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Abstract

This investigation is motivated by the problem of detection of weak signals in
a strong radar clutter background. The fundamental issues that need to be
addressed in the weak signal detection problem are radar clutter modeling,
simulation and distribution approximation. These issues are easily addressed
when the clutter is a correlated Gaussian random process. However, these
- issues have not received much attention when the clutter is a correlated non-
Gaussian random process.

This thesis addresses the problem of modeling, simulation and distribu-
tion approximation of correlated non-Gaussian radar clutter. The theory of
spherically invariant random processes is used for statistical characterization
of non-Gaussian radar clutter. Several examples of multivariate probabil-
ity density functions arising from spherically invariant random processes are
presented. A new result which uniquely characterizes the multivariate prob-
ability density functions arising from spherically invariant random processes
is obtained. Two new canonical computer simulation procedures are devel-
oped in order to simulate radar clutter that can be described by spherically
invariant random processes. Finally, a new algorithm is used to address the
problem of distribution identification of the clutter using relatively small
sample sizes. This technique makes use of the result which uniquely charac-
terizes the multivariate probability density functions arising from spherically
invariant random processes and reduces the multivariate distribution ap-
proximation problem to an equivalent univariate distribution approximation
problem resulting in a major simplification of processing.
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Chapter 1

Introduction

The problem of weak signal detection in non-Gaussian noise is of interest to engineers
in many disciplines such as radar, sonar, digital communications and radio astronomy.
In this research, we are interested in the detection of weak radar targets in a strong
clutter background. When a signal is transmitted by a radar, the resulting received
signal consists of returns from a target (desired signal) and returns from such objects
as buildings, trees, water, land and weather, depending on the environment. Any
return other than that from the target is an unwanted signal and is defined as radar

clutter.

The fundamental issues that need to be addressed are:

(1) Specification of suitable statistical models for the clutter back-

ground.

(2) Development of efficient computer simulation procedures for gen-

erating samples characterized by the various statistical models.

(3) Development of an identification procedure for fitting one or more

statistical models to a set of experimental data.

With respect to item (1), a complete statistical clutter model should provide us with
a closed form analytical expression for the probability density function (PDF) of the
clutter. This should include information about the correlation of the clutter, thereby
enabling us to take advantage of this correlation in order to cancel the clutter. We
are interested in processing either NV complex samples or 2NV quadrature components

obtained by sampling a complex random process which has a non-Rayleigh envelope
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PDF and a phase that is uniformly distributed over the interval (0,2). In addition,
it is assumed that the envelope and the phase are statistically independent. We
can think of a vector Y = [Ya, ...Y.n, Yy...Yin]T to represent the collection _
of the complex samples that have been obtained by sampling the complex process.
The subscripts ¢ and s denote the inphase and out of phase quadrature components,
respectively. The issue that we need to address is the specification of the joint PDF of
the N complex samples or the 2N quadrature components. In other words, we need
to specify the PDF of the vector Y. We require that the multivariate probability
density functions be specified in closed form to facilitate their use in the derivation
of optimal radar signal processors.

For each PDF of Y that is developed, we need to obtain an efficient computer sim-
ulation scheme for generating random vectors having this PDF. Computer simulation
is necessary because it is likely that it will not be possible to evaluate analytically
the performance of optimal non-Gaussian radar receivers. In such cases, performance
must be evaluated by computer simulation.

More often than not, the background clutter is not known a priori. Also, the
parameters of the clutter are unknown. Therefore, we need to develop estimation
procedures to approximate the clutter PDF and its pa,rarnéters. We need to address
the problem of distribution identification and parameter estimation. It is desirable to
have available an extensive list of possible multivariate probability density functions
so that a good fit can be found for a given environment. In practice, only a small
number of samples may be available. Therefore, there is a need to develop efficient
procedures to handle small sample sizes.

Because the clutter is apt to change in space and time, the radar signal processor
must be adaptive to meet the changing conditions. The approach proposed here
for the characterization, computer generation and distribution identification of the
clutter based on the theory of spherically invariant random processes lends itself to
adaptive receivers.

This dissertation addresses the above issues and is organized as follows. In Chapter
2 we present a review of the literature as it pertains to the modeling of radar clutter as
a spherically invariant random process. Chapter 3 presents techniques for obtaining

the joint PDF of N complex, non-Gaussian, random variables, assuming that the




clutter can be characterized as a spherically invariant random process. The need for a
library of multivariate non-Gaussian PDF's is discussed. Several examples illustrating
the various techniques for specifying the multivariate non-Gaussian PDF are provided.
Finally, a key result useful for identifying the multivariate non-Gaussian PDF's arising
from spherically invariant random processes is presented in Chapter 3.

Chapter 4 deals with the problem of computer generation of correlated non-Gaussian
radar clutter that can be characterized as a spherically invariant random process.
Two canonical simulation procedures are presented. A graphical goodness of fit test
procedure is presented, to validate the simulation procedures.

In Chapter 5 we concern ourselves with the distribution identification of radar clut-
ter characterized by spherically invariant random processes. A new graphical scheme
based on a key result presented in Chapter 3 is used to address the distribution identi-
fication problem. This procedure reduces the multivariate distribution identification |
problem to an equivalent univariate distribution identification problem, resulting in
considerable computational simplicity. Finally, a new technique for shape parameter
estimation is suggested based on the identification procedure. The chief advantage of
this scheme is that relatively few samples are needed for the distribution identification

problem.

Conclusions and suggestions for future research are presented in Chapter 6.




Chapter 2

Background

2.1 Introduction

We present an overview of the literature as it pertains to the modeling of radar
clutter by spherically invariant random processes. In addition, relevant mathematical
preliminaries are presented in this chapter. When a radar transmits a signal, the
received echo may consist of returns from one or more targets, buildings, trees, water,
land and weather depending on the environment. The target returns contribute to the
desired signal while the other returns contribute to the clutter. Many investigators
[1, 2, 3, 4] have reported expérimental measurements for which the clutter probability
density function has an extended tail. The extended tail gives rise to relatively large
probabilities of false alarm. The Gaussian model for the clutter fails to predict
this behavior. Two approaches have been used to explain the non-Gaussian behavior.
One of them is based on the fact that application of the central limit theorem (CLT)
is not appropriate. The other approach is based on the nonstationary reflectivity
properties of the scanned areas. In any event, non-Ga.ussian models for the univariate
(marginal) clutter PDF have been proposed. Commonly reported marginal non-
Gaussian PDF's for the clutter are Weibull [1], log-normal [5, 6] and K-distributions
[3, 7, 2]. Second order statistics for these models have been reported in terms of
autocorrelation functions or power spectral densities (8, 4].

The Weibull [1] and log-normal (2] models for radar clutter are primarily based
on empirical studies, while the K-distribution has been shown to have physical sig-
nificance [9, 2] in that the observed statistical properties can be related to the elec-

tromagnetic and geometric factors pertaining to the scattering surface. Computer




simulation schemes for Weibull and Log-normal clutter based on the univariate PDFs
~ and correlation functions have been developed in [10] and [11], respectively. Exten-
sion of the Weibull and Log-normal and K-distributed clutter models for coherent
radar processing have been developed in [12, 5, 13] respectively.

Statistical characterization of the clutter is necessary in order to obtain the optimal
radar signal processor. Usually, radars process N pulses at a time. A complete statis-
tical characterization of the clutter requires the specification of the joint probability
density function (PDF) of the N samples. When the pulse returns are statistically
independent, the joint PDF is simply the product of the marginal PDFs. However,
the clutter can be highly correlated. In fact, the correlation between samples is useful
in canceling the clutter. Consequently, it is desirable to include the correlation infor-
mation in the multivariate PDF. For non-Gaussian processes this can be done in more
than one way. The theory of spherically invariant random processes (SIRP) provides
a powerful mechanism for obtaining the joint PDF of the N correlated non-Gaussian
random variables. Applications for the theory of SIRPs can be found in the problem
of random flights [14], signal detection and estimation problems in communication
theory [15, 16], speech signal processing [17, 18], radar clutter modeling and simula-
tion [19, 13, 20, 21, 22]. The following sections provide a brief overview of literature
on the theory of SIRPs.

2.2 Definitions

In this section we present certain definitions and mathematical preliminaries per-
taining to the theory of SIRPs. A random vector Y = [V}, Y3, YT, N> 1,is
said to be a spherically invariant random vector (SIRV) if its PDF has the form

fr(y) = K| 5 hn{(y = b)TS (y — b)] (2.1)

where k is a normalization chosen so that the volume under the curve of the PDF is
unity, b is a N by 1 vector, X is a N by N non-negative definite matrix, and hn(.) is
a one dimensional, non-negative, real valued monotonically decreasing function. Note
that the PDF of an SIRV is elliptically symmetric (i.e., constant contours of fy(y) are
composed of ellipses). If every random vector obtained by sampling a random process

y(t) is a spherically invariant random vector, regardless of the sampling instants or




the number of samples, then the process y(t) is defined to be a spherically invariant
random process (SIRP).

Kingman [14] introduced the definition of spherically. symmetric random vectors
(SSRV). In particular, a random vector X = [X1, X2, ... Xn]7 is said to be spheri-
cally symmetric provided its PDF has the form

fx(x) = khy[(z2 + 22 + ... + 7%)5) = khn(xTx) (2.2)

where hx(.) is an arbitrary, non-negative, monotonically decreasing radial function
of dimension N and k is a normalization constant chosen so that the volume under
the curve of the PDF is unity. The subscript N is used to emphasize that we are
dealing with N random variables. Throughout the manuscript, it is assumed tha;t
the PDF of a random vector is the joint PDF of its components. Equivalently, if
w = [w, wy, ...,wn]T, the characteristic function of the SSRV X defined by ®x (w) =
Elezp(jwTX)), has the form

dx(w) = gy[(Wwi+wi+... + w,zv)%] (2.3)

where gn(.) is a non-negative conjugate symmetric function which is magnitude inte-
grable. An SSRV is a special case of an SIRV, arising from eq (2.1) when b = 0 and
3 = I where I is the identity matrix. In Appendix A, we prove that the characteristic

function of an SSRV is also spherically symmetric.

2.3 Characterization of SIRVs
In this section we present some important theorems that help us to characterize
the PDF of a SIRV. The work of Yao {15], Kingman [23] and Wise [24] gave rise to

a representation theorem for SSRVs. The representation theorem can be stated as

follows.

Theorem 1 A random vector X = [X;, X3, ... Xn|% is an SSRV for any N, if and
only if there exists a non-negative random variable T such that the random variables
Xi, (1 = 1,2,...N) conditioned on T = t are independent, identically distributed,

Gaussian random variables with zero mean and variance equal to 2t.




Proof: Necessity: By definition, the characteristic function of X is

&x(w) = Elezp(jw’X)]

(2.4)
= [T -+ J2% ezp(jwTx) fx (x)dx.
The PDF of the random variable T is introduced by noting that
fx(x) = [ fxr(x,t)dt
(2.5)

= [ fxir(x|t) fr(t)dt.

Substituting into the expression for the characteristic function and interchanging the

order of integration we obtain

bx(w) = /_ °:° Bxr(w,t) fr(t)dt | (2.6)

where
Sxpr(w, t) = /_ : .. /_ : ezp(jwTx) fxr(x]t)dx. (2.7)

Since X is an SSRV for any N, its characteristic function has the form of eq (2.3).
This requires that the functional form of ®x(r(w,t) remain unchanged for all N.
Furthermore, ®xr(w, t) must also be a function of (w} +w3 +.. .+w%) for any choice

of N. The only characteristic function satisfying these conditions (23] is
Oxpe(w,t) = ezp[—t(w] + i +... + wi)] (2.8)

where the conditional PDF of X, given T = t, is recognized to be multivariate Gaus-
sian, with X;, (i = 1, 2, ..., N) being statistically independent identically distributed,
zero mean Gaussian random variables with variance 2¢. Because the variance equals
2t, T must be a non-negative random variable. Necessity follows. Note that the
theorem does not give any physical significance for T. Neither does it reveal how to
determine fr(t).

Sufficeincy: To prove sufficiency, we need to show that every product of a Gaussian

random vector Z having zero mean and identity covariance matrix and a random

variable S’ = V2T with PDF fy(s') results in a PDF of the form of eq (2.2).




In particular, consider the product X = ZS'. The PDF of X conditioned on S’ is
then given by

’

fxis (xls) = <2w>-¥-|s'|-Nezp<—§|{,—l;> (2.9)

where p' = xTx. From the theorem on total probability, the PDF of X can be written

as
fx(x) = @m)¥ [ 15| Neap(- L) fo(')ds (2.10)
—00 2'8 I
For convenience, we can write the PDF of S’ as
fsr(s) = fuls) + fal(s) (2.11)
where '
, f(s) =0
fi(s) =4 (2.12)
‘ 0 otherwise
and '
) f(s) s <0
fols') = ¢ (2.13)
0 otherwise

Then, eq (2.10) can be expressed as

O ! ! 0 ] ' 1
fxx) = 2m)7F [ 181N eap(= 52 I2>f2( )ds'+(2m)F [ 1| exp(~ ) fi(s')ds
(2.14)
Making the change of variable —s' = ( in the first integral of eq (2.14), we have

fx(x) = 2m)¥ [7 () ean(~5F ))fs( s')ds (215)

Thus, it is clear that regardless of whether S’ is positive or negative, the PDF of X
has the form of eq (2.15). Henceforth, we always consider the product of Z and a

non-negaitve random variable S in our analysis.
N
2

Comparing eqgs (2.15) and (2.2), we can write k¥ = (27)~7 and

h(p) = [ () Neap(~5E)fs (<5 (2.16)
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Note that An(p) given by eq (2.16) is a non-negative, monotonically decreasing func-
tion of p, for all N. Therefore, the PDF of eq (2.15) is entirely equivalent to that
of eq (2.2). This establishes the theorem. Thus, it is clear that the PDF of an
SSRV is uniquely determined by the specification of a Gaussian random vector hav-
ing zero mean and identity covariance matrix and a first order PDF fs(s) called the
characteristic PDF.

The following theorem in [25] states that a SIRV is related to an SSRV by a linear

transformation.

Theorem 2 If X is an SSRV, with characteristic PDF fs(s), then the deterministic

linear transformation

Y=AX+b (217)

results in Y being an SIRV having the same characteristic PDF. It is required that A

be a matriz such that AAT is nonsingular and b be an N by 1 vector.

Proof: Since X is an SSRV, we can express X as X = ZS, where Z is a Gaussian
random vector having zero mean and identity covariance matrix and S is a non-

negative random variable. Hence,

Y = AZS +b. (2.18)

Conditioned on S, the PDF of Y is Gaussian, with mean vector equal to b and

covariance matrix equal to AATs?. The PDF of Y conditioned on S is given by

fris(yls) = @) F IS s N eap(~55) (2.19)

where p = (y —b)TEZ~!(y — b) and |X| denotes the determinant of the covariance
matrix & = AAT. Implicit herein is the assumption that S has unit mean square

value. Using the theorem on total probability, the PDF of Y can be written as

fe(y) = (20) TS| 2 hn(p) (2.20)

where
(@) = [ sV ezp(=355) fs(s)ds. (2.21)

The PDF of Y is of the form of eq (2.1). Therefore, Y is an SIRV.




The PDF of an SIRV is uniquely determined by the specification of a mean vector,
a covariance matrix and a first order PDF called the characteristic PDF. Theorem 1
for SSRVs generalizes for SIRVs in a straightforward manner. The only difference is
thé,t conditioned on the non-negative random variable T, the {Y;: (k=1, 2,...N)}
are no longer statistically independent. Instead, the PDF of Y conditioned on T is
a multivariate Gaussian PDF. By the same argument used for SSRVs, an SIRV can
be written as a product of a Gaussian random vector and a non-negative random
variable. The only difference is that the mean of the Gaussian random vector need
not be zero and its covariance matrix is not the identity matrix. As a corollary
of Theorem 2 [15], it can be readily shown that every linear transformation on an
SIRV results in another SIRV having the same characteristic PDF. As a special case,
when fs(s) = 6(s — 1) where 6(.) is the unit impulse function, Ay(p) = exp(—2) and
the corresponding SIRV PDF given by eq (2.20) is the multivariate Gaussian PDF.
Therefore, the multivariate Gaussian PDF is a special case of the SIRV PDF.

The following theorem from [16] provides an interesting property of SSRVs when

- represented in generalized spherical co-ordinates.

Theorem 3 A random vector X = [X, ... Xn|7 is an SSRV if and only if there ezist
N random variables R € (0,00), © € (0,27) and ®; € (0,7), (k=1,...N —2) such
that when the components of X are ezpressed in the generalized spherical coordinates
X1 = Rcos(®,)
Xi = Rcos(®x) 15} sin(®) (1<k<N-2)
. (2.22)
Xn-1 = Rcos(0)[T¥7?sin(®;)

X~ = Rsin(0©) [TV sin(®;)
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then the random variables R, © and ®, are mutually statistically independent and

have PDFs of the form

fa(r) = ——hn(r*)u(r)

27 () |
fo. (k) = %ﬁjﬁ%sin”‘l-k(m)[u(m) — (g — 7] (2.23)

fo(6) = (2m) 7 [u(6) — u(6 — 27)]

where T'(.) is the Eulero Gamma function and u(.) is the unit step function.

Proof: Since the random vector X is an SSRV, its PDF is of the form of eq (2.2)
with An(p') being given by eq (2.16). The Jacobian of the transformation given by
eq (2.22) is obtained in {26] as

N-
J = (RN p2sinN'l’k(¢k))'1. (2.24)
- =1

Using eq (2.2) and eq (2.24) and noting that R* = YN | X?, the joint PDF of R, ©
and ®; (k=1,2,... N — 2) becomes

~N-1 N-2
frRe®, . oy (1 0,01...8N2) = whn(r?) TT sin™"%(¢%) (2.25)
(2m)2 k=1

Since the joint PDF in eq (2.25), can be written as a product of the marginal PDFs
given in eq (2.23), the variables R, © and ®;, are mutually statistically independent
with the prescribed PDFs . In order to prove the sufficient part of the property, we
start with the marginal PDFs of R, © and ®, given by eq (2.23) and, under the
assumption of statistical independence, obtain the joint PDF of eq (2.25). Using the
inverse Jacobian of that given by eq (2.24), results in the PDF of X being given by
eq (2.2).

2.4 Determining the PDF of an SIRV

In this section we shall present schemes for determining the PDF of an SIRV. We
recognize that the PDF of an SIRV is uniquely determined by the specification of
a mean vector, a covariance matrix and a characteristic first order PDF and that
the SIRV PDF has the form of eq (2.20). Several techniques are available in the
literature for specifying hn(p). The simplest technique is to use eq (2.21). However,
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this procedure requires the knowledge of the characteristic PDF fgs(s). Therefore,
when fs(s) is not known in closed form or it is difficult to evaluate the integral in
eq (2.21), alternate methods for specifying hn(p) must be examined.

To study the behavior of An(p), it is convenient to replace p, which is a quadratic

form depending on N, by the dummy scalar variable g. We then write

ha(q) = /0 = s™Veap(— 1) fs(s)ds. (2.26)

When both sides of eq (2.26) are differentiated with respect to ¢, we obtain

dhn(g) 1 [* _Noo 9
rrk WA s ezp( 2Sz)fs(s)ds. (2.27)

The right hand side of eq (2.27) is related to hn.2(g) by the factor of —2. Thus, we

have an interesting result pointed out in [19] that

bale) = (-2 5L, (2.8
Because
fr(y) = (27) 32 T hnaa(p) (2.29)

when Y is of dimension N +2, it follows that hx(g) must be a monotonically decreas-
ing function for all N. Eq (2.28) provides a mechanism for relating higher order PDFs
with those of lower order, for a given SIRV. More precisely, starting with N = 1 and
N =2, and using eq (2.28) repeatedly, gives the following pair of recurrence relations.

h2N+1((]) = (__2)Ndh;h1$q!

q

han+2(q) =.(—2)Nw—d"§é"-l.

q

(2.30)

Therefore, starting from k,(q) and k3(g¢) all PDFs of odd and even order respectively,
can be generated by the use of eq (2.30). However, since hy(.) is defined to be a non-
negative monotonically decreasing function for all N, h;(.) and h2(.) must belong to a
class of functions that are non-negative and monotonically decreasing. Consequently,
their successive derivatives will alternate between negative and positive functions that

are monotonically increasing and decreasing, respectively. Given hx(g), the N** order
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SIRV PDF is given by
fe(y) = 2r)" %S| 7 hn(p) (2.31)

where hx(p) is nothing more than An(g) with g replaced by p.

Another approach for specifying hxy(p) that begins with the univariate character-
istic function has been proposed in [27, 15, 16]. It is required that the univariate
characteristic function be a real even function whose magnitude is integrable. Also, it
is assumed that the components of the SIRV are identically distributed. Under these

conditions, it has been shown that

() = (VO ¥ [ ws(w)lupa(wvp)de (2.32)

where ¢(w) is the univariate characteristic function and Ju(7) is the Bessel function
of order a. Eq (2.32) has an elegant proof by induction which is presented here.
From eq (2.20) it follows that k;(p) is related to the first order SIRV PDF of the ith

component. More explicitly, we can write

fr.(y) = (V2ro) thi(p) (1=1,2,...N) (2.33)
where p; = %‘Z— and o? is the common variance of the random variables Y; (1 =
1,2,...N). For convenience, assume that 02 is unity. The univariate characteristic

function is then given by

8iw) = [ frlvdep(iov)dy (234)

Using the inverse Fourier transform and noting that y; = /p;, h1(p;) can be expressed

in terms of the characteristic function as

i) = 7= [ dw)ezpl—juv/Fldo. (2.35)

Since ¢;(w) is the same for all ¢, the subscript ¢ in eq (2.35) can be dropped. In

addition, because ¢(w) is an even function, we can rewrite eq (2.35) as

ha(p) = \/g /0 ” $(w)cos(w/P)dw. (2.36)
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Recognizing that cos(z) = \/’—"QEJ_% (z), and replacing p by the dummy variable ¢, we

have
= (V)2 / w P(w _1(wy/g)dw. (2.37)

Since the derivation makes use of eq (2.28) it is necessary to consider odd and even

values of N separately. For odd values of N, eq (2.32) can be written as

han-1(9) = (VO™ [ N Hg(w) Juses (wy/@)d (2.38)

Equation (2.38) is now shown to hold for all N by means of induction. With N =1,
eq (2.38) reduces to eq (2.37). It remains to show that eq (2.38) is valid when N is
replaced by N +1. Differentiating both sides of eq (2.38) with respect to ¢, we obtain

Tl [ o) VD g (0Bl (2.39)

First, focus on the term £ 219 )3-N Jans (w/q)]. Since this involves the derivative

of a product, we can write

VD T (/D) = 55NV H S (oD HVD N o e )
(2.40)
Using the identity [28] y
=) = 20a(n) = () (241
we have
d w
Gl VA = SV e (oVD) — PV (242)
Substituting eq (2.42) in eq (2.40) gives
VD v = 5D Vv (24)
Consequently, eq (2.39) reduces to
dhan-ilg) _ 1 oin [T o b} (0D (2.44)
dq 2 0 B |

However, from eq (2.28) we know that Asn4i(q) = (—-2)&"'—";—;-’—@. Hence, we have
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from eq (2.44)

hawaa(0) = (VRN 7w 6(0) e (/) o (2.45)

Because eq (2.45) is identical to eq (2.38) with N replaced by N +1, it has been shown
by induction that eq (2.38) is valid for all N. For ease of derivation, it was assumed
that the components of Y have identical variances. However, since the functional
form of hn(p) is invariant to the choice of p, it follows that éq (2.32)is valid for all
odd values of N.

In a similar manner, starting with hy(p), it can be shown that

hansa(p) = VBN /0 ” N $(0) Iy (wr/B)dw (2.46)

for all N. Note that eq (2.46) is identical to eq (2.32) with N replaced by 2N + 2.
The proof of this result is presented in Chapter 3. Thus, in general, for any N (odd

or even), we can write hy(p) as in eq (2.32).

2.5 Properties of SIRVs

In this section we present certain important properties of SIRVs.
2.5.1 PDF Characterization

The multivariate PDF of an SIRV as given by eqs. (2.20) and (2.21) is uniquely
determined by the specification of a mean vector b, a covariance matrix £ and a
characteristic first order PDF fs(s). It is a non-negative, real valued monotonically
decreasing function, An(.), of a non-negative quadratic form multiplied by a constant.
The type of SIRV is determined by the form of Ay(.) or, equivalently, the choice of
fs(s). Higher order PDFs can be obtained by the use of eq (2.32) whereas lower
order PDFs can be obtained in the usual manner by integrating out the unwanted
variables. We discuss this procedure in Appendix A. The PDFs of all orders are of

the same type. The marginal PDF's are used to classify the type of SIRV.
2.5.2 Closure Under Linear Transformation

As shown in Theorem 2 of Section 2.3, every linear transformation of the form of
eq (2.17) on an SIRV results in another SIRV having the same characteristic PDF.
This feature is called the closure property of SIRVs [15, 16].
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2.5.3 Minimum Mean Square Error Estimation

In minimum mean square error estimation (MMSE) problems, given a set of data,
SIRVs are found to result in linear estimators 27, 15, 29]. An interesting proof of
this property is presented here. Let Y = [Y17 YT]T where Y; = v, Y, ...Y,.)T
and Yz = (Y41, Yins2, ... Yn]7 denote the partitions of Y. It has been pointed out
in [30] that the minimum mean square error estimate of the random vector Y2 given

the observations from the random vector Y3, is given by
Y, = E[Y3|Y1] (2.47)

where E[Y2|Y] denotes the conditional mean or the expected value of Y2 given Y.
Assume that Y is an SIRV of dimension N with characteristic PDF fs(s). Also, for
convenience, it is assumed that the mean of Y is zero. The covariance matrix of Y

denoted by X can be partitioned as

Ci1 Ci2
Y= (2.48)

C21 Ca2

where Cj1 denotes the covariance matrix of Y1, C12 denotes the cross covariance
matrix of the vectors Y1 and Y2, C2; is the transpose of C12, and Cz2 denotes the

covariance matrix of the vector Y. The PDF of Y2 given Y; is expressed as

fy(y)

fygryy (valy1) = Te (1) (2.49)
Recall from egs. (2.20) and (2.21) that
fe(y) = @n)" 5|2 hn(p) (2.50)
where
_ [T N p
hn(p) = [ s Veap(= ) fs(s)ds (2.51)
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and p = yTE"!y. Note that the inverse covariance matrix can be partitioned as [26]

zl=

where

A =(C11 - C12C3;C21)™!
B = -AC;2C5;
C = -DCy; Cy}
D =(Ca2 - 0210;11012)‘1.
Expanding the quadratic form, we have
P =yi Ay1 +yiByz +y3Cy1 + y3 Dy2.
Adding and subtracting y C71y1 to the right hand side of eq (2.54) gives
p=yi(A - Cil)y1 +¥TCily1 +yTByz + 7 Cy1 + yI Dys.

Note that
A - C7] = -BC2;C3l.

Henée,
P =YiCiiy1 - y{BCaiCily1 + yTByz + y1 Cy1 + y3 Dy2.
However, it can be shown that
_ ¥3Cy1 = -yIDC21Ciiys

yiByz = —~yTCi1C12Dy;

—-y{BC2,Ciiy1 = yfCi1 C12DCa1 Ciiyr
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(2.55)
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Making these substitutions in the expression for p, it follows that

p=y;Cily1+ysDy2—y3 DC21Cily1-¥1i Tyl C12Dy2+y; CiiC12DC21Ciiy1-

This can be rewritten as

p=yiCiiy1 + (y2 — C21C11y1)"D(yz — C21Ciiy1)

For simplicity, we define

n=yiCun
p2 = (y2 — C21C11y1)"D(y2 — C21C11 v1)-
Then,
p=p1+p2
From eqs (2.62) and (2.49)-(2.51), we have

k
fy,(y1)

’ *® -N p1+p2
iy, (v2lyr) = [ s N ean(- BT fs(s)ds

where k = (27)~%|2|~%. Next, consider

E[Y2|Y4] = ?;%5/000 / yzezp(— d}'ZfS( )ds
1

Noting that

[, y2eop(=F5)dyz = (2)* 52 DI"3s" " (Cn Cilval,
2

gives

E[Y2|Yq] = }‘Y—k(l';ﬁ/;w P(—‘—)fs( )ds
1

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

where k; = (27r)'¥|2["15|D|“%[C210I11y1]. When a matrix is partitioned as in

eq (2.52), it is known that [31]

|Z| = |C11}|C22 — C21C1; Cazl.
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Since

D = (Czz — C21C1iC12) 7Y, (2.68)
it follows that
|Z| = |Cu|/D7Y| (2.69)
Thus,
=7 = |Cu|™'D|. (2.70)

Hence, k, = (27&')'%|C11|'%[Cz10511y1]. Finally, since
fey 1) = @r)R(CulF [T s meap(—25) fs(s)ds (2.11)
1 0 252 ’

Y, = E[Y2|Y1] = [Ca1Ciivi] (2.72)

It is seen that the MMSE estimate of Y3 given the data Y is a linear function of
Y;.
If the random vectors Y; and Y2 have non-zero means denoted by by and b2

respectively, then eq (2.72) takes the form
E[Y2|Y1] = bz + C21C71 (y1 — b1). (2.73)

As a consequence of this property, when the random vectors Y; and Y2 are un-

correlated so that Co; = 0, then we have
E[Y2|Y1] = bz = E[Y2]. (2.74)

This property is referred to as semi independence in {27, 32, 15]. However, for all

SIRVs except the Gaussian, this result does not imply that

v, (valy1) = fy,(y2) - (2.75)

This emphasizes the property that although uncorrelatedness guarantees statistical

independence for Gaussian random vectors, it is not a general property of SIRVs.
2.5.4 Distribution Of Sums of SIRVs

While it is true that the sum of two jointly Gaussian random vectors is also Gaus-

sian, the same is not true for SIRVs in general. This result holds for two SIRVs, when
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they are statistically independent, having zero mean and when the covariance matrix
of the first is within a multiplicative constant of the covariance matrix of the second
(15, 16]. More precisely, let Y1 = [Yi;, Yiz, ... Yin]|T and Vs = [Ya, Yoy, LYo
denote two independent zero mean SIRVs. The covariance matrix and characteristic
PDF of Y; are denoted by X1 and fs,(s1). The corresponding quantities for Yz are
denoted by X2 and fs,(sz). We are interested in obtaining the distribution of the
sum given by

Y=Y:1+Y2 (2.76)

The characteristic function of Y is given by
Elezp(juTY)] = g1(w' T1w)g2(w T Baw) (2.77)

where ¢;(.) and g3(.) are the characteristic functions of Y; and Y32, respectively. If

Y is a zero mean SIRV, then its characteristic function has the form
Elezp(jwTY)] = g(wTZw). (2.78)

In order to write eq (2.77) as a function of a single quadratic form, X; must be within

a multiplicative constant of ¥;.
2.5.5 Markov Property for SIRPs

An interesting property of SIRPs is that a zero mean wide sense stationary SIRP

is Markov if and only if its autocorrelation function has the form
R(ty, t3) = exp(—al(t; — t3]) (2.79)

This result is well known for the special case of a zero mean wide sense stationary
Gaussian random process. To demonstrate the more general result we consider N
samples from a zero mean wide sense stationary SIRP y(¢). Let Y = V3, Y2 ..., Yw|T
denote the vector of successive samples obtained from the SIRP.

Given that y(t) is a zero mean wide sense stationary Markov SIRP, we first show
that its autocorrelation function must have the form of eq (2.79).Let Y3, ¥; and Y5
denote the random variables obtained by sampling y(¢) at time instants t,, t; and t3

such that ¢; < ¢, < t3. Since y(t) is a Markov process, the joint PDF of Y}, ¥, and
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Y; can be expressed as

fY1 Y2,V (yla Y2, y3) = fY1 (yl)sz ¢} (y2]y1)fY3 Y2 (y31y2)- (2'80)

The autocorrelation function R(t3,t;) = E[Y3Y)] is given by

R(t3, 1) = /_ . /_ /_ Ys¥1fv, Ya.va (W1, Y2, ¥3)dy1dy2dys. (2.81)

Also,

R(tst2) = EIY] = [ yifu(va)dua. (282)

Hence,

R(ta, t1)R(t2, t2) =[. /_ _/_oo/:_ Y311 fy, Ya.vs (Y1, Y2, ¥3)dy1dY2dy3y3 fr, (y2)dya.
‘ (2.83)

Using eq.(2.80) we can rewrite the above equation as

R(ta,h)R(tz,tz) = [_w /:_oo ysyszS.Yz(ys,yz)dysdyz /_oo /_oo y2ylfY2.Y1(y27yl)dy2dyl-
(2.84)

Consequently,
R(t3,t1)R(t2, tg) = R(t3,t2)R(t2', tl) (2.85)
The only non-trivial autocorrelation function satisfying this property is given by
eq (2.79). |
Since y(t) is a zero mean SIRP, it follows that E[Y] = 0. Letting b = exp(—a), we

can write the covariance matrix of Y as

1 b bN—lW
b1 . bV-?

T=| » ... N3 (2.86)
LbN-1 pN-2 .. 1

under the assumption that ¢;,2;,...,ty = 1,2,..., N. We then make use of eq (2.73)
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to obtain
EYw|Yn-1, YN-z ..., V1] = [0V 1 V2. 42,7ty (2.87)

where Y' = [V}, V3, cery Yno)T and

1 b ceo BV2
b 1 . BV-3
Ey,= : (2.88)
bN-2 bN—3 1
Recognizing that
-
1 -=b 0.. 0
-b 148 —b 0 0
» 1 0 b 1+6 ... ... 0
. =T p : . (2.89)
0 —-b 1+8 —b
0o ... veeweno =b 1

Therefore, we can rewrite eq (2.87) as
E[Yn|YNo1, Y-z ..., Y]] = bYn_,. (2.90)
From eq (2.73), we also obtain
E[YNIYN-l] = dYn_;. ' (2.91)

Clearly E[Yn|Yn-1] = E[Yn|Yn-1, YN-2 ..., Y:]. Since this must be true for all
choicesof Y3, Y5, ..., Yn_4, it follows that Yy, Yoz oy (UNIYN=1, YN=2 ... YY) =

Suntvn—1 (ynlyn-1). Hence, y(t) is Markov.
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2.5.6 Kalman Filter for SIRPs
It has been shown by Chu in [29] that the Kalman filter for SIRPs is identical to -

the corresponding filter for a Gaussian random process. The model considered in [29)
is given by
Xk+1 = Fxxg + Gewy (k=0,1,...,N—-1)
¥ (2.92)
Yk = Hyxyx + vk (k=0, 1, ...,N—-l)

where x) denotes the state vector of the underlying process, wy is its excitation
vector, yx denotes the observation vector and vy is the measurement noise. It is
assumed that xi, wy and vy are jointly SIRP with a common characteristic PDF
fs(s). Also, let
Elx]=%¢ (k=0,1,...,N-1)
E[(xk — Xx)(xk — %) T] = My
E[wy] = E[vi] =0
| (2.93)
El(xx — XR)Wi' | = E[(xx — X)vic'] = E[wyvg] =0
E[wWiwWkm] = Qkbim

E[viaVkm) = Ribim

where Wyq and Vim are the m** components of wy and vy respectively, and 6, is
the Kronecker delta function. Hence, x), wi and vy are mutually uncorrelated while
wg and v are each white with zero mean.

The innovations vectors is defined as

Yik-1 = Yx — HiXye-1 (2.94)

where Xy is the MMSE estimate of xi given the observation vectors up to k—1.

The covariance matrix of the innovations can be shown to be
Cov(Frk-1) = Sk-1 = (HkMHT + Ry). . (2.95)

It can be readily shown that xi and yy are jointly SIRP. Therefore, the MMSE
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estimate of xx given the observation vectors up to k£ — 1 is a linear function of ym
'm=1,2,...,k -1, as shown by eq (2.73). Hence, the Kalman filter equations for
SIRPs are identical to those for the Gaussian case. The Kalman gain denoted by
Ky x is expressed as

Ky = MgHY Sl—:]}c-l' (2.96)

The measurement update Xy is given by

Kk = Kik-1 + Kipedrx-1 = (I — Kige)Xyx-1 + Ky (2.97)
The covariance matrix of the error in the update can be written as
Ci = My — M HT (H M HT + Rk)-lﬁkMk. (2.98)
The prediction is then given by‘
Xi+1k = FrXyk. (2.99)
Finally, the covariance matrix of the prediction is expressed as
Mi1 = FxCuFF + GcQuGY (2.100)

When systems driven by non-Gaussian noise are encountered in practice, under the
assumption of joint SIRP, these equations provide an efficient computation formula

for the Kalman filter. }
2.5.7 ~ Statistical Independence

We point out that the only case for which the components of an SSRV are statis-
tically independent occurs when the SSRV is Gaussian. This property is proved in

Appendix A.
2.5.8 Ergodicity of SIRPs

It has been pointed out in [27] that an ergodic SIRP is necessarily Gaussian. The
proof of the non-ergodicity of SIRPs (except Gaussian) can be easily obtained using
the representation theorem [15] for SIRPs which states that an SIRP is a univariate
fandomiza.tion of the Gaussian random process. More precisely, if y(t) is an SIRP,

then it can be expressed as y(t) = Sz(t), where S is a non-negative random variable
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and z(t) is a Gaussian random process. Clearly, if z(t) is stationary, then y(t) will
also be stationary. Howc;ver, different realizations of S result in different scale factors
for the sample functions of y(t). Therefore, time averages will differ from one sample
function to another and, in general, will not equal the corresponding ensemble average.
Consequently, y(t) cannot be ergodic. When S is a non-random constant, y(t) is a
Gaussian random process. Then y(t) will be ergodic provided z(t) is also ergodic. It

is concluded that only Gaussian SIRPs can be ergodic.

2.6 Conclusion

In this chapter, we have presented an overview of the literature on the modeling of
radar clutter and the theory of SIRPs. It is clear from this chapter that the PDF of
an SIRV is uniquely determined by the specification of a2 mean vector, a covariance
matrix and a characteristic first order PDF. It is also seen that many interesting
properties of Gaussian random processes extend readily to SIRPs. A major difference
with non-Gaussian SIRPs is their non-ergodic behavior. Consequently, time averages
do not result in corresponding ensemble averages. However, if ensemble averages are
used instead of time averages, then non-ergodicity is not a serious problem. In the
following chapters, we shall present the application of SIRPs for non-Gaussian radar

clutter modeling, simulation and distribution identification.
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Chapter 3

Radar Clutter Modeling Using
Spherically Invariant Random

Processes

3.1 Introduction
| In this chapter we consider the use of the theory of spherically invariant random
processes (SIRP) for modeling correlated non-Gaussian radar clutter. It has been
pointed out in chapter 2 that radar clutter can be non-Gaussian and that radars pro-
cess N pulses at a time. Furthermore, the clutter can be highly correlated. Therefore,
by clutter modeling we mean the specification of the joint probability density func-
tion (PDF) of the NV correlated clutter samples. Since we are dealing with correlated
clutter, the joint PDF cannot be constructed by simply taking the product of the
marginal PDFs. This chapter presents a mathematically elegant and tractable ap-
proach for specifying the joint PDF of N clutter samples. In addition, we discuss
the characterization of Gaussian and non-Gaussian correlated random vectors, the
need for a library of multivariate PDFs for modeling correlated non-Gaussian clut-
ter, several techniques for establishing this library and, finally, a key result for the
distribution ideqtiﬁcation of multivariate correlated non-Gaussian random vectors.
Specifically, the problem of modeling a random vector obtained by sampling a
stochastic process y(t) at N time instants is of interest to us. The stochastic process
may be real or complex. In addition, there is no restriction on the number of sa.inples

obtained or the sampling time instants. In order to completely characterize the
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random vector we need to specify the joint probability density function of the N
samples (real or complex) or, equivalently, specify the joint characteristic function.
This problem is very well treated when the underlying stochastic process is Gaussian. .
The joint PDF in this case can be written as (27r)‘%|2|'%ezp(—§), where p is a
non-negative quadratic form given by p = [y — p)TE- [y — p]. Here p and T denote
the mean vector and covariance matrix of the Gaussian random vector Y whose
components are the N samples of y(t). However, if y(t) is not a Gaussian random -
process, there is no unique specification for the joint PDF of the N samples except
when the samples are statistically independent.

When processing real world data, neither the Gaussian nature of the underlying
stochastic process nor the statistical independence of the samples is guaranteed. In
fact, it is likely that the samples may be correlated. Hence, we need to obtain
multivariate non-Gaussian PDFs which can model the correlation between samples.
In practice, radar clutter can vary from one application to another. Therefore, we
need to have available a library of possible multivariate non-Gaussian PDF's so that
an appropriate PDF can be chosen to approximate the data for each clutter scenario.

The theory of Spherically Invariant Random Processes (SIRP) provides us
with elegant and mathematically tractable techﬁiques to construct multivariate non-
Gaussian PDFs. Spherically invariant random processes are generalizations of the
familiar Gaussian random process. The PDF of every random vector obtained by
sampling a SIRP is uniquely determined by the specification of 2 mean vector, a
covariancé matrix and a characteristic first order PDF. In addition, the PDF of a
random vector obtained by sampling a SIRP is a function of a non-negative quadratic
form. However, the PDF does not necessarily involve an exponential dependence
on the quadratic form, as in the Gaussian case. Such a random vector is called a
Spherically Invariant Random Vector (SIRV).

There are two kinds of models for non-Gaussian radar clutter. One is called the
endogenous model, where the desired non-Gaussian process with prescribed envelope
PDF and correlation function is realized by using a zero memory non- linear trans-
formation on a Gaussian process having a prespecified correlation function. In this
approach it is not possible to independently control the envelope PDF and the cor-

relation properties of the non-Gaussian process. In addition, not all nonlinearities
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give rise to a non-negative deﬁnite covariance matrix at their outputs (33, 34]. The
second model is called an exogenous product model [13]. In this model, the desired
non-Gaussian clutter is generated by the product of a Gaussian random process and
an independent non-Gaussian process which can be highly correlated. In this scheme,
the desired envelope PDF and the correlation properties can be controlled indepen-
dently. The exogenous model can be thought of as a slowly time variant non-Gaussian
process modulating a Gaussian random process. The SIRP is a special case of the ex-
ogenous model, arising when the modulating process does not change rapidly during
the observation interval and can be approximated as a random variable. This is due
to the fact that the representation theorem for SIRPs allows us to explicitly write
the non-Gaussian process as a product of a Gaussian process and a non-negative ran-
dom variable. By assuming statistical independence between the modulating random
variable and the Gaussian process, it is possible to independently control the non-
Gaussian envelope PDF and its correlation properties. The SIRP is the only known
case of the exogenous multiplicative model which allows the specification of the N**
order PDF. ‘

Section 3.2 outlines the problem of interest. In Section 3.3 we present several
techniques to obtain SIRVs. Examples based on various techniques described in
Section 3.3 are used to obtain a library of SIRV PDFs in Section 3.4. Finally, in
Section 3.5, we present a key result which characterizes SIRVs by using the quadratic

form appearing in their PDFs.
3.2 Problem Statement

We assume we are dealing with coherent radar clutter. By coherent radar clut-
ter, we mean that the clutter is processed in terms of its in-phase and out -of-phase
quadrature components. Pre-detection radar clutter, being a bandpass random pro-

cess, admits a representation of the form

y(t) = Re{g(t)ezp(juwot)} (3.1)

where §(t) = yc(t) + jy.(t) denotes the complex envelope of the clutter process, wpo
is a knov'vnv carrier frequency, y.(t) and y,(t) denote the in-phase and out-of-phase

quadrature components of the complex process §(t). Equation (3.1) can be rewritten
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y(t) = ye(t)cos(wot) — ys(t)sin(wot). (3.2)

We are interested in specifying the joint PDF of N samples obtained by sampling
the prdcess y(t). Since it is always more convenient to work with the associated low
pass process, we consider the équivalent problem of specifying the PDF of N complex
samples obtained from the complex process §(t). The PDF of a complex random
variable is defined to be the joint PDF of its in-phase and out-of-phase quadrature
components. Therefore, it follows that the joint PDF of N complex random variables
is the joint PDF of the 2N in-phase and out-of-phase quadrature components. While
dealing with complex random variables, it is sometimes more convenient to work
with their envelope and phase. The envelope R; and phase ©O; of a complex random

variable ¥; = Y. + 7Y, are defined by

R = JY2+Y2

0, = arctan(%:_,i).

(3.3)

We consider the problem of specifying the PDF of a random vector Y7 = [Y.T:Y¢%] ob-
tained by sampling the random process §(t), where Y, = [Ya, Yo, ..., Yen]T and
Ys = [Yi, Ya2, ..., Y,n]7. The subscripts ¢ and s denote the in phase and out of
phase quadrature components, respectively. We assume that the process y(t) is a
wide sense stationary random process. The necessary and sufficient conditions for

y(t) to be a wide sense stationary random process [30] are:

(A) The quadrature components have zero mean.

(B) The envelope of the pairwise quadrature components is statisti-
cally independent of the phase and the phaée is uniformly dis-
tributed over the interval (0,2x). This results in the pair wise
quadrature components being identically distributed and their
joint PDF being circularly symmetric. This also results in the or-
thogonality of the pairwise quadrature components at each sam-

pling instant.
(C) The autocovariance function and crosscovariance function of the
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quadrature processes of the complex process H(t) = y.(t) +

Jys(t) satisfy the conditions given by

K (1) = Ki(7)

| (3.4)
Kca(T) = _KSC(T)
where .
Kee(r) = E{Xc(t)X(t-1)}
K,o(1) = E{X,(t)X,(t-7)} (35)

CKa(r) = E{X.(X.(t—1))
K, (r) = E{X,t)X.(t-7)}.

Any choice of autocovariance and crosscovariance functions is allowed as long as
requirement (C) is satisfied and the resulting covariance matrix of Y is nonnegative
definite.

Due to requirement (A), E{Y.} = E{Ys} = 0. It follows that £E{Y} = 0. As a

consequence of requirements (B) and (C), the covariance matrix of Y, given by

ECC I ECS
E=1 - | = |, (3.6)
ESC l 238 ]
must satisfy the conditions:
Tee = T
(3.7)
Ecs = —zsc

with the elements of the main diagonal of the matrices X¢s and Zgc being equal
to zero. Note that Zec = E{Y YT}, Tes = E{Yc YT}, Zse = E{Y,YT} and
Ses = E{Y,YT}. Finally, we point out, regardless of the value of N, we always
have an even order PDF when dealing with quadrature components. We are now in

a position to proceed with the characterization of Y as an SIRV.
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For an SIRV, it is pointed out that the PDF of a given order automatically implies
all lower order PDFs. For example, if N random variables are jointly Gaussian, it is
well known that the i** order PDF,i=1,2,...,N—11is Gaussian. This property
of SIRVs is called internal consistency. The requirements (A)-(C) arising from the
wide sense stationarity requirements of the process y(t) are called external consistency
conditions. Requirements (A)-(C) are not inherent to the SIRP and do not hold when

the SIRP is not wide sense stationary.

3.3 Techniques for Determining the SIRV PDF

In this section, several techniques are presented for obté.ining hon(p). For con-
venience, temporal wide sense stationarity of the underlying bandpass process is
assumed. However, the functional form of hon(.) is ﬁnaﬁected'wh‘ethef or not the
random process is temporally wide sense sta,tionafy. Hence, it is allowable to let
p=(y — b)TEZ-!(y — b) in the final result, in geﬁeral, where b is any mean non-zero
“ vector and ¥ is any non-negative definite matrix.

Recall from Chapter 2 that the PDF of an SIRV YT = [YCTEYST] with Y. and Y,
defined in Section 3.2 is given by

fy(y) = (2m)7VIZ| 2 han(p) (3.8)

Assuming temporal wide sense stationarity, p = y?£~!y where ¥ is given by eq (3.6).
The mean vector of Y is zero due to requirement (A) in Section 3.2. The covariance
matrix ¥ having the form of eq (3.6) and satisfying the requirements of eq (3.7)
is readily determined when the autocorrelation function of the process is specified.
Given X, several techniques for obtaining hon(p) are presented in this section.

The representation theorem for SIRVs allows us to express Y as a product of a
Gaussian random vector Z, having the same dimensions as Y and a non-negative
random variable S. For the problem of radar clutter modeling, since it is desirable to
control the non-Gaussian nature of Y and its correlation properties independently,
we assume that the random variable S is statistically independent of Z. In addition,
the covariance matrix of the SIRV can be made equal to the covariance matrix of the
Gaussian random vector by requiring E(S?) to be unity. Finally, it is pointed out

that the mean of Z is necessarily zero.
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A physical interpretation can be given to Z and S. Consider a surveillance volume
subdivided into contiguous range-Doppler-azimuth cells. Assuming a large enough
cell size such that many scatterers are located in each cell, the N pulsé returns from a
given cell can be modeled as the Gaussian vector Z due to the central limit theorem.
Also assume that the average clutter power remains constant over the N pulse returns
in a coherent processing interval. However, the average clutter power is allowed to
vary independently from cell to cell since different sets of scatterers are located in
each cell. The variation of the average clutter power from cell to cell is modeled by

the square of the non-negative random variable S.
3.3.1 SIRVs with Known Characteristic PDF

We consider specification of the PDF of the SIRV Y when its characteristic PDF

is known in closed form. We have pointed out in the previous section that the mean
vector of Y is zero. Also, we have discussed the specification of the covariance matrix
of Y. Now, we shall focus on the specification of hon(p). As a consequence of the

representation theorem, we can write -

han(@) = [ 5N eap(~55) fs(s)ds. (3.9)

Equation (3.9) enables us to specify hon(p) when the characteristic PDF fs(s) is
known in closed form. However, in some cases, even though an analytical expression
is known for the characteristic PDF, it may be difficult to evaluate the infegral in
eq (3.9) in closed form. In such instances, an alternate method for specifying hon(p)

must be examined. The method presented in the next section is useful for these cases.
3.3.2 SIRVs with Unknown Characteristic PDFs

When the characteristic PDF of the SIRV is unknown or when the integral in
eq (3.9) is difficult to evaluate, we propose an alternate method to obtain han(p).
Recall that we are dealing with an even order PDF. Therefore, we can use eq (2.30)
starting with A;(g) to obtain k;n(g). It is worthwhile pointing out that hy(.) is related
to the first order envelope PDF. From requirement (B) of Section 3.2, the joint PDF

of the i** in phase and out of phase quadrature components can be expressed as

IYai Yo (Weis Ysi) = (27r)'la_'2h2(p) (t=12,...,N) (3.10)
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where p = (—y“i;‘i“l and o? denotes the common variance of the in phase and out

of phase quadrature components. The envelope and phase corresponding to the i**

quadrature components is given by

Ri = \[Y2+Y?

©; = arctan }—;'-L
cs

(3.11)

Due to the assumption of wide sense statidnarity, we can drop the subscript ¢ in
eq (3.11). The Jacobian of the transformation given by eq (3.11) is J = R™!, where
J denotes the Jacobian. Using the Jacobian in eq (3.10) results in the joint PDF of
R and © being given by

r r?

fre(r, 8) = o7 h2(02) (3.12)

Clearly, the joint PDF in eq (3.12) can be factored as a product of the marginal PDFs
of the random variables R and ©. Consequently, the random variables R and © are

statistically independent with PDFs given by

fa(r) = Fha(Z) (0<7 < o0o)
(3.13)
fe(d) = (2n)' (0<8<2n).
Equation (3.13) relates the envelope PDF to h,(.). Hence, we can write
2 o2
ha(—5) = —-fr(r). (3.14)

Thus, eq (3.14) provides a mechanism to obtain k;(g). Starting from k;(q), we then
use eq (2.30) to obtain hyn(q). Since not all non-Gaussian envelope PDF's are ad-
missible for characterization as SIRVs, we must check that h;(q) and its derivativeé
satisfy the monotonicity conditions stated in Chapter 2. Finally, h,n(p) is obtained

by simply replacing ¢ by p = (y — b)TZ~'(y — b) in ksn(q).
3.3.3 Hankel Transform Approach

In this section we present an approach based on the Hankel transform for specifying
han(p). Recall that the joint PDF of the #** in-phase and out-of-phase quadrature

components of Y is given by eq (3.10). For convenience, it is assumed that o2 is
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unity. Dropping the subscript i from eq (3.10), the joint characteristic function of Y

and Y,; is expressed as

O..v, (w1, w2) = (27“)-1/_ /_oo ezp(jurye + jways)ha(y? + y2)dycdy,.  (3.15)

Introducing the transformations

R = T2+ 72

© = arctan 1—}}

¢ (3.16)
w = Jwi+tuw?
a = arctan gz-

we can rewrite eq (3.15) as

by..v, (w1, we) = (2m)7! /ooo /(;2” ezpljwr{cos(0)cos(a) + sin(6)sin(a)}|rha(r®)dr db.
(3.17)
Noting that cos(A — B) = cos(A)cos(B) + sin(A)sin(B), we can rewrite eq (3.17) as

by, v.(wy, wp) = (2m)7" /ooo /02" ezpljwrcos(d — a)]rha(r?)drdf. (3.18)

Interchanging the order of integration in eq (3.18), and recognizing that [35)]

27

Jo(z) = o= [ explizcos(s — ld, (3.19)

where Jo(z) is the Bessel function of order zero, we have
Brev(wn, wa) = [ rha(r?)Jowr)dr. (3.20)

From eq (3.20), it is clear that the joint characteristic function of Y. and Y, is a
function of w = y/w? + w3. Hence, it is a circularly symmetric characteristic function.

Denoting this function by ¥(w), we can write

U(w) = /:o rho(r?)Jo(wr)dr. (3.21)
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Equation (3.21) is recognized as the Hankel transform of order zero of hy(r?). Using

the inverse Hankel transform, we obtain
hy(r?) = /oo w¥(w)Jo(wr)dw.
0
Introducing the dummy variable w, we can write

ha(q) = /0 " w0 (w)Jo(wr/T)dw.

We then use eq (2.30) to obtain h,n(g). More explicitly, we can write

N-1

th(Q) - (__2)N—1 /w w\ll(w)%-ﬁ-_-;[Jo(w\ﬁ)]dw

0

Using the identity [35]

we have

Use of the recurrence relation {35]

%[n‘“Ja(n)] = ()

results in
d? w? -2
d—q;[JO(w\/ﬁ)] = 7 (VO alwv/g).
Repeated use of eq (3.27) gives

dN— _le—

1 : ' 1
W[JO(W\/‘I_)] = (-1 -21—v:—1(\/§)'N+1JN_1(w\/(7).

Substituting eq (3.29) in eq (3.24) gives

han(@) = (V'Y [ oM () Ios(wy/ D)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Finally, h,n(p) is obtained from eq (3.30) by replacing ¢ by p = (y — b)TZ-!(y — b).
This completes the proof of eq (2.32) for even values of N which had been previously

deferred. The integral in eq (3.30) is recognized as the Hankel transform of order
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N -1 of ¥(w). A number of Hankel transforms have been provided in [36] and these

will be made use of in the examples presented in Section 3.4.

3.4 Examples of Complex SIRVs

This section presents examples based on the approaches discussed in Section 3.3
and is divided into three parts. In section 3.4.1, we present examples that assume
the knowledge of the chara.cteristic PDF. In Section 3.4.2, the marginal envelope
PDF is assumed to be known whereas in Section 3.4.3, knowledge of the marginal
characteristic function is assumed. Finally, at the end of Section 3.4.3 we point
out some univariate PDFs that cannot be generalized to SIRV characterization. We
consider the problem of determining the PDF of the random vector Y7 = [Y T:Y,7]
specified in Section 3.2. It is assumed that the mean vector of Y and its covariance
matrix ¥ are known. Consequently, specification of the PDF of Y of the form of

eq (3.8) reduces to determination of hon(p). A
3.4.1 Examples Based on the Characteristic PDF -
3.4.1.1 Gaussian Distribution

The Gaussian marginal PDF for the quadrature components having mean b; and

variance o} is

1 (yx — bi)?

fr(ye) = ‘\/Tz—)—-exp(‘_zaz—) (=00 < yx < ). (3.31)
T )0k .

The characteristic PDF for this example is given by
fs(s) =6(s—1) (3.32)

where 6(.) is the unit impulse function. Using eq (2.21), it is seen that the resulting
hn(p) is given by
hn(p) = ecp(-E). (3.33)

where p = (y —b)TZ-}(y —b). The corresponding PDF for any N is given by
eq (2.20). For N = 1, this result reduces to eq (3.31). When Y is made up of
‘quadrature components, we obtain the the corresponding kan(p) by simply replacing
N by 2N in eq (3.33). Whenever a characteristic PDF can be made to approach a
unit impulse function displaced to the right of the origin by appropriate choiée of its
parameters, it follows that the corresponding SIRV PDF will approach the Gaussian
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PDF.
3.4.1.2 K-Distribution

The K-distributed envelope PDF, by definition, is given by

) = 55ty

where a is the shape parameter of the distribution, b denotes the scale parameter of
the distribution, Kn(t) is the N** order modified Bessel function of the second kind
and u(r) is the unit step function. The K-distributed envelope PDF is commonly
used for modeling radar clutter PDF's that have extended tails {19, 20] and [2, 9]. In
particular, the PDF becomes heavy tailed as a approaches zero. Plots of eq (3.34)

)* Kaua (br)ulr) (3.34)

for several values of a are shown in Figures 3.1-3.4.

The K-distributed envelope PDF arises when we consider the product of a Rayleigh
distributed random variable R’ and an independent Chi-distributed random variable
V. More precisely, we consider the product R = R'V, with R’ and V being statisti-
cally independent. Their PDF's are given by

7', 2 [
fr(r) = r'ezp(—%) 0<r < (3.35)
and
2b 2001 b2v?
fV(v) = F(a)?a (bv) exp(—T) 0 v < o0, (336)

respectively. Consequently, the PDF of R is given by

fr(r) = [5° fav(rlv) fy(v)dv

(3.37)
= I5° Freap(—51) s (bv) ™ eap(— 7).
From [35], we have
z¥ foo T 22 ™
K” = - - —v-1 - . .
(z2) 5 /. exp| 2(t + W=7 dt  [largz] < 4], z2>0 (3.38)

Letting v* = ¢ in eq (3.37) and using the result of eq (3.38), the PDF of eq (3.34)

follows.

The quadrature components corresponding to the Rayleigh envelope PDF are in-

dependent identically distributed zero mean Gaussian random variables having unit
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Figure 3.1: K-distribution, b = 0.31, a = 0.05
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Figure 3.2: K-distribution, b =0.77, a = 0.3
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Figure 3.3: K-distribution, $ =1, a = 0.5
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Figure 3.4: K-distribution, b = 1.4, @ = 0.99
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variance. The PDF of the quadrature components corresponding to R’ is expressed

as
fa2) = fau(e) = @) hezpl(-2) (3.39)

where Z, and Z, denote the in phase and out of phase quadrature components. The
quadrature components arising from the K-distributed envelope PDF, denoted by Y.

and Y,, respectively, can be expressed as

Y.=2.V
(3.40)

Y,=2Z,V.

Note that |¥| = |Z|V and ©4 = ©;. Consequently, the PDF of Y, is given by

Frolw) = e [ tenpl (4 . (341)
T V2rT(a)2e-1 Jo 2" v? ' ‘

Making the change of variables ¢ = b’v? and z* = b’y?, and using eq (3.38), the PDF

( )

where the absolute value denoted by |.| is used on account of the requirement that
z > 0. In a similar manner, it can be shown that the PDF of Y, has the same
functional form as eq (3.42). The PDF of eq (3.42) is called the Generalized Laplace
PDF [16].

The characteristic PDF for the K-distributed SIRV is

folo) = o tbe P ean(~ (). (3.43)
Using egs (2.21) and (3.38),
0 232
hn(p) =/; s'Nexp(—é%)F(iI;% (bs)za'lemp(—-b—é——)ds. (3.44)
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Making the change of variables t = b%s? and z* = b%p, the resulting hn(p) is given by

N a——-
hn(p) = (o) (b‘é; — K _,(by/p). (3.45)

The corresponding SIRV PDF for any N is given by using eq (2.20). For the case
when N = 1, this reduces to eq (3.42). When dealing with quadrature components,

we use eq (3.45) with NV replaced by 2N
3.4.1.3 Student-t Distribution

The Student-t distribution for the quadrature components is given by

(l/+2)
b\/_l“

where b is the scale parameter, v is the shape parameter I'(v) is the Eulero-Gamma

fr(ye) = u+y5”*w—w<yw<wxu>o (3.46)

function and k = ¢, s. Plots of the Student-t distribution are shown for several values

of v in Figures 3.5-3.7.  The characteristic PDF for this example is

b2

2 1)yb2‘,_ (s~ *+ ezp —ﬁ)u(s)' (3.47)

o)\ 2

fs(s) =
Use of eq (2.21) results in hn(p) being given by

250 T (v + &)
T(v)(B* + p) 5+

The corresponding SIRV PDF for any N is given by eq (2.20). For N = 1, this result

hn(p) =

(3.48)

reduces to eq (3.46). When dealing with quadrature components, we make use of

eq (3.48) with N replaced by 2N.
3.4.1.4 Mixture of Gaussian PDFs

An interesting non-Gaussian marginal PDF that is admissible as an SIRV is the
mixture of Gaussian PDFs. We consider the PDF given by

(yx — bi)?

Frowe) = 3 ai(2nk}) " Feap(- 57 )

(3.49)

for the quadrature components of Y. The characteristic PDF for this example is

given by
fs(8) = aib(s — ki) (3.50)

43




0.07

Ix (zk)
0.06}

0.05F

0.04

0.03

0.02

0.01

Figure 3.5: Student-t distribution, b = 0.14, v = 0.01
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Figure 3.7: Student-t distribution, b=1, v = 0.5
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Note that S is a discrete random variable, with a; denoting the probability P(S = k).
Also, it is required that

G > 0 i=1,2,...
(3.51)
Yia; = 1.
Using eq (2.21), it is seen that
hn(p) = Lk a;ezp(—é—:—?). (3.52)

The corresponding SIRV PDF for any N is given by eq (2.20). For N = 1, this result
reduces to eq (3.49). When dealing with quadrature components, we make use of the
result of eq (3.52) with NV replaced by 2N. Note that the a;’s can be assigned any

desired discrete distribution.
3.4.2 Examples Based on Marginal Envelope PDF

We shall report here on some new SIRV PDF's obtained starting from the marginal
envelope PDF. Note in general, that the characteristic PDF for all the examples
considered here are not available in closed form. Since o2 is the common variance
of the in phase and out of phase quadrature components, ¢? is equal to 2E(R?). In

addition, recall that the binomial coefficient is defined by

l I

= = (3.53)

In all the examples in this section, we start with h,(¢) and obtain han(g) by the
process of successive differentiation. The corresponding h,n(p) for each example is
obtained by replacing ¢ by p in han(g). In all the examples presented in this section,
note that the envelope PDF's reduce to the Rayleigh envelope PDF for appropriately

chosen parameters.
3.4.2.1 Chi Envelope PDF

We consider the Chi distributed envelope PDF given by

2b

fR(T) = 1-\(”)

(br)*tezp(~b*r?) (0 < r < o0) (3.54)
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where b denotes the scale parameter and v denotes the shape parameter. Plots of
the Chi envelope PDF are shown in Figures 3.8-3.10 for several values of v. Using

eq(3.14), we can write

ha(q) = = (b0)*¢" ezp(~b0’q). (3.55)
I'(v)

Using eq(2.30), we have

h - (— N—1d”“h_zlq
av(q) = (-2)V 1 e 350

_n\N=-1 - _
= LB 2(bo)? fmr g eap(—b20%q)].

Recall Leibnitz’s theorem for the n* derivative of a product [35], which states that

d'(uwv) | " d*u d"*v
 — 2| | (3.57)

where u and v are functions of z. Noting that

dk(qu-l) _ F(U) vek-1

qu - F(V _ k)q [ (3.58)
it follows that N
han(g) = (=2)¥1AY Grq" *ezp(—Bq) (3.39)
k=1
where
N-1 I(v)
— _\N—kpN-k__ 1V}
Gy = (-1)"*B To—Ft1) (3.60)
k-1
— i_ 2v
A 1_‘(V)(ba)
B = bt

An important condition that must be pointed out is that the SIRV PDF is valid only
for v < 1. This is due to the fact that hy(p) and its derivatives are monotonically

decreasing functions only in the range of values of » mentioned above. Finally, for
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Figure 3.9: Chi Envelope PDF, $ = 0.22, v = 0.1
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Figure 3.10: Chi Envelope PDF, b = 0.5, v = 0.5
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Figure 3.11: Chi Envelope PDF, b =0.70, » = 1.0
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v = 1, note that' the Chi envelope PDF reduces to the Rayleigh envelope PDF. The

corresponding SIRV PDF then becomes Gaussian.
3.4.2.2 Weibull Envelope PDF

The Weibull distributed envelope PDF is given by
fr(r) = abr*lezp(—ar®) (0T < o). (3.61)

where a is the scale parameter and b is the shape parameter. Plots of the Weibull
distribution for several values of b are shown in Figures 3.11-3.13. Using eq (3.14),

we have

ha(q) = abo’q lezp(—actq?) = (—2>diq[emp(—Aqf)] (3.62)

where A = ac®. From eq (2.30), we have
- ha(q) = (-2)" lean(~Ag¥)) (3.63)

The rule for obtaining the N** derivative of a composite function is [35]: If f(z) =

F(y) and y = p(z), then

dN N Uk dk .
or (@)} = :4;,1 —!@;[F(y)] (3.64)
where
U. = u k—m k k—-m dNym
Je = El(—l) ¥y (3.65)
m
Making the association z =g and y = —Aqu, we have
N ,,
han(g) = Y Ciq? ~Nexp(—Ag?) (3.66)
k=1
where
b e AR R T+ 2
Ce=)_(-1) +N2N7:T 2 (3.67)

m=1 m r(1+_n;_b_N)

The Weibull envelope PDF is admissible for characterization as an SIRV for values

of b less than or equal to 2. This is due to the fact that h;(q) and its derivatives
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Figure 3.12: Weibull distributed Envelope PDF, b = 0.5, a = 1.86
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Figure 3.13: Weibull distributed, b=1,a=1
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Figure 3.14: Weibull distributed, b = 2, a = 0.5
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fail to satisfy the monotonicity condition for other values of b. However, this is not a
serious restriction for the point of view of radar clutter modeling because the Weibull
envelope PDF is of interest in modeling large tailed clutter. Such a situation arises
only when 0 < b < 2. .The Weibull envelope PDF reduces to the Rayleigh envelope
PDF when b = 2. The corresponding SIRV PDF then becomes Gaussian. Another
case of interest arises when b = 1. In this case the Weibull envelope PDF corresponds

to the Exponential envelope PDF.
3.4.2.3 Generalized Rayleigh Envelope PDF

The next PDF considered is for the Generalized Rayleigh envelope which is given
by
r) = ———sver 0<r<o 3.68
where a is the shape parameter and ﬂ is the scale parameter. Plots of the Generalized

Rayleigh distribution are shown for several values of « in Figures 3.15-3.17.

Proceeding as in the previous example, we find that

ha(g) = Aezp(—Bg*) (3.69)
where
A = Pa
T (3.70)
B = pg~%o®

Using eqs (1.25), (2.63) and (2.64), we have

_ N-1
han(g) = > Diq¥~N*lezp(—Bg3) (3.711)
k=1
where
Bk | k (1 + Z2)
N1 2 3.72
,f\;,( k! " I'(2+4 5% - N) (3:72)

Note that the SIRV PDF is valid only in the range (0 < a < 2). This is because
of the fact that the monotonicity conditions for the derivatives of hy(p) are satisfied
only for the specified range of a. The Generalized Rayleigh envelope PDF reduces to
the Rayleigh envelope PDF when a = 2.
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Figure 3.15: Generalized Rayleigh distributed Envelope PDF, a = 0.1, 8 = 3.45 x 10~18
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Figure 3.16: Generalized Rayleigh distributed Envelope PDF, a = 0.5, 8 = 0.048
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Figure 3.17: Generalized Rayleigh distributed Envelope PDF, a = 1, 8 = 0.577
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3.4.2.4 Rician Envelope PDF

There are two possible ways in which the Rician envelope PDF occurs. One possi-
bility arises through a complex zero mean random process with correlated quadrature
components that are Gaussian. The other is through a non-zero mean complex Gaus-
sian process. The former case is considered here, since the SIRV PDF can be obtained

by differentiation of ky(q). For this case, the envelope PDF is given by

2 2

_ r ezpl— r S pr .
0= =gl — ) 19
(0L r <o)
(0<p<])

where Io(z) is the modified Bessel’s function of the first kind of order zero. Plots of

the Rician envelope PDF for several values of p are shown in Figures 3.19-3.21. Let

o?

A= (3.74)
Using eq (3.14) we have
o2
ha(q) = \/T_—p;ewp(—Aq)Io(pAQ)- (3.75)

From eq (2.30) .

We then use eq (3.57) and the identities [35]
I(z) = & [§7 cos(nb)exp{zcos(8)]dd
k (3.77)
cosk(0) = X Tk, cos|[(k — 2m)f)
m
to obtain
o2V N-1| N-1 Pk
han(q) = ——=— 3 (-1) (5) xezp(—Aqg) (3.78)
(1 =P ) ? k=0 k
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Figure 3.20: Rician Envelope PDF, p = 0.5
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Figure 3.21: Rician Envelope PDF, p = 0.9
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where

k| &
Ee= Y Ii—2m(pAq). (3.79)

m=0 m

For p = 0, note that the Rician envelope PDF corresponds to the Rayleigh envelope

PDF.
3.4.2.5 Generalized Gamma Envelope PDF

In a recent effort [37) the Generalized Gamma envelope PDF has been proposed
as a candidate for univariate non-Gaussian PDFs for modeling radar clutter. The

Generalized Gamma envelope PDF is given by

falr) = feglar)eap(=er) (3.0

0<r<o, a,c,a>0

where a is the scale parameter and « and c are shape parameters of the PDF. Note

that the Generalized Gamma envelope PDF reduces to:
1. the Weibull envelope PDF when a =1,
2. the Gamma envelope PDF when ¢ =1,

3. the Exponential envelope PDF when c=a =1,

‘4. the Chi envelope PDF when ¢ = 2 and

5. the Rayleigh envelope PDF when ¢ =2 and o = 1.

We show that this PDF is admissible as an SIRV. Using eq (3.14), we can write
ha(q) = Aq* ~ezp(-Bg?) (3.81)

where A = f‘%’&%‘i and B = ac®. Using eq(2.30), we have

han(q) = (—2)N -1 e

3.82
N-1 4 dN-1 1 a1 £ ( )
= (=2)N ' Afz=rlg T Tlexp(—Bgr)). |
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Using eq (3.57) and eq (3.58), we can rewrite eq (3.82) as

SRRTEPES o Il KSR . . -
2N\q) = P . dkexp q? T(Z N+k+1)q .
(3.83)

The k** derivative of the exponential term is readily obtained by using eqs (3.64-3.67).

Hence, we have

N-1
han(q) = 3 Fiq? ~Nexp(—Bq?) (3.84)
k=
where
N-1 (L) LI B T(k+1)
F. = (=2 N-IA m+l-1 ——2—107.
k=(=2) . I‘(——N+k+1m§”§ D m!I T —k+1)
(3.85)

The Generalized Gamma envelope PDF is admissible for characterization as an SIRV
for values of ca less than or equal to 2. This is due to the fact that h;(g) and its
derivatives fail to satisfy the monotonicity condition for other values of ca. Interest-
ingly enough, it is only these values of ca that give rise to extended tails for the PDF.

Hence, the monotonicity conditions do not impose a serious restriction.
3.4.3 Examples Using the Marginal Characteristic Function

Successful use of the marginal characteristicfunction approach requires the knowl-
edge of various Hankel transforms. For each example, the particular transform used
is cited by equation and page number as it appears in [36]. To illustrate the pro-
cedure followed, a detailed derivation is presented in the first example. However, in
the remaining examples, we simply list the univariate characteristic function of the
quadrature components, the corresponding marginal PDF and the resulting hon(q).

Finally, hon(p) is obtained by replacing g with p in the expressions for hon(q).
3.4.3.1 Gaussian Distribution

First, we consider the characteristic function given by

U(w) = ezp(—ﬁ;—z-). (3.86)
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The corresponding marginal PDF of the quadrature components is

frlye) = —==eap(=2) (—00 < yi S o). (3.87)

Equation (3.87) is the PDF of a zero mean unit variance Gaussian random variable.
Substitution of eq (3.86) in eq (3.30) yields

han(@) = (VD' [ wNean( ——-)JN- (wy/D)d. (3.88)
From [36], eq (10), p29, we have the Hankel transform
e foe X v (3.89)
2 — —
A ezp(—az’)Jy(zy)\/zydz = 2a )v+1 zp(— 4a). .

By making the association that a = 0.5, v = N — 1, £ = w and y = ,/q, the above

result becomes

oo 2 1
/0 WM eap(— ) In-1(w/g) Vad = V@' Heap(-d). (3.90)
It follows that
han(q) = eap(~3). (3.91)

From eq (3.8), it is seen that the resulting SIRV PDF is the familiar multivariate
Gaussian PDF, given by

fe(y) = (2m) V|2l Feap(~5). (3.92)

3.4.3.2 K-Distribution
The marginal characteristic function given by

w?

P(w) = (1 + b2) (3.93)

corresponds to the K-distributed envelope whose PDF is

fal) = 15 () Komaltr)ut?) (3.94

68




where « is the shape parameter of the distribution, b denotes its scale parameter,
Kn(t) is the N** order modified Bessel function of the second kind and u(r) is the

unit step function. The pertinent Hankel transform for this example is found as {36}
eq (20), p24:

@y 3 K, (ay)

® vl 2 2y-u-1 _
/o 24 (a +0%) ey Ve = (3.95)
The resulting hon(q) is
N (b‘/a)a—N
hZN(Q) - F(a) 9a-1 KN-a(b\/a)' (396)

As a special case, when « is equal to unity, eq (3.93) is the characteristic function

of the Laplace distribution for the quadrature components whose PDF is given by
b
Fri(ye) = gezp(=blysl) (—oo < yi < o0) (3.97)

where |yx| denotes the absolute value of y; and b denotes the scale parameter. The

corresponding han(gq) is given by

han(q) = 8V (by/g) N Kn-1(b/Q)- (3.98)

Another interesting case of the K-distribution arises when a = 0.5. This corre-
sponds to the exponential distribution for the marginal envelope PDF. Therefore, the
K-distributed envelope PDF with a = 0.5 is identical to the Weibull distributed en-
velope with b = 1. Although the characteristic PDF of the Weibull SIRV is unknown
in general, the characteristic PDF of the Weibull SIRV for b = 1 is obtained when
a = 0.5 in eq (3.43). Finally, we point out that the K-distributed envelope reduces

to the Rayleigh envelope PDF when « tends to oo.
3.4.3.3 Student-t Distribution

The characteristic function for the Student-t distribution with scale parameter b

and shape parameter v is given by

_ K (bw)(bw)”

@) = T30 (3.99)
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Note the functional similarity with the envelope PDF given by eq (3.94). The Student-
t distribution is referred to as the generalized Cauchy distribution in [38] because the

marginal PDF of the quadrature components is given by

1 2
T(v +3) Yoy} (—o0 < 25 < 00), v > 0 (3.100)
14

() = W(l +%

where T'(v) is the Eulero-Gamma function. The relevant Hankel transform, [36] eq

(3), p63 is

2UtugsT(u + v + 1)yv+E

/0 e+ K, (az)dy(2y)/Fide = e (3.101)
Using eq (3.30), hon(g) is expressed as
2T (v + N
han(q) = v+ ) (3.102)

L(v)(82 + )N+
The Cauchy PDF for the quadrature components arises when v is set equal to % in
eq (3.100) and is given by

b

frilye) = T 1D (

—00 < 7 < o) (3.103)

where b is the scale parameter. The corresponding hyn(g) is

2NBT (L + N)
Va(b + q)N+E

Note that the Cauchy PDF does not have finite variance. However, this PDF is

han(g) = (3.104)

useful in modeling impulsive noise {39]. Finally, we point out that when b = 2v
and v tends to oo in eq (3.100), the Student-t distribution reduces to the Gaussian

distribution.
3.4.3.4 Rician Envelope PDF 2

We consider the Rician envelope PDF, arising from a non-zero mean complex Gaus-

sian process, given by

(r? +a

fr(r) = —exp[— 2)]Io( —). - (3.105)
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Plots of the Rician envelope PDF are shown in Figures 3.20-3.22 for several values of
a and a = 1. Note that this PDF approaches the Rayleigh PDF as a tends to zero.

For convenience, we assume that o2 = 1E(R?) = 1. Using eq (3.14), we have

r? ar

hz(?‘z) = Ae.‘tp(—?‘—a?)fo(— (3106)

a®

o2
where A = ﬂ-%z?"—). Noting that [35]

Jo° zezp(—az?)L,(Bz)J.(vz)dz = glgezp(%'fi)J,,(gg-)

(3.107)
Re{a} >0, Re{v}> -1,
eq (3.21) results in the characteristic function
wia?,  wa
U(w) = exp(— 5 )JO(Z{)‘ (3.108)

Recognizing that [35]

> g*tezp(—az?)J,(Bz) ], (vz)dz =

Y -Lﬂl‘;ﬁl r(m+z+m+l+1) 82 2
T Lo — it ()" F(=my —p—mi v+ 15 35) (3.109)

Re{a} >0, Re{p+v+1r}>-2,8>0,v>0

where F(., .; .; .) is the four parameter hypergeometric function, it follows from

eq (3.30) that

" ( )_ 2N +2 o I‘(m+N+1)(-—-a2
W= 5NHT(N) & mil(m+ 1) 208

4
" F(-m, —m; N; 352—) (3.110)

Since han(q) for this example involves an infinite series of hypergeometric functions,
its form is mathematically intractable. Therefore, the corresponding multivariate
SIRV PDF does not lend itself for use in practical applications.

We point out here that the log-normal envelope PDF and the Johnson (unbounded)
distribution are not admissible for extension to SIRVs. This is due to the fact that
ha(q) obtained for each of these distributions fails to satisfy the monotonicity con-

ditions stated in Section 3.3. Table 3.1, presents a list of marginal PDFs suitable
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Figure 3.22: Rician Envelope PDF,a =0.25,a=1
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Figure 3.23: Rician Envelope PDF,a=05,a=1
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Figure 3.24: Rician Envelope PDF, ¢ = 0.9, a = 1
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Table 3.1: Ma.rginal PDFs Suitable for extension to SIRVs

T Marginal PDF x(z) 7
Chi ﬁ%(bz)z”"lezp(—bzzz)
Weibull abz’~Tezp(—az’)

Generalized Rayleigh F,"Tfl-)ezp[—(%)“]
Generalized Gamma | fr(r) = ﬂ"-’f;)-(ar)“"lezp(—ar‘)

Rician 7-1-’_7ezp[— sy oz
Gaussian Var 83?(-%2')

Laplace %ezp(—blz kl)

Cauchy W-‘;—zq '
K-distribution rte1 (%)% Ka-1(b2)u(z)
Student-t %(1 + fg;)'""%

for extension to SIRVs. Table 3.2 tabulates hon(p) for those marginal PDF's treated
as envelope PDFs while Table 3.3 gives those h,n(p) obtained from the associated
marginal characteristic function.

Plots of eq (3.8) with N = 1 for the various SIRV PDFs are shown in Figures

3.25-3.33. In all the plots, the covariance matrix used is given by

1 05
T = (3.111)

Observe that each PDF is unimodal. However, the width and height of the peak

along with the behavior of the extreme values (i.e. the tails) differ significantly.

3.5 Significance of the Quadratic Form of the SIRV PDF
Thus far, our discussion has focussed on techniques that can be used to obtain
the PDF of an SIRV starting from either the first order PDF or the first order char-
acteristic function. Given random data, we are also interested in the problem of
approximating the distribution of the underlying data. The problem of multivariate
distribution identification is of interest in radar signal detection. Since the back-
ground clutter is not known a priori, there is a need to identify the underl);ing clutter
PDF based on measurements obtained from a given environment. Since the radar
processes N pulses at a time, knowledge of the joint PDF of the N samples is nec-
essary in order to obtain the optimal radar signal processor for the given clutter

background. We present an important theorem here which enables us to address the
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Table 3.2: SIRVs obtained from the marginal envelope PDF

Marginal PDF . | han(p) —
Chi (=2)N-14T,_ Gip*~*ezp(-Bp)
N-1 - -k __T(v
Gk=(k_1 (_I)N k pN kﬂv__ﬁ
A= 2., (b0)2v
B = b*0?
r<l1
Weibull Yi=1 Cip® ~Nezp(—Ap¥)
A=act
C _Z" (__1)m+N2NA" k ML
E= Lm=1 B\ m ) TU+ZE-N)
b< 2
Gen. Rayleigh f;ll kalTa‘N“e:cp(—Bp%)
03
A= ;3__1_21"((:)
B = ﬂ—aoa
k ~1oN-18* [ Kk r(142e
Dy =3 o (~1)mHN-12N ‘%( m ) N Ry
a<?2
Generalized Gamma | hyn(p) = Y py FipF~Vezp(-Bp5)
- N-1 CT(ee k m —1B™ T(41) me
Fe = (-2)V IA( k )m2m=1 i (C)H B e A e
ca<?2
.. - N-1 »
Rician #;zzv:ol ( E ) (—1)‘(§)kfkezp(—A)
k .3
sk = Z;:O ( m ) ]k—Zm(pA), A = 2{1-955

Table 3.3: SIRVs obtained from the marginal characteristic function

Marginal PDF | h,n(p)

Gaussian ezp(—%)

Laplace b (/D) =N Kn_1(b\/D)
27T L+ N)

Couchy | oy

»3IN

K-distribution | &= OB Ty (5. 5)

2V T (4N
Student-t W
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Figure 3.25: Gaussian distribution, zero mean, unit variance
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Figure 3.28: K-distribution, b =1, a = 0.5
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distribution identification of an SIRV.

Theorem 4 The PDF of the quadratic form appearing in eq (2.20) is given by

“hn(p)  (0<p< o). (3.112)

Proof: First, we consider a spherically symmetric random vector (SSRV) X = [X;, X3, ...

Because an SSRYV is a special case of the SIRV, the representation theorem can be

used to express X as
X=1Z5 (3.113)

where Z is a Gaussian random vector having zero mean and identity covariance matrix
and S is a non-negative random variable with PDF fs(s). Consider the random

variable

P =XTX. (3.114)

Using eq (3.113) in eq (3.114) gives
P =12778? (3.115)

Since ZTZ = =N, Z? is the sum of the squares of independent 1dentically distributed

Gaussian random variables having zero mean and unit variance, the PDF of V ='Z7Z

is a Chi square distribution with N degrees of freedom. Consequently,

fv(v) = g%p(g)“”(’é’) ;v 2> 0. (3.116)

JoslP 1) = iy @.117)
From the theorem of total probability, we have
fp(@) = / i (i )?: s~V emp(—p—'z) fs(s)ds. (3.118)
o 27[(3) 2s
Recall that ,
hn(p) = [ s~V ean(~7)fsls)ds. (3.119)

86




Consequently, the PDF of P’ is expressed as

o) = B (s @.120)
Recall that an SIRV Y = [1;, Yz, ..., Yn]T having a mean vector b and covariance
matrix 3 is related to the SSRV X by the linear transformation

Y=AX+b (3.121)

where & = AAT. Then, the quadratic form appearing in eq (3.114) can be expressed

as

P=(Y-b)T= (Y -b). (3.122)

However, eq (3.122) is also the quadratic form appearing in eq (2.20) which is the
PDF of Y. Since P = P, the PDF of the quadratic form P which is associated with
Y is

' K1 .
fo(0) = B by (p). (3.123)

— 25T (L)
This establishes fhe theorem. Thus, an SIRV is uniquely characterized by the quadratic
form appearing in its PDF. Knowledge of the quadratic form PDF is sufficient to
identify the SIRV PDF. This is an important result since it allows us to reduce the
multivariate distribution identification problem to the equivalent problem of univari-
ate distribution identification of the quadratic form. It is emphasized that the PDF
of P is invariant to the choice of z and . We point out that the invariance of the
PDF of the quadratic form, arises from the fact that an SSRYV arises from a uniform
distribution over an N dimensional hypersphere of radius R. The radius of the hy-
persphere remains unchanged regardless of whether we consider an SIRV or an SSRV.
Only the azimuthal angles and radial angle change depending on whether the random
vector is 2 SSRV or an SIRV. In context of the radar problem, we are dealing with N
complex samples or 2N quadrature components. The results presented in this section

are applicable when N is replaced by 2N.

3.6 Conclusion

In this chapter we have pointed out a method to obtain the PDF of correlated

non-Gaussian random vectors arising in the problem of radar clutter modeling. The
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theory of SIRPs has been used to develop the multivariate PDFs. Various techniques
have been presented to obtain SIRV PDFs. Several examples are provided to illustrate
these techniques. The admissibility of the Chi envelope PDF, Weibull envelope PDF,
Generalized Rayleigh envelope PDF, Rician envelope PDF and Generalized Gamma
envelope PDF as SIRVs has been pointed out for the first time. Finally, we have
obtained the PDF of the quadratic form of a SIRV and we have shown that this PDF
remains unchanged regardless of whether we are dealing with an SSRV or an SIRV.
We have also established that the quadratic form contains all the information that
is required in order to identify the SIRV PDF. As a consequence of this result, the
problem of an SIRV (multivariate) distribution identification has been reduced to the
equivalent identification of the univariate distribution of the non-negative quadratic

form.
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Chapter 4

Computer Generation of
Simulated Radar Clutter
Characterized as SIRPs

4.1 Introduction

This investigation is motivated by a desire to simulate correlated non-Ga.ussian.
radar clutter. Various investigators have reportéd experimental results where non-
Gaussian marginal probability density functions (PDF) have been used to model the
clutter. Usually, radars process N samples at a time. Statistical characterization of
the clutter requires the specification of the joint PDF of the N samples. In addition,
the clutter may be highly correlated. Hence, the joint PDF must take into account
the correlation between samples. Statistical characterization of the clutter is neces-
sary if an optimal radar signal processor is to be obtained. For use of the well known
likelihood ratio test, it is necessary to have closed form expressions for the joint PDF
of the N clutter samples in order to obtain the optimal radar signal processor. In
most cases, it is difficult to evaluate the performance of the optimal radar signal pro-
cessor analytically when the clutter samples are correlated and non-Gaussian. Then
computer simulation may be necessary. Therefore, there is a need to develop efficient
procedures that facilitate computer simulation of the clutter. A library of multi-
variate non-Gaussian PDFs has been developed in Chapter 3, using the theory of
Spherically Invariant Random Processes (SIRP) and Spherically Invariant
Random Vectors (SIRV).;In view of the large number of parameters that are free
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to be specified, the library of multivariate non-Gaussian PDF's can be used to approxi-
mate many different radar clutter scenarios. In this chapter we concern ourselves with
the development of computer simulation procedures for the library of non-Gaussian
PDF's obtained in Chapter 3 so that the performance of any radar signal processor
can be evaluated for a variety of different clutter scenarios. Another issue addressed
in this chapter is performance assessment of the simulation procedures.

It has been pointed out in Chapter 3 that the quadratic form appearing in the
PDF of the SIRV contains all the information necessary to identify the PDF of the
underlying SIRV. We make use of this result in order to assess the performance of the
simulation procedures. Some interesting simulation techniques have been proposed
for SIRVs in {18] and [20]. The technique suggested in [18] makes use of Meijer’s G-
functions. These functions are generalizations of Hypergeometric functions which do
not lend themselves to the development of simple and elegant simulation procedures.
The technique suggested in [20] requires transformations from rectangular to spherical
co-ordinates and then back again. Secondly, this simulation procedure involves the
use of the inverse distribution function approach for a rather complicated distribution
function. The approach developed in this chapter is simpler to implement than those
proposed in {18] and [20]. In addition, a new approach is proposed for assessing the
effectiveness of the simulation procedure.

The problem of computer generation of correlated non-Gaussian radar clutter is
equivalent to the problem of generating random variables with a jointly specified
marginal PDF and covariance matrix. While the problem of generating random se-
quences with either a specified PDF or prescribed covariance function has been well
treated [34], the joint problem has received limited attention. In general, it has
been possible to control either the PDF or the correlation function but not both
simﬁltaneously. Previous attempts [5, 12, 8, 10, 11] to address the problem of gener-
ating random sequences with jointly specified marginal PDF and covariance function
have not been successful because the procedures proposed therein made use of zero
memory nonlinear (ZMNL) transformations on a correlated Gaussian sequence to
obtain the desired non-Gaussian sequence. Consequently, the covariance matrix of
the non-Gaussian sequence was related to that of the Gaussian sequence in a rather

complicated manner. Hence, given a certain covariance matrix for the non-Gaussian
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sequence, it was not possible to determine the corresponding covariance matrix of the
Gaussian sequence. Furthermore, not all nonlinear transformations gave rise to non-
negative definite covariance matrices at their outputs [33, 34]. Thus, using ZMNL
transformations on a correlated Gaussian sequence does not offer a practical solution
to the joint problem. The techniques presented in this chapter successfully overcome
the drawbacks of the previous efforts. This is due to the fact that SIRPs belong to
the class of exogenous product models for radar clutter, which allows for independent
control of the marginal PDF and correlation function.

" In Section 4.2, we review some definitions and background information pertaining
to the theory of spherically invariant random processes. Section 4.3 presents two
canonical simulation proceduresfor generating SIRVs. Performance assessment of the
simulation procedures is discussed in Section 4.4. Finally, conclusions are presented

in Section 4.5.

4.2 Preliminaries

We begin by restating the definitions for a spherically invariant random vector
and a spherically invariant random process. A spherically invariant random vector
(SIRV) is a random vector (real or complex) whose PDF is uniquely determined by
the specification of a mean vector, a covariance matrix and a characteristic first order
PDF. Equivalently, the PDF of an SIRV can also be referred to as an elliptically
contoured distribution. A spherically invariant random process (SIRP) is a random
process (real or complex) such that every random vector obtained by sampling this
process is an SIRV. The work of Yao [15] gave rise to a representation theorem which
can be stated as follows (see Theorem 1):

If a random vector is a SIRV, then there ezists a non-negative random variable S
such that the PDF of the random vector conditioned on S is @ multivariate Gaussian
PDF.

We consider the product given by X = ZS, where X = [X;...Xn|T denotes the
SIRV, Z = [Z; ... Zn|T is a Gaussian random vector with zero mean and covariance
matrix M and S is a non-negative random variable with PDF fs(s). Since it is
desirable to independently control the correlation properties and the non-Gaussian

envelope PDF, Z and S are assumed to be statistically independent. The PDF of X
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conditioned on S is (see eq (2.14))

Fxis(xls) = (2x)" % M| s Neap(~ ) (4.1)

where p is a non-negative quadratic form given by p = xTM~1x and [M| denotes the
determinant of the covariance matrix M. The PDF of X is given by (see eqs (2.15)
and (2.16))

fx(x) = (27)~F M|t hy(p) (4.2)
where
h(p) = [ s Nezp(= o) fs(s)ds. (4.3)

The PDF of the random variable S is called the characteristic PDF of the SIRV.
Therefore, it is apparent that the PDF of a SIRV is completely determined by the
specification of a mean vector, a covariance matrix and a characteristic first order
PDF. In addition, the PDF of the SIRV is a function of a non-negative quadratic
form. However, except for the Gaussian case, dependence on the quadratic form is
more complicated than the simple exponential. Therefore, an SIRP can be regarded
as a generalization of the familiar Gaussian random process. We point out that the
covariance matrix of the SIRV is given by £ = ME(S?) where E(S?) is the mean
square value of the random variable S. It is seen that the covariance matrix of the
SIRV normalized by the mean square value of S is the covariance matrix of the Gaus-
sian random vector. Note that it is possible to set the covariance matrix of the SIRV
equal to that of the Gaussian réndom vector by requiring that E(S?) be equal to
unity. The desired non-Gaussian PDF can be obtained by chosing fs(s) appropri-
ately. Thus, it is seen that the SIRV formulation for radar clutter modeling affords
independent control over the non-Gaussian PDF of the clutter and its correlation
properties. Several techniques are available in Chapter 3 for obtaining hx(p). Note
that the Gaussian random vector is a special case of an SIRV and is obtained when
fs(s) = 6(s — 1) where 6(t) is the unit impulse function. An interesting interpreta-
tion of the representation theorem is that every SIRV is the modulation of a Gaussian
random vector by a non-negative random variable.

Many of the attractive properties of Gaussian random vectors also apply to SIRVs.

The most relevant property of SIRVSs for the purpose of computer simulation is the
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closure property under linear transformation [15] stated below (see Theorem 2, Section
2.3):
If X is an SIRV with characteristic PDF fs(s), then

Y=AX+b (4.4)

is also an SIRV with the same characteristic PDF. It is assumed that A is a nonsin-
gular matriz and b is a known vector having the same dimension as X.

Theorem 2 provides us with a powerful technique for simulating SIRVs. A white
SIRV is defined as one that has a diagonal covariance matrix. In other words, the
components of the white SIRV are uncorrelated but not necessarily independent. We
can start with a zero mean white SIRV X having identity covariance matrix and
perform the linear transformation given by eq (4.4) to obtain an SIR/ Y having a
non-zero mean and desired covariance matrix X. The matrix A and the vector b are

given by

A = ED?
(4.5)

b= py

where E is the matrix of normalized eigen-vectors of the covariance matrix X, D is
the diagonal matrix of eigen-values of ¥ and gy is the desired non-zero mean vector.

In many instances it is not possible to obtain fs(s) for an SIRV in closed form, even
though its existence is guaranteed. In such cases, an alternate approach must be used
in order to characterize the SIRV. The following theorem can be used to completely
characterize a white SIRV having zero mean and identity covariance matrix (see
Theorem 3, Section 2.3):

A random vector X = [X;...Xn]T is a zero mean white SIRV having identity
covariance matriz if and only if there ezist random variables R € (0,0), © € (0,27)

and ®; € (0,7), (k=1,...N —2) such that when the components of X are ezpressed
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in the generalized spherical coordinates

X1 = Rcos(®,)
X = Rcos(®,) [T5) sin(®;) (1<k<N-2)
XN-1 = Rcos(©) [TN7%sin(®;) (4.6)

Xy = Rsin(0) [T¥7?%sin(®;)

then the random variables R, © and ®) are mutually statistically independent and

have PDFs of the form

fr(r) = —gf=——hn(r?)u(r)

S ENTY)
[‘(__‘!'_)

fo.(8) = —FF(%n-)SZTlN""‘(¢k)[U(¢k') — u(¢x — )]
fo(0) = (2m)7"[u(6) — u(6 — 2r)]

where I'(v) is the Eulero Gamma function and u(t) is the unit step function.

As a consequence of Theorem 3, any SIRV with zero mean and identity covariance
matrix can be represented in generalized spherical coordinates which are mutually
and statistically independent regardless of the SIRV considered. Also, note that the
PDFs of © and @, (k =1,... N —2) are functionally independent of the white SIRV
considered. Only the PDF of R changes from one white SIRV to another. Note that
R*=Y¥ X?=XTX. Hence R is the norm of the SIRV.

Another important feature of the SIRV is that the quadratic form appearing in
its PDF contains all the information necessary to identify the PDF. It follows that
knowledge of the PDF of the quadratic form of the SIRV is sufficient to identify the
PDF of the corresponding SIRV [21] (see Theorem 4):

The PDF of the quadratic form appearing in eq (4.2) is given by

1 N
2

(&)’

fo(p) = “hn(p) (0<p< oo) (4.8)

wlZ

2

w|Z
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and remains unchanged regardless of whether or not the SIRV is white.

The theorems reviewed in this section will be made use of in the proposed simulation
approach, discussed in Section 4.3, and in assessing the performance of the simulation
procedure, discussed in Section 4.4.

In the context of the problem of radar clutter modeling and simulation, the band-
pass process Y (t) = Re[Y (t)exp(jwot)] can be expressed in terms of the corresponding
complex, wide sense stationary random processes Y (t). More precisely, we obtain N
complex samples by sampling the complex random process Y (t) = Y.(t) + 3Y.(2),
where the subscripts ¢ and s denote the in phase and out of phase quadrature compo-
nents. This is equivalent to working with a real vector of 2N quadrature components
which is the approach taken in this chapter. Therefore, the results presented in this
section are applied to the problem of radar clutter modeling with N replaced by 2N.
For ease of reference, the library of non-Gaussian SIRV PDFs obtained in Chapter
3 is repeated here. However, hon(p) for those SIRVs for which the characteristic
PDF is known are listed in Table 4.1. The corresponding characteristic PDFs are
listed in Table 4.2. Table 4.3 lists hon(p) for those SIRVs whose characteristic PDF

is unknown.

4.3 Two Canonical Simulation Procedures for Generating
SIRVs

In this section, we concern ourselves with two simulation procedures for generating
the SIRVs listed in Table 4.1 and Table 4.2. The first simulation procedure to be
discussed is applicable when the characteristic PDF, fs(s), is known. For each of
the PDFs listed in Table 4.1, the characteristic PDF fs(s) is tabulated in Table 4.3,
where E(S?) = 1. Since the representation theorem results in the covariance matrix
of the SIRV being given by & = ME(S?), the choice of E(S?) = 1 makes X identical
to M, the covariance matrix of the Gaussian random vector Z. However, as shown
ini Table 4.4, the PDFs for the distributions in Table 4.1, as commonly expressed, do
not have unit mean square value. In order to obtain the random variable S, with
unit mean square value, and the corresponding PDF fg(s), we generate the random
variable V having PDF fy(v) and mean square value E(V?) = a?, and perform the
scaling S = % to obtain the desired S. For each marginal PDF listed in Table 4.1,

and Table 4.4, the scale parameters b are identical and so are the shape parameters
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v and u(v) denotes the unit step function. The simulation procedure for these SIRV

PDFs is fairly simple and is stated below:

(1) Generate a sample vector of a white zero mean Gaussian random

vector Z, having identity covariance matrix.

(2) Then generate a sample value of the random variable V' from the

PDF fy(v). Denote the mean square value of V by aZ.

(3) Normalize the sample value of the random variable V by a to
obtain a sample value of the modulating random variable S. In

other words generate S = %

(4) Generate the product corresponding to X = ZS. At this step,
we have a sample vector of a white SIRV having zero mean and

identity covariance matrix.

(5) Finally, perform the linear transformation given by eq (4.5) to
obtain a sample vector of the SIRV Y with desired mean and

covariance matrix.

Fig 4.1 shows the simulation procedure presented above.

The subroutine RNNOR in IMSL was used for generating the sample vectors of
the Gaussian random vector Z. Interestingly enough, the PDFs listed in Table 4.4
can be related to the PDF of the Gamma distribution as discussed below. The PDF
fv(v) for the K-distributed SIRV is a Chi PDF. We first address the random variable
generation for the Chi PDF and then provide the transformations for obtaining the
random variables for the other PDFs listed in Table 4.4.

Consider the standard Gamma distribution given by

Fr(t) = %ezp(-t) £>0 (4.9)

where a denotes the shape parameter and I'(a) is the Eulero- Gamma function.
The random variable V for the Chi PDF is obtained by the transformation V = 3@
Samples of the random variable T are readily generated by using the IMSL subroutine
RNGAM. The procedure for generating the Chi distributed random samples needed
for the K-distributed SIRV is summarized below.
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Table 4.1: han(p) for SIRVs with Known Characteristic PDF

reep——

Marginal PDF | hyn(p)

Laplace 32N (5,/p) =" Kn_1(by/P)
2N (L4 N)
Cauchy Zabnt

bﬁN b a=N

K-distribution | frey ®2L— Ky _o(by/P)

2T (v+N
Student-t W};"ﬁﬁ:’;

1. Generate samples of the random variable T for the standard Gamma
distribution of eq (4.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V = @

The PDF fv(v) for the Laplace SIRV is a Rayleigh PDF and is obtained from
that of the K-distributed SIRV by let{;ing a = 1. The random variable V for the
PDF f,(v) listed in Table 4.4 for the Student-t SIRV is obtained from the standard
Gamma PDF of eq (4.9) by the transformation V = 7”27 and letting o = v. Finally,
the PDF fv(v) for the Cauchy SIRV is obtained from that of the Student-t SIRV by
letting v = 1. The procedure for generating the random random samples needed for
the Student-t SIRV is summarized below. |

1. Generate samples of the random variable T for the standard Gamma

distribution of eq (4.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V = 7%.-

We now concern ourselves with the second simulation procedure which is applicable
when the characteristic PDF is unknown, as is the case for SIRVs listed in Table
4.2. This alternate approach makes use of Theorem 3. In particular, this procedure
requires the capability to generate the independent random variables R, © and ®;
(k=1,2,...,N—2). Generation of the random variables © and ®; (k = 1,2,...,N—
2) is extremely difficult from a computational standpoint. This problem is overcome
as follows.

Recall that the PDFs of © and ®; (k¥ = 1,2,...,N — 2) are remain unchanged
regardless of the white SIRV considered. Only the PDF of R changes from one white
SIRV to another. Furthermore, since a Gaussian random vector is a member of the

family of SIRVs, a white Gaussian random vector having zero mean and identity
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Table 4.2: hon(p) for SIRVs w1th Unknown Cha.ractenstlc PDFs

Marginal PDF | hon(p)
Chi (-2)¥= IAZ:,,_ Gip*~*ezp(-Bp)
N-
Gk—(k >(1)’c 'B*- l1'77'-(1)4-_1)
A= ﬂ%-)-(ba)z"
B = b%a?
r<l1
Weibull Y1o1 Cips~Nezp(—Ap?¥)
A=ac
_—k NoN A* k C(1+3t)
Cr=Tha-imavgs (1)
b<2
Gen. Rayleigh f'xl ka 5 ~N+lezp(-Bp?)
A= _ﬂ:F(ag)
B=p"%°
x k mo
De=Thoy-ymrmiong (F) ey
a<?2
.. N-1
Rician T;;)T-}'Zk-o ( E )(-l)k(&)k&e:cp(—A)
k
P )Ik om(pA), A= s

Table 4.3: Characteristic PDF for SIRVs listed in Table 4.1 [E(S?) =1]

Marginal PDF | fs(s)

Laplace absezp(— b2 )u(s)

Cauchy a®b?s~ e:::p(—zl1 == )u(s)

K-distribution 2:"20 (bas)?e-1 ezp(-—b 322" yu(s)

Student-t %bz"'l(as) (2”+1)czp( W)u(s)

Table 4.4: R_,Elated PDF fv _(_'.’.L

Marginal PDF | fy (v) — a = E(V?)
Laplace b2vezp(— 2 )u(v) &
Cauchy b2u=3ezp(— 25 )u(v) 00
K-distribution | pr2t=(bv)*~ezp(— - )u(v) 22
Student-t W%-)bz—.bz"'lv‘(”“)ezp(—{%)u(v) 2(:;
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Figure 4.1: Simulation Scheme for SIRVs with Known Characteristic PDF
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Figure 4.2: Simulation Scheme for SIRVs with Unknown Characteristic PDF




covariance matrix admits a representation of the form of eq (4.6). It follows that

Xe Z |
—=—— k=12,...,.N 4.10
R RG k 17 b ( )

where R is the norm of the desired white SIRV and Rg is the norm of the zero mean

white Gaussian random vector. Consequently, the components of the desired white

SIRV are obtained as

zZ
Xk=—R—;-R k=1,2,...,N (4.11)

The simulation procedure is stated below:

(1) Generate a sample vector of the white, zero mean Gaussian ran-

dom vector Z having identity covariance matrix.

(2) Compute the norm Rg = ||Z|| = VZTZ of the sample vector Z.

(3) Generate a sample of the norm R = ||X|| = VXTX of the white
SIRV from the PDF of R given by eq (4.7).

(4) Generate a sample vector of the white SIRV X by computing
- Z
X= R—G-R.

(5) Finally, perform the linear transformation given by eq (4.5) to
obtain a sample of the SIRV Y with desired mean and covariance

matrix.

The simulation procedure is shown schematically in Fig 4.2. Note that this simulation
procedure avoids the explicit generation of the variables © and &, (k=1,...N —
2). The generation procedure for a white Gaussian random vector is well known.
Therefore, we need to concern ourselves only with the development of a suitable
~ generation scheme for samples of the norm R of the white SIRV X. Generation of
the samples of R is not trivial. This is due to the fact that the PDF of R is generally
not in a simple functional form. Consequently, it may not be possible to conveniently
evaluate analytically the distribution function and its inverse. Hence, generation
methods based on the inverse distribution function do not offer a practical solution
to this problem. Therefore, in this chapter we generate samples of R by making use

of the approach called the ‘Rejection Method’. The rejection method can be used to
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generate samples of random variables whose cumulative distribution functions are not
known, but whose PDFs are known explicitly {40]. The rejection procedure assumes
knowledge of the maximum value of the PDF of R for a given SIRV PDF and an
estimate for the finite range of the PDF of R so that the area under the PDF curve is
close to unity. These quantities are denoted by ¢ and b, respectively. We discuss the
rejection procedure in detail in Appendix B. The Rejection method is summarized

below:
(1) Generate a uniform random variate U; on the interval (0, b).
(2) Generate another uniform variate U; on the interval (0, c).

(3) f U; < fr(Ur), then R = Uy. Otherwise, reject Uy and return to
step 1.

Note that the simulation procedures of Fig 4.1 and Fig 4.2 are canonical in the sense
that their forms remain unchanged from the simulation of one SIRV to another. Even
though, the scheme of Fig 4.2 can be used even when fs(s) is known, the scheme of Fig
4.1 is preferred when S can be generated easily. The linear transformation of eq (4.5)
is a filtering operation. In both schemes, pre-modulation filtering is equivaleht to
post-modulation filtering. This results from the fact that the representation theorem

is valid whether or not the SIRV X and the Gaussian random vector Z are white.

4.4 Performance Assessment of the Simulation Schemes

In this section we concern ourselves with the performance assessment of the simula-
tion procedures developed in section 4.3. We point out that the simulation procedures
developed in section 4.3 are exact in the sense that they are derived withqut approxi-
mation from theory. Hence, departures from the exact SIRVs will depend for the most
part on the nonideality of the uniform random number generators and on the number
of samples used. Empirical assessment of the simulation procedures is necessary for
practical applications.

One possible approach for assessing the distributional properties of the simulated
data is to perform a hypothesis test on the marginal distributions of the components
of the SIRV. More precisely, the problem is stated as follows.

Hy:The hypothesis that the simulated data is from the desired distribution
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H,:The hypothesis that the simulated data is not from the desired distribution.

For a fixed Type-1 error probability (i.e., the probability that H; is accepted given
that Hp is true) each marginal distribution can be checked by employing one of the
commonly used goodness of fit procedures. Since the components of the random
vectors are not statistically independent, we are now confronted with the problem
of developing a goodness of fit test for the multivariate data. In general, it is very
difficult to obtain. the overall significance level of the test (i.e., the probability that
Hy is accepted given that Hjp is true) for the multivariate goodness of fit testing
procedure. '

However, an attractive feature of SIRVs is that the quadratic form p appearing in
the SIRV PDF contains all the information necessary for identifying the PDF of the
SIRV. In other words, knowledge of the PDF of the quadratic form is sufficient to
determine the underlying SIRV PDF. Furthermore, the quadratic form PDF remains
unchanged regardless of whether the SIRV is white or colored. The PDF of the
quadratic form appearing in the SIRV PDF is given by eq (4.8). For the radar
problem where we deal with N complex samples or 2N quadrature components, note
that we make use of eq (4.8) with N replaced by 2/N. Hence, we base our goodness
of fit test procedure for the generated SIRVs on the PDF of the quadratic form p.
Note that we have now reduced the multivariate problem to an equivalent univariate
problem involving the goodness of fit test for the PDF of the quadratic form.

In the examples presented in this section, we generated m = 1000 realizations of
the random vector Y with N = 2 complex samples and from these computed one
thousand samples of the quadratic form P for each of the non-Gaussian SIRVs whose
PDFs are listed in Tables 4.1 and 4.3. In each case, we used the corresponding
theoretical PDF of the quadratic form given by eq (4.8) to test for the distribution
of the generated quadratic form. The frequency histograms for the generated data
and the corresponding theoretical PDF's are shown in Figures 4.3-4.10. In addition, a
Chi-Square test was performed on the generated data with the Type-1 error fixed at
0.05 and the null hypothesis was not rejected in each case. The frequency histograms
provide a good idea about the true distributions for large sample sizes. Observe that
the empirical PDF's are very close to the theoretical PDFs. Note that the procedure

used in this section to assess the distributional assumptions of the random samples
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Figure 4.3: Theoretical and Empirical Quadratic form PDFs for Laplace SIRV

from the SIRV PDFs is a formal goodness of fit test. Similar procedures have been

proposed to test for multivariate normality in [41, 42].

4.5 Conclusions

In this Chapter, we have presented two schemes that can be used in practice to
simulate correlated non-gaussian radar clutter, when the clutter can be modeled as
a Spherica.lly invariant random process. We pointed out that the simulation schemes
developed are canonical schemes and do not change form from the simulation of one

SIRV to another. A new approach, based on the PDF of the quadratic form appearing
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Figure 4.4: Theoretical and Empirical Quadratic form PDFs for Cauchy SIRV
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Figure 4.5: Theoretical and Empirical Quadratic form PDFs for K-distributed SIRV

105




Sfe(p)

"QL?
l//J

ey |

[RY
PR W SO VY VU SNy W VS ST VY YO WY S S Y W S

(@]
-

L“‘l"'f" T 'l"l—Y_'T"r T7t°r~r r=r1-r-1 'rt“ rerrrry s r

0 1 2 3

Figure 4.6: Theoretical and Empirical Quadratic form PDFs for Student-t SIRV
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Figure 4.7: Theoretical and Empirical Quadratic form PDFs for Chi distributed SIRV
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Figure 4.8: Theoretical and Empirical Quadratic form PDFs for Generalized Rayleigh
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Figure 4.9: Theoretical and Empirical Quadratic form PDFs for Weibull SIRV
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Figure 4.10: Theoretical and Empirical Quadratic form PDFs for Rician SIRV
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in the SIRV PDF, was used to perform a goodness of fit test in order to assess
performance of the proposed simulation schemes. Performance assessment based on
this scheme showed excellent agreement between the theoretical and empirical PDFs
of the quadratic form. Finally, it was pointed out that use of this technique reduced
the goodness of fit test from a multivariate testing procedure to a univariate testing
procedure resulting in tremendous processing simplicity. Therefore, this procedure

lends itself very well to practical applications.
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Chapter 5

Distribution Approximation to
Radar Clutter Characterized by
SIRPs

5.1 Introduction

This investigation is motivated by a desire to characterize correlated non-Gaussian
radar clutter by approximating the underlying probability density function of the
clutter. Various investigators have reported experimental results where non-Gaussian
marginal probability density functions (PDF) have been used to model the clutter.
Usually, radars process N samples at a time. Statistical characterization of the clutter
requires the specification of the joint PDF of the N samples. In addition, the clutter
may be highly correlated. Hence, the joint PDF must take into account the correlation
between samples. Statistical characterization of the clutter is necessary if an optimal
radar signal processor is to be obtained. For use of the well known likelihood ratio
test, it is desirable to have a closed form expression for the joint PDF of the N clutter
samples in order to obtain the optimal radar signal processor. The joint PDF of the
N clutter samples can be easily specified when the clutter is Gaussian. However,
when the clutter is non-Gaussian and is correlated, many different joint PDF's of the
clutter samples can result in the same set of marginal (univariate) distributions having
a specified non-Gaussian character. The multivariate non-Gaussian PDF is uniquely
determined from the marginal distribution only when the samples are statistically

independent.
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Specification of the multivariate PDF is generally a non- trivial problem with no
simple best solution [43]. The theory of Spherically Invariant Random Processes
(SIRP) provides a powerful mechanism to obtain the joint PDF of the ¥ correlated,
non-Gaussian clutter samples. Many of the tractable properties of the Gaussian ran-
dom process also apply to SIRPs. Typically, background clutter is not known a priori.
Hence, while dealing with real world data, there is a need to approximate the clutter
PDF from a set of measurements. In order to approximate the underlying clutter
PDF, there is a need for a library of multivariate non-Gaussian PDFs. Such a library
has been obtained in Chapter 3 based on the theory of SIRPs. The multivariate
PDF's thus obtained are functions of non-negative quadratic forms. Therefore, these
PDF's are sometimes referred to as elliptically symmetric distributions. The multi-
variate Gaussian PDF belongs to the family of SIRPs. The multivariate Pearson types
II and VII are examples of elliptically symmetric multivariate non-Gaussian PDFs.
SIRPs have received considerable attention over the past two decades since many
of the elegant and mathematically tractable properties of the multivariate Gaussian
distribution generalize to this class of distributions. Applications of SIRPs can be
found in the random flight problem [14], signal detection [16], speech signal modeling
(17] and radar clutter modeling [19, 21].

In practice, the clutter PDF encountered in radar signal processing is not known
a priori. Consequently, a scheme that approximates the clutter PDF based on a set
of measured data is necessary. Currently, available tests such as the Kolmogorov-
Smirnov test and the Chi-Square test address the problem of goodness-of-fit for ran-
dom data. In particular, these tests provide information about whether a set of ran-
dom data is statistically consistent with a specified distribution, to within a certain
confidence level. However, if the specified distribution is rejected, these tests cannot
be used for approximating the underlying PDF of the random data. Moreover, these
tests require large sample sizes for reliable results.

In practice, only a small number of samples may be available. Therefore, the
scheme used should be efficient for small sample sizes. A new algorithm based on
sample order statistics has been developed in [41] for univariate distribution identifi-
cation. This algorithm has two modes of operation. In the first mode, the algorithm

performs a goodness-of-fit test. Specifically, the test determines, to a desired con-
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fidence level, whether random data is statistically consistent with a specified prob-
ability distribution. In the second mode of operation, the algorithm approximates
the PDF underlying the random data. In particular, by analyzing the random data
and without any a priori knowledge, the algorithm identifies from a stored library
of PDFs that density function which best approximates the data. Estimates of the
scale, location, and shape parameters of the PDF are provided by the algorithm. The
algorithm typically works well with sample sizes which may be as small as 50 and
100 samples. An extension of this algorithm for the multivariate Gaussian PDF has
been considered in [41, 44].

In this Chapter, using certain properties of SIRPs, we adopt the algorithm devel-
oped in [41] to identify the underlying distribution of a given set of data. In particular,
we first show that the multivariate distribution approximation problem for SIRPs is
reduced to an equivalent univariate distribution approximation problem. The new al-
gorithm developed by Ozturk in [41] is used for the univariate approximation problem.
Section 5.2 presents definitions. Sections 5.3-5.5 summarize the algorithm developed
in [41] for approximating the univariate PDF of a set of random data. In Section
5.6 we present a procedure for the goodness of fit test for PDF's arising from SIRPs.
The proposed distribution identification algorithm is discussed in Section 5.7. Sec-
tion 5.8 proposes a method to estimate the shape parameter based on the procedure

developed in Section 5.7. Finally, conclusions are presented in Section 5.9.

5.2 Definitions

Let fy(y) denote the PDF of a random variable Y. Consider the linear transfor-
mation defined by

z=fy+a (5.1)
The PDF of X is given by
1 I—-a
fx(z) = l—ﬂ'lfY( ) (5.2)
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where a and 3 are defined to be the location and scale parameters of fx(z), respec-

tively. The mean p. and variance o, of the random variable X are given by

e = EIX] (5.3)

o = E[(X — ps)’]-

Although the mean and the variance are related to the location and scale parameters,
note that the location parameter is not the mean value and the scale parameter is not
the square root of the variance, in general. However, for a standardized Gaussian PDF
fr(y) for which the mean is zero and the variance is unity, the location parameter is
the mean of X and the scale parameter is the standard deviation (square root of the
variance) of X.

The coefficient of skewness, as, and the coefficient of kurtosis, ag4, of X, are defined

to be

Qa = E"x"#z!sl
3= ]

: (5.4)
oy = ElX=a)]

ol
It is readily shown that as and a4 are invariant to the values of u, and o,. For

any PDF that is symmetric about the mean, a3 = 0. For the case of the Gaussian

distribution, a3 = 0 and a4 = 3.

5.3 Goodness of Fit Test

In this section, we introduce a general graphical method for testing whether a set
of random data is statistically consistent with a specified univariate distribution. The
proposed method not only yields a formal goodness-of-fit test but also a provides a
graphical representation that gives insight into how well the random data is repre-
sentative of the specified distribution (null hypothesis). Using the standard normal
distribution with zero mean and unit variance as a reference distribution, the stan-
dardized sample order statistics are represented by a system of linked vectors. The
terminal point of these linked vectors, as well as the shape of their trajectories, are
used in determining whether or not to accept the null hypothesis.

In this section we first give a brief description of the corresponding test statistic and

then explain the goodness of fit test procedure. For illustration purposes, we consider
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the null distribution to be Gaussian. However, the proposed procedure works for any
null hypothesis.

Let X;;i = 1,2,...n denote the i** sample from a Gaussian distribution with mean
p and variance 0. Let Xim < Xo.n < ... < Xp.n denote the ordered samples obtained
by ordering X;; i = 1,2,...n. We define

| X:i - X| .
= ——— =

X S

1,2,...,n (5.5)

where X = IX;/n is the sample mean and § = {Z(Xi — X)?/(n — 1)}!/? is the
sample standard deviation. The standardized order statistics are denoted by Y.,

t=1,2,...n and are obtained by ordering the Y;; : = 1,2,...n. It follows that
1=1,2,...,n (5.6)

The :** linked vector is characterized by its length and orientation with respect to
the horizontal axis. Let Gin.denote the order statistics from the standard normal
reference distribution. Also, let m;., = E[Gi..]. The length of the i** vector, a;, is
obtained from the magnitude of the ith standardized sample order statistic, while its

orientation 6; is related to m,.,. More specifically, by definition,

a; = Z‘:‘
(5.7)
0" = 7l"Q('rni:'n)

where ®(z) = (v2r)™ [Z emp(—-‘;)dt is the cumulative distribution function of the
standard Gaussian distribution. We define the sample points Qj in a two dimensional

plane by
Qk = (Us, V&) k=1,2,...n (5.8)

where Uy = V5 = 0 and
Uk = £ T51{Cos(6:)}Yin

Vi = %ZL,{Sm(O,)}Y,,‘ . (59)

k=1,2,...n.
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The sample linked vectors are obtained by joining the points Q. Note that Qo =
(0,0). It should also be noted that the statistic @, given in eq (5.8) represents
the terminal point of the linked vectors defined above. Figure 5.1 shows the linked
vectors obtained for the Gaussian distribution with n = 6. Since U, and V, are
random variables for a given n, the corresponding linked vectors must be obt_ained
by averaging the results of Monte-Carlo trials. In this case the linked vectors were
obtained by averaging the results of 50,000 Monte Carlo trials. The solid curve in
Figure 5.1 shows the linked vectors for the sample distribution while the dashed curve
shows the ideal linked vectors for the null distribution. The magnitudes and angles of
the linked vectors are obtained from eq (5.7). Note that the angles are independent of
the data. Only the magnitudes of the linked vectors change from one trial to another.

For a typical set of ordered samples (i.e., ordered samples drawn from the null
distribution) it is reasonable to expect that the sample linked vectors would follow
the null pattern closely. If the ordered set of samples is not from the null distribution,
the sample linked vectors are not expected to follow the null pattern closely. Hence,
the procedure provides visual information about how well the ordered set of samples
fit the null distribution.

An important property of the @, statistic is that it is invariant under linear trans-
formation. In particular, we consider the standardization used in eq (5.5). Let

Z:; = cX; +d, where c and d are known constants. Let S’ denote the sample standard

deviation of the samples Z;. Then, it is readily shown that IX';')T' = IZ';,-Z.[. The
invariance property follows as a consequence. The advantage of this property is that
the PDF of Q. = (U,, V,), for a given sample and reference distribution depends only
on the sample size n and is unaffected by the location and scale parameters. Since
it is difficult to determine the joint PDF of U, and V, analytically, it is necessary to
obtain empirical results.

Assuming that the conditions under the central limit theorem are satisfied, the
marginal PDFs of U, and V, can be approximated as Gaussian, in the limit of large n.
In addition, it is assumed that the joint PDF of U, and V, is approximately bivariate
Gaussian. Consequently, all that is needed to determine the bivariate PDF is the
specification of E(U,), E(V,), E(UaVa), Var(U,) and Var(V;). Drawing samples

from the Gaussian distribution, it has been shown empirically in [41] that for 3 <
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n <100
E(U,)=0

E(V,) = py & 0326601 + 241202
E(UaVa) =0 (5.10)

— 2 0.02123 0.01765
Var(Un) =0, . -+ =

Since U, and V; are approximately bivariate Gaussian for large or moderate sample

sizes, their joint PDF can be written as

t

SUn, vty vn) = (27r)'1(auav)‘lemp(—-2—) (5.11)
where ) )
u; | (Un — o)
t= 0—3 + -——03—. (5.12)
Let t = to. Then the equation
uvzz (vp = /‘v)2
to = E -+ —'—0'3— (5.13)
is that of an ellipse in the u,, v, plane for which
-1 -1 to
JUn, Va(Un, vg) = (27) 7 (0uoy) ezp(—-i-). (5.14)

Points that fall within the ellipse correspond to those points in the un, v, plane for
which

Fon v (tumy v2) > (2#)'1(auau)'lexp(—%). (5.15)

Let
a= P(T > ty) = P(un, vn fall outside the ellipse given by eq (5.13)). (5.16)

It is well known that the PDF of the random variable T defined by eq (5.12) has a
Chi-Square distribution with two degrees of freedom [45] and is given by

fT(t)=O.Sezp(—%). 1)
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Hence,
a=1- e:cp(-%). (5.18)
Consequently, to = —2In(1 — a). Thus, eq (5.13) becomes

2

Un o (on =)’ _ —2In(1 — a). (5.19)

2 2
od o

a is known as the significance level of the test. It is the probability that Q. falls
outside the ellipse specified by eq (5.19) given that the data is coming from a Gaussian
distribution. 1 — a is known as the confidence level and the corresponding ellipse is
known as the confidence ellipse.

Eq (5.13) can be written in the standardized form

1 — u?l (v'n - y’”)z

Ugto 03t0

(5.20)

where the lengths of the major and minor axes are given by 2maz [ouy/to, uvV/10]
and

9min [0u/To, vv/T0] , respectively. From eq (5.18), observe that smaller values of o
correspond to larger values of to. Consequently, the confidence ellipses become larger
as the confidence level is increased.

For a given sample size n (n < 100) approximate values of p., 02 and o2 can be
obtained from eq (5.10). The confidence ellipse of eq (5.19) can then be used to make
a visual as well as computational test of the null hypothesis. If the terminal sample
point falls inside the ellipse, then the data is declared as being consistent with the
Gaussian distribution with confidence level 1 — a. Otherwise the null hypothesis is
rejected with a significance level c.

A major difficulty in determining the joint PDF of U, and V; is that the coefficients
of skewness and kurtosis of U, and V,, (see Table 5.3) indicate that the Gaussian ap-
proximation for the bivariate PDF may not be satisfactory for n < 10. The empirical
bivariate PDF of U and V were obtained by using 50,000 Monte-Carlo trials for n=3,
10, 20,30, 50 and 100. The corresponding constant probability contours of the joint
PDF of U, and V, are shown in Figure 5.2. The same procedure is used even when
the null distribution is different from the Gaussian distribution. However, note that

the standard Gaussian distribution is always used as the reference distribution for
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determining the angles of the linked vectors.

5.4 Distribution Approximation

In this section we present a graphical procedure for approximating the underlying
PDF of a set of random data based on the goodness-of-fit test procedure discussed in
section 5.3.

Following a similar approach to that outlined in section 5.3, random samples are
generated from many different univariate probability distributions. For each specified
distribution and for a given n, the statistic @n, = (Ua, Va) given by eq (5.9) is obtained
for various choices of the shape parameter. Thus, each distribution is represented by a
trajectory in the two dimensional plane whose coordinates are U, and V,,. Figure 5.3
shows an example of such a representation. Twelve distributions namely Gaussian
(1), Uniform (2), Exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme
Value (7), Gumbel type-2 (8), Gamma (9), Pareto (10), Weibull (11) and Lognormal
(12) are represented in this chart. Tables 5.1 and 5.2 show the standard form and the
general form respectively, of the PDFs represented in the identification chart. The
value of (), at each point of the trajectories is obtained by Monte-Carlo experiments
using the standard Gaussian distribution as the reference distribution for determining
the angles 6;. The results are based on averaging 1000 trials of n = 50 samples from
each distribution. The samples from each distribution are obtained by using the
IMSL subroutines for specified values of the shape parameter. Since the procedure
is location and scale invariant, the trajectory reduces to a single point for those
PDFs which do not have shape parameters but are characterized only in terms of
their location and scale parameters. By way of example, the Gaussian, Laplace,
Exponential, Uniform and Cauchy PDFs are represented by single points in the U, —
V» plane. However, those PDFs which have shape parameters are represented by
trajectories. For a given value of the shape parameter, a single point is obtained in
the U, — V, plane. By varying the shape parameter, isolated points are determined
along the trajectory. The trajectory for the PDF is obtained by joining these points.
In a sense the trajectory represents a family of PDFs having the same distribution
but with different shape parameter values. For example, the trajectory corresponding
to the Gamma distribution in Figure 5.3 is obtained by joining the points for which
the shape parameters are 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, 10.0. As the shape
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parameter increases, note that the Gamma distribution approaches the Gaussian
distribution. The representation of Figure 5.3 is called an identification chart. Some
distributions such as the 3 distribution and the SU-Johnson system of distributions,
have two shape parameters. For these cases, the trajectories are obtained by holding
one shape parameter fixed while the other is varied. For these distributions, several
different trajectories are generated in order to cover as much of the U, — V;; plane
as possible. For certain choices of the shape parameters, two or more PDFs become
identical. When this occurs, their trajectories intersect on the identification chart.
It is apparent that the identification chart of Figure 5.3 provides a one to one
graphical representation for-each PDF for a given n. Therefore, every point in the
identification chart corresponds to a specific distribution. Thus, if the null hypothesis
in the goodness-of-fit test discussed in section 5.3 is rejected, then the distribution
which approximates the underlyinghPDF of the set of random data can be obtained
by comparing Q, obtained for the samples with the existing trajectories in the chart.
The closest point or trajectory to the sample @, is chosen as an approximation to the
PDF underlying the random data. The closest point or trajectory to the sample point
is determined by projecting the sample point @, to neighboring points or trajectories
on the chart and considering that point or trajectory whose perpendicular distance
from the sample point is the smallest. Consider the situation of Figure 5.4. Let
Qn = (u',v') denote the coordinates of the sample point. Let z;, y; and z2, ¥2
denote the coordinates of the points A and B on the trajectory shown in Figure 5.4.
It is assumed that segment of the trajectory between the points A and B is linear. Let
Zo, Yo denote the coordinates of the point of intersection of the straight line between
A and B and the projection of Q, = (u’,v’) onto this straight line. The equation of

the straight line between the points A and B can be written as

y—y =m(z—z1) ' (5.21)
where m = (ﬁfﬁh Also, the equation of the straight line joining zo, ¥o and (u',v’)
is
=l o) (5.22)
-v=——(z—u). .
y m

The coordinates zg, yo result from the solution of egs (5.21) and (5.22) and are given
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- 1 2 ! !
2o = mag(m’z —my; +u +mv]

(5.23)

1 2 ’ 1
Yo = mplth — mzy + mPv + mul.

Finally, the perpendicular distance from the sample point onto the trajectory between

the points A and B is

D= \/ i —2mGG + (5.2
where
G=v-= (5.25)
L=v -y

The complete approximation algorithm is summarized as follows.

1. Sort the samples X;, X,,... X, in increasing order.
2. Obtain the standardized order statistic Y;.,.
3. Compute U, and V,, from eq (5.9).

4. Obtain an identification chart based on the sample size n and plot the

sample point @, on this chart.

5. Compute D using the sample point (), and the existing distributions
on the chart. Choose the PDF corresponding to the point or trajectory
that results in the smallest value of D as an approximation to the PDF

of the samples.

The approximation to the underlying PDF of the set of random data can be im-
proved by including as many distributions as possible in the identification chart so
as to fill as much of the space as possible with candidate distributions. However, it
is emphasized that this procedure does not identify the underlying PDF. Rather it

identifies a suitable approximation to the underlying PDF.

5.5 Parameter Estimation

Once the probability distribution of the samples is approximated, the next step is

to estimate its parameters. The method discussed in section 5.4 lends itself for esti-
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mating the parameters of the approximated distribution. We present the estimation

procedure for the location, scale and shape parameters in this section.
5.5.1 Estimation of Location and Scale Parameters

Let f(z;a,p,) denote a known distribution which approximates the PDF of the
set of random data, where a and f are the location parameter and scale parameter,
respectively, of the approximating PDF. Let X, denote the ordered statistics of X

from a sample of size n. A standardized ordered statistic is defined by

Xi:n -«

I/Vi:n = 5.26
5 (5.26)
Let
Him = E[Wi:n]- (527)
Then
E[Xt':n] = ﬂﬂi:'n +a (528)
We consider the following statistics
T = Z:‘ COS(G,‘)X.’:H
(5.29)

Tg = Z:‘ Sin(&,—)X,-m

where 6; is the angle defined in eq (5.7). The expected values of T} and T; are

E[Th] = T} Cos(0:)[Bpin + o

(5.30)
E[T) = X7 Sin(6:)Buin + . -

These can be written as

E(Tl) =aa+ bf (5 31)

E(T,) = ca+dp
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where

a=37"Cos(6;)

b= pinCos(6;) (5.32)

c= 37 Sin(6;)

d= Y7 pinSin(6;).
Because the standardized Gaussian distribution is used as the refernce distribution
for 6;, it follows that @ = 0 [41]. The estimates for # and « are then given by
§ = Bml

’ (5.33)

& = E[T,]-d8
c

where the symbol A is used to denote an estimate. For n sufficiently large (i-e.,

n > 50), suitable estimates for E[T}] and E[T}] are

E[TI] = Tl
(5.34)

E[Tz] = Tg.

Estimates for b and d rely upon an estimate 6f Min- Hin 1S obtained from a Monte
Carlo simulation of W;.,, where W,., is generated from the known approximating
distribution f(z;0,1) having zero location and unity scale parameters. ., is the
sample mean of W;,, based upon 1000 Monte Carlo trials. Having fi;.,, the estimates
for b and d are given by
b= Y7 iinCos(6;)
(5.35)
d= 37 finSin(6;).

The scale and location parameters are then estimated by application of eq (5.33).
5.5.2 Shape Parameter Estimation

In this section we present an approximate method for estimating the shape pa-
rameter of the approximating PDF. This procedure can be used only when the ap-
proximating PDF has a single shape parameter to be determined. Let 4 denote the

shape parameter of the approximating PDF. Since U, and V, are locé,tion and scale
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invariant, the point Q, depends only on the sample size n and the shape parameter
5.

Recall that the trajectories on the identification chart are obtained by averaging
the results of a large number of trials for U, and V,. Consequently, for a given value
of n, the coordinates of the points along the trajectory for a specified distribution

and can be characterized by

E(U,,,) = ‘Pl(nv 7)

E(Vn) = 4,02(71, 7)

(5.36)

where the complete trajectory is obtained by repeating the large number of trials over
a suitable range of 4. On a given trial involving the random data it is likely that the
coordinates U, and V,, for the samples will not coincide with any of the trajectories on
the chart. The random data is approximated by that distribution which falls closest
to the sample point Q,. The situation is illustrated in Figure 5.7. T'rl and T'r2
denote the trajectories for two different candidate distributions denoted by PDF1
and PDF2, respectively. Let =, denote the point on T'r1 closest to Q,. Assume that
the linear segment of T'r1 on which z, falls was drawn between the points (u;,v;) and
(ua,v2). Let the shape parameter values corresponding to these points be denoted by
71 and 7, respectively. Then the value of the shape parameter corresponding to the

sample point @), is obtained by linear interpolation and is given by

(v2 = 71 ){zo — w1)

¥y~ v + 5.37
Y= (o — u) (5.37)
where
— {A(Vn~v1)+A2‘u]+Un}
IO - (A2+1) (5 38)
A = !v‘z—vll
(u2—u1)"

The accuracy of the procedure can be improved by employing a non-linear interpo-
lation method. It must be emphasized that the location, scale and shape parameter

estimation procedures presented in this section are approximate procedures.
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5.6 Assessing the Distributional Properties of SIRVs
A random vector Y = [V}, Y, ... Yn]7 is a spherically invariant random vector
(SIRV) if its PDF has the form

fy(y) = (27)" T | 2 hn(p) (5.39)

where p = (y — 4)TE"1(y — ) is a non-negative quadratic form, x and ¥ are the
mean vector and covariance matrix, respectively of Y and hn(p) is a non-negative,
monotonically decreasing, real valued function for all V.

Recall from Chapter 3 that the PDF of the quadratic form appearing in eq (5.39)

is given by

o) = Frhaton) (5.40

where I'(a) is the Eulero-Gamma function and u(p) is the unit step function. It was
also pointed out in Chapter 3 that the PDF of the quadratic form is invariant to the
choice of u and X. For example, in the multivariate Gaussian case, the PDF of the
quadratic form is the well known Chi-square distribution with NV degrees of freedom.
Therefore, for a given N, the SIRV is uniquely characterized by the quadratic form.
In order to identify the PDF of the underlying SIRV it is sufficient to identify the PDF
of the quadratic form. This attractive property of SIRVs enables us to study various
distributional aspects of the corresponding multivariate samples. When a radar uses
coherent processing, the joint PDF of the 2N quadrature components is of interest.
Eqgs (5.39) and (5.40) are then applicable with N replaced by 2N.

In modeling real world data, the first step is to determine the most appropriate
PDF that approximates the data. In the univariate case, the fit and assessment of
the goodness of fit for various distributions has been studied extensively and several
methods are available for this purpose. However, limited success has been achieved
for the multivariate situation. Although a number of multivariate distributions have
been developed, the multivariate Gaussian distribution has been the focus of much
of the techniques for multivariate analysis [46].

Assessment of the distributional assumptions for multivariate data is a non trivial
problem. Several techniques have been proposed to assess multivariate Gaussianity.

In a recent paper Ozturk and Romeu [44] give a review of the methods for testing
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multivariate Gaussianity. Many of these methods can be modified or generalized
to develop goodness of fit methods for SIRVs. If a random vector Y is an SIRV,
then the corresponding marginal distributions must be identical (up to location and
scale parameters). Based on this property, one can use the the standard univariate
goodness of fit testing procedures to assess the degree of similarity of the marginal
distributions of the multivariate data. However, such an approach does not provide
a way to assess the joint distribution of the components of the multivariate sample.

Since SIRVs can be uniquely characterized in terms of the quadratic form P,
eq (5.40) provides an important property for developing goodness of fit test procedures
for SIRVs. Specifically, if the PDF of P can be identified, then the corresponding PDF
of the SIRV can also be identified. In fact, many tests for assessment of multivariate
Gaussianity are based on the use of this quadratic form [47]. By use of this tech-
nique, note that the multivariate distribution approximation problem is reduced to
‘a corresponding univariate distribution approximation of the quadratic form. Any
of the classical goodness of fit testing procedures like the Kolmogorov-Smirnov and
Chi-Square tests can be used to address the problem of distribution identification of
the quadratic form. However, the requirement of large sample sizes for specifying the
parameters of the distribution and low power of the test necessitate use of alternate
procedures that are more efficient.

A general algorithm was developed in [41] to test for univariate and multivariate
normality and has been summarized in sections 5.3-5.5. In this section we propose the
use of this algorithm for performing the goodness of fit test for SIRVs. The procedure
is summarized here for completeness. Let Y = [¥},Y;... YN]T denote a vector of
observations. For each observation vector of size N, we compute the corresponding
quadratic form P;, (i = 1,2,...n) where the maximum likelihood (ML) estimates of
the mean vector of Y and its covariance matrix are used. For the Gaussian case, it is
well known that these ML estimates are the sample mean and the sample covariance
matrix, respectively [48]. In Appendix C, it is shown that the same results hold
for SIRVs [49]. Our goal is to test whether P, ( = 1,2,...n) are samples from a
certain distribution F(p;a, ,3,7) where a, f are the location and scale parameters,
respectively and 4 is the shape parameter.

Let P{m < P;:,. <...< P... denote the ordered observations of the quadratic

127




form P, (i =1, 2, ...n). We define the standardized i** sample order statistic as

Ry = ~—n_ _ (5.41)

where P and Sp are the sample mean and sample standard deviation, respectively.
Corresponding to the i** sample order statistics R;., through R;.,, the point @; =
(Ui, Vi) is defined where

1yt cos{m®(m;m)} Rjn)
K 3=1 { ( J )}l ) (5.42)
1

U;
Vi j=1 51n{T®(mjin) } Rjn
where ®(.) and m;., were defined in Section 5.3.

For a given set of n multivariate samples, the points @; (: = 1, 2,...n) are plotted
and joined to obtain a linked vector chart. The linked vectors under the null hypoth-
esis are obtained by averaging the results of 50,000 Monte Carlo trials from the PDF
of the quadratic form given by eq (5.40). The proposed test is based on comparing
the sample and the null linked vectors. If the null hypothesis is true, then we expect
that the sample linked vectors will follow the null linked vectors closely.

Finally, a formal goodness of fit test is performed using the terminal point of the
null linked vectors (i.e @, = (U, V1)). Using the central limit theorem, as outlined in
section 5.3, confidence ellipses centered at @), for the null linked vectors are obtained.
If the terminal point of the sample linked vectors does not fall inside the 100(1 — a)%
confidence ellipse, then the corresponding null hypothesis is rejected at the a level of
significance. Note that the @), test provides an interesting graphical representation
of the data. An example of such a graphical representation is given in Fig 5.5 for
testing a multivariate Gaussian distribution with n = 50 and N = 4.

It should be noted that the @, statistic is location and scale invariant. In other
words it is independent of the location and scale pa.rametefs. However, it depends
on the shape parameter of the null distribution. Assessment of the distributional
assumptions of distributions that have shape parameters is conceptually different
from those that do not. In the former case, we test whether the sample comes from a
family of distributions while in the latter case, we test for a simple distribution. One

possibility for dealing with this problem is to specify the value of the shape parameter
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and perform the test in the usual way. If the shape parameter cannot be specified,
then an adaptive approach which uses a sample estimate of the shape parameter must
be employed.

Advantages of using the Q, procedure are explained in [41]. Usually the classical
goodness of fit tests end up with either rejecting or accepting the null hypothesis.
An attractive property of the @, procedure is that it provides some information
about the true distributions if the null hypothesis is rejected. Using this property an
algorithm for characterizing and identifying the distributions can be developed. The

next section explains these ideas.

5.7 Distribution Identification of SIRVs

. Following the same procedure described in Section 5.4, where the reference distri-
bution was Gaussian, an identification chart can be generated for each of quadratic
form PDFs of the SIRVs listed in Tables 5.3 and 5.4. Recall from Chapter 3 that
the PDF of the quadratic form is invariant to the choice of ;4 and X. Hence, for
simplicity, the trajectories for the PDFs of the quadratic forms of the SIRVs listed
in Tables 5.1 and 5.2 are obtained by generating the SIRVs having zero mean and
identity covariance matrix. Each point on a trajectory is obtained by averaging the
results of 2000 Monte Carlo trials of size n = 100. As before, PDFs which do not
have shape parameters are represented by a single point in the U-V plane while those
which have shape parameters generate a trajectory in the U-V plane by changing the
shape parameter. _

Assuming coherent radar processing, Table 5.3 and Table 5.4 provide a library of
hon(p) for various multivariate SIRV PDFs. An example of the identification chart is
given in Fig 5.6 for N = 4 and n = 50 where the expected values of @, = (Un, V,) is
plotted for various distributions. The Gaussian distribution was used as the reference
distribution. The SIRVs listed in Table 5.1 and Table 5.2 are included in the chart
and labeled by number. It is noted that the multivariate Gaussian (1), Laplace (2)
and Cauchy (3) distributions are represented by single points on the chart while the
multivariate K-distribution (8), Chi (9), Generalized Rayleigh (10) Weibull (11) and
Rician (12) are represented by trajectories. The Student-t distribution (4, 5, 6, 7)
with degrees of freedom 3, 5, 10 and 15, respectively, is also shown in the chart. The

trajectories for each distribution were obtained by joining 10 points resulting from the
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use of the distributions with parameter values listed in Table 5.3. Each point in the
chart is obtained by simulating 2000 samples from the corresponding distributions.
The methods developed by Rangaswamy et al. [22, 50] were used to generate the
multivariate samples.

The identification chart provides an interesting display for identifying and charac-
terizing the distributions. Also, relationships between the various distributions are
clearly seen. For example, as their parameters are varied, certain distributions ap-
proach the multivariate Gaussian distribution. Also, for appropriately chosen param-
eters, the multivariate Weibull distribution and the Generalized Rayleigh distribution
can be seen to coincide. For a given N-variate sample of size n, the statistic @, based
on the sample quadratic forms can be computed and plotted on the identification
chart. Then the nearest distribution to the sample point is identified to be the best
candidate for the underlying true distribution of the data. An example of such an
identification is shown in Figure 5.6 where a well known data set (i.e. Iris Setosa [51])
is used to obtain a value for @),, and is denoted by the point S. The Iris Setosa data
. consists of four measurements taken from 50 plants. It is seen from Figure 5.6 that
the best candidate for approximating the data is the multivariate Chi(9) distribution.

We point out that there are other methods which can be used for the distribution
identification problem. A commonly used technique is the Q — Q plot. To identify
the underlying distribution the sample quantiles are plotted against the expected
quantiles of a reference distribution. Then the resulting shape of the plotted curve is
taken as a basis for identifying the corresponding candidate for the true distributions.
However, the identification is made on a subjective basis. Even then the procedure is
not very easy. Another well known approach for distinguishing between distribution
is to characterize them via their skewness (a3) and kurtosis (a4) coefficients. In this
case, all the distributions are represented by points on the a3- a4 plane and the sample
data point is compared with the points representing the theoretical distributions in
the same way as in the @), procedure. However, estimates of a3z and a4 are known
to be highly sensitive to extreme observations and therefore, large sample sizes are

necessary to perform the identification for a given degree of accuracy.
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5.8 Parameter Estimation

It is well known that the maximum likelihood estimate of the covariance matrix of
a Gaussian random vector is the sample covariance matrix. Interestingly enough, it
has been shown in [49]that the maximum likelihood estimate of the covariance matrix
3 for SIRVs is the same sample covariance matrix used in the Gaussian case. From
eq (5.40), it is clear that the expected value of the quadratic form can be expressed

as

E[P] = ¢(N,v) (5.43)

where « is the shape parameter of the distribution. For those SIRVs where ¢(.) can
be evaluated in closed form and is invertible, the sample mean of P, denoted by P

can be used to estimate the shape parameter according to

y=¢7{P,N}. (5.44)

where P = 17, P, For example, in case of the K-distribution, we have E{P] =

2aN where « is the shape parameter of the K-distribution. Clearly, the shape pa-
rameter is given by & = %. Unfortunately, it is not always possible to obtain an
invertible closed form expression for ¢(.,.). The shape parameter estimation pro-
cedure suggested here is not suitable in such a case. An alternate method for the
parameter estimation problem is then needed.

In this section we propose to use the @, statistic to obtain an approximate esti-
mator for the shape parameter. The underlying procedure is explained in [41] and
is summarized here. Let the points (U, Vi) and (Uz, V2) denote the coordinates of
Q.. corresponding to parameters v; and 4, respectively, of a given SIRV. Suppose
these points are the nearest points, on the trajectory for the identified distribution
to the sample point @, = (U,, V,) corresponding to the data. Then by using linear

interpolation, an approximate estimator of 4 is given by

(72 = 11)(zo = Un)
(U2 = Uh)

Yrom+ (5.45)
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Table 5.1: Table of Standard Forms of Univariate PDFs Used For Identification Chart of
Figure 5.3

Distribution Standard Form fy(y)
Gaussian (V27)~lezp(—L) —oco<y< oo
Uniform 10<y<1
Exponential exp(—~y) {0 <y < o0)
Laplace 0.5ezp(—ly]) —oo<y< oo
Logistic ezp(—y)[l + ezp(—y)]"? -0 <y<
Cauchy ;(I—Iy-y)- -0 <Y< oo
Extreme Value (Type 1) | exp(—y)ezp{—ezp(-y)] —oco<y<
Gumbel (Type 2) yyexp(—y — lezp(—-y™7) —oc0<y< o
Gamma W’;je:::;a(—-y)y"‘I I<y<o
Pareto Hr y>1,71>0
Weibull vy~ tezp(—y’) y> 0
Lognormal Vg;gezp[—im%(’-m y>0
where
— {A(Vn'vi)+A2Ul+Un}
To= (AT+1) (5.46)
A= (Vo=V1)
(U2-Uy)

The accuracy of the proposed estimator for 4 depends on the distance between the
sample point (), and the corresponding curve. If necessary, the approximation can

be improved by using non-linear interpolation methods.

5.9 Conclusions

In this Chapter we have addressed the problem of distribution identification of radar
clutter under the assumption that the clutter can be characterized as a SIRP. First and
foremost, we have shown that the multivariate distribution identification problem for
SIRPs can be reduced to an equivalent univariate distribution identification problem
of a non-negative quadratic form, resulting in considerable processing simplicity. A
new algorithm which provides a graphical representation for the goodness of fit test
and the distribution identification has been used. This algorithm, while conceptually
simple, is extremely efficient while dealing with small sample sizes. Therefore, it is
suitable for use in a variety of practical applications. Finally, based on this algorithm,

a new approach has been proposed for estimating the shape parameter of SIRPs.
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Table 5.2: Table of General Form of Univariate PDFs Used For Identification Chart of

Figure 5.3 _ _ _ _
Distribution _ General Form fx(z)
Gaussian’ (\/2—1rﬂ)'1ezp(-ﬁ’2;ﬁ‘;ﬁ) —0<z <o
Uniform za<z<a+p
Exponential lezp(-E38) a<z<
Laplace 07§§c.1:p[—|£’—79ﬂl] —00<z<00
Logistic Lezp[—E321 + ezp(—1252)]-? —c0<z <0
Cauchy 2 —o0<2z <0

w81+ 270

Extreme Value (Type 1)

%ezp[-—l'—;—“l]ezp[-ezp{—i’-’%ﬂ}] —00<z<®

Gumbel (Type 2)

%Q%-Qezp(--y - l)ezp[—gt—'ﬁ%rl] -0 < <0

Gamma z-rlraezp[—&}'-l](%‘l)"‘l a<z< o
Pareto %;(._?‘;-)-.,;T z>a+p,7>0

Weibal R T8 =5 a
Lognormal 72—,5%%—3_)64'7?[”2%?)'}" z>a

Table 5.4: SIRVs obtained from the marginal envelope PDF

T Marginal PDF | hon(p)
Chi (=2)¥-1AY ¢, Gxp**ezp(—Bp)
N-1 -1pk-1_0T

G*=< k=1 > (DB iy
A= 2u (ba)zu
B = bg?
vr<l1

Weibull Zf__:l Cips~Nexp(—Ap3)
A=ar

E m ok r(1+ 32

G = Thar-oman g ()
b< 2

Gen. Rayleigh 11 Dep#~N+lezp(—Bp%)

3
A= 5D
k meN-1ioN-1B* [ k rQ
Dy =3 ey (1) +N-1N 1%‘( m )F(__'-’("'%:"‘Ei_}v_)
a<?2
. . aN N—- N-1
Ricien w1 ) D =)
k .

€ = Treo ( m ) Ie—am(pA), A = 585y
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Table 5.5: SIRVs obtained from the marginal characteristic function

Marginal PDF { han(p)

Gaussian ezp(—%)

Laplace 52N (5./p) =" Kn_1(5/P)
2”»rg§+~; -

CaUChY JE(h +9)~+

K-distribution

"Student-t

.= N
Fray e Ki-a(by/P)
27 I(v+N)
NOIGET) d

Table 5.6: Shape Parameters of the SIRVs Used for the Identification Chart

K-Distribution

0.1,0.2,0.3,04,05,0.7,09, 1.1, 1.5, 1.9

[ Chi

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 0.95

Gen. Rayleigh

0.2,0.3, 0.4,0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0

Weibull 03,04,06,08, 1.0, 1.2, 14, 1.6, 1.8, 2.0
Rician 0.15,0.2,03,04,05,06, 07, 08 085 09
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Figure 5.1: Linked Vector Chart:Dashed lines Py= Null Linked Vectors, Solid Lines P;= -
Sample Linked Vectors
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Figure 5.2: Empirical Distribution of Q, for several values of n
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Figure 5.3: Identification Chart for Univariate Distributions Based on 1000 samples (n=50); Bl-B5=Beta,
J1-J9=SU Johnson, G=Gamma, W=Weibull, K=K-distribution, P=Pareto, I=Log-normal, T=Gumbel,
E=Exponential, V=Extreme Value, A=Laplace, L=Logistic, U=Uniform, N=Normal, C=Cauchy
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11 = Weibull, 12 = Rician
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Chapter 6

Conclusions

6.1 General Remarks

We present conclusions and suggestions for future work in this Chapter. We have
addressed the problem of modeling, simulation and distribution identification (mul-
tivariate) of correlated non-Gaussian radar clutter that can be characterized as a
spherically invariant random process (SIRP). The SIRP model for the clutter be-
longs to the class of exogenous product models, where the clutter process can be
decomposed as a product of two independent random processes. One of the pro-
cesses is Gaussian while the other is a highly correlated non-Gaussian process, which
modulates the Gaussian process. The SIRP model arises as a special case when the
modulating process is a non-negative random variable. This in turn, imposes the re-
quirement that the modulating random process have a decorrelation time much larger
than that of the Gaussian process, so that the modulating process is approximately
constant in a given time observation interval.

For example, consider a high resolution airborne radar operating in a maritime en-
vironment at low grazing angles. The overall sea clutter return is composed of returns
from the capillary waves and the gravity waves. The capillary waves correspond to
a rapidly time variant process. It has been pointed out in [19] that the returns from
the capillary waves can be approximated as being jointly Gaussian. Therefore, the
returns from the the capillary waves can be modeled by a Gaussian random process.
The gravity waves correspond to a slowly time variant phenomenon. Furthermore,
it has been shown in [19, 3, 7] that the decorrelation time of the slowly time vari-

ant process is much larger than that of the Gaussian process. Consequently, the
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slowly time variant process can be approximated by a non-negative random variable.
Hence, the SIRP model is applicable in this case. In fact, if the non-negative random
variable has a Chi-distribution, the overall sea clutter returns are characterized by
a K-distribution. We have pointed out that the K-distribution is a member of the
family of SIRPs. Therefore, for this case, the SIRP characterization enables us to
determine the optimal radar signal processor. The validity of other SIRPs as models
for radar clutter must be determined through an experimental effort.

This dissertation has made the following significant original contributions.

1. Application of the theory of SIRP to obtain a library of multivariate

PDF's of correlated non-Gaussian random vectors.

2. Derivation of the result that an SIRV is uniquely characterized through
the knowledge of the PDF of a quadratic form.

3. Development of elegant and powerful simulation procedures for com-

puter generation of SIRVs.

4. Reduction of the distribution identification for SIRVs from a multi-
variate problem to an equivalent univariate distribution identification

problem.

As a result of these contributions, the problem of modeling, simulation and distri-
bution identification for SIRVs has resulted in tremendous computational simplicity.
Consequently, the schemes developed here are suitable for use in several practical

applications.

6.2 Suggestions for Future Research

It has been pointed out in this work that many of the attractive properties of Gaus-
sian random processes also apply to SIRPs. Consequently, the use of SIRPs provides
a convenient vehicle for solving several signal detection and estimation problerris in-
volving correlated non-Gaussian processes. In particular, the following issues may be

addressed as extensions of this work.

1. Use of experimental data to determine the applicability of the SIRP

model for modeling clutter in radar, sonar and image processing.
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. Application of the Kalman filter for SIRPs.

. Use of SIRPs for radar ambiguity function analysis.

. Application of SIRPs for canceling interference in digital communica-

tions.

. Use of SIRPs in innovations based multichannel detection and estima-

tion.
. Use of SIRPs in linear predictive coding for speech processing.
. Use of neural networks for identifying SIRPs.

. Information theoretic considerations, such as channel capacity and rate

distortion theory, for SIRPs.

. Use of SIRPs in parameter estimation involving the log likelihood func-

tion.
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Appendix A

Properties of SIRVs

In this appendix we present some original proofs for properties of SIRPs stated in the

literature.

A.1 Statistical Independence ,

An SSRV X = [Xi, X3, ..., Xn]T has statistically independent components X;
i=1,2,...,N if and only if the SSRV is Gaussian.

Proof: Recall that the PDF of X can be expressed as

fx(x) = kh(z} + 23 + ...+ 24)F]) = (27) T hn(VxTx). (A1)

If the components of X are statistically independent, then the PDF given by eq (A.1)
must factor into the product of the marginal PDFs of the components of X. It then
follows that

hul(a}+ 23 +... +23)7] = H g(z (A.2)

i=1
Letting r = (22 + 22 + ... + £%)7 and differentiating both sides of eq (A.2) with

respect to z;, results in

Zin = I 9(=z)s (). - (A3)

144




Dividing both sides of eq (A.3) by z;hn(r) results in

hn(r) _ g(z)
rhN(r) . z;g(z,-)' (A4)

Equality holds in eq (A.4) if and only if the left and right sides of eq (A. 4) are equal

to the same constant. Denotlng this constant by —A, we have

hn(r) _
= Al (A.5)

Integrating both sides of eq (A.5) with respect to r gives

Ar?

hy(r) = aezp(——-) (A.6)
where a is the constant of integration. Hence,
; A
hn((z2+ 22+ ... +2%)%] = ae:z:p[—-é-(xf +22 4. +z%)] (A.7)

Substitution of eq (A.7) in eq (A.1)clearly results in the Gaussian PDF. The constraint
of unity volume under the PDF results in a = AF.
In order to prove the sufficient part of the property, we start with the PDF of a
Gaussian SSRV X given by
2r _N N

fxl) = () Feapl-5 L) (A8)

=1

Clearly the PDF given by eq (A.8) can be ekpressed as

. N )
fx(x) = [T fx.(=:) (A.9)

i=1

where

27 1 Az?

fxla) = () hean(-2). (A-10)

Hence, the sufficient part of the property follows.
An alternate proof of this property can be obtained by using the representation
theorem. The representation theorem allows us to express the SSRV X as a product

of a Gaussian random vector Z having zero mean and identity covariance matrix and
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a non-negative random variable S. More precisely, we can write
X =185 (A.11)

The components of X can be statistically independent if and only if S is a constant.
When S is a constant, X is a Gaussian SSRV. As is often the case, the representation

theorem provides a simplified approach for determining properties of SIRVs.

A.2 Spherically Symmetric Characteristic function

In this section, we prove that the characteristic function of an SSRV is spherically
symmetric.

Proof: We consider the SSRV X = [X;, X3, ..., Xn]T. From the representation
theorem, we can write X = ZS where Z is a Gaussian random vector having zero
mean and identity covariance matrix and S is a non-negative random variable with

PDF fs(s). The characteristic function of X given by

Ox(w) = Elecp(juX)] (A.12)
where w = [w;, wy,...,wn]7, can be expressed as
@x(w) = E5[¢x|5=,(w)] . (A13)

where ®xs=,(w) = Elezp(jwTZs)]. However,

2 N
Elezp(jwTZs)) = ezp(—% Y wd). (A.14)
=1
Using eq (A.14) in eq (A.13) results in
00 s2 N
Px(w) =/ e:rp(—? > w?)fs(s)ds. (A.15)
0 i=1

The characteristic function given by eq (A.15) can be expressed as a function of

VwTw. Hence it is spherically symmetric.
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A.3 Relationship Between Higher Order and Lower Order
SIRV PDFs

In this section we examine the relationship between the higher order and lower
order SIRV PDFs. More precisely we consider an SIRVY = {11, 13, ..., Yn]T having
mean vector p, covariance matrix ¥ and characteristic PDF fs(s). The PDF of Y is

given by
fe(y) = @) %S 2 hn(p) (A.16)

where p = (y — p)TE"}(y — ) and
hn(p) = /Ooo s‘Nezp(—E}:-;)fs(s)ds. (A.17)

The vector Y can be partitioned as Y = [Y17 Y27)T where Y; = [V}, Yz, ... Ya|T
and Y2 = (Y41, Yoms2, .- .Yn]7. Let u1 and p2 denote the mean vectors of Y1 and
Y, respectively, and £; and X2 denote the corresponding covariance matrices. We
wish to obtain the PDF of Y; from the PDF of Y by integrating out over the N —m
random variables (i.e., the components of Y2). Let p; = (y1 — p1) T2 (y1 = p1)
and p, = (y2 — p2) T35 (y2 — #2). The PDF of Y} is given by

Sy = o HElE [T [T s Neap(- F) fs(s)dsdys. (A18)
From [26] (p17 eq.8, p18 eq.11) we have
ey H 2t [ expl-Laddys = 0x) Fmilh Teap- L) (A9
Using eq (A.19) in eq (A.18) gives |
feylyn) = @n) HE L [ s menp(- 2 s(s)ds (A-20)
The PDF of Y; can be expressed as
e (v1) = @7) " F 21| T hn(p) o (A21)
where

hon(py) = /0°°s e:cp(-— ) fs(s)ds. (A.22)
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Clearly, hn(p;) given by eq (A.22) can be obtained from eq (A.17) by simply re-
placing N by m and p by p;. To determine the PDF of Y, all that is needed is
the specification of its mean vector and covariance matrix. As a special case, when
m = 1, eq (A.20) gives us the first order SIRV PDF. Therefore, to obtain the first
order SIRV PDF of the i** component of Y starting from the N** order SIRV PDF,
we simply use eq (A.20) withm =1, 31 =0;and p, = Q%‘;“—‘ﬁ
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Appendix B

Computer Generation of SIRVs
Using the Rejection Method

B.1 Rejection Method

We present a proof of the rejection procedure [30] used for generating the norm
R of the white SIRV X in Chapter 4. In many instances, it is likely that the PDF
of a random variable is known explicitly, but its cumulative distribution function is
either unknown or has a complicated functional form. Consequently, the cumula-
tive distribution function cannot be inverted easily. Therefore, the use of the inverse
distribution function for generating the random variable does not offer a practical so-
lution for this problem. Hence, it is necessary to use a different scheme for generating
" the random variable. We consider the problem of generating a sequence of random
numbers with PDF fr(r) of a random variable R, in terms of a random number
sequence with PDF fy,(u;) of a random variable U;. The underlying assumption is
that the random number sequence from the PDF of U; can be readily generated.

The rejection method used in Chapter 4 is based on the relative freqiency inter-

pretation of the conditional PDF

P{Ul < U1 _<_ Uy + dul,/\/i}

fo,(wmiM)du, = i)

(B.1)

of a random variable U, given the event M. M is expressed in terms of the ran-
dom variable U; and another random variable U; and is chosen so that the resulting
conditional PDF fy,(u1|M) equals fr(r). The desired sequence is generated by set-
ting R = U, given that the event M has occurred and rejecting Uy otherwise. The
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problem has a solution only if the domains of r and u, are such that fr(r) =0in

every interval for which fy,(u;) = 0. Therefore, we can assume that the ratio %}(%’—))-
is bounded from below by some positive constant a:
fu, (w1)
= 2>a>0 for every u B.2
fR(ul) - f Yy u ( )

B.2 Rejection Theorem

It is desired to generate a random variable R with PDF fg(r). Let U; be any
random variable with PDF fy, (u;) such that fy,(u,) = 0 whenever fr(r) = 0. Let
U, be a uniformly distributed random variable on the interval (0,1). If the random

variables U; and U, are statistically independent and

M= {Us < ()} IR ¢ :X
where fal)
= gJR Uy
olw) = a2l <1, (B4)
then
fo,(wa[M) = fr(w). (B.5)

Proof: The joint PDF of the random variables U; and U, can be written as

foy v (u1,u2) = fu,(w1) fu,(u2), since U; and U, are statistically independent. Hence,

we have
oo rg(u1)
PM) = [T [ o (0 2y, (B.6)

However, since U, is uniformly distributed in the interval (0,1) and g(u;) <1,

[ fentun)dus = g(w). (87)

Using eq (B.7) in eq (B.6) gives

PM) = [ glun) o (w)dun. (B.3)

However, g(u;) = a%. Therefore, we have

P(M) =a /_ : frlu1)du; = a. (B.9)
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We can express the numerator of eq (B.1) as

P{uy < Uy < uy+duy, M} = /0 ") o (ur) o () durdiz = g(ur) fun (ur)dur = afa(u)dur.
(B.10)
Using eqs (B.9) and (B.10) in eq (B.1) results in eq (B.5).
Thus, we have the following algorithm for generating the sequence of random num-
bers from the PDF of R.

1. Generate U; and U,.
2. U, < a,f—t;*i(—)7 then U; = R
3. Otherwise reject U;.

Refering now to the generation of saples of the norm R in Chapter 4, note that
U, and U, were uniformly distributed random variables. Let ¢ denote the maximum
value of the PDF of R and b denote a finite range for the PDF of R such that the
area under the curve of the PDF is close to unity. Ui is assumed to be uniformly
distributed in the interval (0, b). Clearly, %((T‘?T) > 31; Hence, EE%,% < 1. Therefore,
a = . Step 2 above becomes: If U; < b—c% = [E-(Cl‘l-)-, then U; = R. This can be
rewritten as: If cU; < fr(u1), then Uy = R. For ease of implementation, this latter
form is used in conjunction with a uniform random variable U, that is uniformly
distributed over the interval (0, c). This is the procedure followed in Chapter 4.

The method used in Chapter 4 becomes inefficient if U; is rejected frequently in
step 3, resulting in the necessity to generate the two uniformly distributed random
variables of step 1 an inordinate number of times. This problem can be overcome by
using for U; a PDF which bounds the PDF of R and satisfies the conditions stated
in section B.1 and in the rejection theorem. Then a random variable from this PDF
is used in step 1 instead of the uniform random variable U;.

A second drawback of using a uniformly distributed random variable Uy is that it
may not be possible to efficiently generate SIRVs of length greater than 8. This is due
to the fact that the PDF of R depends on N. Consequently, the uniform distribution
foi' U may not satisfactorily bound the PDF of the norm R for all N. This drawback
can be overcome by choosing a different PDF for U, for each choice of N, such that

the conditions stated in section B.1 and in the rejection theorem are satisfied. This
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method would require the use of an exhaustive table which tabulates the appropriate

PDF of U; for each desired value of N.

Finally, it is pointed out that by using a composite function for the PDF of Uj,
1t is possible to improve the simulation procedure by making it possible to generate
random numbers from the body and the tail of the PDF of R. These issues are

suitable topics for future investigation as an extension of this work.
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Appendix C

Maximum Likelihood Estimation
Involving SIRVs

The objective of this appendix is to determine maximum likelihood estimates for the
mean vector and covariance matrix of an N dimensional SIRV obtained by sampling
a wide sense stationary (WSS) SIRP. Ideally, n independent data vectors Y, ¢ =
1,2,...,n should be processed corresponding to n independent trials of the basic

experiment. This corresponds to the sample space given by the product

j=j1x/2x...xfn (Cl)

where [;, ¢ =1,2,...,n denotes the :** ensemble of the SIRP and Y is obtained from
~ J;. This is shown in Figure C.1.

However, the approach becomes unwieldy from a practical point of view. because n
ensembles are required. An alternate approach [49] makes use of a single ensemble as
shown in Figure C.2, where Y = [YT, YT, ..., YTIT is obtained by sampling a WSS
SIRP at nN time instants, such that |

tmN+j — tmN+k =15 — tk
j, k=1,2,...,N (C.2)
m=12,...n=1

and the Y;, i = 1,2,...,n, are obtained from n different sample functions of the same
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ensemble. Due to this, the mean of Y is
a= [bT, b7, ... b7 (C.3)

and

E[(Y;-Db)(Y;-b)T| =X (C4)

where 6;x is the Kronecker delta function, so that the covariance matrix of Y is

T 0 0

0 = 0
C={00 = o0 (C.5)
00 0 X

In the context of the radar problem, we consider a surveillance volume that repre-
sents a single ensemble for the SIRP. Each cell within the volume generates a sample
function of the SIRP. The :** data vector Y; is obtained from the i** cell of the vol-
ume by sampling at the time instants ¢(;_j)n4+x as shown in FigureC.2. In terms of
the representation theorem, each cell corresponds to a different value of the random
variable S whose density function is the characteristic PDF fs(s).

The PDF of Y given b and X is

Aps(yb,E) = (21)"F S|~ 2 han(p) (C.6)

where p = (Y; — a)TC"}(Y; —a) = =7, (y; — b)TZ"!(y; — b) and

han(p) = /ow s'"Nezp(—-ip;-z-)fg(s)ds. (C.7)

Note that h,n(.) is a monotonically decreasing function for all n and N.
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Since p is a scalar, we have

p=(y;i—b)TZ(y; - b)

=try i (y;i— b)TE-(y; — b)

(C.8)

where tr(.) denotes the trace of the matrix (.). However, for any two square matrices
A and B,

tr(AB) = tr(BA). (C.9)
Consequently,
p=tr(Z7'G) (C.10)
where
G =) (v;-b)y;-b)". (C.11)
=1 .
Thus, we have
fews(ylb, T) = (27) % |B Fhun[tr(Z7'G)]. (C.12)
Let
W=>(y;-9Nyi-9" (C.13)
Jj=1
where
1 n
y=-2V; (C.14)
J=1

Then, we can express p as

P=T(yi=b)TE(y; - b)
=iy —Y+¥-b)'E N (y; -7 +¥ -b)
=i (y; = ¥)TE(Y; -9)

+ 20y = )2 (T -b)
+ (¥ b)Y (y; - )

+Z5w (¥ - b)TE (¥ - b)

(C.15)

155




However, from eq (C.14),

iy —¥)TEH(y-b)=0

(C.16)
(¥ -b)TE N (y; - 3) =0.
Therefore, .
=2 (¥;i-¥)=(y; -¥) +n(¥ -b)T=' (¥ - b). (C.17)
Jj=1
Using eq (C.9), we have
p=tr(E7'W) + n(y - b)TZ"} (7 - b). (C.18)
Thus, the likelihood function for b and ¥ can be expressed as
L(b, B) = fypx(ylb, E) = (27) % [Z| 2 han(p) (C.19)

where p is given by eq (C.18). We first prove that W is positive definite with proba-

bility one. We can express W as
W = Z W; (C.20)

where W; = (y;~¥7)(yi—¥:)7. W is positive definite if W;, i = 1,2,...,n are positive
definite. We consider a vector a = [a;, a; ...an]T such that a; #0,i=1,2,...,n.

Then W; is positive definite if and only if

aTWia > 0. (C.21)
We have
q; = aTW.-a
=L, Tl aiar(yi; — T5) (vix — Ta) - (C.22)

= [TL, ey -T2 2 0.

However, the probability of Q; = 0 is zero. Therefore, W; is positive definite with
probability one. It follows that W is positive definite with probability one.

Before proceeding with the maximum likelihood estimate of b and X, we present
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an important lemma [49] which is useful for the maximization problem.

Lemma: Let g(.) be a monotonically decreasing differentiable function such that
cg(z} +z3+...+2%) is a PDF of X = [X;, X; ... Xx]|T, where ¢ is a non-zero
constant. Then the function h(z) = z7g(z) for z > 0 has ¢ mazimum at some

finite 2o and is a solution of
' K
g(z)+ 2—xg(:r) =0. (C.23)

Proof: Since cg(.) is a PDF,
/ / 9(22 )dz;...dzg = = < 0. (C.24)
1=1

Also, using the transformation to generalized spherical coordinates of eq (2.22) and

integrating over  and &, k =1,2,... K — 2, it follows that

K
_ T [Py K-1 (2
/ / z?)dz; ...dzk T(EY o 2rt " g(r)dr. (C.25)

Making the change of variable r? = o, we have

(=] - oo K 2 7(-% o0 K
)z, ...dtg = — 771g(a)da. C.26

/—oo -/—oog(gz‘) Iy TK P(%‘)-/(; a? g(a) a ( )

Since g(.) is a monotonically decreasing function,

2z
9(2z)[2z — 7] = z¢(22) < / g(t)dt. (C.271)
Hence,
2z

2-%(22) ¥ g(22) = ¥ g(22) < =51 / g(t)dt. (C.28)

Since g(.) is a monotonically decreasing function,
Tg(2z) < 2% / g(t)dt < / t5=1g(t)dt. (C.29)

Since t5- lg(t) is the PDF of t = T"K 22, to within a multiplicative constant, and
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since the PDF of t — 0 as ¢t — oo (see Chapter 3 for details), it follows that
2z
/ t7-1g(t)dt —» 0 as ¢ — 0. (C.30)

Also, A(0) = 0 and k(z) > 0 Vz > 0. Therefore, k() has a maximum at some finite
zo > 0. The first assertion of the lemma follows. Differentiating A(z) with respect to

z, we have
Kie)= 5ofg(e) +2¥d @) (C.31)

Since A(z) has a maximum at some finite z¢9 > 0, it follows that z, is a solution to

the equation

%g(zo) + g’(:co) =0. (C.32)

Letting K = nN and z = &, we have r(Y) = (%)Diflg(¥) It follows from the
above lemma that the function

) =xFg( ) (C3)

arrives at its maximum at some finite positive Aq and arises as a solution of

nx N . N :
5 9(5)+9(5)=0 (C.34)
We now return to the problem of maximization of L(b, X). Since hnn{(.) is a
monotonically decreasing function and X is positive definite with probability one,
L(b, X) arrives at its maximum when b = §. We then focus on the concentrated

likelihood function

L(b, T) = (27)"F [T} hun[tr(Z-1W)). (C.35)

Since W is a positive definite matrix, it can be represented as W = CCT where C is
a nonsingular matrix. We define the matrix £ = C-13(CT)-1, so that £ = CECT.
Also, it follows that

tr(E‘IW.) = tr[(Cf}'CT)'IW] - tr(f}“[CCT]"IW) = tr(f}—l) (€36
IZ| = |CECT| = |Z||W|
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Hence, the likelihood function can be rewritten as
L(b, ) = (2r)~ T [W|" 3 |Z|" 2 hon[tr(E71)]. (C.37)

Let \; > 0,1 = 1,2,... N denote the eigen values of $. Then,

Lo, %) = (25) F (W I (2,
( ) = (2r) IW|=2 (ITizc A7) NZi= ) (C.38)

= @n) W (T A ) R han (TR, )

1=1 ¢ =1 N

Since the arithmetic mean is always greater than or equal to the geometric mean, it
follows that

L(b, ) < 2r) T W[ ()T han(ND) (C.39)

where A = % TN A7!. Equality between the arithmetic and geometric mean holds
only if Ay = Ay = ... = Ay = A. Therefore, L(b, X) arrives at its maximum when

the eigen values of 3 are equal. Consequently,

mazL(b, X) = max(27r)'22d|W|‘%/\'g?IlhnN(¥)
= max(27r)‘%|/\W '%hnN(¥) (C.40)

= maz(21)~% W[~ f()).

where f()) is given by eq (C.33) with g(.) replaced by h.n(.). Note that A.n(.)
satisfies all the conditions of the lemma dealing with the maximization of A(.). Let
the value of A resulting in the maximum be denoted by Ao. Comparing eq (C.40)
with eq (C.33), it follows that the maximum likelihood estimate of X is |

A

3= AW. (C.41)

In summary, the maximum likelihood estimates of b and X are:

b=y
(C.42)

a

E=/\0W

In order to guarantee the non-negative definite property of 3, it is required that
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Figure C.1: Independent Sampling

n > N. It has been pointed out in [52, 53] that a rule of thumb for obtaining a
reasonably good estimate of X is that n > 2N — 3.
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