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Attract 

In signal processing applications it is common to assume Gaussian statis- 
tics in the design of optimal signal processors. However, non-Gaussian processes 
do arise in many situations. For example, measurements reveal that radar clutter 

may be approximated by either Weibull, K-distributed, Lognormal, or Gaussian 

distributions depending upon the scenario. When the possibility of a non-Gauss- 

ian problem is encountered, the question as to which probability distributions 

should be utilized in a specific situation for modeling the data needs to be an- 
swered. 

In practice, the underlying probability distributions are not known a priori. 

Consequently, an assessment must be made by monitoring the environment. An- 
other consideration is that radar detection problems can usually be divided into 

strong, intermediate, and weak signal cases. Hence, the system that monitors a 

radar environment must be able to subdivide the surveillance volume into weak 

background noise and clutter patches in addition to approximating the underlying 

probability distributions for each patch. This is in contrast to current practice 
where a single robust detector, usually based on the Gaussian assumption, is em- 
ployed. 

The objective of this work is to develop techniques that monitor the envi- 

ronment and select the appropriate detector for processing the data. 

The main contributions are: (1) an image processing technique is devised 

which enables partitioning of the surveillance volume into background noise and 

clutter patches, (2) the Ozturk algorithm is used to identify suitable approxima- 

tions to the probability density function for each clutter patch, and (3) rules to be 

used with an expert system shell under development at the University of Massa- 

chusetts and Boston University are formulated for monitoring the environment and 

selecting the appropriate detector for processing the data. 

Computer simulated examples demonstrate the effectiveness by which the 

approach proposed in this work is able to partition the surveillance volume and 

approximate the probability distributions within homogeneous regions. 
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Introduction 

In signal processing applications it is common to assume a Gaussian prob- 

lem in the design of optimal signal processors. However, non-Gaussian processes 

do arise in many situations. For example, measurements reveal that radar clutter 

may be approximated by either Weibull, K-distributed, Lognormal, or Gaussian 

distributions depending upon the scenario [4]-[10]. When the possibility of a non- 

Gaussian problem is encountered, the question as to which probability distribu- 

tions should be utilized in a specific situation for modeling the data needs to be 

answered. 

In practice, the underlying probability distributions are not known a priori. 

Consequently, an assessment must be made by monitoring the environment. An- 

other consideration is that radar detection problems can usually be divided into 

strong, intermediate, and weak signal cases. Hence, the system that monitors a 

radar environment must be able to subdivide the surveillance volume into back- 

ground noise and clutter patches in addition to approximating the underlying prob- 

ability distributions for each patch. This is in contrast to current practice where a 

single robust detector, usually based on the Gaussian assumption, is employed. 

The objective of this work is to develop techniques that monitor the envi- 

ronment and select the appropriate detector for processing the data. 

The main contributions are: (1) an image processing technique is devised 

which enables partitioning of the surveillance volume into background noise and 

clutter patches, (2) a new algorithm, developed by Dr. Ozturk while he was a Visit- 

ing Professor at Syracuse University, [27]-[29], is used to identify suitable approx- 

imations to the probability density function for each clutter patch, and (3) rules to 

be used with the expert system, Integrated Processing and Understanding of Sig- 



nals (IPUS), [20]-[22], are formulated for monitoring the environment and select- 

ing the appropriate detector for processing the data. 

This dissertation is organized as follows: Chapter I discusses some of the 

difficulties that arise in the classical radar detection problem. Their solution is pro- 

posed in Chapter n which uses an expert system with feed-forward processing. In 

Chapter in an improved solution is presented using feed-back processing. The 

general radar detection problem is described in Chapter IV and a mapping proce- 

dure is introduced to separate between background noise and clutter patches. In 

Chapter V an image processing technique is developed for the mapping proce- 

dure. Next, an indexing procedure is developed in Chapter VI to enable the inves- 

tigation of clutter subpatches and the approximation of probability distributions for 

each clutter patch. Finally, expert system rules are developed in Chapter Vn to 

enable the system to control both the mapping and indexing stages. Conclusions 

and suggestions for future research are given in Chapter Vm. 



Chapter I 

Radar Detection with A Priori Statistical Knowledge 

of the Environment 

1.1 - Introduction 

The optimal radar detection problem consists of collecting a set of N sam- 

ples r0, r-|, TN_I from a given cell in the space, processing the data by a Ney- 

man-Pearson receiver which takes the form of a likelihood ratio test (LRT) [1] and 

deciding for that cell whether or not a target is present. Let r denote the vector 

formed by the N samples: r= [r0, r-| rN_i]T. The LRT compares a statistic to a 

fixed threshold, r\. The statistic consists of the ratio between the joint probability 

density function (PDF), pr (R| H^ , of the N samples given that a target is present 

and the joint PDF, pr (R| H0), of the N samples given that no target is present. Hi 

and H0 denote the hypotheses that a target is present and absent, respectively. 

This ratio is called the likelihood ratio (LR). The threshold, r\, is determined by 

constraining the false alarm probability (PFA) to a specified value. 

The binary hypotheses (Hi, H0) are defined such that, under hypothesis 

Hi, the kth collected sample, rk, k=0,1 N-1, is composed of a target signal 

sample, S|<, plus an additive disturbance sample, dk. Under hypothesis H0, the kth 

sample, rk, k=0,1 N-1, consists only of the disturbance sample dk. Hence, 

{ 
sk+dk             ; H-, 

rk=    { k=0,1 N-1. (1.1-1) 

In general, the disturbance sample dk consists of a clutter sample, c^, plus a back- 

ground noise sample, nk. 



The LRT then takes the form 

P,((«)|Hi)    > . 

P,((R)|H,)  5 " ■ (L1'2) 

For 1 > rj, H-j is decided. Otherwise, H0 is decided. 

Assuming that the samples are statistically independent, the joint PDF 

pr ((R) | Hj); i=0,1, is nothing but the product of the N marginal PDFs of the sam- 

ples. Specifically, 

N-1 

Pr((R)|Hi)   =   IT PrkCRk|Hj)      ;i=0,1. (1.1-3) 
k = 0 

The LRT is then readily implemented provided the marginal PDFs are known. 

In practice, the real data may be correlated in time making invalid the sta- 

tistical independence assumption. Unless the joint PDFs of the correlated sam- 

ples are assumed to be Gaussian, it is not commonly known how to specify the 

joint PDFs pr((R)|Hj); i=0,1. Thus, many engineers invoke the Gaussian as- 

sumption even when it is known to be non-applicable. It is for this reason that 

most radars today are Gaussian receivers (i.e., they process the data using the 

LRT based on the joint Gaussian PDF). When the target signal, sk, cannot be fil- 

tered from the disturbance, d^ by means of spatial and/or temporal processing 

and dk is much larger than Sk, k=0,1 N-1, then rk approximately equals dk un- 

der both hypotheses and high precision is needed to evaluate the LRT because 

pr (R| H^ becomes approximately equal to pr (R| H0). Specifically, 

,     Pr(
RlHi)    H 

1 = » = 1 (L1-4) 



and the statistic, I, becomes insensitive to the received data. 

Recent work reported by Rangaswamy et al. [2] shows that it is possible to 

model N correlated non-Gaussian random samples as samples from a spherically 

invariant random process (SIRP). The vector r of the N samples is said to be a 

spherically invariant random vector (SIRV). More details about SIRVs are present- 

ed in Section 1.2. 

In addition, the work done by Chakravathi et al. [3] shows for the non- 

Gaussian weak signal case (i.e., the average power of S|< is much less than that of 

dk, k=0,1,....,N-1) that the use of a locally optimum detector (LOD) provides im- 

proved performance over direct application of the Gaussian LRT. LODs are intro- 

duced in Section 1.3. 

1.2 - Spherically Invariant Random Vector (SIRV) fill \2] 

Many investigators [4], [5], [6], [7] have reported experimental measure- 

ments for which the clutter probability density function has an extended tail.The 

extended tail gives rise to spiky clutter and relatively large probabilities of false 

alarm. The Gaussian model for the clutter fails to predict this behavior. Non-Gaus- 

sian models for the univariate (marginal) clutter PDF have been proposed. Com- 

monly reported marginal non-Gaussian PDFs for the clutter are Weibull [4], log- 

normal [8],[9] and K-distributed [5], [6] and [10]. 

Usually, radars process N pulses at a time. A complete statistical charac- 

terization of the clutter requires the specification of the joint probability density 

function (PDF) of the N samples. The theory of spherically invariant random pro- 

cesses (SIRPs) provides a powerful mechanism for obtaining the joint PDF of the 

N correlated non-Gaussian random variables. 

1.2.1 - Definitions 

A spherically invariant random vector (SIRV) is a random vector whose 



PDF is uniquely determined by the specification of a mean vector, a covariance 

matrix and a characteristic first order PDF. The PDF of a random vector is defined 

to be the joint PDF of the components of the random vector. 

A spherically invariant random process (SIRP) is a random process such 

that every random vector obtained by sampling this process is a SIRV. 

The work of Kingman [12] and Yao [13] gave rise to a representation theo- 

rem, valid for all SIRVs. This is summarized below. Let z=[zi,z2 zN]T denote 

a real zero mean Gaussian random vector with covariance matrix M. Let s denote 

a non-negative random variable with PDF fs(S). It is assumed that s is indepen- 

dent of z. The representation theorem states that x is an SIRV if and only if it can 

be expressed in the form x=zs. In particular the PDF of x is given by 

fx(X) = (2)r)-^|Mr1^fs-^xpf-^l^>s(S)dS (1.2-1) 
J V     2S2    ) 

where IMI denotes the determinant of the covariance matrix M. Let P = XTM 1X. 

Then Eq. (1.2-1) can be written as 

fx(X) = (2jc)-N/2|Mr1/2hN(P) (1.2-2) 

where 

hN(P) = fS-Nexp(—^)fs(S)dS . (1.2-3) 
n 23^ 

Note that fs(S) is defined to be the characteristic PDF of the SIRV. 



1.2.2 - Properties of SIRVs [2], [14], [15], [16] 

Several properties of SIRVs are stated below: 

• It has been pointed out in [15] that when fs (S) = 8 (S - 1), where 8(.) is 

the unit impulse function, the resulting hN(P)is the familiar multivariate Gaussian 

PDF. 

• Differentiation of Eq. (1.2-3) with respect to the argument gives [16] 

dhN(w) (1-2.4) 
hN + 2(w) = -2- dw 

In Eq. (1.2-4) the argument has been replaced by w because the quadratic form p 

depends on N and, therefore, cannot be used in the equality. Eq. (1.2-4) provides 

a mechanism to relate the functional forms of the higher order PDFs with those of 

the lower order. Starting with N=1 and using Eq.(I-2.4) repeatedly gives 

isjdV(w) 
h2N + i(w) = (-2)N—-V-   ■ (1-2.5) 

dw 

Starting with N=2, 

K1d
NhP(w) 

h2N + 2(w) = (-2)N—V-   * P"2-6* 
dw 

It is, therefore, possible to construct all higher order PDFs for odd values of 

N and even values of N, starting from h-|(w) and h2(w), respectively. 

• The PDF of a SIRV is a function of a non-negative quadratic form. The 

PDF is uniquely determined by specification of a mean vector, a covariance matrix 

and characteristic first order PDF. 

• A SIRV is invariant under a linear transformation. More precisely, if x is a 

SIRV with characteristic PDF fs(S), then y=Ax+B, where A is a matrix and B is a 



vector, is a SIRV with the same characteristic PDF as x. 

• h-|(p) is related to the marginal (first order) PDF of xk This can be seen 

very easily by letting N=1 in Eq. (1.2-2). More precisely, 

fxk(
xk) = J^"hi(P) : k=0,1,2 N-1 (1.2-7) 

X2 
k ? where P = —- and a? denotes the variance of x^. 

ak 
2 »"""k 
k 

• Two of the possible techniques for obtaining the PDF of a SIRV are: 

(1)- If the characteristic PDF of the SIRV is readily available, then 

evaluate hfg(P) directly from Eq.(l.2-3). Complete the characterization by specify- 

ing the mean vector and covariance matrix of the SIRV. 

(2)- If the characteristic PDF of the SIRV is not readily available, but 

the marginal PDF is known, first obtain h-|(P) from the marginal PDF using Eq.(1.2- 

7). Then obtain fs(S) by solving the integral equation in Eq.(1.2-3) with N=1. Next 

use fs(S) in Eq.(l.2-3) for desired N to obtain IIN(P). Finally, specify the mean vec- 

tor and covariance matrix of the SIRV. 

In the work that follows SIRP's will be used to model correlated non-Gaus- 

sian disturbances (i.e, clutter plus noise). 

1.3 - Locally Optimum Detector [17] 

Assume that the received target signals have a very small unknown ampli- 

tude 8, so that 

Under h^ r = 6s+ d 
(1.3-1) 

Under H0 r = d. 



A Taylor series expansion of the numerator of the LR results in [17] 

d2 

Pr(R|H,) dV>'<RlH'>l8=0   e=5^P'<R|Hl)|e-° 
= 1+6 r^rrr-. + pr(R|H0) Pr(R|H0) 2        pr(R|H0)   

(1.3-2) 

The LRT consists of comparing the LR to a threshold TJ. For the case where 6 is 

very small, it is assumed that the terms involving 62, 63,.... are negligible with high 

probability. Ignoring these terms, the LRT simplifies to 

aSP'^U      >1 (1.3-3) 
1+9       Pr(R|H0) ^ 

v=
dÖ  f 1  '9 = 0       >    Tlzl=y. (1.3-4) 

Pr(R|H0) H0      8 

The receiver which performs the above test is referred to as the locally optimum 

detector (LOD). Because the probability of detection (PD) and the probability of 

false alarm (PFA) are given by 

PD = Jpv(v|H1)d\) (1.3-5) 

PFA = Jpv(u|H0)dA) (1-3-6) 
Y 



and because pv(a>IH1) approaches pv(DlH0) as 6 goes to zero, it follows that 

PD=PFA when 6=0. The power function of a receiver is defined as the curve relat- 

ing PD and 8. Under a fixed PFA constraint, a typical power function curve is 

shown in Fig. 1.3.1 

1111 PFA ss constant 

«5555 <.« «!•!• 4444 « « « < « 4 4 4 * «j>< « < * < «4 « 4 4 4 4 4 <«<■(« 44 <■«« 4 4 « «<t« « « 444 4«« «<<««<<<< ««4« «< «4« ««<«« ««C<< «<<« <««■■< « «<<■«« 4 4< « «.<■ «4 «.■■ «.<■ <■ «■ 5« * « « 4545 •« •■ 4 «<<««« « « 4 ««««« «44« (-I-: 

PFA 

111 
»I 

Figure 1.3.1 - Power Function for Three Different Receivers 

ent receivers. An alternative approach to the weak signal detection problem (i.e., 

0«1) is to find that receiver which maximizes the slope of the power function at 

6=0. Solution of this optimization problem results in the same ratio test as given by 

Eq. (1.3-4). Consequently, the LOD is identical to that receiver which maximizes 

the slope of the power function at 6=0. As a result, the LOD will maximize PD for 6 

sufficiently small. However, other receivers may yield larger values of PD when 0 

becomes large. As shown in Fig. 1.3.2, for 6>6C another receiver is shown to out- 

perform the LOD. 
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Chapter II 

Signal Understanding and Detection Using a Feedforward Expert 

System (SUD/FFES) 

II.l - Introduction 

The use of SIRPs in the implementation of LRTs and LODs for the radar 

detection problem allows us to derive algorithms for performing both strong and 

weak signal detection in a non-Gaussian environment. Classical detection as- 

sumes a priori knowledge of the joint PDF underlying the received data. In prac- 

tice, received data can come from a clear region, where background noise alone 

is present, or from a clutter region, where returns are due to reflections from such 

objects as ground, sea, buildings, birds,...etc. as well as background noise. When 

a desired target return is from a clear region and the background noise is suffi- 

ciently small, the signal-to-noise ratio will be large and the strong signal detector 

(i.e, the LRT) should be used. However, if a desired target return is from a clutter 

region, two situations can exist. When the desired target can be filtered from the 

clutter (CL) by means of space-time processing and the background noise (BN) is 

sufficiently small, the signal to noise ratio will be large and a strong signal detector 

should again be used. When the desired target cannot be filtered from the clutter 

by means of space-time processing and the clutter return is much larger then the 

desired target return, then a weak signal detector (i.e, LOD) should be used. Use 

of the LOD in a strong signal situation can result in a severe loss in performance. 

Hence, it is necessary for the receiver to determine whether a strong or weak sig- 

nal situation exists. 

All of this suggests use of an expert system in the radar detection problem 

for 1) monitoring the environment and 2) selecting the appropriate detector for 

processing the data. This is in contrast to current practice where a single robust 

detector, usually based on the Gaussian assumption, is employed. In addition, de- 

pending on statistical changes in the environment over time and space, the expert 
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system enables the receiver to adapt so as to achieve close to optimal perfor- 

mance. The goal of this study is to explore how an expert system can be used to 

develop an adaptive radar receiver which is able to outperform traditional radars 

with respect to high subclutter visibility. The focus of the study deals with the de- 

tection of weak targets that cannot be filtered from the clutter by means of space- 

time processing. For this purpose, it is convenient to divide the problem into two 

steps. The first step involves classification of the cells to be tested while the sec- 

ond has to do with determining whether or not a target is present in the test cell. 

The two steps are discussed in more detail in the following sections. 

II.2 - Classification of the Test Cells 

Classification of the test cells involves two steps: mapping of the space and 

indexing of the cells. 

II.2.1 - Mapping of the Space 

In this research, the term, space, is used in its most general context. In 

practice, an effort is made to filter the desired target return from the clutter to the 

extent possible. This is accomplished by performing space-time processing on the 

received data. In particular, given N temporal samples and M spatial samples from 

a single range ring, spatial and temporal spectra are generated by performing a 

linear transformation on the NM samples. When the random processes are mod- 

eled as SIRPs, the space-time processing will not change the nature of the ran- 

dom processes since a linear transformation of an SIRP results in an SIRP of the 

same type. For example, if the underlying samples are modeled as Weibull, the 

transformed samples will also be Weibull. The spatial spectra contain angle of ar- 

rival information while the temporal spectra contain Doppler information. Conse- 

quently, the space of interest consists of range/angle of arrival/Doppler cells. It is 

in this general context that we refer to space and cells. 

The mapping of the space can be done in two different ways: First, a clutter 
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map of the entire space can be generated by assigning a scan of the radar receiv- 

er for this purpose. The clutter map will indicate a priori those locations which are 

likely to consist of clear regions (where background noise alone is present) and 

clutter patches. Another way, is to do a real time assessment of a test cell. In other 

words, the question of whether the test cell is in a clear region or in a clutter patch 

is determined in real time during the scan. 

11.2.2 - Indexing of the Cells 

In the regions where clutter patches are present, a sufficient number of ref- 

erence cells near the test cell must be chosen so that the number of samples from 

the reference cells (approximately 100 if using Ozturk's algorithm [26], [27]) are 

adequate for approximating the body of the joint PDF to be used in characterizing 

the disturbance of the test cell. It should be recognized that a clutter patch could 

be non-homogeneous. If so, it may be necessary to subdivide the clutter patch 

into subpatches. The samples from each subpatch would be approximated by a 

different joint PDF. 

An important point is that knowledge of the body of the joint PDF describing 

the disturbance is usually insufficient for determining the threshold of the radar re- 

ceiver. In this research our focus is on the weak signal detection problem. As 

pointed out earlier, the appropriate processor for this problem is the LOD. For the 

LOD, Chakravathi and Weiner [3] have conjectured that the body of the PDF for 

the disturbance may be sufficient for determining the tail of the PDF for the LOD 

statistic. The body of the joint PDF describing the disturbance could then be suffi- 

cient for determining the threshold of the LOD. This is significant because only 

around 100 reference cells are needed when Ozturk's identification algorithm is 

used. 

A set of descriptors need to be allocated for each cell. This allocation is re- 

ferred to as cell indexing. The first item that needs to be determined is whether the 

detection problem for the test cell should be classified as strong signal detection, 
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weak signal detection, or an intermediate case which falls between strong and 

weak signal detection. For the case of strong signal detection, the conventional 

radar receiver is adequate. For weak signal detection, the LOD should be used. 

For the intermediate case, it is proposed to use Wang's processor [19] based on 

the generalized likelihood ratio test (GLRT). 

In all three cases, it is necessary to use reference cells to estimate informa- 

tion needed for implementation of the processor. This assumes that the distur- 

bance is homogeneous such that reference cells neighboring the test cell are 

representative of the test cell. However, a test cell may be near the edge of a clut- 

ter patch or subpatch. Its location relative to these edges should be known so that 

reference cells are selected which are truly representative of the test cell. 

For weak signal detection, the LOD differs from one joint PDF to another. 

Hence, it is necessary to know the type of random process (e.g., Gaussian, K-dis- 

tributed, Weibull, etc.) associated with the disturbance in the region where the test 

cell is located. In practice, Ozturk's algorithm may indicate that several different 

PDF's are suitable for approximating a particular disturbance. When this is the 

case, it may be desirable to implement several LOD's and fuse the results. Hence, 

descriptors should be allocated to each cell for describing one or more joint PDF's 

in terms of their type, scale, location and shape parameters. 

II.3 - Target Detection 

As mentioned previously, the type of detector depends upon whether the 

detection problem has been classified as a strong signal case (SSC), weak signal 

case (WSC), or intermediate signal case (ISC). Once the type of detector has 

been selected, parameters for the sufficient statistic of the detector are deter- 

mined from the cell descriptors. In addition, information from the cell descriptors is 

used to determine the threshold. When several detectors are employed simulta- 

neously, as could arise in the weak signal case, a fusion algorithm is used to ar- 

rive at a global decision [31]. 
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The above discussion provides the basis for signal understanding and de- 

tection using a feed forward expert system (SUD/FFES). A block diagram of the 

SUD/FFES is shown in Fig. H.3.1 

The preprocessor collects data, performs classical space-time processing, 

and stores the resulting data. This data is then used by the mapping, indexing, 

and detection blocks which implement the two steps discussed previously. A more 

detailed block diagram is shown in Fig. n.3.2 where each block is subdivided into 

signal processing blocks and signal interpretation blocks. Because weak signal 

detection will be emphasized in this study, that portion dealing with weak signal 

detection is shown using solid lines while the remaining portions are enclosed by 

dashed lines. The solid line portion is referred to as weak signal understanding 

and detection using a feedforward expert system (WSUD/FFES). A more detailed 

discussion of each block is provided in Table H.3.1, and further more in Chapters 

IV to Vn. Note that this is a feedforward system in the sense that the mapping, in- 

dexing, and detection are done sequentially with no feedback between these 

blocks. 

Since the data collected from the environment is random, it is not possible 

to carry out an exact probability distribution identification using a reasonably small 

amount of data. Consequently, it is better to think about the probability distribution 

identification problem as an approximation problem where we hope to select 

PDFs and their parameters which result in good approximations to the underlying 

probability distributions. 

Because the expert system of Fig. H.3.1 is feedforward, it does not allow 

for verification of the interpretations made by any of the signal interpretation 

blocks of Fig. H.3.2. Also, reprocessing of the data is not allowed by the feedfor- 

ward configuration. The system discussed in the next chapter adds to the expert 

system the ability to reprocess data if discrepancies are found to exist at the out- 

put of any signal interpretation block. The concept of discrepancy analysis is dis- 

cussed in the next chapter. 
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Preprocessing 

S* P. 1     /Collects data, 

/Performs space -time processing lor each range ring to produce 
a two dimensional spectrum describing ang le of arrival and 
Doppler frequency information. 

Mapping 

S* P. 2     /Uses spectral analysis and rank ordering or a thresholding 
technique to distinguish between ciutter and background noise. 

S. I. 2      /Declares ceHs as BN (therefore SSC) or CL cells. 

Indexing 

SSC 

S. P. 10 
/For a given test cell 
assigns a homogen* 
uous distance 
procedure to every pair 
of ceHs within a 
specified region of 
the space. 

/Chooses reference 
cells for the test cell 
based upon no. of 
reference cells 
required and the 
homogeneous 
distance procedure. 

&« P* 3 
/Uses rank ordering or thresholding technique 
to distinguish between WSC and \BC 

IIBIIIIM 
/ Declares cells as WSC or ISO 

WSC 

/For a given test cell 
assigns a homogen- 
eous distance 
procedure to every 
pair of ceils within a 
specified region of 
the space. 

S.L4 
/Chooses reference 
cells for the test cell 
based upon no, of 
reference ceils 
required and the 
homogeneous 
distance procedure. 

ISC 

S. P. 7 
/For a given test ceil 
assigns a homogen» 
uous distance 
procedure to every 
pair of ceils within a 
specified region of 
the space. 

/Chooses reference 
ceils for the test ceil 
based upon no. of 

i required and the ■ ^ 
homogeneous 
distance procedure. 

Table 11.3.1 - Caption to Appear in the Next Page 
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S. P. 11 

/Estimates for each 
test cell the variance 
needed to determine 
threshold 

/Declares the cells from 
the clear region as SSC, 
stores the value of the 
variance for each cell 
(assuming white Gaussian 
background noise}, 

S.P.5 

/Uses OztunVs 
algorithm to 
determine the 
PDF (s) of the 
reference cells 
and the associated 
parameters (e.g 
scale, location, 
shape, variance....). 

SI. 5 

/Assigns one or 
more PDF (s) and 
their parameters to 
the test cell. 

S. P. 8 

/Estimates signal 
eovariance matrix 
of the test cell 
using data from 
the reference ceils. 

$.1.8 

/yodels data as hav 
ing a Jointly Gaussian 
PDF. 

Target Detection 

(SSC) 

Target Detection 

(WSC) 

Target Detection 

(ISC) 

S. P. 12 

/Computes threshold and 
processes data from test 
cell using conventional 
radar (LRT), 

/Target present or 
absent. 

S.P.6 

/Computes thres- 
hold, processes 
data using one or 
more LOus, and 
fuses the results. 

SI. 6 

/Target present or 
absent. 

5. R. 9 

/Computes thres* 
hold and processes 
data using GtBT, 

S.U> 

/Target present or 
absent. 

Table IJ.3.1 - Functioning of the Signal Processing and Interpretation 

Blocks in a SUD/FFES 
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Chapter III 

Signal Understanding and Detection Using a Feedback Expert System 

(SUD/FBES) 

III.l - Introduction 

To convert the feedforward system of the previous chapter to a feedback 

system, feedback is introduced within each block and to each previous block. This 

is shown in Figs. in. 1.1 and in. 1.2. We refer to such a system as signal under- 

standing and detection using a feedback expert system (SUD/FBES). The expert 

system analyzes the output of each block and makes an assessment as to wheth- 

er correct signal processing and understanding have taken place. The signal in- 

terpretation blocks of the feedforward system are augmented to carry out this 

task. Depending upon the assessment made, additional data and signal process- 

ing may be carried out. 

The assessment procedure is indicated in Fig. in. 1.1. by a block in the 

shape of a diamond which has one input and two outputs. The diamond input cor- 

responds to the output of the block to be evaluated. If correct signal processing 

and understanding is believed to have taken place, the block under evaluation is 

allowed to communicate with the next block directly through the normal feedfor- 

ward channel. Otherwise, additional data and signal processing are carried out 

under supervision of the expert system. 

The feedback expert system to be used in this study is called IPUS [20] (In- 

tegrated Processing and Understanding of Signals). It is presently under develop- 

ment by V. Lesser and H. Nawab [21] and was successfully applied to a sound 

understanding problem [22]. In this study it is proposed to apply the IPUS expert 

system to the radar weak signal detection problem. In the following sections the 

theory of IPUS is introduced and examples for application of IPUS to the radar 

weak signal detection problem are discussed. 
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III.2 - TPTJS Architecture [21] 

III.2.1 - Introduction 

The IPUS architecture has evolved from research on the design of a sound 

understanding system [22]. The goal of such a system is to identify the origins of 

various sound sources (such as telephones, vacuum cleaners, crying infants, 

etc.). The complexity of the sound understanding problem arises because of two 

factors: 

a - The need to process a tremendous variety of signal types due to 

the situation dependent nature of the input. For example, not only 

may the input of a sound understanding system include different 

types of signals, such as narrow-band, impulsive, and harmonic 

signals, but may also include various combinations of these signals. 

b - The need to change processing goals in a context dependent 

way. For example, the goal of a signal understanding system might 

be to respond to either the sounds of an infant or a ringing tele- 

phone and to ignore other sound sources. If an infant sound is de- 

tected, the system would then ignore the telephone and would 

switch its main goal to determining whether the infant is laughing, 

crying or choking. 

These two factors also arise in the radar detection problem. Specifically, complex- 

ity is encountered because of: 

a - The need to process a tremendous variety of signal types due to 

the situation dependent nature of the input. For example, the PDFs 

of the random received signals may be Gaussian, Weibull, K-dis- 

tributed, etc., with various values for the scale, location, and shape 

parameters. 

b - The need to change processing goals in a context dependent 

24 



way. For example, the usual operational mode of a radar involves 

the processing of returns from clear regions which consist of strong 

signals embedded in a weak Gaussian background noise. If a return 

from a clutter region is determined, it must be decided whether 

either the intermediate or weak signal case exists. If the weak signal 

case is applicable, one or more LODs need to be selected. 

In discussing the IPUS expert system, concepts are illustrated with examples tak- 

en from the radar detection problem. 

In the radar detection problem considered in this research, it is assumed 

that the signal environment is unknown a priori even though mathematical models 

for various signals that can arise are assumed to be known. Once the environ- 

ment has been determined, application of the appropriate signal detection algo- 

rithm (e.g, Gaussian receiver, LODs, GLRT) is straightforward. The difficult 

problem addressed by the IPUS architecture deals with the use of measured data 

to identify suitable mathematical models for approximating the various signals re- 

ceived from the unknown environment. 

The algorithms employed in the IPUS architecture to identify the mathe- 

matical models for approximating the received signals are referred to as signal 

processing algorithms (SPA's). 

Because of the two factors mentioned previously, it is very difficult, or even 

impossible, to design a single mathematically derived signal processing algorithm 

that can be applied to all possible input signals to produce the desired information 

for each input. To deal with such complexities, the approach taken in the IPUS ar- 

chitecture is for the signal understanding system to have access to a "data-base" 

of mathematically derived algorithms. For the radar detection problem, examples 

are the mean estimation algorithm, covariance matrix estimation algorithm, good- 

ness of fit test algorithm, and the PDF approximation algorithm.This data base is 

indexed by the type of assumptions made about the input signal and the type of 
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output information desired in accordance with the current goals of the signal un- 

derstanding system. 

For example, it may be assumed that the input signal is Gaussian. A good- 

ness of fit test algorithm would be applied to determine whether the data is statis- 

tically consistent with the Gaussian assumption. If the Gaussian assumption is not 

rejected, then the desired output information would be the sample mean vector 

and sample covariance matrix of the data. 

The IPUS architecture utilizes the fact that signal processing theories often 

supply a system designer with a signal processing algorithm that has adjustable 

control parameters (sampling period of data samples, number and location of ref- 

erence cells, etc.) SPA denotes a data base of SPA "instances", each instance 

corresponding to a particular set of fixed values for the control parameters. The 

IPUS architecture is designed to search for appropriate SPA instances to be uti- 

lized in particular situations in order to accurately model the unknown environ- 

ment. 

Two basic approaches for carrying out the signal processing are: 

a- Process the incoming signal with all the SPA-instances that are 

potentially relevant to the entire class of possible input signals in 

the application domain and then choose the output data that has 

the most consistent interpretation. This approach requires vast 

amounts of signal-processing output data to be examined by the 

higher level interpretation processes. 

b- Process the incoming signal with one or a small number of the 

possibly relevant SPA instances, then use some mechanism to 

recognize if incorrect processing has taken place. This is followed 

by determining the nature of the incorrect processing through a di- 

agnostic reasoning process, and finally changing the parameter set- 

tings of the SPA with the aim of obtaining an SPA-instance which is 
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appropriate for the processing of the input signal. The SPA-instance 

with adjusted control parameter settings is then used to reprocess 

the input signal. 

In order to select appropriate values for the SPA control parameters, the 

system must consider the current system goals as well as knowledge about cer- 

tain characteristics of the particular input signal. This leads to the dilemma that 

choosing the appropriate control parameter values requires knowledge about the 

signal, but this knowledge can only be obtained by first processing the signal with 

an algorithm with appropriate control parameter setting. The IPUS architecture 

uses an iterative technique for converging to the appropriate control parameter 

values. The technique begins by using the best available guess for the SPA con- 

trol parameters values. The SPA instance output is then analyzed through a dis- 

crepancy detection mechanism for indicating the presence of distorted SPA out- 

put data. A diagnosis is then performed for mapping the detected discrepancies to 

distortion hypotheses. A signal reprocessing phase then proposes a new set of 

values for the control parameters of the SPA with the aim of eliminating the hy- 

pothesized distortions. The SPA instance corresponding to the new control pa- 

rameter values is then used to reprocess the input signal. The output from the 

reprocessing once again undergoes discrepancy detection and if necessary is fol- 

lowed by diagnosis, signal reprocessing planning, and further reprocessing of the 

input signal. 

The signal data and the interpretation hypotheses derived from that data 

are stored on a blackboard with hierarchically organized information levels. The 

hypotheses on the blackboard fall into two basic categories: hypotheses posted to 

explain the signal data and hypotheses posted to specify expectations about the 

nature of the signal data. The inferencing on the blackboard is performed by dif- 

ferent knowledge sources (KS's) for tasks such as discrepancy detection, diagno- 

sis and reprocessing, and data interpretation. These tasks are presented in the 
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following sections. 

III.2.2 - Discrepancy Detection 

Ideally, application of an SPA instance to input data results in undistorted 

output data. However, if the control parameters of the SPA instance are not appro- 

priately chosen, distorted output data may result. The key to discrepancy detec- 

tion is the ability to recognize and classify discrepancies due to distortion 

introduced by the SPA instance. Three types of discrepancies are possible: 

1 - The first type of discrepancy is referred to as a violation. A violation oc- 

curs when the SPA output data implies the presence of a signal that is not a mem- 

ber of the allowable class of input signals. For example, disturbances arising from 

cells in the clear region are always modeled in this work as Gaussian processes 

because of the expectation that background noise is Gaussian. Suppose that the 

output data from an SPA instance implies that the disturbance from a cell in the 

clear region is non-Gaussian. This constitutes a violation type of discrepancy. 

2 - The second type of discrepancy is referred to as a conflict. A conflict oc- 

curs when the current SPA output data is inconsistent with expectations arising 

from interpretations of past data. There are two types of conflicts depending on 

whether all, or only a portion, of the current SPA output data is inconsistent. For 

an example of the first type of conflict, suppose previous SPA output data arose 

from disturbances in the clear region while current SPA output data is arising from 

disturbances in a clutter patch. A conflict of the first type occurs if all of the current 

SPA output data, such as an increase in variance and non-Gaussianity of the 

data, conflict with previous interpretations from the clear region. For an example 

of the second type of conflict, suppose that previous SPA output data has resulted 

in the interpretation that the disturbance is from the clear region. This might be im- 

plied by the SPA output data indicating Gaussian statistics, zero mean, and a vari- 

ance level in the range of the background noise. A conflict of the second type 

occurs when, even though Gaussian statistics are confirmed by the current SPA 
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output data, they also reveal that the mean is no longer zero and the variance lev- 

el has increased significantly. This could happen if the disturbance is now coming 

from a Gaussian clutter patch where the data is highly correlated. 

3 - The third type of discrepancy is referred to as a fault. A fault can also 

arise in two different ways. The first kind occurs when two or more different SPA's 

that are applied to the same data result in different output interpretations. The oth- 

er kind occurs when two or more instances of a single SPA (i.e., the same SPA 

with different parameter values) result in different interpretations when applied to 

the same data. An example of the first kind of fault would be the situation where 

SPA # 1, a power level detector, indicates a power level consistent with the back- 

ground noise while SPA# 2, Ozturk's distribution identification algorithm, indicates 

a non-Gaussian distribution. This is a fault because the background noise is as- 

sumed to be Gaussian. An example of the second kind of fault would be the situa- 

tion where use of Ozturk's algorithm based on 50 and 100 samples from the same 

clutter patch results in a different interpretation. 

III.2.3 - Diagnosis and Reprocessing 

When the signal being monitored does not satisfy the requirements of the 

SPA instance, the output of the SPA is distorted resulting in a discrepancy. Once a 

discrepancy has been detected, a diagnosis procedure is used to identify the dis- 

tortion that may have led to the discrepancy. Knowing the distortion, then either 

the appropriate parameters of the same SPA can be adjusted or a different SPA 

chosen to reprocess the data. In a sense, the diagnosis procedure maps symp- 

toms (discrepancies) to hypothesized underlying causes (distortions). For exam- 

ple, assume the sample mean of a clutter patch is repeatedly being evaluated by 

processing 50 samples at a time. Although, the first eight trials result in values 

close to zero, the ninth trial produces a large negative value for the mean. This 

represents a conflict of the first kind. The diagnosis procedure may surmise that 

the conflict may be due to the presence of one or more outliers. Consequently, the 
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reprocessing procedure concludes that the data from the ninth trial should be re- 

processed after removal of the outliers. 

111.2.4 - Interpretation Process 

The interpretation process is a search through a space of sets of interpreta- 

tion models for modeling signals. When a possible combinatorial explosion in in- 

terpretation models does not exist, the interpretation process may be viewed as 

just a straight forward classification process. Otherwise, the search must be car- 

ried out as a constructive problem solving process. The IPUS architecture em- 

ploys the constructive problem solving approach which reduces to the 

classification approach in the absence of a combinatorial explosion. 

Constructive problem solving techniques must be used when the set of 

possible solutions is too large to be enumerated. For example, although the set of 

PDF types is finite in the radar problem, there are an infinity of different PDF's 

possible because of the infinite number of values that can be assumed by the 

scale, location, and shape parameters. Consequently, constructive problem solv- 

ing is needed to approximate the underlying probability distribution of the data. 

111.2.5 - Sources of Uncertainty (SOtto and RESUN 

At any stage in monitoring the environment, one can never be totally sure 

that various interpretations are correct. Sources of uncertainty (SOU) always exist 

with regard to whether the data was processed correctly and with regard to how 

much confidence should be placed in the interpretation. The objective of IPUS is 

to continue to reprocess data, as time permits, so as to reduce the SOUs. This re- 

processing is continued until either the level of uncertainty has been reduced to 

some acceptable level or until all the time allotted for reprocessing has been uti- 

lized. 

The process of reducing the SOUs can be viewed as a problem solving ac- 

tivity. At each stage of the IPUS architecture, it is necessary to identify the SOUs 

30 



associated with p. particular output and to have a strategy for reprocessing the 

data so as to reduce the SOUs associated with a particular output in an efficient 

manner. The Resolving Sources of Uncertainty (RESUN) control [21] structure is 

used to direct the problem-solving procedure used to gather evidence in order to 

resolve particular SOUs in the interpretation hypotheses. 

In this section we discuss the relationship between the mechanism in IPUS 

and the concept of SOUs utilized by the RESUN control structure. The basis for 

this relationship is largely empirical and is continually evolving. The current view 

of this relationship is described below: 

1 - Violation-Type Discrepancies and SOUs 

A violation type discrepancy occurs when signal processing output data vi- 

olates the a priori known characteristics of the entire class of possible input sig- 

nals for the radar problem. For example, background noise is assumed to have 

zero mean. Assume that a signal has been interpreted as white and Gaussian and 

has a very small power level. In addition, the mean has been interpreted as being 

non-zero. Because of the non-zero mean, the signal cannot be classified as back- 

ground noise. Also, because of the small power level, the signal cannot be classi- 

fied as clutter. Clearly, a violation exists. The condition that has been violated is 

the zero-mean condition. There are various SOUs that could have caused this vi- 

olation. For example, 

1) there could have been one or more outliers in the data, 

2) there may not have been an adequate number of samples processed, 

3) the random samples may not have been representative of the zero- 
mean signal, 

4) a desired target return could be contained in one or more of the refer- 

ence cells. 

For each of the above SOUs, respectively, one or more procedures exist for their 
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reduction. For example, 

1) extreme values could be excised from the data, 

2) the number of samples processed could be increased, 

3) an entire set of new samples could be processed, 

4) previously detected targets could be checked to determine whether one 

or more targets are likely to be present in one or more of the reference cells. If so, 

these cells should be eliminated as reference cells for the test cell of interest. 

When a violation-type discrepancy is noted, the hypothesis that a violation 

exists is posted on the interpretation blackboard of the expert system. For each 

condition being violated and each SOU that could have caused the violation, an 

additional output data hypothesis is posted which describes the condition being vi- 

olated and the SOU that could have caused the violation. SOUs that fail to pro- 

duce some particular support evidence for a single input signal or fail to result in 

any valid explanation for a combination of input signals are classified as negative 

evidence SOUs. The hypothesis concerning the violation-type discrepancy and 

each of the additional hypotheses are then connected by a negative evidence link 

and are labeled VIOLATION-NEGATIVE EVIDENCE SOU. Further problem solv- 

ing to reduce the SOU can then be carried out by reprocessing the underlying sig- 

nal with different SPA instances. 

2 - Conflict-tvpe Discrepancies and SOUs 

After processing a certain quantity of data, various expectations relative to 

the data to be processed arise. Conflicts occur when these expectations are not 

met. If all the expectations are not met, the conflict is said to be of the first kind. If 

some expectations are met while others are not, the conflict is said to be of the 

second type. 

We say that an unverified expectation hypothesis exists when there is a 

conflict of the first type. A NO-SUPPORT SOU label is attached to each unverified 

expectation hypothesis. For each expectation (i.e., component of the hypothesis) 
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not being met and for each SOU that might be responsible, an additional hypothe- 

sis is posted on the interpretation blackboard which describes the unsupported 

expectation and the corresponding SOU. The hypothesis concerning the conflict- 

type discrepancy and each of the additional hypotheses are connected by a link 

labeled NO-SUPPORT SOU. Further problem solving can then attempt to find 

SPA instances so as to produce output data that can support the expectation. 

When there is a conflict of the second type, a partially verified expectation 

hypothesis is posted on the interpretation blackboard with a PARTIAL-EVI- 

DENCE SOU label. As in the previous case, each unsupported expectation (i.e, 

inference or hypothesis component) is associated with a hypothesis, labeled NO- 

SUPPORT SOU, which describes the unsupported expectation and the corre- 

sponding SOU. The hypothesis labeled PARTIAL-EVIDENCE SOU can trigger 

further problem solving to find support for the lower component hypotheses la- 

beled NO-SUPPORT SOU. 

By way of example, assume that the previous ten test cells were classified 

as having been in the clear. Our expectation hypothesis, therefore, is that the 

eleventh test cell will also be in the clear. If the eleventh test cell fails the Gauss- 

ian, zero-mean, and small power level inferences, we have a conflict of the first 

type. On the other hand, if the Gaussian and zero-mean inferences are found to 

have support while the small power level inference is unsupported, we have a 

conflict of the second type. As discussed above, SOUs and corresponding linked 

hypotheses would be identified with each unsupported inference and additional 

signal processing would be carried out to reduce the level of SOUs as time per- 

mits. 

3 - Fault-type Discrepancies and SOUs 

Fault-type discrepancies arise when two different signal processing algo- 

rithms or instances produce different output interpretations. In such a case, a 
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composite hypothesis is created which is a copy of the more reliable of the two 

data hypothesis (i.e., the two output interpretations). A link labeled with a NEGA- 

TIVE-EVIDENCE SOU connects the less reliable hypothesis to the composite hy- 

pothesis. Further problem solving attempts to remove the negative-evidence SOU 

by reprocessing the signal using different SPA instances for the less reliable SPA. 

Two outcomes are then possible. Either the negative evidence SOU is eliminated 

or it is replaced by another negative-evidence SOU. In the latter case, further 

problem solving can attempt to reprocess the signal with the more reliable SPA 

but using different SPA instances. 

By way of example, assume that a zero-mean inference is to be supported 

by both a sample-mean algorithm and a median detector algorithm. Assume that 

only a small number of data samples are available. Under this assumption, the 

median detector algorithm is likely to be more reliable. Suppose that the median 

detector algorithm supports the zero-mean inference while the sample mean algo- 

rithm does not. RESUN creates the composite hypothesis that the mean is zero. 

To this the hypothesis that the mean is not zero is linked using a NEGATIVE-EVI- 

DENCE OUTLIER label. The data samples are then reprocessed by the sample 

mean algorithm by using SPA instances which delete some of the extreme data 

values. If the zero-mean inference is supported, the negative evidence SOU is as- 

sumed to have been eliminated. If the zero-mean inference is not supported, the 

signal is reprocessed by the median detector algorithm where different sets of out- 

liers may be chosen. 

III.3 - Application of IPUS to Radar Signal Understanding 

The IPUS architecture is suitable when a single SPA-instance cannot cor- 

rectly process all the input signals that can potentially arise in a signal under- 

standing application. In the radar problem, the variety of probability distributions 

underlying the data along with the different tasks to be carried out in monitoring 

the environment (clutter mapping and cell indexing) necessitates more than one 
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SPA-instance. Hence, IPUS is suitable for the radar problem. 

In this research we emphasize the WSC. As explained previously, the 

branch of Fig. m.1.2 corresponding to the WSC is referred to as WSUD/FBES. 

From the figure, it is clear that tasks of the WSUD/FBES have been subdivided 

into mapping, indexing and detection. Assuming the mapping and indexing to be 

done properly, application of the LOD is straight forward. 
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Chapter IV 

Description of the Proposed Radar Signal Processing System 

IV.l - Data Collection and Preprocessing 

Assume that a radar transmits a periodic signal composed of a series of 

predefined RF pulses. Let T be the period of the signal and xe denote the pulse 

duration. T is known as the pulse repetition interval (PRI). Assuming rectangular 

shaped pulses, the envelope of the emitted signal is shown in Fig. IV. 1 where A 

denotes the pulse amplitude. 

Transmitted signal envelope 

I i 

lit 
S*K:K*ä¥:*:S;:*;X 

mm 
mm 

Figure IV. 1.1 - Envelope of the Transmitted Signal 

For ease of discussion consider a low pulse repetition frequency (PRF) ra- 

dar for which there is no range ambiguity. During the time interval [pT+xe, (p+1)T], 

of the pth PRI, p=1,2,3 the radar functions in the receive mode and collects 

data, due to the pth pulse from the azimuth angle, 8Z, to which the radar antenna 

is oriented. The collected data corresponds to returns from different range cells as 

illustrated in the top view of Fig. IV. 1.2 where A6 denotes the antenna beam-width 
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Figure IV. 1.2- Range Cells in a Constant Azimuth Beam 

The round trip delay, t^, from a given range R is given by 

td = 
2R (IV-1.1) 

where c denotes the velocity of propagation of the electromagnetic wave. For the 

pth period of the transmitted signal, the time interval [pT+xe, (p+1)T] is subdivided 

into J range bins of duration xe. Each range bin corresponds to a range cell whose 

range extent is denoted by re. Fig. IV. 1.3 shows the different range cells and their 

corresponding range bins on the time axis for a fixed azimuth angle 6Z. Let R|< and 

Rk+1 denote the ranges to the leading and trailing edges of the kth range cell. 

Also, let tk and tk+i denote the corresponding round trip delay times. Then, using 

Eq. (IV-1.1) we can write 

tk = 
2RL 

and   t 
2R k+1 

k+1 (IV-1.2) 

37 



Emitted Burst 

Envelope 

* M MjlTl I IIW 214. 

Tog v»$w 

B*n 1 Sin k 

F/ai/re IV. 1.3 - Range Cells and Their Corresponding Time Bins 

Taking the difference and utilizing the fact that a range bin is defined to be of time 

extent, xe, results in 

*k+1 -tk - Te - 

2(Rk+1 -Rk) 
(IV-1.3) 

Hence, each range bin of time extent, xe, corresponds to a range cell of range ex- 

tent, re, where 

re - Rk+1 _Rk - C2" (IV-1.4) 

This process is repeated for different azimuth angles, 0Z. The collection of 

cells corresponding to different ranges and azimuth angles can be represented in 

a rectangular format, as illustrated in Fig. IV. 1.4. The collection of range cells 
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Figure IV. 1.4 - Rectangular Format for Representing Cells at Different 
Ranges and Azimuth Angles 

corresponding to a constant azimuth angle is shown in Fig. IV. 1.2. For a fixed 

range, the collection of azimuth cells is as shown in Fig. IV. 1.5. Let the range bins 

be indexed by kR, 1<kR<J, and the azimuth bins be indexed by kA, 1<kA<K. The 

resolution cell corresponding to kR=j and kA=k is referred to as the jkth range-azi- 

muth (R/A) cell, as illustrated in Fig. IV.1.4. 

In practice, the antenna beam dwells on each range-azimuth cell for a time 

duration, known as the dwell time, that is equal to P pulse repetition intervals 

(PRI's). Consequently, P pulse returns from each range-azimuth cell, spaced T 

seconds apart, can be processed. After decomposing the P received pulses into a 

sequence of I and Q quadrature components, a Doppler filter bank is implement- 

ed by performing a M-point FFT on each of the P quadrature component samples 
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where M>P depending upon whether or not zero padding is used. Let yip(j.k) and 

yQp(j,k), p=1,2,3 P, denote the I and Q components from the pth PRI of the jkth 

range-azimuth cell. Similarly, let Y,m(j,k) and YQm(j,k), m=1,2,3,...,M, denote the 

mth FFT coefficient from the jkth range-azimuth cell. In addition to computing the 

temporal data magnitudes, ypG,k), from the I and Q quadrature components for 

each PRI, the magnitude of each Fourier coefficient, YmG,k), is computed, as 

■.■•.■pmmmmmfmt 

Azimuth Bhl 

111 
V 

Figure IV. 1.5 - Collection of Azimuth Cells for a Fixed Range 

shown in Fig. IV. 1.6, to form the FFT coefficient magnitudes. 

The collection of cells corresponding to different ranges, azimuth angles, 

and Doppler frequencies can be represented in a 3-dimensional cubic format, as 

illustrated in Fig. IV. 1.7. Let the Doppler bins be indexed by kD, 1<kD^M. The res- 

olution cell corresponding to kR=j, kA=k, and kD=m is referred to as the jkm* 

range-azimuth-Doppler (R/A/D) cell. The total number of range-azimuth-Doppler 

cells is given by JxKxM. 
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Fiaure IV. 1.6 - Block Diagram of Data Preprocessing Stage 
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F/at/re IV.1.7 - Cubic Format for Representing Cells at Different Ranges. 
Azimuth Angles, and Doppler Frequencies. 

The temporal data magnitudes and FFT coefficient magnitudes are used 

by the mapping processor to enable classification of the R/A/D cells into back- 

ground noise cells and clutter cells. The mapping approach is described in the 

next section for the general radar problem. 
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IV.2 - Mapping 

The purpose of mapping is to declare a R/A/D cell as either a background 

noise cell or clutter cell. As shown in Fig. IV. 1.6, two types of data are formed in 

the preprocessing stage. These are, temporal data magnitudes, yp(j,k), and FFT 

coefficient magnitudes, Ym(j,k). The set of yp(j,k) magnitudes consists of P data 

points for each R/A cell in the JxK R/A plane, while, the set of Ym(j,k) magnitudes 

consists of one data point for each R/A/D cell in the JxKxM R/A/D space. 

The mapping is done in two stages. First, using ypG,k), the R/A plane is 

mapped into background noise (BN) and clutter (CL) R/A cells. Then, using 
Ym(J>k)> the 3-dimensional R/A/D space is mapped into BN and CL R/A/D cells. 

The necessity for performing mapping in two stages is explained next. 

In the first mapping stage, an average P(j,k) is formed for each R/A cell in 

the JxK R/A plane by averaging the power of the P temporal data magnitudes, 

ypG,k) as shown in Equation (IV-2.1), 

po,k>=±£y*(j,k>; l;1;!rJ
K. o^u 

P=I 

The average powers P(j,k) are used to classify BN and CL cells in the R/A plane, 

as is discussed in the next chapter. 

The second stage involves the 3-dimensional R/A/D space. In particular, 

each cell in the R/A/D space needs to be classified as either BN or CL. The classi- 

fication performed in the first mapping stage is useful in reducing the effort re- 

quired in the second stage. If the jkth R/A cell is BN, then all of the jkm Doppler 

cells, m=1,2,...,M, will also be BN. However, if the jkth R/A cell is CL, then the jkm 

Doppler cells, m=1,2,...,M, may or may not be CL depending upon the clutter 

spectrum. Consequently, only the Doppler cells corresponding to R/A cells that 

have been identified as CL in the first mapping stage need to be examined in the 

second stage. This reduces considerably the amount of processing needed for 
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the second mapping stage. 

Notice that two-way communications is required between the preprocess- 

ing and mapping stages. As shown in Fig. IV.2.1, the preprocessing stage gener- 

ates the quadrature components, the FFT coefficients, and their magnitudes. The 

first mapping stage classifies the R/A cells as either BN or CL For those Ft/A cells 

classified as BN, the corresponding Doppler cells are also classified as BN by the 

second mapping stage. For those R/A cells that are classified as CL, the second 

mapping stage obtains the FFT coefficient magnitudes. These are then used to 

classify the remaining R/A/D cells as either BN or CL. 

The major focus of this work is to demonstrate how the principles of IPUS 

can be applied to the radar problem. For that purpose, procedures and rules have 

been developed that utilize the IPUS capabilities to solve the various stages of the 

radar problem. Throughout this work the procedures and rules have been tested 

with non-trivial radar examples. The first procedure, presented in the next chapter, 

is a mapping technique that classifies cells into BN and CL. 
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Generation of quadrature components 

and their FFTs as shown in Fig. IV. 1.6 
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Figure IV.2.1 - Block Diagram of the Preprocessing and Mapping of Data 
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Chapter V 

Mapping Procedpre 

In this chapter a mapping procedure for a surveillance volume subdivided 

into range-azimuth cells is presented along with examples. Also, extension of the 

mapping procedure to range-azimuth-Doppler cells is discussed in the last sec- 

tion. General procedures are presented without explanations of how to choose 

parameters. The explanations are provided in Chapter VII. 

V.l - Introduction 

Assume that JxK R/A cells are scanned by a radar antenna. Furthermore, 

for simplicity, assume that the dwell time is equal to the PRI so that only a single 

pulse is processed from each cell, i.e. P=1. In this case, an FFT is not possible 

and the block diagram of the preprocessing stage reduces to that shown in Fig 

V.1.1. When an FFT is not possible, the block diagram of the preprocessing and 
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Figure V.1.1 - Block Diagram of Data Preprocessing Stage for P=1 
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mapping stages, shown in Fig. IV.2.1, simplifies to Fig. V.1.2. Only JxK temporal 

data magnitudes yQ.k) are available to the mapping stage. In this case, only JxK 

R/A cells need to be mapped into BN and CL cells and the mapping process of 

Generation of quadrature components | 

as shown in Fig. V.1.1 

WTTir'TI'T'TvTT'T'T'Trr!? 

1 
Temporal data 

magnitudes 

nn'RTTrT'n E 
Average power 

computation 

■ 
Mapping of R/A cells into BN and CL 

Preprocessing j Mapping 

Figure V.1.2- Block Diagram of Preprocessing and Mapping Stages for P=1 

Fig. IV.2.1 reduces to the first mapping stage alone. As explained in Section IV.2, 

an average power P(j,k) is formed for every R/A cell in the JxK R/A plane. For 

P=1, Eq. (IV-2.1) becomes 

P (J, k) = y? (i, k); 
j=1,2,...,J 

k=1,2,...,K. 
(V.1-1) 

At this point, the R/A plane consists of two different types of regions that 

need to be identified. These are clear regions, where BN alone is present, and- 

clutter patches, where both CL and additive BN are present. Let's, first, examine 
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the nature of the BN and CL in order to understand the theory behind the proce- 

dure developed for mapping. 

V.2 - Observations on BN and CL Cells 

Assuming additive BN and CL, the following observations are based on 

many computer generated examples of a BN region containing CL patches where 

the clutter-to-noise ratio (CNR) is assumed to be greater than 0 dB. The BN enve- 

lope is assumed to be Rayleigh while the CL envelope may be either Rayleigh, K- 

distributed, Weibuil or lognormal. 

V.2.1 - Observations on BN Cells 

The following observations on BN cells were noted: 

- On an average, the BN data values are smaller than the CL data values. 

- Large data values may exist in a BN cell that may be higher than some 

data values of a CL cell. 

- Large data values in the BN tend to be isolated points. 

- The number of BN data significantly larger than the average is relatively 

small. Fig. V.2.1 shows a typical BN data histogram. 
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Average 

Figure V.2.1 - Example of a BN Histogram 
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- The relatively small number of large BN data are distributed sparsely 

throughout the surveillance volume. 

V.2.2 - Observations on CL Cells 

The following observations on CL cells were noted: 

- On an average, CL data values are higher than BN data values. 

- A CL region contains additive CL and BN. 

- Small data values may exist in a CL cell that may be smaller than some 

data values of a BN cell. 

- The large CL data values tend to be larger than most of the large BN data 

values assuming positive CNR. 

- Whereas the BN data values are distributed over the entire surveillance 

volume, the CL data values are distributed only over the clutter regions. 

- Large data values in the CL tend to be clustered. 

Fig. V.2.2 shows an example of the distribution of large values of BN data 

denoted by (x) and large values of CL data denoted by (o). Notice that the large 
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Figure V.2.2 - Concentration of large data in a scanned volume 
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BN data values are sparsely distributed over a large area while large values of CL 

are concentrated in small regions, the CL regions. 

V3 - Mapping Procedure 

Using the fact that clutter patches, on an average, have stronger radar re- 

turns, the mapping processor begins by setting a threshold that results in a speci- 

fied fraction of BN cells, as explained in in Chapter Vn. Image processing is then 

used to establish the background noise and clutter patches. If the final image con- 

tains a significantly different fraction of BN than originally established by the initial 

threshold, the process is repeated with a new threshold. The mapping processor 

iterates until it is satisfied that the final scene is consistent with the latest specified 

threshold. Finally, clutter patch edges are detected using an image processing 

technique. 

The mapping procedure consists of two steps. The first step is the identifi- 

cation of CL patches within BN. The second is the detection of clutter patch edges 

and their enhancement. These two steps are explained next. 

V3.1 - Separation of CX Patches from BN 

Identification of CL patches within BN is performed by the following steps: 

thresholding, quantization, correction and assessment. 

V3.1.1 - Thresholding and Quantization 

Identification of CL patches within BN starts by setting a threshold q that re- 

sults in a specified fraction of BN cells. Then a quantized volume is formed as fol- 

lows: all R/A cells with average power less than q are given a value of 0 (zero) 

and all R/A cells with average power above q are given a value of 1 (unity). Let 

Q(j,k) represent the quantized value of the jkth R/A cell. Then, 

p 1 ifP(j.k)>q 
Q (J, k) = j=1,2,...,J and k=1,2,...,K       (V.3-1) 

if P(j.k)<q 
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where PQ.k), the average power of the jkin R/A cell, is defined in Eq. (V.1-1) th 

Fig. V.3.1 shows the computer generated CL patches and BN region that 

are to be separated by the mapping procedure. A, B, C, and D denote the CL 

patches. Fig. V.3.2 shows a typical contour plot of the quantized R/A volume. 
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Figure V.3.1 - Example of a Generated R/A Volume that is to be Separated 
bv the Mapping Procedure 

Initially, let R/A cells with a quantized value of 1 be declared as CL cells and R/A 

cells with a quantized value of 0 be declared as BN cells. By comparing Figs. 

V.3.1 and V.3.2, note that the quantized version differs from the original. This is 

due to the fact that even though the average powers of BN cells are expected to 

fall under the threshold while the average powers of CL cells are expected to fall 

above the threshold, typically, 
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some BN cells have an average power that falls above the threshold and some CL 

cells have an average power that falls under the threshold. Also, as explained in in 

Chapter VII, the first setting of the threshold, which is somewhat arbitrary, is likely 

not to be the best for identifying CL patches within BN. 
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Figure V.3.2 - Example of a Quantized R/A Volume 

V3.1.2 - Correction 

After quantization, the next step is to correct misclassified BN and CL cells. 

Consider a set of 3x3 R/A cells. As shown in Fig. V.3.3, let the center cell be re- 

ferred to as the test cell and the surrounding cells be referred to as the neighbor- 

ing cells. Assume that a clutter patch cannot be formed by a single cell. In this 

case, every test cell in the clutter patch has at least one neighboring cell that be- 

longs to the same clutter patch. 
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A test cell belonging to a clutter patch that has at least one neighboring BN 

cell is referred to as a CL edge cell. On the other hand, a test cell that belongs to 

a CL patch for which none of the neighboring cells are in the BN is referred to as 

an inner CL cell. 

I Neighboring Cell 

Figure V.3.3 - 3x3 R/A Cells 

The proposed correction technique consists of transforming the quantized 

volume into a "corrected" volume. The transformation consists of the following 

steps: 

-1. As explained in in Chapter VII, choose the necessary number of CL 

neighboring cells, NCQ, for a test cell in the quantized volume to be de 

dared as a CL cell in the corrected volume. NCQ can take one of the 

following values: 5,6,7,8. 

- 2. For every test cell in the quantized volume count the number of 

neighboring CL cells. If the number is greater than or equal to NCQ de- 

clare the test cell as a CL cell in the corrected volume. Otherwise, de- 

clare the test cell as a BN cell in the corrected volume. 
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When all the cells of the quantized volume have been tested, a "corrected" 

volume consisting of declared BN or CL R/A cells is obtained. Notice that a cell 

type is not updated until the entire correction is done. Fig. V.3.4 shows an exam- 

ple of a "corrected" volume. Notice that the latter volume has larger homogeneous 

regions than the quantized one. 
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Figure V.3.4 - Example of a "Corrected" R/A Volume 

Because NCQ is chosen to be relatively large (i.e. NCQ=5,6,7 or 8), BN 

cells that were incorrectly identified in the quantized volume as CL cells due to 

their large power tend to be reclassified as BN cells. Also, inner CL cells in the 

quantized volume are recognized as CL cells in the "corrected" volume. Mean- 

while, most of the CL edge cells in the quantized volume are recognized as BN 

cells in the "corrected" volume. This results in an over-correction where most of 

the CL edge cells are identified as BN. As an example, when NCQ=8, only inner 

CL cells in the quantized volume are recognized as CL cells in the "corrected" vol- 
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ume and all CL edge cells in the quantized volume are recognized as BN cells in 

the "corrected" volume. In order to recover the edge cells, a second-correction 

stage is needed where the first "corrected" volume will be transformed into a sec- 

ond "corrected" volume. Let the first "corrected" volume be referred to as the "cor- 

rected-quantized" volume (CQV) and the second "corrected" volume be referred 

to as the "corrected-corrected" volume (CCV). The following steps are used to 

transform the CQV into the CCV: 

1 - As explained in in Chapter VII, choose the necessary number of CL 

neighboring cells, NCC, for a test cell in the CQV to be declared as a 

CL cell in the CCV. NCC can take one of the following values: 1,2,3 or 

4. 

2 - For every test cell in the CQV count the number of neighboring CL 

cells. If the number is greater than or equal to NCC declare the test cell 

as a CL cell in the CCV. Otherwise, declare the test cell as a BN cell in 

the CCV. 

Figure V.3.5 shows the CCV obtained by transforming the CQV of Fig. V.3.4. 
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Figure V.3.5 - Example of the CCV Corresponding to the CQVofFia. V.3.4 
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V3.1.3 - Assessment 

Let BNQP, BNCQP and BNCCP denote the percentage of BN cells in the 

"quantized", "corrected-quantized" and "corrected-corrected" volumes, respective- 

ly. BNQP is pre-specified so as to determine the threshold for the quantized vol- 

ume, whereas BNCQP and BNCCP are computed after the CQV and the CCV are 

obtained. 

The assessment process consists of comparing BNCQP and BNCCP to 

BNQP in order to determine whether or not the percentages of the BN cells after 

correction are consistent with the percentage of BN cells in the quantized volume. 

When there is no consistency, further quantization, correction and assessment 

are performed until consistency is obtained. 

The thresholding/quantization, first-correction, second-correction, and as- 

sessment stages are used to find the best threshold to separate between BN and 

CL patches. Once BNQP has been set, a threshold is computed. Then corrections 

are made to try and build the BN region and CL patches. The correction stages re- 

label some of the above-threshold cells as BN cells if they are likely to belong to 

the BN, and some of the below-threshold cells as CL cells if they are likely to be- 

long to a CL patch, based on the choices for NCQ and NCC. Depending on how 

good or how bad of a choice is the threshold, many or few cells are relabeled, re- 

spectively. At the end of the procedure, BNCCP is computed and compared to 

BNQP. If the values are within a certain range, few cells would have been rela- 

beled, the threshold is accepted and the assessment passes. Otherwise, many 

cells would have been relabeled and the threshold is rejected. The iterative pro- 

cess then continues by setting another threshold through the choice of a new val- 

ue for BNQP. 

Rules for choosing NCQ, NCC and BNQP and for determining when con- 

sistency of the percentages are obtained are explained in Chapter Vn. 
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V.3.1.4 - Smoothing 

Examples have shown in many cases that when the percentages are con- 

sistent, clutter declared patches may contain isolated BN declared cells. Because 

small powers can arise in a CL patch as explained in Section V.2, it is most likely 

that isolated BN cells in CL patches are CL cells. The smoothing process is used 

to detect these isolated cells and label them adequately by transforming the CCV 

into a smoothed volume (SV). The smoothing technique consists of the following 

steps: 

1 - Choose the necessary number of CL neighboring cells, NS, for a BN 

identified test cell in the CCV to be declared as a CL cell in the SV 

where NS can take one of the following values: 5,6,7, or 8. 

2 - For every BN identified cell in the CCV count the number of neigh- 

boring CL cells. If the number is greater than or equal to NS, declare the 

test cell as a CL cell in the SV. Otherwise, declare the test cell as a BN 

cell in the SV. 

Fig. V.3.6 shows an example of the smoothed volume corresponding to the CCV 

of Fig. V.3.5. Note that the CL patches are smooth and do not contain any isolated 

points. 

V.3.2 - Detection of Clutter Patch Edges and Edge Enhancement 

V.3.2.1 - Detection of Clutter Patch Edges 

After smoothing, each cell in the SV has been declared as either a CL or 

BN cell. The next step is to determine which of the CL ceils are located on the 

edges of the CL patches. This is important for subsequent radar signal processing 

if reference cells for estimating parameters of a test cell are to be chosen properly. 

Identification of CL edge (CLE) cells is done by the use of an image pro- 

cessing technique referred to in the image processing literature as unsharp mask- 

ing [24, 25]. It consists of the following steps: 
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Figure V.3.6 - Example of the SV Corresponding to the CCV of Fig. V:3.5 

1 - A weighting filter consisting of a 3x3 array of cells is constructed, as 

shown in Fig. V.3.7, where the center cell has a weight given by 

w(0,0)=8 and the neighboring cells have weights given by 

w(-1 ,-1 )=w(0,-1 )=w(1 ,-1 )=w(-1,0)=w(1,0)=w(-1,1 )=w(0,1 )=w(1,1 )=-1. 

The center cell is positioned on the test cell. Notice that the weights of 

the filter cells sum to zero. In particular, 

1       1 
]T    £ w(m,n) = 0 - 

m = -1n = -1 
(V.3-2) 

2 - Assume the weighting filter is centered at the jkth cell in SV. The 

cells corresponding to the 3x3 array of the weighting filter have quan- 

tized values as illustrated in Fig. V.3.8. By definition, 
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w(-1,-1)=-1 w(0,-1) = -1 w(1,-1) = -1 

w(-1,0) = -1 w(0,0) = 8 w(1,0) = -1 

w(-1,1) = -1 w(0,1) = -1 w(1,1) = -1 

Figure V.3.7' - Weighting Filter 

SQ(j-1,k-1) SQ0,k-1) SQG+1,k-1) 

SQQ-1,k) SQG.k) SQ(j+1,k) 

SQ0-1,k+1) SQG.k+1) SQG+1,k+1) 

Figure V.3.8 - Quantized Values of the 3x3 Array Corresponding 
to the ilP Cell 
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i-   1 if the jkth cell in SV is declared as CL 
SQG.k) = (V.3-3) 

'—  0 if the jkth cell in SV is declared as BN 

where 

j=1,2,...,Jandk=1,2 K. 

To avoid filter cells falling outside SV, the coordinates of the jkth cell at 

which the filter is centered are constrained to j=2,3 J-1, and 

k=2,3,...,K-1. 

3 - Form the sum 

1       1 
S=   X    X w(m,n)SQ(j + m,k + n) . (V.3-4) 

m = -1n = -1 

- If S is equal to zero, all ceils have the same assigned value. This 

can arise only when the test cell is not an edge cell. 

- If S is positive, the test cell is an edge cell and is labeled as such. 

- If S is negative, the test cell cannot be an edge cell. On the other 

hand, one or more of the neighboring cells are guaranteed to be 

an edge cell. 

The three situations are illustrated in Figs. V.3.9-a, b, c and d, where the black and 

white cells represent BN and CL cells, respectively. In Figs. V.3.9-a and V.3.9-b, 

S=0 because all 9 cells are in BN and CL, respectively. Observe that the test cell 

is not an edge cell. In Fig. V.3.9-C, S=4>0. Note that the test cell is an edge cell. 

Finally, in Fig. V3.9-d, S=-2<0 and the test cell is not an edge cell. 

At the end of the edge detection procedure, each cell in the original volume 

has been labeled as either CL, BN or CLE cell. At this point, the mapping is done. 

The final volume is referred to as the mapped volume (MV). 
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V3.2.2 - Enhancement of Clutter Patch Edges 

The edges detected after smoothing tend not to follow the irregular edges 

that may actually exist. Consequently, the edges are further enhanced by examin- 

ing the power levels of cells just outside the edge cells and on the edge cells. If 

the power levels of these cells exceed the threshold set in the quantization stage, 

they are declared as edge cells. Otherwise, they are declared as BN cells. 

At the end of the edge enhancement procedure, edges are detected and 

each cell in the original volume is labeled as either CL, BN or CLE ceil. 
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V3.3 - Concision 

The mapping procedure consists of the following steps: thresholding/quan- 

tization, correction, assessment, smoothing, edge enhancement, and edge detec- 

tion, as shown in Fig. V.3.10. The feedback loop that connects the assessment 

procedure to the thresholding/quantization, first-correction, and second-correction 

blocks is controlled by IPUS, as will be explained later on in Chapter Vn. 

V.4 - Examples of the Mapping Procedure 

Before presenting examples to illustrate how the mapping procedure per- 

forms a separation between BN and CL patches, a brief review of the mapping 

procedure is first given. Then, three different examples of the mapping procedure 

are presented. The generated scene and the distributions of the clutter patch data 

are shown for every example. Also, only the results corresponding to the initial 

and final choices of BNQP are illustrated in each case. The in-between settings of 

BNQP are listed in tables. 

V.4.1 - Introduction 

The mapping procedure begins by selecting a threshold such that the per- 

centage of BN cells relative to the total number of cells is equal to a specified val- 

ue, denoted by BNQP. Two correction stages then ensue. In the first-correction 

stage, each cell in the quantized volume, denoted by QV, is tested by a 3x3 mask 

centered on the test cell. The test cell is labeled as BN only if less than NCQ of the 

eight neighboring cells are declared as CL in the QV volume where NCQ is a pa- 

rameter specified by the user. In the following discussion it will be shown that the 

first-correction stage tries to restore the right tail of the BN PDF which had been 

severely distorted by the quantization. After the first-correction stage, the correct- 

ed volume is denoted by CQV. The second-correction stage attempts to correctly 

reclassify the edges of the CL patches. This is done by testing each cell in CQV 

using, once again, a 3x3 mask centered on the test cell. The test cell is labeled as 

BN if less than NCC of the eight neighboring cells are declared as CL in the CQV 
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Figure V.3.10 - Block Diagram of the Mapping Procedure 

volume where NCC is a parameter specified by the user. Typical values for NCQ 

are 5,6,7,8 while typical values for NCC are 1,2,3,4. In the following discussion it 

will be shown that the second-correction stage attempts to restore the shapes of 

both the BN and CL PDFs. After the second-correction stage, the corrected vol- 

ume is denoted by CCV. The percentage of BN cells relative to the total number of 

cells in the CCV volume is denoted by BNCCP. BNCCP is compared to BNQP. If 

the difference IBNCCP-BNQPI is smaller than a pre-specified value, the iteration 

process ends and some additional processing is done to enhance and label the 

edges. As explained in Chapter Vn, if the difference is not too large, additional it- 

erations are made with new values for NCQ and NCC. If these do not lead to con- 
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vergence or if the difference is too large, the whole process is repeated by 

selecting a new threshold. If the difference is large, the new value for BNQP is 

chosen to be the previous BNCCR Otherwise, the new value of BNQP is chosen 

to be half way in between the previous values of BNQP and BNCCR 

v.4.2 - Examples 
In the following examples, it is assumed that the radar scans over 120° in 

the azimuthal direction and has a beam width of 2°. Hence, the azimuthal axis is 

subdivided into 60 bins. Also, the length of a range cell is given by ct/2 where 

c=3x108 meters/second is the speed of the light and x is the radar pulse width. As- 

suming a pulse width of x=1us and a maximum range of Rmax=13.5 km, the 

range axis is divided into -——— = 90 bins. Consequently, this subdivision of 

the entire surveillance volume yields a total of 5400 range-azimuth cells. 

In all examples presented in this dissertation clutter plus noise data in a 

given cell are obtained by simply adding the envelopes of the CL and BN values 

for that cell. Of course, the envelope of the sum of two random processes does 

not equal the sum of the envelopes. Nevertheless, it is possible to develop the im- 

portant concepts of mapping and indexing using any set of random variables. The 

sum of envelopes approach was chosen in order to simplify the many computer 

simulations required by this research. Specifically, it was not necessary to first 

generate random processes whose envelopes are Weibull, Lognormal, and K-dis- 

tributed. 

The following three examples illustrate, respectively, the cases of an easy, 

difficult but resolvable, and difficult but not resolvable problems. These examples 

are discussed throughout this work. 

V.4.2.1 - Example 1 

Consider a surveillance volume containing four homogeneous clutter 

patches, denoted by A, B, C, and D. Clutter patches C and D are contiguous and 

form a single nonhomogeneous clutter patch C/D. Let CNR denote the CL to BN 
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Clutter 
CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 Rayleigh None 117 

B 20 K-distributed 10.0 1423 

C 30 Lognormal 0.01 146 

D 40 Weibull 5.00 146 

Table V.4.1 - CL Patch Parameters 

average power ratio. Table V.4.1 lists the parameters of each CL patch. In addi- 

tion, the BN, which is spread throughout the surveillance volume, is Rayleigh dis- 

tributed 

In this example, 66.07% of the total scanned volume is occupied by BN 

alone. Also, CL patch C contains the same number of cells as CL patch D. Fig- 

ures V.4.1 and V.4.2 show the CL patch boundaries and the three-dimensional en- 

velope plot for the surveillance volume, respectively. The probability density 

functions and histograms of the background noise and clutter patches are shown 

in Fig. V.4.3. Comparing Figures V.4.3.a and b, notice that some of the BN data 

are larger than some of the clutter data of clutter patches A and B. 

The iteration process begins with the threshold set such that 10% of the 

sorted data are below the threshold, i.e BNQP=10%. Although the value of 10% is 

arbitrary, the initial setting of BNQP should be low. With the setting at 10%, the 

contour plot of the quantized volume is shown in Figure V.4.4. In this figure, the 

closed solid line contours surround the BN declared regions and the rest is CL. 

Notice that a lot of BN cells have data exceeding the threshold because the 

threshold was set very low. This results in a lot of small BN regions. For the pur- 

pose of comparison, the boundaries of the original CL patches are shown in dot- 

ted lines. With, NCQ set to 8 and NCC set to 1, the contour plots resulting from 

the first and second-corrections, respectively, are shown in Figures V.4.5 and 

V.4.6. 
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Figure V.4.1 - Boundaries of the CL Regions 

Figure V.4.2 - 3-D Envelope Plot of the Surveillance Volume 
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Figure VA.3 - Probability Density Functions and Histograms of the Back- 
around Noise and Clutter Patches (a) Rayleigh distributed background 

noise, (b) Rayleigh distributed CL A, (c) K-distributed CL B, (d) Lognormal 
distributed CL C, (e) Weibull distributed CL D 
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Figure V.4.4 - Contour plot of the Quantized Volume with BNQP=10% 
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3 c 

'I 

Figure V.4.6 - Contour Plot of the Second-Correction Volume with NCC=1 

As shown in Table V.4.2, when BNQP=10% and (NCQ,NCC)=(8,1), BNC- 

CP=22% which results in IBNQP-BNCCPI=12% being large. A new threshold is 

then chosen so that BNQP=22% which is the previous value obtained for BNCCP. 

The iterative process continues until it is found for BNQP=63.37%, NCQ=5, and 

NCC=3, that IBNQP-BNCCPI is less than 1%. In particular, for these parameter 

values, IBNQP-BNCCPI=I63.37-64.17I<1%. At this stage the assessment passes 

and the iterative process stops. 

Figures V.4.7-9 show the contour plots obtained after quantization, first- 

correction and second-correction, respectively, when BNQP=63.37%, NCQ=5 

and NCC=3. Note first from Figure V.4.7 that even with this setting of BNQP, 

where the threshold is very close to its true value, some of the BN data exceed the 

threshold and form very small CL patches, and some of the CL data in every 

patch falls below the threshold causing holes in the CL patch. Figure V.4.8 shows 

how most of the erroneously declared BN and CL cells have been correctly re- 

classified as CL and BN cells, respectively. Next, the edges are augmented as 
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shown in Figure V.4.9. However, comparing the resulting edge contour to the ideal 

contour shows that not all the edges have been recovered even though the CL 

patches have been identified. 

BNQP (%) Parameter Values 

10.00 
(guess) 

NCQ=8 
NCC=1 

BNCQP=51.56 
BNCCP=22.00 

22.00 
latest BNCCP 

NCQ=8 
NCC=1 

BNCQP=68.28 
BNCCP=50.39 

50.39 
latest BNCCP 

NCQ=7 
NCC=1 

BNCQP=70.93 
BNCCP=63.37 

63.37 
latest BNCCP 

NCQ=5 
NCC=1 

BNCQP=67.35 
BNCCP=59.72 

63.37 same as 
latest BNQP 

NCQ=5 
NCC=3 

BNCQP=67.35 
BNCCP=64.17 

Table V.4.2 - Settinas of BNQP 

Figure V.4.7 - Contour Plot of the Quantized Volume with BNQP=63.37% 

Next, smoothing, edge enhancement and edge detection are performed. 
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Figure V.4.8 - Contour Plot of the First-Correction Volume with NCQ=5 

Figure V.4.9 - Contour Plot of the Second-Correction Volume with NCC=3 
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The results are shown in Figures V.4.10-12, respectively. First, comparing Figures 

V.4.9 and V.4.10, note that smoothing did not result in any change from the 

mapped volume. This is because the regions of Figure V.4.9 do not contain any 

holes whereas the purpose of smoothing is to remove holes. Comparing the edge 

enhanced regions in Figure V.4.11 (in solid lines) to the ideal one (in dotted lines), 

one can see how close the two sets of regions have become. In fact, at the end of 

edge enhancement, 65.54% of the total number of cells are declared BN where as 

ideally the BN percentage of the generated scene was 66.07%. Note that, only 10 

CL cells were misidentified and associated with the BN. Out of these 6 had data 

values under the threshold (BNQP=63.37%). Also, 39 BN cells were misidentified 

and associated with the CL. Of these, 21 had data values above the threshold. 

These result in the ratios 

misidentified CL cells above the threshold 
= 0.22 % (V-4.1) 

and 

total number of CL cells 

misidentified BN cells below threshold 

total number of BN cells 
= 0.50 %, (V-4.2) 

Figure V.4.12 shows the edges in the edge detected volume. 

An assessment of the mapping procedure results in 3 CL patches with the 

number of cells for each patch as listed in Table V.4.3. By comparing Tables V.4.1 

and V.4.3, notice how close are the number of cells. 

Clutter Number of 
cells 

A 113 

C+D 304 

B 1444 

Table V.4.3 - CL Patch Parameters after Assessment 
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Figure VA. 10 - Contour Plot of the Smoothed Volume with NS=7 
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Figure V.4.11 - Contour Plot of the Edae Enhanced Volume 
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Figure V.4. 12 - Contour Plot of the Edge Detected Volume 

V.4.2.2 - Example 2 

Consider, a surveillance volume containing four homogeneous clutter 

patches, denoted by A, B, C, and D, as shown in Figure V.4.13. Clutter patches C 

and D are contiguous and form a single nonhomogeneous clutter patch C/D. Ta- 

ble V.4.4 lists the parameters of each CL patch. In addition, the BN which is 

spread throughout the surveillance volume is Rayleigh distributed. 

Clutter 
CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 K-distributed 1.5 117 

B 10 Weibull 1.0 672 

C 10 Lognormal 1.0 151 

D 10 Rayleigh None 151 

Table V.4.4 - CL Patch Parameters 
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In this example, 79.80% of the total scanned volume is occupied by BN 

alone. Also, CL patch C contains approximately the same number of cells as CL 

patch D. Figures V.4.13 and V.4.14 show the CL patch boundaries and the three- 

dimensional envelope plot for the surveillance volume, respectively. The probabil- 

ity density functions and histograms of the background noise and clutter patches 

are shown in Fig. V.4.15. In this example, not only is the CNR for every patch low 

but the shape parameters of the PDFs from which the CL data have been gener- 

ated are such that the CL in patches A, B, and C is very spiky, as shown by the 

long tails in Figure V.4.15.b, c, and d. The shape of the histograms for CL patches 

A, B, and C is such that a lot of CL data overlap the BN data in value making it dif- 

ficult to separate between the BN and CL patches just by setting a threshold. 

The iteration process begins with the threshold, once again, arbitrarily set 

such that 10% of the sorted data are below the threshold, i.e BNQP=10%. With 

this setting, the contour plot of the quantized volume is shown in Figure V.4.16. In 

this figure, the closed solid line contours surround the BN declared regions and 

the rest is CL. Notice that a lot of BN cells have data exceeding the threshold be- 

cause the threshold was set very low. This results in a lot of small BN regions. For 

the purpose of comparison, the boundaries of the original CL patches are shown 

in dotted lines. With, NCQ set to 8 and NCC set to 1, the contour plots resulting 

from the first and second-corrections, respectively, are shown in Figures V.4.17 

andV.4.18. 

As shown in Table V.4.5, when BNQP=10% and (NCQ,NCC)=(8,1), 

BNCCP=20.59% which results in IBNQP-BNCCPI=10.59% being large. A new 

threshold is then chosen so that BNQP=20.59% which is the previous value ob- 

tained for BNCCP. The iterative process continues until it is found for 

BNQP=75.78%, NCQ=5, and NCC=1, that IBNQP-BNCCPI<1%. In particular, for 

these parameter values IBNQP-BNCCPI=I75.78-75.31I<1%. At this stage the as- 

sessment passes and the iterative process stops. 
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Figure V.4.13 - Boundaries of the CL Regions 

Figure V.4.14- 3-D Plot of the Surveillance Volume 
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Figure V.4.16 - Contour Plot of the Quantized Volume with BNQP=10% 
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F/qt/re K4.7 7 - Contour Plot of the First-Correction Volume with NCQ=8 
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Figure V.4.18 - Contour Plot of the Second-Correction Volume with NCC=1 

BNQP (%) Parameter Values 

10.00 
(guess) 

NCQ=8 
NCC=1 

BNCQP=56.35 
BNCCP=20.59 

20.59 
latest BNCCP 

NCQ=8 
NCC=1 

BNCQP=77.43 
BNCCP=48.04 

48.04 
latest BNCCP 

NCQ=7 
NCC=1 

BNCQP=84.11 
BNCCP=72.30 

72.30 
latest BNCCP 

NCQ=5 
NCC=1 

BNCQP=82.17 
BNCCP=73.94 

72.30 same as 
latest BNQP 

NCQ=5 
NCC=3 

BNCQP=82.17 
BNCCP=79.26 

75.78 
half way rule 

NCQ=5 
NCC=1 

BNCQP=83.50 
BNCCP=75.31 

Table V.4.5 - Settinas of BNQP 

Figures V.4.19-21 show the contour plots obtained after quantization, first- 
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correction and second-correction, respectively, when BNQP=75.78%, NCQ=5 

and NCC=1. First, note from Figure V.4.19 that even with this setting of BNQP 

where the threshold is very close to its true value, a lot of BN data exceed the 

threshold and form very small CL patches, and also, a lot of the CL data in every 

patch falls below the threshold causing holes in the CL patch. Figure V.4.20 

shows how most of the erroneously declared BN and CL cells have been correctly 

reclassified as CL and BN cells, respectively. Next, the edges are augmented as 

shown in Figure V.4.21. However, comparing the resulting edge contour to the 

ideal one shows that not all the edges have been completely recovered even 

though the CL patches have been identified. Also, notice in this case that the CL 

patches are not homogeneous and contain holes in them. 

Next, smoothing, edge enhancement and edge detection are performed. 

The results are shown in Figures V.4.22-24, respectively. First, comparing Figures 

V.4.21 and V.4.22, note that the smoothing reclassified the BN declared cells 

causing holes inside the CL as CL cells. Comparing the edge enhanced regions in 

Figure V.4.23 (in solid lines) to the ideal one (in dotted lines), one can see how 

close the two sets of regions have become. In fact, at the end of edge enhance- 

ment, 80.31% of the total number of cells are declared BN where as ideally the 

BN percentage of the generated scene was 79.80%. Note that, 86 CL cells were 

misidentified and associated with the BN. Out of these 72 had data values under 

the threshold (BNQP=79.59%). Also, 58 BN cells were misidentified and associat- 

ed with the CL. Of these, 32 had data values above the threshold. These result in 

misidentified CL cells above the threshold 
 = 1.28 % (V-4.3) 

total number of CL cells 

misidentified BN cells below the threshold 
 = 0.60 %. (V-4.4) 

total number of BN cells 

Figure V.4.24 shows the edges of the edge detected volume. 
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Figure V.4.19 - Contour Plot of the Quantized Volume with BNQP=75.78% 

Figure V.4.20 - Contour Plot of the First-Correction Volume with NCQ=5 
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Figure V.4.21 - Contour Plot of the Second-Correction Volume with NCC=1 

Figure V.4.22 - Contour Plot of the Smoothed Volume with NS=7 
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Figure V.4.23- Contour Plot of the Edge Enhanced Volume 

Figure V.4.24 - Contour Plot of the Edge Detected Volume 
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An assessment of the mapping procedure results in 3 CL patches with the 

number of cells for each patch as listed in Table V.4.6. By comparing Tables V.4.4 

and V.4.6, notice how close are the number of cells. 

Clutter 
Number of 

cells 

A 133 

C+D 308 

B 622 

Table V.4.6 - CL Patch Parameters after Assessment 

V.4.2.3 - Example 3 

Consider a surveillance volume containing four homogeneous clutter 

patches, denoted by A, B, C, and D, as shown in Figure V.4.25. Clutter patches C 

and D are contiguous and form a single nonhomogeneous clutter patch C/D. Ta- 

ble V.4.7 lists the parameters of each CL patch. In addition, the BN is Rayleigh 

distributed. 

Clutter CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 Rayleigh None 117 

B 10 K-distributed 10.0 298 

C 10 Lognormal 0.01 161 

D 10 Weibull 10.0 162 

Table V.4.7 - CL Patch Parameters 

In this example, 86.33% of the total scanned volume is occupied by BN 

alone. Also, CL patch C contains approximately the same number of cells as CL 

patch D. Figures V.4.25 and V.4.26 show the CL patch boundaries and the three- 

dimensional plot of the surveillance volume, respectively. Notice in Figure V.4.26 

how small are some of the CL data compared to the BN data, and how large are 
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some of the BN data compared to the CL data. This is due to the fact that the CNR 

for each patch is low. (Assuming a SNR of 10dB in order to obtain reasonable de- 

tections in the absence of CL, CNR=10dB implies equal signal and CL powers. 

For values of CNR less than 10dB, the signal would be larger than CL and no 

WSC would be available). In this example the mapping procedure is tested on a 

situation where the CNR for every CL patch is low. The probability density func- 

tions and histograms of the background noise and clutter patches are shown in 

Fig. V.4.27. Comparing the histograms in Figures V.4.27.a, b, c, and e, notice that 

some of the BN data are higher than some of the CL data in patches A, B, and D. 

Also, observe that overlapping between the histograms of the BN with CL patches 

A and B is noticeable. 

The iteration process begins with the threshold, once again, set such that 

10% of the sorted data are below the threshold, i.e BNQP=10%. With this setting, 

the contour plot of the quantized volume is shown in Figure V.4.28. In this figure, 

the closed solid line contours surround the BN declared regions and the rest is 

CL. Notice that a lot of BN cells have data that exceed the threshold because the 

threshold was set very low. This results in a lot of small BN regions. For purpose 

of comparison, the boundaries of the original CL patches are shown in dotted 

lines. With NCQ set to 8 and NCC set to 1, the contour plots resulting from the first 

and second-corrections are shown in Figures V.4.29 and V.4.30, respectively. 

As shown in Table V.4.8, when BNQP=10% and (NCQ,NCC)=(8,1), 

BNCCP=20.04% which results in IBNQP-BNCCPI=10.04% being large. A new 

threshold is then chosen so that BNQP=20.04% which is the previous value ob- 

tained for BNCCP. The iterative process continues until it is found for 

BNQP=84.70%, NCQ=5, and NCC=3, that IBNQP-BNCCPI<1%. For these pa- 

rameter values, IBNQP-BNCCPI=I84.70-85.46I<1%. At this stage the assessment 

passes and the iterative process stops. 
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Figures V.4.31-33 show the contour plots obtained after quantization, first- 

correction and second-correction, respectively, when BNQP=84.70%, NCQ=5 

and NCC=3. First, note from Figure V.4.31 that even with this setting of BNQP, 

where the threshold is very close to its true value some of the BN data exceed the 

threshold and form very small CL patches, and some of the CL data in every 

patch falls below the threshold causing holes in the CL patch. Figure V.4.32 

shows how most of the erroneously declared BN and CL cells have been correctly 

reclassified as BN and CL cells, respectively. Next, the edges are augmented as 

shown in Figure V.4.33. However, comparing the resulting contour to the ideal one 

shows that even though the CL patches have been identified, the edges are not 

completely recovered. 

BNQP (%) Parameter Values 

10.00 
(guess) 

NCQ=8 
NCC=1 

BNCQP=56.17 
BNCCP=20.04 

20.04 
latest BNCCP 

NCQ=8 
NCC=1 

BNCQP=77.98 
BNCCP=43.78 

43.78 
latest BNCCP 

NCQ=8 
NCC=1 

BNCQP=90.78 
BNCCP=82.65 

82.65 
latest BNCCP 

NCQ=7 
NCC=1 

BNCQP=91.17 
BNCCP=84.70 

84.70 
latest BNCCP 

NCQ=5 
NCC=1 

BNCQP=87.61 
BNCCP=82.00 

84.70 same as 
latest BNQP 

NCQ=5 
NCC=3 

BNCQP=87.61 
BNCCP=85.46 

Table V.4.8 - Settinas of BNQP 

86 



Figure V.4.25 - Boundaries of the CL Regions 

Figure V.4.26 - 3-D Plot of the Surveillance Volume 
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Figure V.4.27 - Probability Density Functions and Histograms of the Back- 
around Noise and Clutter Patches (a) Rayleigh distributed background 

noise, (b) Rayleigh distributed CL A, (c) K-distributed CL B, (d) Lognormal 
distributed CL C, (e) Weibull distributed CL D 
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Figure V.4.28 - Contour Plot of the Quantized Volume with BNQP=10% 

Figure V.4.29 - Contour Plot of the First-Correction Volume with NCQ=8 
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Next, smoothing, edge enhancement and edge detection are performed. 

The results are shown in Figures V.4.34-36, respectively. First, comparing Figures 

V.4.33 and V.4.34, note that smoothing did not result in any change from the 

mapped volume. This is because the regions of Figure V.4.33 do not contain any 

holes whereas the purpose of smoothing is to remove holes. Comparing the edge 

enhanced regions in Figure V.4.35(in solid lines) to the ideal one (in dotted lines), 

one can see how close the two sets of regions have become. In fact, at the end of 

edge enhancement, 85.72% of the total number of cells are declared BN where as 

ideally the BN percentage of the generated scene was 86.33%. Note that only 6 

Cl_ cells were misidentified and associated with the BN. Out of these 5 had data 

values under the threshold (BNQP=84.70%). Also, 39 BN cells were misidentified 

and associated with the CL Of these, 10 had data values above the threshold. 

These result in 
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misidentified CL cells above the threshold 
= 0.13% (V-4.5) 

total number of CL cells 

and 

misidentified BN cells below the threshold 
= 0.62 %. (V-4.6) 

total number of BN cells 

Figure V.4.36 shows the edges of the edge detected volume. 

An assessment of the mapping procedure results in 3 CL patches with the 

number of cells for each patch as listed in Table V.4.9. By comparing Tables V.4.7 

and V.4.9, notice how close are the number of cells. 
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Figure V.4.31 - Contour Plot of the Quantized Volume with BNQP=84.70% 
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Figure VA.32 - Contour Plot of the First-Correction Volume with NCQ=5 

Figure V.4.33 - Contour Plot of the Second-Correction Volume with NCC=3 
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Figure V.4.34 - Contour Plot of the Smoothed Volume with NS=7 

Figure V.4.35 - Contour Plot of the Edge Enhanced Volume 
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Figure V.4.36 - Contour Plot of the Edae Detected Volume 

Clutter Number of 
cells 

A 124 

C+D 341 

B 306 

Table V.4.9 - CL patch parameters after assessment 

V.5 - Convergence of the Mapping Procedure 

V.5.1 - Introduction 

Consider an image containing two regions where the PDFs for each region 

have nicely separated peaks as shown in Fig. V.5.1 (a) and the overall PDF for 

both regions is as shown in Fig. V.5.1 (b). In practice, a histogram is generated 

that approximates the overall PDF. Note that the individual PDF of each region is 
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unknown. However, because the individual PDFs are adequately separated, the 

overall histogram will be bimodal and separation between the two regions is readi- 

ly obtained by placing the threshold T1 between the two peaks as shown in Fig. 

V.5.1 (b). Cells with data values lower than T1 are declared as belonging to region 

1, while cells with data values higher than T1 are declared as belonging to region 

2. 

Now consider the slightly overlapping PDFs as shown in Figs. V.5.2 (a) and 

(b). Although the overall PDF of the data regions is again bimodal, there is now 

noticeable overlap between the tails. Once again, a threshold T1 is used to sepa- 

rate between the two regions. However, now a significant number of cells will be 

misclassified and corrections should be made to the extent possible. 

PDF of Region 1 PDF of Region 21 

■zmimsm 

Overall PDF of Regions 1 & 2 

mm 
m ill 

Figure V.5.1 - Non-overlapping PDFs of Two Distinct Regions 
fa) Individual PDFs for Each Region, fb) Overall PDF for Both Regions 
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PDF of Region 1 PDF of Region2 

Overall PDF of Regions 1 & 2 

Figure V.5.2 - Overlapping PDFs of Two Distinct Regions with a Small 

Overlapping Area, 
(a) Individual PDFs for Each Region, (b) Overall PDF for Both Regions 

Fig. V.5.3 shows a more complicated case where the two regions now have 

major overlap between the tails. The overall PDF of the data from both regions is 

now unimodal and it is not possible to choose a threshold that separates the two 

regions without significant misclassifications. 

In this section, it is shown that the mapping procedure described previously 

can adaptively choose a threshold and correct misclassifications so as to obtain 

good approximations to the PDFs of each region. The mapping procedure en- 

ables the region having the smallest envelopes, on average, to be separated from 

the remaining regions. By successive application of the mapping procedure, it is 

possible to first separate out the region with the smallest envelopes, followed by 

the region with the next smallest envelopes, and so forth. In the first application of 

the mapping procedure to a radar surveillance volume, region 1 consists of the 

BN while region 2 consists of the entire set of CL patches. 
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111!^ 
Figure V.5.3 - Overlapping PDFs of Two Distinct Regions 

with a Big Overlapping Area 
(a) Individual PDFs for Each Region, (b) Overall PDF for Both Regions 

V.5.2 - Separation Between BN and CL Patches 

An important observation relative to selection of the threshold, via specifi- 

cation of BNQP, is made when considering a surveillance volume that consists 

only of BN. The objective is to determine the range of threshold settings for which 

the mapping procedure declares the entire surveillance volume as BN. For this 

purpose, we consider the situation where the entire scene consists of BN and the 

data are generated from a Rayleigh PDF. 

For the scenario under consideration, the whole scene is homogeneous 

BN and the mapping, if done correctly, should identify the entire volume as a sin- 

gle BN region. Table V.5.1 shows the values of BNCCP obtained for different set- 
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BNQP{%) Threshold Value Bitf€CP{%) 

10 0.32 19.48 

20 0.47 42.80 

30 0.59 71.61 

40 0.72 89.06 

50 0.84 96.26 

60 0.95 99.85 

70 1.10 100.00 

80 1.29 100.00 

90 1.53 100.00 

Table V.5.1 - BN Percentages and Threshold Values Corresponding to the 
Ravleioh Distributed BN 

tings of BNQP. Notice from the table that a single region results only when the 

threshold exceeds 70% of the data. As shown in Fig.V.5.4, the mapping proce- 

dure correctly reclassifies all cells corresponding to values above the threshold as 

0.5- 

3.5 

70% threshold      \       90% threshold 

80% threshold 

Figure V.5.4 - PDF of the Ravleigh Distributed Patch 
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long as the threshold is sufficiently towards the tail of the PDF. In general, it is ob- 

served that the mapping procedure works best provided the threshold is ade- 

quately positioned towards the tail of the PDF. 

Another parameter that arises in the mapping procedure is BNCQP which 

denotes the percentage of background noise cells after the first-correction relative 

to the total number of cells in the surveillance volume. To gain insight into the rela- 

tionship between BNQP, BNCQP and BNCCP, we return to example number 2, 

previously discussed in Section V.4.2.2, where a lot of CL patch data overlap with 

the BN data in a manner similar to Figure V.5.6. In Table V.5.2, different values of 

these parameters are tabulated as the mapping procedure converges to the end 

result. If the test cell is to be declared as CL, recall that at least NCQ and NCC 

neighboring cells are required to be declared as CL in the QV and CQV during the 

first and second-corrections, respectively. 

Table V.5.3 tracks the mapping procedure during the first-correction stage 

(denoted by QV->CQV), during the second-correction stage (denoted by 

CQV-»CCV) and at the end of the two correction stages (denoted by QV^CCV). 

All percentages given are with respect to the total number of cells in the surveil- 

lance volume. Initially, the threshold is set such that BNQP percent of the total 

number of cells are below the threshold. The first-correction stage requires that at 

least NCQ of the neighboring cells be above the threshold if the test cell is to be 

classified as a CL cell. Under the column headed by QV-»CQV, (CL-* BN)! de- 

notes the percentage of the total number of cells in the surveillance volume that 

were above the threshold but are reclassified as BN cells during the first-correc- 

tion stage. Similarly, (BN^CL)-) denotes the percentage of the total number of 

cells in the surveillance volume that were below the threshold but are reclassified 

as CL cells after the first-correction stage. Note that the difference, (CL-* BN)r 

(BN^CL)i, is the net percentage of the total number of cells in the surveillance 

volume that have been reclassified from CL to BN cells after the first-correction 

stage.Similar statements apply for (1) the second-correction stage to (CL-> BN)2, 
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(BN-*CL)2, and (CL-* BN)2- (BN-»CL)2 under the column headed by 

CQV-*CCV and (2) for the combined results of the two correction stages to 

(CL-> BN),  (BN-»CL), and (CL-» BN)- (BN-*CL) under the column headed by 

QV-*CCV. Note that 

(CL-* BN)- (BN-*CL) = [(CL-* BN)r (BN-^CL)^* 

[(CL-* BN)2- (BN-*CL)2 ]. (V.5-1) 

BNQP (%) 
(NCQJSfCC) 

BNCQP{%) BNCCP (%) IBNCQP-BNCCPJ IBNCCP-BNQPI 

10.00 (8,1) 56.35 20.59 35.76 10.59 

20.59 (8,1) 77.43 48.04 29.39 27.45 

48.04 (7,1) 84.11 72.30 11.81 24.26 

72.30(5,1) 82.17 73.94 8.23 1.64 

72.30 (5,3) 82.17 79.26 2.91 6.96 

75.78 (5,1) 83.50 75.31 8.19 0.27 

Table V.5.2 - BN Percentages of Example 2 of Section V.4.2.2 

BNQP(%) 
(NCQ.NCC) 

QV-»CQV CQV-fCCV QV-*CCY 

(CL-*BN)j (BN-»CL>, {CL-*BN)2 <BN-K:L)2 {(:L<*BN) <BN«*CL) 

10.00(8,1) 49.83 3.46 3.70 39.46 10.61 0.00 

20.59(8,1) 59.35 2.48 2.96 32.35 27.48 0.00 

48.04 (7,1) 38.07 1.98 0.61 12.43 27.48 3.20 

72.30(5,1) 13.93 4.04 0.09 8.31 9.63 7.96 

72.30 (5,3) 13.93 4.04 0.65 3.56 11.31 4.33 

75.78 (5,1) 11.85 4.11 0.04 8.22 7.59 8.04 

Table V.5.3 - CL-to-BN and BN-to-CL Transitions in Example 2 of 
Section V.4.2.2 
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Also, 

BNCQP-BNQP = (CL-* BN)r (BN-frCL)! 

BNCCP-BNCQP = (CL-* BN)2- (BN-»CL)2 

BNCCP-BNQP  = (CL-* BN)- (BN-*CL) (V.5.2) 

= [BNCQP-BNQP]+[BNCCP-BNCQP]. 

The mapping procedure involves iterations which continue until the differ- 

ence BNCCP-BNQP is sufficiently small. From Eq.(V.5-2), it is seen that conver- 

gence results when 

(CL-* BN) « (BN-*CL). (V.5-3) 

Consequently, near convergence, the combined effect of the two correction stag- 

es should result in the percentage of CL cells reclassified as BN cells being ap- 

proximately equal to the percentage of BN cells reclassified as CL cells. 

Alternatively, from Eq.(V.5.2), convergence results when 

[BNCQP-BNQP] «- [BNCCP-BNCQP] (V.5-4) 

or equivalently, when 

[(CL-> BN)r (BN-^CL)!] «- [(CL-> BN)2- (BN->CL)2 ].   (V.5-5) 

Thus, near convergence, the net percentage of cells that have been reclassified 

from CL to BN cells during the first-correction stage should approximately equal 

the negative of the net percentage of cells that have been reclassified from CL to 

BN cells during the second-correction stage. These observations are helpful in 

coming up with rules for determining the next setting of the parameters in the iter- 

ation process. 

By way of example, when BNQP=10%, the threshold is such that 10% of 

the total number of cells in the surveillance volume fall below the threshold while 

90% fall above. The situation is pictured in Fig. V.5.5 (b). With reference to Table 

V.5.3, when NCQ=8, 49.83% of the total cells in the surveillance volume which 
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PDF of Bist region 
PDF of CL patches 

III 
la- :*::»?*:: 

Overall PDF of 8N regions and CL patches 

10% threshold 

Figure V.5.5 - Overlapping PDFs ofBN Region and CL Patches 
fa) Individual PDFs for each Region, (b) Overall PDF for both Regions 

were classified as CL cells because they were above the threshold, are reclassi- 

fied as BN cells after the first-correction stage whereas 3.46%, which were classi- 

fied as BN cells because they were below the threshold, are reclassified as CL 

cells. The net percentage of cells reclassified as BN is 49.83%-3.46%=46.37%. 

For the second-correction stage, with NCC=1, 3.70% of the total cells in the CQV 

surveillance volume, which were classified as CL cells after the first-correction 

stage, are reclassified as BN cells because they don't have at least one neighbor- 

ing CL cell. Similarly, 39.46% of the total cells in the CQV surveillance volume, 

which were classified as BN cells, are reclassified as CL cells because they have 

one or more neighboring CL cells. The last row of Table V.5.3 corresponds to a sit- 

uation close to convergence. When the threshold is set such that 75.78% of the 
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total number of cells in the surveillance volume are below the threshold, the com- 

bined effect of the two correction stages results in 

(CL-> BN)=7.59% « (BN->CL)=8.04%. (V.5-6) 

Similarly, 

[(CL-> BN)r (BN^CL)1]=8.74% « - [(CL-> BN)2- (BN-*CL)2 ]=8.18%.     (V.5-7) 

Equivalently, from Table V.5.2, 

[BNCQP-BNQP]=7.72% «- [BNCCP-BNCQP]=8.19%.     (V.5.8) 

Insight into the manner by which the PDF's of BN and CL are modified dur- 

ing the correction stages is obtained by examining pertinent amplitude histograms 

for the various surveillance volumes QV, CQV, and CCV. The overall amplitude 

histogram for the generated data of the QV volume is shown in Fig. V.5.6 (a). Note 

that the histogram is unimodal and it is not possible to distinguish between the BN 

and the CL cells. In fact, by just looking at the histogram one would not suspect 

that more than one region exists. When the threshold is set at 0.37 such that 

BNQP=10%, many of the BN cells are classified as CL due to the low threshold. 

The amplitude histograms for the BN and CL cells in the QV volume are shown in 

Figs. V.5.6 (b) and (c), respectively. Note that the BN histogram is truncated to a 

cell amplitude of 0.35. 

The amplitude histograms for the CQV volume resulting from the first-cor- 

rection stage are shown in Fig. V.5.6 (d) and (e). Comparing Fig. V.5.6 (d) with 

Fig. V.5.6 (b), it is seen that many cells with amplitudes above the threshold value 

of 0.35 have been reclassified as BN. The amplitude histograms for the CCV vol- 

ume resulting from the second-correction stage are shown in Figs. V.5.6 (f) and 

(g). Note the further enhancement of the right tail of the BN amplitude histogram. 

This enhancement is due to the image processing and is in spite of the low thresh- 

old value. 
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Figure V.5.6- Region Histograms Corresponding to BNQP=10%. 
NCQ=8 and NCC=1 (a) Overall histogram of the generated data, (b) BN 

histogram at the quantization stage, (c) CL histogram at the 
quantization stage 

104 



Figure V.5.6 - Region Histograms Corresponding to BNQP=10%. 
NCQ=8 and NCC=1 (d) BN histogram at the first-correction stage, (e) CL 
histogram at the first-correction stage, (f) BN histogram at the second-cor- 

rection stage, (g) CL histogram at the second-correction stage 
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During the iteration process the threshold is gradually increased and con- 

verges to a value in the vicinity of 1.51 for which BNQP=75.78%. In Fig. V.5.7 (a), 

this threshold is shown in the overall histogram for the QV volume. The amplitude 

histograms for the BN and CL cells in the QV volume are shown in Fig. V.5.7 (b) 

and (c), respectively. Note that the amplitudes of the BN cells fall below 1.51 

whereas those of the CL cells fall above 1.51. The results of the first and second- 

correction stages and the edge enhancement stage are shown in Figs. V.5.7 (d) 

and (e), Figs. V.5.7 (f) and (g), and Figs. V.5.8 (h) and (i), respectively. To provide 

Figure V.5.7 - Region Histograms Corresponding to BNQP=75.78%. 
NCQ=5. NCC=1 (a) Overall histogram of the generated data, (b) BN histo- 
gram at the quantization stage, (c) CL histogram at the quantization stage 
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Figure V.5.7- Region Histograms Corresponding to BNQP=75.78%. 
NCQ=5. NCC=1 (d) BN histogram at the first-correction stage, (e) CL histo- 
gram at the first-correction stage, (f) BN histogram at the second-correction 

stage, (g) CL histogram at the second-correction stage 

a basis for comparison, the actual BN and CL amplitude histograms are shown in 

Figs V.5.7 (j) and (k). The strong similarity between the amplitude histograms of 

Figs. V.5.7 (h) and (i) and those of Figs. V.5.7 (j) and (k) indicates that the map- 

ping procedure has converged satisfactorily. Note how nicely the final histograms 

of Figs. V.5.7 (h) and (i) have evolved from the original histograms of Figs. V.5.6 

(b) and (c). 

107 



Figure V.5.7- Region Histograms Corresponding to BNQP=75.78%. 
NCQ=5. NCC=1 (h) BN histogram at the mapped volume, (i) CL histogram 

at the mapped volume, (J) Actual BN histogram of the generated data, 
(k) Actual CL histogram at the generated data 

In general, the first-correction stage begins to establish the right tail of the 

BN amplitude histogram and reshape the CL amplitude histogram by reclassifying 

mislabelled BN cells. The second-correction stage reshapes both the bodies and 

the tails of the BN and CL histograms by recovering the CL edges. 
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V.6 ■ Extension of the Mapping Procedure to R/A/D Cells 

Assume that the dwell time is P=M>1. In this case, an FFT is possible and 

the block diagram of the preprocessing and mapping of data is as shown in Fig. 

IV.2.1. As explained in Section IV.2, the mapping consists of two stages. The first 

mapping stage operates on R/A cells while the second one operates on R/A/D 

cells. 

Once the R/A surveillance volume has been mapped into BN and CL cells, 

as explained in Section V.3, the second mapping stage starts by declaring as BN 

cells all R/A/D cells corresponding to R/A cells previously declared as BN in the 

first mapping stage. Meanwhile, the FFT magnitudes of R/A cells previously de- 

clared as CL in the first mapping stage are obtained from the preprocessing 

blocks to enable classification of the remaining R/A/D cells as either BN or CL 

cells. 

Note that a row of range cells, having a fixed azimuth, in the R/A volume 

corresponds to a R/D plane in the R/A/D volume. Also, a row of azimuth cells, 

having a fixed range in the R/A volume corresponds to an A/D plane in the R/A/D 

volume. These are illustrated in Figs. V.6,1 (a) and (b), respectively. Hence, range 

and azimuth rows of BN declared cells in the R/A volume correspond to a R/D and 

A/D planes, respectively, of BN declared cells in the R/A/D volume and no addi- 

tional processing is needed for such a plane. 

Mapping of the R/A/D volume is done on a plane-by-plane basis. Either a 

R/D plane (with parameterized azimuth) or an A/D plane (with parameterized 

range) can be considered. The best choice consists of that which would involve 

the least processing. For example, if there are more R/D BN declared planes than 

A/D BN declared planes in the R/A/D volume, the best choice in this case would 

then be to process R/D planes, and vice-versa. 

Assume that R/D plane-by-plane processing has been chosen. The map- 

ping procedure becomes a two-dimensional problem, and, thresholding/quantiza- 
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tion, first-correction, second-correction, smoothing, edge-enhancement and edge 

detection are performed as explained in Section V.3. 

When the second mapping stage is done, the R/A/D volume will consist of 

a R/A/D BN region and R/A/D CL patches in the form of three-dimensional ob- 

jects. 

V.7 - Conclusion 

' In summary, a mapping procedure was presented in chapter V that allows 

for distinguishing between BN and CL patches. The procedure was illustrated with 

examples that show how the mapping procedure works, even under very hard 

conditions as in the example of Section V.4.2.2, where the histograms of the CL 

patches and BN region overlap to the extent that the total histogram is unimodal 

such that one wouldn't suspect the presence of more than one distribution. 

It is to be noticed that there was no discussion in this chapter of the rules 

that govern the choice of the parameters BNQP, NCQ, and NCC. These rules will 

be introduced later in Chapter VII along with the role of IPUS in the mapping pro- 

cedure. 
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Chapter VI 

Indexing Procedure 

VI.l - Introduction 

As explained in Table n.3.1, and shown in the examples of Section V.4.2, 

the mapping procedure subdivides the surveillance volume into BN regions and 

CL patches and labels the cells in the surveillance volume as either BN or CL 

cells. 

In this research it is assumed that the BN is white and sufficiently weaker 

than a desired target return such that the SSC is applicable and detections can be 

obtained using the conventional Gaussian receiver with little degradation in per- 

formance. Consequently, no additional indexing is needed for the BN cells. 

On the other hand, more processing is needed on CL cells before the de- 

tection process can begin. This is because (1) CL patches may be nonhomoge- 

neous containing two or more CL subpatches, (2) in each CL patch, or CL 

subpatch if it exists, either the SSC, WSC, or ISC will apply, (3) for each WSC CL 

patch or subpatch, its probability density function (PDF) must be approximated. 

Also, for each ISC CL patch or subpatch, its covariance matrix must be approxi- 

mated. All these steps need to be implemented during the indexing stage and are 

explained in this chapter. 

The indexing procedure starts with an assessment stage by which (1) CL 

patches and the BN region are identified by assigning a unique identification num- 

ber to all cells within a CL patch or BN region, and (2) CNR and number of cells in 

each CL patch are determined. The next stage, called the subpatch investigation 

stage, consists of determining the existence of CL subpatches. If CL subpatches 

are found, the assessment stage is then carried out, once again, for the entire sur- 

veillance volume. The final stage of the indexing procedure is the PDF approxima- 
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tion stage where the PDF for each WSC CL patch is approximated. The 

assessment, CL subpatch investigation and PDF approximation stages are ex- 

plained next. 

VI.2 - Assessment Stage 

As explained above, assessment is carried out (1) to assign a unique num- 

ber to the BN region and each CL patch, (2) to estimate the CNR for each CL 

patch, and (3) to classify CL patches as either SSC, WSC or ISC regions. 

VI.2.1 - Identification of the BN Region and CL Patches 

When the mapping is completed, recall that the mapped volume has a val- 

ue of 0 assigned to BN cells and a value of 1 assigned to the CL cells. Therefore, 

nothing more needs to be done for the BN region as all of its cells are already in- 

dexed by the number 0. On the other hand, all cells in each of the CL patches are 

assigned a value of 1. Thus, a numbering procedure has to be implemented to en- 

able the computer to distinguish between the various CL patches. The approach 

taken in this work is to assign every cell in the first patch investigated the number 

1, every cell in the second patch investigated the number 2, and so on until all 

patches have been indexed with consecutive integers. In this way, all cells in each 

CL patch are assigned a unique number. 

If a cell belongs to a new CL patch, the key to the numbering is the ability to 

recognize this fact. This is done by considering a mask of 5 cells as shown in Fig- 

ure VI.2.1 where the white cells represent neighboring cells and the shaded one is 

the test cell to be numbered. Since the surveillance volume has previously been 

augmented by adding rows of BN to its left, top, right, and bottom edges, there is 

no problem positioning this mask for each test cell in the original unaugmented 

surveillance volume. 

Let M(i,j) be the value assigned to the ijth cell in the mapped volume where, 
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Figure VI.2.1 - Mask Used in Numbering 

M(IJ) = 

p  0 if ijth cell is declared as BN 

L. 1 if ijth cell is declared as CL 

(VI.2-1) 

Assuming that the test cell to be numbered is the jkth cell in the original unaug- 

mented surveillance volume, let the assigned number be denoted by N(j,k). Also, 

let G denote the unique number assigned to the CL patch previously investigated 

and H the minimum positive number assigned to the neighboring cells. Then, by 

definition, we have that 

N(j,k) = 

0 if M(j,k)=0 

(G+1) if all neighboring cells are numbered 0 (VI.2-2) 

H if at least one of the neighboring cells is numbered nonzero. 
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The number G is incremented by unity whenever a new CL patch is detected. 

Because a CL patch boundary may be sharply shaped, as shown in the ex- 

ample of Figure VI.2.2, the numbering procedure may end up by assigning two 

different numbers for different cells of the same CL patch. This anomaly is avoid- 

ed by further testing the neighboring cells of the cell to be numbered as follows: 

1 - For the given cell to be numbered, look up the numbers assigned to the 

set of neighboring cells G-1,k-1), (j,k-1), G+t.k-1), and (j-1,k), 

2 - Take the minimum nonzero number of those in step 1, 

3 - Reassign all nonzero numbered neighboring cells the minimum nonzero 

number from step 2, 

4 - Revisit all the cells in the surveillance volume that have previously been 

numbered. If any cell is assigned a nonzero number identical to one of those in 

step 1, reassign that cell the minimum nonzero number of step 2. 

For example, with respect to Figure VI.2.2, the above steps have the effect 

of assigning a value of 1 to all cells of the CL patch shown. 

Once numbering is completed, the BN cells are assigned a value of 0, and 

every CL patch is assigned a unique positive number. 

Figure VI.2.2 - Example of a Sharply Shaped Boundary 
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VI.2.2 - Computation of CNRs 
—       _      _  2 

The CNR for CL patch k is given by [(dk-n)/n] , expressed in dB, 

where dk is the sample average of the CL plus BN values distributed over CL 

patch k and n is the sample average of the BN values distributed over the BN re- 

gion. 

VI.23 - Classification of CL Patches 

Throughout this work the minimum target signal-to-noise ratio (SNR) is as- 

sumed to be 10 dB so that targets are readily detected when they appear in the 

BN region. The classification of a CL patch as a SSC, WSC, or ISC then depends 

on its CNR. Ranges of the CNR for the strong, weak, and intermediate signal cas- 

es are given in Table VI.2.1. The bounds for this work were chosen based on ex- 

perience gained through computer simulations. For example, when CNR=8 dB, 

the average signal power is 2 dB larger than the average CL power. Nevertheless, 

non-Gaussian CL tends to be spiky. Consequently, even when CNR=8 dB, there 

are regions where the CL is much larger than the signal. Consequently, 8 dB is 

chosen as the lower bound on CNR for WSC. Also, when CNR=5 dB, the average 

signal power is 5 dB larger than the average CL power. At this level, the CL typi- 

cally dominates the signal at only a few isolated points. Thus, 5 dB is chosen as 

the upper bound on CNR for SSC. ISC is defined to fall between the two bounds. 

Classification CNR 

SSC CNR < 5 dB 

ISC 5 dB < CNR< 8 dB 

WSC CNR > 8 dB 

Table VI.2.1 - Classification of a CL Patch 

When a CL patch is classified as SSC, the returns from this patch are pro- 

cessed by the same detector as that used for the BN region. Only the threshold 

needs to be adjusted properly. When a CL patch is classified as ISC, the general- 
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ized likelihood ratio test [19] is used to process the associated returns. Finally, 

when a CL patch is classified as WSC, it is necessary to determine the associated 

PDF so that the appropriate processor can be selected from the library of weak 

signal detectors. 

VI3 - CL Subpatch Investigation Stage 

Recall that mapping consists of appropriately selecting a threshold to dis- 

tinguish between BN and CL patches using only the assumption that the BN pow- 

er, on average, is smaller than the CL power. This same approach may be used, 

once again to extract that CL subpatch with the lowest average power from a set 

of contiguous CL subpatches of higher average powers in a given CL patch. In 

this case, the CL patch containing CL subpatches will be viewed as a volume con- 

taining a CL subpatch region with low average power and a set of subpatches with 

higher average powers occupying the rest of the CL patch area as shown in Fig- 

ure VI.3.1. 

The mapping procedure, therefore, is used to extract the CL subpatch with 

the lowest average power from among the remaining CL subpatches in a given 

CL patch. Because numbering has already labelled each patch with a unique 

number it is straight-forward for the computer program to select a patch and check 

for the presence of subpatches in it. 

i CL subpatch . 
with lowest power Other CL 

subpatches! 

Figure VI.3.1 - Example a CL Patch Containing CL Subpatches 
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For each CL patch, the mapping procedure is performed iteratively until it is 

hypothesized that every subpatch in a given CL patch is homogeneous and can- 

not be partitioned further. After ail CL subpatches have been extracted, the sur- 

veillance volume consists of a BN region and clutter patches that may or may not 

be contiguous. Notice that every CL subpatch is now referred to as a CL patch. 

If CL subpatches are found to exist, assessment is performed once again 

to (1) allocate, or reallocate, a number for every CL patch in the surveillance vol- 

ume, (2) compute the CNR for every patch, and (3) classify the CL patches as 

SSC, WSC, or ISC regions. Assessment and subpatch investigation are de- 

scribed by the flow charts of Figures VI.3.2 and VI.3.3. Figure VI.3.4 shows the 

order in which assessment and CL subpatch investigation are performed. 

Once WSC regions have been identified and numbered, their respective 

PDFs are approximated as explained in the next section. 

VI.4 - PDF Approximation of WSC CL Patches 

The PDF approximation of WSC CL patches follows two steps. During the 

first step, referred to as test cell selection, a WSC CL patch is selected from 

among the WSC declared CL patches, a set of test cells is chosen in that CL 

patch, and reference cells are identified for each test cell that belong to the select- 

ed CL patch and that are the closest to the test cell. In the second step, referred to 

as PDF approximation, the data of the reference cells are processed by the Oz- 

turk algorithm so that the PDF of the test cell can be approximated. The process 

iterates for the next WSC CL patch until each WSC CL patch in the surveillance 

volume has its PDF approximated. Test cell selection and PDF approximation, as 

well as an outlier definition and a PDF approximation strategy, are introduced 

next. 

VI.4.1 - Test Cell Selection 

As explained above, test cell selection involves three steps: 
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Figure VI.3.3 - CL Subpatch Investigation Stage 

No 
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(i) - A WSC CL patch is chosen from among the WSC declared CL patches. 

This can be done automatically by the computer program since at this stage every 

CL patch has been labelled with a unique number. 

(ii) - A set of Nj test cells is then chosen in the WSC CL patch being processed 

where the value of Nj depends upon the extent to which the patch needs to be 

characterized. Note that any cell in the CL patch can be a test cell. A possible 

choice for the test cells is equally spaced test cells that cover the entire area of the 

CL patch. 

(iii) - Finally, for each test cell, a set of reference cells is selected. The reference 

cells must be in the same CL patch as the test cell and should be the closest in 

distance to it because of the assumption that the reference cells are representa- 

tive of the test ceil. 

In order to select the reference cells for a given test cell, the program starts 

by centering a 3x3 mask around the test cell and choosing as reference cells 

those neighboring cells within the mask that are declared to be in the same CL 

patch as the test cell. If the desired number of reference cells are not obtained, 

the program increases the size of the mask by adding one row and one column to 

each boundary of the 3x3 mask. This results in a 5x5 mask where only the cells in 

the augmented rows and columns need to be examined. The process of adding 

one row and one column to each boundary of the previous mask continues until 

the desired number of reference cells have been obtained. 

VI.4.2 - PDF Approximation 

Approximation of the PDF underlying a test cell consists of processing the 

data in the reference cells. The PDF approximation is performed by the Ozturk al- 

gorithm which consists of two modes, referred to as the goodness of fit test mode 

and the approximation chart mode. These two modes are discussed in the follow- 

ing sections. 
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VI.4.2.1 - Introduction to Ozturk Algorithm T261 

The Ozturk algorithm is a recent algorithm based on sample order statistics 

that has been developed in [27] through [29] and has been reported in [30] for 

univariate distribution approximation. This algorithm has two modes of operation. 

In the first mode, the algorithm performs a goodness of fit test. The test deter- 

mines, to a desired confidence level, whether the random data is statistically con- 

sistent with a specified probability distribution. In the second mode of operation, 

the algorithm approximates the PDF underlying the random data. In particular, by 

analyzing the random data and without any a priori knowledge, the algorithm iden- 

tifies from a stored library of PDFs that density function which best approximates 

the data. Estimates of the location, scale, and shape parameters of the PDF are 

provided by the algorithm. The algorithm has been found to work reasonably well 

for observation sizes as small as 75 to lOO.Throughout this work, a number of 100 

reference cells are selected for each test cell. 

Vl.4.2.2 - Goodness of Fit Test 

The goodness of fit test determines whether or not the set of data samples 

provided to the algorithm is statistically consistent with a specified distribution, re- 

ferred to as the null hypothesis. Let NR denote the number of reference cells. For 

the null hypothesis, the program utilizes a Monte Carlo simulation of 2,000 trials to 

generate an averaged set of NR linked vectors in the UV plane, as shown in Fig- 

ure VI.4.1. Using the standardized sample order statistics of the data, the program 

then creates a second system of NR linked vectors in the UV plane, as shown in 

Figure VI.4.1.a. The terminal points of the linked vectors, as well as the shapes of 

their trajectories, are used in determining whether or not to accept the null hypoth- 

esis. The null hypothesis is the distribution against which the sample data is to be 

tested. 

The algorithm provides quantitative information as to how consistent the 

sample data set is with the null hypothesis distribution by use of confidence con- 

122 



„ SBoapIeBata 
Confidence 

ellipses 

Reference 
PDF 

üi! !-~'b"i 

Figure VI. 4.1 - Goodness of Fit Test 
(a) linked vectors and (b) confidence ellipses 

tours where each contour is derived from a specified probability that the end point 

falls within the contour given that the data comes from the null distribution. An ex- 

ample of these contours is shown in Figure VI.4.1.b for probabilities of 0.9, 0.95, 

and 0.99. If the end point of the sample data linked vector locus falls within a con- 

tour, then the sample data set is said to be statistically consistent with the null hy- 

pothesis at a confidence level based on the probability specified for that contour. If 

the sample data set is truly consistent with the null hypothesis, the system of sam- 

ple linked vectors is likely to closely follow that for the system of null linked vec- 

tors. 
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VI.4.2.3 - Approximation Chart Mode 

The approximation chart mode is simply an extension of the goodness of fit 

test mode. Following a similar approach to that outlined in the section for the 

goodness of fit mode, random samples are generated from a library of different 

univariate probability distributions. In the goodness of fit test mode, the locus end 

point was obtained for the null hypothesis and sample size, NR. For the approxi- 

mation chart mode we go one step further by obtaining the locus end point for 

each distribution from the library of distributions for the given sample size, NR, 

and for various choices of the shape parameter(s). Thus, depending on whether it 

has a shape parameter or not, each distribution is represented by a trajectory or 

point in the two dimensional UV plane. The distributions which are plotted on the 

distribution approximation chart are: (1) Gaussian, (2) Uniform, (3) Exponential, 

(4) Laplace, (5) Logistic, (6) Cauchy, (7) Extreme Value, (8) Gumbel type-2, (9) 

Gamma, (10) Pareto, (11) Weibull, (12) Lognormal, (13) Student-T, (14) K-distrib- 

uted, (15) Beta, and (16) Su-Johnson. Figure VI.4.2 shows an example of the ap- 

proximation chart. Note that every point in the approximation chart corresponds to 

a specific distribution. That point closest to the sample data locus end point is cho- 

sen as the best approximation to the PDF underlying the random data. This clos- 

est point is determined by projecting the sample locus end point to all points on 

the approximation chart and selecting that point whose perpendicular distance 

from the sample point is the smallest. Once the PDF underlying the sample data is 

selected, the shape, location and scale parameters are then approximated. 

VIA3 - PDF Approximation Metric 

In the goodness of fit test, it is hypothesized that whenever the end point of 

the sample data locus falls within the 0.99 probability confidence contour of the 

null distribution, the PDF underlying the data can be approximated by the null dis- 

tribution. Because the confidence contours are neither circular nor exactly ellipti- 

cal, analytically determining whether the locus end point falls within the contour is 

124 



0.5 

0.45 

0.4 

0.35 

>      0.3 

0.25 

0.2 

0.15 

0.1 

.1 i-B-L. 

«g^wtr 

•su 

0.05 o.i 0.15 

Figure VI.4.2 - Approximation Chart: N=Normal. U=Uniform. E=Neaative 
Exponential. A=Laoiace. S=Loaistic. C=Cauchv. V=Extreme Value. 

T=Gumbel tvpe-2. G=Gamma. P=Pareto. W=Weibull. L=Loonormal. K=K- 
distributed. B=Beta. and SU=Su-Johnson 

a difficult computational problem. Thus, by definition, the sample data is declared 

to be from the null distribution provided the locus end point of the sample linked 

vectors is within the locus end point of the null distribution by a distance that is 

less than half the length of the minor axis of the 0.99 confidence contour. 

Although the approximation chart can accommodate a wide variety of 

PDFs, most experimentally measured data for radar clutter envelopes are approx- 

imated as arising from either Rayleigh, Weibull, Lognormal, or K-distributed PDFs, 

as noted in Section 1.2. Hence, for ease of implementation, it is assumed through- 

out this work that the random data in a homogeneous region is generated from 

and approximated by one of the cited PDFs. In addition, note that because the 

Weibull PDF becomes the Rayleigh PDF when its shape parameter equals 2, only 

Weibull, Lognormal, or K distributions are used.The half-length of the minor axis 

of the 0.99 confidence contour is listed in Table VI.4.1 for the Rayleigh, Weibull, 
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Lognormal, and K-distributed PDFs for various values of the shape parameters 

when NR=100. For a shape parameter that is not listed in the table, the half-length 

of the minor axis of the 0.99 confidence contour is approximated by that of the 

closest shape parameter for the particular PDF. Because the smallest PDF ap- 

proximation metric that appears in Table VI.4.1 is dmjn=0.13 x 10"1, the null distri- 

bution is declared as the approximating distribution without the need to refer to the 

table whenever the distance between the end points of the sample and null distri- 

bution linked vectors is less than dmjn. 

VI.4.4 - Outliers 

Even though the mapping procedure does a good job in separating the BN 

and CL regions one or more outliers may exist in a set of reference cells. For ex- 

ample, outliers may arise due to (1) misidentified BN cells in a CL patch or misi- 

dentified CL cells in the BN, (2) cells having data values of low probability of 

occurrence, and (3) cells containing signals from strong targets. 

Outliers can cause a problem in correctly approximating the PDF underly- 

ing a set of data by significantly altering the set of linked vectors generated by the 

Ozturk algorithm. To illustrate this, a set of NR= 100 reference data, referred to as 

set A, are generated from the Lognormal distribution with shape parameter 0.01. 

The histogram of this set is plotted in Figure VI.4.3. Also, another set, referred to 

as set B, is formed which contains 97 data points from set A and three data points 

with very small values to constitute the outliers in the set. Figure VI.4.4 shows the 

histogram of this second set. Note from the histogram that the three data points 

have resulted in an isolated bar. The two sets are processed by the Ozturk algo- 

rithm and have their locus end points plotted in the approximation charts of Fig- 

ures VI.4.5 and VI.4.6. Note how the end point in Figure VI.4.6 for the set 

containing outliers (set B) is far removed from the Lognormal PDF from which 97 

out of the 100 data points of set B were generated. To understand the cause, Fig- 

ures VI.4.7 and Vi.4.8 show the plots of the goodness of fit test for set A and set 

B, respectively, where the null hypothesis is the Lognormal PDF with shape pa 
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PDF 
Shape 

Parameter 
Half-length of the 

minor axis 

Rayleigh - 0.47 x 10'1 

Weibull 0.1 0.25 x 10'1 

0.5 0.41 x 10"1 

1.0 0.41 x 10"1 

2.0 0.47 x 10'1 

3.0 0.47 x 10"1 

4.0 0.45 x 10"1 

5.0 0.44 x 10_1 

10.0 0.44 x 10_1 

Lognormal 0.01 0.48 x 10'1 

0.05 0.45 x 10"1 

0.1 0.43 x 10"1 

0.2 0.42 xlO"1 

0.3 0.42 x 10"1 

0.4 0.46 x 10"1 

1.0 0.41 x 10'1 

5.0 0.28 x 10"1 

10.0 0.13 xlO"1 

K-distribution 0.01 0.13 xlO"1 

0.1 0.37 x 10"1 

1.0 0.29 x 10'1 

5.0 0.47 x 10-1 

10.0 0.47 x 10'1 

20.0 0.49 x 10"1 

40.0 0.49 x 10_i 

50.0 0.49 x 10'1 

Table VI.4.1 - PDF Approximation Metric for Different PDFs. Ng=100 

rameter 0.01. Comparing the two Figures, it is noted that the linked vectors in set 

B are smaller than those of set A causing the locus end point for set B to fall way 

below the end point for set A and, therefore, outside the confidence ellipses. This 
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is due to the fact that the amplitudes of the linked vectors are proportional to the 

magnitude of the standardized data which depend on the mean and standard de- 

viation of the set. The three outliers do not significantly affect the mean of the set 

but do increase the variance tremendously causing the standardized data and, 

therefore, the amplitudes of the linked vectors to become smaller. In this example, 

the mean and standard deviation for set A are equal to 32.54 and 4.69, respec- 

tively, while the mean and standard deviation for set B are equal to 31.63 and 

18.08, respectively. This example illustrates what can happen when three BN 

cells with small data values are misidentified and associated with a set of CL cells. 

One way to identify outliers within a region is to compute the mean m and 

standard deviation a within that region and call as an outlier any cell whose data 

value falls outside the interval [m-2a, m+2a]. This method is used to identify outli- 

ers within a set of selected reference cells. When this method is applied to set B, 

whose histogram is shown in Figure VI.4.4, the three outliers are identified and re- 

moved from the set. 

Figure VI.4.3 - Histogram of Set A 
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Figure VI.4.4 - Histogram of Set B 

0.5 

0.45 

0.4 

0.35 

>      0.3 

0.25 

0.2 

0.15 

0.1 

-0.2 

T '■_____■—T- 

-0.15 -0.1 0.05 0.1 0.15 

Figure VI.4.5 - Approximation Chart for the End Point of Set A 
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Figure VI.4.6 - Approximation Chart for the End Point of Set B 

Figure VI.4.7 - Goodness of Fit Test for Set A 
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Figure VI.4.8 - Goodness of Fit Test for Set B 

VI.4.5 - PDF Approximation Strategy 

As mentioned in Section VI.4.3, CL data are generated in this work from ei- 

ther the Weibull, Lognormal, or K-distributed distributions. Consequently, the strat- 

egy for approximating the PDF underlying a CL patch consists of the following 

steps: 

1 - Select a total of NT test cells that are evenly spread throughout the CL patch. 

2 - For each test cell, choose its closest NR=100 reference cells as described in 

Section VIA 1. 

3 - Using the Ozturk algorithm, determine the distance between the locus end 

point of the data linked vectors and its projection onto the Weibull, Lognormal, and 

K-distributed trajectories. 

4 - Discard those PDFs for which the distances in step 3 exceed the correspond- 
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ing distances obtained from Table VI.4.1. 

5 - If all possible PDFs are discarded in step 4, excise any outliers that may exist 

from the data and proceed to step 3. 

6 - Use IPUS, as discussed in the next chapter, to determine the best PDF(s) to 

approximate the data. 

Steps 1 through 5 are now illustrated through examples. 

VI.5 - Examples 

In this section, indexing is performed on the same examples considered in 

Section V.4 where the mapping procedure was carried out. Discussion of each ex- 

ample ends with a table indicating the approximations to be used for the PDFs un- 

derlying selected test cells in the CL patches. The quality of the approximations is 

discussed in Chapter Vn for each of the examples. 

VI.5.1 - Example 1 

Consider the example of Section V.4.2.1 where the parameters of the gen- 

erated scene, previously given in Table V.4.1, are repeated in Table VI.5.1. 

Clutter 
Patch 

CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 Rayleigh None 117 

B 20 K-distributed 10.0 1423 

C 30 Lognormal 0.01 146 

D 40 Weibull 5.00 146 

Table VI.5.1 - CL Patch Parameters 

(i) - Assessment 

The indexing procedure starts by first assessing the mapped volume. This 

consists of labeling the CL patches, estimating CNR for each patch, and counting 

the number of cells in each patch. The results are presented in Table VI.5.2. 
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Clutter Patch 
Clutter 

Patch Label 
CNR 
(dB) 

Number of 
cells 

A 1 9.04 113 

C+D 2 36.66 304 

B 3 23.31 1444 

Table VI.5.2 - Assessment Parameters 

CL patches labeled 1, 2 and 3, are shown in Figure VI.5.1. By comparing Table 

Vl.5.1 with Table VI.5.2, it is seen that reasonable results are obtained for the 

CNRs and numbers of cells. Since the CL patch labeled as 2 consists of C+D, its 

CNR and number of cells, respectively, are approximated by the average of the 

CNRs and the sum of the number of cells for C and D. 
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Figure VI.5.1 - Contour Plot of the Mapped Volume after Numbering 

(ii) - CL Subpatch Investigation 

The next step in the indexing procedure consists of identifying subclutter 
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patches within a CL patch. This is done by selecting a CL patch and applying the 

mapping procedure to it. If one or more subpatches exist, the procedure attempts 

to first identify the subpatch having the lowest average power. If a subpatch does 

not exist, the procedure attempts to recognize this situation. 

Let PLQP, PLCQP, and PLCCP represent the percentage number of cells 

of the subpatch with the lowest power among the possible subpatches of a CL 

patch in the quantized, first-corrected and second-corrected stages, respectively. 

Tables VI.5.3, 4, and 5 show the results of the mapping procedure applied, re- 

spectively, to CL patches 1, 2, and 3. For both CL patches 1 and 3, the mapping 

procedure results with PLCCP being equal to 100%, reflecting the conclusion that 

the subpatches with the lowest average power in CL patches 1 and 3 occupy 

100% of the area in each patch. Therefore, it is concluded that both CL patches 1 

and 3 are homogeneous and do not contain any subpatches. On the other hand, 

mapping of CL patch 2 results with PLCCP=48.75%. This indicates that CL patch 

2 contains at least two subpatches and the subpatch with the lowest power occu- 

pies 48.75% of the total area of patch 2. This is consistent with the generated sur- 

veillance volume, where CL patch C has a smaller power than. CL patch D and C 

occupies 50% of the total area of CL patch 2. 

Clutter Patch 1 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=70.59 
PLCCP=20.59 

20.59 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=94.12 
PLCCP=82.35 

82.35 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=100.0 
PLCCP=100.0 

Table VI.5.3 - Mapping Procedure Applied to CL Patch 1 
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Clutter Patch 2 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=39.38 
PLCCP=7.50 

20.00 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=59.38 
PLCCP=43.12 

43.12 
previous PLCCP 

NCQ=7 
NCC=1 

PLCQP=55.00 
PLCCP=49.38 

49.3.8 
previous PLCCP 

NCQ=5 
NCC=1 

PLCQP=50.62 
PLCCP=46.25 

49.38 
previous PLCCP 

NCQ=5 
NCC=3 

PLCQP=50.62 
PLCCP=48.75 

Table VI.5.4 - Mapping Procedure Applied to CL Patch 2 

Clutter Patch 3 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=50.25 
PLCCP=12.19 

12.19 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=58.51 
PLCCP=16.61 

16.61 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=73.62 
PLCCP=28.80 

28.80 
(guess) 

NCQ=8 
NCC=1 

PLCQP=92.57 
PLCCP=66.19 

66.19 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=100.0 
PLCCP=100.0 

Table VI.5.5 - Mapping Procedure Applied to CL Patch 3 
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(iii) - Assessment 

Finally, mapping was applied to CL patches 2 and 4 with the result that 

both patches were judged to be homogeneous. 

Treating each identified subpatch as a patch, assessment is done once 

more to relabel all subpatches in the surveillance volume. Results of the assess- 

ment are tabulated in Table VI.5.6. Now the surveillance volume is identified to in- 

clude four CL patches where CL patches 1, 2, 3, and 4 coincide with CL patches 

A, C, B, and D, respectively, of the original scene. Note how close are the number 

of cells and CNR for every patch when comparing Tables VI.5.6 and VI.5.1. Note 

also that using the values of Table VI.2.1, every CL patch in the surveillance vol- 

ume has been identified as a WSC region. Also, using the ranges of the CNR for 

the strong, weak, and intermediate signal cases, as given in Table VI.2.1, classifi- 

cation of the CL patches is shown in column 5 of Table VI.5.6. Figure VI.5.2 

shows the result of the numbering of the new mapped volume. 

Figure VI.5.2 -Contour Plot of the Mapped Volume after Numbering 
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Clutter Patch 
Clutter 

Patch Label 
CNR 
(dB) 

Number of 
cells 

Classification 

A 1 9.04 113 WSC 

C 2 30.63 151 wsc 
B 3 23.31 1444 WSC 

D 4 40.54 146 wsc 

Table VI.5.6 - Assessment Parameters 

(iv) - Steps 1-5 of the PDF Approximation Strategy 

As detailed in Section VI.4.5, the first step in the PDF approximation strate- 

gy is to select a total of NT test cells that are evenly spread throughout the CL 

patch. For each of the four CL patches listed in Table VI.5.6, let N-r=5. Assume 

each CL patch is scanned from left to right and from top to bottom. In each CL 

patch let the first cell scanned be numbered 1. The last cell scanned in each patch 

is assigned a number equal to the total number of cells in that patch. The test cells 

selected for CL patches 1,2,3, and 4 are listed in the first column of Tables 

VI.5.7, 8, 9, and 10, respectively. Note that the test cells are evenly spread 

throughout each CL patch. 

The second step in the PDF approximation strategy is to choose for each 

test cell the closest NR=100 reference cells as detailed in Section VI.4.1. 

Using the Ozturk algorithm, the third step is to determine the distance be- 

tween the locus end point of the data linked vectors and its projection onto the 

Weibull, Lognormal, and K-distributed trajectories. The distance, shape, scale, 

and location parameters for the approximating PDF's are tabulated in columns 4, 

5, 6, and 7, respectively, of Tables VI.5.7, 8, 9, and 10. The (U,V) coordinates of 

the data locus end point are listed in column 8 of the tables. Finally, column 3 pro- 

vides a ranking based on the smallest distance between the approximating PDF 
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and the data locus end point. 

Step 4 is to discard those PDFs for which the distances in step 3 exceed 

the corresponding distances obtained from Table Vl.4.1. In Tables Vl.5.7, 8, 9, 

and 10, the results are indicated by either X or/, respectively, depending upon 

whether the PDFs are discarded or not. 

In the shaded background rows of Table Vl.5.8, related to CL patch 2, note 

that all possible PDFs are discarded. Consequently, step 5 is implemented where 

outliers that exist are excised from each set of reference cells. Steps 3 and 4 are 

then repeated and the results presented with a white background in Table VI.5.8. 

With the outliers removed, note that the distance measure for one or more of the 

approximating PDFs has become significantly smaller. 

Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 
W 
L 
K 

1 
5 
3 

0.72x10-2/ 
0.22x10"! / 
0.17x10-1 / 

2.12 
0.18 
50.0 

3.20 
7.48 
0.43 

0.58 
-4.18 
0.77 

(-0.0298, 
0.3503) 

28 
W 
L 
K 

2 
5 
3 

0.90x10-2/ 
0.24x10-1 / 
0.18x10"! 

2.14 
0.18 
50.0 

3.26 
7.76 
0.43 

0.54 
-4.47 
0.75 

(-0.0293, 
0.3320) 

57 
W 
L 
K 

1 
5 
3 

0.74x10-2/ 
0.24x10"! / 
0.13x10"!/ 

1.94 
0.21 
50.0 

3.01 
6.74 
0.43 

0.74 
-3.50 
0.69 

(-0.0376, 
0.3500) 

85 
W 
L 
K 

2 
6 
3 

0.13X10-1 / 
0.28x10"! / 
0.21x10"! / 

2.06 
0.19 
50.0 

3.16 
7.38 
0.43 

0.63 
-4.10 
0.73 

(-0.0313, 
0.3561) 

113 
W 
L 
K 

1 
5 
2 

0.23x10-2/ 
0.18x10"! / 
0.11x10-1 / 

2.01 
0.20 
50.0 

3.09 
7.02 
0.43 

0.69 
-3.75 
0.73 

(-0.0330, 
0.3455) 

Table Vl.5.7 - PDF Approximation for CL Patch 1 
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Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W 
-ft;.. 
K 

17 
19 
20 

0.24x10-° X 
0.25x10-° X 
0.26x10*° X 

5.00 
0.76 
32.0 

9.00 
1^97 
0.72 

24.12 
30.20 
28.99 

(-0.0952, 
0.1143) 

1 
w/o 3 
Outliers 

W 
L 
K 

2 
4 
6 

0.87xl0"2 / 
0.21X10'1 / 
0.27X10"1 / 

2.60 
0.10 
50.0 

1.39 
5.02 
0.16 

31.30 
27.50 
31.58 

(-0.0177, 
0.3512) 

38 W 
L 
K 

23    . 
21 
20 

0.29xlO-°X 
0.27x10"° X 
0.26xl0*°X 

0.73 
0.81 
50.0 

1.81 
2.27 
0.72 

30.84 
29.80 
28.09 

(0.1281, 
0.1361) 

38 
w/o 4 
Outliers 

W 
L 
K 

1 
4 
14 

0.63xl0"2/ 
0.18X10'1 / 
0.31X10"1/ 

2.82 
0.06 
50.0 

1.46 
7.81 
0.15 

31.30 
24.77 
31.67 

(-0.0122, 
0.3486) 

76 W 
L 
K 

24 
21 
20 

0.30xlff°X 
0.27x10-° X 
0.26x10'° X 

0.74 
1.10 
50.0 

1.81 
1.29 
071 

30.79 
30.67 
28.09 

(0.1310^ 
0.1360) 

76 
w/o 4 
Outliers 

W 
L 
K 

1 
3 
5 

0.20xl0'2/ 
O.llxlO'V 
0.21X10"1 / 

2.52 
0.13 
50.0 

1.25 
3.62 
0.14 

31.43 
28.89 
31.66 

(-0.0202, 
0.3406) 

114 W 
L 
K 

26 
23 
21 

0.31xl0-°X 
0.29x10-° X 
0;27xl0-°X 

0.52 
1.84 
50.0 

1.19 
0.37 
0.84 

31.02 
31.41 
27.16 

(0.1581, 
0.1563) 

114 
w/o 5 
Outliers 

W 
L 
K 

12 
3 
11 

0.28X10-1 / 
0.14X10"1/ 
0.28X10'1 / 

2.45 
0.18 
50.0 

1.19 
2.57 
0.14 

31.41 
29.86 
31.60 

(-0.0235, 
0.3143) 

151:» W 
L   ■ 

26 
23.v',/.:;:-: 
;20 v:;;. 

0.31x10"° X 
0.29x10*° X 
0.27x10*° X 

0.52 
1.85 
50.0 

1.19 
6.38 

31.02 
31.41 

(0.1581; 
0.1563) 

0.84 27.16 

151 
w/o 5 
Outlier 

W 
L 
K 

10 
3 
11 

0.28X10'1 / 
0.14X10"1/ 
0.28X10"1 / 

2.44 
0.18 
50.0 

1.19 
2.58 
0.14 

31.48 
29.85 
31.60 

(-0.0235, 
0.3147) 

Table VI.5.8 - PDF Approximation for CL Patch 2 
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Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W 
L 
K 

5 
1 
3 

0.17x10-1/ 
0.25x10-2/ 
0.75x10-2 / 

1.62 
0.34 
15.6 

13.1 
20.4 
3.90 

0.82 
-9.04 
-1.19 

(-0.0476, 
0.3235) 

361 W 
L 
K 

6 
1 
4 

0.24x10"! j 
0.49x10-2/ 
0.15x10-1/ 

1.67 
0.33 
15.8 

13.7 
21.4 
3.94 

1.65 
-8.75 
-0.01 

(-0.0438, 
0.3171) 

722 W 
L 
K 

3 
5 
7 

0.19x10-1 / 
0.32x10"! y 
0.35x10"! j 

2.67 
0.07 
50.0 

22.1 
1.15 
2.43 

-4.93 
-101.14 
-0.14 

(-0.0154, 
0.3620) 

1083 W 
L 
K 

1 
5 
2 

0.33x10-2/ 
0.22x10-1 / 
0.11x10-1/ 

1.63 
0.31 
35.0 

11.8 
19.8 
2.34 

3.41 
-6.95 
1.51 

(-0.0508, 
0.3433) 

1444 W 
L 
K 

1 
3 
4 

0.36x10-2/ 
0.11x10-1/ 
0.12x10-1/ 

2.20 
0.19 
50.0 

16.9 
37.7 
2.18 

-1.17 
-24.57 
0.26 

(-0.0285, 
0.3393) 

Table VI.5.9 - PDF Approximation for CL Patch 3 

Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W 
L 
K 

5 
6 
20 

0.44x10"! / 
0.52x10"! x 

0.72x10"! X 

4.30 
0.01 
50.0 

86.9 
2625 
6.34 

16.66 
-2529.01 
57.92 

(0.0165, 
0.3811) 

37 W 
L 
K 

5 
6 
18 

0.36x10"! / 
0.44x10"! / 
0.63x10"! X 

3.88 
0.01 
50.0 

79.5 
2628 
6.35 

23.66 
-2532.56 
57.54 

(0.0102, 
0.3751) 

73 W 
L 
K 

2 
5 
19 

0.78x10-2/ 
0.23x10"! / 
0.60x10-1 X 

5.00 
0.01 
50.0 

96.2 
2547 
6.16 

17.69 
-2508.77 
58.36 

(0.0119, 
0.3630) 

110 W 
L 
K 

1 
5 
18 

0.52x10-2/ 
0.16X10-1/ 
0.56x10-1 X 

5.00 
0.01 
50.0 

99.3 
2616 
6.32 

5.24 
-2520.22 
58.84 

(0.0153, 
0.3317) 

146 W 
L 
K 

1 
3 
18 

0.47x10-2/ 
0.14x10"!/ 
0.48x10"! / 

4.37 
0.01 
50.0 

92.2 
2736 
6.61 

11.62 
-2640.34 
56.10 

(0.0080, 
0.3430) 

Table VI.5.10 - PDF Approximation for CL Patch 4 
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VI.5.2 - Example 2 
Consider now the example of Section V.4.2.2 where the parameters of the 

generated scene, previously given in Table V.4.4, are repeated in Table VI.5.11. 

Clutter Patch 
CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 K-distributed 1.5 117 

B 10 Weibull 1.0 672 

C 10 Lognormal 1.0 151 

D 10 Rayleigh None 151 

Table VI.5.11 - CL Patch Parameters 

(i) - Assessment 

Following the same strategy discussed in Section VI.5.1, results of the as- 

sessment stage are presented in Table VI.5.12. 

Clutter Patch 
Clutter 

Patch Label 
CNR 
(dB) 

Number of 
cells 

A 1 12.03 133 

C+D 2 8.22 308 

B 3 8.65 622 

Table VI.5.12 - Assessment Parameters 

CL patches 1, 2 and 3, are shown in Figure VI.5.3. Comparison of Tables VI.5.11 

and VI.5.12 shows that reasonable results are obtained for the CNRs and number 

of cells. 
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Figure VI.5.3 - Contour Plot of the Mapped Volume after Numbering 

£ii) - CL Suhpatches Investigation 

Tables VI.5.13, 14, and 15 show the results of the mapping procedure ap- 

Clutter Patch 1 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=36.73 
PLCCP=8.16 

20.00 
modified PLQP 

NCQ=8 
NCC=1 

PLCQP=71.43 
PLCCP=28.57 

28.57 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=87.76 
PLCCP=55.10 

55.10 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP= 100.0 
PLCCP=100.0 

Table VI.5.13 - Mapping Procedure Applied to CL Patch 1 
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Clutter Patch 2 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=60.38 
PLCCP=19.50 

19.50 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=81.76 
PLCCP=49.06 

49.06 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=94.97 
PLCCP=81.76 

81.76 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP= 100.0 
PLCCP=100.0 

Table VL5.14 - Mapping Procedure Applied to CL Patch 2 

Clutter Patch 3 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=63.36 
PLCCP=22.12 

22.12 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=89.63 
PLCCP=62.90 

62.90 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=100.0 
PLCCP=100.0 

Table VI.5.15 - Mapping Procedure Applied to CL Patch 3 

plied, respectively to CL patches 1, 2, and 3. For CL patches 1, 2, and 3, the map- 

ping procedure results with PLCCP being equal to 100% reflecting the conclusion 

that the subpatches with the lowest power in CL patches 1,2, and 3 occupy 100% 

of the area in each patch. Therefore, it is concluded that all of these CL patches 

are homogeneous and do not contain any subpatches. 

In fact, CL patch 2 consists of subpatches C and D. By using expert system 

rules, it is shown in Chapter VII that CL patch 2 can be further separated. 

143 



fiii) - Assessment 

Because CL subpatch identification does not result in finding any subpatch 

within CL patches 1,2 and 3, the mapped volume is not changed and assessment 

is not necessary. 

(iv) - § 

1 

teps 1-5 of the PDF Approximation Strategv 

»of steps 1- 5 of the PDF ables VI.5.16, VI.5.17, and Vl.5.18 list the results 

approximation strategy applied to CL patches 1, 2, and 3, respectively. 

Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W 5 0.16X10"1/ 1.40 4.54 0.20 (-0.0566, 
L 1 0.31xl0'2/ 0.40 6.67 -2.93 0.3207) 
K 2 0.57xl0"2/ 9.93 1.90 -1.00 

33 W 5 0.13X10"1/ 1.37 4.57 0.23 (-0.0604, 
L 3 0.73xl0-2/ 0.41 6.63 -2.80 0.3232) 
K 1 0.17xl0-2/ 8.61 2.09 -1.10 

66 W 6 0.44X10'1 X 0.86 2.93 1.48 (-0.0802, 
L 2 O.löxlO"1 X 0.77 3.14 0.37 0.2751) 
K 5 0.35X10"1 X 1.71 4.36 -0.36 

66 W 4 0.13X10"1/ 1.30 3.82 0.68 (-0.0651, 
w/o3 L 3 0.82xl0-2/ 0.45 5.26 -1.64 0.32116) 
outliers K 1 0.16x10-2/ 6.96 2.03 -0.58 

99 W 5 0.23X10'1 / 1.27 4.11 0.62 (-0.0636, 
L 1 0.65xl0"3 / 0.48 5.35 -1.59 0.3113) 
K 3 O.llxlO'1/ 6.23 2.35 -0.79 

:i33:g:;:V W :.7-.:::.-~ 0.56X10-1 X 0.73 2.39 2.05 (-0.0732, 
L 0.29X10'1 X 

048XI0*1 X 
0.83 
173 

2.82 
4 93 

0.85 
-0 23 

0.2641) 

133 w 5 0.18X10'1/ 1.36 4.08 0.55 (-0.0586, 
w/o4 L 1 0.21x10-2/ 0.42 5.77 -2.06 0.3181) 
outliers K 2 0.71x10-2/ 8.80 1.93 -0.62 

Table VI.5.16 - PDF ADDroximation for CL Patch 1 
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Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W 
L 
K 

8 
3 
6 

0.57X10'1 X 
0.30x10-1 / 
0.50x10"! X 

0.73 
0.84 
1.71 

1.08 
1.27 
2.02 

1.47 
0.93 
0.41 

(-0.0725, 
0.2622) 

77 W 
L 
K 

7 
2 
5 

0.85x10"! X 
0.21x10-1 / 
0.41X10-1 X 

0.72 
0.85 
1.47 

1.09 
1.27 
2.19 

1.53 
0.99 
0.51 

(-0.0813, 
0.2659) 

154 W 
L 
K 

2 
7 
4 

0.18x10-1 / 
0.37x10-1 / 
0.29x10-1 / 

1.34 
0.40 
1.92 

2.56 
3.98 
1.16 

0.91 
-1.07 
0.08 

(-0.0740, 
0.3510) 

231 W 
L 
K 

3 
2 
4 

0.93x10-2/ 
0.67x10-2/ 
0.93x10-2/ 

2.08 
0.21 
50.0 

4.06 
8.63 
0.55 

0.24 
-4.97 
0.42 

(-0.0316, 
0.3338) 

308 W 
L 
K 

1 
4 
2 

O.OlxlO"3 / 
0.16x10"! / 
0.94x10-2/ 

1.99 
0.20 
50.0 

3.99 
9.10 
0.56 

0.25 
-5.52 
0.29 

(-0.0335, 
0.3435) 

Table VI.5.17- PDF Approximation for CL Patch 2 

Test 
Cell No. 

PDF Rate Distance Shape Scale Location (U,V) 

1 W 
L 
K 

3 
6 
1 

0.69xl0"z/ 
0.19xl04/ 
0.26x10-2/ 

0.90 
0.69 
1.69 

2.06 
2.45 
2.94 

0.87 
-0.12 
-0.30 

(-0.0997, 
0.3072) 

156 W 
L 
K 

1 
5 
4 

0.13x10-2/ 
0.25x10-1 / 
0.13x10-1/ 

1.13 
0.52 
4.00 

2.66 
3.51 
2.08 

0.52 
-1.02 
-0.65 

(-0.0830, 
0.2397) 

311 W 
L 
K 

4 
3 
1 

0.13x10"! / 
0.11x10-1/ 
0.48xl0'3 / 

1.17 
0.52 
4.47 

2.50 
3.21 
1.78 

0.88 
-0.45 
-0.12 

(-0.0743, 
0.3181) 

466 W 
L 
K 

4 
3 
1 

0.13x10-1/ 
O.llxlO"! / 
O.llxlO"2/ 

1.17 
0.52 
4.41 

3.12 
3.99 
2.25 

0.81 
-0.84 
-0.45 

(-0.0743, 
0.3174) 

622 W 
L 

K 

5 
1 
3 

0.24x10"! / 
0.33x10-2/ 
0.16x10-1 / 

0.76 
0.79 
1.36 

2.13 
2.57 
4.03 

1.43 
0.31 
-0.19 

(-0.0965, 
0.2867) 

Table VI.5.18 - PDF Approximation for CL Patch 3 
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VI.53 - Example 3 

Finally, consider the example of Section V.4.2.3 where the parameters of 

the generated scene, previously given in Table V.4.7, are repeated in Table 

VI.5.19. 

Clutter Patch CNR 
(dB) 

Data 
Distribution 

Shape 
Parameter 

Number of 
cells 

A 10 Rayleigh None 117 

B 10 K-distributed 10.0 298 

C 10 Lognormal 0.01 161 

D 10 Weibull 10.0 162 

Table VI.5.19 - CL Patch Parameters 

(\) - Assessment 

Following the same strategy discussed in Section VI.5.1, results of the as- 

sessment stage are presented in Table VI.5.20. 

Clutter Patch Clutter 
Patch Label 

CNR 
(dB) 

Number of 
cells 

A 1 9.34 124 

C+D 2 10.63 341 

B 3 13.47 306 

Table VI.5.20 - Assessment Parameters 

CL patches 1, 2 and 3, are shown in Figure VI.5.4. Comparison of Tables VI.5.19 

and VI.5.20 shows that reasonable results are obtained for the CNRs and number 

of cells. 
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Figure VI.5.4 - Contour Plot of the Mapped Volume after Numbering 

(ii) - CL Subpatch Investigation 

Tables VI.5.21, 22, and 23 show the results of the mapping procedure ap- 

Clutter Patch 1 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=48.94 
PLCCP=8.51 

20.00 
modified PLQP 

NCQ=8 
NCC=1 

PLCQP=82.98 
PLCCP=51.06 

51.06 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP= 100.0 
PLCCP= 100.0 

Table VI.5.21 - Mapping Procedure Applied to CL Patch 1 
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Clutter Patch 2 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=42.93 
PLCCP=11.62 

11.62 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=53.54 
PLCCP=13.64 

13.64 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=64.14 
PLCCP=18.69 

18.69 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=77.27 
PLCCP=32.32 

32.32 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=94.44 
PLCCP=69.70 

69.70 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP= 100.0 
PLCCP=100.0 

Table VI.5.22 - Mapping Procedure Applied to CL Patch 2 

Clutter Patch 3 

PLQP (%) 

10.00 
(guess) 

NCQ=8 
NCC=1 

PLCQP=46.53 
PLCCP= 14.36 

14.36 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=70.30 
PLCCP=26.24 

26.24 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=92.08 
PLCCP=66.83 

66.83 
previous PLCCP 

NCQ=8 
NCC=1 

PLCQP=100.0 
PLCCP=100.0 

Table VI.5.23 - Mapping Procedure Applied to CL Patch 3 

plied, respectively, to CL patches 1, 2, and 3. For CL patches 1, 2, and 3, the 

mapping procedure results with PLCCP being equal to 100% reflecting the con- 

clusion that the subpatches with the lowest power in CL patches 1, 2, and 3 occu- 

py 100% of the area in each patch. Therefore, it is concluded that all CL patches 
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are homogeneous and do not contain any subpatches. 

As in example 2, CL patch 2 consists of subpatches C and D. In Chapter 

Vn it is shown that expert system rules are unable, in this case, to further subdi- 

vide the CL patch. However, it is also shown that the PDFs of subpatches C and D 

are very similar with identical power levels. Consequently, the inability to subdi- 

vide CL patch 2 is not a serious problem. 

(iii) - Assessment 

Because the CL subpatch identification does not result in finding any sub- 

patches within CL patches 1, 2, and 3, the mapped volume is not changed and as- 

sessment is not necessary. 

(iv) - Steps 1-5 of the PDF Approximation Strategy 

Tables VI.5.24, VI.5.25, and VI.5.26 list the results of steps 1-5 of the PDF 

approximation strategy applied to CL patches 1, 2, and 3, respectively. 

Test 
Cell No. 

PDF Rate Distance Shape Scale Location (U,V) 

1 W 
L 
K 

3 
7 
5 

0.30x10"! / 
0.44x10"! X 
0.39x10"! / 

2.20 
0.13 
50.0 

3.90 
12.4 
0.49 

-0.01 
-9.01 
0.40 

(-0.0250, 
0.3733) 

31 W 
L 
K 

3 
7 
4 

0.27x10"! / 
0.41x10"! / 
0.36x10-1 / 

2.32 
0.12 
50.0 

3.98 
12.9 
0.49 

-0.07 
-9.60 
0.42 

(-0.0233, 
0.3702) 

62 W 
L 
K 

2 
5 
3 

0.97xlO"V 
0.25x10"! / 
0.17x10-1 / 

2.00 
0.20 
50.0 

3.69 
8.41 
0.51 

-0.32 
-5.00 
0.54 

(-0.0342, 
0.3529) 

93 W 
L 
K 

3 
7 
4 

0.28x10"! / 
0.41x10"! / 
0.37x10"! / 

2.32 
0.12 
50.0 

3.98 
13.0 
0.49 

-0.07 
-9.60 
0.41 

(-0.0238, 
0.3709) 

124 W 
L 
K 

3 
7 
4 

0.28x10-1 / 
0.41x10"! / 
0.36x10"! / 

2.10 
0.15 
50.0 

3.77 
10.8 
0.49 

0.12 
-7.53 
0.39 

(-0.0276, 
0.3727) 

Table VI.5.24 - PDF Approximation for CL Patch 1 
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Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

1 W:m,: :I5,:|;;:".:- 0.94X10*1 X 
0.94X10'1 X 
O.llxlO'0 X 

5.00 
0.01 
50.0 

3.06 
81.0 
0.19 

1.24 
-76.96 
2.89 

(0.0308, 
0.2437) 

K 20 

1 
w/o5 
Outliers 

W 
L 
K 

2 
6 
4 

0.13X10"1/ 
0.26X10"1 / 
0.25X10"1 / 

2.39 
0.13 
50.0 

1.20 
3.58 
0.14 

3.07 
0.52 
3.24 

(-0.0227, 
0.3554) 

W:^:M .mm: 
:m- -14'-/:;;: 

O.llxlO-0 X 
0.11x10-° X 

5.00 
0.01 
36.5 

3.04 
80.5 
0.22 

1.19 
-76.56 
2.84 

(0.0282, 
0.2214) 

18 0.13x10-° X 

85 
w/o6 
Outliers 

w 
L 
K 

1 
5 
3 

0.79xl0'2/ 
0.23X10"1 / 
0.18X10"1 / 

2.19 
0.17 
50.0 

1,03 
2.51 
0.13 

3.14 
1.51 
3.23 

(-0.0281, 
0.3509) 

171 W 
L 
K 

22 
14 
18 

0.18x10-° X 
0.12x10-° X 
0.14x10-° X 

0.49 
0.01 
50.0 

0.24 
80.0 
0.19 

3.68 
-76.24 
2.78 

(0.0365, 
0.2186) 

171 
w/o5 
Outliers 

W 
L 
K 

12 
3 
11 

0.32X10"1 / 
0.17X10"1/ 
0.30x10-1 / 

2.35 
0.22 
43.8 

1.16 
2.05 
0.15 

2.97 
1.91 
3.13 

(-0.0258, 
0.3105) 

256 W 
L 
K 

15 
12 
18 

0.47X10-1 X 
O^OxlO"1* 
0.55X10'1 X 

4.70 
0.05 
50.0 

2.45 
9.86 
0.16 

1.71 
-5.89 
2.98 

(-0.0005, 
0.2915) 

256 
w/o3 
Outliers 

W 
L 
K 

1 
5 
4 

0.39xl0"2/ 
0.18X10'1/ 
0.17X10"1/ 

2.29 
0.16 
50.0 

1.14 
2.88 
0.14 

2.98 
1.07 
3.11 

(-0.0256, 
0.3468) 

'■34I:v:v;:; :■::.; m- 
h 
WL 

23 
:i4--'-' 
19 

0.19x10-° X 
0.12x10-° X 
ÖJi4xl0-°X 

0.39 
0.01 
50.0 

0.16 
94.1 
0.22 

3.72 
-90.21 
2.57 

(0.0469, 
0.2188) 

341 
w/o7 
Outlier 

w 
L 
K 

8 
1 
7 

0.24X10'1 / 
0.94xl0"2/ 
0.24X10"1 / 

2.36 
0.18 
50.0 

1.21 
2.56 
0.14 

2.95 
1.42 
3.12 

(-0.0253, 
0.3186) 

Table VI.5.25 - PDF Approximation for CL Patch 2 
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Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

W 
L 

14 
6—;: 
10 

0.73x10"! X 
0.47x10-1 X 
0.62xl0-lX 

2.90 
3.07 
3.06 

.2.39^r:;;::::: 
1.41 
0.29 

(-0X)530; 
0.2596) 

1 u.yb 
0.72 
3.03 

1 
w/o 3 
Outliers 

W 
L 
K 

12 
3 
10 

0.33x10"! / 
0.16x10"! / 
0.29x10"! / 

2.23 
0.24 
35.3 

5.36 
8.91 
0.81 

0.03 
-4.35 
0.54 

(-0.0291, 
0.3098) 

76 W 
L 
K 

14 
6 
10 

0.71X10"1 X 
0.45x10*1 X 
0.59X10-1 X 

0.98 
0.69 
3.33 

3.00 
3.26 
2.97 

1.30 
0.58 

(-0.0519, 
0.2632) 

76 
w/o 3 
Outliers 

W 
L 
K 

10 
2 
7 

0.29x10-1 / 
0.13x10-1/ 
0.25x10'! / 

2.18 
0.24 
38.6 

5.39 
9.20 
0.79 

0.05 
-4.61 
0.48 

(-0.0300, 
0.3135) 

153 W 
L 
K 

5 
1 
2 

0.17x10-1 / 
0.39xl0"2/ 
0.58xl0"2/ 

1.31 
0.45 
7.51 

3.49 
4.78 
1.81 

1.61 
-0.48 
0.49 

(-0.0626, 
0.3176) 

229 W 
L 
K 

3 
7 
4 

0.36x10'! / 
0.57x10"! X 
0.45x10'! / 

1.50 
0.35 
42.9 

4.20 
6.70 
0.82 

1.29 
-2.14 
0.24 

(-0.0673, 
0.3742) 

306 W 
L 
K 

3 
6 
4 

0.25x10"! / 
0.44x10-1 / 
0.33x10"! / 

1.50 
0.36 
31.5 

4.22 
6.59 
0.95 

1.23 
-2.02 
0.18 

(-0.0645, 
0.3623) 

Table VI.5.26 - PDF Approximation for CL Patch 3 
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VI.6 - Extension of the Indexing Procedure to R/A/D Cells 

It is possible to extend the indexing procedure to the three dimensional 

R/A/D plane. The same steps used in indexing the R/A plane are followed. Name- 

ly, (1) an assessment stage is utilized to assign a unique number to the BN region 

and each 3-dimensional CL patch, compute the CNR for each CL patch, and clas- 

sify CL patches as to whether they are SSC, WSC, or ISC regions, (2) a CL sub- 

patch investigation stage is utilized to subdivide nonhomogeneous CL patches 

into contiguous CL subpatches, and (3) a random data analysis stage is utilized to 

obtain a PDF approximation of WSC CL patches stage. 

Even though the indexing procedure for the R/A/D volume follows the 

same steps as those shown in Figures VI.3.2, VI.3.3, and VI.3.4 for the R/A plane, 

some changes are needed to apply the indexing algorithms of the R/A plane to the 

R/A/D volume. These changes are: 

(i) - The mask used in the numbering procedure and shown in Figure VI.2.1 be- 

comes a 3 dimensional mask which consists of the 13 previously numbered 

neighboring cells to the test cell. This is illustrated in Figure VI.6.1 for the ijkth test 

cell. 

(ii) - For the choice of the reference cells, a 3x3x3 mask of neighboring cells is ini- 

tially centered around the test cell instead of the 3x3 one used for the R/A plane. 

Then, the mask is augmented by one plane at each of its boundaries resulting in a 

5x5x5 mask. As was done for the R/A case, the process of adding one row and 

one column to each boundary of the previous mask continues until the desired 

number of reference cells have been obtained. Note that the process of choosing 

a specified number of reference cells in the R/A/D volume results in the cells be- 

ing closer to the test cell than for the R/A plane. For example, in order to choose 

100 reference cells in a homogeneous region, a mask of dimension 11x11 is 

needed in the R/A plane whereas a mask of dimension 5x5x5 suffices in the 

R/A/D volume. Thus, the reference cells are a distance of up to 5 cells away from 
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the test cell in the R/A plane, whereas the distance is only up to 2 cells away from 

the test cell in the R/A/D plane. 

nil 

N(i-I,j-I,k-1) 

N(i-1,j-1,k) 

N(i-1J-1,k+1) 

N(i-1,j,k-1) 

N(i-1,j,k) 

N(i-1,j,k+1) 

N(i-1,j+1,k-1) 

N(i-1,j+1,k) 

N(i-1,j+1,k+1) 

|[    | Neighboring cell 

Test cell 

Figure VI.6.1 - Mask Used in Numbering the R/A/D Volume 

VI.7 - Conclusion 

In summary, an indexing procedure has been presented that allows for 

numbering each of the BN region and CL patches with a unique number, extract- 

ing CL subpatches, and approximating the PDF of the test cells in the CL patches. 

The procedure was illustrated with examples that show how the indexing proce- 

dure works. 
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With respect to the indexing procedure presented in Table n.3.1, every 

step of the WSC has been discussed in this chapter. It should be pointed out that 

the procedures used for choosing test and reference cells in SSC and ISC are the 

same as those used for WSC. 

Note that detection is not handled in this work because it is assumed that 

the appropriate detection algorithms to be used are known once the mapping and 

indexing are handled correctly. 

Up to this point, only the signal understanding and detection using a feed 

forward expert system (SUD/FFES) has been presented. Rules are presented in 

the next chapter to enable signal understanding and detection with a feed back 

expert system (SUD/FBES). 
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Chapter VII 

Application of IPUS to the Radar Detection Problem 

Various aspects of the radar detection problem were illustrated in Figure 

in. 1.1. The IPUS architecture decides whether or not a weak signal situation ex- 

ists by classifying the data to be processed into either SSC, ISC, or WSC. As ex- 

plained in Table II.3.1, the SSC uses the LRT, the ISC uses the GLRT, and the 

WSC uses the LOD. 

Thus far, the mapping and indexing stages for the feed-forward expert sys- 

tem (FFES), shown in Figure n.3.2, have been detailed. In this chapter, rules are 

developed which allow IPUS to supervise (1) the convergence process in the 

mapping procedure, and (2) the interpretation of the indexing procedure. 

Section VII. 1 summarizes IPUS concepts. In Sections VQ.2 and Vn.4, 

rules are developed for the mapping and indexing procedures, respectively, along 

with examples which illustrate application of the rules. 

VII.1 -Summary of IPUS Concepts 

The following items summarize the concepts upon which IPUS is based: 

- Signal processing algorithm (SPA^: one or more signal processing algo- 

rithms and the corresponding control parameters need to be defined. The set of 

values assigned to the control parameters at a given instance is referred to as an 

SPA instance. 

- Discrepancy detection: When the signal being monitored by the SPA does 

not satisfy the requirements of the SPA instance, the output of the SPA is distort- 

155 



ed. Recognition that the SPA instance is not properly chosen for the input data 

stream is referred to as discrepancy detection. 

- Diagnosis procedure: Once a discrepancy has been detected, a diagnosis 

procedure is used to identify the source of the distortion that may have led to the 

discrepancy. 

- Reprocessing procedure: Knowing the source of the distortion, then either 

parameters of the same SPA can be readjusted or a different SPA can be chosen 

to reprocess the data. 

In the following sections, (1) SPAs are identified along with their sets of 

control parameters, (2) rules are developed which enable the detection of discrep- 

ancies and identification of sources of the distortion, and (3) examples are pre- 

sented to illustrate the result of reprocessing. 

VII.2 - Role of IPUS in the Mapping Procedure 

In this section, control by IPUS of the convergence process in the mapping 

procedure is described. 

VII.2.1 - IPUS Stages Included in the Mapping Procedure 

VII.2.1.1 - SPA and SPA Instance 

It has been shown in the block diagram of Figure V.3.10 that part of the 

mapping procedure consists of a set of four blocks linked by feed-forward and 

feed-back loops. These blocks are: thresholding/quantization, correction-quan- 

tized, correction-corrected, and assessment. Recall that these blocks are used to 

find the best threshold to separate between BN and CL patches. 

The parameters associated with the first three blocks are BNQP, NCQ, and 

NCC, respectively. The assessment block defines whether or not reprocessing 

through the feed-back loops is needed and, if so, which control parameters should 

be changed and what values should be assigned. The assessment stage com- 
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putes BNCQP and BNCCP and compares them to BNQP. 

In this application IPUS treats all four blocks as a single SPA. The control 

parameters for the SPA are BNQP, NCQ, NCC. Any one set of the control param- 

eter values is referred to as an SPA instance. 

VII.2.1.2 - Observations on Setting of the Control Parameters 

In this section, different effects of the control parameters are discussed. 

Note first that the intervals for the allowable values of the control parameters are 

given in Chapter V and are equal to 

0% < BNQP < 100% 

5<NCQ<8 (VH2-1) 

1 < NCC < 4. 

Recall that BNQP represents the fraction of BN cells in the quantized vol- 

ume. It is used to determine the threshold q for which all cells with data ampli- 

tudes below q are identified as BN and all cells with data amplitudes above q are 

identified as CL in the quantized volume. 

Also, NCQ is the minimum number of neighboring cells in the quantized 

volume required to be identified as CL cells for a test cell to be declared as a CL 

cell in the first-corrected volume. Finally, NCC is the minimum number of neigh- 

boring cells in the first-corrected volume required to be identified as CL cells for a 

test cell to be declared as a CL cell in the second-corrected volume. 

BNCQP and BNCCP are computed parameters which represent the BN 

percentages in the first and second-corrected volumes, respectively. 

Define BNQPt to be the true value for the fraction of BN cells in the gener- 

ated scene. 
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As explained in Section V.3, the mapping processor begins by setting a 

threshold that results in a specified fraction of BN cells equal to BNQP. The map- 

ping processor iterates until it is satisfied that the latest scene is consistent with 

the last specified value of BNQP. When the iteration process ends, it is assumed 

that 

BNQP=BNQPt. (VH.2-2) 

0) - Observations on the Setting of BNQP 

-1 - Setting BNQP much smaller than BNQPt: Many cells have data ampli- 

tudes larger than the threshold resulting in a large number of BN cells being de- 

clared as CL cells in the quantized volume. 

- 2 - Setting BNQP much larger than BNQPt: CL patch cells may be mis- 

classified due to the fact that some CL patches have data amplitude values below 

the threshold. This results in many CL cells being identified as BN cells in the 

quantized volume. 

Conclusion: Because (1) the objective of the mapping procedure is to sep- 

arate between BN and CL patches, (2) the average power of the BN is the lowest 

among all regions, and (3) the threshold is set adaptively by the assessment 

stage, the threshold is always set very low at the beginning so that BN information 

is gained as the process iterates. The threshold, controlled by the assessment 

stage, is raised adaptively until BNQP=BNQPt. 

(ii) - Observations on the Setting of NCO 

Recall that NCQ controls which test cells in the first-corrected volume are 

to be declared as CL. NCQ is said to be large when its value approaches 8 and 

small when its value approaches 5. The following observations relative to NCQ 

take into consideration that the initial setting of BNQP is low and then is increased 

until BNQP approximates the true value BNQPt. Depending on the setting of 

BNQP with respect to BNQPt, four cases exist: 
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- 1 - BNOP much smaller than BNQP,: 

- a - Setting NCQ small: In this case, because many CL declared 

cells exist in the quantized volume due to the low threshold, small NCQ results in 

the building of a multitude of CL patches which are likely to be so close that they 

form a single big CL patch in the first-corrected volume. 

- b - Setting NCQ high: Here, even though many CL declared cells 

exist in the quantized volume due to the low threshold, high NCQ results in the 

building of fewer CL patches than when NCQ is small. This is due to the fact that 

there must be at least NCQ CL cells neighboring the test cell in the quantized vol- 

ume, where NCQ is large, in order for the test cell to be declared as a CL cell in 

the first-corrected volume. In this case, corrections are made and some of the 

cells previously declared as CL cells in the quantized volume are now declared as 

BN cells in the first-corrected volume. 

- 2 - BNQP close to BNQPt: When BNQP is close to its true value, the 

threshold is high enough to separate between the BN region and CL patches. 

With either small or large values for NCQ, the CL regions are well approximated. 

In this case, the choice of NCQ affects the classification of the inner cells of the 

CL regions. This results because, even though the data amplitudes of CL cells are 

higher than those of the BN cells, in general, some CL cells with data amplitudes 

lower than those of the highest BN data values exist and may be lower than the 

threshold. 

- a - Setting NCQ small: All test cells in the quantized volume that 

have at least NCQ neighboring cells are declared as CL cells in the first-corrected 

volume. Small NCQ helps to correctly classify the inner CL cells. However, note 

that small NCQ also results in misclassifying BN cells that are surrounded by at 

least NCQ declared CL cells. 

- b - Setting NCQ high: Every test cell must have a large number of 

neighboring CL declared cells in the quantized volume for it to be declared as a 
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CL cell in the first-corrected volume. This causes the procedure to misclassify 

some of the inner CL cells when too many of the neighboring cells have their data 

amplitudes falling below the threshold. In this case, the identified CL regions are 

not homogeneous and contain BN declared "holes". 

Conclusion: The value of NCQ should be chosen as large as possible at 

the beginning of the iterative process when the threshold is set very low to correct- 

ly reclassify the maximum number of BN cells misidentified at the thresholding/ 

quantization stage. When the threshold reaches a level where it is close to its con- 

vergence value, NCQ should then be chosen small to avoid non-homogeneous 

CL regions. 

(iii) - Observations on the Setting of NCC 

Because NCQ truncates the boundaries of the CL regions, NCC is used to 

augment the edges of the CL declared regions. NCC is said to be large when its 

value approaches 4 and small when its value approaches 1. In the following dis- 

cussion it is assumed that the conclusions previously reached on the settings of 

BNQP and NCQ are taken into consideration so that BNQP is initially set low to be 

increased until it approaches its true value BNQPt, while NCQ is initially set to a 

large value, to be decreased as BNQP approaches its true value. Four cases are 

then identified: 

-1 - BNQP much smaller than BNQPt and NCQ large: 

Because NCQ is set large, many CL edge cells are misclassified and asso- 

ciated with the BN region. 

- a - Setting NCC small: When NCC is set small, many of the edge 

cells are correctly reclassified from BN cells to CL cells in the second-corrected 

volume. 

- b - Setting NCC large: In this case, only a few misclassified CL 
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edge cells are rcrrectly reclassified in the second-corrected volume. 

- 2 - RNfQP oJpfiP tn RNQPt and NCQ small: 

Because NCQ is small, only a few CL edge cells are associated with the 

BN. 

- a - Setting NCC small: Small NCC causes not only CL edge cells to 

be recovered but also BN cells to be misclassified in the second-corrected vol- 

ume. 

- b - Setting NCC large: In this case, most of the CL edge cells are 

correctly classified in the second-corrected volume and only few BN cells are mis- 

classified as CL cells. 

Conclusion: NCC results in the recovery of CL edge cells and the misclas- 

sification of some BN cells close to the CL edge cells. In order to maximize recov- 

ery of the CL edge cells and minimize the misclassification of BN cells, NCC 

should be set small when NCQ is set large in order to recover a lot of CL edge 

cells that were lost in the first-correction. On the other hand, NCC should be set 

large when NCQ is set small because, in this case, only a few CL edge cells need 

to be recovered. 

VII.2.1.3 - Discrepancy Detection 

In this section, rules are developed to enable the detection of discrepan- 

cies. The assessment stage of the mapping procedure consists of comparing at 

each step of the iteration the value for BNCCP with the corresponding BNQP. 

When BNCCP is not sufficiently close to BNQP, the assessment stage is said to 

fail. This initiates the discrepancy detection stage. Diagnosis identifies the distor- 

tion that may have caused the discrepancy and adjusts one or more of the map- 

ping control parameters for reprocessing of the data. 

The strategy behind the iterative process of the mapping procedure em- 

ploys two stages. In the first stage, referred to as the threshold approximation 
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stage, BNQP is varied iteratively by the mapping processor until, as explained lat- 

er, it is expected that BNQP is within 10% of its true value BNQPt. The second 

stage, referred to as the threshold fine-tuning stage, consists of iteratively varying 

BNQP until it converges to within 1% of the last computed value for BNCCP. The 

two stages are now discussed in detail. 

- a - Threshold approximation stage: During this stage, two sets of SPA in- 

stances are used on the same data of the surveillance volume. For both sets 

BNQP and NCC are the same whereas NCQ is equal to 7 for one set and 8 for the 

other. 

Recall that NCQ is used to recognize the CL patches in the surveillance 

volume. First consider the situation where BNQP approximately equals BNQPt. 

Here the threshold is such that it is possible to do a good job of separating be- 

tween the BN region and CL patches. Steps are then taken to correct misclassi- 

fied BN and CL data. Note that misclassifications are due to large BN data 

exceeding the threshold and small CL data falling below the threshold. At this 

point, setting NCQ to 7 and 8, respectively, results in very close values for 

BNCQP and BNCCP due to the facts that (1) the two masks are very similar. 

(NCQ=8 requires that 8 neighboring cells be declared CL in the quantized volume 

for a test cell in the first-corrected volume to be declared CL whereas NCQ=7 re- 

quires that 7 neighboring cells be declared CL in the quantized volume for a test 

cell in the first-corrected volume to be declared CL), (2) only a few cells are mis- 

classified in the quantized volume. 

Now consider that BNQP is significantly smaller than BNQPt. In this case 

many BN cells are misclassified after quantization. Even though masks with NCQ 

equal to 7 and 8 are similar, they result in BNCQP and BNCCP being considerably 

different due to the fact that the large number of misclassified BN cells are so 

many that they tend to group together. Consequently, changing NCQ from 8 to 7 

simply results in additional BN cells grouping together to form additional CL re- 
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gions and more edges. Because of this 

BNCQPINCQ=7 < BNCQPINCQ=8 

and (VH.2-3) 

BNCCPINCQ=7 < BNCCPINCQ=8- 

Because the second-corrected volume represents the scene where CL 

patches and their edges are assumed to be properly recovered had the threshold 

BNQP been chosen properly, BNCCP tries to converge to BNQPt. Thus, it is logi- 

cal to begin each iteration by assigning to BNQP the latest computed value of 

BNCCPINCQ=8- TT"10 verv first va,ue assigned to BNQP is simply a guess. This val- 

ue should be such that the threshold is low. In all of our examples, the first value 

of BNQP is chosen equal to 10%. 

Using different scenes with different values for BNQPt, it has been deter- 

mined near convergence that whenever the difference between BNCCPINCQ=7 

and BNCCPINCQ=8 is within 10%, then BNQP is likely to be within 10% of its true 

value. This is confirmed in Figure Vn.2.1 where plots of the quantities 

BNCCPINCQ=8 - BNCCPINCQ=7 versus BNQP-BNQPt are shown for different val- 

ues of BNQPt. Note that 

- i - for different values of BNQPt, all plots are such that near convergence 

the difference BNCCPINCQ=8 - BNCCPINCQ=7 approaches to 0 when 

BNQP-BNQPt also approaches 0, 

- ii - for different values of BNQPt, when BNQP-BNQPt > -10%, the differ- 

ence BNCCPINCQ=8 " BNCCPINCQ=7 < 10%. 

As a result of the above, the threshold approximation stage iterates until it 

is satisfied that 

BNCCPINCQ=8 - BNCCPINCQ=7 < 10%. (VH.2-4) 
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Figure VII.2.1- Plot of BNCCPINCO=8 - BNCCPiNCO=7 Versus 
BNQP-BNQPt for Different Values of BNQPt 

In summary, as shown in the flow chart of Figure Vn.2.2, a guess for the 

initial value of BNQP is followed by the execution of the mapping procedure using 

two different SPA instances. The outputs of the two SPA instances are compared 

by means of the computed values of BNCCP. If BNCCPINCQ=8 - BNCCPINCQ=7 is 

more than 10%, a discrepancy is detected and it is concluded that the value of 

BNQP differs from its true value by more than 10%. BNQP is then increased to 

the latest computed value of BNCQPINCQ=8- BNQP is varied from one iteration to 

the next while NCC is kept equal to 1. This choice for NCC agrees with the obser- 

vations made previously where it was concluded that NCC should be set small 

when NCQ is set large. In this case NCQ has a large value equal to either 7 or 8. 
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Figure VII.2.2 - Threshold Approximation Stage 

The discrepancies that may arise in the threshold approximation stage are 

due to the fact that two instances of the same SPA result in different interpreta- 

tions when applied to the same data. As defined in Section ni.2.2, such a discrep- 

ancy is typified as a fault. 

Two fault-type discrepancies are readily identified in the threshold approxi- 

mation stage. These are as follows: 

-1 - BNCCPINCQ=8 - BNCCPINCQ=7 > 10%: As discussed above, the goal 

of the threshold approximation stage is to obtain a threshold BNQP that is within 

10% of its true value. As shown in Figure Vn.2.1, this is likely only when 

BNCCPINCQ=8 - BNCCPINCQ=7 < 10%. When the difference between the comput- 

ed thresholds BNCCPINCQ=8 - BNCCPINCCWZ is more than 10%, a fault type of 
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discrepancy is detected during the assessment stage. The diagnosis process 

identifies the fact that BNQP-BNQPt < -10% as the source for the distortion caus- 

ing the discrepancy. The remedy, in this case, is to increase the value of BNQP 

during the reprocessing stage to the latest computed value for BNCCPINCQ=8- 

- 2 - initial BNQP set too low. In some cases, when the initial guess for 

BNQP is too small, the number of BN cells with data exceeding the threshold is so 

large that when corrections are made, the second-corrected volume results in 

many CL declared patches or, in the worst case, a single big CL patch. This re- 

sults in the values of either BNCCPINCQ=8 or BNCCPINCQ=7 being even smaller 

than BNQP. In this case, it is possible to obtain a value for the difference 

BNCCPINCQ=8 - BNCCPINCQ=7 that is smaller than 10%. The IPUS control must 

be suspicious of such a case and declare BNQP-set-too-low as the source for the 

distortion causing the discrepancy. The remedy, in this case, is to increase the ini- 

tial value of BNQP during the reprocessing stage. In our examples, we choose to 

increase BNQP by 10% every time an initial-BNQP-set-too-low fault is obtained. 

Table Vn.2.1, summarizes the discrepancies that may occur during the 

threshold approximation stage. 

Discrepancy 
(Fault Type) 

Diagnosis 
(Source of Distortion) 

Reprocessing 

BNCCPINCQ=8 " BNCCPINCQ=7 
is more than 10% 

BNQP-BNQPt>-10% Assign to BNQP 
the latest value of 
BNCCPINCQ=8 

BNCCPINCQ=8 - BNCCPINCQ=7 
is less than 10% in the early 
stages of iteration 

Initial value of BNQP is 
too low 

Increase BNQP by 
10% from its initial 
value 

Table VII.2.1 - Discrepancies in the Threshold Approximation Stage 
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- b - Threshold fine-tuning stage: At the end of the threshold approximation 

stage BNQP is likely to be within 10% of its true value BNQPt. During the thresh- 

old fine-tuning stage, BNQP is varied until BNCCP is within 1% of the correspond- 

ing value of BNQP. 

During the threshold fine-tuning stage, NCQ is lowered to avoid holes in 

the CL patches caused by misclassified CL cells whose data values are lower 

than the threshold. For the same reason BNQP is assigned the latest value of 

BNCCPINCQ=7 rather than the latest value of BNCCPINCQ=8- ln addition, the val- 

ue of NCC is raised to avoid misclassification of BN cells close to the CL edges. 

These choices for NCQ and NCC agree with observations mentioned in Section 

vn.2.1.2. 

The following observations on BNQP, NCQ, and NCC are necessary to un- 

derstand how these parameters should be automatically set in order for BNCCP 

to converge to within 1 % of BNQP. 

-1 - When BNQP is increased while both NCQ and NCC are kept constant, 

the number of BN cells in the quantized volume is increased and, therefore, both 

BNCQP and BNCCP are likely to increase. 

- 2 - When NCQ is increased while both BNQP and NCC are kept constant, 

the requirement on a test cell to be declared as a CL cell in the first-corrected vol- 

ume becomes more stringent and, therefore, the number of CL cells in both cor- 

rected volumes are likely to decrease. This tends to increase the number of BN 

cells causing both BNCQP and BNCCP to increase. 

- 3 - When NCC is increased while both BNQP and NCQ are kept constant, 

the requirement on a test cell to be declared as a CL cell in the second-corrected 

volume becomes more stringent and, therefore, the number of CL cells in this vol- 

ume is decreased. Thus, the number of BN cells in the second-corrected volume 

increases and, consequently, BNCCP increases. 
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Using the above observations, the following strategy is used by the assess- 

ment stage to control the threshold fine-tuning stage, 

-1 - Because BNQP is within 10% of its true value at the beginning of the 

threshold fine-tuning stage, the threshold is likely to be relatively high. Thus, NCQ 

should be set to its smallest value of 5 while, as needed, NCC should be incre- 

mented iteratively from its minimum value of 1 up to its maximum value of 4. 

- 2 - When the inequality in Equation Vn.2-4 is not satisfied, BNQP should 

be increased in small steps. Otherwise, the iterative process diverges when the 

same rule from the threshold approximation stage is used. The approach taken in 

this work during the threshold fine-tuning stage consists of assigning a value to 

BNQP that is half way between its latest value and the latest value of BNCCP, i.e. 

BNQPIiatest+BNCCPIfctest 
BNQP = . (VH.2-5) 

- 3 - The condition set forward for ending the threshold fine-tuning stage is 

given by 

IBNQP - BNCCPI < 1%. (VH.2-6) 

Two cases are possible when the inequality in Equation Vn.2-6 is not satisfied: ei- 

ther BNQP < BNCCP or BNQP > BNCCP. 

- 4 - When the inequality in Equation VH.2-6 is not satisfied and 

BNQP < BNCCP, the control parameters should be varied by the diagnosis proce- 

dure such that BNCCP is decreased. In this case, NCQ should be made smaller. If 

none of the allowable values for NCQ result in the inequality in Equation Vn.2-6 

being satisfied, then BNQP is varied according to Equation VII.2.5. 

- 5 - When the inequality in Equation Vn.2-6 is not satisfied and 

BNQP > BNCCP, the control parameters should be varied by the diagnosis proce- 

dure such that BNCCP is increased. In this case, NCC should be made larger. If 
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none of the allowable values for NCC result in the inequality in Equation Vn.2-6 

being satisfied, then BNQP is varied according to Equation VTI.2.5. 

During the threshold approximation stage note that only BNQP was varied. On the 

other hand, in the threshold fine-tuning stage, any of the parameters BNQP, NCQ, 

and NCC may be varied. 

In summary, as shown in the flow chart of Figure Vn.2.3, the threshold fine- 

tuning stage begins by assigning to BNQP the latest value of BNCCPINCQ=7 ■ 

Once quantization, first-correction, and second-correction stages are completed 

with pre-selected values for NCQ and NCC, the assessment stage diagnoses the 

results according to the strategy discussed above, and, depending on the out- 

come, decides either that reprocessing is necessary with adjusted values for any 

of the BNQP, NCQ, and NCC parameters, or the threshold fine-tuning stage is 

completed. 

Update BNQP      ,  

Change NCQ 

BNQP=BNCCPINCQ-7 

I      1 

Change NCC 

Quantization 

** mil l*i i 

NCQ 
Correction-Quantized 

*        i mmm 

NCC 
Correction-Corrected 

■iffiiiii 
m 

Assessment 

i 
Figure VH.2.3 - Threshold Fine-Tunina Staae 
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At the end of each iteration of the threshold fine-tuning stage it is expected 

that the computed value of BNCCP will be within 1% of BNQR When the inequal- 

ity in Equation Vn.2-6 is not satisfied, a conflict type of discrepancy is detected 

based on the inconsistency in the expectation that BNCCP will be within 1% of 

BNQP. Table Vn.2.2 summarizes the discrepancies that may occur during the 

threshold fine-tuning stage. 

Discrepancy 
(Conflict Type) 

Diagnosis 
(Source of Distortion) 

Reprocessing 

IBNQP-BNCCPI>1%and 
BNQP < BNCCP 

Either NCQ or BNQP 
are not well adjusted 

Decrease NCQ, oth- 
erwise update 
BNQP 

IBNQP-BNCCPI>1%and 
BNQP > BNCCP 

Either NCC or BNQP 
are not well adjusted 

Increase NCC, oth- 
erwise update 
BNQP 

Table VII.2.2 - Discrepancies in the Threshold Fine-Tuning Stage 

It has been determined through examples that the initial setting of NCQ=5 

is adequate for the threshold fine-tuning stage to converge (i.e., in the examples 

studied it was never necessary to decrease NCQ). 

In the following section, examples are presented which illustrate use of the 

rules developed for both the threshold approximation and threshold fine-tuning 

stages. 

VII.3 - Examples 

In this section, tables describing previous results from the mapping proce- 

dure of examples 1, 2 and 3 in Chapter V are modified to demonstrate operation 

of the rules developed in this chapter for both the threshold approximation and 

threshold fine-tuning stages. In the following examples, define 

Ai-BNCCPlNoc« - BNCCPINCQ=7 (VH.3-1) 
and 

A2=IBNQP - BNCCPI. (Vn.3-2) 
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VII.3.1 - Example 1 

First, consider the example presented in Section V.4.2.1. Table VII.3.1 is 

an expanded version of Table V.4.2 in order to include information about the pro- 

cedures for the threshold approximation and threshold fine-tuning stages. In the 

first step of the threshold fine-tuning stage note that A2 > 1% and BNCCP < BNQ- 

P.Using the decision rules in Table Vn.2.2, NCC is increased in the next steps. 

BNQP (%) Parameter Values 4 
Threshold Approximation Stage 

10.00 NCQ=8 NCQ=7 
(guess) NCC=1 NCC=1 

BNCQP=51.56 BNCQP=25.78 
BNCCP=22.00 BNCCP=7.09 Aj > 10% 

22.00 NCQ=8 NCQ=7 
latest NCC=1 NCC=1 
BNCCP BNCQP=68.28 BNCQP=54.06 

BNCCP=50.39 BNCCP=25.74 Ax > 10% 

50.39 NCQ=8 NCQ=7 
latest NCC=1 NCC=1 
BNCCP BNCQP=75.56 BNCQP=70.93 

BNCCP=68.46 BNCCP=63.37 Aj < 10% 

Threshold Fine-Tuning Stage 

63.37 NCQ=5 
latest NCC=1 
BNCCP BNCQP=67.35 

BNCCP=59.72 < BNQP A2> 1% 

63.37 NCQ=5 
latest NCC=2 
BNCCP BNCQP=67.35 

BNCCP=62.26<BNQP A2>1% 

63.37 NCQ=5 
same as lat- NCC=3 
est BNQP BNCQP=67.35 

BNCCP=64.17 A2 < 1% 

Table VII.3.1 - Setting of BNQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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VII.3.2 - Example 2 

Consider now the example presented in Section V.4.2.2. Table VH.3.2 is an 

expanded version of Table V.4.5 in order to include information about the proce- 

dures for the threshold approximation and threshold fine-tuning stages. In the first 

step of the threshold fine-tuning stage note that A2 > 1% and BNCCP > BNQP. 

Using the decision rules in Table Vn.2.2, BNQP is increased using the half way 

rule of equation Vn.2-5. 

BNQP (%) Parameter Values A» 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
BNCQP=56.35 
BNCCP=20.59 

NCQ=7 
NCC=1 
BNCQP=23.94 
BNCCP=6.33 Ax > 10% 

20.59 
latest 
BNCCP 

NCQ=8 
NCC=1 
BNCQP=77.43 
BNCCP=48.04 

NCQ=7 
NCC=1 
BNCQP=53.30 
BNCCP=16.94 Ax > 10% 

48.04 
latest 
BNCCP 

NCQ=8 
NCC=1 
BNCQP=91.83 
BNCCP=81.70 

NCQ=7 
NCC=1 
BNCQP=84.11 
BNCCP=72.30 Aj < 10% 

Threshold Fine-Tuning Stage 

72.30 
latest 
BNCCP 

NCQ=5 
NCC=1 
BNCQP=82.17 
BNCCP=79.26 > BNQP A2 > 1% 

75.78 
halfway 

NCQ=5 
NCC=1 
BNCQP=83.50 
BNCCP=75.31 A2< 1% 

Table VII.3.2 - Setting of BNQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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VII.3.3 - Example 3 

Consider now the example presented in Section V.4.2.3. Table Vn.3.3 is an 

expanded version of Table V.4.8 in order to include information about the proce- 

BNQP (%) Parameter Values At 

Threshold Approximation Stage 

10.00 NCQ=8 NCQ=7 
(guess) NCC=1 NCC=1 

BNCQP=56.17 BNCQP=24.24 
BNCCP=20.04 BNCCP=6.09 At > 10% 

20.04 NCQ=8 NCQ=7 
latest NCC=1 NCC=1 
BNCCP BNCQP=77.98 BNCQP=51.22 

BNCCP=43.78 BNCCP=14.83 Aj>10% 

43.78 NCQ=8 NCQ=7 
latest NCC=1 NCC=1 
BNCCP BNCQP=90.78 BNCQP=84.78 

BNCCP=82.65 BNCCP=66.09 Ax > 10% 

82.65 NCQ=8 NCQ=7 
latest NCC=1 NCC=1 
BNCCP BNCQP=93.43 BNCQP=91.17 

BNCCP=89.39 BNCCP=84.70 Ai < 10% 

Threshold Fine -Tuning Stage 

84.70 NCQ=5 
latest NCC=1 
BNCCP BNCQP=87.61 

BNCCP=82.00 < BNQP A2> 1% 

84.70 NCQ=5 
latest NCC=2 
BNCCP BNCQP=87.61 

BNCCP=83.65 < BNQP A2> 1% 

84.70 NCQ=5 
same as lat- NCC=3 
est BNQP BNCQP=87.61 

BNCCP=85.46 A2 < 1% 

Table VII.3.3 - Setting of BNQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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dures for the threshold approximation and threshold fine-tuning stages. As was 

the case in example 1, note that A2 > 1% in the first step of the threshold fine-tun- 

ing stage and BNCCP < BNQP. Once again, using the decision rules in Table 

VH.2.2, NCC is increased. 

VII.4 - Role of IPUS in the Indexing Procedure 

In this section, control of the indexing procedure by IPUS is described. Re- 

call that the indexing procedure consists of the assessment, CL subpatch investi- 

gation and PDF approximation stages. Control by IPUS of these different stages 

is discussed next. 

VII.4.1 - IPUS Stages Included in the Assessment Stage 

As explained in Section Vl.2, the assessment stage consists of (1) assign- 

ing a unique number to the BN region and each CL patch, (2) computing the CNR 

for each CL patch, and (3) classifying CL patches as either SSC, WSC or ISC re- 

gions. Due to the straight forward implementation of these steps, any control by 

IPUS of the assessment stage is not discussed further. 

V11.4.2 - IPUS Stages Included in the CL Suhnatch Investigation Stage 

The approach used to extract a CL subpatch from a set of contiguous CL 

subpatches is the same as that used in the mapping procedure to extract the BN 

from CL patches. Therefore, control by IPUS is needed in the CL subpatch inves- 

tigation stage. 

Vll.4.2.1 - SPA and SPA Instance 

Recall that the CL subpatch investigation stage attempts to extract first, if it 

exists, the CL subpatch having the lowest average power. This part of the CL sub- 

patch investigation stage consists of a set of four blocks linked by feed-forward 

and feed-back loops. These blocks are: thresholding/quantization, correction- 

quantized, correction-corrected, and assessment. 
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The parameters associated with the first three blocks are PLQP, NCQ, and 

NCC, respectively. The assessment stage computes PLCQP and PLCCP and 

compares them to PLQP. IPUS treats all four blocks as a single SPA. The control 

parameters for the SPA are PLQP, NCQ, and NCC. Any single set of the control 

parameter values is referred to as an SPA instance. 

VII.4.2.2 - Observations on the Setting of the Control Parameters 

The observations previously made for the mapping procedure parameters 

(i.e., BNQP, NCQ, and NCC) also hold for the CL subpatch investigation parame- 

ters (i.e., PLQP, NCQ, and NCC). 

VII.4.2.3 - Resolution of Discrepancies 

As was the case for the mapping procedure, threshold approximation and 

threshold fine-tuning stages are used in the CL subpatch investigation stage to 

enable resolution of discrepancies. Because the procedure for extracting a CL 

subpatch is the same as that used for separating BN and CL patches, discrepan- 

cy detection rules for both procedures are the same. The threshold approximation 

stage block diagram of Figure Vn.2.2 becomes that of Figure VE.4.1 where BNQP 

and BNCCP have been replaced by PLQP and PLCCP, respectively. Let PLQPt 

represent the true value for PLQP, the threshold approximation stage iterates until 

it is satisfied that PLQP is within 10% of its true value PLQPt. This is satisfied 

when 

PLCCPINCQ=8 - PLCCPINCQ=7 < 10%. (VII.4-1) 

The threshold fine-tuning stage converges when 

IPLQP - PLCCPI < 1%. (VH.4-2) 

Figure Vn.4.2 shows the block diagram of the threshold fine-tuning stage. 
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Figure VII.4.1 - Threshold Approximation Stage 

In addition to the discrepancy rules described in Section Vn.2.1.3 for the 

threshold approximation and fine-tuning stages and summarized in Tables Vn.2.1 

and Vn.2.2, additional rules are introduced next as a result of some more obser- 

vations on the behavior of PLQP for the case where a CL patch is homogeneous 

and does not contain subpatches. These are, 

- 1 - It is noted that during the threshold approximation stage it is possible 

that the inequality in Eq. (VTI.4-1) will be satisfied with PLCCPINCQ=7or8=100%. 
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This means that the subpatch with the smallest average power occupies 100% of 

the CL patch area. Consequently, the CL patch is homogeneous. 

- 2 - When the inequality in Eq. (Vn.4-1) is met with PLCCPINCQ=7=100%' 

there is no need for the threshold fine-tuning stage. This is because the initial val- 

ue of PLQP in the threshold fine-tuning stage would be equal to 100% and any 

more processing would also result in PLCCP=100% regardless of the values cho- 

sen for NCQ and NCC. 
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- 3 - If the threshold fine-tuning stage results in PLCCP=100% at any itera- 

tion, the threshold fine-tuning stage should end because, as in observation -2-, 

any more processing will end with PLCCP=100% regardless of the values chosen 

for NCQ and NCC. This, in turn, will make PLQP equal to 100%. 

Tables Vn.4.1 and Vn.4.2 summarize the discrepancies that may occur 

during the threshold approximation and fine-tuning stages for the CL subpatch in- 

vestigation. 

Discrepancy 
(Conflict Type) 

Diagnosis 
(Source of Distortion) 

Reprocessing 

PLCCPINCQ=8 - PLCCPINCQ=7 
is more than 10% 

PLQP-PLQPt>-10% Assign to PLQP 
the latest value of 
PLCCPINCQ=8 

PLCCPINCQ=8 - PLCCPINCQ=7 
is less than 10% in the early 
stages of iteration 

Initial value of PLQP is 
too low 

Increase PLQP by 
10% from its initial 
value 

PLCCPINCQ=8 - PLCCPINCQ=7 
is less than 10% and 
PLCCPINCQ=7or8=100% 

CL patch homoge- 
neous 

No threshold fine- 
tuning is needed 

Table VII.4.1 - Discrepancies in the Threshold Approximation Stage 

Discrepancy 
(Conflict Type) 

Diagnosis 
(Source of Distortion) 

Reprocessing 

IPLQP-PLCCPI>1%and 
PLQP < PLCCP 

Either NCQ or PLQP 
are not well adjusted 

Decrease NCQ, oth- 
erwise update PLQP 

IPLQP-PLCCPI>1%and 
PLQP > PLCCP 

Either NCC or PLQP 
are not well adjusted 

Increase NCC, oth- 
erwise update PLQP 

IPLQP-PLCCPI>1%and 
PLCCP=100% 

CL patch homoge- 
neous 

Stop threshold fine- 
tuning 

Table VII.4.2 - Discrepancies in the Threshold Fine-Tuning Stage 
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Examples are next presented to illustrate the control by IPUS of the CL 

subpatch investigation. 

VII.4.3 - Examples 

In this section, tables describing the CL subpatch investigation of examples 

1,2 and 3 in Chapter VI are modified to include the rules developed in this chapter 

for both the threshold approximation and threshold fine-tuning stages. In the fol- 

lowing examples, Define A1=PLCCPINCQ=8 - PLCCPINCQ=7 and A2=IPLQP - 

PLCCPI. 

VII.4.3.1 - Example 1 

First consider the example of Section VI.5.1. Tables Vn.4.3, Vn.4.4 and 

VII.4.5 are expanded versions of Tables VI.5.3, VI.5.4 and VI.5.5 to include infor- 

mation about the procedures for the threshold approximation and threshold fine- 

tuning stages. Note in Table Vn.4.3 that no threshold fine-tuning is needed for 

Clutter Patch 1 

PLQP (%) Aj 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=70.59 
PLCCP=20.59 

NCQ=7 
NCC=1 
PLCQP=23.53 
PLCCP=2.94 Ax > 10% 

20.59 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=94.12 
PLCCP=82.35 

NCQ=7 
NCC=1 
PLCQP=79.41 
PLCCP=38.24 A! > 10% 

82.35 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP= 100.0 
PLCCP=100.0 Aj<10% 

Table VII.4.3 - Setting of PLQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 

179 



CL patch 1. This is due to the fact that CL patch 1 is homogeneous and does not 

contain subpatches. Also in Table Vn.4.5 note that the threshold fine-tuning stage 

needs not be carried out as PLCCP=100% in the last row before of the threshold 

approximation stage. However, when the fine-tuning stage is carried out, PLQP 

converges to 99.33 %. 

Clutter Patch 2 

PLQP (%) 4 
Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=39.38 
PLCCP=7.50 

NCQ=7 
NCC=1 
PLCQP=9.37 
PLCCP=0.00 Ax < 10% 

20.00 
(new guess) 

NCQ=8 
NCC=1 
PLCQP=59.38 
PLCCP=43.12 

NCQ=7 
NCC=1 
PLCQP=38.12 
PLCCP=8.75 Ax > 10% 

43.12 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=61.88 
PLCCP=51.25 

NCQ=7 
NCC=1 
PLCQP=55.00 
PLCCP=49.38 Ax > 10% 

Threshold Fine-Tuning Stage 

49.38 
latest 
PLCCP 

NCQ=5 
NCC=1 
PLCQP=50.62 
PLCCP=46.25 A2 > 1% 

49.38 
same as lat- 
est PLQP 

NCQ=5 
NCC=2 
PLCQP=50.62 
PLCCP=46.88 A2>1% 

49.38 
same as lat- 
est PLQP 

NCQ=5 
NCC=3 
PLCQP=50.62 
PLCCP=48.75 A2<1% 

Table I m.4.4 - Settina of PLQP in Both of the Threshold ADDrox imation 

a nd Threshold Fit 

18 
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Clutter Patch 3 

PLQP (%) Aj 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=50.25 
PLCCP=12.19 

NCQ=7 
NCC=1 
PLCQP= 14.61 
PLCCP=0.33 Ax > 10% 

12.19 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=58.51 
PLCCP=16.61 

NCQ=7 
NCC=1 
PLCQP=20.28 
PLCCP=0.83 Aj > 10% 

16.61 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=73.62 
PLCCP=28.80 

NCQ=7 
NCC=1 
PLCQP=33.97 
PLCCP=2.42 Al > 10% 

28.80 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=92.57 
PLCCP=66.19 

NCQ=7 
NCC=1 
PLCQP=70.03 
PLCCP=22.79 Aj > 10% 

66.19 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=99.83 
PLCCP=98.66 Aj < 10% 

Threshold Fine-Tuning Stage 

98.66 
latest 
PLCCP 

NCQ*5 
NCC*1 
PLCQF^IOO.G 
PLCCP*100.0 A2>1% 

99.33 
half way 
rale 

NCQ^S 
NCOl 
PLCQP=100.0 
PLCOMOÖ.Ö A2<1% 

Table V m.4.5 - Settina ofBNQP in Both of the Threshold ADDrox 'imation 

a nd Threshold Fi ne-tunina Staae 

11 
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vii.4.3.2 - Example 2 

Consider the example of Section VI.5.2. Tables VH.4.6, VII.4.7 and Vn.4.8 

are expanded versions of Tables Vl.5.13, VI.5.14 and VI.5.15 to include informa- 

tion about the procedures for the threshold approximation and threshold fine-tun- 

ing stages. In Table Vn.4.7 note that the threshold fine-tuning steps, presented in 

the shaded rows, need not be carried out. 

Clutter Patch 1 

PLQP (%) Ai 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=36.73 
PLCCP=8.16 

NCQ=7 
NCC=1 
PLCQP=8.16 
PLCCP=2.04 Ä! < 10% 

20.00 
(new guess) 

NCQ=8 
NCC=1 
PLCQP=71.43 
PLCCP=28.57 

NCQ=7 
NCC=1 
PLCQP=55.10 
PLCCP=10.20 Ax > 10% 

28.57 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=87.76 
PLCCP=55.10 

NCQ=7 
NCC=1 
PLCQP=55.10 
PLCCP=10.20 Ax > 10% 

55.10 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=95.92 
PLCCP=79.59 Ax > 10% 

79.59 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP= 100.0 
PLCCP=100.0 Ax < 10% 

Table VII.4.6 - Setting of PLQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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Clutter Patch 2 

PLQP (%) Aj 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=60.38 
PLCCP=19.50 

NCQ=7 
NCC=1 
PLCQP=16.35 
PLCCP=0.00 A1 > 10% 

19.50 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=81.76 
PLCCP=49.06 

NCQ=7 
NCC=1 
PLCQP=46.54 
PLCCP=8.80 Aj > 10% 

49.06 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=94.97 
PLCCP=81.76 

NCQ=7 
NCC=1 
PLCQP=81.76 
PLCCP=57.23 Ax > 10% 

81.76 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=99.37 
PLCCP=94.97 A1 < 10% 

Threshold Fine -Tuning Stage 

94.97 
latest 
PLCCP 

NCQ=5 
NCC=1 
PLCQP^iOO.G 
PLCCP=100.0 &&>%% 

97.47 
halfway 
rule 

NCQ-5 
NCOl 
PLCQP^IOO.O 
PLCCP-10Ö.Ö A^>i% 

98.73 
halfway 
rule 

NCQa5 
NCC«4: 

PLCQP-IOO.O 
PLCCP«! 00.0 &%>l% 

99.36 
halfway 

NCCN> 

PLCQP=100.0 
PLCCP=100.0 A2<1% 

Table VII.4.7 - Setting of PLQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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Clutter Patch 3 

PLQP (%) 4 
Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=63.36 
PLCCP=22.12 

NCQ=7 
NCC=1 
PLCQP=17.97 
PLCCP=0.69 Aj > 10% 

22.12 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=89.63 
PLCCP=62.90 

NCQ=7 
NCC=1 
PLCQP=63.82 
PLCCP=19.12 Ax > 10% 

62.90 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=99.08 
PLCCP=94.70 Ax < 10% 

Table VII.4.8 - Setting ofBNQP in Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 

VII.4.3.3 - Example 3 

Finally, consider the example of Section Vl.5.3. Tables Vn.4.9, Vn.4.10 

and Vn.4.11 are expanded versions of Tables VI.5.21, VI.5.22 and VI.5.23to in- 

clude information about the procedures for the threshold approximation and 

threshold fine-tuning stages. Note from Tables VII.4.9 and Vn.4.10 and Vn.4.11 

that no threshold fine-tuning is needed for CL patches 1, 2, and 3. Also, note that 

the last four shaded rows of Table Vn.4.11 need not be carried out. 

184 



Clutter Patch 1 

PLQP (%) Ai 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=48.94 
PLCCP=8.51 

NCQ=7 
NCC=1 
PLCQP=6.38 
PLCCP=0.00 Ax < 10% 

20.00 
(new guess) 

NCQ=8 
NCC=1 
PLCQP=82.98 
PLCCP=51.06 

NCQ=7 
NCC=1 
PLCQP=46.81 
PLCCP=10.64 Ai > 10% 

51.06 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP= 100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=95.74 
PLCCP=78.72 Aj > 10% 

78.72 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP= 100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 Ai < 10% 

Table VII.4.9 - Setting of PLQP In Both of the Threshold Approximation 
and Threshold Fine-tuning Stages 
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Clutter Patch 2 

PLQP (%) Ai 

Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=42.93 
PLCCP=11.62 

NCQ=7 
NCC=1 
PLCQP= 16.67 
PLCCP=1.51 Ax > 10% 

11.62 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=53.54 
PLCCP=13.64 

NCQ=7 
NCC=1 
PLCQP=19.19 
PLCCP=1.51 Aj > 10% 

13.64 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=64.14 
PLCCP=18.69 

NCQ=7 
NCC=1 
PLCQP=24.24 
PLCCP=2.52 Aj > 10% 

18.69 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=77.27 
PLCCP=32.32 

NCQ=7 
NCC=1 
PLCQP=44.95 
PLCCP=7.57 Ai > 10% 

32.32 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=94.44 
PLCCP=69.70 

NCQ=7 
NCC=1 
PLCQP=78.79 
PLCCP=37.37 Aj > 10% 

69.70 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP= 100.0 
PLCCP=100.0 Aj < 10% 

Table VII.4.10 - Setting of PLQP in Both of the Threshold Approximation 
and Threshold Fine-tunina Stages 
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Clutter Patch 3 

PLQP (%) 4 
Threshold Approximation Stage 

10.00 
(guess) 

NCQ=8 
NCC=1 
PLCQP=46.53 
PLCCP= 14.36 

NCQ=7 
NCC=1 
PLCQP=11.39 
PLCCP=1.98 Aj > 10% 

14.36 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=70.30 
PLCCP=26.24 

NCQ=7 
NCC=1 
PLCQP=31.68 
PLCCP=5.44 Ä! > 10% 

26.24 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=92.08 
PLCCP=66.83 

NCQ=7 
NCC=1 
PLCQP=68.81 
PLCCP=24.75 Ax > 10% 

66.83 
latest 
PLCCP 

NCQ=8 
NCC=1 
PLCQP=100.0 
PLCCP=100.0 

NCQ=7 
NCC=1 
PLCQP=99.01 
PLCCP=93.07 Al < 10% 

Threshold Fine -Tuning Stage 

93.07 
latest 
PLCCP 

NCQ=5 
NCC=1 
PLCQP-100.Q 
PLCCP=100.0 A£>i% 

»
 

NCQ=5 
NCO*l 
PLCQP=rl00.0 
PLCCP*100.0 A2 > 1% 

98.26 
halfway 
rale 

NCQ=3 
NCO=l 
PLCQP*4(XXG 
PLCCP^IOO.O A^>1% 

99.13 
halfway 
rule 

NCCH 
NGCW1 
PLCQP^IOO.O 
PLCCP=100.0 A^<i% 

Table VII.4.11 - Setiina of PLQP in Both ofthe Threshold Approximation 
and Threshold Fine-tunina Stages 
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VII.4.4 - TPIJS Stages Included in the PDF Approximation Stage 

Recall that the objective of the PDF approximation stage is to approximate 

the PDF underlying a particular CL patch region. A six step strategy for PDF ap- 

proximation was presented in Section VI.4.5. The first 5 steps consisted of (1) se- 

lecting a total of NT test cells that are evenly spread throughout the CL patch, (2) 

choosing for each test cell the closest NR=100 reference cells, as described in 

Section VI.4.1, (3) Using the Ozturk algorithm to determine the distance between 

the locus end point of the data linked vectors and its projection onto the Weibull, 

Lognormal, and K-distributed trajectories, (4) Discarding those PDFs for which the 

distances in step 3 exceed the corresponding half length of the minor axis ob- 

tained from Table VI.4.1, and (5) Excising any outliers that may exist from the data 

and proceeding to step 3 when all possible PDFs are discarded in step 4. These 

steps were illustrated through examples in Section VI.5. Step 6 consists of the 

use of IPUS to determine one or more PDFs to approximate the data in a particu- 

lar CL patch. Thus, IPUS is needed to complete the PDF approximation stage of 

the indexing procedure. 

In order to be able to identify the SPA, SPA instance, and discrepancies as- 

sociated with the PDF approximation stage, step 6 of the PDF approximation 

strategy has to be formulated. 

VII.4.4.1 - Step 6 of the PDF Approximation Strategy 

When the five first steps of the PDF approximation strategy are completed, 

the information available to step 6 consists of (1) identification numbers of the test 

cells, (2) best PDF(s) to approximate the data of the reference cells in every test 

cell along with their shape, scale, and location parameters, (3) distance from the 

locus end point of every test cell to the approximating PDF(s), and (4) (U.V) coor- 

dinates of the locus end point for every test cell. This information has been tabu- 

lated for the selected examples of Sections VI.5.1, VI.5.2, and VI.5.3. 
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The following strategy is used in step 6: 

- 6.1 - Only those kinds of PDFs among the Weibull, Lognormal and K dis- 

tributions, denoted by W, L, and K, respectively, that pass step 4 for all of the test 

cells in the patch are considered as possible approximating kind of PDF(s) for the 

CL patch. 

A violation type of discrepancy occurs when none of the distributions pass 

step 4 for all of the test cells in the patch. This situation initiates a search for sub- 

patches within the patch. 

- 6.2 -The ranking of each possible approximating type of PDF is summed 

over all of the test cells in the CL patch. That distribution having the lowest sum is 

chosen as the best approximation kind, for the underlying CL patch distribution. 

For example, consider Table Vl.5.9 which contains the distribution rankings for 

each test cell. The sum of the rankings for W, L, and K are 16,15, and 20, respec- 

tively. Consequently, L is chosen as the best approximating kind. 

- 6.3 - A check is made to determine whether, indeed, the patch under con- 

sideration is homogeneous. If it is, numerical values are determined for the best 

approximating kind of PDF. If it is not, a fault type of discrepancy occurs and a 

subpatch search is initiated. The check for homogeneity proceeds by determining 

whether all of the test cells in the patch fall within the 0.99 confidence contour of 

the approximating PDF for each test cell. However, in contrast to Section VI.4.3, 

the length of the minor axis is used as opposed to the half length. The lengths of 

the minor axes are tabulated in Table VH.4.12 for NR=100 and various shape pa- 

rameters. The procedure is carried out as follows: 

- 6.3.a - Select the first test cell in the CL patch. 

- 6.3.b - Using the best approximating kind of PDF found in - 6.2 - 

189 



PDF Shape 
Parameter 

Length of the minor 
axis 

Rayleigh - 0.94 x 10"1 

Weibull 0.1 0.50x 10"1 

0.5 0.82 x 10"1 

1.0 0.82 x 10"1 

2.0 0.94 x 10"1 

3.0 0.94 x 10-1 

4.0 0.90 x 10'1 

5.0 0.88 x 10"1 

10.0 0.88 x 10-1 

Lognormal 0.01 0.96 x 10"1 

0.05 0.90 xlO*1 

0.1 0.86 x 10'1 

0.2 0.84 xlO"1 

0.3 0.84 x 10"1 

0.4 0.92 x 10"1 

1.0 0.82 x 10-1 

5.0 0.56 x 10"1 

10.0 0.26 x 10"1 

K-distribution 0.01 0.26 x 10'1 

0.1 0.74 x 10"1 

1.0 0.58 x 10"1 

5.0 0.97 x 10'1 

10.0 0.94 xlO"1 

20.0 0.98 x 10"1 

40.0 0.98 x 10'1 

50.0 0.98 x 10"1 

Table VIL4.12 - Minor Axis Length for Different PDFs. ND=100 
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and the shape, parameter associated with the selected test cell, determine the 

length of the minor axis from Table VII.4.12. 

- 6.3.C - Using the (U,V) coordinates for the locus end points, com- 

pute the distances between the (U,V) coordinates of the selected test cell and ev- 

ery other test cell. 

- 6.3.d - Check the distances computed in - 6.3.C - against the minor 

axis length obtained in - 6.3.b -. Those test cells within the minor axis length from 

the selected test cell pass and are indicated by a •. The remaining cells are indi- 

cated by an X. 

- 6.3.e - Select the second test cell in the CL patch and repeat - 

6.3.b- through - 6.3.d -. 

- 6.3.f - Continue this process until all test cells have been selected. 

- 6.3.g - Record the results in a table referred to as the exclusion ta- 

ble. The CL patch is assumed to be homogeneous only if no X's appear in the ex- 

clusion table. 

- 6.3.h - When only /'s appear in the exclusion table, the CL patch 

is considered to be homogeneous. An approximating PDF is obtained by averag- 

ing over all of the test cells the shape, scale, and location parameters of the best 

approximating kind of PDF obtained in - 6.2 -. 

- 6.3.L - When X's appear in the exclusion table, a fault type of dis- 

crepancy occurs. This is discussed in a later section dealing with discrepancies. 

Steps - 6.3.a - to - 6.3.h - are now illustrated using the data in Table VI.5.9. 

As noted in step - 6.2 -, Lognormal is the best PDF approximating kind for the CL 

patch under consideration. Therefore, using Table Vn.4.12, the lengths of the mi- 

nor axes corresponding to the shape parameter values of the Lognormal PDF 

found in Table VI.5.9 are listed in Table Vn.4.13 for the different test cells. The 

second column and first row of Table Vn.4.13. indicate the assigned numbers of 
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the test cells. Finally, the remaining entries in the Table represent the distance be- 

tween the locus end points of the tabulated pairs of test cells. 

Length 
from Table 
VH4.12 

Cell No. 
1 361 722 1083 1444 

0.084 1 0 0.007 0.050 0.020 0.025 

0.084 361 0.007 0 0.053 0.027 0.027 

0.084 722 0.050 0.053 0 0.040 0.026 

0.084 1083 0.020 0.027 0.040 0 0.023 

0.090 1444 0.025 0.027 0.026 0.023 0 

Table VII.4.13 - Distance Between All Pairs of Test Cells for the Data of 
Table VI.5.9 

The exclusion table corresponding to Table Vn.4.13 is shown in Table 

Vn.4.14 and consists of /'s and X's depending on whether or not the distances in 

every row of Table Vn.4.13 are smaller of larger than the length shown in the first 

column of the same row. For this example, note that the entries are ail /'s indicat- 

ing that all test cells are within the length of the minor axes for the appropriate log- 

normal distributions. It is concluded that the patch under investigation is 

homogeneous. This example is completed in Section Vn.5.1. 

Cell No. 1 361 722 1083 722 

1 / / / / / 

361 / / / / / 

722 / / / / / 

1083 / / / / / 

1444 • / / / / 

Table VII.4. 14 - Exclusion Table for the Example of Table VI.5.9 
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VII.4.4.2 - SPA and SPA Tnstance 

Steps 1 through 6 of the PDF approximation stage involve the choice of Ny 

test cells, the selection of NR reference cells for each test cell, use of the Ozturk 

algorithm to find the best approximating PDF(s) for each test cell, and determina- 

tion of an approximating PDF when the CL patch is homogeneous or implementa- 

tion of a subpatch search procedure when the CL patch is nonhomogeneous. 

These steps, which are diagrammed in Figure Vn.4.3, constitute the SPA. A par- 

ticular setting of the parameters Nj, and NR constitutes an SPA instance. 

Choice of Nj test cells 

i 
Choice of NR reference cells 

for each test cell 

* 

Ozturk algorithm 

.* 

PDF approximation for 
each test cell 

♦ iiiiiiiiiiiii 

PDF approximation for a homogeneous CL patch 
or subpatch search for a nonhomogeneous 

CL patch 

* 

Fiaure VII.4.3 - PDF ADDroximation Staae 
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VII.4.4.3 - Resolution of Discrepancies 

In this section, rules are developed to enable resolution of discrepancies 

that may occur during the PDF approximation stage. Discrepancies may arise 

during two different phases of this stage: (1) during the PDF approximation for 

each test cell and (2) during PDF approximation for a homogeneous CL patch or 

subpatch search for a nonhomogeneous CL patch. These phases are viewed as 

two substages and are investigated next. 

- 1 - PDF approximation for each test cell: In order to approximate the 

PDF(s) of a test cell, steps 1 through 5 of the PDF approximation stage are imple- 

mented, as presented in Section VI.4.5. As shown in the examples of section 

VI.5, the outcome of the Ozturk algorithm phase is rejected whenever none of the 

allowable distributions (i.e., W, L, K) is found to be a suitable approximation. This 

decision is based on the fact that the data are known to be generated from either 

W, L, or K. When the data cannot be approximated by one of the allowable PDFs, 

a violation type of discrepancy is detected. At this point, the diagnosis process hy- 

pothesizes that the presence of outliers may be the source for the distortion caus- 

ing the discrepancy. The first row of Table Vn.4.15 summarizes resolution of the 

discrepancy that may occur in the PDF approximation of a test cell. 

Even though the data are known to be generated from the W, L, and K dis- 

tributions, they may not be representative. As a result, the allowable distributions 

may not provide suitable approximations even after removal of the outliers. Be- 

cause the data have been identified as belonging to WSC, the Gaussian receiver 

is likely to produce false alarms. Consequently, the discrepancy is resolved by dis- 

carding the data. The second row of Table Vll.4.15 summarizes resolution of this 

discrepancy. 
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Discrepancy 
(Violation Type) 

Diagnosis 
(Source of Distortion) 

Reprocessing 

None of the allowable distribu- 
tions is found to be a suitable 
approximation for the test cell 

Presence of outliers Remove outliers 

After removal of outliers none of 
the allowable distributions is 
found to be a suitable approxima- 
tion for the test cell 

Data is not representative Discard data 

Table VII.4.15 - Discrepancies in the PDF Approximation of a 
Test Cell Stage 

- 2 - PDF approximation for a CL patch: In order to approximate the PDF of 

a CL patch, step 6 of the PDF approximation stage is implemented. As discussed 

in Section Vn.4.4.1, the decision that there exists a suitable approximating PDF 

for a CL patch is based on the outcome of the exclusion table. As stated previous- 

ly, a discrepancy is detected when one or more X's occur in the exclusion table. 

When this happens, two cases are possible: 

- 2.a - The CL patch is homogeneous. In this case, the discrepancy 

is of the conflict type because the expectation that only 's should be encountered 

in the exclusion table has not materialized. However, the full length minor axis cri- 

terion has yet to be applied to the PDF that would be obtained by averaging over 

the parameters of all the test cells for the best approximating PDF kind. This is 

necessary because an X which appears in the exclusion table due to two test 

cells having widely separated (U,V) coordinates may disappear when the (U,V) 

coordinates of each test cell are compared to those of the average PDF. Should 

this fail, an exclusion table is generated for the next best ranked PDF kind. If only 

/'s appear in the exclusion table, the parameters for this PDF kind are averaged 

over all the test cells and the average PDF is used to approximate the homoge- 

neous CL patch. If one or more X's appear in the exclusion table, phase 
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-2.a- is repeated until all possible PDF kinds have been exhausted. Should all 

possibilities fail, it is assumed that the CL patch is not homogeneous and the pro- 

cess initiates phase -2.b-. 

- 2.b - The CL patch is not homogeneous. In this case, the discrep- 

ancy is of the violation type because none of the allowable PDF kinds is able to 

model the entire CL patch. Therefore, it should be modeled by two or more ap- 

proximating PDFs. By using the exclusion table to identify groupings and by intro- 

ducing new test cells between the groupings to generate even larger exclusion 

tables, the system attempts to determine a suitable number of PDFs for modeling 

the nonhomogeneous CL patch. This is achieved by examining the patterns of X's 

and /'s which appear, as discussed below. 

For example, five test Cells numbered a, b, c, d, and e might yield the ex- 

clusion table shown in Table Vll.4.16. By interchanging rows and columns b and c, 

Table Vll.4.17 results. From this table, there are seen to be two groupings: cells a, 

c and cells b, d, e. To determine whether the CL patch may consist of more than 

two groupings, new test cells, numbered f, g, h, which are located between the 

groupings are introduced. After rearranging rows and columns, the exclusion table 

given by Table Vll.4.18 may result. By inspection, it is concluded that cells f, g, h 

are not common to the previous two groupings. It is concluded that the CL patch is 

likely to be composed of at least three groupings. On the other hand, the introduc- 

tion of cells f, g, h might result in the exclusion table shown in Table Vll.4.19. Here, 

cells f, g, and h are seen to be common to both of the original groupings. Cells f, g, 

and h can be classified as "border" test cells (i.e., cells having reference cells ex- 

tending into more than one homogeneous subregion of the CL patch). It is con- 

cluded that two subregions are likely to exist within the CL patch. Further 

refinements can be made by introducing additional new test cells and studying the 

resulting exclusion tables. 

In general, additional groupings are identified when new test cells cannot 

be associated with existing groupings. Otherwise, new test cells will either be as- 
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Cell No. a b c d e 

a / X / X X 

b X / X / / 

c / X / X X 

d X / X / / 

e X / X / / 

Table VII.4.16 - Exclusion Table for Cells a. b. c. d. and e 

Cell No. a c b d e 

a / / X X X 

c / / X X X 
b X X / s / 

d X X / V y 
e X X / V • 

Tab/e VII.4.17 - Exclusion Table When b and c are Interchanged 

Cell 
No. 

a c f g h b d e 

a V • X X X X X X 

c s • X X X X X X 

f X X • ■111 / X X X 

g X X / / / X X X 

h X X -y / / X X X 

b X X X X X / / / 

d X X X X X / V «III 
e X X X X X • V !•' 

7ab/e V7/.4.7fl - Exclusion Table When f. a. and h are Added 
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Tafr/e \///.4.19 - Exclusion Table When f. a. and h Are Added 

sociated with existing groupings or be classified as border cells. When all cells of 

the CL patch have been used as either test cells or reference cells and when new 

test cells result only in border cells, the refinement procedure stops and the sys- 

tem assumes that additional groupings do not exist. 

- 2.c - The next step in the procedure is to identify those cells in the various 

homogeneous subregions of the CL patch. In general, each test cell in a grouping 

has associated with it NR reference cells. It is assumed that all NR reference cells 

belong to the same subregion as the corresponding test cell. All the cells identified 

for a particular subregion are assigned the same number. For example, all the 

cells in the kth subregion are assigned the number k. At this point each cell in the 

CL patch will have one or more numbers assigned to it. Those cells with a single 

assigned number are assumed to belong to the numbered subregion. Those cells 

with more than one assigned number are assumed to belong to a border region 

bordering the numbered subregions. For example, a cell with the assigned num- 

bers j and k is assumed to be in a border region bordering the jth and kth subre- 

gions. Similarly, a cell with the assigned numbers j, k, and m is assumed to be in a 

border region bordering the jth, kth, and mth subregions. 
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- 2.d - Once the subregions have been identified, the PDF associated with 

each subregion is approximated. This is accomplished by following the procedure 

previously outlined in substeps 6.1-6.3 of step 6 for the PDF approximation strate- 

gy. Depending upon the application, the data from the border regions can either 

be discarded or approximated by one of the PDFs from the bordering subregions. 

In summary, two types of discrepancies can arise during the PDF approxi- 

mation of a CL patch, as shown in Table Vn.4.20. When the CL patch may be ho- 

mogeneous but cannot be approximated by the best average PDF, a conflict type 

of discrepancy is noted and the diagnosis suggests that the next best average 

PDF be tried. On the other hand, when it is concluded from the exclusion table 

that not all cells in a CL patch can be approximated by the same PDF, a violation 

type of discrepancy is detected indicating that the CL patch is not homogeneous. 

The diagnosis recommends that the CL patch data should be reprocessed to 

search for subpatches within the CL patch. Once the subregions have been iden- 

tified, their PDFs are approximated. 

Discrepancy Diagnosis 
(Source of Distortion) 

Reprocessing 

Not all test cells can be 
approximated by the best 
average PDF 
(conflict type) 

CL patch may be 
homogeneous but can- 
not be approximated by 
the best average PDF 

Try the next best 
average PDF 

Not all test cells can be 
approximated by any of 
the average PDF(s) 
(violation type) 

CL patch is not homo- 
geneous 

Separate subpatches 
and approximate their 
corresponding 
PDF(s) 

Table VII.4.20 - Discrepancies in the PDF Approximation of a CL Patch 

Examples are now presented to illustrate control by IPUS of the PDF ap- 

proximation stage. 
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VII.5 - Examples 

The I PUS concepts presented in Section Vn.4 are now illustrated by con- 

tinuing the examples treated previously in Sections VI.5.1, VI.5.2, and VI.5.3. In 

this section, the possible kinds of approximating PDFs are ranked as explained in 

Section Vn.4.4. For each approximating kind of PDF, the corresponding exclusion 

table is then built. Conclusions from examination of the exclusion tables are indi- 

cated with either an "All pass" or a "Not all pass" label. A "Not all pass" label indi- 

cates that the corresponding exclusion table includes at least one X and that the 

full length minor axis criterion fails with the average PDF for one or more test 

cells. On the other hand, an "All pass" label indicates that the corresponding ex- 

clusion table does not include any X's. Hence, all test cells may be approximated 

by the corresponding kind of PDF. For the kinds of PDFs that can approximate the 

distribution of the CL patch the scale, shape, and location parameters are aver- 

aged over all of the test cells in the CL patch to obtain an average PDF. PDFs that 

cannot approximate a particular CL patch either because of failure to pass the half 

length criterion or a "Not all pass" label are labeled N/A to indicate not applicable. 

In order to evaluate the effectiveness of the proposed approach for the par- 

titioning of the surveillance volume, results obtained for the number of CL patch- 

es, number of cells in each CL patch, and estimated CNR for each CL patch are 

compared to the generated ones. On the other hand, because the CL patch cells 

contain additive BN data, the PDF underlying a CL patch is not the PDF of the 

generated CL data alone. In general, analytical expressions for the PDF of the 

sum of BN and CL data are difficult to obtain. However, by using the Ozturk algo- 

rithm on 1000 BN plus CL data points, a very accurate approximation is obtained 

for the underlying PDF of the CL patch. 
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VII.5.1 - Example 1 

Consider Tables VI.5.7-VI.5.10 which summarize the results of steps 1 

through 5 of the PDF approximation strategy for the example of Section VI.5.1. 

Note that CL patches 1, 2, and 3 can be approximated by any one of the three 

PDF kinds, whereas, as indicated in Table VI.5.10, CL patch 4 can be approximat- 

ed only by the Weibull PDF. Tables VII.5.1-VII.5.4 summarize the results for step 

6 of the PDF approximation strategy for the four CL patches identified thus far. An 

exclusion table was generated for the allowable PDF kinds in each CL patch. As 

shown in Tables Vn.5.1-Vn.5.4, all of the PDF kinds are labeled "All pass" indicat- 

ing that none of the exclusion tables contained an X mark. Consequently, average 

values for the parameters of all the allowable PDF kinds are also tabulated in Ta- 

bles Vn.5.1-Vn.5.4. 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 1 All pass 2.05 3.14 0.64 

L 3 All pass 0.19 7.27 -4.00 

K 2 All pass 50.0 0.43 0.73 

Table VII.5.1 - Average PDF(s) for CL Patch 1 

Table Vn.5.5 uses the results presented in Tables VI.5.6 and Vn.5.1- 

Vn.5.4 to list the best average PDF for each CL patch. Comparing the results in 

Tables Vn.5.5 and VI.5.1 note that (1) regions for all four of the CL patches have 

been estimated, (2) the sample CNRs for CL patches A, C, and D, as evaluated 

according to Section VI.2.2, are within 1 dB of the generated values while that for 

CL patch B is within 3.31 dB, (3) the number of cells included in CL patches A, B, 

C, and D are close to the number of cells generated. In fact, a separate evaluation 

indicates that 96.5%, 98.3%, 97.2%, and 99.3% of the generated cells have been 

correctly classified for CL patches A, B, C, and D, respectively. 
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Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 2 All pass 2.56 1.29 31.38 

L 1 All pass 0.13 4.32 28.17 

K 3 All pass 50.0 0.15 31.62 

Table VII.5.2 - Average PDF(s) for CL Patch 2 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 2 All pass 1.96 15.52 -0.04 

L 1 All pass 0.25 20.09 -30.09 

K 3 All pass 33.28 2.96 0.08 

Table VII.5.3 - Average PDF(s) for CL Patch 3 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 1 All pass 4.51 90.82 14.97 

L N/A 

K N/A 

Table VII.5.4 - Average PDF(s) for CL Patch 4 

Clutter 
Patch (No.) CNR (dB) Number 

of cells 
PDF 
(best) 

Shape 
parameter 

Scale 
parameter 

Location 
parameter 

A(l) 9.04 113 W 2.05 3.14 0.64 

B(3) 23.31 1444 L 0.25 20.09 -30.09 

C(2) 30.63 151 L 0.13 4.32 28.17 

D(4) 40.56 146 W 4.51 90.82 14.97 

Table VII.5.5 - Assessment Parameters of the Mapping 
and Indexing Stages 
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With regard to the goodness of the PDF approximations, Figures Vn.5.1, 

VII.5.3, Vn.5.5, and VII.5.7 show the location in the approximation chart, indicat- 

ed by o, for the accurate approximation of the underlying CL patch PDF (i.e., PDF 

corresponding to the sum of CL and BN in the patch). These were obtained by 

generating 1000 points for each CL patch. The results are summarized in Table 

Vn.5.6. Figures VH.5.2, Vn.5.4, Vn.5.6, and VE.5.8 show the PDFs from Table 

Vn.5.5 (solid lines) obtained by the mapping and indexing stages, superimposed 

on the corresponding PDFs from Table Vn.5.6 (dashed lines). 

The comparison for CL patch A is given in Figure Vn.5.2. Although the best 

approximating PDF is Weibull while the underlying PDF is Lognormal, the curves 

are reasonably close except for a small offset in their location. Figure Vn.5.4 

shows the comparison for CL patch B. Here the best approximating and underly- 

ing PDFs are both Lognormal with shape parameters 0.25 and 0.27, respectively. 

However, the scale and location parameters are not as closely matched. This ac- 

counts for the discrepancy between the two curves. The results for CL patch C are 

shown in Figure Vn.5.6. As with CL patch A, the best approximating PDF is 

Weibull while the underlying PDF is Lognormal. In this case, the two curves differ 

substantially and a poor approximation has been made. Finally, the comparison 

for CL patch D is shown in Figure Vn.5.8. Although the best approximating PDF is 

Weibull while the underlying PDF is SU-Johnson, note that the curves are reason- 

ably close except for a small offset in their height and location. 

The best approximating PDFs from Table Vn.5.5 are superimposed on the 

histograms for CL patches A, B, C, and D in Figures Vn.5.9-VII.5.12, respectively. 

Whether or not the best approximating PDFs are close to the underlying PDFs, 

note that the best approximating PDFs nicely overlay the corresponding histo- 

grams. Relative to CL patch C, it is seen that the large amount of data with values 

above 33 are not representative of the underlying PDF shown in Figure Vn.5.6. 

This may be due to inclusion in CL patch C of cells originating in CL patch D. 
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CL 
Patch 

PDF Distance Shape Scale Location (U,V) 

A L 0.61X10-2 0.16 9.33 -5.65 (-0.0213, 
0.3225) 

B L 0.35xl0"2 0.27 26.25 -13.43 (-0.0416, 
0.3282) 

C W 0.22xl0-2 2.17 0.87 31.56 (-0.0296, 
0.3382) 

D SU- 
Johnson 

0.79xl0-2 (40.0, 
40.0) 

54.19 164.51 (0.0223, 
0.3379)     | 

Table VII.5.6 - Accurate Approximation of Underlying CL patch PDFs 

Figure VII.5.1 - Location of the Locus End Point for CL Patch A 
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Figure VII. 5.3 - Location of the Locus End Point for CL Patch B 
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Figure VII.5.6 - PDF Comparison for CL patch C 
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Figure VII.5.8 - PDF Comparison for CL patch D~ 

Figure VII.5.9 - Histogram and Best Approximating PDF for CL patch A 
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Figure VII.5.10 - Histogram and Best Approximating PDF for CL patchW 
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Figure VII.5.11 - Histogram and Best Approximating PDF for CL patch C 
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Figure VII.5.12 - Histogram and Best Approximating PDF for CL patch D~ 

VII.5.2 - Example 2 

Consider now Tables VI.5.16-VI.5.18 which summarize the results of steps 

1 through 5 of the PDF approximation strategy for the example of Section VI.5.2. 

Note that CL patches 1 and 3 can be approximated by any one of the three PDF 

kinds, whereas, as indicated in Table VI.5.17, CL patch 2 can be approximated 

only by the Lognormal PDF. Tables VII.5.7-VH.5.9 summarize the results for step 

6 of the PDF approximation strategy for the three CL patches identified thus far. 

An exclusion table was generated for the allowable PDF kinds in each CL patch. 

As shown in Tables VII.5.8-VII.5.9, the Lognormal and K PDF kinds are labeled 

"Not all pass" for CL patches 2 and 3, respectively, indicating that the correspond- 

ing exclusion tables contained one or more X's and that the full length minor axis 

criterion has failed when applied to the average PDFs obtained by averaging over 

the parameters of all the test cells for the corresponding PDF kinds. Consequent- 

ly, a N/A label is posted for each of the Lognormal and K PDF kinds in Tables 
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vTL5.8-Vn.5.9, respectively. Average values for the parameters of all the allow- 

able PDF kinds labeled with an "All pass" are also tabulated in Tables Vn.5.7- 

Vn.5.9. 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 3 All pass 1.34 4.22 0.46 

L 1 All pass 0.43 5.94 -2.20 

K 1 All pass 8.11 2.06 -0.82 

Table VII.5.7- Average PDF(s) for CL Patch 1 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W N/A 

L 1 Not all pass N/A 

K N/A 

Table VII.5.8 - Average PDF(s) for CL Patch 2 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 2 All pass 1.03 2.49 0.90 

L 3 All pass 0.61 3.15 -0.42 

K 1 Not all pass N/A 

Table VII.5.9 - Average PDF(s) for CL Patch 3 

The exclusion table, corresponding to the Lognormal entries in Table 

VI.5.17 for CL patch 2, is shown in Table Vn.5.10. The patters of X's and /'s in 

the table clearly defines two different regions. One region consists of test cells 

numbered 1 and 77. The other region consists of the remaining test cells num- 

bered 154, 231, and 308. This suggests the presence of at least two homoge- 
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neous subpatches in CL patch 2. In order to investigate whether more than two 

subpatches exist, three more test cells are considered which are located in be- 

tween the two cited regions. The additional test cells are numbered 96, 115, and 

134. Steps 1 through 5 of the PDF approximation strategy for these cells are sum- 

marized in Table Vn.5.11. The new exclusion table, shown in Table Vn.5.12 sug- 

gests that only two subpatches exist in the CL patch. The overlapping that exists 

between the two regions is due to the test cells located near the edges separating 

the two subpatches and whose reference cells extend to both regions. The con- 

clusion that CL patch 2 consists of two subpatches is recognized by the IPUS pro- 

gram as a discrepancy. 

Cell No. 1 77 154 231 308 

1 / / X X X 

77 V • X X X 

154 X X / / / 

231 X X V V • 
308 X X / • s 

Table VII.5.10- Exclusion Table for the Example of Table VI.5.17 

Test 
Cell No. 

PDF Rank Distance Shape Scale Location (U,V) 

96 W 
L 
K 

2 
6 
1 

0.57x10^/ 
0.21x10-1 / 
0.41xl0"2/ 

0.91 
0.68 
1.75 

1.56 
1.87 
2.15 

1.29 
0.52 
0.42 

(-0.0992, 
0.3091) 

115 W 
L 
K 

3 
7 
5 

0.16X10"1 / 
0.40x10"! / 
0.27x10"! / 

1.00 
0.60 
2.17 

1.83 
2.34 
2.10 

1.25 
0.24 
0.37 

(-0.1045, 
0.3327) 

134 W 
L 
K 

2 
5 
4 

0.16xl0'V 
0.23x10-1 / 
0.10x10-1 / 

1.04 
0.59 
3.08 

1.97 
2.45 
1.86 

1.28 
0.27 
0.31 

(-0.0888, 
0.3224) 

Table VII. 5.11 - PDF approximation for Test Cells No. 96. 115. and 134 of 
the Example of Section VI.5.2. CL Patch 2 
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CeU 
No. 

1 77 96 115 134 154 231 308 

1 • s • / / X X X 
77 / / / V / X X X 
96 / :'%^S' / / / / V • 
115 • / s / / / V V 
134 • V / / / / / • 
154 X X / / / / / • 
231 X X / V / / / s 
308 X X / / / / / / 

7a6/e W/.5.72 - Exclusion Table for the Example of 
Tables VI. 5.17 and VII.5.11 

Having detected the discrepancy, the diagnosis process in the I PUS control 

initiates a search for the subpatches. Specifically, (1) test cells numbered 1 and 

77 have their reference cells numbered 1, while test cells numbered 154,231, 308 

have their reference cells numbered 2, (2) all reference cells numbered with 1 and 

2 at the same time are declared as cells close to the boundary separating the CL 

subpatches. Their reference cells defines the boundary region where a test cell in 

one region has some of its reference cells extending to the other region. When 

this step is completed, the subpatches and the boundary region are defined as 

shown in Figure Vn.5.13. Note that the CL patch now consists of three different 

regions. The lower portion of the CL patch includes part of generated CL patch C 

while the upper portion includes part of generated CL patch D. The in-between re- 

gion contains cells from both CL patches C and D. The subpatches are relabeled 

2 and 4, as shown in Figure Vn.5.13. It is found that CL patch 2 contains 99 cells, 

CL patch 4 contains 183 cells, and the boundary region contains 26 cells. Also, 

based on the 99 cells of CL patch 2 and the 183 cells of CL patch 4, the CNRs for 

CL patches 2 and 4 are equal to 10.10 dB and 8.47 dB, respectively. 
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The PDF(s) of the CL subpatch regions are next approximated by consid- 

ering the average PDF(s) for test cells 1 and 77 for CL patch 2 and 154, 231, and 

308 for CL patch 4. In absence of additional information, the test cells located in 

the boundary region are approximated either by the PDF of CL patch 2 or the PDF 

of CL patch 4. Tables Vn.5.13 and Vn.5.14 summarize the results for step 6 of the 

PDF approximation for the subpatches numbered 2 and 4. 

Average 
PDF 

Rank Exclusion 
Table 

Shape Scale Location 

W N/A 

L 1 All pass 0.84 1.27 0.96 

K N/A 

Table VII. 5.13 - Average PDF(s) for CL Patch 2 Using Test Cells 
Numbered 1 and 77 

Average 
PDF 

Rank Exclusion 
Table 

Shape Scale Location 

W 1 All pass 1.80 3.54 0.47 

L 3 All pass 0.27 7.24 -3.85 

K 2 All pass 33.97 0.76 0.26 

Table VII. 5.14 - Average PDF(s) for CL Patch 4 Using Cells 
Numbered 154. 231. and 308 

Table VH.5.15 uses the results presented in Tables VI.5.12, Vn.5.7, 

VH.5.9, Vn.5.13, and Vn.5.14 to list the best average PDF for each CL patch. 

Note that both the L and K distributions are listed as the best approximating PDFs 

for CL patch A because their rankings were identical. Comparing the results in Ta- 

bles Vn.5.15 and VI.5.11 note that (1) regions for all four of the CL patches have 

been estimated, (2) the sample CNRs for CL patches B, C, and D, as evaluated 

according to Section VI.2.2, are within 1.5 dB of the generated values while that 

for CL patch A is within 2.03 dB, (3) the number of cells included in CL patches A, 

and B are close to the number of cells generated. 
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Figure VII.5.13 - Boundaries of the Scene Resulting from Step 6 of the PDF 
Approximation Stage 

In fact, a separate evaluation indicates that 98.7%, and 92.5% of the generated 

cells have been correctly classified for CL patches A, and B, respectively. Also, 

63.3%, and 99.1% of the generated cells have been correctly classified for CL 

patches C, and D, respectively. 

Clutter 
Patch (No.) 

CNR (dB) 
Number 
of cells 

PDF 
(best) 

Shape 
parameter 

Scale 
parameter 

Location 
parameter 

A(l) 12.03 133 L 
K 

0.43 
8.11 

5.94 
2.06 

-2.20 
-0.82 

B(3) 8.65 622 W 1.03 2.49 0.90 

C(2) 10.10 99 L 0.84 1.27 0.96 

D(4) 8.47 183 W 1.80 3.54 0.47 

Table VII. 5.15 - Assessment Parameters of the Mapping 
and Indexing Stages 
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With regard to the goodness of the PDF approximations, Figures Vn.5.14, 

VII.5.16, Vn.5.18, and VEL5.20 show the location in the approximation chart, indi- 

cated by o, for the accurate approximation of the underlying CL patch PDF (i.e., 

PDF corresponding to the sum of CL and BN in the patch). These were obtained 

by generating 1000 points for each CL patch. The results are summarized in Table 

Vn.5.16. Figures VH.5.15, Vn.5.17, Vn.5.19, and VH.5.21 show the PDFs from 

Table VH.5.15 (solid lines) obtained by the mapping and indexing stages, super- 

imposed on the corresponding PDFs from Table Vn.5.16 (dashed lines). 

The comparison for CL patch A is given in Figure Vn.5.15. Although the 

best approximating PDF is Lognormal while the underlying PDF is Weibull, the 

curves are reasonably close except for a difference in their heights. Figure 

Vn.5.17 shows the comparison for CL patch B. In contrast to CL patch A, the best 

approximating PDF is Weibull while the underlying PDF is Lognormal. Note that 

the curves are reasonably close. However a small offset in location is used to 

compensate for a slight mismatch in shape. The results for CL patch C are shown 

in Figure Vn.5.19. The best approximating PDF is Lognormal while the underlying 

PDF is SU-Johnson. In this case, the two curves differ substantially and a poor 

approximation has been made. Had the SU-Johnson been included in the library 

of allowable PDF kinds, a better approximating PDF would have been obtained. 

Finally, the comparison for CL patch D is shown in Figure Vn.5.21. Here the best 

approximating and underlying PDFs are both Weibull with scale parameters 3.54 

and 3.43, respectively. However, the shape and location parameters are not 

close. This accounts for the discrepancy between the two curves. 

The best approximating PDFs from Table Vn.5.15 are superimposed on 

the histograms for CL patches A, B, C, and D in Figures Vn.5.22-VH.5.25, respec- 

tively. Whether or not the best approximating PDFs are close to the underlying 

PDFs, note that the best approximating PDFs nicely overlay the corresponding 

histograms. Relative to CL patch D, it is seen that the large amount of data with 

values below 2.5 are not representative of the underlying PDF shown in Figure 
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VII.5.21. This may be due to inclusion in CL patch D of cells originating in CL 

patch C, as seen in Figure Vn.5.13. 

CL 
Patch 

PDF Distance Shape Scale Location (U,V) 

A W 0.73xl0'2 1.31 3.98 1.12 (-0.0733, 
0.3364) 

B L 0.30X10"1 0.49 3.67 -1.13 (-0.0840, 
0.3297) 

C SU-Johnson O.llxlO'3 (1.31, 
-0.7) 

0.69 2.94 (-0.0555, 
0.2590) 

D W 0.33xl0*2 2.24 3.43 2.48 (-0.0278, 
0.3345) 

Table VII.5.16 - Accurate Approximation of Underlying CL patch PDFs 
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Figure VII. 5.15 - PDF Comparison for CL patch A 
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Figure VII.5.17 - PDF Comparison for CL patcfTW 
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Figure VII.5.20 - Location of the Locus End Point for CL Patch D 
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Figure VII.5.23 - Histogram and Best Approximating PDF for CL patch B 

0.9 

0.8 

/ \ 
■T  1 1  

- 

0.7 \ 
u c u 0.6 

i 

- 

H 0.5 

0.4 

\ . 
N 

o 
2 

0.3 

\ 
- 

0.2 \ - 

0.1 

n 

- 

*v_ 

"*-. 

-. J. .d 
| 

Magnitude 

Figure VI1.5.24 - Histogram and Best Approximating PDF for CL patch C 
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Figure Vll.5.25 - Histogram and Best Approximating PDF for CL patch D 

VII.5.3 - Example 3 

Finally, consider Tables VI.5.24-VI.5.26 which summarize the results of 

steps 1 through 5 of the PDF approximation strategy for the example of Section 

VI.5.3. Note that CL patch 2 can be approximated by any one of the three PDF 

kinds, whereas, as indicated in Tables VI.5.24 and VI.5.26, CL patches 1 and 3 

can be approximated only by the Weibull and K PDFs. Tables VII.5.17-VII.5.19 

summarize the results for step 6 of the PDF approximation strategy for the three 

CL patches identified thus far. An exclusion table was generated for the allowable 

PDF kinds in each CL patch. As shown in Tables VII.5.17-VH.5.19, all of the PDF 

kinds are labeled "All pass" indicating that none of the exclusion tables contained 

an X mark. Consequently, average values for the parameters of all the allowable 

PDF kinds are also tabulated in Tables VH.5.17-VII.5.19. 

Table VII.5.20 uses the results presented in Tables VI.5.20 and VII.5.17- 

VII.5.19 to list the best average PDF for each CL patch. Comparing the results in 
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Tables Vn.5.20 and VI.5.19 note that (1) regions for CL patches A and B have 

been estimated, whereas the regions for the contiguous CL patches C and D have 

been approximated as a single region, (2) the sample CNRs for CL patch A, as 

evaluated according to Section VI.2.2, is within 1 dB of the generated values while 

that for CL patch B is within 3.47 dB, (3) the number of cells included in CL patch- 

es A and B are close to the number of cells generated. In fact, a separate evalua- 

tion indicates that 97.8% and 98.3% of the generated cells have been correctly 

classified for CL patches A and B, respectively. 

For this particular example, the PDF approximation strategy is not able to 

recognize that more than one subpatch exists in CL patch 2. In order to evaluate 

the severity of this result, we analyze the PDFs of CL patches C and D. As shown 

in Figures V.4.26.(d) and (e), even though the data amplitude histograms of CL 

patches C and D are different (CL patch C data amplitudes extend only from 3.1 

to 3.25 whereas CL patch D data amplitudes extend from 2 to 3.75), they have the 

same maximum located around 3.15. When BN is added to both CL patches C 

and D, their histograms become as shown in Figures Vn.5.26.(a) and (b), respec- 

tively. When BN data is added, the data amplitudes of both CL patches C and D 

extend over longer intervals ranging from 3.1 to 5.4. Note, also, that the shapes of 

both histograms are very similar. Thus, when BN data is added both CL patches C 

and D can be approximated by the same PDF. It is, therefore, concluded for this 

example that it is reasonable to approximate both CL patches C and D as a single 

CL patch (numbered 2). 

Average 
PDF Rank Exclusion 

Table Shape Scale Location 

W 1 All pass 2.16 3.86 -0.07 

L N/A 

K 2 All pass 50.0 0.49 0.43 

Table VII.5.17 - Average PDF(s) for CL Patch 1 
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Average 
PDF 

Rank 
Exclusion 

Table 
Shape Scale Location 

W 2 All pass 2.32 1.15 3.02 

L 1 All pass 0.17 2.72 1.29 

K 3 All pass 48.76 0.14 3.17 

Table Vn.5.18 - Average PDF(s) for CL Patch P 

Average 
PDF Rank Exclusion 

Table 
Shape Scale Location 

W 2 All pass 1.74 4.53 0.84 

L N/A 

K 1 All pass 31.16 1.03 0.39 

Table V1J.5.19 - Average PDF(s) for CL Patch 3 

Clutter 
Patch (No.) 

CNR (dB) Number of 
cells 

PDF 
(best) 

Shape 
parameter 

Scale 
parameter 

Location 
parameter 

A(l) 9.34 124 W 2.16 3.86 -0.07 

B(3) 13.47 306 K 31.16 1.03 0.39 

C + D (2) 10.63 341 L 0.17 2.72 1.29 

Table VII.5.20 - Assessment Parameters of the Mapping 
and Indexing Stages 
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Figure VII.5.26 - Data Amplitude Histograms Including Additive BN Data for 
(a) CL Patch C and (b) CL Patch D 

With regard to the goodness of the PDF approximations, Figures VII.5.27, 

VII.5.29, VII.5.31, and VII.5.33 show the location in the approximation chart, indi- 

cated by o, for the accurate approximation of the underlying CL patch PDF (i.e., 

PDF corresponding to the sum of CL and BN in the patch). These were obtained 

by generating 1000 points for each CL patch. The results are summarized in Table 

VII.5.21. Figures VH.5.28, VII.5.30, VH.5.32, and VII.5.34 show the PDFs from 

Table Vn.5.20 (solid lines) obtained by the mapping and indexing stages, super- 

imposed on the corresponding PDFs from Table VII.5.21 (dashed lines). 

The comparison for CL patch A is given in Figure VII.5.28. Here the best 

approximating and underlying PDFs are both Weibull with shape parameters 2.16 

and 2.24 and scale parameters 3.86 and 3.43, respectively. However, location pa- 

rameters are not as closely matched. This accounts for the discrepancy between 

the two curves. Figure Vn.5.30 shows the comparison for CL patch B. Although 
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the best approximating PDF is K while the underlying PDF is Weibull, the curves 

are reasonably close. The results for CL patch C, defined as part of CL patch 2, 

are shown in Figure Vn.5.32. The best approximating PDF is Lognormal while the 

underlying PDF is Weibull. In this case, the two curves are reasonably close ex- 

cept for a small offset in their location and height. Finally, the comparison for CL 

patch D, defined as part of CL patch 2, is shown in Figure Vn.5.34. The best ap- 

proximating PDF is Lognomal while the underlying PDF is SU-Johnson. the two 

curves differ substantially and a poor approximation has been made. As was the 

case in Example 2, had the SU-Johnson been included in the library of allowable 

PDF kinds, a better approximating PDF would have been obtained. 

The best approximating PDFs from Table Vn.5.20 are superimposed on 

the histograms for CL patches A, B, C, and D in Figures VII.5.35-VII.5.38, respec- 

tively. Whether or not the best approximating PDFs are close to the underlying 

PDFs, note that the best approximating PDFs nicely overlay the corresponding 

histograms. 

CL 
Patch PDF Distance Shape Scale Location (U,V) 

A W 0.33xl0"2 2.24 3.43 2.48 (-0.0278, 
0.3345) 

B W 0.80xl0"2 2.0 5.11 0.53 (-0.0353, 
0.3485) 

C W 0.19xl0-2 2.18 1.02 2.93 (-0.0292, 
0.3384) 

D SU-Johnson 0.17xl0-2 (2.97,- 
0.0094) 

1.53 5.74 (-0.0098, 
0.3156) 

Table VII.5.21 - Accurate Approximation of Underlying CL patch PDFs 
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Figure VII.5.27 - Location of the Locus End Point for CL Patch A 

Figure VII.5.28 - PDF Comparison for CL patch A 
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Figure VII.5.29 - Location of the Locus End Point for CL Patch B 

Figure VII.5.30 - PDF Comparison for CL patch B 
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Figure VII.5.32 - PDF Comparison for CL patch ~C 
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Figure VH.5.33 - Location of the Locus End Point for CL Patch D 

Figure VII.5.34 - PDF Comparison for CL patch D 
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Figure VII.5.35 - Histogram and Best Approximating PDF for CL patch A 
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Figure VII.5.36 - Histogram and Best Approximating PDF for CL patch B 
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VII.6 - Conclusion 

In this chapter, expert system rules were developed to control the decisions 

needed for operation of the mapping and indexing stages. Discrepancies were de- 

termined which enable identification of the sources of distortions which in turn en- 

ables reprocessing. 

Using the results developed in this chapter the three examples begun in 

Section V.4 were completed. For Example 1, in which the CNRs for CL patches A, 

B, C, and D were 10, 20, 30, and 40dB, respectively, it was possible to identify 

and approximate all four clutter regions. This was possible because of the signifi- 

cant difference in amplitudes between the CL patches and the BN. Example 2 had 

added complexity because the CNRs of the contiguous CL patches C and D were 

identical. Even so, the indexing procedure was able to recognize that CL patch 2 

consisted of two CL subpatches. In addition, the poor PDF approximation that can 

result with a limited library of PDFs was demonstrated. Finally, Example 3 investi- 

gated the situation where, even though the underlying PDFs of CL patches C and 

D were noticeably different, the addition of BN resulted in similar histograms. As a 

result, CL patches C and D were modeled as a single homogeneous CL patch. 

This example illustrates one of the pitfalls that can arise with small amounts of 

random data. 
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Chapter VIII 

Conclusion 

VIII.l - Conclusion 

Current radars are typically designed on the assumption that the clutter 

and background noise are both Gaussian random processes. Such receivers are 

matched filters which maximize signal-to-noise ratio by filtering to the extent pos- 

sible the desired target returns from the disturbance. When it is not possible to 

separate the clutter from the target by means of spatial and/or temporal filtering, 

the optimal Gaussian receiver performs poorly. 

However, it is known that an optimal non-Gaussian receiver in a non-Gaus- 

sian environment can perform significantly better than the Gaussian receiver in 

situations where the disturbance and target spectra completely overlap. The ma- 

jor problem is that there are an infinity of different non-Gaussian probability distri- 

butions and, in a practical situation, the environment is unknown. 

This dissertation demonstrates, in conjuncture with an expert system, that 

it is possible to partition a surveillance volume into clutter and background noise 

regions and to approximate the underlying probability distribution of each region. 

This is highly significant because real data is likely to be nonhomogeneous and 

nonstationary. It is for this reason that optimal processors may not work well on 

real data. The results obtained in this research provide an innovative approach to 

analyzing and characterizing real data. Several computer generated examples 

are used to dmonstrate the proposed methods. 

VIII.2 - Future Research 

In this dissertation it was shown that the mapping and indexing stages 
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have potential for being able to successfully monitor a random environment. The 

following problems were suggested by this research and remain to be addressed 

in the future: 

# Measures should be developed to enable a qualitative performance 

analysis of the proposed mapping and indexing procedures and the rules to be 

used by IPUS. 

# Criteria to guarantee convergence of the iteration process in the map- 

ping procedure should be developed. 

# The IPUS control should be able not only to control individually the map- 

ping and indexing stages but also to interact backward between these stages. Re- 

call from Section VI.4.4 that outliers may exist in a set of reference cells that may 

arise due to (1) misclassified BN cells in a CL patch or misclassified CL cells in the 

BN, (2) cells having data values of low probability of occurrence, and (3) cells con- 

taining signals from strong targets. Feedback between the indexing and mapping 

stages should be introduced to account and correct for outliers. 

# A strategy should be developed to enable handling of the next set of 

data from the same environment to update the information of the mapping and in- 

dexing stages without processing all the data but rather by doing a series of 

checks. 

# A detection strategy and expert system rules need to be developed for 

the target detection stage presented in Chapter n. 

# Following the detection stage, a target tracking strategy needs also to be 

developed. Note, for example, that when a target is present in a given cell, its 

presence in subsequent cells should be consistent with a reasonable track. 

# Environmental models based on collected real data and physical consid- 

erations should be verified using the Ozturk algorithm in order to gain confidence 

in these models. 
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• The Ozturk algorithm currently analyzes univariate random data. It is 

proposed to extend the Ozturk algorithm to the multivariate random data case. 

• The trade off in computational complexity for generating an average ap- 

proximating PDF for each CL patch or subpatch versus using the Ozturk algorithm 

once for all cells in a region should be investigated. 

• The effectiveness of using various image processing procedures found 

in the literature [24] and [25] for the mapping and indexing procedures should be 

investigated. 
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