperquadrant. 

JT        The closed unit polydisk: {(z) : |z,| < 1, * = 1, • ■ •,m) 

Um        The open unit polydisk: {(z) : |z<| < 1, i = 1, • • -, m} 

T™ The distinguished boundary of unit polydisk:   {(z) : |z<| = 1, * = 
l,--,m} 

n, t, j    The spatial vectors (rn, • ■ •, nm), (»i, • • •, im), and (ji, ■ • ■, jm)- 

y(n)       The output of the m-D system. 

x(n)       The input of the m-D system. 

di(n) The shift-varying coefficient of a shifted output in a m-D difference 
equation. (For example, in a 2-D difference equation, a(3i2)(ni,T»2) is 
the coefficient of y(ni  — 3,712 — 2).) 

bj(n) The shift-varying coefficient of a shifted input in a m-D difference 
equation. 

Nj The order of the m-D system in the n;- direction, j = 1, • • •, m. 

1 {(h,-■ • ,im) ■■ 0 < ik < Nk, k = 1,...,m, and (ix,••-,*„) #fl.} 

J {(h, ■ --Jm) : 0 < h < Nk, k = 1, -. .,m, and (ii,- • -,jm) ? fi-} 



// 

Problem Formulation 

systems which are represented by the following m-D difference equation with shift-variant 

uncertain coefficients: 

y(n) = ]T Oi<in)y(n -1) + £ 6jfe)*(n " J) 
t"6Z 76^" 

(1) 

where 

(2) 

(3) 

ai(n)e[-at,at],    Vigl 

a|\6+>0 

We will also use the following shift-invariant majorant system, defined as follows: 

y+(n) = £ °i"y+C* - i) + E £ *+k " i) 

where 

x+(i) > |*(i)| 

y+0) > 1*0)1,  vie-AC 

Note that for each n € jV0
m, we may write a shift invariant difference equation with uncertain coefficients 

belonging to the intervals in (2): 

where 

ai€[-4,at], ViGX 

bLe[-b+,bp, Vi€j 

af,b+>0 

(4) 



» / 

The set of systems represented by (4) has the following z-transform: 

EM1-* 

We may also write the transfer function of the shift-invariant majorant system (3) as: 

£61 

The results presented here make use of the following Lemma [7]: 

Lemma 1  The shift-variant uncertain system (1) is asymptotically (BIBO) stable if and only if the shift- 

invariant system (6) is asymptotically (BIBO) stable. 

We wish to know if it is possible for a family of shift-variant systems to have a shift-invariant member (4) with 

a singularity on I™ and still be asymptotically or BIBO stable. In addition, must the member producing 

such a singularity be the one with a< = af and fy = 6+, Vi € I and Vj € J? 

4    Main Results 

The following Corollary arises as an implication of Lemma 1: 

Corollary 2 If the shift-invariant interval transfer function (5) is asymptotically stable and has a member 

with a singularity on T"\ then the shift-variant family of systems (1) is asymptotically stable. 

Proof: If the interval system (5) is asymptotically stable, then the majorant system (6) is also asymptotically 

stable, since it is a member of (5). By Lemma 1, we can then conclude that the shift-variant system (1) is 

asymptotically stable. 



Remark: Given that the output mask of the majorant system (6) is at least two-dimensional, the following 

expression gives a necessary and sufficient condition for the asymptotic stability of (6)[3]: 

XX*1 (7) 

Theorem 3 If the majorant system transfer function (6) has a singularity on T"1 and no other singularities 

mV™, then the shifl-variant family of systems (1) is BIBO unstable. 

Proof: Since Lemma 1 gives a necessary and sufficient condition for the BIBO stability of (1), we need only 

show that the majorant system (6) is BIBO unstable whenever it possesses a singularity on T"1. 

An m-D transfer function cannot be BIBO-stable if it has singularities on 2™ unless the singularities are 

nonessential singularities of the second kind (NSSK's). Because the majorant system has a singularity on 

T" and no other singularities in IT", we have from [3] the following condition on the coefficients of D2(z) 

in (6): 

X>f = l W 
»61 

Clearly, D2{z) will have a zero at (zx, • • •, zm) = (1, • • •, 1). Since none of the 6+ in (6) are negative, N2(z) 

cannot have a zero at (1, • • •, 1). Thus the singularity at (1, • ■ •, 1) is a singularity of the first kind, or a pole, 

and thus H2(z) is not BIBO stable. From Lemma 1, the shift-variant system (1) is also BIBO unstable.   □ 

5    Conclusion 

In this paper we used a shift-invariant majorant system to derive conditions for the robust stability of 

shift-variant m-D systems. In particular, we examined the case of systems whose equivalent shift-invariant 

interval system representation has a singularity on 7™ and no other singularities in U . The following 

remarks discuss implications of the results presented here. 



• The stability of the majorant system whose transfer function is given by (6) depends only on the 

denominator. The numerator cannot have a zero at (zi,•• •,Zm) = (1, —, 1), so the system cannot 

haveanNSSKonTm. 

• If the interval system (5) contains a member with a singularity on T"1, then the shift-variant family of 

systems (1) may be robustly asymptotically stable (Corollary 2), but cannot be robustly BIBO stable 

(Theorem 3). 

• The intervals to which the coefficients of (1) belong may be subintervals of [—af, af] and/or [—6/, bf]. 

When such subintervals have the same upper limits as their corresponding intervals, the condition 

derived here is still necessary and sufficient for the stability of the shift-variant system. When the 

upper limit of any of the subintervals is not equal to the upper interval limit, we have a sufficient but 

not necessary condition for robust asymptotic stability. 

• It is possible to construct stabilizing perturbations for a nominal BIBO stable system with an NSSK 

on T™. Some directions of perturbation will result in a BIBO stable family of systems. This allows 

us to exploit the frequency response characteristics of low order filters with NSSK's on T™, as long as 

we guarantee that perturbations from the nominal system are constrained to directions that result in 

robust stability. 
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Abstract 

This paper addresses the BIBO (bounded-input bounded-output) stability of a class of discrete 2-D transfer 

functions in the presence of nonessential singularities of the second kind (NSSK's) on the unit bidisk. Con- 

ditions under which the double bilinear transformation (DBT) preserves stability are derived. The results 

presented here also extend the class of systems whose stability can be predicted. Use of the inverse DBT to 

produce a continuous equivalent of the discrete 2-D transfer function allows easy application of a continuous- 

domain equivalent of a criterion developed by Dautov. The necessary and sufficient condition for stability 

derived in this work provides a simple check for the class of systems under consideration. From this class of 

systems, it is also possible to construct stable pairs of mutually inverse transfer functions. 
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1    Introduction 

In the study of multidimensional systems, the problem of assessing the BIBO (bounded-input bounded- 

output) stability of a 2-D system at a nonessential singularity of the second kind (NSSK) remains a salient 

research issue. For 2-D recursive digital filters, Goodman [1] showed that even if the transfer function has 

one or more NSSK's on the unit bidisk, it may still be stable. Since this important paper, other researchers 

have explored the issue, trying to learn more about the behavior of such systems in the presence of NSSK's. 

Contributions in this area include the derivation of necessary and/or sufficient conditions for stability 

that improve upon previous results [2, 3, 4, 5], as well as the extension of Goodman's results to the ra-D 

case, where n > 2 [6, 7]. Approaches to this problem vary widely. In [3], Alexander and Woods present a 

necessary condition based on the direction of tangents to the algebraic curve of the denominator polynomial 

at a zero on the unit bidisk. In [4], Roytman, Swamy, and Eichman use a resultant method to test for h- 

and /2-stability. Recall the necessary and sufficient condition for /i-stability: 

oo     oo 

m=0 n=0 

where h(m,n) is the impulse response, or inverse Z-transform of H(zi,Z2): 

H(zuz2)=
y£J2h(m>n)z?z"- 
m=0n=0 

For /2-stability we require the impulse response to be square-summable: 

oo     oo 

^^|/i(m,n)f<oo. 
m=0n=0 

Dautov's approach [2] to determining the BIBO stability of a 2-D digital filter in the presence of an NSSK 

at (zi,h) on the distinguished boundary of the unit bidisk involves taking a limit as (zi,z2) approaches 

(51,z2)- The path taken in this limit must be in the open unit bidisk. For an NSSK at (1,1), consider the 



path: 

zi = l-y2+jy, \v\<l 

z2 = z{. 

As y — 0, (zx, z2) approaches (1,1). Dautov showed that if the limit of H(zi, z2) exists along this path, then 

H(zi,z2) is BIBO stable. 

Reddy and Jury base their work [5] on Dautov's results. They translate Dautov's criterion to the 

continuous domain using the inverse double bilinear transformation (DBT). The DBT maps a continuous 

transfer function to a discrete function using 

'! = ££      *' = &■ 

where without loss of generality, Ti = T2 = 2. The NSSK at (zuz2) = (1,1) corresponds to an NSSK 

at (si,s2) - (0,0). Reddy and Jury check the stability of the continuous function to infer the stability 

characteristics of the corresponding discrete transfer function. 

The bilinear transformation is widely used in the design of 1-D recursive digital niters, and the DBT has 

been applied to 2-D digital filter design [8, 9, 10]. The 1-D bilinear transformation is known to preserve 

stability, but in the 2-D case, Goodman has shown in [11] that it is possible to apply the DBT to a stable 

continuous transfer function and obtain a discrete function that is unstable. 

The authors of [12] formulate necessary and sufficient conditions for the BIBO stability of mutually 

inverse pairs of 2-D transfer functions having NSSK's on T2. These conditions are based on the order of 

numerator and denominator zeros on T2. 

This paper presents a result regarding the stability of a class of discrete transfer functions whose inverse 

DBT has a particular form. We then give a sufficient condition for the BIBO stability of a class of 2-D 

continuous transfer functions that have NSSK's at (si, s2) = (oo,oo). This will allow us to gain insight into 



corn 

can 

the effect of the DBT on stability; i.e., the conditions under which a continuous system is stable and the 

esponding discrete system is unstable. Previous work on the stability preserving properties of the DBT 

also be found in [13]. Finally, we show that a class of BIBO stable transfer functions with stable inverses 

can be constructed from the class of systems under consideration. 

2    Notation and Problem Formulation 

The work that follows requires the following notation: 

V2 = {(*!, z2) : |*| < 1,      i = 1,2} closed unit bidisk 

U* = {{zuz2) : |z,| < 1,      i = 1,2} °Pen unit bidisk 

T2 = {(z   z2) ■ \z-\ = 1       i=l,2} distinguished boundary of unit bidisk 

Ä2 = {(s1,s2):Re(sO>0, |«<| < oo, i = 1,2} 

A2 = {(s1,s2):Re(si)>0, |s,| < oo, i = 1,2} 

^2 = {(Sl,S2):Re(s,) = 0,      |s<|<oo,      »=1,2} 

We will examine a class of discrete systems, denoted by H(z1,z2), whose DBT has the following form: 

K 

"[[(1 + aiai + biS2) 

J|(l + CiSX + dis2) 

which corresponds to the following class of discrete 2-D systems: 

K 
JJ[(1 + at + bi) + (1 - a,- + bt)zi + (1 + a; - h)z2 + (1 - a,- - 6J)*I*J] 

W  (r   7\- ND{zx,z2)    ,-=i          (2) 
HD{Z\,Z2) - D   .     z .    -jj 

'   n^1+Ci+d^+(i-c{+di)zi+(i+ci ■di)z2+(l"ci ~di)ziz2] 

Note that the discrete system has an NSSK at (zuz2) = (-1,-1).  Studying the asymptotic behavior of 



H(s1,s2) as Si and s2 approach oo will tell us whether or not the system is stable at the NSSK. Note that 

this approach differs from that of Reddy and Jury [5] in that while they examine NSSK's at (zlt z2) = (1,1), 

we study the behavior of the transfer function at a different location on T2: (-1, -1). We do this because 

the path for (si,s2) -* (oo,oo) in the limit is easier to work with than the path for (si, s2) -* (0,0). 

We impose the following conditions on H(si,s2): 

• The DBT of n?u?\ must be BIB0 stable- 

. Miiiial does not contain any factors of the form (1 + asx + bs2), and it has no NSSK's at (oo, oo). 

• a and di > 0. 

• N >K. 

The presentation of the result requires the following definitions: 

• Define the 1-D degree of N(s, s) as a. 

• Define the 1-D degree of D(s, s) as ß. 

• Define the transfer functions: 
Kr 

JJ(1 + aiSl + biS2) 
t=i 

Gr(*l,*2) = -J5; (3) 

fj(l + CiSx + diS2) 

where 

«=i 

fi - fi - 
6,- " * " r' 

except if Kr = 0, in which case the numerator expression is simply equal to 1, or if Nr = 0, in which 

case the denominator expression is equal to 1. 



Define Gro(si,s2) as the Gr(si,s2) with the highest degree difference: 

Nro - Kro = max[JVr - Kr]. 

Thus, 
Kro 

JJ(l + a,-Äi+6iS2) 

Gr0(sl,S2) -  %~ Nr, 
"[[(I + CiSx + diS2) 

where 

•=i 

di  _ Ci   _ 

except if Kro = 0, in which case the numerator expression is simply equal to 1. (If there is more than 

one such Gr, then any one of them can be taken to be Gro •) 

3    Main Results 

Theorem 1  The DBT ofH(si,s2) in (1) is BIBO stable if and only if 

(a-ß) + (K - Kro) -{N- Nro) < -1. (4) 

Proof:(Sufficiency) After examining bounds on 

K 

JJ(1 + a,si + b{s2) 

N 

n "[[(1 + cj*i + dts2) 

*3—»OO 



and 

N{si,s2) 
D{si,S2) 

Jl — OO 

»2—»OO 

we will show that the stated condition is sufficient for BIBO stability. The path to infinity chosen for sx and 

s2 must lie in A2. This corresponds to the path specified by Dautov to (zltz2) = (-1,-1) in the discrete 

domain. 

Consider the expression: 

K K'° K 

17(1+^1+^2) n(i+aisi+6iS2) n (i+5i*i+w 
fj[  _  «=1 j=K„ + l     ._ 

f[(l + CiSi + diS2)      JJ(l + c,-*i + **3)    II    {l + s:*i + dis*) 

where because of how we defined Gr 

a» _ c« _ 

The choice of path for 8l and s2 must coincide with the requirements for the application of Dautov's 

criterion; namely, Re(Sl,s2) > 0 and (sx,s2) - (oo.oo). Depending on this choice, each factor in Gro will 

either go to oo or remain bounded. (Actually, the preceding is true for all factors, including those indexed by 

j.) The difference between the number of unbounded factors in the numerator and denominator determines 

the asymptotic behavior of the expression. Without loss of generality, we choose the path: 

si=v + fr (5) 

s2 = r0(cr - jfi) 

This choice causes all of the factors in Gro (those indexed by i) to approach a finite value for a > 0 as 

a -v oo. The factors indexed by j will go to oo in the limit. Because Gro has the highest degree difference 

of all the Gr, the path given by (5) results in the slowest convergence of H(slts2) (or fastest divergence.) 



Examining the asymptotic behavior of the expression containing factors indexed by j results in the 

observation that as s, and s2 approach co by the chosen path, the entire expression can be asymptotically 

bounded from above by d • QP-"»)-&-*.), where d is a finite constant. 

Now we must derive an expression which describes the asymptotic behavior of $7^} as «x and s2 

approach 00. First, note that because this expression has no NSSK's at (00, 00), we can simplify the analysis 

by studying £ggl for a - 00. If the degree of N(Q,Q) is a and the degree of D(Q,Q) is /?, then the 

expression behaves asymptotically as C2 • fl<°-«, where C2 is a finite constant. 

Combining the derived bounds as a product, we obtain an upper bound B„ for the H(s,,s2) given by 

(1) for the critical path in (5): 

B   =C C    Q(a-P)+(K-K'°)-(-N-Nr°) (6) 

If condition (4) is satisfied, then as ß - co, H(slts2) -* 0 independent of the path in A2, which implies 

BIBO stability of the DBT of H(sl,s2). 

(Necessity) For this part of the proof, we will show that for 

(a) (a-ß) + (K- Kr0) - (N - Nro) > 0 

(b) (a-ß) + {K- Kro) -{N- Nro) = 0, 

we will not obtain a unique limit of H(si, s2) at (00,00). 

(a) Recall the upper bound on H(si,s2) derived as (6): 

Bu = ClC7-tfa-ßWc-K")-l'f-N") 



Since H(sU82) actually grows with n<«-«+(tf-*«)-<"-"«>, we can formulate a lower bound as: 

Clearly, if the exponent of Q in (6) is positive, then as ß — oo along the path in (5), H(sx, s2) grows without 

bound. According to Dautov's criterion, if this limit does not exist, the transfer function is unstable, 

(b) Now the exponent of $1 is zero, and H(s1,s2) is bounded as Q — oo. It is trivial to show that in this 

case, the bound depends on the path taken; i.e., the limit at (oo, oo) does not exist. O 

Theorem 2 The continuous transfer function: 

*<*■*>=M-ne'<«-*> (7) 

is BIBO stable if 

• for each Gr(si,s2), we have Kr < Nr, and Ci,di > 0, and 

. ffi""? is BIBO stable. 

Proof: Since we know that the cascade of BIBO stable transfer functions results in a BIBO stable system, 

showing that each of the Gr(si, s2) is stable will suffice to show the stability of H(si,s2). 

First, we rewrite (3) as: 

Gr(s1>S2)=n(\tZltdZ) ■. n (i+CjS1+<w' 

where 

£L - f± 
dj ~ di' 



Note that each of the factors indexed by j is a BIBO stable transfer function [13]. Therefore, the cascade of 

the (Nr - Kr) BIBO stable transfer functions indexed by j is also BIBO stable. 

Rearranging one of the factors indexed by i, and using the fact that fj = f., we obtain: 

1 + ajSj + bjS2 _ Oi 

1 + CiSi + diS2 Ci 
1+  * 

*■-! 

l + CjSi + (f,S2. 

Therefore, each of the transfer functions indexed by i is BIBO stable, and we can infer the stability of the 

cascade of the KT BIBO stable transfer functions indexed by i. 

Using the same cascade argument, we can now make the statement that because each Gr consists of a 

cascade of BIBO stable transfer functions, each Gr can be said to be BIBO stable. And finally, since the 

product of the Gr is a BIBO stable transfer function, and $%$ is BIB0 stable' then H^'s^ is also 

stable. 

Corollary 1  The double bilinear transformation fails to preserve stability when a continuous transfer func- 

tion of the form given in (7) satisfies Theorem 2 and: 

Nro - Kro >-l + (ß-a) + (N-K) 

Proof: The proof follows directly from Theorem 1. If a BIBO stable continuous transfer function satisfies 

the above condition, then it fails to satisfy (4). n 

This corollary helps us to identify classes of systems for which the DBT does not preserve stability. From 

Theorem 1, the inverse DBT of a BIBO stable discrete transfer function must satisfy: 

Nra - Kro < -1 + (/? - a) + (N - K). 

10 



It is possible to identify some special cases that illustrate the instability of discrete systems obtained 

from stable continuous transfer functions using the DBT. First, consider an H(sus2) for which N(sus2) 

and D(Sl, s2) have the same degree, and for which in each Gr,(r± r0), Nr = Kr. Another class of systems 

addressed by Corollary 1 is the class of systems which consists of N{sl,s2)/D{s1,s2) and a single Gr. As 

long asKr<Nr and ß>ct, the continuous system is BIBO stable. For both classes of functions, as long as 

ß = a, the DBT fails to preserve stability. Summarizing these special cases, we have: 

•JVr = Kr, r # r0, <* = ß =► (N - K) = (Nro - Kro) => DBT fails. 

.Nro = N,Kro = K^(N-K) = (Nro - Kro) => 0 < -1 + (/? - a) =► DBT fails when (/? - a) = 0. 

Note that for the above special cases, the transfer function %£$ can stabilize the overall transfer 

function as long as ^£77} possesses one or more zeros at infinity; i.e., (ß - a) > 0. 

Corollary 1 can be applied to the example given by Goodman in [11]: 

^(^)=1 + S| + S2- 

According to Theorem 2, this function is BIBO stable, but according to Corollary 1, its DBT is unstable. 

The DBT of the inverse of a BIBO stable member of the class of systems described by (1) cannot be 

BIBO stable because the limit of such a H(Sl, s2) as (slt s2) - (00,00) is zero. This makes the corresponding 

limit of its inverse nonexistent. Thus from Dautov's criterion, this inverse is not BIBO stable. 

However, by adding a non-zero constant C to an H(slts2) whose DBT is BIBO stable we obtain: 

H(s1,s2) = C + H(s1,s2) 

The DBT of this modified transfer function is also BIBO stable. In particular, examining the behavior of 

the system at the NSSK at infinity, the limit of H(Sl,s2) exists and is equal to C. Furthermore, its inverse 

has a unique limit equal to 1/C. 

11 



Note: H(si, s2) can be written as follows: 

N K 

C ■ D(su «a)JI(l + CiSi + diS2) + N(slt s2)J[(l + aiSl + 6,s2) 

H(si, s2) = ff K°> 

D(s1,s2)'Y[(l + CiS1+diS2) 
t=i 

-2 
If the numerator of the DBT of H(sus2) has no zeros in V except for the NSSK at (-1,-1), then the 

DBT of £(«1, s2) and its inverse are a BIBO stable mutually inverse pair of 2-D discrete transfer functions. 

Existing tests for zero exclusion from TJ2 may be used to check the numerator of the DBT of H(si,s2). 

4    Conclusion 

In this paper, we have examined the BIBO stability of a class of 2-D continuous transfer functions and the 

stability of its discrete equivalent using the double bilinear transformation. The condition given in Theorem 

1 allows the surprising result that the cascade of two or more BIBO unstable discrete transfer functions may 

actually be stable. For example, consider 

H2{Sl'S2)-\l + C1Sl+d1S2J   (l + C251+<f2Sj 

where f- # %. The DBT of H2(si,s2) is stable according to Theorem 1, although the DBT of each factor 

of H2(si,s2) is unstable. Comparing the sufficient condition for stability of the continuous system with the 

necessary and sufficient condition for stability of its DBT reveals the conditions under which, for the class 

of systems considered, the DBT fails to preserve stability. 

We have also shown that it is possible to generate BIBO stable mutually inverse transfer functions from 

the class of 2-D continuous transfer functions under consideration. 
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ABSTRACT 

This paper addresses the asymptotic stability of linear 
shift-variant difference equations whose coefficients are 
uncertain in an m-dimensional hyperdiamond. The ap- 
proach used here allows the construction of regions in the 
coefficient space guaranteeing asymptotic stability that 
extend beyond the region specified by existing results. 

I. INTRODUCTION 

The pioneering work of Kharitonov [1] concerning the Hur- 
witz stability of interval polynomials has generated con- 
siderable interest in finding ways to apply these results 
to representations of discrete time systems. The results 
described in [2-6] address the Schur stability of interval 
polynomials, which may be used to represent linear shift- 
invariant discrete time systems. The authors of [7] con- 
sider the Hurwitz stability of polynomials with the coeffi- 
cients in a diamond. Among the reasons given for exam- 
ining the diamond-shaped uncertainty structure (for both 
continuous and discrete systems) are the restrictiveness 
of independent coefficient variations and the possibility of 
generalizing results for the hyperdiamond to wider classes 
of regions. Other results obtained using a diamond-shaped 
uncertainty structure include those found in [8-11]. 

In the case of linear difference equations with, shift- 
variant uncertain coefficients, we cannot generally rely 
on the frequency domain techniques which work for time- 
invariant systems. Here, the Schur stability of an interval 
polynomial or matrix does not guarantee the stability of 
a time-variant system whose parameters are constrained 
by the interval system. Some recent results on the robust 
stability of discrete time-variant systems can be found in 
[12-16]. Most of these results use state space representa- 
tions to describe the system. 

In [15], the authors examine linear shift-variant dif- 
ference equations whose uncertain coefficients are con- 
strained to lie in a hyperdiamond that is symmetric with 
respect to the origin in the coefficient space. They show 
that the unit hyperdiamond is the largest such region sym- 
metric with respect to the origin that guarantees asymp- 
totic stability. By reformulating the difference equation 
as a Schur stable nominal polynomial driven by coefficient 
perturbations about the nominal coeffcients (rather than 
with respect to the origin), we will generalize the results 
in [15]. 

II. PROBLEM FORMULATION 

Consider the m-th order difference equation with shift- 
variant uncertain coefficients: 

y(n) = ai(n)y(n - 1) + • • • + am(n)y(n - m), (1) 

where a,(n) = a° + Aa;(n).  This equation may also be 
written as: 

y{n) = a°y(n - 1) + • • • + a°my(n -m) + e(n - 1),    (2) 

where 

e(n - 1) = &ai{n)y(n - 1) + ■ • • + Aam(n)y(n - m). (3) 

The uncertain Acij(n) vary inside the hyperdiamond: 

jr>ai(n)| = S (4) 
i=l 

The nominal coefficients a° are chosen such that the co- 
efficient vector (a?, • • •, aS.) describes a Schur polynomial. 
If we define h(n) to be the impulse response of (2), then 
define 7, a positive real number, as follows: 

1 
7 = 

This work was supported in part by funds from the Office of 
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X>(*)l 
(5) 

n=0 



III. MAIN RESULT 

Theorem 1 The shift-variant system described by (2), 
(S), and (4)is asymptotically stable if 

S<7 (6) 

Note that because our choice of nominal coefficients de- 
scribes a Schur polynomial, the portion of the response 
due to initial conditions approaches zero asymptotically 
as n approaches infinity. More precisely, given e/ > 0, 
there exists AT0 > 0 such that for n>No, \yi(n)\ < e/, or 

Proof: 
The system output y(n) may be expressed as the sum of 
two response components: the response due to arbitrary 
initial conditions, yi(n), and the response due to the in- 
put, ye(n). Thus, (2) can be expressed as: 

y(n) =yi(n) + ye(n). 

Suppose we know that for n < N0, \y(n)\ < B^°\ We want 
to show that with increasing n, we can obtain successively 
smaller bounds on the output |y(n)|; i.e., 

|y(n)l<l».(n)l + «/ (10) 

i»(»)i < *r. ■(0) Vn>0 
r(0) \y(n)\    <    ££1) <fl£°\        Vri>N0 

\y(n)\    <    B^KBg-V,    ^n>Ni., 

so that B^ —► 0 as i — oo, and thus, \y(n)\ — 0 as 
n —* oo. 

Step 1. Derive the following upper bound on \e(n — 1)|: 

|e(n - 1)| = \Aai(n)y(n - 1) + • • • + Aam(n)y(n - m)\. 

Since for n < iV0, we know that \y(n)\ < B£
0)
, we can 

write: 

|e(n - 1)| < (|Aai(n)| + • • • + \Aam(n)\)B^ 

\e(n-l)\<S-B(°\ n<N0 + l 

ßW=5-5(Q),        n<NQ + l (7) 

Step 2.  We obtain a bound for |y(iVo + 1)| using BIBO 
property to find a bound on the forced response: 

|v.(#o +1)1 = 
Na+l 

JTh{k)e{No-k) 
i=0 

MJVb + l)|<5<°>. £>(*)! (8) 
t=a 

Using (7) for M0) in (8), we obtain the following upper 
bound for \ye(N0 + 1)|: 

We use this fact to write the bound on the total response, 

|y(tfo +1)|: 
*f> = *£> + «/ (ID 

Step 3. Show that B^l) < B\,
0)
. 

Substituting (9) for B$ in (11), we have: 

Now we solve the following inequality for S: 

40)-5-f]|/.(fc)| + €/<S<0) (12) 

This provides a condition for which we attain a reduction 
in bound: 

5< 1 (13) 

2>(*)i B™Y;\Kk)\ 
t=o fc=o 

Now since we know from (6) that 5 < y, we may write: 

S = y-i*,        0<^<7 (14) 

Using (5), we may rewrite (13) as: 

5<7- 

40)DAWI 
(15) 

i=0 

and we can obtain a reduced bound, since given /i, we can 
always find a sufficiently small «/ such that 

-ST <A». (16) 

or 

k=Q 

<1<^-Bi°) 

1#>=:B<0>-S-£>(*)!• (9) 
fc=0 

Step 4. Show that this reduced bound B^ is valid for all 
n > JVo + 1. 
Consider n = Ni+2. Using the procedure of Step 1, we 



write. We have now a new bound on |e(n -1)| that is valid from 
the time we consider the restarting of the system, up to 

|e(iVo + 1)| < S ■ max{|y(iVo + 1)|, • • •, \y(N0 + 2 - m)|} ^d including n = Nx + 1: 

\e(NQ + l)\<SBW (17) BP = S-BW (22) 

|c(iVo + 1)| has the same bound as |e(iVo)|, so the BIBO 
property tells us that the bound on \y(NQ+2)\ is the same step 7. We may again use the BIBO property to find a 

as on \y(NQ + 1)|; i.e., B^. bound on \y(Ni + 1)|. 

Ar,-JV0-m 
If we consider any n > No + 1, we have 

\e(n-l)\<S- max{|y(n-i)|} \ye(Ni +1)|    <        £     |&(*)ll«(^i "*)l 
1-*-m 4=0 

Ni-No-m oo 

Since all of the |y(n - i)| are bounded by either s£0) or < Bi1] ■     £     \h(k)\ < B{
1)
 • £|A(fc)| 

B?\ we have: *=° *=° 

\e{n-l)\<S-Bf\        n>iV0 + l, (18) ß(2) = s(i) . £ |A(fc)| (23) 

fc=0 
and therefore, we obtain: 

. /M      „m ^ „r   , i n*\     Using (22) for B{
e
l) in (23), we obtain: 

|y(n)l<£». n>JV0 + l, (19) 
oo 

Note that since B^ < B<°\ we have (for n > N0 + 1): B™ = B<1J ■ S ■ £ |A(fc)| (24) 
ife=0 

|y(n)j < 5<x> = aB<0), a < 1, (20) 
'      "-    » » To obtain a bound on the total response, we write: 

5iep 5.   Because we model the system as a shift-variant ß(i) _ ß(2) +£/) (25) 
nominal system with a time-variant driving input, we can y y* 
examine the system response starting from any time in- sjnce |y/(n)| < £/ for n> Ni. 
stant.   Here, we examine the response as if the system 
«started" at n = N0 + m + 1. Note that in this case, the Step 8.   Using the same argument as in Step 3, we can 
system has non-zero initial conditions bounded by 5<l). show that B(

y
2) < B\ \ or that we can write 

We may again view the system response as comprised of ß(-) — a . ß^. (26) 
two parts: 

y(n) = yi{n) + ye(n) And ^ in Step 4> ß(2) ^ a vajid bound on |y(„)| for all 

We again wait long enough for \yi(n)\ to become sum- n> Ni + l. 
ciently small. Or, given ex > 0, there exists Ni > 0 such ^ g   Nofce thaJ. by the appropriate choice 0f the ej in 
that for re > Nu |y/(n)| < e/, or ^0j Md jQ ^^ we can write: 

l»(n)l<|y.(n)l + «/ (21) o(2) _     . o(i) _ Q2. B(0) 0<a<l. 
y      """* *^y y     * 

Step 6. Find new bound on \e(n - 1)| for iVQ + m + 1 < . . .,,,„,,„■ 
n <IN + 1- i e • SteP 10- By induction> usinS StePs 5"8 repeatedly, we find 
n-    1      ' tnat ß(0 _ Qi . 5<°) u a valid bound on \y(n)\ that can 

be constructed for the system for n > Ni-i- 
\e(n - 1)| = \Aai(n)y(n - 1) + • • • + Aam{n)y(n - m)\. ^^ ^ . _ ^ ^0 _ Q  .^ ^ n _* «,, |y(n)| - 0. 

Note that for N0 + m + 1 < n < ^ + 1, we know that 
,,, IV. EXAMPLES 

max {|y(n - i)\} < Ml>, n _. 
i<i<mliyv -    y £iam?fe J.    In (2), let o?  = 0, » =  1 m.   Since 

n(n) = 6{n) for such a system, 7 = 1, and we have the 
unit hyperdiamond of [15] as the region which guarantees 

|e(n — 1)| <S-B^l), N0 + m+l<n<Ni. + l asymptotic stability. 

and 



Example 2. Consider a second order nominal system 
whose characteristic equation has real or imaginary roots. 
It can be shown that 7 is equal to the size of the largest 
diamond centered at {a\,a\) that fits inside the triangular 
region of Schur stability. If the characteristic equation of 
the nominal system has complex roots, the value of 7 may 
be slightly less than the size of the largest diamond that 
fits in the triangle. 

V. CONCLUSION 

By using a nominal Schur stable system driven by pertur- 
bations to model an uncertain shift-variant discrete sys- 
tem, we have established a new method for the construc- 
tion of diamond shaped uncertainties around the nomi- 
anal system which preserve stability of the resulting shift- 
variant system. The condition derived here is sufficient 
for asymptotic stability of the class of systems considered, 
and we expect that further work will show that the con- 
dition is also necessary for stability; that is, that the size 
of the hyperdiamond describing the perturbations about 
the nominal coefficient vector must not exceed the size 
specified by Theorem 1. Two observations support this 
prediction: (a) when we allow the nominal coefficient vec- 
tor to be the origin, we obtain the same result as in [15], 
and (b) in some cases the hyperdiamond of the result pre- 
sented here extends to the boundary of the region of Schur 
stability. 
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Robust Asymptotic Stability of 2-D Shift-Variant 
Discrete State-Space Systems 

S. A. Yost and P. H. Bauer 

Abstract 

The results described in this paper provide conditions for the asymptotic stability of 2-D shift- 

variant uncertain systems expressed using the Roesser state-space description. A necessary and 

sufficient condition for the asymptotic stability of 1-D systems involves checking all products of 

extreme matrices. The same test is shown to apply to 2-D systems, although the corresponding 

stability condition is sufficient, but not necessary. 

1     Introduction 

The problem of the stability of discrete interval matrix systems has sparked considerable 

interest in recent years. Many of the early results in this area focused on linear shift-invariant 

systems [1,2]. Because many discrete systems exhibit quantization and other nonlinearities, 
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some of the effort concentrated on the study of linear shift-variant systems, which may be 

used to model some nonlinear systems [3-9]. 

The shift-variant problem requires an approach quite different from those used in the 

shift-invariant case. The Schur stability of a family of shift-invariant matrices does not 

necessarily imply the stability of a shift-variant counterpart. Until recently, the results 

obtained for shift-variant systems were either conservative sufficient conditions or necessary 

and sufficient conditions that applied only to system matrices of very particular structures. 

In this paper, we will show that recent results addressing the robust stability of 1-D 

discrete shift-variant systems [9] can be extended to the 2-D case. The following section 

introduces the necessary notation and the problem formulation. Section 3 gives the main 

result; i.e., it shows how an important necessary and sufficient condition for the stability 

of 1-D shift-variant discrete systems can be adapted for the 2-D case as a slightly more 

conservative sufficient condition. 



2    Notation and Problem Formulation 

In this paper, we consider 2-D shift-variant uncertain systems described using the Roesser 

state-space representation: 

xh(nx + l,n2) 

xv(nx,n2 + 1) 

=   A(nx,n2)x(nx,n2) 

xh(nx,n2) 

xv(nx,n2) 

(1) 
A/ftf(ni,n2)   AHv(nx,n2) 

AvH(ni,n2)    Avv(ni,n2) 

where x(nx,n2) € 3J(F+V) is the state vector in a 2-D system of order H in nx, and V in n2. 

This vector may also be written as: 

x(nx,n2) 
xh(nx,n2) 

xv(nx,n2) 

A(nx,n2) is the uncertain system matrix for a shift-variant 2-D system, with A#ff(rai,n2) € 

$?*H, AHv(nx,n2) e 3^xV, AvH(nun2) £ ftv*H, and Avv(nx,n2) G »VxV. Note that 

we can describe the uncertainty structure of the 2-D system as A(nx,n2) € A , where 

A1 € $(H+V)*(H+V) is the interval matrix which describes the set of matrices 

A1 = {A e SRFWXIH+V) :A=ZAQ + £ AiCm.na)^}, 
p 

(2) 

where Xi(nx,n2) € [Ai, A,-], i = 1, • • • ,p; A0, A; € SR(^+y)x(^+^), and p is any positive integer. 
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The results described in this paper require the following additional notation: 

• The decomposition of A{nx,n2) defined as follows: 

J(ni,n2) = 
AHH(ni,n2)   AHv(ni,n2) 

0 0 
K(nx,n2) = 

0 0 
AvH(ni,n2)   Avv(ni,n2) 

The variable dimension supermatrix defined as follows 

Acc(n) = 

J(n,0) 0 
Ä"(n,0)    J(n-1,1) 

0 
0 

0 
0 

0 
0 

J(0,n) 
K(0,n) 

(3) 

Note that Acc(n) 6 SR(«+2)(H+V)x(n+i)(H+v)_ 

• Let A,(n) be the A;(nx, n2) in (2) corresponding to Acc{n) along the diagonal n = ni+n2. 

Note that because Acc(n) has (n + 1) x (JT+ V) columns, there are (n + l)p such A;(n). 

• Let Ag.c = Acc(n) with A,(n) = A; or A*. 

• Let Af» be the set of all extreme Acc{n): Af» = {Afcc}, % = 1, • • •, 2^n+1)p 

• Let Pf cc be the set of all length k products of extreme matrices: 

Pjcc = {^cc(ü-l5 -,*>) = 4L,*(* - l)Ag_2iCC(Ä - 2) • • • Alcc(0) : 

i,€{l,---,2("+1)p},I/ = 0,...,Ä;-l}. 

We wish to derive conditions concerning the asymptotic stability of the 2-D shift-variant 

system (1), with structured uncertainties as described in (2). We will extend the 1-D results 
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found in [9] to the 2-D case. We use the following definition for the asymptotic stability of 

a multidimensional system [10]: 

Definition 1 A m-D first hyperquadrant causal digital filter is said to be asymptotically 

stable under all finitely extended bounded input signals e(rai, • • • ,nm) where 

|e(ni,---,nm)| < M for m + • • • + nm < D 

e(nl5 • • •, nm) = 0 for ni ^ \-nm> D 

nu > 0,      v = 1, 

and M being a real bounded number, D being some positive integer, if all the outputs of the 

m-D digital filter asymptotically reach zero for {nx -\ + nm) -> oo, n G jV™.  (Note: vV™ 

is the first m-D hyperquadrant.) 

This definition is less restrictive than definitions which assume zero input and finite initial 

conditions on the boundary of the first hyperquadrant. Here we may allow finitely extended 

bounded input signals to drive the system. Eventually the system will operate under zero- 

input conditions for (nx -\ h nm) large enough. We need this less restrictive definition to 

guarantee the generation of system initializations which cannot be reached using only initial 

conditions on the boundary of the first hyperquadrant. 

The main result of this paper was proposed in a previous article [11], but it lacks a formal 

proof. The main contribution this paper makes is a rigorous proof of a theorem that allows 



for a finite stability test. When we state the 2-D result of [11] in Theorem 1, we use a 

slightly different notation to conform to the subsequent proof. The appeal of a necessary 

and sufficient stability criterion that can be implemented as a finite test motivates this work. 

3    Main Result 

Theorem 1  The 2-D system in (1) is asymptotically stable in the sense of Definition 1 if 

there exists a finite k such that: 

max ||P£c(»"fc-i,---,<o)||i<7<l (4) 
P&, («*-!,-,io)eP£,cc 

Proof: Define the 1-D vector <£(n) as follows: 

l(n) = {x^n,0)T,xv(n,0)T,x\n-lA)T,...,x\0,n)T,xv(0,n)T}T (5) 

This vector contains the values of all of the state variables along the diagonal n1 + n2 = n. 

If (f>(n) -> 0 as n —► oo, then we have asymptotic stability. 

To study the asymptotic behavior of <£(n), we write: 

£(n + 1) = Acc(n)^(n), 



where Acc(n) is as shown in (3). We may also write: 

<f>(n + 1) = Acc(n)Acc(n -!)••• Acc(n - fc)^(n - k), 

or in particular: 

<f>(n + 1) = Acc(n)Acc(n -!)••• Acc(0)<£(0). 

Thus, we can write <£(rc + 1) as follows: 

<t>(n+l) = 

J(n,0) 0 

A'(n,0)    /(n-1,1) 
J(n-1,0) 

Ä(n-1,0) 

0 

0 

0 
... 

.7(0,0) 

#(0,0) 

K(0,n-1) 

0(0) 

0 0 •••    J(0,n) 

0 0 •••    tf(0,n) 

To prove that the maximum 1-norm of the product matrix occurs for one of the extreme 

product matrices, we must show that each entry in the product matrix is a multilinear 

function of the A;(n). Consider the form of Acc{n): 

Acc(n) = 

J(n,0) 0 

K{n,Q)   ,7(n-l,l) 

0 

0 

,7(0, n) 

K{Q,n) 



Note the location in the spatial plane of each entry of Acc(n). Each J(nun2) and K{nl,n2) 

lies on the diagonal nx + n2 = n. Now consider Acc(n - 1). For this supermatrix, each 

J(nun2) and K{nx,n2) lies on the diagonal nx + n2 = n - 1. Thus, an entirely different set 

of points in the spatial plane corresponds to the entries in Acc(n - 1). Now when we form 

the product Acc(n)Acc(n - 1), we obtain: 

J(n,0)J(n-l,0) 0 

K(n, 0)J(n - 1,0) + J(n - 1, l)K(n - -1,0)     ■ 0 

AT(n-l,l)A-(n-l,0) 0 

0 0 

cc(,n)ACc(n - -1) = 

0 

0 

0 

J(l,n-l)J(0,n-l) 

0 •     K(l,n-l)J(0,n-l) + J(0,n)K(0,n- -1) 

0 K(0,n)K{0,n-l) . 

Note that each entry in this product matrix is multilinear in the uncertain parameters of 

the 2-D system. Continuing to right multiply by Acc{n - 2) and so on, we see that we are 

introducing parameters at points in the spatial plane distinct from those already part of the 

product, so the multilinearity of entries in the product matrix Acc(n)Acc(n -1) • • • Acc(n - k) 

is preserved. This multilinearity of entries allows the assertion that the maximum 1-norm 

occurs at one of the extreme product matrices. 

Note also that if we consider: 

<t>{M + m + 1) = ACC{M + m) • • • ACC(M)£(M) 



and 

l(m + 1) = Acc(m) • • • Acc(0)£(0), 

then 

max ||ACC(M + m) ■ ■ ■ ACC{M)\\X =      max      \\Acc{m) ■ ■ ■ Acc(0)||!, 
\i(n),n=M,-,M+m Ai(n),n=0,-,m 

since each column of the product matrix has the same form. Because this maximum 1-norm is 

independent of M, we can let M = 0 without loss of generality. In general, Acc(m) Acc(m -1) 

has m x (H+V) columns, each of which has the same form, independent of m. We can extend 

this argument to a longer product of supermatrices, Acc(m)Acc(m - l)Acc(m - 2). Here, the 

form of the columns changes, but again, each column has the same form, independent of m. 

Thus, max ||Acc(m)Acc{m - l),4cc(m - 2)||i will be the same as max||Acc(2)Acc(l)Acc(0)||i 

for any integer m > 2. Because the norm is independent of m, finding a finite k for which 

max WPkccfa-i, • • •, »o)||i < 7 < 1 suffices to verify the stability of (1). □ 

Remarks: 

• The formulation of this 2-D result allows the application of the computer-aided test 

described in [9] to 2-D shift-variant systems. 

• The algorithm for the 1-D case allows the use of essentially any induced matrix norm. 

When implemented for 2-D systems, the algorithm uses only the 1-norm. The oo-norm 
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cannot be used, since the rows of the product matrix do not have the same form, and 

thus in general, 

max \\ACC{M + m) • • • Acc(M)||oo ^ max \\Ajjn) • • • AJ$)\\«,- 

• Unlike for the 1-D case, max \\P?J}k-i, • • •, *o)II1 < 7 < 1 is not necessary 
P&c(.-fc-i,-,;o)€Pf,cc 

for asymptotic stability, but it is not believed that this condition is very conservative. 

Recall that 

i(n+i) = (nai)#)- 
\fc=o / 

Since as n -* oo, the length of $ grows without bound, each component of ^ may ap- 

proach 0 without the sum of such components approaching 0. So ||^(n)||i -»■ 0 is suffi- 

cient, but not necessary for stability, and thus, max ||-P;5c(u-i, " '' ^H1 - 
Pfc

s
cc(ü-i,-,.-o)eP£ 

7 < 1 is also sufficient but not necessary. 

4    Conclusion 

In this paper, we have presented a rigorous proof of a theorem which gives a sufficient 

condition for the asymptotic stability of 2-D linear, shift-variant discrete systems. This 

theorem extends previous results for 1-D systems, and it allows the implementation of an 

algorithm that will converge in a finite number of steps for almost any stable 2-D system. For 
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2-D systems, the computational complexity of the test is much higher than for 1-D systems. 

The results can be generalized to the m-D case, but the computational complexity increases 

even more than for the 2-D case. 

The condition in the theorem is not necessary for the asymptotic stability of 2-D systems, 

but it is not believed that this condition is very conservative. Work to find a necessary and 

sufficient condition for instability is underway, since the theorem does not allow for the 

conclusion that a system is unstable. 
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Abstract. This paper addresses the asymptotic stability of multidimensional systems represented by first hyper- 
quadrant causal linear difference equations whose coefficients are shift-varying. The results extend previous 1-D 
results, and include the derivation of a fixed region of stability in the parameter space, as well as a sequence 
of shift-variant parameter regions. In the case of a fixed parameter region, the largest stable hyperdiamond centered 
at the origin will be obtained. For the shift-variant case, it will be shown that the instantaneous stable parameter 
region always includes this hyperdiamond. 
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1. Introduction 

Most of the recent results on the problem of robust stability of discrete systems apply to 
shift-invariant systems. A one-dimensional (1-D) difference equation that characterizes a 
shift-invariant discrete system is stable if and only if the corresponding polynomial in z 
has none of its zeros in the closed unit disk. Here, the z-transform is defined with respect 
to positive powers of z. For the m-D case, the polynomial in Z\, ■ ■ ■, zm is stable if there 
are no zeros in the closed unit polydisk, except possibly at a finite number of locations 
on the distinguished boundary of the unit polydisk [1]. 

The problem of robust stability under structured uncertainties has recently been addressed 
for the one-dimensional discrete-time case [2]-[6]. Unfortunately, the results obtained for 
time-invariant discrete-time polynomials are much more complicated than their continuous- 
time counterparts [7], since no simple vertex results are possible. Very recently, the prob- 
lem of time-variant discrete-time systems was addressed in [8], [9]. Necessary and suffi- 
cient conditions for stability were derived for polytopic uncertainties in discrete-time state- 
space models [9]. These results also apply to time-variant interval polynomials. The work 
in [8] considers the problem of finding the largest parameter region containing the origin 
which ensures global asymptotic stability of the time-variant system. Other recent results 
on the stability of time-variant state matrices can be found in [10], [11]. 

Unfortunately, very little is known about robust stability of shift-invariant or shift-variant 
w-D systems with structured uncertainties. For the 2-D case, a 1-D stability robustness 
result was used in [12] to develop a stability test for 2-D shift-invariant state-space systems. 
Some other results, which can be considered an extension of the 1-D case addressed in 
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[13], can be found in [14]-[16]. Because these results allow only hypercuboidal types of 
uncertainties, they often lead to conservative sufficient conditions which are necessary only 
for special cases. 

This paper attempts to reduce the conservativeness in the work of [13]—[16] by following 
an approach introduced for 1-D systems in [8], [9]. This leads to larger stable regions in 
the coefficient space. In particular, we show the existence of a fixed hyperdiamond in the 
coefficient space which guarantees global asymptotic stability of a shift-varying polynomial. 
Furthermore, the region constructed will be shown to be the largest such region to guarantee 
stability. Finally, the existence of a shift-variant region of stability with infinite volume 
in the parameter space will be shown. Obviously, the results obtained for the shift-variant 
case can also be used as sufficient conditions for the shift-invariant case. In some cases, 
the parameter regions for the shift-variant and shift-invariant cases are shown to be identical. 

2. Notation and problem formulation 

We require some definitions and notation. 

q shift operation (z in the shift-invariant case) 

9lo set of nonnegative integers 

91 o first m-D hyperquadrant 

n, i_ spatial vectors (nu . . ., n,„) and (iu . .., im) 

y(n) output of the m-D system 

a,(«) shift-varying coefficient of a shifted output in a m-D difference equa- 
tion (for example, in a 2-D difference equation, a^2)(

ni, ni) is the 
coefficient of y(nl — 3, n2 — 2)) 

a(n) ordered vector of the coefficients of a m-D difference equation 

iVj, j = 1, .. ., m   order of the m-D system in the tij direction 

Q fixed region in the coefficient space that guarantees asymptotic stability 

(2(H) sequence of regions in the coefficient space that guarantees asymp- 
totic stability 

3CK {n : n{, + ••• + nm = K}, nu ..., nm, K € 3l0 

3CK {n : nx + • • • + nm < K] 

B max{|y(«)|} 
n£3CK 

3 {(;•,, . .., im) : 0 < ij < Nj, j = 1, ..., m, and (iu ..., im) * 0} 

7 fixed real number such that 0 < y <  1 
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To formulate the problem, we consider the following class of m-D first hyperquadrant 
causal linear difference equations with shift-variant coefficients: 

y(n) = X! ai(i)y(i ~ £)> (!) 

where the uncertainty structure is described as follows: 

£ k(«)l ^ Y       Vn 6 91J. (2) 

Note that the representation in (1) corresponds to the following shift operator polynomial: 

P(qu . . ., qm) = 1 - H a,.(«)<?i' • • • <?>, (3) 
163 

where qt is the shift operator in the nt direction. To guarantee the asymptotic stability of 
the system described by (1), it is necessary to show that the output approaches zero asymp- 
totically along any direction for finite initial conditions. We adapt the definition of asymp- 
totic stability given in [8] for use in the multidimensional case. 

DEFINITION. The shift-variant m-D system in (1) is asymptotically stable in the region Q, 
if and only if for any finite initial condition and any sequence of {a(n)} € GL, the response 
y(n) tends to zero asymptotically on 30. K as K -»■ oo. 

Note that since we are dealing with linear systems, the concept of global asymptotic stabil- 
ity is equivalent to that of asymptotic stability. Note also that this definition places no restric- 
tions on the rate of change of the coefficients. It also implies that if we can find one se- 
quence of coefficient values contained in a region for which a nonconvergent response is 
obtained, that region is not a stable parameter region. 

3. Main results 

THEOREM 1. The linear shift-variant m-D system described by (1) and (2) is asymptotically 
stable if and only if 7 < 1. 

Proof. (Sufficiency) If we can show that the zero-input response of a m-D system is bounded 
along hyperplanes 3CK and that the absolute bound on the response on each hyperplane 
converges to zero as Ä" approaches infinity, we can conclude that the system is asymptotically 
stable. 
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Step 1. Note that for n € 3CK, one can always find a B sufficiently large such that 
\y(n)\ < B. Furthermore, by choosing K sufficiently large, the initial conditions needed 
to compute output values on 3CK are all zero. Now examine the bound on the output values 
for n 6 3C^+i, given the condition stated in Theorem 1. 

\y(u)L '±)\my:K XI ai(n)y(n - i) 
i'63 

YJ k(«)l • \y(n - i)\ 
16 3 

< B • 2  |fl,.(n)l 
163 

< B ■ y. 

Since 7 < 1, and |y(«)l — B f°r all « satisfying n S JC^, all outputs on any hyperplane 
3Cjc+\ that satisfies K > K are bounded in magnitude by B ■ y. 

Step 2. Next we obtain a bound for \y(n)\ on the hyperplane 3Cjf+1 when AT > AT + 
TV, + •••+#„,: 

b(n)l,„ 63Cf 2 fli(^M« ~ i) 

163 

< ß • y • 2  |<3/(«)| 
163 

< B • y2. 

Step 3. By induction, 

\y(n)\  < B ■ yM+1 

for « € 5Cjf+i, where^ > K + M{NX + ••• + Nm) and Mis a nonnegative integer. Since 
from (2), we know that y < 1, then asM-» 00, -yM -> 0, and the bound on |)>(H)| 

approaches 0. 
{Necessity) If there exists a first hyperquadrant causal sequence of coefficients, {a(n)}, 

n € 910, which does not produce an asymptotically convergent system response y(n), 
then the uncertain shift-variant system in (1) is unstable. 
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We will now show that if 7 > 1 we can always produce a nonconvergent system response. 
Without loss of generality, consider the response y{nx, 0, ..., 0) along the nx axis. Choos- 
ing a^n) = 0 for ij 5^ 0, j = 2, ..., m, we are left with an instantaneous output mask 
that is one-dimensional; i.e., the outputs propagate along the nx axis. We describe this 
system as follows: 

y(nu 0, ..., 0) =   2 aho,...dni> °. •••• °M"i ~ 'i> °> ••••°)- 
•1 = 1 

Now if these coefficients satisfy 

\a lA...o(n,,0,  .... 0)|  < 7,       7 a:  1, 

a system which is not asymptotically stable can be constructed by the 1-D result given in 
[8]. This is true because, since 7 > 1, it is possible to select a sequence of coefficient 
values that prevents this response along the nx axis from converging to zero. (Asymptotic 
stability requires the response to converge to zero in all possible directions.) 

Theorem 1 describes a necessary and sufficient condition for the asymptotic stabil- 
ity of (1) and (2) that holds for all n € 910 • The region Ö defined by this condition is a 
closed high-dimensional hyperdiamond centered at the origin in the interior of the unit 
hyperdiamond. 

Furthermore, 7 < 1 limits the size of the largest stable hyperdiamond in the coefficient 
space that is fully symmetric around zero. This is true for shift-variant and shift-invariant 
systems. 

Note that while Theorem 1 addresses the stability of shift-variant m-D systems, we can 
also specify the largest stable hyperdiamond for the shift-invariant case: 

H \a,\ < 7 < 1. (4) 

To show that the condition on 7 is necessary, consider the system 

y(n) = S aiy(i - D- 
i_t3 

If the coefficients can be chosen from the hyperdiamond described in (4), then we can 
certainly choose aijo,...,o = 7 and at = 0 for all other / € 3. Clearly, 7 must be less 
than 1 for the system response to converge to zero. 

By using information about the previous system outputs, a less restrictive shift-variant 
sequence of regions ö(n) in the parameter space can be identified for each n 6 3lo - 
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THEOREM 2. The m-T> system described by (1) is asymptotically stable if 

(2(H) = \ a{n) € GL(n): - y ■ max{\y(n - i)\} 
(€3 

<  ^ aj(n)y(n - i_) < y ■ max{|y(« - i)\} I , (5) 
H3 as 

where 0 < 7 < 1. 

Proof. If a(n) is chosen such that 

\y(n)\ < 7 • ma\{\y(n - i)\},      0 < 7 < 1, (6) 
(63 

we can construct an exponentially decaying upper bound on the response y(n). In fact, 
using (1) to make a substitution for y(n) in (6), we have 

2 a,(n)y(n - [) 7 • max{\y(n - ij\},       0 < 7 < 1. (7) 
H3 

This means that we can express 0L(n), the shift-variant region of stability, as the intersec- 
tion of two half-spaces with parallel boundaries: 

- 7 • max{\y(n - i)\} < XI ai(n)y(n - /) < 7 • max{\y(n - i)\}. (8) 
iS3 " ;€g      " <63 

Remarks. The region ß(n) consists of the intersection of two half-spaces with parallel boun- 
daries in the coefficient space, and the volume of this region is infinite. One could think 
of a{n) as a conveniently ordered vector of the m-D shift-variant coefficients in (1) and 
y_(n) as the corresponding vector of previous outputs. We can then express (1) as an inner 
product of a(n) and y(n). So we can speak of the boundaries of the intersecting half-spaces 
in the coefficient space as being orthogonal to y_(n). Note that the construction of the 
shift-variant region of Theorem 2 requires information about previous system outputs. This 
region always includes the shift-invariant region of Theorem 1. In the case where we have 
bounded coefficients, input-output stability is also guaranteed because we have exponen- 
tial zero convergence of the zero-input response [17]. 

This result has important consequences in the field of adaptive filtering. The construc- 
tion of the shift-variant region allows for a reduction in error in the choice of updated coef- 
ficients in an adaptive system. Usually, the computed coefficients are projected inside the 
stable region of the shift-invariant system [18]. Using the shift-variant region of Theorem 
2, the error due to projection could be significantly reduced compared to the case which 
requires projection into the parameter region of shift-invariant system stability. 
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4. Conclusion 

This paper addressed the problem of asymptotic stability of shift-variant multidimensional 
difference equations. The largest shift-invariant region of stability that is symmetric with 
respect to zero in the coefficient space was found. A shift-variant sequence of regions of 
stability with infinite volume was also constructed. These results extend the 1-D results 
of [8]. For adaptive filtering applications, the results allow reduced error in choosing up- 
dated filter coefficients. 

The work here also introduced a useful methodology for analyzing the response behavior 
of m-D systems. The usefulness of the concept of absolute response bounds is not limited 
to stability analysis. The techniques used throughout this paper may also be useful in assess- 
ing system performance. 
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