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1.  Research Abstract 

A unified framework is proposed for providing a systematic scheme for generating the 
data association hypotheses efficienüy in the target-oriented, measurement-oriented, and track- 
oriented approaches to multitarget tracking.  A fast recursive algorithm for computing the a 
posteriori probabilities, suitable for implementation in a distributed multiprocessor system is 
developed and its links to the theory of permanents is established.  An analysis of this 
algorithm reveals its superiority over existing ones in the average case.  In the related 
problem of direction-of-arrival estimation, a new non-search-type subspace method, called the 
PESS method, is proposed.  This method exploits the structure of the steering matrix more 
thoroughly to yield a residual-error theoretically shown to be either less than or equal to that 
obtained by LS-ESPRIT.  Furthermore, simulation conducted on several sets of data showed 
that the PESS method outperforms the TLS-ESPPJT method.  Constraints for forcing all roots 
of a polynomial to the unit circle are obtained for more reliable estimation especially in the 
low SNR case.  Finally, for improved preprocessing to facilitate tracking, a theoretical 
analysis is proposed to evaluate the robustness of a TLS algorithm, developed earlier, for 
image reconstruction from a sequence of undersampled noisy and blurred frames. 



2.  Research Description 

(a) Background 

To solve the problem of data association between targets and measurements, three 
typical approaches have been reported in the literature.  The first is called a target-oriented 
approach in which each measurement is assumed to have originated from either a known 
target or clutter, as in the Joint Probabilistic Data Association Filter (JPDAF) [1].  The scond 
is called a measurement-oriented approach in which each measurement is hypothesized to 
have originated from either a known target, a new target, or clutter [2].  The third approach is 
referred to as track-oriented where each track is hypothesized to be either undetected, 
terminated, associated with a measurement, or linked to the start of a maneuver [3]. 

In recent years, a lot of attention has been given to the task of improving the 
computational efficiency of a multitarget tracking algorithm.  Fitzgerald [4] proposed an ad 

hoc formula to approximately compute the ß"s in the JPDAF.  For j > o, ßj is the a 

posteriori probability that measurement j originated from target t ■  Fitzgerald's formula 
breaks down when four targets are required to be tracked [5].  Sengupta and Iltis [5] 
developed an analog neural network to emulate the JPDAF.  They showed that the neural 
network is capable of handling two to six targets and three to twenty measurements. 
However, the heuristic nature of their approach makes implementation difficult [6]. 
Alternatively, Nagarajan, et al, [7] arranged the hypotheses in the measurement-oriented 
approach [2] in a special order so that the probabilities of the hypotheses are proportional to 
the product of certain probability factors already evaluated.  The algorithm locates the N 
globally best hypotheses without evaluating all of them.  In [8], Fisher and Casasent 
developed a fast joint probabilistic data association (JPDA) algorithm.  In their algorithm, the 

computation of the ß"s was implemented using enormous number of vector inner product 

operations.  Since the vector inner product operation could be easily realized on an optical 
processor, they proposed a specialized optical processor to approximately implement the fast 
JPDA algorithm.  Recently, Zhou and Bose [9] proposed a depth-first search (DFS) approach 

to efficiently compute the ß"s in the JPDAF. Their algorithm requires much less 

computation than the fast JPDA algorithm in the average case, when there are, on average, 
two to three measurements inside the validation gate of a target.  Although this DFS 
algorithm is much more efficient than the fast JPDA algorithm in the average case, it is 
specifically directed towards implementation through a system with a powerful centralized 
processor, normally used in ground-based tracking systems. 

(b) Research Contributions 

In this research, an efficient algorithm has been developed to compute the a posteriori 
probabilities of the origins of measurements in the joint probabilistic data association filter 
(JPDAF).   The inherited parallelism of this algorithm enables it to be suitable for 



implementation in a multiprocessor system.  In this algorithm, the a posteriori probability of 
the origin of each measurement in the JPDAF is decomposed into two parts.  The 
computation of one part becomes trivial and the algorithm developed here is implemented on 
the other part, which is shown to be related to permanents.  The computational complexity of 
this algorithm has been analyzed in the worst case as well as in the average case.  It has been 
concluded that this algorithm is more efficient than other existing ones in the average case. 
The results are fully documented in the very recent peer-reviewed publication [10]. 

Another important contribution emerging from this research is the development of a 
unified framework to provide a comprehensive understanding of the problem of data 
association in multitarget tracking.  Specifically, the DFS algorithm in [9], which was 
developed under the sponsorship of the grant preceding this research, has been adapted for 
efficiently generating the data association hypotheses in the measurement-oriented and track- 
oriented approaches, where the total number of data association hypotheses is expected to 
increase drastically over that in the target-oriented approach.  However, reduction in the 
overall computational cost may be feasible from observations on the conditional likelihood of 
data association hypotheses.  In the target-oriented approach, the conditional likelihood of 
each data association hypothesis is unique.  When targets are grouped into clusters, this 
uniqueness property does not hold for the measurement-oriented and track-oriented 
approaches.  Two specialized DFS algorithms which can efficiently identify the data 
association hypotheses with identical conditional likelihood in the measurement-oriented and 
track-oriented approaches have been developed [11]. 

The problems of direction-of-arrival (DOA) estimation and parameter estimation of 
sinusoids in noise have been tackled extensively by subspace-based methods during the last 
decade ever since the harmonic retrieval method was proposed by Pisarenko in 1973 followed 
by Schmidt's doctoral dissertation in 1979 which led to a formal presentation of subspace- 
based methods in the open-literature in 1985.  A new approach to parameter estimation based 
on signal-parameter-selectivity of the signal subspace (PESS) was proposed recently [12],[13]. 
This method exploits the structure of the steering matrix more thoroughly.  The residual error 
is theoretically analyzed and it has been shown that in the PESS method this residual error is 
less than or equal to that of the LS-ESPRIT.  In simulation, it is shown that the PESS method 
outperforms the TLS-ESPRIT method [14]. 

In DOA estimation and the related problem of parameter estimation of sinusoids in 
noise, the need for constraining the coefficients of a polynomial so that its roots fall on the 
unit circle occurs.  While simple symmetry conditions suffice in a lot of cases [15], the need 
for more powerful constraints arises in low SNR situations.  Investigations into such 
constraints lead to a set of necessary conditions on the coefficients of a polynomial for all its 
roots to lie on a unit circle [16].  The powerful mathematical structure built around the theory 
of resultants used in multidimensional systems theory for a variety of purposes [17], [18] are 
again used to attain the desired objective here. 

Finally, to link image processing to target tracking for better tracker performance, a 



recursive procedure based on total least squares (TLS) theory to reconstruct a high resolution 
image from a sequence of low resolution noisy and blurred frames (incorporating the inherent 
uncertainty in displacement estimations of the frames with respect to a reference frame) was 
developed in [19] as part of research conducted under the sponsorship of the previous ONR 
Grant N00014-86-K-0542.  During the final phase of this research, a theoretical analysis was 
conducted to evaluate the robustness of the TLS algorithm developed in [19].  It was shown 
that with certain assumptions on the noise, the image reconstructed using the TLS algorithm 
has minimum variance with respect to all unbiased estimates.  Furthermore, the quality of the 
reconstructed image improved with increase in the number of undersampled frames.  In the 
case of blurred frames, higher resolution images may be reconstructed using the TLS 
algorithm with post-deblurring [20]. 
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163 Sensor Array Processing  
N. K. Bose and L. H. Sibul 
Multidimensional signal processing tools apply to aperture and sensor array processing. Planar 
sensor arrays can be considered to be sampled apertures. Three-dimensional or volumetric arrays 
can be viewed as multidimensional spatial filters. Therefore, the topics of sensor array processing, 
aperture processing, and multidimensional signal processing can be studied under a unified for- 
mat The basic function of the receiving array is transduction of propagating waves in the medium 
into electrical signals. Propagating waves are fundamental in radar, communication, optics, sonar, 
and geophysics. In electromagnetic applications, basic transducers are antennas and arrays of 
antennas. A large body of literature that exists on antennas and antenna arrays can be exploited in 
the areas of aperture and sensor array processing. Much of the antenna literature deals with trans- 
mitting antennas and their radiation patterns. Because of the reciprocity of transmitting and 
receiving transducers, key results that have been developed for transmitters can be used for analysis 
of receiver aperture and/or array processing. Transmitting transducers radiate energy in desired 
directions, whereas receiving apertures/arrays act as spatial filters that emphasize signals from a 
desired look direction while discriminating against interferences from other directions. The spatial 
filter wavenumber response is called the receiver beam pattern. Transmitting apertures are charac- 

terized by their radiation patterns. 
Conventional beamforming deals with the design of fixed beam patterns for given specifications. 

Optimum beamforming is the design of beam patterns to meet a specified optimization criterion. 
It can be compared to optimum filtering, detection, and estimation. Adaptive beamformers sense 
their operating environment (for example, noise covariance matrix) and adjust beamformer 
parameters so that their performance is optimized [Monzingo and Miller, 1980]. Adaptive beam- 

formers can be compared with adaptive filters. 
Multidimensional signal processing techniques have found wide application in seismology— 

where a group of identical seismometers, called seismic arrays, are used for event location, studies 
.'■■fcf 
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of the earth's sedimentation structure, and separation of coherent signals from noise, which some- 
times may also propagate coherently across the array but with different horizontal velocities by 
employing velocity filtering [Claerbout, 1976]/Velocity filtering is performed by multidimen- 
sional filters and allows also for the enhancement of signals which may occupy the same wavenunv 
ber range as noise or undesired signals do. In a broader context, beamforming can be used to sepa- 
rate signals received by sensor arrays based on frequency, wavenumber, and velocity (speed as weil 
as direction) of propagation. Both the transfer and unit impulse-response functions of a velocity 
filter are two-dimensional functions in the case of one-dimensional arrays. The transfer function 
involves frequency and wavenumber (due to spatial sampling by equally spaced sensors) as inde- 
pendent variables, whereas the unit impulse response depends upon time and location within the 
array. Two-dimensional filtering is not limited to velocity filtering by means of seismic array. Two- 
dimensional spatial filters are frequendy used, for example, in the interpretation of gravity and 
magnetic maps to differentiate between regional and local features. Input data for these filters 
may be observations in the survey of an area conducted over a planar grid over the earth's surface. 
Two-dimensional wavenumber digital filtering principles are useful for this purpose. Velocity fil- 
tering by means of two-dimensional arrays may be accomplished by properly shaping a three- 
dimensional response function Hfafa,®). Velocity filtering by three-dimensional arrays may be 
accomplished through a four-dimensional function H(kltk2,k3,<o) as explained in the following 
subsection. 

Spatial Arrays, Beamformers, and FIR Filters 
A propagating plane wave, s(x,f), is, in general, a function of the three-dimensional space variables 
and the time variable (x,.^.^) 4 x and the time variable r. The 4-D Fourier transform of the sta- 

tionary signal s(x,t) is 

si,©) = £.£££s(x,t^f?:ik*.,dbcIix2<fa3A (16.3) 

which is referred to as the wavenumber-frequency spectrum of s(x,f), and (&i,fc2,fcj) 4 k denotes the 
wavenumber variables in radians per unit distance and CD is the frequency variable in radians per 
second. If c denotes the velocity of propagation of the plane wave, the following constraint must be 

satisfied -.    *. ..'   . . . :.-;   . ■• >; 

k2
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If the 4-D Fourier transform of the unit impulse response h(x,t) of a 4-D linear shift-invariant 
(LSI) filter is denoted by H{ fc.co), then the response y{x,t) of the filter to s(x,f) is the 4-D linear con- 
volution of h(x,t) and s(x,r), which is, uniquely, characterized by its 4-D Fourier transform 

"     "; ■'    Y(k,ai) = H(k;<B)s\k;a>) ;;. uw) 
The inverse 4-D Fourier transform, which forms a 4-D Fourier transform pair with Eq. (16.3), $ 

^ ■vj:!"us(x,t)=—r r r r ^VJ^^^^M^®   ^-5) 1 
::••.-„.-.  -1  ■■■•.:.....   . ..Qn)* J~ J~ J~ J~     !  -■'•"»"*« -' | 

It is noted that S(k,co) in Eq. (16.3) is product separable, i.e., expressible in the form 

.'■"-,..,.':        ■'■; S(k,ö)) = S1(Jfc1)S2(ifc2)S3(fc3)S4(ö>) (166) 

rete 
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FIGURE 16.23   Uniformly weighted linear array. 

I» where each function on the right-hand side is a univariate function of the respective independent 
" ^"'Variable, if and only if s(x,t) in Eq. (16.3) is also product separable. In beamforming, S,(fc,) in 

''■ Eq. (16.6) would be the far-field beam pattern of a linear array along the x,-axis. For example, the 
normalized beam pattern of a uniformly weighted (shaded) linear array of length I is 

m 
sin 

(kL sin9N 

S(k,Q) = 
V 

( kL   . 
— sin 8 
2 

N (16.7) 

where X. = (2K/k) is the wavelength of the propagating plane wave and 6 is the angle of arrival at 
array site as shown in Fig. 16.23. Note that 8 is explicidy admitted as a variable in S(fc,9) to allow for 
the possibility that for a fixed wavenumber, the beam pattern could be plotted as a function of the 
angle of arrival. In that case, when 9 is zero, the wave impinges the array broadside and the nor- 
malized beam pattern evaluates to unity. 

The counterpart, in aperture and sensor array processing, of the use of window functions in 
spectral analysis for reduction of sidelobes is the use of aperture shading. In aperture shading, one 
simply multiplies a uniformly weighted aperture by the shading function. The resulting beam pat- 
tern is, then, simply the convolution of the beam pattern of the uniformly shaded volumetric array 
and the beam pattern of the shading function. Fourier transform relationship between the station- 
ary signal s(x,f) and the wavenumber frequency spectrum S(k,(o) allows one to exploit high-reso- 
lution spectral analysis techniques for the high-resolution estimation of the direction of arrival 
[Pillai, 1989]. The superscript *, t, and H denote, respectively, complex conjugate, transpose, and 
conjugate transpose. 

m 

i! 

It- 
Discrete Arrays for Beamforming 

An array of sensors could be distributed at distinct points in space in various ways. Line arrays, pla- 
nar arrays, and volumetric arrays could be either uniformly spaced or nonuniformly spaced, 

. «ncluding the possibility of placing sensors randomly according to some probability distribution 
, unction. Uniform spacing along each coordinate axis permits one to exploit the well-developed 
, ""ultidimensional signal processing techniques concerned with filter design, DFT computation via 
\ RT, and high-resolution spectral analysis of sampled signals [Dudgeon, 1977]. Nonuniform spac- 
es sometimes might be useful for reducing the number of sensors, which otherwise might be con- 

^ «rained to satisfy a maximum spacing between uniformly placed sensors to avoid grating lobes 
l*»e to aliasing, as explained later. A discrete array, uniformly spaced, is convenient for the synthe- 
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sis of a digital filter or beamformer by the performing of digital signal processing operation, f 1 
(namely delay, sum, and multiplication or weighting) on the signal received by a collection of sen. ?f 
sors distributed in space. The sequence of the nature of operations dictates the types of beam I 
former. Common beamforming systems are of the straight summation, delay-and-sum, and 
weighted delay-and-sum types. The geometrical distribution of sensors and the weights w, assocj. 
ated with each sensor are crucial factors in the shaping of the filter characteristics. In the case of, 
linear array of N equispaced sensors, which are spaced D units apart, starting at the origin 
Xi = 0, the function 

^)4XW/A"D (i,8) 
N n=0 

becomes the array pattern, which may be viewed as the frequency response function for a finite 
impulse response (FIR) filter, characterized by the unit impulse response sequence {w„\. In the case 
when wn = 1, Eq. (16.8) simplifies to 

Sin 
rk1ND^ 

W(k,) = 
N 

sin 
K 2  j 

exPi-; 
(N - \)kxD 

(16.91 

If the N sensors are symmetrically placed on both sides of the origin, including one at the origin, 
and the sensor weights are wn = 1, then the linear array pattern becomes 

Sin 

W(*i) = 
v   2   j 

N 
sin 

kxD 

For planar arrays, direct generalizations of the preceding linear array results can be obtained. To 
wit, if the sensorswith unity weights are located at coordinates (kD, ID), where k= 0, ±1,±2, •■•• 
±[(N-l)/2],and /=0,±1,±2,... ,±[(M-l)/2], for odd integer values of N and M, then thearrar 
pattern function becomes 

W'- 

iv 

W(kvk2) =    Y       Texpl-jik.kD + k.lD} 

1 
NM 

sin 

sin 

rk,ND^ 
sin 

rk2MD^ 

sin 
.    ■••A 

k2D 
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Routine generalizations to 3-D spatial arrays are also possible. The array pattern functions for 
„.her geometrical distributions may also be routinely generated. For example, if unit weight sen- 
iors are located at the six vertices and the center of a regular hexagon, each of whose sides isD units 
long, then the array pattern function can be shown to be 

W(kt,k2) = - VäjLD k D 
1 + 2 cos kxD + 4 cos -^— cos 

2    ' 2 
(16.11) 

, The arr y pattern function reveals how selective a particular beamforming system is. In the case 
rfa typical array function shown in Eq. (16.9), the beamwidth, which is the width of the main lobe 
ofthearrayPattern,,s inversely proportional to thearray aperture. Because ofthe periodicity of the 
„ray pattern function the main lobe is repeated at intervals of 2W/D. These repetitive lobes are 
called grating lobes, whose existence may be interpreted in terms of spatial frequency aliasing 
«suiting from a sampling interval Ddue to the deceiving sensors located at diLte points in 
space. If the spacing D between sensors satisfies 

2 (16.12) 

where X is the smallest wavelength component in the signal received by the array of sensors then 

ÄS 
s(6)4se = [exp(;0) expijk.Dsm 6)... cxpijk^N- l)Dsin 6)]<      (16.13) 

where *, = 2WX is the wavenumber. In array processing, the array output y6 may be viewed as the 
mner product of an array weight vector w and the steering vectors« Thus the IZf 

I   ^-aJongadirectioncharacteri^^ ** haaSo^ 

7e = {vKQ),s6J = £ TV* expijk.kD sin 9) 
(16.14) 

^Xtedtd8 C1!^,? bC "ITf k Pr°rmS "***"* *** «*» P^a- 
U»-6t 7 i 7 i ; ll ? P°SS f°r CaCh comP°nent **• of *et0 M°"& to an interval 
* * whSCn Wl'       3 ?USt beamf0rmer WÜ1 re^uire *e "to*"* of ^ least one wei^™ 
^IK? °UtPUt *X bel°ng t0 ™ °UtpUt enVd0pe for each S«» "pm 
**ch Ly be tack,eH h mm8 r^ "" * translated int0 an optimization problem, 

^ may be tackled by minimizing the value ofthe array output power 

P(6)=w"(0)i?w(0) (1615) 

j ^:rwe^e^eT-TpI^ 
I1*6 «"utL ; call d he mTn "      additive "oise-corrupted signal autocorrelation matrix. 
g^ > is called the minimum variance beamformer and is given by 

wMv(6) = 
ir!s(6) 

sH(9)i?-1s(0) 
(16.16) 

i*xithe corresponding power output is 

til 
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sH(9)i?-1s(9) (16.17) 

The minimum variance power as a function of 9 can be used as a form of the data-adaptive esti 
mate of the directional power spectrum. However, in this mode of solution, the coefficient vector« 
unconstrained except at the steering direction. Consequently, a signal tends to be regarded as an 
unwanted interference and is, therefore, suppressed in the beamformed output unless it is almost 
exactly aligned with the steering direction. Therefore, it is desirable to broaden the signal accen. 
tance angle while at the same time preserving the optimum beamformer's ability to reject noise and 
interference outside this region of angles. One way of achieving this is by the application of the 
principle of superdirectivity. 

Discrete Arrays and Polynomials 

It is common practice to relate discrete arrays to polynomials for array synthesis purposes [Stein- 
berg, 1976]. For volumetric equispaced arrays (it is only necessary that the spacing be uniform 
along each coordinate axis so that the spatial sampling periods D, and D;- along, respectively, the rth 
and ;'th coordinate axes could be different for i * j), the weight associated with sensors located at 
coordinate (.iiDi,i2D2,i3D3) is denoted by w{ix,i2,i3). The function in the complex variables (z„;,, 
and z3) that is associated with the sequence {wiiuh,i3)} is the generating function for the sequence 
and is denoted by 

W{zx, z2, z3) = £ £ ]T *,(,-,, i2, i3 )Z{. zj zh (16.18) 

In the electrical engineering and geophysics literature, the generating function W(zx,z2,z3) is some- 
times called the z-transform of the sequence {w{i\,i2,i3)}. When there are a finite number of sensors, 
a realistic assumption for any physical discrete array, WfojZj.Zj) becomes a trivariate polynomial. 
In the special case when w(i„/2,j3) is product separable, the polynomial W(z„Z2,Z3) is also product 
separable. Particularly, this separability property holds when the shading is uniform, i.e., w^, 12,13) 
= 1. When the support of the uniform shading function is defined by i, = 0,1,..., AT, - 1, u = 
0,1,.... N2- 1, and i3 = 0,1,..., N3- 1, the associated polynomial becomes 

*M 

|j|| 

-11 
m-: 

ipfc 

I 

N.-l    tf,-I    N,-l 

w(zv z2, z,) = £ x 1 zi'z224=n^-^ 
(.=0      i, = 0     i, = 0 i=l     Zi        * 

(16.19) 

In this case, all results developed for the synthesis of linear arrays become directly applicable to the 
synthesis of volumetric arrays. For a linear uniform discrete array composed of N sensors with 
intersensor spacing Di starting at the origin and receiving a signal at a known fixed wavenumber k 
at a receiving angle 6, the far-field beam pattern 

N-l 

S(k1,mS(Q)=Jje
ik irD] sin 8 

r=0 

may be associated with a polynomial Z^Ui» by setting z, = e;*iDi»n8. This polynomial has all its 
zeros on the unit circle in the zx -plane. If the array just considered is not uniform but has a weight- 
ing factor wr, for r = 0,1,..., Nt - 1, the space factor, 

N.-1 

Q(e)4]Twre
;*lD'r5i sin 8 

m 
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"may again be associated with a polynomial E^LöVi- By the pattern multiplication theorem, it is 
I' ssible to get the polynomial associated with the total beam pattern of an array with weighted sen- 
• ^ by multiplying the polynomials associated with the array element patternand the polynomial 
r associated with the space factor 0(6). The array factor |Q(9)|2 may also be associated with the poly- 

I nomial spectral factor 
N, -l    - N, -1 

QO) <-> jwrz;S<(zr)r 
(16.20) 

pWe the weighting (shading) factor, is allowed to be complex. Uniformly distributed apertures 
* and uniformly spaced volumetric arrays which admit product separable sensor weightings can be 
'Wed by using the well-developed theory of linear discrete arrays and their associated polyno- 

«J 'miaL When the product separability property does not hold, scopes exist for applying results from 
ft multidimensional systems theory [Bose, 1982] concerning multivariate polynomials to the synthe- 

sis problem of volumetric arrays. 

Velocity Filtering irr_ 
Combination of individual sensor outputs in a more sophisticated way than the delay-and-sum 
technique leads to the design of multichannel velocity filters for linear and planar as well as spatial 

" arrays. Consider, first, a linear (1-D) array of sensors, which will be used to implement velocity dis- 
crimination. The pass and rejection zones are defined by straight lines in the (fc^co)-plane, where 

it,  = 
(0 (0 

V      (v/sin 9) 

is the wavenumber, ffi the angular frequency in radians/second, V the apparent velocity on the 
earth's surface along the array line, vthe velocity of wave propagation, and 6 the horizontal arrival 
direction. The transfer function 

HfakJ = < V V 
o, otherwise 

of a "pie-slice" or "fan" velocity filter [Bose, 1985] rejects totally wavenumbers outside the range 
-iailV< fc, < |co|/Vand passes completely wavenumbers defined within that range. Thus, the trans- 
fer function defines a high-pass filter which passes signals with apparent velocities of magnitude 
prater than Vat a fixed frequency (0. If the equispaced sensors are D units apart, the spatial sain- 
ing results in a periodic wavenumber response with period fci = 1/(2D). Therefore, for a specified 
«PParent velocity V, the resolvable wavenumber and frequency bands are, respectively, -1/(2D) < fci 

; s l'(2D) and -V7(2D) < © < V/(2D) where o)/(2D) represents the folding frequency in radians/ 
{«econd. 
y£ Linear arrays are subject to the limitation that the source is required to be located on the 
^ «ended line of sensors so that plane wavefronts approaching the array site at a particular velocity 

lli"8^16 *e ^dividual sensors, assumed equispaced, at arrival times which are also equispaced. In 
gg^wtmology, the equispaced interval between successive sensor arrival times is called a move-out or 
T|f «ep-out and equals (D sin 9)/v= D/V. However, when the sensor-to-source azimuth varies, two or 
jg?»ore independent signal move-outs may be present. Planar (2-D) arrays are then required to dis- 

8ä£ininate between velocities as well as azimuth. Spatial (3-D) arrays provide additional scope to 
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the enhancement of discriminating capabilities when sensor/source locations are arbitrary. In su f, 
cases, an array origin is chosen and the mth sensor location is denoted by a vector (*,m x2m x, )• anJ 

the frequency wavenumber response of an array of sensors is given by 

1 
H(<B, kvk2,k3) = — y Hm(fi>) exp 

AT m=l 
X ->2,ifc-; 
1=1 

where Hm(co) denotes the frequency response of a filter associated with the mth recording device 
(sensor). The sum of all N filters provides flat frequency response so that waveforms arriving from 

the estimated directions of arrival at estimated velocities are passed undistorted and other wave- 
forms are suppressed. In the planar specialization, the 2-D array of sensors leads to the theorv of 
3-D filtering involving a transfer function in the frequency wavenumber variables/ it,, and k,. The 
basic design equations for the optimum, in the least-mean-square error sense, frequency 
wavenumber filters have been developed [Burg, 1964]. This procedure of Burg can be routinely 
generalized to the 4-D filtering problem mentioned above. 
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Defining Terms 

Array pattern: Fourier transform of the receiver weighting function taking into account the posi- 
tions of the receivers. 

Beamformers: Systems commonly used for detecting and isolating signals that are propagating 
in a particular direction.    " 

Grating lobes: Repeated main lobes in the array pattern interpretable in terms of spatial fre- 
quency aliasing. 

Velocity filtering: Means for discriminating signals from noise or other undesired signals 
because of their different apparent velocities.       ;'   ~        - 

Wavenumber:   2ir (spatial frequency in cycles per unit distance). 
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An efficient algorithm is developed to compute the a posteriori 

probabilities of the origins of measurements in the joint 

probabilistic data association Alter (JPDAF). The inherited 

parallelism of this algorithm enables it to be suitable for 

implementation in a multiprocessor system. In this algorithm, the 

a posteriori probability of the origin of each measurement in the 

JPDAF is decomposed into two parts. The computation of one part 

becomes trivial and the algorithm developed here is implemented 

on the other part, which is shown to be related to permanents. 

The computational complexity of this algorithm is analyzed in 

the worst case as well as in the average case. An analysis of this 

algorithm enables us to conclude that this algorithm is more 
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I.    INTRODUCTION 

In a cluttered environment, the received 
measurements may not all arise from the targets of 
interest Some of them may be from clutter or false 
alarm. As a result, there always exist ambiguities in 
the association between the previous known targets 
and measurements. To solve the problem of data 
association between targets and measurements, three 
typical approaches have been reported in the literature. 
The first is called a target-oriented approach in which 
each measurement is assumed to have originated 
from either a known target or clutter, as in the joint 
probabilistic data association filter (JPDAF) [1, 2]. 
The second is called a measurement-oriented approach 
in which each measurement is hypothesized to have 
originated from either a known target, a new target, 
or clutter [3]. The third approach is referred to as 
track-oriented where each track is hypothesized to 
be either undetected, terminated, associated with a 
measurement, or linked to the start of a maneuver 
[4-6]. In these approaches, the number of data 
association hypotheses could increase rapidly with the 
increase in the number of targets and the number of 
measurements. Therefore, in a multitarget tracking 
algorithm, the computational cost in generating 
the data association hypotheses would be excessive 
when the number of targets and the number of 
measurements are large. 

In recent years, a lot of attention has been given 
to the task of improving the computational efficiency 
of a multitarget tracking algorithm. Fitzgerald [7] 
proposed an ad hoc formula to approximately compute 
the ß'jS in the JPDAF. For ;' > 0, ß'j is the a posteriori 
probability that measurement;' originated from target 
t. For j = 0, ß'0 is the a posteriori probability that no 
measurement originated from target t. Fitzgerald's 
formula breaks down when four targets are required 
to be tracked [8]. Sengupta and Iltis [8, 9] developed 
an analog neural network to emulate the JPDAF. They 
showed that the neural network is capable of handling 
two to six targets and three to twenty measurements. 
However, the heuristic nature of their approach 
makes implementation difficult [10]. Alternatively, 
Nagarajan, et al [11], arranged the hypotheses in 
the measurement-oriented approach [3] in a special 
order so that the probabilities of the hypotheses are 
proportional to the product of certain probability 
factors already evaluated. The algorithm locates the 
N globally best hypotheses without evaluating all 
of them. In [12], Fisher and Casasent developed 
a fast joint probabilistic data association (JPDA) 
algorithm. In their algorithm, the computation of 
the ß's was implemented using enormous number 
of vector inner product operations. Since the vector 
inner product operation could be easily realized on 
an optical processor, they proposed a specialized 
optical processor to approximately implement the 
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fast JPDA algorithm. Recently, Zhou and Bose [13] 
proposed a depth-first search (DFS) approach to ' 
efficiently compute the /3<s in the JPDAE Their ■'-";■ 
algorithm requires much less computation than the 
fast JPDA algorithm in the average case, when there 
are, on average, two to three measurements inside' 
the validation gate of a target. The validation gate of 
a target is a region with a prescribed size around the 
predicted position of the target. 

As shown in [13, 14], the performance of an 
approximation of the JPDAF degrades drastically 
when the density of targets is high. Therefore, it is 
important to implement the JPDAF accurately in 
a dense target environment Among the algorithms 
mentioned above, only the two algorithms proposed in 
[12, 13] have the potential for accurately computing 
the ß'jS in the JPDAF. The fast JPDA algorithm in 
[12] is suitable for implementation in a multiprocessor 
system. Nevertheless, the computational cost is very 
high when the number of targets and the number 
of measurements are large since the design of the 
algorithm is based on the worst case scenario. In 
the worst case, all measurements fall inside the 
intersection of the validation gates of all targets. 
Although the DFS algorithm [13] is much more 
efficient than the fast JPDA algorithm in the average 
case, it is specifically directed towards implementation 
through a system with a powerful centralized 
processor, normally used in ground-based tracking 
systems. Our objective here is to propose an algorithm 
which not only performs better than the DFS algorithm 
in the average case, but which is also suitable for , 
implementation in a tracking system with several 
spatially distributed microprocessors. ■"*... 

A brief review of the JPDAF is given in Section II, 
followed by the problem formulation in Section III. 
The new algorithm is developed in Section IV. In 
Section V, the computational complexity of the new 
algorithm is analyzed in the worst case as well as in 
the average case. Finally, the advantages of the new 
algorithm are summarized in Section VI. ■   ■■ ■ 

II.    REVIEW OF THE JPDAF 

We assume that there are n targets being tracked 
at time index k. Let the dynamic model for target t be 
described by 

x'(k + 1) = F'(k)x'(k) + G'(k)w'(k) l .:• (1) 

z'(£) = #'(£)*'(£)+ v'(fc),        t = \£'...]n 

where x'(k) is the //'-dimensional state vector, zt(k) 
is the M' -dimensional measurement vector with Af' 
actually independent of t, F'(k), G'(k) and H'(k) 
are known model matrices, w'(k) and v'(k) are, 
respectively, the p' and M' -dimensional noise vectors, 
which are assumed to be zero-mean independent 

,- . .v"--.si»igrs *;/ '*.." 
identically distributed Gaussian processeVwt&lmawn'' 
covariances:    J ."-■'-';-'.'  * • u ^^u^vÄStl^^fl-r .     . A&_  

E{w'(k)(W'U))'} = Q'(^fc/#g!:..;.(3) 
E{V'(k)(v'(]))'} = #(*)«*/•* Äfc'-(4) 

where 6k j = 1 if k = j and 6k j = 0 otherwise. The , 
prime superscript indicates matrix transposition. The 
initial target state x' (0) is assumed to be normally 
distributed with mean £'(0 [ 0) and covariance 
P'(0 | 0). It is also assumed to be independent of w'(k) 
and v'(k) for all A: > 0. 

Suppose that m measurements are received at 
time index k. In a cluttered environment, m does 
not necessarily equal n and it may be difficult to 
distinguish whether a measurement originated from 
a target or from clutter. It is reasonable to denote a 
measurement at time index k by 

z(k) = 
z'(k)       if   z{k) is from target t 

zc{k)       if   z(k) is from clutter. 
(5) 

The measurement z*(k) is usually assumed to be 
uniformly distributed in the surveillance region and 
the number of clutter is subject either to Poisson 
distribution or to uniform distribution [1]. In this 
paper, Poisson distribution is assumed for the purpose. 

In the JPDAF, the a posteriori probability ß'j is 
computed. For ;' > 0, ß) is the a posteriori probability 
that validated measurement ;' originated from target t. 
ß'0 is the a posteriori probability that no measurement 
originated from target t. A validated measurement is 
one which is either inside or on the boundary of the 
validation gate of a target Mathematically, a validation 
gate is defined by 

(z(k) - l'{k))'St{k)-\z{k) - Z'(k)) < g2       (6) 

where z'(k) is the predicted value of z(k) for target t. 
The error, (z(k)-i'(k)), is the innovation generated 
from z(k) for target t, S'(k) is its covariance matrix, 
and g is a selected threshold. As discussed in [2, 15], 
the choice g > N/M

7
 + 2 ensures that the correct 

measurements will he within the gate with probability 
0.999. The dimension of z(k) is M'. The inequality 
given in (6) is said to generate a validation test The 
result of the test is kept in what is called a validation 
matrix Q. This validation matrix Q. is a. mx (n + 1) 
rectangular matrix defined as [2], 

t 

0 

fi = fu/tl = 

/ Wio      Wii      Wl2 

W20      ^21      W22 

Win \ 

W2n 
>; 

/    m. 

(7) 
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ifes 

■ where w,a = 1 for /' = 1,2,...,m, w,-, = 1 if 
, r measurement / is inside the validation gate of target; 

~~t and ujt = 0 otherwise for / = 1,2,...,m, and t = 
A»I,2,.&,/iM3ased on the validation matrix fi, data 

' , assoc£ärioh*hypotheses (or feasible events 5s [2]) are 
i generated subject to the following two restrictions: 

1) Each measurement can have only one origin 
(either a specific target or clutter). 

2) No more than one measurement originates from 
a target 

This leads to a combinatorial problem where the 
number of data association hypotheses increases 
exponentially with n and m. 

- Each feasible event £ is represented by a 
hypothesis matrix Cl in [2]. Cl has the same size as the 
validation matrix Q. A typical element in Cl is denoted 
by tDji where 

Ujt = < 1 

0 

if Ujt = 1 and measurement j 
is hypothesized to be from 
clutter for t = 0 

if Ujt = 1 and measurement j 
is hypothesized to be associated 
with target t for t ^ 0 

otherwise. 

(8) 

Corresponding to the two restrictions above, in Cl, 
there is at most one unit element in each column 
except for t = 0 and there is exactly one unit element 
in each row. 

After each Cl is obtained, the conditional 
probability of the corresponding data association 
hypothesis or feasible event is calculated by a formula 
given in [2]. A simplified version of this formula is 
given as 

Cl) | Z) = _(poy>inCv)-m,    J-j-    pi 
j:ü>j,=\ ;"r(9) 

for   j = l,2,...,m,    and   r = l,2,.. .,n ■ 

where Z is the set of all measurements received up to 
current time index k, c is a normalizing constant, mj" 
is the number of targets detected in this feasible event 
S, Uj, = 1 indicates that measurement j is associated : 

with target t in the event, and 

(N(z);Q,S')PD 

'    to 
P<$ = A(1-PD) = P0 

for   ; = l,2,...,m,    and 

if   Ujt = 1 

otherwise 

t = 1,2,...,«. 

(10) 

(11) 

In (10) and (11), A is the clutter density, PD is the 
probability of detection, and N(z'j;0,S') is a normal 
density function having zero mean and a covariance 
matrix S' with 

-z'j(k) = Zj(k)-H'(k)2'(k\k-l). (12) 

In (12), H'(k) is the observation matrix for target 
/ as defined in (2) and Jt'(k | k - 1) is the one-step 
prediction of the state estimate of target t. It is 
understood that the normalizing constant c in (9) 
is obtained by the summation, £f(ft) P(£(Cl) \ Z). 
Therefore, c is omitted hereafter. The a posteriori 
probability ß'j is computed from the conditional 
probabilities in (9) by 

ß'j = ^2P(£(.Cl)\Z)ujt (! 
£(ft) 

$=I-X>M 
;=i      / (1- 

for   j = 1,2,...,m,   and   r = l,2,...,n. 

The equations of the JPDAF are the same as thos< 
of a standard Kaiman filter with the following two 
changes. 

1) The innovation vector is generated by using 
relation: m 

;=i 

2) The update equation for the covariance matrix 
P'(k,k | k) is changed to 

P'(k,k\k) = ß'0(k)P'(k,k\k-l) 

+ Q--fo{k))P'*(k,k\k) 

+ K'(k)W'(k)K'(ky (16 

where K'(k) is the Kaiman gain for target t, 

P"(k,k | k) = [I-K'(k)H'(k)]P'(k,k | it —1) 

'■ .■   " , (1" 

denotes the covariance update for a single correct 
return, and   -*• 

m 

W'Qc) = J2ßj(k)z'j(k)zlj(ky - z'(k)z'(ky.   (18) 

In general, a covariance matrix P'(p,q | r) is defined 
as 

P'(p,q I r) = E{[x'(p) - X>(p | r)][x'(q) - x'(q | r)]'} 

-: (19) 

where x'(p | r) = £{x(p) | measurements received up 
to time index r}. 

In the next section, the computation of the /3's is 
reformulated in such a way that the construction of the 
hypothesis matrices Cl is not necessary. 

III.    PROBLEM FORMULATION 

In the original JPDAF [2], the computation of ß'j 
consists of the following three steps. 
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1) Construct a validation matrix Q and compute P', 
using (10) and (11). •" ' 

2) Generate data association hypotheses and 
compute P(£(Cl) \ Z) using (9). ..;....„_... 

3) Compute ß'j using (13) and (14). 

In this section, each /?'■ is decomposed into two 
parts so that its computations does not require the 
generation of the data association hypotheses or the 
construction of the hypothesis matrices as in the 
original JPDAF [2] and the DPS algorithms [13]. 
Let A denote an ordered set of nonzero integers 
associated with the targets. Let B denote another 
ordered set of non-zero integers which are the indices 
of measurements. The symbol 0 is the index for clutter. 
Suppose that there are n targets and m measurements 
are received at a certain time instant Then, 

.4 = {1,2,...,*} (20) 

B = {Q,l,...,m}. (21) 

With the above notation, (13) may be rewritten as 

/3j(Aß) = l>(£(fi)|2>^ 
£(Cl) 

for   ;'= l,2,...,m,    and   f = 1,2,...,/!. 

(22) 

| Since Pj is a factor of the P(£(fl) \ Z)s when Qjt = 1, 
ß'j may be decomposed as 

ß'j(A,B)=p'jF(A\t,B\j)  •      ;;:;;y(23) 

for   ; = l,2,...,m,    and   t = l,2,...,n 

where the difference set C\l is the set derived from;«*! ; 
C by deleting element /. In (23), F(A\t,B\j) is a if-> ~n 
function of P[$ for / ^ j and r £ t. An interpretation 
of F(A\t,B\j) may be obtained using the definition of 
P(£(Cl)\Z)[2}. 

For ;' = 1,2,...,m, and t = 0,1,2,...,«, let £jt ' 
denote the hypothesis that measurement / originated 
either from target t if t £ 0 or from clutter if t = 0., j ['., 
Then, each feasible event £ may be written as [2] 

£(Q)=f]£jp(t)(<2jp(t)) (24) 

where p(t) denotes an element of the set of 

permutations of {t} ={0,1,2,...,/i}. Furthermore, " 
let Cl',jt) be the hypothesis matrix obtained from Cl 
after eliminating the ;'th row and the rth column.. .... 
P(£j,(ü>jt) | Z) is the probability of the hypothesis "i 'or~ 
that measurement ;' originated from target t subject ?-"'< 
to the assumption that data association between the - 
remaining measurements and remaining targets is "»« 
ignored, and Yle^'^P^i^ut)) I £jt(Pji)>Z) denotes 
the probability of all the data association hypotheses 
among the remaining measurements and targets /• 

conditioned on the hypothesis ÜÄÄwaswcmcnt /is 5.. 
associated with target t. .Smce^ji^^^arentsj<jh 
£s are mutually exclusive, (22) cMbeiearranied as 
below. "   ■-  ' •'•";'^^^^^f#ffiip)- i! 

ß){A,B)=Y,pv@)\zy*i> 
£C«) 

>'V 3f»:«i;- 

= P\       (J    _£(fa\Z 

= P        £/,(£,,)<* (J ^(ft))|Z 
\ \£(A):iiA-l 

= />(£/,(£;,) | 2) 

= JP(f/((w;()|2)/'       [J   £(ß[,-o)|£;,(<ÖA),2 

=   />(£;Y(0;,)   |   2)     £     Piß(PW)\£j<Pii),Z) 

for   ;' = l,2,...,m,    and   t = l,2,...,n. (25) 

Comparing (25) with (23), we have 

P)=P(£jt(Qjt)\Z) (26) 

F(A\t,B\j)=   £ P(^'00)|^(^).2). (27) 

Therefore, F(A\t,B\j) in (23) contains the sum of 
the conditional probabilities of the data association 
hypotheses among all the targets, the measurements, 
and clutter, given that measurement j is associated 
with target t. In the case of the probabilistic data 
association filter (PDAF) [15J, where P] differs from 
the a posteriori probability, ß'j, by a normalization 
constant, F(A\t,B\j) may be considered to be due 
to the interference from other targets on /3jj if (23) is 
compared with its counterpart in the PDAF. 

.'. Similarly, ß'0 may be decomposed as 
■.    .    .;-. -     .•■••. c:v::t.;if—^r.-.c;■■;'■;.: .. 

ß'0 = PoF(A\t,B),       for   r = l,2,...,«     (28) 

where F(A\t,B) contains the sum of the conditional 
probabilities of the data association hypotheses among 
all the targets, the measurements, and clutter, given 
that target t is not associated with any measurement 
In (28), F(A\t,B) may also be considered as the 
interference on ß'Q from other targets. The computation 
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^of J3K aftÄtSbraralatiotf cän now be summarized in 
;thre|fteg^^|clow^i2'.v ' •      "... " ■■->■■ - ■ 

"^'^on^äct^^lilä'tiori matrix Ü and compute P] 
using (10) and (11). 

„2) Compute F(A\t,B\j) and F(A\t,B). 
3) Compute ß) using (23) and (28).    _.. 

lb compute ß'0 for t = l,...,n, using (14) instead 
of (28), the ß'jS need to be normalized. The /3js 
computed using (23) and (28) are not normalized. The 
normalizing constant c is determined by the following 
relationship. 

for   r = l,2,. (29) 

(30) 

(31) 

£#(•4,5) = «:, 

Suppose that c is computed in the t = 1 case as 

JTß}(A,B) = c. 
;=0 

The same constant also applies, in all related 
cases where t £ 1. Then, ß) for ;' = 0,1,..., m, are 
normalized as below 

Using c, ß'j, for t = 2,...,n, and ;' = l,...,m, can also 
be normalized as the way the ßjs do. Now, ß'0 for 
t = 2,...,n, are ready to be computed using (14). In 
the next section, an algorithm is developed to compute 
F(A\t,B\j) for t = l,...,n, and ; = l,...,m, and ' 
F(A\1,B). 

IV.   ALGORITHM DEVELOPMENT 

From the notation introduced in the last 
section, F(A,B) denotes the sum of the conditional 
probabilities of the data association hypotheses among 
the targets in A and the measurements in B. Using 
(22) and (27), we have -■- ,;    -:- ;,"i- '':':"'•iJ-rv: 

F(A,B) = £>(£$) | Z) 
•■-'■•      £(ft) 

m 

;;;:;(32) 

After substituting (23) and (28) into (32), a recurrence 
relation for F(A,B) can be obtained. For t € -4, 

F(A,B) = P0F(A\t,B)+ J2 PjF(A\t,B\j). 
/es\o 

(33) 

The'algorithm for computing F(A,B) is obtained by 
recursive implementation of (33). The initial conditions 
associated with (33) are given below.    '    : '■'  ■■>' 

The trajectory of target i j 

x The ith measurement       ] 

C. J)   The validation gate \ 

Fig. 1.   Typical layout of 4 targets and 4 measurements. 

1) If t is the only element in A, then, 

F{A,B) = Y.P'r 
yes 

(34) 

Note that PQ = Prj in the above equation according to 
the notation introduced in (11). 

2) If ;' = 0 is the only element in B, then, 

F(A,B) = (Po)MI 

where |^4| denotes the number of elements in A. 
3) If \B\ = 2 and \A\ > \B\, then, 

(35; 

/ 

F(A,B) = (Po)^1"1 

\ 

Po+ZP'i 
x J€B\Q     ) 

(36, 

In order to demonstrate how the recursive 
algorithm works, consider an example. 

EXAMPLE. Suppose that there are 4 closely spaced 
targets under surveillance. On one radar scan, four 
measurements are received as shown in Fig. 1. Then, 

'"■A    ,4 = {1,2,3,4} (37) 

B = {0,1,2,3,4}. (38) 

The conventional validation matrix occurring in the 
JPDAF for this example is given in (39) 

n = 

0   1   23   4 

/l   1   0   0   1\    i^i 

1   0   10   0 2 

10   11   1 3 

\1   0   0   1   0/ 4J 

(39) 

(J- 

For target 1, there is only one measurement which falls 
inside its validation gate. Therefore, only ß\ and ß\ 
are none zero. Using (23) and (28), ß\ and ß\ may be 
computed as 

ßl(A,B) = P0F(A\1,B) 

ß\(A,B) = PlF(A\l,B\l) 

(40) 

(41) 
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F({3,4), {0,2,3,4}) 

H{4), (0,2,3,4}) 

t -f({4},(0,3,4}) 

>? 
F<(4).(0.2,4}) 

F({i}.{0,2,3}) 

ft/W)' {0.3,4}) 

y({2,3,4},(0,2,3,4})/jli'((3'4).(0,3,4})4^|_f({i},{0,4}) 

l>({3,4},{0,2,4}) 

* A11 

f({4f,{0,3}) 

-i''({1},{0,4)) 

F({4),{0,2}) 

A.-F({4). {0,2.3}) 

>n{3,4}, {0,2,3}) f({4},{0,3}) 

••P({4),{0,2}) 

Fig. 2.    Illustration of example using recursive algorithm. 

A\l = {2,3,4} 

B\l = {0,2,3,4}. 

where 
(42) 

(43) 

Equations (40) and (41) reduce the computations of ß\ 
and ß\ to those of F(A\1,B) and F(A\1,B\1). 

Since, in this example, .4\1 = {2,3,4} and B\l = 
{0,2,3,4}, the computation of F(^\l,ß\l) may be 
performed step by step using (33) as shown through 
the directed tree in Fig. 2. In Fig. 2, the recursive 
procedure for computing F({2,3,4}, {0,2,3,4}) is 
described by a directed tree. In this tree, the Pjs are 
the weights associated with the edges. The plus sign, 
+, at a node represents the summation operation. 
The F function at a node labelled with a plus sign 
is obtained from the weighted summation of the F 
functions at the sons (defined to be nodes which have 
edges incident from the node under consideration) of 
the node, as seen from (33). Let a leaf denote a node 
which does not have sons. Each F at a leaf of the tree 
is directly computed using the initial condition given 
in (34). In the computation of ^({2,3,4}, {0,2,3,4}), ■ 
in this example.the nodes in the tree shown in Fig. 2 
are visited via DFS. A node is not visited if the only 
branch incident on it has zero weight. As a result, the 
sons of this node are also not visited. In Fig. 2, the 
nodes having only incident dashed branches are not 
visited. In other words, the dashed branches in the tree 
are pruned becauseiheir weights are zero.   / 

F(^4\l,ß) may.be computed in a similar way as 
discussed above. Generally speaking, the computation 
in the recursive algorithm developed here is performed 
from top to bottom (or from left to right as shown in 
Fig. 2). In the average case scenario, a lot of branches 
in a directed tree have zero weight, such as the one 

shown in Fig. 2. The computational cost can be saved 
if a directed tree is visited from top to bottom since 
the nodes which have branches with zero weights 
incident onto them are not visited. In the worst case 
scenario, however, no branches have zero weight ~ 
The overall computation may be reduced if the nodes 
having the same F are merged so that they are visited 
only once. As shown in Fig. 2, almost every F appears 
twice at the leaves of the tree if the F functions at. 
the nodes which have branches with zero weights 
incident on to them are computed. If the computation 
is performed from bottom to top, it is obvious that 
the computational cost can be reduced in the worst 
case scenario. However, in the average case scenario, 
the majority of the Fs at the leaves of a tree appears 
only once after the dashed branches are pruned, as 
shown in Fig. 2. Therefore, a lot of the computation 
might be wasted if the computation is performed from 
bottom to top since many nodes which are connected 
with dashed branches do not contribute to the F at 
the root of a tree. It is shown in the next section that 
the computational cost is lower if the computation is 
perform from top to bottom in the average case. The 
computation in the fast JPDA algorithm [12] may be 
interpreted as being performed from bottom to top if 
the procedure is organized into the same tree structure 
as discussed above. Detailed comparison between the 
recursive algorithm developed here and the fast JPDA 
algorithm will be given below. 

V.    COMPUTATIONAL COMPLEXITY ANALYSIS 

The computational complexity measure here is 
defined in terms of the numbers of multiplications, 
M(n,m), and additions, A(n,m), used for calculating 
the ß'-s in the JPDAF, where n is the number of 
targets and m is the number of measurements. 
Since the computational cost for normalizing ß'j is 
negligible when compared with that of F(A\t,B\j), 
multiplications and additions for normalizing ß) are 
not included in M(n,m) and A(n,m). In the worst 
case, the m measurements received fall inside the 
intersection of the validation gates of the n targets. 
Therefore, each measurement may be associated 
with either any one of the n targets or clutter. In the 
average case, however, it is assumed that there are on 
average two to three measurements which fall inside 
the validation gate of each target In the following, 
the worst case analysis is given first Then, the average 
case analysis is discussed. 

A.   Worst Case Analysis 

In the worst case, no branch is pruned if the 
computation process is represented in a tree structure 
as shown in Fig. 2, without any dashed edges. 
As discussed in Section III, to compute all ß'j, 
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only F(A\t,B\j) for r = 1,...,«, and./= l,.,;,m, .-- 
and F(.4\l,5) need to be computed..Therefore,   -; 

M(n,m) and A(n,m) are, respectively,; the number 
of multiplications and additions which suffice for 
computing nm /3js (j jk 0) and one ß'Q. In the recursive 
algorithm proposed in the previous section, the 
computation of the.^s is based on (23) and (28). 
As shown there, the only operation required is 
one multiplication for computing each ß'j after the 
corresponding F is computed. Therefore, 

M(n,m) = nmM'(n-l,m) 

■■-'.■■>■:■:        +M'(n-l,m + l) + nm + l      (44) 

and 

A(n,m) = nmA'(n - l,m) + A'(n - \,m +1) (45) 

where M'(p,q) and A'(p,q) denote, respectively, the 
numbers of multiplications and additions which suffice 
for computing the function F(A,B) with p = \A\ and 
q = \B\. 

In (33), there are q multiplications and q — 1 
additions used in the computation of F(A, B) after 
(q - 1) F(A\t,B\j)s (j f 0) and one F(A\t,B) are 
computed. Therefore, 

TABLE I 
Sample Values of M{n,m)/A(n,m) in the Recursive Algorithm 

M'(p,q) = (q-l)M'(p-l,q-l) 

+ M'(p-l,q) + q (46) 

A'(p,q) = (q-l)A'(p-l,q-l) 

+ A'(p-l,q) + q-l (47) 

with boundary conditions, 

M'(l,q)=0 •  (48) 

M'(p,2)=p-1,       for p>2 (49) 

M'(p,l)=p-1                -      -■ -  (50) 

A'(i,q)=q-i '     ..;;-!:";; 
;,v (51) 

A'(p,2) =p,       for p>2 ' (52) 

A'(p,l)=0.             '■:,-''.// . (53) 

The boundary conditions for (46) and (47) are 
obtained from (34), (35), and (36). 

In Table I, some sample values of M(n,m)   ! 

aoAA{n,m) are provided. Comparing the listed 
values in Table I with the corresponding entries in 
Table II, it is not surprising to find that the recursive 
algorithm requires more multiplications and additions 
to compute the ß'jS than the fast JPDA algorithm' 
[12] in the worst case. This is because some Fs are 
computed more than once in the recursive algorithm 
as discussed in the previous section. However, the 
recursive algorithm is expected to perform much better 
than the fast JPDA algorithm in the average case.    . 

.More discussion on the average case analysis will be 
given in the sequel. 

11 m M(n,m)/A(n,m) n m M(n,m)/A{n,m) 
3 6 134/582 5 10 43644/283.100 

4 8 2195/11952 6 12 1034045/7807860 

TABLE II 
Sample Values of M(n,m)/A(n,m) in Fast JPDA Algorithm 

11 in M(n,m)/A(n,m) n m Ai(n,m)/A(n,m) 

:i 6 150/396 5 10 10570/22100 

4 8 1404/3232 6 12 70044/1365S4 

TABLE III 
Sample Values of M(n,m)/A(n,m) in DFS Algorithm 

11 m M(n,m)/A(n,m) n m M(n,m)/A(n,m) 

3 6 318/787 5 10 96890/339041 

4 8 5072/14849 6 12 2218992/9081085 

In the worst case, the comparison between the 
computational complexity of the recursive algorithm 
and the DFS algorithm is also based on M(n,m) 
and A(n,m). In Table III, some sample values of 
M{n,m) and A(n,m) required for implementing the 
DFS algorithm are listed. Comparing Table III with 
Table I, it can be inferred that the M(n,m)s in the 
DFS algorithm are more than twice as large as those 
in the recursive algorithm and that the A(n, m)s in 
the DFS algorithm are always larger than those in 
the recursive algorithm. Considering the fact that the 
recursive algorithm is suitable for implementation in a 
multiprocessor system, the computational cost of the 
recursive algorithm could be much less than that of the 
DFS algorithm in the worst case. 

The computational complexity given above is 
analyzed in terms of operational counts. It can also be 
given in "big O" notation. If the algorithm developed 
here is implemented in a system with a floating point 
unit, multiplication and addition operations would 
take about the same amount of time. Let G(n,m) = 
M(n,m) + A(n,m). According to the definition given 
in [16, p. 2JAVA, the computational complexity of our 
algorithm in the worst case scenario is 0(G(n,m)). 

B.    Average Case Analysis 

In order to simplify the discussion, it is assumed 
that there are at most three measurements inside the 
validation gate of each target. This number was also 
selected in the examples given in [2, 8]. As a result, 
there are at most 3n /3js (j f 0) and one ß'0 which 
need be computed. After the interference part of each 
ß'j is obtained, 3n + 1 multiplications are sufficient 
for computing the ß'jS as evident from (23) and (28). 
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TABLE IV -. 
Upper Bounds of M(n,m) and A(n,m) in the Recursive Algorithm 

a m M(n.m)/A(n,m) n m M{n,m)/A(n,m) 

.1 - 50/150 5 - 1360/4080 

4 - 273/819 6 - 6479/19437 

Therefore, (44) and (45) lead to the inequalities, 

M(n,m)<3nM'(n-l,m) 

+ M'(n - l,m + 1) + 3n + 1 (54) 

A(n,m) < 3nA'(n - l,m) + A'(n - \,m + 1). (55) 

In the average case, there are at most 4 
multiplications and 3 additions required in the 
computation of F(A,B) after 3 or less F(A\t,B\j)'s 
(J £ 0) and one F(A\t,B) are computed in (33). 
Again, from (46) and (47), we infer that 

M'(p,q) < 3M'(p - l,q - 1) + M'(p - l,q) + 4 

A'(p,q) <3A'(p-l,q-l) + A'(p-l,q) + 3- 

(56) 

(57) 

Since, in a cluttered environment, m is likely to be 
larger than n in the average case, therefore by using 
(48) and (51), the initial conditions for (56) and (57) 
may be simplified to 

M'(l,q) = 0 ,    (58) 

A'(l,q)<3. -      (59) 

With the above initial conditions, it is not difficult to 
show that both M'(p,q) and A'(p,q) are independent 
of q and that those are bounded from above by    ■ 

M'(p,q)<i<V-l-l)   ' V («J) 

■    A'(p,q)<V-l. (61) 

Substituting (60) into (54) and (61) into (55), the upper 
bounds for M(n,m) and A(n,m) in the average case 
can be obtained after routine manipulations.        ; 

M(«,m)<^^(4"-1-1) 

^(n,m)<(3n + l)(4"-1-l) 

(62) 

(63) 

Since the design of the fast JPDA algorithm 
[12] is based on the worst case scenario, there is no 
computational cost reduction in the average case! As a 
result, the recursive algorithm developed here is much 
more efficient than the fast JPDA algorithm, as shown 
in Table II and IV. If we consider the fact that the 
entries in Table IV are loose upper bounds, the actual 
computational cost of the recursive algorithm would be 
much less. 

The upper bounds of M{n,m) and A(n,m) in the 
DFS algorithm, given in [13, 14], are reproduced below 

"     '    »'»fr  t.vm 

r ::-..,.^-XABI£^Ä|^|pa 

Upper Bounds of M(n,m)/A(n,nn iSuFS■ _ 

n m M(n,m)l A(n,m) a' m A/(»i,mV/(riJÄf 
3 - 90/208 5 

'-'■' 
f-1788/480^1 

1 - 417/1024 6 - " 7443/22528'f u # 
k't 

for ready reference ' 

M(n,m) < 2*4" -2- 3n -3" ..;,;-,.(64) 

A(n,m)<4n+3n*4"-1. !-'"(65) 

Comparing the upper bounds of M{n,m) in (64) 
and (62), it is apparent that the recursive algorithm 
requires less multiplications than the DFS algorithm 
for moderate value of n. A similar conclusion may be 
reached by comparing the upper bounds of A(n,m) in 
(63) and (65). Furthermore, we infer that the recursive 
algorithm always requires less additions than the 
DFS algorithm. The computational complexity of the 
recursive algorithm and the DFS algorithm in the 
average case may be assessed by comparing sample 
values of the upper bounds of M(n,m) and A(n,m) 
given in Table IV for the recursive algorithm and in 
Table V for the DFS algorithm. 

The computational complexity of our algorithm in 
the average case can also be given in terms of the "big 
O" notation. From (62) and (63), one can conclude 
that the computational complexity of our algorithm is 
0(n4"). 

VI.    CONCLUDING REMARKS 

In this paper, a recursive algorithm, which is 
suitable for implementation in a multiprocessor system, 
is developed. In this algorithm, the computation of 
the a posteriori probabilities, /3Js, is not based on the 
generation of the data association hypotheses like in 
the DFS algorithm [13]. Each ß) in this algorithm is 
decomposed into two parts. The computation of one 
part is trivial and the recursive algorithm, developed 
here, is used to compute the other part (due to 
interference from other targets). 

In the new algorithm, the computation of the 
interference part of ß) is implemented recursively in 
a top-to-bottom mode. In the worst case, this recursive 
algorithm requires more multiplications and additions 
than the fast JPDA algorithm [12]. However, in the 
average case, the recursive algorithm is expected to 
outperform the fast JPDA algorithm. In comparison 
with the DFS algorithm developed in [13, 14] the 
recursive algorithm requires less multiplications 
and additions than the DFS algorithm. The most 
important feature of the recursive algorithm is that 
it can be implemented on a multiprocessor system. 
Some suggestions for the implementation of the new 
algorithm on a multiprocessor system are given in 
Appendix A. 
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The task of computing F(A\t,B\j) is related to 
that of evaluating the permanente, defined in [17], of 
anmx(n-l) matrix and its submatrices having PJ 
for entries, where r = 1,..., n, r j61,7 = 0,1,..., m, and 
/ ^ ;'. Justifications are provided in Appendix B, where 
illustrative examples serve to verify the results obtained 
by exploiting this relationship. 

APPENDIX A:    SUGGESTIONS FOR ^ *"" '' 
IMPLEMENTATION .-,      _.   ..- 

In order to explore the inherited parallelism in 
our efficient algorithm, the computation of the a 
posteriori probabilities ß'j(A,B) in our algorithm may 
be summarized as below. 

1) For ; = 1,2,...,m, t = 1,2,...,«, and P) £ 0, 

ß'j(A,B) = PtjF(A\t,B\j) (66) 

and for t = 1,2,...,«, 

ß'0 = P0F(A\t,B). (67) 

2) For any A and B, 

F(A,B) = P0F(A\t,B)+ £ PjF(A\t,B\j). 
;6B\0 

3) The constant 

c = Y,ß'M,B) 
j=0 

(68) 

(69) 

may be computed for any value of t as done in (29) for 
the t = 1 case. ...      v,    .r . :       „, 

4) For ; =0,1,...,m, r = 1,2,...,«, and ß'j ^ 0, 

■   ' ■-"..'.•."'!' ^Pi^Py   ■"'■■' (70) 

To implement our efficient algorithm, memory 
space has to be allocated for ft-, Pj, A, and B. Let 
BETA(0 : m, 1 : n) and P(0 : m,l : n) be two 2-D 
arrays each of size (m + 1) x'« for storing ß'j and 
P'j. Since A and B are ordered sets of integers, some 
special data structures may be required to stored these 
two sets. As shown in Fig. 2, two types 6f operations 
are required on A and B to compute of F(A,B). 
One operator deletes an element from either A or B 
when the computation advances from a'node at the 
higher level of the tree to a node at the lower level. 
The other operator inserts an element in either A 
or B when the computation backtracks from a node 
at the lower level of the tree to a node at the higher 
level. Thus each operation updates either A or B. In 
order to implement the two operations efficiently, data 
structures can be found in [16] for storing A and B. 
Let the two functions, Delete(-Y,j) and Insert(/f,;'), 

denote, respectively, the operations of deletion of 
element j from set X and insertion of element j into 
set X when ; j* 0. In the case when ;' = 0, Delete and 
Insert do nothing. To compute F{A,B), a function can 
be defined using (A.3). For the sake of simplicity, let 
F(A,B) be that function which returns the value on the 
right-hand side of (68). 

With the notations introduced above, the 
computation of a posteriori probabilities ß'-{A,B) 
in our efficient algorithm for implementation on a 
multiprocessor system is summarized below. 

1) For; =0,1,2,...,m, t = 1,2,...,«, and P(j,t) 
^0, 

BETA(;,r) = PO'.O-Fpelete^O.DeleteOß,;)). 

2) The normalization constant for any target t is 
m 

c = £BETA(/,0- 

3) For ; =0,1,2,...,m, t = 1,2,...,n, and BETA(;\n 
7*0, 

BETA(;,r) <- -BETA(j,t). 

Each BETA(/,r) in steps 1 and 3 above can be 
computed in parallel in a multiprocessor system 
such as CM-200 from Connection Machine Inc.. 
A programmer may view the CM-200 as a set of 
virtual processors, one for each data element The 
corresponding code and data are passed to each 
processor. On a CM-200, steps 1 and 3 may be 
implemented using a conditional FORALL statement 
in CM FORTRAN [18]. The effect of a conditional 
FORALL statement is similar to the embedding of 
an IF statement in a DO loop using FORTRAN 
77. With a conditional FORALL statement, all data 
elements are operated on simultaneously. In general, 
our efficient algorithm is ready to be implemented 
in any parallel computer with single-instruction and 
multiple-data (SIMD) or multiple-instruction and 
multiple-data (MIMD) architecture. 

APPENDIX B:    RELATIONSHIP BETWEEN F(A,B) 
AND PERMANENT 

The definition for a permanent is given below [17]. 

DEFINITION Let A = (aft be aimx/i matrix over 
any commutative ring, m<n. The permanent of A, 
written Per(yl) is defined by 

?CT(A) = J2af)a2{2)---a /("■) (11) 

where the summation extends over each of the 
nl/(n — m)\ one-to-one maps, denoted by a, of the set 
{1,2,...,m) to the set {1,2,...,«}. 
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■>■:■«.■ V 

In our case let P = (P<) denote the matrix having rr< EXAMPLE'3*Let ß = {O^where^tbo 
i +1) rows and n columns. A and ß, defined before, so that \B\ = 2 and \A\ >|ß\0pTIfei?(74)ffi 
_.„•_ —.—-,-,-i„ th* rninmti and row indices this case: to yield equation (36).*» **?*?:*¥* 

/fflin mo« and n columns. A ana o, UCUIICU uciui«-,     ^ """ I^I - - -~- I~I -- i- \«r »—.'(/♦/appffirm ■ " 
^aä^eSy, the column and row indices this caserto yield «^^f^SSS^ 

PIC" 

% 

I 

£ 

of P, Le., A = {l,2,...,n} and ß = {0,1,.-M- For 
notational convenience, in later usage, we denote the 
permanent of P, Per(P), by Per(Aß). This causes 
no confusion or ambiguity because the 2-tuple (j,t) 
formed from an element, t, of A and an element, 
;, of B uniquely defines P). Therefore, applying the 
definition for permanent to a matrix or its transpose, 
we get 

EXAMPLE 4   I^t>l = {iX4}andß'={0,^|;7}. Ki 
The matrix (Pj), where the indices f and"/ are drawn 

from the sets A and B, is (note that Po = .^|M^ 

/Po    Po   -Po\^Z. ""'"""* 

T)     t A   B\ - V^ P"0'l) D^Cß) . . . Df O'lBl) 
?cr(A,B) = 2^ph    ph       ri\3\    ' 

\B\ < \A\ 

?QT(A, ß) = E P%X)
P

%I) ''' P°<!wY 

(72) 

\B\ > \A\.       (73) 

It is not difficult to show that F(A,B) in (33) is 
expandable as 

F(A0) = (Po)W +(i'o)1^1-1 IX/««'^) 

+ (i'0)1^1-2 (   E   Per<{'l''2>'SV))) +"' 

+ (i>o)l^-|sv)| (       E      Per({fi,...,r|BXo|},S\0) 

\'Win\o|€-* y 

|B\o| < |A     (74) 

P\ P\ % 
Pi Pi Pt 
Pj   Pf   Pt 

VP7
X  P? P7

4/ 

In this case, \A\ < \B\0\. Then (75) applies, yielding 

P(A5) = (Po)3 + (Po)2EEPl 

+^o E  E p^ 
'l?"2      ]\th 

plp?p4. (78) 
h.h,h£B\o 

F(A,B) can also be calculated as below, using (33) 

F(A,B) = (Po)2j:Pi+P°T,Pi   E/A 

, -til 

;i€ß\0      ZzSBU 

/i6ß\o     ^es\/i       :   ''V- - .:. 

.:   A6B\0       ;2€B\{0,/i} ,   h^Mh.h) 

i':1~      » 

+ Per(AS\0)   , |B\0|>M-     •    y ,d?c 

The validities of (74) and (75) are illustrated V*«' ^^NÖWLEDGMENT 
consideration of some special cases below. ±-l"~ '   ^ ^^ ^^ Jongtae Chun for Ws careful 

EXAMPLE 1   Let A = {0> so t^1 Ml = 1- ^ this case'    reading of the manuscript 
the use of (74) or (75), as the case demands, yields 

(79) 

-      It is not difficult to show that (78) and (79) are 
 r   - equivalent  . • 

acaniu-C7?). .1/. *«.•*.•;.« 
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Brief Paper 

A Unified Approach to Data Association in 
Multitarget Tracking*f 

B. ZHOU* and N. K. BOSE* 

Key Words—Target tracking; tracking systems. 

Abstract—A unified framework is proposed to provide a 
comprehensive understanding of the problem of data 
association in multitarget tracking. Under this framework, a 
systematic scheme is developed for generating the data 
association hypotheses in the target-oriented, measurement- 
oriented, and track-oriented approaches. Since there are 
many data association hypotheses with identical likelihoods 
in the measurement-oriented and track-oriented approaches, 
two specialized algorithms are developed to efficiently 
generate the data association hypotheses in the two 
approaches by adapting the depth-first search (DFS) 
algorithm developed earlier in the target-oriented case. 

1. Introduction 
RECENTLY, considerable attention has been paid to the 
problem of data association in multitarget tracking. In a 
cluttered environment, the detected signals comprising the 
measurements may not all originate from the targets of 
interest. Some of those could be either from clutter or false 
alarm. Each detected signal may be used as a measurement 
to update the state of a target. Therefore, more than one 
measurement may be available for the purpose of target state 
updating. The ambiguity occurring in associating previously 
known targets with new measurements is referred to as the 
problem of data association. To solve this problem, three 
approaches have been reported in the literature. Those are 
the target-oriented, measurement-oriented, and track-oriented 
approaches. In the target-oriented approach, each measure- 
ment is assumed to have originated from either a known 
target or clutter (Bar-Shalom and Fortmann, 1988; 
Bar-Shalom and Tse, 1975; Fortmann et al. 1983). In the 
measurement-oriented approach, each measurement is 
hypothesized to have originated from either a known target, 
a new target, or clutter (Reid, 1979). In the track-oriented 
approach, however, each track is hypothesized to be either 
undetected, terminated, associated with a measurement, or 
linked to the start of a maneuver (Kurien and Washburn, 
1985; Kurien and Liggins, 1988; Bar-Shalom, 1990). In 
multitarget tracking, Fortmann et al. (1983) proposed the 
Joint Probabilistic Data Association Filter (JPDAF) as an 
implementation of the target-oriented approach. Since the 
JPDAF, which may be viewed to be synonymous with the 
target-oriented approach, lacks track initiation capability and 
also suffers from the track biases and coalescence problem 
(Bar-Shalom, 1990; Fitzgerald, 1986), further study of the 
measurement-oriented  and   the  track-oriented  approaches 
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becomes necessary to address the computation intensive 
algorithms associated with these approaches in comparison to 
the JPDAF. Let n and m denote, respectively, the number of 
targets and the number of measurements. In the worst case, 
each of the n targets could be associated with any one of the 
m measurements. It has been shown that the computational 
cost for associating the n targets with the m measurements 
increases exponentially as a function of the parameters n and 
m (Zhou and Bose, 1993). However, if the data association 
problem involving n targets and m measurements can be 
decomposed into smaller subproblems, then the overall 
computational cost may, approximately, become polyno- 
mial^ dependent on n and m. The resulting small groups of 
targets and measurements are referred to as clusters in the 
multitarget tracking terminology. Two targets are in the same 
cluster if and only if at least one measurement falls inside the 
intersection of the validation gates of the two targets. A 
validation gate of a target is a region of certain size that 
surrounds the predicted position of the target. In this paper, 
the data association problem is with reference to 
measurements and targets belonging to the same cluster. 

After targets are properly clustered, Zhou and Bose (1993) 
proposed a depth-first search (DFS) algorithm to efficiently 
generate the data association hypotheses in the JPDAF. 
They showed that a significant reduction in the computa- 
tional cost of implementation of the JPDAF can be realized 
by the sharing of common factors occurring in the calculation 
of the conditional probabilities of the data association 
hypotheses. In this paper, the problems of generation of data 
association hypotheses in the measurement-oriented and 
track-oriented approaches are reformulated to permit 
development of a mathematical model, similar to the one 
developed by Zhou and Bose (1993) for the data association 
problems in the target-oriented case. A unified framework 
is provided for adapting the DFS algorithm to efficiently 
generate the data association hypotheses in the 
measurement-oriented and track-oriented approaches, where 
the total numbers of data association hypotheses are 
expected to increase drastically over the target-oriented 
approach. However, reduction in the overall computational 
cost may be feasible from observations on the conditional 
likelihood of a data association hypothesis. In the 
target-oriented approach, the conditional likelihood of each 
data association hypothesis is unique. When targets are 
grouped into clusters, this uniqueness property does not hold 
for the measurement-oriented and track-oriented ap- 
proaches. Our goal here is to develop two specialized DFS 
algorithms which can efficiently identify the data association 
hypotheses with identical conditional likelihood in the 
measurement-oriented and track-oriented approaches. 

2. Problem formulation 
Suppose that there are two targets moving towards each 

other. In one radar scan, three measurements are received, 
as shown in Fig. 1. In the target-oriented approach, a 
measurement may originate from either a known target or 
clutter. Zhou and Bose (1993) described this situation using 
three finite sets of ordered integers, Z, (j = 1, 2. 3). The three 
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     The trajectory of target i 

x The j'th measurement 

v '    The validation gate 

FIG. 1. A typical layout for the validation gates in the case of 2 targets and 3 measurements. 

sets are 

Z,={0, 1},    Z2 = {0,1,2},    Z3 = {0,2}. 

Z, ={0, 1} implies that measurement 1 could originate from 
either clutter or target 1. Similar explanations may be given 
to Z2 and Z3. In the measurement-oriented approach, 
however, any one of the three measurements could have 
originated from a new target. The three-finite sets of ordered 
integers may be augmented in the following manner to 
incorporate the possibility that a measurement may originate 
from a new target: 

Z,= {0,1,3},    Z2 = {0,1, 2, 4},    Z3 = {0,2,5}. 

Note that Z, = {0, 1, 3} implies that measurement 1 could 
originate either from clutter, or old target 1, or a new target 
3. Similar comments apply to Z2 and Z3. In addition to the 
possibility that a measurement could originate from a new 
target, an established track could either be terminated or 
linked to the start of a maneuver in the track-oriented 
approach. For the sake of simplicity, suppose that Singer's 
dynamic model (Singer, 1970) is used. Since the man- 
euverability of a target is inherited in Singer's dynamic 
model, it is not necessary to consider it in data association. 
On the other hand, a new integer set can be created to allow 
for the possibility that a track may be terminated at any 
moment. For the example shown in Fig. 1, four sets of finite 
ordered integers may be used: 

Z0 = {1,2},    Z, ={0,1,3},   Z2 = {0,1,2,4},    Z3 = {0,2,5}, 

where Z0 = {1,2} implies that the tracks of targets 1 and 2 
may be terminated. Note that, as in the measurement- 
oriented approach, Z2 = {0,1, 2, 4} implies that measurement 
2 could originate either from clutter, old target 1 or 2, or a 
new target 4. 

By comparing the data association problems in the 
measurement-oriented and track-oriented approaches with 
their counterpart in the JPDAF, the DFS algorithm 
developed by Zhou and Bose (1993) may be easily extended 
to generate the data association hypotheses in the 
measurement and track-oriented approaches. Since a 
measurement or a track may be associated with more choices 
in these two approaches in contrast to the target-oriented 
case, the total number of data association hypotheses is 
expected to increase. Therefore, it is important to reduce the 
computational cost in such situations. 

In the target-oriented approach, the conditional likelihood 
of each data association hypothesis is unique. This 
uniqueness property does not hold, in general, in the 
measurement-oriented and track-oriented approaches. Con- 
sider, again, the example described in Fig. 1. Suppose that 
measurements 1, 2 and 3 originate, respectively, from target 
1, clutter, and a new target. Then, the conditional likelihood 
of this data association hypothesis is (Reid, 1979): 

'    ~      'U*C"NT> (1) 

where c is a constant, />,, is the likelihood that measurement 
1 originates from target 1, Ac is the density of clutter, and 

XNT is the density of previously unknown targets. 
Alternatively, measurement 2 could originate from a new 
target and measurement 3 could originate from clutter. It can 
be verified that the conditional likelihood of this data 
association hypothesis equals the one given in (1). Therefore, 
there are at least two data association hypotheses with equal 
conditional likelihood in this example. In general, Ac and 
A^T- may not be constant in a surveillance region. For 
example, clutter distribution may not be uniform and the 
measurements which lie in the center of the surveillance 
region (or field-of-view) are less likely to come from new 
targets than those which lie near the boundary of the 
surveillance region. However, measurements and targets are 
normally grouped into clusters in multitarget tracking. 
Within each cluster, Ac and A vr can be treated as constants. 
When the number of targets and the number of 
measurements in a cluster are large, duplications in 
conditional likelihood can occur much more often. The same 
observation can be made in the track-oriented approach. 
Therefore, specialized DFS algorithms which can effectively 
identify such duplications in the measurement-oriented and 
track-oriented approaches need to be developed to reduce 
computational cost significantly. 

3. Development of an unified framework 
In the target-oriented approach, the received measure- 

ments are divided into two groups. The measurements in the 
first group are assumed to be associated with some known 
targets and the measurements in the second group are 
assumed to be from clutter. The data association between the 
known targets and the measurements in the first group is 
accomplished by the DFS algorithm (Zhou and Bose, 1993). 
The association between clutter and the measurements in the 
second group is trivial. 

In the measurement-oriented approach, a measurement 
could be associated with either a known target or clutter or a 
new target. To accommodate these three possibilities, the 
received measurements may be divided into three groups. As 
pointed out in the previous section, some data association 
hypotheses in the measurement-oriented approach may have 
identical conditional likelihood. If those hypotheses can be 
identified, the corresponding likelihood can then be 
computed only once. Suppose that there are m 
measurements. In a particular data association hypothesis e, 
NT measurements are associated with previously known 
targets, Nc measurements are associated with clutter, and 
NNT measurements are associated with new targets. 
Therefore, m = NT + Nc + NNT. It can be shown that a factor 
of the conditional likelihood of e which corresponds to the 
association between Nc measurements and clutter is 
proportional to A£c. Similarly, a factor of the conditional 
likelihood of e which corresponds to the association between 
A^T- measurements and new targets is proportional to A#y. 
When a new data association hypothesis is generated by 
merely shuffling the measurements associated with clutter in 
e with those associated with new targets, the conditional 
likelihood of this new hypothesis will be the same as that of s 
as long as Nc and NNT are unchanged. This observation 
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suggests that the received measurements should be 
partitioned in a certain way for the purpose of identifying 
data association hypotheses with identical conditional 
likelihood. 

The difference between the track-oriented and measurement- 
oriented approaches is in the manner of handling of the 
previously known targets which are not associated with any 
measurements in a data association hypothesis. In the 
measurement-oriented approach, such targets are simply 
classified as undetected. However, in the track-oriented 
approach, those targets could be either undetected or their 
trajectories could have been terminated. In other words, the 
previously known targets are divided into three distinct 
groups in the track-oriented approach. The partitioning of 
the previously known targets can be done in the same way as 
the partitioning of the measurements in the measurement- 
oriented approach. 

In conclusion, the generation of the data association 
hypotheses in all three approaches may be described as 
below. 

1. Select the measurements and the previously known targets 
which are to be associated with each other. If the 
target-oriented approach is used, then a data association 
hypothesis is generated and this process is repeated until 
all hypotheses are generated. Otherwise, go to step 2. 

2. Partition the remaining measurements into two groups. 
The measurements in one group are hypothesized to be 
associated with clutter. The measurements in the other 
one are then to be associated with new targets. If the 
measurement-oriented approach is used, then go back to 
step 1 and this process is repeated until all data 
association hypotheses are generated. Otherwise, go to 
step 3. 

3. Partition the remaining known targets into two groups. 
The targets in one group are hypothesized to be 
undetected. The targets in the other group have their 
trajectories terminated. Repeat steps 1-3 until all data 
association hypotheses are generated. 

The above description provides a unified framework for the 
generation of the data association hypotheses in all three 
approaches. It can be claimed that the measurement-oriented 
approach is a special case of the track-oriented approach 
when no target has its trajectory terminated and the 
target-oriented approach is a special case of the 
measurement-oriented approach when there are no new 
targets. Under this unified framework, the association 
between the measurements and the previously known targets 
can be established by adapting the DFS algorithm originally 
developed for the target-oriented case (Zhou and Bose, 
1993). 

4. Two DFS algorithms 
The data association problem in the measurement-oriented 

approach, as discussed in the last section, can be solved in 
two stages. First, the association between the measurements 
and the previously known targets can be established using 
the DFS algorithm (Zhou and Bose, 1993). Then, the 
remaining measurements are divided into two groups. The 
measurements in one group are assumed to be associated 
with clutter, and those in the other group are assumed to 
originate from new targets. Nijenhuis and Wilf (1975) 
presented a partitioning algorithm which can efficiently draw 
different samples of size k out of N objects. After NT 

measurements are associated with NT targets, Nc 

measurements may be selected from the (m - NT) remaining 
measurements for association with clutter. Subsequently, 
NNT = (m-NT- Nc) measurements are assumed to be from 
new targets. By cascading the DFS algorithms and the 
partitioning algorithm, a new DFS algorithm may be 
developed to generate all data association hypotheses in the 
measurement-oriented approach. After each association 
between NT measurements and NT targets is established, 
for    a    given    Nc    (=0 m - Nr),    the    likelihood 
Ajjf NT-Nc\"cp is  computed  only  once.   However,  for  a 
given Nc, (m - Nr)\l(Nc\(m - N-, - Nc)\) different parti- 

tions can be generated, where K\ denotes the factorial of K. 
This means that the (m - Nr)M(Nc\(m - NT - Nc)\) data 
association hypotheses with identical likelihood are 
effectively grouped together in this new DFS algorithm. 

In the track-oriented approach, both the remaining 
measurements and the remaining targets are divided into two 
groups after NT measurements are associated with NT targets. 
Suppose that ND targets have their tracks terminated (or 
discontinued) and NNO targets are not detected. If there are 
n previously known targets, then n= NT + ND + NND. 
Similar to the measurement-oriented approach, a new DFS 
algorithm may be developed by cascading the DFS algorithm 
in the target-oriented case (Zhou and Bose, 1993) and two 
partitioning algorithms (Nijenhuis and Wilf, 1975). In the 
track-oriented approach, there could be 

(m - NT)\ (n - NT)\  

Nc\ (m-NT- Ncy. ND\ {m-NT- ND)\ 

data approach hypotheses with identical likelihood. 
As shown above, a lot of computation may be saved 

by using the two new DFS algorithms to generate data 
association hypotheses in the measurement-oriented and 
track-oriented approaches. The computational complexity of 
the two algorithms may be analyzed as was done for the DFS 
algorithm in the target-oriented case (Zhou and Bose, 1993). 

5. Conclusion and remarks 
The unified framework developed in this paper provides a 

systematic scheme for the generation of data association 
hypotheses in the target-oriented, measurement-oriented and 
track-oriented approaches. Furthermore, the framework 
makes the development of efficient algorithms possible for 
the measurement-oriented and track-oriented approaches by 
adapting the DFS algorithm developed in the target-oriented 
scenario. The success of the algorithms, in the measurement- 
oriented and track-oriented approaches, is derived from 
exploitation of the fact that, after the targets and 
measurements are grouped into clusters, many data 
association hypotheses share an identical conditional 
likelihood. The computational cost can be saved significantly 
by computing the identical likelihood only once in each such 
situation. 

The ambiguity of data association in the measurement- 
oriented and track-oriented approaches may be further 
resolved using the data in the N subsequent scans. Singer et 
al. (1974) showed that near-optimal performance was 
achieved with N = 1 for the single target case. In the case of 
multitarget tracking, the data from two successive scans 
(N = 2) were used in data association (Bar-Shalom, 1990). 
The process of using data from more than one scan in data 
association is called multiscan correlation. The application of 
the algorithms developed in this paper to multiscan 
correlation is straightforward. To generate data association 
hypotheses in multiscan correlation in the measurement- 
oriented and track-oriented approaches, the algorithms 
proposed in Section 4 may be applied to generate data 
association hypotheses in each scan. 
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The known eigendecomposition-based subspace tech- 
niques for parameter estimation of multiple signals in addi- 
tive white noise or the directions of arrivals of wavefronts 
at an array of sensors use either the information generated 
from the noise subspace or the signal subspace. Here, we 
directly use information from both the noise and signal 
subspaces to estimate the parameters. Comparisons with 
other subspace techniques are made and an illustrative ex- 
ample is provided.     © 1994 Academic Press, Inc. 

1. INTRODUCTION 

Since 1979, several subspace methods for parame- 
ter estimation have been introduced. MUSIC, ES- 
PRIT, and their variants such as TLS-ESPRIT and 
GEESE, which can be applied to estimate the direc- 
tions of arrivals of impinging wavefronts by operating 
on the signals collected at an array of sensors, are 
described in [1]. More recently, the weighted sub- 
space method introduced in [2] has been shown to be 
asymptotically efficient on the estimation error vari- 
ance, as the stochastic maximum likelihood technique 
is known to be, under certain regularity conditions 
involving the assumption of Gaussian-distributed 
emitter signals. 

Though subspace methods provide only one para- 
digm for signal processing, their popularity and suc- 
cess in implementation may be attributed to the sim- 
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pie underlying model for the signal and noise. The 
assumptions on the model could range from the re- 
quirement of having a smaller number of signals than 
sensors to a noise field characterization which may be 
unrealistic for real data gathered from sensors. Never- 
theless, the subspace methods provide a simple uni- 
fied approach to tackle inherently difficult nonlinear 
parameter estimation problems, and their scopes con- 
tinue to increase. For a recent review of approaches to 
tackle the nonlinear optimization problem which 
yield array localization signal processing techniques 
for estimating the number as well as parameters of 
narrowband and wideband sources, see [ 3 ]. For a re- 
cent review, in a unifying subspace-fitting framework 
of methodologies for analyzing a variety of subspace 
algorithms, see [ 4 ]. 

In this paper, we start with a model of second-order 
data (correlation matrix) generated from the samples 
of P received signals {xt (n)}, i = 1, 2,.. ., P. Each of 
these signals contains either a known or estimated 
number M of moderately correlated signals yk(n),k = 
1, 2, . . . , M, having distinct directions of arrivals 8ly 

e2,...,6M with respect to a linear array of point sen- 
sors, embedded in additive independent and identi- 
cally distributed Gaussian noise, as shown in (1) be- 
low. The assumption that the signal subspace dimen- 
sion is either known or estimated is made in all 
subspace-based methods including MUSIC, ESPRIT, 
and GEESE. The dimension of the signal subspace is 
estimated by comparing the magnitudes of the eigen- 
values of the correlation matrix and using a threshold. 
For i = 1, 2, . . . , P, j = V^l, and wk = TT COS 8k, 

xt(n) = 2 yfc(n)exp[-M(i- Dl + M^), 
k=i 

n=l,2,...,N.    (1) 



It is assumed that the matrix A can be rewritten as 

0 <M<P (2) 

and noises at each of the P sensors are, ideally, zero- 
mean, wide-sense stationary uncorrelated random 
processes. Suppose that the common variance of the 
identically distributed uncorrelated noise processes is 
a2. Define 

x(n) = [xj(n)    x2(n) • • • xp{n)Y       (3a) 

and 

y(n) = [yAn)   y2(n) yM(n)]\    (3b) 

where the superscript "t" denotes "transpose." The 
standard model for the (P X P) correlation matrix 
[1], 

S = E[x(n)xH(n)], (4) 

where the superscript "H" denotes "complex conju- 
gate transpose," is 

S = ARAH + a21, (5) 

which is a (P X P) matrix, R = £[y(rc);yHU)] is an 
(M X M) nonsingular Hermitian matrix, and 

A = e~J"M 

-,(P-l)<oM 

(6) 

The matrix I denotes throughout an identity matrix 
of appropriate order; to avoid notational clutter, we do 
not show the order explicitly in I. The above model 
provided in (1) with respect to the direction-of-ar- 
rival (DOA) problem applies also in several other situ- 
ations, including the problem of parameter estima- 
tion of sinusoids. 

A = [qie-^^aie'-"*2) • • ■ a(e~J"M)]. 

Since the wt's for i = 1, 2,. . ., Mare distinct, the (P X 
M) matrix A is of full rank M, and because R is a 
nonsingular (M X M) Hermitian matrix, the matrix 
ARAH must be a (P X P) nonnegative definite Her- 
mitian matrix of rank M. Therefore, ARAH has M 
nonzero real eigenvalues ß,■, i = 1,2,. . . , M. Since S is 
Hermitian and is modeled as in (5), it must be diag- 
onalizable by a unitary matrix B [ 5 ]. Therefore, 

BHSB = BH(ARAH+ a2I)B 

= Diag[(Ml + cr2) • • • (ßM+a2)a2 ■■•a2] (8) 

is a (P X P) diagonal matrix. For notational brevity, 
we define below the (M X M) and (P-M)X(P-M) 
diagonal matrices, A1 and A2, respectively: 

A! = DiagfXiXa- • -\M],    X; = ßi + a2 

for   i = l, ...,M   (9a) 

A2 = Diag[ XM+1XM+2 • • • XP],    XM+I = a2 

for    i=l,...,P-M.    (9b) 

Denote the (P X M) matrix composed of the eigen- 
vectors associated with the eigenvalues \, X2,..., XM 

by Bs (signal subspace eigenvector matrix) and the 
(P X (P - M)) matrix composed of the (P - M) 
eigenvectors associated with the eigenvalues X, ,i = M 
+ 1, M + 2,. .. , Pby PN (noise subspace eigenvector 
matrix), so that 

B= [BSBN]. (10) 

Some well-known results are rederived to facilitate 
the documentation of the novel results. From (10) 
and (8),sincePHP = /, 

2. MAIN RESULTS 

2.1. Analysis of the Standard Model 

The standard model for the (P X P) correlation 
matrix S was given in (5). From (4) and (5), 

S = E[x(n)xH(n)] = ARAH + a2I, 

where A is shown in (6). On defining 

a(e~Jui) = [1    e" -J(f-l)»;lt (7) 

[BSBN]H(ARAH)[BSBN] + <r27= DiagtA, A2]. (11) 

The above equation leads to the following two equali- 
ties: 

ARAHBS = BSA, - Bs(a
2I) 

= SsDiag[Ml- • -nM] (12a) 

AiL4H5N = BNA2-PN((r2/) = 0.      (12b) 

Obviously, in (12a) and (12b), the Ps denote identity 
matrices of orders M and (P - M), respectively. 



Since AR is of rank M, it follows from (12b) that the 
(MX (P - M)) matrix AHBN must satisfy 

AHB* 0. (13) 

Since ßg^s = I, (12a) implies 

(BgA)ÄUHBs) = Diagt/*!, M2, • • • . MM], 

which in turn implies that the (M X M) matrix A HBS 

is of nonsingular. Thus, it follows from (12a) that 

A = BsDiag[Ml- • -ßM] (AHBsr
1R~1 = BSC,    (14) 

where C = Diag[Ml • • ■ vM] (^"Bs)"^"1 is, obvi- 
ously, nonsingular. It is seen later that the columns of 
C are related to the eigenvectors of the matrix whose 
eigenvalues estimate the parameters in the standard 
model of the signal correlation matrix. 

Alternatives to (13) and (14) may also be obtained 
from (5). Since in practice the matrix B violates the 
assumptions of the data model, the use of a modified 
B (like the matrix obtained from B by complex conju- 
gation of its elements) is likely to amplify the errors 
in parameter estimation. Therefore, the alternate 
derivation given next is necessary, where the counter- 
parts of (13) and (14) are obtained in (20) and (21) 
below directly from the model. This type of derivation 
minimizes the ambiguity that is likely for the location 
of the roots of a polynomial to be on the unit circle 
when certain necessary conditions on the coefficients 
of the polynomial are not satisfied as explained later 
in Subsection 2.2 below. Let the exchange matrix be 
denoted by 

J 

Premultiplying and postmultiplying both sides of (5) 
by J, we have 

JSJ = E[{Jx(n)} {Jx(n)}n] 

= (JA)R(JA)H + a2I.    (15) 

JA is rearranged as 

JA = [Ja(e"M)- • -Jaie'^")] 

= [e^j{P'1)"1a(ej"1)- • • e~HP~l)"Ma(eia,M)] 

= [a(eJai)- • ■q(ei°"')] 

0 0    • •     0 1 
0 o   • •   1 0 

0 1   • ■     0 0 
1 0   • •    0 0 

X Diagte-^-1'"'1 

= A+A, 

,-i(J,-l)»Ml 

where 

,;(P-l)unt 
a(e"") = [leM- • - e' 

A+= [a(eJ"*)- ■ -a(eJ"M)], 

and 

A = Diag[g--''(iW)"'---e-''<P"1)""]. 

Using the above equation, (15) is rewritten as 

JSJ = A+(AfiAH)A? + a2I = A+R+A? + a2I, (16) 

where R+ = ARAH is, obviously, nonsingular. 
The matrix JSJ is Hermitian and since 

BHSB = (JB)U(JSJ)(JB) 

= DiagtAjA;,- • -AMXM+1- • • Xp]    (17) 

with (JB)H(JB) = (JB)(JB)H = I, therefore JB is 
the eigenvector matrix associated with eigendecom- 
position of JSJ. Furthermore, since JB = [JBSJBN] 
= [BSJKJ] where Bgj = JBS and BNi/ = JBN, the (P X 
M) eigenvector matrix B&, is associated with X,-'s, i = 
1,2, ... , M and the (P X (P - M)) eigenvector ma- 
trix BNJ is associated with X,'s, i = M + 1, . . . , P- It 
follows from (16) and (17) that 

[BSJBNJ]H(JSJ)[BSJBNJ] = [BSJBKJI* 

X (A+R+A^)[BSJBNJ] + ff
2/=diag[A1A2], 

A+R+A^BSJ = B^A - B^icH) 

= B&/Diag[Ml-- -MM]    (18) 

and 

B«jA+R+A» = A2B%J-(cr2I)B%J = 0.   (19) 

Since R+A ? is of rank M, it follows from (19) that the 
((P - M) X M) matrix, B"jA+ must satisfy 

B%jA+ = 0    or    Ar
+B%j = 0 (20) 

where the star superscript denotes the operation of 
complex conjugation. Since B^JBSJ = I, (18) implies 

(B^jA+)R+(A^BSJ) = Diag[Ml . • • MM], 
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which in turn implies that the (M X M) matrix 
A + Bgj is nonsingular. 

It then follows from (18) that 

A+ = BsjDiag[ßl- ■ -ß^iA^Bsjr'Rl1 

= BSJC+, (21) 

where C+ = Diag[Ml- • ■ ßM] (A^B^r'ß;1 is, obvi- 
ously, nonsingular. The role of C+ in (21) is analogous 
to the role of C in (14). Since Aj = AH, (13) leads to 

A\BN = 0    and    A\Bt,j = 0. (22) 

Using (14), (21), and (22), an algorithm for esti- 
mating eJWi's, i = 1, 2, . . . , M, is derived next. 

2.2. Derivation of the Algorithm for Estimating 

Parameters 

After defining, 

a(z) = [l2.. -z^-"] (23) 

it is clear from (22) that z, = ej"', i = 1, 2,. . . , M, are 
the M roots of the (P - 1) th-degree polynomial equa- 
tions 

[a(z)]Tb = b0 + b,z + b2z
2 

+ • • • + bP_lz
p-1 = 0,    (24) 

where fet= [fo,,^- • • 6p_j] is any one of the columns of 
BN or 5NJ- Therefore, 

Alb = 0. (25) 

Each column of BN and 5NJ is associated with an 
equation similar to (24). The set of these 2(P - M) 
equations can be written as 

[a(z)]t[fe1- • -knP-M)'. 0, 

and from (25), 

A + lb,- ■ -bziP-m] = 0. (26) 

Without loss of generality, it may be assumed that 
bP^ + 0 in (24), for if bP_x = 0, the monomial of 
highest degree is selected. Multiply (24) by z, divide 
throughout by bP_x, and rearrange as follows: 

P ,   bp-2   p^i   , b1 bn 
2   +l z       + - ' ' +1H-2   +7-2-2 = 0.    (27; 

°p-\ Op-i Op^j 

After associating a companion matrix D of order P 
with the polynomial on the left-hand side of (27), 

D = 

0 

0 

0 

0    - 

1 

0 

0 

1 

K 

0 

0 

1 

bP 

(28) 

it is clear that the polynomial equation in (27) may be 
rewritten as 

det[z/- D] = 0. 

The desired roots, z, = eJ 
1, 2, . . . , M, on the 

unit circle are also the M unit magnitude eigenvalues 
zt,i = 1,2,... ,M of D. For each such eigenvalue, the 
associated eigenvector is 

a{zt) = [lz.-z?- • -Z?-1]1- (29) 

Therefore, the following eigenequations hold. 

Da(Zl) = zta(Zl),    i= 1,2, ...,M.       (30) 

The set of equations in (30) may be rewritten as 

D[a(Zl)- ■ -q(zM)] = [a(Zl)- • -a(zM)]Az,    (31) 

where 

A2 = Diag[z! 22- • -zM]. (32) 

Since z; = ey"', i = 1, 2, . . . , M, 

A+ = [q(Zl) q(z2)- ■ -q(zM)], (33) 

and, therefore, (31) is expressible as 

DA+ = /4+A„ (34) 

where Az is the diagonal matrix containing the M so- 
lutions desired. The theorem, stated and proved be- 
low, shows how information from the signal and noise 
subspace eigenvectors provides an estimate of the pa- 
rameters. Before applying the theorem, it is necessary 
to construct from the standard model of the (P X P) 
correlation matrix S, the (P X M) eigenvector matrix 
Bs, whose columns span the signal subspace, and the 
(P X (P - M)) eigenvector matrix BN, whose col- 
umns span the noise subspace. Then the (P X P) 
companion matrix D shown in (28) is constructed 



from ßN, while the (M X M) matrix (JBS)
UD(JBS) 

is generated from Bs and D. 

THEOREM 1. The (M X M) matrix (JBS) H D (JBS) 
is nonsingular, whose eigenvalues uniquely estimate 
the M distinct parameters eM, i = 1, 2, . . ., M, in the 
standard model of the signal correlation matrix. It also 
holds for BlDBt 

Proof.    The matrix D in (28) can be written as 

D = 
0    / 

0    gl 

where / is the identity matrix of order (P - 1) and £ 
is a row vector having (P - 1) elements. 

A+ can be decomposed into 

A+ 

A, ho 

where 

th 
,j(p-i)° >'(p-i)^Ml 

and    h2=[l---l].    (35) 

Using (21), 

B%JDBSJ= (C?)HA?DA+C? 

0    / 

0    £ 
ho c;1 

From (35) it follows that A2 = AxAe where 

Ae = diag[eJUl • • -ej"M]. (36) 

Equations (25), (27), and (28) imply that 

[-gtl]A+=[-gl] 

Therefore, 

A1 = 0    or    gtA1 = V 

BhDBSJ= (C;')H[A?AA + A?AA]C;' 

= (C?)"A»A+A.C? 

= C+AeC~\ (37) 

since (C?)HA*A+ = (C;1)H(C?ß^ß&/C+) = C+. 
Thus, we see that B^jDBgj = C+A.C+1 holds ex- 

actly, and since C+ is nonsingular, the eigenvalues of 
BSJDBQJ uniquely correspond to the diagonal ele- 
ments in Ae which are the desired parameters. It is 

straightforward to see from (14) and A+ = A* that the 
(M X M) matrix BlDB% generated by replacing B&, 
with Bg in (37) is also nonsingular, whose eigenvalues 
aree^,i = 1, 2, .. ., M. 

The eigenvectors of the (M X M) matrix 
(JBS)

HD(JBS) which can be used in the estimation 
of R+ or R may be related to the matrix C+ in (21) in a 
manner stated and proved in Theorem 2 below. 

THEOREM 2. The (M X M) matrix E of the M ei- 
genvectors of the matrix (JBS)

UD(JBS), determined 
subject to the constraint, 

(JBS)1E=[1    1 1], (38) 

where (JBs)t denotes the first row of(JBs), is the ma- 
trix C+ satisfying the relation, A+ = B&/C+ = JBSC+ 
in (21). 

Proof. Let z;, i = 1, 2, ... , M, represent the dis- 
tincteigenvaluesof (JBS)HD(JBS)- Since (JBS)

UD- 
(JBS) is nonsingular, therefore, the matrix 
[(JBS)

HD(JBS) - zj] is of rank M- 1, and nullity 
1. Consequently, the eigenvector e, in the eigenequa- 
tion, 

[(JBs)
HD(JBs)-zi/]e,=0, (39) 

has only one nonzero free variable ut. Therefore, for i 
= 1, 2, . . ., M 

e_i = (.e])ui: (40) 

where ej is an (M X 1) vector of constants. Conse- 
quently, 

E =[ele2- • • enf] 

[e{ el2 e^ldiagtujUa- • • uM).     (41) 

Since E is constrained as in (38), therefore following 
the substitution of (41) into (38) it follows, for i = 1, 
2, ... , M that 

(42) 
[JBslief 

Since the u,'s are unique, E is also uniquely deter- 
mined. If (JBs)t denotes the ith row of JBS for i = 1, 
2, .. . ,P then from (21) 

A+ 

(«7Bs)iC+' 

(JBS)PC+ 

(43) 



Note that each element in the first row of A+ must be 
1. To satisfy this condition, replace C+ by E in (43) 
and apply the constraint in (38) to get 

A+ = 

1 1 •••    1 
(JBS)2E 

(JBS)PE 

Clearly, then, E is the unique matrix C4 

ing(21). 

(44) 

satisfy- 

Equation (26) provides 2(P - M) eigenequations 
through Theorem 1 to decide only one set of eigen- 
values. There may be several ways for solving the 
overdetermined eigenvalue problem. In the example 
given below, simply the mean of the 2 (P - M) coeffi- 
cient sets in (26) was used as b to give one eigenequa- 
tion. 

3. ILLUSTRATIVE EXAMPLE AND COMPARISONS 

The example discussed here is the one considered 
in [6], where the MUSIC algorithm was applied to 
estimate the parameters of a real sinusoidal signal 
embedded in zero-mean white Gaussian noise under 
various signal-to-noise ratios (SNRs). It becomes es- 
sential to show how this type of problem may be fitted 
to the model in (5) so that the technical devices of the 
previous section may be applied. Let the number of 
complex sinusoids be M. Then, the received signal at 
one sensor is 

in) 
M 

(n)ej^n + Vl(n) (45) 

where each discrete sinusoid whose angular frequency 
wk is required to be estimated is represented by 
sk(n)e~J"kn. The component sk(n), comprised of the 
magnitude and phase random variables, is stochastic. 
The magnitude and phase are characterized by proba- 
bility distribution functions which permit the process 
{sk(n)} to be viewed as zero-mean wide-sense sta- 
tionary. In (45), Uj(re) is a random variable which is 
associated with a zero-mean wide-sense stationary 
uncorrelated random process having a variance a2. 
Equation (45) may be recast in the form 

x^n) = [e~ '] 

X 

Sj(rt) 

s2(n) 

sM(n) 

+ Vi(n), 

which for N consecutive received samples leads, im- 
mediately, to 

Xj(n) = [x^n)    xx{n + 1)- • ■ Xl(n + N - l)]4 

= As(n) + u(n), (46) 

where 

s(n) A [e-^n
Sl(n)    e~^ns2(n)- ■ ■ e^^s^n)]1, 

v(n) = [v(n)    v(n+ 1) ■ ■ ■ vin + N-l)]*. 

A 

-j(N-l)« 

Therefore, subject to the assumptions made 

E[x1(n)x*(n)] = E[(As(n) + v(n)) 

X (As{n) + v(n))H] 

= AE[s(n)sH(n)]AH + a2I.    (47) 

The correlation matrix, E[xx(n)x^(n)], on the left- 
hand side of (47) may be estimated by the M X M 
matrix 

S = XHX, (48) 

where for the N samples of the received signal, 
{xx(0) *,(i). • -Xl(N- l)},the(N-P+l)XP 
matrix X is given by 

X 

x(P-l)   x(P-2) 
x{P)      x(P-l) 

x(N-l)  x(N-2) 

x(0) 
x(l) 

x(N-P) 

(49) 

To the problem solved in [6], we apply here not 
only the new method proposed through Theorem 1 
but also another subspace-based method called 
GEESE. It is also pointed out that the estimates of 
the parameters in [ 6 ] are inferred from a graph. Here, 
we derived the estimates by applying the Root- 
MUSIC algorithm [ 7 ] in addition to the GEESE algo- 
rithm. The Root-MUSIC method requires the evalua- 
tion of the roots of the equation 

where 

at(z)BNB%q(z-1)=0, 

a(z) = [l    Z-.-Z-P-
1
]'. 

(50) 

(51) 



The GEESE method [1, pp. 47-76] requires the com- 
putation of the singular values of the matrix pencil 
{BltB2}, with 

B1=[Bt
sl   B^-'-BltP-!,]4 (52a) 

B2=[5t
S2    Bls-'-Blp]*, (52b) 

where BSi denotes the ith row, i = 1, 2,... , P, of the 
(PXM) signal subspace eigenvector matrix Bs. 

The problem considered in [6] involves the re- 
ceived data x(n), n = 0, 1, ..., 6, modeled by 

x{n) = -T= e*"1" + -j= ey"*" + v(n). 

The parameters w,. and w2 are to be estimated from the 
data matrix 

The correlation matrix S is 

X = 

x(3) x(2) x(l) x(0) 
x(4) x(3) x(2) x(l) 
x(5) x(4) x(3) x(2) 
x(6) x(5) x(4) x(3) 

(53) 

The correlation matrix S is generated from X through 
the equation, 

2.63373 
1.47147 

-1.13353 
-3.13129 

1.47147 
2.76762 
2.05893 

-0.77045 

-1.13353 
2.05893 
5.34126 
3.66901 

-3.13129 
-0.77045 

3.66901 
6.24889. 

The eigenvector matrix associated with S is 

-0.47835 0.68927 
0.71288 0.09170 

-0.49272 -0.35650 
0.14212 0.62402 

0.40616 -0.36210 
0.69515 0.01253 
0.54186 0.58010 
-0.24122 0.72953. 

The eigenvalues of S are 

0.20357    0.58090    5.49965    10.70738. 

The estimates of <x>x and w2 as well as the values of rx 

and r2, each of which, ideally, should be unity are 
given below for each of the three algorithms. 

Algorithm 

New 
Root-MUSIC 
GEESE 

0.90905 
0.85560 
0.87124 

-1.00776 
-0.90655 
-0.90967 

0.90905 
0.85560 
0.87124 

1.00776 
0.90655 
0.90967 

S  = XHX. 

Three cases are considered. The data matrices are 
given for SNR values of 10, 20, and 30 dB. The esti- 
mates for wj and w2 are obtained by applying the new 
algorithm presented here, followed by Root-MUSIC 
and GEESE algorithms. The correct values of the pa- 
rameters chosen in the simulation were 

— 1    and    to, = +1. (54) 

Consequently, roots z1 and z2 in the z-plane are on the 
unit circle, \z\ =1, where zt = exp (j«,-), i = 1,2. Since 
the data is noisy, the estimated roots need not lie on a 
circle of unit radius. Therefore, the radii, rx and r2, 
each of which ideally should be unity, as well as the 

Case 2 (SNR = 20 dB).    The data matrix X is 

-0.94613 0.40878 1.50696 
-1.24504 -0.94613 0.40878 
-0.68038 -1.24504 -0.94613 

0.45395 -0.68038 -1.24504 

The correlation matrix S is 

3.11427 
1.32945 

-1.85619 
-3.66774 

1.32945 
3.07530 
2.25433 

-0.82270 

-1.85619 
2.25433 
4.88332 
3.13361 

1.14561 
1.50696 
0.40878 

-0.94613. 

-3.66774 
-0.82270 
3.13361 
4.64561. 

The eigenvector matrix associated with S is 

angular frequencies are given for each of the three 
methods applied to solve the problem. 

-0.50255 
0.65479 

0.62403 
0.13263 

0.34020    -0.49224 
0.74396       0.01380 

Case 1 (SNR = 10 dB).    The data matrix X is -0.55649    - 
0.09496 

-0.28544 
0.71521 

0.53005       0.57261 
-0.22324       0.65546. 

-0.99313       0.42526       1.82929       1.31736 
-0.90984    -0.99313       0.42526       1.82929 The eigenvalues of S are 

-0.87901    -0.90984    -0.99313       0.42526 
-0.21668    -0.87901    -0.90984    -0.99313. 0.01975 0.04224 5.53627    10.12025. 



The estimates of Wj and co2 as well as the values of rt 

and r2 are given below for each of the three algo- 
rithms. 

Algorithm r, w, r2 w. 

New                        0.97229 
Root-MUSIC        0.94576 
GEESE                  0.94879 

-1.00502         0.97229         1.00502 
-0.97266        0.94576         0.97266 
-0.97364         0.94879         0.97364 

Case 3 (SNR = 30 dB) .    The data matrix X is 

-0.93126       0.40357 
-1.35104    -0.93126 
-0.61757    -1.35104 

0.66602    -0.61757 

1.40503       1.09130 
0.40359       1.40503 

-0.93126       0.40357 
-1.35104    -0.93126. 

The correlation matrix S is 

3.51753       1.30539    -2.17842    -3.78401 
1.30539 3.23682 2.28371 -0.83815 

-2.17842 2.28371 4.82955 2.98271 
-3.78401 -0.83815 2.98271 4.19516. 

the stated purpose as seen from Theorem 1. Specifi- 
cally, the matrix D is computed from the noise sub- 
space eigenvectors while the matrix (JBS)

HD(JBS), 
whose eigenvalues have to be computed, also depends 
on the signal subspace eigenvectors explicitly. 

The new method is seen to give better estimates for 
&>! and o>2 than Root-MUSIC and GEESE for the 
benchmark problem discussed in this paper. It is rea- 
sonable to expect that the statistics of the data can 
influence the accuracy of the results derived from im- 
plementation of the various algorithms, especially 
when the SNR is low. However, the presented method 
contributes to the popular subspace-theory-based 
techniques through the development of a new algo- 
rithm which works better in some situations. The 
conditions on the data under which such improved 
performance may be expected and optimal solution 
schemes for the overdetermined eigenvalue problem 
are currently under study. The scopes for generalizing 
the approach to the parameter estimation problems 
for two-dimensional sinusoids in noise is also worth 
investigating. 

The eigenvector matrix associated with S is ACKNOWLEDGMENTS 

0.50987 0.58999 0.32172 -0.53707 
0.63320 0.14285 0.76061 0.01142 
0.57720 -0.26445 0.52162 0.56992 
0.07703 0.74938 -0.21420 0.62178. 

The eigenvalues of S are 

0.00196    0.00369    5.59116    10.18224. 

The estimates of co-, and a>2 as well as the values of rx 

and r2 are given below for each of the three algo- 
rithms. 

Algorithm r1 w, r, ai. 

New 
Root-MUSIC 
GEESE 

0.99178 
0.98199 
0.98288 

-1.00201 

-0.99149 

-0.99182 

0.99178 

0.98199 

0.98288 

1.00201 

0.99149 

0.99182 

4. CONCLUSIONS 

The MUSIC and Root-MUSIC-based algorithms 
explicitly use the eigenvectors spanning the noise 
subspace to estimate the direction-of-arrivals and the 
angular frequencies of sinusoids. Other subspace 
methods such as GEESE and ESPRIT use the signal 
subspace eigenvectors in the parameter estimation 
problems mentioned above. The present method uses 
both the noise and signal subspace eigenvectors for 

The authors gratefully acknowledge the constructive comments 
by Dr. Dennis Ricker and Dr. Stephan Schell. 
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In this paper, three new methods called the PESS meth- 
ods are presented. The first is a 1-D based 2-D PESS 
method for estimating 2-D wavenumbers. This provides the 
basic framework for all the PESS methods. The second is 
the Pairing-PESS method which offers efficient pairing in 
all 1-D based 2-D methods. The third is the Direct 2-D 
PESS method which, though, in the category of direct 2-D 
methods in the sense that it is not based on any 1-D signal 
processing technique, is, nevertheless, computationally ef- 
ficient even when compared with the previous 1-D based 
2-D algorithms. This algorithm is different from the other 
direct 2-D algorithm in that it does not depend on spectral 
search in 2-D parameter space. Examples are presented to 
illustrate the methods and a comparison is made with the 
matrix   enhancement   matrix   pencil   method   recently 
proposed.      © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Extensions of 1-D subspace methods with the ob- 
jective of estimating the wavenumber of a 2-D sinusoi- 
dal signal in noise as well as the direction-of-arrival 
(DOA), have been studied. The obstacle to finding 
computationally efficient high-resolution algorithms 
in such cases is the factorability problem associated 
with bivariate polynomials in ROOT-MUSIC and 
ROOT-MIN-NORM-based methods (the zeros of bi- 
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variate polynomials trace continuous algebraic curves 
[1]; see [2] for the testing for zeros on the distin- 
guished boundary of an unit polydisc of a multivariate 
polynomial) and the so-called problem of pairing bi- 
variate polynomial zeros in 2-D generalizations of 
ESPRIT. The 2-D parameter estimation problem re- 
ferred to above has been tackled by two approaches. 
The first approach (1-D based 2-D approach) requires 
the decomposition of a 2-D problem into two separate 
1-D problems followed by the construction of a set of 
2-D solutions from the set of 1-D solutions by pairing 
algorithms. The second method (direct 2-D approach) 
solves the 2-D problem directly by searching for spec- 
tral peaks or manipulating optimization algorithms in 
multidimensional parameter space. Although the 
former is attractive computationally, it results in sub- 
optimal solutions and suffers from the difficulty in 
implementing pairing. The latter can be modified to 
produce optimal solutions but the computation cost is 
very high. 

A computationally efficient 1-D based 2-D wave- 
number estimation method was proposed in [5]. This 
method identifies the state equation form inherent in 
the 2-D covariance data matrix. The given sample 
data matrix is singular value decomposition-decom- 
posed (SVD-decomposed) to yield the factors of the 
model. This model gives the two state transition ma- 
trices in diagonal form. The diagonal elements of each 
are the desired 1-D signal zeros in each of the two 
dimensions. This method, called the state-space 
method, assumes distinct frequencies in either di- 
mension and ignores noise. The subsequent pairing 
procedure uses the amplitudes of the signals. A 
method similar to the state-space method, called the 
matrix approximation method, was proposed in [6], 
where the original covariance data matrix is recon- 
structed in a least squares sense. 



Separable extensions of ESPRIT to the 2-D case 
have been discussed as 1-D based 2-D DOA estima- 
tion methods. Procrustes rotations (PRO)-based ES- 
PRIT, proposed for compensating imperfect array 
data, was applied separately and the estimated azi- 
muth and elevation angles were paired by evaluating 
the array response vectors corresponding to all the 
possible combinations of the estimates and then 
searching for those which are the closest to the signal 
subspace [7]. In [16], an implementation of ESPRIT 
was given based on delta array geometry, where phase 
differences are estimated and used as the criteria for 
pairing the parameters computed separately. Assum- 
ing an array of sensor triplets with arbitrary displace- 
ments, two matrix pencil equations were set up and 
two sets of 1-D DOAs were computed in [15] using the 
SVD of three data matrices. Observing that pairing is 
automatic in the noise-free case, noise cancelation 
was tried through the estimation of the perturbation 
matrices for the noisy case. An extension of ESPRIT 
to 2-D case using the concept of marked subspace was 
proposed in [10]. This algorithm introduced a mark 
operator which assigns different amplitudes to the 
roots in each 1-D solution set but the same amplitude 
to each correct pair of roots. The paired solutions are 
identified by finding two roots associated with the 
same amplitude. 

Prony's methods for estimating 2-D sinusoidal fre- 
quencies, amplitudes, and phases were proposed 
[4,17]. Particularly in [4], the signal model is identi- 
fied to be expressible as a recognizable rational func- 
tion [1, p. 269]. The coefficient fitting is performed 
from the best reduced rank least-squares approximate 
obtained via SVD. In [8] a 2-D wavenumber estima- 
tion technique based on a matrix pencil (MEMP) was 
proposed. The pairing procedure is similar to that 
in [7]. 

The Fourier method, the maximum-likelihood 
method, the maximum-entropy method, the autore- 
gressive method and the MUSIC method for estimat- 
ing wavenumbers or DOA, based on multidimen- 
sional search, were presented in [11-13]. 2-D Toeplitz 
Approximation Method (TAM) followed by 2-D MU- 
SIC was studied in [14]. 

An extension of subspace-fitting method to the 2-D 
case was investigated in [9], where optimal and subop- 
timal procedures for estimating 2-D DOA were for- 
mulated. It was shown that for uncorrelated and 
correlated sources these methods were significantly 
better than MUSIC. The computation, however, can 
be prohibitively expensive without good initial guess 
of the estimates. 

In this paper, three new methods called the PESS 
methods are presented. The first is a 1-D based 2-D 
PESS method for estimating 2-D wavenumbers. This 

provides the basic framework for all the PESS meth- 
ods. The second is the Pairing-PESS method which 
offers efficient pairing in all 1-D based 2-D methods. 
The third is the Direct 2-D PESS method which, 
though, in the category of direct 2-D methods in the 
sense that it is not based on any 1-D signal processing 
technique, is, nevertheless, computationally efficient 
even when compared with the previous 1-D based 2-D 
algorithms. This algorithm is different from the other 
direct 2-D algorithms in that it does not depend on 
spectral search in 2-D parameter space. 

2. PROBLEM FORMULATION 

It is assumed that the 2-D array of discrete-valued 
data, x(nu nj, can be modeled as 

M 

*(nlt n2) = 2 a,^"1'-"1*"""^ + w(n„ n2).   (2.1) 
i-l 

The noise process u(nu ruj is assumed to be zero- 
mean and white over nt and n^ with variance a2. The 
coefficient at represents the amplitude and phase of 
the t'th 2-D sinusoid. The number M of 2-D sinusoids 
may be estimated by thresholding a set of eigenvalues 
of a covariance matrix as mentioned later. In this 
paper, it is assumed that M is known. 

Assume that the two-tuple, (au, w2i), which repre- 
sents the j-th wavenumber, is distinct for each i in K 
i *£ M, that is, 

<">2i ^ «2*. 

«1« ^ W1A 

w2i =  ^2*, 

or 
w2; + Uik. 

whenever i ¥= k. 

Note that either uu or u2i can be zero for any i. With- 
out loss of generality, the trivial case when both are 
zero is excluded. Also the alias-free constraint is im- 
posed, that is, u^ is unique over (—ir, IT] for m = 1, 2 
and 1 *S i < M. 

The problem to be solved is formulated as follows: 
Given the iVj X N2 data matrix 

X = 

x(0, 0) 
x(l, 0) 

x(0, 1) 
x(l. 1) 

.xCZVx - 1, 0)    x(iVx - 1, 1) 

x(0, N2 - 1) 
x(l, N2 - 1) 

x{Nx-\,N2-V)\ 

(2.2) 



estimate the M 2-D wavenumbers, (ulif wjj), for 1 *£ i =S 
M, in paired form. 

3. DERIVATION OF SUBSPACES FOR 2-D 
SINUSOIDAL SIGNALS 

3.1. Correlation Matrix 

The measurement model of Eq. (2.1) can be ex- 
pressed, using the vector notation, as 

x(n1( nj 

= reJ<Wll",1+°lsl',t2)   • • •  e,<ui«-'»i+"sjw'>2)] 

+ u{nl7 n2).    (3.1) 

For selected integers Pj and P2 such that M <P1 <Ni 
and M<P2< N2, the data x(nj + ku n^ + fcj), for 0 < kx 

< P1 — 1 and 0 «S k? =S P2 — 1, may be stacked as a 
(P: • P2) X 1 column vector, 

x(nu n?) 
x(nu rt2 + 1) 

xiri! + 1, nj 
x(nx + 1, rc2 + 1) 

X(n!, r^ + P2 - 1)      X(7l! + 1, 722 + P2 - 1) 

x(n2 + Px - 1, Mj) 
x(nx + Pj - 1, «2 + 1) 

X(7l! + P! - 1, ^ + P2 - 1)]£, (3.2) 

where the superscript t denotes transpose. Substituting the measurement model in Eq. (3.1) for each element of 
x(nj, re-,), described in Eq. (3.2), we get 

x(ni, nj 

gj'("u(ni+-Pl-l)+<^!l"2) 

^y(<j11n1+(^21(n2+l)) 

gj(o>n(n1+l)+u21(n1[+l)) 

„y("u(«l+^l--l)+"2l('»2+l)) 

e;'(«ll('»l+l)+<^l(n2+i,2-l)) 

„j(»ll('»l+P1-lJ+<^!l(nü+i'2-l)) 

[v(nu 1%) 
u(nlt JI2 + D 

c,>("lA^rll + 1>+"2iM<"li+l)) 

,j'("LM<ni+^l-l)+<^!M<'^+l)) 

g>(«l«"l+"^M<'>2-,-',2-1)) 

gXuiMfni+D+uu^nü+^-D) 

u(ni + 1, n^ 
v(nx + 1, na + 1) 

<*1 

La*,. 

u(n1( na + P2 - 1)    ufai + 1, rui + P2 - 1) 

v(nx + Pj - 1, nj 
u{nx + Px - 1, rtj + 1) 

üK + Px - 1, rt2 + P2 - 1)]'. 

(3.3) 

Denoting the rightmost vector in Eq. (3.3) by v(nl5 n%), the equation may be rewritten as 

1 1 
gJ"U eJ"lM 

gMiiPi-» ... gMiw^i-l) 

x(nx, Ua) = 

gj<-21 

g/^lg/uil 

• • • 

gJ<*2M 

g>"*lWgJ»UW 

gUlMgiuuMifl-D 

- a gXMlini+^inä) " 

„  g./<«12'»l+"22'»2) 

a^gj(">MBl+<u2Mn2) 

+ v(n!, na). (3.4) 

jMiCi-D ... gJ<^M<i'2-l) 

gjo>Sl(-P2-l>g>U g./'-'iM^-DgM.M 

gMitf^-DgMiOPi- 1) eJ<*2MiPi-1 Jg/«"!«^! - 1) 

I'jji.aiB'fjgllpat^^ 



After introducing notations, 

[1 

a(<>"-, eJ"*) = 
ej<~i,ej' 

. . eJ<*ueMi(.Pi-l) 

. .      gMilPriljJiiiCri)]! 

and 
(3.5) 

A = [a(eM\ ej"tl)a(eJuix, eJ"™) • • • a(e-""1", e7'"1*')], 

(3.6) 

Eq. (3.4) is simply written as 

x(nlt nj = A-s(n1; n2) + v(nx, ruj,        (3.7) 

where s(nx, nj) is easily identified by comparing Eq. 
(3.4) and (3.7). 

We see that a(eJuu, e-''"*) in Eq. (3.5) may be ex- 
pressed as, 

a(e^", e^O = a^e*») © a,(e*"'), (3.8) 

where © denotes the Kronecker product (let A = B © 
C, where B is of order p X q and C is of order s X t, 
then,    the    order    of   A    is    (ps)    X    (gt)    and 

(^)(s(i-l)+m).(tO'-D+n) =  (•S)w(C)m^) an{^ 

a1(e
>"li) = [1 e-'"1'- • .e>""u,1-1)]t, 

a?(eJ"*) = [1 e^ • • • e
i"^Pl~1)\'. (3.9) 

Denoting the (i, £)-th element of the M X M matrix 
s(nu n^sP(nx, n?) by Sa(n1( n^), we have 

Si*("i, "2) = aflke
ji"li-°ikin*eJ(°*-'*»)n*.     (3.10) 

If wmi ^ u;^, for m = 1 or 2, we see that 

lim      2   e'<"""'~",-*)n" 
Nm—=o  -"m  n_-0 

*S   lim  — 
JV„-oo  Mm 

1 
<   lim   —- 

JVm-oo ^m 

1 
*S   lim 

Nm-1 

n„-0 

1   —   gJ("m.-«mJk)^ 

2 
*„,-«, iVm |l-e><^-^| 

= 0. 

If «^ = w^, for m = 1 or 2, we see that 

»m   —   2   ei<*"»—"*)n" =   Hm  -A_   2   1 = 1. 
JVm— co -"m  n„-0 Nm—co -"m nm-0 

Since (OJK, w2i) # (uu, w^) whenever i ± k, it follows 
that 

^       2V,-1 N2-l 

lim   lim ÄT\T 2   2 «»(«I, ns) = 5(i_*„ 
AT2— 00 iVi—oo  •ivl-'v2  nt-0   n^-O 

where 5 is the Kronecker delta function. So, we may 
view the vector s(nu nj to consist of, as elements, 
uncorrelated random variables. Since the data has fi- 
nite support, we assume that the source correlation 
matrix S defined by 

S = E[s(nv nJs'V,, nj], (3.11) 

is nonsingular, where the superscript H denotes com- 
plex-conjugate transpose. This assumption holds 
when we have moderate amounts of data, and the 2-D 
wavenumbers are not too close. The correlation ma- 
trix R of x(n1; n?) has the structure 

R = E[x(nu nj^ir^, nj] = ASAH + fl, (3.12) 

where A and S are defined in Eqs. (3.6) and (3.11), 
respectively. 

3.2. Estimation of the Correlation Matrix R 

Construct aPtXP2 matrix X(nlr nj expressed by 

X{nx, nj 

x(nlt n^i 
x(nj + 1, nj 

x(ni, n-> + 1) 
x{nx 4- 1, riz + 1) 

.x(nt, + Pj - 1, nj    x(nt + Pl-l,n2 + l) 

x{nlf ruj, + P2 - 1) 
x(nt + l,n2 + P2-l) 

• • •    x(nx + P1-l,n2 + P2- 1). 

We know that, from Eq. (3.2) and (3.13), 

x(n1; n?) = vecX(nlt n^), 

(3.13) 

(3.14) 

where the vec operator stacks the columns of a matrix 
into a vector. (If H = [h^- • -hw], then vec If = 
[h'ih^- • «hy.) Actually, x(nr, n?) is a window through 
which we look at the data matrix X of Eq. (2.2). The 
window of size Px X P2 moves horizontally with in- 
dexing n^ and vertically with indexing n, within the 



data matrix X. Each windowed submatrix Xin^ n?) of 
X is mapped to x{nx, nj by Eq. (3.14). In fact, vec 
X{nx, na), for 0 < nx < NX - Px and 0 < n, < N2 - P2, is 
interpreted to be the realization of the random vector 
x(ra1? nj. Define the reorganized data matrix Xr to be 

Xr = [vec X(0, 0) 
vec X(0, 1) 

vec X(l, 0) 
vec X(l, 1) 

vec X(0, N2 - P2)   vec X(l, N2 - P2) 

vec X(iVj - P„ 0) 
vec X(NX - Plt 1) 

vec X(NX - Plt N2 - P2)]    ,    (3-15) 

obtained by stacking vec X(n1? n^), for 0 =S ^ < Nx - 
Px and 0 *£ n-, « iV2 - P2, as columns. Clearly Xr has 
PXP2 rows and [(Nx -Px + 1)(N2 - P2 + 1)] columns. 
Let J be the permutation matrix of appropriate order 
defined below. 

J = 

0 1 
1 0 

6  ÖJ 

By analyzing J(x(n1, n^))* similarly to the case of 
x(nx, n^), discussed in the previous subsection, we can 
show that JX* can be considered to be a realization of 
x(nx, Oj). Assuming that x(nx, n^) is correlation ergo- 
dic, the estimate R of the correlation matrix R is com- 
puted from 

R = 
2(NX -Px + 1)(2V2 - P2 + 1) 

(XrX? + JX*X'rJ). 

(3.16) 

From Eqs. (3.12) and (3.16), since 

E[R] = R, 

the estimator in Eq. (3.16) is unbiased. 

3.3. Derivation of Subspaces 
The (PjP2) X M matrix A in Eq. (3.6) has columns, 

a(eJ'"", ei"ti) - a2(e
>*) © a^e7""). for 1 < i < M, each of 

which can be expressed by 

a(eJ"u, eJ"*>) 
e^'a1(e

J'"li) 

.e«B«-»a1(e*,u). 

(3.17) 

Since the first Px rows of A are given by 
[a^'"11) • • • a1(e-"J,M)], and Pi > M, A is of full rank, 
provided the wu's, for 1 < i < M, are distinct. When 
the OJU'S are not distinct, consider the linear equation 

2 cMeJ"u> e**) = 0 
i-l 

which, after using Eq. (3.8), becomes 

2 cja2(e-''"2') © a,(e;"") = 0. 

Suppose that all the column vectors of A in Eq. (3.6), 
whose first element eJ"u is the same as eJ"11, are a(eJ"n, 
e-""2'*), for 1 *£ k < m. Then the above equation is reor- 
ganized as 

[2 cootie*™*)] © a,(e^») +  2 c,a(e;"", e^O = 0, 

where uu ¥= wu for any :' £ 3X. Since a^e-"*11) and 
a1(e-,",0 are linearly independent for i E 5^, and a^ •) 
appears as in Eq. (3.17), it must follow that lE.x cik 

a?(eJ'°*'>) = 0, which in turn implies that cih = 0 for K k 
< m, due to the fact that the wWjk's are distinct from the 
assumption that (wlt-, co2i) # (o)u, w^) whenever i ¥= k. 
Continuing the above argument for each eJ"u, we get c, 
= 0 for 1 < i < M. Thus, all the columns of A are 
linearly independent and so A is of full rank, if (wir, 
w2i) # (OJU, OJ2ä) whenever i ¥= k, which is consistent 
with the results of [4]. 

Since the correlation matrix R is Hermitian, and 
ASA" has rank M, the eigendecomposition of R has 
the structure described by [19, p. 168] 

BHRB = BHASA"B + #1 

= Diag[/*! + a2 • • • pM + a2 a2' ■a9],    (3.18) 

where B is a unitary matrix of order PXP2 and ^, > 0, 
for 1 *S i «= M, are the eigenvalues of ASAH. The num- 
ber M of 2-D sinusoids may be estimated by threshold- 
ing the sequence of eigenvalues. Partition the unitary 
matrix B = [b^ • • -bPlP ] into B = [BSBN], where Bs 

= W>i • ' ' bM] is the matrix of eigenvectors associated 
with the eigenvalues, /^ + ff2, for Ki<M, and BN = 
[b^+i' - •bpjpj is the matrix of eigenvectors associated 
with the eigenvalues a2. Through the same argument 
as in [3], Eq. (3.18) implies that 

A"BN = 0, (3.19.a) 

vm, IP w-ivi i SEES jPfy*"' 



and 

A = BST, (3.19.b) 

where T is a nonsingular matrix. These results will be 
used in all the PESS algorithms. 

4. DERIVATION OF SUBSPACES FOR 
SEPARATE 1-D SIGNALS 

4.1. Correlation Matrices and Their Estimation 

x(nx + ku rij), for 0 < Aj *£ Px — 1, are mapped into a 
Pj X 1 column vector 

x^Hj, raj) 

= [x(7T1} n^xin-L + 1, n2) • • • x(rax + Pi - 1, raj)]'. (4.1) 

Substituting the measurement model of Eq. (3.1) for 
each element of xx{nx, ra2), we get 

Xi(ra1( ra2) 

gji<*ll'*l+'*21nl) gJ(**lMnl +w2JWrt2) fa, 
g;(wii(n1+l)+u2jnJ) g>("lAf<'ll + 1)+"2M',2) 

<*2 

g./(«i>ii<'»i+*,i-l>+™2in2)    . .      gj'(«lA<('»l-,-fl-l)-,-<^Mn2) -a** 

+ [ü(nx, raj) u(ni + 1, raj) • • • u(nj + Px - 1, raj)]'. 

(4.2) 

Denoting the last term of Eq. (4.2) by v^ra^ raj) and 
reorganizing the first term, we have 

x^Mu ra,) 

1 
»Mi 

y'»uCi-i) g«lJW<-Pl-l) 

y'(wiini+<^2i'*2) 

7'((*»12nl+(^22n2) 

a^/'<"lMnl+<»2M"2) 

+ VjdH, raj).     (4.3) 

We know that wlm, forHm<M, may not be distinct. 
Suppose that w^, for 1 < A *S Mu are distinct such 
that the two sets, {wlm}£_i and {w^JJifj, are the same 
after ordering, and calik = wlm, for m £ 7*, where 2jji?i 
(number of elements in 7Ä) = M. Note that one of the 
uu'a may be zero. Then Eq. (4.3) can be rearranged 
into 

Xi(ra1; raj) = 

1 
gM.-, 

jlUjdlPl-l^ 

2  (ame;(""""1+":!m'H!)) 
mS7i 

2    (ame j'("lmnl+"2m"2) 

+ v1(ra1,ra2).     (4.4) 

Define A, = [a^"1'') • • ' a1(e
>"«)]. Using at( •) given 

by Eq. (3.9), Eq. (4.4) is written as 

x,(ralf ra2) = A! • s^raj, raj) + v^raj, raj),       (4.5) 

where sI(ra1, ra2) is identified by comparing Eq. (4.4) 
with Eq. (4.5). The Ath element of the M,X1 vector 
Si(ra!, ra2) can be rewritten as eJUli-"1 • "Zmesk ameJ"2mn-. 
Also the elements of the set {o>uk}> for 1 =S A =S Mx, are 
distinct. Thus, using similar arguments as in Sec. 3.1, 
we can conclude that asymptotically, s1(ra1, ra2) is a 
random vector with a nonsingular correlation matrix 

Si = Els^n^, ra2)sf (nv ru>)]. 

The correlation matrix Rx of x^raj, n2) has a struc- 
ture similar to that of R in Eq. (3.12). 

Ä, = Efabi» ra2)xf (nu raj)] = A&A? + Si.  (4.6) 

In Eq. (4.6), Ax and Sx are the counterparts of A and S 
in Eqs. (3.6) and (3.11). Actually, x^raj, ra2) is a win- 
dow through which we look at the data matrix X of Eq. 
(2.2). The window of size Px X 1 moves horizontally 
with indexing raj and vertically with indexing nx 

within the data matrix X in Eq. (2.2). x^raj, ra2), for 0 
=S rax < Nx — Pj and 0 *S raj < N2, are interpreted to be 
the realizations of the random process x^ra^ ra2). De- 
fine the reorganized data matrix Xn by 

[x,(0,0) 
Xi(0,1) 

x,(l,0) 
x,(l,l) 

X,= 

Xi(0,iV2-l)    1,(1, N2-l) 
X^-PLO) 

x^-PuNi-l)} (4.7) 

which has the order Px X ((Nx - Px + 1)N2). Assuming 
correlation-ergodicity of Xi(nlt raj), the estimate Rx of 
the correlation matrix Rx is computed by 

Ä,= 2(NX -Px + 1)N2 
(XrlX«+JX*Xi^-    (4-8) 



Next, the data elements x(nx, n? + k?), for 0 < k^ < P2 

- 1, are stacked into a P2 X 1 column vector 

= [x(nu n2)x(«1>nj + 1) • • • x{nx, n^ + P^- 1)]'. (4.9) 

Through the same argument as in the case of xx(nx, 
nj, we get 

x2(n1? n2)=A2-SaCnj, nj + v2(n:, nj,    (4.10) 

where A2 = [aa(e
ji*«) • ■ • a,(e^)], M2 is the number 

of distinct «2/s, and S2 defined by Bts^nj, aj)s^(rc1( 

/I,)] is nonsingular. The correlation matrix R2 of x2(n1; 

n«,) has the structure expressed by 

R2 = £[x2K, n^x? K, n2)] = AjSaA? + a2I,    (4.11) 

where A2 and S2 are defined analogously to Ax, Sx, or 
A, S. x2(na, na) is a window through which we look at 
the data matrix X of Eq. (2.2). The window of size 1 X 
P2 moves horizontally and vertically with indexing n? 
and nx, respectively. Define the reorganized data ma- 
trix Xr2 by 

Xr2 =     [x2(0,0) x2(0,l)) 
x2(l,0) x2(l,l) 

Xj^-1,0)    x^iVi-l.l) 

x2(0,iV2-P2) 
x2(l,N2-P2) 

X 

x^-l.I^-P,)],    (4.12) 

which is of order P2 X {NX(N2 - P2 + D). Assuming 
correlation-ergodicity of x2(nx, n?), the estimate R2 of 
the correlation matrix R2 is computed by 

R,= 2N1(N2-P2 + l) 
(X*X% + JX%X#n.    (4.13) 

4.2. Derivation of Subspaces 
Since the correlation matrices Rx and R2 are Her- 

mitian, and A^Af and A^^" are of rank Mx and 
M2, respectively, the eigendecompositions of Rx and 
R2 have the structures described by 

B?RlBl = B?A1S1A?Bl + o*I 

= Diag[/in + o-2 • • • MIM, + ff2 (T2 • • • (T2],    (4.14.a) 

B^R.ß2 = B?A2SaA?Ba + a2I 

= Diagl>21 + a2' • • M2M2 + ff2 «T
2
 • • • CT

2
],    (4.14.b) 

where Bt and B2 are unitary matrices, and pu, for 1 *£ i 
< Mx, and ^2,-, for 1 < i < M2, are positive. The num- 
bers, Mi and M2, of distinct 1-D parameters may be 
estimated by thresholding the sequences of eigen- 
values. We know that KMX<M and UM2<M.In 
PESS, Mx and M2 are not required. Partition the uni- 
tary matrices Bx = [bnb12* • -b^] and B2 = 
[b^ba- • -b-ipj intoßi = [B^^] andB2 = [B^B^], 
respectively, where B1S = [bu- • -b^,] and B2S = 
[b21* • -baAfJ are the matrices of eigenvectors asso- 
ciated with the eigenvalues, pu + a2, for 1 < i < M„ 
and M2i + a2, for 1 < i < M2, respectively. BXN = 
[b1(w1+i)- • -b^,] and Bm = [b2W:!+1)- • -b^J are the 
matrices of eigenvectors associated with the eigen- 
values a2 of Rx and R2, respectively. Using the argu- 
ment in [3], Eqs. (4.14.a) and (4.14.b) imply that 

and 

AfBw = 0, 

AX = B XSTU 

A2B2N - 0, 

A2 — DiS* 2> 

(4.15.a) 

(4.15.b) 

(4.16.a) 

(4.16.b) 

where Tx and T2 are nonsingular matrices. These re- 
sults will be used only in the 1-D based 2-D PESS. 

5. DERIVATION OF THE 1-D BASED 2-D PESS 
METHOD 

5.1. Interpretation of the Noise Subspaces 

Using Eq. (3.19.a), we can easily set up the straight- 
forward 2-D extension of the MUSIC algorithm as 
follows. Find (cox, w2)'s where the peaks of the function 
below occur. 

P(dJj, u2) 
a'V"1, eJu*)BNB5&(eJu\ ej**) 

(5.1) 

This algorithm suffers from prohibitive computa- 
tional load, and the 2-D generalization of the ROOT- 
MUSIC algorithm is not routine because the zeros of 
bivariate polynomials trace continuous algebraic 
curves [1], and the straightforward extension of the 
Vandermonde system to the 2-D situation cannot be 
derived. In this section, an indirect 2-D generalization 
of the Vandermonde system is defined and, based on 
it, a new method for estimating the wavenumber pa- 
rameters, (wü, co2l), for 1 < i < M, is developed. 

For each column bxi of BXN given by Eq. (4.15.a), 
construct polynomial equations 

El 



b^a,(Zl) = 0, 

and, for Mx + 1 < i < Plt 

JbuSL^Zi) = 0, 

(5.2.a) 

(5.2.b) 

where a,^) = [lz,-- -zf1-1]'- Eq. (5.2.a) and (5.2.b), 
for Mj + 1 < i < P1( include the separate 1-D signal 
zeros, e-""1'», for 1 *S k *£ Mlt one of which may be e''°, as 
implied by Eq. (4.15.a). Using Eqs. (5.2.a) and (5.2.b), 
construct the set of {Pl — Mx) polynomial equations 
each of degree Px, as shown below. 

2 fäMl) ■ A - *i ■ 0>£ + JbMzJ = 0, 

forM1 + Ki<P1.     (5.3) 

Let the resulting set of (P1 

tions be described by 
Mx) polynomial equa- 

5.2. A 2-D Vandermonde System 

A 2-D Vandermonde system is defined, based on a 
set of 1-D Vandermonde system given below. Eq. (5.4) 
and (5.7) can be reformulated as 1-D Vandermonde 
systems expressed by 

Dl-&l{z1) = 3i1(zl)-z1 

D2 • a2(z2) = a^(z2) • z2 

(5.8.a) 

(5.8.b) 

where the companion matrices, for m = 1 and 2, are 

Dn 

0 1 0 0 
0 0 1 0 

6 Ö Ö •      i 
^m.O tm,l tm,2 tmj>m -1 

L'nJ'„ ''nJPm '■'"J'n, ''"'•Pm 

(5.8-c) 

2ti*zJ = 0,    U^PrMj + 1. (5.4) 

The (Px - Mx) sets of coefficients, {£$}£.!> for 1 < i < 
Pj — Mx + 1, are interpreted as the statistical data set 
for a generic set of coefficients, denoted by {tlk}kii- 
Without loss of generality, we can assume that t1Pi ¥= 
0. If tlk = 0, for m < k *£ Px and t1(m_D * 0, then we 
multiply both sides of Eq. (5.4) by zf'~'n+1. Manipulate 
Eqs. (4.16.a) and (4.16.b) in a similar way to get a 
corresponding set of equations, given next, in the 
other dimension. 

bga^) = 0, 

Jb2ia2(z2) = 0, 

(5.5.a) 

(5.5.b) 

and, for M2 + 1 =S i < P2, 

2 4_M2) • 4 - 22 • (bg + c/b2i)a2(z2) = 0.     (5.6) 
A-0 

Finally, we have a generic polynomial equation repre- 
senting Eq. (5.6), as given below. 

2*afcZ§ = 0,   withtj^O. (5.7) 

We know that Eq. (5.4) and Eq. (5.7) include the sepa- 
rate 1-D signal zeros, eJ"u-, for 1 < k < Mx, and eJ"ii-, 
for 1 =§ r < M2, respectively. When Mx and M2 are not 
available, M replaces those. In simulation, averages of 
the coefficient sets were substituted in the generic 
polynomial equations. 

Taking the Kronecker products of the left-hand sides 
and the right-hand sides of Eq. (5.8.a) and (5.8.b), we 
get 

(D2 © Dx) • [ajte) © ^(r,)] = [a^) © a,(z,)] • (zxz2), 

(5.9) 

which will be called a 2-D Kronecker product Vander- 
monde system. From the property of the Kronecker 
product, we know that ei"u • e-"*2' is the eigenvalue as- 
sociated with a2(e

J"2i) © a1(e-'"li), which is an eigenvec- 
tor of (D2 © Dx), for K i < M. For arbitrary complex 
numbers gx and g2, Eqs. (5.8.a) and (5.8.b) can be 
rewritten as 

(gxDx) • aj(zx) = a^) • (gxzx) (5.10.a) 

(g2D2) • a2(z2) = aj(z2) • (g2z2).        (5.10.b) 

From a property of the Kronecker sum denoted by ©, 
(B © C = B © Ic + IB © C, where Ic and IB are the 
identity matrices of the same order as C andB, respec- 
tively) it follows that 

[(&Z>2) © (ftflx)] • [a,(z2) © ai(2l)] 

= [Mzjj) ©ajCzj)] • fexZx + g2z2).    (5.11) 

Equation (5.11) implies that g^"1*' + g2e
Mi is the ei- 

genvalue associated with a^e-"**) © a1(e'"1'), which is 
an eigenvector of [(£2D2) © fei-Dx)], for 1 < i < M, 
where either ^ or g2 must be non-zero. Equation 
(5.11) is called a 2-D Kronecker sum Vandermonde 
system. 



Multiplying both sides of Eq. (5.9) by a complex 
number g3 and adding the resulting equation to Eq. 
(5.11), we have 

[g3(D2 © Dt) + {ig2D2) © igj)^}] • Mz2) © axCs,)] 

= [a2(z2) © a,^)] • feA + £2*2 + g\Zi),    (5-12) 

which can be expressed by 

Dig) • a(2lf z2) = A(g) • a(zlf z2),      (5.13.a) 

where 

0(g) = £,(£>2 © A) + {(g2D2) © tei^i)} 

=£3(D2 © DO + g2(D2 © JPl) + gl(IPi © 0!), 

(5.13.b) 

X(g) = g3ziz2 + g2z2 + gxzu (5.13.C) 

and g = [glt g2, g3Y is a non-zero vector (/,- denotes the 
identity matrix of order i). Eq. (5.13a) is called a 2-D 
V'andermonde system. We know that g3e

j"u • ej"v + 
g2e

J"*i + gieJ'"u is the eigenvalue associated with a(e"*", 
ej°*'), for 1 «S i =S M, which, for any non-zero complex 
vector g, is an eigenvector of Dig). Similarly, the M 
eigenvalues are denoted by A,(g), for 1 =S i < M. Then 
from the definition of the matrix A and Eq. (5.13.b), 
we have, for any nonzero g, 

D(g)-A=A-A(g), (5.14) 

where   A(g)   =   DiagfX^g) • • -AM(g)]   and   \(g)   = 

5.3. Obtaining the Parameter Vectors 

Using Eqs. (3.19.b) and (5.14), the 2-D parameter 
vectors, (ui;, u2i), for 1« i =S M, are obtained from the 
results of the following theorem, which shows the sig- 
nal-selectivity of signal subspace. The theorem is for- 
mulated and proved in a general framework. 

THEOREM 5.1. Consider matrices, D of order p Xp, 
A and E each of order p X q such thatp > q, let E be of 
full rank, SpanfAJ = Spanfi?), and DA = AA, where A 
isa(qXq) diagonal matrix. Then, the following eigen- 
decomposition exists 

[iEHE)-1EHDE] = TAT"1, (5.15) 

where A is the same as A after column or row permuta- 
tion. Furthermore, for each eigenvalue X of multiplicity 
m in A, 

where Ax and Tx are the matrices of m eigenvectors 
associated with X in A and T, respectively. 

Proof. After substituting A = ET, where T should 
be nonsingular matrix, for A in DA = AA, the least- 
squares solution for TAT-1 is obtained as iEHE)~l- 
E"DE = TAT-1. This implies that iEHEYxeHDE is 
diagonalizable. Pre-multiplying and post-multiplying 
both sides of Eq. (5.15) by E and T, respectively, we 
get, E(EHE)-1EHDET = ETA. Since Span(£T) = 
Span(A), therefore, ET = A W for some nonsingular 
matrix W. Therefore, E{EHEylEHDAW = AWA, 
which reduces to EiEHE)-lEHAAW = AWA, since 
DA = A A. From the fact that A AW E Span(JS) and 
EiEHE)~lEH is the projection operator to SpanCE), it 
follows that A A W = A WA. Since A is also of full rank, 
therefore, AW = WA, or A = WAW~\ Since A and A 
are diagonal matrices, and the last equation repre- 
sents an eigendecomposition, therefore, A = A within 
permutation. 

Suppose, for convenience of argument, that A = A, 
and X;, for 1 *S i < r(^q), are the distinct elements in A, 
and X,- is of multiplicity mt. Then, it follows that A 
= WAW~\ where A = DiagtDiagtXj • • • XJ 
• • -Diag[Xr- • -A,]] and W = DiaglW^WV • • Wr], 
where the W/s are nonsingular matrices. Thus, from 
ET = AW, it follows that A = ETW\ or Ax. = 
ETX.WJ1, for 1 « i « r. ■ 

The matrices, A, Bs, and D given by Eq. (3.19.b) 
and (5.14) satisfy the assumption of Theorem 5.1. If 
we have an eigendecomposition, 

(Sfßs)-
1ßfD(g)ßs = T(g)A(g)T(g)-\   (5.17) 

where A(g) has the eigenvalues A£(g) of multiple mt, 
foil ^ i< r with r<M, and T;(g) is the matrix of all 
the eigenvectors corresponding to A;(g), then we have 
that 

Span(Ax.(g)) = Span(BsT,(g)),    for 1 < i « r.    (5.18) 

If m-i = 1, then Eq. (5.18) implies that 

AMg) = BsTi(g)-ai, (5.19) 

where T*(g) is actually a column vector, AMg) is actu- 
ally a(eJ"1*, ej"2h), for some k, and at is a scalar. When 
we scale BsT;(g) so that its first element is 1, let the 
second element be e-"*1* and the (Px + l)th element be 
e-"*2*. Then (co1A, w2J is a desired parameter vector. If 

1 for all i, then Eq. (5.18) implies that m 

A = BsT(g) ■ r, (5.20) 

Span(AJ = Span(£Tx), (5.16) 
where T is a nonsingular diagonal matrix. When the 
scaling is done so that the first row of BsT(g) is 



[1 • • • 1], the M parameter vectors, («lt-, wjj, for 1 «S i 
< M, can be easily identified from Eq. (5.20). 

If Mi > 1, we apply the Theorem 5.1 again. The 
matrices, AUg), BsT^g), and D(g") given by Eq. (5.18) 
and Eq. (5.14) satisfy the assumption of Theorem 5.1. 
Note that g" is different from g, so that the eigen- 
values of 

[ri(g)/fßfSsr,(g)]-1Ti(g)HB^(g')ßsT1.(g)    (5.21) 

are distinct. Denote by T,(g, gO the m,- X m, eigenvec- 
tor matrix of Eq. (5.21), then, we have 

AMg) = BsTi(g, gO • r„ (5.22) 

where T, is a non-singular matrix. Thus, AK<a) is de- 
termined uniquely by selecting Tt so that the first row 
ofEq. (5.22) is [1 • • • 1]. 

When the estimate A of A has been obtained, each 
column of A represents a paired parameter vector. In 
order to compute the parameters, the structure of A is 
exploited. We know that 

1 

A = (5.23) 

1 • $f'-J 

l-$2 

1 • &~l 

1 • ^f2"1 • $! 

where #j = Diagfe-""" • • • eJ'""'] and $2 = Diag 
[g>"si. . . e

i"2M]. Let Ä be defined by the column vec- 
tors named below. 

A — [Sj^Sj,! • • • Spi_lils1>2s2i2 • • • Spj-j^ 

• • • Si,i>a-iS2ip2_1 • • • Sp^j»^] .     (5.24) 

Then it follows that 

Sia*i = Slb   and   S^ = S^, 

where 

(5.25) 

Sla ~ [S1,1S2,1 *  "  - SK-2,1 '  ' ' SlJ'a-lS2J»2-l * " " ^i-a^i-il ' 

and 

Let the least squares or total least squares solution 
[20, p. 222] of Eq. (5.25) be $x and $2, then the £th 
diagonal elements of $i and 4>2 represent the two ele- 
ments of the £th parameter vector, for 1 ^ i< M. 

5.4. Selection of g 
Define column vectors, ej = [V"1', <>* e'("""+"")], for 

1 < £ «S M. Then X,(g) = g'e,, for 1 «£ £ < M, are the 
eigenvalues of (ßf5s)-

1B?D(g)ßs. Since (e*", e^'), 
for 1 < £ < M, are distinct by assumption, e| - e'k ¥= 0 
whenever £ ¥= &. In order that X,(g), for 1 < £ < M, are 
distinct, it must follow that gfe; ¥* g'ek or gc(ei - e*) ¥= 0, 
for any £, & with £ # fc, which implies that g* (the 
superscript * denotes complex conjugate) must not be 
orthogonal to e; - e* for 1 < £, k =S M and £ + k, since e, 
- ek ¥= 0 whenever £ ^ fe. That is, A in Eq. (5.15) has 
only distinct eigenvalues if g does not belong to the 
M(M — l)/4 hyperplanes expressed by g*(e,- - ej = 0 
for 1 =S i, k < M and £ # k. Thus, if g is selected ran- 
domly, the probability that A in Eq. (5.15) has non- 
distinct eigenvalues is, theoretically, zero. (In compu- 
tation, we must consider some numerical margin.) It 
is good to select g randomly. Then g7 is selected to be 
orthogonal to g, i.e., (gO^g = 0. If e, - e* is orthogonal 
to g*, then it must be not orthogonal to (g")*. Thus, 
Xt(gO and X^gO become different although X;(g) and 
Xfc(g) were the same. 

Considering the fact that, if g is selected randomly, 
the probability that A in Eq. (5.15) has non-distinct 
eigenvalues is zero theoretically, we can establish an- 
other algorithm. First, for L(>2) randomly generated 
[§i St #3]"s> solve the Eq. (5.17) and obtain A's by A = 
BsT(g). Second, choose A which either minimizes 
[7,8] 

M 

SN = 2 a'V"", ej^)BNB^a(eJ^, e**)   (5.26) 

or maximizes 

M 

Ss = 2 &H(eMi, e**,)BsB§Si(ei'", e**)   (5.27) 

5.5. The Algorithms 

According to the discussion for g in Section 5.4, we 
can set up three algorithms for estimating 2-D param- 
eter vectors. Algorithm 1 tests the magnitude of the 
difference (referred to, henceforth, as distance) be- 
tween two complex-valued eigenvalues to find if there 
are non-distinct eigenvalues in the matrix A of Eq. 



(5.15). Algorithm 2 randomizes the set of eigenvalues 
and finds distinct eigenvalues by calculating the dis- 
tances between the eigenvalues. Algorithm 3 ran- 
domizes the set of eigenvalues and finds the set of 2-D 
parameter vectors by examining their fitness ob- 
tained by evaluating the objective function of Eq. 
(5.26) or (5.27). 

In the following, it is assumed that a sample data 
matrix X has been given as in Eq. (2.2), the number M 
of 2-D wavenumbers is known, and Py(>M) and 
P2(>M) have been chosen. 

5.5.1. The 1-D Based 2-D PESS Method with 

Distance Test of Eigenvalues 

Step 1. Construct Xr from the sample data matrix 
Xby Eqs. (3.13) and (3.15). Compute the correlation 
matrix R by Eq. (3.16). Compute the eigendecomposi- 
tion of R to get R = BABH. Partition B as B = [BNBS], 
where BN is the (P^) X (PXP2 - M) matrix of the 
eigenvectors associated with the smallest (PiP2 ~ M) 
eigenvalues. The sequence of eigenvalues in A may be 
tested to estimate the number of 2-D wavenumbers. 

Step 2.a. Construct Xrl and X^ from the sample 
data matrix X by Eqs. (4.1), (4.7), (4.9), and (4.12). 
Compute the correlation matrices Rl and R2 by Eqs. 
(4.8) and (4.13). Compute the eigendecompositions of 
Rt to get R~i = BAß?. Partition Bt as Bt = [5^], 
where BM is the P, X (P; - M) matrix of the eigenvec- 
tors associated with the smallest (P; — M) eigen- 
values. Two univariate polynomial equations in z,-, for 
i = 1, 2, are selected as 

where 1 is the column vector of appropriate order, 
whose elements are all 1. 

Step 2.b. Construct two companion matrices D2 

and Dl by Eqs. (5.8.a), (5.8.b), (5.8.c). Compute 

Gl = (B%Bsr
1B$(I®D1), 

where I is the identity matrix of order P2, 

G2 = (B^BsT'B^D, ® I), 

where / is the identity matrix of order Pl and 

G3 = (B^Bsr
1B^(D2 © D1). 

Step 3. Select g(1)(^0) and g(2)(¥=0) such that they 
are orthogonal. Also select a threshold value 5. 

Step 4. Compute F = g^G, + g{1)G2 + g(
3
l)G3 with 

g™. Compute the eigendecomposition of F to get F = 

T' DiagfXi • • • XM]' T1, where the eigenvector matrix 
isTAltj-.-tj,]. 

Step 5. Compute dist,^- = | X; — A; |, for K i, j =S M, 
and i >j. Construct the clusters (?; of eigenvalues such 
that | a — ß | > 5 for a E <Sk and ß E (?, whenever k¥=j 
and | a — ß | *S 5 for a, ß E Gh. Suppose that the num- 
ber of clusters is n. 

Step 6. If the ith cluster has one member, keep t( 

unchanged, where t; is the eigenvector associated with 
the eigenvalue in the ith cluster. 

Step 7. If the ith cluster has m members, compute 
F = {TfTd-'Tfigf'G, + gfG2 + sfG3)T,. with g(2\ 
where Tt is the matrix of the eigenvectors associated 
with the eigenvalues in the ith cluster. Compute the 
eigenvector matrix £/,- of Ft and replace Tt by T;!/,-. 

Step 8. Compute the estimate A of A as A = BST. 
Construct Sla, Slb, S^, S2b by Eq. (5.25). Solve the 
linear systems via the method of least squares to get 

and 

*i = (SfÄr'sfA, 

*2  —   (1-)2a'-52a)      ,-52a"26- 

{(*i)u> (^2)11)}^! is the set of 2-D signal zeros which 
give the estimate of 2-D wavenumbers. 

5.5.2. The 1-D Based 2-D PESS Method with 
Distance Test of Randomized Eigenvalues 

Step 1, 2. Same as that of the algorithm in Sub- 
section 5.5.1. 

Step 3. Initialize outer loop; m = 1, G™ = Gu G2
l) = 

G2> GQ^ = G3 and D = I, where I is the identity matrix 
of order M. Choose roi and ru, for K i < 3, in gt = rfi1^ 
with roi < r, < ru. 

Step 4.    Initialize inner loop; n = 0, dn -1. 

Step 5. Generate a complex random vector (glt g2, 
g3). Compute F = g1G

l{n) + g2G2
m) + g3G3

m). Compute 
the eigendecomposition F = £/• Diag[Xx ■ • • XM] • IT1. 

Step 6.    Compute 

d = max     min     | X,- — \h \ 

and denote the maximizing argument of i by q. If d > 
d^ then set d^ = d, qma = q and T = U. 

Step 7. Compute n = n + 1. If n < L then go to 
step 5. 



Step 8. Rearrange the columns of Tby T = [^Tj], 
where tj is the g^^th column of T and T2 is the matrix 
of all the remaining columns. Replace D by 
D-Diag[In-ltT\. 

Step 9. Compute m = m + 1. If m < M + 1 then 
compute G\m) = (T^T^T^G^ for 1 < i < 3, and go 
to Step 4. 

Step 10. Same as Step 8 of the algorithm in Sub- 
section 5.5.1. 

5.5.3.  The 1-D Based 2-D PESS Method with 
Fitness Test of 2-D Parameter Vectors 

Step 1, 2. Same as that of the algorithm in Sub- 
section 5.5.1. 

0, d„ 1. Step 3.    Initialize the loop; m 
Choose roi and ru, for 1 < f < 3. 

Step 4. Generate a complex random vector (gu g2, 
g3) where gt = rte

j4,i and ri0 < r,« r;i. Compute F = g^ 
+ g2G2 + g3G3. Compute the eigendecomposition of F 
byF=T-Diag[\1---\M]-T-\ 

Step 5.    Compute A = BST. 

Step 6. Construct Sla, Slb, S2a and S2b by Eq. 
(5.25). Solve the linear system via the least squares 
method by 

and 

*i = (SfAj-'sss« 

$2  -   (SzaSto)     ^2aS2b- 

Denote the set of 2-D signal zeros {(($i)a, ($2)0) }£i 
by<£. 

Step 7. Compute d = 2^ afßsBfa;, where a,- = 
a(($x)i,-, ($2)«)» where a( •) is defined by Eq. (3.5). If d 
> d^a, then set G = ^ and d^ = d. 

Step 8. Compute m = m + l.lf m< L + 1 then go 
to step 4. 

Step 9. Each 2-D signal zero in the set 6 gives the 
estimate of a 2-D wavenumber. 

6. THE PAIRING-PESS METHOD 

The algorithm presented in the previous section 
can be used as an algorithm for pairing separate 1-D 
parameters estimated by 1-D based 2-D methods. As- 
sume that we have estimated 1-D signal zeros, 
{e-/""»}^! and {g^"*»}*!*,, and we-know the number M 

of 2-D sinusoids. Using the signal zeros estimated, 
construct the polynomial equations by 

2 t14z* A #-*-**. (Zl - 1)-. n (Zl - <>"*), (6.1.a) 
*-o *-l 

2 «i*z* A 4,2-Af2_d2- (za - D* II (za - e**), (6.1.b) 
A-0 *-i 

where dt = 0 if M = M„ or d{ = 1 if M > Mb for t = 1, 2. 
When M > M„ some of e-"""*, for 1 «S k *S Mit are 
multiple order zeros. The case of multiple 1-D signal 
zeros is accounted for by the 2-D Vandermonde sys- 
tem. Suppose that data matrix X in Eq. (2.2) for the 
case when M = 2 in Eq. (2.1) was available. Suppose 
that the estimated 1-D signal zero sets are {e-''1} and 
{g-'"2}. Here M1 = 1, and M2 = 1 and using these two 
sets of 1-D signal zeros, Eq. (6.1.a) and (6.1.b) are 
written as 

2f'-
2-(2l-l)(z1-gJ-1)=0, (6.2.a) 

zf2"2 • (z2 - l)(z2 - g;-2) = 0. (6.2.b) 

When we construct the 2-D Vandermonde system, 
using the two 1-D polynomial equations in Eq. (6.2.a) 
and (6.2.b), described by Eq. (5.13), a(l, 1), a(l, g;'2), 
a(gJ'1,1), and a(g;1, gJ'2) are the eigenvectors of D(g). 
Theorem 5.1 enables us to extract the subset of eigen- 
vectors associated with the two 2-D wavenumbers. 
The remaining eigenvectors account for other incor- 
rectly paired 2-D zeros and spurious 2-D zeros. When 
the algorithm given in Section 5 is used as a general 
pairing algorithm, Eq. (6.1.a) and (6.1.b) are substi- 
tuted for Eq. (5.4) and (5.7). All the remaining proce- 
dure is used with no change. 

6.1. The Algorithms 

In the following, it is assumed that a sample data 
matrix X has been given as in Eq. (2.2), the number M 
of 2-D wavenumbers is known, and Px(>M) and 
P2(>M) have been chosen. 

6.1.1. The Pairing-PESS Method with Distance 

Test of Eigenvalues 

The steps are the same as those of the algorithm in 
Subsection 5.5.1, except that Step 2.a is changed to 
the following. 

Step 2.a. Suppose that the estimates of the sepa- 
rate frequencies are given by the sets {uu}fi\ and 
{u2i}fL\, where M1 < M and M2 < M. Two univariate 
polynomial equations are given by Eqs. (6.1.a) and 
(6.1.b). 



6.1.2. The Pairing-PESS Method with Distance 

Test of Randomized Eigenvalues 

The steps are the same as those of the algorithm in 
Subsection 5.5.2, except that Step 2.a is changed to 
the Step 2.a of the algorithm in Subsection 6.1.1. 

6.1.3. The Pairing-PESS Method with Fitness 

Test of 2-D Parameter Vectors 

The steps are the same as those of the algorithm in 
Subsection 5.5.3, except that Step 2.a is changed to 
the Step 2.a of the algorithm in Subsection 6.1.1. 

7. DERIVATION OF THE DIRECT 2-D PESS 
METHOD 

Eq. (7.3) can then be reformulated as 

(g2z2 + gxzj • e£a(zl; z2) 

= g&f+iAz» 22> + ii*"i+Mzi, z2).    (7-5) 

where 1 «S i < P^ — 1 and 1 <j *S P2 - 1. Now, let e;„ for 
1 «5 i < Pj — 1 and 1 =S j =S P2 — 1, be stacked as the 
matrix, 

C ~  [gl.leU* * "elJ>,-l" " ' eP2-U
eP2-1.2 ' 

(7.6) 

which has (PXP2) rows and (Px — 1)(P2 — 1) columns. 
Stacking both sides of Eq. (7.5), it follows that 

In this section, it is shown that the 2-D wavenum- 
bers, (wu, w2l), for K i =S M, are directly obtainable by 
using the structure of the vector &(eJai, eJ"*) and the 
estimate of the range space of the matrix A denned in 
Eq. (3.6). 

7.1. A Basic Matrix Equation 

For convenience, the following convention for in- 
dexing the elements of a (P2 • Pj) X 1 column vector is 
introduced. The {Px • (J — 1) + i}th element of the 
vector, where Kj =s P2 and 1 *S i *S Pu will be called 
the (j, i)th element. Thus, the (J, i)th element of the 
(P2-P1) X 1 column vector a^, z2), after replacing 
ej"u by Zj and e-"*2' by z2, is 

aj.i       z2       z\    ■ (7.1) 

The elements of a(z1( z2) are then shown explicitly 
below. 

a(zi, z2) 

= Kl"u ' * ' a\fx * * * aP2.l
aP2.2 ' ' * aP2^,]'-     (7-2) 

From Eq. (7.1), it follows that 

aj.i' (£2*2 + 8\Z\) = 520/+i.i + SiO/.;+i>        (7.3) 

where K i < Px - 1,1 <y < P2 - 1, and^ andg2 are 
arbitrary complex numbers. Let e;i- be the {J, i)th col- 
umn of the identity matrix of order P2 • P1( i.e., the 
(P2 • Pj) X 1 column vector whose (j, i)th element is 
one and all the remaining elements are zero. Then, 
Eq. (7.1) can be expressed as 

ai.i = e"Mz» Z2>- 

(g2z2 + glZl) • CHz(zu z2) = D"igu g2)a(zlt z2),    (7.7) 

where 

D(gU   g2)     =   g2D2    +   gyDi, (7.8) 

-^2 ~ te2,ie2^' ' "e2^1-i" ' 'ep2.i
eP2a' ' "eP2rp,-i]> (7-9) 

and 

-Dl = IeUeU* ' *elJ»i" ' ' eP2-l^
eP2-1.3 ' " "eP2-i.pJ- 

(7.10) 

The matrix equation (7.7) will be used to develop the 
new algorithm. Eq. (7.7) holds for an arbitrary 2-tuple 
(zu z2), as is obvious from the steps in its derivation. 
Substituting (eJ"u, eJ'"2') for (zlt z2) in Eq. (7.7) yields 

£"(&, &)a(e*", e**) = M&, fejCale^, <>*), 

where 1 < i < M and 

Mfc, &) = &e** + ftc**. 

(7.11) 

(7.12) 

Through the definition of the matrix A extracted 
from Eq. (3.6), Eq. (7.11) leads to 

DH(g1,g2)A = CHAA{g1,g2), (7.13) 

(7.4) 

where A.(gu g2) is a diagonal matrix whose ith diagonal 
element is \(glt g2) and whose order is M. Eq. (7.13) 
can be solved for A using the property of signal (zeros) 
selectivity in the signal subspace, as described in the 
next section. 

^■m-iiu« «?.*[ IPW.!™ 



7.2. Estimation of the Matrix A 

Substituting Eq. (3.19.b) for A in Eq. (7.13), the 
problem of solving for A is reduced to the problem of 
obtaining the M X M nonsingular matrix T in 

{D*(gu gz)Bs} • T = (CHBS) • T- A(gu &) (7.14) 

Using Eqs. (3.6) and (7.6), it can be shown that 

CHA = [aV"n, eJa'1) • • • a'(eJ'",M, eJ"M)],    (7.15) 

where 

a'(e;w,s e^') = a^e'"2') © a'^e^'O, 

a^(e^) = [leja*- • V"*^2-2'], 

and 

a'^e^1') = [leM< oMitPi-D 

From the discussion in Section 3.3 and [4], it is known 
that CHA is of full rank if and only if 

(Px - 1) • (P2 -1)>M. (7.16) 

Condition (7.16) is always satisfied since it was as- 
sumed that P1> M and P2 > M. Since A and Bs span 
the same signal subspace, CHBS is also of full rank. 
Thus, Eq. (7.14) implies that 

F(g1,g2) = T'A(g1,g2)-T-\ (7.17) 

where 

F(gx,g2) = {BlCCBsT'BlCD11^, g2)Bs.    (7.18) 

The M X M non-singular matrix T and the diagonal 
matrix h.{gx, g2) can be obtained by eigendecomposing 
the matrix F(gx, g2). Eq. (7.17) implies that the matrix 
F is diagonalizable (non-defective) [20, p. 338]. 

LEMMA 7.1. With a distinct eigenvalue is asso- 
ciated one eigenvector which is unique up to scalar 
multiplication. 

Proof. F E CM*M can be Schur-decomposed as 
GfFQ = T, where Q G C^^ is a unitary matrix and T 
E C***" is a upper triangular matrix [20, pp. 335]. 
Since det(F - XI) = det(QTQ" - XI) = det(T - XI), 
the diagonal elements X„ for 1 < i «S M, are the eigen- 
values of F. Consider an eigenvalue A,-. Its associated 
eigenvector x,- satisfies (F — X;/)^ = 0 or (T — A,/)^*, 
= 0. If A; is distinct, T - XJ is of rank M - 1. Thus, 
Q^x, is unique up to scalar multiplication, and so is 

When the eigenvalues of the matrix F{gx, g2) are 
distinct (F(glt g2) is nonsingular if and only if any 
eigenvalue is not zero.), the columns of the eigenvec- 
tor matrix T are unique up to scalar multiplication, 
and so the estimate of A is given by 

A = SSTA, (7.19) 

where A is a diagonal matrix whose elements are de- 
termined to scale each column of BST such that the 
first element is 1. The estimate of 2-D wavenumbers 
are computed from Eq. (7.19) using Eqs. (5.23), (5.24), 
and (5.25). 

7.3. The Algorithms 

In the following, it is assumed that a sample data 
matrix X has been given as in Eq. (2.2), the number M 
of 2-D wavenumbers is known, and P^M) and 
P2(>M) have been chosen. 

7.3.1.  The Direct 2-D PESS Method with 

Distance Test of Eigenvalues 

The steps are the same as those of the algorithm in 
Subsection 5.5.1, except that g3 and G3 vanish in all 
the steps and the Steps 2.a and 2.b are changed to the 
following. 

Step 2. D2 and Dx are constructed by Eqs. (7.9) 
and (7.10), and the following 2 matrices are com- 
puted. 

and 

Gi — (BSCC Bs) 1Bs(?DiBs 

G2 - (BSCCHBS) lBsCD%Bs 

7.3.2. The Direct 2-D PESS Method with 

Distance Test of Randomized Eigenvalues 

The steps are the same as those of the algorithm in 
Subsection 5.5.2, except that g3 and G3 vanish in all 
the steps and the Steps 2.a and 2.b are changed to the 
step 2 of the algorithm in Subsection 7.3.1. 

7.3.3. The Direct 2-D PESS Method with 

Fitness Test of 2-D Parameter Vectors 

The steps are the same as those of the algorithm in 
Subsection 5.5.3, except that g3 and G3 vanish in all 
the steps and the Steps 2.a and 2.b are changed to the 
Step 2 of the algorithm in Subsection 7.3.1. 



8. SIMULATION RESULTS 

In this section, examples are presented to illustrate 
the PESS methods developed above, and Monte Carlo 
simulation results are provided to show the perfor- 
mance of the methods. In the simulation, the PESS 
method and the MEMP method [8] were applied to 
the same data set for accuracy comparison. 

Each 20 X 20 sample data matrix was generated by 
the equation 

Step 2.b.   The initial Gu G2 and G3 were computed 
as 

ci = 
10.0236260 + ;0.9975650    0.0321898 - ;0.0225824     -0.0000030 - ;0.0O15337 

0.0686103+ J0.0446103   -0.0180299+ ;1.0018485   -0.0025797 + j0.0040438 
^0.0155744+;0.6278006    -0.3369688 - ;0.5409832     0.0179116+ J0.9976731 

G2 = 

I 0.0177350 + J0.9998431     -0.0400412 + jO.0150251 0.0001062 - ;0.0011839 
-0.0760086 - jO.0483654   -0.0297496 + ;0.9890730 0.0025833 - jO.0035922 

I  0.0096372 + J0.6282084      0.3278028 + j0.5331685 0.0181662+ J0.9980672 

and 

x(m, n) = 2 e''2'(/2*m+/"n) + v(m, n), 
k-i 

for 0 =S m, n < 19,    (8.1) 

where u(m, n) is the complex white noise. 

8.1. Examples 
The 3 wavenumber parameters were selected as 

(Ai, /21) = (0-26, 0.24) 

(/«, /22) = (0-24, 0.24) 

(/is. /as) = (0-24, 0.26). 

(8.2) 

(8.3) 

(8.4) 

The 3 algorithms processed a sample data matrix X 
which was generated with SNR of 20 dB. SNR is de- 
fined by 

SNR = 10 logjoU/.r2), (8.5) 

where a2 is the noise power. The 4X4 array was se- 
lected, which means that Px = P2 = 4. The number L 
of iteration was set to 2 and rQi = 1 and ru = 10, for 1 «S 
i *£ 3, were selected in Sections 8.1.2 and 8.1.3. 

8.1.1. The 1-D Based 2-D PESS Method with 

Distance Test of Eigenvalues 

Step 1. Thejist of data matrix X, R, Rlt R2, B, Ä, 
Bu Äj, B2, and Ä2 were obtained and is available from 
the authors as an Appendix to this manuscript. 

Step 2.a. Two univariate polynomial equations in 
zü for i = 1,2, were computed as 

0.0 + (-0.0204075 + j0.1130556)2, + (-0.2097420 + j0.0769447)zj 

+(-0.2097420 - ;0.0769447)»J + (-0.0204075 - jO.1130556)*} = 0.0 

and 

0.0 + (0.3638633 - j0.4630003)2, + (0.6093172 + j0.2134817)z| 

+(0.6093172 - j'0.2134817)^ + (0.3638633 + ;0.4630003)^ = 0.0. 

/-1.0044686+ ;'0.0348798     0.0043723 - j'0.0093423      0.0027056 - ;0.0000879 \ 
[   0.0038265 - j0.0068570     -0.9936933 - >0.0474929    -0.0003874 - jO.0000307    . 
\-1.2538954+j0.1007968     0.0082100 - j0.0070122     -0.9974769 + ;0.0359509/ 

Step 3.    g = [0 0 1], g' = [1 -0.5 0] and 5 = 0.07 were 
selected. 

Step 4.    F = g1Gl + g2G2 + g3G3 was computed as 

F = 

-1.0044686+ J0.0348798     0.0043723 - ;0.0093423 0.0027056 - j0.0000879 \ 
0.0038265 - ;0.0068570     -0.9936933 - j'0.0474929 -0.0003874 - jO.0000307 
-1.2538954+ J0.1007968     0.0082100 - jO.0070122 -0.9974769 + ;0.0359509/ 

The eigenvalue and the eigenvector matrices of F 
were obtained as 

A = Oioj[-1.0048345 - J0.0229922 - 0.9980068 + jO.0940336 - 0.9927975 - ;0.0477037) 

and 

/'0.0021124 + j'O.O 
' = I 0.0054370 - jO.O 

\ 1.0000000 + ;0.0 

^0.0021124 + j0.0471462     0.0041338-j0.0459490     -0.0075787+ j0.0682349\ 
T= | 0.0054370-jO.0001844    -0.0015099 + ;0.0O48979   -0.0158513 + jO.3115187    . 

).0000000     1.0000000+ ;'0.0000000       1.0000000+ J0.0O0OOO0 I 

Step 5.   The distances between the eigenvalues 
were computed as in the distance matrix 

0.0000000   0.1172248   0.0274872N 
0.1172248   0.0000000   0.1418330    . 
0.0274872   0.1418330   0.0000000/ 

The clustering procedure gave cluster 1: {2} and clus- 
ter 2: {1,3}. 

Step 6.    Consider cluster 1. Keep the second col- 
umn of T. 

Step 7.    Consider cluster 2. The following F' was 
computed with g7 = [1 —0.5 0]. 

_, _ / 0.0430450 + jO.5375658     0.0366425 + jO.0193354 \ 
~ V 0.2040451 -jO.1839002   -0.0454788+ ;0.47613067 ' 

The eigendecomposition F' = T'A'(T') x was com- 
puted as 



A' = Di<ij[-0.1109810 +J0.50718540.1085473 +jO.5065110] and 

and 

—      / -0.2528226 - jO.0756661   0.342479O + j0.4575574"\ 
~ = I   1.0000000 +jO.OOOOOOO     1.0000000 + jO.OOOOOOO / ' 

Step 8.    The desired eigenvector matrix was ob- 
tained as 

-0.0317045 + jO.0670475     0.0O41338 -jO.0459490     0.0091916 + jO.0304683 
f= | -0.1425295 + J0.0992513    -0.0015099 + jO.0048979   0.0330160 - jO.0777440 

1.3424790 + jO.4575574       1.0000000 + jO.OOOOOOO     0.7471774 - jO.0756661 

The estimate of A was computed as 

/ 0.3513742+J0.0823592 
-0.0606784 + jO.3559272 
-0.3587124 - JO.039O216 
0.0153205-jO.3609187 
-0.1142487+ J0.3388163 
-0.3464285 - jO.0922990 
0.0718142 - jO.3515703 
0.3557070+ J0.0490836 

-0.3256860 - ;0.1427773 
0.1216560-jO.3349905 
0.3420828+ J0.1018271 

-0.0794458 + jO.3480729 
0.1726683-jO.3085556 
0.3199914+ J0.1S19383 

-0.1325859 + jO.3296704 
V -0.3379245 - jO.1122691 

0.2483042 + jO.0218955 
-0.0092024 + j'0.2492167 
-0.2493843 + jO.0033865 
-0.0156432 -jO.2488627 
-0.0107822+ J0.2498093 
-0.2499995 + jO.0016945 
-0.0142784 - jO.2497213 
0.2486869 - jO.0266547 

-0.2503781+J0.0002922 
-0.0127796-jO.2502443 
0.2493742 - jO.0253760 
0.0377740+ J0.2480116 

-0.0111399-jO.2505019 
0.2498546 - jO.0235370 
0.0361808 + jO.2485306 

-0.2464574 + jO.0488280 

0.1825521 - jO.0333121 \ 
0.0184874+ ;0.1869526 

-0.1901246 + ;0.0043823 
0.0108940-j'0.1925282 
0.0452373 + j0.1799749 

-0.1853295 + ;0.0305067 
-0.0168328-jO.1891642 
0.1924566-;0.0018425 
-0.1771500+ ;0.0557414 
-0.0414145 -;0.18315«l 
0.1880830 - ;0.0280891 
0.0131399+ ;0.1921169 

-0.0674049 - jO.1734022 
0.1802734-j'0.0533663 
0.0400952 + jO.1859581 

-0.1908892 + jO.0256973/ 

From Ä, the following two matrices were obtained. 

0.0662453 + ;0.9975544 
0.0022932 + j0.0024737 
-0.0099251 - jO.0038398 

-0.0835589 + jO.9959845 
-0.0182159 - jO.0148995 
0.0119660 + ;'0.0059019 

+i = 

0.0O08960 - ;0.0OO5833 
0.0493609+ J0.9988683 

-0.0010368 + jO.0006666 

-0.0023614 + jO.0024702 
0.0472167 + jO.9988186 
0.0012700 - jO.0000055 

-0.0012975 - j0.0003834\ 
-0.0021381+;'0.010980S 1 . 
-0.0728221 + ;0.9969979/ 

0.0025242 - jO.0003328 \ 
-0.0016406 -jO.0004648 j . 
0.0606975 + jO.9979546 / 

The desired 2-D zeros were extracted from the above 
two matrices as 

(0.9997516 • SIJKJ2*0.2394464), 0.9994834 ■ eip(j2T0.2633212)), 
(1.0000872 ■ «p(;2rt.2421415), 0.9999340-eip(J2»0.2424819)), 
(0.9996539- «pO2;r0.2616043), 0.9997987- eip(j2T0.2403318)). 

8.1.2. The Pairing-PESS Method with Distance 

Test of Randomized Eigenvalues 

It was assumed that two sets of 1-D wavenumber 
parameters were estimated as 

{0.2595620,  0.2396049}, 
{0.2567192,  0.2431879). 

Two univariate polynomial equations in zit for i = 1,2, 
were obtained as 

0.0 + (0.9999863 - ;0.0052345)i, + (-0.9947621 + J2.0012980)--; 

+(-1.0052242 -; 1.9960635)iJ+1.0*; = 0 

0.0 + (0.9999998 - ;0.0005840)zj + (-0.9994164 + jl.9987771)*,1 

+(-1.0005834 - jl.9981931)i| + l.OzJ = 0. 

Iteration 1.   The vector g was randomly generated 
as 

g = (8.2824010 + J2.7776125  1.7048545-j'4.0095459 0.3119416-j'0.9788936]'. 

The maxmin distance was computed as 1.0368955. 
Another g was randomly generated as 

g s (-0.1596835 + j'2.1919652  6.8230877 + J7.0010181   - 6.1613831 - J8.6783894]'. 

The maxmin distance was computed as 1.0061741. 
The first trial was determined to be better. The ma- 
trix D was obtained as 

0 0068896+ ;0.0257567     0.0072275 + ;0.0205755      0.0029841 - jO.0483550 \ 
0 0475577 - JO 0772910    -0.0524261 + J0.0925424    -0.0107985 + jO.0O38552    . 
1.0000000 +jO.OOOOOOO     1.0000000 + jO.OOOOOOO       1.0000000 + jO.OOOOOOO / 

Iteration 2.   The vector g was randomly generated 
as 

g = [5.4793580 + J6.2770135   - 1.5739585 + jO.5342874 2.0556196 - J3.2626202]'. 

The maxmin distance was computed as 1.6158669. 
Another g was randomly generated as 

g = [5.8321917+J7.7009918 -0.2320668+J3.1577547 j3 = -4.3553791-J9.0153360]'. 

The maxmin distance was computed as 1.8360912. 
The matrix D was updated as 

0.0068896 + J0.0257567  0.0028700 - jO.0482168  -0.0066433- j0.0632031\ 
0.0476577-jO.0772910 -0.0116724 +jO.0038789  0.0128859-jO.0791381  . 
1.0000000 +jO.OOOOOOO  1.0042443+ J0.0070381  0.2113152 + jO.1908670 / 

The desired 2-D zeros were extracted from the above 
two matrices as 

(1.0003608 ■ tip(j2T0.2615938), 1.0001100 • «ip(j2r0.2402652)), 
(1.0002271 ■crfKJ2r0.2419204), 0.9929687-cip(j2i0.2431732)), 
(0.9988808 ■ txp(j2*0.2396621), 1.0055987 • eip(j2i0.2625731)). 

8.1.3. The Direct 2-D PESS Method with 

Fitness Test of 2-D Parameter Vectors 

Trial 1.    The following were generated randomly. 

jl = 8.2824010 + J2.7776125     ind     }2 = 1.7048545 - J4.0095459. 

The eigenvector matrix was computed as 



/-O 0022579+ ;0.0378996   -0.0061035 + jO.032090    -0.0024479 - j0.0504«17\ 
0 0563264 - ;0.0876339     -0.0741348 + jO.087848     0.000889« - jO.0042041      . 

V 1.0000000+ ;0.0000000       l.OOOOOOO + jO.OOOOOO       1.0000000 + jO.0000000 / 

With this estimate of T, the signal zeros were com- 
puted as 

(-0.0729085+ J0.9971211, 0.0611014 +j'0.9980343) 
(0.0666534 + jO.9975640, -0.0843249 + ;0.9953308) 
(0.0490392 + jO.9987356, 0.0475788 + jO.9993925). 

and the criterion value was evaluated as 47.9998695. 

Trial 2.    The following were generated randomly. 

j(l)=-0.1596835 + j2.1919652  and  j(2) = 6.8230877+ ;7.0010181. 

The eigenvector matrix was computed as 

r = 

/-0 0075360+ ;0.0414075    -0.0001785 -jO.033024    -O.01393O3 + ;0.0298457\ 
[ -0 0666335+ ;0.1067764     0.0090331 - j0.015174       0.0623083 - j0.0678467      . 
\  1.0000000 + ;0.0000000       l.OOOOOOO + jO.OOOOOO       1.0000000 +;0.0000000 J 

With this estimate of T, the signal zeros were com- 
puted as 

(0.0664314 + jO.9976989, -0.0845125 + jO.9959812) 
(0.0513499 + jO.9941209, 0.0470659 + ;0.9994206) 

(-0.0749972 + ;1.0O160O9, 0.0618018 + J0.9973559). 

and the criterion value was evaluated as 47.9998661. 

The result of the first trial was determined to be 
best. The desired 2-D zeros were extracted from the 
above two matrices as 

0.260 

0.240 -^ «iÄSfr1- 

0.240 0.260 j2 

FIG. 8.2.    The pairing-PESS; 20 dB; 200 runs; P, = P2 = 4. 

8.2. Monte Carlo Run 
The simulation results for the 1-D based 2-D PESS 

method, the Pairing-PESS method, and the Direct 
2-D PESS method are presented. The procedure for 
avoiding the problem of repeated eigenvalues was se- 
lected to provide the fitness test of 2-D parameter 
vectors. Comparison of the PESS methods with the 
MEMP method was also made. Two hundred sample 
data matrices were generated and the three PESS 
methods and the MEMP method were applied to esti- 
mate the 2-D wavenumbers. The comparisons be- 
tween the four methods were made for the wavenum- 
ber parameters in Eqs. (8.2), (8.3), and (8.4). (The 
results are shown in Figs. 8.1 to 8.4.) 

Subsequently, the Direct 2-D PESS method and 
the MEMP method were compared for wavenumber 
parameters specified by 

(0.9997830 • eip(j2T0.2616166), 0.9999029 ■ eip(j2i0.2402684)), 
(0.9997883 ■ tipO'2'0.2393817), 0.9988964 • «p<j2jr0.2634516)), 

(0.9999388 • eip(j2r0.2421916), 1.0005244 - eip(;2l0.2424287)). 

(Ai, /») = (0-26, 0.24) 

(/12,/B) = (0.24, 0.24) 

(A3, /23) = (0-25, 0.26). 

(8.6) 

(8.7) 

(8.8) 
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0.240 A f,—JWtSifr 

0.240 0.260 j2 

FIG. 8.1.    The 1-D based 2-D PESS; 20 dB; 200 runs; P, = P2 = 5. 
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0.240 %f? ***¥: 
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FIG. 8.3.    The direct 2-D PESS; 200 runs; Pt = P2 = •*. 
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FIG. 8.4.    The MEMP; 20 dB; 200 runs; P^ = Pt = 4. 
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FIG. 8.6.    The direct 2-D PESS; 20 dB; 200 runs; Pl = P2 = 5. 

I» 

For the preceding set the parameters Px and P2 were 
each selected to be 5 to improve resolution. The re- 
sults for this case are shown in Figs. 8.5 and 8.6. 

In the simulations, roi = 1 and ru = 10, for 1 < i < 3, 
were selected. The number L of iterations was chosen 
to be 2 for the PESS algorithms. In the simulation of 
the Pairing-PESS method, it was assumed that the 
estimates of wavenumbers, obtained by other method, 
include an estimation error with a standard deviation 
of 0.003. In the pairing procedure by the MEMP 
method, the criterion of Eq. (5.27) was used as recom- 
mended by Hua [8]. 

Figures 8.1 to 8.4 show that the PESS methods 
worked as well as the MEMP method. The Direct 2-D 
PESS method outperformed the MEMP method for 
the 2-D wavenumber parameters in Eqs. (8.6) to (8.8), 
as shown in Figs. 8.5 and 8.6. 

9. CONCLUSIONS 

The methods proposed here for estimation of 2-D 
wavenumbers of a finite number of sinusoids in noise 

0.260 
0.250 
0.240 

fc 
i       ■* 

,,  ; i 

0.240 0.260 j2 

FIG. 8.5.    The MEMP; 20 dB; 200 runs; P1 = P2 = 5. 

are computationally efficient and accurate. The 
knowledge of the number of sinusoids or its estimate 
is needed but this constraint can be relaxed as in the 
1-D case [3]. The procedure, in principle, is generaliz- 
able to dimensions higher than two. Though the com- 
putations are likely to increase substantially with in- 
crease in the number of dimensions, other 1-D based 
methods which use a separate pairing procedure as 
well as other direct methods are usually more compu- 
tation-intensive. 
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ABSTRACT 

A theoretical analysis is proposed to evaluate the ro- 
bustness of the total least square (TLS) algorithm for 
image reconstruction from a sequence of undersampled 
noisy and blurred frames in the wavenumber domain. 
Since the data samples in the wavenumber domain are 
complex-valued, the results from the TLS theory de- 
veloped for the case of real-valued data are adapted to 
the situation at hand. It is shown that the image qual- 
ity can be improved as more frames become available. 
In the case of blurred frames, higher resolution images 
may be reconstructed using the TLS algorithm with 
post-deblurring. Finally, computer simulation results 
are provided to demonstrate the robustness of the TLS 
algorithm for image reconstruction. 

1.  INTRODUCTION 

Recently, considerable attention has been devoted to 
image sequence processing. Many applications of im- 
age sequence processing may be found in (both military 
and industrial) surveillance, medical imaging, and agri- 
culture. One of the efforts in image sequence processing 
is directed at the improving of resolution of the recon- 
structed image from a sequence of snapshots taken over 
a fixed object. For example, LANDSAT follows a cir- 
cular, near-polar orbit at a nominal altitude of 700fcm 
and it flies over the earth surface between latitudes 82° 
north and 82° south once every 16 days. Thus, multi- 
ple images of the same area are available. The spatial 
resolution of an image is often determined by imaging 
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sensors. In a CCD camera, the image resolution is de- 
termined by the size of its photo-detector. When an en- 
semble of several shifted images are available, we may 
reconstruct an image with higher resolution which is 
equivalent to an effective increase of the sampling rate 
by interpolation. 

The problem of reconstructing a high resolution in- 
terpolated image from a sequence of undersampled 
noisy and blurred frames has been tackled by proce- 
dures developed both in the space domain and the 
wavenumber domain. In the space domain, several 
methods were reported [1, 2, 3]. Peleg, et al., [1] pro- 
posed an interesting scheme. Starting with an initial 
guess for a high resolution image, they simulated the 
imaging process to compute low resolution images. The 
high resolution image is iteratively improved to achieve 
simulated low resolution images closest to the observed 
ones. Tekalp, et al., [2] proposed a scheme based on 
a prior POCS (projection onto convex sets) method. 
Their procedure was successfully applied to blurred 
noisy images. However, the recursive scheme was not 
explicit. Ur and Gross [3] proposed a nonuniform inter- 
polation scheme based on a generalized sampling the- 
orem to obtain an improved resolution image from an 
ensemble of subpixel level shifted low resolution images 
of the same scene. They did not take into account the 
presence of noise. 

Using sequential estimation theory in the wavenum- 
ber domain, an efficient method was developed [4] for 
recursively updating to provide satisfactory reconstruc- 
tion in the blur-free case provided the displacements of 
the frames with respect to a reference frame were either 
known or estimated. It was observed that the perfor- 
mance deteriorated when the blur produced zeros in 
the wavenumber domain and theoretical justification 
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for this can be provided. The problem of reconstruction 
in the wavenumber domain with errors present both in 
the observation and data was tackled by the method of 
Total Least Squares (TLS) [5]. A recursive updating 
scheme was developed which performed satisfactorily 
in the blur-free case. Very recently, Kim [6] proposed 
that the blurred and noisy case be tackled by applying 
the method in [5] with post-deblurring. 

In this paper, we expand the application of the pro- 
cedures in [5] and [6] to a wide variety of blur and noise 
and then work towards a theoretical analysis for robust- 
ness evaluation of the TLS method in the wavenumber 
domain where the data is complex-valued. For this to 
be possible, the results from the TLS theory for the 
case of real-valued data are adapted to the situation at 
hand. In Section 2, a brief review of high resolution im- 
age reconstruction by the TLS algorithm is provided 
Then, the robustness of the TLS algorithm for image 
reconstruction is evaluated through variance analysis 
in Section 3. In Section 4, some computer simulation 
results are supplied to demonstrate the robustness of 
the TLS algorithm for image reconstruction.   Finally, 
concluding remarks are made in Section 5. 

2.  HIGH RESOLUTION IMAGE 
RECONSTRUCTION BY THE TLS 

ALGORITHM 

Suppose that the Fourier transform, Fe(u v) of the 
original continuous image f(x,y) is approximated by 
tne bandhmited constraint 

\Fc(u, v)\ = 0,   for |u| > Lxwx  and |v| > Lywy,  (1) 

where Lx, Ly are some finite integers, wx = 2ir/Tx, 
wy = 2ir/T9, and Tx, Ty are, respectively, the sampling 
periods along the x and y axes.   At least 4LXLV un- 

!ü,a?P,led frameS' *&>*>)> ' = 1.2,...,4Z,VMe 
needed for the initial reconstruction of /(x,y), where 
i» and iy are indices of natural numbers. To 'accom- 
modate explicitly the non-unity sampling periods and 
shifts, the ith frame is expressed as 

/.0 ■*>*y. = /( **Tt + 8, >xi, hTu +Syi), (2) 

where fr=0,l,...,ilf-l,ty= o,l,...jAr_1)and 

dxi, dyi are, respectively, the estimated shifts along the 
«and y axes. It is assumed that differences between 
the true shifts and the estimated ones along the x and 
y axes are, respectively, A*,,- and ASyi. If there are 
k frames available, the multiframe image restoration 
model is [5] 

Z=[$ + E]F + N, (3) 

where 

Z   = 

Yi    = 

4>ir     = 

/,      = 

ly      = 

AY,    = 

Sir      = 

E 

N 

F 

[Zi z2 ... zky, $ = (Vj Y2 .. 

[</>il  <t>i2   ■ ■ ■   <t>ip]\ 

(r-l)mod{2Lx)-Lx, 
l(r-l)/(2Lx)\-Ly, 

2   ■■■  Sip]*, 

nr. 

[Sil Si 

j2* [ASxi 
\MTX 

+ TX 

+4^|ä4 
[A^! Ar2 ... Ar*]', 
[^i Jv2 ... Nky, 

[Fmn(l) Fmn(2)   ...Fmn(p)Y. 

Furthermore, the superscript t denotes the transpose 

operator, p = 4LsLy, Zt and N{ are, respectively, the 
values of the DFTs of the ith noisy undersampled frame 
and the additive noise at a generic index 2-tuple (m n) 
in the wavenumber domain. Fmn(i) is the ith interpo- 
lated component at index 2-tuple (m, n). This 2-tuple 
is suppressed in Zit Nu Z and N for brevity. Without 
loss of generality, TV,- is assumed to be zero mean. 

In [5, 6], the TLS algorithm [7] developed for the 
real-valued data is successfully adapted for high reso- 
lution image reconstruction using the model given in 
Equation (3). 

3.  PERFORMANCE ANALYSIS OF THE 
TLS ALGORITHM FOR IMAGE 

RECONSTRUCTION 

The TLS theory has been studied extensively in the 
case of real-valued data [7]. In [5] and [6], the complex- 
valued data problem has been transformed to an equiv- 
alent real-valued data problem to which the TLS the- 
ory is applied. In this paper, theoretical analysis of the 
performance of the TLS algorithm [5, 6] for complex- 
valued data is proposed. It is shown that the errors 
originating from the additive noise TV,- and the inaccu- 
rate estimates oiSxi and Syi can be suppressed simulta- 
neously by applying the TLS algorithm [5, 6], provided 
certain constraints are satisfied. 

Let Cr and C,- denote, respectively, the real and 
imaginary parts of a complex number C.   Then, (3) 
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yi be rewritten as (4) and (5) below. 

■Zr   =    [ <Pr + Er    -#.- - Ei } ( FF
T, ) + iVri(4) 

^   =    [ #,• + £,-    #r + £r ] ( £ ) + Ni.   (5) 

fine preceding two equations may be combined as 

U   =    [A + AA]V + AW, (6) 

rwhere 

U   = 

AW   = 

AA   = 

Zr 

Zi 

Nr 

Ni 

Er    -Ei 
Ei Er 

V = 

A = {%:)■*•{%?)• 

Fr \ 
Fi , 1' 
#r -# 
*, #, 

Suppose that there are k noisy undersampled images 
available. It has been shown [7, p. 242] that 

M.-r    cov(V) « (1 + ||V||2)cr2 (A*A - k<r2l) 
-l 

(7) 

?if the row vectors of [AA AW] are independent and 
^identically distributed with common zero mean vector 
-fand common covariance matrix <r2I where a2 (> 0) is 

|fa small unknown constant. In (7), 

A'A = 
<r$r + #J#,     #!#r - #^#i   \ 

(8) 

lEquation (8) can be further simplified by making use 
||of (9) and (10) below. As the number of frames k in- 
|creases, it is not difficult to verify that the Hermitian 
;:matrix #ff #, where the superscript H denotes Herini- 
!tian conjugate, asymptotically approaches a diagonal 

^matrix with nonnegative entries. Therefore, for a large 
ftbut finite k, 

$H$ diag T2T2 )] P*P 

■!>*On the other hand, 

From(9) and (10), we can have 

k k   ' 

(9) 

(10) 

#;#r + #;#, diag TQTV ±x xy 
'TT.nrm. 

#^-#J*r 

pxp 

(11a) 

(lib) 

Then, from (8), (11a), and (lib), A*A approximates 
a 2p x 2p diagonal matrix as below. 

A* Am diag rr2rr2 (12) 
2px2p 

By making use of (12), (7) can be rewritten as 

cov(V)*i(l ^m^gg^. (13) 

If the additive noise is Gaussian and <r2 is small, then 
it has been shown that cov(V) can reach the Cramer- 
Rao lower bound [7, p. 243]. In other words, the image 
reconstructed using the TLS algorithm [5, 6] has min- 
imum variance with respect to all unbiased estimates. 
As the number of undersampled images, k, increases, 
the quality of the reconstructed image becomes bet- 
ter and better as shown in (13). In the next section, 
computer simulation results are provided. 

4.   COMPUTER SIMULATION RESULTS 

In this computer-simulated example, a high resolution 
256 x 256 image, as shown in Figure 1, is recursively 
reconstructed from a set of low resolution 128 x 128 
noisy frames which are shifted with respect to a ref- 
erence frame. These shifts or displacements are not 
accurately known. In order to reduce the size of the 
arrays to be processed, the input image was partitioned 
into 16 nonoverlapping sections each of size 32 x 32 and 
the recursive TLS algorithm developed in [5, 6] is inde- 
pendently applied to each such section. For each one 
of these 16 sections, the interpolation problem corre- 
sponds to the reconstruction of a 64 x 64 image from 
a sequence of shifted low resolution 32 x 32 noisy in- 
put frames when the interframe displacements are not 
accurately known. To generate the k = 16 shifted low 
resolution input frames required in the simulation from 
the available data, we use the DFT-based interpolation 
technique described in [6]. After assigning one of the 
input frames to be the reference frame, we label it as 
frame number 1, and the remaining ones are sequen- 
tially labeled from i = 2 to i = 16. The relative shifts of 
these frames with respect to the frame number 1 along 
the x and y axes are denoted, respectively, by Sxi and 
Syi for i = 2,3,..., 16. The estimation errors, A6xi and 
ASyi, of Sxi and 8yi, i = 2,3,..., 16, are assumed to be 
uniformly distributed over [-g, §]. Subsequently, each 
frame is corrupted by additive noise with SNR level of 
20 dB. To illustrate the intermediate steps of the recon- 
struction, we provide a generic set of sixteen 32 x 32 
frames, as shown in Figure 2, corresponding to a sec- 
tion of the low resolution noisy image. From this set, a 
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64 x 64 image is obtained by application of the recur- 
sive TLS algorithm. The sequence of estimates leading 
to the construction of the high resolution filtered im- 
age is shown in Figure 3. As expected, the first few 
iterations of the recursive TLS algorithm provide poor 
estimates because the algorithm is in a transient stage. 
Subsequently, the estimates improve. 

When the undersampled images are blurred, a post- 
deblurring approach using Wiener filtering is proposed 
in [6]. In this computer simulation, the frames are cor- 
rupted by a 6-pixel uniform linear motion blur and 30 
dB SNR additive noise. Figures 4 and 5 show, respec- 
tively, the high resolution images obtained by applying 
the recursive TLS algorithm without post-deblurring 
and with post-deblurring. 

5.  CONCLUDING REMARKS 

In computer simulations, the resolution of the recon- 
structed image increased noticeably when the number 
of noisy undersampled frames reaches 4LxLy (= p), the 
minimum number of undersampled frames needed. As 
k increases, the quality of the reconstructed image con- 
tinues to improve. However, the improvement reaches 
a level of saturation after several frames k > p. This 
may be due to the assumption made to derive (7). 

As pointed out in [6], the TLS algorithm outper- 
forms the constrained least squares algorithm when the 
blurs in the undersampled frames are identical. If the 
undersampled frames are obtained from the same cam- 
era, it is reasonable to assume that the blurs in dif- 
ferent frames are identical. The performance analy- 
sis proposed here further demonstrates the advantage 
of using the TLS algorithm in high resolution image 
reconstruction from noisy undersampled frames when 
the displacement of any frame with respect to a ref- 
erence frame is not accurately estimated. Extensive 
simulations conducted and reported in [6] support the 
implications of performance analysis reported in this 
paper. Future research is planned on generalizing the 
techniques in [5], [6], and this paper to the case of mul- 
tispectral frames. 
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Figure 2: Sixteen 32 x 32 input girl frames 
Figure 4: A 64 x 64 girl image reconstruction sequence 
without post-deblurring 

Figure 5: A 64 x 64 girl image reconstruction sequence 
Figure 3: A 64 x 64 girl image reconstruction sequence with post.deblurring 
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