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Chapter 1 

Executive Summary 

In this report, we describe the accomplishments of a collaborative effort carried out 
by a team of researchers from the University of Massachusetts at Amherst (headed 
by V. Lesser), Boston University (headed by H. Nawab) and Syracuse University 
(headed by D. Weiner) on the development of a high-level adaptive signal processing 
architecture, called IPUS (Integrated Processing and Understanding of Signals). 

The IPUS architecture is a framework for next-generation signal-interpretation 
systems. Current systems have most often assumed that fixed signal processing in 
the front-end can provide adequate (not necessarily optimal) evidence for reliable in- 
terpretations regardless of the range of possible scenarios in the environment. In our 
opinion, this assumption is plausible for systems that monitor stable environments, 
but not for those that monitor complex environments. In these environments, the 
choice of front-end signal processing algorithms (SPAs) is crucial to the generation 
of adequate evidence for interpretation processes. Front-end SPA sets for complex 
environments must be dynamically modifiable to respond to scenario changes and 
to reprocess ambiguous or distorted data. The term "dynamically modifiable" refers 
both to the ability to change a particular SPA's control parameter values and to the 
ability to select entirely new sets of front-end SPAs. 

The long-term goals for the project set out in the contract were: 

• Refine IPUS architecture and control structure 

• Extend architecture to handle multiple sensor types 

• Investigate architecture's effectiveness: 

- increased knowledge base size 

- decreased signal/noise ratio 

- increased scenario complexity 

• Apply the signal re-processing architecture in statistical signal processing do- 
mains (e.g. radar and communications) 



• Determine architecture's ability to increase signal detection rate, keeping false 
alarm rate constant 

• Develop signal processing algorithms for radar detection within the reprocess- 
ing paradigm 

These goals were slightly modified as a result of meetings with Rome Lab represen- 
tatives and the principal investigators in the spring and early fall of 1992. It was 
decided that significantly more effort should be put into building a demonstrable 
IPUS radar testbed based on positive preliminary results with the sound under- 
standing testbed. Our investigations of the communication application were thus 
scaled back and less effort expended in the development of the generic architecture. 
As will be discussed in detail in the body of this report, we have met or exceeded 
our revised project goals. 

The following highlights the major accomplishments of the project. When we 
began this effort, there was little understanding by either the AI community or signal 
processing community of the importance of the IPUS framework. As a result of the 
efforts on this project, we have been able to implement in detail the architecture 
and demonstrate its operation in two complex signal processing application domains 
(radar and sound understanding). This has resulted in the acceptance of IPUS as 
a major new paradigm for complex signal interpretation tasks as indicated by the 
acceptance for publication of a paper describing the architecture in the AI Journal, a 
keynote address on IPUS in Japan, and the publication of over 27 articles describing 
different aspects of the architecture. Additionally, there were four Ph.D. theses 
published and there are number of other students in advanced stages of completion. 

The major experimental evaluation of IPUS has been in the sound understand- 
ing application involving the recognition of multiple, time-overlapping household 
sounds. This application was built on the IPUS generic testbed implemented in 
LISP. In developing this application, we have had to deal with issues of real-world 
data involving significant noise, multiple signal processing algorithms and techniques 
for the integration of their output, and complex control strategies for handling large 
libraries of sound sources. In supporting this application, we had to refine and gen- 
eralize the RESUN architecture which the IPUS generic testbed is built on. This 
involved the development of canonical evidence combination methods, negative ev- 
idence uncertainty in belief summaries, approximate knowledge representation and 
summarization, and efficient implementation and extension of event-based refocus- 
ing conditions. 

Based on the IPUS generic testbed architecture and RESUN architectures, we 
have been able to transfer IPUS technology from a LISP environment to a C++ 
environment for use in an IPUS Radar Clutter Analysis Testbed. Though not as well 
developed as the sound understanding application because of its newness, this radar 
testbed has still clearly demonstrated the potential of IPUS-like technologies for 
CFAR processing of radar returns. There has also been significant development of 



knowledge for weak signal detection. This knowledge has involved the application of 
the Ozturk algorithm to hypothesize the distribution of data in a clutter patch based 
on a small amount of data. Also, techniques have been developed for partitioning 
the radar surveillance volume into background noise and clutter patches, for weak 
signal detection in K-distributed clutter, and the efficient use of Rejection Theorem 
for Weibull clutter generation. Though the effort on the application of IPUS to the 
communication was given less priority, we still did some interesting theoretical work 
on weak signal detection in communication systems subject to SIRP interference. 

An unanticipated outgrowth of our work on IPUS has been the development 
and demonstration of approximate algorithms in signal processing domains and the 
beginnings of qualitative theory about IPUS usage. 

The remainder of this report documents these contributions in detail. The first 
section gives a detailed description of IPUS architecture and its implementation 
in the sound understanding domain. As part of this description, we describe an 
experimental evaluation showing the advantages of the signal reprocessing over a 
non-reprocessing version of the testbed. The second section discusses the C++ 
IPUS Radar Clutter Analysis Testbed with examples of how radar processing can 
be structured to exploit the IPUS architecture. The third section presents the radar 
knowledge appropriate for use in such a framework. The fourth section details ex- 
tensions to and generalizations of the RESUN architecture to support the IPUS 
framework for complex signal domains. As part of this report, we are also including 
a number of appendices that represent a further level of detailed discussion. Ap- 
pendix A lists all the publications associated with the project; Appendix B is a 
copy of the paper on IPUS that will be appearing in early 1995 in the AI Journal; 
Appendix C is a manual for use of the C++ radar testbed; Appendices D, E, F 
and G are theses from Syracuse University and represent work on the development 
of knowledge for the application of IPUS to statistical domains. Appendix D is 
R. Shah's MS thesis and discusses a new technique for distribution approximation 
of random data. Appendix E is M. Rangaswamy's Ph.D thesis which discusses 
spherically invariant random processes for use in radar clutter modeling, simulation 
and distribution identification. Appendix F is P. Chakravarthi's Ph.D thesis which 
discusses the issue of subclutter visibility in the context of weak signal detection. 
Finally, Appendix G is M. Slamani's Ph.D thesis which lays out a new approach 
to radar detection based on the partitioning and statistical characterization of the 
surveillance volume. 



Chapter 2 

Acoustic Interpretation Testbed 

2.1    Introduction 

This chapter summarizes the evolution of the generic IPUS testbed over the term 
of the contract. We present the framework's initial formulation and its initial im- 
plementation plans in Section 2.2, then describe changes and additions with respect 
to this formulation in Section 2.3. In Section 2.4 we discuss the design of an eval- 
uation experiment for the acoustic testbed and present the testbed's performance. 
We summarize our conclusions and future research directions in Section 2.5. Note 
that Appendix B contains an in-depth journal article on the IPUS architecture. 

2.2    Initial IPUS Conception 

2.2.1    Framework Philosophy 

The IPUS generic testbed is intended as a framework for next-generation signal- 
interpretation systems. Current systems have most often assumed that fixed signal 
processing in the front-end can provide adequate (not necessarily optimal) evidence 
for reliable interpretations regardless of the range of possible scenarios in the en- 
vironment. In our opinion, this assumption is plausible for systems that monitor 
stable environments, but not for those that monitor complex environments. In 
these environments, the choice of front-end signal processing algorithms (SPAs) is 
crucial to the generation of adequate evidence for interpretation processes. Param- 
eter values inappropriate to the current scenario can lead to a front-end providing 
misleading data correlates to its system's high-level interpretation components. In 
such circumstances the system might become unable to interpret entire classes of 
environmental events correctly. Front-end SPA sets for complex environments must 
be dynamically modifiable to respond to scenario changes and to reprocess ambigu- 
ous or distorted data. "Dynamically modifiable" refers both to the ability to change 



a particular SPA's control parameter values and to the ability to select entirely new 
sets of front-end SPAs. 

Our design of the framework IPUS concentrated on controlling the interaction 
between front-end SPAs and highlevel interpretation processes in a signal interpre- 
tation system. Specifically, in designing the IPUS paradigm we wanted to develop 
a framework that would 

1. enforce structured, bidirectional interaction between the search for front-ends 
appropriate to the scenario and the search for interpretations appropriate to 
data correlates produced by the front-ends. 

2. adapt processing strategies to the emerging interpretation of current data and 
to emerging expectations for future data, 

3. organize and apply formal signal processing knowledge to recover from uncer- 
tainty introduced by front-end numerical SPAs. 

Accordingly, the basic IPUS framework was specified to use an iterative process 
to converge to appropriate SPAs and interpretations. For each data block, the loop 
would start by processing the signal with an initial SPA configuration. These SPAs 
would be selected not only to identify and track the objects most likely to appear, 
but also to provide indications of when less likely or unknown objects have appeared. 
In the next loop step, a discrepancy detection process would test for discrepancies 
between the correlates of each SPA in the current configuration and expectations 
based on (1) object models, (2) the correlates of other SPAs in the configuration, 
and (3) application-domain signal characteristics. These comparisons could occur 
both after SPA output is generated and after interpretations are generated. If 
discrepancies were detected, a diagnosis process would then attempt to explain them 
in terms of a set of distortion hypotheses. This diagnosis would use the formal theory 
underlying the signal processing. The loop would end with a signal reprocessing 
stage that proposed and executed a search plan to find a new front-end (i.e. a 
set of SPAs) to eliminate or reduce the hypothesized distortions. After the loop's 
completion, if there were any similarly-rated competing top-level interpretations, a 
differential diagnosis process would select and execute a reprocessing plan to detect 
features that discriminated among the alternatives. 

Figure 2.1 summarizes the architecture. The dual search in the framework be- 
comes apparent with the following observations. Each time data is reprocessed, 
whether for disambiguation or distortion elimination, a new state in the SPA search 
space is tested for how well it eliminates distortions. The measurement of dis- 
tortion elimination or disambiguation assumes that the system's current state in 
the interpretation space matches the scenario being observed. Failure to remove 
a hypothesized distortion after a bounded search in the SPA space will lead to a 
new search in the interpretation space. This occurs because the diagnosis and re- 
processing results represent attempts at justifying the assumption that the current 
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Figure 2.1:  Generic IP US Architecture 

interpretation is correct. If either diagnosis or reprocessing fails, there is a strong 
likelihood that the current interpretation is not correct and a new search is required 
in the interpretation space. Furthermore, the results of failed reprocessing can con- 
strain the new interpretation search by eliminating from consideration objects with 
features that should have been found during the reprocessing. 

We intended IPUS-based systems to be able to manage the uncertainty levels 
of their interpretations. Therefore, we had to provide the architecture's control 
framework with a way to represent factors that affect interpretations' certainties. 
The control framework also had to support context-sensitive focusing on particular 
uncertainties in order to control engagement and interruption of the architecture's 
reprocessing loop. 

For these reasons, IPUS uses the RESUN framework to control knowledge source 
(KS) execution. This framework supports the view of interpretation as a process of 
gathering evidence to resolve hypotheses' sources of uncertainty (SOUs). It incor- 
porates a language for representing SOUs as structures which trigger the selection 
of appropriate interpretation strategies. Problem-solving is driven by information in 
the problem solving model, which is a summary of the current interpretations and the 
SOUs associated with each interpretation's supporting hypotheses. An incremen- 
tal, reactive planner maintains control using control plans and focusing heuristics. 
Control plans are Schemas that define the strategies available to the system for 
processing and interpreting data, and for resolving interpretation uncertainties. Fo- 

7 



cusing heuristics are context-sensitive tests to select SOUs to resolve and processing 
strategies to pursue. 

2.2.2    Testbed Implementation 

The IPUS-framework testbed was initially implemented as follows. A blackboard- 
based approach was used for storing and maintaining interpretation hypotheses and 
SPA results, though the traditional agenda-based balackboard control was replaced 
by RESUN. Front-end SPAs were specified within the RESUN control-plan language 
simply as parameterized primitive plans. When there was more than one possible 
SPA to apply (e.g., three available peak-picking SPAs), focusing heuristics consulted 
a system variable that determined which SPA was considered part of the current 
front-end, and with which parameter values it would be executed. 

The discrepancy detection component was implemented as a set of specialized 
KSs, each of which was executed after its particular front-end SPA had been applied. 
Based on the results of their discrepancy-detection tests, these KSs attached appro- 
priate SOUs to SPA outputs. The SOU would point to all outputs concerned in the 
discrepancy. SOUs related to conflicts between data and model-based expectations 
were generated by high-level interpretation KSs whenever the KSs failed to find 
data to support models' features. The discrepancy diagnosis component was im- 
plemented as a control plan that was executed when particular discrepancy-related 
SOUs occurred in the RESUN problem-solving model. It examined the hypotheses 
linked with discrepancy-related SOUs and generated a list of distortion diagnosis 
operators as an explanation for the discrepancy. The reprocessing component was 
implemented as a single control plan whose reprocessing subgoals were solved by 
other plans selected by focusing heuristics according to the distortion explanation. 
The differential diagnosis component was implemented similarly to the discrepancy 
diagnosis component. 

Figure 2.2 shows the initial seven abstraction levels used by the testbed to repre- 
sent signal data and acoustic interpretations. The lowest level was the segment level. 
A segment is a collection of waveform points to which some SPA will be applied. 
Time-domain statistics such as zero-crossing density, average energy, etc, are also 
maintained for segments. The second level consisted of spectral hypotheses derived 
for each segment through Fourier-Transform-based algorithms such as the STFT and 
Wigner-Distribution algorithms. The third level consisted of peak hypotheses de- 
rived for each spectrum. The fourth level consisted of contour hypotheses, which are 
group of peaks whose time indices, frequencies, and amplitudes represent a contour 
in the time-frequency-energy space with uniform frequency and energy behavior. 
The fifth level contained microstream hypotheses supported by a sequence of one 
or more contours. Each microstream has an energy pattern consisting of an attack 
region (signal onset), a steady region, and a decay (signal fadeout) region. Groups of 
microstreams synchronized according to time and/or other psychoacoustic criteria 
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such as harmonic frequency sets supported stream hypotheses in the sixth level. At 
the seventh level, sequences of stream hypotheses were interpreted as sound-source 
hypotheses. 

Time 

MICROSTREAM LEVEL 

JJJL+* fyhA 

SPECTRUM LEVEL 

.    A    A -> Peak E /VJ W\        Picker ->E tit 
Hz                                        Hi 

PEAK LEVEL 

f \ 

f     •"• -         «  •                 > 

••* .•••,f 

T LEVEL / SEGMEN 

Figure 2.2:  Original Testbed Evidence Abstractions. 

To support the posting of SOUs about behavioral expectations for sources, a 
grammar was used to represent the various kinds of stream combinations that could 
occur while a source is active. Three classes of stream combination were recognized 
and represented accordingly: 

• sequential events: (:SEQ expl exp2 ... expN) 

• simultaneous events: (:PARALLEL expl exp2 ... expN) 

• periodic events: (:ITER (min-iterations max-iterations) exp) 

where exp is a single event or another combination. 
The initial testbed's interpretation control strategy was strongly data-driven. For 

each data block the front-end SPAs were applied to ultimately produce contours. 
The contours were then used to hypothesize microstreams, which in turn were used 
to partially specify streams. These partial streams were used to generate source 
hypotheses. Verification of a source hypothsis consisted of finding contours that 
would support the source's remaining unsupported microstreams. 
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2.3    IPUS Framework Refinements and Extensions 

Several shortcomings in the original framework's formulation became apparent in 
the course of applying the testbed to the acoustic signal interpretation problem. 
The original IPUS architecture specification did not include the concept of re-use 
of reprocessing results, nor did it have a formal mechanism for fusing results from 
executions of SPAs with different parameter values. The process of adding SPAs to 
the testbed was found to be tedious and error-prone because it "spread out" SPA 
knowledge throughout the testbed files, instead of organizing it in one SPA declara- 
tion. We also found it necessary to modify the signal abstraction hierarchy and add 
approximate reasoning techniques to accomodate realworld sounds more effectively. 
The changes introduced by these shortcomings resulted in the architecture depicted 
in Figure 2.3. The next three subsections describe our approaches to the above 
problems. 

Problem Solving ModelJ)       ^^ 

Planner 
(Focusing Heuristics) 

(Control Plans) 

Figure 2.3: Current IPUS Acoustic Testbed. 

2.3.1    Processing Contexts and SPA Information 

In regard to the reprocessing, SPA-application, and data fusion issues, we found it 
necessary to extend the formal definition of SPAs to include the concept of conflict 
discrepancy-detection tests and to extend the generic framework's system code to 
generate and manipulate data structures for representing processing contexts, and 
context-mapping rules. 
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Conflict discrepancy-detection tests are a set of comparisons C defined onfxf, 
where T is the set of generic front-end SPAs available to the IPUS system. Each test 
represents a heuristic consistency check that can be made between correlates of one 
generic SPA's instances and correlates from another generic SPA's instances. These 
tests are based on signal processing theory and are used to indicate when one SPA 
instance might no longer be capturing all desired features from the environment. For 
example, one test from the IPUS acoustic testbed compares the energy fluctuations 
from a time-domain energy tracker with the appearance of new peak tracks in the 
output of an STFT. It is theoretically valid in the sense that it is based on the 
requirement by formal processing theory that time-domain signal energy must be 
conserved in the frequency-domain. It is heuristic in the sense that not all time- 
domain energy "bursts" are due to the appearance of new sounds; sometimes they 
arise from interactions among the currently-active sources. 

A processing context is a structure that stores relevant assumptions made by the 
IPUS system at the time a correlate was produced. In IPUS, every SPA correlate 
is tagged with a processing context. Specifically, the processing context contains: 

1. the correlate's parameter context. This is the generic SPA whose instance 
actually produced the correlate and the values the SPA instance's parameters 
had at the time the correlate was produced. 

2. the correlate's processing history. This is the chain of SPAs (with parameter 
values) that traces the creation of the correlate from the raw signal waveform. 

3. the problem-solving goals in effect when the correlate were produced. For 
example, the goal of reducing uncertainty resulting from alternative interpre- 
tations for the same data, or the goal of finding correlates for a particular 
frequency track of a particular source. 

4. the time period(s) for which the context is true. 

By themselves, processing contexts are useful for model synthesis in that the 
provide a history of how the environment signal was processed, and with what 
results. Thus, they can support efficient re-use of previous reprocessings' results. 
By including data-checks in the definitions of each reprocessing plan's subgoals, we 
made the testbed's reprocessing component capable of re-using previous results. By 
examining in these data-checks the parameter values and SPAs of previously-created 
processing contexts, the IPUS reprocessing component can avoid re-execution of any 
previously-executed reprocessing plan steps. In such cases the existing SPA results 
are retrieved and passed to the next plan step. In addition to strict parameter- 
value equality tests, the data-checks can also permit, when appropriate, re-use of 
correlates from processing contexts with tighter parameter values than those in the 
current proposed plan. 
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Processing contexts are most useful for model synthesis, however, in connection 
with context-mapping rules. Context-mapping rules are transformations defined on 
processing contexts. Each transform maps correlates computed by one instance of 
a generic SPA to their expected appearance if computed by a different instance 
of the SPA. The input to the transforms consists of observed correlates and their 
processing contexts, and the output is what correlates should appear under the 
new parameter context assuming the other information in the original processing 
context is valid. These transforms are useful in the IPUS reprocessing component 
in situations where correlates from two processings of the same signal must be 
compared to find evidence for a new object that is discernible only in the second 
processing's correlates. By mapping the context of the first processing into that 
of the second processing, we can eliminate from consideration those correlates in 
the second processing that correspond to previously-identified correlates in the first 
processing. 

In the latest IPUS acoustic interpretation testbed, SPA definitions have been 
extended to require hand-crafted context-mapping rules and discrepancy detection 
tests in addition to the code for the SPA proper. For example, the mapping rule 
for the STFT covers feature changes including the merging and splitting of peaks as 
frequency and/or temporal resolution changes and the magnitude fluctuations that 
peaks can undergo due to beat phenomena. The peak-picker SPAs' discrepancy 
detection tests compare new peaks' energy with fluctuations in time-domain SPAs' 
outputs. 

2.3.2    Approximate Processing 

Another testbed shortcoming was found when the testbed was applied to realworld 
sounds. The original sound understanding testbed was tested on synthetic narrow- 
band signals. When we tried to run realworld sounds through the testbed, testbed 
recognition rates suffered. The reason is that most real sources don't have clean fre- 
quency components. This can be because of wideband source components or because 
a source has closely- spaced harmonics. In either case, bottom-up spectral analysis 
of realworld acoustic scenarios produces band-limited peak "clouds" instead of clean 
peak tracks that can be unambiguously contoured. Effective bottom-up contouring 
is not possible in these situations. It is impossible to say which contours are present 
unless the contouring procedure is expectation-driven. Any other type of contouring 
would be misleading. Thus, we found it necessary to implement a new control strat- 
egy (called configuration /em C.2 and two new abstractions: noisebeds and spectral 
bands. We postpone discussion of noisebeds since we will use them as an example of 
how new knowledge can be added in a structured manner to IPUS-based systems. 

Spectral bands are supported by clusters of peaks detected in spectral analysis. 
They are hypotheses formed to indicate frequency-time regions of uniform spectral 
activity without regard to the narrowband constraints of contouring.   As will be 
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seen in the description of the new control strategy, the spectral bands' creation and 
subsequent analysis are examples of approximate processing, where only a rough 
estimate of data characteristics is produced first and later incrementally refined. 

The use of approximate knowledge allows us to have an early rough global view 
of the possible sources present in the scenario as oppose to the partial "exact" view 
of some of them provided by the original bottom-up contouring approach. Because 
of its rough-global-estimate nature, this view provides better support for differential 
diagnosis. A differential diagnosis process is most useful for discriminating among 
several similarly-rated rough hypotheses as opposed to discriminating between two 
differently-rated precise hypotheses. By the generation of early source expectations 
based on approximate knowledge, reprocessing needs may be detected right away, 
as soon as a source is selected for verification. 

A summarized description of the new control strategy loop is: 

1. apply SPAs to the input waveform (i.e. spectral analysis culminating in peak 
hypotheses generated by the peak-picker SPA from spectra produced by a 
Short-Time Fourier Transform SPA) and obtain spectral bands. 

2. identify a small group of possible sources based on all their components' over- 
laps with all observed bands. 

3. generate expectations for the components of the hypothesized sources. 

4. do focused contouring in narrowband regions of hypothesized sources to verify 
the component expectations. 

5. verify the component expectations. 

Whenever a contour is found to support a component, this new information about 
the source is propagated to the spectral band. This produces a refinement (narrow- 
ing, or at the least, removal of peaks) of the spectral bands, and recomputation of the 
explanation inferences associated with them. As result of this computation, some 
previously supported sources may not be supported any longer and some parts of 
the spectral bands may be labelled as unexplained, reflecting the fact that we missed 
some explanations (sources present in the scenario) in the initial approximate pro- 
cessing. One of the advantages of using approximate knowledge is a more focused 
search in the library of possible source models. Without approximate knowledge, 
the access to the library is based on single frequency components, because with- 
out expectations there is no way to join partial microstreams into streams. Many 
sources would map into a single frequency track. Each of these sources would have 
to be verified. However, with approximate knowledge the source library is indexed 
with all the frequency bands with energy in the scenario, obtaining the set of sources 
that map such a frequency picture. Top down "focused" contouring as oppose to 
"blind" bottom-up contouring can then be used. 
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2.3.3    IPUS Knowledge Engineering 

As we added new knowledge to the acoustic interpretation testbed, we realized our 
architectural goal of organizing signal processing theory for handling front-end cor- 
relates' uncertainty would require a formal methodology for adding signal processing 
knowledge to IPUS-based systems. 

We therefore developed a domain-independent framework that classifies signal 
processing knowledge into five classes: 

1. signal representation: knowledge in the form of concepts used to symbolically 
abstract signals, (e.g., data structures to peaks in a spectrum produced by a 
Fourier Transform algorithm) 

2. SPA/interpretation: knowledge in the form of signal processing algorithms 
or interpretation KSs. (e.g., varieties of peak-detection algorithms and how 
changes in their control parameters' values influence their identification of 
peaks, or methods for combining frequency components into streams.) 

3. discrepancy detection check: knowledge in the form of methods for making 
formal comparisons between an SPA's correlates and (1) other SPAs correlates, 
(2) environmental constraints, and (3) model-based expectations, (e.g. code 
for comparing time-domain signal energy with energy of frequency tracks in 
the output of a series of FFTs) 

4. diagnosis distortion modeling: knowledge in the form of distortion processes 
that can be introduced into an SPA's correlates due to inappropriate param- 
eter settings. These distortion models are used by the diagnosis component 
to explain discrepancies, (e.g. Assume that a short-time Fourier Transform 
(STFT) with an analysis window of length W is applied to a signal sampled 
at rate R. If the signal came from a scenario containing frequency tracks 
closer than R/W, Fourier theory predicts that the tracks will be merged in 
the STFT's computed correlates.) 

5. reprocessing strategy: knowledge in the form of generic processing strategies 
for removing distortions or disambiguating between competing alternative in- 
terpretations of a signal, (e.g. If a short-time Fourier Transform's (STFT) 
correlates are hypothesized to suffer from merged peaks due to low frequency 
resolution, then a generic strategy of gradually increasing the STFT's analysis- 
window parameter should reduce or remove the distortion.) 

The classes form a hierarchy. The addition of knowledge in a class with rank R 
will require the addition or adjustment of knowledge from the classes ranked after 
R. When users want to add knowledge to an IPUS-based system, they first identify 
the class of knowledge they plan to add, then use the hierarchy to identify additional 
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knowledge to be added or maintained. Finally, all the new knowledge is added in 
the order of the involved classes' ranks. Adherence to this order greatly facilitates 
the incremental debugging and testing of the new knowledge. 

Examination of a wide range of domains reveals two generic classes of correlates: 
point correlates and region correlates. A point correlate is a value associated with one 
point in the SPA output coordinate space. A region correlate is a value associated 
with a subset of the SPA output space. A spectral peak energy value in the "time, 
frequency, energy" space of acoustic signal processing is an example of a point 
correlate. A noise-distribution tag for a region in a radar sweep is an example of a 
region correlate. A track of spectral peaks over time from a series of FFT analyses 
is an example of a region correlate comprised of non-contiguous subsets of the SPAs' 
output space. 

We further subdivide the "discrepancy detection check" knowledge into tests for 
categories of discrepancies. The IPUS discrepancy-detection component's formal 
specification has been updated to require that discrepancy tests be classed as checks 
for one of the following generic discrepancies between an SPA's anticipated correlate 
set and its computed correlate set. The different domains of the examples we provide 
for each discrepancy are intended to indicate the discrepancy classes' generality. 

• missing: An anticipated correlate is not in the computed correlate set. An 
example of this discrepancy in the acoustic domain occurs when a spectral 
peak is expected in the output of an FFT, but is not found. 

• unassociated: An unanticipated correlate occurs in the computed correlate 
set. An example of this discrepancy in the radar domain occurs when an 
unanticipated clutter region is produced during a radar sweep. 

• value-shift: A correlate is found in the computed correlate set at its antici- 
pated coordinates, but with an unanticipated value. In the visual domain we 
encounter this discrepancy when an image region's hue label produced by an 
intensity analysis SPA is brighter than expected. 

• coordinate-shift: A correlate with an anticipated value is found in the com- 
puted correlate set but at unanticipated coordinates. This includes the sit- 
uation where a region's boundaries shift from their expected locations. An 
example of this discrepancy in the acoustic domain occurs when a track of 
spectral peaks produced by a curve-fitting algorithm has the correct energy 
value but is 30 Hz from its expected position. 

• merge: Two or more anticipated correlates are deemed to have appeared as 
one unanticipated correlate in the computed correlate set. The criteria for 
this merging are domain-specific and often depend on relationships between 
the missing correlates' values or coordinates and the unanticipated correlate's 
value or coordinates.   An example of this discrepancy in the visual domain 
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occurs when two adjacent regions with different expected textures are replaced 
by one region with an unanticipated texture. 

• fragmentation: An anticipated correlate is deemed to have been replaced by 
several unanticipated correlates in the computed correlate set. The criteria for 
this splitting are domain-specific and often depend on relationships between 
the missing correlate's values or coordinates and the unanticipated correlates' 
values or coordinates. An example of this discrepancy in the radar domain 
occurs when a noise-analysis SPA computes two or more small regions with 
a particular noise-distribution label instead of an expected single region with 
that label. 

For an example of how this knowledge engineering methodology works, consider 
the process in which we added the noisebed abstraction to the acoustic interpretation 
testbed. Noisebeds were intended to model wideband-energy spectral characteristics 
of realworld sources, and would be supported by a set of spectra on the basis of how 
closely the spectra features matched the noisebeds' feature-vectors. In their turn, 
noisebeds would serve as support for stream hypotheses of the realworld sounds. 

There four features used in the noisebed feature-vector. They are all generated 
from an 8x10 tiling of the first 0.2 seconds in the frequencyxtime spectral analysis 
during which the noisebed's sound source is suspected to be present. The noisebed 
features are defined as 

1. Center of gravity (i.e. average of frequency indices weighted by the spectral 
energy found in the indices' tiles) in the time slice containing the tile with 
maximum spectral energy over the entire tiling. 

2. Difference in energy between the maximum-energy tile and the tile with the 
same frequency index and the next-higher time index. 

3. Difference in energy between the maximum energy tile and the tile with the 
same time index and the next-higher frequency index. 

4. Difference in energy between the maximum energy tile and the tile with the 
same frequency index and the next-lower time index. 

Following our knowledge engineering scheme, we started to incorporate noisebeds 
into the testbed by first adding the noisebed abstraction. This involved defining 
blackboard units and accessor functions, and updating the source-model specifica- 
tion language to include the noisebed concept. 

The next step in the knowledge hierarchy, SPA/interpretation knowledge, re- 
quired us to specify and implement 1) KSs to group spectra and generate appropriately- 
initialized (e.g., correct SOUs, hypothesis-slot values, and feature values) noisebed 
hypotheses from them, 2) KSs to include noisebeds as support for streams, 3) func- 
tions to maintain the blackboard noisebed hypotheses' slot values for cases when 
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new evidence for the noisebed's source is found or when the noisebed's source is 
disbelieved, and 4) evidence combination functions for rating streams on the basis 
of their noisebeds' sous. 

To incorporate the noisebed-related knowledge from the third knowledge cate- 
gory, discrepancy checking, we added control plans that generated, whenever a new 
stream was hypothesized in a top-down manner, noisbed expectations in addition 
to the stream's expected microstreams. 

The distortion modelling class of knowledge required us to specify in focusing 
heuristics which SOUs on a noisebed hypothesis or in the problem solving model 
would trigger the discrepancy diagnosis control plan. We also had to add distor- 
tion operators to the diagnosis KS's operator database to describe the distortions 
we expected to occur with noisebeds. This included the noisebed-summing and 
noisebed-masking operators. The first applied to situations where the added en- 
ergy of an underlying noisebed would raise the observed energy of a microstream 
beyond its expected bounds. The second applied to situations where a low-energy 
microstream would be overwhelmed (masked) by the higher energy of a surrounding 
noisebed. 

The process of incorporating noisebeds into the IPUS framework culminated in 
identifying and adding knowledge from the reprocessing strategy knowledge class. 
This involved adding 1) differential diagnosis tests to avoid specifying goals that 
would require search for noisebed-masked features, 2) narrowband-filtering control 
plans, 3) wideband-filtering control plans. The second set of plans would be executed 
to eliminate narrowband microstream tracks from other sources that overlapped a 
noisebed just before reprocessed spectra were statistically analyzed to confirm the 
noisebed's existence. This was necessary since a source's noisebed statistical models 
were generated for the source in isolation; any extraneous tracks would unfavorably 
skew the statistical measurements. The third set of control plans would be used 
during reprocessing to remove noisebeds before searching for masked microstreams. 

2.4    Performance Analysis 

For an indication of the reprocessing architecture's usefulness in the acoustic domain, 
this section presents an experiment comparing the testbed's performance on a set 
of 30 scenario signals randomly generated from a library of 5 realworld sounds, with 
and without the reprocessing capability. In both cases, the same initial front-end 
SPAs and parameter settings were used throughout the suite. 

Figure 2.4 shows the library sounds, and Table 2.1 shows the initial parameter- 
settings of SPAs that could be used in reprocessing. The STFT parameter settings 
were selected to provide adequate time resolution to detect the Siren-Chirp's at- 
tack, and the peak-picking parameters were selected to suppress low-energy noise 
peaks along the chirp tracks that could interfere with accurate contouring of the 
chirp's peaks. 
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Figure 2.4: Library of real-world sounds used to generate the experiment's scenario suite. 

The 30 scenarios were generated according to the following protocol. For each 
scenario, the Burglar-Alarm, Siren-Chirp, and Phone-Ring had a 100% chance 
of occurring, and had their start-times uniformly distributed over the time range 
[0.04.0] seconds. These three sources' durations were selected for each scenario from 
a uniform distribution over the time ranges specified in Figure 2.4. The last two 
library sources, Car-Horn and Glass-Clink, had a 50% chance of occurring in each 
scenario. This reduced occurrence rate was used so that the scenario test suite 
would give an indication of the false-alarm rate for sources that could either be con- 
fused with others (i.e. Car-Horn and Phone-Ring) or could be overwhelmed by other 
sources that overlapped in time and frequency (i.e. Glass-Clink). Over all sce- 
narios, the relative source energies of Burglar-Alarm, Phone-Ring, and Car-Horn 
were kept at a 1.0:1.0:1.0 ratio, while Siren-Chirp was 1.2 times and Glass-Clink 
was 0.8 times as energetic as those three sources. Each scenario ended when its 
last source turned off. The minimum generated scenario length was 5.2 seconds, the 
maximum was 8.4 seconds. 

The testbed's distortion operator database had 6 distortion operators, and the 
testbed had reprocessing plans available for every conceivable combination of these 
distortions in a diagnosis explanation. The distortion operators and the distortions 
they modelled were: 
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Initial 
SPA Parameters Value 

Peak-Picker PEAK-NEIGHBORHOOD 2 
NOISE-PEAK-THRESHOLD 0.04 
PEAK-LIMIT-PER-SPECTRUM 6 

Short-Time Fourier ANALYSIS-WINDOW 256 
Transform FFT-SIZE 512 
(STFT) DECIMATION 256 

Table 2.1: Front-end SPAs and their initial parameter settings. PEAK-NEIGHBORHOOD 
is the number of fourier-transform energy sample-points on both sides of a candidate 
peak energy value that the value must be greater than in order to be considered a peak. 
NOISE-PEAK-THRESHOLD is the absolute minimimum energy value a fourier-transform 
sample-point must have in order to be considered a peak. PEAK-LIMIT-PER-SPECTRUM 
is the maximum number of peaks that can be returned from a single spectrum. DECIMA- 
TION is the separation between consecutive analysis window positions. 

• ENERGY-THRESHOLDING: a microstream's support was missing because 
the peak-picker SPA's energy threshold was too high. 

• PEAK-LIMITATION: a microstream's support was missing because the peak- 
picker SPA's peak limit was too low and the number of other microstreams 
was greater than the peak limit. 

• WIDE-PEAK-LOCALITY: a microstream's support was missing or only par- 
tially observed because the peak-picker SPA's peak neighborhood was too 
wide; moderate-energy peaks were overwhelmed by the energy of nearby high- 
energy peaks. 

• FREQUENCY-RESOLUTION: the STFT's analysis window was too short to 
generate spectra with adequate frequency resolution for discerning peaks for 
closely-spaced (or overlapping) microstreams. 

• BINWIDTH-RESOLUTION: the STFT's FFT length was too low to provide 
enough sample points of the spectrum for discerning the existence of peaks. 

• TIME-RESOLUTION: the STFT's decimation was too high to accurately 
track time-dependent changes in microstream frequencies or energies. 

For each scenario we compute a B-vector (Belief-vector) to measure the testbed's 
success at interpreting the scenario signal and the total time the testbed took to 
process the scenario. The ß-vector contains two numbers, a weighted average belief 
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for correctly-identified sources C and a weighted total belief for false-alarms F. 
These two values are defined as follows: 

C  =  5>(*/A)/W, (2-1) 
M 

F   =   Y,WilVi\ (2-2) 

where AT is the number of sources actually in the scenario and M is the number of 
false-alarm source identifications. The value b{ is the testbed's overall belief value 
associated with the i-th source, while di is the duration for which the z-th source 
was tracked in the scenario, Di is the actual duration of the source in the scenario, 
and D\ is the average duration length for the z-th source in the source database. 

2.4.1 Experiment Expectations 

The reprocessing capability was disabled by simply specifying no action for the SOUs 
that normally would trigger diagnosis and reprocessing. Because these SOUs are 
negative evidence against the existence of a source, we expect the non-rerocessing 
experiment runs to have lower average beliefs than those of the reprocessing experi- 
ment runs on the same scenarios. Reprocessing can possibly lead to "hallucinations," 
or situations where poor data is forced to support a source because a diagnostic 
explanation requires it. However, reprocessing can also lead to the resolution of 
ambiguities in source identification or more accurate source time-bounds. For these 
two reasons, there is no clear expectation for comparisons between false-alarm belief 
values between the two testbed versions. 

2.4.2 Experiment Results 

The scenario experiments were performed on a TI Explorer 11+ with garbage collec- 
tion disabled. All SPAs were implemented in LISP with error-checking code intact, 
hence FFT-based algorithms such as the STFT greatly increased the actual exe- 
cution times over real-time constraints. The average runtime for scenarios without 
reprocessing was 568 seconds, whereas the average runtime for the same scenarios 
with reprocessing was 655 seconds. On average, the reprocessing architecture re- 
quired 15.3% more time than the fixed-front-end approach. However, the average 
B-vector for reprocessing was < 0.67, 0.1 > while the average B-vector for the fixed 
front-end was < 0.48, 0.19 >, indicating that the reprocessing architecture generated 
more credible results and a lower belief in false-alarms than the fixed front-end. 

The false-alarms for the fixed front-end occurred primarily when spectral energy 
in the 400-500 Hz region was confused between Phone-Ring and Car-Horn when 
only one of the two were present. These errors were usually corrected in the repro- 
cessing testbed's reprocessing search for Car-Horn's 700 Hz track or in the testbed's 

20 



reprocessing search in the 400-500 Hz range with greater STFT settings for greater 
frequency resolution. The reprocessing testbed's false-alarms occurred primarily 
when time-domain energy Auctions due to sources turning on or off at times sepa- 
rated by less than 0.3 seconds were confused with the Glass-Clink source. 

The higher average belief in successful recognitions for the reprocessing testbed 
can be attributed primarily to tighter bounds on the sources' start- and end-times 
attained by reprocessing moderately-wide time-regions where the endpoints were 
suspected. A secondary reason for the higher belief is due to the reprocessing 
testbed's searches for low-energy source-components (microstreams) that were lost 
due to energy-thresholding. 

2.5    Summary 
Our work in applying the IPUS architecture to the problem of interpreting real-world 
acoustic scenarios had to deal with issues of real-world data involving significant 
noise, multiple signal processing algorithms and techniques for the integration of 
their output, and complex control strategies for handling overlapping and similar 

sounds. 
This emphasis on real-world usage resulted in three general extensions to the 

architecture: 

• a "processing context"-based framework to support the integration of output 
from signal processing algorithms with different parameter settings, 

• the addition of approximate-processing techniques to constrain combinatorial 
search for interpretations of initial, bottom-up front-end processing results, 

and 

• a theory of knowledge engineering for structuring the addition of signal pro- 
cessing knowledge to IPUS-based systems. 

Our work has also resulted in an initial evaluation process based on B-vectors for 
analyzing the utility of reprocessing and the importance of modelling various dis- 
tortions in diagnostic distortion operators. 

There are two categories of topics for future investigation in the IPUS project: 
domain-independent architectural enhancements or software tools, and acoustic- 
domain modelling approaches. The first category includes: 

• development of a framework for estimating the amount of reprocessing required 
in an environment, given the available SPAs and the occurrence rates of objects 
in the environment; 

• specification of a domain-indendent language of higher level than LISP for 
expressing RESUN focusing-heuristic tests; 
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• development of a framework for identifying which possible data correlate dis- 
tortions should be modelled. 

The second category of future-work topics includes: 

• expansion of the acoustic evidence hierarchy to include expectation knowledge 
from higher levels than sequential streams, such as acoustic scripts; 

• evaluation of various psychoacoustic theories of acoustic streaming (e.g. the 
grouping of energies at different frequencies and times into patterns represent- 
ing sources); 

• determination of the testbed's performance as the acoustic database grows 
from tens to hundreds of sound models; 

• identification and development of more approximate processing signal process- 
ing algorithms for streaming. 
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Chapter 3 

Radar Clutter Analysis Testbed 

3.1     Introduction 

A major issue addressed in our research concerns the applicability of the IPUS 
architecture to problems requiring sophisticated processing and interpretation of 
radar signals. This investigation was motivated by the fact that radar signals are 
highly non-stationary and therefore require sophisticated interleaving between sig- 
nal processing and signal interpretation. Our exploration was carried out through 
the development of a IPUS software system for the radar application. This system 
was implemented in a C++ environment in order to facilitate the numerically in- 
tensive computations associated with radar signal processing.1 The implementation 
of IPUS in a different computer language (C++ instead of LISP) also provided us 
the opportunity to assess the architecture's portability, and to examine associated 
software engineering issues. Our success in achieving these various goals is reflected 
by the following major accomplishments: 

• Development of a C++ platform for creating IPUS-based application systems. 
The platform is accompanied by a detailed user manual. (See Appendix C) 

• Implementation of a radar clutter analysis testbed (CAT) on the C++ IPUS 
platform. The CAT system utilizes the radar knowledge developed at Syracuse 
University. 

• Implementation of an X-Windows based user interface for the radar applica- 
tion. The interface can be used to display the contents of the blackboard, the 
problem solving model and a list of triggered knowledge sources. 

On the basis of these accomplishments, which we shall shortly discuss in detail, we 
have concluded that the applicability of IPUS to radar problems has been success- 

1The original LISP based platform for the Sound Understanding Testbed was inefficient with 
respect to numerically intensive computation. 
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fully demonstrated. In particular, the results obtained justify further exploration of 
radar problems using the IPUS tools developed in our research. 

In order to gain further insight into the design of the C++ IPUS platform, the 
CAT system, and the user interface, it is necessary to have a certain degree of 
familiarity with the basics of radar clutter analysis and with the fundamentals of 
the IPUS architecture. An outline of this background information is presented in 
Section 2 for clutter analysis and in Section 3 for the IPUS related material. In 
Section 4, we describe the C++ IPUS platform. Our description of the CAT System 
is given in Section 5. The user interface is described in Section 6. Finally, in 
Section 7 we present a summary of our conclusions regarding the potential benefits 
of the three major software tools developed in the course of our radar-related IPUS 
research. 

3.2    Background on Radar Problem 

The IPUS-based CAT system was developed for experimentation with the knowledge- 
based analysis of data received by a non-imaging radar [4]. The operation of such 
a radar involves the transmission of pulses and the reception of pulse reflections 
for the localization of objects in the environment being scanned. This localization 
may, for example, be performed with respect to a partitioned range-azimuth plane. 
Each partitioned portion of the plane is referred to as a cell. The goal of the entire 
radar system is to detect targets of interest to within the resolution of a cell. Re- 
flected pulses are processed by the front-end electronics of the radar to assign energy 
values (called returns) to the various cells. Each return always has a contribution 
due to the electronic noise of the radar. Furthermore, it may have contributions 
due to reflections from objects which fall within the range-azimuth region defined 
by the cell. These objects are generally classified into two categories: target and 
background. Each target (such as an airplane) is assumed to be smaller than the 
resolution of an individual cell; the reflection from a target is said to give rise to the 
target component of a return. Each background object (a mountain, a forest, a city 
skyline, etc.) is assumed to be large enough to cover a multitude of contiguous cells; 
the reflections from such an object are said to give rise to the clutter components of 
the returns. All the contiguous cells whose returns are affected by the same back- 
ground object (with uniform reflection properties) are said to constitute a clutter 
subregion. If the reflection properties of the background object are essentially the 
same throughout its spatial extent, the corresponding clutter subregion is said to 
be homogeneous. However, one also encounters non-stationary characteristics in the 
form of inhomogeneities within a clutter region. The objective of the CAT system 
is to analyze a given set of range-azimuth returns in order to: 

• estimate the boundary of each homogeneous subregion of clutter. 
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• characterize the statistical distribution of the returns in each homogeneous 
subregion of clutter. 

As shown by researchers at Syracuse University [5], the above tasks require so- 
phisticated use of a variety of signal processing algorithms. In particular, it appears 
that the IPUS strategies of discrepancy detection, discrepancy diagnosis and sig- 
nal reprocessing provide a suitable framework for accomplishing the clutter analysis 
task. Indeed, as we shall illustrate in later sections, we have successfully incor- 
porated into the IPUS-based CAT system the algorithms developed at Syracuse 
University for dealing with various aspects of the clutter analysis problem. In order 
to examine further details of the CAT system, it is necessary to be familiar with 
IPUS concepts outlined in the next section. 

3.3    Background on IPUS 

Familiarity with some fundamental IPUS concepts is necessary for appreciating the 
discussions in later sections on the C++ IPUS platform and the CAT system. A 
brief outline of these IPUS concepts is presented in this section. More detailed 
discussions may be found elsewhere [1]. 

The IPUS architecture provides a sophisticated framework for interleaving signal 
processing with search and inference processes. The problem solving in an IPUS- 
based system takes place on a data blackboard which is operated upon by a variety 
of so-called knowledge sources (KSs). The blackboard is organized into a hierar- 
chy of data levels, each designed to hold hypotheses of a particular type generated 
during the problem solving process. Each knowledge source is a computer program 
designed to carry out a certain type of processing, provided the blackboard contains 
data which satisfies "triggering conditions" relevant to that KS. Examples of KSs 
include signal processing algorithms as well as various procedures for performing 
search and inferencing tasks. The invocation of KSs takes place at the behest of 
a control sub-system, which consequently serves as the primary means for accom- 
plishing the interleaving of different tasks. In the IPUS approach to the analysis of 
non-stationary signals, the tasks to be interleaved fall into eight broad categories 
(see Figure 3.1). Some KSs are reserved for the initial processing of signal data when 
it first arrives in the system. The pattern analysis task refers to the extraction of 
syntactic patterns in the output data from signal processing KSs. If a particular 
data pattern partially matches one of the stored models, it may then be necessary 
to search for further evidence to support the retrieved model. In some situations 
this can give rise to the need for using a different algorithm to carry out a mapping 
that was performed during the initial processing of the signal data. Yet another 
role for signal reprocessing arises in the context of the discrepancy detection task 
associated with the IPUS approach. In its most general form discrepancy detection 
refers to the search for inconsistencies between data placed on the blackboard by 
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Figure 3.1: Interleaving of different categories of tasks in the IPUS approach for 
integrated processing and understanding of signals. 

different KSs. The diagnosis task in the IPUS approach utilizes the knowledge of 
signal processing theory in order to diagnose the causes for any detected discrepan- 
cies. Consequently, the system may propose a reprocessing plan for the appropriate 
analysis of the non-stationary signal. The execution of such a reprocessing plan is 
yet another example of the role that signal reprocessing can play in knowledge-based 
systems with embedded signal processing. 

When formulating signal processing algorithms to be embedded in a knowledge- 
based system, a signal processing expert also needs to devise control strategies for 
achieving application-specific objectives with the aid of those algorithms. Such 
strategies have to specify how to use KSs for signal processing and other tasks in 
order to achieve specific objectives which may arise in the given application. In 
the IPUS architecture, such strategies are specified through the RESUN control 
framework2 [2]. This framework permits the specification of a particular control 
strategy in terms of a hierarchy of subgoals interleaved with the actions necessary 
for achieving them. The specification of the actions necessary to pursue a particular 
subgoal may include the generation of lower level subgoals as well as the utilization 
of specific KSs for processing blackboard data. The generation of subgoals may 
include a specification for carrying them out in a particular sequential order, and 
conditions for pursuing certain subgoals. 

2RESUN stands for REsolving Sources of UNcertainty. 
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As shown in this section, the IPUS architecture is suitable for the analysis of 
non-stationary signals. In later sections we illustrate this idea through the analysis 
of non-stationary radar signals using the IPUS-based CAT system. In order to 
examine the details of the CAT system, it is necessary to be familiar with the C++ 
IPUS platform on which the testbed is implemented. The next section outlines the 
major features of the C++ IPUS platform. 

3.4    C++ IPUS Platform 
The C++ IPUS platform provides a convenient facility for developing IPUS appli- 
cations. In particular, it can be used to construct blackboard data bases, associated 
knowledge sources, and RESUN control mechanisms (problem solving models, hy- 
potheses, control plans, etc.). The reader is referred to Appendix C for a more 
detailed description of the platform. In this section, we describe salient features of 
the C++ platform and how they facilitate the development of application systems. 

Selection of the C++ environment for the platform was based on four major fac- 
tors. First, in contrast to the LISP environment of the original IPUS platform, C++ 
generally enables very efficient implementations of the numerically intensive compu- 
tations found in radar applications. Secondly, the C++ platform serves to illustrate 
that the IPUS architecture specifications have evolved to a level that permits rapid 
implementation in new software environments. Thirdly, the C++ language brings 
enables the use of the powerful object-oriented programming paradigm for the de- 
sign and construction of organized and extensible software systems. And lastly, C++ 
promises an extremely high level of cross-platform portability due to the ongoing 
standardization effort coordinated by the American National Standards Institute. 

From the viewpoint of the designer of an IPUS application (such as the clut- 
ter analysis testbed) the C++ IPUS platform provides a library of base classes of 
objects from which concrete classes may be derived. The objects are implemented 
as C++ classes and take advantage of the language features of inheritance, poly- 
morphism, encapsulation, and information hiding. In our platform, base classes 
are provided for blackboard, hypothesis, problem solving model (PSM), source of 
uncertainty (SOU), plan, subgoal, and refocus unit objects. These classes embody 
high-level abstractions of the objects that they represent. To create an instance of 
an abstract base class, a new concrete class must be derived from the base class 
and definitions provided for its required slots and methods. The process of deriving 
concrete classes is greatly assisted in the platform by the provision of the IPUScript 
scripting language, which is based on the macro facility of the C++ pre-processor. 

A real test of the C++ platform lies in its use for the successful implementation 
of a radar application. Toward this end, we have implemented the clutter analysis 
testbed, which utilizes various algorithms and associated radar knowledge developed 
by our collaborators at Syracuse University. One of the algorithms [6] was only 
available in the form of a FORTRAN program.   Our design of the C++ platform 
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enabled the use of this FORTRAN program in the testbed. In addition to developing 
the CAT system on the IPUS platform, we implemented an X-Windows based user 
interface for displaying various intermediate results and final answers produced by 
the testbed. The CAT system is described in the next section which is then followed 
by a section on the user interface. 

3.5    Clutter Analysis Testbed 

The clutter analysis testbed (CAT) serves to demonstrate how the C++ IPUS plat- 
form can be used to build applications involving complex signal understanding tasks. 
We use the term "testbed" because the development of an application on an IPUS 
platform can proceed incrementally. That is, the application developer can exper- 
iment with different knowledge sources and control plans to study the effects on 
the overall problem solving. Furthermore, at any given stage of development an 
IPUS testbed produces hypotheses and answers which have their respective SOUs 
attached to them. The developer has the option to add further knowledge to the 
system in order to deal with those SOUs. With this in mind, we emphasize that 
while the CAT system can current perform certain interesting clutter analysis tasks, 
its knowledge base may be conveniently expanded to improve its performance and to 
extend the range of tasks it can handle.3 In order to illustrate the current status of 
the system, we will discuss the CAT blackboard in Section 5.1, the CAT knowledge 
base in Section 5.2, and the CAT control strategies in Section 5.3. 

3.5.1    Blackboard Organization 

Data generated during the operation of the CAT system is stored on a blackboard 
with four information levels. Figure 3.2 shows a pictorial illustration of the black- 
board organization utilized in the CAT system. The return level on the blackboard 
is used to record the numerical value of the return obtained by the radar's front-end 
electronics for each cell in the range-azimuth plane in the form of a two dimensional 
array. At the next level, a map hypothesis is formed. This type of hypothesis is 
used to describe various properties of each cell's return with respect to the returns in 
surrounding cells. At the region level, hypotheses are formed to describe groupings 
of contiguous cells with similar map level properties. The patch level on the black- 
board is used to record interpretations of the data at the region level. For example, 
clutter subregions may be associated with specific types of backgrounds (forest, city 
skyline, mountain range, etc.). 

Each hypothesis on the blackboard is represented in terms of a number of slots 
for recording its attributes.  A hypothesis includes control slots and property slots. 

3 The current capabilities of the CAT system have been illustrated in an on-line demonstration 
at Rome Laboratories. 
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PATCH LEVEL 

REGION LEVEL 

MAP LEVEL 

RETURN LEVEL 

Figure 3.2: The blackboard organization in the Clutter Analysis Testbed. 

Control slots are common to hypotheses at all blackboard levels. They are, for 
example, used to record the name of the KS responsible for posting a hypothesis 
on the blackboard. The property slots are generally level-dependent. Their purpose 
is to record application-specific properties of the corresponding hypothesis. In the 
following discussion of hypotheses at different levels of the CAT blackboard we focus 
our attention on property slots. 

The structure of the hypothesis at the return level is shown in Figure 3.3. As 
illustrated in the figure it contains a two dimensional array of the size of the range- 
azimuth plane. Each index of the data array is used to store the value of the return 
obtained by the radar's front-end electronics for the corresponding cell. 

<RETURN> 
data[rangelndex][azimuthlndex] numerical value 

Figure 3.3: The structure for return hypotheses. 

The second level contains map hypotheses which are used to store information 
about the category and statistical characterization of the returns. Figure 3.4 illus- 
trates the structure of a map hypothesis which contains a two dimensional array, 
named type, of the size of the range-azimuth plane. Each index of the array is used 
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to record the category of the return for the corresponding cell. The possible values 
for this slot are clutter and clear. The clutter category indicates that the return is 
primarily due to a background object. The clear category indicates that the return 
contains primarily electronic noise and/or target components. The value of a return 
due to a target may be comparable to the value of a return due to a background 
object. However, returns due to targets tend to be confined in a few isolated cells in 
contrast to returns due to clutter which extend over several contiguous cells. This 
fact is used as a distinguishing factor between returns due to targets and returns due 
to clutter. The uStatistic and the vStatistic slots are used to store information 
obtained through a statistical analysis for a group of returns that are in the vicinity 
of the specified cell and that have the same category (clutter or clear) as the category 
of the return in the specified cell. The information about the group of returns used 
in the analysis is recorded in the ref Cells slot. The dist slot includes information 
about the probability density functions that characterize the returns in this group 
of returns. All slots are in the form of a two dimensional array as explained for the 
type slot earlier. 

<MAP> 
type[rangelndex][azimuthlndex]   :     clutter or clear 
uStatistic[rangelndex][azimuthlndex]   :     0.00023 
vStatistic[rangelndex][azimuthlndex]    :     0.33678 
dist[rangelndex][azimuthlndex]   :     ((pdfl.pdf1-parameters), 

(pdf2,pdf2-parameters),...) 
refCells[rangelndex][azimutlndex]   :(Index(32,44),   Index(32,45),...) 

Figure 3.4: The structure for a map hypothesis . 

The region hypotheses are placed at the third level of the blackboard hierar- 
chy. These hypotheses describe clutter regions formed in the range-azimuth plane. 
A clutter region may include subregions within it. A subregion is defined by the 
property that it includes returns with homogeneous statistical characteristics. Fig- 
ure 3.5 illustrates the structure used for region hypotheses. The set of cells that are 
grouped to form a clutter region are recorded in two ways. The RAPlane slot is in 
the form of a two dimensional array, whereas the cellList slot contains the list of 
cell indices included in the region. Statistical information obtained for the returns 
within the entire clutter region are recorded in the regUstat and the regVstat slots. 
The regDist slot includes information about the probability density functions that 
characterize the returns within the region. The tileList slot is used to specify 
the statistical characterizations obtained for a set of partitioned portions within the 
region. We consider only those partitioned portions which are completely within the 
region and refer to each of them as a tile. Each is represented by an object describing 
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the locations and the statistical characteristics of the tile. The subRegionList slot 
specifies those portions of the clutter region where the returns have homogeneous 
statistical characteristics. The structure used for a subregion is essentially the same 
as the structure of a region hypothesis. The boundaryList and boundaryCells 
slots specify boundaries between different subregions in terms of boundary tiles and 
cells respectively. 

<REGI0N:1> 
cellList:     (Index(20,31),   Index(20,32),   ...) 
RAPlane[rangelndex][azimuthlndex]   :     1 
regUStat:     0.00067 
regVStat:     0.32288 
regDist:     ((pdf1,pdf1-parameters), 

(pdf2,pdf2-parameters),...) 
tileList:     (Index(2,3),   Index(2,4),   ...) 
subRegionList:     (subregionl,   subregion2,   ...) 
boundaryList:     (boundaryl,   boundary2,   ...) 
boundaryCells:     (Index(35,47),   Index(35,48),   ...) 

Figure 3.5: The structure for a region hypothesis. 

At the highest level of the blackboard are the patch hypotheses. Figure 3.6 
illustrates the representation used for such hypotheses. Patches may be viewed as 
descriptions of various subregions in region hypotheses in terms of objects in the 
environment. The name slot specifies the type of object, such as a mountain, a forest, 
etc., that gives rise to the clutter patch. The patchDist slot in the representation 
indicates the probability density functions that characterize the returns within the 
patch. The cellList slot is used to record the boundary of a patch in terms of a 
list of cells as represented by (range,azimuth) pairs. 

<PATCH:1> 
patchDist:     ((pdf1,pdf1-parameters,distancel), 

(pdf2,pdf2-parameters,distance2),...) 
cellList:(Index(35,47),   Index(35,48),   ...) 
name:     ocean,  mountain,  forest,   etc. 

Figure 3.6: The structure for a patch hypothesis. 

Hypotheses such as those at the patch level can be operated upon by knowledge 
sources (KSs). The contents of these KSs embody the knowledge in the CAT system. 
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3.5.2    Knowledge Base 

The current state of the CAT knowledge base was dictated by our desire to have the 
system perform two important clutter analysis tasks. These tasks and their associ- 
ated knowledge were largely developed by the researchers at Syracuse University [5]. 
The development of the CAT system required incorporation of that knowledge into 
the appropriate IPUS components. A description of that knowledge and its relation- 
ship to various IPUS components is best presented in two parts, each corresponding 
to a different clutter analysis task. 

Task 1 

An important clutter analysis task is to separate clutter regions from clear (back- 
ground noise only) regions. Typically, clutter regions have greater average power 
than clear regions. However, since the returns in each type of region are probabilis- 
tically distributed, some of the returns deviate significantly from the corresponding 
mean. For example, within a clutter region one often finds isolated returns whose 
values are well below the clutter mean and comparable to many of the returns in the 
clear regions. Conversely, within the clear region there can be many isolated values 
which are well above the noise mean and comparable to many of the returns in the 
clutter region. To address this problem the researchers at Syracuse University have 
developed an iterative algorithm [5]. We have broken down the algorithm in terms 
of the IPUS processing loop of initial processing, discrepancy detection, discrepancy 
diagnosis and reprocessing. The problem solution in the testbed consists of five 
major phases: 

• Initial Processing: This phase requires sorting of the returns by their magni- 
tudes. The returns are then labeled as clutter or clear based on an expected 
percentage of noise returns. For example, if 10 percent of the returns are 
expected to be noise only, then after sorting, the bottom 10 percent of the 
returns are declared to be clear. The top 90 percent are classified as clutter. 

• Discrepancy Detection: The objective of this phase is to to determine if there 
are any discrepant noise or clutter cells. A cell is declared discrepant if a 
sufficient number of its neighbors belong to the opposite category. 

• Discrepancy Diagnosis: The discrepancy diagnosis is performed to determine 
if the discrepant cells have been simply mislabled or if they may have arisen 
due to an incorrect assumption about the percentage of noise cells in the entire 
range-azimuth plane. 

• Reprocessing Planning: If the diagnosis is that the discrepant cells are simply 
a result of mislabeling, relabeling of the cells is planned. Otherwise, a knowl- 
edge base of rules is used to decide how to adjust the assumed percentage of 
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noise cells. The rules are also used to produce recommendations regarding 
the number of neighboring cells to be examined for identifying each discrepant 
clutter or noise cell. 

• Reprocessing: The reprocessing plan is carried out, to be followed once again 
by discrepancy detection and, if need be, by discrepancy diagnosis and further 
reprocessing planning. 

The task of separating clutter and clear regions is a good but simple illustration 
of incorporating problem solving knowledge in the IPUS paradigm. The algorithm 
described above has been successfully implemented in the CAT system. The sepa- 
ration of clutter and clear regions is typically achieved in four to six iterations. In 
Section 5.3, we describe the control strategy built into the testbed for this task. In 
the following section we consider the knowledge base included in the CAT system 
for a significantly more complex clutter analysis task. 

Task 2 

Another component of the knowledge base in the CAT system concerns the task of 
separating homogeneous subregions within hypothesized clutter regions. In partic- 
ular, we focus upon the case where the boundary between two homogeneous regions 
is at an approximately constant range over a wide sector of azimuth angles. We will 
refer to such a boundary as a constant-range boundary. The difficulty here is that 
while knowledge of the boundary is necessary for verifying the homogeneity for the 
regions on either side, knowledge about the homogeneity characteristics is neces- 
sary for determining the boundary. This suggests the desirability of an approach in 
which initial processing for an approximate localization of the boundary is followed 
by knowledge-based reprocessing for refining the boundary. Next we illustrate how 
existing signal processing techniques can be utilized for carrying out this type of 
analysis. Section 5.3 details the corresponding control strategy implemented in the 
CAT system. 

Relevant Signal Processing Techniques 
Our approach to the problem of determining a constant-range boundary within 

a clutter region consists of five major phases. 

• Initial processing: The entire clutter region under consideration is partitioned 
into rectangular subregions referred to as tiles. Each of these tiles is processed 
in order to obtain a corresponding statistical characterization. This processing 
is carried out under the assumption that each tile is homogeneous. 

• Discrepancy detection: The objective of this phase is to determine if the ho- 
mogeneity assumption is violated for any of the tiles. For this purpose, it 
is necessary that the tile size should have been selected to be much smaller 
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than any of the homogeneous subregions of the clutter region under analysis. 
Discrepancy detection involves the identification of each tile whose statistical 
characterization is sufficiently different from the statistical characterization of 
its neighboring tiles. 

• Discrepancy diagnosis: The main purpose of this phase is to determine whether 
the existence of any discrepant tiles can potentially be explained on the basis 
of a constant-range boundary. For this purpose we utilize the fact that a 
constant-range boundary would give rise to a group of discrepant tiles along 
the boundary. For this group, the neighboring tiles at higher ranges would have 
the property that their statistical characterizations are similar to each other. 
Furthermore, the neighboring tiles at lower ranges would also have statistical 
characterizations which are similar to each other. Of course, the statistical 
characterization common to the higher-range neighbors would be different from 
the statistical characterization common to the lower-range neighbors. If such 
a pattern is found to exist, we hypothesize that each of the discrepant tiles 
contains a constant-range boundary within it. 

• Reprocessing Planning: This phase determines the kind of reprocessing that 
can be performed in order to refine the boundary. For example the reprocessing 
may be planned on the basis of empirical knowledge about the characteristics 
of the distributions involved. 

• Reprocessing: The goal of this phase is to refine the various boundary hypothe- 
ses formed during discrepancy diagnosis based on the strategy developed in 
reprocessing planning. The data in each discrepant tile is combined with the 
data in its higher-range neighbor and the data in its lower-range neighbor. A 
search is then performed to determine how the hypothesized boundary within 
that data ought to be adjusted in order to ensure that the data on each side 
of the boundary is homogeneous. 

In order to discuss each of the five phases in greater detail, we consider a spe- 
cific example involving a clutter region with a constant-range boundary. For this 
example, we synthesized a clutter region in the range-azimuth plane, which gets 
partitioned into 24 tiles of 100 cells each. As illustrated in Figure 3.7, an approx- 
imately horizontal boundary divides this region into two subregions. The returns 
in the higher-range subregion were generated as independent samples of a random 
variable with a probability density function (PDF) of the Rayleigh class: 

fR(x) = ^e-{&     x > 0 (3.1) 
P 

where the scale parameter (ß) was selected to have a value of 2.23.   This results 
in a value of 3.16 for the second order moment.   The returns in the lower-range 
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subregion were generated as independent samples of a random variable with a PDF 
of the Lognormal class: 

h(x) 7 -frlogjx/ß)]*/* 

2irx 
x>0 (3.2) 

where the shape parameter (7) was selected to have a value of 1.0, and the scale 
parameter (/?) was selected to have a value of 3.15. This results in a value of 3.16 
for the second order moment. Since the two subregions have identical second-order 
moments, it is not possible to detect the boundary between them through some 
energy thresholding method. 
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Figure 3.7: The test scenario. The data was generated as samples of a Rayleigh 
distribution and Lognormal distribution with a shape parameter of 1.0. 

Initial Processing: The clutter region under consideration is partitioned into tiles 
of size 10 x 10, as illustrated in Figure 3.7. A statistical signal processing algorithm 
[6] is applied to the returns in each tile. This algorithm (referred to as Ozturk's 
algorithm) produces outputs which can be used for the statistical characterization 
of the input tile. To describe the nature of these outputs in greater detail, it is 
necessary for us to establish some notation and associated terminology. 

Let the 100 returns in the input tile be represented by the sequence x[n], where 
0 < n < 100. Assume that each return, x[n0], is a sample of an independent random 
variable X[n0]. Furthermore, these random variables are assumed to be identically 
distributed. The corresponding PDF is denoted the function fx{x; 7; a, ß), where x 
is the independent variable, 7 is a shape parameter, a is a location parameter, and 
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ß is a scale parameter4. The ultimate objective of Ozturk's algorithm is to identify 
a PDF (including the values of the shape, location and scale parameters) which can 
be considered a good approximation to the PDF of X[n\. Toward this end, the 
sequence x[n] is first transformed into a sequence y[n] as follows: 

y[n] = x\nt±   .   n = o,i, 2, ...,99 (3.3) 

where 

i       99 

Ö„=o 

is the sample mean and 

*=iööX>M (3-4) 

s = 
-i       99 

iöö?„(l[Bl-")1 

1/2 

(3.5) 

is the sample standard deviation. The elements of the sequence y[n] can be consid- 
ered the respective samples of independent random variables Y[n]. Each of these 
random variables has a PDF which is identical to the PDF associated with X[n] 
except for having a zero mean and unity variance. The ordering of the elements of 
the sequence y[n] is then changed to obtain a sequence z[n). This sequence has its 
elements in order from the smallest value (at n = 0) to the largest value (at n = 99). 
The nth element of z[n] can be considered as a sample of the order statistic of rank 
n corresponding to the 100 random variables represented by Y[n\. Two quantities, 
U and V, are then calculated from z[n] as follows: 

1       99 

U = mT,co8{ei)\z[n]\ (3.6) 

and 

99 

V = -jüY,°™WiMn}\ (3-7) 

where 

8i = 7r$K) (3.8) 

$(x) is the distribution function of the standard Gaussian distribution, and raj for 
i = 0,1,2, ..99 denote the expected values (obtained through Monte Carlo trials) 
of the standard Gaussian order statistics.   The values U and V specify a point 

4It is assumed that the r.v. X belongs to a family of parameterized PDF's. The location and 
scale parameters represent the relationship of X to a standard member Y of the family through 
X = ßY + a. 
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Q = ([/, V) in a U-V plane. It has been shown [6] that a variety of well-known 
PDF's (with zero mean and unity variance) tend to occupy different locations in 
the U-V plane. Furthermore, a PDF family having a shape parameter gives rise 
to a continuous trajectory in the U - V plane. It follows that the values of the 
[/-statistic and the ^-statistic can be used as the basis for hypothesizing a tile's 
PDF. A particular procedure for this purpose is reported elsewhere [6]. 

The (U, V) measurements obtained for various tiles in the scenario of Figure 3.7 
are illustrated in Figure 3.8. The (U,V) measurements indicated by the symbol 
"o" correspond to tiles in the Lognormal region, the measurements denoted by the 
symbol "x" correspond to tiles in the purely Rayleigh distributed region, and the 
measurements shown by the symbol "*" are associated with the tiles that lie on the 
boundary between these two regions. 

0.4 

0.35 

0.3 

0.25 - 

0.2 

0.15L 

-0.12 -0.1 -0.08 -0.06 -0.04 
U-Statistic 

0.02 0.02 0.04 

Figure 3.8: The (U, V) measurements obtained for various tiles in the test scenario. 
The measurements indicated by the symbol "o" correspond to tiles in the Lognormal 
region, the measurements denoted by the symbol "x" correspond to tiles in the 
purely Rayleigh distributed region, and the measurements shown by the symbol "*" 
are associated with the tiles that lie on the boundary between these two regions. 

Discrepancy Detection: We perform discrepancy detection in order to find the 
tiles which violate the homogeneity assumption. This involves the grouping of tiles 
with (U, V) measurements falling within certain limits. A tile which is not a mem- 
ber of a sufficiently large group is labeled as discrepant. In the grouping process for 
the example case, we check a tile's (U) statistic against the two range of values for 
the two distributions. The tiles falling within the same range of values are grouped 
together.   If a group does not span at least two tiles in both range and azimuth 
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dimensions, its member tiles are declared to be discrepant. The cells in each of 
the remaining groups are said to constitute a homogeneous subregion. In our test 
scenario, this procedure results in two homogeneous subregions, R and L, whose 
tiles are labeled "+" and "o", respectively, in Figure 3.9. Also, the discrepant tiles 
are indicated by the symbol "*". 
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Ü 
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10 

+ + + + + * 

* * * + + * 

o o o + * * 

* o o o o o 

10 20 30 40 
AZIMUTH 

50 60 

Figure 3.9: The groups of tiles in the range-azimuth plane. The two homogeneous 
subregions, W and L, are labeled by "+" and "o", respectively The discrepant tiles 
are indicated by the symbol "*". 

Discrepancy Diagnosis: The main purpose of discrepancy diagnosis is to deter- 
mine whether the existence of discrepant tiles may be explained by a constant-range 
boundary within the clutter region. A constant-range boundary divides a clutter 
region into two homogeneous subregions. The tile-based initial processing of the 
radar returns gives rise to a group of discrepant tiles which straddle the boundary, 
as illustrated in Figure 3.9. The horizontal boundary is determined in two phases. 
First, we perform a procedure to "track" such discrepant tiles along the azimuthal 
dimension. If tk is the latest tile to be added to the track, further extension of 
the track requires the examination of the three adjacent tiles, tk+i,tk+2, and t^+3 

as illustrated in Figure 3.10. The track is extended only if one of these tiles is 
discrepant. The formation of such a track is considered sufficient evidence for hy- 
pothesizing a constant-range boundary as an explanation for the discrepant tiles. In 
our test scenario, the isolated discrepant tiles that do not form part of a horizontal 
boundary are considered to be part of the adjacent subregions. In the second phase, 
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we determine if two horizontal boundaries can be connected by assuming a non- 
discrepant tile to be discrepant. Such a situation in our test scenario is depicted 
in Figure 3.11 where the tiles considered to be part of the boundary are marked 
by diagonal crosses. Note that the two horizontal boundaries obtained in the first 
phase are connected by declaring a Rayleigh distributed tile to be discrepant. 

y 

tk+1 

x \ 
1 >k/ _ w 

Q 
•z. \ 
ffl 
Ü z 
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OS 

\ 
S^k+3 

AZIMUTH INDEX 

Figure 3.10: The tracking of discrepant tiles. The shaded tiles form a track that 
has been extended up to a tile tk. The track is further extended if one of the tiles, 
tk+u tk+2, and tk+3, is discrepant. 

Reprocessing Planning: This phase determines the kind of reprocessing that can 
be performed in order to refine the boundary. For example the reprocessing may 
be planned on the basis of empirical knowledge about the characteristics of the dis- 
tributions involved. In our test scenario it was assumed that the boundary passes 
through the middle of each discrepant tile. Therefore the cells falling on the fifth 
row of a discrepant tile were included in the boundary of the lower homogeneous 
subregion belonging to the Lognormal class of distribution. The cells in the sixth 
row were put on the boundary list of the upper homogeneous region of the Rayleigh 
distribution class. The boundary obtained by processing the discrepant tiles in the 
manner described is shown in Figure 3.12. 

Reprocessing: The objective of signal reprocessing is to reduce the uncertainty 
associated with the boundary estimates produced by the discrepancy diagnosis pro- 
cedure. For each boundary tile t0 one may, for example, want to estimate the 
location of the horizontal boundary to within a resolution of two cell widths in the 
range dimension. One approach is to hypothesize that the top 2,4,6, or 8 rows in the 
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Figure 3.11: Horizontal boundary. The two separate horizontal boundaries are con- 
nected by declaring a "+" tile to be discrepant. The tiles included in the boundary 
are shown with a cross. 
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Figure 3.12:  The original boundary (solid line) and the boundary obtained after 
signal processing (dotted line). 
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discrepant tile belong to the upper homogeneous subregion. Denoting this number 
of top rows in t0 by Ni (i = 1, 2, 3, 4), a test may be conducted for choosing among 
the corresponding boundary hypotheses. In this test, two new tiles (denoted by 
tu and tj2, respectively) are formed for each of the four possible values for Ni. As 

tu 
Q 
Z 

o 

30 

20 

10 

lO-Nj      J 

L 
N: rows 

lO-Nj    J 

N; rows< 

41 

hypothesized 
' boundary 
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50 

Figure 3.13: The formation of two tiles, tu and ti2, under the hypothesis that the 
top Ni rows in a tile, t0, belong to the subregion located above the tile. 

illustrated in Figure 3.13, the tile ta is a combination of the top N rows of t0 with 
(10 - Ni) rows of the tile directly above it. The tile (U2) is a combination of the 
bottom 10 - Ni rows of tile ijl with N rows of the tile directly below it. For each 
hypothesis, Ni: the measurement for tile ttl , {U^^Vff), and the measurement for 
tile til, (U£i,V$), are obtained. The distances between these measurements and 
the measurements for neighboring homogeneous subregions are calculated. In the 
case of our test scenario, these distances are defined as: 

and 

dtluR = y/(ug - uRy + (t# - vRy 

du„L = y/{U% - ULf + (y£ - vLy 

(3.9) 

(3.10) 

where (UR,VR) and (UL,VL) are the measurements associated with the subregion 
R and the subregion L, respectively. The hypothesis N, for which the cumulative 
distance dc = dtiuR + dti.2tL is minimized, constitutes the most consistent hypothesis. 
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The procedure results in narrowing the possible location of a horizontal boundary 
within a given discrepant tile. 

Having established the nature of the knowledge base embodied in the various 
CAT knowledge sources, we shall examine the currently implemented CAT control 
plans in the next section. As alluded to earlier, the IPUS architecture permits the 
application designer to incrementally expand and/or modify these control plans as 
well as the associated knowledge sources. 

3.5.3    Control Plans 

An IPUS implementation of the CAT tasks introduced in the previous section also 
requires specification of a control strategy. This control knowledge is encoded in 
the goal/plan/subgoal structures associated with the RESUN planner of the IPUS 
platform. 

Control Strategy for Task 1 

In this section, we describe how the CAT system goes about categorizing the returns. 
Specific control strategy aimed at performing this task is explained with the help of 
figures. 

The processing in the system is driven by the various sources of uncertainty 
(SOUs) attached with the hypotheses at a given time. When the return hypothesis 
is created at the lowest blackboard level, it is tagged with a NoExplanationSOU. The 
system then aims to satisfy the high level subgoal of HaveHypothesisSOUSolved. 
The input to the subgoal is the SOU which needs to be resolved. It is used as 
the input constraint parameter inConstraint to find a matching plan for the sub- 
goal. In this case the plan SolveNoExplanationReturnHyp matches the subgoal. 
The plan in turn posts two subgoals to be met sequentially as illustrated in Fig- 
ure 3.14. The first subgoal HavelnitialThreshold is matched by the primitive 
plan GetlnitialThreshold which retrieves the preset threshold value in terms of 
the expected percentage of noise returns in the range-azimuth plane. The second 
subgoal HaveClutterMarked is matched by the primitive plan MarkClutter. This 
KS performs the function of marking the returns as clutter or clear based on the 
threshold and fills in the type slot of the map hypothesis. The initial assignment 
of clutter or clear needs to be verified. Therefore a PartialVerif icationSOU is 
posted with the map hypothesis whereas, the NoExplanationSOU is removed from 
the return hypothesis. 

The presence of PartialVerif icationSOU with the map hypothesis causes the 
high level HaveHypothesisSOUSolved subgoal to be posted again. Since the input 
variable is the SOU, the plan SolvePartialVerif icationSOU matches the subgoal. 
This plan posts the following subgoals to be met sequentially in a loop until the 
termination condition is satisfied (Figure 3.15): 
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Figure 3.14: A pictorial representation of control plan strategy for pursuing a sub- 
goal, HaveHypothesisSOUSolved with input NoExplanationSOU attached to a re- 
turn hypothesis. 
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• HaveDiscrepancyDetection. 

• HaveDiscrepancyDiagnosis. 

• HaveReprocessingPlanning. 

• HaveReprocessing. 

The first subgoal is matched by the plan DiscrepancyDetectionMapHyp which posts 
the subgoal HaveCellsRecovered. This subgoal invokes the KS RecoverCells 
which detects the presence of isolated clutter and clear cells through smoothing 
and recovers them ie. relabels them otherwise. 

The HaveDiscrepancyDiagnosis subgoal is matched by the 
DicrepancyDiagnosisMapHyp plan which computes the percentage of clear cells 
in the original quantized and the corrected volumes. 

Subgoal HaveReprocessingPlanning invokes the ReprocessingPlanning KS 
which essentially performs the assessment. If the percentage of clear cells in the 
quantized and corrected volumes are consistent, the loop termination condition is 
set and the PartialVerif icationSOU of the map hypothesis is replaced by the 
NoExplanationSOU. In the case of inconsistency a new threshold based on the dif- 
ference in the percentage of clear cells in the two volumes is computed. 

Finally the subgoal HaveReprocessing is matched by the MarkClutter KS 
which performs the task of marking the returns as clutter or clear based on the 
new threshold. 

Control Strategy for Task 2 

In this section, we specify how a system for clutter analysis may go about finding 
inhomogeneities in a clutter region during any phase of its problem solving activities. 
As specified in the sample task definition, such inhomogeneities are indicated by the 
presence of boundaries separating homogeneous subregions. The control strategy we 
have developed aims at finding such homogeneous subregions and the constant-range 
boundaries separating them. 

The specification of the control strategy we have developed begins with 
the graph in Figure 3.16. The system aims at satisfying the high level 
subgoal HaveHypothesisSOUSolved in order to extend the region hypothesis 
tagged with the PartialSupportSOU. For this purpose, a corresponding plan 
SolvePartialSupportRegionHypSOU is retrieved. This plan posts the subgoal 
HaveTileCharacteristics which invokes the KS FindTileCharacteristics. The 
input to this plan is the SOU being resolved which indicates the specific region 
hypothesis for which tile characteristics are to be obtained. The KS divides the 
region into tiles of size 10 x 10 and runs the FORTRAN Ozturk's algorithm to ob- 
tain the statistical characteristics of each tile. Only those tiles are processed that 
fall completely inside the region.   In order to verify the homogeneity assumption 
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Figure 3.15: A pictorial representation of the plan, HaveHypothesisSOUSolved with 
input PartialVerif icationSOU attached to a map hypothesis. 
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about the region the PartialVerif icationSOU is attached to the region and the 
PartialSupportSOU is removed. 

When the higher level subgoal of HaveHypothesisSOU solved is matched by the 
SolvePartialVerif icationSOU plan, it posts four subgoals to be pursued sequen- 
tially as described earlier in the control strategy for sample task 1. Since the input 
variable the PartialVerif icationSOU is attached to a region hypothesis, different 
plans match these subgoals this time. These plans are relevant to the discrepancy 
detection, diagnosis and reprocessing at the region level (Figure 3.17). The first sub- 
goal HaveDiscrepancyDetectionis aimed at performing discrepancy detection and 
is matched by the DiscrepancyDetectionRegionHyp primitive plan. This KS finds 
contiguous tiles with characteristics that fall within prespecified ranges and groups 
them together accordingly into homogeneous subregions. The tiles which do not fall 
within a group are declared discrepant. If there are any such discrepant tiles, we pur- 
sue the second subgoal for performing discrepancy diagnosis. This subgoal is satis- 
fied by activating the discrepancy diagnosis KS DiscrepancyDiagnosisRegionHyp, 
whereby the presence of constant-range boundaries is determined. The subgoal for 
performing reprocessing planning is activated only when the discrepant tiles are ex- 
plained by the existence of constant-range boundaries. When activated it is matched 
by the KS ReprocessingPlanningRegionHyp. In the current implementation this 
KS creates the boundary between subregions based on the assumption that it passes 
through the middle of discrepant tiles. The PartialVerif icationSOU is removed 
from the region hypothesis and the NoExplanationSOU is attached in order to drive 
the processing further to the patch level. 

3.6    User Interface 

The CAT system has been developed with a comprehensive user interface. The 
interface uses X-Windows for displaying information about the operation of the 
testbed. The display consists of two text windows and one graphics window with 
several click-on buttons for controlling the display. The text windows display infor- 
mation about the status of the PSM and the executed KSs at any instant during the 
processing. The graphics window is used to graphically display various hypotheses 
on the blackboard. The display environment also serves as a good debugging tool 
for the development of the testbed. The feedback provided by the display helps the 
designer in uncovering problems and errors. Apart from the display environment 
built on the CAT system, the C++ IPUS platform provides the facility of a "trace" 
output. The trace gives detailed information about the processing in the testbed. 
A description of this facility can be found in [3]. 
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Figure 3.16: A pictorial representation of the plan, HaveHypothesisSOUSolved with 
input PartialSupportSOU attached to a region hypothesis. 
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Figure 3.17: A pictorial representation of the plan, HaveHypothesisSOUSolved with 
input PartialVerificationSOU attached to a region hypothesis. 
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3.7    Summary and Conclusions 

Our radar oriented IPUS research has resulted in the development of three major 
software systems. The C++ IPUS platform provides the generic capabilities for 
implementing application systems. The clutter analysis testbed (CAT) is a con- 
crete illustration of an application system built on top of the C++ IPUS platform. 
Finally, the X-windows based user interface permits both testbed developers and 
testbed users to conveniently inspect the results produced by the CAT system. The 
successful development of the platform, the testbed, and the user interface is in- 
dicative of the on-going maturation of IPUS technology. We have succeeded in 
transfering IPUS technology from one software environment to another and from 
an acoustic context to a radar context. This sets the stage for more detailed inves- 
tigations for evaluating the impact IPUS technology can have on particular radar 
applications. Some of the directions for such investigations include: 

• Further expansion of the knowledge base in the CAT system and subsequent 
evaluation of its performance for real radar data. 

• Incorporation of auxilary information (such as terrain maps) in the CAT sys- 
tem to evaluate more of the top-down processing features of the testbed. 

• Utilization of the refocus units capability in the C++ platform to provide a 
greater reactive component to the planner in the CAT system. 

• Development and performance evaluation of testbeds for other radar applica- 
tions. 

• 

• 

Comparison of the performance of IPUS systems against other systems for the 
same applications. 

Revisions and updates for the C++ IPUS platform to take advantage of the 
latest research. 

Further development of the CAT user interface to facilitate more detailed 
examination of the system's problem solving. 

• Development of software tools to further aid the development of applications 
on the C++ IPUS platform. 

The directions listed above should yield quantitative evaluations of the impact 
that IPUS technology can have on radar applications involving sophisticated in- 
teraction between signal processing and signal interpretation. However, as already 
demonstrated by our development of the CAT system, IPUS technology also enables 
complex signal processing strategies to be implemented methodically and conve- 
niently. 
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Chapter 4 

SIRP Modeling of Non-Gaussian 
Interference 

4.1    Introduction 

Communication systems must typically operate in non-Gaussian noise environ- 
ments which may consist of interference from natural sources and both intentional 
and unintentional man-made sources. The Gaussian receiver is often reported to 
exhibit very robust performance in many applications involving non-Gaussian inter- 
ference. However, this conclusion is usually drawn by comparing the performance of 
the Gaussian receiver in non-Gaussian noise to its optimal performance in Gaussian 
noise. The point often overlooked is that the use of a Gaussian receiver in such 
a non-Gaussian environment can cause a significant performance degradation com- 
pared to the optimal non-Gaussian receiver. In such situations it would actually 
be preferable to operate the system in a non-Gaussian noise environment, if the 
appropriate optimal processor can be selected and applied to the received signal. 

The above distinction between selection and application of the optimal processor 
emphasizes a major complication of optimal non-Gaussian processing. Specification 
of an optimal Gaussian processor has implicitly identified the joint probability den- 
sity function (pdf) of the noise samples to be Gaussian. However, when the noise 
is known to be non-Gaussian, the receiver must first select a pdf which suitably 
approximates the joint pdf of the interference, before the optimum processing can 
be determined and applied to the received data. This problem is difficult enough 
for univariate density functions, due to the infinite number of non-Gaussian pdfs 
from which to choose. It becomes even more difficult when multivariate pdfs of the 
samples must be considered. 

The traditional development of optimum non-Gaussian processing for commu- 
nication signals has assumed statistically independent samples of the noise process. 
This assumption is often not satisfied, but it allows formulation of a usable mathe- 
matical solution for the optimum processor and is usually motivated by lack of suf- 
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ficient mathematical models to completely describe the multivariate, non-Gaussian 
pdfs of correlated interference samples. 

Recent research at Syracuse University has successfully applied the theory of 
spherically invariant random processes (SIRPs) to correlated, non-Gaussian clutter 
modeling for radar applications [1, 2]. SIRP models have proven to be very useful 
because they have many of the same properties as Gaussian processes and their 
structure is very suited to radar clutter phenomena. Another important advantage 
of the SIRP clutter model is its reduction of the joint pdf approximation problem 
to a univariate pdf approximation problem, even for correlated noise samples. This 
allows straightforward use of the Ozturk algorithm [3, 4], which was developed at 
Syracuse University and is a very powerful technique for selecting suitable non- 
Gaussian density functions to approximate the pdf of the received interference. 

This report focuses primarily on an investigation into the applicability of SIRPs 
to modeling non-Gaussian interference in communication systems and the deriva- 
tion of the corresponding optimum receivers. It also briefly discusses the potential 
advantages of using the Ozturk algorithm to perform pdf approximation for the 
conventional model of independent noise samples, as well as for the SIRP models. 
Unfortunately, due to certain characteristics of the decision process in communi- 
cation applications and to certain characteristics of man-made interference, it is 
concluded that SIRPs are not appropriate models to use, except under very restric- 
tive circumstances. 

The report is organized in the following way. Section 4.2 is a brief review of 
key concepts in the theory of spherically invariant random processes and spherically 
invariant random vectors. Section 4.3 presents a short overview of locally optimum 
detectors and their application to weak signal detection problems, particularly in 
the presence of spherically invariant interference. Section 4.4 describes the nature of 
the non-Gaussian interference, with emphasis on intentional jamming, and discusses 
possible problems of using SIRP models. Section 4.5 investigates the structure of 
the minimum probability of error communication receiver in spherically invariant 
interference for the M-ary decision problem. Results for several cases of unknown 
amplitude and phase parameters are presented. Section 4.6 discusses the potential 
application of the Ozturk pdf approximation algorithm to spread spectrum commu- 
nication problems. Section 4.7 summarizes the conclusions about the use of SIRPs 
for interference modeling in communication applications. 

4.2    Spherically Invariant Random Processes 

Recent research by [1] on the theory of spherically invariant random processes 
(SIRPs) has proven very useful in modeling the joint probability density function 
of correlated, non-Gaussian radar clutter samples. SIRPs are closely related to 
Gaussian processes and exhibit many of the same characteristics, which is why they 
are such useful models. This section provides a brief summary of SIRP properties 
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which are relevant to the detection problem for communication systems. Proofs and 
more detailed discussion of these properties, as well as several others, can be found 
in [1]. 

4.2.1    Definition of SIRPs 

Let Xi = x(U) denote a sample of the random process, x{t), taken at time U. A 
random process, x(t), is spherically invariant if for every N and every set of sampling 
times, U,i = l...N, each vector, X = [Xu X2, ■ ■ ■, XN]T, of samples of the random 
process has a pdf of the form 

/x(x) = (27r)-T|S|-UAr(p), (4-1) 

where p is the quadratic form 

p = (x-mx)TV-1(x-mx). (4-2) 

Here, S and mx are the N x N non-negative definite covariance matrix and mean 
vector of x, respectively, and hN(-) is a positive, real valued, monotonic decreasing 
function. A random vector, x, with density function given by (4.1) is called a 
spherically invariant random vector (SIRV). 

The above definition of an SIRP is analogous to the definition of a Gaussian 
random process, and in fact, substitution of 

hN(P) = exp(-|) (4-3) 

into (4.1) results in a multivariate Gaussian density function. Therefore, one exam- 
ple of an SIRP is a Gaussian random process. 

Observe that while x is denoted a spherically invariant random vector, the con- 
stant contours of fx(x) are ellipsoidal. Constant spherical contours occur for 
S = I, in which case x is called a spherically symmetric random vector (SSRV). 

4.2.2    The Representation Theorem 

The representation theorem for SIRVs states that if X is an iV-dimensional, zero 
mean SIRV, then it can be written as the product, 

X = SZ, (4-4) 

of an iV-dimensional, zero mean, Gaussian random vector, Z, and an independent, 
non-negative random variable, S, with a probability density function, fs(s), which 
is called the characteristic pdf of the SIRV. The pdf of any SIRV is uniquely deter- 
mined by specifying its covariance matrix, mean vector, and characteristic pdf. 
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This theorem can be used to obtain an expression for the monotonic decreasing 
function, hN(p). From (4.4) it is seen that the random vector, X\(S = s), is 
conditionally Gaussian with covariance matrix, s2~Ez. This leads to the expression 

hN(p) = rS-Nexp(-^)fs(s)ds. (4.5) 

For convenience, and without loss of generality, the characteristic pdf is usually 
scaled to have unit mean squared value, i.e., E(52) = 1. The special case fs(s) = 
S(s-l), where <5(-) is the Dirac impulse function, again leads to (4.3) and a Gaussian 
density function. 

The representation theorem provides one way of conceptualizing an SIRV. It is 
a zero mean, Gaussian random vector which has undergone randomization of a scale 
parameter. This has a physical interpretation for radar clutter modeling. The sam- 
ples received from a particular range cell of some clutter region are jointly Gaussian 
distributed, but the average energy level from one range cell to another within the 
region may also be a random variable. This changing energy level corresponds to 
S in (4.4). Thus, a vector sample from any arbitrary range cell within the clutter 
region is an SIRV. 

4.2.3    Linear Transformation Property 

The linear transformation of an SIRV results in another SIRV with the same 
characteristic pdf. Specifically, if X is an iV-dimensional SIRV with covariance 
matrix Sx, mean vector mx, and characteristic pdf, fs(s), then the vector, Y, 
defined by the linear transformation, 

Y = AX + b, (4.6) 

is also an SIRV with the same characteristic pdf, mean vector 

my = Amx + b, (4.7) 

and covariance matrix, 

£„ = ASxA
r. (4.8) 

Hence, the class of SIRVs is closed under linear transformations, including transfor- 
mations to lower dimensions. One consequence of this result is that any subvector of 
an SIRV is also an SIRV with the same characteristic pdf as the full vector. This re- 
sults in a simple determination of any marginal pdf of the SIRV. Commonly, the first 
or second order marginal pdf is used to classify the type of SIRV, e.g., K-distributed 
SIRV. 
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4.2.4    Additive Closure of SIRVs 

The sum of two arbitrary, statistically independent SIRVs, say X\ and X2, of 
the same dimension is not necessarily another SIRV. Hence, the class of SIRVs is 
not closed under addition. Two occasions when the sum, X — Xi + X2, yields 
another SIRV are: 

1. Xi and X2 are both Gaussian random vectors. 

2. The covariance matrices, Y,Xl and Sx2, are related by HXl = kT,x.2, where k 
is any positive constant. The characteristic pdf of each SIRV may be different. 

4.2.5    The Bootstrap Property 

The higher order pdfs associated with an SIRP may be obtained from the recur- 
sive relations 

-Ä(p) 
dp1 WM = (-2)"^ (4.9) 

Since hN(p) must be positive for any N in order to have a valid Nth order pdf, 
the above equations indicate that the derivatives of hN(p) must alternate between 
negative, monotonic increasing and positive, monotonic decreasing functions. Hence, 
1IN(P) must be a positive, monotonic decreasing function. 

4.2.6    PDF of the Quadratic Form 

The pdf of the quadratic form, p = (x - mx)TY^~1(x - mx), is 

fp(p) = d£^M?)- (4-11) 

Since hN(p) is unique for each type of SIRV, the multivariate density function for 
a particular type of SIRV can be uniquely determined based upon the univariate 
density function of its quadratic form. This property significantly reduces the com- 
plexity of the pdf approximation that must be performed for optimal non-Gaussian 
processing. 
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4.2.7 Complex SIRVs 

Let X denote a vector of N complex samples. The pdf of a complex SIRV, 
X, can be derived by considering the representative form, X = SZ, where Z is 
a zero mean complex Gaussian random vector with complex covariance matrix, E, 
and S is an independent, non-negative random variable with pdf, fs(s). Then the 
probability density function of X is given by 

fx(x) = <K-N\Z\-lhN(xH?:-lü), (4.12) 

where xH denotes the Hermitian transpose of x and 

hN{v) = Jo°° s~2N exV(-^)fs(s)ds (4.13) 

is a monotonic decreasing function of the quadratic form, p = xHT,~1x. 

4.2.8 Other Properties 

Unimodality 

Since hN(p) is a positive, monotonic decreasing function of the quadratic form, 
p, and p also describes the elliptical contours of constant density for any SIRV, it 
is obvious from (4.2) that the pdf of all SIRVs is unimodal. The mode, or peak, 
occurs at the mean value of the SIRV. 

Statistical Independence 

If the components of an SIRV are statistically independent, then that SIRV must 
be Gaussian. It is not possible for any other types of SIRVs to have independent 
components. 

Ergodicity 

Only Gaussian SIRPs are ergodic, as can be seen by considering the represen- 
tation theorem of (4.4). Different sample functions of the SIRP, X, correspond to 
different realizations of the random scalar, S. Evaluation of a quantity, such as the 
correlation function, by using the time average of a single sample function can yield 
a different answer for each sample function. This is because the sample functions 
are scaled differently. The time averages are the same only when S is a nonrandom 
constant, as is the case only for Gaussian SIRPs. 

4.2.9 Examples 

Some univariate probability density functions which have multivariate general- 
izations corresponding to SIRVs include Weibull, Student-t, chi, and K-distributed. 
Specific expressions for these and other SIRV density functions are given in [1]. 
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4.3    Locally Optimum Detectors 

Locally optimum detectors (LODs) have been extensively studied for applications 
to weak signal detection [13]. However, as pointed out by [2], most developments 
in the theory of LODs are based on the assumption of statistically independent 
samples and concentrate on showing that these suboptimum detectors are asymp- 
totically optimum as the number of samples becomes very large. Large numbers of 
independent samples are usually not available for processing in most radar systems 
and while communication systems may have many more samples available, there are 
often instances when these samples are not statistically independent. Furthermore, 
the time required to accumulate a sufficiently large number of samples may conflict 
with any stationarity assumptions. 

This section briefly reviews the development of LODs, particularly for weak 
signal detection in the presence of spherically invariant interference. A more de- 
tailed development, as well as some radar performance results in the presence of 
K-distributed and Student-t distributed interference, can be found in [2]. 

4.3.1    The Weak Signal Detection Problem 

Consider a simple binary detection problem which must decide between two 
hypotheses, H0 and H\, given by 

H1:  R = 9S + N, l4'd-ij 

where R = [i?i, #2, • • •, RN]
T
 is the received data, S is the transmitted signal, and 

N is the interference. The parameter, 9, is assumed to be an unknown, constant 
amplitude. The signal vector and noise process are assumed to be normalized so 
that 92 is a measure of the signal-to-interference ratio. The optimum receiver is 
known to be the likelihood ratio test (LRT), 

A(r) = 7|gl    ' i V. (4-3.2) 

The conditional probability density functions can be expressed in terms of the noise 
pdf, /jy(ra), which results in the LRT, 

A(r) = iNiLzlH I ,. (4.3.3) 

For very small 9 approaching zero, there is very little difference between the probabil- 
ity density functions under each hypothesis. Since the numerator and denominator 
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of (4.3.3) are approximately equal, the likelihood ratio is always very close to unity. 
Thus, the optimum receiver of (4.3.3) may require a high degree of mathematical 
precision in calculation of the LRT if near optimum performance is to be obtained. 
Furthermore, the optimum receiver of (4.3.3) for a non-Gaussian noise density gen- 
erally depends on the signal amplitude, 9. In such instances, unlike the Gaussian 
case, the optimum receiver is no longer uniformly most powerful (UMP) and can- 
not be exactly realized without knowledge of the signal amplitude. The LOD is a 
suboptimum receiver for weak signals (9 as 0) which is approximately UMP. 

4.3.2    Derivation of the LOD 

Two derivations of the LOD receiver are given in [2]. One technique uses a 
Taylor series expansion and the other uses the method of Lagrange multipliers. A 
brief summary of these two different derivations is presented. Both developments 
follow [2] in focusing on the radar detection problem. However, as discussed in a later 
section, they can be applied to the communication problem with slight modifications. 

Taylor Series Expansion Approach 

The series expansion approach to the derivation of the LOD proceeds by expand- 
ing the numerator of (4.3.3) in a Taylor series about the received vector, r. This 
results in 

oo Qm 

fN(r - 9s) = fN(r) + £ (-ir-^[sTVr]mfN(r), (4.3.4) 
m=l m" 

where the operator, sT\7r, is defined to be 

[■T*]=|>£- («-5) 

All the indicated partial derivatives are assumed to exist. Substituting (4.3.4) into 
(4.3.3) for the LRT yields 

A„) = 1+f(.ir?;ü»)t, (,,6) 

Moving the unity constant into the threshold results in a new form of the LRT given 
by 

Hr)=£{-ir^YWr) %<!-!• (4-3.7) ml fN(r) m=\ '"■• JNV ) H0 
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It was previously mentioned that the likelihood ratio, A(r), is always near unity 
for the weak signal problem. However, the first term of the Taylor series expansion 
of A(r) is also unity and when this value is subtracted from the threshold, the 
resulting optimum test of (4.3.7) can be more sensitive to a small variation in the 
test statistic. 

The problem is now to evaluate the optimum statistic, Ä(r). The LOD receiver 
is obtained for very small values of 9 by assuming that the higher order terms of the 
summation in (4.3.7) are negligible, such that the first order term provides a good 
approximation to the optimum test statistic. This results in the approximate test 

.»Ml,.,. (4.3.8) 
/jVir) Ho 

Although 9 is unknown, it is still a constant and can be moved into the threshold 
of (4.3.8). This gives a final general expression for the LOD test statistic as 

W,) = !^^>^ = V. (4-3.9) 

The single biggest advantage of the LOD is that the test of (4.3.9) can be com- 
pletely determined without knowledge of the unknown parameter, 9. Strictly speak- 
ing, the LOD is not a UMP test because it is not the optimum test for every value of 
9. However, it is very nearly optimal and for that reason is sometimes described as a 
locally most powerful test. In radar applications the threshold 77' can be determined 
based upon a false alarm specification and, as shown later, rf is zero for a typical 
communication system. 

Lagrange Multiplier Approach 

For small values of the signal-to-interference-ratio (SIR), corresponding to 9 as 0 
in (4.3.1), the probability of detection, PD, is nearly equal to the probability of false 
alarm, PFA- This is again due to the fact that the conditional pdf of the received 
signal is nearly the same for each hypothesis. 

Traditional development of the optimum receiver uses a Neyman-Pearson strat- 
egy which maximizes the probability of detection subject to a specified probability 
of false alarm constraint. Considering the above discussion, though, it can be seen 
that the false alarm constraint limits the detection performance of any receiver for 
values of SIR near zero. 

The strategy employed to develop an approximately UMP weak signal detector is 
to maximize the slope of the power function (PD vs. 9) at the origin, subject to the 
false alarm constraint. The idea is that the detector with the largest such slope will 
attain higher detection probabilities much faster than other detectors within some 
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one-sided range of 8, 0 < 8 < 8*, near the origin. Such a detector would be the 
preferred one to use for that range of 8. The maximization procedure is performed 
using the method of Lagrange multipliers. 

For the hypothesis testing problem of (4.3.1), define the nonrandomized decision 
rule 

AM = / i;   Hi is true 

n ;      \ 0;   H0 is true " 

Then the detection and false alarm probablilities can be written as 
/oo 

-oo ' 
and 

/oo 

where ß(8) = PD denotes the power function of the test and a = PFA is the 
significance level of the test. The aim is to maximize the slope of (4.3.11) at 8 = 0, 
subject to the constraint of (4.3.12). Formulating the maximization problem using 
the Lagrange multiplier approach gives 

(4.3.10) 

(4.3.11) 

(4.3.12) 

max lejy{r)fRWi{r\Hl)dr + V 
?=o 

/oo 

<l)(r)fR\HSr\H^dr 
-oo ' 

max 
/oo 

<Kr) 
-oo 

a/jWHffi) 
88 VfR\Ho(

r\H° dr 
?=oJ 

+ 77a,(4.3.13) 

where 77 is the Lagrange multiplier. The integral on the right side of (4.3.13) is 
maximized when the decision regions are chosen such that the integrand is always 
positive. This leads to the test 

89 ?=o 

8fN(r-8s) 
89 

/iWrl#o) fN(r) Ho 
(4.3.14) 

This is obviously equivalent to (4.3.9), derived using the Taylor series expansion, 
when the relation 

8fN(r-9s) 
88 1=0 fc=i 8rk 

(4.3.15) 

is substituted into (4.3.14).   Thus, another expression for the LOD test statistic, 
based on the method of Lagrange multipliers, is 

8fN(r-8s) 
w 

-*=&. (4.3.16) T, LOD » = 
88 

fMr) 
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4.3.3 LODs For SIRV Interference 

The interference in the hypothesis testing problem of (4.3.1) is assumed to be 
of the form, N = C + W, where C is a dominant SIRV interference typically as- 
sociated with clutter, and W is an independent, white Gaussian noise component 
corresponding to the thermal noise level of the receiver. The clutter power is as- 
sumed to be much larger than the thermal noise level so that the total interference 
can be approximated by an SIRV with neglible error. The presence of the white, 
Gaussian noise component contributes a small amount to the diagonal elements of 
the total covariance matrix. This ensures a nonsingular covariance matrix and that 
detection performance is limited by the receiver thermal noise level. 

Substitution of a general JV-dimensional, zero mean, SIRV density function for 
N, 

fN(n) = (2TT)-^\i:\-hN(nTi:-1n), (4.3.17) 

into (4.3.16) for the LOD test statistic, TLOD{r), yields 

W) = -2(.rS->-)gg, (4.3^8) 

where hN(-) is a monotonic decreasing function of the quadratic form, p = rTY,~lr. 
The LOD for detection of an unknown, constant amplitude signal in SIRV interfer- 
ence is a linear matched filter multiplied by a nonlinear function of the quadratic 
form. 

For a Gaussian interference density with hN(p) = exp(-p/2), the nonlinearity 
in (4.3.18) becomes a constant, 

h'N^ = --. (4.3.19) 
hN(p) 2 

Thus, the LOD test statistic reduces to 

TLOD(r) = ^E-V, (4.3.20) 

the optimum, linear matched filter for detection of an unknown, constant amplitude 
signal in Gaussian interference. 

4.3.4 Additional Comments 

Additional results for LODs, including cases of statistically independent compo- 
nents in the received vector, r, and a random signal vector, s, are included in [2]. 
The following sections on the use of SIRVs for modeling interference in the commu- 
nication problem focus more on optimum detectors than on LODs. However, some 
relevance to LODs is presented in these sections. 
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4.4    Interference in Communication Systems 

This section discusses the nature of non-Gaussian interference of interest in com- 
munication systems. Intentional jamming of spread-spectrum systems is of par- 
ticular concern, though unintentional man-made sources and natural sources may 
also contribute to the interference environment. Most jamming waveforms have a 
constant envelope (CE) characteristic, due primarily to limitations on amplifier ef- 
ficiency and peak power. This is a distinct example of non-Gaussian interference. 
Interference which is the sum of outputs from multiple, independent CE-jammers 
does not have a constant envelope characteristic and can also be very non-Gaussian. 

The multiple jammer interference under consideration is assumed to occupy the 
same bandwidth as the received signal. If the system has some type of adaptive 
array capability, then these jammers are assumed to be entering the receiver through 
the main beam of the antenna so as to make adaptive processing ineffective. Non- 
Gaussian processing is most effective over conventional linear processing in situations 
where the receiver cannot filter out the interference without also removing significant 
signal energy. 

4.4.1    Jammer Waveform Models 

The multiple jammer interference is modeled by [8] in terms of in-phase and 
quadrature component samples as 

Nj 

Ik = Y.Aicos(9ik) + nIk, k = l,...,N (4.4.1) 
i=i 

and 

Nj 

Qk = J2Aism{9ik) + nQk, k = l,...,N, (4.4.2) 
i=l 

where Nj is the number of jammers, Ai is the amplitude of the ith jammer, and 9ik 

is a random phase sequence of samples taken at times, tk, k = 1,..., N, for the ith 

jammer. The terms, nik and riQk, are jointly Gaussian thermal noise components. 
Appropriate selection of the random phase sequence in (4.4.1) and (4.4.2) allows 
representation of many types of jamming, including both wideband and narrowband 
by noise, M-ary phase shift keying, and simple direct noise amplification jammers. 

The phase sequence model used by [6] is 

6ik = i> + K2 + K3k, (4.4.3) 

where K2 is a constant offset, K3tk is a ramped phase component, and ip is a random 
phase variable which is uniformly distributed between ±K\. A wide variety of 
jammer phase sequences can be created by this model. Several interesting histogram 
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plots of the joint density function of the Ik and Qk components for different jammer 
scenarios are given in [6]. In particular, when the phase sequence of (4.4.3) contains 
only the random phase term with Kx < 180°, the joint pdf loses its radial symmetry. 
This loss of radial symmetry can happen for other jammer combinations, too. 

For situations in which radial symmetry is present, the envelope (or amplitude) 
probability density function, /ß(r), is related to the function, /rcs(r), describing the 
radial cross section of the joint pdf of the I and Q components by 

/H(r) = 27rr/rcs(r), (4.4.4) 

where r = \/P + Q2 is the amplitude or radial distance. A simple example is given 
by a radially symmetric, jointly bivariate, zero mean, Gaussian density function. 
The amplitude pdf is Rayleigh distributed, which is zero at the origin, and the 
radial cross section function is a decaying exponential of the form exp(-r2), which 
is maximum at the origin. The difference between the radial cross section function 
and the amplitude pdf has been pointed out to prevent confusion when discussing 
nonunimodal probability density functions. 

The amplitude pdf, /^(r), for the sum of thermal noise and Nj independent 
CE-jammers with equal amplitudes and radial symmetry is illustrated by the his- 
togram plots in Figure 4.4.1 for Nj = 1,..., 5. The total jammer power in each 
case is fixed at 33dB above the average thermal noise power. This sequence of 
plots show one immediate problem of countering multiple jammers. The pdf of the 
sum of independent CE-jammers with approximately equal amplitudes tends to the 
Gaussian density by the central limit theorem. This explains why the amplitude pdf 
for Nj = 5 in Figure 4.4.1 appears similar to the Rayleigh density function. The 
possible performance gains of optimal non-Gaussian processing are decreased as the 
amplitude pdf approaches the Rayleigh pdf, which begins to happen very quickly 
with sums of equal amplitude jammers.. 

Figure 4.4.2 shows histogram plots that indicate features of the radial cross 
section functions of the joint pdf of / and Q components for the same jamming 
scenarios as Figure 4.4.1. The horizontal axis of these plots has been distorted but 
the vertical axis has not, which doesn't change the nonunimodal property of the 
Nj = 2 case. There is a peak at the origin and a smaller peak at another radial 
distance from the origin. Observe that the nonunimodal property of the joint pdf of 
this case cannot be determined from its amplitude pdf given in Figure 4.4.1. This 
nonunimodal behavior is also pointed out in [6], with K\ — 180° in the random 
phase model of (4.4.3), and in [8]. 

4.4.2    Ability of SIRPs to Model Jammer Waveforms 

The previous section raises several points which indicate it may not be appro- 
priate to use SIRPs in modeling CE-jammer waverforms. A joint pdf model for the 
general case of N pairs of I-Q data would be desired to have univariate marginal 
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densities which have some of the characteristics described above. However, some of 
these properties conflict with characteristics of SIRVs. 

First, the bivariate marginal density of any SSRV must be radially symmetric. 
Thus, radial symmetry corresponds to spherical symmetry for the multivariate pdf 
and generalization of the bivariate pdfs which do not have radial symmetry is not 
possible with SSRVs. 

Next, as indicated in Section 4.2.8, SIRVs must be unimodal with the peak in 
the pdf occurring at the mean vector. This property follows because the radial 
cross section function of the bivariate joint pdf of / and Q is directly proportional 
to /ijv(p), which is monotonic decreasing. The sum of two nearly equal amplitude 
jammers is a scenario of frequent interest which has a nonunimodal joint pdf, as 
seen above. A multivariate SSRV model with this property does not exist. 

Finally, the jammer model of (4.4.1) and (4.4.2) raises a concern regarding the 
lack of an additive closure property for SIRVs discussed in Section 4.2.4. For ex- 
ample, if it is assumed an SIRV can model the interference pdf of a single jammer 
for certain types of jammers, then the sum of Nj of these jammers is an SIRV only 
if their covariance matrices are constant multiples of a common covariance matrix, 
i.e., Ej = fcj£,i = l,...,iVj. This is a very restrictive condition on independent 
jammers. 

The best chance of this condition being satisfied for multiple jammers probably 
occurs when samples from the output of each individual jammer in the sum are 
uncorrelated. This can occur if the phase sequence of each jammer is a random 
variable, uniformly distributed on (0, 27r). However, results in [18] show that samples 
of this random process are not spherically invariant, even though the joint pdf is 
radially symmetric. Note that the use of the term spherically symmetric by [17,18] is 
different than the usage here and does not imply the vectors are spherically invariant. 

In summary, there are several problems which restrict, and perhaps eliminate, 
consideration of SIRPs as models for jammer waveforms in spread spectrum commu- 
nication problems. There is a more general class of spherical distributions [15,16], of 
which SIRVs are a special case, which may be a source of possible models. However, 
some of the appealing properties of SIRVs, such as the representation theorem and 
the bootstrap property, are lost. The next section proceeds with an investigation of 
the optimum non-Gaussian processor under the assumption that the interference of 
interest can be modeled as an SIRV. 

4.5    M-ary Detection in SIRV Interference 

A communication system which transmits one of M symbols is considered. Each 
symbol is represented by a different transmitted waveform, Si(t),i = 1,..., M. The 
system must typically operate in an environment that may consist of many types 
of intentional or unintentional jamming, as well as natural sources of interference. 
The receiver must determine which of the M symbols has been transmitted, based 
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upon samples of a received waveform which are corrupted by this interference. This 
M-hypotheses decision problem is represented by 

Hx   : R=aej<t'Sl + N 
H2  : R = ae^S2 + N 

. (4.5.1) 

HM : R = aeJ+SM + N, 

where R=[RU..., RN]T is the received data vector, N = [Ni,..., NN]T is the ad- 
ditive interference vector, and Si = [Sn,..., SiN]T, i = 1,..., M are the transmitted 
signal vectors. The channel attenuation and possible uncertainty in the phase of the 
signal, due to either channel effects or uncertainty in the transmitter, are accounted 
for by the complex factor, aexp(j</>). 

The optimum receiver based upon a minimum probability of error criterion is 
one which selects the hypothesis with the maximum of the a posteriori probabilities 
[5], 

PifR,„(r\Hi) 
Pr[Hi\B\ =        77  '      , i = 1, ■ ■., M, (4.5.2) 

where Pi is the probability that the ith symbol is transmitted. Since the pdf of r in 
the denominator of (4.5.2) is the same for each of the M hypotheses, an equivalent 
optimum receiver selects the symbol corresponding to the largest of the quantities 
PifRnMm. 

For communication systems an equiprobable occurence of each symbol is as- 
sumed, since this usually corresponds to maximum information content in the trans- 
mitted message. Under the assumption of Pi = ^, i = 1,..., M, the optimum re- 
ceiver selects the symbol with the largest of the likelihood functions, Li(r), defined 
as 

Li(r) = fRWi{r\Hi), i = l,...,M. (4.5.3) 

It is assumed that the received signals are processed coherently in terms of in- 
phase (I) and quadrature (Q) components. Then R,N, and Si either represent 
vectors containing N complex samples of the lowpass complex envelope or 2N real 
samples of the I and Q components. Both representations lead to the same results. 
However, the following analysis uses real vectors when only the amplitude, a, is 
unknown and complex vectors whenever the phase, 0, is unknown. Henceforth, the 
use of complex lowpass envelope vectors is specifically indicated by the notation 
R, AT, and S,. 

Development of the optimum M-ary detector in SIRV interference depends on 
whether the unknown parameters, a and </>, are constants or random variables. Op- 
timum receivers are presented for the cases: (i) unknown constant amplitude and 
known phase, (ii) random amplitude and known phase, and (iii) known amplitude 
and random phase. The optimum receivers for cases (i) and (ii) are shown to be 
the same as the optimum Gaussian receiver. 
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4.5.1    Unknown Constant Amplitude 

In this case the amplitude parameter, a, is assumed to be an unknown constant 
while the phase parameter is assumed known and arbitrarily selected to be 0 = 0. 
The iV-dimensional interference vector, AT, in (4.5.1) is assumed to be a zero mean 
SIRV with covariance matrix, E. Then the likelihood functions of (4.5.3) expressed 
in terms of the probability density function of the interference, 

fN(n) = (27r)-^|S|-2/iAr(nTS-1n), (4.5.4) 

become 

Li(r) = (27r)-^|E|-5/iJV[(r - asif^-^r - aSi)}, i = l,...,M. (4.5.5) 

Since hN(-) is a monotonic decreasing function, selecting the largest likelihood func- 
tion in (4.5.5) is equivalent to selecting the smallest of the quadratic forms, 

Pi   =   (r -asi)
T'£~l(r - aSi) 

=   rTS-1r-2aSfS-1r + a2
SfS-1si. (4.5.6) 

The first term of (4.5.6) is the same for all hypotheses. Hence, the optimum receiver 
selects the hypothesis having the greatest of the values, 

Ti(r) = 2^5]"^ - asjIT1*,. (4.5.7) 

This result is identical to the result for detection of a signal with unknown, constant 
amplitude in additive Gaussian noise. This can be recognized by considering that 
hN{pi) = exp(— Pi/2) for Gaussian noise has a logarithmic inverse function. Ap- 
plying this inverse to the likelihood functions and selecting the maximum of the 
resultant log-likelihood functions leads directly to the results of (4.5.6) and (4.5.7). 
Some standard special cases are now presented to give further insight into this result. 

Special Case 1: Equal Energy Signals. 

If all transmitted signals have equal energy given by Es = sjsi, for 1 < i < M, 
then for white noise with covariance matrix, £ = I, the statistic of (4.5.7) simplifies 
to 

Tz(r) = sjr. (4.5.8) 

This is a simple discrete correlation operation and the receiver selects the hypothesis 
corresponding to the signal that is most correlated with the received vector. This 
is a uniformly most powerful test because it does not depend on any knowledge of 
the unknown amplitude. 

However, if the noise is correlated, then the equal energy signal assumption does 
not imply that the asfTi^Si term of (4.5.7) is the same for each hypothesis. Hence, 
the resulting test depends on the value of a. 
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Special Case 2: Binary Detection. 

Some additional insight may be gained by considering the case of binary detection 
(M — 2). The optimum Bayes' test for this case is the likelihood ratio test 

A(r)   =   /iWrlgi)      /jy(r-asi) 
fR\H2(

r\Hz)    /Ar(r-°s2) 

(27r)-T|S|-UiV[(r - asifE"1^ - -Ofli)] 

(27r)-T|S|-5/lJV[(r - as2)
TS-1(r - - as2)] 

hN[(r-asl)
T^-1(r-as1)}   f;  ^ 

hN[{r - as2)
7"S l(r - as2)}   H2 

The Bayes' threshold, rj, is given by 

P2\Cl2 — C22) 
V = 

(4.5.9) 

(4.5.10) 
-Pl(C21 — C\\) 

where dj is the cost of selecting hypothesis i when hypothesis j is true. 
The cost assignments for a minimum probability of error receiver are C\\ = 

C22 = 0 and C\i = C21 = 1. The case of equal probability signals, Px = P2 — 1/2, 
leads to r\ = 1 and the LRT becomes 

hN[(r - as^^-^r - aSl)} ^ 1 (4.5.11) 
hN[(r - as2)

T'E~1(r-as2)\ H2 

or, equivalently, 

Äjv[(r - asxfE-^r - asi)]  ^ ^[(r - a^fE'V - as2)]. (4.5.12) 
H2 

Since /ijv(-) is a monotonic decreasing function, its inverse function, hjfl(-), is also 
monotonic decreasing and can be applied to both sides of (4.5.12).  The resulting 
test, 

(r - aSl)
T5rV - a*i)  >  (r ~ as2)

TT,'l{r - as2)," (4.5.13) 

can be simplified to 

(s2 - Sl)
TS"xr >  ^E"1^ - Sf E-1^), (4-5-14) 

independent of the type of SIRV interference. The inequalities in (4.5.13) are re- 
versed because h]^(-) is a decreasing function. The simplification of the LRT ob- 
tained by applying the inverse of hN(-) is possible only because the Bayes' threshold 
is specifically determined to be unity in the communication problem. When the 
threshold has any other value, as is often the case for radar detection where the 
false alarm rate specification determines the threshold, the LRT involves a more 
complicated nonlinear function which depends upon the type of SIRV. 
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Special Case 3: Locally Optimum Detector. 

It is interesting to compare the LOD to the optimum receiver for binary detection 
of equal energy signals in uncorrelated SIRV interference. The optimum receiver of 
(4.5.14) for this case is 

(a2 - sifE-V f 0. (4-5.15) 
Hi 

The LOD is derived by considering the optimum minimum probability of error 
receiver in the form 

#2 

1 + TLOD(r) + {higher order terms) ^ 1. (4.5.16) 
#i 

Neglecting the higher order terms yields 

TLOD(r) t 0, (4-5.17) 
Hi 

which becomes 

S
TE"1r{-2^44} | 0 (4.5.18) JhN(p) Hi 

when the general form of the LOD in (4.3.18) for SIRVs is used. The zero threshold 
makes TLOD equivalent to a sign test. Since the nonlinear function enclosed in { ■ } 
is always positive for all SIRPs, it does not change the sign of the statistic and can 
be removed. The remaining test is exactly the same as the optimum test of (4.5.15). 

4.5.2    Unknown Random Amplitude 

The amplitude parameter, a, is assumed to be a random variable with probability 
density function, fA(a), and the phase is again arbitrarily assumed to be 0 = 0. The 
likelihood functions of (4.5.3) now become 

/•OO 

U{r)   = fR^atHi{r\a,Hi)fA{a)da 

=    /00(27r)-^|E|-UiV[(r - aSi)
TYT\r - aSl)]fA(a) da (4.5.19) 

Jo 

for i = 1,... ,M.   Substituting the integral expression of (4.5) for hN{-) into the 
above expression yields 

Lt(r) = kN f°|! r s~N exp(-{r " as^f^r ~ ^ )fs(s) dsfA(a) da,(4.5.20) 
Jo      Jo ^>s 
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where the constant, kN, has been defined as 

A;^ = (27r)-T|S|-i. ■ (4.5.21) 

Rearranging the order of the integrations in (4.5.20) leads to 

Li(r) = kN rS-Nfs(s) r°exp(-(r " QS')rS"1(r ~ aSi^fA(a)da <fa.(4.5.22) 
Jo Jo Is'- 

v v • 

Ti(r,a) 

The minimum probability of error receiver again chooses the hypothesis with the 
largest of the likelihood values given by (4.5.22). The conditions necessary for some 
particular hypothesis, Hj, to have the largest likelihood function can be obtained 
by comparing it to any other arbitrary hypothesis, say H^- 

First, for both Hj and Hk, consider the inner integral indicated by Ti(r,s) in 
(4.5.22). The condition on the random variable, s, for which 

(4.5.23) r>,s)> r*(r, s) 

holds is determined by the inequality 

Tj(r,s)- Tfc(r, s) 

= r Jo 
exp(- -7^2)fA(a)da -r Jo 

3 

exp(- Pk 
~2s2 

= r Jo 

3 

[exp(- -^)-exP(- 0)]/A(a) da > 

)fA{o) da 

(4.5.24) 

which indicates the integrand must be positive. Hence, it must satisfy 

[exp(-^) - exp(-^)]/A(a) > 0. (4.5.25) 

Since /A (a) is nonnegative and the exponential is a monotonic increasing function, 
the condition of (4.5.25) is equivalent to 

This simplifies to a comparison of the quadratic forms, 

Pj < Pk, (4.5.27) 

which does not depend on the random variable, 5! 
This result is very significant because, combined with the fact that S is nonneg- 

ative, it indicates that the outer integral with respect to s in (4.5.22) is irrelevant in 
determining which likelihood function is the largest. Therefore, the optimum pro- 
cessor is independent of what type of SIRV is present and must be equivalent to the 
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optimum Gaussian receiver, since the class of SIRV density functions includes the 
Gaussian pdf. 

Also, since the result in (4.5.27) does not depend on any knowledge of the density 
function, /^(a), then the unknown, constant amplitude case studied in Section 4.5.1 
could be considered a special case with fA(a) - 6(a - a0), where a0 is the unknown 
constant. This provides further verification of the result obtained there. 

These two separate results from Section 4.5.1 and Section 4.5.2 can be combined 
into the following conclusion. The minimum probability of error receiver in SIRV 
interference for M equiprobable signals with an unknown amplitude is exactly the 
same as the optimum Gaussian receiver. 

4.5.3    Unknown Random Phase 

The development of the minimum probability of error communication receiver 
in non-Gaussian noise for the previous two cases involving unknown amplitude has 
led to results which are identical to the optimum Gaussian receiver. The amplitude 
is now assumed to be a known constant, a, while the phase is a random variable, 0, 
with probability density function, 

Z7T 

This section briefly develops the general form of the optimum M-ary receiver and 
then gives an example of a closed form solution which does not reduce to the Gaus- 
sian receiver. 

Optimum M-ary Receiver 

The M-hypothesis problem of (4.5.1) can also be expressed in terms of the com- 
plex envelopes of the lowpass processes as 

Hi   : R = ae^St + N 
H2  : R = ae^S2 + N 

HM : Ä = ae?+SM + N, 

(4.5.29) 

where R is the lowpass complex envelope of the received signal, Si is the lowpass 
complex envelope of the transmitted signal for the ith hypothesis, and N is the 
lowpass complex envelope of the spherically invariant noise process. The minimum 
probability of error receiver selects the hypothesis with the largest of the likelihood 
functions, 

U{r) = [* Li{f\<l>)U(<l>)d<l>, (4.5.30) 
J — -K 
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where the conditional likelihood functions, L;(f|0), are defined to be 

Li(*M = fRiwS^'11*) = W* - ae~^) (4-5-31) 
for i=l,... ,M. The density function of zero mean, complex SIRV noise with known 
covariance matrix, E, and characteristic pdf, fs(s), is given in Section 4.2.7 as 

fN(n) = Tr-^El^Mn^E-1^). (4.5.32) 

Substituting this pdf and (4.5.31) into (4.5.30) gives 

Hr) = r Tr-^ISr^jvKr - ae^s^E-1^ - ae"'0*)]/*^) d</>.    (4.5.33) 
J — IX 

The quadratic form in the argument of /ijv(-) is real and can be expanded to 

(f - ae-^Si)"^-1 (f - ae-ttsi) 

=   rHY,-lr + a2sf E^s* - 2aRe{e-j4>8?S_1r} 

=   fHE~1f + a2sfS-1s2-2a[Lc.cos((/))-LSisin(^)], (4.5.34) 

where LCi and LSi are obtained from the definition 

~s?Y,-lr = LCi+3LSi. (4.5.35) 

Substituting (4.5.34), the integral expression for hN{-) given by (4.13) in Section 4.2.7, 
and the pdf for <j> given by (4.5.28) into (4.5.33) yields the following equivalent like- 
lihood statistic of the ith hypothesis, 

Tl(r) = C{tN-lfs(t-
k

2)I0 [ay/lZ+fy]}, (4.5.36) 

where I0(-) is a modified Bessel function of the first kind, and £{■} is the one-sided 
Laplace transform operator defined by 

C{g(t)}= /    g(t)e-k^dt, (4.5.37) 
Jo 

with the Laplace transform frequency variable, k(r), defined by 

k(r) = \{rHY,-lr + a2äf E"1^)- (4.5.38) 

The derivation of the result in (4.5.36) is very long and has been omitted here. The 
minimum probability of error receiver selects the hypothesis which has the largest 
equivalent likelihood statistic, Tj(f). 
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The result of (4.5.36) gives the correct result for the case of a Gaussian SIRV, 
which corresponds to evaluating the integrand of the Laplace transform integral at 
t = l. This leads to the equivalent likelihood statistic for the Gaussian problem, 

TG.(f) = exp( 
a^flT1; l)h [o-y/^i L% (4.5.39) 

which can be verified by consulting [5] and [11]. 
It is not be possible to use (4.5.36) to obtain a closed form solution for every 

type of SIRV. However, a brief investigation discovered a closed form solution for 
the Student-t example, which is discussed next. 

Student-t Example 

The Student-t SIRV has the characteristic pdf [1], 

fs(s) = 
26 2i/-l 

2T(i/) 
-(2i/+l) exp(-—-), s > 0, 

2s2 
(4.5.40) 

where v is the shape parameter of the density function and & is a scale parame- 
ter. Substituting this characteristic pdf expression into (4.5.36) and using a table 
of Laplace transforms [12] leads to the equivalent likelihood statistic for the ith 

hypothesis, 

-(JV+i/) 

Ti{f) = l(k{r) + *)*-a?{Ll+Ll) 

( 

x iFx l-N-v,N + v;l; 
1 k(r) + bj 

\ 
2j(k(r) + bi)2-a2(Ll + Ll) 

{4,5.41) 

where 2-f\ (a, b\ c; z) is the Gauss hypergeometric function, a is an assumed known 
amplitude parameter, and LCi,LSi, and k(r) are given by (4.5.35) and (4.5.38), re- 
spectively. 

The minimum probability of error receiver in spherically invariant Student-t 
interference selects the hypothesis with the largest value of the statistic given by 
(4.5.41). This statistic cannot be reduced to that obtained for the optimum Gaussian 
receiver because it is not a monotonic function of the Gaussian receiver statistic, 
which is partially identified as 

Ll+Ll = \\~sf^r\\\ (4.5.42) 

the familiar matched filter followed by envelope detection. The Gauss hypergeo- 
metric function, 2Fi(a,b\c;z), reduces to a polynomial in z whenever either of the 
arguments a or & equals —n, for n = 0,1,2,.... This occurs in (4.5.41) for integer 

75 



r Gaussian 
Receiver 

sTX-ir 

Optimal 
Nonlinearity 

i-TI-ir 

T(r) 

Q(r) 

Figure 4.5.1: Canonical structure for optimal processors in SIRV interference. 

values of the shape parameter, v. The receiver in (4.5.42) is complete for equal en- 
ergy transmitted signals in white Gaussian noise. However, in general, the quantity 
Sj £~ Si is needed for the complete receiver, as seen by considering (4.5.39). 

Comments 

If the amplitude parameter, a, is also assumed to be an unknown random vari- 
able, then the optimum receiver could be obtained by integrating (4.5.41) over the 
probability density function of the amplitude. This situation may be representative 
of some types of fading channels. 

The optimal receiver for detection in SIRV interference has a canonical structure, 
as shown in Figure 4.5.1, for all the cases that have been considered. This is also 
the structure of the LOD receiver given by (4.3.18). This canonical form is very 
significant because it allows the Gaussian receiver to be used as part of any optimal 
processor, which may minimize the impact on the structure of existing receivers. 

4.6    The Ozturk Algorithm for PDF Approxima- 
tion 

The Ozturk algorithm is a very powerful technique used to select a univariate pdf 
approximation for a set of random data. It has the potential to improve upon typi- 
cal methods of pdf approximation investigated for spread spectrum communication 
receivers. The mathematical details of the algorithm are found in [3, 4]. 

There are two steps performed by the Ozturk algorithm. First, it performs a 
goodness of fit test of the data set against a specified null distribution. This null 
distribution is arbitrary, but is usually assumed to be Gaussian. The second step 
of the algorithm selects a probability density function which best approximates the 
data set. 

76 



The goodness of fit procedure in the first step uses a reference distribution, not 
necessarily the same as the null distribution, and the ordered statistics of the data 
to generate a trajectory for the data set which is compared to the known trajectory 
of the null distribution. Confidence ellipses can be determined at points along the 
null trajectory to indicate the consistency of the data with the null distribution. 

The second step of the algorithm compares the endpoint of the data trajectory 
against a chart of the trajectory endpoints for known distributions. The known 
distribution with an endpoint closest to the data endpoint is used to approximate 
the pdf of the data. Experiments run at Syracuse University have verified that this 
procedure requires about 100 data points to yield very good approximations to the 
underlying distributions. 

Two major advantages of this algorithm are recognized. Typical goodness of fit 
tests accept or reject the hypothesis that the data is from a specified null distri- 
bution, but if the hypothesis is rejected they are unable to suggest a distribution 
which the data most closely approximates. The Ozturk algorithm provides this 
capability. Second, typical pdf approximation algorithms based on histograms or 
other methods, [7, 8], may require on the order of thousands of points to obtain a 
good approximation, while the Ozturk algorithm needs only 100 points. 

The small data set required for accurate pdf approximation by the Ozturk algo- 
rithm has the potential to make it very effective in nonstationary interference en- 
vironments, which can be a problem for conventional techniques. Furthermore, the 
algorithm can be used to approximate multivariate SIRV density functions based 
on the reduction to a univariate pdf approximation problem as discussed in Sec- 
tion 4.2.6. 

4.7    Conclusions 

For several reasons related to the characteristics of non-Gaussian, man-made 
interference and the nature of the M-ary decision problem, it is concluded that 
spherically invariant random processes are not appropriate models to use for the 
interference in spread spectrum communication systems. Interference consisting 
of the sum of multiple, independent, constant envelope jammer waveforms is of 
particular interest in these systems. The joint probability density function of the 
samples of this interference can be nonunimodal (more than one local maximum) 
and have a bivariate marginal density which is not radially symmetric. Neither of 
these characteristics are satisfied by the class of SIRPs. 

Furthermore, non-Gaussian SIRPs do not have an additive closure property. 
This means that interference which is the sum of independent, non-Gaussian SIRPs 
does not result in another SIRP, except under very restrictive conditions on the 
correlation properties of each source. 

The minimum probability of error receiver for the M-ary decision problem, where 
the hypotheses are assumed equally likely, reduces to the linear, Gaussian receiver 
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for all types of SIRV interference when the signal has an unknown amplitude scaling. 
This result holds whether the unknown amplitude is a random variable or a constant. 
This means that performance already being obtained by the Gaussian receiver in 
SIRP interference environments is optimal for this case. 

When an unknown random phase is present in the signal, the minimum prob- 
ability of error receiver does not reduce to the Gaussian receiver. This could lead 
to useful results for operation in some types of fading channels, where both random 
amplitude and phase are introduced into the signal by the channel. 

The Ozturk algorithm for pdf approximation in the weak signal case has high 
potential for use in any non-Gaussian interference environment, not necessarily an 
SIRP. 
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Chapter 5 

Radar Weak-Signal Detection 
Problem 

This section discusses the development of radar knowledge appropriate for use 
in an IPUS-based radar interpretation system for use in high-clutter situations. 
Applications involving airborne and high-sited ground surveillance radars require 
the detection of targets in severe ground clutter environments. Our objective in 
studying this problem was to improve upon conventional radar signal processing 
techniques, under a specified false alarm probability constraint, by using the signal 
re-processing IPUS framework to increase the detection probability of weak desired 
signals in the presence of strong ground clutter. The results of the research are 
presented in three Ph.D. dissertations and one M.S. thesis, completed under this 
effort, which appear as appendices in the final report. 

In order to develop an optimal signal processing scheme, it is necessary to pro- 
vide a probabilistic description of the clutter. Previous attempts at clutter mod- 
eling have used marginal probability density functions to characterize the clutter. 
However, radar receivers process N samples in each beam dwell. Consequently, an 
iV-dimensional joint probability density function for the sampled data is needed. 
Because the clutter is likely to be highly correlated, the samples are not statistically 
independent. Therefore, the joint probability density function cannot be obtained 
by simply multiplying together the N corresponding individual marginal densities. 

In general, closed form analytical expressions for the joint probability density 
function of a set of N correlated, non-Gaussian random variables are not unique. 
In the Ph.D. dissertation by Muralidhar Rangaswamy (see Appendix xxx) entitled, 
"Spherically Invariant Random Processes for Radar Clutter Modeling, Simulation, 
and Distribution Identification," it is shown that the spherically invariant random 
vector (SIRV) provides an elegant and mathematically tractable technique for char- 
acterizing the probability density function of a correlated, non-Gaussian clutter 
vector. Although the SIRV family does not encompass all random processes, it 
goes well beyond the Gaussian family. The following is a partial list of probability 
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distributions that fall within the SIRV family: 1) Chi, 2) Weibull, 3) Generalized 
Rayleigh, 4) Rician, 5) Laplace, 6) Cauchy, 7) K-distributed, 8) Student-t, and 9) 
Gaussian. 

A brief review of spherically invariant random processes is provided by Dennis 
Stadelman in Section xxx.2. A more detailed discussion is given in Rangaswamy's 
Ph.D. dissertation (see Appendix E). Chapter 1 provides an introduction to the 
fundamental issues addressed in the dissertation, which are: 

1. specification of suitable statistical models for radar clutter, 

2. development of efficient computer simulation procedures for generating sam- 
ples characterized by the various statistical models, 

3. development of an identification procedure for fitting one or more statistical 
models to a set of experimental data. 

In Chapter 2 a review of the literature, as it pertains to the modeling of radar 
clutter as a spherically invariant random process, is presented. Chapter 3 devel- 
ops techniques for obtaining the joint probability density function of N complex, 
non-Gaussian random variables, assuming that the clutter can be characterized as 
a spherically invariant random process. The need for a library of multivariate, non- 
Gaussian probability density functions is discussed. Several examples illustrating 
the various techniques for specifying the mulitivariate, non-Gaussian probability 
density function are provided. Finally, a key result for identifying the multivari- 
ate, non-Gaussian probability density functions arising from spherically invariant 
random processes is presented. Chapter 4 deals with the problem of computer 
generation of correlated, non-Gaussian radar clutter that can be characterized as 
a spherically invariant random process. Two canonical simulation procedures are 
presented. A graphical goodness-of-fit test is introduced to validate the simulation 
procedures. Chapter 5 is concerned with the distribution identification of radar 
clutter characterized by spherically invariant random processes. A new graphical 
scheme based on a key result presented in Chapter 3 is used to address the distri- 
bution identification problem. This procedure reduces the multivariate distribution 
problem to an equivalent univariate distribution identification problem, resulting in 
considerable computational simplicity. Finally, a new technique for shape parameter 
estimation is suggested based on the identification procedure. The chief advantage 
of this scheme is that relatively few samples are needed for the distribution identi- 
fication problem. Chapter 6 concludes with a summary and suggestions for future 
research. 

Having developed models for correlated, non-Gaussian radar clutter samples, 
attention was then focused on the weak signal detection problem in a strong non- 
Gaussian clutter background. The concept of the locally optimum detector (LOD) 
was used to address this problem. A brief review of LODs is given by Dennis 
Stadelman in Section xxx.3.  A more detailed discussion is provided in the Ph.D. 
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dissertation by Prakash Chakravarthi (see Appendix F) which is entitled, "Subclut- 
ter Visibility: The Problem of Weak Signal Detection." 

Chapter 1 of Chakravarthi's Ph.D. dissertation discusses the key elements of 
the weak signal detection problem. A literature review on weak signal detection 
and derivations of the LOD are presented in Chapter 2. It is shown that the LOD 
determines whether a target is present or absent by comparing a statistic computed 
from the data to a set threshold. Both deterministic and random target signal are 
considered. The receiver structures are specialized to the case for which the clutter 
plus noise can be approximated by a spherically invariant random process. Since 
the clutter is assumed to be non-Gaussian, the LOD receiver structure turns out 
to be nonlinear. As a result, system performance must be determined by means of 
computer simulation. The threshold is conventionally determined through a Monte 
Carlo procedure. Unfortunately, the number of trials is inversely proportional to 
the false alarm probability, PF. For example, when PF = 1(T6, a minimum of ten 
million trials needs to be generated. 

To avoid carrying out so many trials, a new technique, based on extreme value 
theory, is presented in Chapter 3. It is demonstrated that fairly accurate thresh- 
olds can be determined for false alarm probabilities as small as 10-7 with as few as 
10,000-30,000 trials. Assuming that the clutter plus noise can be approximated by 
either the multivariate Student-t or K-distributions, the LOD is developed in Chap- 
ter 4 for the weak signal detection problem. The system performance is evaluated 
by means of computer simulation for each distribution. It is shown that the perfor- 
mance improvement for the LOD is significant compared to the Gaussian receiver. 
A new technique called the amplitude dependent locally optimum detector is devel- 
oped in Chapter 5. It is demonstrated that significant performance improvement 
can be obtained compared to the LOD when the clutter plus noise is multivari- 
ate K-distributed. A summary and suggestions for future research are presented in 
Chapter 6. 

The type of clutter present in a received set of N samples will not be known 
in advance. Consequently, it is necessary to monitor the environment and identify 
the underlying probabilistic clutter model. This falls into the category of a model 
variety problem since experimental clutter data, collected at different times and un- 
der different conditions, has been shown to fit a variety of probability distributions. 
A new algorithm, called the Ozturk algorithm, was developed under this effort for 
the purpose of analyzing and characterizing random data. The algorithm has two 
modes of operation. In the first mode, a goodnes-of-fit test is performed. This mode 
allows for determination of whether a given set of data is statistically consistent with 
a prespecified probability density function. In the second mode, an approximation 
procedure is carried out. In particular, given the data, the algorithm determines 
a probability density function that gives a good approximation to the probability 
distribution from which the data was generated. The Ozturk algorithm works well 
in both modes of operation, even when presented with as few as 100 data samples. 
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A brief review of the Ozturk algorithm is given by Dennis Stadelman in Chapter 4 
of this report. A more detailed discussion is provided in the Masters thesis by 
Rajiv Shah (see Appendix D) which is entitled, "A New Technique for Distribution 
Approximation of Random Data." Advantages and disadvantages of well-known 
goodness-of-fit tests are discussed in Chapter 1 of the thesis. The Ozturk algorithm 
is developed in Chapter 2. Computer simulation results using the Ozturk algorithm 
are presented in Chapter 3. Chapter 4 concludes the thesis with a summary and 
suggestions for future work. 

The data in a radar surveillance volume is likely to be nonhomogenous and 
nonstationary. The Ph.D. dissertation by Mohamed Slamani (see Appendix G of 
this report) which is entitled, "A New Approach to Radar Detection Based on the 
Partitioning and Statistical Characterization of the Surveillance Volume," explores 
use of an expert system based on the IPUS philosophy, to assist with monitoring 
of the environment. Chapter 1 discusses some of the difficulties that arise in the 
classical radar detection problem. Their solution is proposed in Chapter 2 which uses 
an expert system with feed-forward processing. In Chapter 3 an improved solution 
is presented using feed-back processing. The general radar detection problem is 
described in Chapter 4 and a mapping procedure is introduced to separate between 
background noise and clutter patches. In Chapter 5 an image processing technique 
is developed for the mapping procedure. Next, an indexing procedure is developed 
in Chapter 6 to enable the investigation of clutter subpatches and the approximation 
of probability distributions for each clutter patch. Finally, expert system rules are 
developed in Chapter 7 to enable the expert system to control both the mapping 
and indexing stages. A summary and suggestions for future research are given in 
Chapter 8. 

The major significant results achieved during this research effort are listed below: 

1. The capability for modeling correlated, non-Gaussian radar clutter was greatly 
enhanced by the creation of a large library of multivariate probability density 
functions based upon the concept of spherically invariant random processes. 

2. An ability to perform computer simulations involving correlated, non-Gaussian 
radar clutter was made possible by development of two canonical schemes for 
generating the clutter. 

3. The ability to completely characterize univariate random data by processing a 
relatively small number of samples was made possible by development of the 
Ozturk algorithm. 

4. A theoretical procedure was devised for reducing the multivariate probabil- 
ity distribution approximation problem dealing with spherically invariant ran- 
dom processes to an equivalent univariate distribution approximation problem 
where the Ozturk algorithm is applicable. 
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5. By developing weak signal detectors for correlated, Student-t and K-distributed 
clutter environments and evalutating their performance, it was demonstrated 
that non-Gaussian receivers designed to optimize performance in non-Gaussian 
environments can significantly outperform the conventional Gaussian-based 
receivers. 

6. A reduction by several orders of magnitude in the number of trials needed for 
Monte Carlo simulations of radar receivers was made possible by development 
of a new technique for setting the receiver threshold based upon extreme value 
theory. 

7. Mapping and indexing procedures were developed and demonstrated via sev- 
eral examples for adaptively partitioning a radar surveillance volume into 
clutter and background noise regions and for approximating the underlying 
probability distribution of each region. 

8. Expert system rules were developed for enabling the expert system based on 
the IPUS philosophy to control both the mapping and indexing stages during 
the adaptive partitioning of a radar surveillance volume. 
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Chapter 6 

RESUN Framework Improvements 

6.1    Introduction 

IPUS is built on the RESUN sensor interpretation framework. As a result, develop- 
ment of the generic IPUS testbed has involved a significant amount of work refining 
or generalizing elements of the RESUN model, and extending the existing RESUN 
system implementation. For example, in scaling up the testbed to handle more 
source models and more complex sources, we had to make use of more top-down, 
expectation-driven strategies to control the number of source models that would be 
considered. These strategies are based on information from approximate processing 
methods—e.g., spectral bands which are based on energy present at specific fre- 
quency bands. This caused us to have to extend RESUN's evidential representation 
and evidence summarization process. While changes such as this were easily accom- 
modated within the RESUN framework, they did require a significant amount of 
effort to properly support. 

Among the key refinements of RESUN for IPUS are: 

• canonical evidence combination methods for evidence summarization process; 

• representing negative evidence uncertainty in the evidence summaries; 

• representation and summarization of approximate knowledge; 

additional control plan sequencing constructs; 

• event-based refocusing; 

• improved RESUN implementation. 

• 
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6.2    A Brief Review of the RESUN Framework 

One of the key motivations for the development of RESUN was to extend the set 
of methods that could be used for interpreting sensor data. In complex domains 
involving noise and masking, no single method is sufficient. For example, an inter- 
pretation system must be able to use differential diagnosis as well as hypothesize 
and test methods, and specialized knowledge for particular situations. RESUN pro- 
vides a mechanism to apply sophisticated control strategies, using large amounts of 
context-specific knowledge to carefully control the search for most-likely interpreta- 
tion. The Key Components of the RESUN framework are: 

• Symbolic source of uncertainty statements (SOUs) that represent the reasons 
hypotheses are uncertain and drive identification of actions to resolve uncer- 
tainty (with interpretation viewed as abductive inference); 

• A high-level model of composite interpretation uncertainty relative to the ter- 
mination criteria (system goals); 

• A script-based planner for control, which provides context-specific knowledge 
and reasoning, maintains the opportunism of blackboard-based systems, and 
can implement method/decision search. 

In the RESUN control planning framework, interpretation strategies are encoded 
as a set of control plan schemes and plan-specific focusing heuristics. Each plan spec- 
ifies a sequence of subgoals that must be accomplished to meet the goal of the plan. 
The focusing heuristics control the instantiation of each plan (based on what is con- 
sidered most appropriate for the current situation) by selecting the plans that are 
used to pursue the subgoals and by selecting the objects to be used to instantiate 
subgoals (i.e., selecting among possible alternative plan-variable bindings). A plan 
subgoal sequence is encoded using a shuffle grammar, which includes a set of op- 
erators that specifies the temporal relations among the subgoals. For example, the 
:SEQUENCE operator includes a fixed list of subgoals, each of which is pursued 
following the successful completion of the previous subgoal. 

One of the key aspects of the RESUN interpretation framework is the use of 
symbolic source of uncertainty statements (SOUs). The SOUs provide more in- 
formation than numeric belief ratings. They allow the system to understand the 
reasons why its current evidence is uncertain so that it can identify appropriate 
methods to resolve this uncertainty. However, the system still needs numeric evalu- 
ations of the degree of belief in the hypotheses and the effects of the various SOUs in 
order to evaluate the termination criteria and to reason about control decisions. For 
example, in deciding which hypotheses to work on next, the system usually must 
consider the belief rating for each hypothesis relative to the termination criteria and 
to the belief in each of the other hypotheses. It must then usually consider which 
hypothesis SOUs are most critical to resolve. 
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#<source-ext.00006 burglar-alarm> 
RATING: 0.12307032 
PARTIAL-EVIDENCE-UNCERTAINTY: 0.29800 
POSSIBLE-ALT-EXPLANATION-UNCERTAINTY:0.74052006 
POSSIBLE-ALT-SUPPORT-UNCERTAINTY: 0.0 
CONSTRAINT-UNCERTAINTY: 0.0 
ALT-EXTENSIONS-UNCERTAINTY: 0.045408897 
TOP-LEVEL-ALT-EXTENSIONS: 

(<ALT-EXT-UNIT Alt:#<source-ext.00004 A») 
NEGATIVE-EVIDENCE-UNCERTAINTY:0.18336463 
NEGATIVE-EVIDENCE-EXPLANATION: 0.09136386 

Figure 6.2.1: An example evidence summary. 

Because of the need to make such evaluations and comparisons, RESUN's ev- 
idential representation system includes a framework for numerically summarizing 
evidence based on the SOUs. However, instead of computing a single-number be- 
lief rating, the summarization process produces a composite characterization of the 
uncertainty in a hypothesis in terms of an overall belief rating and the amount of 
uncertainty contributed by the different classes of SOUs (associated with the hy- 
pothesis). The major elements of the composite rating are: possible alternative 
explanation uncertainty, possible alternative support uncertainty, constraint uncer- 
tainty, negative evidence uncertainty, and alternative extension uncertainty. Thus, 
for any belief rating b, where b j 1, the sum of the ratings for these uncertainty 
classes would add up to 1-b (the situation for the negative evidence is a bit more 
complicated actually). In addition to these categories, the composite includes a par- 
tial support uncertainty rating that indicates how much of the remaining uncertainty 
might potentially be reduced by gathering additional evidence for the hypothesis. 

These SOU-class ratings summarize the SOUs by giving an abstract indication 
of the reasons why the hypothesis is uncertain (i.e., not fully believed). Having the 
composite rating allows for more detailed reasoning than would be possible with a 
single number rating. For example, it can distinguish between a hypothesis that has 
low belief due to a lack of evidence and one for which there is negative evidence. 
This capability is used in distinguishing between potential answer hypotheses that 
should be modeled as "answers" and those that should be modeled as "non-answers." 
Potential answer hypotheses may not be currently believed (i.e., belief rating j 0.5 
more likely wrong than right) simply because not enough evidence has been gathered 
to resolve the inherent abductive uncertainty (resulting from alternative possible 
explanations for the supporting data). These hypotheses are modeled (in PS-Hyp) 
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as potential answers so that the system will attempt to prove them correct. On the 
other hand, potential answer hypotheses may not be believed because more evidence 
has been gathered against them than for them. Such hypotheses are modeled as non- 
answers so that the system will attempt to disprove them. In either case, of course, 
the system may pursue the hypotheses until sufficient evidence is gathered to reach 
belief levels specified in the system goals. 

The summarization process operates by recursively summarizing the support 
evidence for a given top-level hypothesis. Summarization is carried out using 
application-specific evaluation functions because neither Bayes' Rule nor Dempster- 
Shafer's Rule are generally applicable to interpretation due to the lack of indepen- 
dence of hypothesis evidence. Nonetheless, the application-specific evaluation func- 
tions effectively compute conditional probabilities and the composite rating permits 
these evaluation functions to be quite modular. Briefly, the summarization process 
for a hypothesis is: 

1. Evaluate the support evidence and produce composite ratings that are at- 
tached to each corresponding uncertain-support SOU in the hypothesis; 

2. Evaluate all the negative evidence producing ratings for the negative evidence 
SOUs; 

3. Combine the support evidence to get a support rating for the hypothesis; 

4. Reduce the belief based on the possible-alternative-explanation SOUs associ- 
ated with the hypothesis extension's explanation; 

5. Reduce the belief further based on the uncertain constraint SOUs associated 
with the hypothesis extension's explanationthis gives the support rating that 
this hypothesis provides to its explanation; 

6. Stop at the top-level hypothesis (no explanation); 

7. Identify and compare alternative top-level hypotheses (denoted by alt- 
extension SOUs) and reduce the hypothesis belief ratings to account for the 
alternatives. 

6.3    Canonical Evidence Combination Methods 

RESUN's evidence summarization process requires that there be appropriate evi- 
dence combination methods: functions for combining the evidence summaries that 
will occur with each type of hypothesis to produce a belief summary for a hypoth- 
esis. Combination functions are a key issue in developing a RESUN application 
because they may be specific to each hypothesis (abstraction) type and they may 
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be very complex. Thus, one of the major areas of effort in implementing a RE- 
SUN application is to provide numeric summarization methods for each hypothesis 
type. One of the goals of IPUS research has been to investigate general methods 
for combining/summarizing the SOUs that are appropriate for the characteristics of 
the signal understanding problem. Major effort has been devoted to developing an 
appropriate set of canonical models for evidence combination—e.g., table driven for 
discrete evidence and functions for continuous support evidence. 

The current IPUS applications have provided us with characteristics that were 
not part of previous RESUN applications: 

• Non-additive evidence combination (P{A\B,C) » P(A\B) + P(A\C)). For 
example, consider a telephone ring with three frequency components a, b and 
c. Component a in isolation would give a belief of .2 to the source. Component 
b in isolation would give a belief of .3. Components a and b together should 
give more than a belief of .5 (.2 + .3) to the source, to reflect the fact that one 
frequency component alone could easily belong to another source, but when 
two of them are found the chances of them belonging to other sources are 
smaller. 

• Highly non-uniform support—some pieces of evidence are much more critical 
than others. 

• Asymmetric effect of positive and negative evidence—e.g., finding a support 
component or not knowing about the existence that component can have a 
relatively weak effect on belief, but failing to find it can have a strong effect. 
This effect is most obvious in the verification of a source's components. For 
example, consider a source that should always have a very low energy com- 
ponent at a certain frequency. The presence of this component would not 
contribute much to the belief in the source, but if looked for and not found it 
would strongly decrease the belief in the source. 

• The evidence hierarchy contains both discrete and (quasi) continuous types of 
support evidence. In the acoustic domain, a stream is formed by a discrete 
set of microstreams, while a microstream is a continuous type of event—i.e., a 
sequence of contours in time. The belief in a microstream is computed based 
on the length of its support, independently of how many or which contours 
support it. The belief in a stream is computed based on how many and which 
components support it. 

These characteristics have led us to develop a language for representing source 
specific evidence combination methods. To support the previous characteristics, we 
developed abstraction-specific evidence combination methods. The evidence combi- 
nation method at the source abstraction level must be capable of combining periodic, 
simultaneous and sequential events. In our approach, a different method exists for 
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TEL-Ring at StreamLevel 

The evidence combination table is: 
(TEL-Ring has 3 component microstreams: (X-st-1, u-st-2 and u-st-3) 

(|Ll-St-l |Ll-St-2 |Ll-St-3)* 

JLX-St-1 
|Ll-St-2 
|i-st-3 
|Ll-St-l |LL-St-2 

belief 

0.2 
0.3 
0.25 
0.6 

Figure 6.3.2: An example evidence combination table. 

each combination class: 1) periodic: step function, 2) sequential: table indexed by 
elements in the sequential events' power set, and 3) simultaneous: table indexed 
by elements in the simultaneous events' power set. In a similar way, the evidence 
combination method at the next lower level, the stream level, must be capable of 
reflecting the non-additive nature of evidence and the asymmetric effect of positive 
and negative evidence. The combination method chosen is a table indexed by the 
elements in the components power set. 

The evidence combination method at this level must be capable of reflecting the 
continuous nature of the source. The combination method chosen is an S-shape 
function of the form g{x) = 1 — e~^x\ where f(x) is a monotonically increasing 
function. g(x) is shaped for each component by providing three values a, b, c; 
where a is the length of support necessary for the component to have a belief of 0.5, 
b is the length of support necessary for the component to have 0.9 belief, and c is 
the length of support necessary for the component to have 1.0 belief. 

6.4    Negative Evidence Uncertainty 

Another RESUN evidential issue that has been investigated as part of the IPUS 
project has been the handling of uncertainty in negative evidence. Just as with pos- 
itive (confirming) evidence, negative (disconfirming) evidence is uncertain because 
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[l-Stream Level 

length of support evidence (seconds) 

g(a)= 0.5 
g(b)= 0.8885 ~0.9 
g(c)= 0.999-= 1.0 

(The values a,b and c are specified 
for each |i-stream in a source) 

Figure 6.3.3: An example of an evidence combination function. 

there may be explanations for the failure to find the needed supporting data or hy- 
potheses. Negative evidence uncertainty was always part of the RESUN model, but 
it- had not been extensively explored with earlier RESUN applications because there 
were limited sources of uncertainty for negative evidence. In IPUS, this is a key 
issue since it is related to the notion of discrepancies and reprocessing of data. For 
example, failure to find a frequency component suggests that the source hypothesis 
is incorrect—i.e., the failure creates negative evidence for the source. However, the 
inability to find the desired component may be due to an inappropriate SPA having 
been used. As a result, this negative evidence will not be certain/conclusive—it will 
be uncertain. 

In RESUN, negative evidence uncertainty is represented by "negative evidence 
explanation" SOUs that are associated with negative evidential inferences. These 
SOUs represent the probability of there being explanations for a failure to find a 
support—i.e., they represent the level of belief that the negative evidence is actually 
disconflrmatory, as opposed to it simply being the result of incorrect processing, etc. 
During evidence summarization, negative evidence explanation SOUs lead to a belief 
range for affected hypotheses: the belief given that the negative evidence is correct 
vs. given the probability that it is incorrect 

The beliefs/probabilities for negative evidence explanation SOUs are computed 
on the basis of domain knowledge. For example, assume that expected support 
(peaks) for a frequency track is not found.  If the energy-threshold parameter for 
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Step 1: apply SPAs to the input data 
and obtain spectral bands. 

spectral-band-1 

spectral-band-2 

Step 2: identify a small group 
of possible sources using 
approximate knowledge 

Step 3: generate expectations 
for the components of the 
hypothesized sources 

Hair-Dryer Telephone Hair-Dryer Telephone 

spectral-band-1 

spectral-band-2 

stream-1 |a.-stream-3 
|i-stream-2 

spectral-band-1 

spectral-band-2 

Time 

Figure 6.5.4: An example of spectral bands approximate knowledge. 

the peak-picking algorithm was higher than the energy expected for the component, 
clearly the negative evidence against the track must be rated as highly uncertain 
and only moderately disconfirmatory. One of the actions that a system can take to 
resolve uncertainty is to simply gather evidence to refine the probability assessment 
in a negative evidence explanation SOU. 

6.5    Approximate Knowledge in IP US 

One of the major changes in the control strategies during the IPUS project has 
been the introduction of approximate processing, using spectral bands. Approxi- 
mate knowledge can be used to reduce the cost of interpretation search by using 
inexpensive evidence to focus the search before using more expensive "exact" ev- 
idence. In IPUS, the approximate processing strategies introduce a stronger top- 
down direction. With approximate processing, we first use (inexpensive) spectral 
bands knowledge to identify a small set of possible sources and then refine this set by 
generating support component expectations for the sources, performing focused/top- 
down contouring, and verifying the component expectations. 

In RESUN, the uncertainty associated with approximate knowledge is repre- 
sented by SOUs that are associated with the evidential inferences, which reflect the 
constraints that are unchecked as a result of the evidence being approximate.  Use 
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Step 4: do contouring for the telephone hypothesis, or reprocess 
the SPAs if the parameters used previously are not appropiate 
for the telephone hypothesis 

Hair-Dryer Telephone 

|X-stream-3 

■ 'i'»s'/      contour-! 
^      contour-2 

Time 

Figure 6.5.5: Spectral bands example, continued. 

95 



Step 5: verify the telephone microstreams. Whenever a contour 
supports a microstream, use this new information to refine the 
spectral band. 

■Telephone 

^i-stream-3 

,*/»,»^     contour-1 

^f      eontour-2 

Time 

* exact processing 

Figure 6.5.6: Spectral bands example, continued. 

of approximate knowledge requires methods for: combining approximate and exact 
sources of evidence; refining the approximate evidence as the result of gathering 
exact evidence for some of the explanations; and propagating belief among the mul- 
tiple explanations of the approximate evidence (which may be consistent or may be 
alternatives). 

In combinding approximate and exact knowledge, evidence from approximate 
knowledge is considered as evidence from a different source of evidence. We have 
different evidence combination methods for each source of evidence. In order to 
compute the belief in a hypothesis with evidence from multiple sources of evidence, 
these must be combined together. Exact processing is preferred over approximate 
processing when computing the belief on a hypothesis. That is, if a source compo- 
nent has evidence from approximate processing and from exact processing, the exact 
processing evidence will be used. The approximate knowledge provides less belief 
than the exact knowledge due to uncertainty reflecting the uncheckable constraints. 
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6.6 Additional   Control   Plan   Sequencing   Con- 
structs 

The initial set of RESUN control plan grammar operators (for sequencing subgoals) 
was never intended to be exhaustive. As part of the IPUS research we have been 
looking for additional operators that are necessary or useful for interpretation ap- 
plications. A few new operators were added as a result of extending the strategies 
in the IPUS testbed, and several more have been contemplated for future addition. 

One of the added operators is :LIST-SHUFFLE. This operator is a parallel sub- 
goal construct like :SHUFFLE, but unlike :SHUFFLE it does not specify a fixed 
set of parallel subgoals. Instead, it specifies a single subgoal type, whose number 
of parallel instantiations will be determined dynamically from a (list-valued) plan 
variable. While this operator has no effect on performance given that we do not 
yet have a parallel processor implementation, it can make it easier and clearer to 
write plans that formerly would have had to use ITERATION to accomplish a list 
of subgoals. 

Another new grammar operator is the :ITERATION-OR operator. This oper- 
ator is derived from the ITERATION operator, which specifies that an indeter- 
minate number of instances of a subgoal need to be iteratively pursued. However, 
whereas the ITERATION operator requires that all subgoal instances have been 
successfully pursued for the plan to be considered successful, the :ITERATION-OR 
operator requires only that at least one of the subgoal instances have been successful. 
Clearly, "or versions" of other operators might also be needed—e.g., :SEQUENCE- 
OR, :LIST-SHUFFLE~OR. 

6.7 Event-Based Refocusing 

The refocusing mechanism is one of the key innovations of the RESUN control 
planner. It makes it possible to reconsider planner focusing decisions based on the 
evolving characteristics of the problem-solving situation. This allows for opportunis- 
tic control and a search process for making control decisions. For example, current 
methods for pursuing a source hypothesis might be interrupted if new data becomes 
available or an alternative source might be pursued if little progress is being made 
on the previously selected source hypothesis. When a decision point is specified as 
a refocusing point, the associated focusing heuristic provides the conditions under 
which the decision should be reconsidered. 

One of the key issues in implementing refocusing is determining when conditions 
should be checked during the control planning cycle. In order to make this process 
as efficient as possible, refocusing conditions are now classified by the types of event 
in which they are interested (only certain kinds of changes can have occurred at par- 
ticular points in the planning cycle). For example, :ACTION refocusing conditions 
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are interested only in changes to the interpretation hypotheses that can occur only 
after an action is executed, while :ÜPDATE refocusing conditions are interested in 
changes in the status of control plans or subgoals. 

Another advantage of this classification is that the refocusing conditions are now 
passed information about the particular event that triggered their checking. This 
can drastically reduce the need to search the planning structure or the database to 
see if relevant changes have occured—since it can often be immediately determined 
whether the event might have affected the status of the condition or not. 

6.7.1    Monitoring Subgoals 

Subgoals can now be set up as "monitoring subgoals" to monitor for periodic events. 
This allows the user to write conjunctive goals in which one of the subgoals is some- 
thing like, "and handle any x events that might occur while accomplishing the 
other subgoals." Thus, monitoring subgoals are intended to be used in a :SHUF- 
FLE construct in parallel with some other non-monitoring (active) goals. Unlike 
non-monitoring subgoals, when a monitoring subgoal is placed infocus it is not im- 
mediately pursued to find matching plans, etc. Instead, the associated monitoring 
condition function is placed onto a list of monitoring conditions to be checked, and 
the subgoal will be activated and pursued only when/if its condition is satisfied. 
Should all of the non-monitoring subgoals of a :SHUFFLE construct complete while 
one or more monitoring subgoals have yet to be activated, the monitoring subgoals 
are considered to have completed satisfactorily. Previously, uncertain periodic 
events had to handled by plans that would periodically actively look to see if the 
events had occured (i.e., polling vs. interrupt-driven). 

6.8    RESUN Implementation Improvements 

We have also made a number of changes to the RESUN system implementation that 
facilitate control plan development and improve the efficiency of the system, as well 
as more fully completing some aspects of the original implementation: 

• subgoal focusing and refocusing (for the parallel subgoal constructs) have been 
fully implemented; 

• refocusing now has complete freedom to repeatedly remove from focus and then 
return to focus, focusing options for any of the types of refocusing points; 

• improved the control plans syntax to make control plans both shorter and 
simpler, which should reduce the chance of some coding errors; 

• extended the plan verification routines so that more control plan errors can 
be identified at load time versus run time; 
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• expanded the tracing options to improve debugging by providing additional 
information options as well as the option to print information for select plan 
or subgoal types to prevent information overload; 

• the plan structures were simplified so that they are easier to examine and use 
less storage; 

• reduced the use of (dynamic) list data structures so that less garbage collection 
is required during long system runs. 

6.9    Conclusions 

One of the goals of our research has been to evaluate whether the RESUN sensor 
interpretation architecture is suitable for encoding the complex and dynamic control 
strategies necessary for signal understanding systems based on the IPUS reprocess- 
ing architecture. IPUS has provided many opportunities for exploring aspects of the 
RESUN architecture that were little used by previous experimental applications. 
While this required us to spend significant effort refining the RESUN model and 
extending the RESUN implementation, we did not come across any major problems 
in handling the issues the have arisen in IPUS. 
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Abstract 

The Integrated Processing and Understanding of Signals (IPUS) architecture is 
presented as a framework that exploits formal signal processing models to struc- 
ture the bidirectional interaction between front-end signal processing and signal un- 
derstanding processes. This architecture is appropriate for complex environments, 
which are characterized by variable signal to noise ratios, unpredictable source be- 
haviors, and the simultaneous occurrence of objects whose signal signatures can 
distort each other. A key aspect of this architecture is that front-end signal pro- 
cessing is dynamically modifiable in response to scenario changes and to the need 
to re-analyze ambiguous or distorted data. The architecture tightly integrates the 
search for the appropriate front-end signal processing configuration with the search 
for plausible interpretations. In our opinion, this dual search, informed by formal 
signal processing theory, is a necessary component of perceptual systems that must 
interact with complex environments. To explain this architecture in detail, we dis- 
cuss examples of its use in an implemented system for acoustic signal interpretation. 
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B.l    Introduction 

Since the middle 1970's, a major focus in perceptual architecture design has been 
the identification and organization of knowledge to permit recovery from uncertainty 
introduced by front-end numeric signal processing algorithms (SPAs). One can 
categorize research efforts in this area along five dimensions according to where 
they emphasize the placement of this knowledge: 

1. within high-level interpretation knowledge sources (HLKSs) (e.g., as improved 
or approximate models of environmental phenomena [18, 20, 32, 44]), 

2. within numeric-level KSs (SPAs) (e.g., as control parameter optimization pro- 
cesses or feedback loops [8, 22, 42]), 

3. in the control of HLKSs' application (e.g., in planning architectures for con- 
trolling KS activation and sophisticated evidential representations [6, 10, 11, 
20, 39]), 

4. in the control of SPAs' application (e.g., as differential diagnosis rules for 
SPA application to disambiguate objects in the environment [14, 15, 29] or as 
compiled "SPA trees" learned for particular objects [19]), and 

5. in the control of the interaction between HLKSs and SPAs [1, 2, 5, 14, 15, 29, 
23]. 

Over the past two decades, research efforts along each of the first four dimen- 
sions has been quite fruitful, yielding significant architectural paradigms. However, 
we believe that some of the assumptions made in these efforts have resulted in a 
paradigm not well suited to the perception of complex environments. Such envi- 
ronments are characterized by variable signal-to-noise ratios, unpredictable source 
behavior, and the simultaneous occurrence of objects whose signal signatures can 
mask or otherwise distort each other. 
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Figure B.l.l: Classic Knowledge-Based Signal Processing Architecture. This paradigm 
imposes a unidirectional control flow that limits interpretation processes' analysis to only 
the single set of observations afforded by the fixed signal processing. Interpretation pro- 
cesses do not usually provide structured feedback to the front-end about either the adequacy 
of the signal processing outputs to be interpreted or any anticipated signal behavior. 
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Consider the architectural paradigm in Figure B.l.l, which has usually been as- 
sumed by research efforts lying along the first four dimensions. It assumes that fixed 
signal processing in the front-end can provide adequate (not necessarily optimal) ev- 
idence for reliable interpretations regardless of the range of possible scenarios in the 
environment. In our opinion, this assumption is plausible for architectures that mon- 
itor stable environments, but not for those that monitor complex environments. In 
these environments, the choice of front-end SPAs is crucial to the generation of ad- 
equate evidence for interpretation processes. Parameter values inappropriate to the 
current scenario can render a perceptual system unable to interpret entire classes 
of environmental events correctly. Front-end SPA sets for complex environments 
must be dynamically modifiable to respond to scenario changes and to reprocess 
ambiguous or distorted data. "Dynamically modifiable" refers both to the ability to 
change SPA control parameter values and to the ability to select entirely new sets 
of front-end SPAs. 
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Figure B.1.2: Figure B.1.2b shows distortions introduced by a STFT SPA and a peak- 
picker SPA with inappropriate parameter settings applied to the acoustic scenario described 
in Figure B.1.2a. Darker shading indicates higher energy. The STFT parameter settings 
used throughout B.1.2b were FFT-SIZE: 512, WINDOW-LENGTH: 512, and DECIMA- 
TION: 512, while the peak-picker's parameter setting was PEAK-THRESHOLD: 0.09. 
The signal was sampled at 8KHz. DECIMATION is the separation between consecutive 
analysis window positions; the value was set to 512 to permit the fastest possible processing 
of the data. PEAK-THRESHOLD is the normalized energy required for a discrete Fourier 
transform point to be considered as a peak. In B.1.2b's first second, Phone-Ring's tracks 
are merged because the STFT's frequency resolution is not adequate for such close features. 
Glass-Clink's frequency track is not even detected in B.1.2b's next second because the 
STFT's analysis window doesn't provide adequate time resolution to isolate the source's 
spectral features. The energy threshold causes the peak-picker to miss Buzzer-Alarm's 
low-energy track. 
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Figure B.1.2 illustrates the utility of dynamically modifiable SPAs to interpret 
a complex acoustic environment. Figure B.1.2a shows the frequency tracks of four 
sound sources as they would appear if they were processed with Short-Time Fourier 
Transform [36] (STFT) SPAs appropriate for each portion of the scenario. Fig- 
ure B.1.2b shows how the tracks appear when the entire scenario is processed by 
one STFT SPA appropriate only for the steady-state portion of the last sound in 
the scenario. Due to inappropriate processing, the first two seconds' analyses con- 
tain several distortions that would lead to ambiguous interpretations and completely 
undetected sources (see Figure B.1.2's caption). 

These observations have led us to focus our work along the fifth knowledge- 
placement dimension: controlling HLKS/SPA interaction. Since the late 1980's, 
there have been several efforts to design architectures allowing interpretation pro- 
cesses to reconfigure signal processing. However, these architectures' process- 
ing/interpretation interactions have tended to be informal or domain-specific (see 
Section B.5). 

In this paper we present the Integrated Processing and Understanding of Signals 
(IPUS) architecture as a formal and domain-independent framework for structuring 
HLKS/SPA interaction in complex environments [27, 28, 30, 31, 34, 35]. It enforces 
structured, bidirectional interaction between a perceputal system's interpretational 
components and signal processing components. This interaction combines the search 
for front-end SPA configurations appropriate to the environment with the search for 
plausible interpretations of front-end processing results. The architecture is instanti- 
ated by a domain's formal signal processing theory. It has four primary components 
as conceptual "hooks" for organizing and applying signal processing theory: discrep- 
ancy detection, discrepancy diagnosis, differential diagnosis, and signal reprocessing. 
These components have the following functionality: 

• detect discrepancies between data expectations and actual data observations, 

• diagnose these discrepancies and ascribe reasons for observational uncertainty, 

• determine reprocessing strategies for uncertain data and expected scenario 
changes, and 

• determine differential diagnosis strategies to disambiguate data with several 
alternative interpretations. 

This paper discusses the generic IPUS architecture and its instantiation for 
acoustic signal interpretation. Acoustic signal interpretation in itself is an inter- 
esting problem that arises in applications such as assistive devices for the hearing 
impaired and robotic audition.1 In the following sections we (1) discuss percep- 
tion in complex environments (2) present motivations for the IPUS framework, 

1The problem of identifying and tracking sounds. 
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(3) describe the generic IPUS architecture, (4) discuss related work, (5) describe 
an IPUS-based acoustic interpretation testbed, (6) illustrate the testbed's behavior 
using Figure B.1.2's scenario, (7) discuss the architecture's implications for SPA 
design, and (8) indicate directions for our future research. 

B.2    Perception in Complex Environments 

In this section we discuss relationships between the nature of perception in complex 
environments and the means by which systems actually perceive environments. In 
particular, we establish terminology for describing environments and for discussing 
context-dependent suitability of SPAs. We represent environments using the follow- 
ing definitions. 

Definition 1 (Environment) An environment is a triple (0,T,7l) where Ö is the set 
of observable objects, J- is the set of all features that can be used to describe objects, and 1Z 
is a set of context rules describing how features interact with each other when more than 
one object is being perceived in the environment. 

Definition 2 (Objects) Each object belongs to a unique object class. Object classes 
are defined by sets of feature descriptions. Each set specifies a subset of features from T 
and ranges of permissible values for these features. An object is an instance of an object 
class if its feature values lie within a descriptor set of the class. 

Definition 3 (Contexts) A context is the set of all specific objects, with their orien- 
tation, observed in an environment. A permissible context is defined as a set of objects 
which are permitted to co-occur. Unless otherwise proscribed by the specific application 
domain, a permissible context may contain several instances of the same object class. 

In audition, the orientation of an object includes domain-dependent characteri- 
zations such as distance, loudness, and velocity. In another domain such as vision, 
orientation would include characterizations such as pose, distance, and velocity. 

Definition 4 (Context Rules) A context rule is a pair (C,F). C is a permissible 
context and F C fobj x fenv. Here f0bj is the union of instantiated features from all the 
objects in C, and fenv is a powerset of T with instantiated values. The set F indicates the 
observability of the objects' instantiated features when they are considered in the context 
C. Elements in F of the form {/i, {/i}} indicate the instantiated feature f\ is observable 
in the context; elements of the form {fi,{gi,--- ,gn}} indicate the instantiated feature is 
masked or otherwise distorted to appear as different instantiated feature(s) {gi,- • ■ ,gn} 
from fenv Note that fx indicates a feature and its particular value. 

The rules indicate how the features of co-occurring objects interact with each 
other without regard to how their signals are processed. For example, such rules 
from vision would address the occlusion of objects by other objects, while such rules 
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from audition would address the summed-energy of overlapping frequency compo- 
nents from multiple sounds. Definition 4 describes only the kind (not the form) of 
knowledge that perceptual systems should have about contexts. The definition's 
knowledge representation is combinatorially explosive and certainly could not be 
used in any real system. 

Having defined our concept of a perceptual system's environment, let us now 
consider SPAs, the means by which a system processes the signals from its environ- 
ment. There are two levels of abstraction for describing SPAs: generic SPAs and 
SPA instances. SPA instances are specified by specific values for a generic SPA's 
control parameters. Where there is no ambiguity in the discussion between generic 
SPAs and SPA instances, we will use the term "SPA" to refer to an SPA instance. 
When applied to signals, SPAs produce correlates. These are used as evidence to 
support hypotheses that particular features (not necessarily associated with any ob- 
ject) are present in the environment. We refer to the correlate set produced by an 
SPA as that SPA's computed correlate set. 

An SPA's parameter values induce capabilities or limitations with respect to 
the scenario being monitored. Consider the generic Short-Time Fourier Transform 
(STFT) algorithm [36] in the acoustic domain. An STFT instance has particu- 
lar values for its parameters, such as analysis window length, frequency-sampling 
rate, and decimation interval (separation between consecutive analysis window po- 
sitions). Depending on assumptions about a scenario's spectral features and their 
time-variant nature, these parameter values increase or decrease the instance's use- 
fulness in monitoring the scenario. An instance with a large window length will pro- 
vide fine frequency resolution for scenarios containing sounds ("acoustic objects") 
with time-invariant components, but at the cost of poor time resolution for sounds 
with time-varying components.2 

In complex environments, there are often many SPAs which can potentially 
compute a correlate's value. The effectiveness of an SPA to produce correlates 
that can support hypothesized object features is dependent in general upon the 
context in which the correlates are to be computed, the specific values of the object 
features, and the SPA's parameter values. We will consider an SPA's parameter 
values appropriate to a context if the SPA's correlates can provide not just support, 
but unambiguous support for all the features of all the objects in the context. 

Figure B.2.3 uses sound disambiguation to show the relationship between 
context-dependent correlate computation and interpretation ambiguity more con- 
cretely. When analyzed in isolation, the hairdryer's two frequency tracks are unam- 
biguously supported by the correlates from STFT-1. However, when the hairdryer's 
tracks are analyzed in conjunction with the telephone in the second context, ambigu- 
ity arises. The new tracks in Figure B.2.3b indicate the potential presence of a new 

2 A variant analysis of the Heisenberg Uncertainty Principle implies that one cannot obtain a 
STFT SPA instance (or, for that matter, design a new generic SPA) that simultaneously provides 
infinite frequency resolution and infinite time resolution. 
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sound that matches the telephone model except for its lowest frequency track. The 
hairdryer's lower-frequency track cannot be unambiguously supported by the same 
SPA's correlates, since at least some of the track's potential support could alterna- 
tively support the phone's low-frequency components. Fourier theory can attribute 
the ambiguity to the SPA's poor frequency resolution capabilities and indicate that 
the second context should be reanalyzed by a more appropriate SPA. When the sec- 
ond context's signal is analyzed by STFT-2, the SPA's finer resolution confirms this 
explanation for the ambiguity and provides correlates that unambiguously support 
both the hairdryer's and the telephone's tracks. 
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Figure B.2.3: Context-Dependent Correlate Computation. When STFT-1 analyzes con- 
text A 's signal, its frequency correlates in (a) are adequate for unambiguously identifying 
the hairdryer's two frequency tracks. When the same SPA analyzes context B's signal, 
however, its frequency correlates in (b) are not adequate for unambiguously supporting the 
hairdryer's two tracks AND the phone's three tracks. Context B's signal requires process- 
ing by STFT-2 with a finer frequency resolution in order to produce correlates in (c) that 
unambiguously support the two sources' tracks. 

At this point we see that to select SPA instances appropriate to a particular 
scenario, a perceptual system must consider the features corresponding to the in- 
put signal. This leads to the apparent circularity that choosing appropriate SPA 
parameter values requires knowledge about the signal, but this knowledge can only 
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be obtained by first processing the signal with an SPA with appropriate parameter 
settings. Thus, in complex environments the search for appropriate interpretations 
must be intimately connected with the search for appropriate SPA instances. 

The features that perceptual systems can monitor in complex environments fall 
into two classes. The first class contains features which can be used to indicate 
the existence of one or more objects, though not necessarily the objects' identities. 
These features often have supporting correlates that can be computed independent 
of the context being analyzed. In the auditory domain, for example, any collection 
of one or more "sound objects" may be conceptualized as an acoustic intensity 
distribution with minimum and maximum limits on gross features such as temporal 
spread, frequency spread, duration of silence intervals, and degree of randomness in 
intensity fluctuations. Such gross features' correlates can generally be computed in 
a context-independent manner; hence we call them context-independent features. 

The second feature class contains those features which can be used to identify an 
object or track the behavioral changes of an object. The computation of correlates 
to support these features is often very sensitive to the context being analyzed; hence 
we call them context-dependent features. In the auditory domain, for example, a fre- 
quency track would be a context-dependent feature of a sound ("acoustic object"). 
If the current scenario has no sounds besides the sound containing a particular track 
T0, then an STFT with parameters providing only very coarse frequency resolution 
would still produce correlates that could support the track's existence. Now assume 
that the current scenario changes so that there are other sounds in the environment 
with frequency tracks T1;... ,Tn. In this new scenario only STFTs providing fre- 
quency resolution of at least the minimum difference between T0's frequency and 
the other tracks' frequencies would produce correlates that could unambiguously 
support Xb's existence. 

It is important to note that the distinction between context-independent and 
context-dependent features lies in the features' usage. If a feature is used only to in- 
dicate the presence of some object(s), the feature is considered context-independent. 
However, if the same feature were to be used as support for the identity of some 
object(s), it would in general require context-dependent correlate computation, and 
would therefore be considered a context-dependent feature. 

This section's discussion about complex environments and the basic means for 
analyzing their signals serves as background for Section B.3. The focus in that 
section is on how a domain's signal processing theory can be used to guide the 
design of an architecture for controlling the process of SPA application. 

B.3    Architectural Motivation 

Past research efforts within the traditional paradigm for perceptual system design 
(Figure B.l.l) have produced architectures that require the identification of a set of 
features and SPAs applicable to all scenarios the environment may produce.  This 
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requirement is feasible only for significantly constrained environments. Under the 
traditional paradigm, complex environments can require combinatorially explosive 
SPA sets with multiple parameter settings to capture the variety of signals ade- 
quately [17] and to handle the variety of processing goals the current scenario may 
dictate. As an example of variable processing goals, consider a system with the 
primary goal of responding to either the sounds of an infant or a ringing telephone 
while ignoring other sounds. This may be done by monitoring a medium-frequency 
band. If an infant sound is detected, the system's goal may then switch to deter- 
mining whether the infant is crying or choking while ignoring telephone rings. Such 
a goal might then be accomplished by switching to lower-frequency spectral regions 
with specialized SPAs. 

To circumvent the combinatorial explosion, one could reason that a small SPA 
set might be sufficient if comparisons could be made between the SPAs' computed 
correlates and dynamically-generated formal expectations. We use the term antic- 
ipated correlate set to refer to the set of expectations about an SPA's computed 
correlate set. Any computed correlates whose coordinates and values do not match 
those of any anticipated correlates are considered unanticipated. Unmet SPA out- 
put expectations can indicate that either the expectations are based on incorrect 
interpretations or that the SPA's computed correlates have been distorted because 
the SPA's parameter values are inappropriate to the current scenario. In the first 
case a perceptual system could re-interpret the current scenario based on the SPA's 
correlates, while in the second case a perceptual system could reconfigure the SPA's 
parameters or replace it with a more appropriate SPA. The important assumption 
in this solution is that there is a basis for generating the expectations, detecting the 
unmet expectations, and deciding between the two possible classes of explanations 
for the unmet expectations. We argue that a domain's formal signal processing 
theory can play this role. 

An SPA's correlates can be compared with expectations based on object models 
or on a priori environment constraints such as maximum bounds on sounds' rate of 
temporal change in frequency. Referring back to our assumption about rules for the 
interaction of co-occuring objects' features, these "context rules" could also provide 
a basis for checking SPA appropriateness. Most importantly, a domain's signal 
processing theory can specify how one SPA's correlates for a context-independent 
feature can serve as the basis of expectations for another SPA's output correlates. 
This specification can serve to check an SPA's appropriateness to the environment. 
It can also serve to decide where to selectively apply another SPA in the signal data 
stream to obtain correlates for context-dependent features. 

Figure B.3.4 illustrates these concepts with an example from the acoustic pro- 
cessing of footsteps in a noisy environment. The example uses two complementary 
generic SPAs: a time-domain energy tracker and an STFT. The time-domain energy 
tracker detects a short, uniform energy burst that should correspond to short tracks 
in the frequency domain, according to acoustic signal processing theory. When an- 
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alyzed by STFT-1 with its wide analysis window, the footstep's impulsive energy 
is smoothed with surrounding noise and fails to appear as a short frequency track 
in the STFT's correlates. In other words, the STFT's correlates are subject to a 
smoothing distortion. The temporal locations and durations of the energy tracker's 
energy bursts serve two purposes. First, they indicate that STFT-1 was potentially 
inappropriate to the current environment. Second, they serve as the basis for gener- 
ating STFT-2 with a narrower analysis window and smaller time decimation interval 
to apply to the region in the signal where a new source is suspected. This STFT's 
correlates not only confirm the belief that the first STFT was inappropriate to the 
environment but also more strongly support the existence of the impulsive footsteps 
than the energy tracker's correlates did by themselves. 

51X10 Hz 
Footstep+Noise 

'.v.tatif&M'j;>ti. 

Sffefei 

I STFT-1: 
FFT SIZF.: 21)48 

ANALYSIS WINDOW: 1024 
DECIMATION: 128 

* 

■■■■■■■■*'&■■■ 

1 
Energy TVacking 

1 
STFT-2: I 

FFT SIZE: 1024 I 
ANALYSIS WINDOW: 2561 

DECIMATION: 32       I 

* 

51KMI Hz S^agsPv 

i.'.;/.;wfc-i- 

Figure B.3.4: Context-Dependent Correlate Computation. The energy tracking SPA pro- 
vides correlates for context-independent energy burst features. These features which guide 
the focused application of an STFT with parameters to find frequency-track correlates for 
the footstep impulse in a noisy environment. 

The preceding example provides instances of three generic roles that a domain's 
formal signal processing theory can play in guiding interpretation and processing in 
a complex environment: 

• provide methods to determine discrepancies between an SPA's expected cor- 
relate set and its computed correlate set. 
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• define distortion processes that explain how discrepancies between expecta- 
tions and an SPA's computed correlates result when the SPA has inappropriate 
values for specific parameters. 

• specify new strategies to reprocess signals so that distortions are removed or 
ambiguous data is disambiguated. 

These observations about the power of formal signal processing theory in ana- 
lyzing complex environments lead to our decision to incorporate a "discrepancy de- 
tection, diagnosis, and reprocessing loop" as the backbone of the IPUS architecture. 
We believe that the explicit representation of the knowledge in signal processing the- 
ory is crucial to systems that monitor complex environments. Our design of IPUS 
is motivated by the thesis that complex environments require dynamic, context- 
dependent feature selection concurrent with dynamic, context-dependent selection 
of appropriate SPAs for extracting correlates to support the features. The goal of 
the framework is to use theoretical relationships between SPA parameters and SPA 
outputs to structure the dual searches for SPAs appropriate to a scenario and for 
interpretations appropriate to the SPAs' correlates. 

B.4    Generic IPUS Architecture 

This section has three parts. The first part presents a summary of the architec- 
ture. The second part discusses the generic specifications of each component of 
the architecture's reprocessing loop: discrepancy detection, discrepancy diagnosis, 
reprocessing, and differential diagnosis. The third part describes the architecture's 
control framework. Section B.6.1 provides summaries of the algorithms used to 
instantiate the IPUS components in the acoustic interpretation testbed [31]. 

B.4.1    Architecture Summary 

The generic IPUS architecture, with its primary data and control flow, appears 
in Figure B.4.5a. Figure B.4.5b shows its instantiation in the acoustic interpreta- 
tion testbed to be discussed in Section B.6.2. Two types of signal interpretation 
hypotheses are stored on the hierarchical blackboard: interpretations of correlates 
from current and past signal analyses, and expectations about the interpretations 
of data correlates from future analyses. 

Our design of the IPUS framework assumes that signal data is submitted for 
analysis a block at a time. IPUS uses an iterative process for converging to the 
appropriate SPAs and interpretations. For each block of data, the loop starts by 
processing the signal with an initial configuration of SPAs. These SPAs are selected 
not only to identify and track the signals most likely to occur in the environment, 
but also to provide indications of when less likely or unknown signals have occurred. 
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Figure B.4.5: Figure B.4.5a shows the generic IPUS architecture and Figure B.4-5b shows 
the architecture instantiated for the sound understanding testbed. Solid arrow lines indicate 
dataflow relations. Dotted arrow lines indicate classes of plans that the planner can pursue 
when trying to reduce or eliminate particular uncertainties (discrepancies) in the problem 
solving model that were selected by the focusing heuristics. Parenthesized terms indicate 
knowledge added to the planner or system knowledge sources to instantiate the architecture 
for an application. Note that reprocessing plans can cause SPA execution at any SPA 
output level, not just the lowest. 

In the next part of the loop, a discrepancy detection process tests for discrepan- 
cies between the correlates of each SPA in the current configuration and (1) the 
correlates of other SPAs in the configuration, (2) application-domain constraints, 
and (3) the correlates' anticipated form based on high-level expectations. Archi- 
tectural control permits this process to execute both after SPA output is generated 
and after interpretation problem solving hypotheses are generated. If discrepancies 
are detected, a diagnosis process attempts to explain them by mapping them to a 
sequence of qualitative distortion hypotheses. The loop ends with a signal reprocess- 
ing stage that proposes and executes a search plan to find a new front-end (i.e., a 
set of instantiated SPAs) to eliminate or reduce the hypothesized distortions. After 
the loop's completion, if there are any similarly-rated competing top-level interpre- 
tations, a differential diagnosis process selects and executes a reprocessing plan to 
find correlates for features that will discriminate among the alternatives. 

Although the architecture requires the initial processing of data one block at 
a time, the loop's diagnosis, reprocessing, and differential diagnosis components 
are not restricted to examining only the current block's processing results.  If the 
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current block's processing results imply the possibility that earlier blocks were mis- 
interpreted or inappropriately reprocessed, those components can be applied to the 
earlier blocks as well as the current blocks. Additionally, reprocessing strategies and 
discrepancy detection application-constraints tests can include the postponement of 
reprocessing or discrepancy declarations until specified conditions are met in the 
next data block(s). 

B.4.2    IPUS Reprocessing Loop Components 

This section discusses the generic specifications of each component of the architec- 
ture's reprocessing loop, as depicted in Figure B.4.5a. 

Discrepancy Detection 

The discrepancy detection process is crucial to the IPUS architecture's iterative 
approach. Our specification of the process requires it to recognize three groups of 
discrepancies, based on the source of the anticipated correlates used in the compar- 
isons. 

fault A discrepancy between an SPA's computed correlates and correlates from 
other SPAs applied to the same signal data. This class is included based on 
two propositions. The first is that correlates for context-dependent features, if 
computed by SPAs appropriate to the context, do not contradict the correlates 
for context-independent features. The second is that correlates for context- 
dependent features, if computed by SPAs appropriate to the context, do not 
contradict other context-dependent correlates computed by other SPAs from 
the same data. As an example, refer to Figure B.3.4 where the energy tracking 
SPA indicates a short burst of energy while the first STFT's correlates do not 
support new frequency tracks during the burst's time period. A fault should 
be declared since Fourier theory requires the burst's presence in both analyses, 
given the assumption that the STFT analysis was appropriate to the context. 

violation A discrepancy detected between an SPA's computed correlates and do- 
main constraints. This class is included based on the proposition that corre- 
lates, if computed by SPAs appropriate to the context, do not support features 
that violate the environment's physical constraints. As an example, if the ap- 
plication domain is considered subject only to wideband gaussian noise (5000 
Hz wide), STFT output correlates showing only a narrowband noise signal 
(say 500 Hz wide) would give rise to a violation. Note that violations can 
indicate either that an SPA was inappropriately applied or that the environ- 
ment's characteristics have changed from those in the original definition. In 
the first case reprocessing based on the environment's definition should suc- 
ceed in eliminating the discrepancy.   In the second case reprocessing based 
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on the environment's (invalid) definition will fail. Failures of the second type 
are recorded as distortions to be expected due to environmental changes and 
prevent needless execution of the reprocessing loop when they are detected 
again. 

conflict A discrepancy between an SPA's computed correlates and model-based ex- 
pectations. Model-based expectations arise from two sources. The first source 
is the set of models for objects already assumed to be present. The second 
source is the set of models for objects under consideration for interpreting 
newly-detected correlates in the current block of data. Conflict discrepancies 
may involve either a total or a partial mismatch between correlates and the 
hypotheses they were supposed to support. This class is included based on the 
proposition that features supported by correlates computed from appropriate 
SPAs ought to be completely consistent with the object features specified by 
the context expected to be observed. "Object features" includes not only fea- 
tures that are not expected to be distorted but also features that are expected 
to be distorted because of the existence of other objects in the environment. 
Conflicts can indicate that an SPA is not appropriate to the context or that 
the context actually contained objects different from those expected. As a 
simple example, a conflict would occur when the interpretations of past cor- 
relates predict a sound with two sinusoids at 230 Hz and at 250 Hz with no 
decline in their amplitudes and current STFT correlates support one or none 
of the sinusoids. It could indicate that possibly the STFT's energy threshold 
is inappropriate because the sound's volume decreased, or that a new sound is 
masking the expected sound. Because we make expectations take on the max- 
imum possible values for their object features, this conflict could also indicate 
that the expectation's duration was too long. 

Examination of a wide range of domains reveals two generic classes of correlates: 
point correlates and region correlates. A point correlate is a value associated with one 
point in the SPA output coordinate space. A region correlate is a value associated 
with a subset of the SPA output space. Consider the following examples. A spectral 
peak energy value in the "time, frequency, energy" space of acoustic signal processing 
and an image pixel intensity value in the "x, y, intensity" space of image processing 
are examples of point correlates. A noise-distribution tag for a region in a radar 
sweep and a mean-intensity value for a region in the output of an image filtering SPA 
are examples of region correlates. A track of spectral peaks over time from a series 
of FFT analyses is an example of a region correlate comprised of non-contiguous 
subsets of the SPAs' output space. 

For both point and region correlates, we require that the IPUS discrepancy 
detection component be able to check for the following generic discrepancies between 
an SPA's anticipated correlate set and its computed correlate set. 
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1. missing: An anticipated correlate is not in the computed correlate set. An 
example of this discrepancy in the acoustic domain occurs when a spectral 
peak is expected in the output of an FFT SPA, but is not found. 

2. unassociated: An unanticipated correlate occurs in the computed correlate 
set. An example of this discrepancy in the radar domain occurs when an 
unanticipated clutter region is produced during a radar sweep. 

3. value-shift: A correlate is found in the computed correlate set at its antici- 
pated coordinates, but with an unanticipated value. In the visual domain we 
encounter this discrepancy when an image region's hue label produced by an 
intensity analysis SPA is brighter than expected. 

4. coordinate-shift: A correlate with an anticipated value is found in the com- 
puted correlate set but at unanticipated coordinates. This includes the sit- 
uation where a region's boundaries shift from their expected locations. An 
example of this discrepancy in the acoustic domain occurs when a track of 
spectral peaks produced by a curve-fitting algorithm has the correct energy 
value but is 30 Hz from its expected position. 

5. merge: Two or more anticipated correlates are deemed to have appeared as 
one unanticipated correlate in the computed correlate set. The criteria for 
this merging are domain-specific and often depend on relationships between 
the missing correlates' values or coordinates and the unanticipated correlate's 
value or coordinates. An example of this discrepancy in the visual domain 
occurs when two adjacent regions with different expected textures are replaced 
by one region with an unanticipated texture. 

6. fragmentation: An anticipated correlate is deemed to have been replaced by 
several unanticipated correlates in the computed correlate set. The criteria for 
this splitting are domain-specific and often depend on relationships between 
the missing correlate's values or coordinates and the unanticipated correlates' 
values or coordinates. An example of this discrepancy in the radar domain 
occurs when a noise-analysis SPA computes two or more small regions with 
a particular noise-distribution label instead of an expected single region with 
that label. 

Discrepancy Diagnosis 

A domain's formal signal processing theory can predict the form computed correlates 
will take not only when an SPA is applied with parameter values appropriate to the 
context, but also when an SPA is applied with inappropriate parameter values. We 
relate a signal processing theory's content to SPAs and their interaction with the 
environment in terms of SPA processing models. An SPA processing model describes 
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how the output of the SPA changes when one of its control parameters is varied while 
all the others are held fixed. 

SPA processing models serve as the basis for defining how the parameter settings 
of an SPA can introduce distortions into the SPA's computed correlates. These 
distortions cause correlate discrepancies. Consider an SPA processing model corre- 
sponding to the STFT's WINDOW-LENGTH parameter and how this model can 
be used to define distortions. Refering to Figure B.2.3, as this parameter's value 
increases, merged and missing correlate discrepancies disappear. Conversely, as the 
parameter's value decreases, merged and missing correlate discrepancies occur more 
frequently. Formally, assume that an STFT with an analysis window of W sample 
points is applied to a signal sampled at R samples per second. If the signal came 
from a scenario containing frequency tracks closer than R/W Hz, Fourier theory 
predicts that the tracks will be merged in the STFT's computed correlates. 

When discrepancies are detected, diagnosis can be performed to obtain an "in- 
verse" mapping from the discrepancies and to qualitative hypotheses that explain 
them in terms of distortions. This diagnosis process relies on an environment's con- 
text rules and the domain's SPA processing models to define distortion processes 
that take place when an SPA's assumptions about its input signals are violated [37]. 
Note that there is a difference between discrepancies and signal distortion processes. 
Distortion processes are used to explain discrepancies. It is also possible for several 
distortion processes to explain the same kinds of discrepancies. A "low frequency 
resolution" process explains the 'missing' and 'unassociated' discrepancies in Fig- 
ure B.2.3's example, and a "low time resolution" process explains the 'missing' 
discrepancy in Figure B.3.4's example. 

As another simple diagnostic example, consider the conflict discrepancy where 
frequency components previously observed at 225 Hz and 250 Hz "disappear" from 
the current STFT output but a "new" component is observed midway between 
the original components' positions. The STFT processing models provide us with 
the concept of a "low frequency resolution" distortion process which can account 
for the missing and unanticipated correlates in the STFT output. In discrepancy 
diagnosis, this specific distortion's definition would serve as the basis for checking if 
it is plausible that the two components may have drifted too close to each other for 
the current STFT instance to be able to resolve them. If this is indeed plausible, the 
distortion process explains the presence of just a single component in the current 
STFT output. 

Reprocessing and Differential Diagnosis 

The signal reprocessing component uses explanations from the diagnosis component 
to propose and execute search plans for finding new SPA control parameter values 
that eliminate or reduce the hypothesized distortions. In the course of a repro- 
cessing plan's execution, the signal data may be reprocessed several times under 
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different SPAs with different parameter values. The incremental search is necessary 
because the diagnosis explanation is at least partially qualitative, and therefore it 
is generally impossible to predict a priori exact parameter values to be used in the 
reprocessing. The reprocessing component relies on SPA processing models to select 
new SPAs and/or parameter values when instantiating the proposed reprocessing 
plan. Continuing the frequency resolution example from the previous subsection, 
the STFT processing model's quantitative relationship between parameter values 
and correlate output would indicate the need for a STFT instance with a longer 
analysis window for obtaining better frequency resolution. 

In the course of processing signal data, IPUS-based systems will encounter sig- 
nals that could support several alternative interpretations. In addition to natural 
similarities among several objects' features, ambiguous sets of alternative interpre- 
tations can also arise from co-occuring objects' interactions and from applying SPAs 
inappropriate to a context. The differential diagnosis component implements what 
we have previously referred to in Section B.3 as the dynamic, context-dependent se- 
lection of features to disambiguate objects. It uses SPA processing models to predict 
how the front-end SPAs' parameter values could have made correlates for different 
features of alternative objects appear similar. Based on these predictions, the re- 
processing component can then propose a reprocessing strategy to disambiguate the 
features' correlates. 

The dual search in IPUS becomes obvious with the following two observations. 
Each time the data is reprocessed, whether for disambiguation or distortion elim- 
ination, a new state in the SPA instance search space is examined and tested for 
how well it eliminates or reduces distortions. At the same time, the distortion elim- 
ination or disambiguation measurement is predicated on the assumption that the 
system's current state in the interpretation space matches the actual context being 
observed. We will see later in Section B.7.2 that failure to remove a hypothesized 
distortion after a bounded search in the SPA instance space will often lead to a new 
search in the interpretation space. This happens based on the following reasoning. 
The diagnosis and reprocessing results represent an attempt to justify the assump- 
tion that the current interpretation is correct. If either diagnosis or reprocessing 
fails, there is a strong likelihood that the current interpretation is not correct and 
a new search is required in the interpretation space. Furthermore, the results of 
failed reprocessing can constrain the new interpretation search by eliminating from 
consideration objects with features requiring correlates that should have been found 
during the reprocessing. 

B.4.3    Control in IPUS 

Depending upon the class(es) of discrepancies detected and the context in which 
interpretation is being carried out, an IPUS-based system can use different strategies 
to resolve (i.e. explain and possibly eliminate) the discrepancies. For example, in a 
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Situation where real-time processing deadlines are tight, the system may not even 
attempt to resolve conflict discrepancies involving minor mismatches in order to 
conserve time. In a situation where time is costly but not prohibitive, however, 
the system may decide to engage the diagnostic process on the discrepancy, but 
then to forego actual reprocessing of the signal because the proffered explanation 
would require reprocessing a set of data too large to be accommodated by the 
time constraints. That is, for this case the system may decide that the successful 
generation of an explanation alone is sufficient to resolve the discrepancy. Finally, 
in a non-time-critical situation or when analyzing data from an important source, 
the system may decide to engage the diagnostic process and reprocess the data on 
the basis of the explanation in order to verify the explanation's plausibility as part 
of resolving the discrepancy. 

We designed IPUS to serve as the basis of systems for producing perceptual 
interpretations with acceptable uncertainty levels. Therefore, we had to provide 
the architecture's control framework with a formalism for representing factors that 
affect interpretations' confidence levels. The control framework also had to support 
context-sensitive focusing on particular uncertainties in order to control engagement 
and interruption of the architecture's reprocessing loop. 

For these reasons, IPUS uses the RESUN [11, 12] framework to control knowl- 
edge source (KS) execution. This framework supports the view of interpretation 
as a process of gathering evidence to resolve hypotheses' sources of uncertainty 
(SOUs). It incorporates a language for representing SOUs as structures which trig- 
ger the selection of appropriate interpretation strategies. Problem-solving is driven 
by information in the problem solving model, which is a summary of the current 
interpretations and the SOUs associated with each one's supporting hypotheses. 
An incremental, reactive planner maintains control using control plans and focusing 
heuristics. Control plans are Schemas that define the strategies and SPAs available 
to the system for processing and interpreting data, and for resolving interpreta- 
tion uncertainties. Focusing heuristics are context-sensitive tests to select SOUs to 
resolve and processing strategies to pursue. 

The RESUN framework endows IPUS with two basic problem-solving modes: 
evidence aggregation and differential diagnosis. Evidence aggregation problem solv- 
ing seeks data for increasing or decreasing the certainty of one particular inter- 
pretation, whereas differential diagnosis problem solving seeks data for resolving 
ambiguities that produced competing interpretations. Through these problem solv- 
ing approaches, IPUS-based systems can decide when to reprocess data previously 
examined under one SPA with another SPA to obtain evidence for resolving uncer- 
tainties. 

The RESUN framework was developed to address current interpretation systems' 
limited ability to express and react to the reasons for interpretation hypotheses' un- 
certainty. It emphasizes the separation of hypothesis belief evaluation from control 
decision evaluation by making control responsive not only to the levels of numeric 
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belief in hypotheses but also to the presence of specific SOUs in the problem-solving 
model. The control plan formalism supports opportunistic control through a re- 
focusing mechanism that lets the planner switch among several plan elaboration 
points (current leaf nodes in the plan tree) in a context-dependent manner. It also 
permits reprocessing strategies to be expressed as alternative control plans, which 
are selected on the basis of SOUs describing discrepancies and their explanations. 

B.5    Related Work 

The IPUS architecture explores how formal signal processing knowledge such as 
Fourier theory can be organized and applied in the fifth of the knowledge-placement 
dimensions discussed in Section B.l. This research represents the formalization and 
extension of concepts explored in earlier work on a diagnosis system that exploited 
formal signal processing theory to debug signal processing systems [37] and in work 
on meta-level control [24, 25] that used a process of fault-detection, diagnosis, and 
replanning to decide the most appropriate parameters for controlling a problem- 
solving system. 

Although we oriented this research most strongly along the fifth knowledge- 
placement dimension, we feel it has implications for work along the other four di- 
mensions as well. The architecture supports the use of an application domain's 
formal signal processing theory in selecting approximate or specialized SPAs for 
context-dependent application to specific portions of a signal [33]. For this reason 
the research also extends work that emphasizes the fourth dimension (control of 
SPA application). 

Several recent systems have been developed that provide for structured interac- 
tion between interpretation activity and numeric-level signal processing. In this 
section we discuss selected frameworks or systems as representatives of general 
approaches to the problem of controlling the interaction of signal processing and 
environmental interpretation in perceptual systems. The general approaches are 
described in terms of the IPUS components they functionally include. 

The perceptual framework of Hayes-Roth's GUARDIAN system [23] is typical 
of systems whose input data points already represent useful information and require 
little formal front-end processing other than to control the rate of information flow. 
The system incorporates an input-data management component that controls the 
sampling rate of signals in response to workload constraints. Information flow is con- 
trolled through variable sample-value thresholds and variable sampling rates. This 
control framework is somewhat limited since it is based only on the system's time 
requirements for reasoning about classes of signals, and provides good performance 
primarily because the signals monitored are relatively simple and noise-free in na- 
ture: heart-rate, temperature fluctuations, etc. The framework's lack of centralized 
components for any of the four IPUS tasks leads to inadequate generality for the 
wide range of signals-environment interactions which can include signals containing 
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complex structures that must be modeled over time in the presence of variable noise 
levels. Note that we are not implying that frameworks in this class do not per- 
form any diagnostic reasoning. We are only observing that this reasoning capability 
is not applied to the identification of potentially adverse interactions between the 
environmental signal and the front-end processing. 

Dawant's framework [14] is closer in spirit to IPUS. It is typical of systems 
designed with the intent of providing alternative evidence sources as "backup" evi- 
dence when moderate deviations are observed between signal behavior and partially- 
matched signal event models. The framework does not support the selective repro- 
cessing or selective application of specialized SPAs since data is always gathered 
from every front-end SPA whether required for interpretation improvement or not. 
This reliance on a fixed set of SPAs (regardless of whether their control parameters 
are variable) that are all always executed leads to systems where more and more 
SPAs are added to front-ends as the environmental complexity increases, ending 
in a combinatorial explosion in the number of SPAs necessary to unambiguously 
identify all signals in an environment. Unlike IPUS, most architectures in this cat- 
egory operate on the implicit assumption that the signal-generating environment 
will not interact adversely with the signal processing algorithms' limitations to pro- 
duce output distortions that might not have occurred if more appropriate processing 
algorithms had been used. Any deviations between observed signal behavior and 
available signal event models are attributed to chance variations in the source being 
monitored, never to the signal's interaction with inappropriate SPAs or with other 
sources in the environment. 

De Mori et al. [15] developed a formal interaction framework in a system to 
recognize spoken letters of the English alphabet. This framework is representative 
of architectures with strong reliance on differential diagnosis techniques. These 
architectures are often employed in domains where there is little or no dependence 
between consecutive signal events. Interpretations in the system were generated by 
learned rules expressing letter identifications in terms of a signal-event grammar. 
Often more than one letter could be indicated by a single rule (in their terminology 
the rule has a confusion set). When such rules are activated, the system pursues 
a differential diagnosis strategy relying on rules describing SPAs that are suited to 
disambiguating confusion sets with given members. Thus, the system makes use 
of selective SPA application and differential diagnosis strategies. However, given 
the framework's relatively restricted application domain, there is a serious question 
of whether the approach can be scaled up without including the ability to model 
the environment's signal processing theory. Since the environment of the system 
considers its objects (letters) as isolated, unrelated entities, the framework does 
not incorporate any use of diagnosis in conjunction with environmental constraints 
(e.g., A 'C has been identified at time t_i and a-'B' is expected at time t0 since 
there is an environmental constraint that 'B's follow 'C's. No behavior supporting 
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the expectation is observed, so diagnostic reasoning should be attempted to explain 
why). 

GOLDIE [29] is an image segmentation system that uses high-level interpretation 
goals to guide the choice of numeric-level segmentation algorithms, their sensitivity 
settings, and region of application within an image. The system's architecture repre- 
sents the set of architectures that place strong emphasis on selective SPA application 
without explicit guidance from formal signal-processing theory. The system uses a 
"hypothesize-and-test" strategy to search for algorithms that will satisfy high-level 
goals, given the current image data. While it incorporates an explicit representa- 
tion of algorithm capabilities to aid in this search, and an explicit representation of 
reasons for why it assumes an algorithm is appropriate or inappropriate to a par- 
ticular region, the system notably does not incorporate any diagnosis component 
for analyzing unexpected "low quality" segmentations. If an algorithm were applied 
to a region and the resulting segmentation were of unexpectedly low quality, the 
framework would not parallel IPUS and attempt to diagnose the discrepancy and 
exploit this information to reformulate the algorithm search but would select the 
next highest rated algorithm from the original search. 

In the same category as GOLDIE is TraX [5], a system for interpreting image 
frame sequences. Although its design was driven by the goal of supporting multiple, 
concurrent object descriptions, the system incorporates some concepts similar to 
those in our formulation of the IPUS architecture. The system supports detection 
of deviations from expected measurements and determination of the possibility that 
these deviations might have resulted from processing techniques inappropriate to 
the current context. In a manner similar to conflict discrepancy detection in IPUS, 
TraX compares higher-level expectations from previous frames against its segmen- 
tation SPAs' outputs for the current frame. In contrast to the IPUS architecture 
specification, however, TraX does not use models derived from an underlying theory 
for its SPAs to inform the discrepancy detection and diagnosis processes. It relies 
instead on empirically derived statistical performance models for the segmentation 
algorithms. While TraX allows for the use of different SPAs for different contexts, it 
does not support the adaptation of SPAs' control parameters for different contexts. 

Bell and Pau [1, 2] formalize the search for processing parameter values in 
numeric-level image understanding algorithms in terms of the Prolog language's 
unification and backtracking mechanisms. They express SPAs as predicates defined 
on tuples of the form (M,pi,...,pn), where M represents an image pattern and 
the p's represent SPA control parameters. These predicates are true for all tuples 
where M can be found in the SPA output when its control values are set to the 
tuple's p values. Prolog's unification mechanism enables these predicates to be used 
in both goal-directed and data-driven modes. In a goal-driven mode, M is specified 
and some of the parameters are left unbound. The unification mechanism verifies 
the predicate by iteratively binding the unspecified parameters to values from a 
permissible value set, applying the SPA, then checking if the pattern is found. In a 
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data-driven mode, M is not bound and the parameter values are set to those of the 
front-end processing. M is then bound to the SPA results. The method relies on 
Prolog's backtracking cuts [21] to limit parameter-value search. A cut is a point in 
the verification search space beyond which Prolog cannot backtrack. This reliance 
on a language primitive makes it difficult to explicitly represent (and therefore to 
reason about) heuristic expert knowledge for constraining parameter-value search as 
can be done in IPUS's reprocessing component. The cut mechanism also does not 
permit the use of formal diagnostic reasoning to further constrain parameter-value 
search based on the cause of an SPA predicate failure. 

Research in active vision and robotics has recognized the importance of tracking- 
oriented front-end SPA reconfiguration [43], and tends to use a control-theoretic 
approach for making reconfiguration decisions. It is indeed sometimes possible to 
reduce the reconfiguration of small sets of front-end SPAs to problems in linear 
control theory. In general, however, the problem of deciding when an SPA (e.g., a 
specialized shape-from-X algorithm or an acoustic filter) with particular parameter 
settings is appropriate to a given environment may involve nonlinear control or be 
unsolvable with current control theory techniques. 

It is important to clarify the relationship between the IPUS approach and the 
classic control theoretic approach [42]. Control theory uses stochastic-process con- 
cepts to characterize signals, and these characterizations are limited to probabilistic 
moments, usually no higher than second-order. Discrepancies between these stochas- 
tic characterizations and an SPA's output data are used to adapt future signal pro- 
cessing. In contrast, the IPUS architecture uses high-level symbolic descriptions 
(i.e., interpretation models of individual sources) as well as numeric relationships 
between the outputs of several different SPAs to characterize signal data. Discrepan- 
cies between these characterizations and SPAs' output data are used to adjust future 
signal processing. Classic adaptive control should therefore be viewed as a special 
case of an IPUS architecture, where the interpretation models are described solely 
in terms of probabilistic measures and low-level descriptions of signal parameters. 

B.6    The IPUS Acoustic Interpretation Testbed 

This section presents an acoustic interpretation testbed that we designed to exper- 
imentally examine the behavior of an IPUS-based system. The testbed runs on a 
TI Explorer 11+ and is implemented in approximately 1400Kb of source code. All 
SPAs are implemented in software. Figure B.4.5b shows the IPUS architecture's 
realization in this testbed. The testbed description is divided into two parts. In the 
first part we describe how each of the generic IPUS components was instantiated in 
the testbed. The second part describes the testbed's acoustic domain knowledge as 
background for understanding the trace in Section B.7.2. 
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B.6.1    Instantiated IPUS Components 

As we describe the testbed KSs, note that our KS algorithm descriptions are only in- 
tended as instances of algorithms that can implement the components. For example, 
the testbed's actual discrepancy diagnosis algorithm will be seen to be means-ends 
analysis using difference operators to encode the distortions implied by Fourier the- 
ory SPA processing models. Other algorithms using rules or case-based reasoning 
or qualitative models to apply the SPA processing models could have been used, as 
long as they provided the same diagnostic functionality. 

Discrepancy Detection 

The task of detecting discrepancies is distributed among all the knowledge sources 
responsible for interpreting correlates or lower-level interpretations as higher-level 
concepts. When executed, each such KS checks to see if any support is available 
for a higher-level concept. If none can be found, or if only partially supportive data 
is available, the KS will record this as a SOU (see Section B.4.3) in the problem 
solving model, to be resolved at the discretion of the focusing heuristics. At the 
end of each data block's numeric signal processing, a fault discrepancy detection KS 
is executed to check if SPA outputs are consistent with each other. Again, when 
discrepancies are found, SOUs are posted in the problem solving model. The basic 
SOU types defined in the RESUN framework are: 

• partial evidence - Denotes the fact that there is incomplete evidence for the 
hypothesis. 

• possible alternative support - Denotes the possibility that there may be 
alternative evidence that could play the same role as a current piece of support 
evidence. 

• possible alternative explanation - Denotes the possibility that there may 
be alternative explanations for the hypothesis. 

• alternative extension - Denotes the existence of competing, alternative 
versions of the same hypothesis. 

• negative evidence - Denotes the failure to be able to produce some particular 
support evidence or to find any valid explanations. 

In the integration of the IPUS and RESUN frameworks, an important issue is the 
relationship between the SOUs associated with various hypotheses and the discrep- 
ancy descriptions generated by the discrepancy detection process. Our architecture 
uses the following relationships: 
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1. Conflict-type Discrepancies and SOU's. Conflict-type discrepancies oc- 
cur when signal processing output data does not match expectations. When 
an expectation is first posted, it has no supporting evidence because none has 
been searched for yet. To reflect this fact, the expectation is annotated with 
a PARTIAL SUPPORT SOU, which is a partial evidence type of SOU. To re- 
solve this uncertainty, IPUS searches for evidence matching the expectations. 
If any portion of the expectation is unmatched after supporting evidence has 
been sought, a conflict discrepancy is raised for that expectation. When a 
conflict discrepancy is detected, a SUPPORT EXCLUSION SOU, a negative 
evidence type of SOU, is attached to the expectation. 

2. Fault-type Discrepancies and SOU's. Fault-type discrepancies arise 
when two different signal processing algorithms produce conflicting hypotheses 
about the same underlying signal data. In such cases, a composite hypothesis 
is created that is a copy of the more reliable of the two data hypotheses and 
is considered to be an extension of that hypothesis. A link labeled with a neg- 
ative evidence SOU (in particular, a SUPPORT LIMITATION SOU, which 
indicates that support for a hypothesis is limited until results of further pro- 
cessing are obtained) connects the less reliable hypothesis to the composite 
hypothesis. 

3. Violation-type Discrepancies and SOU's. A violation-type discrepancy 
occurs when signal processing output data violates the a-priori known charac- 
teristics of the entire class of possible input signals in the application domain. 
When such an output data hypothesis is posted on the interpretation black- 
board, a CONSTRAINT SOU, a negative evidence type of SOU, is attached 
to it. This SOU contains a description of the violated condition. 

In addition to the discrepancy detection components of the interpretation KSs 
(that perform conflict discrepancy detection), the testbed contains KSs for fault 
discrepancy detection and violation discrepancy detection. 

The actual comparisons implemented in the testbed discrepancy detection com- 
ponents were derived from an inspection of the SPAs available to the testbed de- 
signers and the context-dependent and context-independent features these SPAs' 
correlates could support. 

Discrepancy Diagnosis 

The discrepancy diagnosis KS is designed to take advantage of the fact that the SPA 
processing models from an environment's signal processing theory can predict how 
SPA output will be distorted if the SPA is misapplied. Refering back to a previous 
example, assume that an STFT with an analysis window of W sample points is 
applied to a signal sampled at R samples per second.   If the signal came from a 
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scenario containing frequency tracks closer than R/W Hz, Fourier theory predicts 
that the tracks will be merged in the STFT's computed correlates. 

Our testbed instantiation of the diagnosis component models this knowledge in a 
database of formal distortion operators. When applied to an abstract description of 
anticipated or computed correlates, an operator returns the description modified to 
contain the operator's distortion. The KS uses these operators in a means-ends anal- 
ysis framework incorporating multiple abstraction levels and a verification phase [37] 
to "explain" fault, violation, and conflict discrepancies. The KS takes two inputs: 
an initial state representing anticipated correlates and a goal state representing the 
computed correlates. The formal task of the KS is to generate a distortion opera- 
tor sequence mapping the initial state description onto the goal state description. 
Figure B.6.6 illustrates the formal operator definition of the previously described 
frequency resolution distortion that the STFT SPA data correlates can be subject 
to, as well as its use in a short explanation. 

Distortion Operator Definition 
*■ s. 

Microstream Frequency Resolution 
Preconditions: 

1) N expected microstreams within a frequency region 
SAMPLE-RATE/WINDOW-LENGTH Hz wide. 

2) At most one microstream is detected in that region. 

Result: 
1) Remove N microstreams, replace with one having 

energy = sum of N expected microstreams, and 
frequency-range = region in precondition 1. 

Operator Application 

(MICROSTREAM-FREQUENCY-RESOLUTION) 

DISTORTION OPERATOR LIST 
(explanation) 

r 

Hz H7 "  

s» 
Time Time 

INITIAL STATE 
(expected) 

FINAL STATE 
(observed) 

Figure B.6.6: Microstream Frequency Resolution Operator from the Acoustic Interpre- 
tation Testbed. When applied to a state, the operator replaces each set of expected mi- 
crostreams whose members are closer than SAMPLE-RATE/WINDOW-LENGTH with 
a single microstream, reflecting the resolving limits associated with the current value of 
WINDOW-LENGTH. In the short example illustrated, this operator effectively reduces the 
differences between the expected state and the observed state. 

The KS's search for an explanatory distortion operator sequence is iteratively 
carried out using progressively more complex abstractions of the initial and goal 
states, until a level is reached where a sequence can be generated using no more signal 
information than is available at that level. Thus, the KS mimics expert diagnostic 
reasoning in that it offers simplest (shortest) explanations first [41]. Once a sequence 
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is found, the KS enters its verify phase, "drops" to the lowest abstraction level, and 
checks that each operator's pre- and post-conditions are met when all available 
state information is considered. If verification succeeds, the operator sequence and 
a diagnosis region indicating the signal hypotheses involved in the discrepancy are 
returned. If it fails, the KS attempts to "patch" the sequence by finding operator 
subsequences that eliminate the unmet conditions and inserting them in the original 
sequence. If no patch is possible, and no alternative explanations can be generated, 
the involved signal hypotheses are annotated with an SOU with a very negative 
rating. Figure B.6.7 outlines the plan-and-verify strategy of the diagnostic process. 

(START! 
CHOOSE MOST ABSTRACT 
REPRESENTATION LEVEL 

INPUT: SIGNAL 
DISCREPANCY 

GPS PLANNER     < 

CEND> 

QUALITATIVE 
SIMULATION 
CORRECT 

RETURN EXPLANATION AND 
DISCREPANCIES 

QUALITATIVE 
EXPLANATION 

REPORT THAT NO 
EXPLANATION COULD 

BE CONSTRUCTED 

LOWEST 
ABSTRACTION 

LEVEL REACHED 

DROP TO LOWER 
ABSTRACTION 

LEVEL 

EXPLANATION 
READJUSTED 

FAILURE! 

REPAIR NOT 
POSSIBLE 

REPAIR EXPLANATION 
AT THE SAME LEVEL 

OF ABSTRACTION 

Figure B.6.7:  The plan-and-verify strategy of the IPUS discrepancy diagnosis knowledge 

source. 

An issue not addressed in earlier work [37] that arose in the development of IPUS 
is the problem of inapplicable explanations. Sometimes the first explanation offered 
by the KS will not enable the reprocessing mechanism to eliminate a discrepancy. 
In these cases, the architecture's control framework (expressed as control plans) 
permits reactivation of the diagnostic KS with the previous explanation supplied as 
one that must not be returned again. To avoid repetition of the search performed 
for the previous explanation, the KS stores with its explanations the search-tree 
context it was in when the explanation was produced. The KS's search for a new 
explanation begins from that point. 

The discrepancy diagnosis KS's output is also used to modify expectations for 
how future support evidence should appear under the current parameter settings. 
Each distortion operator contains a logical "support specification" of how data that 
is expected can appear distorted when processing parameters take on the current 
parameter values. When a complete distortion-operator sequence is generated, all 
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operators' support-specifications are conjunctively combined to form a single expec- 
tation specification. This specification is then attached to the expectation units of 
the hypotheses involved in the original discrepancy. For those feature hypotheses, 
this annotation reduces the quality-level required for future evidence. The specifica- 
tion indicates to the system that when it is seeking data correlates from an SPA X 
for object features which were previously distorted by X, it can use data correlates 
which match the specification's distortions without raising a discrepancy. 

Signal Reprocessing 

Once the distortions have been hypothesized by the discrepancy diagnostic reasoning 
process, the next task is to search for the appropriate SPAs and control parameter 
settings under which signal reprocessing may remove those distortions. Figure B.6.8 
illustrates the organization of the reprocessing knowledge source used in the testbed. 
This reprocessing portion of the architecture consists of the following major com- 
ponents: situation assessment, reprocessing-plan selection, and reprocessing-plan 
execution. The input to the reprocessing knowledge source includes a description of 
the input and output signal states (see diagnostic reasoning section above), the dis- 
tortion operator sequence hypothesized by the diagnosis stage, and a description of 
the discrepancies present between the input and output signal states. The situation 
assessment phase uses case-based reasoning to generate multiple reprocessing plans, 
each of which has the potential of eliminating the hypothesized distortions present 
in the current situation. Plans for eliminating various categories of distortions are 
stored in a knowledge base. Figure B.6.9 shows the definition for one reprocessing 
plan schema from our acoustic interpretation testbed. This reprocessing plan's role 
is to extract a short high-energy contour which was missed by the front-end STFT 
instance but whose presence was indicated by the front-end's time-domain energy 
tracker. 

From the retrieved set of applicable plans, one is selected during the plan- 
selection stage. Selections are governed by "cost" criteria such as plan execution 
time. The execution of a reprocessing plan consists of incrementally adjusting the 
SPA control parameters, applying the SPA to the portion of the signal data that 
is hypothesized to contain distortions, and testing for discrepancy removal. The 
incremental process is necessary because the situation description is often at least 
partially qualitative, and therefore it is generally impossible to predict exact values 
for the control parameters to be used in the reprocessing. 

Reprocessing continues until the goal of distortion removal is achieved or it is 
concluded that the reprocessing plan has failed. Currently there are two independent 
criteria for determining plan failure in IPUS. The first criterion simply considers 
the number of plan iterations. If the number surpasses a fixed threshold, failure is 
indicated automatically. The second criterion relies on fixed lower and upper bounds 
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Figure B.6.8:  The IPUS reprocessing knowledge source's framework 

for signal processing parameters. If a plan reiteration requires a parameter value 
outside of its prespecified range, the plan is considered to have failed. 

When failure is indicated, the discrepancy diagnosis process can be re-invoked 
to produce an alternative explanation for the distortions present in the original sig- 
nal data. If no alternative explanation is available (i.e., the diagnostic knowledge 
source fails to find another distortion operator sequence), an IPUS-based system 
annotates the hypothesized features involved in the discrepancy with SOUs indicat- 
ing low confidence due to unresolvable discrepancies. These SOUs' effects on the 
features' confidence levels are then propagated to object interpretations based on 
those features, causing their existence to be disbelieved more strongly. 

Differential Diagnosis 

In the course of processing signal data, IPUS-based systems will encounter signals 
that could support several alternative interpretations. We include the differential 
diagnosis KS to produce reprocessing plans that will enable the system to prune the 
interpretation search space when ambiguous data correlates are encountered. Its 
input is the ambiguous data's set of alternative interpretations, and its output is a 
triple containing: 

1. the time region in the signal data to be reprocessed 

2. the support evidence (verification goals) that must be found for each interpre- 
tation 

3. the set of reprocessing plans and parameter values proposed for revealing the 
desired support evidence. 
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(CONTOUR-1 

(state :name faulty 

:hyp-type contour 

:hyp =x) 

(state :name faultless 

:hyp-type contour 

:hyp =y) 

(operator-sequence (STFT-TIME-RESOLUTION)) 

(discrepancy 

:type fault 

:name MISSING-STFT-CONTOUR-PRESENT-TD-CONTOUR 
:level contour 
:duration =xl 
:energy =x2 

frequency =x3 
:expected-region =z) 

—>  (reprocessing-plans 
((reprocessing-plan 

:input-variables  (:faulty-hyp =x 
:faultless-hyp =y 
:expected-region =z) 

:parameters   (*STFT-OVERLAP* 
*WINDOW-LENGTH* 
*STFT-PEAK-ENERGY-THRESHOLD*) 

:parameter-changes 
((lambda  (p)   (/ p 8)) 
(lambda (p)   (/ p 4)) 
(lambda  (p)   0.9)) 

:primitive-plans  (delete-all-reprocessing-units 
reprocess-spectra-for-contours 
reprocess-contours) 

:goal-condition  (contours-present?))))) 

Figure B.6.9: The definition for a reprocessing plan from the acoustic interpretation 
testbed to handle the distortion-operator sequence (CONTOUR-TIME-RESOLUTION). 
The plan specifies that on each iteration of the primitive plan list, the STFT-OVERLAP 
and WINDOW-LENGTH parameter values are divided by 8 and 4, respectively, while the 

STFT-PEAK-ENERGY-THRESHOLD parameter value is maintained at 0.9. At the end 
of each iteration, the goal-condition CONTOURS-PRESENT? is tested for. This goal 
requires that the sought high-energy contour appear. 
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Our implementation of this KS uses the following strategy. The KS first com- 
pares the interpretation hypotheses to determine their overlapping regions. Any 
observed evidence in these regions is labeled "ambiguous". The KS then deter- 
mines the hypotheses' discriminating regions (e.g., Hypl, and no other hypothesis, 
has a microstream at 2000 Hz). For each discriminating region where no evidence 
was observed, the KS posits an explanation for how the evidence could have gone 
undetected, assuming the hypothesized source was actually present. Using these ex- 
planations as indices into a plan database, the KS retrieves reprocessing plans and 
parameter values that should cause the missing evidence to appear. At this point 
the ambiguous evidence is considered. The KS seeks for multiple signal structures 
within each overlapping region (e.g., a region that contains data that could support 
one microstream of a hypothesis or two microstreams of another hypothesis), and 
selects processing plans to produce data with better structural resolution in the 
regions of overlap. 

If the missing-evidence processing plan set and the ambiguous-evidence plan set 
intersect, the intersection forms the third element of the output triple. If the inter- 
section is empty, the missing-evidence plan set forms the third element of the output 
triple. Finally, if the missing-evidence plan set is empty, the ambiguous-evidence 
plan set is returned. The rationale behind this hierarchy of plan set preference 
is that this ordering will return the most likely plans for producing evidence that 
could eliminate interpretations from further consideration. The region of mutual 
temporal overlap for the alternative hypotheses defines the reprocessing time region 
in the output triple, and the ambiguous and missing data that is handled by the 
reprocessing plan set defines the support evidence in the output triple. The output 
triple's reprocessing plan is then executed as in the reprocessing KS until either 
the parameter-value limits are exceeded or at least one of the pieces in the support 
evidence set is found after a reprocessing. Figure B.6.10 depicts a typical execution 
for the testbed differential diagnosis KS. 

We should note that the explanatory reasoning performed in the differential 
diagnosis KS for missing evidence is primitive compared to that available in the dis- 
crepancy diagnosis KS; there is not a rich set of explanations available. Only simple 
single-operator distortions like loss of low-energy components due to energy thresh- 
olding are considered. This design is justified because the differential diagnosis KS's 
role is to trigger reprocessing that quickly prunes large areas of underconstrained 
interpretation spaces, without preference for any particular interpretation. On the 
basis of this specification, it is not appropriate to devote time consuming, sophis- 
ticated reasoning to the generation of missing-evidence explanations. For related 
reasons, the differential diagnosis KS does not return support specifications that 
reduce the quality-level required for future evidence. The KS's shallow explanations 
generated for finding contrasts within a set of several sources might not justify the 
acceptance of lower quality evidence for a single source from that set. 
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2) Double FFT size to double frequency 
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Figure B.6.10: A flowchart for the IPUS differential diagnosis KS and its execution 
in a typical acoustic scenario. In this example a database query returns more than one 
sound model whose frequency components overlap the observed data in the [1200,1220] Hz 
region. For each model, the IPUS system posts an interpretation hypothesis supported by 
the observed data. In the problem-solving model, an ALTERNATIVE-EXPLANATION 
SOU is recorded for each hypothesis. These SOUs are left unresolved until selected by the 
system's focusing heuristics. 
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In cases where an IPUS system prefers a particular interpretation over alterna- 
tives, and needs an explanation for why the interpretation is missing certain support, 
it will make use of the discrepancy diagnosis KS, with the initial state reflecting the 
preferred interpretation. 
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B.6.2    Testbed Domain Knowledge 

The testbed consists of a blackboard with eight evidence abstraction levels, KSs 
for the primary IPUS components and for inferring hypotheses between different 
abstraction levels, an acoustic source library, and control plans. The testbed version 
described in this paper is called configuration C.l.3 

Figure B.6.11 describe the information represented in the evidence abstractions. 
At the lowest level are waveform segments derived from the input waveform. Each 
segment is a collection of points to which some SPA will be applied. Time-domain 
statistics such as zero-crossing density, average energy, etc, are also maintained for 
segments. The second level consists of spectral hypotheses derived for each wave- 
form segment through Fourier-Transform-based algorithms such as the STFT and 
Wigner-Distribution [13] algorithms. The third level consists of peak hypotheses de- 
rived for each spectrum and is used to support narrow-band features of sounds. The 
fourth level consists of contour hypotheses, each of which corresponds to a group 
of peaks whose time indices, frequencies, and amplitudes represent a contour in the 
time-frequency-energy space with uniform frequency and energy behavior. The fifth 
level contains microstream hypotheses supported by one contour or a sequence of 
contours. Each microstream has an energy pattern consisting of an attack region 
(signal onset), a steady region, and a decay (signal fadeout) region. In the sixth level 
we represent noisebeds as wideband frequency regions supported by regions within 
spectra. Noisebeds represent the wideband component of a sound source's acous- 
tic signature. Usually microstreams form "ridges" on top of noisebed "plateaux," 
but not every noisebed has an associated microstream. Groups of microstreams 
and noisebeds synchronized according to time and/or other psychoacoustic criteria 
such as harmonic frequency sets support stream hypotheses in the seventh level. 
Bregman [7] provides a highly detailed account of various psychoacoustic streaming 
processes. At the eighth level, sequences of stream hypotheses are interpreted as 
sound-source hypotheses. 

Sources are represented in the source database by an acoustic grammar speci- 
fying microstream and noisebed frequency ranges and permissible ranges of energy 
relationships among microstreams and noisebeds within source streams. The gram- 
mar also specifies the permissible range of durations for each source's microstreams 
and streams, and the stream sequences and periodic patterns that characterize the 
source. 

B.7    Acoustic Interpretation Testbed Operation 

In this section we provide a detailed analysis of the acoustic interpretation testbed's 
behavior as it interprets the waveform data from an acoustic scenario constructed 

3 Configuration C.2 is currently under development as a platform for exploring approximate 
processing and scaling issues. 
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Figure B.6.11:  Testbed Evidence Abstractions. 
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from real-world, narrowband signals. By showing the IPUS components' function- 
ality and their use of formal relationships between signal characteristics and SPA 
parameters, the example illustrates the important role that a formal theory of signal 
processing can play in signal interpretation. 

B.7.1    Scenario Overview 

Figure B.7.12a shows the time-domain waveform (sampled at 8KHz) provided to the 
testbed, while Figure B.7.12b shows how the sources in the scenario would appear 
using context-appropriate processing. Phone-Ring and Siren-Chirp are 1.2 times 
as energetic as Buzzer-Alarm, and Glass-Clink is an impulsive source 3.0 times as 
energetic as Buzzer-Alarm. Figure B.7.12c shows how the events are distorted when 
the testbed's initial front-end configuration is applied throughout the scenario. 

The testbed was initially configured to interpret waveform data in 1.0-second 
blocks, and to identify quickly any occurrences of Siren-Chirp. In particular, the 
system's SPA parameters were set to detect Siren-Chirp's steady-energy behavior: 

FFT-SIZE: 512 
The number of uniformly-spaced frequency samples computed for each Short- 
Time Fourier Transform (STFT) analysis window position. 

WINDOW-LENGTH: 512 
The number of data points to which each FFT in the STFT algorithm is applied 
(< FFT-SIZE). 

DECIMATION: 512 
The number of points between consecutive STFT analysis window positions. 
The value was set to 512 to permit the fastest possible processing of the data. 

PEAK-THRESHOLD: 0.09 
Spectrum points with energy below this value are rejected by the peak-picking 
algorithm. 

For processing this example, the testbed's source database was loaded with mod- 
els for the five narrowband sources shown in Figure B.7.13. In the figure the sources' 
frequency components are labelled by single-frequency values only for clarity; the 
formal source definitions have frequency ranges specified for each component. 

There are several critical actions that the IPUS acoustic testbed must perform if 
it is to reasonably analyze Figure B.7.12a's signal. In block 1, the testbed encounters 
two alternative interpretations of the data in the [420,500] frequency region. That 
is, there is the possibility that it could be caused by Phone-Ring or Car-Horn, or 
even both occurring simultaneously. One reason for this confusion stems from the 
fact that the energy threshold setting for the peak-picking algorithm is high and 
would prevent Car-Horn's low-energy microstream from being detected if in fact it 
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Figure B.7.12: Acoustic Scenario Events. Figure B.7.12a shows the scenario's time- 
domain waveform. Figures B.7.12b and B.7.12c show the scenario's frequency-domain 
events. Darker shading indicates higher frequency-domain energy. 

were present. The second reason is that the frequency-sampling provided by the 
STFT algorithm's FFT-SIZE parameter does not provide enough frequency sample 
points to resolve the [420,500] region into Phone-Ring's three microstreams. The 
uncertainty in this situation is resolved through reprocessing under the direction of 
differential diagnostic reasoning, which increases resolution and decreases the energy 
threshold. 

During block l's analysis, the testbed also determines that Buzzer-Alarm's track 
at 3760 Hz is missing. One reason for this is that the track's energy might be too low 
for the peak-picker's PEAK-THRESHOLD parameter setting. The discrepancy is 
resolved through reprocessing the previously-produced spectra with a lower PEAK- 
THRESHOLD value. 

In block 2, the testbed detects a discrepancy between the outputs of its time- 
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Figure B.7.13: IP US Source Database. The vertical axis represents frequency and the 
horizontal axis represents time in seconds. The energy changes for each microstream are 
represented qualitatively by the shading gradations. Note that Phone-Ring is a ring from 
a phone different from the one in Figure B. 2.3. 

domain energy estimator SPA and its STFT SPA. The energy estimator SPA detects 
a substantial energy increase followed about 0.1 seconds later by a precipitous de- 
crease. The STFT SPA, however, produces no significant set of peaks to account 
for the signal energy flux. This is because the algorithm's decimation parameter is 
too high. The testbed also detects a discrepancy between expectations established 
from block 1 for the [420,500] frequency region and the STFT SPA's output. The 
STFT SPA produces short contours that cannot support the expected microstreams 
for Phone-Ring because of inadequate frequency sampling in the region. Both dis- 
crepancies are resolved by reprocessing. The first discrepancy is resolved through 
reprocessing with a smaller DECIMATION value and smaller STFT intervals, while 
the second is resolved through reprocessing with the finer frequency sampling pro- 
vided by a 1024 FFT-SIZE. 

In block 3, Siren-Chirp's attack interacts with the poor time-resolution of the 
STFT SPA to produce a set of widely-separated short contours that the testbed 
cannot immediately interpret as the attack portion of microstreams. In block 4, 
however, the testbed uses the discovery of Siren-Chirp's steady region as the basis 
for re-interpreting block 3's short contours as evidence for the sound's attack region. 
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B.7.2    Testbed Trace 

The following is a high-level trace of the significant events that occurred as the 
system processed the signal in Figure B.7.12a. 

BLOCK 1 

• Bottom-Up Processing: The testbed focusing heuristics specify that spec- 
tral information be gathered for the input waveform sampled during block 1. 
It is processed by a KS representing the STFT signal processing algorithm 
and a KS that uses a time-domain algorithm for estimating waveform energy 
as a function of time. Continuing in a data-driven manner, the spectra peaks 
produced are grouped by similar frequency and energy into contours. 

• Seek Evidence for Current Expectations: The focusing heuristics next 
direct the testbed to act upon current high-level expectations and search for 
support evidence. In deciding what evidence to examine first, the heuristics 
choose to look for any evidence in the steady-phase frequency regions of high- 
priority sources (Siren-Chirp in this case). No contours are found in these 
regions. At this point in the experiment, there are no other explicit source 
expectations. 

• Drive Unexplained Data to Higher Levels: Contours in the [1460,1480] 
and [2530,2550] Hz regions are used to support microstream hypotheses. 
These in turn are used to support a Buzzer-Alarm source hypothesis. How- 
ever, support for Buzzer-Alarm's third microstream is not found in the peak- 
picker's correlates, causing a conflict discrepancy SOU to be posted with the 
source. 

• Discrepancy-Detection: The testbed uses the heuristic that short contours4 

should not be used as microstream evidence. Because the block has a large 
number of short contours relative to the total number of contours detected, the 
testbed performs discrepancy detection to determine if there are tight short- 
contour clusters that could indicate distorted sources. The system finds such 
a cluster in the [420,500] Hz range, and then queries the source database to 
find a source hypothesis to explain the cluster. Phone-Ring and Car-Horn are 
retrieved because at least one of each source's frequency components overlaps 
the cluster. Therefore the testbed posts both sources as alternative expla- 
nations for the contour cluster. This use of short contours in place of long 
contours to support interpretations raises a violation discrepancy, since the a 
priori expectation that sources are indicated only by long contours is violated. 

4Contours having between 1 and 3 peaks. Short contours could be the result of random noise, 
and the system should apply as little computing time as necessary to the processing of noise. 
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• 

Handle Selected Uncertainties: At this point four SOUs have been posted: 
one each for the violation discrepancies associated with Phone-Ring and 
Car-Horn being supported by a cluster, one for the uncertainty associated 
with the existence of competing interpretations for the same cluster, and one 
for Buzzer-Alarm's missing microstream. The focusing heuristics elect to re- 
solve the uncertainty associated with the alternative explanations. For doing 
this, the control plans specify a strategy of first performing differential diag- 
nosis and using its results to guide data reprocessing. 

1. Differential Diagnosis: The differential diagnosis KS determines fea- 
tures of the two sources that should be searched for in the signal data 
because their presence or absence will permit differentiation between the 
alternatives. In this case the KS selects the low-energy, 900 Hz micro- 
stream of Car-Horn and the number of microstreams in the [420, 500] Hz 
region for each source (Phone-Ring has 3, Car-Horn has 1) as discrim- 
inating features. It specifies that a lower energy-threshold be used to 
attempt to "bring out" Car-Horn's low-energy microstream at 730 Hz. 
To attempt to find Phone-Ring's three microstreams, it specifies an FFT- 
SIZE value of 1024 to increase the frequency sampling in the [420, 500] 
Hz region. Note that the testbed at this time is not committed to either 
interpretation, nor to the possibility that both sources are present. Any 
decisions will wait for the results of reprocessing. 

2. Differential Reprocessing: The reprocessing KS is executed and the 
sought-after Car-Horn microstreams are not found. However, three well- 
defined contours are found in the [420, 500] Hz range that can support 
Phone-Ring's microstreams. Therefore Phone-Ring's belief is increased, 
while Car-Horn's belief is decreased. Car-Horn's belief level is very low 
at this point and is no longer considered as a significant alternative ex- 
planation for the original stream hypothesis. Note that this reprocessing 
opportunistically resolves not only the competing-interpretation uncer- 
tainty, but also Phone-Ring's violation-discrepancy uncertainty. 

Handle Selected Uncertainties: (continued) Focusing heuristics now se- 
lect the conflict discrepancy SOU of Buzzer-Alarm's missing microstream for 
resolution. This is handled through calling the discrepancy diagnosis KS and 
executing a reprocessing plan based on its explanation. 

1. Discrepancy Diagnosis: The diagnosis KS produces the explanation 
(MS-ENERGY-THRESHOLDING) for the discrepancy. That is, peak- 
picker SPA's PEAK-THRESHOLD parameter has a value too high to 
detect enough peaks to generate long contours for the microstream. 
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2. Discrepancy Reprocessing: The reprocessing KS uses the explanation 
to decide to reprocess spectra from the entire block with a peak-picker 
SPA having a reduced PEAK-THRESHOLD value of 0.04. This pro- 
duces seven peaks in the [3750, 3770] Hz region, which create a significant- 
length contour. This contour's existence resolves the conflict discrepancy. 
Buzzer-Alarm's 3760 Hz microstream is annotated with a support spec- 
ification that indicates that very short (one peak) contours or none at 
all are acceptable evidence as long as the PEAK-THRESHOLD value is 
higher than 0.04. 

Define Expectations: Because Phone-Ring's description indicates that its 
steady region is approximately 1.7 seconds long, and at most 1.0 second 
has been found, an explicit expectation for Phone-Ring's microstreams is 
posted for block 2's time period. Explicit expectations for the continuation of 
Buzzer-Al arm's microstreams are also posted for block 2. 

BLOCK 2 

Bottom-Up Processing: Bottom-up processing creates spectra and con- 
tours for block 2. Glass-Clink emits a high-energy, short-duration (0.12 sec) 
signal burst. The time-domain algorithm detects a sharp increase followed 
by a sharp decrease in signal energy, whereas the STFT produced no peaks 
to generate a significant-length contour that started and stopped around the 
times indicated by the signal-energy shifts. The testbed control plans were 
designed to perform fault discrepancy detection immediately after bottom-up 
signal processing is completed. This causes a fault discrepancy to be detected 
between the time-domain energy monitoring algorithm and the STFT algo- 
rithm. 

Seek Evidence for Current Expectations: Since the duration of the fault 
discrepancy indicates that it is not related to Siren-Chirp,5 the focusing 
heuristics act on Siren-Chirp's priority and decide to examine data found 
in the source's expected frequency regions. No contours are found in these 
regions. 

Handling Selected Uncertainties: The testbed's focusing heuristics select 
fault-type SOUs for resolution before the control plans apply any interpreta- 
tion KSs that might handle frequency regions affected by fault discrepancies. 
Thus, before the components of any non-priority expected sources are searched 
for, the fault discrepancy is selected for handling by the focusing heuristics. 
For this SOU, the control plans specify a strategy that executes discrepancy 
diagnosis followed by reprocessing. 

5Siren-Chirp's duration is much longer than the fault's. 
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• 

1. Discrepancy Diagnosis: The diagnosis KS explanation for the fault 
discrepancy is (CONTOUR-TIME-RESOLUTION). That is, the STFT 
decimation is too high to detect enough peaks to generate contours of 
significant length to account for the signal energy increase. 

2. Discrepancy Reprocessing: The reprocessing KS uses the explanation 
to decide to reprocess data from the 0.09-second time region (not the en- 
tire block) with an STFT SPA having a 256-point WINDOW-LENGTH, 
a 512-point FFT-SIZE, and a 192-point DECIMATION. This produces 
four peaks in the [2230, 2240] Hz region, which create a significant-length 
contour. This contour's existence resolves the fault discrepancy. 

Seek Evidence for Current Expectations: At this point, the focusing 
heuristics decide to gather evidence for explicit source expectations. Contours 
found in the expected regions of Buzzer-Alarm support that source's per- 
sistence into block 2. Note that when support for a source's microstreams is 
found, it is immediately propagated through the higher evidence levels (micro- 
stream and stream) to the source level. As happened in block 1, the front-end 
processing parameters produce a cluster of short contours in the [420, 500] Hz 
range. The testbed's short-contour heuristic leads to a lack of support for the 
persistence of Phone-Ring's microstreams into block 2. 

Discrepancy Detection: The testbed checks for conflict and violation dis- 
crepancies. The lack of support for Phone-Ring's microstreams raises a conflict 
discrepancy.6 No violation discrepancies are found. 

Handle Selected Uncertainties: (continued) The focusing heuristics se- 
lect the conflict SOU in Phone-Ring's three microstreams for resolution. Con- 
trol plans specify a strategy of discrepancy diagnosis followed by reprocessing. 

1. Discrepancy Diagnosis: The discrepancy detection KS returns the 
explanation (COARSE-FREQUENCY-SAMPLING); the STFT analysis 
was done with inadequate frequency sampling, causing the three micro- 
streams to appear as the contour cluster actually observed. The KS also 
returns a support specification that in the next block under the same 
initial parameter settings, Phone-Ring's microstreams will appear like 
the contour cluster again. In this scenario the support specification will 
not be useful, however, since based on Phone-Ring's maximum possible 
duration the microstreams should not extend into block 3.7 

6Remember that differential diagnosis does not annotate hypotheses with support specifications 
(see section B.6.1). Thus, Phone-Ring's microstreams do not have specifications to prevent the 
testbed from registering the contour cluster as a distortion. 

7A shortcoming of configuration C.l is that support specifications are not propagated across 
periodic streams. Thus, the support specification will not even be useful for any future rings. We 
are correcting this problem in configuration C.2. 
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2. Discrepancy Reprocessing: The reprocessing KS acts upon the di- 
agnosis explanation and retrieves a processing plan directing that the 
data be reprocessed up to the microstream level of abstraction with an 
FFT-SIZE value of twice the original (2 * 512 = 1024 in this case). The 
doubling of FFT-SIZE provides finer frequency sampling in the spectra 
produced by the STFT algorithm. After one iteration of this plan, the 
desired microstreams are found, and their expectations in the next block 
are annotated with the discrepancy diagnosis KS's scenario-specification. 

Drive Unexplained Data to Higher Levels: The 0.12-second contour is 
found to match Glass-Clink's characteristics. A hypothesis for the source is 
therefore posted. 

Define Expectations: Because Buzzer-Alarm's model indicates that its 
steady behavior could continue for 3 to 28 more seconds, an explicit expecta- 
tion for its continuation is posted for Block 3's time period. No expectation 
for Phone-Ring is posted because its model specifies a maximum duration of 
1.7 seconds. 

BLOCK 3 

• 

Bottom-Up Processing: Block 3's signal data is now processed. Bottom-up 
processing culminates in the creation of contours. 

Seek Evidence for Current Expectations: Siren-Chirp's frequency re- 
gions are examined for contours. Some short contours are present in this 
block from the source's attack phase, but because the testbed first recognizes 
sources by steady characteristics (due to their more predictable behavior), 
their presence does not cause the creation of a Siren-Chirp source hypothe- 
sis. Contours extending source Buzzer-Alarm's microstreams are sought for 
and found. 

Drive Unexplained Data to Higher Levels: Because of their short 
lengths, the contours caused by Siren-Chirp's attack phase are not selected 
to hypothesize the existence of any microstreams. They are simply labeled 
as possible-noise data. These contours are spread across a wide frequency re- 
gion. Therefore, the violation-detection clustering algorithm does not find any 
high-density cluster to justify raising a discrepancy. 

Define Expectations: An expectation for Buzzer-Alarm's microstreams to 
continue into block 4 is posted. 

147 



BLOCK 4 

• Bottom-Up Processing: Block 4's signal data is now processed. Bottom-up 
processing culminates in the creation of contours. 

• Seek Evidence for Current Expectations: The testbed first searches 
Siren-Chirp's frequency regions for contours. Contours supporting the 
source's steady region are detected, and a source hypothesis is posted. The 
testbed also finds contours to support Buzzer-Alarm's microstreams. 

• Handle Selected Uncertainties: Because its attack region is unsupported, 
Siren-Chirp's confidence level is low. Due to Siren-Chirp's priority, the fo- 
cusing heuristics decide to resolve this missing-support SOU. The control plans 
specify a strategy of accepting sets of short contours that reflect the slope of 
the chirp when grouping peaks into contours. No diagnosis is performed; the 
reprocessing is simply a context-dependent interpretation strategy for detect- 
ing chirps when their presence is suspected. 

1. Reprocessing: To find "enough" (60% in this case) of Siren-Chirp's 
attack region, the testbed must search back into block 3 and reinterpret 
the previously-detected but unrecognized short contours as valid attack- 
region contours. Siren-Chirp's attack region and its chirp character- 
istics are identified in the previous block's signal data8. At this point 
Siren-Chirp is determined to be present with high confidence. 

At the end of the scenario the testbed had recognized all the sounds and had 
tracked at least 85% of each sound's duration. There were no false-alarm sound 
hypotheses. However, there was one false-alarm discrepancy, which, for purposes 
of clarity, was omitted from the trace. In block 3 the testbed's fault-detection 
claimed that another discrepancy between the STFT and energy-estimator outputs 
had occurred. The focusing heuristics did select the associated SOU for handling, 
but in the course of reprocessing in the same manner as in block 2, no new peaks 
were found. Thus, the discrepancy was disproven. 

This detailed trace shows how the architecture components can implement a dual 
search to find (1) SPAs appropriate to a scenario with real-world sounds and (2) in- 
terpretations appropriate to the SPAs' correlates. The components' activation rates 
in the trace should not, however, be taken as a measure of their individual utilities 
in the problem of complex signal interpretation. To determine these utilities, our 
current work is focused on developing two statistical models. One relates acoustic 
scenario complexity to distortion rates, and the other relates distortion rates to ar- 
chitecture component activation rates.   It is our hope that these models not only 

8In the current implementation, signal data from the current block and the 2 most recent blocks 
are buffered. Future configurations will have this buffering governed by a parameter. 
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will determine each IPUS component's utility for various classes of scenarios but 
also will generate recognition-rate benchmarks for perceptual systems that do not 
use various IPUS components. 

B.8    IPUS and SPA Design 

Traditionally the focus in SPA design has been to develop SPAs that extract, as 
precisely as possible, all details of the desired information from the input signals. 
The motivation for this design paradigm has been that such SPAs could provide pre- 
cise information that would efficiently constrain interpretation search and produce 
interpretations with low uncertainty. This strategy is appropriate provided it can be 
guaranteed that the signal understanding system will not encounter signals which 
violate the underlying assumptions made in the design of those SPAs. This premise, 
however, does not appear appropriate for perceptual systems operating in complex 
environments [16]. Since in such domains the SPA assumptions will often be vio- 
lated, it seems unreasonable to devote computational resources to the extraction of 
detailed and precise information that is likely to be misleading. 

The IPUS architecture has important implications for SPA design because it 
encourages the development and application of fast, highly specialized, theoretically 
sound SPAs for reprocessing in appropriate contexts. IPUS provides a framework for 
using such SPAs in strategies where the initial signal processing sacrifices detail and 
precision, which are then sought during the signal re-processing phase when a better 
assessment of the signal environment is available. The advantage of sacrificing preci- 
sion and detail in the initial signal processing is two-fold; the initial signal processing 
can be more computationally efficient and the discrepancy detection following it is 
not encumbered by needless quantities of detail. 

In the course of our own research on the acoustic interpretation testbed, we have 
developed a novel algorithm [33] for computing an approximation to the STFT. 
This approximation retains the major features in the regular STFT output but its 
computation requires essentially no multiplications (a major part of regular STFT 
computation) and significantly fewer additions than the regular STFT. 

B.9    Future Research 

In addition to our work on designing new SPAs and on developing statistical rela- 
tionships among scenarios, distortion rates, and IPUS components' effectiveness, we 
are extending our testbed's control plans to explore the issue of scaling. Specifically, 
we are investigating the use of approximate processing and model-learning. 

In configuration C.2, which is currently under development, the testbed control 
plans have been changed to accomodate a larger library of 35 real-world sounds 
with more complicated structure. The strategies in the new control plans still rely 
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on the basic IPUS framework but now incorporate more goal-directed processing of 
microstreams and do not propagate the contour interpretations in a bottom-up man- 
ner to the microstream level. The processing strategies incorporate approximate- 
knowledge peak clustering algorithms to constrain source-model selection. 

The frequency features of the sound models used in the testbed trace were hand- 
crafted in a time-consuming process. When dealing with environments with large 
numbers of signal objects, it will be desirable to automate the model-acquisition 
process. The construction of these models will require the identification of features 
that avoid distortions caused by SPAs and/or model interactions as much as possible. 
Research is being done on incorporating the IPUS reprocessing loop into a framework 
for learning acoustic source models [3]. 

On initial consideration, it might seem that the time required by multiple re- 
processings under IPUS would be unacceptably high in noisy environments. How- 
ever, because traditional systems continuously sample several front-ends' data while 
IPUS-based systems selectively sample several front-end processings' data, the IPUS 
paradigm should decrease the expected processing time for contexts requiring several 
independent processing views. We are working on verifying this claim. 

B.10     Summary 

In this paper we have considered the problem of signal understanding in complex en- 
vironments involving interacting objects which mask and/or distort data correlates 
of their respective features. This implies that during its operation, the perceptual 
system must continually update, in a context-dependent fashion, what feature-set 
to focus upon and what SPAs to use in order to extract the features' data correlates. 
It is important to observe that the selection of a particular SPA is determined not 
only by the subset of features whose data correlates are sought, but also the pres- 
ence of data unrelated to those features. We have argued that adaptive selection of 
features and their corresponding SPAs requires sophisticated but principled control 
of the interactions between the actions of high-level knowledge sources and the ac- 
tions of SPAs in a signal understanding system. Motivated by this insight, we have 
formulated the IPUS architecture for the integrated processing and understanding 
of signals. 

IPUS provides a framework for structuring bidirectional interaction between the 
search for SPAs appropriate to the environment and the search for interpretation 
models to explain the SPAs' output data. The availability of a formal signal process- 
ing theory is an important criterion for determining the architecture's applicability 
to any particular domain. IPUS allows system developers to organize diverse signal 
processing knowledge along the lines of formal concepts such as SPA processing mod- 
els, discrepancy tests, distortion operators, and SPA application strategies. A major 
contribution of the architecture is to formalize and unify front-end SPA reconfigu- 
ration performed for interpretation processes (e.g. differential diagnosis) with that 
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performed for data correlate refinement, under discrepancy diagnosis. This results 
in a single reprocessing concept driven by the presence of SOUs. 

Our sound understanding testbed experiments indicate that the basic function- 
ality of the architecture's components and their interrelationships are realizable. 
We believe the IPUS architecture is applicable to any signal understanding domains 
for which the SPAs have a rich underlying theory. This view is supported by the 
similarities shared between the testbed's acoustic domain theory and that of many 
other signal domains such as sonar [39], weather radar [9], music [26], and biomedical 
signals [14]. 

In conclusion, we have shown how knowledge from formal signal processing the- 
ory regarding the effectiveness of specific SPA configurations for particular environ- 
ments can be used to develop a highly adaptive signal understanding architecture. 
This architecture tightly integrates the search for the appropriate SPA configura- 
tion with the search for plausible interpretations of the SPA output data. In our 
opinion, this dual search, informed by formal signal processing theory, is a necessary 
component of perceptual systems that must interact with complex environments. 
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C.l    Overview 

The C++ IPUS platform is an environment for the development of signal under- 
standing applications using the approaches described in [1, 2, 3]. This document 
assumes familiarity with those works. 

A scripting language layer on top of C++ is provided for the design of testbed 
applications and hides many of the semantics particular to C++ . Knowledge of the 
C language [4], an understanding of object-oriented, design, and access to a general 
source of C++ information [5, 6] should suffice the application designer. 

The platform is comprised of a library of base objects which together provide the 
full set of IPUS architectural features. The objects are implemented as C++ classes 
and. take advantage of the language features of inheritance, polymorphism, encap- 
sulation, and information hiding. Except where noted, the base classes described 
here are abstract and cannot be directly instantiated. They embody high-level ab- 
stractions of the objects that they represent and have pure virtual methods. Pure 
virtual methods are methods that are known to be required for the object to be 
instantiated, but for which no generalized definition can be given. To create an 
instance of an abstract base class, a new concrete class must be derived from the 
base class, for which the pure virtual (or required) slots and methods are defined. 

The construction of an IPUS system using this platform is a process of deriving 
concrete classes with specialized behaviors from the base classes. This document 
presents those base classes and demonstrates the process by which the elements of 
an IPUS application are derived and integrated into a complete signal understanding 
system. 
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C.2    IPUScript Grammar 

IPUScript is a scripting language based on the macro facility of the C++ pre- 
processor. It simplifies the task of writing applications with the IPUS platform 
by providing a small set of programming constructs which hide much of the me- 
chanics of C++ programming. It thereby allows the application developer to focus 
on aspects of the design process more directly related to the task of signal under- 
standing. 

This section presents a production grammar describing the IPUScript language. 
The grammar produces a superset of valid IPUScript applications, and is included 
more as a general reference for the IPUS application developer than for parser 
generation. It may be considered as a set of extensions to the C++ grammar in 
[5], since any legal C++ construct may be found within an IPUScript application. 
Production rules mentioned herein but not defined refer to existing C++ rules.1 

At the highest level, an IPUScript application has the following structure 

ipuscript-application: 
declaration-segment    ■ 
definition-segment 

The declaration-segment includes the interface specification for the application and 
is typically placed in a C++ header file. It has the structure 

declaration-segment: 
#include "ipuscript.h" 
BEGIN_DECLARE_SEGMENT 

declaration-list0„t 
END_DECLARE_SEGMENT 

declaration-list: 
short-declaration \ long-declaration 
declaration-list0pt 

A declaration derives a concrete class from one of the IPUS base classes. Declara- 
tions have the form 

short-declaration: 
VECLhKE-base-class-namei class-name ) 

or 
xThe reader is urged to use extra care when examining this document in conjunction with [4, 5] 

since a different convention for describing production rules is used in those manuscripts. 
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long-declaration: 
BEGIN_DECLARE_5ase-class-name ( class-name ) 
declaration-body 
END_DECLARE_6ase-c/ass-name 

declaration-body: 
data-member-declaration-listopt 

member-function-declaration-listopt 

optional-method-declaration-listovi 

The short-declaration form may be used when no data members, member functions, 
or optional methods are included in the declaration, base-class-name is the name of 
the base class from which the declared class is derived, and has the structure 

base-class: 
"IPUS   |  BLACKBOARD  |  HYPOTHESIS   |  SOU  |  NP.PLAN  |  SUBGOAL  | 

P.PLAN  | REFOCUSJJNIT 

class-name is the name given to the declared class and must be a valid C++ iden- 
tifier, data-member-declaration-list and member-function-declaration-list are lists of 
declarations for public data members and member functions that are specific to the 
derived class and follow standard C++ syntax, optional-method-declaration-list has 
the structure 

optional-method-declaration-list: 
optional-method-declaration 
optional-method-declaration-listovi 

optional-method-declaration: 
DECLARE-optional-method 

optional-method: 
VERIFY  | PRINT  |  PLOT  |  IN_CONSTRAINTS   | PRECONDITION  |  IN_BINDINGS 

VARIABLE_FOCUS   |  SUBG0AL_F0CUS  |  MATCH_FOCUS  |  FAILURE  | 
SATISFACTION  |  OUT_CONSTRAINTS 

For each declared optional method, an associated definition must appear in the 
definition segment. Only a subset of all optional methods listed in the grammar 
specification above are applicable for any particular base class. These associations 
are explained in Sees. C.3-C.10. Required methods for abstract base classes should 
not be explicitly declared, nor should optional methods for which the default be- 
havior of the base class is desired. 

The definition-segment specifies values for inherited slots and class specific 
method behaviors for derived classes. It is typically placed in a separate source 
file from the definition-segment, which must be included (with #include) at its 
beginning. The definition-segment has the structure 
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definition-segment: 
BEGIN_DEFINE_SEGMENT 
definition-list0pt 
END_DEFINE_SEGMENT 

definition-list: 
definition 
definition-list^ 

definition: 
DEFINE-frase-c/ossC class-name, required-slot-values ) 

method-definition^ 

required-slot-values: 
slot-value \ slot-value, required-slot-values 

method-definition-list: 
method-definition 
method-definition-list0pi 

method-definition: 
BEGIN J)EFINE_&ase-c/ass_metfiod-name( class-name ) 

statements^ 
ENV-VEFIWE-base-class-method-name 

method-name: 
VERIFY  | SUMMARIZE  | PRINT  | PLOT  | GRAMMAR  |  IN.CONSTRAINTS  | 

PRECONDITION  |  IN_BINDINGS  | VARIABLE.FOCUS  |  SUBGOAL-FOCUS 
MATCH_FOCUS  | FAILURE |  SATISFACTION  |  OUT_CONSTRAINTS   | 
ACTION  |  CONDITION   |  HANDLER  |  REMOVAL 

The definition-segment must contain a definition for each derived class declared 
in the declaration segment. Each definition must contain a slot-value for each re- 
quired slot of the base class. Each slot-value is an expression which evaluates to 
a constant value of the slot's data type. Additionally, a definition must contain a 
method-definition for each required method and for each optional method which was 
explicitly declared in the declaration of the class. Slot and method specification is 

described in greater detail in Sees. C.3-C.10. 

C.3    IPUS Applications 

Sec. C.2 presented a set of grammatical rules which describe the scope of valid 
IPUScript language constructs. In this section we discuss the development of IPUS 
applications from a design oriented point of view. 
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A complete IPUS system incorporates a RESUN control planner [3], a black- 
board, a problem solving model (PSM), and libraries of hypotheses, SOUs, plans, 
subgoals, and refocus units. In the IPUS platform, the nucleus of this system is the 
IPUS application class. It contains the control planner and blackboard and serves as 
the environment in which all elements of the IPUS system interact. It also provides 
the interface by which software external to the IPUS system directs and receives 
the results of the signal analysis. The following sections describe the derivation of 
a concrete IPUS application class and its use within a larger software system. 

C.3.1    Deriving IPUS Applications 

The process of deriving a concrete IPUS application class is primarily one of unifying 
the disparate elements of the IPUS system into a single unit. In addition, a region 
class must be derived which defines the structure of the signal data space. 

A derived IPUS application generally introduces no data members or member 
functions, and no optional methods are supported in IPUScript for the IPUS base 
class. As detailed in Table C.l, its required slots specify the name of the blackboard 
class to be instantiated by the system and the total number of derived plan and 
subgoal classes available to the planner. The required methods inform the planner 
of the class ID of each plan, subgoal, and refocus unit used in the system by "regis- 
tering" them with the IPUS application. An example of the derivation of an IPUS 
application is given below. 

// This  code fragment  is from the C++ header file cat.h 
#include "ipuscript.h" 

// CATJTAG,  PLANJTAG,  SUBGOALJTAG,  and REFOCUSJJNITJTAG are defined in ipuscript.h. 
#define CAT_ID  (CATJTAG +  1) 

#define PID_SOLVE_PROBLEM   (PLANJTAG + 1) 
#define PID_INITIALIZE_PSM  (PLANJTAG + 2) 

#define PID_GET_SOLUTION  (PLANJTAG + 25) 
#define TOTAL_PLAN_COUNT 25 

#define SGID_HAVE_PSM_INITIALIZED  (SUBGOALJTAG + 1) 

#define SGID_HAVE_SOLUTION   (SUBGOALJTAG +  15) 
#define T0TAL_SUBG0AL_C0UNT  15 

// Only one refocus unit  is defined. 
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Base Class Name 
name 

REQUIRED SLOTS 
type                        description 

I PUS ID int Class ID. 
PLAN_COUNT int Total number of defined plans 

(non-primitive and primitive). 
SUBGOAL_COUNT int Total number of defined subgoals. 
BLACKBOARD_CLASS ident The name of the concrete 

blackboard class to be used with 
this IPUS application. 

5o.se Class Name REQUIRED METHODS 
name                                           description 

IPUS REGISTER-PLANS Register class IDs of all plans. 
REGISTER_SUBGOALS Register class IDs of all subgoals. 
REGISTER_REFOCUS_UNITS Register class IDs of all refocus units. 

Base Class Name 

IPUS 

OPTIONAL METHODS 
name    description    default behavior 

Table C.l: IPUScript slot and method specifications for the IPUS base class. 

#define RUID_TIMER_UNIT  (REFOCUS_UNIT_TAG +  1) 

BEGIN_DECLARATION_SEGMENT 
// Declaration of Cat - a concrete  IPUS class. 
DECLARE_IPUS( Cat  ) 

END_DECLARATION_SEGMENT 

// End of code fragment from file cat.h 

// This  code fragment  is from the C++ source file  cat.C 
BEGIN_DEFINITION_SEGMENT 
// Definition of Cat. 
DEFINE_IPUS( Cat,  CAT_ID,  TOTAL_PLAN_COUNT,  TOTAL_SUBGOAL_COUNT,   CatBlackboa 

BEGIN_DEFINE_IPUS_REGISTER_PLANS(  Cat  ) 
REGISTERC  SolveProblem,   PID_SOLVE_PROBLEM ) 
REGISTERC  InitializePSM,  PID_INITIALIZE_PSM ) 

REGISTERC  GetSolution,  PID_GET.SOLUTION ) 

165 



END_DEFINE_IPUS_REGISTER_PLANS 

BEGIN_DEFINE_IPUS_REGISTER_SUBGOALS( Cat  ) 
REGISTERC  HavePSMInitialized,   SGID_HAVE_PSM_INITIALIZED  ) 

REGISTERC  HaveSolution,   SGID_HAVE_SOLUTION  ) 
EMD_DEFINE_IPUS_REGISTER_SUBGOALS 

BEGIN J)EFINE_IPUSJlEGISTER_REFOCUS_UNITS(  Cat  ) 
REGISTERC  TimerUnit,   RUID_TIMER_UNIT ) 

END_DEFINE_IPUS_REGISTER_REFOCUS_UNITS 

END_DEFINITIGN_SEGMENT 
// End of  code fragment from file cat.C 

Deriving the Region Class 

A region class must be defined as a companion to the IPUS application. A region 
class is a passive structure whose data members specify a specific region of the signal 
data space. For example, in a sound understanding application the region structure 
could contain three slots indicating the starting and ending times of a sound segment 
and a tag indicating the source of the data. In a radar signal analysis application 
the region structure might contain the time stamp of the return, the sensor with 
which it was collected, and the range and azimuth boundaries of the signal data. 

Only a single region class may be derived for an IPUS application. It is currently 
required that the region class be given the class name Region. The region class has 
no required slots or optional methods, and has a single required method—PRINT. 
The PRINT method must be defined, but is called only when the TRACE_PSM option 
of the trace output facility is used. PRINT receives a single parameter stream of 
type ostream which is an open output stream to which the trace output should be 
written. An example region class for a radar clutter analysis application is shown 
below. 

// Code fragment from declaration segment of file cat.h 

BEGIN_DECLARE_REGION( Region ) 
int timeSlice, 

rangeSpace[2], 
azimuthSpace[2]; 

String fileName; 

END_DECLARE_REGION 
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// End code fragment from file cat.h 
// Code fragment from definition segment of file cat.C 

BEGIN_DEFINE_PRINT_REGION 
stream « timeSlice « ",   [(" 

« rangeSpace[0]   «  ","  « azimuthSpace[0]   «  ")-(" 
« rangeSpace[1]   «  ","  « azimuthSpace[1]   « ")]"; 

END_DEFINE_PRINT_REGION 
// End code fragment from file cat.C 

C.3.2    Using IPUS Applications 

IPUS applications created with the testbed are not themselves executable programs, 
but are signal understanding objects which may become modular components of a 
larger overall software system. The IPUS application, therefore, provides a public 
interface by which signal understanding requests may be made and the results pro- 
vided to other system components. The methods listed below are those provided by 
the IPUS base class and are inherited by all derived IPUS applications. 

Public Methods 

IPUSC TraceType tt = TRACE_N0THING,   ostreamfe stream = cout  ): 
The IPUS class constructor takes two parameters which control the 
trace output facility of the testbed. tt may take on any combina- 
tion of the labels TRACE_N0THING, TRACE_PLANS, TRACE-BLACKBOARD, 
TRACE_SUBGOALS, TRACE_PSM, TRACE_S0U, TRACE_ALL. These labels may 
be combined using logical OR to produce a fully customized trace output. 
Trace output may be directed to any open output stream by passing that 
stream as the stream parameter. 

int failO ; 
Return a boolean value indicating whether the most recent call to 
understand halted due to an internal error condition. Run-time errors 
generate an immediate error message on the cerr stream, an internal log- 
ging of the error message (see why below), and the halting of the control 
planner when the next focus point completes. 

BlackboardPtr getBlackboardPtrO ; 
Return a pointer to the blackboard instance being used by the IPUS sys- 
tem. 

uint isAO; 
Return the class ID. 
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String nameOf(); 

Return the class name. 

HypothesisPtr understand( void *input ): 
Perform signal understanding. The top level plan (i.e. the plan with class 
ID PLAN.TAG+1 is instantiated and run with input as its input. The main 
control loop of the RESUN planner is outlined in Fig. C.3.1. When that 

put SolveProblem plan instance on currentFocusPoints queue 
repeat 

repeat 
dequeue focusPoint from currentFocusPoints queue 
if focusPoint is non-primitive do 

if focusPoint is not a plan version 
focus on focusPoint input variables 
set focusPoint to first plan version 
place alternate plan versions at head of currentFocusPoints queue 

end if 
execute next step of focusPoint grammar 
focus on new subgoals 
for each new subgoal do 

match new plan instances to new subgoal 
focus on matching plan instances 
place resulting plan instances on nextFocusPoints queue 

end for 
if focusPoint is completed then 

update planning structure 
end if 
invoke or remove all applicable refocus units 

else { focusPoint is primitive } 
focus on focusPoint input variables 
set focusPoint to first plan version 
place alternate plan versions at head of currentFocusPoints queue 
perform focusPoint primitive action 
invoke blackboard summarization 
check satisfaction conditions of all current subgoals 
check failure conditions of all plan versions 
update planning structure 
invoke or remove all applicable refocus units 

end if 
until currentFocusPoints is empty 
swap currentFocusPoints and nextFocusPoints 

until currentFocusPoints is empty 

Figure C.3.1: The RESUN planner control loop. 

plan completes or the planner halts, the output from that plan is returned. 

String whyO; 
Return a string containing one or more reasons why the planner halted 
without completing the signal understanding task. 

C.3.3    Problem Solving Model 

The problem solving model, as instantiated in the generic IPUS architecture [1], has 
been incorporated into the IPUS testbed in the form of the concrete PSM class. The 
PSM maintains references to important hypotheses on the blackboard and simplifies 
the control plans' task of selecting SOUs to solve. Its structure and relation to the 
blackboard is shown in Fig. C.3.2. 
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Figure C.3.2: The problem solving model (PSM). 

The blackboard summarization performed by the PSM incorporates a system 
for calculating numerical hypothesis ratings based on [1]. The system produces 
a summary for each hypothesis by recursively summarizing each of its supporting 
hypotheses, and combining the uncertainty of the support with the hypothesis' own 
uncertainty. 

The PSM is comprised of two related elements—the answer list and the PSM 
SOU list. The answer list is a list of pointers to those hypotheses on the blackboard 
that represent potential high-level solutions to the signal understanding task cur- 
rently underway. A hypothesis is considered a potential answer if it is at a high level 
of the blackboard and has a high rating. The PSM SOU list is a sorted list of point- 
ers to PSM SOU instances. PSM SOUs are symbolic representations of uncertainty 
in the overall signal understanding task; as its state is reflected on the blackboard. 

There are currently four types of PSM SOUs defined in the testbed. Uncertain 
answer SOUs are created for all hypotheses on the answer list of the PSM. Uncertain 
non-answer SOUs are created for those hypotheses that are high enough on the 
blackboard to be considered answers but are not highly rated. Uncertain hypothesis 
SOUs are created for hypotheses in the mid-to-upper levels of the blackboard that 
cannot be considered potential answers. Each of these PSM SOUs contain a pointer 
to the hypothesis to which they refer. No evidence SOUs represent the overall 
uncertainty related to signal data that has yet to be collected by the system and 
placed on the first level of the blackboard. Instead of referring to a hypothesis 
instance, it contains a region class instance describing the signal data region not yet 
considered. PSM SOUs are ordered on the PSM SOU list according to the priority 
system described below in the Public Slots section. 
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The PSM is a concrete class and need only be instantiated and "installed" into the 
application object from within a plan schema or primitive action. This operation is 
usually the first subgoal of the top level plan [1]. At instantiation, the behavioral 
properties of the PSM are set through the constructor's parameter list described 
below. The PSM is initialized by instantiating a No evidence SOU over the first 
signal region of interest and placing it on the PSM SOU list. The PSM is installed 
with the installPSM utility function described in Sec. C.12. Once installed, the 
PSM is updated after each primitive action completes. 

Public Slots 

HypothesisPtrList answerList; 
A list of pointers to hypothesis on blackboard 
levels bottomAnswerLevel through topAnswerLevel that have a rating 
not less than minimumAnswerRating. 

PSMSOUPtrList psmSOUList; 
A sorted list of pointers to PSM SOU instances. PSM SOUs are maintained 
for all hypotheses on blackboard levels bottomHypothesisLevel through 
topAnswerLevel. Hypotheses on levels bottomHypothesisLevel through 
topHypothesisLevel are represented by UncertainHypothesisSOUs. Hy- 
potheses on levels bottomAnswerLevel through topAnswerLevel are 
represented by UncertainAnswerSOUs if their ratings are not less 
than minAnswerRating, UncertainNonAnswerSOUs if their rating is less 
than minAnswerRating but not less than minNonAnswerRating, or 
UncertainHypothesisSOUs otherwise. NoEvidenceSOUs are neither cre- 
ated, removed, nor modified by the PSM, and are solely under the 
control of the plans. The list is sorted by a priority structure in 
which the SOUs are first ordered by type and then by blackboard level. 
UncertainAnswerSOUs precede UncertainNonAnswerSOUs followed (in or- 
der) by UncertainHypothesisSOUs and NoEvidenceSOUs. Within an SOU 
type, SOUs referring to hypotheses on higher levels of the blackboard pre- 
cede those referring to lower level hypotheses. 

Public Methods 

PSM(  int bottomHypothesisLevel,   int topHypothesisLevel,   int bottomAnswerLevel, 

int topAnswerLevel,   double minAnswerRating =0.5,  double 
minNonAnswerRating 
= 0.5 ); 
PSM constructor.   Sets up the behavior of the PSM by assigning values 
to its control variables. The effects of these variables are described in the 
text above. 
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C.4    Blackboards 

A blackboard is a hierarchy of a fixed number of blackboard levels. Each blackboard 
level is a list of pointers to hypothesis instances. 

C.4.1    Deriving Blackboards 
The derivation of a concrete blackboard class requires the specification of a class ID, 
the number of blackboard levels, and optionally a method for asserting hypothesis 
posting restrictions (see Table C.2). 

Base Class Name 

BLACKBOARD 

REQUIRED SLOTS 
name 

ID 
LEVELS 

type 
int 
int 

description 
Class ID. 
Number of blackboard levels. 

Base Class Name 

BLACKBOARD 

REQUIRED METHODS 
description name 

Base Class Name 

BLACKBOARD 

name 
VERIFY 

OPTIONAL METHODS 

description 
Verify that a posted 
hypothesis is "valid" 
wrt some general policy 
of blackboard usage. 

default 
behavior 

Allow any 
hypothesis 
to be posted. 

Table C.2: IPUScript slot and method specifications for the BLACKBOARD base class. 

The ID slot holds an integer value added to the predefined BLACKBOARD.TAG con- 
stant. The LEVELS slot specifies the number of separate' blackboard levels. The 
VERIFY method, if defined, is called whenever a new hypothesis is posted to the 
blackboard and may veto its posting if the hypothesis is deemed harmful to the sys- 
tem integrity in some way. This allows the enforcement of hypothesis type restric- 
tions with respect to specific blackboard levels and the application of a generalized 
test which may ensure that only "well-formed" hypotheses are posted. The VERIFY 
method receives a single argument hypothesis of type HypothesisPtr and returns 
a boolean value indicating whether the structure of the hypothesis has been verified. 
If the hypothesis is found to be invalid, an internal error may be catalogued using 
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the IPUScript utility function postError described in Sec. C.12. An example of the 
derivation of a concrete blackboard class is shown below. 

// Code fragment from the file cat.h 

#define CAT_BLACKBOARD_ID (BLACKBOARDJTAG + 1) 

#define RETURN_LEVEL (1) 

#define MAP_LEVEL (2) 
#define REGIOfLLEVEL (3) 
#define PATCH.LEVEL (4) 

#define T0P_LEVEL PATCH_LEVEL 

#define RETURN.HYP (HYPOTHESIS.TAG + 1) 
#define MAP_HYP (HYPOTHESIS_TAG + 2) 

#define REGION_HYP (HYPOTHESISJTAG + 3) 

#define PATCH_HYP (HYPOTHESIS.TAG + 4) 

BEGIN_DECLARATION_SEGMENT 

BEGIN_DECLARE_BLACKBOARD( CatBlackboard ) 
DECLARE_VERIFY 

END_DECLARE_BLACKBOARD 

// End of code fragment from cat.h 

// Code fragment from the definition segment of file cat.C 

DEFINE_BLACKBOARD( CatBlackboard, CAT_BLACKBOARD_ID, T0P_LEVEL ) 

BEGIN_DEFINE_BLACKBOARD_VERIFY( CatBlackboard ) 
switch (hypothesis->level()) { 

case RETURN_LEVEL: { 

return (hypothesis->isA() == RETURN_HYPOTHESIS); 
break; 

} 
case MAP.LEVEL: { 

return (hypothesis->isA() == MAP_HYPOTHESIS); 
break; 

} 
case REGION_LEVEL: { 

172 



return (hypothesis->isA() == REGION_HYPOTHESIS); 

break; 

} 
case PATCH_LEVEL: { 

return (hypothesis->isA() == PATCH_HYPOTHESIS); 

break; 

} 
default:  { 

return 0; 

break; 

} 
} 

END_DEFINE_BLACKBOARD_VERIFY 

// End of code fragment from cat.C 

C.4.2    Using Blackboards 

The blackboard is accessible to all plan, subgoal, and refocus unit methods as 
well as software components external to the IPUS system through the public 
getBlackboardPtr method of the IPUS application class. Access is simplified within 
the IPUS system by the use of the IPUScript utility functions described in Sec. C.12. 
Hypotheses are added to the blackboard with the addHypothesis method. 

The levels themselves are unsorted lists, and the viewing and changing of hy- 
potheses is performed through the use of Levellterator objects. Levellterators 
may be created by calls to the public getLevellterator method of the blackboard 
class. The use of lists and iterators are described in Sec. C.ll. Levellterators 
differ from the generic iterator only in that they have no remove method. 

The blackboard base class provides the following methods 

Public Methods 

void addHypothesis(  const LevellD level, 
HypothesisPtr hypothesis  ); 

Add hypothesis to the specified blackboard level (if allowed by the in- 
ternal VERIFY method described below). Blackboard levels are numbered 
starting with 1. 

Levellterator getLevelIterator(  const uint level ); 
Return an iterator over the specified blackboard level. Levellterators 
provide all the functionality of iterators as described in Sec. C.ll.2, except 
no remove method is provided. 
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uint isAO; 
Return the class ID. 

String nameOf(); 
Return the class name. 

uint levelsO; 
Return the number of blackboard levels. 

C.5    Hypotheses 

Hypothesis objects represent interpretive assertions made by knowledge sources. 
They are placed on the blackboard where they may be examined and modified by 
other knowledge sources. 

C.5.1    Deriving Hypotheses 

Concrete hypothesis classes are derived from the base HYPOTHESIS class by specifying 
a class ID, declaring the hypothesis' data slots, and optionally specifying methods 
for printing and plotting of the object as part of the IPUS application trace output. 
The IPUScript specifications for inherited slots and methods are given in Table C.3. 
Each derived hypothesis class is usually restricted to being placed on a particular 

Base Class Name 

HYPOTHESIS 

REQUIRED SLOTS 
type    description name 

ID mt Class ID. 

Base Class Name 

HYPOTHESIS 

REQUIRED METHODS 
description name 

Base Class Name 

name 

OPTIONAL MI 

description 

1THODS 
default 

behavior 
HYPOTHESIS PRINT Print hypothesis 

to a text stream. 
Print class name, 
instance ID, and 
rating. 

PLOT Plot hypothesis 
graphically. 

Do nothing. 

Table C.3: IPUScript slot and method specifications for the HYPOTHESIS base class. 
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blackboard level, and in many IPUS systems this is a one-to-one association. These 
restrictions may be enforced with the blackboard class' VERIFY method. 

The most important elements of each derived hypothesis class are the object spe- 
cific data slots. These slots are set and modified by knowledge sources (in primitive 
actions) to encode their interpretations of lower level hypotheses as well as high-level 
expectations. Object specific data slots are enumerated within the data-member- 
declaration-list field of the class declaration (see Sec. C.2). They are declared using 
the standard data member declaration syntax of C++ and should be public members 
(explicit use of the public keyword is not required within IPUScript). 

The PRINT and PLOT methods are used only by the platform trace facility 
(see Sec. C.3.2) and have no effect on signal understanding per se. When the 
TRACE_BLACKBOARD portion of the trace facility is enabled, the PRINT method of each 
hypothesis on the blackboard is called in turn, starting from the first hypothesis on 
the highest level of the blackboard and continuing through to the last hypothesis 
on the lowest level. PRINT is called with a single parameter named stream of type 
ostream, which is an open stream to which the trace output is to be written. The 
name of the hypothesis class, a unique instance identifier for the object, and the 
hypothesis' rating is sent to the stream prior to the PRINT method being called. 
Some experimenting may be necessary with output formatting to produce an at- 
tractive (i.e. readable) trace output when it is desired to show the contents of the 
hypothesis' slots as part of the printed output. The PRINT method may also be used 
to write data to an external file for debugging purposes. 

The PLOT method is provided to support the design of extensions to the platform 
which produce a graphical display. The PLOT method of each hypothesis on the 
blackboard is called after each primitive action is executed. 

An example of the derivation of a hypothesis class from a radar signal analysis 
application is shown below. 

// Code fragment from header file cat.h 

#define RETURN.HYPOTHESIS   (HYPOTHESIS_TAG +  1) 

#define NUMBER_OFJlANGE_GATES  (100) 
#define NUMBER_OF_AZIMUTH_GATES  (100) 

BEGIN_DECLARATION_SEGMENT 

BEGIN_DECLARE_HYPOTHESIS( ReturnHypothesis  ) 
DECLARE.PRINT 
Region region; 
double data[ NUMBER_OF_RANGE_GATES ][ NUMBER_OF_AZIMUTH_GATES ]; 
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END_DECLARE_HYPOTHESIS 

// End of code fragment from file cat.h 

// Code fragment from definition segment 
// in source file cat.C 

DEFINE_HYPOTHESIS( ReturnHypothesis, RETURN_HYPOTHESIS ) 

BEGIN_DEFINE_HYPOTHESIS_PRINT( ReturnHypothesis ) 
stream « data[0] [0] « ", " « data[l] [0] 
« ", " « data[2][0] « "..."; 

END_DEFINE_HYPOTHESIS_PRINT 

// End of code fragment from file cat.C 

C.5.2    Using Hypotheses 

A hypothesis is a passive entity and has only inert public methods. It inherits a 
number of slots that are used by the knowledge sources to maintain the hypothesis' 
inferential relationship to other hypotheses on the blackboard, as well as the uncer- 
tainty associated with those inferences. Hypothesis slots are never altered by the 
control planner or the blackboard. The slots described below belong to all derived 
hypothesis classes and encode information used throughout the IPUS system. 

Public Slots 

HypothesisPtrList  explanationList; 
A list of pointers to higher level hypotheses that have been created from 
inferences supported by this hypothesis. This list must be maintained by 
the knowledge sources in their ACTION methods. 

SOUPtrList souList; 

A list of pointers to the SOU instances attached to this hypothesis. SOUs 
are created and attached to hypotheses and also removed from them by 
knowledge sources. Use of SOUs is described in Sec. C.6.2 

HypothesisPtrList  supportList; 
A list of pointers to lower level hypotheses that support the inference on 
which this hypothesis is based. This list must be maintained by the knowl- 
edge sources in their ACTION methods. 
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Summary summary; 
A numeric summarization of the uncertainty associated with this hypothe- 
sis and its support. The summary is maintained by the PSM (if installed) 
and updated every time a primitive action is run. The summary ratings 
are calculated by the algorithm described in Sec. C.3.3. 

Public Methods 

uint  isA(); 
Return the class ID. 

uint levelO ; 
Return the number of the blackboard level on which this hypothesis resides. 
This value comes from a protected slot which is set by the blackboard 
method addHypothesis when the hypothesis is posted. 

String nameOf(); 
Return the class name. 

C.6    SOUs 

An SOU (or source of uncertainty) is a symbolic expression of a specific kind of 
uncertainty associated with a hypothesis. SOU instances are created and attached 
to hypotheses by knowledge sources, and serve two distinct purposes in the IPUS 
testbed. SOUs are used in the process of blackboard summarization, where they 
impact on the ratings summary of the hypothesis to which they are attached and 
its explanations. SOUs may also be used to guide focusing decisions within the 
planning process. 

C.6.1    Deriving SOUs 

SOUs are all derived from the base SOU class. The slot and method specifications 
for a derived SOU class are shown in Table C.4. Each derived SOU class must be 
assigned a unique class ID number. This ID is derived by adding a small integer 
to the predefined S0U_ID constant. SOUs must also be assigned an integral priority 
value. SOU priorities are used for ordering SOUs on the sorted souList associated 
with each hypothesis. Smaller numbers indicate higher priority. This ordering can 
be used to simplify control decisions when multiple SOUs are associated with a 
single hypothesis. 

A concrete SOU class also requires the specification of a SUMMARIZE method. This 
method is called by the PSM during blackboard summarization and assigns a value 
to the SOU's internal rating slot. The rating is a double precision floating point 
number in the range [0,1] which indicates the the amount of uncertainty attributed 
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Base Class Name 
name 

REQUIRED SLOTS 
type                description 

SOU ID int Class ID. 
PRIORITY int Priority for sequencing of 

SOU lists. 

Base Class Name 

SOU 

REQUIRED METHODS 
name description 

SUMMARIZE Apply SOU uncertainty to 
hypothesis summary. 

Base Class Name 

SOU 
name 
PRINT 

OPTIONAL METHODS 
default 

description 
Print SOU to 
a text stream. 

behavior 
Print SOU name. 

Table C.4: IPUScript slot and method specifications for the SOU base class. 

to the hypothesis by this SOU. Larger ratings indicate greater uncertainty. The 
method by which individual SOU ratings are combined to form overall hypothesis 
ratings is described in Sec. C.3.3. 

The optional SOU PRINT method is used by the platform trace facility for dis- 
playing the SOU on a text stream. Its structure is the same as that described for 
the hypothesis class' print method in Sec. C.5.1. An example of the derivation of a 
concrete SOU class is given below. A number of derived SOU classes are pre-defined 
in the platform for use in applications and are described in Table C.5. 

// Code fragment from header file cat.h 

#define PARTIAL_VERIFICATION_SOU  (S0U_TAG + 20) 

BEGIN_DECLARATION_SEGMENT 

BEGIN_DECLARE_SOU( PartialVerificationSOU  ) 
DECLARE_SUMMARIZE 

END_DECLARE_SOU 

// End of code fragment from file cat.h 

// Code fragment from definition segment in source file cat.C 
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DEFINE_SOU( PartialVerificationSOU,  PARTIAL_VERIFICATION_SOU,  110 ) 
BEGIN_DEFINE_SOU_SUMMARIZE( PartialVerificationSOU  ) 

rating =0.5; 
END_DEFINE_SOU_SUMMARIZE 

// End of  code fragment from file  cat.C 

C.6.2    Using SOUs 
SOUs are added and removed from hypotheses by knowledge sources within their 
primitive actions. SOU instances are created with direct calls to the C++ new 
operator. The SOU constructor requires a single parameter that is a pointer to the 
hypothesis to which the SOU will be attached. The SOU must be subsequently 
attached to the hypothesis by adding a pointer to it onto the souList data member 
of the hypothesis.   This action requires that a pointer to the hypothesis itself be 

available. 
An SOU may be removed from a hypothesis by removing its pointer from the 

hypothesis' souList data member. It must also be deleted as required by C++ for 
correct free-store usage. Addition and removal from the souList is performed using 
the public List class methods as described in Sec. C.ll. 

C.7    Non-Primitive Plans 

Plan objects serve a single purpose in the IPUS testbed—they provide a means of 
meeting a subgoal of the problem solving task. Non-primitive plans meet a subgoal 
by decomposing it into a sequence of simpler subgoals. The sequencing of these 
subgoals is encoded as a series of steps in an algorithmic structure called a plan 
schema. In addition to the plan schema, a variety of additional methods may be 
defined for a non-primitive plan to assist the control planner in selecting the best 
plan to meet a particular subgoal and to integrate the plan instance with the other 
plans being carried out in parallel within the testbed. In the following sections we 
discuss the mechanics of deriving non-primitive plan classes and demonstrate several 
of the features provided for specializing their behavior. 

C.7.1    Deriving Non-Primitive Plans 

Table C.6 lists the derived slots and methods available for non-primitive plans. The 
ID slot assigns a unique plan class identifier that is used throughout the platform 
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Derived Class Name Class ID Priority Rating Purpose 
NoExplanationSOU N0_EXPLANATI0N_S0U 100 0.5 No explanations have 

been identified. 
NoSupportSOU N0_SUPP0RT_S0U 110 0.5 No support has 

been identified. 
Partial 

SupportSOU 
PARTIAL- 

SUPP0RT_S0U 
120 0.5 Existence of required 

evidence remains 
unverified. 

Missing 
EvidenceSOU 

MISSING, 

EVIDENCE_S0U 
200 0.5 Expected evidence has 

been found to be 
missing. 

Support 
ExclusionSOU 

SUPPORT, 

EXCLUSI0N_S0U 
200 0.5 Evidence to support 

an expectation has 
been found to be 
missing. 

Support 
LimitationSOU 

SUPPORT, 

LIMITATI0N_S0U 

200 0.5 Support is limited 
until the results 
of further processing 
are obtained. 

Alternative   . 
ExtensionSOU 

ALTERNATIVE, 

EXTENSI0N_S0U 
200 0.5 Competing versions of 

a hypothesis exist. 
Alternative 

SupportSOU 
ALTERNATIVE, 

SUPPORT-SOU 
200 0.5 Alternative evidence 

could play the same 
role as a current piece 
of support evidence. 

Uncertain 
SupportSOU 

UNCERTAIN- 

SUPPORT-SOU 
300 0.5 Support inference 

may be incorrect. 
Possible 
Alternative 
ExplanationSOU 

POSSIBLE. 

ALTERNATIVE- 

EXPLANATION-SOU 

300 0.5 Explanations may exist 
that could play the same 
role as a current 
explanation. 

Alternative 
ExplanationSOU 

ALTERNATIVE- 

EXPLANATION-SOU 
300 0.5 More than one possible 

explanation exists. 

Table C.5: Pre-defined concrete classes derived from SOU base class. 
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Base Class Name 

name 
REQUIRED SLOTS 

type                            description 
NP_PLAN ID int Class ID. 

GOAL_FORM int Subgoal met by this plan. 
INPUT_TYPE string Name of data type accepted as input 

to plan (must be a pointer type). 
OUTPUT_TYPE string Name of data type returned as output 

from plan (must be a pointer type). 

Base Class Name 

NP_PLAN 

REQUIRED METHODS 
name description 

SCHEMA Plan schema. 

J5a.se Class Name 

name 

OPTIONAL METHODS 

description 
default 

behavior 

NP_PLAN 

base class 

IN_CONSTRAINTS Predicate constraining 
values of input variables 
that plan can accept. 

No constraints. 

PRECONDITION Predicate which rules 
out plan applicability. 

No condition. 

IN_BINDINGS Set variables' values 
BEFORE schema begins. 

Do nothing. 

VARIABLE_FOCUS Select bindings for    ' 
plan variables when 
several are available. 

Bind to first 
input variable. 

SUBG0AL_F0CUS Reorder subgoals when 
several may be satisfied 
in parallel. 

Use order of 
posting. 

MATCH_FOCUS Select among competing 
plans for satisfying this 
plan's subgoals. 

Use the first 
plan found 
that matches. 

FAILURE Predicate that returns 
TRUE when plan definitely 
cannot meet subgoal. 

No failure 
condition. 

Table C.6: IPUScript slot and method specifications for the NP_PLAN base class. 
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to refer to the plan class. Contiguous integers, starting with PLAN_ID+1, must be 
assigned to plan classes (both non-primitive and primitive) as shown in the example 
code given in Sec. C.3. The use of non-contiguous integer IDs will result in a run- 
time error. The G0AL_F0RM slot declares the ID of the subgoal met by the plan. Only 
a single subgoal may be met by a plan class. The INPUTJTYPE and OUTPUT_TYPE slots 
contain strings describing the data type used as input and output by the plan. These 
must be pointer data types and must also be the same as those of the subgoal class 
whose ID is listed in G0AL_F0RM. Violation of either of these conditions will result in 
a run-time error. 

The plan schema is defined in the required SCHEMA method, which is described in 
detail in the following section. In the remainder of this section we shall discuss the 
optional methods and the inherited slots and methods of a derived non-primitive 
plan class. 

The IN_CONSTRAINTS method allows restrictions to be placed on the input vari- 
able values for which the plan may be considered applicable. It is invoked by the 
planner as part of the matching process. When a subgoal is posted to the control 
planner, the planner searches for a plan which may potentially satisfy that sub- 
goal. The first stage of matching looks for a plan that matches the subgoal in its 
G0AL_F0RM slot. The second stage passes the input to the subgoal as input to the 
matching plans and checks the plan's IN_CONSTRAINTS. This method must return a 
boolean value indicating whether any of the inputs to the plan are acceptable. This 
allows the plan to rule itself out when no appropriate input values are available. 

The PRECONDITION method performs a similar function to the IN_CONSTRAINTS. 
It is used to rule out the plan's applicability, but is based on criteria other than 
the contents of the input variables. It should be used to constrain the use of the 
plan based on the contents of the blackboard, the internal state of the planner, or 
other easily tested conditions. It returns a boolean value indicating whether the 
preconditions for the plan are met. 

The IN_BINDINGS method performs initialization of the data members of the 
class. It is invoked after the input has been bound to a single value, just before the 
plan schema executes its first step. It provides the functionality normally associated 
with an class' constructor function. 

The VARIABLE_FOCUS method converts a plan instance with a multi-valued input 
value (i.e. a list of potential inputs) to one or more plan versions. A plan version is 
a plan instance that has been bound to a single input value. For each input value for 
which a plan version is desired, the variable focus method may bind a new version 
using the BIND IPUScript macro. By default, a plan version is created only for the 
first element of the input variable list. It is currently recommended that only a 
single plan version be created for any given plan instance. 

The SUBGOALJFOCUS method is called by the planner when the plan schema posts 
multiple subgoals within a single step. In general, these subgoals may be considered 
to be satisfied in parallel.   Subgoal focusing allows the subgoals to be re-ordered 
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when some particular ordering is preferred. Subgoal focusing is performed by placing 
subgoal pointers from the local object named subGoalList of type SubGoalPtrList 
onto the object named subGoalQueue of type SubGoalQueue. Lists and queues are 
discussed in Sec. C.ll. 

Match focusing is the process by which a plan may influence which plans are 
selected to carry out the subgoals that it posts. After the plan matching function 
of the control planner checks the IN_CONSTRAINTS of all plans matching a subgoal, 
as described above, the MATCH_FOCUS method of the plan that posted the subgoal 
is passed the list of matching plans. It may then remove any matching plans that 
it deems unsuitable for meeting the subgoal. The default behavior is to select only 
the first matching plan available (i.e. the plan with the lowest ID). It is currently 
recommended that match focusing select no more than one plan to meet a single 

subgoal. 
The FAILURE method provides a way for a non-primitive plan to halt itself if 

it determined that it definitely cannot meet its parent subgoal. It is called by the 
control planner after any primitive action is carried out. It must return a boolean 
value indicating whether it has failed. If it has, it is removed from the planning 
structure. The failure condition may be based upon internal plan data members, 
the blackboard state, or the internal state of the planner. 

The public methods which follow may be invoked by other objects in the platform 
which obtain a pointer to the non-primitive plan object. 

Public Methods 

InstancelD getlnstancelDO; 
Return the unique instance identifier of the plan. 

uint goalFormO ; 
Return the ID of the subgoal met by this plan. 

String inputTypeO; 
Return a string describing the data type accepted as input to the plan. 

uint isAO ; 
Return the class ID. 

String nameOf0; ° 
Return the class name. 

void notifyC SubGoalPtr subGoal ); 
Notify the plan of a significant event in the planner. If subGoal is NULL, 
the plan is halted and its status set to ST_FAILED. If subGoal is a pointer to 
a subgoal posted by the plan, the plan assumes the subgoal has completed 
and records its result and status.  If subGoal is a pointer to the subgoal 
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that the plan is attempting to meet, the plan assumes that the subgoal has 
been met by other means or is no longer important, and the plan recursively 
halts all of its active subgoals (and their subsequent plans) and then halts 
with status ST_FAILED. If subGoal takes on any other value a run-time 
error is generated. This method is used extensively within the control 
planner, and may also be called by refocus units that wish to influence the 
flow of control in the planner. 

String outputTypeO; 
Return a string describing the data type returned as output by the plan. 

int primitive(); 

Always returns 1 for a non-primitive plan. 

uint planlDO; 
Return the class ID. 

StatusType  status0   const; 
Return the current status of the plan. Possible values are ST.IDLE (in- 
dicating that the plan schema has not yet been executed), ST_RUNNING 
(indicating that the plan schema has begun executing but has not yet 
completed), ST_FINISHED (indicating that the plan schema has finished 
satisfactorily), and ST_FAILED (indicating that the plan schema has been 
unable to meet its subgoal). 

uint subGoalCountQ ; 
Return the number of subgoals posted by the plan that have not yet been 
satisfied. 

C.7.2    Designing Plan Schemas 

A plan schema is a method associated with a derived non-primitive plan class and 
has a very specialized structure. It encodes an algorithm for satisfying a subgoal 
as a series of steps which are performed sequentially. On each call to the SCHEMA 
method, a single step of the algorithm is executed. A step typically posts one or 
more subgoals to the planner. All non-primitive plan methods and IPUScript utility 
functions may be called within a schema. Subsequent schema steps are not executed 
until all subgoals posted by the plan have either been satisfied or have failed. The 
control planner will continue to execute schema steps until the completion status of 
the plan is set to ST_FINISHED or ST_FAILED using the setStatus method. The final 
schema step usually sets the status, as well as setting the plans output if necessary 
using the setOutput method. Failure to set the output value or final status of a 
plan schema will result in a run-time error. 
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Plan schema steps must be assigned contiguous integer step numbers starting 
from 1, and must appear in the schema definition starting with the IPUScript macro 
STEP(n). Here, n is the step number. Each schema step contains all statements 
between the STEP macro and the next STEP macro or END_DEFINE_NP_PLAN_ACTION. 
Improper numbering of schema steps will result in a run-time error. Examples of two 
non-primitive plans are shown below. They are followed by descriptions of the data 
members and methods inherited from the NP_PLAN class that may be used within 

derived methods. 

// Code fragment from header file cat.h 

#define SGID_HAVE_PSM_INITIALIZED  (SUBGOAL_TAG + 1) 
#define SGID_HAVE_PSM_UNCERTAINTY_RESOLVED   (SUBGOAL_TAG + 2) 
#define SGID_HAVE_PSM_SOU_SELECTED  (SUBGOAL_TAG + 3) 
#define SGID_HAVE_PSM_SOU_RESOLVED   (SUBGOAL.TAG + 4) 
#define SGID_HAVE_SOLUTION  (SUBGOAL.TAG + 5) 

#define PID_SOLVE_PROBLEM  (PLAN_TAG + 1) 
#define PID_INITIALIZE_PSM  (PLAN.TAG + 2) 
#define PID_RESOLVE_PSM_UNCERTAINTY   (PLAN.TAG + 3) 
#define PID_GET_SOLuTION  (PLAN_TAG + 4) 

BEGIN_DECLARE_SEGMENT 

BEGIN_DECLARE_NP_PLAN(  SolveProblem  ) 
SubGoalRef  child; 

END_DECLARE_NP_PLAN 

BEGIN_DECLARE_NP_PLAN( ResolvePSMUncertainty  ) 
SubGoalRef  child; 

END_DECLARE_NP_PLAN 

// End of code fragment from file cat.h 

// Code fragment from definition segment  in source file cat.C 

DEFINE_NP_PLAN( SolveProblem,  PID_SOLVE_PROBLEM,  NONE, 
MIPUSString *",   "PatchHyp *"  ) 

BEGIN_DEFINE_NP_PLAN_SCHEMA(  SolveProblem  ) 

STEP(l) 
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posti( SGID_HAVE_PSM_INITIALIZED, get Input () ); 
STEP(2) 

post( SGID_HAVE_PSM_UNCERTAINTY_RESOLVED ); 
STEP(3) 

child = postC SGID_HAVE_SOLUTION ); 
STEP(4) 

setOutput( getResult( child ) ); 
setStatus( ST_FINISHED ); 

END_DEFINE_NP_PLAN_SCHEMA 

DEFINE_NP_PLAN( ResolvePSMUncertainty, PID_RESOLVE_PSM_UNCERTAINTY, 

SGID_HAVE_PSM_UNCERTAINTY_RESOLVED, "", ,in ) 

BEGIN_DEFINE_NP_PLAN_SCHEMA( ResolvePSMUncertainty ) 
STEP(l) 

child = post( SGID_HAVE_PSM_SOU_SELECTED ); 
STEP(2) 

PSMSOUPtr sou = (PSMSOUPtr) getResult( child ); 
if ((sou->isA() == UNCERTAIN_ANSWER_SOU) && (sou->rating > 0.9)) { 

setStatus( ST_FINISHED ); 

} 
else { 

postiC  SGID_HAVE_PSM_SOU_RESOLVED,   sou ); 
NEXT_STEP(1); 

} 
END_DEFINE_NP_PLAN_SCHEMA 

// End of code fragment from file cat.C 

Protected Data Members 

IPUS& environment; 
A reference to the IPUS derived class instance in which the plan is execut- 
ing. 

SubGoalfe parent; 

A reference to the SUBGOAL derived class instance which the plan is at- 
tempting to satisfy. 

VoidPtrList inputs; 

The multi-valued values of the inputs to the plan. These must be cast to 
the type specified as the INPUT_TYPE to the plan. 

Protected Methods 
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void addHypothesisC  const LevellD level,  HypothesisPtr hypothesis ); 

Place hypothesis on the specified level of the blackboard. 

void *getlnput(); 
Return the input variable to a plan version. The input must have already 
been bound using the setlnput method, otherwise run-time error is gen- 
erated. 

void *getResult( SubGoalRef subGoal ); 
Return the result from a previously posted subgoal. 

StatusType getStatusC SubGoalRef  subGoal  ); 
Return the status of a previously posted subgoal. 

SubGoalRef post( SubGoalID subGoal ); 
Used within plan schema to post a subgoal that must be met in order for 
this plan to succeed. This form of posting should be used to post a subgoal 
that does not take any input variables. The return value from this function 
is a unique subgoal identifier that may be used in subsequent schema steps 
in calls to getResult and getStatus. Be certain to store this identifier in 
a class data member as opposed to a local schema variable so that it will 
persist across schema steps. A SubGoalRef is not a pointer to the subgoal 
object. 

SubGoalRef postiC  SubGoalID subGoal,  void *input  ); 
Same as post except an input value is passed to the subgoal. 

SubGoalRef postiC SubGoalID subGoal,  VoidPtrList *inputs ); 
Same as post except a multi-valued input value is passed to the subgoal. 

void setlnput( void *input  ); 
Used in variable focusing to bind the plan to a single input value. The value 
may be subsequently accessed within the plan schema using get Input. 

void setOutput( void *output  ); 
Used in the plan schema to bind the output from the plan to a value. 

void setStatus( StatusType  status  ); 
Used in the plan schema to set the final status of the plan instance. 
Should be set to either ST_FINISHED if the plan completed successfully, 
or ST_FAILED if the plan failed. Once the plan status is set, no further 
schema steps will be executed. 
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C.8    Subgoals 

Subgoal objects are instantiated within the platform to represent a specific goal 
within a plan schema. The posting of a subgoal to the planner (with the schema 
post or posti methods) creates such an instance, which is then acted upon by 
the planner. The subgoal may hold a single or multi-valued input value which is 
subsequently passed to the matching plans which then attempt to satisfy it. A 
subgoal has few methods because its behavior is minimal. It serves primarily as a 
symbolic liaison between a plan schema and lower levels of the planning structure. 

C.8.1    Deriving Subgoals 

The IPUScript slot and method specifications for the base SUBGOAL class are given 
in Table C.7. The ID slot specifies a unique identifier for the derived subgoal class. 

Base Class Name 
name 

REQUIRED SLOTS 
type                           description 

SUBGGAL ID int Class ID. 
INPUTJTYPE string Name of data type accepted as input 

to subgoal (must be a pointer). 
OUTPUT_TYPE string Name of data type returned as output 

from subgoal (must be a pointer). 

Base Class Name 

SUBGOAL 

REQUIRED METHODS 
description name 

Base Class Name 

name 

OPTIONAL METHODS 

description 
default 

behavior 
SUBGOAL SATISFACTION Test if actions performed to 

satisfy another subgoal have 
also satisfied this subgoal. 

No satisfaction 
condition. 

OUT_CONSTRAINTS Predicate constraining results 
deemed satisfactory for subgoal 
to be met. 

No constraints. 

Table C.7: IPUScript slot and method specifications for the SUBGOAL base class. 

As with plans, subgoals must be assigned contiguous integer IDs, starting from 
SUBG0AL_ID+1. Improper assignment of IDs will result in a run-time error. The most 
important element of a derived subgoal class are the INPUTJTYPE and OUTPUTJTYPE 
slots.  These slots indicate the pointer data types used as input and output of the 
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subgoal, and must be identical to the input and output types of all plans that match 
the subgoal in their G0AL_F0RM slot. Any mismatch between subgoal and matching 
plan slots in this regard will result in a run-time error. An example of the derivation 
of a simple concrete subgoal class is shown below. 

// Code fragment from header file cat.h 

#define SGID_HAVE_PSM_INITIALIZED  (SUBGOAL.TAG + 1) 

BEGIN_DECLARE_SEGMENT 

DECLARE_SUBGOAL( HavePSMInitialized  ) 

// End of  code fragment from file cat.h 

// Code fragment from definition segment  in source file cat.C 

DEFINE_SUBGOAL(  HavePSMInitialized,   SGID_HAVE_PSM_INITIALIZED, 
"IPUSString *",   ""  ) 

// End of code fragment from file cat.C 

Optional methods may be specified for a derived subgoal class which enhance 
its standard behavior. The SATISFACTION method of each active subgoal is called 
by the control planner after every primitive action executes. The method returns a 
boolean value indicating whether the subgoal has been met by indirect means (i.e. 
through the action of a plan other than those instantiated to meet this subgoal). The 
criteria for determining the satisfaction of a subgoal may be based on information on 
the blackboard, on information internal to the planner, or on means external to the 
IPUS application. The OUT_CGNSTRAINTS method is called by the control planner 
when the subgoal's matching plan completes and returns an output value to the 
subgoal. It returns a boolean value indicating whether the output variables truly 
satisfy the subgoal, allowing additional constraints to be placed on its successful 
completion. If the output constraints are not met, the plan is considered to have 
failed, and returns the status ST_FAILED. 

C.9    Primitive Plans 

Like the non-primitive plan, a primitive plan object is instantiated by the planner in 
order to meet a higher level subgoal. A primitive plan differs from a non-primitive 
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plan in that it meets that subgoal directly by performing some primitive action 
that instead of posting additional subgoals, performs inferences that create or ex- 
tend hypotheses on the blackboard. In this way, the primitive plan is analogous to 
the knowledge source of the classical blackboard paradigm. Like the non-primitive 
plan, -the primitive plan provides a variety of optional methods which constrain its 
applicability and assist the planner in its use. A number of inherited methods are 
also available for use in designing the primitive action methods. In the following 
sections we describe and demonstrate the process of deriving primitive plans and 
their action methods using IPUScript. 

C.9.1    Deriving Primitive Plans 

IPUScript specifications for the derivation of concrete primitive plan classes are given 
in Table C.8. The ID, G0AL_F0RM, INPUT_TYPE, and OUTPUT_TYPE slots, as well as the 

Base Class Name 

name 
REQUIRED SLOTS 

type                            description 
P_PLAN ID int Class ID. 

G0AL_F0RM int Subgoal met by this plan,     o 
INPUT_TYPE 

o 

string Name of data type accepted as input 
to plan (must be a pointer type). 

OUTPUT-TYPE string Name of data type returned as output 
from plan (must be a pointer type). 

Base Class Name 

P_PLAN 

REQUIRED METHODS 
name 

ACTION 
description 

Primitive aStion. 

Base Class Name 
1 

name 
OPTIONAL METHODS 

description default behavior 
P_PLAN 

c 

IN_CONSTRAINTS Predicate constraining 
input variables that 
plan can accept. 

No constraints. 

PRECONDITION Predicate that tests 
plan applicability. 

No condition. 

IN.BINDINGS Set variables' values 
before action begins. 

Do nothing. 

VARIABLE_FOCUS Select bindings for 
plan variables when 
several are available. 

Bind to first 
input variable. 

Table C.8: IPUScript slot and method specifications for the P_PLAN base class. 
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IN_CONSTRAINTS, PRECONDITION, IN_BINDINGS, and VARIABLE_FOCUS methods, all 
are used in the same way as with the non-primitive plan base class. Their purpose, 
as well the criteria for their specification, are described in Sec. C.7.1. The ACTION 
method is discussed in the following section. 

o A variety of public methods are provided by the P_PLAN base class and are 
described below. They may be called by any system element that obtains a pointer 
to the plan object. 

Public Methods 

InstancelD getlnstancelDO ; 
Return the unique instance identifier of the plan. 

uint goalFormO ; 
Return the ID of the subgoal met by this plan. 

String inputType 0; 
Return a string describing the data type accepted as input to the plan. 

uint isAO ; 
Return the class ID.   , 

String nameOf(); 
Return the class name. 

void notify( SubGoalPtr subGoal ); 
Notify the plan of a significant event in the planner. If subGoal is NULL, 
the plan is halted and its status set to ST_FAILED. If subGoal is a pointer 
to the subgoal that the plan is attempting to meet, the plan assumes that 
the subgoal has been met by other means or is no longer important, and 
the plan halts with status ST_FAILED. If subGoal takes on any other value 
a run-time error is generated. This method is used extensively within 
the control planner, and may also be called by refocus units that wish to 
influence the flow of control in the planner. 

String outputType 0; 
Return a string describing the data type returned as output by the plan. 

int primitive 0; 
Always returns 0 for a primitive plan. 

uint planlDO ; 
Return the class ID. 
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StatusType status()   const; 
Return the current status of the plan. Possible values are ST_IDLE (in- 
dicating that the plan schema has not yet been executed), STJIUNNING 
(indicating that the plan schema has begun executing but has not yet 
completed), ST_FINISHED (indicating that the plan schema has finished 
satisfactorily), and ST_FAILED (indicating that the plan schema has been 
unable to meet its subgoal). 

C.9.2    Designing Primitive Actions 

The ACTION method of a concrete primitive plan class performs atomic actions 
representing the application of domain specific knowledge. This includes creating 
and extending blackboard hypotheses, making inferences based on those hypotheses, 
and producing intermediate problem solving steps related to active planning. They 
must contain the complete resources to meet their parent subgoal, because they 
cannot post additional subgoals to the planner. 

The ACTION method takes the form of a "standard" C++ algorithm, and is 
executed from start to finish in one call (unlike the plan schema). This algorithm 
may include calls to external software modules, file and device I/O, the IPUScript 
utility functions, public methods of other object in the IPUS application, and the 
inherited methods listed below. The action performed by a primitive plan is, of 
course, directly dependent upon the subgoal that it was designed to meet. 

By far the most common (and important) task performed within a primitive 
action is that of inferencing. An inference is the act of creating or changing a 
hypothesis based on evidence occurring in another hypothesis. A number of features 
are provided through the blackboard and hypothesis methods for tracking inferential 
relations, but it remains the responsibility of the primitive action designer to ensure 
that the integrity of these features is maintained. To this end, all inferencing actions 
must perform the following tasks. 

Maintenance of Hierarchical Relations A hierarchy of relationships between 
hypothesis is maintained through the supportList and explanationList 
data members of hypotheses. As these relationships are created and evolve 
through the actions of primitive plans, it is the sole responsibility of those 
plans to ensure that the relationships are explicitly represented. This is ac- 
complished by adding and removing elements from those lists. 

Representation of Hypothesis Uncertainty As hypotheses are created and ex- 
tended, their associated uncertainty changes in both kind and amount. It is 
the sole responsibility of the primitive actions that modify those hypotheses 
to maintain their uncertainty representations. This is performed by adding 
and removing SOUs from their souList data members. 

Protected Data Members 
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IPUS& environment; 
A reference to the I PUS derived class instance in which the plan is execut- 
ing. 

SubGoalfe parent; 
A reference to the SUBGOAL derived class instance which the plan is at- 
tempting to satisfy. 

VoidPtrList inputs; 
The multi-valued values of the inputs to the plan. These must be cast to 
the type specified as the INPUT.TYPE to the plan. 

Protected Methods 

void addHypothesisC  const LevellD level,  HypothesisPtr hypothesis ); 

Place hypothesis on the specified level of the blackboard. 

void *getInput(); 
Return the input variable to a plan version. The input must have already 
been bound using the set Input method, otherwise run-time error is gen- 
erated. 

void setlnput( void *input  ); 
Used in variable focusing to bind the plan to a single input value. The value 
may be subsequently accessed within the plan schema using get Input. 

void setOutput( void *output  ); 
Used in the plan schema to bind the output from the plan to a value. 

void setStatusC StatusType status ); 
Used in the plan schema to set the final status of the plan instance. 
Should be set to either ST_FINISHED if the plan completed successfully, 
or ST_FAILED if the plan failed. Once the plan status is set, no further 
schema steps will be executed. 

C.10    Refocus Units 

Refocus units provide the control planner with a reactive component. They allow 
the system to break away from the strategies directly encoded in the plans, and 
refocus the course of problem solving in situations where particular branches of the 
planning tree may not be making adequate progress towards a solution. Refocus 
units may be posted to the planner from any method belonging to a non-primitive 
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plan, primitive plan, subgoal, or refocus unit using the postRef ocusUnit utility 
function described in Sec. C.12. Once posted, they act as independent "daemons" 
which may be activated at some future time to alter the activities of the control 
planner. Typically, a refocus unit will prune some branch of the planning structure 
using the notify method of the plan at the top of the branch. 

Table   C.9   lists   the   IPUScript   slot   and   method   specifications   for   the 
REFOCUSJJNIT base class.   Derived refocus units must be assigned contiguous in- 

case Class Name 

REFOCUSJJNIT 

REQUIRED SLOTS 
name 
ID 

type 
int 

description 
Class ID. 

Base Class Name 

REFOCUSJJNIT 
name 

REQUIRED METHODS 
description 

CONDITION 

HANDLER 
REMOVAL 

Predicate that indicates when to 
invoke handler. 
Performing refocusing operation. 
Predicate that indicates when to 
remove refocus unit. 

Base Class Name 

REFOCUSJJNIT 

OPTIONAL METHODS 
name description default behavior 

Table C.9: IPUScript slot and method specifications for the REFOCUSJJNIT base 
class. 

teger IDs starting with REFOCUSJJNITJD+1. Incorrect numbering of IDs will result 
in a run-time error. Refocus units require the specification of three required methods 
which work in concert to give the class their daemon-like behavior. Once a refo- 
cus unit is instantiated and posted to the control planner, its CONDITION method 
is called after any primitive action completes. A boolean value must be returned 
indicating whether the refocus unit's action should be invoked. If the condition is 
met, the HANDLER method is immediately called to perform the refocus units action. 
Regardless of the condition value, the REMOVAL method is then invoked. It returns 
a boolean value indicating whether the refocus unit should be removed from the 
planner and deleted. An example of the derivation of a refocus unit is shown below. 

// Code fragment from header file cat.h 

#define RUIDJTIMERJJNIT  (REFOCUSJJNIT_ID +  1) 
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BEGIN_DECLARATION_SEGMENT 

BEGIN_DECLARE_REFOCUS_UNIT( TimerUnit ) 

PlanPtr poster; 

int timer; 
END_DECLARE_REFOCUS_UNIT 

// End of code fragment from file cat.h 

// Code fragment from definition segment in source file cat.C 

DEFINE_REFOCUS_UNIT( TimerUnit, RUID_TIMER_UNIT ) 
BEGIN_DEFINE_REFOCUS_UNIT_CONDITION( TimerUnit ) 

return (—timer > 0); 
END_DEFINE_REF0CUSJJNIT_C0NDITI0N 

BEGIN_DEFINE_REFOCUS-UNIT_HANDLER( TimerUnit, ) 

poster->notify( NULL ); 
END_DEFINE_REFOCUS_UNIT_HANDLER 

BEGIN_DEFINE_REFOCUS_UN'IT_REMOVAL( TimerUnit, ) 

return (timer <= 0); 
END_DEFINE_REFOCUS_UNIT_REMOVAL 

// End of code fragment from file cat.C 

C.ll    Lists and Iterators 

List objects are used throughout the IPUS platform as a means for grouping like 
objects together. A list may contain only objects derived from a specific base class. 
The class restrictions associated with a list are specified within the class name of 
the list; i.e. a HypothesisPtrList can contain only pointers to Hypothesis instances 
and objects derived from Hypothesis. These restrictions are enforced by the C++ 
compiler. Lists are implemented in the IPUS platform using singly linked lists. 
They provide a built in iterator (see Sec. C.11.2) and support all iterator methods 

directly. 
Lists come in two basic "flavors"—sorted and unsorted. A sorted list maintains 

the order of its elements according to a sorting criteria.   An unsorted list allows 
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elements of the list to assume any order. Sorted and unsorted lists have the same 
public methods, but the methods give slightly differing behaviors. 

Since lists are type restrictive, their method prototypes define specific type pa- 
rameters through the use of template classes. We show the prototypes here using 
the generic identifier Object to represent the object stored in the list. 

Public Methods 

void add( Objectfe object ); 

Unsorted lists: Same as addAfter. Sorted lists: Add object to the list in 
its sorted position. 

void addAfter( Objectfe object ); 
Unsorted lists: Add object after the list element pointed to by the built-in 
iterator. Sorted lists: Add object to the list in its sorted position. 

void addFirst(  Objectfe object  ); 
Unsorted lists: Add object to the front of the list. Sorted lists: Same as 
add. 

void addLast(  Objectfe object  ); 
Unsorted lists: Add object to the end of the list. Sorted lists: Same as 
add. 

int find( Objectfe object  ); 
Move the built-in iterator to the next list element that equates to object. 
Returns a boolean value indicating the success of the search. If the search 
is unsuccessful, the iterator is unmoved. 

void flushO; 
Remove all elements from the list. 

ObjectListlterator getlteratorO; 
Return an iterator over the list that points to the first element. 

void goto( uint n ); 

Move the built-in iterator to the nth element of the list. 

void intersect( ObjectList anotherList  ); 
Remove all elements from the list that are not also on anotherList. 

int isEmptyO; 
Return a boolean value indicating whether the list has any elements. 

int  isEndO ; 
Return a boolean value indicating whether the built-in iterator is posi- 
tioned "off the end" of the list. 
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Objectfe itemO ; 
Return the list element pointed to by the built-in iterator. A run-time error 
is produced if the iterator is "off the end" of the list (see Sec. C.11.2). 

uint length(); 
Return the number of elements in the list. 

void nextO ; 
Advance built-in iterator to next list element. 

void removeO ; 
Remove the list element pointed to by the built-in iterator from the list. 
If the list element is a pointer, the object referred to by the pointer is not 
deleted. 

void resetFirstO ; 
Position the built-in iterator at the first element of the list. 

void resetLastO ; 
Move the built-in iterator to the last element of the list. 

void set( Objects object  ); 
Unsorted lists: Set the list element pointed to by the built-in iterator to 
object by assignment. Sorted lists: Remove the list elements pointed to 
by the built-in iterator and add object to the list. 

C.ll.l    Queues 
Queues are a very simple form of an ordered but unsorted list. They have only four 
methods defined, supporting the classical model of FIFO queues. Iterators may not 
be used with queues. 

Public Methods 

void enq( Object object  ); 
Add object to the end of the queue. 

Object deq(); 
Remove the object at the head of the queue and return it to the caller. 

int  isEmptyO; 
Return a boolean value indicating whether the queue is empty. 

void flushO; 
Remove all elements from the queue. If the queue is of pointer types, the 
objects referenced by the pointers are not deleted. 
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C.11.2    Iterators 

Iterator objects are used throughout the IPUS platform for accessing lists of objects. 
They provide a means for viewing, modifying, and augmenting, the contents of lists 
that remains independent of the internal structure of the list. Each specific list class 
has its own specific iterator class—for example, a HypothesisList is accessed with a 
HypothesisListlterator. An iterator is an intelligent pointer into a list. At any time, 
it either points to an element of a list, or is "off the end" of the list. An iterator 
provides methods to move itself about the list, seek a specific element of the list 
and insert, change, and remove elements of the list. This section contains a list of 
iterator methods, and a description of their behaviors. 

Since iterators refer explicitly to lists with elements of a particular class type, 
we show here the identifier Object as a generic type. Replace this with the name of 
the class of elements placed on the list to obtain the proper identifier or prototype. 

Public Methods 

void add( Objectft object ); 

Unsorted lists: same as addAfter. Sorted lists: Add object to the list in 
its proper location. 

void addAfter(  Objectfc object  ); 
Unsorted lists: Add obj ect after the list element pointed to by the iterator. 
Sorted lists: Same as add. 

int find( Objectfe object ); 

Move iterator to the next list element that equates to object. Returns a 
boolean value indicating the success of the search. If the search is unsuc- 
cessful, the iterator is unmoved. 

void goto( uint n ); 

Move iterator to the nth element of the list. 

int  isEndO; 
Return a boolean value indicating whether the iterator is positioned off 
the end of the list (i.e. not pointing to a list element). 

int  isFirstO; 
Return a boolean value indicating whether the iterator is pointing to the 
first element of the list. 

int  isLastO; 
Return a boolean value indicating whether the iterator is pointing to the 
last element of the list. 
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Object& itemO ; 
Return the list element pointed to by the iterator. 

void nextO ; 
Move iterator to next element of list. 

void resetFirstO ; 
Move iterator to first list element. 

void resetLastO ; 
Move iterator to last list element. 

void set( Objectfe object ); 
Set the list item pointed to by the iterator to object by assignment. 

void remove(); 
Remove the list element pointed to by the iterator. If the list element is a 
pointer, the object referred to by the pointer is not deleted. 

C.12    IPUScript Utility Functions 

The IPUScript utility functions may be used within all methods belonging to con- 
crete classes derived from the NP_PLAN, P_PLAN, SUBGOAL, and REFOCUSJJNIT base 
classes. They allow access to global system features, most of which are provided by 
the IPUS application object. 

Utility Functions 

HypothesisPtrListlterator getAnswerListlteratorO; 
Return an iterator over the answer list of the PSM. 

Levellterator getLevellteratorC  const LevellD level ); 
Return an iterator over the specified level of the blackboard. 

PSMSOUPtr getPSMSOUO; 
Return a pointer to the highest priority PSM SOU on the PSM SOU list. 

PSMSOUPtrListlterator getPSMSOUListlteratorO; 
Return an iterator over the PSM SOU list. 

void installPSMC PSMPtr psm ); 
Install the PSM instance pointed to by psm into the IPUS application. 
Only one PSM may be installed at any time. 
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RefocusUnitPtr newRefocusUnit(  const uint refocusUnitID  ); 
Create a new instance of the refocus unit class specified by ref ocusUnitID. 
The refocus unit will not be used by the planner until it is posted to the 
planner using postRef ocusUnit. 

void postRefocusUnit(  RefocusUnitPtr refocusUnit  ); 
Post a refocus unit instance to the planner. The refocus unit will operate 
as described in Sec. CIO. 
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