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Abstract 

We investigate various projection spaces and extract key parameters or fea- 
tures from each space to characterize low-frequency active (LFA) target re- 
turns in a low-dimensional space. The projection spaces encompass (1) time- 
embedded phase map, (2) segmented matched filter output, (3) various time- 
frequency distribution functions, such as Reduced Interference Distribution, to 
capture time-varying echo signatures, and (4) principal component inversion 
for signal cleaning and characterization. We utilize both dynamic and static 
features and parameterize them with a hybrid classification methodology con- 
sisting of hidden Markov models, classifiers, and data fusion. This clue identi- 
fication and evaluation process is complemented by concurrent work on target 
physics to enhance our understanding of the target echo formation process. As 
a function of target aspect, we can observe (1) back scatter dominated by axial 
n=0 modes propagating back and forth along the length of the shell, (2) di- 
rect scatter from shell discontinuities, (3) helical or creeping waves from phase 
matching between the acoustic waves and membrane waves (both shear and 
compressional), and (4) the "array response" of the shell, with coherent super- 
position of elemental scattering sites along the shell leading to a peak response 
near broadside. As a function of target structures (the empty shell and the 
ribbed/complex shells), we see considerable complexity brought about by mul- 
tiple reflections of the membrane waves between the rings. We show the merit 
of fusing parameters estimated from these projection spaces in characterizing 
LFA target returns using the MIT/NRL scaled model data. Our hybrid classi- 
fiers outperform the matched filter-based recognizer by an average of 5 to 25%. 
This improvement can be attributed to a combination of good features that 
maximize inter-class discrimination and appropriate classifier topologies that 
exploit the underlying multi-dimensional feature probability density function. 

1    INTRODUCTION 

Low-frequency active target echo characterization is of considerable interest from 

the perspective of target physics and signal processing because of complex, time- 
varying echo structures. In order to facilitate our understanding of target physics, 
the Massachusetts Institute of Technology (MIT) in collaboration with the Naval 
Research Laboratory (NRL) conducted a scaled model experiment in which mono- 
static and bistatic returns were recorded for three cylinder types along the 360 
degree azimuthal sector. For 2 < ka < 10, where k and a refer to the wavenumber 
and the radius of the cylinder, respectively, backscattered returns from finite cylin- 
ders consist of early and mid-to-late returns. The early returns are dominated by 
backscatter from target discontinuities for angles away from broadside and by the 
target "array response" at broadside generated by coherent superposition of elemen- 
tal scattering along the length of the shell. The mid-to-late returns are dominated 
by supersonic helical or creeping waves produced by phase matching between the 
acoustic and membrane waves (both shear and compressional), and by slow flexural 
waves interacting with discontinuities in the shell. The echo return structure varies 

as a function of target type, aspect, ka, and time. 



In order to take advantage of the variable echo structure, we investigate classifier 
topologies appropriate for echo characterization. Hidden Markov model (HMM) 
(1) is one of the most popular techniques to characterize time-varying patterns . 
The HMM models temporal variation in the feature space with a finite number 
of states, state transition probability matrices, observation probabilities for each 
state, and initial state occupancy probabilities. Features refer to parameters that 
capture essential target attributes useful for target characterization and discrimina- 
tion. One drawback of the HMM-based recognition paradigm is that although the 
HMM maximizes the class likelihood ratio, it does not address the issue of inter- 
class discrimination, which is key to achieving good target recognition performance 
(2). On the other hand, both conventional and neural net classifiers emphasize dis- 
crimination when coupled with an appropriate feature optimization and rank order 
algorithm. However, they generally lack a mechanism to explicitly accommodate 
temporal variations. 

Therefore, we develop a reconfigurable classifier architecture that combines the ad- 
vantages of the HMM and classifiers. Our integrated target characterization paradigm 
can be succinctly described by: 

1. low-dimensional data projection for feature extraction, 

2. ranking of features and time segments in terms of their contribution to overall 
classification, 

3. selection of an appropriate classifier architecture that is best mapped to the 
underlying multi-dimensional feature probability density function, and 

4. recognition performance analysis in terms of rank order curves, confusion ma- 
trices, and classification receiver operating characteristic (ROC) curves. 

Figure 1 depicts the integrated classification methodology that maximizes both dis- 
crimination and likelihood. 

2    TARGET PHYSICS 

In this paper we work exclusively with laboratory scale model backscatter data 
for finite cylindrical shells. To facilitate interpretation of features extracted by 
the low-dimensional classifiers, it is useful to have an underlying understanding of 
the target physics. In particular, features in the data can be attributed to specific 
physical mechanisms, which are linked to both the target type and the ensonification 
aspect. The next section briefly reviews the experimental design followed by a 
section reviewing the dominant signal physics and echo formation. 



Subspace projection transforms the raw data onto 
appropriate projection spaces in which signal attributes 
can be better captured and be less sensitive to extraneous 
variables, such as interference and environmental noise 
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Figure 1: Our integrated classification paradigm consists of low-dimensional projection, feature optimiza- 
tion, matching the classifiertopology to the underlying feature distribution, and performance analysis. 



2.1    Experiment 

The experimental data used in this paper was collected at NRL in collaboration 
with the ONR sponsored structural acoustics research program at MIT. Three fi- 
nite cylinders were fabricated at varying levels of complexity. The external appear- 
ance of all the models is identical. They are 0.862 m in length with a diameter of 
0.111 m. The skin is Ni-200 nickel with thickness of 0.532xl0~3 m, which yields a 
100:1 shell thickness to radius ratio. The shells differ in their internal configuration. 
The simplest has no internal structure, only the shell plating is present. The next 
level of complexity involves the placement of four unequally spaced deep-rings with 
an aggregate mass equal to that of the shell. The highest level of complexity is a 
shell with four suspended masses isolated from the rings with rubber bulkheads at 
each ring location and four delrin rods connecting the masses running the length 
of the shell. This model is not intended to mimic a full scale target, but rather to 
produce acoustic complexity comparable to that of a full scale target. The three 
models are known respectively as the "empty", "ribbed", and "complex" models. 
For the purposes of this paper scatter from the three models may be classified into 
two categories: (1) scatter from the empty model and (2) scatter from the ribbed 
and complex model. As may be inferred from this statement, the ribs play a dom- 
inant role in scattering process of the complex shell. Both monostatic and bistatic 
measurements were taken for each shell, but only the monostatic measurements are 
discussed in this paper. Further, since the ribbed and complex cylinders are so sim- 
ilar, of the two only the ribbed data will be discussed in comparison with the empty 
shell data. 

The models were placed in an acoustic underwater test facility at NRL and ensonified 
by a plane wave source as shown in Figure 2. For the monostatic measurements the 
source array and single receiver hydrophone remained stationary. The models were 
rotated through a range of 360° in 1° steps. Since the problem is approximately 
quadrant symmetric only azimuth angles from 0 degrees (bow) to 90 degrees (beam) 
are considered here. This range shows the salient properties of scattering from finite 
cylinders. At each angle 100 pings were averaged to compute the backscattered 
return from the target. The source waveform was a wide-band pulse with useful 
energy in the range of 10-50 kHz, which corresponds to 2 < ka < 10. To minimize 
the effects of clutter from the measurement tank a clutter subtraction process was 
used to clean the data. This process consisted of measuring the tank response with 
no target in place and subtracting this response from that measured with the target 
present. Details of the acquisition and initial data analysis are discussed by Corrado 
(3). 

This paper presents an alternate analysis approach to the same data set, as is 
described below. To understand the analysis, however, we must first consider some 
of the fundamental physical processes associated with the target scattering. Much 
of this understanding is due to Corrado's work. 
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Figure 2: Experimental geometry and the transmit waveform. 

2.2     Physical Interpretation 

The data may be divided into two major classification groupings as shown in Fig- 
ure 3. 

Namely, 

1. time zones: early, mid, and late 

2. azimuthal zones: 

(a) ±20° bow/stern 

(b) 20° < 9 < 60° low return sector 

(c) 60° < 6 < 85° helical wave sector 

(d) 85° < 6 < 90° beam sector 

Of these 12 regions only six are of importance for this paper: all the early time 
regions, the mid-time membrane zone region, and the late-time bow zone region. 
Each of these regions is dominated by one of several physical processes, which are, 
in large part, individually determined by a given wave type: compressional, shear, 
and flexural. For the ribbed case, the boundary between the low-return zone and 
the helical zone is not distinct due to scattering from the rings. 

In order to facilitate understanding of target echo formation process, we used the 
Reduced Interference Distribution (RID) (4) to project raw time series onto a high 



Bow 

Low 
Return 

Helical 

Beam 
10 

0 

-10 

200 

Ap\ftyv~^— 

Bow rejum: empty 
T 

400 I600 800 
time ih samples 

30 deg return: empty 

_i_ J_ 

'0 200   '       400 

Early-time Mid-time 

'600 800 

Late-time 

1000 

1200 

1200 

Figure 3: Echo groupings as a function of time and aspect for LFA return characterization. The sampling 
period is 4 microsec. 

10 



resolution time-frequency map as shown in Figure 4. The RID is particularly use- 
ful when the signal consists of a number of overlapping components in time and 
frequency which can cause "cross-term" interferences. 

Let us first consider the four major azimuthal divisions, which are approximately 
quadrant symmetric. At bow incidence (±20°) n=0 modes dominate. The ability 
to excite higher circumferential modes is low due to the plane wave excitation which 
produces axisymmetric pressures around the shell. These n=0 modes propagate back 
and forth down the hull as though it were a transmission line (5) scattering from 
discontinuities as it goes. Next consider the helical zone, which is so called because 
here the incident acoustic wave is phase, or trace, matched to both compressional 
and shear helical waves. These waves are supersonic and have an axial component 
and a circumferential component, which results in a winding helical propagation 
path down the shell. The circumferential mode number for helical waves is greater 
than zero due to the unsymmetric forcing of the shell by the incident wave at these 
angles. Now, the low-return zone is simply an area where the axisymmetric forcing 
of n=0 modes is weak and trace matching to helical wave cannot take place due 
to geometric considerations. The main return here is direct scatter from the target 
discontinuities. Finally, the beam zone is dominated by direct backscatter from the 
entire shell length due to the coherent superposition of elemental scattering centers. 
These returns may be thought of as an "array response" for the shell, and the 
monostatic return is simply the peak response of the beam pattern near broadside. 

Now consider the temporal divisions of the data. At early time the dominant 
backscatter is due to direct acoustic scatter from discontinuities in the shell in- 
cluding endcaps, slope discontinuities, and rings. At each discontinuity every wave 
type scatters into every other wave type to varying degrees. As an example, at 
bow incidence the earliest return is direct scatter off the endcap followed about 
200 us later by a return, which derives from direct excitation of a fiexural wave in 
the endcap that then backscatters an acoustic wave when it encounters the slope 
discontinuity between the endcap and the cylindrical shell (6). At mid-time, we 
continue to see direct scatter from the ribs and far endcap over a broad range of 
angles. The more interesting feature, however, is the formation of the helical waves 
seen in a ±30° sector with respect to beam for the empty shell and ±45° for the 
ribbed shell. The difference between the shells is due to multiple scattering of the 
helical wave between the rings as it winds down the shell. All late time events are 
almost certainly due to fiexural waves propagating slowly down the shell scattering 
into acoustic energy at discontinuities. Since the fiexural wave is dispersive, we ex- 
pect to see frequency down swept chirps for the late returns. For the empty shell, 
which produces particularly simple signal structure, the down-chirps are relatively 
distinct. 

Comparing the empty and ring stiffened shell responses one sees considerable com- 
plexity brought about by multiple reflections of the helical waves between the rings. 
Early time response is due to compressional and shear waves in the skin scattering 
from the rings and the endcaps. Late time response derives from fiexural waves 
slowly lumbering their way down the shell and scattering through mode conversion 

11 
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Figure 4: The RID spectrograms provide good time and frequency resolution without suffering from cross-interference 
terms. Time-series and matched filter outputs are also shown for comparison. The left plots show empty target echos 
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at the rings and endcaps. At bow incidence, one can see the result of multiple reflec- 
tions bouncing back and forth in the first bay of the shell. In contrast, the empty 
shell response is dominated by scattering from the endcaps with a longer delay time 
between bounces. The observed acoustic energy derives both from direct scatter of 
compressional and shear waves and from mode conversion of flexural waves. For the 
ribbed shell the late time events between 30° and 60° are especially hard to inter- 
pret, since their nature is deterministic but very complicated in terms of multipath 
and mode conversion at discontinuities. The 0° and 90° cases are end members, and 
"relatively" simple. 

3    PROJECTION SPACE INVESTIGATION 

The conceptual framework of low-dimensional projection is based on data compres- 
sion which uses as few bits of information as possible to convey the entire message 
with the lowest possible bit error rate. One simple example is to use an oversam- 
pled Gabor representation to characterize exponentially damped sinusoids. Advan- 
tages of extracting features from the low-dimensional projection space encompass 
(1) robustness to extraneous variables such as noise due to energy compaction, (2) 
computational efficiency in classification due to inherent data compression, and (3) 
facilitation of feature discriminant analysis. 

After our thorough investigation of target physics, we explore the following four 
projection spaces for target characterization. We select them because they provide 
an accurate time "snapshot" of spectral contents. Furthermore, they perform adap- 
tive smoothing and/or filtering to remove as much out-of-band noise as possible. In 
short, these projection spaces provide a temporal map where appropriate clues or 
features can be extracted at each time snapshot after noise filtering. The goal at 
this stage is to extract as many pertinent features as possible from each projection 
space for later feature optimization and fusion. 

3.1    Reduced Interference Distribution (RID) Spectrogram 

The RID allows us to construct a "time-frequency acoustic signature" of an echo. 
Instead of using the entire RID spectrogram, we implement an innovative image 
compression algorithm to extract features from the RID spectrogram. The image 
compression algorithm consists of two-dimensional transform for further coefficient 
compaction, transform coefficient encoding, encoded transform coefficient compres- 
sion with the singular value decomposition (SVD) to overcome the "curse of di- 
mensionality", vector quantization (VQ), and entropy or arithmetic encoding of the 
VQ codebook indexes (14). We perform the coefficient compression by using the 
signal subspace eigenvectors where we use the minimum description length (MDL) 
criterion (7) to determine the rank of the covariance matrix. Again a combina- 
tion of transform and SVD-based subspace filtering results in data compaction and 
improved SNR for robust target characterization. 

13 



3.2 Segmented Matched Filter Output 

We divide the matched filter output into a number of equal time segments. From 
each time segment, we extract shape and amplitude statistics (i.e., mean, standard 
deviation, skewness, and kurtosis). We also extract the same statistical parameters 
from the difference between the matched filter output and the raw energy detector 
output. This is done to evaluate the discrepancy between the correlated and uncor- 
related components of the return energy with the transmit waveform, especially in 
the late arrival segment. 

3.3 Principal Component Inversion (PCI) Output 

The PCI methodology works as an adaptive Wiener filter in that it estimates the 
time-varying signal structure and utilizes the SVD to separate the data into signal 
subspace and alternate subspace components (8). From the signal subspace compo- 
nent, we can estimate the clean signal structure by using diagonal averaging. From 
each PCI output, we extract center frequency, bandwidth, linear predictive coding 
(LPC) coefficients, cepstral coefficients, delta-cepstral coefficients, state transition 
parameters, singular value distribution, and low-rank dimension. Figure 5 illus- 
trates the noise reduction performance improvement with PCI in comparison to a 
conventional filtering matched to the transmit pulse bandwidth. 

3.4 Compressed Phase Map with the SVD 

In nonlinear dynamical modeling of chaotic structures, the time-embedded repre- 
sentation or phase map is often used. An embedding dimension of two is sufficient 
to characterize the Henon noise whose dynamics are governed by a second order 
differential equation (9). However, for the MIT/NRL tank data, we do not observe 
such a low-order, deterministic structure in the phase map. Therefore, we use an 
embedding dimension of 32, but perform data compression using the SVD so that 
only the first eight principal components are used for data analysis. 

4    INTEGRATED TARGET CHARACTERIZATION 
PARADIGM 

After feature extraction, we perform thorough feature discriminant analysis followed 
by target characterization performance assessment. For this analysis, we generate 
eight classes: two target types (empty and ribbed) and four aspect groups (near 0°, 
30°, 60°, and 90°). Our goal is to find a good feature subset and an appropriate 
classifier topology matched to the underlying good feature distribution. 

14 
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4.1     Feature Discriminant Analysis 

In order to maximize class separability for robust recognition performance, we eval- 
uate features in terms of class discrimination and the degree of feature correlation. 
Feature analysis algorithms consist of Fisher's discriminant ratio (FDR), Procrustes 
angle, multi-modal overlap measure (MOM), divergence, add-on/knock-out, Viterbi, 
and projection-based discriminant ratio tests. While one dimensional feature opti- 
mization algorithms, such as FDR, MOM, divergence, and Procrustes angle, are 
fast, they fail to take feature correlation into consideration. Further, when single 
dimensional feature distributions exhibit a high degree of overlap among classes, the 
one dimensional feature optimization algorithms yield inferior performance to that 
of multi-dimensional feature optimization algorithms. Unfortunately, the add-on 
or Viterbi algorithms are computationally expensive, especially for a large number 
of training tokens. In an attempt to combine the strengths of single and multi- 
dimensional feature ranking algorithms, projection-based algorithms perform fea- 
ture compression followed by discriminant analysis in the compressed or reduced 
feature space. 

4.1.1     Linear Fisher's Discriminant Ratio (FDR) 

The FDR is a statistical rank order method which determines a feature priority by 
computing a detection index, -^, between classes where A/i and a refer to the mean 
difference between any pair of classes and feature standard deviation, respectively. 
Generally, FDR is ideal for unimodally distributed, Gaussian features and can be 
computed as follows: 

K   K     (ui — UA 

FDR2{p) = J     ) P       Vl  , (2) 

where 

K = the number of classes, (3) 

p — feature index, 

fip = mean of the pth feature for the ith class, and 

a1 = standard deviation of the pth feature for the ith class. 

The main difference between FDR1 and FDR2 is that FDR1 tends to emphasize sep- 
aration between any two classes while FDR2 averages over all the classes. Therefore, 

16 



FDR2 is more appropriate for rank ordering features with more than two classes. 

For problems involving a large number of classes, instead of summing detection 
indexes over all the classes, we can use the worst-case detection index to rank order 
individual features for more robust recognition performance. This concept of making 
the worst-case performance as favorable as possible is the backbone of the minimax 
algorithm. 

4.1.2 Procrustes Angle 

Procrustes angle (10,11) is closely related to the least squares approximation and 
measures the relationship between two given subspaces. Since the vector subspace 
denned by the eigenvectors corresponding to the significant eigenvalues of the Fisher 
covariance matrix is optimal in the least squares sense, it is intuitive that the angle 
between the kth feature and its orthogonal projection onto the Fisher projection 
subspace should be small for good features, and large for less useful ones. This 
formulation is conceptually similar to linear Fisher's discriminant analysis. 

4.1.3 Multi-modal Overlap Measure 

MOM is appropriate for features which exhibit multi-modal and non-Gaussian prob- 
ability density functions. Feature rank is determined by integrating the area of 
overlap between class pdfs. As expected, features with the least degree of overlap 
are assigned the highest ranks. 

Another discriminant measure based on the estimated feature pdfs is often referred 
to as divergence and can be computed as follows (12): 

where 

Dij(k) = Ik(i,j) + h(j,i) (4) 

»= //<*Kij(fj) *• (5) 
r 

k    =   feature index, 

Pi(x)    =    pdf of class i for feature k, and 

pkAx)    =   pdf of class j for feature k. 

For multi-class problems, following the minimax approach, we can attempt to max- 
imize the worst-case performance by rank ordering features based on the mini- 
mum value of Dij(k) over i and j instead of summing Dij(k) over i and j (i.e., 
D(k) - J2i<j Ej Dij(k)) (2). Although a little pessimistic in its philosophy, this 
minimax or "maximin" approach can yield robust recognition performance under 
certain situations. 

17 



4.1.4    Feature Optimization in Multiple Feature Dimensions 

For difficult problems with very complex class boundary functions and a substantial 
amount of overlap in the single dimensional feature space, it is advantageous to 
perform multi-dimensional feature optimization. Conceptually similar to its original 
use in convolutional encoding and decoding in communication, Viterbi algorithm 
(13) or dynamic programming considers many subsets in parallel to find the best M 
feature subset out of N candidate features (M < N). If the performance measure 
increases monotonically as a function of the feature subset size and the performance 
at any stage is a function of the previous feature subset and the current feature (i.e., 
Markov property), then this process will result in the optimum M feature subset. 

The Viterbi rank order procedure is summarized below. 

1. Evaluate the performance of N subsets, each consisting of one feature. 

2. For each subset of one feature, append one of the remaining N-l features, 
evaluate the performance of N-l two-feature subsets, and select the two-feature 
subset that yields the best performance. 

3. Now for each subset of two features, append one of the remaining N-2 features 
and select the three-feature subset that yields the best performance. Re- 
peat the same procedure until each subset contains M features or performance 
degradation occurs. 

4. Select the path that yields the best performance. Features that fall into the 
optimal path constitute the feature subset to be used for classification. 

Although dynamic programming is more computationally tractable than the exhaus- 
tive search method, it is still very time-consuming. As a consequence, for all practical 
problems, we resort to suboptimal add-on or knock-out algorithms to find a "rea- 
sonably" good feature subset. The only difference between add-on/knock-out and 
Viterbi is that the former considers only one best path at any stage, thereby saving 
computational loading by a factor of N. Based on our extensive classification expe- 
riences, the performance difference between add-on and Viterbi is approximately 0 
to 4 %. 

In general, multi-dimensional feature optimization tends to yield optimistic recogni- 
tion performance. The optimal feature subset composition is likely to change from 
run to run, provided that random cross validation is performed to independently 
assess the recognition performance. This means that the feature subset composi- 
tion may not remain fixed during random cross validation. That is, the recognition 
performance averaged over multiple random runs may be based on different fea- 
ture subsets. Therefore, the classification performance based on the Viterbi and 
add-on algorithms provides the theoretically attainable upper bound (i.e., similar 
to Cramer-Rao Lower Bounds). 
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4.2    Classifier Architecture 

Conventional and neural network classifiers have been used extensively in pattern 
recognition. They can be divided into parametric, non-parametric, and boundary 
decision classifiers. Parametric classifiers, such as a multi-variate Gaussian classi- 
fier (MVG), makes a certain statistical assumption regarding the underlying feature 
pdf, resulting in recognition performance that depends on the goodness of the sta- 
tistical fit. Non-parametric classifiers, such as a binary tree classifier, make no such 
assumption and generally require a large number of training tokens. Boundary de- 
cision classifiers, such as a backpropagation neural net (BPN), attempt to find a 
class boundary function that best separates classes based on some error criteria and 
typically suffer from long training time and possible convergence to one of the local 
minima. As a result of these differences among classifiers, it is crucial that we per- 
form thorough feature discriminant analysis and match the classifier architecture to 
the underlying feature pdf. 

HMMs are popular in modeling temporal variability. Feature tokens are computed at 
an appropriate frame rate. The HMM models feature variation in time by assigning 
tokens with similar statistical characteristics to a common state. Within each state, 
the observation probability of all the tokens is usually based on a Gaussian mixture 
model with a diagonal or full covariance matrix. In speech modeling, the left-to- 
right state model is widely used to closely follow speech articulation. In nonlinear 
dynamical modeling, each state typically represents a cluster in the time-embedded 
phase map. The HMM model parameters, consisting of initial state occupancy, 
state transition, and observation probabilities, are estimated using either segmental 
k-means or forward-backward algorithms. Since the transition matrix is full (i.e., 
no zero elements), we will denote such HMMs "ergodic". 

Although the HMM is quite useful in statistical characterization of time-varying dy- 
namic patterns, one potential drawback of the HMM is that it tends to maximize the 
likelihood of the correct class, but does not suppress the likelihood of other incorrect 
classes. That is, the HMM does not address an important issue of discrimination and 
robustness which are key to achieving good classification performance. Therefore, 
it makes sense to emphasize class discrimination during training. In order to design 
a classifier topology that combines the merits of classifiers with good class discrim- 
ination and HMMs with good temporal variability characterization, we present the 
three reconfigurable classifier architectures for the LFA target echo characterization 
as depicted in Figure 6. 

4.2.1     Left-to-right HMM 

This is the classic HMM used in speech recognition. The one exception in our 
implementation is that instead of using all the features in the likelihood ratio com- 
putation, we use only those that provide good class discrimination. Feature ranking 
is performed as a function of time (i.e., state in this case). Since the HMM generally 
uses the same feature subset for the log-likelihood ratio (LLR) score computation, 
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Time-varying MMC Left-to-right model HMM 

1. state = fixed or var time segment 
2. separate feature ranking 

for each state 
3. flexible to use any classifier 

for each state 
4. emphasis on class separation 
5. more robust than HMM 

Empty 63 deg with noise std dev of 3 

T1 T2 T3 

Feature vectors computed at 
an appropriate frame rate 

T1+/-    T2+/-    T3+/- 

1. state = slightly variable 
time segment 

2. usually same features 
throughout 

3. good for dealing with speech 
and speaker variabilities 

4. usually uses the GMM to 
characterize obs. prob, 
associated with each state 

5. emphasis on maximizing 
likelihood with SKM/B-W 

Ergodic HMM 

T1+T2+T3 
state = distinct cluster 
more robust than L-to-R HMM 
derived from nonlinear 
dynamical modeling of 
low-order deterministic 
signals 

4. flexibility in state transition 
5. emphasis on maximizing 

likelihood with SKM/B-W 

Figure 6: The three classifier topologies attempt to maximize both discrimination and likelihood by taking 
advantage of feature optimization and by accommodating temporal variability. 

20 



feature ranking is done globally over the entire observation period. Furthermore, 
we identify and exclude time segments that add to confusion. Within each state, 
we use the Gaussian mixture model for characterizing observation probabilities. 

4.2.2 Ergodic HMM 

After feature optimization and ranking, we populate the multi-dimensional feature 
space with all the feature tokens from each class. Now we perform the VQ to 
find distinct clusters or states. We can trade-off the number of states versus the 
complexity of modeling observation probability for each state. Unlike the left-to- 
right HMM, the transition probability matrix of this HMM is usually full. 

4.2.3 Temporally Adaptive Classifier 

The structure of this classifier is similar to the left-to-right HMM with the following 
two exceptions: 

1. Features are optimized separately for each state (i.e., local feature optimiza- 
tion). This approach allows the maximum flexibility in the classifier and fea- 
ture architecture. 

2. Any classifier can be assigned to any state as long as the selected classifier 
provides the best fit to the underlying feature pdf. 

5    MIT/NRL SCALED MODEL DATA ANALYSIS RE- 
SULTS 

Due to the symmetric nature of the target echo structure, we focus our charac- 
terization efforts on 0 to 90 degree aspect for the empty and ribbed targets. We 
subdivided the quadrant into near 0° (±5°), near 30° (±5°), near 60° (±5°), and 
near 90° (±5°). Therefore, the task of a recognizer is to determine the aspect and 
target type of an echo corrupted in white Gaussian noise. 

The training data consists of a clean data with the signal-to-reverberation ratio of 
at least 10 dB. We normalize the clean data so that its mean and standard deviation 
are 0 and 1, respectively. For testing at various SNR's, we corrupt the clean data 
with independent white Gaussian noise. 

5.1    Recognition Performance With Matched Filters 

At first, we pose the following question: what if we use the received target echo 
as a matched filter? By contrast, the matched filter projection space for feature 
extraction utilizes the transmit waveform, not the received waveform. In essence, 
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classifiers use templates or features of known classes for pattern matching. Figure 7 
shows confusion matrices along with the overall, and individual class recognition 
performances as a function of the noise standard deviation. 

Confusion matrix, as the name implies, is a measure of how classifiers respond 
given an input signal with unknown identity. It can be generated by inputing a 
large number of test feature vectors and by grading the classifier outputs against 
the known ground truth. The correct recognition values can be read from the 
diagonal elements of the confusion matrix and off-diagonal elements indicate the 
degree of confusion with incorrect classes. Most confusion occurs for the empty 60° 
and empty/ribbed 90° classes because of a good deal of variability as a function 
of aspect and the lack of any late return structure, respectively. Our next task is 
to evaluate the three classifier candidates to determine if they can outperform the 
matched filter by a judicious combination of good features and appropriate classifier 
architecture. 

5.2 Multi-dimensional Feature Distribution 

After feature extraction and ranking, we look into the multi-dimensional feature pdf 
to derive the matching classifier architecture. Figure 8 illustrates the compressed 
feature scatter plot as a function of time. Note the highly non-Gaussian and multi- 
modal feature distribution which will make the MVG a poor choice for this problem. 
Moreover, there is a considerable amount of temporal variation in the feature pdf. 
This figure illustrates the importance of using the right classifier architecture that 
takes advantage of the time-varying feature pdf. 

5.3 Feature Rank Order Curves 

Rank order curves are quite useful in determining an appropriate feature dimension 
for classification. Initially, as we add good features, the recognition performance 
increases. It reaches a plateau after a while and may even degrade as we increase 
the feature dimension beyond what is necessary. In short, the rank order curves are 
a useful tool to detect the occurrence of underfitting (i.e., using less features than 
necessary) or overfitting (i.e., using too many features). Figure 9 illustrates the rank 
order curve for the LFA target characterization. 

5.4 Recognition Performance Comparison 

We initially train the three classifiers with clean data. Next we test them with noise 
corrupted data. Figure 10 illustrates their recognition performance as a function of 
noise standard deviation. 
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Figure 7: Recognition performance achieved by using the received waveforms as matched filters for 
aspect and target type variation. The 8-by-8 confusion matrices show the degree of confusion with other 
classes. The numbers in the parenthesis represent the noise standard deviation. The order of classes from 
top to bottom and left to right is as follows: emptyO, empty30, empty60, empty90, ribbedO, ribbed30, 
ribbed60, and ribbed90. The y-axis represents the true class while the x-axis shows the classifier output. 
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Compressed Feature Scatter Plot 
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Figure 8: Compressed feature pdf plots show a highly non-Gaussian, multi-modal, and time-varying struc- 
ture. 
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Feature rank order curve 
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Figure 9: Rank order curves are useful in determining an appropriate number of 
features for maximum and robust recognition performance. 

5.5    Discussion 

It is interesting to note that the three classifiers outperform the matched filter-based 
recognizer, especially at low SNR. Initially, we expected the matched filter to pro- 
vide the theoretical upper bounds (i.e., similar to the Cramer-Rao lower bounds on 
parameter estimation) on the LFA target characterization performance. Although 
this result appears to be contradictory at first glance, it makes sense in the context 
of classification. That is, if some temporal segments do not provide good inter- 
class separability, it is beneficial to remove those segments from classification. For 
detection, such a strategy will yield suboptimal detection performance. 

Furthermore, it is worthwhile to investigate as many pertinent projection spaces as 
possible, provided that each projection space yield orthogonal features. For instance, 
we achieved 69.3 %, 76.1 %, and 46.6 % recognition performance from RID, matched 
filter (transmit waveform), and PCI-derived features, respectively. When we fused 
all the good features, our recognition performance improved to 92.1 %. Due to the 
broad-band nature of the transmit pulse, the PCI-derived features do not work as 
well as those derived from the other projection spaces. PCI is more appropriate 
when the transmit waveform exhibits a time-varying narrow-band structure (i.e, 
LFM, HFM, or FSK). 

In order to demonstrate the importance of matching the classifier architecture to 
the underlying feature pdfs, we replace the multi-modal classifier (MMC) with the 
MVG classifier in the temporally adaptive classifier topology. Figure 11 illustrates 
a dramatic performance difference between the two classifiers. The left plots show 
the individual and overall target characterization performance as a function of time. 
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The y-axis represents the recognition performance with an offset of 1.0 added for 
each case. That is, the overall recognition performance with the "+" legend should 
read 0.0 to 1.0 because of the offset of 4.0. 

6    CONCLUSION & FUTURE DIRECTION 

In this paper, we demonstrated the crucial link between target physics and signal 
processing with the scaled model data for the two cylinder types at the four aspect 
groups. We also developed the three recognizer topologies that exploited the un- 
derlying time-varying feature distributions. We also discussed LFA target echo for- 
mation process and the integrated classification paradigm that exploits an inherent 
relationship between features and classifiers. In short, a combination of (1) energy 
compaction via low-dimensional projection, (2) thorough feature discriminant anal- 
ysis as a function of time, and (3) appropriate classifier topology generation is a key 
to achieving robust active target characterization performance. 

With the noise standard deviation of 6, the matched filter-based classifier yields 
83.5 % correct recognition performance of all eight classes while the time-varying 
MMC, left-to-right HMM, and ergodic HMM are able to achieve 98 %, 89 %, and 
97 % correct echo characterization, respectively. This improved performance is at- 
tributable to feature optimization and selection of an appropriate classifier topology 
for this problem. Furthermore, fusion of features derived from RID, segmented 
matched filter, and PCI projection spaces results in 16 % improvement in target 
characterization performance. 

Since we demonstrated an excellent target characterization performance with the 
scaled model tank data, the next natural extension is for more realistic targets. 
The first area of future research is to apply the same target characterization algo- 
rithms to real world threats, such as scaled model submarines and mines. We can 
characterize target recognition performance in terms of confusion matrices and clas- 
sification receiver operating characteristics (ROC) curves as a function of frequency, 
bandwidth, aspect, and time. 

Furthermore, it is crucial that we investigate the impacts of confusion factors, such as 
ambient noise, clutter, and rapidly fluctuating channel responses in shallow water, 
on the target characterization performance. We are currently looking into blind 
deconvolution, hypothesis-directed matched field processing for depth and channel 
estimation, and channel deconvolution using probe pulses as a potential means of 
deconvolving the medium effects out of the received waveform. The key to successful 
target characterization is to remove as much confusion as possible prior to feature 
extraction and classification. 
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Figure 11: This example illustrates the importance of using the appropriate time segments that offer good class dis- 
criminability and the right classifier architecture that matches the underlying feature pdf. At low SNR, the late returns 
are highly corrupted by noise, thereby rendering them less than useful for discrimination. Furthermore, since the fea- 
tures exhibit non-Gaussian and multi-modai characteristics, MMC outperforms MVG by a wide margin. 
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