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Abstract 

This investigation is motivated by the problem of weak signal detection in 
a strong clutter background. The concept of the Locally optimum Detector 
has been used to address this problem. The problem of weak signal detection 
has been extensively addressed in the literature when the received radar 
samples can be modeled as independent and identically distributed. However, 
this issue has not received much attention when the received radar samples 
are correlated and have a non-Gaussian probability density function. Also, 
performance analysis is not generally carried out for finite sample sizes. 

This thesis addresses the performance of Locally Optimum Detectors in 
radar weak signal detection for finite sample sizes where the radar distur- 
bance is modeled as a correlated non-Gaussian random process. The theory 
of Spherically Invariant Random Process is used for statistical characteri- 
zation of non-Gaussian radar clutter. In particular, the K-distribution and 
the student-T distributions have been considered as models for radar clutter. 
A canonical form is established for the Locally Optimum Detector that is 
a product of the Gaussian linear receiver and a zero memory nonlinearity. 
The functional form of the zero memory nonlinearity depends on the approx- 
imation used for the underlying radar clutter probability density function. 
Since the weak signal detector is nonlinear, thresholds for specified false alar- 
m probability cannot be established in closed form. Given a specified false 
alarm probability a new method for threshold estimation based on extreme 
value theory is derived that reduces by orders of magnitude the computation 
and sample size required to set the threshold. Once the threshold is set the 
performance of the Locally Optimum Detector is carried out for finite sample 
sizes through computer simulations. Finally, the concept of the Amplitude 
Dependent Locally Optimum Detector is introduced which has significantly 
improved performance over the Locally Optimum Detector for K-distributed 
clutter. The performance evaluation of the Amplitude Dependent Locally 
Optimum Detector is also carried out for finite sample sizes? 
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Chapter 1 

Introduction 

1.1     Weak Signal Problem 
In radar applications it is found that the received target signal is contaminated 

with clutter and thermal noise. The received signal due to undesired reflections from 

land, sea, atmosphere etc. is called clutter. The thermal noise, which is generated 

by the receiver hardware, is typically modeled as a Gaussian random process. This 

kind of noise is always present. Depending upon the situation, the clutter may or 

may not be modeled as a Gaussian random process. Also, the power associated with 

the background clutter may be orders of magnitude larger than the receiver thermal 

noise or the desired signal power. 

In modern radars, temporal and spatial processing are used to separate the target 

from the clutter. For example, the received signal from a target having a radial 

velocity with respect to the radar will experience a Doppler shift. If the target 

spectrum appears in the tail of the clutter spectrum, then conventional frequency 

domain techniques can be used to extract the target from the clutter. Similarly, if 

the spatial spectrum of the target does not overlap that of the clutter, performance 

will be limited by the background noise rather than the clutter. In this research use is 

also made of temporal and spatial processing. However, we are interested in the case 

where the target temporal and spatial spectra cannot be separated from the strong 

clutter. By definition, this is referred to as the weak signal detection problem. Given 

a Range-Doppler-Azimuth cell in which a target is to be detected, it is assumed that 

the signal is larger than the background noise but much smaller than the clutter. 

In the weak signal problem the performance is limited by the clutter even after 

1 



temporal and spatial processing. Therefore, it becomes very important to identify 

the clutter plus noise probability density function. This density function is the Nth 

order joint density function of the received radar samples ri,r2, ...,r^ in the absence 

of a target signal. The received waveform can be modeled as a random process. Since 

we will be sampling this process at N time instants, we need to know the Nth order 

joint probability density function (PDF) of the N random variables. In this research 

effort the performance measures of radar receivers are analyzed, given the Nth order 

PDF associated with the random process. 

In the hypothesis testing problem, where we have to decide whether the target is 

present or absent, two kinds of errors can occur: 1) A false alarm which occurs when 

it is decided that the target is present when it is not, 2) A miss which occurs when 

it is decided that the target is not present when it is. In many radar problems the 

chosen criterion is to fix the probability of false alarm at a certain value and then to 

maximize the probability of detection. In statistical decision theory the Likelihood 

Ratio Test (LRT) is optimum for these kinds of problems. The LRT evaluates the 

likelihood ratio which is the ratio of the Nth order joint PDF under the alternative 

hypothesis i/x (signal present) to the Nth order joint PDF under the null hypothesis 

HQ (signal not present). This ratio is then compared to a certain threshold to make a 

decision. Under the constraint of a fixed false alarm probability, the Neyman-Pearson 

receiver obtained on the basis of the likelihood ratio test is the optimum receiver. 

The components of the received vector r can be written mathematically as 

#1 :  rt-   =   Si + di (1.1) 

H0: n   =   di    i = 1.2..JV (1.2) 

where s,- and di represent the ith sample of the desired signal return and the additive 

disturbance, respectively. Also, let /R(H|#I), /ß(r|f/o), /DÜ) denote the Nth order 

PDFs of R under Hi, of R under H0 and of the disturbance. In general, the distur- 

bance may be composed of clutter plus noise. Since it is not possible to separate the 

clutter and noise components of the disturbance when the disturbance is measured, 

we focus on the disturbance itself. As the signal becomes very weak (i.e. as the 

signal to clutter plus noise ratio (SCNR) approaches zero), the numerator and the 



denominator of the LRT tend to become identical. This is due to the fact that 

/*(r|#i) * fMH0) = fdd). (1.3) 

This will result in the likelihood ratio being approximately equal to unity independent 

of the received signal. Thus, if T, denotes the likelihood ratio, 

roo fOO 

PD=       fT.(Ts\H1)dts^PF=       fT.(T.\Ho)dt, (1.4) 

where PD and PF represent the detection and false alarm probabilities.  Therefore, 

the LRT performs poorly in the limit as the signal strength tends to zero. 

Even though the problem of weak signal detection in radar applications is of great 

interest, most of the literature by various researchers has been devoted to strong 

signals in a clutter plus noise background. Optimal and/or very good sub-optimal 

schemes have been proposed to achieve the desired level of performance. Only a rela- 

tively small fraction of the. literature is devoted to the design of practical schemes for 

the detection of weak signals. In this study we present a general theory for developing 

practical detector structures for weak signal problems. Also, computer simulation- 

s are used to evaluate performance when the disturbance can be approximated by 

the multivariate student-T and K-distributions. In such problems the concept of the 

Locally Optimum Detector (LOD) is used to come up with the decision rule which 

is also a ratio test. For a deterministic signal, a statistic is obtained by taking the 

ratio of the derivative with respect to the signal strength of the Nth order joint PDF 

under Hi to the Nth order joint PDF under H0. The limit of this ratio as the signal 

strength tends to zero is evaluated to obtain the test statistic for the decision rule. In 

the random signal case the test statistic is a ratio, in the limit as the signal strength 

tends to zero, of the second derivative with respect to the signal strength of the N* 

order joint PDF under Hi to the Nth order joint PDF under H0. This approach is 

valid when it is known that the SCNR ratio is very small but the actual value of SC- 

NR is unknown. Thus, the LOD turns out to be a Uniformly Most Powerful (UMP) 

test for the class of problems where the SCNR is in the neighborhood of zero. 



1.2 Non-Gaussian Correlated Data 

Previously, general analytic expressions for the various applicable Nth order joint 

non-Gaussian PDFs which allow for correlation between the variables were unavail- 

able. As a result, researchers in the past assumed independence between the samples. 

By assuming independence between the samples, they were able to get the N* order 

PDF as a product of the marginal density functions. If we carry out the locally opti- 

mum test using the Nth order density function based upon independence and evaluate 

its performance, it is found that an unreasonably large number of samples is needed 

for acceptable performance. This arises because independent samples imply a white 

spectrum. Consequently, space-time processing cannot be used to filter the target 

from the clutter. Based on the concept of Spherically Invariant Random Processes 

(SIRP), analytical expressions for some Nth order joint non-Gaussian PDFs which 

allow for correlation between the variables are now available. Use of the multivariate 

expressions for the non-Gaussian PDFs and the theory of locally optimum detectors 

enables receiver structures for weak signal detection to be derived. 

1.3 Thesis Organization 
The literature review on weak signal detection and the derivation of the locally 

optimum detector are presented in Chapter 2. It is shown that the LOD determines 

whether a target is present or absent by comparing a statistic computed from the 

data to a set threshold. Both deterministic and random target signals are considered. 

The receiver structures are specialized to the case for which the clutter plus noise can 

be approximated by an SIRP. 

Since the clutter is assumed to be non-Gaussian, the LOD receiver structure turns 

out to be nonlinear. As a result, system performance must be determined by means 

of computer simulation. The threshold is conventionally determined through a Monte 

Carlo procedure. Unfortunately, the number of trials is inversely proportional to the 

false alarm probability, Pp- For example, when Pp = 10~6, a minimum of ten million 

trials need to be generated. To avoid carrying out so many trials, a new technique, 

based on extreme value theory, is presented in Chapter 3. It is demonstrated that 

fairly accurate thresholds can be determined for false alarm probabilities as small as 

lfr7 with as few as 10,000-30,000 trials. 

Assuming that the clutter plus noise can be approximated by either the multivari- 



ate student-T or K-distributions, the LOD is developed in Chapter 4 for the weak 

signal detection problem. The system performance is evaluated by means of computer 

simulation for each distribution. It is shown that the performance improvement for 

the LOD is significant compared to the linear receiver when the clutter plus noise is 

approximated by the student-T distribution. However, the performance improvement 

compared to the linear receiver is not quite as significant when the clutter plus noise 

is approximated by the K-distribution. 

To enhance the performance of the LOD for weak signal detection when the clutter 

plus noise is approximated as multivariate K-distributed, a new technique called the 

amplitude dependent locally optimum detector is presented. This test however, is not 

a uniformly most powerful-test. Based on this test, it is demonstrated that significant 

performance improvements can be obtained compared to the linear receiver even when 

the clutter plus noise is multivariate K-distributed. 

Summary and conclusions are presented in Chapter 6. 



Chapter 2 

The Locally Optimum Detector 

2.1    Literature Review 

The concept of the locally optimum detector was first established by Neyman and 

Pearson in 1930 [1, 2]. Subsequently this was applied to statistical communication 

and signal processing by several researchers. 

David Middleton's work [3, 4] on the LOD is based on expanding the LRT in terms 

of a power series expansion and truncating the series to a first order approximation. 

In the limit as the signal tends to zero, the canonical structure of the locally optimum 

detector is established with very weak restrictions on the statistical properties of signal 

and noise. The analysis applies equally well to non-Gaussian as well as Gaussian and 

non-stationary as well as stationary processes, for stochastic as well as deterministic 

signals, continuous as well as discrete time signals and for combinations of signal 

and noise that need not be additive. In fact, the general character of the results is 

independent of the particular nature of the signal and noise, although specific noise 

distributions determine the specific detector structures. Middleton shows that the 

locally optimum detector is a threshold detector with very strong optimality features 

in the limit of an infinitely large number of samples. However, in our research, we 

are interested in applications where the number of samples may not be too large. 

David Middleton [5] has also extended the problem of threshold or weak signal 

detection to vector fields involving highly non-Gaussian electromagnetic interference 

and signals which are both narrowband. The emphasis is on a canonical formulation. 

However, the performance measures presented are obtained on the basis of asymptoti- 

cally locally optimum algorithms. In [6] Middleton has also analyzed the performance 
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of the locally optimum detectors in correlated interference. He points out that the 

correlation function involves only the second order statistics whereas higher order 

statistics should be considered for the non-Gaussian case. Consequently, the corre- 

lated noise model leads to a suboptimal receiver except when the underlying noise 

distribution is Gaussian. But when the sample to sample correlation is strong, the 

resulting algorithms and performance measures can provide noticeable improvements 

over models which employ independent noise sampling assumptions. 

Other researchers in this area, such as J.H. Miller and John Thomas [7] and Saleem 

Kassam [8], have obtained performance of the LOD under the asymptotic condition 

of an infinitely large number of samples. These researchers have modeled the noise 

samples as independent, identically distributed random variables. This enables them 

to have a closed form expression for the N order PDF of multivariate non-Gaussian 

noise. Applying the LOD test they have arrived at the decision statistic. Using 

the central limit theorem, the test statistic is shown to approach Gaussian in the 

limit of very large sample size. Then the performance measures are evaluated. Song 

and Kassam [9], [10] have also derived the locally optimum detectors for both known 

signals and random signals in a generalized observation model. In this model additive, 

multiplicative and signal dependent noise models are considered. They show that 

the detectors derived under this model are interesting generalizations of the locally 

optimum detectors derived in the additive noise model case. They also analyze the 

performance of the detector for a finite sample size case. But, the underlying noise 

distribution is assumed to be bivariate Gaussian. 

For a variety of detection problems, Jack Capon [11] concludes that implementation 

of the LOD is either less, or no more complicated than the Neyman-Pearson detec- 

tor. First, he proposes the locally optimum detector for weak signal applications and 

proceeds to evaluate its performance by comparing it with the Neyman-Pearson de- 

tector. The comparison is based on the concept of Asymptotically Relative Efficiency 

(ARE). ARE is defined as the ratio of sample sizes required for two different detectors 

to achieve the same error probability and for the same signal to noise ratio, as the 

signal to noise ratio tends to zero and the sample sizes tend to infinity. On the basis 

of this comparison, it is shown that the locally optimum detector is asymptotically 

as efficient as the Neyman-Pearson detector. Conte, Izzo, Longo and Paura [12] have 



also considered the problem of weak signal detection using locally optimum detectors 

for arbitrarily large sample sizes and show that significant improvements are achieved 

compared to the linear detector. However, when they implement their algorithm for 

finite sample sizes, they conclude that the promises of the asymptotic theory cannot 

be achieved using even moderately large sample sizes. Hence, they propose a scheme 

which is a hybrid of the asymptotically optimum detector and the linear detector. 

Asymptotically effective nonparametric algorithms for detecting weak signals in non- 

Gaussian interference have also been considered by Valeyev and Aspisov [13]. They 

conclude that the effectiveness of such algorithms approaches that of the optimum 

asymptotically, in the limit of large sample size. Raveendra and Srinivasan [14] have 

derived the locally optimum receiver structure for the coherent detection of contin- 

uous phase frequency shift keying (CPFSK) in non-Gaussian noise channels. They 

evaluate the performance of the receiver which consists of a zero memory nonlinearity 

followed by a correlator for a number of noise models. The measure of performance is 

the asymptotic relative efficiency. However, they point out two important drawbacks 

in the analysis of performance through the ARE. The first is that while large sam- 

ple sizes are desirable for weak signal detection, increasing the sample size actually 

makes the LOD suboptimal partly due to the fact that there is an increased effect of 

higher order terms in the expansion of the likelihood ratio. Secondly, under increas- 

ing sampling rates, the assumption of independent samples, used in the derivation of 

the weak signal detector under non-Gaussian conditions becomes invalid. In a Naval 

Underwater Systems Center report, Raymond Ingram and R. Houle [15] analyze the 

performance of the optimum and several suboptimum receivers for weak signal detec- 

tion of known signals in additive, white, non-Gaussian noise. He concludes that the 

implementation of the optimum or suboptimum nonlinear receivers yield significant 

improvements in performance relative to the receiver that is optimum in Gaussian 

noise. However, the receiver structure is more complicated than the linear receiver. 

The structure of locally optimum detectors has also been characterized in terms of 

locally optimum estimators and correlators [16]. These characterizations are canonical 

structures involving estimators-correlators. It is shown that if the one step signal 

predictor is recursive and the noise is white (possibly non-Gaussian or nonstationary), 

there is a canonical structure that admits recursive computation. The motivation to 



get a recursive structure is to simplify implementations and enhance adaptability. The 

problem of signal design has been considered for the case of locally optimum detection 

by Johnson and Orsak [17]. They show for the weak signal problem as we have defined 

it in Chapter 1 (Introduction), that the detection performance depends on signal 

energy in proportion to the Fisher information for location. In other words, when the 

spectra of the signal and disturbance overlap completely, significant improvements do 

not result from signal design. Another useful result they point out is that, among all 

distributions having zero mean and the same (finite) variance, the distribution having 

the smallest Fisher information is the Gaussian. Because of this result, it is concluded 

that detecting a small signal in Gaussian noise is the most difficult situation possible 

for an optimal detector. An increase in the signal energy yields the smallest possible 

performance improvement. Johnson and Orsak also come with explicit expressions to 

quantify the "small signal regimes" depending on the amplitude distribution of the 

noise. 

Arthur Spaulding [18] compares the performance of the Locally Optimum Binary 

Detector (LOBD) with that of the linear receiver and a hard limiter. The performance 

analysis is done via specific examples and through computer Monte Carlo simulation. 

Under the assumption of independent, identically distributed samples, he concludes 

that the LOBD approaches its optimum performance only under the limit of large 

sample sizes and small signal to noise ratios. Also, he shows by way of an example that 

one cannot always be assured of obtaining great improvements over the linear receiver 

by using nonlinear processing. This implies that even if the underlying probability 

density function of the interference has a much larger tail than that of the Gaussian, 

it does not guarantee a much improved performance over the linear processor. The 

improvement in performance depends on the particular nature of the underlying PDF. 

Michael Bouvet [19] obtains the locally optimum detector by expanding the likelihood 

ratio and truncating the expansion under the weak signal assumption. He expands the 

likelihood ratio in two ways: one with respect to the signal and the other with respect 

to the observation. He then establishes the equivalence between the two different 

forms of expansion. However, he points out the limitations of these expansions by 

stating that the results are valid only if the neglected terms are actually negligible 

with respect to the retained terms. Since the received observations are random, this 



cannot always be guaranteed. 

Shishkov and Penev [20] have considered the case of correlated interference and 

background white noise, but have restricted themselves to multivariate Gaussian in- 

terference. For the known signal case, when the underlying noise distribution is 

Gaussian, the optimal detector obtained from the LRT is the same as the weak signal 

detector obtained from the locally optimum test. Modestino and Ningo [21] were a- 

mong the earliest researchers to consider weak signal detection arising from bandpass 

processes. They have modeled the received signal as statistically independent complex 

samples and then obtained the joint density function of the inphase and quadrature 

components. Under the assumption that the clutter density function is circularly 

symmetric, they transform the joint density function to an equivalent one involving 

the envelope and phase. This model still does not include the correlation from one 

envelope sample to another and hence large sample sizes are required for good per- 

formance. Martinez, Swas'zek and Thomas[22], have considered the case where the 

noise has a multivariate Laplace distribution, where any non-negative definite matrix 

can be used to model the correlation between the random variables. Based on this 

model they go ahead and derive the locally optimum detector which as expected is 

nonlinear. They compare the performance of this detector to the one developed by 

assuming the noise to be independent and identically distributed, and to the matched 

filter. They compare the performance of these receivers through the means of ARE 

and do not analyze the receiver performance for small sample sizes which is the case 

of practical interest. 

Sangston and Gerlach [23] have used the the concept of the Spherically Invariant 

Random Processes to model multivariate non-Gaussian probability density functions. 

They derive the locally optimum detector based on this noise model. It turns out 

that the locally optimum detector structure is the matched filter in conjunction with a 

nonlinearity. They are able to establish the canonical nature of this result for the class 

of joint density functions arising from SIRPs. They propose an equivalent structure 

for the LOD. This takes the form of a receiver in which the matched filter output is 

compared to a nonlinear adaptive threshold. However, they do not explore the issue 

in terms of performance analysis. 
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2.2    Spherically Invariant Random Processes (SIRP) 

In general, the radar receiver processes N complex samples (or 2N quadrature 

components) from each resolution cell. To develop an optimal receiver, it is neces- 

sary to have a closed form analytical expression for the joint PDF of the received 

samples. When the N samples are statistically independent, the joint PDF is simply 

the product of the marginal PDFs. However, clutter samples are likely to be corre- 

lated. Because this correlation is useful in canceling the clutter, it is important that 

the correlation be modeled. Unfortunately, when the received samples are correlated 

and non-Gaussian, there are no unique analytical expressions for their joint PDFs. 

A search of the mathematical and signal processing literature reveals that the SIRP 

provides a powerful mechanism for obtaining the PDF of N correlated non-Gaussian 

random variables. SIRPs for clutter modeling and simulation can be found in [24], 

where Conte and Longo model complex clutter as a spherically invariant random pro- 

cess. They point out that the SIRP is ergodic only if the underlying clutter process 

is Gaussian. This means that time averages cannot be used to approximate ensem- 

ble averages. Conte, Longo and Lops [25] also propose specific computer simulation 

procedures for generating clutter realizations from an SIRP with desired correlation 

properties when the underlying distribution is multivariate Weibull or K-distributed. 

Rangaswamy, Weiner and Ozturk [26] have developed a library of multivariate cor- 

related non-Gaussian PDFs for characterizing various clutter scenarios through the 

theory of SIRPs. A significant result in this paper is the proof that the multivari- 

ate SIRP PDF approximation problem can be reduced to an equivalent univariate 

PDF approximation problem. In [27], Rangaswamy, Weiner and Ozturk develop t- 

wo canonical computer simulation procedures for the generation of any correlated 

non-Gaussian clutter that can be modeled as a spherically invariant random process. 

Application of the theory of SIRPs to the problem of signal detection and estima- 

tion can be found in [23] and [28]. In [28] Yao derives the form of the unit threshold 

likelihood ratio receiver for the detection of a known deterministic signal in addi- 

tive SIRP noise. He shows that the optimum receiver is the linear receiver or the 

matched filter when the threshold is set to unity, a threshold that commonly arises 

in communication systems. This result is very significant because it tells us that 

nonlinear processing will not improve performance when the threshold is set to unity 
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even though the disturbance is non-Gaussian. However, when the threshold is not 

unity, then the optimal non-Gaussian receiver is a nonlinear receiver. Pentini, Farina 

and Zirilli [29] consider the problem of detecting a known target and a Swerling zero 

target embedded in coherent K-distributed clutter. The detectors are derived based 

on the likelihood ratio test where the multivariate joint density functions used in 

the test are obtained from the theory of SIRPs. The receiver performance is then 

evaluated for the strong signal case. The false alarm probabilities used in obtaining 

the receiver performance are 10"3 and 10-4 so as to reduce the number of Monte 

Carlo trials needed to set thresholds. For a Swerling zero target model, they obtain 

a probability of detection equal to 0.1 for a false alarm probability of 10"3 using four 

complex samples and a signal to clutter ratio of —10 dB. However, they do not explore 

performance for lower values of signal to clutter ratios. 

2.3    The Derivation of the Locally Optimum Detector 

Tlr; usual criterion in radar problems is to maximize the probability of detection 

under a fixed false alarm probability constraint. This receiver is called the Neyman- 

Pearson receiver. The receiver implements the Likelihood Ratio Test (LRT) and 

compares it against a threshold whose value is designed to give the desired false 

alarm probability. In particular, consider the received vector Rj = [Ri,R2, ...,RN]. 

Introduce the two hypotheses H0 and Hi as described below: 

H0:  r,-    =   Ci + m (2.1) 

HQ: r,   =   Osi + a + rii    i = l,2...N. (2.2) 

Thus, HQ is the hypothesis that the received signal consists solely of clutter plus 

noise while target signal is assumed to be present under the hypothesis Hi. Let the 

joint probability density function of Ru R2, ...,RN under hypothesis Hk (k = 0,1) be 

denoted by fg[r\Hk). The Neyman-Pearson receiver performs the LRT 

JR{L\H0)  HO 

where rj is specified to satisfy the false alarm constraint 

PF= I" frMH0)dL (2.4) 
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and fT,(t*\Hk) is the conditional probability density function of the test statistic Ta 

given hypothesis Hk. 

However, when the signal strength is very small relative to the clutter plus noise, the 

joint density function of the received random variables under Hi approaches that un- 

der Ho. Then the numerator and the denominator of the LRT become approximately 

equal leading to numerical difficulties in discriminating between the two hypotheses. 

The Neyman-Pearson test is of course optimum. However, the form of the LRT can 

be rearranged to yield a test statistic which is more sensitive to perturbations in the 

received data. This gives rise to the concept of the Locally Optimum Detector (LOD). 

In this chapter the concept of the LOD is developed in detail using two approaches. 

The first approach is based on a power series expansion of the LRT and the second 

approach derives the LOD by an optimization using the principle of Lagrangian mul- 

tipliers. It is shown that both approaches yield identical detector structures, though 

starting from different theoretical points of view. As the signal strength becomes 

weaker, the LOD becomes optimum even though its performance for a fixed sample 

size may not be as good as desired. 

2.4    The Series Approach 
2.4.1     The Known Signal Case 

Let the additive clutter component C — [Ci,C2, ...,Cyv]T be stationary and inde- 

pendent of the stationary white Gaussian background noise N_ = [iVi, iV2, ...,iV;v] • 

The noise variance o\ is assumed to be several orders of magnitude below the clut- 

ter variance <r2 which is taken to be unity without loss of generality. The signal is 

assumed to be of the form 6s, where s is known. The components of s are chosen to 

have |.Sj|2 = 1 so that the positive parameter 0 is a measure of the signal to clutter 

ratio (SCR) defined by 

SCR = ^- = 6\ (2.5) 
°2c 

Because the clutter and noise are statistically independent with the noise assumed to 

have zero mean, the covariance matrix of the disturbance vector D. = Q + N_, denoted 

by MD, is equal to the covariance matrix of the clutter Mc plus the covariance matrix 

of the noise MN. Since the noise is white and stationary, the covariance matrix of 

the noise is of the form MN = o\I, where I is the identity matrix. When the clutter 

is highly correlated, the covariance matrix Mc tends to be ill-conditioned. However, 
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MD will not be ill-conditioned because, by adding the small value o\ to the diagonal 

elements of Mc, the smallest eigenvalue of Mp is guaranteed to be no smaller than 

a\. Also, addition of MN to Mc ensures that the disturbance spectrum will limit 

performance even in those frequency intervals where the clutter spectrum is negligible. 

With this assumption the LRT takes the form 

.   _fR(r\H1)_fR(r-es)^ 
a~f&Wo)-    Mr.)    4*' (    ] 

As mentioned previously, when 6 < 1, the signal 6£ represents a small perturbation 

in the received vector under hypothesis Hi.  Hence, fR(r\Hi) approximately equals 

/R(L\HO). As a result, Ta is relatively insensitive to 6s. One approach at deriving a 

weak signal detector is to expand the numerator of the LRT in a Taylor series. 

For this purpose, let y_ = r — 6s. Then 

fn(r.\Hi) = fdv)- (2-7) 

Expanding /D(J/) in a Taylor series about the received vector r, we obtain 

+ ^T 2^ 2_, (y*i - rkj{yk2 - rfc2)     o~ v=i 2!fc, =1*2=1 oykldyk2- 
+   ... 

1    "    "     - " 0»/fi(v) 
+   rr 2- 2^ - 2^ (y*i ~ r*J(2/*2 - n2)-{ykn - nj- \y=r. 

+   .... (2.8) 

This can be expressed in vector form by introducing the operator 

(y-r)TWy = J2(yk-rk)^- (2.9) 

where the subscript y on V indicates partial differentiation with respect to the com- 

ponents of y. The expansion of /D($/) about the point y = r then becomes 

fdv) = fdr.) + [(y-r)Tvy]fr>(y)\y=r 
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+ ^[(y-r)TVy)2My)\y_=r 

+ ... 

+ hl(y-r.)TVyrf„(y)\y=r_ 

+ ... 
OO      1 

=  fdr) + E-M- r.)TVy}nfD(y)\y=r_. (2.10) 
OO 

n=l 7t- 

Recall that y = r — 6s, where 6 and s are constants. Note that y — r = —6s and 

/- = ^-. Then 

(y - n)rvv = £(-^)#- = -*/vr (2.ii) 

where the subscript r on V indicates partial differentiation with respect to the com- 

ponents of r. It follows that the expansion may be written as 

°° ( — IM 
/fid - Ba) = ML) + £ {—^-9n[sTVrrfD(r). (2.12) 

n=l       U- 

In order for the above expansion to be meaningful, it is necessary that all the deriva- 

tives in the above expansion exist. 

Thus, using the above expansion of fo_(r — 6s), the Taylor series expansion of the 

likelihood ratio about the received vector r in equation   (2.6) can be written as 

oo    / I \non 

Ts(L) = 1 + E jtjT7Ä(*TVr)n]fBtö. (2-13) 

The first term, being a constant, can be combined with the threshold without loss 

of optimälity. The LOD is obtained by retaining only the term corresponding to 

n = 1 in the infinite summation. For 6 •C 1, it is assumed that the remaining terms 

in the summation are negligible. On the other hand, because r is governed by a 

random vector and the partial derivatives of the PDF evaluated at r may be large, 

the remaining terms may actually not be negligible. However, it is assumed that this 

occurs with small probability. The resulting detector structure can then be expressed 

as 

TLOD{L) = —7EÜ~ ^k (   } 

where rjk is chosen so as to achieve the desired false alarm probability. 
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2.4.2     The Random Signal Case 

When the signal is random, fp,(r\Hi) is obtained by integrating the joint density 

function /R,S(L, S\HI) over all possible values of s. Hence, 

/oo ^oo 

/Äs(E,Ä|ffi)4i = /   /afc.(clÄ. Bi)fa.U)da. = W*|S=.(E|ä, #I)] 
■oo «/—oo        ~ ~ ~ 

(2.15) 

where E, denotes the expectation operation carried out with respect to the random 

vector S_. Because the denominator of Ta in equation ( 2.6) is independent of s, the 

Taylor series expansion of the likelihood ratio can now be written as 

T,(r) = 1 + E L-^Ea[(s
TVrr)fn(r)}. (2.16) 

Once again, as in the known signal case, the unity term appearing in the test statistic 

can be put into the threshold. If we make the assumption that the expected value of 

the signal vector is 0, then the n = 1 term in the infinite series of equation ( 2.16) 

goes to zero. Thus, for the random signal case, where the signal vector has zero mean, 

the LOD is defined to be the second term (n = 2) in the infinite series. As in the 

deterministic signal case, 9 is assumed to be small enough such that the remaining 

terms of the series are negligible with high probability. Consequently, the LOD for 

the random signal case is given by 

Ta2{r) = -f-Es[(s
TVT)

2)fn(r) >V (2.17) 

where Ts2 represents the second order term in the Taylor series expansion of Ts. The 

above equation can be rewritten as 

Ts2(z) = ^L^EJtfi lTVr]/o(r) >V' (2.18) 
H, 0 

where, as before, 77 is chosen to achieve the specified false alarm probability. Lumping 

the constant y with the threshold and recognizing that 

Es[{sTVrf) = Ea[V
T

Ts sTVr] = Vr
rPVr, (2.19) 

16 



where P is the covariance matrix of the signal vector, then the detector structure for 

the locally optimal test becomes 

1LOD(L) = —-  ^r\u. (2.20) 
fair.)       «o 

2.5    The Lagrangian approach 

Consider again the hypotheses testing problem defined in equations (2.1-2.2). Let 

us define a nonrandomized decision rule </>(r) such that 

m={ 
1;   Hi true (target present) 

(2.21) 

0;   i/o true (target absent). 

This amounts to partioning the decision space into two regions, S\ and S0. A target 

is declared if the vector r is present in the region Si. If it falls in the region S0, 

then the decision is made that the target is absent. The probability of detection 

equals the probability that the nonrandomized decision rule equals unity, given that 

hypothesis Hi is indeed true. This probability will, in general, be a function of 6, the 

signal-to-clutter ratio. Denoting ß(8) as the probability of detection we have 

/oo 
<f>(r)f&(r\Hi)dr. (2.22) 

-oo 

ß(6) is also called the power function of the test. The false alarm probability is given 

by 
/oo 

<Kr)fR(r\H0)dr = PF. (2.23) 
-oo 

The optimization problem to be discussed in the next section imposes the constraint 

that the false alarm probability be equal to Pp. PF is also defined to be the significance 

level of the test. 
2.5.1    The Known Signal Case 

As discussed earlier, in the limit as the signal strength tends to zero, the probability 

of detection becomes approximately equal to the probability of false alarm. Therefore, 

instead of maximizing the probability of detection, one approach is to maximize the 

slope of the power function (ß(6)) curve at the point 0 equal to zero. The function to 
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be maximized and the constraint are given in the following two equations. Maximize 

^Ie=0 = [§0 II ^fdL^drl)^ (2.24) 

subject to the constraint 

r 4>(L)fdr.\Ho)dr = a. (2.25) 
J — OO 

We also require that the test be uniformly most powerful (UMP) in the sense that 

<j)(r) be independent of 6 for small neighborhoods in the vicinity of 6 = 0. Notice 

that there is a derivative with respect to 6 outside the integral in equation ( 2.24). If 

the function fß.(r\Hi) is a well behaved function of 0 such that its derivative exists 

at all points, the derivative can be moved inside the integral resulting in 

| £ «üttd** - £ *gW,*+£ *)*&g£>* (2.2a, 

Because of the UMP requirement, -|^ = 0 and the first integral on the right side of 

equation (2.26) integrates to zero. It follows that 

^/_~ Mr)fRWi)dL = /_~ mdfB^Hl)]dr. (2.27) 

Given the function -^|ö_0 to be maximized along with the false alarm probabili- 

ty constraint, the functional form of the maximization problem using the Lagrange 

multiplier approach is 

max [£L ^)dMQe
lHl)^=o + Vkl* - /_~ 4>(r)fR(r\HQ)dr]} (2.28) 

where r)k is the Lagrange multiplier. Expression (2.28) can be rewritten as 

r%(r|#i) max [I1m[      dl       ~ ^BkT\Ho)]dT\e=o] + r)ka. (2.29) 

To maximize the above integral, the decision regions should be chosen such that the 

integrand is always positive. In other words, the decision regions are chosen such that 

—=ää l*=o <nkfR{r\H0). (2.30) 
UV H0 
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As was pointed out in the previous section, fg.(r\Hi) is identical to fpjr — es). There- 

fore, the decision rule becomes 

^§^4=0 |Wr). (2.31) 

The locally optimum detector is defined to be that detector which implements the 

ratio test 
dfp(r-$s) ■ 

?,r° lVk. (2.32) 
/ß(r)      «o 

The Lagrange multiplier r)k is chosen to satisfy the false alarm constraint. Note that 

fpjr - 0s) = fpjri - 6su r2 - 6s2,..., r* - 8sN). (2.33) 

As a result, 

dfpjr - 9s)    =    dfpjr - 0s) d(rt - 9sx)     dfpjr - 6s) djr2 - 6s2) 
de djri-eSl)     de        d{r2-es2)     de 

dfpjr-es) d(rN-esN) 
'"    d(rN - eSN)     de 

Consequently, 

dfnjr-es)       _      "dfpjr) ,,rVUM ,, «> 
 ™ l«=o - - 2^ ~~a"—5fc = -U Vr)fpjr).                  (2.35) 

Thus, the locally optimum detector can also be written as 

'T      /Px_     (^r)fpjr) «? 
LOD(£)

 " 75IT~ 4**' (2"36) 

It can be seen that this detector is identical to the one in equation (2.14) obtained 

through the series approach. 
2.5.2    The Random Signal Case 

Consider a random signal £_ and let its joint PDF be denoted by fs{s).   Also, 

without loss of generality, we can make the assumption that the signal vector has 

zero mean and that each component of the vector has unit variance. Given the signal 
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vector S. the joint density function on the received vector under hypothesis Hi is 

/fifcl&tfiWiiCn-te). (2.37) 

The power function for the locally optimum test was given in the previous section 

in equation (2.22). However, in the random signal case the unconditional density 

function fß[r\Hi) is obtained by integrating out the random vector 5 from the joint 
PDF /&£(£»ll#i) = fR{L\s,Hx)fs{s). Use of equation (2.37) results in 

/OO       fOO 

/    <f>(r)fD(L ~ Os)fs(s)dr ds. (2.38) 
-OO J—oo 

The false alarm constraint is once again given by 

I" <Kr)fR{r\H0)dr = a. (2.39) 
J— OO 

As before, we wish to maximize -|Li|e=0. If the function /.o(r — #s) is a wellbehaved 

function such that its derivative exists at all points, then 

dß{6)       r~   roo       sdfD(r-0s), 

-w= L L 'to—^—fdä)- - {2A0) 

It follows from equation (2.35) that 

T^I« -IlI-J^ta-^rSk]m--       (2A1) 

Because of the zero mean assumption 

/OO 

skfs(s)ds = 0. (2.42) 
-OO 

We conclude that 

^U- = 0 (2.43) 

independent of the choice of <f>(r). Therefore, to achieve the maximum increase of 

the power function in the vicinity of the origin, we maximize ^ ' \g-Q. As before, 

assuming that the integration and differentiation can be interchanged, 

~dp- = L L m—w—Mä)dL **> {2M) 
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However from equation (2.34) 

d2fp(L - 0s) d f%(r-fe) 
dö2 d6£id(rk-esk)[   Sk) 

=   ff       d2fp(r-es)       d(rj-eSj) 
kiti^ri-^)9(rk-0sk)        de       l   Sk) 

=   f.f d*ML-6,) 
■   hkd(ri-0si)d(rk-8sk)

S>Sh- ^ 

Hence, 
d2fD(r-6s){ ^ ^ d2fD(r) T    T„,,,, (0 ... —^ l*=o = Eg -e^W = (V^ Vr)f»(r). (2.46) 

Then the second derivative of the power function at the origin takes the form 

^§P-\e=o=  r   r <f>(r)(VUsTVr)fR(r)fs(3)drds=  f°° <t>(r)Ea[VU sTVr}fR(r) dr. 
OU J—oo J—oo J—oo 

(2.47) 

Using the approach of Lagrange multipliers to maximize the function in equation 

( 2.47) along with the constraint ( 2.39), the optimization problem can be written as 

/OO TOO 

<Kr.)Et[Wj3. sTVr]fD(r)dr + rju[a - /     #r)/£(r)dc]]. (2-48) 
-OO J—oo 

The above expression can be rewritten as 

/OO 

<f>(r)[E,[V?2. /Vr]/ß(r) - T]ufD(r)}dr} + Vua. (2.49) 
-OO 

To maximize the integral the decision regions have to be chosen such that the inte- 

grand is always nonnegative. The resulting decision regions yield the inequalities 

E.\S7*i /Vr]/ß(r) > 7/u/£(r). (2.50) 

If the covariance matrix of the signal vector is denoted by P, then the locally optimum 

detector can be written as 

TLOD{L) ~ —W)— *** 
which is identical to equation (2.20). 

As a general rule for deriving locally optimum tests, note that we maximize at the 
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origin the first non-vanishing derivative of the power function. For the known and 

the purely random signal cases the first non-vanishing derivative is the first and the 

second derivative, respectively. 

2.6     Special Cases 
In this section LOD structures will be derived for three special cases. In the first it 

is assumed that the N random variables in the disturbance vector D_ are statistically 

independent. With this assumption, the joint PDF of the N random variables is the 

product of the marginal density functions of the individual random variables. In the 

second, the N random variables are modeled as arising from an SIRP. This model 

enables us to write the joint PDF of the random variables analytically, accounting 

for the correlation between the random variables. In the last case the N correlated 

random variables are assumed to be jointly Gaussian. The locally optimum detector 

structures are derived for all cases.  It turns out in all three cases that the detector 

can be expressed in a canonical form. This canonical expression is derived for both 

the known and the random signal problems. 
2.6.1     The Known Signal Problem 
2.6.1.1     Disturbance Modeled as Independent Random Variables 

From equation ( 2.32), the LOD structure in the known signal case is given as 

dfp(r-es). 

7 , }"° %Vk. (2.52) 
/D(I) »o 

Let the N random variables in the vector D be independent where the PDF of the 

ith random variable is /jr,.(e/,). Therefore, the conditional joint density functions of 

the N received random variables are given by 

N 

/RI,R2 RN(ri,r2,..., rN\H0) = JJ fDi(ri) (2.53) 

N 

fRuR2,...,RN(ri,r2, ...,r;v|#i) = IJ fDi(ri - dsi). (2.54) 
t=i 

The numerator in the ratio test of equation  (2.52) is evaluated as 

dfD^9ä)\^o = ^[UMn -fc,)ll« = £{(-^^fcO flfD}(rj)}.  (2.55) 
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Thus, from equation (2.52) the LOD statistic for independent random variables is 

given by 

TLOD(rur2,...,rN) = -jrSii2ip± (2.56) 
t'=l      JDi(ri) 

where /^(r,) denotes the derivative of /^(r,) with respect to r,-. The above equation 

for the LOD statistic is the canonical form obtained when the random variables are 

independent.  For different density functions, foti^i), the detector will be different, 

although its structure remains the same. The canonical form of the detector is shown 

in Fig. 2.1. 
2.6.1.2     Disturbance Modeled as an SIRV 

When the random variables of the disturbance are drawn from a zero mean SIRP 

distribution, the joint PDF can be written as 

Md) = 2?r„/2jM|1/2Mp) (2.57) 

where p = d M~ld, M is the covariance matrix for the TV random variables and 

hpj(p) is a positive valued, nonlinear function of p. The numerator of the ratio test 

in equation (2.52) is then given by 

dfp(L - 6s)        _  d r_l__,    , Ul 1_9,,/UI 
dÖ        |(?=0 " d6{27T^\M\^hN{pme=0 = 27r"/2|M|V2^MP)}k=o. 

(2.58) 

where the quadratic form p equals (r - 6s)TM~l{r — 0s) since d = r — 6s. From the 

chain rule for differentiation we have 

!(Mri>-5(Mp»f|- (2-59) 

From the expression for p 

f|U=o = -2{sTM-*r). (2.60) 

Making use of equations (2.58-2.60) the LOD statistic in equation (2.52) becomes 

TL0D(r) = -2UrM-V)^44 (2.61) 

where hN(p) denotes the derivative of the function h^(p) with respect to the argument 

p.   The LOD statistic in equation (2.61) represents the canonical structure when 
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Figure 2.1:   Canonical form of LOD assuming known signal and independent random 
variables. 
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the disturbance is modeled as an SIRV. The nonlinear function /ijv(p) depends on 

the particular joint density function used to model the disturbance.  The canonical 

structure for the detector is shown in Fig. 2.2. Note that the detector multiplies the 

output of a matched filter with the output of a nonlinearity. Just as with a Gaussian 

receiver, the matched filter maximizes the signal to disturbance ratio even though 

the received signal is non-Gaussian (i.e., derivation of the matched filter to maximize 

signal to noise ratio does not depend on the Gaussian assumption). For non-Gaussian 

problems, matched filtering alone is suboptimum.   For SIRPs the optimal receiver 

requires nonlinear processing as well as matched filtering. 
2.6.1.3    Random Variables Arising from the Gaussian Distribution 

The SIRP class of distributions reduces to the Gaussian distribution when 

Mp) = e~*. (2-62) 

It follows that 
h'N(p) = _1 

hN(p) 2' 

With reference to equation (2.61), the LOD statistic becomes 

(2.63) 

TLOD(L) = sTM-lr. (2.64) 

Interestingly enough, this is identical to the statistic of the likelihood ratio test for 

the known signal Gaussian problem [30]. Hence, for the known signal Gaussian prob- 

lem, the strong and the weak signal detectors are identical. Note that there is no 

nonlinearity involved with the weak signal detector for this case. To put it another 

way, the general nonlinear SIRP weak signal detector of Fig. 2.2 reduces to the linear 

receiver or matched filter known to be optimum for the Gaussian problem. 

2.6.2     The Random Signal Problem 
2.6.2.1    Independent Disturbance Random Variables 

The locally optimum detector is given by equation ( 2.51) when the signal is ran- 

dom. Repeating equation (2.51) the LOD structure is 

Wr) = (v^fiW 5„. (2,5) 
fair)       »o 
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Figure 2.2: Canonical form of LOD assuming known signal and random variables arising 
from an SIRP. 
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P is the random signal covariance matrix. In this section the components of the dis- 

turbance vector D are assumed to be statistically independent. The analysis is further 

simplified when the signal random variables are also assumed to be uncorrelated. The 

covariance matrix P then becomes diagonal. Let the diagonal elements of the matrix 

P be represented by of, i = 1,2,...,N. Because the disturbance random variables 

are independent, the joint density function /o(r) is again given by the product of the 

marginal density functions of the individual random variables. Specifically, 

/D(r) = n/D,(r,). (2-66) 
t=i 

Also, when P is diagonal, 

V?>Vr = £>^. (2.67) 

Using equations (2.65-2.67) and following the same steps as in the known signal case, 

the LOD statistic can be derived as 

Wr) = X>,2f7TT (2-68) 

where the double prime indicates second derivative with respect to the argument. 

The canonical structure derived above is shown in Fig. 2.3. 
2.6.2.2     Disturbance Random Variables Arising from an SIRP Distribution 

When the disturbance vector is modeled as having an SIRP distribution, the joint 

PDF is given by equation (2.57).  The LOD structure for the random signal case is 

given by equation (2.65). Since the constant terms in the joint density function cancel 

out in the numerator and denominator of the ratio test in equation (2.65), the LOD 

statistic is obtained by evaluating 

W£) = (v^)Mri. (2.69) 
hN{p) 

The numerator of equation (2.69) can be expanded as a sum of terms involving partial 

derivatives. The result is simplified considerably when the covariance matrix P of the 

signal vector is diagonal. When P is chosen to be the Identity matrix (i.e. P is 

diagonal and the variance of each element of the signal vector is unity), the LOD 
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Figure 2.3:   Canonical form of LOD assuming random signal and independent random 
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statistic is given by 

TL0D(21)
 " hN(p)        ■ (2J0) 

The inner product involving the V vector can be written as 

N     Q2 

t'=l w'< 

AppHcation of equation  (2.71), to the the numerator of equation  (2.70) results in 

E -5J5- = E MP)^> + MP)(^) (2-72) 

where the prime indicates differentiation with respect to p. Using equation (2.72) and 

dividing by /i;v(p) the LOD statistic becomes 

1       N fi2n fin 

The quadratic form p can be written as 

P=EE*I (2-74) 
fc=i i=i 

where M^1 represents the kth row and /t/l column entry of the matrix M"1.  From 

equation (2.74) Jj^, (^:)2 and |^r can be calculated. In particular, we have 

dp d    "   "      .._! 
7T    =    ö-EEr*M«r' 

=   Er^ + EnWä1- (2-75) 
fc=i /=i 

Because of the symmetric nature of the matrices M and M-1, M^-1 = M^1. It follows 

that the square of the above equation is then given by 

(W-)2   =   (*ErfcMfc-
1 + f:r/Mi7

1)2 = (2f:rfcMfc-
1)2 

°ri Jt=l 1=1 k=l 

=   4EErfcMJS
1Ml7

1r,F4EErfcJiffc-;.1Mä1r, (2.76) 
jt=i /=i fc=i /=i 
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Utilizing equation (2.75), 

d2v       d    N N 

^ = ä-(ErW> + J2riMt?) = 2M;\ (2.77) 

With reference to equations (2.73) and (2.75-2.77) define 

j?M-lM~xr. (2.79) 
Ak'M JTM-I*,-!. 
hN(p) 

The locally optimum detector statistic that results from equations (2.78-2.79) is 

written as 

TLOD(L)   =   T£Ur) + T£Ur) 

=   ^[24(p)<r(M-1)+4^(p)rrM-1A/-1r] (2.80) 

where ^(M'1) is the sum of the all the diagonal elements of the matrix M~l. The 

canonical structure of the receiver is shown in Fig. 2.4. 
2.6.2.3    Disturbance Random Variables Arising from the Gaussian Distribution 

As pointed out in section 2.6.1.3, the SIRP distribution reduces to the Gaussian 

distribution when 

hN(p) = e-f. (2.81) 

From the above equation it follows that 

h'N(p) 1 

MP) 2 

(2.82) 
hN(p) 4 

Consequently equation (2.78) reduces to 

*S!D(E) = -HM-1) (2.83) 
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Figure 2.4:  Canonical form of LOD assuming random signal and random disturbance 
arising from an SIRP. 
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whereas equation (2.79) becomes 

TLOD(L) = rTM-lM~l
L. (2.84) 

Note that T^QD(r) is a constant that can be combined with the threshold. As a result, 

the LOD statistic for the random signal Gaussian problem is given by 

TLOD(L) = rTM-lM~lL. (2.85) 

Unlike the known signal Gaussian problem, the weak signal LOD statistic does not 

equal the statistic of the likelihood ratio for the random signal Gaussian problem [30] 

which is 

TLR{r) = rT[M-1 - (M + P)-1}^ (2.86) 

The two statistics become equivalent only when 

M = P = I. (2.87) 

Although the strong and weak signal detectors have different test statistics, the re- 

ceiver structures are both quadratic in nature. 
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Chapter 3 

Determining Thresholds for the 
Locally Optimum Detector 

3.1    Literature Review 
In this dissertation, multivariate density functions for modeling non-Gaussian prob- 

ability density functions are assumed to be known. They are obtained using the theory 

of spherically invariant random processes. Once the multivariate density functions 

are known, we derive a decision rule using the theory of locally optimum detectors, 

that is applicable when the signal to be detected is weak compared to the additive 

disturbance. The procedure for obtaining the decision rule is explained in detail in 

Chapter 2. 

However, the detector that is obtained on the basis of the theory of locally opti- 

mum detectors is typically nonlinear as the underlying processes are non-Gaussian. 

When the test statistic is nonlinear, it is not possible to evaluate the performance of 

the detector analytically. Consequently, we have to resort to computer simulations 

to analyze the performance. There are two steps involved in computer simulations to 

analyze performance. The first step is to evaluate the threshold so as to obtain the de- 

sired false alarm probability. The second step is to evaluate the detection probability 

once the threshold is set, corresponding to the desired false alarm probability. 
3.1.1     Classical methods for evaluating thresholds 

Monte Carlo methods have typically been used for this purpose. A large number 

of trials M are generated under the hypothesis that the received signal consists of the 

disturbance alone. The output of the detector, T3i   i = 1,2, ...,M corresponding to 
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the generated disturbance vectors are recorded. Based on the output of the detector, 

thresholds can be set to obtain the desired false alarm probability. But, in order 

to establish the threshold for a specified Pp, it is necessary to accurately know the 

behavior of the tail of the 4est statistic. Unfortunately, the number of trials required 

for the Monte Carlo technique is very large, as is evident from the rule of thumb 

M > H. (3.1} 

Hence, if Pp = 10-5, one million trials should be generated. Clearly this is not a very 

desirable situation. Thus, for a reasonable sample size M, estimation of thresholds 

corresponding to small false alarm prob abilities cannot be made when these methods 

are used. For Monte Carlo simulations the construction of approximate confidence 

intervals for the threshold estimates based on various estimators are discussed by 

Hosking and Wallis [31]. 

Some other approaches which do not make use of raw data or their smoothed 

versions have been suggested by various authors. For example, Harrel and Davis 

[32] suggested using linear combinations of sample order statistics. Their approach 

appears to be applicable for estimation of thresholds in the central region of the distri- 

bution. However, the underlying threshold estimator is not in a simple computational 

form and does not offer any additional advantage over the Monte Carlo method in 

terms of threshold estimation corresponding to small false alarm probabilities. 

It has recently been shown [33] that the PDFs of the test statistic can be determined 

experimentally using a relatively small number of samples (eg: 50-100 samples give 

accurate fits depending on the distribution). Because the number of samples required 

by Ozturk's technique is small, it is unlikely that samples will be from the extreme 

tails of the PDFs. Consequently, the accurate fit mentioned above applies to the main 

body of the density function. 

A number of statisticians have developed methods for estimating the extreme tail 

of the distributions using the asymptotic properties of extreme order statistics. As- 

suming an unknown probability density function /x(x), then for large X Hill [34] 

proposed using A(x) = 1.— cx~a as a limiting form of the distribution function to 

infer the tail behavior. A similar approach is also given by Pickands [35]. Weiss- 

man [36] proposed a different approach based on the joint limiting distribution of the 
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largest k order statistics. His approach is based on the fact that "the largest k order 

statistics have a joint distribution that is approximately the same as the largest k 

order statistics from a location and scale exponential distribution ". Weissman ob- 

tained a simple expression for the estimate of the thresholds corresponding to various 

false alarm probabilities of the distributions. Based on the empirical comparisons, 

Boos [37] reported that Weissman's estimators have lower mean squared error than 

those of standard methods when the tails are exactly exponential. When the tails 

are not exactly exponential the estimators become highly biased. The mean squared 

errors of the estimators strongly depend on the choice for k. Although the method 

is non-parametric in nature, the optimal choice of k requires the knowledge of the 

parent distribution. 

The use of stable distributions to model data having large tailed distributions has 

attracted considerable attention [38], [39],[40], and [41]. The independent and iden- 

tically distributed random variables Y\, Y2, ...Yn are said to have a stable distribution 

if Yi + Y? + ... + Yn has the same distribution as the individual random variables. 

With the introduction of additional parameters, control of the mean, variance and 

the skewness of the distribution is possible. A major difficulty with stable distribu- 

tions is that they usually cannot be expressed in closed form. Also, estimation of 

parameters is not computationally easy [42]. 

3.2    Extreme value theory 

Guida et al. [43] compared the performance analysis of some extrapolative estima- 

tors of probability tails with application to radar systems design. They show that the 

estimates based on the extreme value theory yield clearly superior accuracy, while 

achieving a substantial savings in sample size compared to the classical Monte Carlo 

techniques. However, their method suffers from two major drawbacks. First, they 

assumed that the underlying unknown distribution is always exponential in nature. 

This assumption can be restrictive in certain situations. The other drawback is that 

the samples are partitioned into many smaller sets of samples and the maximum from 

each set is drawn for estimation purposes. They provide no optimum rule for deter- 

mining the number of sets to be used in partitioning the original sample even though 

the accuracy of the estimation depends strongly on the original sample size and the 

number of sets. 
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Pickands [35] first suggested that the Generalized Pareto distribution can be used 

to model the extreme tails of probability density functions. The Generalized Pareto 

Distribution (GPD) is a two parameter distribution, with a scale and a shape param- 

eter. Modeling the extreme tail then corresponds to estimating the two parameters 

of the GPD. The estimation methods for the Generalized Pareto Distribution have 

been reviewed by Hosking and Wallis [31]. They considered the method of moments, 

probability weighted moments and the maximum likelihood method for estimating 

the parameters and the thresholds. Based on computer simulation experiments, they 

showed that the probability weighted moment method is more reliable than the max- 

imum likelihood method for sample sizes less than 500. 

3.3     The Radar Problem 
The hypothesis testing problem for deciding whether or not a target is present is 

given by equations (2.1-2.2) in Chapter 2. For weak signal applications, it was shown 

that the Locally Optimum Detector is useful for arriving at a decision rule. For the 

known signal case, the LOD structure is given by equation (2.32). Since the test 

statistic is typically a nonlinear function when /.D(ZL|#O) and fü{r\Hi) are multivariate 

non-Gaussian density functions, it is not possible, in general, to analytically evaluate 

in closed form the threshold TJ for a specified false alarm probability. Given the 

probability density functions (PDF) of the test statistic, Ts, under hypotheses H\ 

and H0, the detection and false alarm probabilities are 

PD= I" STMHM* (3-2) 

PF= r frMHo)dt.. (3.3) 
Jrt 

PD and Pp are represented by the shaded areas shown in. Fig. 3.1. As indicated in 

the figure Pp is typically much smaller than PD. 

In practice, the density function of Ta is not known in advance. For example, de- 

pending upon various conditions such as terrain, weather etc., the clutter may be best 

modeled by Gaussian, K-distributed, Weibull or some other probability distribution. 

In this Chapter a new approach is developed for experimentally determining the ex- 

treme tail of fT,(ts\Ho), where the number of samples required is several orders of 

magnitude smaller than that suggested by equation (3.1). Once the tail of fT.(t>\Ho) 
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has been estimated, the threshold can be determined by use of equation   (3.3). 

3.4    Methods for Estimating Thresholds 
3.4.1 Estimates Based on Raw Data 

In this section we consider some commonly used threshold estimates. These esti- 

mates are called raw estimates and are already included in some statistical package 

programs (eg: the UNIVARIATE procedure in the SAS [44] package). 

Let Xi < X<i < ... < Xn denote the sample order statistics from a distribution 

function F(x). Let p denote the desired false alarm probability. Also, let n(l — p) = 

j + g where j is the integer part of n(l — p). We denote the threshold estimate based 

on the kth procedure to be described below by 77W. Four different threshold estimates 

are given as follows: 

I? = (1 - g)Xj + gXj+1 (3.4) 

77^ = Xk, where k is the integer part of [n(l — a) + 1/2] (3.5) 

7/i3) = (l-6)Xj + 8Xj+u6 = 0ifg = 0;6 = lifg>0 (3.6) 

rjW = «5Xi+1 + (l-<5)(^+Xi+1)/2,    6 = 0ifg = 0;6 = lifg>0.(3.7) 

It is known that all of the above methods are asymptotically equivalent. Thus, if a 

large sample size is used (where for example Mis determined from equation (3.1)), 

the choice of the best method is no longer critical. However, in an empirical study 

[37], it has been shown that n^ outperformed the other estimators when g = 0. It is 

noted that the methods based on the above estimators are restricted by the condition 

that 1 < n(l — a) < n — 1. This implies that the smallest value of the false alarm 

probability a cannot be lower than 1/n. Consequently, the threshold corresponding 

to the smallest false alarm probability which can be estimated by these procedures 

depends on the sample size. Thus, for a reasonable size of n, estimation of thresholds 

for very small false alarm probabilities cannot be made when these methods are used. 
3.4.2 Estimates Motivated by the Extreme Value Theory 

Extreme value distributions are obtained as limiting distributions of largest (or 

smallest) values of sample order statistics. Assuming independent trials, if Xi < 

X2 < ••• < Xn are order statistics from a common distribution function F(x), then 
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the cumulative distribution function of the largest order statistic is given by 

Gn(x) = P(Xn <x) = [F(x)}n. (3.8) 

It is clear, as n —*• oo, that the limiting value of Gn(x) approaches zero if F(x) is 

less than 1 and unity if F(x) is equal to 1 for a specified value of x. A standardized 

limiting distribution of Xn may be obtained by introducing the linear transformation, 

anXn + bn, where an and bn are finite constants depending on the sample size n. 

In Appendix A, using the theory of limiting distributions [45], it is shown that if 

there exist sequences an and 6n such that 

■y      i 

lim  P(—  < x) = lim  Fn(anx + bn) = lim  Gn(anx + bn) -> A(ar)     (3.9) 

then the solution of equation (3.9) yields all the possible forms for the distribution 

function Gn(x) in the limit as n —» oo. The solutions to the above equation are 

derived in Appendix A and are rewritten here: 

A(x)   =   exp(-e~x)   x > 0 (3.10) 

A(x)   =   exp(-x~k)   x>0,   A;>0 (3.11) 

A(x)   =   exp(-(-x)k)   x < 0,   Jb > 0. (3.12) 

In the limit, as n gets large, these are the three types of distribution functions to which 

the largest order statistic drawn from almost any smooth and continuous distribu- 

tion function converge. By differentiating the three functions, we obtain analytical 

expressions for the limiting forms of the probability density functions. However, be- 

cause of the differentiation, it should be recognized that these expressions may not 

be good approximations to the density functions. In practice, extreme value theory 

should always be applied to a distribution function, or equivalently, the area under 

the density function. For x > 0, differentiation of equations (3.10) and (3.11) result 

in 

d\(x) 
dx    ..H(x)   =   e~x (3.13) 

2. ^1 « H(x)   =   kx-W   k > 0. (3.14) 
ax 
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The first equation above is the well known exponential distribution and the second 

equation is related to the Pareto distribution. The details that lead to the these 

analytical expressions are shown in Appendix A. 

It remains to be explained how the distribution of the largest order statistic is 

related to the tails of the underlying PDF from which the samples are drawn. The 

relationship is based on the observation that inferences from short sequences are likely 

to be unreliable. In particular, instead of observing k sets of n samples and taking 

the largest order statistic from each of the k sets, it is better to observe a single 

set of nk samples and use the largest k samples from this set [46]. The k largest 

order statistics from a vector of nk observations constitute the tail of the underlying 

distribution especially when n is very large. Therefore, the limiting distribution of 

the largest order statistic closely approximates the tail of the underlying PDF for 

large n. 

3.5      The Generalized Pareto Distribution 

The Generalized Pareto Distribution (GPD) is defined for x > 0 by the distribution 

function 

G(x) - 1 - (1 + 7X/CT)"
1/7

,   -OO < 7 < OO, <T > 0,7X >-CT. (3.15) 

This distribution has a simple closed form and includes a range of distributions de- 

pending upon the choice of 7 and a. For example, the exponential distribution results 

for 7 = 0 and the uniform distribution is obtained when 7 = — 1. The GPD defined 

in equation (3.15) is valid for all x > 0 while equations (3.13) and (3.14) are valid 

only for large x. 

The probability density function corresponding to the GPD is given by 

gW = J^1 ~ ^ + V)"1^ = ^ + T^~1' (3J6) 
ax a a a 

If we let 7 —*• 0 in the above equation, note that 

limI(l + ^)-^ = Ie-f. (3.17) 
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Also, if we let x be large in equation  (3.16), note that 

I<1 + 2£)-}-i « I(I)-^V-K (3.18) 
a a (JO 

Equations   (3.17) and   (3.18) are of the same form as equations   (3.13) and   (3.14). 

Thus, the GPD can be used to approximate both types of tail behavior exhibited by 

the right tail. Typical plots of the Generalized Pareto PDF for 7 < 0 and 7 > 0 are 

shown in Figures 3.2 h 3.3. 

We wish to set thresholds for specified false alarm probabilities when the underlying 

density functions are unknown.  To set very small false alarm probabilities, the tail 

of the PDF fjt(ta\Ho) has to be accurately modeled. Figure 3.4 represents a typical 

PDF of the test statistic with the tail region of the PDF being defined as that to 

the right of t — tQ. Figure 3.5 shows the tail translated to the origin. The choice for 

t0 is somewhat arbitrary.   For example, t0 can be chosen such that the area in the 

shaded region equals 0.1, 0.05 or 0.01.  It is the portion of the PDF to the right of 

£0 that we are interested in modeling by the GPD. In particular, the tail region of 

the PDF is translated to the origin and modeled as a GPD. Once the estimates of a 

and 7 have been obtained, the GPD is multiplied by the area of the shaded region 

and translated back to the point i0- IQ this way, the area under the PDF of the test 

statistic is maintained at unity. 
3.5.1      Methods for Estimating the Parameters of the GPD 

Suppose that the sample ordered statistics X\ < X2 < ... < Xn are drawn from 

the distribution function F(x).   To estimate the right tail of this distribution it is 

necessary to determine a value (say x0) and then use those sample observations which 

are greater than XQ to obtain the quantity z = X — XQ. Once the tail observations have 

been chosen, the Generalized Pareto Distribution can be fitted to these observations 

by using standard methods of parameter estimation. Observe that the portion of the 

observations used from a complete set of samples depends on the choice of x0. One 

approach to selecting XQ is to make a histogram of the data set and choose xo to be 

near the point of inflection of the histogram. DuMouchel [47] proposed choosing x0 

to be the value such that f™ fx(x)dx = 0.1. Such an approach is less subjective and 

appears to be satisfactory for many applications. However, it is noted by DuMouchel 

that " using an even smaller fraction of observations would restrict profitable use of 
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Figure 3.5: Tail of the test statistic shifted to origin. 

45 



the statistic to much larger sizes. On the other hand, to use more than the upper one 

tenth of a sample would seem to allow too much dependence on the central part of 

the distribution."In other words, if a smaller fraction is used, we need larger sample 

sizes to get an adequate number of samples for estimation and if a larger fraction is 

used, the body of the distribution may influence estimation of the tail. 

Let x0 be such that 1 — F(x0) = /~ fx(x)dx = A. The distribution function to be 

used in approximating the tail can be written as 

F(x) = (l-X) + XG(x-x0) = l-X[l + l(x-x0)]-1^   x>x0 (3.19) 

where G(x) is given in equation (3.15). Assuming that the tail of a given distribution 

can be adequately approximated by equation (3.19), then the estimation problem of 

the distribution in the tail region is reduced to estimation of the parameters of the 

Generalized Pareto distribution. 

In this chapter we consider three methods for the parameter estimation of the Gen- 

eralized Pareto distribution. The three methods are maximum likelihood estimation, 

the method of probability weighted moments, and the ordered sample least squares 

approach. The first two methods, applied to the GPD, are discussed by Hosking and 

Wallis [31]. The ordered sample least squares approach is a new technique developed 

in this work. The performance of the three estimation procedures are compared on 

the basis of estimation bias and mean square error. 
3.5.1.1    Maximum Likelihood Estimation 

The probability density function corresponding to the GPD from equation (3.16), 

with x replaced by z, is 

0(*) = !(l + 2£)-H. (3.20) 
(7 (7 

Given a sample vector [zi,Z2,...,zm] from the GPD the joint density function Lz(z) 

of the m samples, assuming independence, is given by 

1 m -V». 1 

°    t=l ° 

To theoretically obtain the maximum likelihood estimates of a and 7, the logarithm 

of the joint density function in equation (3.21) is differentiated with respect to a and 

7, respectively, and the derivatives are set to zero.   Let the m largest observations 
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from the unknown distribution whose tail is being modeled by the GPD be placed in 

the vector [a:n_m+i,a;n_m+2, ...,zn]. Translation of the tail region to the origin results 

in the vector [sn-m+i - &o, Zn-m+2 - xQ,..., xn - xQ] = [zu z2,..., zm). Letting r = -y/a 

in equation (3.21) and differentiating the logarithm of the joint density function with 

respect to a we get 

j j m 

-±logLz(z)   =   ^mlojfalKHH-^Ml+r^)] 

=   - + (1-4-) EMI+7^)- (3.22) 

By setting equation  (3.22) to zero and solving for a we obtain 

m 

a(r) = J2log(l + Tzi)/(mr). (3.23) 
1=1 

The expression for a is now substituted into equation (3.22), so as to obtain a function 

of T alone, f is derived by differentiating the expression 

m 

m log CT{T) + (1 + 1/(<T(T)T)) £ %(1 + rzx) (3.24) 
1=1 

with respect to r and setting the derivative equal to zero with the constraint that 

TZi > — 1. However, the differentiation leads to a nonlinear equation whose analytical 

solution is not known. This difficulty is circumvented by minimizing equation (3.24) 

numerically with respect to r. The numerical minimization was performed using the 

Neider-Mead algorithm [48].   Once the estimate for r has been obtained, then a is 

obtained from equation  (3.23) and 7 is estimated by 7 = ar. 
3.5.1.2     Probability Weighted Moments 

The probability weighted moments of a continuous random variable Z with distri- 

bution function G are the quantities 

Mp,r,, = E[Z*Gr(Z)(l - G(Z))>] (3.25) 

where E is the expectation operator and p, r and 5 are real numbers. For the GPD it 

is convenient to choose p = 1 and r = 0, respectively. Then the probability weighted 

moments are 

M1A. = E[Z(1 - G{Z)Y). (3.26) 
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For the GPD there are two parameters to be estimated, a and 7. Substituting s = 0 

in equation  (3.26), we get 

e0 = Mlfifi = E[Z] = f° -(1 + 2ly^dZ. (3.27) 
JO      (T (7 

Letting 1 -f- ^ = Y, equation  (3.27) results in 

a   t°° 1   i =   4/   {Y-l)Y"-ldY 
7 Ji 

-IT 

to 
r 

a   Y-1^1 1 

Y" 

T»l-} + l 1 
<T 

1_7- <3-28) 

Letting 5 = 1 in equation   (3.26) we obtain 

Cl = M1A1 = E[Z{\ - G(Z)} = r -(1 + —THI + ^—Y^dZ. (3.29) 
Jo    ex a a 

Letting 1 + ^— = Y, as before, equation  (3.29) results in 

r ■    ■ 

2  , 2 
a   V"-1      Y" 

=   "ji" 
00 

2  , 1 2 Ji 72L_1 + 1 _1 
'7 7 

(3.30) 
2(2 - 7) 

The values of c0 
and ei are obtained from equations (3.28) and (3.30), respectively, 

for given values of a and 7. Since there are two equations in two unknowns a and 7 

can be obtained as functions of e0 and tx. Solving for a and 7 we obtain 

a = 2e0e1/{e0-2e1) (3.31) 

and 

7 = 2- eo/(eo - 2e1) (3.32) 

where eo and ej are estimated from the data by the estimators e0 = I2£Li Zi/m and 

t\ = ££li(m — i)zi/{m(m — 1)} [31]. Once the values of e0 and ex are obtained the 

estimates of a and 7 are obtained by making use of equations (3.31) and (3.32). Note 
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that the method of probability weighted moments involves computationally simple 

expressions for the estimates. 
3.5.1.3     The Ordered Sample Least Squares Method - A New Approach 

The procedure used in maximum likelihood estimation is based on minimizing equa- 

tion (3.24). The probability weighted moment estimates are obtained by equating the 

sample based averages with the theoretical values of the quantity E[Z(1 — G(Z))% 

s=0,l, where Z = X — x0. A third approach is the ordered sample least squares 

method, which is based on the principle of minimizing the squared distance between 

the ordered sample and the expected value of the ordered sample. Computer simula- 

tions reveal that this can be a more suitable approach for estimating the parameters. 

In Appendix A the method for evaluating the mean and the variance of the rth 

order statistic from a sample of size n is presented. For the Generalized Pareto 

Distribution the mean and the variance of the rth order statistic can be derived since 

the probability distribution function is known in closed form. Let x be replaced by z 

in equation   (3.15) and let G(z) = u. Solution for z results in 

z = G~\u) = -[(1 - up - 1]. (3.33) 
7 

Making use of the above equation and equation  (A.62) in Appendix A, the expected 

value of the rih order statistic Zr is 

E&) = -1 TW Ml/*«1 " u)"7 ~ 1)uF"1(1 ~ u)n~rdu]- (3'34) 7 (r — \y.\n — r)\ Jo 

The integral in the above equation can be broken into two parts as follows. 

E^) = -?—TW 4 A1 - ")"7"r~1(1 - uT~rdu - C "r"1(1 - ")n-r<H 7 (r — l)'(n — r)l Jo Jo 
V ' (3.35) 

From results presented in Gradshtyn and Ryzhik [49], the expression for E{Zr) be- 

comes 

Wt7\   -   a nl (r-l)!(n-r-7)!     (r-l)!(n-r)! 
^r)   ~   7(r_i)i(n_r)|t (n-7)! n\ J 

a   n!(n-r-7)!       ^ 
7 (n — r)!(n —7)! 

_    gr(n + l)r(n-r-7 + l)     1} (3.36) 

7T(n-r + l)r(n-7 + l)       J' 
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To calculate the variance of Zr, we first calculate E(Z2).   Making use of equation 

(3.33) and equation  (A.65) in Appendix A, the expected value of Z2 is 

E&) = ${r-iyi-ry[J0
1{{1 - ur - 1)V"1(1 - u)n~Tdu]-       (3-37) 

Expanding the square in the integrand of the above equation gives 

E{Z'] = 7(r-l)Kn-r)![/0
1((1"u)"^"2(1"^"7 + lK"1(1~M)n"r^]- (3'38) 

Making use of results from [49], the above integral evaluates to 

F(7*\   =   *     n\'     (n-r-27)!      2(n - r - 7)1 
^   r> 72(n-r)!1    (n-27)! (n - 7)!      "*"   J 

a2    r(n + l)      r(n-r-27 + l)      2r(n-r-7 + l) 
72r(n-r+l)[    T(n-27 + l) r(n-7 + l)      + ^^ 

From equations   (3.36) and   (3.39) and the relation Var(Zr) = E(Z2) - E2.{Zr), we 

have 

K   T> 7
2T(n-r+l)1    T(n-27 + l) 

_    2r(n-r-7) + l f-r(n + l)r(n-r-7 + l)_ 
T(n-7 + l)      ^   J     ^7

lr(n-r + l)r(n-7 + l)      1J'^^ 

Simplifying the above equation results in 

V    (Z\     °\   F(n + 1)    T(n-r-27 + l) T2(n + l)    T2(n-r-7 + l) 
an  T)

      7
2T(n-r + l)    T(n-27 + l) P(n - r + 1)    P(n - 7 + 1)    J' 

(3.41) 

Letting QM = r\^%%^\ results in 

E{Zr) = Pr = -{Qrh)-l} (3.42) 

V<zr(Zr) = a2 = ^{Qr(27) - (Qr(7))2}- (3-43) 
7 

A computationally simpler expression can be found for Qr(7) by making use of the 
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properties of the gamma function. Dividing QT{l) by Qr^i(~/) we get 

" r(n+l)    r(n-r-H-l) 
QAl)     _   r(n-r+l)    r(n-7+l) U - T + 1 

QP_i(7)      _El2±lL£iSz^2±Hi ~ n-r-7 + 1' ^r   1V,y T(n-r+2)    r(n-7+l) ' 

Equation   (3.44) reduces to 

(3.44) 

To find the least squares estimates of the parameters we write the following non- 

linear model for the rth sample order statistic 

Zr = E(Zr) + er,   r = l,2,...,m (3.46) 

where the error term er has a distribution with mean 0 and variance a\. Since the 

order statistics are not independent, the errors are also not independent. Because 

of the nonlinear structure of the model in equation (3.46) and correlated errors, 

least squares estimation does not offer a straightforward solution to the estimation 

problem. Even so, in this study we proceed to use the ordered sample least squares 

(OSLS) procedure to estimate the parameters. 

In equation (3.42), we note that the scale parameter a appears linearly whereas the 

shape parameter 7 does not. The least squares estimates are obtained by minimizing 

the quantity 
m m 

s = £ 4 = Ei?- - °(Qr(rr) -1)/7)2- (3.47) 
r=l r=l 

Since a appears linearly in the above expression, minimization can be achieved ana- 

lytically. Differentiating equation (3.47) with respect to a and setting the derivative 

equal to zero results in 

171 rr 1 
2 E((Zr - ~(Qrh) - mi-HQM ~ 1)) = 0. (3.48) 

r=l 7 7 

The solution for a from the above equation is 

»(7) = 7i:r.,z^(7)-i) (349) 

The expression for a is substituted in equation   (3.47) and the resulting expression 
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is minimized with respect to 7. After the substitution the resulting expression is 

nonlinear and minimization cannot be performed analytically. Using the Nelder- 

Mead algorithm [48], the minimization is done numerically. Once the estimate of 7 

is obtained, a is obtained from equation  (3.49). 

Recall that the GPD is being used to approximate the tail of the underlying dis- 

tribution. Hence, the ordered statistics Zr, r = l,2,...,m, from the GPD actually 

correspond to the ordered statistics Xn-m+i — £0, Xn-m+2 — x0...Xn — x0 from the 

underlying distribution. 

The least squares procedure results in a computationally convenient algorithm. It 

is emphasized that the minimization of S is carried out only with respect to the 

single parameter 7. Furthermore, the underlying criterion is based on minimizing the 

distance between the empirical values and the expected values of the ordered samples. 

Some numerical comparisons are given in section 3.6. 
3.5.2    Estimation of Thresholds 

The Generalized Pareto Distribution that is estimated from the data is used to 

approximate the tail of the unknown, underlying distribution. We now show that 

the threshold is related to the approximating distribution function in a direct man- 

ner. With reference to equation (3.19), let fja denote the estimate of the threshold 

corresponding to a false alarm probability a. We then have 

F(rja) = 1 - a = 1 - A[l + -% - x0)]"
1/7. (3.50) 

<y 

Solution for fja results in 

.       fja = x0 + cr(q^-l)h (3.51) 

where A = 1 — F(xo), q = (1 — o;)/A and xo = F-1(l — A). For many applications 

DuMouchel [47] suggests that A = 0.1 be used. As will be discussed in the subsequent 

sections, the optimal value of A depends on the threshold being estimated. Since the 

distribution function F(x) is not known, XQ cannot be determined for a given value 

of a. Therefore, following common practice, the sample order statistic Xn-m, where 

m = [An] and [. ] denotes the integer part operator, is used as an estimate of xo- 
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Distribution OSLS ML PWM 
Gaussian -0.144 -0.151 -0.174 

Weibull(3) -0.163 -0.168 -0.194 
Weibull(.67) 0.108 0.129 0.137 
Weibull(.5) 0.201 0.265 0.263 

Student-T(3) 0.290 0.260 0.261 
Student-T(5) 0.132 0.099 0.090 
Student-T(8) 0.031 0.006 -0.010 
Lognormal(l) 0.232 0.259 0.258 
Chi-square(l) 0.030 0.034 0.044 
Chi-square(4) -0.024 -0.033 -0.034 
Chi-square(8) -0.047 -0.058 -0.064 

Table 3.1: Tail parameter j describing the upper ten percent of various distributions. 

3.6    Numerical Results 
3.6.1      Characterization of Tail Shape for Known Distributions 

We first discuss a method for estimating the parameters of the GPD when the 

underlying distribution is known. Choose x0 
sucn that 1 — F(x0) = 0.1. Then define 

the points p,   i=l,2,...1000"  by 

Pi = 0.90005 + 0.0001 (*-l). (3.52) 

Analytically evaluate X{ = F~1(pi) from the known distribution.   Using the 1000 

values of a;,, the maximum likelihood estimation, the ordered sample least squares 

and the probability weighted moments procedures were applied to determine the 

corresponding 7 values for various distributions. The results are given in Table 3.1. 

The number in parentheses for the Weibull and Lognormal distributions is the value of 

the shape parameter. For the remaining distributions the number denotes the degrees 

of freedom. Since a is a scale parameter, the shape parameter 7 best describes the 

tail shape. For the exponential and the uniform distributions the value of 7 can be 

obtained analytically. 7 = 0 for the exponential distribution and is — 1 for the uniform 

distribution.  Since the size of the tail decreases with decreasing 7, the relationship 

between the tail behavior and the corresponding values of the shape parameter 7 can 

be clearly inferred from this table. 
3.6.2      Empirical Properties of the Estimators for Known Distributions 

Seven distributions with widely differing tail behaviors were chosen in order to 

investigate the adequacy of the approximation of extreme tails by the GPD and 
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to compare the three estimation procedures. The gamma distribution and Weibull 

distribution with shape parameter of value 3 have tails lighter than those of the 

exponential PDF. The tails of the chi-square distribution with 4 degrees of freedom 

and the student-T distribution with 8 degrees of freedom are approximately the same 

as those of the exponential PDF. Finally, the student-T distribution with 4 degrees of 

freedom and the Lognormal distribution with shape parameter of value 1 have tails 

heavier than those of the exponential PDF. 

Let 7? and fj denote the true and estimated thresholds, respectively. A Monte Carlo 

experiment was performed'to investigate the normalized bias, 2=2 and the normalized 

mean square error (^2)2 of the proposed threshold estimates. The four sample 

sizes given by m = 25,50,100 and 1000 were considered. Each set of samples was 

obtained by generating n observations and taking the largest m = O.ln observations. 

For example, a set of samples of size 25 was obtained by selecting the largest 25 

observations from a collection of 250 samples. For each of the four different values of 

m, k=200,000/m trials were performed for each of the seven distributions. The median 

of the normalized bias values was computed for each distribution and estimation 

procedure. The results for PF = 10"*, k=2,3,...7 are given in Table 3.2. Similarly the 

median of the positive square root of the normalized mean square error are presented 

in Table 3.3. The results in the two tables differ because the sign of (77 — r))/rj is 

lost in the normalized root mean square values computed in Table 3.3. Extremely 

poor estimates for 77 were obtained in a few of the trials. These poor estimates could 

severely influence an arithmetic mean of the estimates. To avoid this problem, median 

values were used in place of arithmetic means. 

The empirical results in Table 3.2 indicate that the newly proposed ordered sample 

least squares estimator generally has a smaller normalized bias than the other estima- 

tors for small or moderate sample sizes. Overall the second smallest normalized bias 

is achieved by the probability weighted moments method. The maximum likelihood 

estimator has the largest normalized bias when Pp > 10~5, especially for the long 

tailed distributions. The normalized bias of all three estimators decrease as the sam- 

ple size increases. When the parent distribution is GPD,all three estimators perform 

very well. Even so, the ordered sample least square estimator outperforms the others. 

The relatively strong performance for the GPD is explained as follows. The extreme 
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value theory is based on the premise that tails of smooth continuous distributions 

tend towards the GPD. For the GPD, this premise is exactly satisfied. Hence, the 

corresponding performance is noticeably better than for other distributions. 

The results for the median of the normalized root mean square error are surprising. 

The maximum likelihood estimator is known to be asymptotically efficient. This is 

always true when the samples are drawn from the underlying distribution (in our case 

from the generalized Pareto distribution). This property of the maximum likelihood 

estimator can be observed in Table 3.3 when m =1000 but not for smaller sample 

sizes. Although the ordered sample least squares method has a smaller normalized 

root mean square error in many cases, there is no clear winner with respect to this 

criterion. 

From the empirical results which are based on a limited number of distributions 

and sample sizes, it is not easy to make a strong recommendation as to which method 

to use in practice. However, in terms of the normalized bias, the ordered samples least 

squares estimator appears to perform better than the other estimators in estimating 

the large thresholds when Pp < 10-6. In any event, it is seen that the extreme value 

theory can be used successfully to determine threshold values, when the false alarm 

probability is very small. 

Two practical advantages of estimation based on extreme value theory are: 1) When 

there is a constraint on the number of samples, the thresholds obtained from extreme 

value theory are expected to be closer to the true thresholds than those obtained by 

conventional Monte Carlo techniques.   However, in both techniques an increase in 

sample size offers greater accuracy in estimating thresholds. 2) Because the estimate 

of the tail of the underlying distribution is in closed form, estimation can be made 

for thresholds corresponding to extremely small false alarm probabilities independent 

of the sample size. In experiments with fixed amounts of data, this is an important 

advantage. 
3.6.3    Effect of the Choice of A on the Threshold Estimates 

As was mentioned previously, only those samples which exceed xo are used in 

estimating the GPD parameters.  The value of XQ is determined by A.  The results 

presented in Tables 3.2-3.3 were obtained by means of Monte Carlo experiments where 

A = 0.1 was used independent of the value of PF for which the threshold was being 
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estimated. When the false alarm probability was extremely small, the bias and root 

mean square errors were quite large for some distributions. The smaller the value of A, 

the better will be the GPD approximation over the extreme tail being approximated. 

When A is chosen too large, a better fit is found for that portion of the distribution 

closer to the center at the-expense of lesser accuracy in the extreme tail. Of course, 

there is a tradeoff between the choice of A and the number of data samples available 

for determining the parameters of the GPD. 

In our application the major objective is to approximate the extreme tails corre- 

sponding to thresholds of 10-5 or smaller. Consequently, we explored the implications 

of selecting values less than 0.1 for A. To accomplish this, we obtained the theoreti- 

cal values of x,- for the standard Normal and Lognormal distributions corresponding 

to F_1(p,) where p, = *=%& : i=l,2,...n, and n = 1,000 and 10,000 respectively. 

These two distributions are chosen because they represent extremes: The Normal 

distribution is light tailed while the Lognormal is a heavy tailed distribution. 

The number of the x,- samples used to determine the parameters of the GPD is 

given by An. The parameters were estimated using the OSLS procedure for values of. 

A equal to 0:1, 0.05 and 0.01. The resulting GPDs were then used to determine the 

thresholds for false alarm probabilities given by Pp = 10~* where k=2,3,...7. These 

results are presented in Figure 3.6, where both the theoretical and approximated 

thresholds are plotted as a function of k for (A) Normal distribution (n=10,000), (B) 

Normal distribution (n=1000), (C) Lognormal distribution (n=10,000), (D) Lognor- 

mal distribution (n=1000). For k > 5, it is seen that A = 0.01 (curve b) appears to 

be the best choice for approximating the thresholds. The best results were obtained 

with n = 10,000. However, good results were obtained with n = 1,000. 

3.7      Examples 
3.7.1     Known Distribution Case 

To evaluate the accuracy of the threshold value estimates, 10000 random samples 

were generated from the Gaussian and Lognormal distributions and the upper tails 

of these two distributions were modeled as Generalized Pareto. In sections 3.4.1 and 

3.4.3, theoretical values given by x,- = F-1(p,) were used to estimate the tail. In 

this section randomly generated samples are used in place of the theoretical values. 

Choosing A = 0.01, the theoretical thresholds of the Gaussian distribution for Pp = 
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An = 25 

PF 10-* io-3 10"4 IO"6 10"b io-v 

Normal OSLS -0.0112 0.0043 -0.0040 -0.0276 -0.0571 -0.087 2 
Normal ML -0.0034 0.0187 0.0328 0.0358 0.0281 0.0137 
Normal PWM -0.0084 -0.0208 -0.0560 -0.1015 -0.1464 -0.1924 

Weibull(3) OSLS -0.0048 0.0013 -0.0041 -0.0202 -0.0418 -0.0619 
Weibull(3) ML 0.0039 0.0481 0.0938 0.1374 0.1776 0.2137 
Weibull(3) PWM -0.0037 -0.0106 -0.0333 -0.0635 -0.0919 -0.1216 

t(4) OSLS -0.0424 -0.0792 -0.1658 -0.2727 -0.3872 -0.4922 
t(4) ML -0.0166 -0.1115 -0.2526 -0.4045 -0.5416 -0.6541 
t(4) PWM -0.0218 -0.0929 -0.2160 -0.3498 -0.4761 -0.5881 
t(8) OSLS -0.0221 -0.0186 -0.0572 -0.1164 -0.1975 -0.2879 
t(8) ML -0.0104 -0.0468 -0.1169 -0.2077 -0.3055 -0.4033 

t(8) PWM -0.0129 -0.0452 -0.1095 -0.2039 -0.3063 -0.4115 
Chi-sq(4) OSLS -0.0209 -0.0039 0.0241 0.0333 -0.0088 -0.0104 
Chi-sq(4) ML -0.0037 0.0943 0.2518 0.4571 0.6185 0.8810 
Chi-sq(4) PWM -0.0144 -0.0205 -0.0334 -0.0576 -0.1254 -0.1624 

Lognormal OSLS -0.0835 -0.0982 -0.0634 0.0016 0.1007 0.2567 
Lognormal ML -0D058 0.1836 0.5932 1.2736 2.4832 4.4947 
Lognormal PWM -0.0543 -0.0878 -0.0931 -0.0728 -0.0228 0.0639 

Pareto(-0.25) OSLS -0.0092 0.0208 0.0423 0.0631 0.0780 0.0874 
Pareto(-0.25) ML -0.0030 0.0523 0.1190 0.1868 0.2479 0.2969 
Pareto(-0.25) PWM -0.0077 0.0052 0.0121 0.0199 0.0237 0.0278 

Table 3.2: Median of the normalized bias values for different percentiles. OSLS:Ordered 
Sample Least Square, ML:Maximum Likelihood, PWM Probability Weighted Moments 
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An = . 50 
PF 10-' 10~a 10"4 10"° 10~ö io-v 

Normal OSLS 0.0036 0.0073 -0.0068 -0.0354 -0.0676 -0.1022 
Normal ML 0.0042 0.0323 0.0497 0.0578 0.0528 0.0380 
Normal PWM -0.0012 -0.0118 -0.0459 -0.0861 -0.1318 -0.1742 

Weibull(3) OSLS -0.0022 -0.0007 -0.0133 -0.0337 -0.0571 -0.0838 
Weibull(3) ML 0.0056 0.0500 0.0991 0.1436 0.1847 0.2199 
Weibull(3) PWM -0.0014 -0.0105 -0.0342 -0.0629 -0.0937 -0.1256 

t(4) OSLS -0.0147 -0.0646 -0.1800 -0.3209 -0.4501 -0.5063 
t(4) ML -0.0068 -0.0867 -0.2264 -0.3736 -0.5120 -0.6291 
t(4) PWM -0.0078 -0.0622 -0.1662 -0.2973 -0.4233 -0.5391 
t(8) OSLS -0.0062 -0.0222 -0.0841 -0.1723 -0.2694 -0.3703 
t(8) ML -0.0031 -0.0502 -0.1352 -0.2385 -0.3460 -0.4517 

*t(8) PWM -0.0032 -0.0336 -0.1064 -0.2041 -0.3051 -0.4046 
Chi-sq(4) OSLS -0.0092 -0.0004 0.0051 0.0060 -0.0498 -0.0686 
Chi-sq(4) ML 0.0115 0.1134 0.2755 0.4775 0.6368 0.9150 
Chi-sq(4) PWM -0.0041 -0.0087 -0.0191 -0.0407 -0.1123 -0.1488 

Lognormal OSLS -0.0544 -0.0594 -0.0272 0.0458 0.1573 0.3274 
Lognormal ML 0.0092 0.2177 0.6336 1.3811 2.6197 4.7101 
Lognormal PWM -0.0302 -0.0391 -0.0185 0.0413 0.1480 0.2977 

Pareto(-0.25) OSLS -0.0052 0.0100 0.0214 0.0326 0.0404 0.0448 
Pareto(-0.25) ML 0.0005 0.0463 0.1011 0.1560 0.2003 0.2357 
Pareto(-0.25) PWM -0.0050 -0.0018 -0.0012 -0.0019 -0.0023 -0.0012 

Table 3.2: Median of the normalized bias values for different percentiles. (contd.) 
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An = 100 

PF 10-* 10"a IQ"' 10-" io-b 10-' 
Normal OSLS 0.0017 -0.0016 -0.0253 -0.0637 -0.1040 -0.1464 
Normal ML 0.0068 0.0263 0.0306 0.0229 0.0063 -0.0185 
Normal PWM 0.0018 -0.0181 -0.0549 -0.1022 -0.1524 -0.1986 

Weibull(3) OSLS 0.0005 -0.0017 -0.0164 -0.0376 -0.0624 -0.0888 
Weibull(3) ML 0.0037 0.0270 0.0564 0.0840 0.1003 0.1158 
Weibull(3) PWM 0.0004 -0.0095 -0.0320 -0.0607 -0.0918 -0.1220 

t(4) OSLS -0.0064 -0.0441 -0.1421 -0.2680 -0.3922 -0.5031 
t(4) ML -0.0004 -0.0564 -0.1650 -0.2907 -0.4174 -0.5354 
t(4) PWM -0.0003 -0.0478 -0.1403 -0.2636 -0.3809 -0.4949 
t(8) OSLS -0.0024 -0.0134 -0.0751 -0.1606 -0.2578 -0.3548 
t(8) ML 0.0011 -0.0342 -0.1145 -0.2123 -0.3157 -0.4216 
t(8) PWM 0.0013 -0.0271 -0.0955 -0.1888 -0.2892 -0.3916 

Chi-sq(4) OSLS -0.0032 -0.0028 -0.0077 -0.0198 -0.0841 -0.1111 
Chi-sq(4) ML 0.0175 0.1189 0.2655 0.4581 0.5917 0.8298 
Chi-sq(4) PWM -0.0004 -0.0089 -0.0238 -0.0448 -0.1143 -0.1520 

Lognormal OSLS -0.0159 -0.0542 -0.0876 -0.1089 -0.0940 -0.0617 
Lognormal ML -0.0111 -0.0251 -0.0068 0.0536 0.1499 0.3104 
Lognormal PWM -0.0165 -0.0210 0.0141 0.0924 0.2315 0.3965 

Pareto(-0.25) OSLS -0.0023 0.0109 0.0255 0.0350 0.0419 0.0471 
Pareto(-0.25) ML 0.0033 0.0544 0.1170 0.1739 0.2215 0.2611 
Pareto(-0.25) PWM -0.0014 0.0004 0.0052 0.0084 0.0112 0.0129 

Table 3.2: Median of the normalized bias values for different percentiles. (contd.) 
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An = 1000 
PF 10-* io-J 10"4 io-& io-b 10-' 

Normal OSLS 0.0035 -0.0013 -0.0244 -0.0613 -0.1010 -0.1432 
Normal ML 0.0059 0.0017 -0.0259 -0.0626 -0.1075 -0.1476 
Normal PWM 0.0028 -0.0192 -0.0586 -0.1064 -0.1560 -0.2016 

Weibull(3) OSLS 0.0013 -0.0023 -0.0175 -0.0381 -0.0627 -0.0885 
Weibull(3) ML 0.0020 -0.0018 -0.0159 -0.0386 -0.0641 -0.0909 
Weibull(3) PWM 0.0010 -0.0092 -0.0297 -0.0578 -0.0880 -0.1192 

t(4) OSLS 0.0058 -0.0044 -0.0605 -0.1574 -0.2690 -0.3715 
t(4) ML 0.0141 -0.0137 -0.1018 -0.2167 -0.3326 -0.4406 
t(4) PWM 0.0141 -0.0176 -0.1104 -0.2277 -0.3479 -0.4598 
t(8) OSLS 0.0033 -0.0021 -0.0452 -0.1167 -0.2001 -0.2896 
t(8) ML 0.0070 -0.0117 -0.0664 -0.1464 -0.2404 -0.3382 
t(8) PWM 0.0045 -0.0219 -0.0896 -0.1825 -0.2857 -0.3862 

Chi-sq(4) OSLS 0.0003 0.0012 -0.0057 -0.0167 -0.0826 -0.1107 
Chi-sq(4) ML 0.0012 -0.0021 -0.0152 -0.0354 -0.1026 -0.1349 
Chi-sq(4) PWM 0.0006 -0.0011 -0.0080 -0.0263 -0.0934 -0.1211 
Lognormal OSLS -0.0038 -0.0221 -0.0259 0.0055 0.0646 0.1638 
Lognormal ML -0.0098 0.0063 0.0616 0.1767 0.3495 0.5999 
Lognormal PWM -0.0128 -0.0004 0.0567 0.1683 0.3400 0.5771 

Pareto(-0.25) OSLS 0.0002 0.0002 0.0012 0.0007 0.0003 0.0000 
Pareto(-0.25) ML -0.0002 -0.0010 -0.0044 -0.0061 -0.0081 -0.0094 
Pareto(-0.25) PWM 0.0003 -0.0011 -0.0007 -0.0006 -0.0035 -0.0038 

Table 3.2: Median of the normalized bias values for different percentiles. 
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An = 25 
PF 10-*       10"a       10~4       10~5       10"6       10-' 

Normal 
Normal 
Normal 

OSLS 
ML 

PWM 

0.0558 0.1127 0.2022 0.2825 0.3507 0.4044 
0.0558 0.0909 0.1459 0.2057 0.2588 0.3070 
0.0559    0.1215    0.2121    0.2920    0.3586    0.4117 

Weibull(3) 
Weibull(3) 
Weibull(3) 

OSLS 
ML 

PWM 

0.0257 0.0577 0.1089 0.1580 0.2031 0.2415 
0.0258 0.0531 0.0950 0.1378 0.1780 0.2139 
0.0256    0.0624    0.1149    0.1659    0.2110    0.2495 

t(4) 
t(4) 
t(4) 

OSLS 
ML 

PWM 

0.1069 0.2261 0.4160 0.5989 0.7397 0.8405 
0.1051 0.2353 0.4157 0.5812 0.7127 0.8097 
0.1019    0.2329    0.4213    0.5956    0.7368    0.8344 

t(8) 
t(8) 
t(8) 

OSLS 
ML 

PWM 

0.0781 0.1666 0.3073 0.4455 0.5701 0.6730 
"0.0779 0.1493 0.2554 0.3648 0.4689 0.5649 
0.0775    0.1752    0.3180    0.4544    0.5783    0.6787 

Chi-sq(4) 
Chi-sq(4) 
Chi-sq(4) 

OSLS 
ML 

PWM 

0.0610 0.1313 0.2441 0.3592 0.4650 0.5455 
0.0721 0.2179 0.4459 0.7901 1.1783 1.7789 
0.0592    0.1384    0.2500    0.3622    0.4666    0.5446 

Lognormal 
Lognormal 
Lognormal 

OSLS 
ML 

PWM 

0.1335 0.2452 0.4362 0.6271 0.7785 0.8785 
0.1439 0.4007 0.7303 1.4149 2.7312 5.0774 
0.1260    0.2582    0.4463    0.6281    0.7737    0.8705 

Pareto(-0.25) 
Pareto(-0.25) 
Pareto(-0.25) 

OSLS 
ML 

PWM 

0.0409 0.0787 0.1348 0.1752 0.2017 0.219 
0.0402 0.0763 0.1419 0.2075 0.2640 0.3127 
0.0411    0.0866    0.1430    0.1817    0.2084    0.2240 

Table 3.3:   Median RMS errors for various percentiles.    OSLS:Ordered Sample Least 
Square, ML:Maximum Likelihood, PWM:Probability Weighted Moments 
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An = 50 
PF KH 10~a 10"4 io-b io-b 

10-' 
Normal OSLS 0.0401 0.0772 0.1391 0.1981 0.2548 0.3042 
Normal ML 0.0394 0.0689 0.1122 0.1559 0.1959 0.2328 
Normal PWM 0.0399 0.0865 0.1530 0.2192 0.2759 0.3273 

Weibull(3) OSLS •0.0180 0.0393 0.0743 0.1135 0.1511 0.1854 
Weibull(3) ML 0.0185 0.0509 0.0997 0.1447 0.1859 0.2214 
Weibull(3) PWM 0.0180 0.0442 0.0852 0.1263 0.1661 0.2017 

t(4) OSLS 0.0779 0.1826 0.3506 0.5179 0.6633 0.7724 
t(4) ML 0.0768 0.1910 0.3602 0.5244 0.6688 0.7762 
t(4) PWM 0.0760 0.1778 0.3332 0.4899 0.6303 0.7386 
t(8) OSLS 0.0561 0.1228 0.2316 0.3503 0.4666 0.5698 
t(8) ML 0.0553 0.1219 0.2226 0.3385 0.4504 0.5529 
t(8) PWM 0.0554 0.1306 0.2405 0.3613 0.4793 0.5807 

Chi-sq(4) OSLS 0.0431 0.0890 0.1678 0.2509 0.3351 0.4109 
Chi-sq(4) ML 0.0489 0.1661 0.3386 0.5487 0.7664 1.1112 
Chi-sq(4) PWM 0.0426 0.0939 0.1747 0.2584 0.3431 0.4185 

Lognormal OSLS 0.0975 0.1834 0.3439 0.5155 0.6660 0.7990 
Lognormal ML 0.0993 0.3381 0.6769 1.3921 2.6297 4.7240 
Lognormal PWM 0.0864 0.1954 0.3510 0.5143 0.6621 0.8012 

Pareto(-0.25) OSLS 0.0289 0.0534 0.0890 0.1162 0.1346 0.1486 
Pareto(-0.25) ML 0.0284 0.0602 0.1149 0.1675 0.2084 0.2417 
Pareto(-0.25) PWM 0.0293 0.0616 0.1032 0.1320 0.1533 0.1666 

Table 3.3: Median RMS errors for various percentiles. (contd.) 
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An = 100 

PF 10-* 10"a 10-» 10"° 10"° io-v 

Normal OSLS 0.0284 0.0522 0.0964 0.1414 0.1863 0.2305 
Normal ML 0.0290 0.0517 0.0840 0.1123 0.1433 0.1689 
Normal PWM 0.0281 0.0584 0.1090 0.1635 0.2134 0.2585 

Weibull(3) OSLS 0.0128 0.0273 0.0529 0.0811 0.1101 0.1378 
Weibull(3) ML 0.0131 0.0389 0.0790 0.1202 0.1570 0.1868 
Weibull(3) PWM 0.0126 0.0312 0.0622 0.0942 0.1284 0.1590 

t(4) OSLS 0.0550 0.1400 0.2801 0.4336 0.5739 0.6909 
t(4) ML 0.0525 0.1377 0.2716 0.4165 0.5497 0.6627 
t(4) PWM 0.0527 0.1334 0.2619 0.4046 0.5323 0.6469 

t(8) OSLS 0.0386 0.0914 0.1770 0.2761 0.3758 0.4732 
t(8) ML 0.0388 0.0896 0.1735 0.2710 0.3734 0.4763 
t(8) PWM 0.0384 0.0869 0.1727 0.2750 0.3777 0.4817 

Chi-sq(4) OSLS 0.0287 0.0649 0.1264 0.1932 0.2699 0.3373 
Chi-sq(4) ML 0.0350 0.1437 0.2959 0.4688 0.6092 0.8592 
Chi-sq(4) PWM 0.0283 0.0686 0.1289 0.1948 0.2730 0.3383 

Lognormal OSLS 0.0683 0.1527 0.2794 0.4174 0.5299 0.6290 
Lognormal ML 0.0652 0.1515 0.2690 0.4039 0.5465 0.6769 
Lognormal PWM 0.0647 0.1417 0.2519 0.3805 0.5218 0.6710 

Pareto(-0.25) OSLS 0.0201 0.0372 0.0637 0.0845 0.0997 0.1110 
Pareto(-0.25) ML "0.0197 0.0569 0.1192 0.1746 0.2221 0.2613 
Pareto(-0.25) PWM 0.0201 0.0434 0.0718 0.0952 0.1108 0.1220 

Table 3.3: Median RMS errors for various percentiles. (contd.) 
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An = 1000 

PF 10"*      10"a      10"4      io-6      10~6      10"'' 
Normal 
Normal 
Normal 

OSLS 
ML 

PWM 

0.0077 0.0182 0.0373 0.0643 0.1017 0.1440 
0.0087 0.0160 0.0362 0.0632 0.1075 0.1476 
0.0081    0.0247    0.0586    0.1064    0.1560    0.2016 

Weibull(3) 
Weibull(3) 
Weibull(3) 

OSLS 
ML 

PWM 

0.0037 0.0086 0.0194 0.0393 0.0630 0.0890 
0.0040 0.0078 0.0191 0.0397 0.0649 0.0909 
0.0036    0.0108    0.0300    0.0578    0.0880    0.1192 

t(4) 
t(4) 
t(4) 

OSLS 
ML 

PWM 

0.0203 0.0534 0.1383 0.2476 0.3717 0.4763 
0.0213 0.0447 0.1083 0.2168 0.3326 0.4406 
0.0213    0.0499    0.1207    0.2306    0.3479    0.4598 

t(8) 
t(8) 
t(8) 

OSLS 
ML 

PWM 

0.0135 0.0298 0.0726 0.1379 0.2121 0.3018 
0.0129 0.0272 0.0750 0.1518 0.2436 0.3406 
0.0129    0.0349    0.0939    0.1830    0.2863    0.3863 

Chi-sq(4) 
Chi-sq(4) 
Chi-sq(4) 

OSLS 
ML 

PWM 

D.0104 0.0207 0.0362 0.0588 0.1094 0.1408 
0.0099 0.0192 0.0363 0.0589 0.1095 0.1429 
0.0100    0.0211    0.0400    0.0602    0.1103    0.1433 

Lognormal 
Lognormal 
Lognormal 

OSLS 
ML 

PWM 

0.0206 0.0528 0.1222 0.1836 0.2429 0.3276 
0.0195 0.0434 0.0984 0.2012 0.3581 0.5999 
0.0201    0.0410    0.0927    0.1919    0.3445    0.5770 

Pareto(-0.25) 
Pareto(-0.25) 
Pareto(-0.25) 

OSLS 
ML 

PWM 

0.0061 0.0101 0.0158 0.0213 0.0247 0.0278 
0.0063 0.0092 0.0154 0.0198 0.0243 0.0268 
0.0065    0.0126    0.0222    0.0306    0.0375    0.0428 

Table 3.3: Median RMS errors for various percentiles. 

64 



■si 
-3 

Fieure 3 6: Normal distribution, n=10,000 Thresholds for PF = 10"» • Data points corre- 
spond to k = 2,3,...,7. a:True, b:A=0.01, c:A=0.05, d:A=0.10. 
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Figure 3.6: Normal distribution, n=1000 Thresholds for PF = 10_t. Data points corre- 
spond to ifc = 2,3,..., 7. a:True, b:A=0.01, c:A=0.05, d:A=0.10. 
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Figure 3.6:  Lognormal distribution, n=10,000 Thresholds for PF = 10-i.   Data points 
correspond to k = 2,3,...,7. a:True, b:A=0.01, c:A=0.05, d:A=0.10. 
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Figure 3.6:  Lognormal distribution, n=1000 Thresholds for PF = 10-fc.   Data points 
correspond to k = 2,3, ...,7. a:True, b:A=0.01, c:A=0.05, d:A=0.10. 
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10_fc   k = 2,3...7 are 2.326, 3.090, 3.719, 4.265, 4.753 and 5.199, respectively.  The 

thresholds estimated based on one set of random samples are 2.315, 3.223, 3.847, 

4.370, 4.855 and 5.292.   For the Lognormal distribution the theoretical thresholds 

corresponding to PF = 10_fc   Jfc = 2,3...7 are 10.240, 21.982, 41.224, 71.157, 115.981 

and 181.152. Once again, using A=0.01, the thresholds estimated based on one set of 

random samples are 10.449, 22.862, 42.473, 69.216, 112.229 and 183.495. Note that 

the estimated results are very close to the true thresholds. We note here that these 

results were obtained on the basis of one set of observations from the two known 

distributions, corresponding to a particular seed value. For a different set of samples 

the estimates will be different depending on the tail behavior of that set of samples. 

But, unless the samples are really not a true representative of the distribution from 

which they are drawn, we expect that the estimates based on different samples should 

give threshold values that yield false alarm probabilities close to the design value. 

3.7.2      An Unknown Distribution Case 

In the previous section the underlying distributions were known to us and the 

estimates based on the extreme value theory were encouraging for both light and 

heavy tail behavior. In this example, we take a non-Gaussian problem where the 

underlying distribution is unknown. 

The two hypotheses characterizing the detection problem are given in equations 

(2.1-2.2). We consider the weak signal case for which the clutter is much stronger 

than the background noise. The locally optimum detector (LOD) [8] has been shown 

to be suitable for the weak signal detection problem. Under hypothesis H\, the signal 

is denoted by #st-, where 6 is a measure of the signal strength. For a deterministic 

signal and a given set of observations r = [ri,r2...,r^]T the LOD performs the ratio 

test 

TLOD(L) =        °6   ( \u \     <* (3-53) 

where Pg|j/,-(r|i/,-) is the joint PDF of ri,r2, ...rjv under hypothesis if,-: i=0,l. 

Martinez, Swaszek and Thomas [22] studied the locally optimal detection problem 

for non-Gaussian distributions and considered the bivariate Laplace distribution as an 

example. In this section we illustrate the procedure for determining the thresholds 

of a LOD based on N=2 and the received samples under HQ having the bivariate 
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Laplace distribution given by 

/H(n,r2) = ^jT72^o[(2rrM-1r)1/2] (3.54) 

where M is the covariance matrix for the two samples, \M\ denotes its determinant, 

T^M^r is equal to {r\ - 2pr1r2 + r^)/(l - p2), p is the correlation coefficient between 

Ri and R? and Ko(.) is the modified Bessel function of the second kind of zero order. 

The resulting locally optimum detector statistic is [22] 

Wrl5r2) = (-—)»/V;|(^-4^ X * M    £ (3'55) 

where s = (s^^)7, srM_1r= (rj - />r2)si + (r2 - pr1)s2 and A\(.) is the modified 

Bessel function of the second kind of first order, si and s2 are the known signal 

levels. In this example we take Si = 1 and s2 = — 1. Because of the complexity of 

TLOD(-), it is not possible to determine a closed form expression for its probability 

density function. 

In many applications in radar, thresholds have to be set to achieve desired false 

alarm probabilities based on a sample size which is orders of magnitude less than 

10/P/r. As will be pointed out later, the statistic in equation (3.55) represents a 

worst case situation in the sense that our simulations indicate that the variance of 

the test statistic is extremely large. To investigate the reliability of the thresholds 

estimated based on extreme value theory with smaller sample sizes, 10,000 pairs 

of observations (r1,r2) were generated from the bivariate Laplace distribution given 

in equation (3.54), with p = 0.90. The values of 7z,or>(ri,r2) were computed for 

each pair and sorted in increasing order. Corresponding to A = 0.01, the largest 

100 values of the underlying statistic (the top one per cent) were selected to fit the 

Generalized Pareto Distribution. This experiment was repeated 250 times. The 

threshold corresponding to a certain false alarm probability Pp of the distribution of 

the statistic TLOD(ri, ri) is estimated from equation (3.51) as fja = x0 + o-[(^)~'i' — 

l]/7 where x0 is the 9900"1 largest value of the statistic. Thresholds were estimated for 

false alarm probabilities Pp = 10-fc, k = 2,..., 7 for each repetition of the experiment. 

Histograms of these threshold values are shown in figure 3.7, for the different Pps. 

To give a better appreciation for the range of values, the bins are not necessarily of 

70 



equal width. The histograms give an indication of the spread in the threshold values 

depending on the particular samples collected. From the histograms corresponding 

to false alarm probabilities of 10~2, 10~3 and 10~4 we can see that the threshold 

estimates obtained on the basis of even one set of samples is likely to approximately 

yield the desired Pp. Since the underlying distribution of TLOD(-) is unknown, one 

measure of the accuracy of the estimate is the extent to which most of the estimates 

fall in one bin of the histogram. Also, we can see that there is negligible overlap 

between the estimated threshold values in the histograms for the three different values 

of Pp. This supports the claim that the estimated threshold is likely to yield a false 

alarm probability which is of the same order as the desired Pp. There is a higher 

overlap in the thresholds of the histograms for PF=10~
5
, 10~6 and 10"7. Also, there is 

much higher spread in the threshold values estimated. Based on the excellent results 

obtained for the same choices of Pp in the known cases of the previous section, these 

results are surprising. However, it is explained as follows. The 7 values of the GPD 

estimated for the different repetitions of this experiment lie in the range 0.45 — 0.55. 

This represents an extremely heavy tailed distribution. From Table 3.1 we see that 

the Lognormal distribution, which is quite a heavy tailed distribution, has 7=0.232. 

The heavy tailed nature of the detector statistic can also be observed by comparing 

the large threshold values seen in the histograms with the corresponding thresholds 

of the Gaussian and the Lognormal distributions. The variance of the GPD is given 

by 

v«V0 - (1-7>KI-27)   
7<0-5 

=   00 7>0.5 (3.56) 

Thus, the bivariate Laplace results in a very highly fluctuating statistic with an ex- 

tremely large variance. As such, it represents a 'worst case' situation for empirically 

determining the threshold. A much larger sample size is needed to obtain reliable 

threshold estimates because of the exceedingly large tail of the underlying distribu- 

tion. 

In general, an indication of how heavy the true tail may be for an unknown distri- 

bution is given by the estimate of 7 for the GPD. When an extremely heavy tail is 

indicated, another strategy for estimating the thresholds when PF is very small is to 
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choose the median value of the thresholds estimated when the experiment is repeated 

a specified number of times with 10,000 samples in each repetition. The choice of 

the median as the estimator ensures that very large and very small values do not 

affect the results. For the present example, we chose to repeat the 250 trials three 

times. By counting the number of estimates that fell into the bins centered at 20, 28 

and 36 for PF=10"5, 40, 50,70 and 90 for PF=10-6 and 100 and 150 for PF=10-7, it 

was found that 88 percent of the estimates fell into these bins. Thus, even for this 

extremely large tailed example, we believe that use of the GPD has allowed us to 

estimate useful values for the thresholds with sample sizes much smaller than 10/Pp. 
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Chapter 4 

Performance of the Locally 
Optimum Detector for 
Multivariate Student-T and 
K-Distributed Disturbances 

In radar problems involving weak signal applications, it is found that the large returns 

due to clutter can lead to a small signal to disturbance ratio. When the density 

function of the clutter exhibits an extended tail behavior relative to the Gaussian 

PDF, the probability density function of the disturbance can no longer be modeled 

as Gaussian. The significance of a non-Gaussian PDF with an extended tail is that 

many more large returns result than would be the case for a Gaussian PDF having 

the same variance. Hence, there is a need to be able to model non-Gaussian random 

processes. 

The multivariate student-T distribution is a member of the class of joint PDFs 

arising from Spherically Invariant Random Processes (SIRP). SIRPs are explained in 

Chapter 2. When an SIRP is sampled at iV instants in time, the resulting vector is said 

to be a spherically invariant random vector (SIRV). The theory of SIRPs offers a way 

to model the joint density function on these N samples where the correlation between 

the individual random variables in the vector is accounted for. With this approach 

locally optimum detector structures can be derived for non-Gaussian disturbances 

without the need to assume that the random variables are statistically independent. 

In this chapter we analyze the performance of the LOD for the known signal problem 
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when the background disturbance consisting of clutter and noise can be modeled as 

having a multivariate student-T distribution or a multivariate K-distribution. 

4.1    The Multivariate Student-T Distribution 
A convenient procedure for deriving the multivariate student-T distribution from 

the representation theorem [28] is discussed in this section. Let the random vector X_ 

have a multivariate Gaussian distribution with zero mean and covariance matrix M. 

The zero mean assumption will not affect the generality of the results that follow. 

The joint density function on the elements of X_ is given by 

where the vector X_ has 2N elements from N inphase and N quadrature samples. 

Consider the vector W = X_/u, where u is a nonnegative random variable statistically 

independent of X_. Let up- M~xw be denoted by the variable p. Then, the conditional 

density function of the vector W_ given v can be written as 

^'''ww5"""' (4'2) 

The unconditional density function on W_ is given by 

f°° fw(w) = /    fw{w\v)f»{v)dv (4.3) 
No- 

where fv{v) is the probability density function of the random variable v. Because X. 

and v are statistically independent, it follows that 

E(W)   =   E{—) = E(X)E(v-1) = 0 (4.4) 

E(WWT)   =   E{XXT)E{v-2) = E{v-2)M. (4.5) 

It can be seen from the above equation that the covariances of the elements of the 

vector W can be adjusted by appropriate choice of E(v~2). 

With respect to equation (4.3), let fv(v) be the generalized chi PDF given by 

2ß-\   -av*    ß 

U») = 1       T{ß) ">0. (4.6) 
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From equation ( 4.6), E(y 2) can be calculated. Specifically, 

/■oo u2ß-lp-au3    ß -co       2/3-3   -on/2/? E^=1^Har-» -12—kr~dv-    (4-7) 

Letting av2 = x in the above equation we get 

_, _2N r°°x0-2e-xdx        T(ß-l) a /to. 

If we let a = /3 — 1, then the generalized chi PDF in equation ( 4.6) is such that 

E(u~2) = 1 irrespective of the choice for the parameter ß. Then the generalized chi 

PDF takes the form 

U») = T{ß) ^      }        ß>l- (4-9) 

In general, we can set the value of E(v~2) to a desired constant c by choosing a = 

c(ß — 1). Then the covariance matrix of W is guaranteed to equal cM independent 

of ß. 

Integrating the conditional density function fw(w.\u), as given by equation (4.2), 

over the PDF of the nonnegative random variable u, we obtain the multivariate 

student-T distribution. The details are given below. Choosing a = ß — 1 in equation 

( 4.6) we can write 

**■<*> = L WIMK 
e 2 W) — dv 

=      iß-1)"    [°° 22N+2ß-l-S(ß-l+P/2)d ,AW) 

{2x)N\M\Wr(ß) Jo {       J 

Letting (ß - 1 + p/2)v2 = y we get 

/-l~j (27r)^|M|1/2r(/?) Jo    (3-1 + pl2)N+P V 

(4.11) 
(2x)^|M|1/2r(/ö)(^ - 1 +p/2)N+P' 

The above expression is defined to be the 2iV-dimensional multivariate student-T 

distribution with parameters N and ß. N represents the number of complex samples 

and ß determines the tail behavior of the multivariate density function. The smaller 
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the value of ß, the larger will be the tail. 

The density function in equation (4.9) can be simulated as follows. The first step 

is to generate a standard Gamma variate having the density function fy(y) = y Xm • 

This was done using the subroutine DGAMDF from the IMSL package. The next step 

is to divide the generated random variable by the parameter ß — 1. Let Z = Y/(ß — l). 

The density function of Z is 

A« - i±J1TW ■ (4-12) 

The positive square root of -^ results in the desired density function. Let v = 

Z*. Therefore Z — v2. Introducing the Jacobian of the transformation, the density 

function of v becomes 

U») = m ^       J (4-13) 

which is identical to that in equation ( 4.9). 
4.1.1     The Locally Optimum Detector 

The locally optimum detector for the multivariate student-T distribution can now 

be derived. From equation (2.32) the locally optimum detector is given as 

dfpir-Bs) | Hi 

7 , ,        l rj. (4.14) 
JD\L)        »o 

Assuming the disturbance can be modeled by a multivariate student-T distribution, 

/D(H) is given by equation ( 4.11), with the variable R replacing the variable W, 

where p = r?M~xr_- Since equation (4.14) is a ratio test and all constants can be 

placed in the threshold which is determined by specifying a false alarm probability, 

all multiplicative constants are ignored for convenience. Hence, we will be concerned 

only with the terms containing the variable R. Excluding the constant term the 

numerator in the ratio test is given by 

dfpjr - 9s) d 1 .. .       v 
 dÖ ''-° ~ W(ß-l+p/2)»+ßl]e=°-                       [     b) 

Applying the chain rule, the derivative with respect to 6 can be expressed as the 

derivative with respect to p times the derivative of p with respect to 0. The derivative 
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of p with respect to 0 at 6 = 0 can be derived as 

Iglteo = (§-e(L - Os?M-\r - 9s))\B=0 = -VM"1* (4.16) 

Therefore, the numerator in the ratio test, excluding the constant, is given by 

a/&(L~*£)l«-o = (/?-!+ P/2)"W+1) x /M-V. (4.17) 

From the above equation, the sufficient statistic for the locally optimum detector for 

the multivariate student-T distribution can be written as 

r"»W - z^Si- (4'18) 

The above result for the LOD statistic is very significant. The numerator in equation 

(4.18) is recognized as the Gaussian linear detector. This detector is a matched filter 

which maximizes the signal-to-disturbance ratio whether or not the disturbance is 

Gaussian. In weak signal applications, by definition, the signal to disturbance ratio 

will still be low after matched filtering. The denominator of the LOD statistic is the 

nonlinear term in the statistic. The behavior of the nonlinearity is such that it scales 

down large values of p and enhances small values of p. The nonlinearity is plotted as 

a function of p in Fig. 4.1." This is reasonable because, as shown in Section 1.3, large 

values of radar returns result in large p while small values of the returns yields small 

values of p. Because it is known a priori that we are dealing with the weak signal 

problem, large returns cannot be due to the signal. Consequently, the output of the 

matched filter is weighted by a small number. On the other hand, the matched filter 

output is weighted by a large number when the return is small and the contribution 

due to the signal, if present, can be detected. However, when the signal is present, 

the optimum nonlinearity alone is not sufficient to get detections, though it brings 

the output close to the threshold value. The matched filter which has a higher output 

value when the signal is present than when the signal is absent, contributes to raising 

the output value over the threshold when detections are obtained. The role of the 

matched filter is explained in greater detail in Section 4.1.3. 
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Figure 4.1: Nonlinearity of the LOD statistic for the student-T distribution 
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4.1.2     Computer Simulation of Performance 

Because analytical closed form expressions for the detection and false alarm proba- 

bilities of the locally optimum detector in a multivariate student-T distributed clutter 

are difficult to obtain, performance is evaluated through computer simulations for 

weak signal applications. For simulation purposes a multivariate student-T distribut- 

ed disturbance vector D_ and a transmitted signal vector S_ have to be generated. The 

covariance matrix of the clutter process is assumed known with unit elements along 

the diagonal. To get the covariance matrix of the disturbance we add a small num- 

ber, determined by the clutter to noise ratio, to the diagonal elements of the clutter 

covariance matrix. This serves to limit the performance of the receiver even where 

the clutter power is negligible. In this simulation, the clutter to noise ratio is taken to 

be 80 dB. The simulation procedure for the disturbance vector is outlined as follows: 

1. Generate a 2iV-dimensional white Gaussian random vector X_. This was done 

by using the DRRNOA subroutine from the IMSL package. 

2. Do a Cholesky decomposition on the matrix M to get M = KKT where K is a 

lower triangular matrix. 

3. The vector 2L — K]C_ is the multivariate correlated Gaussian vector. 

4. Generate a standard Gamma variate Y. This was done by using the.subroutine 

DGAMDF from the IMSL package. 

5. Obtain v — (TJTT)
5• The random variable v has the generalized chi PDF. 

6. Obtain the multivariate student-T distributed disturbance vector D_ with the 

desired correlation properties from JD = —. 

The block diagram of the simulation procedure is shown in Fig. 4.2. The auto- 

correlation of the clutter process is taken to be a geometric function in this problem. 

Assuming radar returns from clutter cells to be highly correlated, as is the case with 

ground clutter, the sample to sample time correlation is taken as 0.95 in this problem. 

Specifically, the sample autocorrelation function is chosen as 

Rcc{n) = (0.95)n   n = 0,l,...,JV-l (4.19) 

where Rcc(n) 1S the discrete time autocorrelation function of the clutter process. 
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Figures 4.3 and 4.4 show the autocorrelation and the power spectral density of the 

clutter process. The power spectral density of clutter has a very small spread as the 

clutter is highly correlated. Using equation (4.19) the elements of the covariance 

matrix of the disturbance can be filled appropriately. The elements of the signal 

vector are chosen such that the nth element Sn = e^
fD^n~^T, n = 1,2, ...,7V. fy 

represents the Doppler frequency shift of the received signal and T represents the 

time separation between sampling instants. 

The detector in equation (4.18) is now simulated. A value of ß = 1.5 for the multi- 

variate student-T distribution is chosen because this value results in a relatively long 

tail for the corresponding marginal PDF of one element of the vector. By evaluating 

thresholds for specified false alarm probabilities, the student-T distribution was seen 

to have heavier tails than the Gaussian distribution for false alarm probabilities less 

than 10~4 but smaller tails than the Gaussian otherwise. 

The thresholds corresponding to false alarm probabilities 10"*;  k = 1,2,3,4 are 

obtained through the method of extreme value theory explained in Chapter 3. Once 

the threshold is set the detection probabilities are obtained by simulating the LOD for 

received vectors consisting of the sum of the signal and disturbance vectors for various 

signal-to-disturbance ratios. The value of fo is chosen to be zero in this simulation, 

resulting in a worst case situation. The number of trials in the Monte Carlo simulation 

for obtaining detection probabilities is equal to 10,000. The performance of the LOD 

is compared to that of the Gaussian detector for the same multivariate student-T 

distributed clutter.   The test statistic for the Gaussian detector is the same as the 

numerator of the LOD, which is s7M~lr_. 

4.1.3    Results of the Computer Simulation 

The results of the computer simulations are shown in Tables 4.1-4.10. When SCR is 

less than 0 dB, it is seen from the tables that the LOD always outperforms the Gaus- 

sian receiver for all values of the tabulated false alarm probabilities. The difference 

is especially significant for false alarm probabilities equal to 10-3 and 10-4. 

The student-T distribution, while being heavier tailed than the Gaussian, is not as 

heavy tailed as the K-distribution and Weibull distribution. In fact, the student-T 

distribution may not be a likely candidate for modeling the radar disturbance. The 

student-T distribution was chosen as the first distribution to be studied only because 
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Plot of (0.95>*n 

Figure 4.3: Autocorrelation of the clutter process 
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Plot of spectrum of (0.95)^11 

Figure 4.4: Power spectral density of the clutter process 
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Figure 4.5: Log power spectral density of the clutter and signal processes 
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of the mathematical simplicity and well behaved nature of its multivariate PDF. 

Nevertheless, the analysis done with the student-T distribution confirms that the 

LOD outperforms the Gaussian receiver for a non-Gaussian weak signal application. 

As the signal to clutter ratio is reduced, it can be observed from the tables that the 

Gaussian receiver performance degrades abruptly for false alarm probabilities less 

than or equal to 10-2 whereas the LOD shows a gentler variation in performance. 

From the Tables it is seen that the performance of the LOD peaks around 0 dB and 

falls off for both higher and lower values of SCR. But as the SCR values fall below 

0 dB, the degradation in.the LOD's performance is not as drastic as that of the 

Gaussian receiver. Both the receivers show an improvement in performance as the 

number of samples is increased. However, the LOD shows a dramatic improvement in 

performance when the sample size is greater than 64. When the sample size is equal 

to 64 and the false alarm probability is as low as 10~4, it is seen from Table 4.7 that 

the detection probability resulting from the LOD is on the order of tenths for SCR as 

small as -8 dB. The corresponding detection probabilities resulting from the Gaussian 

receiver are negligibly small. In fact, there is an improvement factor in the vicinity 

of three orders of magnitude in favor of the LOD. When -10 dB<SCR<0 dB, an 

interesting observation from the tables, for all values of N considered is that the LOD 

outperforms the Gaussian receiver by close to one order of magnitude for PF = 10~2, 

by two orders of magnitude for Pp = 10~3 and by three orders of magnitude for 

PF = 10~4. For SCR values lower than -10 dB, the LOD significantly outperforms 

the Gaussian receiver but with very small values of PD- When both SCR>4 dB 

and PF > 10-3, the Gaussian receiver outperforms the LOD, as can be seen from the 

tables. For positive values of SCR in the range 0-5 dB and for false alarm probabilities 

equal to 10~3 and 10~4, it is interesting to note that the LOD still outperforms the 

Gaussian receiver. The LOD shows a significant performance improvement over the 

Gaussian receiver over a dynamic range of about 14 dB. The end points of the range 

vary depending on the sample size and false alarm probability. 

The test statistic is a product involving the outputs of matched filter and the 

optimum nonlinearity. In section 4.1.1 it was explained how the nonlinearity present 

in the test statistic boosts small values of the received signal and attenuates large 

values.   This not only serves to bring down the value of the threshold needed to 
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obtain the desired false alarm probability but also to bring the output for small 

received signals close to the threshold value whether or not the desired signal is 

present. The role of the matched filter is explained as follows. The matched filter 

has a larger output value when the signal is present as opposed to the signal absent 

case. This serves to increase the statistic in equation (4.18). However, the quadratic 

form p, in general, also has a larger value when the signal is present than under the 

H0 hypothesis. Thus, the factor in the test statistic in equation (4.18) due to the 

nonlinearity decreases when the signal is present. This serves to lower the value of 

the test statistic. Therefore, detections are obtained only when the increase in the 

due to the matched filter dominates the decrease due to the nonlinearity. Simulations 

reveal that the matched filter's role is dominant only when the signal to clutter 

ratio is in the range -10 dB<SCR<0 dB. This is expected since the linear receiver's 

performance is known to drop drastically for very low signal to clutter ratios. The 

matched filter's effect is enhanced when a Doppler is present in the desired, received 

signal since the clutter components become less correlated with the Doppler shifted 

reference signal. However, one must be careful when the Doppler frequency is so 

large that the signal spectrum appears in the tail of the clutter spectrum. Then a 

strong signal situation may exist and the nonlinearity which transforms large values 

into small values will cause performance to degrade. The LOD should not be used in 

strong signal situations. 

The aim of using a LOD is to obtain detection in Range-Doppler-Azimuth cells 

where conventional space-time processing is unable to obtain acceptable performance. 

In present day radars these cells are ignored because the probability of detection is so 

small under a false alarm constraint. In general, when the SCR is relatively high (> 0 

dB) the likelihood ratio test is the optimal test for target detection under a fixed false 

alarm constraint. In addition to not performing well when SCR is too large, the LOD 

does not perform well when SCR is too small. When the signal to clutter ratio drops 

below a certain value, depending upon N and Pp, the LOD receiver hardly shows any 

detections even though it still outperforms the Gaussian receiver. This is because the 

PDFs under H0 and Hi are so close to each other that it is impossible to discriminate 

between them without increasing the sample size by orders of magnitude. 

The concepts of spherically invariant random processes and locally optimum de- 
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SCR LOD GR 
5 dB PD 0.35 0.65 
3 dB PD 0.36 0.35 
ldB PD 0.37 0.23 
OdB PD 0.38 0.11 
-3 dB PD 0.32 0.052 
-6 dB PD 0.27 0.039 
-8 dB PD 0.23 0.03 
-9 dB PD 0.15 0.024 
-10 dB PD 0.10 0.019 

Table 4.1: N=16, PF = 10"2, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

SCR LOD GR 
5 dB PD 0.08 0.007 
3 dB PD 0.11 0.005 
ldB PD 0.17 0.004 
OdB PD 0.16 0.003 
-3 dB PD 0.13 0.002 
-6 dB PD 0.10 0.001 
-8 dB PD 0.08 0.001 

Table 4.2: N=16, PF = 10-3, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

tectors are particularly relevant in the context of modern radar applications. When 

the radar scans a volume searching for targets there might be certain regions in the 

volume where the clutter returns are significantly stronger than the desired target 

returns. It is in these regions that we can obtain detections with the LODs. There is 

a need to monitor the environment so that we are able to separate the clutter regions 

from volumes that are limited by weak background noise. When detection is limited 

by background noise alone, the LOD is not applicable. Using the concepts of artificial 

intelligence, clutter patches can be identified and the underlying multivariate PDF of 

the clutter returns can be approximated using the library of SIRPs that have been 

developed [26]. From the library of LODs the LOD corresponding to the approximat- 

ed SIRP can be used in clutter regions to obtain detections if the target is present, 

where earlier it would not have been possible. 
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SCR LOD GR 
5 dB PD 0.38 0.99 
3 dB PD 0.42 0.57 

•IdB PD 0.45 0.32 
OdB PD 0.46 0.18 
-3 dB PD 0.38 0.08 
-6 dB PD 0.31 0.06 
-8 dB PD 0.27 0.04 
-9 dB PD 0.20 0.033 

-10 dB PD 0.13 0.026 
-11 dB PD 0.10 0.019 

Table 4.3: N=32, PF = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

SCR LOD GR 
8 dB PD 0.09 0.15 
7 dB PD 0.11 0.08 
5 dB PD 0.14 0.014 
2 dB PD 0.22 0.008 
OdB PD 0.26 0.004 

-3 dB PD 0.19 0.003 
-6 dB PD 0.14 0.002 
-8 dB PD 0.11 0.002 
-9 dB PD 0.08 0.001 

Table 4.4: N=32, PF = 10-3, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

SCR LOD GR 
5 dB PD 0.44 0.96 
3 dB PD 0.47 0.68 
ldB PD 0.53 0.42 
OdB PD 0.55 0.30 
-3 dB PD 0.48 0.17 
-6 dB PD 0.40 0.10 
-8 dB PD 0.36 0.03 

-10 dB PD 0.14 0.023 
-12 dB PD 0.09 0.012 

Table 4.5: N=64, PF = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 
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SCR LOD GR. 
9db PD 0.10 0.17 
7 dB PD 0.15 0.10 
5 dB PD 0.18 0.02 
OdB PD 0.36 0.005 
-3 dB PD 0.28 0.002 
-6 dB PD 0.22 0.002 
-8 dB PD 0.18 0.001 
-9 dB PD 0.10 0.001 

Table 4.6: N=64, PF = 10~3, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

SCR LOD GR 
5 dB PD 0.08 0.0007 
OdB PD 0.25 0.0002 
-3 dB PD 0.19 0.0002 
-6 dB PD 0.13 0.0001 
-8 dB PD 0.11 0.0001 
-9 dB PD 0.06 0.0001 

Table 4.7: N=64, PF = 10~4, SCR:Signal to Clutter Ratio, LOD:Locally Optimum De- 
tector, GR:Gaussian Receiver 

4.2    The Multivariate K-Distribution 
In the previous section we analyzed the performance of the LOD for the multi- 

variate student-T distribution. The multivariate K-distribution is also a member of 

the class of joint PDFs arising from SIRPs. Jakeman [50] has shown that the K- 

distributed PDF has a physical interpretation in the sense that it arises from the 

random walk problem where the number of steps itself is random having a negative 

binomial distribution. Also, radar clutter has been empirically shown to have K- 

distributed PDF. In this chapter we analyze the performance of the LOD when the 

background disturbance consisting of the clutter and noise can be approximated as 

having a multivariate K-distribution. 

Derivation of the multivariate K-distributed PDF from the representation theo- 

rem for SIRPs [28] is discussed next. Let the random vector X have a multivariate 

Gaussian distribution with zero mean and covariance matrix M. The zero mean 

assumption will not affect the generality of the results that follow. The joint den- 

sity function on the elements of X is given by equation   (4.1). Consider the vector 
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SCR LOD GR 
5 dB PD 0.51 0.998 
OdB PD 0.65 0.71 
-IdB PD 0.63 0.57 
-3 dB PD 0.57 0.35 
-6 dB PD 0.51 0.16 
-8 dB PD 0.46 0.11 

-10 dB PD 0.22 0.032 
-12 dB PD 0.15 0.027 
-13 dB PD 0.11 0.023 
-15 dB PD 0.09 0.02 

Table 4.8:   N=128, PF = 10~2, SCR.Signal to Clutter Ratio, LOD:Locally Optimum 
Detector, GR:Gaussian Receiver 

SCR LOD GR 
5 dB PD 0.20 0.30 
4 dB PD 0.23 0.23 
3 dB PD 0.29 0.19 
OdB PD 0.48 0.01 
-3 dB PD 0.36 0.006 
-6 dB PD 0.30 0.005 
-8 dB PD 0.26 0.004 
-9 dB PD 0.14 0.003 

-10 dB PD 0.09 0.002 

Table 4.9:   N=128, PF = 10-3, SCR:Signal to Clutter Ratio, LOD:Locally Optimum 
Detector, GR:Gaussian Receiver 

SCR LOD GR 
7 dB PD 0.08 0.001 
5 dB PD 0.13 0.0.0004 
2db PD 0.30 0.0004 
OdB PD 0.37 0.0003 
-3 dB PD 0.27 0.0003 
-6 dB PD 0.21 0.0002 
-8 dB PD 0.17 0.0001 
-9 dB PD 0.09 0.0001 

Table 4.10:  N=128, PF = IO74 

Detector, GR:Gaussian Receiver 
SCR:Signal to Clutter Ratio, LOD:Locally Optimum 
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W = vX_, where v is a nonnegative random variable statistically independent of X_. 

Let w?M~lw be once again denoted by the variable p. Then, the conditional density 

function of the vector W given v can be written as 

The unconditional density function on W is given by equation (4.3), where fv(v) 

is the probability density function of the random variable v. Because X_ and v are 

statistically independent, it follows that 

E(W)   =   E(uX) = E{X_)E{u) = ü (4.21) 

E(WWT)   =   E(XXT)E(v2) = E{v2)M. (4.22) 

As is the case for the student-T distribution, the variance of the elements of the vector 

W can be adjusted by appropriate choice of E(v2). Let fv(v) be the generalized chi 

PDF given by equation  (4.6). E(y2) is then given by 

roo „2/3-1   -or^/? -^        20+1   -a«/2    ß E^=L ^—kr-iv=l 2Hr*     (4-23) 

Letting at/2 = x in the above equation we get 

K    ]     k     aT(ß) aT(ß)        a [       ' 

If we let a = /?, then the generalized chi PDF in equation ( 4.6) is such that E{v2) = 1 

irrespective of the choice for the parameter ß. Then the generalized chi PDF takes 

the form 

SM= r{ß)   
P     ß>l- (4-25) 

In general, we can set the value of E{v2) to a desired constant C by choosing a appro- 

priately. Integrating the conditional density function fw_{w\v) as given by equation 

(4.20), over the PDF of the nonnegative random variable v, we obtain the multivari- 

ate K-distribution. The details are given below. Choosing a = ß in equation ( 4.6) 

97 



we can write 

r    <    x r ! -2N  --^ZlsW-ie-^ßP 

^ = L (2*y\M\*¥ e *—mr~dv 

ßß
 r2u-w^-1e~ßv2-^dv. (4.26) 

./o (2ir)N\M\1/2T(ß) 

Letting /?z/2 = y and simplifying we get 

«"> " (SJW^ f r^'.-<^>*. (4.27, 

From page 183 of Watson's book on Bessel functions [51], we have the result 

Kß{*) = \(\? £v-ß-l*-{a*«)dv (4.28) 

provided that the real part of z2 > 0. Kß(z) represents the modified Bessel function 

of the second kind of order ß. Combining equations   (4.27) and   (4.28) results in 

2 irN\M\y2T(ß)p 

The above expression is defined to be the 27V-dimensional multivariate K-distribution 

with parameters N and ß. N represents the number of complex samples and ß 

determines the tail behavior of the multivariate density function. 

For simulation purposes, the density function in equation (4.25) can be simulated 

as follows. The first step is to generate a standard Gamma variate having the density 

function fy(y) = y w^ . The IMSL package is used to generate the standard Gamma 

variates. The next step is to divide the generated random variable by the parameter 

ß. Let X = Y/ß. The density function of X is 

fx(x) = ßßxß
T~^ßX- (4.30) 

The positive square root of j results in a variate having the desired density function. 

Let v = AX  Therefore, X = v2.  Introducing the Jacobian of the transformation, 
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the density function of v becomes 

SM = r{ß)   
ß (4-31) 

which is identical to that in equation (4.25). This random variable is used to multiply 

the Gaussian vector X_ in order to generate the K-distributed vector W. 
4.2.1     The Locally Optimum Detector 

The locally optimum detector for the multivariate K-distribution can now be de- 

rived. From equation (2.32) the locally optimum detector is given as 

o/gfc-ft).       Hl 

y ,    g-° ><*!• (4-32) 

Assuming the disturbance can be modeled by a multivariate K-distribution, /o(r) 

is given by equation (4.29), with the variable R replacing the variable W, where 

p = rTM-1r. Since equation (4.32) is a ratio test and all constants can be placed 

in the threshold which is determined by specifying a false alarm probability, all mul- 

tiplicative constants are ignored for convenience. Hence, we will be concerned only 

with the terms containing the vector R. Excluding the constant term the numerator 

in the ratio test is given by 

dM^6l)\s=° = §-e\P^KN.ß[(2ßPne=0. (4.33) 

Applying the chain rule, the derivative with respect to 6 can be expressed as the 

derivative with respect to p times the derivative of p with respect to 0. From equation 

4.16, the derivative of p with respect to 6 at 6 = 0 is given by — 2sTM~1r. Therefore, 

the numerator in the ratio test, excluding the constant, is given by 

^T^l'-o   =   (^/^W(2ft>)i] (4.34, 

+   P^K'N.ß[(2ßp)i]l ) x -2iTM-lL 

where K'N_ß[x\ denotes the derivative of Ks-ß[x] with respect to x. From the above 

equation, the sufficient statistic for the locally optimum detector for the multivariate 
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K-distribution can be written as 

^ÜO-^irM^-K^^gg. (4,5) 
P P       KN-ß[(2ßp)*] 

Equation (4.35) can be simplified further using the property of Bessel functions. 

From page 79 of Watson's book on Bessel functions [51] we have the two results: 

1. K'l/(z) = ^Kl/(z)-K,+1(z). (4.36) 

2. K-V{z) = Ku{z). (4.37) 

Use of equations (4.36-4.37) in equation (4.35) and combining the constant term with 

the threshold results in 

T  *  (r-\ - -T ^-i_/ KN-0+I[(2/?p)5] TLoD{r) = s M   £(-j—  i ). (4.38) 
P'KN-ß[(2ßp)*] 

The numerator in equation (4.38) once again has a factor a term which is the Gaussian 

linear detector or the matched filter that maximizes the signal-to-disturbance ratio 

whether or not the disturbance is Gaussian. The factor multiplying the linear detector 

is the optimum nonlinearity for weak signal detection when the disturbance is re- 

distributed. The nonlinearity is plotted as a function of p in Fig. 4.5. The behavior 

of the nonlinearity is similar in form to the one obtained for the student-T distributed 

disturbance. It scales down large values of p and enhances small values of p. Since 

it is known that we are dealing with the weak signal problem, large returns cannot 

be due to the signal. Consequently, the output of the matched filter is weighted by 

a small number. On the other hand, when the return is small, there is a greater 

chance of the signal being detected, if present. Hence, the nonlinearity weights it by 

a large number. The role -of the matched filter is also similar to the situation when 

the disturbance was modeled as having a student-T distributed disturbance. 
4.2.2    Computer Simulation of Performance 

Because analytical closed form expressions for the detection and false alarm prob- 

abilities of the locally optimum detector in a multivariate K-distributed clutter are 

difficult to obtain, performance is evaluated through computer simulations for weak 

signal applications. For simulation purposes a multivariate K-distributed disturbance 

vector JD and a transmitted signal vector i? have to be generated.   The covariance 
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Figure 4.5: Nonlinearity for the K-distribution 
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matrix of the clutter process is assumed known with unit elements along the diagonal. 

To get M, the covariance matrix of the disturbance, we add a small number, deter- 

mined by the clutter to noise ratio, to the diagonal elements of the clutter covariance 

matrix. This serves to limit the performance of the receiver even where the clutter 

power is negligible. In this simulation, the clutter to noise ratio is taken to be 80 dB. 

The simulation procedure for the disturbance vector is outlined as follows: 

1. Generate a 2iV-dimensional white Gaussian random vector 2L'. This was done 

by using the DRRNOA subroutine from the IMSL package. 

2. Do a Cholesky decomposition on the matrix M to get M = KKT where K is a 

lower triangular matrix. 

3. The vector 2L = KX_ is the multivariate correlated Gaussian vector. 

4. Generate a standard Gamma variate Y. This was done by using the subroutine 

DGAMDF from the JMSL package. 

5. Obtain v = (j)*. The random variable v has the generalized chi PDF. 

6. Obtain the multivariate K-distributed disturbance vector D_ with the desired 

correlation properties from D. = vX_. 

The block diagram of the simulation procedure is shown in Fig. 4.6. The auto- 

correlation of the clutter process is taken to be a Gaussian function in this problem. 

Assuming radar returns from clutter cells to be highly correlated, as is the case with 

ground clutter, the sample to sample time correlation is taken as 0.999 in this problem. 

Specifically, the sample autocorrelation function is chosen as 

Rcc(n) = exp(-0.000801n2)   n = 0,1,..., JV - 1 (4.39) 

where RCc{n) is the discrete time autocorrelation function of the clutter process. 

The autocorrelation and the power spectral density of the clutter process are shown 

in Figures 4.7 and 4.8 respectively. Once again, we see that the spectral spread of the 

clutter is very small. Using the above function the elements of the covariance matrix 

of the disturbance can be filled appropriately. The elements of the signal vector are 

chosen such that the nth element Sn = e
j2lcfD^n-^T', n = 1,2,..., N. fD represents the 

Doppler frequency shift of the received signal and T represents the time separation 
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between sampling instants. 

The detector in equation (4.18) is now simulated. As ß —* oo, the K-distribution 

tends to the Gaussian distribution. As ß —* 0.5, the K-distribution deviates from 

that of the Gaussian in the sense of having very large tails. Four different values of 

ß=0.5, 1.0, 1.5 and 2.0 were used for performance evaluation. 

The thresholds corresponding to false alarm probabilities 10"*; k = 1,2,3,4 are 

obtained through the method of extreme value theory explained in Chapter 3. Once 

the threshold is set the detection probabilities are obtained by simulating the LOD for 

received vectors consisting of the sum of the signal and disturbance vectors for various 

signal to disturbance ratios. The value of /D is chosen to be zero in this simulation, a 

worst case situation. The number of trials in the Monte Carlo simulation for obtaining 

detection probabilities is equal to 10,000. The performance of the LOD is compared 

to that of the Gaussian detector for the multivariate K-distributed clutter. The test 

statistic for the Gaussian detector is given by ^M^r. Simulations could not be 

carried out for sample sizes larger than 128 because of the behavior of the modified 

Bessel functions. The modified Bessel functions are highly nonlinear and numerical 

difficulties arise in the evaluation of the Bessel functions for either small arguments 

and large orders or large arguments and small orders. For the modified Bessel function 

of the second kind Kv(x), v must not be so large compared to x such that 

*'M"Ä (4'40) 

overflows. With reference to equation (4.38) it is noticed that for v = ß — N > 128, 

the value x = 2(2 ßp)^ frequently is small enough to result in overflow. However, 

we notice that in equation (4.38), the test statistic has a ratio of modified Bessel 

functions with the order differing by one. By using the small argument approximation 

given in equation (4.40), the overflow problem for small arguments and large orders 

can be overcome. On the other hand, when the argument is large and the order 

is small underflow problems result. IMSL uses an iterative scheme to generate the 

modified Bessel functions of the second kind, starting from lower orders and building 

upto higher orders. The lower order Bessel functions needed to generate the higher 

order Bessel functions overflow for sufficiently large values of the argument. Because 

of this numerical difficulty analysis of performance is restricted to sample sizes that 
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Plot of exp(-O.000801nA2) 

Figure 4.7: The autocorrelation function of the clutter process 
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Plot of spectrum of exp(-0.000801nA2) 
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Figure 4.9: Power spectral density of the clutter process 
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Figure 4.10: Log power spectral density of the clutter and signal processes 
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are smaller than 128. 

4.2.3    Conclusions 

When the sample size was less than 128, the probability of detection for the LOD 

was always less than 0.1 for false alarm probabilities less than or equal to 10~2. Con- 

sequently, in this section results are tabulated for N=128. As mentioned previously, 

numerical difficulties made it impossible to determine performance for sample sizes 

greater than 128. Results are presented in Tables 4.11-4.14 for values of the shape 

parameter equal to 0.5, 1.0, 1.5 and 2.0 when N=128 and Pp = 10~2. Recall that 

ß = 0.5 corresponds to a very large tail while ß = 2.0 results in a distribution that 

begins to approximate the Gaussian tail. Note that PD for the LOD is relatively 

constant when -10 dB<SCR<0 dB. The best performance is achieved for ß = 0.5 

where Pp peaks at a value of 0.23 and the LOD performs signicantly better than the 

Gaussian receiver over a dynamic range of 20 dB extending from SCR equal to 0 dB 

to -20 dB. For ß = 1.0 and 1.5, PD peaks around 0.18 and 0.19 with a useful dynamic 

range of approximately 11 dB extending over the range -17 dB<SCR<-7 dB. Finally, 

for ß = 2.0 the peak value of the LOD is 0.16 and the LOD performs better than 

the Gaussian receiver over a 7 dB dynamic range extending extending between -9 dB 

and -15 dB. The LOD for the K-distributed disturbance does not peak at values of 

PD as large as those for the student-T distribution. This result agrees with that of 

Spaulding [18] who shows that we cannot arbitrarily say, by inspection, that a noise 

process that is "tremendously" non-Gaussian (i.e. the noise distribution has a very 

large tail) can result in "tremendous" improvement over the corresponding Gaussian 

or linear receiver situation. This behavior is explained by once again examining the 

role of the nonlinearity and the matched filter in determining the test statistic. As 

was the case with the student-T distribution, the nonlinearity maps large values into 

small values and vice versa. However, when ß = 0.5, the tail of the K-distribution 

is much heavier than any of those encountered with the student-T distribution. In 

addition to more large values of the received signal due to the clutter, there are also 

more small values. This prevents the threshold for the K-distribution from being 

lowered as much as it was for the student-T distribution. As a result, if a detection 

is to occur, a larger boost must be generated by the matched filter when a signal 

is present. Unfortunately, with reference to equation (4.38), the increase due to the 
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SCR LOD GR 
5 dB PD 0.13 0.99 
1 dB PD 0.21 0.25 
OdB PD 0.21 0.16 
-3 dB PD 0.22 0.12 
-6 dB PD 0.22 0.09 
-8 dB PD 0.23 0.07 
-10 dB PD 0.23 0.05 
-12 dB PD 0.20 0.03 
-14 dB PD 0.17 0.02 
-15 dB PD 0.15 0.01 
-18 dB PD 0.12 0.01 
-20 dB PD 0.08 0.01 

Table 4.11:   N=128, PF = 10*-2, ß = 0.5 SCR:Signal to Clutter Ratio, LOD:Locally 
Optimum Detector, GR:Gaussian Receiver 

matched filter under hypothesis Hi does not dominate the decrease due to the non- 

linearity. Consequently, not as many detections result as occurred with the student-T 

distribution. Finally, it is pointed out that the detection probability was much less 

than 0.1 for all values of the shape parameter with N=128 and Pp = 10-3. 

It should be noted that dramatically improved performance might occur when the 

sample size is greater than 128. Because the LOD is nonlinear, a threshold effect 

exists. It is not clear that N=128 is a sufficiently large sample size to get over the 

threshold. On the other hand, larger sample sizes cause both numerical difficulties 

and may not be achievable in an actual application. 

In the next chapter we come up with an alternative scheme and derive a detector 

with enhanced performance under weak signal conditions. This detector is termed the 

amplitude dependent locally optimum detector. This detector is not uniformly most 

powerful. Thus, the thresholds for obtaining the desired false alarm probabilities and 

the detection probabilities are functions of the signal to clutter ratio, 0. It is shown 

that this detector offers a significant improvement in performance for smaller sample 

sizes compared to the LOD obtained on the basis of the uniformly most powerful test. 

4.3    Determining Locally Optimum Detector Threshold with 

Real Data 
Since the locally optimum detectors corresponding to SIRP multivariate density 

functions are nonlinear, it is not possible to evaluate the thresholds corresponding to 
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SCR LOD GR 
5 dB PD 0.10 1.0 
OdB PD 0.17 0.35 
-3 dB PD 0.17 0.33 
-6 dB PD 0.17 0.19 
-7 dB PD 0.18 0.15 
-8 dB PD 0.18 0.13 
-10 dB PD 0.18 0.04 
-11 dB PD 0.16 0.04 
-13 dB PD 0.14 0.04 
-15 dB PD 0.12 0.03 
-17 dB PD 0.10 0.03 
-20 dB PD 0.08 0.02 

Table 4.12:   N=128, PF = 10~2, ß = 1.0 SCR:Signal to Clutter Ratio, LOD:Locally 
Optimum Detector, GR:Gaussian Receiver 

SCR LOD GR 
.5 dB PD 0.11 1.0 
OdB PD 0.18 0.40 
-3 dB PD 0.18 0.37 
-6 dB PD 0.19 0.24 
-7 dB PD 0.19 0.19 
-8 dB PD 0.19 0.17 

-10 dB PD 0.19 0.03 
-12 dB PD 0.16 0.03 
-15 dB PD 0.12 0.026 
-17 dB PD 0.09 0.02 

Table 4.13:   N=128, PF =  10~2, ß =  1.5 SCR:Signal to Clutter Ratio, LOD:Locally 
Optimum Detector, GR:Gaussian Receiver 

SCR LOD GR 
5 dB PD 0.06 0.99 
OdB PD 0.14 0.44 
-3 dB PD 0.14 0.41 
-6 dB PD 0.15 0.25 
-8 dB PD 0.15 0.18 

•-9 dB PD 0.16 0.14 
-10 dB PD 0.16 0.08 
-12 dB PD 0.14 0.05 
-14 dB PD 0.11 0.03 
-15 dB PD 0.09 0.02 

Table 4.14:   N=128, PF = 10~2, ß = 2.0 SCR:Signal to Clutter Ratio, LOD:Locally 
Optimum Detector, GR:Gaussian Receiver 
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different false alarm probabilities in closed form. However, it is shown in Chapter 3 

that by using extreme value theory we can model the tail behavior of the test statistic 

using empirically available outputs of the LOD. It is also shown that this technique 

yields fairly accurate thresholds for sample sizes that are orders of magnitude smaller 

than those required for Monte Carlo simulation. In practice, the cell false alarm 

probability is determined by specifying the number of false alarms allowed per scan 

of the surveillance volume. For example, if one false alarm per scan is specified and 

the surveillance volume consists of one million resolution cells, then the false alarm 

probability for each cell is* set at 10~6. The weak signal detector should be applied 

only to those cells for which a weak signal problem exists, as discussed in Section 

1.3. The number of such cells is typically a small fraction of the total number of cells 

in the surveillance volume. In addition, because of the difficulty in detecting weak 

signals, one should allow for a few more false alarms than is the case for strong signal 

detection. For example, assume a surveillance volume is comprised of one million 

resolution cells and that 1 percent of these cells can be classified as "weak signal". 

Allowing for one false alarm per scan due to the "weak signal" cells, the false alarm 

probability for each of these cells would be 10-4. If reports from the tracker are used 

to sort out false alarms, even larger false alarm probabilities, such as 10~ might be 

acceptable. The false alarm probabilities can be made even larger as the number of 

"weak signal" cells become smaller. 

In practice, reference cells centered around the test cell are used to determine the 

threshold for the test celL The problem is complicated by the fact that reference 

cells too far removed from the test cell may not be representative due to nonhomo- 

geneities in the clutter. As a result, the number of representative reference cells is 

limited. In fact, there may not be available the number of representative reference 

cells required by the extreme value theory. This poses a practical problem in terms 

of implementation of the LOD. 

Fortunately, the behavior of the LOD is such that this problem can be overcome. As 

seen from Figures 4.1 and 4.5, the nonlinearity is such that, it transforms large values 

of the received observations (corresponding to large values of the quadratic form p) 

to small values and small values of the received observations (corresponding to small 

values of the quadratic form p) to large values. This implies that the tail behavior of 
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the LOD test statistic is governed by the body of the multivariate SIRP disturbance 

PDF. This is due to the fact the tail region of the test statistic corresponds to large 

values of the test statistic. Due to the nonlinearity, these in turn, arise from small 

values of the quadratic form p, which correspond to the body of the disturbance PDF. 

The locally optimum detector based on the K-distributed disturbance was simulat- 

ed to see if, indeed, the tail of the test statistic corresponded to disturbance values that 

arise from the body of the K-distributed disturbance. Since the disturbance observa- 

tion space is an ^-dimensional space, corresponding to N points in the observation 

vector, the body and tail of the disturbance is defined through the corresponding 

quadratic form p. If the observations are uncorrelated, then p corresponds to a hy- 

persphere in TV-dimensional space. The body of the disturbance density function, 

then can be defined as those points that lie within the sphere and the tail as those 

points that lie outside the sphere. For a SIRP disturbance the univariate density 

function of p can be evaluated in closed form. This enables us to evaluate the point 

p = po such that /0
Po fp(p)dp = 6, where fp(p) is the probability density function of 

the quadratic form p and 8 is a number between 0 and 1. By choosing 6 say equal 

to 0.98, we define the point po. Then we classify the simulated disturbance vectors 

as follows: If p > po, the vector arises from the tail of the disturbance PDF. On the 

other hand, if p < po, the vector arises from the body of the disturbance PDF. If the 

vector is correlated the treatment is similar. In this case, p corresponds to r^M^r, 

where M is the covariance matrix of the disturbance. A constant value of p then 

corresponds to an ellipse in a N-dimensional space. A value for p0, can be defined in 

the same way as was done for the uncorrelated vector situation. When the vector is 

uncorrelated note that M is the identity matrix. 

To verify this idea simulations were carried out using the same covariance matrix 

as in section 4.2.2. The value of S = 0.98 was chosen. From the analytical expression 

for the PDF of p corresponding to the K-distributed SIRP, the value of p0 was found 

to be equal to 2.15. Hence, observation vectors that resulted in values of p > 2.15 

were assigned to to the tail of the disturbance PDF and those for which p < 2.15 were 

assigned to the body of the disturbance PDF. We now turn our attention to the test 

statistic. With respect to the PDF of the test statistic, the tail region is defined as the 

region corresponding to an area of 0.02 in the tail. From the simulations it was seen 
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that the small values of p mapped on to either the left tail (i.e negative) or the right 

tail (i.e. positive) of the test statistic PDF. Note that the output of the nonlinearity is 

nonnegative while the output of the matched filter can be either positive or negative. 

Consequently, the sign of the matched filter output determines whether small values 

of p map into the left or right tail. The PDF of the test statistic under the null 

hypothesis is symmetric with respect to the origin. Therefore, the right and the left 

tail were each assigned an-equal area of 0.01. The threshold estimated using 10,000 

computer simulations for a false alarm probability of 0.01 was 131.22. Thus, the 

right tail of the test statistic is defined to be those values exceeding 131.22. 10,000 

random vectors of dimension N = 16 were then simulated from the K-distributed 

disturbance. The value of the quadratic form and the test statistic were evaluated 

corresponding to simulated disturbance vectors. The test statistic was then sorted in 

ascending order. The test statistic values that exceeded 131.22 and the corresponding 

quadratic form values were noted. It was found that the values of p corresponding to 

the test statistic values greater than 131.22 were all less than 1.72. From the data it 

is also seen that the smaller the value of the quadratic form, the higher is the value 

of the test statistic. This confirms that the tail values of the test statistic arise from 

the body of the disturbance PDF. 

To utilize the Ozturk algorithm discussed in Section 3.1.1 it is required that ap- 

proximately 100 of the neighboring cells be representative of the test cell. Ozturk's 

algorithm can then be used to accurately approximate the body of the multivariate 

PDF. Once the body of the disturbance PDF is approximated accurately, it can be 

employed to generate the much larger sample size required to estimate the thresh- 

olds of the test statistic through extreme value theory. Good results are expected for 

the threshold estimation when the body of the disturbance PDF has been accurately 

approximated by the Ozturk algorithm because the tail of the test statistic is caused 

by the body of the disturbance PDF. Thus, we see that the number of reference cells 

required for threshold estimation is approximately 100 although we still have to gen- 

erate from the approximated disturbance PDF much larger sample sizes off line in 

order to make use of the extereme value theory. 

When the disturbance random variables arise from the student-T distributed dis- 

turbance, a similar nonlinear mapping is seen whereby the tail of the test statistic 
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is caused by the body of the disturbance PDF and vice versa. A procedure similar 

to the one followed for the K-distributed disturbance case can also be used to reduce 

the number of reference cells. Such a reduction in the number of required reference 

cells makes the implementation of these locally optimum detectors practical. 
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Chapter 5 

Performance of the Amplitude 
Dependent Locally Optimum 
Detector 

In Chapter 4 we analyzed the performance of the locally optimum detector when the 

underlying disturbance was modeled by the student-T and K-distributions, respec- 

tively. It was seen that the performance of the LOD was not as good as desired for the 

case in which the disturbance is approximated as K-distributed. In this chapter we 

come up with an alternate form of the the locally optimum detector which takes into 

account the amplitude of the weak signal. Such a detector is no longer uniformly most 

powerful in the sense that the thresholds for different false alarm probabilities and 

detection probabilities is a function of the signal to clutter ratio. We will then com- 

pare the performance of the amplitude dependent locally optimum detector (ALOD) 

with that of the LOD for the K-distributed and student-T disturbance models. 

The uniformly most powerful test for a deterministic signal utilizes the ratio of the 

derivative with respect to the signal strength of the Nth order joint PDF under H\ 

to the Nth order joint PDF under H0. The limit of this ratio as the signal strength 

tends to zero is evaluated to obtain the test statistic for the decision rule. The 

amplitude dependent locally optimum detector also utilizes the ratio of the derivative 

with respect to the signal strength of the Nth order joint PDF under Hi to the Nth 

order joint PDF under H0. However, for the ALOD we do not evaluate this ratio as 

the signal strength tends to zero but leave it as a function of 8, the square root of 

the signal to clutter ratio. Note that 6 also corresponds to the signal strength since, 
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as explained in Chapter 2, the variance of the clutter is taken to be unity. Because 

6 is unknown a priori, a bank of receivers tuned to different values of 6 must be 

implemented. Such an approach is analogous to that of a Doppler filter bank used 

in Range-Doppler processing of radar signals. Instead of having a a bank of Doppler 

niters the ALOD employs a bank of amplitude filters. The output of each filter will 

be maximized when the signal amplitude is matched to the amplitude for which the 

filter is designed. 

5.1    The Amplitude Dependent Locally Optimum Detector 
for the Multivariate K-Distributed Disturbance 

The amplitude dependent locally optimum detector for a given value of the signal 

to clutter ratio, 8, is defined to be 

dfp(r-6a)   Hi 

-fhr ><*. (5.1) 
/D(H)     *O 

Assuming the disturbance can be modeled by a multivariate K-distribution, JDJJL) 

under H0 is given by equation (4.29) where p = rrAf-1r. On the other hand, under 

Hi the quadratic form in fii(r — 0s) is pg = (r — 0s)TM~1(r — 0s) where the subscript 

0 is used to emphasize that we are not taking the limit as 6 approaches zero. Since 

equation (5.1) is a ratio test, all constants can be placed in the threshold which 

is determined by specifying a false alarm probability. Therefore, the multiplicative 

constants are ignored for convenience. Hence, we will be concerned only with the 

terms containing the vector R. Excluding constants the numerator in the ratio test 

is given by 
SJskzM = §-slM^KN.0[{2ßPs)i]. (5.2) 

Applying the chain rule, the derivative with respect to 6 can be expressed as the 

derivative with respect to pe times the derivative of pg with respect to 6. The deriva- 

tive of p$ with respect to 6 can be derived as 

^ = (^(r - es)TM-\r - 6s)) = -2sTM~\r - 0s). (5.3) 
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Therefore, differentiating the right hand side of equation (5.2) with respect to 6 and 

excluding the constant, we get 

-   =   -h(—z—(Pe) 2     KN-ß[{2ßp0)*\ de 
+   {pe)1^ K'N_ß[{2ßptf]{^) (5.4) 

where lg = 2sTM~l(r — 0s), the subscript 8 on / is again used to emphasize that 

we are not taking the limit as 6 approaches zero and the prime denotes the differen- 

tiation operation with respect to the argument of the function. Equation (5.4) can 

be simplified further by using equations (4.36-4.37) The amplitude dependent locally 

optimum test can then be-written as 

T (r.\ le    ,Pe^i±z<KN-ß+\{{2ßp6)*]x /==>> 
TALOD{L) = -—r(—)  2   (—  j,    )• (5.5) 

(Pe)2   p KN-ß[{2ßp)2) 

Notice that the Bessel function in the numerator is one order higher than the Bessel 

function in the denominator. This is significant. In the likelihood ratio test, the 

orders of the Bessel functions in the numerator and denominator are identical. This 

order difference between the Bessel function in the numerator and denominator of 

the ALOD makes the ALOD more sensitive to small perturbations than the classical 

form of the Neyman-Pearson test. 

The computer simulation of performance was carried out in the same manner as 

described in section 4.2.2. The values of the shape parameter ß chosen in this sim- 

ulation are 0.5, 1.0, 1.5 and 3.0. With reference to equation (5.5), it is noticed for 

v — N — ß > 16 that the value x = (2ßp)^ frequently assumes small enough values 

to result in overflow. Also, we notice in equation (5.5) that the test statistic has a 

ratio of modified Bessel functions with the order differing by one. Since the Bessel 

functions in the numerator and the denominator of the test statistic differ in both 

the argument and the order, the small argument approximation given in equation 

(4.40) cannot be used. Because of this numerical difficulty analysis of performance is 

restricted to sample size equal to 16. 
5.1.1    Results of Computer Simulation 

The results of the computer simulation are shown in Tables 5.1-5.4 for 16 complex 

samples and /?=0.5, 1.0, 1.5 and 3.0, respectively. Performance is evaluated only for 
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values of SCR less than or equal to 0 dB because we are interested in the problem of 

weak signal detection. From the tables we observe that the best performance of the 

ALOD is obtained for ß = 0.5. For this value of ß the K-distribution has a maximum 

deviation from the Gaussian in the sense of having a large tail. When ß = 3.0, the 

tail of the K-distribution closely approximates that of the Gaussian. 

It is seen from the tables that the ALOD for the K-distribution significantly out- 

performs both the Gaussian receiver as well as the LOD. The performance of the LOD 

for K-distributed disturbance is tabulated in chapter 4, for N=128. Some of those 

results are shown again in Tables 5.1-5.4. Table 5.1 shows the detection probabili- 

ties obtained for different false alarm probabilities and signal to clutter ratios when 

ß = 0.5. For Pp = 10-2 the ALOD significantly outperforms the Gaussian receiver 

over a 30 dB dynamic range extending from 0 dB to -30 dB. The peak value of Pp> 

equals 0.5. A similar result to that obtained for the performance of the LOD with a 

student-T distributed disturbance is observed here. The amplitude dependent locally 

optimum detector outperforms the Gaussian receiver by one order of magnitude for 

PF = 10~2, two orders of magnitude for PF = 10-3, three orders of magnitude for 

Pp = 10~4 and four orders of magnitude for Pp = 10-5. The useful dynamic range 

of the ALOD is smaller for decreasing values of Pp. The useful dynamic range is 

about 30 dB for false alarm probabilities equal to 10-2 and 10~3, 25 dB for false 

alarm probability equal to 10~4 and 20 dB for a false alarm probability equal to 10"5. 

Recall that the detection probabilities resulting from the LOD for the K-distributed 

disturbance were negligibly small when PF was lower than 10-2. The ALOD, on the 

other hand, yields significant values of Pp> for PF as low as 10~5. 

As the value of ß is increased it is noticed from the tables that the peak value 

of PD as well as the dynamic range of the receiver decreases. This arises because 

the tail of the K-distribution becomes closer to that of the Gaussian. In fact, when 

ß = 3.0, the detection probabilities obtained with the ALOD for Pp = 10~4 and 

10-5 are negligible. Also, the useful dynamic range of the ALOD is about 15 dB for 

PF = 10"2 and less than 10 dB for PF = 10~3. It is interesting to note that the 

Gaussian receiver shows an improvement in performance for increasing values of ß. 

The improvement, however, is only marginal. 

The behavior of the amplitude dependent locally optimum detector can be un- 
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derstood as follows. With reference to equation (5.5), the ALOD can be factored 

into three terms. The first is lg. The second is —-^r(*f) 2 and the third term is 

KN-p+l[(2ßpe)i]^ The term i beh^eg identically to that of the Gaussian receiver. It 

yields a higher value when the signal is present than when it is absent case. The ran- 

dom variable p#, in general, tends to assume a lower value whether or not the signal 

is present, compared to the term p. Since ^^- is negative with magnitude greater 

than one, the second term in the ALOD assumes a value greater than one whether 

or not the signal is present. However, from the simulations, it is seen in most cases 

that the second factor in the ALOD assumes a larger value when the desired signal is 

presen than when it is not present. The modified Bessel function of the second kind, 

being a monotonically decreasing function assumes large values when the argument 

is small and small values when the argument is large. Since p$ < p in general, the 

third term in the ALOD also has a value greater than one whether or not the signal 

is present. Once again, from the computer simulations, it is observed that the third 

term has a higher value in most cases when the desired signal is present. Thus, the 

amplitude dependent locally optimum detector for the K-distributed disturbance has 

three factors where each of the three factors, in general, assumes larger values under 

hypothesis Hi than under hypothesis H0. This contributes to the increased sensi- 

tivity of the ALOD to weak signals for the K-distributed disturbance to resulting in 

dramatically improved performance over that of the LOD with a much larger sample 

size. Recall that the LOD has two factors, one of which increases when the desired 

signal is present and the other of which decreases. The increase in the value of the 

test statistic of the ALOD when the signal is present is not restricted to weak signal 

situations. It will also hold true for strong signal situations. However, when there is 

a strong signal situation, the likelihood ratio test is the optimal test and the ALOD 

should not be used. 

5.2      The Amplitude Dependent Locally Optimum Detector 
for the Studeht-T Distributed Disturbance 

Assuming the disturbance can be modeled by a multivariate student-T distribution, 

/D(IL) under H0 is given by equation (4.11) where p = rTM-1r. On the other hand, 

as before, under Hi the quadratic form in /D{L - #l) is pe = (r — 05)TM-1(r — 0s) 
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SCR PF ALOD GR LOD (N=128) 
OdB 10"a 

PD 0.50 0.06 0.21 
-5 dB io-2 

PD 0.46 0.04 
-10 dB lO"2 

PD 0.40 0.02 0.23 
-15 dB IO"2 

PD 0.32 0.01 0.15 
-20 dB IO"2 

PD 0.22 0.01 0.08 
-25 dB io-2 

PD 0.17 0.01 
-30 dB io-2 

PD 0.11 0.01 
OdB IO"3 

PD 0.41 0.003 
-5 dB IO"3 

PD 0.39 0.001 
-10 dB IO"3 

PD 0.35 0.001 
-15 dB IO"3 

PD 0.27 0.001 
-20 dB IO"3 

PD 0.17 0.001 
-25 dB IO"3 

PD 0.13 0.001 
-30 dB io-3 

PD 0.08 0.001 
OdB io-4 

PD 0.35 0.0003 
-5 dB IO"4 

PD 0.32 0.0001 
-10 dB io-4- PD 0.28 0.0001 
-15 dB io-4 

PD 0.23 0.0001 
-20 dB IO"4 

PD 0.16 0.0001 
-25 dB IO-4 

PD 0.09 0.0001 
OdB IO"5 

PD 0.30 IO-5 

-5 dB IO"5 
PD 0.28 IO"5 

-10 dB io-5 
PD 0.25 IO"5 

-15 dB IO"5 
PD 0.18 io-5 

-20 dB 10"5 
PD 0.10 10"5 

Table 5.1:  N=16, ß = 0.5, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian, LOD:Locally Optimum Detector Receiver 
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SCR PF ALOD GR LOD (N=128) 
OdB lO"* PD 0.44 0.10 0.17 
-5 dB io-2 

PD 0.40 0.06 
-10 dB io-2 

PD 0.33 0.03 0.18 
-15 dB io-2 

PD 0.25 0.02 0.12 
-20 dB io-2" PD 0.17 0.01 0.08 
-25 dB io-2 

PD 0.12 0.01 
-30 dB io-2 

PD 0.08 0.01 
OdB io-3 

PD 0.35 0.004 
-5 dB io-3 

PD 0.30 0.001 
-10 dB io-3 

PD 0.24 0.001 
-15 dB io-3 

PD 0.18 0.001 
-20 dB IO"3 

PD 0.10 0.001 
OdB IO"4 

PD 0.30 0.0005 
-5 dB IO-4 

PD 0.27 0.0001 
-10 dB IO"4 

PD 0.22 0.0001 
-15 dB 10~4 

PD 0.11 0.0001 
0 dB IO"5 

PD 0.19 IO"6 

-5 dB IO"5 
PD 0.16 IO-5 

-10 dB io-5 
PD 0.11 io-5 

Table 5.2:  N=16, ß = 1.0, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LOD:Locally Optimum Detector 

SCR PF ALOD GR LOD (N=128) 
OdB IO"2 

PD 0.41 0.10 0.18 
-5 dB IO"2 

PD 0.36 0.06 
-10 dB io-2 

PD 0.27 0.02 0.19 
-15 dB IO"2 

PD 0.21 0.01 0.12 
-20 dB io-2 

PD 0.12 0.01 
OdB 10~a 

PD 0.29 0.009 
-5 dB IO"3 

PD 0.24 0.002 
-10 dB io-3 

PD 0.19 0.001 
-15 dB IO"3 

PD 0.11 0.001 
OdB IO"4 

PD 0.20 0.0005 
-5 dB io-4 

PD 0.18 0.0004 
-10 dB IO"4 

PD 0.16 0.0003 
-15 dB IO"4 

PD 0.09 0.0002 
OdB io-& 

PD 0.13 io-6 

-5 dB IO-5 
PD 0.10 IO-5 

-10 dB IO"5 
PD 0.07 IO"5 

Table 5.3:  N=16, ß = 1.5, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LOD:Locally Optimum Detector 
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SCR PF ALOD GR LOD (N=128) 
OdB 10-* PD 0.36 0.18 0.14 
-5 dB io-2 

PD 0.26 0.10 
-10 dB io-2 

PD 0.17 0.03 0.16 
-15 dB io-3 

PD 0.11 0.01 0.09 
OdB io-3 

PD 0.18 0.06 
-5 dB io-3 

PD 0.13 0.009 
-10 dB IO"3 

PD 0.06 0.004 

Table 5.4: N=16, ß = 3.0, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LOD:Locally Optimum Detector 

where the subscript 0 is used to emphasize that we are not taking the limit as 0 

approaches zero. Since equation (5.1) is a ratio test, all constants can be placed in 

the threshold which is determined by specifying a false alarm probability. Therefore, 

the multiplicative constants are ignored for convenience. Hence, we will be concerned 

only with terms containing the vector R. Excluding constants the numerator in the 

ratio test is given by 

dfD{r-0s)=d_ 1 
rl- (5.6) 

.80 80'(ß-l+pe/2)N+P1 

Applying the chain rule, as was done with the K-distributed disturbance differentiat- 

ing with respect to 0 and excluding the constant, the numerator in the ratio test is 

given by 
8fr,(r-0s\ L 

(5.7) 
dh{L-0s) 

80 (ß-l+pe/2)(N+P+1) 

where le = 2s M~l(r_ — 6s). From the above equation the sufficient statistic for 

the amplitude dependent locally optimum detector for the multivariate student-T 

distribution can be written as 

TALOD(L) = 
lg(ß - 1 + p/2)N+e 

(5.8) 
(ß-l+pe/2)N+W 

Notice that the exponent in the denominator of the test statistic is one more than 

that in the numerator. In the likelihood ratio test the exponents in the numerator and 

the denominator of the test statistic are identical. But the factor le appearing in the 

ALOD will not be present. The computer simulation of the ALOD for the multivariate 

student-T distributed disturbance was carried out as mentioned in section 4.1.2. The 
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results of the computer simulation are shown in Tables 5.5, 5.6 and 5.7. 

5.2.1     Conclusions 

As was the case for the K-distributed disturbance, performance is evaluated only 

for values of SCR less than or equal to 0 dB. Even though the ALOD may outperform 

the Gaussian receiver for values above 0 dB of SCR up to a certain level, the decision 

rule that should be used in such situations is the optimum one based on the likelihood 

ratio test. The value of ß = 1.5 is chosen because it represents a heavy tail situation. 

Three different sample sizes of N=16, 32 and 64 were chosen for simulation purposes. 

It is seen from the tables that the ALOD significantly outperforms the Gaussian 

receiver in the range of SCR values considered. The performance improvement of 

the ALOD over the Gaussian receiver is similar to that of the LOD discussed in 

Section 4.1.3. Compared to the Gaussian receiver, the ALOD has about an order 

of magnitude improvement in performance for Pp = 10~2, two orders of magnitude 

improvement in performance for PF = 10~3 and three orders of magnitude improve- 

ment in performance for Pp = 10-4. The performance improvement of the ALOD for 

the student-T distribution compared to that of the LOD is not as dramatic as was 

noticed for the K-distributed case. For the student-T distribution the performance of 

the locally optimum detector and the amplitude dependent locally optimum detector 

are actually quite close. The ALOD for the K-distribution significantly outperformed 

both the LOD and the Gaussian receiver. The ALOD for the student-T distribution, 

while significantly outperforming the Gaussian receiver in the range of SCR values 

considered, does not outperform the LOD significantly. In fact, comparing the detec- 

tion probabilities resulting from the ALOD with that of the detection probabilities 

resulting from the LOD, it is noticed that the performance of the ALOD exceeds that 

of the LOD by less than a-tenth for SCR values less than 0 dB. 

With reference to equation (5.8), the ALOD can be factored into two terms. The 

first term is lg. The behavior of lg was explained in Section 5.1.1. The output of 

lg and the test statistic increase when the signal is present as opposed to the signal 

absent case. The second term is a ratio of two polynomials. In general, as discussed 

in Section 5.1.1, pg < p whether or not the signal is present. Therefore, in general, 

the ratio of the two polynomials is a number greater than unity. It is seen in the 

simulations that this ratio has a higher value under the signal present hypothesis 
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SCR PF ALOD GR LOD 
OdB 10-* PD 0.48 0.11 0.38 
-3 dB 10-2 PD 0.36 0.052 0.32 
-6 dB 10-2 PD 0.30 0.039 0.27 
-9 dB lO-2 

PD 0.19 0.024 0.15 
-10 dB 10-2 PD 0.12 0.019 0.10 
OdB io-a 

PD 0.34 0.003 0.16 
-3 dB lO"3 

PD 0.23 0.002 0.13 
-6 dB lO"3 

PD 0.15 0.001 0.10 
-8 dB lO"3 

PD 0.10 0.001 0.08 

Table 5.5:  N=16, ß = 1.5, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LODrLocally Optimum Detector 

SCR PF ALOD GR LOD 
OdB lO"* PD 0.48 0.18 0.46 
-3 dB lO"2 

PD 0.39 0.08 0.38 
-6 dB lO"2 

PD 0.34 0.06 0.31 
-9 dB 10-2 PD 0.24 0.033 0.20 
-10 dB "lO"2 

PD 0.15 0.026 0.13 
-12 dB lO"2 

PD 0.11 0.013 
OdB 10~a 

PD 0.37 0.004 0.26 
-3 dB lO"2 

PD 0.25 0.003 0.19 
-6 dB lO"3 

PD 0.16 0.002 0.14 
-8 dB lO"3 

PD 0.11 0.002 0.11 

Table 5.6:  N=32, ß = 1.5, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LOD:Locally Optimum Detector 

more often than it does under the signal absent hypothesis. This contributes to an 

increased sensitivity to the presence of weak signals. That explains why the ALOD 

outperforms the LOD. The increase in the value of the test statistic of the ALOD 

when the signal is present is not restricted to weak signal situations alone. The 

LOD also has two factors in the test statistic. However, when the signal is present, 

one factor increases and the other decreases. This is not a favorable situation for 

raising the output of the-test statistic over the threshold for small signals. The 

LOD's nonlinearity for the student-T distribution, which is the second factor in the 

test statistic, is not as highly nonlinear as was observed for the K-distributed case. 

Thus, the performance improvement of the ALOD with respect to the LOD is not as 

significant. 
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SCR PF ALOD GR LOD 
OdB io-a 

PD 0.59 0.30 0.55 
-3 dB io-2 

PD 0.52 0.17 0.48 
-6 dB io-2 

PD 0.46 0.10 0.40 
-9 dB io-2 

PD 0.40 0.03 
-10 dB io-2 

PD 0.16 0.023 0.14 
-12 dB IO"2 

PD 0.12 0.012 0.09 
OdB io-3 

PD 0.40 0.005 0.36 
-3 dB IO"2 

PD 0.30 0.002 0.28 
-6 dB IO"3 

PD 0.23 0.002 0.22 
-9 dB IO"3 

PD 0.11 0.001 0.10 
OdB IO"4 

PD 0.36 0.0007 0.25 
-3 dB IO-4 

PD 0.24 0.0002 0.19 
-6 dB IO"4 

PD 0.15 0.0001 0.13 
-8 dB IO"4 

PD 0.12 0.0001 0.11 

Table 5.7:  N=64, ß = 1.5, SCR:Signal to Clutter Ratio, ALOD:Amplitude Dependent 
Locally Optimum Detector, GR:Gaussian Receiver, LOD:Locally Optimum Detector 
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Chapter 6 

Conclusions 

6.1     Summary 

Conclusions and suggestions for future work are presented in this chapter. We 

have addressed the problem of weak signal detection in correlated multivariate non- 

Gaussian noise. Weak signal detectors were derived, based on the locally optimum 

decision rule, using the concept of Spherically Invariant Random Processes (SIRP) 

for modeling the radar disturbance . Locally Optimum Detectors (LOD) are useful 

only in the neighborhood of the point for which they are evaluated. For non-Gaussian 

problems the test statistic derived for the Locally Optimum Detector are nonlinear. 

Due to the non-Gaussian and nonlinear nature of the problem, thresholds needed 

to set specified false alarm probabilities cannot be obtained in closed form. The 

Generalized Pareto Distribution (GPD) in conjunction with the method of Extreme 

Value Theory was used to obtain accurate approximations to thresholds for spec- 

ified false alarm probabilities. This was achieved with orders of magnitude fewer 

samples compared to Monte Carlo simulation. Performance analyses of the locally 

optimum detectors for the multivariate K-distribution and the student-T distribu- 

tion were carried out by means of computer simulations. Finally, the concept of the 

Amplitude Dependent Locally Optimum Detector (ALOD) was introduced. For the 

K-distribution the ALOD was shown to greatly outperform the LOD. 

The following significant contributions appear in this dissertation: 

1. Under the assumption that the radar clutter can be modeled as a SIRP the 

canonical model for the Locally Optimum Detector was shown to be the product of 

the Gaussian linear receiver and a zero memory nonlinearity. 
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2. The computational requirements needed to set thresholds for very small false 

alarm probabilities were reduced by orders of magnitude using the GPD in conjunction 

with the method of Extreme Value Theory. Accurate thresholds were determined by 

introducing Ordered Samples Least Squares technique to estimate the parameters of 

the GPD. For example, only 20,000 samples were required for different distributions 

to establish thresholds corresponding to a false alarm probability equal to 10"6. 

3. In contrast to the available literature, where LODs are evaluated based on the 

assumption of an infinite sample size, performance of the LODs were obtained for 

finite sample sizes. 

4. The new concept of the Amplitude Dependent Locally Optimum Detector 

(ALOD) was introduced. 

5. Performance of the Amplitude Dependent Locally Optimum Detector was eval- 

uated for finite sample sizes. The ALOD had a significant performance improvement 

over the LOD when the disturbance was K-distributed. 

As a result of the above contributions, practical decisions can be made with respect 

to use of LODs. These decisions will be based on the available sample size, the desired 

detection and false alarm probabilities and the signal to clutter ratio. 

6.2    Suggestions for Future Research 
This research has led to many important results and has also raised a number of 

interesting questions. In particular, some of the issues arising as extensions to this 

work are to: 

1. Compare performance of the LOD and the ALOD with that of the classical 

likelihood ratio test for a broad range of signal to clutter ratios and sample sizes. This 

will establish the conditions under which there is a need for weak signal detectors. 

2. Analyze performance of the LOD and the ALOD for other multivariate proba- 

bility density functions in the SIRP class, such as Weibull and Rician. 

3. Establish confidence" intervals for the thresholds estimated based on Extreme 

Value Theory. 

4. Extend all of the above work to Space-Time processing. 

5. Study the role of signal design in enhancing performance of the LOD. 
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Appendix A 

Issues Related to Extreme Value 
Theory 

A.l     Limiting Forms for the Largest Order Statistic 

Let X\ < X2 < ... < Xn be the ordered statistics of n random variables having 

a common distribution function F(x). Assuming that the trials of drawing the ran- 

dom variables from the distribution function F(x) are independent, the distribution 

function of the largest order statistic Xn is given by 

P(Xn<x)   =   P(Xr <x,X2<x,...,Xn<x) 

=   Fn(*)- (A.l) 

When F is continuous but unknown, an asymptotic theory is developed for F in the 

range 0+ to 1_ [45]. It is shown that positive sequences {an} and {bn} exist such that 

US, p(^7^ ^ *) = fe, p(Xn * a*x + 6-) - A^) (A-2) 

or equivalently, by means of equation  (A.l), that 

Jim Fn(anx + bn) -► A(x). (A.3) 

Let n = md in equation   (A.3).  d is a fixed positive constant so that as n —> oo, 

m —► oo. Using the fact that n = md, we can write 

lim Fmd(amdx + bmd) = lim Fn{anx + bn) -► A(x). (A.4) 
a—»-oo '        n—♦■oo ' 
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It is also true that 

lim [Fm(amx + bm)]d =  lim Fmd(amx + bm) - Ad(x). (A.5) 
m—>oo m—»oo 

If equations  (A.4) and   (A.5) hold, then from a theorem of Hintchin [52], there exist 

numbers Ad > 0 and Bd > 0 such that 

Ad{Adx + Bd) = A(x) (A.6) 

for all integer values of d. ^ 

Solution of the above functional equation yields all the possible limiting forms for 

the distribution function Fn(x). The constant Ad may or may not be unity. If it is 

unity, then the functional equation to be solved is given by 

Ad(x + Bd) = A(x). (A.7) 

On the other hand, if Ad is not unity, the form of equation (A.6) stands and there 

exists a value xod — Bd/(1 — Ad) such that 

Ad{Xod) = A(xM). (A.8) 

Constraining the solution to the above equation to be real and nonnegative, the 

solution is either A = 0 or 1. However, because A(x) is a distribution function the 

value of A can be 0 only if xod is the lower endpoint at which A(xod) = 0+ and A can 

be 1 only if xod is the upper end at which A(a;od) = 1-- Since Ad and Bd are assumed 

to be finite, xod must also be finite. Consequently, there is no loss in generality by 

assuming that the endpoint of interest is located at the origin (i.e., xod = 0). When 

Ad ^ 1, note that Zod = 0 implies Bd = 0. As a result, the solutions for equation 

(A.6) fall into three cases which are given below. 

1) Ad{x + Bd) = A(x)   Ad = l (A.9) 

2) Ad(Adx) = A(x)     Ad^lF = 0whenx = 0 (A.10) 

3) Ad(Adx) = A{x)     Ad^lF = lwhenx = 0 (A.ll) 
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A.1.1     Case 1 

Case (1) of equation  (A.9) is solved as follows. Taking the logarithm, we have 

log A(x) = d log A(x + Bd). (A.12) 

Multiplying through by a minus sign and taking the logarithm of both sides, we obtain 

log[-log A(x)] = log d + log[-log A(x + Bd)). (A.13) 

For simplicity, let 

g(x) = log[-log A(ar)]. (A.14) 

Then equation  (A.13) becomes 

g(x) = log d + g(x + Bd). (A.15) 

Equivalently, 

g(x - Bd) = logd + g(x) (A.16) 

or 

g(x) = g(x - Bd) - log d. (A.17) 

Adding equations (A.15) and   (A.17), we obtain 

g{x + Bd) + g(x - Bd) = 2g(x). (A.18) 

The above equation is valid for all x if and only if g(x) is linear in x. Specifically, let 

g(x) = kx + j (A.19) 

where j and k are constants. Then 

9{x + Bd) = k(x + Bd) +j= g(x) — log d = kx + j — log d. (A.20) 

It follows that 

kBd = —log d   or   k = —. 
Bd 

(A.21) 
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Substituting equation   (A.21) in equation   (A.19), we see that 

Using equation   (A. 14), this result becomes 

logl-log A(x)\ + *-^i = j, (A.23) 

Thus, we have 

log[-logA(x)] = -^^+j. (A.24) 

Hence, for case (1) of equation   (A.9) to hold, log[—log A(x)] must be linear in x. 

We now solve for the sequence {Bd}- For this purpose, let d = pq where p and q 

are both integers. Note that 

Ap'(x + Bpq) = A(x). (A.25) 

From the above equation we get 

A(x + Bpq)   =   A™(x) 

=   [A${x)]i=[A(x + Bp]$ 

=   Akx + Bp) = A({x + Bp) + Bg) = A{x + Bp + Bq).   (A.26) 

Equation   (A.26) implies that 

Bvq = BP + Bq. (A.27) 

We now determine the functional dependence of the sequence {Bd) on the subscript 

d. To emphasize this functional dependence, we rewrite equation   (A.27) as 

B(Pq) = B(P) + B(q). (A.28) 

From the above equation, it is clear that the functional dependence is logarithmic. 

Thus, the solution for Bd is given by 

B{d) = Bd = log d (A.29) 
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Substituting equation   (A.29) into equation   (A.24) yields 

log[-log A(x)] = -x + j (A.30) 

where j plays the role of a location parameter. Hence, without loss of generality, j is 

chosen to be zero. The above equation then simplifies to 

log[-log A(x)] = -x. (A.31) 

Solution for A(x) results in 

A(x) = exp(-e-x). (A.32) 

Equation   (A.32) is the solution of equation   (A.9) for case 1. 
A.1.2     Cases 2 and 3 

The solutions to Cases (2) and (3) of equation (A.10) and (A.11) are now derived. 

In both cases we have 

Ad(Adx) = A(x). (A.33) 

From equation   (A.33) we get 

log A(x) = d log \(Adx). (A.34) 

Multiplying through by a minus sign and taking the logarithm of both sides, we obtain 

log[-log A(x)] = logd + log[-log A(Adx)]. (A.35) 

As in case 1, let 

g(x) = log[-log A{x)]. (A.36) 

Then equation   (A.35) becomes 

g(x) = logd + g(Adx). (A.37) 

Alternatively, 

g{^-) = log d + g(x) (A.38) 
Ad 
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or equivalently, 

g(x) = -logd + g(-^). (A.39) 

Adding equations   (A.37) and   (A.39) results in 

x 
g(Adx) + g(—) = 2g(x). (A.40) 

The solution to the above equation is 

g(x) = ±k log x   forx>0 (A.41) 

and 

g(x) = ±k log (-x)   forx<0 (A.42) 

where k is a positive constant.   Use of equation    (A.36) in equations    (A.41) and 

(A.42) yields 

log[-log A(x)] = ±k log x   forx>0 (A.43) 

log[-log A(x)] = ±k log (-x)   forx<0. (AM) 

For Case 2, A = 0 when x = 0. This implies x = 0 is the lower end point of A(x). 

Hence, A(x) is nonzero for x > 0. Therefore, our solution is given by equation (A.43) 

where we must choose the sign in front of k to be negative. Then 

log[-log A(x)] =-k log x       x>0 (A.45) 

which results in 

A(x) = exp(-x-k)       x > 0. (A.46) 

For case 3, A = 1 when a; = 0. This implies that x = 0 is the upper endpoint 

of A(x). Hence, A(x) is nonzero for x < 0. Consequently, the solution is given by 

equation  (A.44) where we choose the sign in front of k to be positive. Then 

log[-log \(x)] = k log{-x)       x<0 (A.47) 

resulting in 

A(x) = exp{-{-x)k)       x < 0. (A.48) 
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Thus, the three possible forms for the limiting distribution A(x) that arise as solu- 

tions to equation 1 are given as follows: 

1) A(x) = exp(-e-x) (A.49) 

2) A(x) = exp{-x~k)       x > 0 , k > 0 (A.50) 

3) A(x) = exp(-(-x)k)       x < 0 , k > 0. (A.51) 

A.2    Tails of Probability Density Functions 
Equations (A.49-A.51) represent the the three possible limiting forms of the distri- 

bution function for almost all smooth and continuous probability density functions. 

By differentiating the three functions, we obtain analytical expressions for the limiting 

forms of the probability density functions. However, because of the differentiation, it 

should be recognized that these expressions may not be good approximations to the 

density functions.  In practice, extreme value theory should always be applied to a 

distribution function, or equivalently, the area under the density function. 
A.2.1     Case 1 

The derivative of A(x) is given by 

H(x) = ^A(z) = exp(-e-x).(-e-x)(-l) = e-xexp(-e~x) = exp(-x - e~x). 

(A.52) 

In our application we are interested in the right tail of the probability density function. 

Since we have to set thresholds corresponding to small false alarm probabilities, the 

thresholds will be in the right tail of the probability density function. When x is very 

large, x > e~x. Therefore, equation (A.52) can be simplified to obtain the PDF of 

the tail as 

H(x) = e"x       x large. (A.53) 

A.2.2    Case 2 

The derivative of A (a:) is given by 

H(x)   =   -^-A(x) = exp(-x-k).(kx-k-1) 
ax 

=   k exp(-x-k)e{-k-1V°9 *> = k exp{-x~k - (k + l)log x).     (A.54) 
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When x is very large log x > x k. Therefore, equation   (A.54) can be simplified to 

obtain the PDF of the tail as 

H(x) = ke-(k+1V°3X = JbT<fc+1>      x>0,x large k > 0. (A.55) 

A.2.3    Case 3 

The derivative of A(x) for this case is given by 

H(x)   =   ^A(x) = exp(-{-x)kUk(-x)k-1) 

=   k exp(-(-x)k)e^-^'09 <"*> = k exp(-(-x)k + {k - \)log x). (A.56) 

When —x is very large, (—x)k > log x. Therefore, equation  (A.56) can be simplified 

to obtain the PDF of the tail as 

H(x) = ke~{-x)k       x < 0, -x large k > 0. (A.57) 

A basic assumption in the above development is that successive trials are indepen- 

dent. This led to equation (A.l). In practice, as n becomes large, it may be difficult 

to ensure the independence of successive trials. To the extent that the assumption 

holds, the results in equations   (A.49-A.51) are valid. 

A.3    PDF of the rth Order Statistic 

Suppose that the ordered samples Xx < X2 < ... < Xn are drawn from the distri- 

bution function F(x). Let us further assume that the trials used to draw the samples 

from the distribution are independent. Consider the rth order statistic Xr. Recall 

that P(XT < x) is the distribution function of XT. This, in turn, is the probability 

that at least r of the X[s are less than or equal to x. Treating this as a Binomial 

problem, the distribution function is 

n\ 
FXr(x) = P(Xr <x) = Y: -^-^F'ix^l - JW (A.58) 

where the ith term in the summation is the binomial probability that exactly i of 

Xi,X2, ...,Xn are less than or equal to x. Equation (A.58) can also be represented in 
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the form of an integral, 

,F(*) 

which can be verified by using integration by parts in equation (A.59). The probability 

density function of the rth order statistic is the derivative of Fxr(x) and is given by 

d n' d    tFix) 
fxr(x) = j-FXr(x)   =   -. -£ -± [      f-\\-tT-rdt 

dx (r — ly.ln - r)\ dx Jo 
n 

Fr-l(x)[l-F(x)]n-rf(x)    (A.60) 
(r-l)!(n-r)! 

where f(x) = -£F(X). Equation (A.60) represents the general form of the PDF of 

the rth order statistic. If F(x) is known, then the mean and the variance of the rth 

order statistic can be calculated. The expected value of Xr is given by 

E(X^ =(r-l)!(n-r)!/_00
gFr"1(a;)t1- F{x)Y-f{x)dx. (A.61) 

An alternate form for the expected value of XT can be obtained by letting u = F(x). 

Therefore, x — F-1(u). The infinite limits of the integral in the above equation then 

become finite after the transformation. The transformed integral is 

E{Xr) = (r-l)!(n-r)i Jo ^(«K^l " ^'^ (A'62) 

The variance of the rth order statistic is expressed as 

Var(Xr) = E[(Xr - E{Xr)f] = E{X2
T) - E\Xr). (A.63) 

Making use of equation  (A.60), E(X?) can be written as follows. 

Til fOO 
E(Xr) = (r-i)i('w-.r)! JL^r_1 WIl " F{x)]"-'f{x)dx. (A.64) 

An alternate form for the expected value of Xr can be obtained by again letting 

u = F(x). We then get 

EW) = {r-l)tn-r)l /^-»JV^l " «)-'*,. (A.65) 
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The variance of XT can be calculated from equations (A.62) and (A.65) when F \u) 

is known. 
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