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The construction and analysis of repair models is an important area in reliability. A 

commonly used model is the minimal repair model. Under this model, repair restores 

the state of the system to its level prior to failure. Kijima (1989) introduced repair 

models that could be classified as "better-than-minimal". Under Kijima's models, 

the system, upon repair, is functionally the same as a working system of lesser age 

which has never experienced failure. In this paper, we present a new approach to the 

modelling of better-than-minimal repair models. Using this approach, we construct a 

general repair model that contains Kijima's models as special cases. We also study the 

problem of estimating the distribution of the time to first failure of a system maintained 

by general repair. We make use of counting processes to show strong consistency of the 

estimator and prove results on weak convergence. Finally, we derive a Hall-Wellner 

type asymptotic confidence band for the estimator. 
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1    Introduction 

Many systems are maintained and kept going by performing repair upon each failure. The 

construction and analysis of plausible repair models is therefore an important area in relia- 

bility. Let JP be the distribution of the time to first failure of the system. The repair models 

we consider in this paper postulate that the distribution of the interfailure times depend 

in some way on F. Early works on repair models assume that repair restores the state of 

a failed system to a level equivalent to a new one each time. This is the so called perfect 

repair model. Clearly, this model is inadequate to model most repair processes. It is more 

reasonable to expect the distribution of the remaining life to vary from one failure time to 

another. One such model often used in the literature is the minimal repair model. Under this 

model, repair restores the system to its state just before failure. Brown and Proschan (1983) 

introduced a model that combines both perfect and minimal repairs. Under their model, at 

the time of each repair either a perfect repair occurs with probability p or a minimal repair 

occurs with probability 1 — p. 

There has been a search for repair models where the interfailure times are stochastically 

larger than in the case of the minimal repair model. Such models are loosely called "better- 

than-minimal" repair models. Kijima (1989) introduced two models under which a system, 

upon repair, is functionally the same as an identical system of lesser age. Unlike the minimal 

repair model, Kijima's models assume that the distribution of interfailure times depend on 

F not only through the age of the system at failure but on the degree of repair as well. In 

this paper we introduce a general repair model in which, instead of reducing the effective 
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age of the system at failure, we supplement its remaining life in an appropriate way. Such a 

model is a better-than-minimal repair model, and contains Kijima's models as special cases. 

We will also study the problem of estimating F based on repair data on n identical systems 

working independently and maintained using this general repair model. 

In Section 2 we describe the general repair model. Section 3 discusses stochastic pro- 

cesses needed to carry out the estimation process. An estimator Fn of F is introduced in 

Section 4 and its strong consistency is proved. The estimator Fn of F is the solution of the 

integral equation Fn(-) - J0(l - Fn-)dkn where An is the Aalen-Nelson estimator of the 

hazard function A of F. In Section 5 the weak convergence of y/n(Fn - F)/F to a Brownian 

Motion is established. This in turn is used to construct a confidence band of the Hall-Wellner 

type for Fn in Section 6. 

Estimation of the distribution of the time to first failure of a repairable system was origi- 

nally done through nonparametric maximum likelihood techniques. Whitaker and Samaniego 

(1989) used such techniques to estimate the distribution of the time to first failure of a system 

maintained under the Brown-Proschan model. An alternative to the nonparametric maxi- 

mum likelihood approach is the use of the theory of counting processes. Hollander, Presnell, 

and Sethuraman (1992) rederived and extended the large sample results of Whitaker and 

Samaniego using such an approach, making use of the methods developed for the analysis of 

the censored life-data model. This paper extends their results to the general repair model 

discussed informally in this introduction and formally defined in Section 2. 



2      Description of the Model 

Prior to describing the model, we introduce some notation. In this paper, the terms increas- 

ing and decreasing will be used loosely; a sequence {aj}j>i is said to be increasing if a,- < a,- 

for i < j and a function /(•) is said to be increasing if f(x) < f(y) for x < y. Similar 

definitions apply to decreasing sequences and functions. When we require the condition that 

a,- < a,j for i < j, we will say that the sequence {a,j} is strictly increasing. Similarly, x would 

be called positive if x > 0 and negative if x < 0. The notation x Ay will be used in place 

of mm(x,y). Similarly, xVy will be used in place of max(:r,y). An integral of the form J0 

would denote integration on (0,t\. We use the Ito integral when the integrating measure is 

a stochastic process. The function /(•) will denote the indicator function, so that, 1(A) = 1 

if A occurs and 0 otherwise. Finally, we will adopt the convention that 0/0 = 1. 

For any function /, we will use /_(£) for limsT< f(s) and f+(t) for limsjt f(s). A function 

is cadlag if it is right-continuous and has left-hand limits. It is caglad if it is left-continuous 

with right-hand limits. Let T < oo. We will denote by D[0, T] the cadlag functions on [0, T] 

and by D~[0,T] the caglad functions on [0,7"]. Unless otherwise stated, we will assume the 

Skorohod topology for D[0,T]. The supremum norm on [0, T] will be denoted by || • ||Q and 

" =>" will denote weak convergence of probability measures on D[0,T] under the Skorohod 

topology. 

Let G be a distribution function. We will denote the survival function 1 — G by G. The 

hazard function, H, of G is defined by H(-) = J0 dG/(l — G-). The distribution G is said to 



be IFR if G(t + x)/G(t) is decreasing in t for each x. Finally, all random variables, unless 

otherwise stated, will be assumed to be defined on the complete probability space (0, T, P). 

We will now formally define what we will refer to as the general repair model. For 

any distribution function F, 0 e (0,1] and a € [0,oo), consider the family of distribution 

functions F^(x) = F(0x + a)/F(a), x > 0 . We will see that this family provides us with a 

rich class of distributions for the remaining life of a given system subject to repair. Consider a 

system put into operation at time So = 0 using a brand new unit whose life distribution is F. 

Upon each failure, the system is repaired in negligible time and put back into operation. Let 

{Sj'}j>i denote the sequence of failure times of the system and let Tj = Sj — Sj-x, j > 1, be 

the interfailure times. We further assume that the Tj's are strictly positive. A repair model 

describes the joint distribution of the random variables {Tj}. In this paper, we describe a 

general repair model, based on two sequences {Aj}j>x and {Qj}j>i called the effective ages 

and life supplements, respectively, satisfying 

Ax = 0, 0i = 1, Aj > 0, 0j e (0,1]   and Aj < Aj-X + Qj-xTj-x for j > 1   . (2.1) 

The model is obtained by specifying the joint distributions of the interfailure times {Tj} as 

follows: 

P(Tj<t\Aj,ehTl,...,Tj-i) = F%(t)  fort>0,j>l   . (2.2) 

The family of distributions {F%} are stochastically ordered in 6, i.e., 0 < 0 implies that 

F% > F% , for each a (i.e., F%(t) < Fs
a (t) for every t). Thus for the general repair model 

described by (2.1) and (2.2), the distribution of Tj which is Ff1 is stochastically larger 

than F\., i.e., is better than a working system of age Aj. Furthermore, from (2.1) we can 
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see that for each j > 1 the effective age, Aj+i, of the system after the jth repair, is less 

than its effective age , Aj + QjTj, just before the jth failure which in turn is less than the 

actual age Sj. Thus the general repair model defined by (2.1) and (2.2) can be considered 

as a better-than-minimal repair model and as we shall see, contains the perfect repair and 

minimal repair models. We will illustrate this general repair model and the terms effective 

ages and life supplements through examples discussed in the succeeding paragraphs. 

Consider the case when Qj = 1 and Aj = 0 for j > 1. Then (2.1) is automatically 

satisfied and (2.2) reduces to 

P{Ti <t\T1:...,T^O = FZ(t) = F(t). (2.3) 

From this we see that the Tj's are independent with common distribution F. This corre- 

sponds to the perfect repair model. 

Next, consider the case when Qj = 1 and Aj = Sj-i for each j. Clearly, Aj+i = Sj = 

Aj + QjTj and, hence, (2.1) is satisfied. Moreover, under these conditions, (2.2) reduces to 

P(TJ<t\SJ-1) = Fl
S]_i(t). (2.4) 

Hence, we see that this case corresponds to the minimal repair model. 

We will now show that Kijima's models can be derived through suitable choices of 

{Aj} and {Qj} satisfying (2.1) and (2.2). Let' {Dj}j>i be a sequence of random variables 

independently distributed on [0,1] and independent of other processes. Consider the case 

when 0;- = 1 for each j and Aj = YAZI DiTi for j > 1.   Since Aj+i — Aj + DjTj and 



Dj < 1 = Qj for each j, then (2.1) is satisfied and (2.2) reduces to 

P(Tj < t\TuDul < t < j - 1) = Fl
A](t) . (2.5) 

This is Kijima's Model I. In this model, upon the (j - l)th repair, the time to next failure, 

Tj, of the system has the same distribution as the time to first failure of a system whose life 

distribution is F\.. Hence, upon repair, the system whose actual age is Sj is functionally the 

same as an identical system of age Aj+i which has never experienced failure. This explains 

the use of the term effective age. 

Consider the case when Qj = 1 for each j and Aj = Ei=i(nCfc Di)Tk for 3 > L Since 

Aj+i = Dj(Aj + Tj) and Dj < 1 = Qj for each j, then (2.1) is satisfied and (2.2) reduces 

to (2.5). This is Kijima's Model II. Moreover, when Dj is 1 with probability p and 0 with 

probability 1 — p, we obtain the Brown-Proschan model. 

Up to this point we have restricted the 0j's to be identically equal to 1. We will 

now describe repair models obtained through other choices of the life supplement sequence 

{Qj}. Recall that F* > F$ if 0 < 6''. This implies that the smaller 6 is the larger is the 

expected remaining life of the system. Hence, we can use 9 as a measure of how repair 

supplements the expected remaining life of the system. This explains the use of the term 

life supplement. If a minimal repair was performed at the time of the first failure, then T2 

would have the distribution Fj. . If we want a longer expected life for T2 then we can use 

the distribution F®a
2 for some 02 satisfying 0 < 02 < 1. Starting with the distribution F^2 

for T2 and using minimal repair upon the second failure, the random variable T3 would have 

the distribution F\3 where A3 = 7\ + 02F2.   Again, if we want a longer expected life for 
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T3 we can use the distribution JP®3
3
 for some 03 satisfying 0 < 03 < 1. With this in mind, 

we define ©i = 1, Aj = Ei=i ©.'^ and 0 < ©,- < 1 for j > 1. Under these conditions, 

Aj+i = Aj + QjTj for j > 1, satisfying (2.1), and (2.2) reduces to 

P(Tj < i|r,-,0t-,l < i < j - 1) = F*j(t) . (2.6) 

We will refer to this as the "supplemented-life" repair model. By definition, the system 

enjoys a larger expected remaining life under a supplemented-life repair than it would under 

a minimal repair. 

3      Some Fundamental Processes 

There is a close connection between repair models and censored life-data models that enables 

one to use techniques developed for censored life-data models in the analysis of repair models. 

Fix a T > 0 and define the processes N and Y by 

N{t) = sup{i >l:Xj<t, Sj < T} 

and 

Y(t) = sup{j > 1 : Aj < t < (Xj A [Aj + Qj(T - S^)})} 

where Xj = Aj + GjTj. Let Sj = I(Sj < T) and Xj = X, A [Aj + 0,-(r - Sj-i)]. Then 

the random variables {(Xi,6i), (X2, <52),...} can be viewed as observations coming from a 

censored life-data model. A general repair model observed during a period of length T is 

akin to a survival study where a subject j enters the study at age Aj and either dies during 

the study at age Xj or leaves the study by age Aj + Qj(T — Sj-i). So that at the completion 



of the study only the variables {(Xi,8i), (X2,82),.. .} are actually observed. The random 

variable N(t) represents the number of observed (uncensored) deaths by time t and Y(t) 

the size of the risk set at time t. Since the processes N and Y are fundamental in the 

estimation of the survival function in a censored life-data model, it is reasonable to expect 

these processes to play a similar role in estimating F under general repair. 

Let A be the hazard function of F and define the process M = N-f Yd A. The process 

M plays an important role in establishing the large sample properties of the Whitaker- 

Samaniego estimator. Based on this observation, it is reasonable to expect M to play a 

similar role in establishing large sample properties of Fn. We now find expressions for the 

mean and covariance functions of M. To simplify expressions we shall use the following 

notation. For j > 1, let 

Nj(t) = I(Sj<t), 

Hfc) = /(Aj + 0i(s-5j_i)<<), 

Gj(t) = HSj-t < t < Sj) , 

Aj(t) = AiAj + Qjit-Si-t)), 

K}(s) = /(>!,■ <s < A,-+ 0i(<-5i_1)), 

and 

We can now rewrite M as 

WT   H){s)dM3{s)   =   WT   H){s)dN,{s)-Y:[   H}{s)G3{s)dA3{s) 



j 

Y: f I{A3 < s < Xj A [Aj + Si(T - $-i)]}dA(*) 

=   E^(T)Ht
J(S3)-j:JtKJ^(s)dA(s) 

j j    ° 

=   N(t)- ftY{s)dA(s) = M{t). (3.1) 
Jo 

Hence to evaluate the mean and covariance functions of M it is enough to evaluate those of 

/JU H^dM^s). 

Lemma 3.1 For fixed t and t, 

E[f     HjdMj] =   0      for all j (3.2) 
rp rp 

E[[     H\dMi f     Hj'dMj]   =   0      for i ^ j (3.3) 

E[fT   HjdMj fT   Hj'dMj]   =   E[ftM I<JAS>(l-AA)dA] 

for all j. (3.4) 

Proof:  For each j,   let ^} = a(Aj, Qj; 7\,... ,Tj-i).   The idea behind the proof is quite 

simple. Upon conditioning on J-),   we are left with expressions of the form 

for some functions g,h .  These expressions are then easily simplified using (2.2).  We now 

carry out the calculations. 

To prove (3.2), note that 

E[fs  ^H)G3dA3\F3)   =   E[fQK^S^dA\T3} 



=   ^Kj(s)P(Xj>s\^j)dA(s) 

F(fA[A,- + eJ-(r-si-i)] 

This proves (3.2). From this it follows that for i < j 

E[f    HjdMi j     H}'dMj\Fj]= I     H\dMi-E[j     E) dMj\Fj) = 0. 

This proves (3.3). To prove (3.4),  note that 

E[[T   HjdMj [T   Hj'dMjfä] 

=   ElNjWHliSj)!!}'{SAW 

- ElN^HjiSj) [TH< G^dAjl^} 

- E[Nj(T)H<(Sj) [THjGidAjW 
•JO 

rp rp 

-E[fQ  H&dAj^  HjGjdAjW (3.5) 

Now, 

EIN^H^H) (Si)\Fi\ 

=   P{X3 < (* A t) A [Ai + e,(T - 57_1)]|j;} 

i     F[(tAt')A(AJ + Q3(T-S^))} 
F(A3) 

r'K^FW)dA{s) (3-6) 
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and 

<J U 
/ 

=   E[J*M Kf(s)I{s <Xj<tA [A,- + 0,-CT - 5j_1)])^A(6)|^] 

=   J     Kj(s)P{s<Xj<tA[Aj + ej(T-Sj.1)}\Fj)dA(s) 

By symmetry, 

JO 

=   /J" Af (.)P-M - Fit A ^ °'(r ~ S^)])dA(s). (3.7) 

Finally, 

r /^-W-^MWtr-y,)])^ (3.8) 
Jo        3 F(Aj) 

=   E[f f Kj{s)Kj(u)I(Xj > s V u)dA{s)dA{u)\Fj\ 

=    r r KJ(S)KJ{U)P[XJ > s V u|^}]dA(s)dA(u) 
Jo Jo 

=   j[7.V(-)A?W^g^W^(-) 
+ /„'7';^"'^wSrfA(")<iAw 

=   rV^^'M^ + e^r-g,--,)])-^) 
7o       3 F(Aj) 

ftA*' TST< ^(tAJAj + e^T-S^-Fjs) 
Jo        J F(Ai) 

+ I     Kf(s)^-AA(s)dA(s). (3.9) 
F(A 
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Substituting (3.6),  (3.7),  (3.8),  and (3.9) into (3.5) we get 

E[[T   HjdMj fT   HJdMjfö] 

=    /     Kf(s)P[XJ>s\^][l-AHs)}dA(s) 

=   E[fQ
M Kj^(s)(l-AA(s))dA(s)\^} 

This proves (3.4) and,   thus,   completing the proof. <0> 

From this result we obtain the following expressions for the mean and covariance func- 

tions of M. 

Theorem 3.1 

EM =   EN- IEYdk =  0 (3.10) 

rtAi 
Cov(M(t)M(t))   =    /      EY(l-AA)dA (3.11) 

Jo 

Proof: From (3.1) and (3.2) it follows that 

EM = EJ2[T   Hj^)dMj{s) = 0. 

This proves (3.10).   To prove (3.11) we use equations (3.1), (3.3), and (3.4) to obtain the 

following 

E(M(t)M(t'))   =   EJ2 f   HjdMi f     H}'dMj 

t 

=   E ]T ftM KJAS](1 - AA)dA 
3 

rtAt 

=    /      EY(1 - AA)dA. 
Jo 
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This completes the proof. <£> 

4      The Estimator and Its Uniform Consistency 

Suppose that we observe n independent copies of the processes N and Y on a finite interval 

[0, T]. We will look at the problem of estimating F based on these observations. Throughout 

the rest of the paper, we will assume that (i)F(T) < 1 and (ii) F is IFR . Assumption (i) 

allows us to bound EY{t) away from zero uniformly on [0,T].   This is pivotal in proving 

uniform consistency of the estimator.   Define N(t) = sup{j > 1 : Sj < t}.   The random 

variable N(t) is the number of system failures by time t. Let N*(t) — sup{j > 1 : S* < t} 

where {SJ} is the minimal repair process based on F. Assumption (ii) gives us 

F(T + x) 
P(S£ — S*k_x > ajpjJLi =t)>     j?/j<\ 

for all k > 1 and t € [0, T]. It follows that the evaluation at time t of a renewal process having 

recurrence time distribution G(x) = 1 - F(T + x)/F(T) stochastically dominates N*(t) on 

[0,T] which in turn stochastically dominates N(t). (The counting process Ni stochastically 

dominates A^2 on [0,T] if P^C«) > n) > P(N2(t) > n) for all n and t € [0,T].) This 

guarantees that N(T) has finite moments of all orders. We will need this in proving weak 

convergence. 

Let Nn and Yn be the sum of the first n independent copies of N and Y, respectively. 

We note that from the viewpoint of a life-data model, dF(t)/(l — -F_(i)) represents the 

instantaneous failure rate at time t. A straightforward way of estimating this failure rate is 
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by using the ratio of the number of observed deaths at time t to the number at risk at time 

t. Hence, a natural estimator of the hazard function A is given by 

A"(f) = l -YT~ 

where Jn(t) = I(Yn(t) > 0) for t e (0,T]. The estimator An is referred to as the Aalen- 

Nelson estimator of A. Since F(t) = Jo(l - F-)dA , it is reasonable to require an estimator 

Fn of F to satisfy 

Fn{t) = [\l - FnJ)dkn. (4.1) 
Jo 

Equation (4.1) is sometimes referred to as a Volterra integral equation. Its solution is given 

by 

A(0 = IK1 -dk^)) = IK1 - AÄ«(s)) 
s<t s<t 

where IL«(1 ~ dkn(s)) denotes the product integral (see Gill and Johansen (1990)). 

The rest of the paper would now be devoted to a study of the large sample properties 

of Fn. Under a minimal repair assumption, the process M of Section 3 turns out to be 

a martingale. This enabled Hollander, Presnell, and Sethuraman (1992) to use martingale 

techniques in proving large sample results for the Whitaker-Samaniego estimator. For the 

general repair model, finding a suitable filtration with respect to which M is a martingale 

proves to be a formidable task. A lot of the difficulty is due to the fact that, in general, 

the Xj's are not monotonic. This makes the existing methods for computing a compensator 

inapplicable in the general case. One could try working with the failure process, say N, 

associated with the Sj's instead of the failure process N associated with the X/s. Since 

the Sj's are strictly increasing it would not be too hard to find the compensator of N. The 
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problem would then turn to transforming results on N into results on N. Unfortunately, we 

found this to be an equally formidable task. However, a closer look at Theorem 3.1 reveals 

that although M may not be a martingale with respect to the history of N, it, nevertheless, 

exhibits the same mean and covariance structure it would have if it were a martingale. 

Fortunately these features, in conjunction with techniques used by Gill (1980) for Markov 

renewal processes, are sufficient to prove large sample results. 

Since most of the distributions considered in reliability are continuous, we will assume 

throughout the rest of the paper that F is continuous. This will help us avoid unnecessary 

complications. This by no means limit our results to the continuous case. Most of our 

arguments carry over to the discontinuous case with very little, if any, modifications. 

The process Y can be written as the difference of two left-continuous increasing pro- 

cesses Y\, Yi defined by 

y1(t) = sup{j>l:Ai<<,5j_1<T} 

and 

Y2{t) = sup{; > 1 : Xj < t,Sj-i < T) 

where Xj = Xj A [Aj + Qj(T - Sj-i)]. Let YXn and Y2n be the sum of the first n independent 

realizations of Y\ and Y2,  respectively. Then the process Fn can be considered as the result 

of the three mappings 

(^^^\{^^_>kn^Pn (4.2) 

\ n     n      n J \ n     n J 

going through the spaces 

D[0,T] x ZL[0,T] x D_[0,r] —> D[Q,T] x D-[0,T] —► D[0,T] —> D[0,T}. 
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Under the supremum norm || • ||, the first mapping is clearly continuous. To show that the 

second mapping is continuous we use the following result. 

Lemma 4.1 Let N'n = Nn/n,Y^ = Yn/n and a = inf(0,T] EY{t) .  Then with probability 1 

W dEN 
EY 

< 
UV; - EYf0 • [ EN(T) + \\N'n - ENg 

a{a - UK - EY\\I) 

+l\\N'n-ENf0 a 
(4.3) 

for sufficiently large n. 

Proof: Since F{T) < 1 then P(5i > T) > 0. It follows that for t G (0,T] 

EY(t) > P(Y(t) > 0) > P{Y(T) > 0) > P(Si > T) > 0. 

Hence,  a > 0 and 

A»w-1, dEN dN' - dEN 

(o.t] EY 7(0,*]       EY       +J(o,t]\Y; 
Jn 1 

EY 
dN„ 

EY 
K(t)-EN(t)_r    {N>     EN)dU 

EY(t) 7(0,0V \E] 

/     iJ-       l  ' + EJV^ 

This implies that 

A"    1  EY 
T < -\\Y:-EY\\

T
O- 

o          a 

+ -\\K-EN\\ 
a 

.    \\Y:-EY\\t-[l 

r    d[(N'n-EN) + EN] 
y(o,] sy - (£y - K) 
r 

3JV(r) + |K - js?jv||g- ] 
~                      a(a — IIK-^llo") 

+ -||JVB-ÄJV||J.  <> 
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Now, by the Glivenko-Cantelli theorem 

max' 
N 

n 
^-EYi 
n 

^-EY2 
n 

0. 

From (4.3) and the continuity of the first mapping in (4.2), we get 

L-J dEN 

EY 
0  w.p. 1 . 

But from (3.10) with t € (0,T] 

L *dEN 

EY 
A(0 

Hence , 

|An - A||o —> 0 w.p. 1 as n —> oo (4.4) 

Uniform consistency now follows from (4.4) and the continuity of the product integral as 

shown in the next result. 

Theorem 4.1  \\Fn(t) - F{t)\\$ —»■ 0 w.p. 1 as n —> oo. 

Proof: Since kn(t) is increasing in t for each n and Än(T) -^> A(T) it follows that 

lim sup |An|((0, T]) < oo w.p. 1. This guarantees the continuity, under the supremum norm, 

of the last mapping on (4.2). (See Theorem 7 of Gill and Johansen (1990).) 0 

5      Results on Weak Convergence 

Define Zn = y/n[Fn — F]/F and the process Mn by 

Mn = Nn- JYndA. 
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Now, by Lemma 7.2.1 of Shorack and Wellner 

for all t€ (0,rj. Hence 

where Wn = n~1/2Mn. Note that from the CLT, the finite-dimensional distributions of Wn 

converge to that of a Gaussian process. This suggests that it might be possible to obtain a 

weak convergence result for Wn and, consequently,  for Zn in view of (5.1). 

Theorem 5.1 Let W be a zero mean Gaussian process with independent increments and 

variance function Var(W{t)) = J* EYdA. Then Wn =* W on D[0,T] . 

Proof: This theorem is analogous to that of Lemma 3 in Gill (1980) and is proved sim- 

ilarly. Note that Mn is the sum of n independent copies of the process M. That the 

finite-dimensional distributions of Wn converge to that of W follows from the CLT. It re- 

mains to prove tightness. To prove this it suffices to show that there exist a nondecreasing 

right-continuous function G and rj > 1/2 such that 

n-2E[(Mn(u) - Mn(t)f(Mn(t) - Mn(s))2} < (G(u) - G(t)Y(G(t) - G(a))" 

iovO<s<t<u<T (see Billingsley (1968) page 133). For notational convenience denote 

AstH = H(t) - H(s). Then 

n-2E(AtuMn ■ AstMn)
2   =   n~lE(AtuM ■ &stM)2 
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+ !LJ:E(AtuM)2E(AstMY 
n 

+ 2.
1?—±[E(AtuM-AstM)]2. 

n 

(5.2) 

Recall that N(t) = sup{; > 1 : Sj < t}. Let V = N + 1 and B > (1 - F{T))~l. Then 

E(AtuM-AstM)   =   0 (5.3) 

E(AtuM)2   =   fEYdk 

< B ■ EV(T) ■ (AtuF)a (5.4) 

for any t < u and 0 < a < 1. 

|AtuM-AsiM|   <   (AtuN-AstN) + (Jt
UYdA)(J*YdA) 

+ Aiuiv • /"' yd A + A,<JV • yu y^A 

< [(l + B)V(T)]2 (5.5) 

From (5.3) and Holder's inequality it follows that for aa = 1 - ßi <E (0,1) 

£(A«ttJV • AstiV) + £( jT YdA ■ J* YdA) 

=   E(AtuN ■ J* YdA) + E(AstN ■ jT YdA) 

< B-E(AtuN-V(T))(AstF) 

+ B ■ E(AstN ■ V(T))(AtuF) 

< B ■ [EV(T)1+1/ß"]ßl [E{AtuN)Y> (AsiF)ai 

+ B ■ [EV(T)1+1/ß^]ßl[E{AstN)r(AtuF)ai. 
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Now E(AtuN) < B ■ (EV(T))(AtuF) for t < u. Hence, 

E{\AtuM ■ AstM\) < Cx(AtuF ■ AstF)a> (5.6) 

for some constant Cx provided EV(T)1+1/ß^ < oo. From (5.5), (5.6), and Holder's inequality 

it follows that for some a2 = 1 - ßi € (0,1) and constant C2, 

E(AtuM ■ AstMf   =   E{\AtuM ■ AstM)\a>\AtuM ■ AstM)\1+ß>) 

< (1 + B)2+2ß> ■ (E\AtuM ■ AstM\)a2(EV(T)2+2^)ß' 

< C2(AtuF ■ AstF)a>a> (5.7) 

provided EV(T)2+2ß^ < oo. Since N(T) has finite moments we can choose ßx < 1/6 and 

ß2 < 2/5 so that axa2 > 1/2. Substituting (5.3), (5.4),  and (5.7) into (5.2), we get 

n~2E{AtuMn ■ AstMn)
2 < C ■ (AtuF ■ AstF)* 

for some constant C and rj > 1/2. This completes the proof. <> 

From the Skorohod-Dudley-Wichura theorem (see, e.g., Shorack and Wellner (1986) 

Theorem 2.3.4) there exist processes W'n and W' having the same distribution as Wn and 

W, respectively, such that 

where ps is the Skorohod metric on D[0, T}. In light of this, we will assume that we actually 

have ps{Wn, W) —> 0. To prove convergence results for Xn, however, we would be needing 

uniform convergence. If we can show that W has almost surely continuous paths then we 

would have uniform convergence since under such a condition the supremum norm distance 
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is equivalent to Skorohod distance. That W has almost surely continuous paths is shown in 

the next theorem. 

Theorem 5.2 \\Wn(t) - W(*)llo —* ° W-P- 1 as n —► oo. 

Proof: From Theorem 3.1 and Chebyshev's inequality, we get 

I f* EYdAl 
P{\M(t) - M(t0)\ >e)< l-^—2  -> 0 as \t - t0\ -► 0 

for each e > 0 and t0 € [0, T], i.e., M is stochastically continuous on [0, T). This implies that 

W has almost surely continuous sample paths (see Theorem 2 of Hahn (1978)). Hence the 

result. C" 

Remark: If F is not continuous then M may not be stochastically continuous. Hence, 

Theorem 5.2 may fail to hold. Fortunately, we can construct versions of Wn and W so that 

Theorem 5.2 holds for these versions. (See Lemma 4 in Gill (1980).) 

Theorem 5.3 Define Z(t) = jt
Q(EY)-ldW.  Then \\Zn - Z\\l —> 0 w.p. 1. 

Proof: Let Hn = (K-/F) ■ [nJn/Yn]-\ It follows from (5.1) that for t € (0,T], Zn(t) = 

/0* HndWn. The result now follows since \\Hn - {EY)~l \\T0 —► 0 w.p. 1 and \\Wn - W\\$ —» 

0 w.p. 1   (see Lemma 5 of Gill (1980)) . 0 

Now since the supremum norm distance is larger than the Skorohod distance, ps, it 

follows that ps(Zn, Z) —► 0 w.p. 1 . This gives us the following result. 

Theorem 5.4 Zn = ^/n{Fn - F)/F =» Z on D[0,T] . 
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Proof: See Corollary 2.3.1 of Shorack and Wellner (1986) . <> 

Corollary 5.1 Let B denote Brownian motion on [0, oo) and 

/•<   1        dF 

Then ^(Fn - F)/F =$► B{C) on D[0,T]. 

Proof:   Note that {W(t)}te[0<T] is a square integrable martingale with respect to Tt 

a(W(s) :s<t). Furthermore, it is easily checked that (W)t = /0* EYdA. Hence 

Cov{Z(s),Z{t))   =   E[Z{sAt))2 

=   E /    (EY)-2d(W) 
Jo 

JrsAt 
1    (EY)-1dA = C(sAt)  . 
o 

This proves the result. <) 

Corollary 5.2 Let B° denote a Brownian bridge on [0,1] and K = C/(l + C). Then 

V^j(Fn -F)=* B°{K) on D[0, T)   . 

Proof: Let 

B°(t) = (i-t).B(j±-t) for t e [0,K(T)}. 

The result follows immediately. <C> 
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6      A Hall-Wellner Type Confidence Band 

In this section we construct a confidence band for F similar to the bands of Hall and 

Wellner (1980) for the censored life-data model. We then present results of some simulation 

studies of the coverage probabilities of the band using repair models discussed in Section 2. 

For t in [0,T], define Ln(t) = I(Fn(t) < 1) and let 

r m - [* JnLn     d^n 

Define 

Knit) = 
Cn{t) 

1 + Cn(t) 

For t such that Fn(t) =  1 set Kn(t) =  1.    Then the result of Corollary 5.2 suggests a 

confidence band for F of the form 

Fn ± n-^2\QFn/Kn (6.1) 

where Aa is such that P{supt€[0il] \B°(t)\ < Xa} - 1 - a. This gives our band an asymptotic 

confidence level of at least 100(1 - a)%. To justify this band we need the following result. 

Lemma 6.1 \\Kn - K\\$ => 0 w.p. 1 . 

Proof: For te [0,T], 

\Cn{t)-C{t)\   < f 
Jo 

Jn-Ln 

[Yn/n.(l-Fn)     EY-(1-F) 
dFn 

+ IiiMbn^"-^ 
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Note that a = inft6(0,r] EY{t) > 0 (Lemma 5.1) and that supte(0iT] F(t) < F(T) < 1. These 

together with the uniform consistency of Yn/n and Fn implies that JnLn = 1 on (0,T) with 

probability 1 for sufficiently large n. Hence, with probability 1 

2 

\Cn(t)-C(t)\   < 
a-F(T)) 

\YJn-(l-Fn)-EY-(l-F)\\Z 

+ 1 

EY ■ (1 - F) 
\\Fn - F\\Z 

for sufficiently large n. Since Yn/n and Fn are uniformly consistent then so is Cn. The result 

follows. <) 

This leads to the next theorem which justifies our confidence band. 

Theorem 6.1 Vnf*(Fn - F) =* B°(K) on D[0,T] . 

Proof: The result follows from the identity 

V^J-^(Fn -F) = ^f (Fn -F) + 
■L   n F       F 1

 n 

■ {^(Fn -F)).0 

Remarks: 

(i) In practice, it may be the case that the data obtained leads to Fn(to) = 1 for some 

0 < t0 < T. When this happens, the data obtained gives us a confidence band only on the 

interval [0,a) where a = \ui{t <E [0,T] : Fn(t) = 1}. 

(ii) Let Ar(i),X(2),. • • ,A^(r) be the distinct ordered values of the A°s whose corresponding 

failure times are within [0,T]. Also, let 8j be the number of observations with value A^. 

Then for computational purposes we note that 
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h(t)= n fi    6* 
*<;)<* 

and 

XU)<t        >n(Aj)i'„(Ay)J 

We illustrate the band using examples from Section 2 and the gamma and Weibull 

distributions. For our first repair model we will use Kijima's Model II where the D/s are 

taken to be uniformly distributed on (0,1). The results of the simulation are shown on Table 

6.1 for the gamma distribution and on Table 6.3 for the Weibull distribution. For the gamma 

distribution we chose T = 10 and for the Weibull we chose T = 2. 

For the other repair model we will use the supplemented-life repair model with <dj = 

nj=i Di and the Dj's are uniformly distributed on (.8,1). We will refer to this as Model II. 

In the context of our interpretation of the extended life repair model, restricting the Dj's to 

be at least .8 restricts the increase in the expected remaining life to be at most 25% of the 

original. This seems to be a reasonable assumption, hence, the choice of the interval. The 

results of the simulation are shown on Table 6.2 for the gamma distribution and on Table 

6.4 for the Weibull distribution. We use the same value for T as in the case of Model I. 

All the results are based on 5,000 iterations of the simulation. To generate a sample for 

the case of a gamma distribution we make use of an algorithm by Dagpunar(1978) on sam- 

pling variates from a truncated gamma distribution. For the Weibull case, let Zj, Z2,..., Zr 

be a random sample from a standard exponential distribution. It is not difficult to see that 
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setting Xj = (A0? + Zj)1/a produces the desired repair process for a Weibull with parameter 

a under Model I and setting Xj = (Z1 + Z2 + • • • + Zjfla produces the desired repair process 

for Model II. To generate the exponentials we used the function REXP given by Marsaglia 

and Tsang (1984). 

In general, the simulation seems to indicate that the band performs well in both cases 

with as low as a sample size of 20 needed to get within 2% of the desired confidence level in 

the case of Model I. In the case of Model II, a sample size of 50 is sufficient in most cases to 

attain the same accuracy. The discrepancy is due mainly to the fact that, in view of the way 

the data are generated, there are more failure times per sample under Model I than there 

are under Model II. In most instances, the band performed better as F(T) moved further 

away from 1 (i.e, large values of a for gamma and small values for Weibull). This is expected 

because of the reliance of our large sample results on the assumption that F(T) < 1. In 

the gamma case, this could also be attributed to the low efficiency exhibited by the data 

generating process when obtaining variates close to the tails of the distribution. Finally, the 

results seem to indicate that a larger sample size is needed to attain the confidence level of 

Yo than it is to attain either a 90% or 95% confidence level. 
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Table 6.1.  Coverage Probabilities of 100p% Confidence Bands 

for Gamma(a) under Model I 

n p = .90 p = .95 p = .99 

a = 3.0 a = 5.0 a = 7.0 a = 3.0 a = 5.0 a = 7.0 a = 3.0 a = 5.0 a = 7.0 

10 .8808 .8990 .9080 .9242 .9356 .9520 .9704 .9766 .9844 

20 .8916 .9080 .9062 .9352 .9514 .9522 .9794 .9848 .9888 

30 .8900 .9056 .9074 .9366 .9494 .9516 .9808 .9852 .9870 

50 .8922 .9000 .9080 .9394 .9478 .9552 .9852 .9878 .9882 

100 .8988 .9058 .9002 .9464 .9504 .9474 .9864 .9874 .9888 

200 .8960 .9020 .9024 .9462 .9500 .9512 .9862 .9906 .9908 

Table 6.2.  Coverage Probabilities of 100p% Confidence Bands 

for Gamma(a) under Model II 

n p = .90 p = .95 p = .99 

a = 3.0 a = 5.0 a = 7.0 a = 3.0 a = 5.0 a = 7.0 a = 3.0 a = 5.0 a = 7.0 

10 .7406 .7936 .8478 .7944 .8448 .8974 .8732 .9134 .9506 

20 .8146 .8442 .8838 .8716 .9024 .9318 .9364 .9602 .9730 

30 .8454 .8722 .8914 .8988 .9158 .9368 .9568 .9714 .9780 

50 .8650 .8826 .9036 .9204 .9338 .9430 .9750 .9814 .9854 

100 .8878 .8920 .8934 .9390 .9444 .9480 .9850 .9852 .9898 

200 .8986 .8932 .9096 .9410 .9492 .9500 .9856 .9896 .9878 
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r        < )       fc 

Table 6.3.  Coverage Probabilities of 100p% Confidence Bands 

for Weibull(a) under Model I 

n p = .90 p = .95 p = .99 

a = 1.0 a= 1.5 a = 2.0 a= 1.0 a = 1.5 a = 2.0 a = 1.0 a = 1.5 a = 2.0 

10 .9044 .8934 .9018 .9452 .9400 .9406 .9792 .9774 .9770 

20 .8996 .8942 .9034 .9444 .9386 .9464 .9832 .9800 .9824 

30 .9038 .9010 .9042 .9460 .9474 .9458 .9872 .9862 .9840 

50 .8944 .8986 .9018 .9506 .9462 .9466 .9870 .9872 .9868 

100 .9056 .9042 .8998 .9482 .9474 .9472 .9890 .9874 .9880 

200 .9094 .9016 .9114 .9522 .9502 .9506 .9878 .9892 .9896 

Table 6.4. Coverage Probabilities of 100p% Confidence Bands 

for Weibull(a) under Model II 

n p = .90 p = .95 p = .99 

a = 1.0 a = 1.5 a = 2.0 a = 1.0 a = 1.5 a = 2.0 a = 1.0 a = 1.5 a = 2.0 

10 .8590 .8136 .7776 .9050 .8678 .8344 .9526 .9318 .9064 

20 .8816 .8562 .8398 .9254 .9110 .8950 .9732 .9634 .9524 

30 .8876 .8710 .8608 .9340 .9212 .9088 .9766 .9712 .9638 

50 .8972 .8858 .8736 .9416 .9342 .9250 .9838 .9766 .9780 

100 .9056 .8980 .8868 .9510 .9420 .9398 .9864 .9868 .9842 

200 .9104 .9110 .8938 .9546 .9468 .9470 .9888 .9888 .9886 
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