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Abstract 

Two distinct approaches are employed to derive the coplanar response of a beaded string. 

In the first approach the beads are modeled by the localized impedances that they present to the 

string. In the second approach the portion of the string between adjacent beads is assigned to be a 

one-dimensional dynamic system. Adjacent dynamic systems are coupled at the location of the 

bead they share. The two approaches derive expressions for the response that do not reconcile 

term by term. However, the expressions are shown to yield identical results by performing a 

number of challenging computer experiments using the two models and then comparing 

corresponding data. 
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I Introduction 

A string is employed as a generic master structure to which beads are attached at localized 

positions as generic appendages [1,2]. A bead is defined in terms of the impedance that the string 

perceives in the bead at the position of attachment. It is assumed a priori that the motion of the 

beaded string and the external drive that generates the motion are coplanar so that this motion can 

be described in terms of a spatially one-dimensional equation of motion. This equation of motion 

may be stated in the impedance operator form 

z(x, C0)v(x, co) = pe(x, co)     , (1) 

where x is the spatial variable, CO is the frequency variable, z(x, Cö) is the impedance operator for 

the beaded string, and v(x, co) and pe(x, CO) are the response and the external drive on the beaded 

string, respectively. The impedance operator of the unbeaded string is designated z0(x, CO) so that 

z(x, co) = z0(x, co) + z,(x, co)    , (2a) 

zs(x, co) = Izsj(co)S(x-Xj)   , (2b) 

where z .(co) is the impedance of the (j)th bead as perceived by string. The string is considered 

infinite and uniform so that 

z0(x, co) = icom[l + (kp)   3/9x-]     , (3) 

where m is the mass per unit length and kp is the free wavenumber 

kp = kp0(l-iTip)      ;       kp0=(co/cp)   , (4) 
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with cp the speed of propagation and Tip the loss factor in the string. The impedances zs (co) of the 

beads may be simple; e.g., composed of a mass-spring system in parallel, complex; e.g., 

composed of several mass-spring systems in various combinations, or even compounded; e.g., 

composed of wave-bearing components. The bead must, however, present itself to a string 

coplanarly and locally as stated in Eq. (2). The definition and description of the beaded string just 

proposed can be modeled in two distinct ways. The first closely resembles the manner of the 

introduction just presented and is sketched in Fig. la. In the second, the string between adjacent 

beads is defined to be a dynamic system. Then the beaded string is modeled in terms of a cascade 

of coupled one-dimensional dynamic systems as is sketched in Fig. lb. The authors, over a period 

of several years, used one or the other model to estimate the response of complex structural 

systems; e.g., ribbed panels and networks composed of coupled one-dimensional dynamic 

systems [2-7]. Notably similar developments were initiated and pursued by Hodges and 

Woodhouse. Many of their efforts in this area are summarized and referenced in Reference 8. In 

the present paper a reasonable structural system is doubly modelized to accommodate the two 

approaches so they can be examined under the same mantle and then compared. The formalism 

pertaining to each approach will be only briefly presented in the paper. For details the reader may 

consult References 2-8. It is found that each approach yields a distinct expression for the impulse 

response function of the beaded string; however, these expressions are a response solution to the 

same structure and, therefore, they must possess commonality. A particular effort in this paper is 

finding the commonality that the two formalisms, developed in the two approaches, may possess 

with respect to this simple generic appended structure. Commonality of this kind can often be used 

to decipher the advantages and disadvantages that one approach may hold over the other. 

There exist two analytical ways of showing that a commonality is present between two 

distinct expressions. In the first, various terms in the expressions are manipulated until the terms 

in one expression reconcile, term by term, with those in the other. In the second, a master 

expression is established which can, by an appropriate operational choice, be converted into one or 
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the other expression.1   In a one-and a two-beaded string one may, by manipulating the various 

terms, readily show the actual identity of the two derived expressions. However, the task of this 

procedure becomes increasingly more complex as the number of beads increases. Straightforward 

attempts by the authors have not been successful in systematically reconciling the expressions term 

by term; it is thus concluded that the expressions are characteristically different. Analogeously the 

authors have not been successful in finding a master expression that would reduce under certain 

choices to one or the other of the derived expressions. Although a term by term reconcilation 

and/or a master expression are helpful, their immediate absence is not a strange occurrence; many 

different approaches to deriving a solution in the field of physics yield identical results but the 

expressions for the solution may fail either to reconcile term by term or to multiply emanate from a 

master expression [11]. With the advent of large computers, in such circumstances the 

commonality of the two expressions may be shown by conducting computer experiments.   In the 

present paper this procedure is employed; the experiments are selected to be computationally simple 

but rich in diversity of data, thereby rendering the comparisons challenging. 

1 The Sommerfeld-Watson transformation is a prime example in which a common solution relates 

two different expressions that constitute an identical solution to the response of a model of a 

physical system [9]. One expression is modal in character and the other wavy. The master 

expression in the Sommerfeld-Watson transformation can be converted into the one or the other 

expression by choosing one or the other path of contour integration to derive the desired 

expression [10]. It transpires that the two expressions that are derived in these conversions cannot 

be reconciled term by term; indeed, the two expressions are not even close in satisfying such a 

reconciliation, notwithstanding that the very essence of the transformation is the derivation of two 

different expressions to the same solution. 
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II First approach: Response of a beaded string 

Starting with Eqs. (1) and (2) the response behavior of an unbeaded string is tackled first. 

In terms of the impedance operator z0(x, co) of the unbeaded string the response v0(x, Co) generated 

by the external drive pe(x, co) is expressed 

z0(x, co) v0(x, co) = pe(x, co)     . (5) 

Equation (5) may be inverted to read 

v0(x, co) = J g0(x I x', co) dx' pe(x', co)     , (6) 

where g0(x I x', co) is the impulse response function of the unbeaded string. From Eq. (3) this 

impulse response function is derived in the form 

g0(x I x', co) = (27t)"     J dk Z0(k, co) (2K)'
1
'
2
 exp [- ik(x - x')]    , (7) 

where Z0(k, co) is the eigenvalue of z0(x, co) with respect to the Fourier eigenfunction 
,.   .-1/2 
(27t)      exp (—lkx); namely 

-1/2 
[z0(x, co) = Z0(k, co)] (2TT)     exp(-ikx)     . (8) 

It is assumed that the impulse response function is proper and known; the unbeaded string plays 

the role of a generic master structure in this paper [1,2]. Indeed, for an infinite uniform string 

g0(x I x', co) = (2mcp)"1 exp [-ikplx - x'l]     , (9) 

g0(xlx', co) = g0(xlx', co) [g0(x'I x\ co)]" =exp[-ik lx-x'l]     , (10) 
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where the free wavenumber kp, the speed cp, and m are defined in Eq. (4). Inverting the 

impedance operator stated in Eq. (2), Eq. (1) may be cast in a corresponding impulse response 

function form 

v(x, co) = J g(x I x', co) dx' pe(x', co)     , (11a) 

where the impulse response function g(x I x', co) may be derived in the proper form 

g(x I x', co) = g0(x I x', co) - gs(x I x', co)   ; 

gs(x I x', co) = ZI g0(x I xn, co) zn(co) cnm(co) g0(xm I x', co)    , (12a) 

zn(co) = zsn(co)[l+zsn(co)]        ; =   g0(xn I xn, co) 

Zn^)) W0» (13) 

£«*>) = (cnm(CO)) = (5ji + go(Xj I Xj, CO) Zj(CO) (1 - Öjj))"1      ; 

go(xlx', co) = go(xlx', co)[go(x'lx', co)]-1      , (14a) 

and the summations are over the beads [2-4]. Clearly, the impulse response function g(x I x', co) is 

proper in the sense that it is a functional of quantities and parameters that describe the properties of 

the string and beads only; it is independent of the response v(x, co) and the external drive pe(x, co) 

to which the string is subjected [2-7]. In particular, in the absence of the beads gs(x I x', co) = 0; 

the impulse response function gs(x I x\ co) describes the modification of the impulse response 

function from g0(x I x', co) to g(x I x', co) caused by the introduction of beads. The quantity zn(co) 

is the coupling coefficient of the (n)th bead to the uniform string with Le Chatelier's principle in 

place [2, 12]. This coupling coefficient is to be distinguished from the coupling coefficient 
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CnmCco), notwithstanding that Cnm(ü)) is a functional of the coupling coefficients z{ (co). The 

coupling coefficient Cnm(Cü) describes the interaction of the (m)th bead, via the string, with the (n)th 

bead in the insitu presence of all the beads. 

In previous works and subsequent discussions it emerges that the coupling coefficient 

zn(co), that describes the coupling of the (n)th bead to the uniform string, is equivalently the 

reflection coefficient Rn for the "pressure" response at that bead. However, the reflection 

coefficient R^ for the "velocity" response at that bead is equal to (- Rn) and, therefore, 

R„ = - zn(co). In terms of the reflection coefficient R*, Eq. (12a) and the first of Eq. (14a) may be 

written in the forms 

g(x I x', co) = g0(x I x', co) + gj(x I x', co)   ; 

gs (* I x'> G>) = 21 g0(x I xn, co) R* cnm(co) g0(xm I x', co)    , 
(12b) 

g«*» = (cnm«°)) = (5ji" go(Xj" »j. CO) R[ (1 - Ojj))'1     , (14b) 

respectively. Equation (1 la) is repeated in the form 

v,(x, co) = J gj(xlx', co)dx'pe(x', co)     , (lib) 

where the unit subscript in gj (x I x', co) indicates that in Eq. (1 lb), Eqs. (12b) and (14b) are to be 

used. The unit subscript in Vj(x, co), of Eq. (1 lb), emphasizes that the response is derived on the 

basis of the first approach. 



Beaded/2 

HI Second approach: Response of coupled dynamic systems 

The modeling of the beaded string in terms of a cascade of coupled dynamic systems is 

briefly depicted in Fig. lb. However, it may be conducive to formulate here, once again, the 

response of a general ensemble of coupled one-dimensional dynamic systems [6,7, 13]. Then the 

manner of reducing the general formalism to the specific model of a beaded string can be examined 

as part of the effort in this paper; this reduction is by no means a trivial task. To define a dynamic 

system; the (j)th, one needs to specify the two terminal positions xaj, the two terminal reflection 

coefficients Aa:j and the two propagation functions t"(Xj I xj, co) describing transfer of response 

toward termination (junction) a from the position xj to Xj, where a = r or q, r defining one selected 

junction and q the other. In a string the propagation function in one direction is the same as for the 

other, however for the sake of generality, in the definition of the propagation function the 

distinction of propagation toward one or the other junction is retained. Explicitly then 

t?(Xj I xj, co) = t° (Xj I xj, co) U [(Xj - xj) S(xaj - xßj)]     , (15) 

where 

U(X) = ( 0 !    x <0 ;       S(X) = Sign(x)     ' (16) 

and t"j (Xj I xj) is the propagation function were the (j)th dynamic system to be extrapolated, toward 

junction a, uniformly to infinity. A vectorial propagation function t = (x, I xj) can then be defined 

in terms of two directional unit vectors a in the form 

VVXP = rV?(VX?«       • (17) 

The external drive needs to be compatibly defined. The external drive is described in terms of two 

functions; one pertains to initiating response that propagates toward junction r and the other toward 
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junction q. Thus compatibly with Eq. (17), the vectorial form of the external drive is expressed in 

the form 

9ej(xj,co) = Iaveaj(xj.to)    , (18) 

where the component of the external drive veaj (x=. co) initiates a "velocity" response that 

propagates toward junction a. A notational convention emerges: Quantities that describe 

propagation toward junction a are designated by the superscript a and those associated with the 

external drive that initiates response toward junction oc are designated by the subscript a; e.g., the 

quantity Aa propagates toward junction a and the quantity A? propagates toward junction a and is 

initiated by the external drive that is directed toward junction ß. In addition, the carat over a 

quantity designates it to be a two-vector; each component is associated with one or the other of the 

two directional vectors; e.g., B = I Ba a or C = Z a Ca. The directional vectors are orthogonal 

in the sense that 

A A 

[aß]=5aß   • (19) 

The direct response vdj(xj, co), in the (j)th dynamic system is given by 

vdj (Xj, co) = J (?. (Xj I x], co) dxj 9ej (xj, co)]      , (20) 

The direct response is free, by definition, of any response components that result from interaction 

with the junctions. From Eqs. (17) - (19) it is derived that 

vdj(Xj,co) = I V«(XJ,CD)    ;    vd
a

j(xj,co) = Jt°(xjlx;,co)dx;veaj(x;,co)     . (21) 
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To obtain the response beyond the direct components, it is necessary to account also for 

components resulting from the interactions with the junctions. In preparation for this accounting a 

matrix representation of the coupled dynamic systems is constructed as depicted in Fig. 2. This 

figure plays an essential role in the development of the formalism. The two-vector representation 

in each dynamic system is supplemented by the vector and matrix representation with respect to the 

multiplicity of dynamic systems. Thus, the terminal position xaj and the directional unit vector a 

are constructed into a vector and a diagonal matrix quantities of the forms 

xa={xaj}     ;      ö = (£0ji)     ;     [ßß] = (5^)     . (22) 

The reflection coefficients at the junctions are now replaced by junction matrices of the forms 

A„ = (Aaji)     • (23) 

where Aa- i is the transmission coefficient at junction a from the (i)th to the (j)th dynamic system 

and the self transmission coefficient Aa= ■ is the reflection coefficient at junction a in the (j)th 

dynamic system. From Eq. (15) a propagation matrix is constructed in the form 

jt
a(xlx',co) = (t5x(xjlx;,(o)5ji)     . (24) 

Using Fig. 2 one finds the relationship 

ga(xlx', co)= ta(xlx',co)a + g     (xlx',co)     . (25) 

The first term on the right of Eq. (25) is recognized as the direct term that is directed toward 

junction a. The factor a in this term ensures that it is generated by the term in the external drive 
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that initiates a response that is similarly directed. The second term is also necessarily directed 

toward junction oc(ß- = a), but it results from a superposition of terms that experience at least one 

interaction with either of the junctions. This term can be split further into two terms, one initiated 

by the term in the external drive that is directed toward junction a and the other by the term in the 

external drive that is directed toward junction ß; namely 

| "(xlx',co) = g(xlx',Q))e + |ß
a(xlx',co)ß      . (26) 

From Fig. 2 one also finds that 

-ß-        , „ ~ß 
I     (xlx,o)) = ^ (xlxß,(D)Aßg   (Xßlx/,a>)       . (27) 

Utilizing Eqs. (25) - (27), and after straightforward algebraic manipulations, one obtains 

|"(xlx',co) = £a(xlxß,o))AßBß^ajt
a(xalx',co)       , (28a) 

|ß (xlx',(D) = ;t
a(xlxß,co)AßBß|

ß(xßlx
,,co)       , (28b) 

where 

£a = lßfeßlXa)Aa        I        gß = fl" Aa Aß]"' , (29) 

and i is the unit matrix [6,7]. From Eqs. (25) and (26) the impulse response matrix for an 

ensemble of coupled dynamics systems is derived in the form 

10 
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g (x I x\ CO) = I   g   (xlx',co)   ; 

g    (Xlx', CO)=ia(xlx, CO)g+  g^(xlx', CO)ö + gg(xlx',CO)ß       , (30) 

and from Eq. (28) it is clear that g   (x I x', co) and, therefore, also g (x I x\ co), is proper 

depending only on the properties of the dynamic systems and the couplings at the two junctions. 

The impulse response matrix consists of six terms, a set of three for each of the two propagation 

directionalities. The first of the three terms in the set is associated with the direct component and 

the other two with the non-direct (reverberant) components in the response that is directed toward 

one of the two junctions, one generated by an external drive that initiates propagation toward the 

same junction and the other toward the opposite junction. In this connection the external drive that 

is compatible with Eq. (28) is derived from Eq. (18) in the form 

% (x, co) = I  g vea(x, co)     ;      vea(x, co) = {veaj(Xj, co)}     .       (31) 

[cf. Eqs. (17) and (24).] A superposition of the two propagation directionalities yield an impulse 

response matrix as is stated in Eq. (30). On the other hand, an anti-superposition of the two 

propagation directionalities yield an impulse response matrix of the form 

|"(xlx',co) = I  j|(xa-xß) ga(xlx',co)     ;      |(x) = (S(Xj) 5^)     .    (32) 

[cf. Eqs. (15) and (16).] There are measurements that utilize the form of the impulse response 

matrix as stated in Eq. (32). However, in this paper the impulse response matrix as stated in Eq. 

(30) is the only one that is subsequently employed; Eq. (32) in that sense is mentioned only in 

passing. From Eqs. (30) and (31) the "velocity" response vector v(x, co) is expressed in the form 

v (x, co) = J [| (x I x', co) dx/ ve (x', co)]     ;     dx/ = (dXj 0j;) (33) 

11 
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From Eqs. (22), (30), (31), and (33) one obtains 

v (x, (0) = I   {j£(x, co) + v£(x, co) + v"(x, co)}      , (34) 

where 

Xd £(x,co) =  J  [ta(x!x',co)dx'vea(x',co)]    ; 

v^(x,co)={v°j(xj,co)}      , (35a) 

vj(x, co) =  j   [gj(xlx\ co)d5've^(x', co)]     ; 

v^(x, co)={v^. (Xj, co)}      . (35b) 

[cf. Eqs. (20) and (21) and a conventional note post Eq. (18).] 

12 
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IV Commonality in the two approaches 

The two approaches, if they address the same model of the beaded string, must yield the 

same response if subjected to an identical external drive. The second approach is derived, 

however, by reducing a more versatile and compounded formalism to fit a model of a beaded string 

in which the coupled dynamic systems are cascaded and possess equal propagation functions. A 

question arises whether the reduction results in an expression that can be analytically reconciled 

term by term with the expression for the response derived on the basis of the first approach. To 

answer this question the reduction needs to be executed so that the expressions derived in the two 

approaches are cast in the same terminology. With this in mind, the external drive in the second 

approach, designated by ve(x, co) and stated in Eq. (31), is identified with the external drive pe(x, 

co) in the first approach by setting 

vea(x, co) =yeß(x,co)       ;      vea(x, co) = g0(x I x, co) pe(x, co)     ; 

pe(x, co) = {pei(xi5 co)}      , (36) 

where 

|0 (x I x', co) = ((g0 (Xj I x], co) 5j j)    , (37a) 

and g0(x- I x-, co) is defined in Eqs. (6) and (7). From Eqs. (15) and (24a) the propagation matrix 

may be cast in the convenient matrix product 

ta(xlx',co) = t"(xlx',co)Ua(x-x')     , (38) 

where 

13 
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_t0
a(xlx',co) = (^(XjIxj.aOSjj)     , (39a) 

Ua(x-x') = (U(xj-xpS(xaj-xßj)8ji) (39b) 

To render Eqs. (38) and (39) compatible with a beaded string one then recognizes that 

to(xlx/,co) = tf(xlx',co)    ;     t"(xlx',co) = g0(xlx',co)     ,     (40) 

where 

g0(xlx', co) = (g0(xj I Xj, (0)8^) (37b) 

and gQ(x- I x-, co) is defined in Eq. (14a). The junction matrices Aa are reduced next. The matrices 

are constructed for the beaded string with the assistance of Fig. lb. For a cascade of coupled 

dynamic systems these matrices are typically 

Ar    = 

Arj-'j-'   Arj-ij 

Arjj-'       Arjj ° 
0   v.j+. 

(41a) 

£q = 
Vu-i    ° 

O       A, 
qjj 

Aqjj + 1 

Aqj+lj   Aqj + lj + l 

(41b) 

14 
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where, for example, A^ is the reflection coefficient at junction r with respect to the (j)th dynamic 

system and A^j is the transmission coefficient at junction r from the (j)th to the (j-l)th dynamic 

system. If the (n)th bead is in junction r then 

Arnn-l=Arn-ln=[1+Zsn(0))]"1=Tn      , (42) 

where zsn(co) is defined in Eq. (13) and Tn designates the transmission coefficient across the (n)th 

bead [6, 7]. Since the reflection coefficients are with respect to the "velocity" response it follows 

that 

Arnn = (Arnn-l-1) = -   K^) = K        ; R^(Tn-l)        , (43) 

where zn(co) is also defined in Eq. (13). In particular, if I zsn(co) I -» <*> then R„ -> - 1 which is 

commensurate with a zero "velocity" response at the junction at xn = xrn. This is an appropriate 

boundary condition at this position in the junction. A "pressure" response, on the other hand, is 

characterized by a reflection coefficient Rn [=(1 - Tn)] that tends toward unity when 

1 ^sn (c°)' ~^ °°' which is commensurate with the well known "pressure doubling" at the junction at 

xn = xrn [3, 14]. Returning to Eqs. (25) - (29) one obtains 

ta(xlx',co) = g0(xlx',co)Ua(x-x')      , (44a) 

^a /„ i „/ ga(xlx,o)) = g0(xlxß,o))AßßßAag0(xalx',co)       , (44b) 

-=a /.. i..' gß(xlx,co) = g0(xlxß, to)ApBpgo(Xplx',co)       , (44c) 

Aa = |o(XßlXa,CO)Aa       ;      gß=[i-|o(Xßlxa,CO)4ag0(xalxß,Cö)Aß]"1        ,     (45) 

15 
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and it is noted that 

Ua(x-xp)= |f (xa-x)=i     , (46) 

In addition, from Eq. (14a), (31), (36), and (37) one obtains 

go (X1X', Co) = g0(x 1 x', co) [g0(x' 1 x', CO)]" » (47) 

% (x, co) = g0(x 1 x, co) I % pe(x, CO) (48) 

From Eqs. (30), (31), (33) and (44) - (48), and after some cumbersome algebraic manipulations, 

one may cast the vectorial response of a beaded string in the form 

v (x, co) = J g(x 1 x', co) dj' pe(x', co)     ;   v (x, co) = {v-(x] co)}     , (49) 

where Vj (x-, co) is the response of the (j)th dynamic system, 

g(x 1 x', co) = gd(x 1 x', co) + gv
s(x 1 x', CO) ) 

g d(x 1 x', co) = (gd. (Xj 1 x/, co) Sjj)       ; 

gv
s(xlx',co) = (g;ji(xjlxi',co))      , (50) 

&,& 1 x', co) = I g0(x 1 x', co) Ua(x - x') ) (51) 

|v
s(x lx', co) = I |0(x 1 xp, co) Aß eß {|0(xß 1 x^, co) Aa g0(xalx', co) + g0(xß x',co)}.(52) 

16 



Beaded/2 

The resemblance between Eq. (52) and (12b) is beginning to emergj even though the former 

formalism is expressed in matrix form. This matrix form, however, can be commuted to a scalar 

form so that comparison between the two approaches can be further facilitated. For this purpose 

the following constructs are formed from Eq. (50): 

gd(x I x', co) = Z hj (x.) gdj (Xj I xj, co) hj (xj)      , (53a) 

g;(x I x', co) = Z Z ^ (Xj) &.. (Xj I 4 co) hj(x'p      , (53b) 

where the span function hj(xj) is defined 

hj(Xj) hi(x;) = h-(x.) hj(xj) Sjj + hj(Xj) hj(xp (1 - 0ji)     ; 

hj(xp= • 

1  ,   xpj < Xj < xaj 

0 ,   Xj < Xßj and Xj > xaj 

(54) 

Similarly, from Eq. (36): 

pe(x, co) = Z hk (xk) pek (xk, co)       . (55) 

The summations in Eqs. (53) and (55) are over the dynamic systems, [cf. Eq. (12) where the 

summations are over the beads.] With these constructs Eq. (49) may be written in the scalar form 

, (x, co) = J g2 (x I x', co) dx' p (x, co) v2 (x, co) = J g2 (x I x', co) dx' pe (x, co)       , (56) 

with the imposition that the external drive is as stated in Eq. (55) and the impulse response 

function is as derived from Eq. (53); namely 
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g2 (x I x', co) = gd (x I x', co) + gs (x I x', co)       . (57) 

The subscript 2 in v2(x, co) and g2 (x I x', CO) of Eqs. (56) and (57) is meant to emphasize that these 

quantities are derived for the beaded string on the basis of the second approach. 

The two approaches that are formulated in this paper model the beaded string differently. 

However, the basic parameters that describe this dynamic system are made common to both the 

formalisms. It follows, therefore, that the expressions derived for the normalized impulse 

response functions, in Eqs. (1 lb) and (12b) and in Eqs. (56) and (57) need to be universally 

identical; namely 

gj (x I x', co) s g2 (x I x', co)       , (58) 

and if the external drives are identical, it follows that 

Vj (x, co) = v2 (x, co)       . (59) 

Nonetheless, the authors have found no direct relationship between gj (x I x', CO) and g2 (x I x', co); 

the expressions for these two quantities cannot be reconciled term by term. Clearly gd (x I x', co) is 

not identical with g0(x I x', co) and, therefore to start with the leading terms in Eqs. (12b) and (57), 

respectively, do not strictly reconcile. With identical external drives it follows that neither is 

vd(x, co) reconciled with v0(x, co). One may be tempted to redefine the direct response so that some 

specific interactions with the junctions be counted into the camp of the direct response, thereby 

achieving reconciliation at least in the leading terms in the respective expressions, notwithstanding 

that in a one- and two-beaded string one may, by manipulating the compositions of various terms, 

readily show the actual identity of the two derived expressions. However, the task of this 

procedure proves increasingly more complex as the number of beads increases. Straightforward 
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attempts by the authors have not been successful either in systematically reconciling the 

expressions term by term or in finding a master expression that would reduce, under certain 

choices, to one and to the other of the derived expressions. These failures render the use of 

computations, to show the validity of the identity stated in Eq. (58), a reasonable proposition. 
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V Computer experiments 

The comparisons between the two approaches are conducted in terms of Eq. (58). The 

normalized impulse response function g (x I x', co) for each of the two approaches are assigned the 

same quantities and parameters that define the common beaded string structure. In the displays in 

this paper the number N of beads is 14 and the number (N+l) of coupled dynamic systems is 15, 

with the two end dynamic systems being spatially semi-infinite, as shown in Fig. 3. The 

computations of the absolute values of the normalized impulse response functions are displayed on 

the {(x/b), (co/coc)}-plane in a waterfall format, where b is a spatial linear scale and toc is a 

frequency scale. In these forms a normalized impulse response function is displayed as a function 

of (x/b) at equal increments of ((o/coc) which are then regularly displaced along the (ca/coc) axis to 

prevent curves from confusingly overlapping [3-5]. Standard displays are shown first in Fig. 4; 

the displays are standard in the sense that standard conditions and values are chosen for the 

quantities and parameters that define the beaded string. These standard conditions and values are: 

iN 

bj = lx«j-xqj'   ;    b = (N-l)"1Ibj   ;bj = b   ;   (x'/b) = 0.2    , (60a) 

(bcoc/c ) = (bk) = 16 ;    c *c_(a>)    , (60b) C      p'        v— C' -"    ' ~P^~p 

zsn((D) = (icoMn)[l-(co/con)
2(l-iiin)r1  ;   co^tK^l+T^/Mj   ; 

zsn(co) =zs(a>) ;  Mn=M ;  (oDn/coc)
2» 1  , (60c) 

(M/mb)=0.3;     T|p = 5xlO-3;    nc = 10"1    , (60d) 

and the range for the displays is {0, 0} < {(x/b), (co/coc)} < {13, 0.8} . In Eq. (60c) it is 

assumed that the beads are simply composed of mass-spring system in parallel; Mn is the mass, Kn 

is the stiffness, and T|n is the loss factor associated with the (n)th bead. Figure 4 is computed on 
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the basis that the beaded string is defined in terms of the standard conditions and values stated in 

Eq. (60); in Fig. 4a, I gj(x lx', co) I is depicted, and in Fig. 4b, I g2(x lx', ©) I is depicted in 

waterfall forms. The data displayed in Fig. 4 is rich, the phenomena of "aliasings" and of "pass 

and stop bands" are clearly visible in the patterns of the figures. Such patterns call for phase and 

amplitude interferences of considerable exactness [5]. Within the accuracy of the computations, 

Figs. 4a and 4b are deemed identical. Figure 4 is repeated in Fig. 5, except that now the loss 

factor T|p in the string is changed by an order of magnitude, from its standard value of 5xlO~3 to 

5xl0-2. [cf. Eq. (60d).] The weakening of the phenomenon of pass and stop bands and the 

increase in attenuation away from the position of initiation at (x'/b) is clearly visible in comparing 

Fig. 5 with Fig. 4. Evidently the weakening of the phenomenon of pass and stop bands and the 

increase in attenuation are tracked in Figs. 5a and 5b. The patterns in these figures are deemed 

identical within the accuracy of the computations. Again Fig. 4 is repeated in Fig. 6, except that in 

the latter figure the identity of the separations between adjacent beads are disturbed by some +10%. 

This disturbance tends to destroy the phenomena of pass and stop bands and of aliasings, 

especially at the higher frequency range where (bkp0)2 > 1 [5]. The degree of this destruction 

becomes evident in comparing Fig. 6 with Fig. 4. The disturbance of the identity of the 

separations between adjacent beads, however, is as effective in changing the patterns in Fig. 6a as 

it is in Fig. 6b. Indeed, Figs. 6a and 6b match within the accuracy of the computations; within that 

accuracy, these figures are deemed identical. Figure 4 is repeated, once again, in Fig. 7, except 

that in the latter figure the standard value of (con/coc)
2 is changed by four orders of magnitude, from 

103 to 10-1, which brings (CönAöc) centrally into the range of frequency depicted in the figures. In 

this case, the impedance zs(a) of a bead is "mass controlled" in the range of frequency 

(co/coc) < 3xl0_1, is "resistance controlled" in the range (to/coc) = 3xl0-1, and is "stiffness 

controlled" in the range (u)/coc) > 3xl0_1 [15]. These changes in the impedance characteristics of 

the beads are clearly visible in the patterns of Fig. 7 when compared with those in Fig. 4. The 

patterns in the two figures are substantially the same for the range (co/coc) < 3xl0_1, the patterns 

are weak in the range (co/coc) = 3-4xl0_1, indicating diminishing response by damping that is 
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amply provided by the beads, the weakness continues and becomes severe by a continuous 

decrease in the impedance zs((o) with increase of frequency in the frequency range 

((ö/coc) > (5-6)xl0_1. The drastic changes in the patterns in Figs. 7a and 7b, from that of Figs. 4a 

and 4b, respectively, are, however, the same so that Figs. 7a and 7b are substantially identical, at 

least to within the accuracy of the computations. Finally, Fig. 4 is repeated in Fig. 8, except that in 

the latter figure the two end-beads are assigned impedances that render the string well nigh finite, 

provided the external drive is confined to within the beaded region of the string. The finiteness of 

the string is apparent in Fig. 8; the impulse response function on either side, beyond the end- 

beads, is negligible. This feature is present in both Figs. 8a and 8b; it is not present in Figs. 4a 

and 4b though. 

The range and richness of the data displayed in Figs. 4a-8a and in Figs. 4b-8b, 

demonstrate that the impulse response functions g,(x Ix', CD) and g2(x lx', co) are identical. This 

identity is established computationally in this paper. The results of computations, employing each 

approach, are compared side by side. The comparisons show that within the computational 

accuracy, the patterns displayed in the two sets of figures match well enough to deem them 

identical. The purpose for the exercise pursued in this paper is thus accomplished. 
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Appendix A 

For the sake of simplicity in the text the master structure is defined in terms of a string that 

is infinite and uniform as defined in Eqs. (3) and (7). This results in an impulse response function 

for the master structure that is as stated in Eqs. (9) and (10). Of course, the master structure may 

be defined, for example, in terms of an impulse response function which includes some, but not 

all, of the beads. In this case Eqs. (11)-(14) need to be modified. These modifications are infused 

as follows: The master structure incorporates a few of the beads and therefore its impulse response 

function g^x I x', co) is of the form 

gx{\ I x', co) = g0(x I x', co) - gso(x I x', co)   ; 

inco 
gso(x I x', co) = Z  Z g0(x I xn, co) zn(co) cnm(co) g0(xm I x', CO)     .       (Al) 

The remaining beads are now appendaged to this new master structure [2]. From Eqs. (12a) and 

(Al) one derives for the impulse response function of the beaded spring 

g, (x I x', co) = goc(x I x', co) - gSoo(x I x', co)    ; 

appe 

gSoo(x I x', co) = Z  Z g00(x I x', co) zn(co) cnm(co) g00(xm I x', co)     ,    (A2) 

where the parameters and the summations in Eq. (Al) are in reference and over beads that are 

incorporated into the original master structure. On the other hand, the parameters and the 

summations in Eq. (A2) are in reference and over beads that are not so incorporated; they are 

merely "appendaged" to the new master structure [2]. The expression derived on the basis of the 

second approach remains unaltered. Comparing g,(x I x', co) as expressed in Eq. (A2) with 

g2(x I x', co) as expressed in Eqs. (53) and (57) indicates even greater disparity in the leading terms 

than previously existed in the two respective expressions. Clearly goc(x I x', co) in Eq. (Al) 

contains terms arising from interactions with beads (junctions) that go(x I x', co) does not include 
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and that are totally omitted in gd(x I x', co). Reconciling the leading terms becomes a task even 

more complex than appears in the text. In particular, were the two end beads the only ones 

incorporated in the master structure, and these beads were to be made equivalently rigid, and the 

external drive were confined to within these end beads, the Sommerfeld-Watson approximation 

may be used to cast g^x I x', co) in the form [9,10] 

,-i 
gjx I x', co) = I {Zh(co)}_ Vh(x) \|/*(x')     , 

(A3) 

where \j/h(x) are the eigenfunctions of the finite string between the two end beads and 

J\|/h(x)\|/*(x)dx = 8hk       ;        I\|/h(x)\|/*(x') = 6(x-x')    , (A4) 

[z00(x,co) = Zh(co)]\)/h(x)     . (A5) 

The insertion of g^x I x', co), as defined in Eq. (A3), in Eq. (A2) renders the reconciling of Eq. 

(A2) and Eqs. (53) and (57) term by term well nigh impossible. Yet, there is no dispute that 

gi (x I x', co) as expressed in Eq. (A2) is identical to g2(x I x', co) as expressed in Eqs. (53) and 

(57), as long as they address an identical beaded string structure. The computational identity of 

gi (x I x', co) and g2 (x I x', co) in this extreme case is depicted in Fig. 8. At the other extreme is a 

situation in which most of a multitude of beads are incorporated and the remaining few are 

appendaged. Starting with this kind of a new master structure the influence of the few attached 

appendages may be considered as perturbations. The two extreme cases, as derived by inserting 

Eq. (Al) in Eq. (A2), yield expressions for gi(x I x', co) that cannot be readily reconciled term by 

term. Indeed, if there is a multiplicity of beads so that they can be separated into a group of "inco" 

and a group of "appe," the subsequent terms in the resulting expression are unique to the specific 

grouping. Equation (12) is then the expression when all the beads are in the "appe" group. Thus, 

even within the first approach there are many variations on the theme that originally yielded 
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Eq. (12). For certain purposes one or the other expression for the response of a multiply beaded 

string may prove the more suitable. Variations on the theme can be similarly devised for the 

second approach that originally yield Eqs. (53) and (57). One may then be led to remark: the 

selection of a successful expression for the impulse response function of a complex structural 

system is not dictated a priori, but rather, is often merely a choice in the hands of the skilled 

manipulator [9-11]. The more the variations on a theme, the better are his choices and "zeh 

meshubach." 
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Xj-l X) Xj+1 

Fig. la. Model of a beaded string for the first approach: zSj(co) and Xj are the impedance of the 

(j)th bead as perceived by the stirng of the (j)th bead as perceived by the string and the position of 

the (j)th bead on the string, respectively. 

Junction q 

G-i)st 
dynamic system 

0     A 
qj.j 

-^qk-l,k-l   -^-qk-l.k 

I 
^qk.k-l     ^qk,k 

Junction r 

^ri-l.i-1  ^ri,i-l 

"^■ri-l.i     ^ri,i 

(k-l)st 

Fig. lb. Model of a beaded string for the second approach: Adjacent beads define a one- 

dimensional dynamic system and the coupling between two adjacent dynamic systems is 

determined by the bead they share, [cf. Fig. la.] The beads are alternately placed in junction r and 

junction q and the junctions are defined in terms of junction matrices Ar and A . These matrices 

are diagonally composed of 2 x 2 matrix elements. 
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gVlx'.co) 

qvea(x\co) 

t4(xlx',co) q 

ÄT- 

g   (xlx'.co) 

rvjx'.co) 

~  x'  tr(xlx',co) r ,© 
gq(xlx',co) g (xlx'.co) 

Fig. 2. A general matrix representation of an ensemble of coupled one-dimensional dynamic 

systems. The external "velocity" drive ve(x, co) is composed of two-vector with each term 

(component) being a multi-component vector of a rank equal to the number of dynamic systems. 

The dynamic systems are defined in terms of two terminal vectors xa and two propagation matrices 

t (x I x, co) which are assigned directionality with respect to propagation toward junction a; a = r 

or q. The two junctions are defined in terms of the junction matrices Aa. The transfer matrix 

— a 

g   (x I x , co) relates to the response that is directed toward junction a. 
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a)   Fig. 3a. A model of a - fourteen beaded string that befits the first approach, [cf. Fig. la.] 
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Fig. 3b. A model of a - fourteen beaded string that befits the second approach, [cf. Fig. lb.] 
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0      (xVb) = 0.2 
Bead Number 

(x/b)   > 
14 
13 

Fig. 4a. A waterfall display of I g,(x I x', 0)) I, for the model defined in Fig. 3a, under standard 
Q o conditions and values, [cf. Eq. (60).] 
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0 

S 0     (x'/b) = 0.2 
Bead Number 

(x/b)   > 
14 
13 

Fig. 4b. A waterfall display of I g2(x I x', co) I, for the model defined in Fig. 3b, under standard 

conditions and values, [cf. Eq. (60).] 
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Fig. 5a. A repeat of Fig. 4a except that T|D = 5 x 10"2 

0 ]S 
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Figure 5 
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Fig. 5b. A repeat of Fig. 4b except that T|p = 5 x 10"2. 
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,-ii Fig. 6a. A repeat of Fig. 4a except that [- b x 10" < Ab= < b x 10" ] 
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1 ^                                 Bead Number \A 
0    (x7b) (x/b) > 

b) 
Fig. 6b. A repeat of Fig. 4b except that [- b x 10"1 < Ab < b x 10"1]. 
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Fig. 7a. A repeat of Fig. 4a except that (con/o)c)
2 = 1(H. 
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Fig. 7b. A repeat of Fig. 4b except that (con/(Oc)
2 = KR 

35 

14 

13 



0 

a) 

Bead Number 
(x7b) (x/b)   > 

Fig. 8a. A repeat of Fig. 4a except that (Mi/mb) = (Mi^mb) = 102. 
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Fig. 8b. A repeat of Fig. 4b except that (Mi/mb) = (Mi^mb) = 102. 
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