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Abstract 

This investigation is motivated by the problem of detection of weak signals in 
a strong radar clutter background. The fundamental issues that need to be 
addressed in the weak signal detection problem are radar clutter modeling, 
simulation and distribution approximation. These issues are easily addressed 
when the clutter is a correlated Gaussian random process. However, these 
issues have not received much attention when the clutter is a correlated non- 
Gaussian random process. 

This thesis addresses the problem of modeling, simulation and distribu- 
tion approximation of correlated non-Gaussian radar clutter. The theory of 
spherically invariant random processes is used for statistical characterization 
of non-Gaussian radar clutter. Several examples of multivariate probabil- 
ity density functions arising from spherically invariant random processes are 
presented. A new result which uniquely characterizes the multivariate prob- 
ability density functions arising from spherically invariant random processes 
is obtained. Two new canonical computer simulation procedures are devel- 
oped in order to simulate radar clutter that can be described by spherically 
invariant random processes. Finally, a new algorithm is used to address the 
problem of distribution identification of the clutter using relatively small 
sample sizes. This technique makes use of the result which uniquely charac- 
terizes the multivariate probability density functions arising from spherically 
invariant random processes and reduces the multivariate distribution ap- 
proximation problem to an equivalent univariate distribution approximation 
problem resulting in a major simplification of processing. 
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Chapter 1 

Introduction 

The problem of weak signal detection in non-Gaussian noise is of interest to engineers 

in many disciplines such as radar, sonar, digital communications and radio astronomy. 

In this research, we are interested in the detection of weak radar targets in a strong 

clutter background. When a signal is transmitted by a radar, the resulting received 

signal consists of returns from a target (desired signal) and returns from such objects 

as buildings, trees, water, land and weather, depending on the environment. Any 

return other than that from the target is an unwanted signal and is defined as radar 

clutter. 

The fundamental issues that need to be addressed are: 

(1) Specification of suitable statistical models for the clutter back- 

ground. 

(2) Development of efficient computer simulation procedures for gen- 

erating samples characterized by the various statistical models. 

(3) Development of an identification procedure for fitting one or more 

statistical models to a set of experimental data. 

With respect to item (1), a complete statistical clutter model should provide us with 

a closed form analytical expression for the probability density function (PDF) of the 

clutter. This should include information about the correlation of the clutter, thereby 

enabling us to take advantage of this correlation in order to cancel the clutter. We 

are interested in processing either N complex samples or 2N quadrature components 

obtained by sampling a complex random process which has a non-Rayleigh envelope 

1 



PDF and a phase that is uniformly distributed over the interval (0,27r). In addition, 

it is assumed that the envelope and the phase are statistically independent. We 

can think of a vector Y = [Yei, • ..Vdv, Y„\ ... Y,N]
T
 to represent the collection 

of the complex samples that have been obtained by sampling the complex process. 

The subscripts c and s denote the inphase and out of phase quadrature components, 

respectively. The issue that we need to address is the specification of the joint PDF of 

the N complex samples or the 2N quadrature components. In other words, we need 

to specify the PDF of the vector Y. We require that the multivariate probability 

density functions be specified in closed form to facilitate their use in the derivation 

of optimal radar signal processors. 

For each PDF of Y that is developed, we need to obtain an efficient computer sim- 

ulation scheme for generating random vectors having this PDF. Computer simulation 

is necessary because it is likely that it will not be possible to evaluate analytically 

the performance of optimal non-Gaussian radar receivers. In such cases, performance 

must be evaluated by computer simulation. 

More often than not, the background clutter is not known a priori. Also, the 

parameters of the clutter are unknown. Therefore, we need to develop estimation 

procedures to approximate the clutter PDF and its parameters. We need to address 

the problem of distribution identification and parameter estimation. It is desirable to 

have available an extensive list of possible multivariate probability density functions 

so that a good fit can be found for a given environment. In practice, only a small 

number of samples may be available. Therefore, there is a need to develop efficient 

procedures to handle small sample sizes. 

Because the clutter is apt to change in space and time, the radar signal processor 

must be adaptive to meet the changing conditions. The approach proposed here 

for the characterization, computer generation and distribution identification of the 

clutter based on the theory of spherically invariant random processes lends itself to 

adaptive receivers. 

This dissertation addresses the above issues and is organized as follows. In Chapter 

2 we present a review of the literature as it pertains to the modeling of radar clutter as 

a spherically invariant random process. Chapter 3 presents techniques for obtaining 

the joint PDF of N complex, non-Gaussian, random variables, assuming that the 



clutter can be characterized as a spherically invariant random process. The need for a 

library of multivariate non-Gaussian PDFs is discussed. Several examples illustrating 

the various techniques for specifying the multivariate non-Gaussian PDF are provided. 

Finally, a key result useful for identifying the multivariate non-Gaussian PDFs arising 

from spherically invariant random processes is presented in Chapter 3. 

Chapter 4 deals with the problem of computer generation of correlated non-Gaussian 

radar clutter that can be characterized as a spherically invariant random process. 

Two canonical simulation procedures are presented. A graphical goodness of fit test 

procedure is presented, to validate the simulation procedures. 

In Chapter 5 we concern ourselves with the distribution identification of radar clut- 

ter characterized by spherically invariant random processes. A new graphical scheme 

based on a key result presented in Chapter 3 is used to address the distribution identi- 

fication problem. This procedure reduces the multivariate distribution identification 

problem to an equivalent univariate distribution identification problem, resulting in 

considerable computational simplicity. Finally, a new technique for shape parameter 

estimation is suggested based on the identification procedure. The chief advantage of 

this scheme is that relatively few samples are needed for the distribution identification 

problem. 

Conclusions and suggestions for future research are presented in Chapter 6. 



Chapter 2 

Background 

2.1    Introduction 
We present an overview of the literature as it pertains to the modeling of radar 

clutter by spherically invariant random processes. In addition, relevant mathematical 

preliminaries are presented in this chapter. When a radar transmits a signal, the 

received echo may consist of returns from one or more targets, buildings, trees, water, 

land and weather depending on the environment. The target returns contribute to the 

desired signal while the other returns contribute to the clutter. Many investigators 

[1, 2, 3, 4] have reported experimental measurements for which the clutter probability 

density function has an extended tail. The extended tail gives rise to relatively large 

probabilities of false alarm. The Gaussian model for the clutter fails to predict 

this behavior. Two approaches have been used to explain the non-Gaussian behavior. 

One of them is based on the fact that application of the central limit theorem (CLT) 

is not appropriate. The other approach is based on the nonstationary reflectivity 

properties of the scanned areas. In any event, non-Gaussian models for the univariate 

(marginal) clutter PDF have been proposed. Commonly reported marginal non- 

Gaussian PDFs for the clutter are Weibull [1], log-normal [5, 6] and K-distributions 

[3, 7, 2]. Second order statistics for these models have been reported in terms of 

autocorrelation functions or power spectral densities [8, 4]. 

The Weibull [1] and log-normal [2] models for radar clutter are primarily based 

on empirical studies, while the K-distribution has been shown' to have physical sig- 

nificance [9, 2] in that the observed statistical properties can be related to the elec- 

tromagnetic and geometric factors pertaining to the scattering surface.   Computer 



simulation schemes for Weibull and Log-normal clutter based on the univariate PDFs 

and correlation functions have been developed in [10] and [11], respectively. Exten- 

sion of the Weibull and Log-normal and K-distributed clutter models for coherent 

radar processing have been developed in [12, 5, 13] respectively. 

Statistical characterization of the clutter is necessary in order to obtain the optimal 

radar signal processor. Usually, radars process N pulses at a time. A complete statis- 

tical characterization of the clutter requires the specification of the joint probability 

density function (PDF) of the N samples. When the pulse returns are statistically 

independent, the joint PDF is simply the product of the marginal PDFs. However, 

the clutter can be highly correlated. In fact, the correlation between samples is useful 

in canceling the clutter. Consequently, it is desirable to include the correlation infor- 

mation in the multivariate PDF. For non-Gaussian processes this can be done in more 

than one way. The theory of spherically invariant random processes (SIRP) provides 

a powerful mechanism for obtaining the joint PDF of the N correlated non-Gaussian 

random variables. Applications for the theory of SIRPs can be found in the problem 

of random flights [14], signal detection and estimation problems in communication 

theory [15, 16], speech signal processing [17, 18], radar clutter modeling and simula- 

tion [19, 13, 20, 21, 22]. The following sections provide a brief overview of literature 

on the theory of SIRPs. 

2.2    Definitions 
In this section we present certain definitions and mathematical preliminaries per- 

taining to the theory of SIRPs. A random vector Y = [Yu Y2, ... ,YN]T, N > 1, is 

said to be a spherically invariant random vector (SIRV) if its PDF has the form 

My) = ÄlSrH^y-bfE-^y-b)] (2.1) 

where k is a normalization chosen so that the volume under the curve of the PDF is 

unity, b is a N by 1 vector, £ is a N by N non-negative definite matrix, and Aw(.) is 

a one dimensional, non-negative, real valued monotonically decreasing function. Note 

that the PDF of an SIRV is elliptically symmetric (i.e., constant contours of /y(y) are 

composed of ellipses). If every random vector obtained by sampling a random process 

y(t) is a spherically invariant random vector, regardless of the sampling instants or 



the number of samples, then the process y(t) is defined to be a spherically invariant 

random process (SIRP). 

Kingman [14] introduced the definition of spherically symmetric random vectors 

(SSRV). In particular, a random vector X = [X\, X2, •. • XN]
T
 is said to be spheri- 

cally symmetric provided its PDF has the form 

/x(x) = khN[(x\ + xl + ... + x2
N)t] = khN(xTx) (2.2) 

where A/v(.) is an arbitrary, non-negative, monotonically decreasing radial function 

of dimension N and k is a normalization constant chosen so that the volume under 

the curve of the PDF is unity. The subscript N is used to emphasize that we are 

dealing with N random variables. Throughout the manuscript, it is assumed that 

the PDF of a random vector is the joint PDF of its components. Equivalently, if 

u = [wj, u>2, • •. ,wjv]T, the characteristic function of the SSRV X defined by $x(w) = 

E[exp(juT'K)], has the form 

$x(w) = gN[(ul + w| + ... + u2
N)l) (2.3) 

where <?jv(.) is a non-negative conjugate symmetric function which is magnitude inte- 

grate. An SSRV is a special case of an SIRV, arising from eq (2.1) when b = 0 and 

£ = I where I is the identity matrix. In Appendix A, we prove that the characteristic 

function of an SSRV is also spherically symmetric. 

2.3    Characterization of SIRVs 

In this section we present some important theorems that help us to characterize 

the PDF of a SIRV. The work of Yao [15], Kingman [23] and Wise [24] gave rise to 

a representation theorem for SSRVs. The representation theorem can be stated as 

follows. 

Theorem 1 A random vector X = [Xi, X2, ... XN]
T
 is an SSRV for any N, if and 

only if there exists a non-negative random variable T such that the random variables 

Xi, (i = 1,2, ...TV) conditioned on T = t are independent, identically distributed, 

Gaussian random variables with zero mean and variance equal to It. 



Proof: Necessity: By definition, the characteristic function of X is 

*x(«) = ElexpiJ^X)} 

= Sroo...irooexp(juTx)fx(x)dx. 

The PDF of the random variable T is introduced by noting that 

/x(x) = roo/x,r(x,^t 

= JS. fxp(x\t)Mt)dt. 

(2.4) 

(2.5) 

Substituting into the expression for the characteristic function and interchanging the 

order of integration we obtain 

*x(w) = r *X|T(W,«)/T(*)A (2-6) 
J—oo 

where 

*X|r(w, t)= r ... r exp(juTx)fX\T{x\t)dx. (2.7) 
J—oo J—oo 

Since X is an SSRV for any iV, its characteristic function has the form of eq (2.3). 

This requires that the functional form of $X|T(
W

>*) remain unchanged for all N. 

Furthermore, $x|r(w> *) must also De a function of (u;J + w| + • • •+wjv) f°r anY choice 

of JV. The only characteristic function satisfying these conditions [23] is 

*X|t(w, 0 = «p[-<(<•>? + u;2
2 + ... + c4)] (2.8) 

where the conditional PDF of X, given T = t, is recognized to be multivariate Gaus- 

sian, with Xi, (i = 1, 2, ..., N) being statistically independent identically distributed, 

zero mean Gaussian random variables with variance 2f. Because the variance equals 

2t, T must be a non-negative random variable. Necessity follows. Note that the 

theorem does not give any physical significance for T. Neither does it reveal how to 

determine /r(i). 

Sufficeincy: To prove sufficiency, we need to show that every product of a Gaussian 

random vector Z having zero mean and identity covariance matrix and a random 

variable 5' = \/2? with PDF fs>(s) results in a PDF of the form of eq (2.2). 



In particular, consider the product X = ZS'. The PDF of X conditioned on S' is 

then given by 

fxv?(*\») = (2»)-*l*'rAr«p(-2J7jj) (2-9) 

where p = xrx. From the theorem on total probability, the PDF of X can be written 

as 

/x(x) = (2*)-* jH \A-Nexp(-J^)fs,(s)ds. (2.10) 

For convenience, we can write the PDF of S' as 

/*(*') =/i(*') + /2(*') (2-11) 

where 

f /(«')   s > 0 
/i(*') = (2-12) 

I  0 otherwise 

and 

f(s')   s'<0 
/a(0 = 

Then, eq (2.10) can be expressed as 

(2.13) 
0 otherwise 

/x(x) = (2*)-* /_°TO \s'\-Nexp(-JL-)f2(-s)ds'+(2x)-T jf°° ^'"expi-^Ma^ds' 
5(2.14) 

Making the change of variable -5' = ( in the first integral of eq (2.14), we have 

fx(x) = (2*)-%J~(s)-Nexp(-^)fs,(s')ds. (2.15) 

Thus, it is clear that regardless of whether S' is positive or negative, the PDF of X 

has the form of eq (2.15). Henceforth, we always consider the product of Z and a 

non-negaitve random variable S in our analysis. 

Comparing eqs (2.15) and (2.2), we can write k = (2x)*T and 

MP ) = £(B)-NtxA-^)Ms)da. (2.16) 



Note that /ijv(p) given by eq (2.16) is a non-negative, monotonically decreasing func- 

tion of p, for all N. Therefore, the PDF of eq (2.15) is entirely equivalent to that 

of eq (2.2). This establishes the theorem. Thus, it is clear that the PDF of an 

SSRV is uniquely determined by the specification of a Gaussian random vector hav- 

ing zero mean and identity covariance matrix and a first order PDF fs(s) called the 

characteristic PDF. 

The following theorem in [25] states that a SIRV is related to an SSRV by a linear 

transformation. 

Theorem 2 IfX is an SSRV, with characteristic PDF fs(s), then the deterministic 

linear transformation 

Y = AX + b (2.17) 

results in Y being an SIRV having the same characteristic PDF. It is required that A 

be a matrix such that AAT is nonsingular and b be an N by 1 vector. 

Proof: Since X is an SSRV, we can express X as X = ZS, where Z is a Gaussian 

random vector having zero mean and identity covariance matrix and 5 is a non- 

negative random variable. Hence, 

Y = AZ5 + b. (2.18) 

Conditioned on 5, the PDF of Y is Gaussian, with mean vector equal to b and 

covariance matrix equal to AATs2. The PDF of Y conditioned on S is given by 

fY\s(y\s) = (2ir)-T\i:\-h-Nexp(-^) (2.19) 

where p = (y — b)TS-1(y — b) and |S| denotes the determinant of the covariance 

matrix S = AAT. Implicit herein is the assumption that S has unit mean square 

value. Using the theorem on total probability, the PDF of Y can be written as 

/Y(y) = (27r)-f|S|-JMP) (2.20) 

where 

hs{p) = /o°° s-"exp(-^)fs(s)ds. (2.21) 

The PDF of Y is of the form of eq (2.1). Therefore, Y is an SIRV. 



The PDF of an SIRV is uniquely determined by the specification of a mean vector, 

a covariance matrix and a first order PDF called the characteristic PDF. Theorem 1 

for SSRVs generalizes for SIRVs in a straightforward manner. The only difference is 

that conditioned on the non-negative random variable T, the {Yk : (k = 1, 2, ... N)} 

are no longer statistically independent. Instead, the PDF of Y conditioned on T is 

a multivariate Gaussian PDF. By the same argument used for SSRVs, an SIRV can 

be written as a product of a Gaussian random vector and a non-negative random 

variable. The only difference is that the mean of the Gaussian random vector need 

not be zero and its covariance matrix is not the identity matrix. As a corollary 

of Theorem 2 [15], it can be readily shown that every linear transformation on an 

SIRV results in another SIRV having the same characteristic PDF. As a special case, 

when fs{s) = S(s - 1) where <$(.) is the unit impulse function, h^ip) = exp(—2) and 

the corresponding SIRV PDF given by eq (2.20) is the multivariate Gaussian PDF. 

Therefore, the multivariate Gaussian PDF is a special case of the SIRV PDF. 

The following theorem from [16] provides an interesting property of SSRVs when 

represented in generalized spherical co-ordinates. 

Theorem 3 A random vector X = [Xi. ..XN]T is an SSRV if and only if there exist 

N random variables R € (0, oo), 0 6 (0,2x) and $fc € (0, TT), (k = 1,... N - 2) such 

that when the components o/X are expressed in the generalized spherical coordinates 

Xx = i?cos($1) 

Xk = Äcos^jfe) Ui=i sin($<)     (1< k < N - 2) 
(2.22) 

Ar^_1 = JRcos(0)n-lT2sin($,) 

XN = Rsm(e)Tl!Ll2M*i) 
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then the random variables R, 0 and $fc are mutually statistically independent and 

have PDFs of the form 

Mr) = rf%^(r2)u(r) 

fe(e) = (27c)-*[u(e)-u(d-2*)} 

where T(.) is the Eulero Gamma function and u(.) is the unit step function. 

Proof: Since the random vector X is an SSRV, its PDF is of the form of eq (2.2) 

with hjv(p') being given by eq (2.16). The Jacobian of the transformation given by 

eq (2.22) is obtained in [26] as 

j=(R*-1 n3«nAr"i"fc(^))"1. (2-24) 
fc=l 

Using eq (2.2) and eq (2.24) and noting that R? = ££Li X%, the joint PDF of R, 0 

and $k  (k = l,2,...N — 2) becomes 

/^e,*,...*„_,(r,Mi---<^v-2) = ^rMr2) Ü ^N~l-k(4>k) (2.25) 
(2TT) 2 jt=1 

Since the joint PDF in eq (2.25), can be written as a product of the marginal PDFs 

given in eq (2.23), the variables R, 0 and $fc, are mutually statistically independent 

with the prescribed PDFs . In order to prove the sufficient part of the property, we 

start with the marginal PDFs of i?, 0 and $jt given by eq (2.23) and, under the 

assumption of statistical independence, obtain the joint PDF of eq (2.25). Using the 

inverse Jacobian of that given by eq (2.24), results in the PDF of X being given by 

eq (2.2). 

2.4    Determining the PDF of an SIRV 

In this section we shall present schemes for determining the PDF of an SIRV. We 

recognize that the PDF of an SIRV is uniquely determined by the specification of 

a mean vector, a covariance matrix and a characteristic first order PDF and that 

the SIRV PDF has the form of eq (2.20). Several techniques are available in the 

literature for specifying /ijv(p). The simplest technique is to use eq (2.21). However, 
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this procedure requires the knowledge of the chaxacteristic PDF fs{s). Therefore, 

when fs(s) is not known in closed form or it is difficult to evaluate the integral in 

eq (2.21), alternate methods for specifying h,H(p) must be examined. 

To study the behavior of /ijv(p), it is convenient to replace p, which is a quadratic 

form depending on N, by the dummy scalar variable q. We then write 

M?) = / 
Jo 

°°s-Nexp(-±)fs(s)ds. (2.26) 

When both sides of eq (2.26) are differentiated with respect to q, we obtain 

^ = -I/V-exp(-X)/s(sM, (,27) 

The right hand side of eq (2.27) is related to h,N+2(q) by the factor of —|. Thus, we 

have an interesting result pointed out in [19] that 

hN+2(q) = (-2)^1 (2.28) 

Because 

MY) = (2T)-^|S|-iAN+a(p) (2.29) 

when Y is of dimension N + 2, it follows that h^(q) must be a monotonically decreas- 

ing function for all N. Eq (2.28) provides a mechanism for relating higher order PDFs 

with those of lower order, for a given SIRV. More precisely, starting with N = 1 and 

N — 2, and using eq (2.28) repeatedly, gives the following pair of recurrence relations. 

h2N+1(q) = (-2)"^ 
' (2.30) 

h2N+2(q) = (-2)Nd-^l. 

Therefore, starting from hi(q) and h2(q) all PDFs of odd and even order respectively, 

can be generated by the use of eq (2.30). However, since A;v(.) is defined to be a non- 

negative monotonically decreasing function for all JV, hi(.) and h2(.) must belong to a 

class of functions that are non-negative and monotonically decreasing. Consequently, 

their successive derivatives will alternate between negative and positive functions that 

are monotonically increasing and decreasing, respectively. Given hs(q), the Nth order 
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SIRV PDF is given by 

/Y(y) = (2*)-T|E|-*MP) (2.31) 

where Ajv(p) is nothing more than h^iq) with q replaced by p. 

Another approach for specifying ftjv(p) that begins with the univariate character- 

istic function has been proposed in [27, 15, 16]. It is required that the univariate 

characteristic function be a real even function whose magnitude is integrable. Also, it 

is assumed that the components of the SIRV are identically distributed. Under these 

conditions, it has been shown that 

MP) = (V/P)
1
"^ r^4>{u))JiL^{yiy/^duj (2.32) 

Jo 2 

where <j>(u>) is the univariate characteristic function and Ja(/y) is the Bessel function 

of order a. Eq (2.32) has an elegant proof by induction which is presented here. 

From eq (2.20) it follows that hi(p) is related to the first order SIRV PDF of the ith 

component. More explicitly, we can write 

MVi) = (V^ay'hripi)   (i = l,2,...N) (2.33) 

2 

where p,- = % and cr2 is the common variance of the random variables Yi (i — 

1, 2, ...N). For convenience, assume that a2 is unity. The univariate characteristic 

function is then given by 

fY,{yi)exp(juyi)dyi (2.34) 
-oo 

Using the inverse Fourier transform and noting that y, = ^/pT, /ii(pi) can be expressed 

in terms of the characteristic function as 

hi(Pi) = -7f= /    &(w)exp(-jwv?)<k'- (2.35) 

Since <f>i(u) is the same for all i, the subscript i in eq (2.35) can be dropped. In 

addition, because <j>(u) is an even function, we can rewrite eq (2.35) as 

w-i/!x hi(p) = \/— /    <f>(u)cos((jy/p)du). (2.36) 
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Recognizing that cos(x) = J?f-J_i(x), and replacing p by the dummy variable q, we 

have 

hi(q) = (VÖ)> rumuj)J_i{uy/q)du. (2.37) 
Jo 2 

Since the derivation makes use of eq (2.28) it is necessary to consider odd and even 

values of N separately. For odd values of N, eq (2.32) can be written as 

h2N-i(q) = (Vl)*~N J°°^-Hi^JiiL^^Vq)^ (2.38) 

Equation (2.38) is now shown to hold for all N by means of induction. With N — 1, 

eq (2.38) reduces to eq (2.37). It remains to show that eq (2.38) is valid when N is 

replaced by N +1. Differentiating both sides of eq (2.38) with respect to q, we obtain 

^^-jf«w-*««)i[(v5)H'jat4(»v5)]<fc>. (2.39) 

First, focus on the term j;[{y/q)*~N
JIN-* (w%/q)]. Since this involves the derivative 

of a product, we can write 

(2.40) 

Using the identity [28] 

*ffi. = ?jJM-Ja+M (2.41) 

we have 

Substituting eq (2.42) in eq (2.40) gives 

(2.42) 

5jKV5)*"Ar^ W5)l = -f (v^*"""^ W5) (2.43) 

Consequently, eq (2.39) reduces to 

dh2N-i(q) 
^^ = -\(Vq)>-N J~uN+i<Ku)J&fi(u>y/q)<L>. (2.44) 

However, from eq (2.28) we know that h2N+1(q) = (-2)^2£=iM    Hence, we have 
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from eq (2.44) 

h2N+1{q) = (y/q)±-N r' uN+U(u)J2H=i(uy/q)du. (2.45) 
Jo 2 

Because eq (2.45) is identical to eq (2.38) with JV replaced by N + l, it has been shown 

by induction that eq (2.38) is valid for all N. For ease of derivation, it was assumed 

that the components of Y have identical variances. However, since the functional 

form of hs(p) is invariant to the choice of p, it follows that eq (2.32)is valid for all 

odd values of N. 

In a similar manner, starting with ^(p), it can be shown that 

*2jv+a(p) = VP~
N
 rwN+x<l>{uj)JN{uy/p)du (2.46) 
Jo 

for all N. Note that eq (2.46) is identical to eq (2.32) with N replaced by 2N + 2. 

The proof of this result is presented in Chapter 3. Thus, in general, for any N (odd 

or even), we can write Ajv(p) as in eq (2.32). 

2.5    Properties of SIRVs 

In this section we present certain important properties of SIRVs. 
2.5.1 PDF Characterization 

The multivariate PDF of an SIRV as given by eqs. (2.20) and (2.21) is uniquely 

determined by the specification of a mean vector b, a covariance matrix S and a 

characteristic first order PDF fs{s). It is a non-negative, real valued monotonically 

decreasing function, /i^(.), of a non-negative quadratic form multiplied by a constant. 

The type of SIRV is determined by the form of /i/v(.) or, equivalently, the choice of 

fs(s). Higher order PDFs can be obtained by the use of eq (2.32) whereas lower 

order PDFs can be obtained in the usual manner by integrating out the unwanted 

variables. We discuss this procedure in Appendix A. The PDFs of all orders are of 

the same type. The marginal PDFs are used to classify the type of SIRV. 
2.5.2 Closure Under Linear Transformation 

As shown in Theorem 2 of Section 2.3, every linear transformation of the form of 

eq (2.17) on an SIRV results in another SIRV having the same characteristic PDF. 

This feature is called the closure property of SIRVs [15, 16]. 
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2.5.3    Minimum Mean Square Error Estimation 

In minimum mean square error estimation (MMSE) problems, given a set of data, 

SIRVs are found to result in linear estimators [27, 15, 29]. An interesting proof of 

this property is presented here. Let Y = [YiT Y2T]T where Yi = [Yi, Y2, .. .Ym]T 

and Y2 = [Vm+i, Ym+2, • ■ ■ YN]
T
 denote the partitions of Y. It has been pointed out 

in [30] that the minimum mean square error estimate of the random vector Y2 given 

the observations from the random vector Yi, is given by 

Y2 = £[Y2|Yi] (2.47) 

where i?[Y2|Yi] denotes the conditional mean or the expected value of Y2 given Yi. 

Assume that Y is an SIRV of dimension TV with characteristic PDF fs(s). Also, for 

convenience, it is assumed that the mean of Y is zero. The covariance matrix of Y 

denoted by £ can be partitioned as 

S = 
On   C12 

C21   C22 

(2.48) 

where Cn denotes the covariance matrix of Yi, C12 denotes the cross covariance 

matrix of the vectors Yi and Y2, C21 is the transpose of C12, and C22 denotes the 

covariance matrix of the vector Y2. The PDF of Y2 given Yi is expressed as 

fw(y*M = jg&. 

Recall from eqs. (2.20) and (2.21) that 

(2.49) 

/Y(y) = (2r)-T|S|"MP) (2.50) 

where 

hN(p) = JQ
0Os-Nexp(-^)fs(s)ds (2.51) 
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and p = yrS~ y. Note that the inverse covariance matrix can be partitioned as [26] 

3T1- 

where 

A   B 

C   D 

A = (Cn - C12C22 C21) 

B = -AC12C22 

C = —DC21CJJ 

D = (C22 - C2i 0^012) 1. 

Expanding the quadratic form, we have 

P = yf Ayi + yf By 2 + yJCyi + yf Dy2. 

Adding and subtracting yf C^*yi to the right hand side of eq (2.54) gives 

p = yf (A - CiJ)yi + yf Cj}yi 4- yf By2 + yJCyi + yf Dy2. 

Note that 

Hence, 

A —  Cn-i     =   —BC21C 11 

- „Tp-1, P = yi Cuyi - Yi BC2iC^yi + yf By2 + yJCyi + yf Dy2. 

However, it can be shown that 

yf Cyi = -yf DCziCiiVi 

yf By2 = -yf Ci1
1Ci2Dy2 

-yf BCaiCiJyi = yfC^CiaDCaiCrfyi 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 
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Making these substitutions in the expression for p, it follows that 

P = y?Cr1
1yi+y?Dy2-yjDC21Cr1

1yi-y?Cl1
1C12Dy2+y?Cr1

1C12DC2iCi1
1yi. 

(2.59) 

This can 1 je rewritten as 

P = yfCüVi + (y2 - C2iCi1
1yi)TD(y2 - QjiC^yi) (2.60) 

For simpli city, we define 

Pi = yJc^yi 
(2.61) 

Pi = (Y2 ~ C2iCi1
1yi)rD(y2 - C^iC^yi). 

Then, 

P = Pl +P2- (2.62) 

From eqs (2.62) and (2.49)-(2., 51), we have 

/Y2|Y1(y2|yi) = *   r.-N-xr}( PI+WW/.W. (2.63) 
/Yl(yi)^o "   cxp[    w  ms)ds- 

where k - = (2;r)-f|S|-2. Next , consider 

E[Y2 lY.i-  *   r s-"exp(-lL) j^  y2exp(-ZL)dy2fs(s)ds. (2.64) 1  lJ"/Yl(yi)io 

Noting that 

lY/2eXp{-2? )dy2 = (2*)N-r\D\-hN-m[C21Cllyi),   . (2.65) 

gives 
kl           f°° „-m         /      Pi  \r_(n\J„ E\Y2\Yi\ = (2.66) 

fY1(yx)Jo         p( 2s>)fs{s}ds 

where ki = (23r)-?|S|-i|D| ~2[C2iC1iyi].   When a matrix is partitioned as in 

eq (2.52), it is known that [31 

|S| = = |Cii||C22 -C2iCi1Ci2|. 
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Since 

it follows that 

D = (C22 - C2iCü1Ci2)-1, (2.68) 

S| = ICnllD"1! (2.69) 

Thus, 

IS"1! = ICnl-^DI. (2.70) 

Hence, k\ = (27r)~T|Cii|"[C2iCiiyi]. Finally, since 

/Yl(yi) = (2x)"f |C„|-i j[°°*-"e*p(-^)/s(«)«fa, (2.71) 

Y2 = £[Y2|Yi] = [CaiCrfyi] (2.72) 

It is seen that the MMSE estimate of Y2 given the data Yi is a linear function of 

Yi. 

If the random vectors Yi and Y2 have non-zero means denoted by bi and b2 

respectively, then eq (2.72) takes the form 

£[Y2|Yi] = b2 + CaiCiJfri - bi). (2.73) 

As a consequence of this property, when the random vectors Yi and Y2 are un- 

correlated so that C2i = 0, then we have 

£[Ya|Yi] = b2 = E[Y2}. (2.74) 

This property is referred to as semi independence in [27, 32, 15].   However, for all 

SIRVs except the Gaussian, this result does not imply that 

/Y2|Yx(y2|yi)   =   /Y2(y2) (2-75) 

This emphasizes the property that although uncorrelatedness guarantees statistical 

independence for Gaussian random vectors, it is not a general property of SIRVs. 
2.5.4    Distribution Of Sums of SIRVs 

While it is true that the sum of two jointly Gaussian random vectors is also Gaus- 

sian, the same is not true for SIRVs in general. This result holds for two SIRVs, when 
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they axe statistically independent, having zero mean and when the covariance matrix 

of the first is within a multiplicative constant of the covariance matrix of the second 

[15, 16]. More precisely, let Yi = [Yn, Y12, ...YlN)T and Y2 = [Y21, Y22,...Y2N]T 

denote two independent zero mean SIRVs. The covariance matrix and characteristic 

PDF of Yi are denoted by Si and fsx{si)- The corresponding quantities for Y2 are 

denoted by £2 and fs2{s2). We are interested in obtaining the distribution of the 

sum given by 

Y = Yi+Y2. (2.76) 

The characteristic function of Y is given by 

E[exp(juTY)] = ^(o;TSia;)52(u;TS2u;) (2.77) 

where gi(.) and g2(.) are the characteristic functions of Yi and Y2, respectively. If 

Y is a zero mean SIRV, then its characteristic function has the form 

E[exp(juTY)] = s(u;T£u;). (2.78) 

In order to write eq (2.77) as a function of a single quadratic form, E2 must be within 

a multiplicative constant of Ej. 
2.5.5    Markov Property for SIRPs 

An interesting property of SIRPs is that a zero mean wide sense stationary SIRP 

is Markov if and only if its autocorrelation function has the form 

R(t1,t2) = exp(-a\{t1-t2\) (2.79) 

This result is well known for the special case of a zero mean wide sense stationary 

Gaussian random process. To demonstrate the more general result we consider N 

samples from a zero mean wide sense stationary SIRP y(t). Let Y = [Yi, Y2 ..., VAT]
T 

denote the vector of successive samples obtained from the SIRP. 

Given that y(t) is a zero mean wide sense stationary Markov SIRP, we first show 

that its autocorrelation function must have the form of eq (2.79).Let Yi, Y2 and Y3 

denote the random variables obtained by sampling y(t) at time instants t\, t2 and ts 

such that h < t2 < t^. Since y(t) is a Markov process, the joint PDF of Y\, Y2 and 
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V3 can be expressed as 

fYi,Y3,Y3{yuy2,y3) = /yitoO/yalVitolyO/vili^ifelya)- (2.80) 

The autocorrelation function R{h,ti) = E\Y$Yi) is given by 

/oo     roo     too 

/    /   y3yifY1,Y2,Y3{yuy2,y3)dyidy2dy3. (2.81) 
-00 j—00 j—00 

Also, 

R(t2,t2) = E[Y2} = r ylfrMdyi. 
j—00 

(2.82) 

Hence, 

/oo     Aoo     roo     roo 

/      /      /     y3yifYl,Y2,Y3{yuy2,y3)dyidy2dy3y2fY2(y2)dy2. 
-00 •/—OO •/—CO J—OO 

(2.83) 

Using eq (2.80) we can rewrite the above equation as 

Ä(«3,<i)Ä(<a,<a)= /     /    y3y2fY3,Y3(y3,y2)dy3dy2 f     I    ya^i/y^^S/i^Myi- 
J—00 J—00 J—00 j—00 

(2.84) 

Consequently, 

R{i3,tl)R{t2,t2) = Ä(<3,<2)Ä(*2,<l) (2-85) 

The only non-trivial autocorrelation function satisfying this property is given by 

eq (2.79). 

Since y(i) is a zero mean SIRP, it follows that E[Y] = 0. Letting b = exp(-a), we 

can write the covariance matrix of Y as 

1      b ...   bN~ 

b      1 

b2     b 

b»-1   b"-2 

under the assumption that t\, t2,..., iw = 1,2,. 

(2.86) 

., N. We then make use of eq (2.73) 
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to obtain 

E[YN\YN.U YN.2 ...,¥,} = [bN-1bN-2...b}J:yr
^Y,               (2.87) 

where Y' = [Yu F2, ..., Y^)7 and 

1      6        ...   6"-2 

Sy' = 

6      1        ...   6"-3 

bN-2     p-3     _             j 

(2.88) 

Recognizing that 

1-6         0        0 

_6   i + 62      _b       0               0 

E,-1-     * 
0    -6        1 + 62   ......     0 

(2.89) ^y     "1-62 

0      -6   1 + 62   -6 

0           -6     1 

Therefore, we can rewrite eq (2.87) as 

E[YN\YN^ YN-2 ...,Y1) = bYN.x.                            (2.90) 

From eq (2.73), we also obtain 

E\rN\YN-x\ = bY^.                                      (2.91) 

Clearly E[YN\YN^] = E[YN\YN.U YN-*...,Yx\.   Since this must be true for all 

choices of yl5 F2, ...,y^_1? it follows that fYirirN-1,YN.a...,Yx(VN\yN-u VN-2 ...,yi) = 

fvi*\vN-i(yN\yN-i)- Hence, y(t) is Markov. 
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2.5.6    Kaiman Filter for SIRPs 

It has been shown by Chu in [29] that the Kaiman filter for SIRPs is identical to 

the corresponding filter for a Gaussian random process. The model considered in [29] 

is given by 

Xk+i = FkXk + Gkwk (fc = 0, 1, ...,N-1) 

yk = Hkxk + vk (fc = 0, 1, ...,JV-1) 

where xk denotes the state vector of the underlying process, wk is its excitation 

vector, yk denotes the observation vector and vk is the measurement noise. It is 

assumed that xk, wk and vk are jointly SIRP with a common characteristic PDF 

/s(s). Also, let 

£[xk] = Xk (fc = 0,l,...,tf-l) 

^[(xk-xk)(xk-xk)T] = Mk 

EM - EM = 0 p M) 

£[(xk - Xk)wk
r] = £[(xk - Xk)vk

T] = £[wkv£] = 0 

^[widWfcm] = Qk<5/,m 

^[vidVfcm] = Rk£|,m 

where w^ and VJ^Q are the mth components of wk and vk respectively, and 6;,m is 

the Kronecker delta function. Hence, xk, wk and vk are mutually uncorrelated while 

wk and vk are each white with zero mean. 

The innovations vectors is defined as 

yk|k-i = Yk - Hkxk|k_! (2.94) 

where xk|k_i is the MMSE estimate of xk given the observation vectors up to k — 1. 

The covariance matrix of the innovations can be shown to be 

Cw(ykik-i) = sk|k-i = (HkMkHj + Rk). (2.95) 

It can be readily shown that xk and yk are jointly SIRP. Therefore, the MMSE 
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estimate of xk given the observation vectors up to k — 1 is a linear function of ym 

m = 1, 2, ..., k — 1, as shown by eq (2.73). Hence, the Kaiman filter equations for 

SIRPs are identical to those for the Gaussian case. The Kaiman gain denoted by 

Kk|k is expressed as 

Kk|k = MkHk
:Sk|

1
k_1. (2.96) 

The measurement update xk|k is given by 

xk|k = xk|k_x + Kk)kyk|k_i = (I - Kk|k)xk)k_i + Kk|ky*. (2.97) 

The covariance matrix of the error in the update can be written as 

Ck = Mk - MkH^HkMkHf + Rk^HkMk. (2.98) 

The prediction is then given by 

*k+i|k = Fkxk(k. (2.99) 

Finally, the covariance matrix of the prediction is expressed as 

Mk+1 = FkCkFj + GkQkGj (2.100) 

When systems driven by non-Gaussian noise are encountered in practice, under the 

assumption of joint SIRP, these equations provide an efficient computation formula 

for the Kaiman filter. 
2.5.7 Statistical Independence 

We point out that the only case for which the components of an SSRV are statis- 

tically independent occurs when the SSRV is Gaussian.  This property is proved in 

Appendix A. 
2.5.8 Ergodicity of SIRPs 

It has been pointed out in [27] that an ergodic SIRP is necessarily Gaussian. The 

proof of the non-ergodicity of SIRPs (except Gaussian) can be easily obtained using 

the representation theorem [15] for SIRPs which states that an SIRP is a univariate 

randomization of the Gaussian random process. More precisely, if y(t) is an SIRP, 

then it can be expressed as y(t) — Sz(t), where S is a non-negative random variable 
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and z(t) is a Gaussian random process. Clearly, if z(t) is stationary, then y(t) will 

also be stationary. However, different realizations of S result in different scale factors 

for the sample functions of y(t). Therefore, time averages will differ from one sample 

function to another and, in general, will not equal the corresponding ensemble average. 

Consequently, y(t) cannot be ergodic. When S is a non-random constant, y(t) is a 

Gaussian random process. Then y(t) will be ergodic provided z(t) is also ergodic. It 

is concluded that only Gaussian SIRPs can be ergodic. 

2.6    Conclusion 
In this chapter, we have presented an overview of the literature on the modeling of 

radar clutter and the theory of SIRPs. It is clear from this chapter that the PDF of 

an SIRV is uniquely determined by the specification of a mean vector, a covariance 

matrix and a characteristic first order PDF. It is also seen that many interesting 

properties of Gaussian random processes extend readily to SIRPs. A major difference 

with non-Gaussian SIRPs is their non-ergodic behavior. Consequently, time averages 

do not result in corresponding ensemble averages. However, if ensemble averages are 

used instead of time averages, then non-ergodicity is not a serious problem. In the 

following chapters, we shall present the application of SIRPs for non-Gaussian radar 

clutter modeling, simulation and distribution identification. 
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Chapter 3 

Radar Clutter Modeling Using 
Spherically Invariant Random 
Processes 

3.1    Introduction 
In this chapter we consider the use of the theory of spherically invariant random 

processes (SIRP) for modeling correlated non-Gaussian radar clutter. It has been 

pointed out in chapter 2 that radar clutter can be non-Gaussian and that radars pro- 

cess N pulses at a time. Furthermore, the clutter can be highly correlated. Therefore, 

by clutter modeling we mean the specification of the joint probability density func- 

tion (PDF) of the N correlated clutter samples. Since we are dealing with correlated 

clutter, the joint PDF cannot be constructed by simply taking the product of the 

marginal PDFs. This chapter presents a mathematically elegant and tractable ap- 

proach for specifying the joint PDF of N clutter samples. In addition, we discuss 

the characterization of Gaussian and non-Gaussian correlated random vectors, the 

need for a library of multivariate PDFs for modeling correlated non-Gaussian clut- 

ter, several techniques for establishing this library and, finally, a key result for the 

distribution identification of multivariate correlated non-Gaussian random vectors. 

Specifically, the problem of modeling a random vector obtained by sampling a 

stochastic process y(t) at N time instants is of interest to us. The stochastic process 

may be real or complex. In addition, there is no restriction on the number of samples 

obtained or the sampling time instants.   In order to completely characterize the 
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random vector we need to specify the joint probability density function of the N 

samples (real or complex) or, equivalently, specify the joint characteristic function. 

This problem is very well treated when the underlying stochastic process is Gaussian. 

The joint PDF in this case can be written as (2?r)~^|S|~icsp(-f), where p is a 

non-negative quadratic form given by p = [y - /i]TE-1[y - /*]. Here \L and S denote 

the mean vector and covariance matrix of the Gaussian random vector Y whose 

components are the N samples of y(t). However, if y(t) is not a Gaussian random 

process, there is no unique specification for the joint PDF of the N samples except 

when the samples are statistically independent. 

When processing real world data, neither the Gaussian nature of the underlying 

stochastic process nor the statistical independence of the samples is guaranteed. In 

fact, it is likely that the samples may be correlated. Hence, we need to obtain 

multivariate non-Gaussian PDFs which can model the correlation between samples. 

In practice, radar clutter can vary from one application to another. Therefore, we 

need to have available a library of possible multivariate non-Gaussian PDFs so that 

an appropriate PDF can be chosen to approximate the data for each clutter scenario. 

The theory of Spherically Invariant Random Processes (SIRP) provides us 

with elegant and mathematically tractable techniques to construct multivariate non- 

Gaussian PDFs. Spherically invariant random processes are generalizations of the 

familiar Gaussian random process. The PDF of every random vector obtained by 

sampling a SIRP is uniquely determined by the specification of a mean vector, a 

covariance matrix and a characteristic first order PDF. In addition, the PDF of a 

random vector obtained by sampling a SIRP is a function of a non-negative quadratic 

form. However, the PDF does not necessarily involve an exponential dependence 

on the quadratic form, as in the Gaussian case. Such a random vector is called a 

Spherically Invariant Random Vector (SIRV). 

There are two kinds of models for non-Gaussian radar clutter. One is called the 

endogenous model, where the desired non-Gaussian process with prescribed envelope 

PDF and correlation function is realized by using a zero memory non- linear trans- 

formation on a Gaussian process having a prespecified correlation function. In this 

approach it is not possible to independently control the envelope PDF and the cor- 

relation properties of the non-Gaussian process.  In addition, not all nonlinearities 
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give rise to a non-negative definite covariance matrix at their outputs [33, 34]. The 

second model is called an exogenous product model [13]. In this model, the desired 

non-Gaussian clutter is generated by the product of a Gaussian random process and 

an independent non-Gaussian process which can be highly correlated. In this scheme, 

the desired envelope PDF and the correlation properties can be controlled indepen- 

dently. The exogenous model can be thought of as a slowly time variant non-Gaussian 

process modulating a Gaussian random process. The SIRP is a special case of the ex- 

ogenous model, arising when the modulating process does not change rapidly during 

the observation interval and can be approximated as a random variable. This is due 

to the fact that the representation theorem for SIRPs allows us to explicitly write 

the non-Gaussian process as a product of a Gaussian process and a non-negative ran- 

dom variable. By assuming statistical independence between the modulating random 

variable and the Gaussian process, it is possible to independently control the non- 

Gaussian envelope PDF and its correlation properties. The SIRP is the only known 

case of the exogenous multiplicative model which allows the specification of the N*k 

order PDF. 

Section 3.2 outlines the problem of interest. In Section 3.3 we present several 

techniques to obtain SIRVs. Examples based on various techniques described in 

Section 3.3 are used to obtain a library of SIRV PDFs in Section 3.4. Finally, in 

Section 3.5, we present a key result which characterizes SIRVs by using the quadratic 

form appearing in their PDFs. 

3.2    Problem Statement 
We assume we are dealing with coherent radar clutter. By coherent radar clut- 

ter, we mean that the clutter is processed in terms of its in-phase and out -of-phase 

quadrature components. Pre-detection radar clutter, being a bandpass random pro- 

cess, admits a representation of the form 

y(t) = Re{y(t)exp(juot)} (3.1) 

where y(t) = yc(t) + jys(t) denotes the complex envelope of the clutter process, u0 

is a known carrier frequency, yc(t) and ya(t) denote the in-phase and out-of-phase 

quadrature components of the complex process y(t). Equation (3.1) can be rewritten 
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elS 

y(0 = yc(t)cos(ujot) - y,(t)sin(u0t). (3.2) 

We are interested in specifying the joint PDF of N samples obtained by sampling 

the process y(t). Since it is always more convenient to work with the associated low 

pass process, we consider the equivalent problem of specifying the PDF of N complex 

samples obtained from the complex process y(t). The PDF of a complex random 

variable is defined to be the joint PDF of its in-phase and out-of-phase quadrature 

components. Therefore, it follows that the joint PDF of N complex random variables 

is the joint PDF of the 2N in-phase and out-of-phase quadrature components. While 

dealing with complex random variables, it is sometimes more convenient to work 

with their envelope and phase. The envelope Ä, and phase 0; of a complex random 

variable Yj = Y„ + jY,i are denned by 

(3-3) 

0,-   =   arctan(^f). 

We consider the problem of specifying the PDF of a random vector YT = [YC
T: Y8

T] ob- 

tained by sampling the random process y(t), where Yc = [Yc\, Yc2, ...,YCN]
T
 and 

Ys = [Vji, y,2, ...,y4jv]T. The subscripts c and s denote the in phase and out of 

phase quadrature components, respectively. We assume that the process y(t) is a 

wide sense stationary random process. The necessary and sufficient conditions for 

y(t) to be a wide sense stationary random process [30] are: 

(A) The quadrature components have zero mean. 

(B) The envelope of the pairwise quadrature components is statisti- 

cally independent of the phase and the phase is uniformly dis- 

tributed over the interval (0,27r). This results in the pair wise 

quadrature components being identically distributed and their 

joint PDF being circularly symmetric. This also results in the or- 

thogonality of the pairwise quadrature components at each sam- 

pling instant. 

(C) The autocovariance function and crosscovariance function of the 
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quadrature processes of the complex process    y(t) = yc(t) + 

jy3(t)  satisfy the conditions given by 

ffcc(r)   =    K„(T) 

KCS(T)   =   -Kac(r) 

(3.4) 

where 

KCC(T)   = E{Xc(t)Xc(t - -*)) 

K„(T)   = E{X.{t)X.(t - -r)} 

Kca(r)   = E{Xc(t)Xs(t - -r)} 

Kac(r)   = E{X,(t)Xc(t - ■r)} 

(3.5) 

Any choice of autocovariance and crosscovariance functions is allowed as long as 

requirement (C) is satisfied and the resulting covariance matrix of Y is nonnegative 

definite. 

Due to requirement (A), E{YC} = £{YS} = 0. It follows that E{Y} =0. As a 

consequence of requirements (B) and (C), the covariance matrix of Y, given by 

£ = 

iiCC     I     i'cs 

2J8C      I     2J8S 

(3.6) 

must satisfy the conditions: 

Z«CC      — ^«88 

(3.7) 

with the elements of the main diagonal of the matrices Scs and Ssc being equal 

to zero. Note that Scc = E{YCY^}, SC8 = £{YCYS
T}, E9C = E{YaY?} and 

Es» = ^{YBY^}. Finally, we point out, regardless of the value of N, we always 

have an even order PDF when dealing with quadrature components. We are now in 

a position to proceed with the characterization of Y as an SIRV. 
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For an SIRV, it is pointed out that the PDF of a given order automatically implies 

all lower order PDFs. For example, if N random variables are jointly Gaussian, it is 

well known that the ith order PDF, i = 1, 2, ..., N - 1 is Gaussian. This property 

of SIRVs is called internal consistency. The requirements (A)-(C) arising from the 

wide sense stationarity requirements of the process y(t) are called external consistency 

conditions. Requirements (A)-(C) are not inherent to the SIRP and do not hold when 

the SIRP is not wide sense stationary. 

3.3    Techniques for Determining the SIRV PDF 

In this section, several techniques are presented for obtaining /i2jv(p)- F°r con- 

venience, temporal wide sense stationarity of the underlying bandpass process is 

assumed. However, the functional form of h2N{-) is unaffected whether or not the 

random process is temporally wide sense stationary. Hence, it is allowable to let 

p = (y - b)rS-1(y - b) in the final result, in general, where b is any mean non-zero 

vector and S is any non-negative definite matrix. 

Recall from Chapter 2 that the PDF of an SIRV Yr = [Yc
r:Y8

T] with Yc and Ys 

denned in Section 3.2 is given by 

/Y(y) = (2x)-yv|S|"/l2N(p) (3.8) 

Assuming temporal wide sense stationarity, p = yTS_1y where £ is given by eq (3.6). 

The mean vector of Y is zero due to requirement (A) in Section 3.2. The covariance 

matrix S having the form of eq (3.6) and satisfying the requirements of eq (3.7) 

is readily determined when the autocorrelation function of the process is specified. 

Given E, several techniques for obtaining h,2N(p) are presented in this section. 

The representation theorem for SIRVs allows us to express Y as a product of a 

Gaussian random vector Z, having the same dimensions as Y and a non-negative 

random variable S. For the problem of radar clutter modeling, since it is desirable to 

control the non-Gaussian nature of Y and its correlation properties independently, 

we assume that the random variable S is statistically independent of Z. In addition, 

the covariance matrix of the SIRV can be made equal to the covariance matrix of the 

Gaussian random vector by requiring E(S2) to be unity. Finally, it is pointed out 

that the mean of Z is necessarily zero. 
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A physical interpretation can be given to Z and S. Consider a surveillance volume 

subdivided into contiguous range-Doppler-azimuth cells. Assuming a large enough 

cell size such that many scatterers are located in each cell, the N pulse returns from a 

given cell can be modeled as the Gaussian vector Z due to the central limit theorem. 

Also assume that the average clutter power remains constant over the N pulse returns 

in a coherent processing interval. However, the average clutter power is allowed to 

vary independently from cell to cell since different sets of scatterers are located in 

each cell. The variation of the average clutter power from cell to cell is modeled by 

the square of the non-negative random variable S. 
3.3.1 SIRVs with Known Characteristic PDF 

We consider specification of the PDF of the SIRV Y when its characteristic PDF 

is known in closed form. We have pointed out in the previous section that the mean 

vector of Y is zero. Also, we have discussed the specification of the covariance matrix 

of Y. Now, we shall focus on the specification of h2^(p). As a consequence of the 

representation theorem, we can write 

h2»(p) = l°° s-2Nexp(-^)fs(s)ds. (3.9) 

Equation (3.9) enables us to specify hw{p) when the characteristic PDF fs{s) is 

known in closed form. However, in some cases, even though an analytical expression 

is known for the characteristic PDF, it may be difficult to evaluate the integral in 

eq (3.9) in closed form. In such instances, an alternate method for specifying h2N{p) 

must be examined. The method presented in the next section is useful for these cases. 
3.3.2 SIRVs with Unknown Characteristic PDFs 

When the characteristic PDF of the SIRV is unknown or when the integral in 

eq (3.9) is difficult to evaluate, we propose an alternate method to obtain h2N(p). 

Recall that we are dealing with an even order PDF. Therefore, we can use eq (2.30) 

starting with h2(q) to obtain h2^(q). It is worthwhile pointing out that h2(.) is related 

to the first order envelope PDF. From requirement (B) of Section 3.2, the joint PDF 

of the ilh in phase and out of phase quadrature components can be expressed as 

fy^rAva, y,i) = (2r)-la-2h2(p) (i = 1, 2, ...,JV) (3.10) 

32 



where p = "„/" and a2 denotes the common variance of the in phase and out 

of phase quadrature components. The envelope and phase corresponding to the ith 

quadrature components is given by 

(3.11) 
0,-   =   arctan ¥?-. 

'ei 

Due to the assumption of wide sense stationarity, we can drop the subscript i in 

eq (3.11). The Jacobian of the transformation given by eq (3.11) is J = Ä"1, where 

J denotes the Jacobian. Using the Jacobian in eq (3.10) results in the joint PDF of 

R and 0 being given by 

'"•°(r-e) - £?*>&■ <3-12> 
Clearly, the joint PDF in eq (3.12) can be factored as a product of the marginal PDFs 

of the random variables R and 0. Consequently, the random variables R and 0 are 

statistically independent with PDFs given by 

/*(r)    =    £M£)     (0<r<co) 
(3.13) 

fQ(9)   =     (27T)-1     (O<0<2TT). 

Equation (3.13) relates the envelope PDF to h2(.). Hence, we can write 

^(4) = ^fR(r). (3.14) 

Thus, eq (3.14) provides a mechanism to obtain h2{q). Starting from /12(g), we then 

use eq (2.30) to obtain h2N(q)- Since not all non-Gaussian envelope PDFs are ad- 

missible for characterization as SIRVs, we must check that /12(g) and its derivatives 

satisfy the monotonicity conditions stated in Chapter 2. Finally, /*2jv(p) is obtained 

by simply replacing q by p = (y - b)T£-,(y - b) in h2N{q)- 
3.3.3    Hankel Transform Approach 

In this section we present an approach based on the Hankel transform for specifying 

^2/v(p)- Recall that the joint PDF of the ith in-phase and out-of-phase quadrature 

components of Y is given by eq (3.10).   For convenience, it is assumed that a1 is 
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unity. Dropping the subscript i from eq (3.10), the joint characteristic function of Yd 

and V„ is expressed as 

4>YC,YMI wa) = (27T)"1 f°  r exp{juiyc + ju2y.)h2(yl + y])dycdy,.       (3.15) 

Introducing the transformations 

R   =   ypf+Y? 

0   =    arctan Xf- 
Yc (3.16) 

w    =    ^ U>2 + w: 

a   =    arctaniia 
Uli 

we can rewrite eq (3.15) as 

<foc Y.{"u wa) = (2T)-
1
 /°° / * exp\ju}r{cos{0)cos{a) + sin(0)sni(a)}]r/i2(r

2)<fr<f0. 
' Jo   Jo 

(3.17) 

Noting that cos(A - B) = cos(A)cos(B) + sin(A)sin(B), we can rewrite eq (3.17) as 

fo,y.(wi, W2) = (2T)"
1
 f° /2' exp[ju;rcos(0 - a))rh2(r

2)df d9. (3.18) 
JO   Jo 

Interchanging the order of integration in eq (3.18), and recognizing that [35] 

J0(x) = i- /'* exp[jxC05(^ - 7)]d/3, (3.19) 
Lit Jo 

where J0(z) is the Bessel function of order zero, we have 

^y..y.(wi, wa) = /°° rMrVoM**. (3.20) 
Jo 

From eq (3.20), it is clear that the joint characteristic function of Yc and Ys is a 

function of u = W^f+u^. Hence, it is a circularly symmetric characteristic function. 

Denoting this function by ^(ü;), we can write 

*(u) = r Th2{r2)JQ{ur)dr. (3.21) 
Jo 
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Equation (3.21) is recognized as the Hankel transform of order zero of h2(r
2). Using 

the inverse Hankel transform, we obtain 

h2(r
2) = 1°° uV(u)J0(ur)<L>. (3.22) 

Jo 

Introducing the dummy variable u>, we can write 

h7(q) = I" uV(u)J0(uy/q)du. (3.23) 
Jo 

We then use eq (2.30) to obtain h2N{q). More explicitly, we can write 

»      f°° dN~x 

h2N(q) = (-2)"-1 Jo   u,tfM^M^]^. (3.24) 

Using the identity [35] 
^M = _Jl(r/) (3.25) 

we have 
djpjuy/q) u   _i . 
 d~ = ~2W    ^^^ ^       > 

Use of the recurrence relation [35] 

£jln~aJM} = -n^J^id) (3.27) 

results in 

^[•/oWfl] = j(V^r2M^V9)- (3-28) 

Repeated use of eq (3.27) gives 

JN-I N-l 

•fis-AUu^m = (-if-^iVd-^JN-iiuVq)- (3-29) 

Substituting eq (3.29) in eq (3.24) gives 

h2N(q) = (yAY~N I" uNV(u)JN-i(uVq)<^- (3-30) 
Jo 

Finally, h2s(p) is obtained from eq (3.30) by replacing q by p = (y — h)r£~1(y — b). 

This completes the proof of eq (2.32) for even values of N which had been previously 

deferred.  The integral in eq (3.30) is recognized as the Hankel transform of order 
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N — 1 of ty(u). A number of Hankel transforms have been provided in [36] and these 

will be made use of in the examples presented in Section 3.4. 

3.4    Examples of Complex SIRVs 

This section presents examples based on the approaches discussed in Section 3.3 

and is divided into three parts.  In section 3.4.1, we present examples that assume 

the knowledge of the characteristic PDF. In Section 3.4.2, the marginal envelope 

PDF is assumed to be known whereas in Section 3.4.3, knowledge of the marginal 

characteristic function is assumed.   Finally, at the end of Section 3.4.3 we point 

out some univariate PDFs that cannot be generalized to SIRV characterization. We 

consider the problem of determining the PDF of the random vector YT = [YC
T:Y8

T] 

specified in Section 3.2. It is assumed that the mean vector of Y and its covariance 

matrix £ are known.   Consequently, specification of the PDF of Y of the form of 

eq (3.8) reduces to determination of h2N(p). 
3.4.1    Examples Based on the Characteristic PDF 
3.4.1.1     Gaussian Distribution 

The Gaussian marginal PDF for the quadrature components having mean bk and 

variance a\ is 

MV*)=    /   *       exp(-{yk ~h2
k) )    (-oo < yk < oo). (3.31) 

The characteristic PDF for this example is given by 

fs(s) = S(s - 1) (3.32) 

where 6(.) is the unit impulse function. Using eq (2.21), it is seen that the resulting 

h^ip) is given by 

hN(p) = exp(-|). (3.33) 

where p = (y - b)TS_1(y - b). The corresponding PDF for any N is given by 

eq (2.20). For N = 1, this result reduces to eq (3.31). When Y is made up of 

quadrature components, we obtain the the corresponding /&2w(p) by simply replacing 

N by 2N in eq (3.33). Whenever a characteristic PDF can be made to approach a 

unit impulse function displaced to the right of the origin by appropriate choice of its 

parameters, it follows that the corresponding SIRV PDF will approach the Gaussian 
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PDF. 
3.4.1.2    K-Distribution 

The K-distributed envelope PDF, by definition, is given by 

2b    br 
fR{r) = T(äj{JrKa-l{br)u{r) (3-34) 

where a is the shape parameter of the distribution, b denotes the scale parameter of 

the distribution, Kjq{t) is the Nth order modified Bessel function of the second kind 

and u(r) is the unit step function. The K-distributed envelope PDF is commonly 

used for modeling radar clutter PDFs that have extended tails [19, 20] and [2, 9]. In 

particular, the PDF becomes heavy tailed as a approaches zero. Plots of eq (3.34) 

for several values of a are shown in Figures 3.1-3.4. 

The K-distributed envelope PDF arises when we consider the product of a Rayleigh 

distributed random variable R' and an independent Chi-distributed random variable 

V. More precisely, we consider the product R — R'V, with R' and V being statisti- 

cally independent. Their PDFs are given by 

fr'l2 

fRl(r') = r'exp(-[-j-)    0 < r < oo (3.35) 

and 
26 b2v2 

Mv) = f{ä)^ibv)2a~leXp{~~) ° ~ V < °°' (3-36) 

respectively. Consequently, the PDF of R is given by 

(3.37) 
fn(r) = J~ fR\v(r\v)fv(v)dv 

= /0~ $exp(-£)^(bvr-*exp(-!?£)- 

From [35], we have 

^M = y/00exp[-|(t + j)\rv-ldt    [|ar^|<^],   z > 0. (3.38) 

Letting v2 = tin eq (3.37) and using the result of eq (3.38), the PDF of eq (3.34) 

follows. 

The quadrature components corresponding to the Rayleigh envelope PDF are in- 

dependent identically distributed zero mean Gaussian random variables having unit 
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Mr) 

Figure 3.1: K-distribution, 6 = 0.31, a — 0.05 
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f*(r) 

Figure 3.2: K-distribution, b = 0.77, a = 0.3 
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fn(r) 

Figure 3.3: K-distribution, b = 1, a = 0.5 
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/*(') 

R 

Figure 3.4: K-distribution, 6 = 1.4, a = 0.99 
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variance. The PDF of the quadrature components corresponding to B! is expressed 

as 

/*.(*) = /*.(*) = (2*T*exp(-j) (3.39) 

where Zc and Za denote the in phase and out of phase quadrature components. The 

quadrature components arising from the K-distributed envelope PDF, denoted by Yc 

and Ya, respectively, can be expressed as 

Ye = ZCV 
(3.40) 

Y. = Z,V. 

Note that |y| = \Z\V and 0y = 0^. Consequently, the PDF of Yc is given by 

f  (y\ = b2a  j°°^-»apf.^ + b2v2)]dv. (3.41) 

Making the change of variables t = b2v2 and z2 = b2y2, and using eq (3.38), the PDF 

of Yc is expressed as 

frÄVc) = r(a)^F2«»|6ycr*^-a(tiyc|)    -°°<J/c<00 (3-42) 

where the absolute value denoted by |.| is used on account of the requirement that 

z > 0. In a similar manner, it can be shown that the PDF of Y„ has the same 

functional form as eq (3.42). The PDF of eq (3.42) is called the Generalized Laplace 

PDF [16]. 

The characteristic PDF for the K-distributed SIRV is 

r^)2*-1^2 fsi») = ^n^(bs)2a-le*p(--^-Ms)- (3-43) 

Using eqs (2.21) and (3.38), 

MP) = f 3-^exp(-^)f^(65)2a-1exp(-^2-)^. (3.44) 
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Making the change of variables t = b2s2 and z2 = b2p, the resulting hN(p) is given by 

MP) = j^j^^^-CvB- <3-45» 

The corresponding SIRV PDF for any N is given by using eq (2.20).   For the case 

when N = 1, this reduces to eq (3.42). When dealing with quadrature components, 

we use eq (3.45) with N replaced by 2N 
3.4.1.3    Student-t Distribution 

The Student-t distribution for the quadrature components is given by 

fYk(yk) = j^ffjyt1 + »r~' (_<x> < w < °°). " > ° <3-46) 
where b is the scale parameter, v is the shape parameter T(v) is the Eulero-Gamma 

function and k = c, s. Plots of the Student-t distribution are shown for several values 

of v in Figures 3.5-3.7.     The characteristic PDF for this example is 

/s(5) = f^)4r62,/"1(s"1)"+le:rp("2^)u(s)- (3'47) 

Use of eq (2.21) results in hN(p) being given by 

Mp) = 2*W(, + g)> 48 
NKF)     T(v)(b2 + p)%+" 

The corresponding SIRV PDF for any TV is given by eq (2.20). For N = 1, this result 

reduces to eq (3.46).   When dealing with quadrature components, we make use of 

eq (3.48) with N replaced by 2N. 
3.4.1.4    Mixture of Gaussian PDFs 

An interesting non-Gaussian marginal PDF that is admissible as an SIRV is the 

mixture of Gaussian PDFs. We consider the PDF given by 

MM = E«.(2A2r"exp(-^^) (3.49) 

for the quadrature components of Y.   The characteristic PDF for this example is 

given by 

/s00 = £a,<5(5-Ä:,). (3.50) 
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fxA'k) 

xk 

Figure 3.5: Student-t distribution, b - 0.14, v = 0.01 
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fx>(*k) 

Figure 3.6: Student-t distribution, b = 0.45, v = 0.1 
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Figure 3.7: Student-t distribution, 6 = 1, v — 0.5 
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/*»(**) 

Figure 3.8: Student-t distribution, b = 2.23, v = 2.5 
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Note that S is a discrete random variable, with a,- denoting the probability P(S = &,). 

Also, it is required that 

a{      >    0   « = 1,2,... 
(3.51) 

ZiOi    =    1. 

Using eq (2.21), it is seen that 

MP) = E KNaiexp(-^). (3.52) 

The corresponding SIRV PDF for any N is given by eq (2.20). For N = 1, this result 

reduces to eq (3.49). When dealing with quadrature components, we make use of the 

result of eq (3.52) with N replaced by 2N. Note that the a.'s can be assigned any 

desired discrete distribution. 
3.4.2    Examples Based on Marginal Envelope PDF 

We shall report here on some new SIRV PDFs obtained starting from the marginal 

envelope PDF. Note in general, that the characteristic PDF for all the examples 

considered here are not available in closed form. Since a1 is the common variance 

of the in phase and out of phase quadrature components, a2 is equal to \E(R2). In 

addition, recall that the binomial coefficient is defined by 

V 
w 

(3.53) 
t!(/-t)!' 

In all the examples in this section, we start with h2(q) and obtain h2N(q) by the 

process of successive differentiation. The corresponding h2N(p) for each example is 

obtained by replacing q by p in h2N(q). In all the examples presented in this section, 

note that the envelope PDFs reduce to the Rayleigh envelope PDF for appropriately 

chosen parameters. 
3.4.2.1    Chi Envelope PDF 

We consider the Chi distributed envelope PDF given by 

Mr) = j^y(6r)2"-1exp(-62r2)   (0 < r < oo) (3.54) 
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where b denotes the scale parameter and v denotes the shape parameter. Plots of 

the Chi envelope PDF are shown in Figures 3.8-3.10 for several values of v. Using 

eq(3.14), we can write 

M«) = f^-)(b<T)2"q"-1exp(-bWq). (3.55) 

Using eq(2.30), we have 

J,      t„\ — (     rt\N-ldN-1h7(q) 

(3.56) 

Recall Leibnitz's theorem for the nth derivative of a product [35], which states that 

dn(uv) _  " 
dxn    ~ ^ fc=0 

n 

\ * / 

dku dn-kv 
dxk dxn~k (3.57) 

where u and v are functions of x. Noting that 

it follows that 

where 

dqk T{u-ky 

h2N(q) = ("2f -'AY, Gkq"-kexp(-Bq) 

(3.58) 

(3.59) 

Gk   = 

A   = 

'wV 
jfc-1 

N-kr>N-k {-lf-"B 
V{u) 

r(i/-fc + i) 
(3.60) 

(6(7) 2i/ 

B   =   b2a2. 

An important condition that must be pointed out is that the SIRV PDF is valid only 

for v < 1. This is due to the fact that /i2(p) and its derivatives are monotonically 

decreasing functions only in the range of values of v mentioned above.  Finally, for 
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Mr) 

Figure 3.9: Chi Envelope PDF, 6 = 0.22, v = 0.1 
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R 

Figure 3.10: Chi Envelope PDF, b = 0.5, v = 0.5 

8 9 10 
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fR(r) 

Figure 3.11: Chi Envelope PDF, 6 = 0.70, v = 1.0 

52 



v = 1, note that the Chi envelope PDF reduces to the Rayleigh envelope PDF. The 

corresponding SIRV PDF then becomes Gaussian. 
3.4.2.2    Weibull Envelope PDF 

The Weibull distributed envelope PDF is given by 

fR(r) = a6r6_1eip(-ar6)       (0 < r < oo). (3.61) 

where a is the scale parameter and b is the shape parameter. Plots of the Weibull 

distribution for several values of b are shown in Figures 3.11-3.13. Using eq (3.14), 

we have 

h2{q) = ababqS-1exp{-aabqS) = {-2)j{txV{-Aq*)\ (3.62) 

where A = aah. From eq (2.30), we have 

dN 

h2N(q) = (-2)N-^[exp(-Aqi)} (3.63) 

The rule for obtaining the Nth derivative of a composite function is [35]: If f(x) = 

F(y) and y = <f{x), then 

dN ... u     AUk dk 

dxN (3.64) 

where 

tf* =£(-!) k—m 

m=l 

/    .     \ 

\m/ 

-mdNf ,k—m 

dxN (3.65) 

Making the association x = q and y = — Aq*, we have 

N 

hN(q) = ^2Ckq
i   Nexp(-Aq*) (3.66) 

where 

Ck=E(-l)m+N2N^ 
I \ 

\m  ) 

r(i +f) 
r(i + rf - N) (3.67) 

The Weibull envelope PDF is admissible for characterization as an SIRV for values 

of b less than or equal to 2.   This is due to the fact that h2{q) and its derivatives 
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f*{r) 

Figure 3.12: Weibull distributed Envelope PDF, 6 = 0.5, a = 1.86 
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Mr) 

Figure 3.13: Weibull distributed, 6 = 1, a = 1 
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Mr) 

Figure 3.14: Weibull distributed, b = 2, a = 0.5 
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fail to satisfy the monotonicity condition for other values of b. However, this is not a 

serious restriction for the point of view of radar clutter modeling because the Weibull 

envelope PDF is of interest in modeling large tailed clutter. Such a situation arises 

only when 0 < b < 2. The Weibull envelope PDF reduces to the Rayleigh envelope 

PDF when 6 = 2. The corresponding SIRV PDF then becomes Gaussian. Another 

case of interest arises when b = 1. In this case the Weibull envelope PDF corresponds 

to the Exponential envelope PDF. 
3.4.2.3    Generalized Rayleigh Envelope PDF 

The next PDF considered is for the Generalized Rayleigh envelope which is given 

by 

fR(r) = -ß^T^vl-^r] (0 < r < oo) (3.68) 

where a is the shape parameter and ß is the scale parameter. Plots of the Generalized 

Rayleigh distribution are shown for several values of a in Figures 3.15-3.17. 

Proceeding as in the previous example, we find that 

h2{q) = Aexp(-Bqf) (3.69) 

where 

A    =    -rd?^ 
(3.70) 

A 

B =   ß~aaa 

Using eqs (1.25), (2.63) and (2.64) , we have 

hw(q) = £ D^-^expi-Bqf) (3.71) 

where 

r(i + gf) 
r(2 + 2f - N) 

(3.72) 

Note that the SIRV PDF is valid only in the range (0 < a < 2). This is because 

of the fact that the monotonicity conditions for the derivatives of /i2(p) are satisfied 

only for the specified range of a. The Generalized Rayleigh envelope PDF reduces to 

the Rayleigh envelope PDF when a = 2. 
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Figure 3.15: Generalized Rayleigh distributed Envelope PDF, a - 0.1, ß = 3.45 x 10~15 
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fR(r) 

Figure 3.16: Generalized Rayleigh distributed Envelope PDF, a = 0.5, ß = 0.048 
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Mr) 

Figure 3.17: Generalized Rayleigh distributed Envelope PDF, a = 1, ß = 0.577 
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Figure 3.18: Generalized Rayleigh distributed Envelope PDF, a = 2, ß = 1.414 
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3.4.2.4    Rician Envelope PDF 

There are two possible ways in which the Rician envelope PDF occurs. One possi- 

bility arises through a complex zero mean random process with correlated quadrature 

components that are Gaussian. The other is through a non-zero mean complex Gaus- 

sian process. The former case is considered here, since the SIRV PDF can be obtained 

by differentiation of h2(q). For this case, the envelope PDF is given by 

fn(r) = VW 
=eip[- M: pr' 

2(1 - p*y ^2(i - p>y 
(0 < r < oo) 

(0 < P < 1) 

(3.73) 

where I0(x) is the modified Bessel's function of the first kind of order zero. Plots of 

the Rician envelope PDF for several values of p are shown in Figures 3.19-3.21.    Let 

„2 
A = 

2(1 -P2Y 

Using eq (3.14) we have 

From eq (2.30) 

M?) =     , .exp(-Aq)IQ(pAq). 
vl - P* 

h2N{q) = (-2) _t    . 
dqf 

We then use eq (3.57) and the identities [35] 

(3.74) 

(3.75) 

(3.76) 

In(x) = & fo   cos{n6)exp[xcos(0)]d9 

cosk(9) = ±Zk
m=o 
'^ 

\m I 
cos[(k - 2m)6] 

(3.77) 

to obtain 

^2tf(g) = 
a2N N-l 

(i - PY~> S 

/        \ 
N-l 

t 
(-l)k(%nkexp(-Aq) (3.78) 
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Figure 3.19: Rician Envelope PDF, p = 0.25 
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Figure 3.20: Rician Envelope PDF, p = 0.5 

10 
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R 

Figure 3.21: Rician Envelope PDF, p = 0.9 
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where 
i   IP 

m=0 

h-2m{pAq). (3.79) 

For /> = 0, note that the Rician envelope PDF corresponds to the Rayleigh envelope 

PDF. 
3.4.2.5    Generalized Gamma Envelope PDF 

In a recent effort [37] the Generalized Gamma envelope PDF has been proposed 

as a candidate for univariate non-Gaussian PDFs for modeling radar clutter.   The 

Generalized Gamma envelope PDF is given by 

fR(r) = =^T(ar)c°-1eip(-arc) 

0 < r < oo,  a, c, a > 0 

where a is the scale parameter and a and c are shape parameters of the PDF. Note 

that the Generalized Gamma envelope PDF reduces to: 

1. the Weibull envelope PDF when a = 1, 

2. the Gamma envelope PDF when c = 1, 

3. the Exponential envelope PDF when c = a = 1, 

4. the Chi envelope PDF when c = 2 and 

5. the Rayleigh envelope PDF when c = 2 and a = 1. 

We show that this PDF is admissible as an SIRV. Using eq (3.14), we can write 

h2(q) = Aq^-'expi-Bq") (3.81) 

where A = ^ffi. and B = aac. Using eq(2.30), we have 

= (-2)N-lA^[qf-lexp(-Bql)]. 
(3.82) 
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Using eq (3.57) and eq (3.58), we can rewrite eq (3.82) as 

k=0 

t 
N-l 

k 

\ 
dk 

■j-j;[exp(-Bqt)] 
r(f) 

r(f -N + k + 1) 
qf~N+k. 

(3.83) 

The kth derivative of the exponential term is readily obtained by using eqs (3.64-3.67). 

Hence, we have 
N-l 

(3-84) h2N(q) = 2 Fkq?  Nexp{-Bq*) 
k=o 

where 

Fk = (-2)W-M 

/ 
N-l 

k 

r(f) EE(-i) m+l-l & 
T(f-N + k + l)^% 

TCi + 1)        n* 
w 2 . 

m! T{'f -Jb + 1) 

(3.85) 

The Generalized Gamma envelope PDF is admissible for characterization as an SIRV 

for values of ca less than or equal to 2. This is due to the fact that /12(g) and its 

derivatives fail to satisfy the monotonicity condition for other values of ca. Interest- 

ingly enough, it is only these values of ca that give rise to extended tails for the PDF. 

Hence, the monotonicity conditions do not impose a serious restriction. 
3.4.3    Examples Using the Marginal Characteristic Function 

Successful use of the marginal charactehsticfunction approach requires the knowl- 

edge of various Hankel transforms. For each example, the particular transform used 

is cited by equation and page number as it appears in [36]. To illustrate the pro- 

cedure followed, a detailed derivation is presented in the first example. However, in 

the remaining examples, we simply list the univariate characteristic function of the 

quadrature components, the corresponding marginal PDF and the resulting h2N(q)- 

Finally, /&2jv(p) is obtained by replacing q with p in the expressions for h2N(q)- 
3.4.3.1     Gaussian Distribution 

First, we consider the characteristic function given by 

,2 u 
*(w) = exp(-y). (3.86) 
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The corresponding marginal PDF of the quadrature components is 

fYk(yk) =-L=exp(-£)    (-oc<yk<oo). (3.87) 
V(2T)     '     2 

Equation (3.87) is the PDF of a zero mean unit variance Gaussian random variable. 

Substitution of eq (3.86) in eq (3.30) yields 

h2N(q) = (Vf)1-" /JVezp(-y).WuVg)<k;. (3.88) 

From [36], eq (10), p29, we have the Hankel transform 

roo j   yv"'"2 y^ 
jo   x

v+?exp(-ax2)Jv(xy)y/xydx = +lexp{-—). (3.89) 

By making the association that a = 0.5, i/ = N — 1, x = u and y = y/q, the above 

result becomes 

jH ^expi-^J^iuy/q^du = ^"-^exjK-i). (3.90) 

It follows that 

h2N(q) = exp(-|). (3.91) 

From eq (3.8), it is seen that the resulting SIRV PDF is the familiar multivariate 

Gaussian PDF, given by 

MV) = (2*)-"|Er*exp(-|). (3.92) 

3.4.3.2    K-Distribution 

The marginal characteristic function given by 

¥(«) = (1 + ^)-a (3.93) 

corresponds to the K-distributed envelope whose PDF is 

lb    br 

r(a)   2 
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where a is the shape parameter of the distribution, 6 denotes its scale parameter, 

A'N(0 is the Nth order modified Bessel function of the second kind and u(r) is the 

unit step function. The pertinent Hankel transform for this example is found as [36] 

eq (20), p24: 

Jo   x
v+*{x' + a')      lJv{xy)y/xydx =        ^         (3.95) 

The resulting h2N{<l) is 

hM<i) = ^&^*N-.(V5). (3.96) 

As a special case, when a is equal to unity, eq (3.93) is the characteristic function 

of the Laplace distribution for the quadrature components whose PDF is given by 

fY„(yk) = 2elP(-%*l) (-°°<yfc<°°) (3-97) 

where \yk\ denotes the absolute value of t/jt and b denotes the scale parameter. The 

corresponding h2N(q) is given by 

h2N(q) = ^(by/qi^Ks-iiby/q). (3.98) 

Another interesting case of the K-distribution arises when a = 0.5. This corre- 

sponds to the exponential distribution for the marginal envelope PDF. Therefore, the 

K-distributed envelope PDF with a = 0.5 is identical to the Weibull distributed en- 

velope with 6=1. Although the characteristic PDF of the Weibull SIRV is unknown 

in general, the characteristic PDF of the Weibull SIRV for 6 = 1 is obtained when 

a = 0.5 in eq (3.43). Finally, we point out that the K-distributed envelope reduces 

to the Rayleigh envelope PDF when a tends to oo. 
3.4.3.3    Student-t Distribution 

The characteristic function for the Student-t distribution with scale parameter 6 

and shape parameter v is given by 

*M =    "     ', v    . (3.99) v '     2"-xr(i/) v    ; 
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Note the functional similarity with the envelope PDF given by eq (3.94). The Student- 

t distribution is referred to as the generalized Cauchy distribution in [38] because the 

marginal PDF of the quadrature components is given by 

fvM = ^p(^(l + ff)-""" (-00 < xk < oo), v > 0 (3.100) 

where T(u) is the Eulero-Gamma function. The relevant Hankel transform, [36] eq 

(3), p63 is 

jf,-»A.(«Wn)v^ - 2^i;:2;:T
i-    (3-101) 

Using eq (3.30), /i2w(g) is expressed as 

2Nb2uY(u + N) 

The Cauchy PDF for the quadrature components arises when v is set equal to \ in 

eq (3.100) and is given by 

where 6 is the scale parameter. The corresponding h2N{q) is 

,   , ,    2Nfer(i + ^) hMq) =  raal ^' (3J04) >A(o +?)    2 

Note that the Cauchy PDF does not have finite variance.   However, this PDF is 

useful in modeling impulsive noise [39].  Finally, we point out that when b = \/2v 

and v tends to oo in eq (3.100), the Student-t distribution reduces to the Gaussian 

distribution. 
3.4.3.4    Rician Envelope PDF 2 

We consider the Rician envelope PDF, arising from a non-zero mean complex Gaus- 

sian process, given by 

Mr) = ^*PlJ-^ßVo(%). (3.105) 
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Plots of the Rician envelope PDF are shown in Figures 3.20-3.22 for several values of 

a and a = 1. Note that this PDF approaches the Rayleigh PDF as a tends to zero. 

For convenience, we assume that a2 = \E{R2) = 1. Using eq (3.14), we have 

r2 , „ „ ar, 
h2(r

2) = Aexpi-^Ioi^) (3-106) 

where A = ""ffi*. Noting that [35] 

J~ xexp(-ax2)h(ßx)U<yx)dx = ±exp(^)U%) 

Re{a} > 0,   Re{v] > -1, 

eq (3.21) results in the characteristic function 

(3.107) 

*(W) = exp(-^-)M^). (3-108) 

Recognizing that [35] 

/0°° xx~xexp{-ax2)J^ßx)Jv{jx)dx = 

p^-^^1 E=o    rtm+f+y+fri),   g)WF(        _ +1; ii)    (3.109) 

i?e{o} > 0, Re{n + v + A} > -2, 0 > 0, 7 > 0 

where F(., .; .; .) is the four parameter hypergeometric function, it follows from 

eq (3.30) that 

h2N{q) =   «2N+2    f r(m + iv + iW «£>    (3>110) 
ft2NW;     22"+1r(iV) ^   m!r(m +1)  ^ 2a6;      V      ' a2 ' 

Since fc2;v(g) for this example involves an infinite series of hypergeometric functions, 

its form is mathematically intractable. Therefore, the corresponding multivariate 

SIRV PDF does not lend itself for use in practical applications. 

We point out here that the log-normal envelope PDF and the Johnson (unbounded) 

distribution are not admissible for extension to SIRVs. This is due to the fact that 

h2(q) obtained for each of these distributions fails to satisfy the monotonicity con- 

ditions stated in Section 3.3.  Table 3.1, presents a list of marginal PDFs suitable 
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Figure 3.22: Rician Envelope PDF, a = 0.25, a = 1 
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Figure 3.23: Rician Envelope PDF, a = 0.5, a = 1 
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Mr) 

Figure 3.24: Rician Envelope PDF, a = 0.9, a = 1 
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Table 3.1: Marginal PDFs Suitable for extension to SIRVs 
Marginal PDF fxlx) 
Chi jfa{bxr~lezrt-Px>) 
Weibull abx"~lexTp(—ax") 
Generalized Rayleigh .... ??« .rrnf   (xx\a\ 

0>r(i)cxPl  I/JH 
Generalized Gamma /*(»•) «^(«■r^eziK-ar«) 
Rician x       ,r         xJ   1 y r    P*'    1 

^7TeXW     2TT^P)Jiul2(l-^)i 

Gaussian ■y/2w~1eip(-^-) 
Laplace *ezp(-6|xk|) 
Cauchy 0 

*(»»+*ii) 
K-distribution T^(f)^a_1(6x)«(x) 
Student-t 

for extension to SIRVs. Table 3.2 tabulates h2N[p) for those marginal PDFs treated 

as envelope PDFs while Table 3.3 gives those ä2N(P) obtained from the associated 

marginal characteristic function. 

Plots of eq (3.8) with N = 1 for the various SIRV PDFs are shown in Figures 

3.25-3.33. In all the plots, the covariance matrix used is given by 

S = 
1    0.5 

0.5   1 

(3.111) 

Observe that each PDF is unimodal.   However, the width and height of the peak 

along with the behavior of the extreme values (i.e. the tails) differ significantly. 

3.5    Significance of the Quadratic Form of the SIRV PDF 

Thus far, our discussion has focussed on techniques that can be used to obtain 

the PDF of an SIRV starting from either the first order PDF or the first order char- 

acteristic function. Given random data, we are also interested in the problem of 

approximating the distribution of the underlying data. The problem of multivariate 

distribution identification is of interest in radar signal detection. Since the back- 

ground clutter is not known a priori, there is a need to identify the underlying clutter 

PDF based on measurements obtained from a given environment. Since the radar 

processes N pulses at a time, knowledge of the joint PDF of the N samples is nec- 

essary in order to obtain the optimal radar signal processor for the given clutter 

background. We present an important theorem here which enables us to address the 
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Marginal PDF 
Table 3.2: SIRVs obtained from the marginal envelope PDF 

Chi 

Weibull 

Gen. Rayleigh 

Generalized Gamma 

Rician 

^2NJP) 

(-2)»-iAZ"Gkp"-i<exp(-Bp) 

°*- ^ k-l ) (   l>      B      r(,-*Vi) 

B = 6V 
v< 1 

Ei-iC*p*-^exp(-^i) 
4 = 0(7* 

ct = 
6<2 

^ = EL1(-i)
m+^^( * )Flü±^ 

N) 

E'^Dkp^-^exp(-Bpi) 
A —     '   - 

5 = /?-°<7a 

n. _ y^fc     f_i)m+Af-i9jv-ifl» /" * "\    rq+q^ ma \ 
_  2   J  

JV) 

a < 2 

Fk = (-2)-M ( ^; 1 ) .p^g^EL: Er=1("ir 
ca < 2 

m!  r(^-i+l)^ 

JV-1  /   iV - 1 

& = Em=0  (   ^   ) /t-am(M), A = ^f^y 

Table 3.3: SIRVs obtained from the marginal characteristic function 
Marginal PDF 
Gaussian 
Laplace 

Cauchy 

K-distribution 

Student-t 

fl2N(p) 
exp(-|) 
6^(6jp)l-*A-iV.176^pT 

l"((.)     2°-'     &N-a(Oy/p) 2«—i 

2",t'-"'r(i>+'^r 

76 



a oo 

-i« 
-a-M 

Figure 3.25: Gaussian distribution, zero mean, unit variance 
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Figure 3.26: Laplace Distribution, 6 = 1 
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Figure 3.27: Cauchy Distribution, 6=1 
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Figure 3.28: K-distribution, 6 = 1, a = 0.5 
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Figure 3.29: Student-t Distribution, 6 = 1, v - 1.5 
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Figure 3.30: Chi-distribution, 6 = 1, v — 1 
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Figure 3.31: Generalized Rayleigh PDF, a = 0.5, ß = 0.05 
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Figure 3.32: Weibull distribution, a = 1, 6 = 1.0 
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Figure 3.33: Rician PDF, p = 0.5 
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distribution identification of an SIRV. 

Theorem 4  The PDF of the quadratic form appearing in eq (2.20) is given by 

fp(p) = 7EWTT^~lh^P)     (° ^ P < °°)- <3-112) 

Proof: First, we consider a spherically symmetric random vector (SSRV) X = [Xi, X2, . • •, XN] 

Because an SSRV is a special case of the SIRV, the representation theorem can be 

used to express X as 

X = Z5 (3.113) 

where Z is a Gaussian random vector having zero mean and identity covariance matrix 

and 5 is a non-negative random variable with PDF fs{s). Consider the random 

variable 

P' = XTX. (3.114) 

Using eq (3.113) in eq (3.114) gives 

P'=ZTZS2 (3.115) 

Since ZrZ = J2iLi ^l 's the sum of the squares of independent identically distributed 

Gaussian random variables having zero mean and unit variance, the PDF of V = ZTZ 

is a Chi square distribution with N degrees of freedom. Consequently, 

V 2 ,       t), 
fv(v) = „g„,g,esp(-?)     ; w > 0- (3-116) 

2 
2fr(f) ~rv 2' 

The transformation P' = VS2 then results in 

f*\sb'\*) = Wf^5'^^-^- (3-U7) 

From the theorem of total probability, we have 

Mp,)=r w^s~Nexp{-h)fs{s)ds-     (3-n8) 

Recall that 

hN(p) = jT s-Nexp(-^)fs{s)ds. (3.119) 
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Consequently, the PDF of P' is expressed as 

I,» 

W) = g|yMp'). (3-120) 

Recall that an SIRV Y = [YUY2,..., YN]T having a mean vector b and covariance 

matrix S is related to the SSRV X by the linear transformation 

Y = AX + b (3-121) 

where S = AAT. Then, the quadratic form appearing in eq (3.114) can be expressed 

as 
P = (Y-b)TS-1(Y-b). (3.122) 

However, eq (3.122) is also the quadratic form appearing in eq (2.20) which is the 

PDF of Y. Since P = P'', the PDF of the quadratic form P which is associated with 

Mri-AMI* («a)' 
2sl(y) 

This establishes the theorem. Thus, an SIRV is uniquely characterized by the quadratic 

form appearing in its PDF. Knowledge of the quadratic form PDF is sufficient to 

identify the SIRV PDF. This is an important result since it allows us to reduce the 

multivariate distribution identification problem to the equivalent problem of univari- 

ate distribution identification of the quadratic form. It is emphasized that the PDF 

of P is invariant to the choice of p and S. We point out that the invariance of the 

PDF of the quadratic form, arises from the fact that an SSRV arises from a uniform 

distribution over an N dimensional hypersphere of radius R. The radius of the hy- 

persphere remains unchanged regardless of whether we consider an SIRV or an SSRV. 

Only the azimuthal angles and radial angle change depending on whether the random 

vector is a SSRV or an SIRV. In context of the radar problem, we are dealing with N 

complex samples or 2N quadrature components. The results presented in this section 

are applicable when N is replaced by 2N. 

3.6    Conclusion 
In this chapter we have pointed out a method to obtain the PDF of correlated 

non-Gaussian random vectors arising in the problem of radar clutter modeling. The 
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theory of SIRPs has been used to develop the multivariate PDFs. Various techniques 

have been presented to obtain SIRV PDFs. Several examples are provided to illustrate 

these techniques. The admissibility of the Chi envelope PDF, Weibull envelope PDF, 

Generalized Rayleigh envelope PDF, Rician envelope PDF and Generalized Gamma 

envelope PDF as SIRVs has been pointed out for the first time. Finally, we have 

obtained the PDF of the quadratic form of a SIRV and we have shown that this PDF 

remains unchanged regardless of whether we are dealing with an SSRV or an SIRV. 

We have also established that the quadratic form contains all the information that 

is required in order to identify the SIRV PDF. As a consequence of this result, the 

problem of an SIRV (multivariate) distribution identification has been reduced to the 

equivalent identification of the univariate distribution of the non-negative quadratic 

form. 
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Chapter 4 

Computer Generation of 
Simulated Radar Clutter 
Characterized as SIRPs 

4.1    Introduction 
This investigation is motivated by a desire to simulate correlated non-Gaussian 

radar clutter. Various investigators have reported experimental results where non- 

Gaussian marginal probability density functions (PDF) have been used to model the 

clutter. Usually, radars process N samples at a time. Statistical.characterization of 

the clutter requires the specification of the joint PDF of the N samples. In addition, 

the clutter may be highly correlated. Hence, the joint PDF must take into account 

the correlation between samples. Statistical characterization of the clutter is neces- 

sary if an optimal radar signal processor is to be obtained. For use of the well known 

likelihood ratio test, it is necessary to have closed form expressions for the joint PDF 

of the N clutter samples in order to obtain the optimal radar signal processor. In 

most cases, it is difficult to evaluate the performance of the optimal radar signal pro- 

cessor analytically when the clutter samples are correlated and non-Gaussian. Then 

computer simulation may be necessary. Therefore, there is a need to develop efficient 

procedures that facilitate computer simulation of the clutter. A library of multi- 

variate non-Gaussian PDFs has been developed in Chapter 3, using the theory of 

Spherically Invariant Random Processes (SIRP) and Spherically Invariant 

Random Vectors (SIRV).;In view of the large number of parameters that are free 
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to be specified, the library of multivariate non-Gaussian PDFs can be used to approxi- 

mate many different radar clutter scenarios. In this chapter we concern ourselves with 

the development of computer simulation procedures for the library of non-Gaussian 

PDFs obtained in Chapter 3 so that the performance of any radar signal processor 

can be evaluated for a variety of different clutter scenarios. Another issue addressed 

in this chapter is performance assessment of the simulation procedures. 

It has been pointed out in Chapter 3 that the quadratic form appearing in the 

PDF of the SIRV contains all the information necessary to identify the PDF of the 

underlying SIRV. We make use of this result in order to assess the performance of the 

simulation procedures. Some interesting simulation techniques have been proposed 

for SIRVs in [18] and [20]. The technique suggested in [18] makes use of Meijer's G- 

functions. These functions are generalizations of Hypergeometric functions which do 

not lend themselves to the development of simple and elegant simulation procedures. 

The technique suggested in [20] requires transformations from rectangular to spherical 

co-ordinates and then back again. Secondly, this simulation procedure involves the 

use of the inverse distribution function approach for a rather complicated distribution 

function. The approach developed in this chapter is simpler to implement than those 

proposed in [18] and [20]. In addition, a new approach is proposed for assessing the 

effectiveness of the simulation procedure. 

The problem of computer generation of correlated non-Gaussian radar clutter is 

equivalent to the problem of generating random variables with a jointly specified 

marginal PDF and covariance matrix. While the problem of generating random se- 

quences with either a specified PDF or prescribed covariance function has been well 

treated [34], the joint problem has received limited attention. In general, it has 

been possible to control either the PDF or the correlation function but not both 

simultaneously. Previous attempts [5, 12, 8, 10, 11] to address the problem of gener- 

ating random sequences with jointly specified marginal PDF and covariance function 

have not been successful because the procedures proposed therein made use of zero 

memory nonlinear (ZMNL) transformations on a correlated Gaussian sequence to 

obtain the desired non-Gaussian sequence. Consequently, the covariance matrix of 

the non-Gaussian sequence was related to that of the Gaussian sequence in a rather 

complicated manner. Hence, given a certain covariance matrix for the non-Gaussian 
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sequence, it was not possible to determine the corresponding covariance matrix of the 

Gaussian sequence. Furthermore, not all nonlinear transformations gave rise to non- 

negative definite covariance matrices at their outputs [33, 34]. Thus, using ZMNL 

transformations on a correlated Gaussian sequence does not offer a practical solution 

to the joint problem. The techniques presented in this chapter successfully overcome 

the drawbacks of the previous efforts. This is due to the fact that SIRPs belong to 

the class of exogenous product models for radar clutter, which allows for independent 

control of the marginal PDF and correlation function. 

In Section 4.2, we review some definitions and background information pertaining 

to the theory of spherically invariant random processes. Section 4.3 presents two 

canonical simulation proceduresfor generating SIRVs. Performance assessment of the 

simulation procedures is discussed in Section 4.4. Finally, conclusions are presented 

in Section 4.5. 

4.2    Preliminaries 
We begin by restating the definitions for a spherically invariant random vector 

and a spherically invariant random process. A spherically invariant random vector 

(SIRV) is a random vector (real or complex) whose PDF is uniquely determined by 

the specification of a mean vector, a covariance matrix and a characteristic first order 

PDF. Equivalently, the PDF of an SIRV can also be referred to as an elliptically 

contoured distribution. A spherically invariant random process (SIRP) is a random 

process (real or complex) such that every random vector obtained by sampling this 

process is an SIRV. The work of Yao [15] gave rise to a representation theorem which 

can be stated as follows (see Theorem 1): 

// a random vector is a SIRV, then there exists a non-negative random variable S 

such that the PDF of the random vector conditioned on S is a multivariate Gaussian 

PDF. 

We consider the product given by X = ZS, where X = [Xi... XN]
T
 denotes the 

SIRV, Z = [Z\... ZN]
T
 is a Gaussian random vector with zero mean and covariance 

matrix M and S is a non-negative random variable with PDF fs(s). Since it is 

desirable to independently control the correlation properties and the non-Gaussian 

envelope PDF, Z and S are assumed to be statistically independent. The PDF of X 
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conditioned on S is (see eq (2.14)) 

._Ä,.-,_l  -v       ,      P /X|s(x|5) = (2*)-T\M\-S-
Nexp(-^) (4.1) 

where p is a non-negative quadratic form given by p = xTM_1x and |M| denotes the 

determinant of the covariance matrix M. The PDF of X is given by (see eqs (2.15) 

and (2.16)) 

/x(x) = (2x)-*|Mr*Mp) (4.2) 

where 

MP) = jH s-»exp(-^)fs(s)ds. (4.3) 

The PDF of the random variable S is called the characteristic PDF of the SIRV. 

Therefore, it is apparent that the PDF of a SIRV is completely determined by the 

specification of a mean vector, a covariance matrix and a characteristic first order 

PDF. In addition, the PDF of the SIRV is a function of a non-negative quadratic 

form. However, except for the Gaussian case, dependence on the quadratic form is 

more complicated than the simple exponential. Therefore, an SIRP can be regarded 

as a generalization of the familiar Gaussian random process. We point out that the 

covariance matrix of the SIRV is given by £ = ME{S2) where £(S2) is the mean 

square value of the random variable S. It is seen that the covariance matrix of the 

SIRV normalized by the mean square value of S is the covariance matrix of the Gaus- 

sian random vector. Note that it is possible to set the covariance matrix of the SIRV 

equal to that of the Gaussian random vector by requiring that E(S2) be equal to 

unity. The desired non-Gaussian PDF can be obtained by chosing fs(s) appropri- 

ately. Thus, it is seen that the SIRV formulation for radar clutter modeling affords 

independent control over the non-Gaussian PDF of the clutter and its correlation 

properties. Several techniques are available in Chapter 3 for obtaining /i/v(p). Note 

that the Gaussian random vector is a special case of an SIRV and is obtained when 

fs(s) = 6(s - 1) where 6(t) is the unit impulse function. An interesting interpreta- 

tion of the representation theorem is that every SIRV is the modulation of a Gaussian 

random vector by a non-negative random variable. 

Many of the attractive properties of Gaussian random vectors also apply to SIRVs. 

The most relevant property of SIRVs for the purpose of computer simulation is the 
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closure property under lineax transformation [15] stated below (see Theorem 2, Section 

2.3): 

7/X t5 an SIRV with characteristic PDF fs(s), then 

Y = AX + b (4.4) 

is also an SIRV with the same characteristic PDF. It is assumed that A is a nonsin- 

gular matrix and b is a known vector having the same dimension as X. 

Theorem 2 provides us with a powerful technique for simulating SIRVs. A white 

SIRV is defined as one that has a diagonal covariance matrix. In other words, the 

components of the white SIRV are uncorrelated but not necessarily independent. We 

can start with a zero mean white SIRV X having identity covariance matrix and 

perform the linear transformation given by eq (4.4) to obtain an SIRV Y having a 

non-zero mean and desired covariance matrix S. The matrix A and the vector b are 

given by 

A = ED5 
(4.5) 

b  =  fly 

where E is the matrix of normalized eigen-vectors of the covariance matrix E, D is 

the diagonal matrix of eigen-values of £ and fiy is the desired non-zero mean vector. 

In many instances it is not possible to obtain fs(s) for an SIRV in closed form, even 

though its existence is guaranteed. In such cases, an alternate approach must be used 

in order to characterize the SIRV. The following theorem can be used to completely 

characterize a white SIRV having zero mean and identity covariance matrix (see 

Theorem 3, Section 2.3): 

A random vector X = \X\... XN]
T
 is a zero mean white SIRV having identity 

covariance matrix if and only if there exist random variables R G (0,oo), 0 6 (0,27r) 

and $jt 6 (0, T), (k = 1,... N — 2) such that when the components o/X are expressed 
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in the generalized spherical coordinates 

Xx = Äcos($i) 

Xk = Rcos{*>k)Y[k-lsm{$i)    (Kk<N-2) 

XN.i = R cos(0) OUT2 sin($,-) (4-6) 

XN = Rsm(G)Tl?Ji2sin($i) 

then the random variables R, 0 and $& are mutually statistically independent and 

have PDFs of the form 

f*Mx) = ^^««"-'-'(MkM - «(& - *)] (4 7) 

fe{e) = (2ir)-1[u(9)-u(9-27r)} 

where T(i/) is the Eulero Gamma function and u(t) is the unit step function. 

As a consequence of Theorem 3, any SIRV with zero mean and identity covariance 

matrix can be represented in generalized spherical coordinates which are mutually 

and statistically independent regardless of the SIRV considered. Also, note that the 

PDFs of 0 and $t, (k = 1,... TV — 2) are functionally independent of the white SIRV 

considered. Only the PDF of R changes from one white SIRV to another. Note that 

R2 = ELI X2
k = XTX. Hence R is the norm of the SIRV. 

Another important feature of the SIRV is that the quadratic form appearing in 

its PDF contains all the information necessary to identify the PDF. It follows that 

knowledge of the PDF of the quadratic form of the SIRV is sufficient to identify the 

PDF of the corresponding SIRV [21] (see Theorem 4): 

The PDF of the quadratic form appearing in eq (4-2) is given by 

/p(p) = ffipf"lMp)     (0<P<oo) (4.8) I 2 1 ( 2 ) 
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and remains unchanged regardless of whether or not the SIRV is white. 

The theorems reviewed in this section will be made use of in the proposed simulation 

approach, discussed in Section 4.3, and in assessing the performance of the simulation 

procedure, discussed in Section 4.4. 

In the context of the problem of radar clutter modeling and simulation, the band- 

pass process Y(t) = Re[Y(t)exp(ju0t)] can be expressed in terms of the corresponding 

complex, wide sense stationary random processes Y(t). More precisely, we obtain N 

complex samples by sampling the complex random process Y(t) = Yc(t) + jY,(t), 

where the subscripts c and s denote the in phase and out of phase quadrature compo- 

nents. This is equivalent to working with a real vector of 2N quadrature components 

which is the approach taken in this chapter. Therefore, the results presented in this 

section are applied to the problem of radar clutter modeling with N replaced by 2N. 

For ease of reference, the library of non-Gaussian SIRV PDFs obtained in Chapter 

3 is repeated here. However, /i2iv(p) for those SIRVs for which the characteristic 

PDF is known are listed in Table 4.1. The corresponding characteristic PDFs are 

listed in Table 4.2. Table 4.3 lists h2N{p) for those SIRVs whose characteristic PDF 

is unknown. 

4.3    Two Canonical Simulation Procedures for Generating 

SIRVs 
In this section, we concern ourselves with two simulation procedures for generating 

the SIRVs listed in Table 4.1 and Table 4.2. The first simulation procedure to be 

discussed is applicable when the characteristic PDF, fs{s), is known. For each of 

the PDFs listed in Table 4.1, the characteristic PDF fs{s) is tabulated in Table 4.3, 

where E(S2) = 1. Since the representation theorem results in the covariance matrix 

of the SIRV being given by S = ME(S2), the choice of E(S2) = 1 makes E identical 

to M, the covariance matrix of the Gaussian random vector Z. However, as shown 

in Table 4.4, the PDFs for the distributions in Table 4.1, as commonly expressed, do 

not have unit mean square value. In order to obtain the random variable 5, with 

unit mean square value, and the corresponding PDF fs{s), we generate the random 

variable V having PDF /y(u) and mean square value E(V2) = a2, and perform the 

scaling S = 7 to obtain the desired S. For each marginal PDF listed in Table 4.1, 

and Table 4.4, the scale parameters 6 are identical and so are the shape parameters 
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v and u(v) denotes the unit step function. The simulation procedure for these SIRV 

PDFs is fairly simple and is stated below: 

(1) Generate a sample vector of a white zero mean Gaussian random 

vector Z, having identity covariance matrix. 

(2) Then generate a sample value of the random variable V from the 

PDF fv{v). Denote the mean square value of V by a2. 

(3) Normalize the sample value of the random variable V by a to 

obtain a sample value of the modulating random variable S. In 

other words generate S = —. 

(4) Generate the product corresponding to X = ZS. At this step, 

we have a sample vector of a white SIRV having zero mean and 

identity covariance matrix. 

(5) Finally, perform the linear transformation given by eq (4.5) to 

obtain a sample vector of the SIRV Y with desired mean and 

covariance matrix. 

Fig 4.1 shows the simulation procedure presented above. 

The subroutine RNNOR in IMSL was used for generating the sample vectors of 

the Gaussian random vector Z. Interestingly enough, the PDFs listed in Table 4.4 

can be related to the PDF of the Gamma distribution as discussed below. The PDF 

fv(v) for the K-distributed SIRV is a Chi PDF. We first address the random variable 

generation for the Chi PDF and then provide the transformations for obtaining the 

random variables for the other PDFs listed in Table 4.4. 

Consider the standard Gamma distribution given by 

fT(t) = ^exp(-t)    t>0 (4.9) 

where a denotes the shape parameter and T(a) is the Eulero- Gamma function. 

The random variable V for the Chi PDF is obtained by the transformation V = ^Z. 

Samples of the random variable T are readily generated by using the IMSL subroutine 

RNGAM. The procedure for generating the Chi distributed random samples needed 

for the K-distributed SIRV is summarized below. 
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Table 4.1: h2N(p) for SIRVs with Known Characteristic PDF 
Marginal PDF hiN(p) 
Laplace ly^{by/p)l-nKs.i(by/p) 

Cauchy 

K-distribution f&*$P-Ks-.W 
Student-t 2"b*T(v+N) 

1. Generate samples of the random variable T for the standard Gamma 

distribution of eq (4.9) by using the IMSL subroutine RNGAM. 

2. Perform the transformation V = *2±-. 

The PDF fv{v) for the Laplace SIRV is a Rayleigh PDF and is obtained from 

that of the K-distributed SIRV by letting a — 1. The random variable V for the 

PDF fv(v) listed in Table 4.4 for the Student-t SIRV is obtained from the standard 

Gamma PDF of eq (4.9) by the transformation V = ^-? and letting a = v. Finally, 

the PDF fv(v) for the Cauchy SIRV is obtained from that of the Student-t SIRV by 

letting v — 1. The procedure for generating the random random samples needed for 

the Student-t SIRV is summarized below. 

1. Generate samples of the random variable T for the standard Gamma 

distribution of eq (4.9) by using the IMSL subroutine RNGAM. 

2. Perform the transformation V = -4-. 

We now concern ourselves with the second simulation procedure which is applicable 

when the characteristic PDF is unknown, as is the case for SIRVs listed in Table 

4.2. This alternate approach makes use of Theorem 3. In particular, this procedure 

requires the capability to generate the independent random variables i?, 0 and $jt 

(k = 1,2, ...,N—2). Generation of the random variables 0 and $* (k = 1,2, ...,iV— 

2) is extremely difficult from a computational standpoint. This problem is overcome 

as follows. 

Recall that the PDFs of 0 and $* (k = 1,2,... ,JV — 2) are remain unchanged 

regardless of the white SIRV considered. Only the PDF of R changes from one white 

SIRV to another. Furthermore, since a Gaussian random vector is a member of the 

family of SIRVs, a white Gaussian random vector having zero mean and identity 
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Table 4.2: h2N(p) for SIRVs with Unknown Characteristic PDFs 

Marginal PDF /»2N(P) 

Chi {-2)N-lAYiLiGkp''-kexp(-Bp) 

Gk ~ \ k -1 ) ( 1}    B    r(,^Vi) 

A = rfaW 
B = 6 V 
v< 1 

Weibull LLiCkP^expi-Api) 
A = acr" 
r         Y-t        /     Um+NnNAk   (    k   \      r(l + a!) 

6<2 
Gen. Rayleigh 

4 —    f2". - ^r(i) 
5 = ß-a(Ta 

D      Tk     (   un+N-^N-tB* ( k \    r(i+«P) 

o< 2 

Rician 

& = ELo ( *  ) '»-*n(M), -4 = 5^; 

Table 4.3: Characteristic PDF for SIRVs listed in Table 4.1 [E(S2) = 1] 
Marginal PDF fs(s) 
Laplace ab2sexp(-^^-)u(s) 
Cauchy a2b2s-3exp(-^Hs) 
K-distribution jftfeW-iezpi-^W,) 

Student-t _^_b2u-l{as)-(2V+l)exp{__^Hs) 

Table 4.4: Related PDF fv(v) 
Marginal PDF fv(v) a2 = E(V2) 

Laplace b2vexp(-b-^-)u(v) 2 
5* 

Cauchy b2v-3exp(-£,)u(v) oo 

K-distribution f72y(bv)2^exp(-i^fHv) 2a 

Student-t i7a6_62,-lr-(2,+i)exp(_^)u(v) 
2(i/-l) 
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Figure 4.1: Simulation Scheme for SIRVs with Known Characteristic PDF 
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Figure 4.2: Simulation Scheme for SIRVs with Unknown Characteristic PDF 
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covariance matrix admits a representation of the form of eq (4.6). It follows that 

^ = |i * = l,2,...,iV (4.10) 

where R is the norm of the desired white SIRV and RQ is the norm of the zero mean 

white Gaussian random vector. Consequently, the components of the desired white 

SIRV are obtained as 

Xk = ^-R fc = l,2,...,iV (4.11) 
HG 

The simulation procedure is stated below: 

(1) Generate a sample vector of the white, zero mean Gaussian ran- 

dom vector Z having identity covariance matrix. 

(2) Compute the norm RQ = ||Z|| = \/ZTZ of the sample vector Z. 

(3) Generate a sample of the norm R = ||X|| = vX^X of the white 

SIRV from the PDF of R given by eq (4.7). 

(4) Generate a sample vector of the white SIRV X by computing 

X = TJ—R. 

(5) Finally, perform the linear transformation given by eq (4.5) to 

obtain a sample of the SIRV Y with desired mean and covariance 

matrix. 

The simulation procedure is shown schematically in Fig 4.2. Note that this simulation 

procedure avoids the explicit generation of the variables 0 and $k {k = l,...N — 

2). The generation procedure for a white Gaussian random vector is well known. 

Therefore, we need to concern ourselves only with the development of a suitable 

generation scheme for samples of the norm R of the white SIRV X. Generation of 

the samples of R is not trivial. This is due to the fact that the PDF of R is generally 

not in a simple functional form. Consequently, it may not be possible to conveniently 

evaluate analytically the distribution function and its inverse. Hence, generation 

methods based on the inverse distribution function do not offer a practical solution 

to this problem. Therefore, in this chapter we generate samples of R by making use 

of the approach called the 'Rejection Method'. The rejection method can be used to 
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generate samples of random variables whose cumulative distribution functions are not 

known, but whose PDFs are known explicitly [40]. The rejection procedure assumes 

knowledge of the maximum value of the PDF of R for a given SIRV PDF and an 

estimate for the finite range of the PDF of R so that the area under the PDF curve is 

close to unity. These quantities are denoted by c and b, respectively. We discuss the 

rejection procedure in detail in Appendix B. The Rejection method is summarized 

below: 

(1) Generate a uniform random variate U\ on the interval (0, b). 

(2) Generate another uniform variate £/2 on the interval (0,c). 

(3) If Vi < /R(£A), then R = U\. Otherwise, reject U\ and return to 

step 1. 

Note that the simulation procedures of Fig 4.1 and Fig 4.2 are canonical in the sense 

that their forms remain unchanged from the simulation of one SIRV to another. Even 

though, the scheme of Fig 4.2 can be used even when fs(s) is known, the scheme of Fig 

4.1 is preferred when S can be generated easily. The linear transformation of eq (4.5) 

is a filtering operation. In both schemes, pre-modulation filtering is equivalent to 

post-modulation filtering. This results from the fact that the representation theorem 

is valid whether or not the SIRV X and the Gaussian random vector Z are white. 

4.4    Performance Assessment of the Simulation Schemes 

In this section we concern ourselves with the performance assessment of the simula- 

tion procedures developed in section 4.3. We point out that the simulation procedures 

developed in section 4.3 are exact in the sense that they are derived without approxi- 

mation from theory. Hence, departures from the exact SIRVs will depend for the most 

part on the nonideality of the uniform random number generators and on the number 

of samples used. Empirical assessment of the simulation procedures is necessary for 

practical applications. 

One possible approach for assessing the distributional properties of the simulated 

data is to perform a hypothesis test on the marginal distributions of the components 

of the SIRV. More precisely, the problem is stated as follows. 

Ho'.The hypothesis that the simulated data is from the desired distribution 

101 



Hi'.The hypothesis that the simulated data is not from the desired distribution. 

For a fixed Type-1 error probability (i.e., the probability that Hi is accepted given 

that Ho is true) each marginal distribution can be checked by employing one of the 

commonly used goodness of fit procedures. Since the components of the random 

vectors are not statistically independent, we are now confronted with the problem 

of developing a goodness of fit test for the multivariate data. In general, it is very 

difficult to obtain, the overall significance level of the test (i.e., the probability that 

Ho is accepted given that Ho is true) for the multivariate goodness of fit testing 

procedure. 

However, an attractive feature of SIRVs is that the quadratic form p appearing in 

the SIRV PDF contains all the information necessary for identifying the PDF of the 

SIRV. In other words, knowledge of the PDF of the quadratic form is sufficient to 

determine the underlying SIRV PDF. Furthermore, the quadratic form PDF remains 

unchanged regardless of whether the SIRV is white or colored. The PDF of the 

quadratic form appearing in the SIRV PDF is given by eq (4.8). For the radar 

problem where we deal with N complex samples or 2iV quadrature components, note 

that we make use of eq (4.8) with N replaced by 2N. Hence, we base our goodness 

of fit test procedure for the generated SIRVs on the PDF of the quadratic form p. 

Note that we have now reduced the multivariate problem to an equivalent univariate 

problem involving the goodness of fit test for the PDF of the quadratic form. 

In the examples presented in this section, we generated m = 1000 realizations of 

the random vector Y with N = 2 complex samples and from these computed one 

thousand samples of the quadratic form P for each of the non-Gaussian SIRVs whose 

PDFs are listed in Tables 4.1 and 4.3. In each case, we used the corresponding 

theoretical PDF of the quadratic form given by eq (4.8) to test for the distribution 

of the generated quadratic form. The frequency histograms for the generated data 

and the corresponding theoretical PDFs are shown in Figures 4.3-4.10. In addition, a 

Chi-Square test was performed on the generated data with the Type-1 error fixed at 

0.05 and the null hypothesis was not rejected in each case. The frequency histograms 

provide a good idea about the true distributions for large sample sizes. Observe that 

the empirical PDFs are very close to the theoretical PDFs. Note that the procedure 

used in this section to assess the distributional assumptions of the random samples 
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Figure 4.3: Theoretical and Empirical Quadratic form PDFs for Laplace SIRV 

from the SIRV PDFs is a formal goodness of fit test. Similar procedures have been 

proposed to test for multivariate normality in [41, 42]. 

4.5    Conclusions 
In this Chapter, we have presented two schemes that can be used in practice to 

simulate correlated non-gaussian radar clutter, when the clutter can be modeled as 

a spherically invariant random process. We pointed out that the simulation schemes 

developed are canonical schemes and do not change form from the simulation of one 

SIRV to another. A new approach, based on the PDF of the quadratic form appearing 
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Figure 4.4: Theoretical and Empirical Quadratic form PDFs for Cauchy SIRV 
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Figure 4.5: Theoretical and Empirical Quadratic form PDFs for K-distributed SIRV 
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Figure 4.6: Theoretical and Empirical Quadratic form PDFs for Student-t SIRV 
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Figure 4.7: Theoretical and Empirical Quadratic form PDFs for Chi distributed SIRV 
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Figure 4.9: Theoretical and Empirical Quadratic form PDFs for Weibull SIRV 
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Figure 4.10: Theoretical and Empirical Quadratic form PDFs for Rician SIRV 
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in the SIRV PDF, was used to perform a goodness of fit test in order to assess 

performance of the proposed simulation schemes. Performance assessment based on 

this scheme showed excellent agreement between the theoretical and empirical PDFs 

of the quadratic form. Finally, it was pointed out that use of this technique reduced 

the goodness of fit test from a multivariate testing procedure to a univariate testing 

procedure resulting in tremendous processing simplicity. Therefore, this procedure 

lends itself very well to practical applications. 
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Chapter 5 

Distribution Approximation to 
Radar Clutter Characterized by 
SIRPs 

5.1     Introduction 
This investigation is motivated by a desire to characterize correlated non-Gaussian 

radar clutter by approximating the underlying probability density function of the 

clutter. Various investigators have reported experimental results where non-Gaussian 

marginal probability density functions (PDF) have been used to model the clutter. 

Usually, radars process N samples at a time. Statistical characterization of the clutter 

requires the specification of the joint PDF of the N samples. In addition, the clutter 

may be highly correlated. Hence, the joint PDF must take into account the correlation 

between samples. Statistical characterization of the clutter is necessary if an optimal 

radar signal processor is to be obtained. For use of the well known likelihood ratio 

test, it is desirable to have a closed form expression for the joint PDF of the N clutter 

samples in order to obtain the optimal radar signal processor. The joint PDF of the 

N clutter samples can be easily specified when the clutter is Gaussian. However, 

when the clutter is non-Gaussian and is correlated, many different joint PDFs of the 

clutter samples can result in the same set of marginal (univariate) distributions having 

a specified non-Gaussian character. The multivariate non-Gaussian PDF is uniquely 

determined from the marginal distribution only when the samples are statistically 

independent. 
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Specification of the multivariate PDF is generally a non- trivial problem with no 

simple best solution [43].   The theory of Spherically Invariant Random Processes 

(SIRP) provides a powerful mechanism to obtain the joint PDF of the N correlated, 

non-Gaussian clutter samples. Many of the tractable properties of the Gaussian ran- 

dom process also apply to SIRPs. Typically, background clutter is not known a priori. 

Hence, while dealing with real world data, there is a need to approximate the clutter 

PDF from a set of measurements.  In order to approximate the underlying clutter 

PDF, there is a need for a library of multivariate non-Gaussian PDFs. Such a library 

has been obtained in Chapter 3 based on the theory of SIRPs.   The multivariate 

PDFs thus obtained are functions of non-negative quadratic forms. Therefore, these 

PDFs are sometimes referred to as elliptically symmetric distributions. The multi- 

variate Gaussian PDF belongs to the family of SIRPs. The multivariate Pearson types 

II and VII are examples of elliptically symmetric multivariate non-Gaussian PDFs. 

SIRPs have received considerable attention over the past two decades since many 

of the elegant and mathematically tractable properties of the multivariate Gaussian 

distribution generalize to this class of distributions.  Applications of SIRPs can be 

found in the random flight problem [14], signal detection [16], speech signal modeling 

[17] and radar clutter modeling [19, 21]. 

In practice, the clutter PDF encountered in radar signal processing is not known 

a priori. Consequently, a scheme that approximates the clutter PDF based on a set 

of measured data is necessary. Currently, available tests such as the Kolmogorov- 

Smirnov test and the Chi-Square test address the problem of goodness-of-fit for ran- 

dom data. In particular, these tests provide information about whether a set of ran- 

dom data is statistically consistent with a specified distribution, to within a certain 

confidence level. However, if the specified distribution is rejected, these tests cannot 

be used for approximating the underlying PDF of the random data. Moreover, these 

tests require large sample sizes for reliable results. 

In practice, only a small number of samples may be available. Therefore, the 

scheme used should be efficient for small sample sizes. A new algorithm based on 

sample order statistics has been developed in [41] for univariate distribution identifi- 

cation. This algorithm has two modes of operation. In the first mode, the algorithm 

performs a goodness-of-fit test.   Specifically, the test determines, to a desired con- 
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fidence level, whether random data is statistically consistent with a specified prob- 

ability distribution. In the second mode of operation, the algorithm approximates 

the PDF underlying the random data. In particular, by analyzing the random data 

and without any a priori knowledge, the algorithm identifies from a stored library 

of PDFs that density function which best approximates the data. Estimates of the 

scale, location, and shape parameters of the PDF are provided by the algorithm. The 

algorithm typically works well with sample sizes which may be as small as 50 and 

100 samples. An extension of this algorithm for the multivariate Gaussian PDF has 

been considered in [41, 44]. 

In this Chapter, using certain properties of SIRPs, we adopt the algorithm devel- 

oped in [41] to identify the underlying distribution of a given set of data. In particular, 

we first show that the multivariate distribution approximation problem for SIRPs is 

reduced to an equivalent univariate distribution approximation problem. The new al- 

gorithm developed by Ozturk in [41] is used for the univariate approximation problem. 

Section 5.2 presents definitions. Sections 5.3-5.5 summarize the algorithm developed 

in [41] for approximating the univariate PDF of a set of random data. In Section 

5.6 we present a procedure for the goodness of fit test for PDFs arising from SIRPs. 

The proposed distribution identification algorithm is discussed in Section 5.7. Sec- 

tion 5.8 proposes a method to estimate the shape parameter based on the procedure 

developed in Section 5.7. Finally, conclusions are presented in Section 5.9. 

5.2    Definitions 

Let fy(y) denote the PDF of a random variable Y. Consider the linear transfor- 

mation defined by 

x = ßy + a (5.1) 

The PDF of X is given by 

fx(x) = pM^) (5-2) 
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where a and ß are defined to be the location and scale parameters of /x(x), respec- 

tively. The mean \ix and variance ax of the random variable X are given by 

*-*M (5.3) 

al = E[(X-nxn 

Although the mean and the variance are related to the location and scale parameters, 

note that the location parameter is not the mean value and the scale parameter is not 

the square root of the variance, in general. However, for a standardized Gaussian PDF 

fY(y) for which the mean is zero and the variance is unity, the location parameter is 

the mean of X and the scale parameter is the standard deviation (square root of the 

variance) of X. 

The coefficient of skewness, a3, and the coefficient of kurtosis, a4, of X, are defined 

to be 

a3 = 
EUX-ßX)3] 

tr .3 (5.4) 

a4 = m^n. 
It is readily shown that a3 and a4 are invariant to the values of \ix and ax. For 

any PDF that is symmetric about the mean, a3 = 0. For the case of the Gaussian 

distribution, Q3 = 0 and Q4 = 3. 

5.3    Goodness of Fit Test 
In this section, we introduce a general graphical method for testing whether a set 

of random data is statistically consistent with a specified univariate distribution. The 

proposed method not only yields a formal goodness-of-fit test but also a provides a 

graphical representation that gives insight into how well the random data is repre- 

sentative of the specified distribution (null hypothesis). Using the standard normal 

distribution with zero mean and unit variance as a reference distribution, the stan- 

dardized sample order statistics are represented by a system of linked vectors. The 

terminal point of these linked vectors, as well as the shape of their trajectories, are 

used in determining whether or not to accept the null hypothesis. 

In this section we first give a brief description of the corresponding test statistic and 

then explain the goodness of fit test procedure. For illustration purposes, we consider 
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the null distribution to be Gaussian. However, the proposed procedure works for any 

null hypothesis. 

Let Xi]i = l,2,...n denote the ith sample from a Gaussian distribution with mean 

p and variance a2. Let Xiin < X2-.n < • • < Xn:n denote the ordered samples obtained 

by ordering Xt; i = 1,2,... n. We define 

y;. = ELZZ!   i = l,2,...,n (5.5) 

where X = ZXi/n is the sample mean and S = {E(A"< - X)2/(n - l)}1/2 is the 

sample standard deviation. The standardized order statistics are denoted by yj:n 

i = 1,2,... n and are obtained by ordering the Y{\ i = 1,2,... n. It follows that 

Yi:n=
lXi--n~X\   i = l,2,...,n (5.6) 

The ith linked vector is characterized by its length and orientation with respect to 

the horizontal axis. Let Gi:ndenote the order statistics from the standard normal 

reference distribution. Also, let mi:n = E[Gi:n}. The length of the ith vector, a,, is 

obtained from the magnitude of the ith standardized sample order statistic, while its 

orientation 9, is related to m,:n. More specifically, by definition, 

a: = 51a 
(5.7) 

Oi - 7r$(mt:n) 

where $(x) = (v^Jr)-1 /f^ exp(-^)dt is the cumulative distribution function of the 

standard Gaussian distribution. We define the sample points Qk in a two dimensional 

plane by 

Qk = (Uk,Vk) fc = l,2,...n (5.8) 

where U0 = V0 = 0 and 

Uk = iZliiCosidMY^ 

Vk = |ELi{^'n(öt)}K:n (5-9) 

k = 1,2, ...n. 
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The sample linked vectors are obtained by joining the points Qk- Note that Qo = 

(0,0). It should also be noted that the statistic Qn given in eq (5.8) represents 

the terminal point of the linked vectors defined above. Figure 5.1 shows the linked 

vectors obtained for the Gaussian distribution with n = 6. Since Un and Vn are 

random variables for a given n, the corresponding linked vectors must be obtained 

by averaging the results of Monte-Carlo trials. In this case the linked vectors were 

obtained by averaging the results of 50,000 Monte Carlo trials. The solid curve in 

Figure 5.1 shows the linked vectors for the sample distribution while the dashed curve 

shows the ideal linked vectors for the null distribution. The magnitudes and angles of 

the linked vectors are obtained from eq (5.7). Note that the angles are independent of 

the data. Only the magnitudes of the linked vectors change from one trial to another. 

For a typical set of ordered samples (i.e., ordered samples drawn from the null 

distribution) it is reasonable to expect that the sample linked vectors would follow 

the null pattern closely. If the ordered set of samples is not from the null distribution, 

the sample linked vectors are not expected to follow the null pattern closely. Hence, 

the procedure provides visual information about how well the ordered set of samples 

fit the null distribution. 

An important property of the Qn statistic is that it is invariant under linear trans- 

formation. In particular, we consider the standardization used in eq (5.5). Let 

Zi = cXi + <f, where c and d are known constants. Let S denote the sample standard 
I V —*y"l I 7- —'71 

deviation of the samples Zt. Then, it is readily shown that J—'-§—L = ' '5; '. The 

invariance property follows as a consequence. The advantage of this property is that 

the PDF of Qn = ((/„, Vn), for a given sample and reference distribution depends only 

on the sample size n and is unaffected by the location and scale parameters. Since 

it is difficult to determine the joint PDF of Un and Vn analytically, it is necessary to 

obtain empirical results. 

Assuming that the conditions under the central limit theorem are satisfied, the 

marginal PDFs of Un and Vn can be approximated as Gaussian, in the limit of large n. 

In addition, it is assumed that the joint PDF of Un and Vn is approximately bivariate 

Gaussian. Consequently, all that is needed to determine the bivariate PDF is the 

specification of E{Un), E(Vn), E(UnVn), Var(Un) and Var(Vn). Drawing samples 

from the Gaussian distribution, it has been shown empirically in [41] that for 3 < 
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n< 100 

E(Un) = 0 

E(Vn) = uv « 0.326601 + 0.412921 
n 

E(UnVn ) = 0 

Var(Un) = <r>* 
0.02123   | 

n         ' 
0.01765 

n2 

Var(Vn) = cr2v « 0.04427 
n 

0.0951 
n2    • 

(5.10) 

Since Un and K axe approximately bivariate Gaussian for large or moderate sample 

sizes, their joint PDF can be written as 

fun,vn(un, vn) = (27r)-1(cru<Tv)-
1exp(--) (5.11) 

where 

t = A + lSl^£. (5.12) 

Let f = 20- Then the equation 

<o=-2 + -5  (5-13) 
u u 

is that of an ellipse in the un, un plane for which 

k,v„K, Un) = (2ir)-1{(Tu(7v)-
lexp(--^). (5.14) 

Points that fall within the ellipse correspond to those points in the un,vn plane for 

which 

fun,vn{un, un) > (2T)-1(aucrv)-
lexp{—^). (5.15) 

Let 

a = P(T > to) = P{un,   vn fall outside the ellipse given by eq (5.13)).   (5.16) 

It is well known that the PDF of the random variable T defined by eq (5.12) has a 

Chi-Square distribution with two degrees of freedom [45] and is given by 

Mt) = 0.5exp(-i). (5.17) 
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Hence, 

a = 1 - exp(——). (5.18) 

Consequently, t0 = -2/n(l - a). Thus, eq (5.13) becomes 

< + Kzif^! = -2/n(l - a). (5.19) 
el °l 

a is known as the significance level of the test.  It is the probability that Qn falls 

outside the ellipse specified by eq (5.19) given that the data is coming from a Gaussian 

distribution. 1 - a is known as the confidence level and the corresponding ellipse is 

known as the confidence ellipse. 

Eq (5.13) can be written in the standardized form 

l = A.+ ^ZllL (5.20) 
(Tito OIU 

where the lengths of the major and minor axes are given by Imax [<ruy/ü, crvy/to\ 

and 

2min [cruy/üi, avy/Q , respectively. From eq (5.18), observe that smaller values of a 

correspond to larger values of t0. Consequently, the confidence ellipses become larger 

as the confidence level is increased. 

For a given sample size n (n < 100) approximate values of pv, a\ and a\ can be 

obtained from eq (5.10). The confidence ellipse of eq (5.19) can then be used to make 

a visual as well as computational test of the null hypothesis. If the terminal sample 

point falls inside the ellipse, then the data is declared as being consistent with the 

Gaussian distribution with confidence level 1 - a. Otherwise the null hypothesis is 

rejected with a significance level a. 

A major difficulty in determining the joint PDF of Un and Vn is that the coefficients 

of skewness and kurtosis of Un and Vn (see Table 5.3) indicate that the Gaussian ap- 

proximation for the bivariate PDF may not be satisfactory for n < 10. The empirical 

bivariate PDF of U and V were obtained by using 50,000 Monte-Carlo trials for n=3, 

10, 20,30, 50 and 100. The corresponding constant probability contours of the joint 

PDF of Un and Vn are shown in Figure 5.2. The same procedure is used even when 

the null distribution is different from the Gaussian distribution. However, note that 

the standard Gaussian distribution is always used as the reference distribution for 
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determining the angles of the linked vectors. 

5.4    Distribution Approximation 
In this section we present a graphical procedure for approximating the underlying 

PDF of a set of random data based on the goodness-of-fit test procedure discussed in 

section 5.3. 

Following a similar approach to that outlined in section 5.3, random samples are 

generated from many different univariate probability distributions. For each specified 

distribution and for a given n, the statistic Qn = (Un, Vn) given by eq (5.9) is obtained 

for various choices of the shape parameter. Thus, each distribution is represented by a 

trajectory in the two dimensional plane whose coordinates are Un and Vn. Figure 5.3 

shows an example of such a representation. Twelve distributions namely Gaussian 

(1), Uniform (2), Exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme 

Value (7), Gumbel type-2 (8), Gamma (9), Pareto (10), Weibull (11) and Lognormal 

(12) are represented in this chart. Tables 5.1 and 5.2 show the standard form and the 

general form respectively, of the PDFs represented in the identification chart. The 

value of Qn at each point of the trajectories is obtained by Monte-Carlo experiments 

using the standard Gaussian distribution as the reference distribution for determining 

the angles 0,-. The results are based on averaging 1000 trials of n = 50 samples from 

each distribution. The samples from each distribution are obtained by using the 

IMSL subroutines for specified values of the shape parameter. Since the procedure 

is location and scale invariant, the trajectory reduces to a single point for those 

PDFs which do not have shape parameters but are characterized only in terms of 

their location and scale parameters. By way of example, the Gaussian, Laplace, 

Exponential, Uniform and Cauchy PDFs are represented by single points in the Un — 

Vn plane. However, those PDFs which have shape parameters are represented by 

trajectories. For a given value of the shape parameter, a single point is obtained in 

the Un — Vn plane. By varying the shape parameter, isolated points are determined 

along the trajectory. The trajectory for the PDF is obtained by joining these points. 

In a sense the trajectory represents a family of PDFs having the same distribution 

but with different shape parameter values. For example, the trajectory corresponding 

to the Gamma distribution in Figure 5.3 is obtained by joining the points for which 

the shape parameters are 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, 10.0. As the shape 
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parameter increases, note that the Gamma distribution approaches the Gaussian 

distribution. The representation of Figure 5.3 is called an identification chart. Some 

distributions such as the ß distribution and the SU-Johnson system of distributions, 

have two shape parameters. For these cases, the trajectories are obtained by holding 

one shape parameter fixed while the other is varied. For these distributions, several 

different trajectories are generated in order to cover as much of the Un — Vn plane 

as possible. For certain choices of the shape parameters, two or more PDFs become 

identical. When this occurs, their trajectories intersect on the identification chart. 

It is apparent that the identification chart of Figure 5.3 provides a one to one 

graphical representation for each PDF for a given n. Therefore, every point in the 

identification chart corresponds to a specific distribution. Thus, if the null hypothesis 

in the goodness-of-fit test discussed in section 5.3 is rejected, then the distribution 

which approximates the underlying PDF of the set of random data can be obtained 

by comparing Qn obtained for the samples with the existing trajectories in the chart. 

The closest point or trajectory to the sample Qn is chosen as an approximation to the 

PDF underlying the random data. The closest point or trajectory to the sample point 

is determined by projecting the sample point Qn to neighboring points or trajectories 

on the chart and considering that point or trajectory whose perpendicular distance 

from the sample point is the smallest. Consider the situation of Figure 5.4. Let 

Qn — (u',t/.) denote the coordinates of the sample point. Let Xi, y\ and x2, 2/2 

denote the coordinates of the points A and B on the trajectory shown in Figure 5.4. 

It is assumed that segment of the trajectory between the points A and B is linear. Let 

xo, i/o denote the coordinates of the point of intersection of the straight line between 

A and B and the projection of Qn = (u',v') onto this straight line. The equation of 

the straight line between the points A and B can be written as 

y-yx=m(x-xi) (5.21) 

where m = ,y2~yi,. Also, the equation of the straight line joining x0, i/o and (u ,v ) 

is 

y-v' = (x - u). (5.22) 
m 

The coordinates x0, yo result from the solution of eqs (5.21) and (5.22) and are given 
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by 

xo = ^+r[m2;ci - mJ/i + u' + mu'l 
(5.23) 

2/0 = ^+r[yi - w»ii + ™2u' + mu']. 

Finally, the perpendicular distance from the sample point onto the trajectory between 

the points A and B is 

D = V (^sVi) Im2tf '2mClCz + Cl] (5'24) 

where 

Ci = u - xx 
(5.25) 

<2 = v - yx. 

The complete approximation algorithm is summarized as follows. 

1. Sort the samples X\, X2,. ■ • Xn in increasing order. 

2. Obtain the standardized order statistic Yi-.n. 

3. Compute Un and Vn from eq (5.9). 

4. Obtain an identification chart based on the sample size n and plot the 

sample point Qn on this chart. 

5. Compute D using the sample point Qn and the existing distributions 

on the chart. Choose the PDF corresponding to the point or trajectory 

that results in the smallest value of D as an approximation to the PDF 

of the samples. 

The approximation to the underlying PDF of the set of random data can be im- 

proved by including as many distributions as possible in the identification chart so 

as to fill as much of the space as possible with candidate distributions. However, it 

is emphasized that this procedure does not identify the underlying PDF. Rather it 

identifies a suitable approximation to the underlying PDF. 

5.5    Parameter Estimation 
Once the probability distribution of the samples is approximated, the next step is 

to estimate its parameters. The method discussed in section 5.4 lends itself for esti- 
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mating the parameters of the approximated distribution. We present the estimation 

procedure for the location, scale and shape parameters in this section. 
5.5.1    Estimation of Location and Scale Parameters 

Let /(x; a, ß,) denote a known distribution which approximates the PDF of the 

set of random data, where ct and ß are the location parameter and scale parameter, 

respectively, of the approximating PDF. Let Xi:n denote the ordered statistics of X 

from a sample of size n. A standardized ordered statistic is defined by 

W,n = ^f^. (5.26) 

Let 

Hi-.« = E[WiM). (5.27) 

Then 
E[Xi..n) = ßmtn + a (5.28) 

We consider the following statistics 

ri«nc»<w- (529) 

where 0; is the angle defined in eq (5.7). The expected values of 7\ and T2 are 

These can be written as 

E[T2] = T.:Sin{8i)[ßiiiM + a]. 

E{TX) =aa + bß 

E(T2) = ca + dß 

(5.30) 

(5.31) 
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where 

a = Z?Cos{6i) 

6 = E?/*.:nCoa(d,-) 
(5.32) 

c = Z?Sin(ei) 

d=T,?ß«nSin(Oi). 

Because the standardized Gaussian distribution is used as the refernce distribution 

for 0„ it follows that a = 0 [41]. The estimates for ß and a are then given by 

ß = m 
b (5.33) 

a = instil 
c 

where the symbol A is used to denote an estimate. For n sufficiently large (i.e., 

n > 50), suitable estimates for E[T\} and E[T2] are 

E[Ti] = Tx 
(5.34) 

E[T3] = r2. 

Estimates for b and cf rely upon an estimate of //,-.„. /i,:n is obtained from a Monte 

Carlo simulation of W,-:n where iyt:n is generated from the known approximating 

distribution /(x;0,1) having zero location and unity scale parameters. fii:n is the 

sample mean of Wi:n based upon 1000 Monte Carlo trials. Having fii:n, the estimates 

for b and d are given by 

&=E?£,:nC<«(0,) 
(5.35) 

The scale and location parameters are then estimated by application of eq (5.33). 
5.5.2    Shape Parameter Estimation 

In this section we present an approximate method for estimating the shape pa- 

rameter of the approximating PDF. This procedure can be used only when the ap- 

proximating PDF has a single shape parameter to be determined. Let 7 denote the 

shape parameter of the approximating PDF. Since Un and Vn are location and scale 
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invariant, the point Qn depends only on the sample size n and the shape parameter 

7- 

Recall that the trajectories on the identification chart are obtained by averaging 

the results of a large number of trials for Un and Vn. Consequently, for a given value 

of n, the coordinates of the points along the trajectory for a specified distribution 

and can be characterized by 

*<«.)-*<»,7) (536) 

E(V„) = V2(n,-r) 

where the complete trajectory is obtained by repeating the large number of trials over 

a suitable range of 7. On a given trial involving the random data it is likely that the 

coordinates Un and Vn for the samples will not coincide with any of the trajectories on 

the chart. The random data is approximated by that distribution which falls closest 

to the sample point Qn. The situation is illustrated in Figure 5.7. Trl and Tr2 

denote the trajectories for two different candidate distributions denoted by PDF1 

and PDF2, respectively. Let x0 denote the point on Trl closest to Qn. Assume that 

the linear segment of Trl on which i0 falls was drawn between the points (ui, V\) and 

(u2, i>2)- Let the shape parameter values corresponding to these points be denoted by 

71 and 72, respectively. Then the value of the shape parameter corresponding to the 

sample point Qn is obtained by linear interpolation and is given by 

- ~ ~ _L (72-TiKfo-Jfi) ,-,-v 
7 « 7i + -, \  (5-37) 

where 

°" (^+1) (5.38) 

(u2-ui)' 

The accuracy of the procedure can be improved by employing a non-linear interpo- 

lation method. It must be emphasized that the location, scale and shape parameter 

estimation procedures presented in this section are approximate procedures. 
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5.6    Assessing the Distributional Properties of SIRVs 
A random vector Y = [Y\, Y%, ... YN]

T
 is a spherically invariant random vector 

(SIRV) if its PDF has the form 

/Y(y) = (2xr*|Er*Mp) (5.39) 

where p = (y — ^)TS_1(y — fi) is a non-negative quadratic form, fi and £ are the 

mean vector and covariance matrix, respectively of Y and fe^(p) is a non-negative, 

monotonically decreasing, real valued function for all TV. 

Recall from Chapter 3 that the PDF of the quadratic form appearing in eq (5.39) 

is given by 

fp(p) = TS^TW-MP^P) (5-4°) 

where T(a) is the Eulero-Gamma function and u(p) is the unit step function. It was 

also pointed out in Chapter 3 that the PDF of the quadratic form is invariant to the 

choice of fi and S. For example, in the multivariate Gaussian case, the PDF of the 

quadratic form is the well known Chi-square distribution with JV degrees of freedom. 

Therefore, for a given N, the SIRV is uniquely characterized by the quadratic form. 

In order to identify the PDF of the underlying SIRV it is sufficient to identify the PDF 

of the quadratic form. This attractive property of SIRVs enables us to study various 

distributional aspects of the corresponding multivariate samples. When a radar uses 

coherent processing, the joint PDF of the 2N quadrature components is of interest. 

Eqs (5.39) and (5.40) are then applicable with N replaced by 2N. 

In modeling real world data, the first step is to determine the most appropriate 

PDF that approximates the data. In the univariate case, the fit and assessment of 

the goodness of fit for various distributions has been studied extensively and several 

methods are available for this purpose. However, limited success has been achieved 

for the multivariate situation. Although a number of multivariate distributions have 

been developed, the multivariate Gaussian distribution has been the focus of much 

of the techniques for multivariate analysis [46]. 

Assessment of the distributional assumptions for multivariate data is a non trivial 

problem. Several techniques have been proposed to assess multivariate Gaussianity. 

In a recent paper Ozturk and Romeu [44] give a review of the methods for testing 
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multivariate Gaussianity. Many of these methods can be modified or generalized 

to develop goodness of fit methods for SIRVs. If a random vector Y is an SIRV, 

then the corresponding marginal distributions must be identical (up to location and 

scale parameters). Based on this property, one can use the the standard univariate 

goodness of fit testing procedures to assess the degree of similarity of the marginal 

distributions of the multivariate data. However, such an approach does not provide 

a way to assess the joint distribution of the components of the multivariate sample. 

Since SIRVs can be uniquely characterized in terms of the quadratic form P, 

eq (5.40) provides an important property for developing goodness of fit test procedures 

for SIRVs. Specifically, if the PDF of P can be identified, then the corresponding PDF 

of the SIRV can also be identified. In fact, many tests for assessment of multivariate 

Gaussianity are based on the use of this quadratic form [47]. By use of this tech- 

nique, note that the multivariate distribution approximation problem is reduced to 

a corresponding univariate distribution approximation of the quadratic form. Any 

of the classical goodness of fit testing procedures like the Kolmogorov-Smirnov and 

Chi-Square tests can be used to address the problem of distribution identification of 

the quadratic form. However, the requirement of large sample sizes for specifying the 

parameters of the distribution and low power of the test necessitate use of alternate 

procedures that are more efficient. 

A general algorithm was developed in [41] to test for univariate and multivariate 

normality and has been summarized in sections 5.3-5.5. In this section we propose the 

use of this algorithm for performing the goodness of fit test for SIRVs. The procedure 

is summarized here for completeness. Let Y = [Fi,!^ • • • YNY denote a vector of 

observations. For each observation vector of size N, we compute the corresponding 

quadratic form P, (i = 1,2,... n) where the maximum likelihood (ML) estimates of 

the mean vector of Y and its covariance matrix are used. For the Gaussian case, it is 

well known that these ML estimates are the sample mean and the sample covariance 

matrix, respectively [48]. In Appendix C, it is shown that the same results hold 

for SIRVs [49]. Our goal is to test whether p, (i = 1,2,...n) are samples from a 

certain distribution F(p;a, /9,7) where a, ß are the location and scale parameters, 

respectively and 7 is the shape parameter. 

Let Pun   < P2.T1   < • • • <   Pnm denote the ordered observations of the quadratic 
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form Pi  (i = 1, 2, .. . n). We define the standardized iih sample order statistic as 

Ri:n = {Pi:n~ P) (5.41) 

where P and Sp are the sample mean and sample standard deviation, respectively. 

Corresponding to the ith sample order statistics R\:n through -ft,:n, the point Qi = 

(Ui, V{) is defined where 

Ui = } E;=X c05{7r$(mj:n)}|Äi:n| 

V> = \rj=1sin{T*(mj:n)}\Rj:n\ 

where $(.) and mjm were defined in Section 5.3. 

For a given set of n multivariate samples, the points Qi (i = 1, 2,... n) are plotted 

and joined to obtain a linked vector chart. The linked vectors under the null hypoth- 

esis are obtained by averaging the results of 50,000 Monte Carlo trials from the PDF 

of the quadratic form given by eq (5.40). The proposed test is based on comparing 

the sample and the null linked vectors. If the null hypothesis is true, then we expect 

that the sample linked vectors will follow the null linked vectors closely. 

Finally, a formal goodness of fit test is performed using the terminal point of the 

null linked vectors (i.e Qn = ([/„, Vn)). Using the central limit theorem, as outlined in 

section 5.3, confidence ellipses centered at Qn for the null linked vectors are obtained. 

If the terminal point of the sample linked vectors does not fall inside the 100(1 — a)% 

confidence ellipse, then the corresponding null hypothesis is rejected at the a level of 

significance. Note that the Qn test provides an interesting graphical representation 

of the data. An example of such a graphical representation is given in Fig 5.5 for 

testing a multivariate Gaussian distribution with n = 50 and N = 4. 

It should be noted that the Qn statistic is location and scale invariant. In other 

words it is independent of the location and scale parameters. However, it depends 

on the shape parameter of the null distribution. Assessment of the distributional 

assumptions of distributions that have shape parameters is conceptually different 

from those that do not. In the former case, we test whether the sample comes from a 

family of distributions while in the latter case, we test for a simple distribution. One 

possibility for dealing with this problem is to specify the value of the shape parameter 
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and perform the test in the usual way. If the shape parameter cannot be specified, 

then an adaptive approach which uses a sample estimate of the shape parameter must 

be employed. 

Advantages of using the Qn procedure are explained in [41]. Usually the classical 

goodness of fit tests end up with either rejecting or accepting the null hypothesis. 

An attractive property of the Qn procedure is that it provides some information 

about the true distributions if the null hypothesis is rejected. Using this property an 

algorithm for characterizing and identifying the distributions can be developed. The 

next section explains these ideas. 

5.7    Distribution Identification of SIRVs 

Following the same procedure described in Section 5.4, where the reference distri- 

bution was Gaussian, an identification chart can be generated for each of quadratic 

form PDFs of the SIRVs listed in Tables 5.3 and 5.4. Recall from Chapter 3 that 

the PDF of the quadratic form is invariant to the choice of \i and E. Hence, for 

simplicity, the trajectories for the PDFs of the quadratic forms of the SIRVs listed 

in Tables 5.1 and 5.2 are obtained by generating the SIRVs having zero mean and 

identity covariance matrix. Each point on a trajectory is obtained by averaging the 

results of 2000 Monte Carlo trials of size n = 100. As before, PDFs which do not 

have shape parameters are represented by a single point in the U-V plane while those 

which have shape parameters generate a trajectory in the U-V plane by changing the 

shape parameter. 

Assuming coherent radar processing, Table 5.3 and Table 5.4 provide a library of 

^27v(p) f°r various multivariate SIRV PDFs. An example of the identification chart is 

given in Fig 5.6 for N = 4 and n = 50 where the expected values of Qn = {Un, Vn) is 

plotted for various distributions. The Gaussian distribution was used as the reference 

distribution. The SIRVs listed in Table 5.1 and Table 5.2 are included in the chart 

and labeled by number. It is noted that the multivariate Gaussian (1), Laplace (2) 

and Cauchy (3) distributions are represented by single points on the chart while the 

multivariate K-distribution (8), Chi (9), Generalized Rayleigh (10) Weibull (11) and 

Rician (12) are represented by trajectories. The Student-t distribution (4, 5, 6, 7) 

with degrees of freedom 3, 5, 10 and 15, respectively, is also shown in the chart. The 

trajectories for each distribution were obtained by joining 10 points resulting from the 
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use of the distributions with parameter values listed in Table 5.3. Each point in the 

chart is obtained by simulating 2000 samples from the corresponding distributions. 

The methods developed by Rangaswamy et al. [22, 50] were used to generate the 

multivariate samples. 

The identification chart provides an interesting display for identifying and charac- 

terizing the distributions. Also, relationships between the various distributions are 

clearly seen. For example, as their parameters are varied, certain distributions ap- 

proach the multivariate Gaussian distribution. Also, for appropriately chosen param- 

eters, the multivariate Weibull distribution and the Generalized Rayleigh distribution 

can be seen to coincide. For a given N-variate sample of size n, the statistic Qn based 

on the sample quadratic forms can be computed and plotted on the identification 

chart. Then the nearest distribution to the sample point is identified to be the best 

candidate for the underlying true distribution of the data. An example of such an 

identification is shown in Figure 5.6 where a well known data set (i.e. Iris Setosa [51]) 

is used to obtain a value for Qn and is denoted by the point S. The Iris Setosa data 

consists of four measurements taken from 50 plants. It is seen from Figure 5.6 that 

the best candidate for approximating the data is the multivariate Chi(9) distribution. 

We point out that there are other methods which can be used for the distribution 

identification problem. A commonly used technique is the Q — Q plot. To identify 

the underlying distribution the sample quantiles are plotted against the expected 

quantiles of a reference distribution. Then the resulting shape of the plotted curve is 

taken as a basis for identifying the corresponding candidate for the true distributions. 

However, the identification is made on a subjective basis. Even then the procedure is 

not very easy. Another well known approach for distinguishing between distribution 

is to characterize them via their skewness (03) and kurtosis (a4) coefficients. In this 

case, all the distributions are represented by points on the Q3- Q4 plane and the sample 

data point is compared with the points representing the theoretical distributions in 

the same way as in the Qn procedure. However, estimates of 0:3 and a4 are known 

to be highly sensitive to extreme observations and therefore, large sample sizes are 

necessary to perform the identification for a given degree of accuracy. 
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5.8    Parameter Estimation 
It is well known that the maximum likelihood estimate of the covariance matrix of 

a Gaussian random vector is the sample covariance matrix. Interestingly enough, it 

has been shown in [49]that the maximum likelihood estimate of the covariance matrix 

S for SIRVs is the same sample covariance matrix used in the Gaussian case. From 

eq (5.40), it is clear that the expected value of the quadratic form can be expressed 

as 

E[P\=<p{N,i) (5.43) 

where 7 is the shape parameter of the distribution. For those SIRVs where y>(.) can 

be evaluated in closed form and is invertible, the sample mean of P, denoted by P 

can be used to estimate the shape parameter according to 

7 = ^-1{?,^}. (5.44) 

where P = £H"-i Pi- For example, in case of the K-distribution, we have E[P] = 

2aN where a is the shape parameter of the K-distribution. Clearly, the shape pa- 

rameter is given by a = ^. Unfortunately, it is not always possible to obtain an 

invertible closed form expression for <^(.t.)- The shape parameter estimation pro- 

cedure suggested here is not suitable in such a case. An alternate method for the 

parameter estimation problem is then needed. 

In this section we propose to use the Qn statistic to obtain an approximate esti- 

mator for the shape parameter. The underlying procedure is explained in [41] and 

is summarized here. Let the points (f/i,Vi) and (^2,^) denote the coordinates of 

Qn corresponding to parameters 71 and 72 respectively, of a given SIRV. Suppose 

these points are the nearest points, on the trajectory for the identified distribution 

to the sample point Qn = (Un,Vn) corresponding to the data. Then by using linear 

interpolation, an approximate estimator of 7 is given by 

T^'
72
:,]

1
"

1
;-^ (5.45) 
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Table 5.1: Table of Standard Forms of Univariate PDFs Used For Identification Chart of 
Figure 5.3 

Distribution Standard Form /y(y) 

Gaussian (y/2ir)~1exp(-^)   - oo < y < oo 
Uniform 10<y<l 
Exponential exp(-y) (0 < y < oo) 
Laplace 0.5exp(-|y|)   - oo < y < oo 
Logistic exp(-y)(l + eip(-y)]-2   - oo < y < oo 
Cauchy Wi+v*1)       oo < y <; oo 
Extreme Value (Type 1) exp(-y)exp[-exp(-y)]   - oo < y < oo 
Gumbel (Type 2) 7yexp(-7 - l)eip(-y-7)   - oo < y < oo 
Gamma r^rfeip(-y)y7-1  0 < y < oo 

Pareto JT&T V>1, 7>0 
Weibull jy7~iexp(-yy) y > 0 

Lognormal -fa^.hisimi y > o 

where 

x°~ W+T) 

A = W-Vi) 

(5.46) 

The accuracy of the proposed estimator for 7 depends on the distance between the 

sample point Qn and the corresponding curve. If necessary, the approximation can 

be improved by using non-linear interpolation methods. 

5.9     Conclusions 

In this Chapter we have addressed the problem of distribution identification of radar 

clutter under the assumption that the clutter can be characterized as a SIRP. First and 

foremost, we have shown that the multivariate distribution identification problem for 

SIRPs can be reduced to an equivalent univariate distribution identification problem 

of a non-negative quadratic form, resulting in considerable processing simplicity. A 

new algorithm which provides a graphical representation for the goodness of fit test 

and the distribution identification has been used. This algorithm, while conceptually 

simple, is extremely efficient while dealing with small sample sizes. Therefore, it is 

suitable for use in a variety of practical applications. Finally, based on this algorithm, 

a new approach has been proposed for estimating the shape parameter of SIRPs. 
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Table 5.2: Table of General Form of Univariate PDFs Used For Identification Chart of 
Figure 5.3 ^^^^^^^^^ 

Distribution 

Gaussian 
Uniform 

Exponential 

Laplace 

Logistic 
Cauchy 

General Form fx(x) 

(y^F/?)-1«^-^-)   -oo<r<oo 
fra<x<a+ß 

lezp(-£fl) a 777 oo 
°±CXp[-\t*^\]   -00<X<00 
Lexp[-^)[\ + eXp(-^)]->   - oo < x < oo 

,fli+fc=5ii] 
— OO < X < oo 

Lexp[-^)exp[-exp{-^}}   - oo < x < oo Extreme Value (Type 1) 

Gumbel (Type 2) xi£^lexp(-7-l)exp[-^=0^}   - oo < x < oo J_l 
Gamma £=2l](W-i  Q<x<oo 

?(«yV+«   *><* + /?■ 7 >0 Pareto 

Weibull 
r-i-.f i-»iw 

Lognormal V57«ä rexp[- {7JosTS=ÖP 
X > Or 

Table 5.4: SIRVs obtained from the marginal envelope PDF 
Marginal PDF h2s(p) 
Chi (-2)"-M ELi GkP"-kexp(-Bp) 

Gfc~ ^ fc-1 J (   l>     B     r(,-t+i) 

B = 6 V 
v< 1 

Weibull 

r      r^*     ,   ir+w«w^* f M    r(i+^) 

6<2 
Gen. Rayleigh E£i10*p*-JV+1«p(-*P*) 

D    Tk   ( ir*w-uw-,fl4 f k \  r(1+i^) 
^t-iLmsiv   v           i       k>. \   m J r(2+^2— yv) 
a<2 

Rician ,«r         /v_x / JY-1\(   utfM*£,ciD(   A) 
(i-,')M ^*=0 V     *     /            2 

€* - Em=0 (   m   J h-2m(pA), A = 5^57 
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Table 5.5: SIRVs obtained from the marginal characteristic function 
Marginal PDF 
Gaussian 
Laplace 
Cauchy 

K-distribution 

Student-t 

foNJp) 
e«p(-f) 

riaS     2«-'      KN- .(V*D 

Table 5.6: Shape Parameters of the SIRVs Used for the Identification Chart 
K-Distribution 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9 
Chi 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 0.95 
Gen. Rayleigh 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0 
Weibull 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 
Rician 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9 
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Figure 5.1: Linked Vector Chart:Dashed lines P0= Null Linked Vectors, Solid Lines P\-. 
Sample Linked Vectors 
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Figure 5.2: Empirical Distribution of Qn for several values of n 
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Figure 5.3: Identification Chart for Univariate Distributions Based on 1000 samples (n=50); Bl-B5=Beta, 
J1-J9=SU Johnson, G=Gamma, W=Weibull, K=K-distribution, P=Pareto, I=Log-normal, T=Gumbel, 

E=Exponential, V=Extreme Value, A=Laplace, L=Logistic, U=Uniform, N=Normal, C=Cauchy 
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Figure 5.4: Distance Computation 
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Figure 5.5: Goodness of Fit Test for SIRVs using the Qn Procedure.   90, 95 and 99% 
contours for the Gaussian distribution. Broken Line = Null distribution Pattern 
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Figure 5.6: Identification Chart for SIRVs (n=2000, N=4) 1 = Gaussian, 2 = Laplace, 3 
= Cauchy, 4, 5, 6, 7 = Student-t, 8 = K-distribution, 9 = Chi, 10 = Generalized Rayleigh, 
11 = Weibull, 12 = Rician 
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Chapter 6 

Conclusions 

6.1    General Remarks 

We present conclusions and suggestions for future work in this Chapter. We have 

addressed the problem of modeling, simulation and distribution identification (mul- 

tivariate) of correlated non-Gaussian radar clutter that can be characterized as a 

spherically invariant random process (SIRP). The SIRP model for the clutter be- 

longs to the class of exogenous product models, where the clutter process can be 

decomposed as a product of two independent random processes. One of the pro- 

cesses is Gaussian while the other is a highly correlated non-Gaussian process, which 

modulates the Gaussian process. The SIRP model arises as a special case when the 

modulating process is a non-negative random variable. This in turn, imposes the re- 

quirement that the modulating random process have a decorrelation time much larger 

than that of the Gaussian process, so that the modulating process is approximately 

constant in a given time observation interval. 

For example, consider a high resolution airborne radar operating in a maritime en- 

vironment at low grazing angles. The overall sea clutter return is composed of returns 

from the capillary waves and the gravity waves. The capillary waves correspond to 

a rapidly time variant process. It has been pointed out in [19] that the returns from 

the capillary waves can be approximated as being jointly Gaussian. Therefore, the 

returns from the the capillary waves can be modeled by a Gaussian random process. 

The gravity waves correspond to a slowly time variant phenomenon. Furthermore, 

it has been shown in [19, 3, 7] that the decorrelation time of the slowly time vari- 

ant process is much larger than that of the Gaussian process.   Consequently, the 
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slowly time variant process can be approximated by a non-negative random variable. 

Hence, the SIRP model is applicable in this case. In fact, if the non-negative random 

variable has a Chi-distribution, the overall sea clutter returns are characterized by 

a K-distribution. We have pointed out that the K-distribution is a member of the 

family of SIRPs. Therefore, for this case, the SIRP characterization enables us to 

determine the optimal radar signal processor. The validity of other SIRPs as models 

for radar clutter must be determined through an experimental effort. 

This dissertation has made the following significant original contributions. 

1. Application of the theory of SIRP to obtain a library of multivariate 

PDFs of correlated non-Gaussian random vectors. 

2. Derivation of the result that an SIRV is uniquely characterized through 

the knowledge of the PDF of a quadratic form. 

3. Development of elegant and powerful simulation procedures for com- 

puter generation of SIRVs. 

4. Reduction of the distribution identification for SIRVs from a multi- 

variate problem to an equivalent univariate distribution identification 

problem. 

As a result of these contributions, the problem of modeling, simulation and distri- 

bution identification for SIRVs has resulted in tremendous computational simplicity. 

Consequently, the schemes developed here are suitable for use in several practical 

applications. 

6.2    Suggestions for Future Research 

It has been pointed out in this work that many of the attractive properties of Gaus- 

sian random processes also apply to SIRPs. Consequently, the use of SIRPs provides 

a convenient vehicle for solving several signal detection and estimation problems in- 

volving correlated non-Gaussian processes. In particular, the following issues may be 

addressed as extensions of this work. 

1. Use of experimental data to determine the applicability of the SIRP 

model for modeling clutter in radar, sonar and image processing. 
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2. Application of the Kaiman filter for SIRPs. 

3. Use of SIRPs for radar ambiguity function analysis. 

4. Application of SIRPs for canceling interference in digital communica- 

tions. 

5. Use of SIRPs in innovations based multichannel detection and estima- 

tion. 

6. Use of SIRPs in linear predictive coding for speech processing. 

7. Use of neural networks for identifying SIRPs. 

8. Information theoretic considerations, such as channel capacity and rate 

distortion theory, for SIRPs. 

9. Use of SIRPs in parameter estimation involving the log likelihood func- 

tion. 
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Appendix A 

Properties of SIRVs 

In this appendix we present some original proofs for properties of SIRPs stated in the 

literature. 

A.l     Statistical Independence 

An SSRV X = [X\, X2, ...,X^]r has statistically independent components X{ 

i = 1,2,..., N if and only if the SSRV is Gaussian. 

Proof: Recall that the PDF of X can be expressed as 

/x(x) = khN[(x] + x\ + ... + x2
N)2] = {2ir)~ThN(V^l). (A.l) 

If the components of X are statistically independent, then the PDF given by eq (A.l) 

must factor into the product of the marginal PDFs of the components of X. It then 

follows that 
N 

hN[{x\ + x\ + ... + 4)5] = JI g(xi). (A.2) 

—    f-r2  J.  T2   -L _L   T2 
Letting r = (x{ + x\ + ... + x2

N)i and differentiating both sides of eq (A.2) with 

respect to a^, results in 

N 
■h'K(r) = r 

j = l 

%(r)=     II    9(*i)9i*i)- (A.3) 

;#»' 
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Dividing both sides of eq (A.3) by Xih^(r) results in 

h'N(r)       Jim) (A.4) 
rhN(r)      Xig(xi) 

Equality holds in eq (A.4) if and only if the left and right sides of eq (A.4) are equal 

to the same constant. Denoting this constant by —A, we have 

-TFTT = "A- (A-5) 
rhN(r) 

Integrating both sides of eq (A.5) with respect to r gives 

Ar2 

hN(r) = aexp{——■) (A.6) 

where a is the constant of integration. Hence, 

hN[(x\ + x\ + ... + x2
N)t] = aexp[--{xl + x\ + ... + x^)] (A.7) 

Substitution of eq (A.7) ineq (A. 1) clearly results in the Gaussian PDF. The constraint 

of unity volume under the PDF results in a = A~. 

In order to prove the sufficient part of the property, we start with the PDF of a 

Gaussian SSRV X given by 

/x(x)MT)~*«rf-?X>')- <A-8) 

Clearly the PDF given by eq (A.8) can be expressed as 

/x(x) = f[/*.(*,) (A.9) 
«•=1 

where 

fxAxi) = (y)-'exp(-^i). (A.10) 

Hence, the sufficient part of the property follows. 

An alternate proof of this property can be obtained by using the representation 

theorem. The representation theorem allows us to express the SSRV X as a product 

of a Gaussian random vector Z having zero mean and identity covariance matrix and 
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a non-negative random variable S. More precisely, we can write 

X = ZS. (A.ll) 

The components of X can be statistically independent if and only if 5 is a constant. 

When S is a constant, X is a Gaussian SSRV. As is often the case, the representation 

theorem provides a simplified approach for determining properties of SIRVs. 

A.2    Spherically Symmetric Characteristic function 

In this section, we prove that the characteristic function of an SSRV is spherically 

symmetric. 

Proof: We consider the SSRV X = [Xi, X2, .. .,XN]
T

- From the representation 

theorem, we can write X = Z5 where Z is a Gaussian random vector having zero 

mean and identity covariance matrix and 5 is a non-negative random variable with 

PDF fs(s). The characteristic function of X given by 

$xM = E[exp(juTX)] (A.12) 

where u> = [a?!, u2i...,u>yv]T, can be expressed as 

*xM = £5[*X|s=.M] (A.13) 

where $x|s=»(w) = E[exp(juTZs)]. However, 

2  N 

E[exp(juTZs)} = exp(--J>,2). (A.14) 

Using eq (A.14) in eq (A.13) results in 

2   N 

*x(«) = f°°' exp{~Y,ui)fs(*)ds. (A.15) 

The characteristic function given by eq (A.15) can be expressed as a function of 

Vu>Tu>. Hence it is spherically symmetric. 
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A.3    Relationship Between Higher Order and Lower Order 

SIRV PDFs 
In this section we examine the relationship between the higher order and lower 

order SIRV PDFs. More precisely we consider an SIRV Y = [Yu Y2, ..., YN]T having 

mean vector /x, covariance matrix £ and characteristic PDF fs{s). The PDF of Y is 

given by 

/Y(y) = (2*r*|sr*Mp) (A-16) 

where p = (y - //)TS_1(y - fi) and 

hs(p) = jT s-Nexp(-^)fs(s)ds. (A.17) 

The vector Y can be partitioned as Y = [YiT Y2
T]T where Yi = [Yi, Y2, ... Ym}T 

and Y2 = [Ym+i, Ym+2, • • • YN]
T

- Let m and \ii denote the mean vectors of Yi and 

Y2 respectively, and Si and £2 denote the corresponding covariance matrices. We 

wish to obtain the PDF of Yi from the PDF of Y by integrating out over the N - m 

random variables (i.e., the components of Y2). Let px = (yi - m) £1 (yi — Pi) 

and p2 = (ya - /^E^fr* ~ ^' The PDF of Yl is given by 

/Yl(yi) = (2TT)-T|S|-I jH j[~ s-"exp(-^)fs(s)dsdy2. (A.18) 

From [26] (pl7 eq.8, pl8 eq.ll) we have 

(2x)-T|E|^/_~exp(-^I)Jy2 = (2x)-T|S1rb^-mexp(-|J). (A.19) 

Using eq (A.19) in eq (A.18) gives 

/Yl(yi) = (2*)-T |El|4/V"exp(-|^)/s(5)<k. (A.20) 

The PDF of Yi can be expressed as 

/Yi(yi) = (2x)-T|s1|-Hm(Pl) (A.21) 

where 

hm(Pl) = /o°° s-mexp(-^)fs(s)ds. (A.22) 
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Clearly, hm(pi) given by eq (A.22) can be obtained from eq (A.17) by simply re- 

placing N by m and p by p\. To determine the PDF of Yi, all that is needed is 

the specification of its mean vector and covariance matrix. As a special case, when 

m = 1, eq (A.20) gives us the first order SIRV PDF. Therefore, to obtain the first 

order SIRV PDF of the ith component of Y starting from the Nth order SIRV PDF, 

we simply use eq (A.20) with m = 1, Si = 0{ and p\ = ^y'~p ■ 
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Appendix B 

Computer Generation of SIRVs 

Using the Rejection Method 

B.l    Rejection Method 
We present a proof of the rejection procedure [30] used for generating the norm 

R of the white SIRV X in Chapter 4. In many instances, it is likely that the PDF 

of a random variable is known explicitly, but its cumulative distribution function is 

either unknown or has a complicated functional form. Consequently, the cumula- 

tive distribution function cannot be inverted easily. Therefore, the use of the inverse 

distribution function for generating the random variable does not offer a practical so- 

lution for this problem. Hence, it is necessary to use a different scheme for generating 

the random variable. We consider the problem of generating a sequence of random 

numbers with PDF /n(r) of a random variable R, in terms of a random number 

sequence with PDF /i/,(ui) of a random variable U\. The underlying assumption is 

that the random number sequence from the PDF of U\ can be readily generated. 

The rejection method used in Chapter 4 is based on the relative frequency inter- 

pretation of the conditional PDF 

fu1(u1\M)du1 = ~PiM)  

of a random variable U\ given the event M. M is expressed in terms of the ran- 

dom variable U\ and another random variable Ui and is chosen so that the resulting 

conditional PDF fui{ui\M) equals /ß(r). The desired sequence is generated by set- 

ting R = U\ given that the event M has occurred and rejecting U\ otherwise. The 
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problem has a solution only if the domains of r and u\ are such that //j(r) = 0 in 

every interval for which /i/,(ux) = 0. Therefore, we can assume that the ratio ^,"\ 

is bounded from below by some positive constant a: 

44^r > a > 0 for every ux (B.2) 
M"i) 

B.2    Rejection Theorem 

It is desired to generate a random variable R with PDF /«(r). Let U\ be any 

random variable with PDF /^(ui) such that /^(uj) = 0 whenever /ß(r) = 0. Let 

U2 be a uniformly distributed random variable on the interval (0,1). If the random 

variables U\ and U2 are statistically independent and 

M = {U2<g(Ui)} .    (B.3) 

where 

9M = «T^T < 1, (B.4) mm) 
then 

A/i(«i|A<) = /Ä(tii). (B.5) 

Proof: The joint PDF of the random variables U\ and U2 can be written as 

/i/i,1/2(^1,^2) = fui(^i)fu2{u2), since U\ and U2 are statistically independent. Hence, 

we have 

P{M)= f° jaiUl) fu,{ux)fUt[u2)duxdu2. (B.6) 
J-oo Jo 

However, since U2 is uniformly distributed in the interval (0,1) and g(ux) < 1, 

/        fu2(u2)du2 = g(Ul). (B.7) 
Jo 

Using eq (B.7) in eq (B.6) gives 

P(M)= r g{ux)fUx{ux)dux. (B.8) 
7—00 

However, «7(1*1) = a jRV11. Therefore, we have 

P(A<) = a /°° fR(ux)dux = a. (B.9) 
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We can express the numerator of eq (B.l) as 

fg(u\ ) 
P{m <Ux< uA+duuM} = /        fulMfuiMduidu2 = gMfUiMdui = a/ß("i)dui 

•/o 
(B.10) 

Using eqs (B.9) and (B.10) in eq (B.l) results in eq (B.5). 

Thus, we have the following algorithm for generating the sequence of random num- 

bers from the PDF of R. 

1. Generate U\ and U2. 

2. If U2 < ajffij, then Ux = R 

3. Otherwise reject U\. 

Refering now to the generation of saples of the norm R in Chapter 4, note that 

U\ and U2 were uniformly distributed random variables. Let c denote the maximum 

value of the PDF of R and 6 denote a finite range for the PDF of R such that the 

area under the curve of the PDF is close to unity. Ui is assumed to be uniformly 

distributed in the interval (0, b). Clearly, §^ > ± Hence, j^d_ < 1. Therefore, 

a = ± Step 2 above becomes: IfU2 < $$1) = M^1> then U* = R- This can be 

rewritten as: If cU2 < /R(
U

I)> ^cn ^1 = &• ^or ease °^ implementation, this latter 

form is used in conjunction with a uniform random variable U2 that is uniformly 

distributed over the interval (0, c). This is the procedure followed in Chapter 4. 

The method used in Chapter 4 becomes inefficient if U\ is rejected frequently in 

step 3, resulting in the necessity to generate the two uniformly distributed random 

variables of step 1 an inordinate number of times. This problem can be overcome by 

using for U\ a PDF which bounds the PDF of R and satisfies the conditions stated 

in section B.l and in the rejection theorem. Then a random variable from this PDF 

is used in step 1 instead of the uniform random variable L\. 

A second drawback of using a uniformly distributed random variable U\ is that it 

may not be possible to efficiently generate SIRVs of length greater than 8. This is due 

to the fact that the PDF of R depends on N. Consequently, the uniform distribution 

for U\ may not satisfactorily bound the PDF of the norm R for all N. This drawback 

can be overcome by choosing a different PDF for V\ for each choice of N, such that 

the conditions stated in section B.l and in the rejection theorem are satisfied. This 
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method would require the use of an exhaustive table which tabulates the appropriate 

PDF of U\ for each desired value of N. 

Finally, it is pointed out that by using a composite function for the PDF of U\, 

it is possible to improve the simulation procedure by making it possible to generate 

random numbers from the body and the tail of the PDF of R. These issues are 

suitable topics for future investigation as an extension of this work. 
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Appendix C 

Maximum Likelihood Estimation 

Involving SIRVs 

The objective of this appendix is to determine maximum likelihood estimates for the 

mean vector and covariance matrix of an N dimensional SIRV obtained by sampling 

a wide sense stationary (WSS) SIRP. Ideally, n independent data vectors Y,-, i = 

1,2, ...,n should be processed corresponding to n independent trials of the basic 

experiment. This corresponds to the sample space given by the product 

/ = /lX/2x...x/n (C.l) 

where /,-, i = 1,2,..., n denotes the ith ensemble of the SIRP and Y< is obtained from 

/,-. This is shown in Figure C.l. 

However, the approach becomes unwieldy from a practical point of view because n 

ensembles are required. An alternate approach [49] makes use of a single ensemble as 

shown in Figure C.2, where Y = [Yf, Y%, ..., Y£]T is obtained by sampling a WSS 

SIRP at nN time instants, such that 

tmN+j — tmN+k = ij — <fc 

j,   Ar = l,2,...,iV (C2) 

Hi = 1,2,... n — 1 

and the Y^,: = 1,2,..., n, are obtained from n different sample functions of the same 
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ensemble. Due to this, the mean of Y is 

a = [br,br,...,bT (C.3) 

and 

E[(Yi - b)(Y,- - b)r] = Z6jk (C.4) 

where Sjk is the Kronecker delta function, so that the covariance matrix of Y is 

C = 

S    0 0 

(C.5) 

OS...     0 

0    0      E      0 

0    0      0     E 

In the context of the radar problem, we consider a surveillance volume that repre- 

sents a single ensemble for the SIRP. Each cell within the volume generates a sample 

function of the SIRP. The ith data vector Y, is obtained from the iih cell of the vol- 

ume by sampling at the time instants *(,-_i);v+* as shown in FigureC.2. In terms of 

the representation theorem, each cell corresponds to a different value of the random 

variable S whose density function is the characteristic PDF fs(s). 

The PDF of Y given b and E is 

/Y|b,E(y|b,S) = (2x)-V|E|-*ÄBjv(p) (G.6) 

where p = (Y,- - afC^Y,- - a) = £?=1(yi - b)rS"1(yJ - b) and 

hnN(p) = J~ s-
nNexp(-^)fs(s)ds. (C.7) 

Note that An/v(.) is a monotonically decreasing function for all n and N. 
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Since p is a scalar, we have 

P = E?=1(y;-b)rs-(yj-b) 

= <rE?=1(yi-b)rs-1(yi-b) 

where tr(.) denotes the trace of the matrix (.). However, for any two square matrices 

A and B, 

tr(AB) = ir(BA). (C.9) 

Consequently, 

where 

Thus, we have 

p = <r(S"1G) (CIO) 

G = Eta- b)(y; - b)T- (c-n) 
3=1 

"N ,„,     n 

Let 

where 

/Y|b,E(y|b,S) = (27r)--|S|"7ln/v[fr(S-1G)]. (C.12) 

w = ByJ-y)(yi-y)T. (c.13) 

U3=l 

Then, we can express p as 

P = E?=1(yi-b)rs-1(yi-b) 

EWyi-y + y-b^E-^-y + y-b) 

= E-=1(yi-y)rs-1(Yj-y) 

+ E?=1(yi-y)rs-1(y-b) 

+ E"=1(y-b)rS-1(yj-y) 

+ E7=i(y-b)rs-1(y-b) 
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However, from eq (C.14), 

E?=1(yi-y)rs-1(y-b) = o 
(C.16) 

E^=1(y-bfs-1(yj-y) = 0. 

Therefore, 

P = E(y;-y)rS-1(yi-y) + n(y-b)rS-1(y-b). (C.17) 
i=i 

Using eq (C.9), we have 

p = <r(S-1W) + n(y-b)rS-1(y-b). (C.18) 

Thus, the likelihood function for b and S can be expressed as 

L(b, E)=/y|b,E(y|b,E) = (27r)-^|S|-?ABW(p) (C.19) 

where p is given by eq (C.18). We first prove that W is positive definite with proba- 

bility one. We can express W as 

W = £W, (C.20) 

where W, = (y,--y7)(y,—y7)T- W is positive definite if W,-, i = 1,2,..., n are positive 

definite. We consider a vector a = [au a2 ... aN]T such that a, / 0, i = 1,2,..., n. 

Then Wt- is positive definite if and only if 

aTW,a>0. (C.21) 

We have 

qi = arW<a 

= H^zLiaMyi:-yil)(yik-m) (c-22) 

= ES.1 «i(yü - mi)}2 > o. 

However, the probability of Qi = 0 is zero. Therefore, W; is positive definite with 

probability one. It follows that W is positive definite with probability one. 

Before proceeding with the maximum likelihood estimate of b and E, we present 
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an important lemma [49] which is useful for the maximization problem. 

Lemma: Let g(.) be a monotonically decreasing differentiable function such that 

cg{x\ + x\ + ... + x2
K) is a PDF ofX = [Xu X2 ... XK]T, where c is a non-zero 

constant. Then the function h(x) — x~*g{x) for x > 0 has a maximum at some 

finite XQ and is a solution of 

9(*) + £g(x) = 0. (C.23) 

Proof: Since cg(.) is a PDF, 

/OO fOO n 1 

.../    g(£ix1)dx1...dxK = -<oo. (C.24) 
-oo J-oo      t=1 C 

Also, using the transformation to generalized spherical coordinates of eq (2.22) and 

integrating over 6 and $k, k = 1,2,... K - 2, it follows that 

K _# 

r • ■ • r 9& x^)dxx ■ - -dxK=rwr r ^-^(r^r.   (c.25) J-<x> J-co      t-_j 1 (y) JO 

Making the change of variable r2 = a, we have 

K K /oo yoo " ^.-j-       »00 

• • • /     <7(£ x?)rf*i • • •dx* = fTTT /    aT"V(a)rfa. (C.26) 
■00        ./-oo      •_. 11 —) Jo ■r(£) 

Since <jr(.) is a monotonically decreasing function, 

r2x 

g(2x)[2x -x}= xg(2x) < f * g{t)dt. (C.27) 
Jx 

Hence, 

2~T(2i)f g(2x) = xTg(2x) < XT~l f* g{t)di. (C.28) 

Since g(.) is a monotonically decreasing function, 

x*g(2x) < x*"1 j Xg{t)dt < J** t$-lg(t)dt. (C.29) 

Since t^_1^(t) is the PDF of t = £Ei x2, to within a multiplicative constant, and 
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since the PDF of t —♦ 0 as i —>oo (see Chapter 3 for details), it follows that 

I*t$-lg{t)dt-> 0 as x -+00. (C.30) 

Also, h(0) = 0 and h(x) > 0 Vx > 0. Therefore, h(x) has a maximum at some finite 

xo > 0. The first assertion of the lemma follows. Differentiating h(x) with respect to 

x, we have 

h,(x) = jxT-ig(x) + xfg'(x). (C.31) 

Since h(x) has a maximum at some finite x0 > 0, it follows that x0 is a solution to 

the equation 

£-g(xo)+g'(xQ) = 0. (C.32) 
ZXQ 

Letting K = nN and x = y, we have A(y) = (^)^"fl'(^)- ^ follows from the 

above lemma that the function 

/(A) = *r*g{j) (C33) 

arrives at its maximum at some finite positive Ao and arises as a solution of 

-f9(j) + 9(j) = 0 (C.34) 

We now return to the problem of maximization of L(b, E). Since hnN(.) is a 

monotonically decreasing function and E is positive definite with probability one, 

L(b, E) arrives at its maximum when b = y. We then focus on the concentrated 

likelihood function 

I(b, S) = (27r)-^|S|-?/inN[^r(E-1W)]. (C.35) 

Since W is a positive definite matrix, it can be represented as W = CC where C is 

a nonsingular matrix. We define the matrix E = C-1E(CT)-1, so that E = CECT. 

Also, it follows that 

tr(E-1W) = tr[(CECT)-1W] = <r(X)-1[CCT]-1W) = ^E"1) 
(C.36) 

|E| = |CECT| = |E||W| 
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Hence, the likelihood function can be rewritten as 

L(b, S) = (23r)-"*t|W|-*|i:|-*ÄnAr[tr(S!-1)]. (C.37) 

Let A,- > 0, i = 1,2,... N denote the eigen values of E. Then, 

L(b, s) «(2x)-^|w|-*(n£1-Arl)-*A^(EäLxArl) 

= (2x)-^iw|-*(ni1 Ar*)-*/u(E£i A,-1) 
(C.38) 

Since the arithmetic mean is always greater than or equal to the geometric mean, it 

follows that 

I(b, S) < {27r)-:T-\W\-T(X)!!fhnN(NX) (C.39) 

where A = jj J2iLi A,-1 • Equality between the arithmetic and geometric mean holds 

only if Ai = A2 = ... = A# = A. Therefore, L(b, S) arrives at its maximum when 

the eigen values of S are equal. Consequently, 

maxL(b, S) = max(27r)"V|W|~s A-2r/inyv(y) 

= max(2n)-s?\\W\-7hnN(T) (C,40) 

nN . 
= max(2ic)-ar\W\~*f{\). 

where /(A) is given by eq (C.33) with g(.) replaced by /in^(-)- Note that A„jv(-) 

satisfies all the conditions of the lemma dealing with the maximization of h(.). Let 

the value of A resulting in the maximum be denoted by A0. Comparing eq (C.40) 

with eq (C.33), it follows that the maximum likelihood estimate of S is 

S = A0W. (C.41) 

In summary, the maximum likelihood estimates of b and S are: 

b = y 
(C.42) 

S = A0W 

In order to guarantee the non-negative definite property of S, it is required that 
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f   !   fJ 

*-x    tl 

y *Y, 

Figure C.l: Independent Sampling 

n > N.   It has been pointed out in [52, 53] that a rule of thumb for obtaining a 

reasonably good estimate of S is that n > 2JV — 3. 
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*'       *2 *W    *H»x*H« *irt    *XM+> ^..OM^HM«. J& •<M**« t\H 

Figure C.2: Sampling From a Single Ensemble 
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