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MESSAGE FROM THE WORKSHOP CHAIRS 

OVERVIEW OF THE WORKSHOP 

The 1994 Rome Laboratory Workshop, Research Directions in Database Security VI, was 
held from 22-24 June 1994 at the Claremont Hotel in Southwest Harbor, Maine. This 
workshop is the sixth in a series sponsored by Rome Laboratory. 

The focus of this workshop was to both look at the current state of research advances in 
various areas of database security, but to also look at the needs of potential users of this 
technology and ways to transition research results to products or fielded systems. This 
workshop consisted of the presentation of research results in various database technology 
areas and corresponding discussions assessing the state of technology and the requirements 
for further investigation. Presentations and discussions were held on the following topics: 

• Multilevel Secure Database Models 
• Object-Oriented Database Management 
• Multilevel secure Database Management System Architectures 
• Assurance 
e Distributed/Federated Secure Database Management Systems 
9 Technology Transition 
• Inference Control 
• Usability of Multilevel Secure Database Management Systems 

LouAnna Notargiacomo 
Workshop Co-Chair 

Teresa Lunt 
Workshop Co-Chair 



MULTILEVEL SECURE DATABASE MODELS 



SEMANTICS OF SECURITY CLASSIFICATIONS 
Critical Review of MLS Data Model 

T. Y. Lin 

Mathematics and Computer Science 
San Jose State University 

San Jose, CA 95192 
1. INTRODUCTION 

There are many misconception about the meaning of a security label and MLS data model. 
We will discuss the meaning and structure of security labels. A MLS relational databases is 
a mathematical model of a secure world. From that we derive the meaning of security 
label: 

Labeling Principle:  The security label of a data is the security label of the 
corresponding fact of the real world« 

In particular, the label of an element is the label of a property of an entity. Moreover, in a 
secure world, every objects or entities are classified, so we conclude from the meaning of 
mathematical modeling that all information in a MLS database should be labeled: 

Data Labeling Principle: All views and their instances should have their own 
security labels. 

If a MLS relational database is a Bell-LaPadula model, then we conclude that 

Bell-LaPadula Labeling Principles: Bell-LaPadula Model implies that all views and 
their instances should be labeled. 

So we have the same conclusion as what should be labeled from two different sources. A 
relational database is represented by a set of base relations. From the literature on 
database theory we conclude that 

Equivalency Principle: Two sets off base relations define the same relational 
database iff they define the same set of views 

A data in a mathematical model corresponds to a unique object in the real world. 

Labeling Integrity Principle: A data can only be receive on label 



Since the foreign key in guest table and the corresponding primary key at home table 
represent the same fact in real world, in fact, they are represented by the same element in 
the universal relation, so they should receive the same label: 

The label off a foreign key (Ina gsasst table) 
Sing primary key at home tebS®o 

Referential Integrity Labeling 
should eqiral to the label of (the 

Finally, we point out some weak points in the "standard" element-level-labeling or tuple- 
level-labeling MLS data model. 

2, SEMANTICS OF SECURITY LABELS 

2.1 What is a data? 

A data is a mathematical representation of a piece of the real world. Each data represents 
certain portion of the real world: A primitive data represents a primitive fact, a complex 
data represent a complex fact. So the fundamental principle of the data labeling is : 

Labeling Principle:  The security label of a data is the security 
corresponding fact of the real world. 

off the 

The principle sounds obvious,(it was mentioned many times in Sea View documents 
[Lunt89]) in practice, there are misconceptions. 

Digression. 
Here we are using the notion of data modeling. "In data modeling we try to organize data 
so that they represent as closely as possible the real world situation" [TsLo82, pp.1]. On 
the other hand, in commercial world, data model often refers to the collection of the data 
types (templates) of all the base relations. So data model of commercial world seems have 
no data but have data structure only. The two notion sounds different. What is data 
"type"? In entity relationship model, one often define the entity "type" as the set of 
entities (under discussion) with the same attributes [Emas94, p.46]. Similarly, the data 
type, mathematically, should be understood as the set of the data (under discussion) with 
same structure, even though it is often interpreted as a template (or data structure) in a 
computer memory in commercial world. Certainly, the template (in computer memory) is 
intend to hold the data under discussion. So one can think of template as the set of 
intended data. Therefore, intrinsically both notions agree. To avoid confusing, we will use 
data models only in the sense of [TsLo§2] through out the whole paper. 

2.2. Elements vs Raw Data. 

In the relational model, the element is the most primitive data. Because of its primitive- 
ness, its real world meaning is often miss-interpreted. Though an element is a data from 



the domain, it is not a raw data. In the following relation, the first "50,000" represents 
one aspect of the entity Mr. Smith. So if we do label the element 50,000 we are not 
labeling 50,000 per se, it is Mr. Smith's 50,000. In general a tuple represents an entity in 
the real world, and an element represents a property of the entity. So the label of an 
element is a label ofthat property in the real world. A raw data (an element in the domain) 
can not be assigned a label, because it does not have a real world meaning. 

Example 1. 

RECORD 

Name CL1 Salary CL2 Telephone        CL3 Occupation       CL4 
Smith S 50,000 S 123-456-7890     S Physicist              S 
Peterson S 65,000 s 321-654-0987     S Nuclear Engineer   S 
Jones U 50,000 u 123-654-0987     U Accounting          U 

There are two labels for 50,000 in this relation. This does not mean that the security 
labeling is inconsistent or multi-labeling. It merely means that the raw data 50,000 was 
used twice, first is representing Smith's salary, second Jone's salary. Element labeling is 
never meant to be the labeling of raw data. In database, a tuple instance often represents 
some real world entity and its elements represent attributes (properties) of the entity. The 
security label of an element represents the labeling of this real world meaning (a 
property of the entity). 

2.3 Labeling of Complex Data 

Let us consider the following query 

SELECT Name, Salary 
FROM    Record 
WHERE  Name=Smith 

The output data consists of "Smith" and "50,000". How these two data pass through the 
reference monitor (the computer module which checks the security labels). Is it check 

Case (1): one element at a time or 
Case (2): two data together? 

In Case (1), it checks two simple facts, namely the two elements, while in Case (2), it 
check one complex fact, namely the tuple (Smith, 50,000). 

Which is more meaningful? We believe Case (2) is more meaningful. Mathematically, 



Case (I) implies that the system has no notion of aggregate (no set theory) 
Case (2) has aggregate, therefore a complex fact should receive a new label. 

By pushing the Case (2) to its foil strength, we believe we have 

Data LabeMmg Principles AM views aimd their änstaimces §hmM have tlndr ©wia 
security lafod§= 

2.4. Computational Complexity 

If an instance of a database has n elements, then potentially (in worst case) there are 2n 

view instances. So labeling is an exponential problem. A complete labeling to all the view 
instances is a formidable task. Some automation is needed or mathematically, it needs a 
structure. Fortunately, Denning did introduce the notion of lattice model [Benn76] which 
we have extended it to aggregated security algebra. The mathematical structure of these 
labels or security classes allows us to label view instance Mon-the-flyM [Lin90b]. 

3. THE IMPLICATION OF BELL-LAPABULA MODEL 
-- The Data Model As A Bell LaPadula Model. 

What Should be Classified? In Bell-LaPadula Model (BLM), every object or subject is 
assigned a security class(label). Now if we apply BLM to database systems, then BLM 
requires that every object processed by database systems should have security label. What 
are the objects processed by databases? 

(1) Intentional Objects: They are objects in Data Dictionary, such as, names of attributes, 
relation schema, query statements, and constraints. Security classes of intentional objects 
hide the existence of high data. 

(2) Extensional Objects: They are the elements, tuples, relations, view instances, and 
relational algebraic expressions. 

So a MLS data model is a special case of Bell-LaPaduaJ, therefore all view instances 
should be labeled. So we have reached the same conclusion as in Section 2 

Beli-LaPadtala Labeling Principles; Bell-LaPadulla Modd implies that all views and 
their instances should b® labeled» 

4 VIEWS AND A RELATIONAL DATABASE 

There are misconceptions about relational data base. 

Myth: A relational data base is a set of base relations 



A relational data base is represented by a set of base relations, but such a representation is 
not unique. In other words, the same data base may be represented by another set of base 
relations. When two sets of base relations represent the same database? The answer is if 
they give the same set of views. 

All possible views 

Theoretically 
updatable 

Views updatable in SQL 

Although there is no official answer in the literature, however, the answer is implicit in the 
literature. The so called normalization is a process of decomposing a universal relation 
into a set of the "best" base-relations-representation, such as Boyce Codd Normal Form 
(BCNF) or 5th Normal Form (5NF). In the process, a series of new sets of base relations 
is constructed. Database designers believe that the series of base relations although are 
different, they define the same relational database. Fundamentally, what can a user sees 
from a given database ? The set of all possible views. So if the set of all possible views is 
the same, from users' point of view, they are the same. 

Equivalency Principle: Two sets of base relations define the same relational 
database iff they define the same set of views. 

5. REFERENTIAL INTEGRITY 

The referential integrity problem is important in security e.g., [Burns90]. We will examine 
it through the mathematical modeling. As mentioned above, the normalization process 
decomposes a universal relation into a set of "best" base-relations-representation. Such 
decomposition certainly introduces replica of a data into tables. Foreign keys are such 
examples. A foreign key is a primary key of, say, a home table H appears in a "guest" table 
G. A foreign key value in both tables H and G were the same element in the original table 
before decomposition and represents the same real world fact, so, by our principle, they 
should receive the same security label. 

Referential Integrity Labeling Principles The label of a foreign key (in guest table) 
should equal to the label of the corresponding primary key at home table 



6. LABELING INTEGRITY 

6.1. Tolerance of Inconsistency 

The logical system adopted by natural science and engineering has very no tolerance on 
inconsistency. Let us consider the following sentence 

SI: If (x is not equal to x), then (any conclusion is true). 

In the traditional logic system, this sentence is a valid statement. However, the conclusion 
is not necessary a true statement until one can established the condition is a true statement 
(modus ponens). In mathematical modeling, the underlying hypotheses is that the model 
axioms are true statements, and its general goal is to infer more true statements. If there is 
any inconsistency in the axioms of mathematical model, we can never be sure that any 
conclusion is valid. The choice of such a logical system is, of course, a philosophical issue; 
we could adopt other systems. However, if we do decide not to use the traditional logic, 
then we have to redevelop "mathematics" and "science" based on the new logical 
system(at least the portion that are used in our secure system). Obviously this is not 
feasible. So we should stick to the traditional logical system. 

A data in a mathematical model corresponds to a unique object. The data or the symbol 
can be regarded a name ofthat object. 

Labeling Integrity Principle; A data can only be referred to a unique object 

The number 50,000 in Example 1 represent two data, one is Smith' 50,000, the other is 
Jones'. If the domain is implemented in the database, then there is another data 50,000 in 
the domain of Salary. Although, these data are all denoted by 50,000, they are all different 
data mathematically. Their complete description is different, only their "short hand" looks 
the same. Moreover, this principle is not in conflict of multi-valued modeling. There, a 
data refers to a unique set of objects. 

6.2 Multi-Labeling 

Some authors believe a data can be given two labels. This is dangerous, it implies that the 
data X * X (two labels means a data has two different meanings). As discussed above, in 
traditional logic, such situation is not tolerated. In fact, mathematician uses that inequality 
to represent the empty set; the empty set = (X: X * X}. The multi-labeling is invented 
erroneously for dealing with composite labeling and context labeling. 

6.1.2. Composite Labeling. 

"Some thing about James Bond is top-secret, and some other thing is unclassified. So 
James Bond should have two security labels" said by some colleague. Let us translate this 
problem into much more precise form. Suppose we want to model the human being James 

10 



Bond in a computer system. So we create a document in which a paragraph, say A- 
paragraph, is classified top-secret and a paragraph, say C-paragraph, is unclassified. 
Should we assign the document two labels, simply because there are top-secret portion as 
well as unclassified portion ?. We say no. Our classification scheme will give the A- 
paragraph top secret, C-paragraph unclassified, and the total document - the "composite" 
document- the least upper bound of A and C paragraphs. Incidentally, this implies that the 
structure of security labels is important (see [Lin89c, 90b] for security algebra). Mapping 
back to the original problem, the some thing about James Bound should be labeled top- 
secret, and some other should be unclassified. The total thing about James Bond should be 
labeled top-secret. As to the question what should be the correct label for James Bound 
becomes what should be the proper label for the name of the document. I believe this 
diffuse the confusing. 

6.2. Context Labeling and Aggregation 

Another reason for giving a data two labels is the so called context labeling. A piece of 
data is insensitive, yet because of its context, it become sensitive. So that piece of data 
should receive two labels. This is wrong approach, again it leads to logical contradiction.' 
Our classification scheme will label (1) the piece of data unclassified, but (2) the 
aggregate, which is the data together with its context, top-secret. Note that in data 
modeling, the context is also expressible by a set of data. 

6.3. Trusted Subjects 

The trusted subjects include the downgrading operation, information flowing downward, 
which leads to inconsistent with the constraint of the ""-property. To avoid logical 
inconsistency, trusted subjects should not be included in the MLS data model, they should 
be handled outside of the model [Lin93] 

7. THE STRUCTURE OF SECURITY CLASSES 

Information in databases are represented by views (view instances); a user get his 
inforamtion by looking at view instances. Views are composite objects of primitive data. 
So we need structure or algebra to handle the security labeling of composite objects. A 
relation(or views) scheme is defined by attribute names. The security class of relation 
scheme or its name can then be derived from the security classes of its attribute names. A 
relation(or view) instance can be generated from elements (see [Lin92d,e,fj by set 
representation). The security classes of intensional and extensional objects can in general 
be derived from the labels of its primitive data. If the security semantics of composite data 
implies differently, then that is the problem of aggregation [Lin89a, 90b]. 

11 



So ELEMENT LEVEL LABELING 

The so called element level labeling refers to the case of labeling of the elements only (no 
other data are labeled). It is different from our labeling; we label elements as well as 
tuples, views and etc.. 

The meaning of element labeling seems different from systems to systems. One proposal is 
that (1) the label of an element is labeling the association between primary key and the 
elements, and (2) the label of the primary key is labeling the existence of the tuple or 
entity. This approach has several deficiency. 

8.1. Incomplete Classification: This proposed approach is somewhat naive. A relation is a 
very complex mathematical object. For example, let us consider the relation of Example 1. 
the relation RECORD has the following mathematical sub-structures 

(1) There are six associations (binary relationship): 

Name CL1 Salary CL2 

Name CL1 Telephone CL3 

Name CL1 Occupation CL4 

Salary CL2 Telephone CL3 

Salary CL2 Occupation CL4 

Telephone CL3 Occupation CL4 

(2) There are four ternary relationship 

Name CL1 Salary CL2 Telephone CL3 

Name CL1 Salary CL2 I           Occupation CL4 

Name CL1 Telephone CL3    Occupation CL4 

Salary CL2 Telephone CL3    Occupation CL4 

12 



(3) One quaternary relatioship (the whol relation) 

Name CL1     | Salary       CL2 | Telephone        CL3 [ Occupation       CL4 

Each relationship potentially has its own semantics, and is, in general, independent from 
each other. However, in this approach, only the first four relationships (out of 11 
relationships) are labeled. Could this four labels represent the 11 semantics? We would 
say no. This is similar to the well-known "connection trap" where people tend erroneously 
to use binary relationships to construct a ternary relationship [Date91]. 

In general, this proposal uses a subset of associations to represent the security semantics 
of the whole relation. So the classification can not be complete, we beleive many 
relationships (informations) are not protected. 

8.2. Other Specific Problems 

All key relations 

Under this proposal, the security labeling will lost its power if the relation is the so called 
all key relation(i.e., every attribute is participated in the primary key). The relationships 
between attributes are not classified. 

Relational operations and reorganization of databases 

When we join two relations A, B to get a new relation C, the primary key of C usually can 
not be the old primary keys of A or B. Since C has new a primary key, the binary 
relationship between an element and the primary key changes, so the label of elements 
needs to be changed too. So we have to re-label the whole new relation, element by 
element, whenever we conduct any relatinal operation. In practice, a DBA often has to 
restructure the database, because of the practicle performance problem. Each 
reorganization changes the meaning of security labeling. Therefore the whole database has 
to be re-labeled again. This appraoch is not acceptable. 

9. TUPLE LEVEL LABELING 

The so called tuple level labeling refers to labeling the tuples in base relations, but nothing 
else. It is different from our labeling; we label elements as well as tuples, views and etc.. 

Incomplete Model Specification. 

These models do not specify their rules of labeling new tuples created by any relational 
operation. There are two possible default assumptions: 

13 



(1) the high-water-mark policy, and 
(2) the least upper bound policy. 

These two assumptions appear to be similar, but actually they are fundamentally different. 

(1) High-water-mark policy: The label of derived data (e.g., the new tuple) are assigned by 
implementations. In other words, it get the highest label it touched. So a piece of derived 
data may reach the screen with different labels, because the label of a derived data depends 
on how the data were traveled through the system. A query optimize may not choose the 
same path (because of some other users) to answer the same query. This may result in a 
serious miss judgment. For example, suppose the returned tuple from a query is the tuple 
(Smith, Mission Taho). Whether the tuple is labeled top-secret or unclassified may lead to 
different impression to a user, which could lead to disastrous decision. 

(2) Least upper bound policy. Under this policy, if a user can see individual tuple of a set, 
then he can see the whole set. In other words, there.is no aggregation problem in tuple 
level, because the set of tuples will receive the least upper bound. However, at the element 
level the aggregation problem could exit. Such a near inconsistency assumptions on the 
model is not very healthy. The so called on second path analysis are based on such implicit 
assumptions 

Both default assumptions have some deficiency. 

10. CONCLUSION 

Recently DOD seems come to a conclusion that provable security system is impossible. 
We will not dispute the conclusion itself. But we do want to remark that the conclusion 
may be based on inaccurate studies. We hope DoD will keep the question open until more 
studies are conducted. 
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Towards A Policy Framework for Multilevel 
Databases* 

Xiaolei Qian 
Computer Science Laboratory, SRI International 
333 Ravenswood Avenue, Menlo Park, CA 94025 

1    Problem Statement 
As more multilevel databases are built and connected through computer networks, a wide 
variety of secure data sources will become accessible. A big challenge presented by this tech- 
nology is the secure interoperation of multilevel databases containing data with mismatched 
security policies. Providing secure interoperation of multilevel databases not only makes it 
possible to reliably share data in isolated military and civilian databases, but also increases 

users' confidence and willingness in such sharing. 
As a prerequisite to the secure interoperation of multilevel databases containing data with 

mismatched security policies, the security policies of component databases, as well as the 
potential mismatches between them, have to be precisely characterized. Existing literature 
has been vague on what constitutes a security policy, its content ranging from high-level 
specifications such as the type of access control (mandatory or discretionary access control) 
or the kind of model (noninterference or Bell-LaPadula), to designer's belief or preferences 
such as whether polyinstantiation is allowed, to low-level specifications such as the number 
of levels and categories allowed in a lattice. A formal policy framework is needed within 

which security policies could be characterized and compared [6]. 
It has been widely accepted that a mandatory access control (MAC) policy consists of four 

components: a set of subjects, a set of objects, a lattice, and a mapping that associates levels 
in the lattice to subjects and objects [9]. This works well for multilevel operating systems, 
because objects such as files do not carry semantics. For multilevel databases where data 
carry semantics, the same mapping of levels to objects such as elements in tuples could have 
completely different meanings [19].   For example, consider a relation SMD(Starship, Mid, 

"This work was supported by U.S. Department of Defense Advanced Research Projects Agency and U.S. 
Air Force Rome Laboratory under contract F30602-92-C-0140. 
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Destination). A secret label on element Rigel of tuple (Enterprise, 101, Rigel) in SMD could 
mean that the fact "Enterprise is going to Rigel" is secret, or the fact "some starships are 
going to Rigel" is secret, or even the word "Rigel" is secret. This confusion suggests that 
something critical is missing with the traditional formulation of MAC policies in multilevel 
databases, namely the semantics of object labels. This problem is crucial in the secure 
interoperation of multilevel databases. For example, if the secret label on Rigel means that 
the fact "some starships are going to Rigel" is secret in database A, and means that the word 
"Rigel" is secret in database B, then unclassified users could query all existing destinations 
in database A and obtain "Rigel" through interoperation with database B. The canonical 
MAC policy for federated databases proposed in [13] does not solve this problem. 

The formulation of a MAC policy in a multilevel database often includes some constraint 
policies, such as the labeling policy of Seaview [11] and the classification constraints of LDV 
[5]. Constraints are the most important means of specifying data semantics. However, 
existing multilevel databases provide neither a precise definition of constraint validity nor 
an efficient mechanism of constraint enforcement. In fact, it has been argued [1, 2, 12] that 
integrity enforcement is in fundamental conflict with secrecy enforcement: no multilevel 
databases could simultaneously satisfy both integrity and secrecy requirements. 

An important characteristic of MAC policies is the upward information flow in the lattice, 
which indicates the believability of low data at high levels. For multilevel operating systems 
where objects do not carry semantics, low data are always believed at high. For multilevel 
databases where data carry semantics expressed by constraints however, low data could 
contradict high data. For example, if we require that high SMD tuples have unique Mid 
elements and (Enterprise, 101, Rigel) is a high tuple in SMD, then the low tuple (Enterprise, 
102, Rigel) in SMD could not be believed at high. This problem suggests that upward 
information flow should be constrained in the formulation of MAC policies in multilevel 
databases. 

Constraints also bring about the danger of inference channels. Inference channels could 
be obtained either by knowing the constraints enforced by a database or by observing the 
behavior of a database in enforcing the constraints. For example, consider another relation 
MT(MissionId, Type). If we require that every Mid element in relation SMD refers to a 
Missionld element in MT, and a low Mid element refers to a high Missionld element, then 
low users could infer the existence of the high Missionld element. If we require that every 
high Mid element in SMD refers to a low Missionld element in MT, then the attempt to 
delete a low Missionld element referred to by a high Mid element would either cause a 
loss of high data or enable low users to infer the existence of the high Mid element. Thus 
the formulation of MAC policies in multilevel databases should provide additional means to 
detect and remove such inference channels. 



2     Our Policy Framework 

We restrict ourselves to multilevel databases whose MAC policies have the simple security 
property and the *-property of the Bell-LaPadula model, which ensure that information does 
not flow downward in the lattice. 

0 The Simple Security Property A process is allowed a read access to a tuple only if the 
former's clearance level is identical to or higher than the latter's classification level in 
the lattice. 

e  The ^-Property A process is allowed a write access to a tuple only if the former's 
clearance level is identical to or lower than the latter's classification level in the lattice. 

Our formulation of a MAC policy in a multilevel database has seven components: 

1. a lattice, 

2. a set of subjects, 

3. a set of objects, 

4. a mapping of subjects and objects to levels in the lattice, 

5. an interpretation policy, 

6. a view policy, and 

7. an update policy. 

The first four components together correspond to the traditional formulation of MAC policies 
in multilevel operating systems. In the rest of the paper, we discuss examples of the last 
three components of our policy framework, using the lattice in Figure 1 and the schema in 
Figure 2. 

3    Interpretation Policy 

An interpretation policy maps a multilevel database to a multilevel theory. Through this 
policy, the superficial syntactic difference in object labels is abstracted away, and the seman- 
tic difference hidden in object labels is made precise. As a consequence, the interpretation 
policy makes it possible to compare the semantics of multiple MAC policies. 

For example, suppose that a high label on element spy in tuple (Enterprise, spy, 
Rigel) means in one database that low users should not know that "Enterprise is on a spy 
mission", but means in another database that low users should not know that "there is a 
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Figure 1: A Lattice 

Starship Mid Destination 

Missionld Type 

Figure 2:  A Schema 

starship on a spy mission". The semantic interpretation would map the high label to the 
high formula (Bx)SMD(Enterprise, spy, x) for the first database, and to the high formula 
(3x, y)S MB (Enterprise, x, y) for the second database. By comparing these two formulas, we 
can infer that the second database has a weaker security policy about Enterprise than the 

first database, because it protects less high information. 
As case studies, we have developed natural interpretation policies for multilevel relational 

databases with tuple-level and element-level labeling respectively, which have properties that 
are commonly recognized as desirable. Based on these policies, we have identified practical 
design trade-offs in choosing between tuple-level and element-level labeling [17]. 

4    View Policy 

The simple property of the Bell-LaPadula model gives the visibility requirement on what low 
data are visible at high. As we pointed out above, visibility should be distinguished from the 
helievahility requirement on what low data are believed at high in order to avoid inconsistency. 
A view policy states this believability requirement for a set of integrity constraints. 

The filter function [7, 8, 10] and the security logic [3] proposed in the literature take 
one extreme position by equating believability to visibility, thus maximizing believability. 
However, integrity is compromised if a low tuple contradicts some high tuples with respect 

20 



to the constraints, which leads to an invalid high database.    For example, consider the 
following multilevel relation over the lattice of Figure 1 and the schema of Figure 2: 

Starship Mission Destination 

Enterprise 

Enterprise 

Enterprise 

L 

102 

103 

Talos 

Rigel 

Rigel 

T 

rti\ 

m2 

When querying the mission of Enterprise at level T, users will get back both 102 and 103, 
which contradicts the constraint "starships have unique missions". 

Smith and Winslett proposed a belief-based semantics of the multilevel relational model 
[20], which defines a multilevel relational database as a set of unrelated single-level relational 
databases, one for every level. They made a clear distinction between visibility and believ- 
ability, and took the other extreme position by allowing no low tuples to be believable at 
high, thus minimizing believability. Their semantics serves as a nice framework within which 
other semantics could be compared. However a multilevel relational database that directly 
employs their semantics would no longer be multilevel — it would be a set of single-level 
relational databases in which there is no upward information flow across levels. For exam- 
ple, consider the following multilevel relation over the lattice of Figure 1 and the schema of 

Figure 2: 

Starship Mission Destination 

Enterprise 102 Rigel _L 

When querying the mission of Enterprise at level T, users will get back an empty answer, 
because no information about Enterprise is considered believable at that level. 

Thuraisingham first formalized the distinction between visibility and believability by a 
proof-theoretic semantics of the multilevel relational model [21], which consists of a non- 
monotonic inference rule stating that low data are believable at high as long as they do not 
contradict high data. Given two low tuples labeled incomparably, what happens if either 
tuple does not contradict high data, but their combination does? To determine what is 
believable at high, the result of Thuraisingham's approach would depend on the (random) 
order in which the nonmonotonic inference rule is applied to these two tuples, which intro- 
duces ambiguity. For example, consider the following multilevel relation over the lattice of 

Figure 1 and the schema of Figure 2: 
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Starship Mission Destination 

Enterprise 

Enterprise 

102 

103 

Rigel 

Talos 

mi 

m2 

When querying the mission of Enterprise at level T, users will get back either 102 or 103 
but not both. It should be noticed that such problems occur even with a totally ordered 
security lattice, if we allow arbitrary constraints. For example, a constraint could state 
that there should be no more than two starships going to Rigel. If we have one high tuple 
(Enterprise, 101, Rigel) together with two low tuples (Voyager, 102, Rigel) and (Discovery, 
103, Rigel), then at most one low tuple is believable at high, but it is unclear which one 

should be. 
A view policy should have three desirable properties: 

1. it ensures the validity of constraints, 

2. it maximizes upward information flow, and 

3. it is deterministic. 

As a case study, we have developed a view policy for multilevel relational databases with 
tuple-level labeling, where the constraints consist of key-based functional and referential 

dependencies, which has all the desirable properties identified above [16]. 

5     Update Policy 
An update policy specifies the enforcement of a set of constraints in performing a set of 

updates, such that inference channels are eliminated. 
Let us consider the restricted-value policy of [18] and the insert-low policy of [22], 

both of which are designed to eliminate inference channels in the enforcement of the no- 
polyinstantiation constraint. For easy presentation, we adapt these policies to the context 
of multilevel databases with tuple-level labeling. The no-polyinstantiation constraint states: 

Two distinct tuples cannot have identical primary key values. 

If low users insert a tuple which has the same primary key value as an existing high tuple, 
then either the low insertion has to be rejected, leading low users to infer the existence of 
the high tuple, or the high tuple has to be overwritten, causing a loss of high data. Similarly, 
if high users insert a tuple which has the same primary key value as an existing low tuple, 
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then either the low tuple has to be deleted, leading low users to infer the existence of the 
high tuple, or the high insertion has to be rejected, causing a loss of high data. 

The example below illustrates how the restricted-value policy removes this dynamic in- 
ference channel in the no-polyinstantiation constraint. Consider the following multilevel 
relation over the lattice of Figure 1 and the schema of Figure 2: 

Starship Mission Destination 

Enterprise 102 Rigel J_ 

When users try to replace 102 by 101 at level T, the update is extended to: 

1. Replace 102 by y/ at level _L 

2. Insert (Enterprise, 101, Rigel) at level T. 

The extended update ensures no-polyinstantiation at the price of introducing a (partial) 
static inference channel, because users at level 1 can infer from the restricted-value y/ that 
Enterprise has a high mission. Moreover, the high update is extended with a low insertion, 
which is against the spirit of the *-property of the Bell-LaPadula model. 

The example below illustrates how the insert-low policy removes this dynamic inference 
channel in the no-polyinstantiation constraint. Consider the following multilevel relation 
over the lattice of Figure 1 and the schema of Figure 2: 

Starship Mission Destination 

Enterprise 101 Rigel T 

When users try to insert tuple (Enterprise, 102, Rigel) at level _|_, the update is extended to: 

1. Delete (Enterprise, 101, Rigel) at level T. 

2. Insert (Enterprise, 102, Rigel) at level 1. 

The extended update ensures no-polyinstantiation at the price of losing high data. 
An update policy should also have three desirable properties: 

1. it does not introduce inference channels, 

2. it does not affect data at lower or incomparable levels, and 

23 



3. it does not cause data loss at higher levels. 

Based on these properties, we have provided practical design guidelines for the appropriate 
specification of constraints, whose enforcement would not jeopardize secrecy requirements 
[15]. We have also developed an update policy for multilevel relational databases with 
tuple-level labeling where the constraints consist of polyinstantiation and referential security 

properties, which has all the desirable properties identified above [14]. 

6     Conclusion 

We have used our policy framework to compare the MAC policies commonly imposed in or 
proposed for multilevel databases. The comparison makes it clear that the space of MAC 
policy mismatches between heterogeneous multilevel databases is significantly larger than the 
space of semantic mismatches between heterogeneous single-level databases. Our framework 
could be used to capture and resolve the MAC policy mismatches in the interoperation of 
heterogeneous multilevel databases. As an initial step in this direction, we have investigated 
the secure interoperation of multilevel databases whose MAC policies mismatch in the lattice 

component [4]. 

References 
R. K. Burns. Referential secrecy. In Proceedings of the 1990 IEEE Symposium on 

Research in Security and Privacy, pages 133-142, 1990. 

R. K. Burns. Integrity and secrecy: Fundamental conflicts in the database environment. 
In Proceedings of the Third RADC Database Security Workshop, Technical Report MTP 

385, MITRE, pages 37-40, 1991. 

J. Glasgow, G. MacEwen, and P. Panangaden. A logic for reasoning about security. 
ACM Transactions on Computer Systems, 10(3):226-264, August 1992. 

L. Gong and X. Qian. The complexity and composability of secure interoperation. In 
Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages 

190-200, May 1994. 

J. T. Haigh, R. C. O'Brien, and D. J. Thomsen. The LDV secure relational DBMS 
model.   In S. Jajodia and C. Landwehr, editors, Database Security, IV: Status and 

Prospects, pages 265-279. North-Holland, 1991. 

H. H. Hosmer. Integrating security policies. In Proceedings of the Third RADC Database 
Security Workshop, Technical Report MTP 385, MITRE, pages 169-173, 1991. 



[7] S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In Proceed- 
ings of the 1990 IEEE Symposium on Research in Security and Privacy, pages 104-115, 
1990. 

[8] S. Jajodia and R. Sandhu. Toward a multilevel secure relational data model. In Pro- 
ceedings of the ACM SIGMOD International Conference on Management of Data, pages 
50-59, 1991. 

[9] C. E. Landwehr. Formal models for computer security. ACM Computing Surveys, 
13(3):247-278, September 1981. 

[10] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The Seaview 
security model. IEEE Transactions on Software Engineering, 16(6):593—607, June 1990. 

*[11] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell, M. Heckman, and W. R. 
Shockley. Secure distributed data views: Security policy and interpretation for DBMS 
for a class Al DBMS. Technical Report RADC-TR-89-313, Vol. 1, Rome Air Develop- 
ment Center, Air Force Systems Command, December 1989. 

[12] C. Meadows and S. Jajodia. Integrity versus security in multilevel secure databases. 
In C. Landwehr, editor, Database Security: Status and Prospects, pages 89-101. North- 
Holland, 1988. 

[13] G. Pernul. Canonical security modeling for federated databases. In Proceedings of the 
IF1P TC2/WG2.6 Conference on Semantics of Interoperable Database Systems, 1992. 

[14] X. Qian. A model-theoretic semantics of the multilevel secure relational model. Techni- 
cal Report SRI-CSL-93-06, Computer Science Laboratory, SRI International, November 
1993. 

[15] X. Qian. Inference channel-free integrity constraints in multilevel relational databases. 
In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages 
158-167, May 1994. 

[16] X. Qian. A model-theoretic semantics of the multilevel relational model. In M. Jarke, 
J. Bubenko, and K. Jeffery, editors, Advances in Database Technology — EDBT'94, 
Lecture Notes in Computer Science 779, pages 201-214. Springer-Verlag, March 1994. 

[17] X. Qian and T. F. Lunt. Tuple-level vs. element-level classification. In B. M. Thu- 
raisingham and C. E. Landwehr, editors, Database Security, VI: Status and Prospects, 
pages 301-315. North-Holland, 1993. 

[18] R. Sandhu and S. Jajodia. Eliminating polyinstantiation securely. Computers & Secu- 
rity, 11:547-562, 1992. 

*Although  this  report  references   the  limited document  noted above,   no  limited 
information has been extracted.     Document  is   limited  to DOD  and DOD  contractors 
only;   critical  technology;    Dec   1989. 

25 



[19] G. Smith. Modeling security-relevant data semantics. IEEE Transactions on Software 
Engineering, 17(11):1195-1203, November 1991. 

[20] K. Smith and M. Winslett. Entity modeling in the MLS relational model. In Proceedings 
of the Eighteenth International Conference on Very Large Data Bases, pages 199-210, 
1992. 

[21] B. M. Thuraisingham. A nonmonotonic typed multilevel logic for multilevel secure 
database/knowledge-base management systems. In Proceedings of the Fourth IEEE 
Workshop on Computer Security Foundations, pages 127-138, 1991. 

[22] S. R. Wiseman. Control of confidentiality in databases. Computers & Security, 9(6):529- 
537, October 1990. 

26 



Discussion: Models 

Discussion Leader: Marvin Schaefer, ARCA Systems, Inc. 

(paper not available) 

27 



OBJECT-ORIENTED DATABASE MANAGEMENT 

29 



Discussion of a New Secure Object-Oriented Data Model 

William R. Herndon 

The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102 
wherndon@raitre.org 

1 Introduction 

Object-oriented database management systems (OODBMSs) are gaining popularity due 
to their inherent ability to represent conceptual entities as objects, paralleling the way 
humans view the his power of representation has led to a new generation of object 
database managers that can support applications such as computer aided design and 
computer aided management (CAD/CAM), multimedia information processing, artificial 
intelligence, and process control. However, these increasingly popular systems do not 
provide adequate support for security of operation. That is, OODBMSs need to operate 
securely, often in a multilevel fashion, in order to overcome both malicious corruption of 
data and to prevent unauthorized access to and use of classified data. Consequently, 
multilevel database management systems are needed in order to ensure that users cleared 
to different security levels access and share a database with data at different security 
levels in such a way that they obtain only the data classified at or below their level. Such 
database systems are called multilevel secure (MLS) OODBMSs. 

2 Background 

Recently, several approaches to securing OODBMSs have been proposed. While these 
efforts have made valuable contributions, some major issues remained unexamined, 
including: 

• Consistency with industry trends: For greater acceptance by users and vendors 
we maximize consistency with de facto standards like C++ and the work of the 
Object Management Group. Some existing models forbid multiple inheritance, 
make method call a very expensive operation, or tie security to the language's 
encapsulation (which C++ allows programmers to circumvent). 

• Model flexibility: In the absence of installed products and applications, it is 
difficult to distinguish which features and freedoms will be essential. Each 
model restriction (e.g., requiring that all attributes of an object be at the same 
security level) carries a major risk: It may later be found very harmful, and 
impractical to remove from the implementation. Therefore, it seems desirable to 
seek generality. 
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In a similar vein, some models impose restrictions to rale out states that appear 
unreachable or unnecessary (such as an instance whose key is classified higher 
than other attributes). Paradoxically, such restrictions often complicate the 
model and implementation, since they must be documented and enforced. Also, 
in special circumstances (created by privileged operations) such states can be 
very useful. 

0       Element-level access control: Our extensive analysis conducted at MITRE 
concluded that applications should be written in terms of the natural conceptual 
objects of the problem domain, and that these objects could include elements 
(i.e., attribute values) at multiple security levels. Many of the existing models 
provide protection at the object level. We also concluded that for the 
combination of (application + DBMS), neither semantic clarity, assurability, nor 
performance need degrade. Our model therefore permits each attribute of each 
object to be labeled, independent of all other labels. 

°       Treatments of polyinstantiation: Existing object models provide a limited 
treatment of conflicting data. Existing relational models either do not provide 
clear semantics for such data (in terms of statements about the outside world) or 
else provide too much semantics, making them well suited to some applications 
but ill suited to others. 

°       Collections of data: Collections (e.g., sets, lists, trees) constitute the major 
means by which a database organizes large amounts of information. Existing 
secure relational models support one kind of collection, the relation as a set of 
tuples. Commercial object models support additional structures. However, 
collections appear not to be included in any published secure object model. 

3 UFOS: A New Mode! 

Due to the problems discussed above, we have created a new model, called Uniform 
Finegrained Object Security (UFOS, pronounced U.F.O.s). 

Secure OODBMSs are likely to combine technology specifically developed to secure 
OODBMSs with technology from contemporary secure relational DBMSs. Therefore, in 
an earlier work we have compared the problems and solutions of the object and relational 
worlds. We also examined the security impact of capabilities unique to OODBMSs. We 
have emphasized methods of providing security to the base of mainstream OODBMS 
technologies, because object models and implementation techniques that are unique to the 
security community will lead to systems having functional capabilities that substantially 
lag behind that of mainstream systems and will too often be unacceptable to users. Thus, 
the UFOS model has, as its basis, the following characteristics: 

°       A labeling scheme that is uniform throughout the model with respect to both 
what is labeled and how it is labeled. 

°       Support for object collections 

0       Support for multilevel conceptual objects 

°       A nonrestrictive model for class hierarchies and inheritance that circumvents 
monotonicity restrictions 
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An model layer, existing above the base model, that supports the definition and 
implementation of polyinstantiation semantics (the polystrorage layer) 

Work to date includes the development of the basic and advanced data models and the 
examination of the impact of security on the data model and the development of 
applications. Currently, we are examining a number of commercial OODBMSs with the 
intent of identifying the most appropriate product to host our model. We have developed 
criteria for evaluating the products that require a close examination of the products' 
underlying data model and architecture. 

4 Model Utility 

Current work on this task has focused on demonstrating the utility of our model by 
applying it to a sample set of Navy applications that require support for multilevel 
operation as well as a flexible fine-grained access control structure. These "envisioned" 
applications include logistics support systems, maintenance information systems, and 
combat information systems. All of these have need of DBMS services and can benefit 
in a number of ways from MLS operation. In fact, some of the scenarios that have been 
developed, point to the need for an integrated MLS database, possibly extending over 
many heterogeneous DBMSs and systems. In such an environment, the novel aspects of 
the UFOS model provide some distinct advantages. 

For example, a maintenance information system for Navy aircraft, can benefit from all of 
the model facets listed above: fine-grained labeling, collections, and polystorage. In 
addition to direct support for querying over composite objects (made possible by fine- 
grained labeling), a system based on the UFOS model could also be used to support 
sophisticated level-based training simulations, where information appropriate to a given 
technicians clearance level could easily be made available. Likewise, schematics and 
component lists could be tailored to fit the level of a user through the use of polystorage 
and secure collections. In addition, since maintenance personnel cannot always be 
shielded from the knowledge of the existence of certain components, cover stories can be 
inserted in the database to further enhance security. 
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1.       Project Overview & Scope 

In the late summer of 1993, the authors1 began research under contract to the National Security 
Agency and Rome Laboratory to begin development of an informal access control model [1] for 
a trusted object-oriented database management system (ODBMS). This study is intended to 
serve as the basis for future efforts to produce a trusted prototype of an ODBMS offering fea- 
tures comparable to those required for Class B1 of the DoD's Trusted Computer System Evalu- 
ation Criteria (TCSEC) and the associated Trusted Database Interpretation (TDI) of the TCSEC. 

The philosophy behind object oriented technology is becoming the de rißueur standard for the 
industry, even though there is presently no universal model that serves as a standard for individ- 
ual ODBMS implementations. Several ODBMS products are currently serving a growing user 
community. They are being used with greater frequency by the government and industry be- 
cause they offer many benefits over existing technologies such as increased performance for 
complex applications, support for unusual data types, and a highly flexible data model. Addi- 
tionally, with the reduction of budgets in both the government and industry, object-oriented 
technology is gaining a wider audience for its potential to reduce overall life cycle costs by 
enabling component based software development, promoting software re-use, and supporting 
extensible solutions. It is evident that ODBMS technology will be the basis for future DoD 
database applications. There is a clear need for a high integrity, multilevel secure, ODBMS. 

Although there have been numerous paper studies, there are presently no worked examples of a 
trusted ODBMS, extant or under development. It is equally important to note that although the 
more traditional concepts and architecture of relational DBMS (RDBMS) tend to dominate the 
TDI, there are no interpretations of how specific TCSEC requirements are to be applied to an 
ODBMS. The present effort is intended to support future research and development needed in 
order better to understand a) the security related issues in the design and implementation and b) 
the evaluation, and especially the assurance requirements for a high-integrity, multilevel secure 
ODBMS that offers Bl features. 

This study is intended to take a fresh look at the trusted DBMS problem. Previous, relational 
model-based approaches, have largely been based on a set of security architectures that lead to 

'Marv Schaefer was affiliated with CTA Incorporated at the time. 
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polyinstantiation or selective database replication as a means of preserving confidentiality. 
However, use of this strategy is often at the cost of database consistency, integrity, performance, 
and the ability to see updates without delay. Further, the semantics and operational conse- 
quences of polyinstantiation have sometimes proven to be inadequately understood by users and 
have resulted in database update inconsistencies. Given that object-oriented architectures invite 
the introduction of new security architectures, the opportunity is present to re-examin© alterna- 
tives that could result in a more favorable tradeoff between the objectives of confidentiality and 
database integrity. 

2.      kmsmk 

The approach taken in this study is based on a survey of relevant prior research in DBMS secu- 
rity, with a concentration in object-oriented studies. For the most part, these consist of formal 
and informal models and descriptions of hypothetical implementation strategies. Some of the 
literature surveyed in the study identified specific constraints on the model and on the resultant 
functionality that follow from sometimes identified aspects of the access control model or the 
envisioned evaluation class. For example: 

o      B2 and higher evaluation classes concentrate heavily on issues of minimality in the TCB, 
least privilege, and covert channels. These concerns tend to force the policy and design 
into directions taken by SeaView, LOCK DataViews, etc. — so that potential channels 
are reduced through the introduction of polyinstantiation or data replication at different 
classification levels. This is done to preclude inferential attacks that may otherwise dis- 
close sensitive information if known multilevel integrity constraints were to be probed by 
a knowledgeable adversary. 

©    Least privilege considerations can interfere with the ability of a trusted DBMS to detect 
cases in which inadvertent polyinstantiation or breaches in referential integrity have tran- 
spired. This is particularly the case when a user logged in at a level lower than 
"database-high" performs updates on the database. This is because the trusted DBMS 
runs as a subject at the user's login level and its associated privileges, and cannot see any 
of the database or metadata not dominated by that subject's need-to-know and clearance 
level Since the DBMS cannot, under these circumstances, generally obtain a complete 
and consistent view of a multilevel database, it is generally incapable of managing all 
aspects of the data model itself. 

©    The above assurance considerations also have their affect on concurrency and transaction 
management Contemporary user requirements call for DBMSs that support multiple 
concurrent users and preserve transactional integrity. This topic is one of complexity and 
intensive continuing research in the untrusted community, It only becomes more 
complex and less certain when covert channel-free confidentiality requirements are 
imposed. 
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The above constraints and complexity have largely come from an evolutionary approach to 
DBMS security that is based on prior results from operating system security and initial attempts 
to retrofit relational DBMSs onto trusted operating system architectures. The resultant trusted 
DBMS policies have therefore largely been constrained by the intrinsic limitations of operating 
system policy that could not be modified without placing an underlying trusted operating sys- 
tem's TCSEC assurances anievaluation rating in jeopardy. 

ODBMSs are evolutionary with respect to object-oriented operating systems which are largely 
client-server based. Resulting experience, e.g., Trusted Mach, has shown that these latter archi- 
tectures do not evaluate readily against the established TCSEC requirements; the latter fre- 
quently require extensive interpretation in order to be applied to contemporary architectures. 
We have concluded that much of the evaluation difficulty is not so much caused by inherent 
weaknesses in an object-oriented operating system security architecture as by the mismatch 
between the conceptual models on which the two syndromes are based. 

Therefore, it would be productive to return to First Principles and begin with the definition of a 
desired set of control objectives and database properties. Since modeling is the first step to be 
taken in building the foundation for a proof of concept prototype, many of the decisions regard- 
ing our policy model have been made with the goal of eventual implementation. We consider it 
extremely important that the resulting policy model be amenable for refinement into a viable 
commercial trusted product. Because of our familiarity with the ONTOS ODBMS architecture 
and internals, we have systematically assessed concepts against the realities of modifying this 
product to support the multilevel ODBMS model. 

The proposed methodology for analysis is (a) to hypothesize a complete multilevel data model 
including labeled database entities, (b) to establish through informal analysis that the model is 
internally consistent, (c) to superimpose access rules onto this model, (d) to analyze the ade- 
quacy of the model against multiuser database goals and objectives, (e) to establish the existence 
of an acceptable implementation strategy, and (f) to study the expected security properties of the 
resultant constrained abstract "design". Clearly, considerable iteration is required in the above. 
We believe that this approach will yield a usable combination of an access control and integrity 
model, a hypothetical security architecture, and an interpreted set of criteria against which to 
measure any mathematically faithful implementation. 

During the course of this study, the relevant literature was surveyed extensively. In particular, 
we consulted the proceedings of all major DBMS security conferences and workshops, and both 
published and internal reports from institutions conducting research in the field. We also con- 
ducted numerous discussions with members of the trusted DBMS research community. The An- 
nex contains a partial bibliography of materials used in this study. 

The survey of existing literature took place in several passes. The first pass of the literature was 
intended to identify common objectives and common restrictions. The second pass was engaged 
to identify approaches and issues relevant to an object-oriented data model versus a relational 
model. Finally, a third pass was conducted to identify those approaches appropriate to a C++ 
environment as opposed to Smalltalk (message passing) environment The last two passes are 
discussed in more detail below. 

37 



While it appears possible to propose a straight-forward mapping between the relational data 
model and the object model, and therefore apply an access control policy designed for relational 
databases to object databases, the resultant model falls short in securing all aspects of the object 
database. Because the object model subsumes the relational data model, not only does the access 
control policy need to secure the data in an object database, the policy also needs to address 
issues such as:   how to handle inheritance in the data model; how to handle references between 
objects; how to secure methods; and how to handle iteration over groups of objects stored in the 
same aggregate. Unfortunately, much of the literature approached the problem of defining a 
multilevel security policy for ODBMSs by relying on existing work on relational databases. 
Because we were concerned with all aspects of the object model, much of this literature was 
consulted, but only selectively considered, as a foundation from which to define our working 
model. 

Additionally, much of the literature that focused on the object model in its entirety discussed 
message filtering approaches to multilevel ODBMS security which are specific to the Smalltalk 
paradigm. Although Smalltalk was the predominant object-oriented language when much of the 
literature in securing an ODBMS was written, for various reasons most of the commercial 
ODBMS vendors such as ONTOS, Inc., Objectivity, Inc., Object Design, Inc., O2 Technology, 
POET Software, and Versant Object Technology have written their products using the C++ lan- 
guage. Only Servio Corporation has written its product using the Smalltalk language. While the 
ability to pass information at runtime as messages between objects exists in Smalltalk, it does 
not exist in C++. In C++, all "messages" are implemented as methods or procedures that must 
be defined at compile time. Because there is no central message passing mechanism to control 
information flow in a C++ environment, the message filtering literature was also excluded as 
forming the basis from which to define our model. 

3.        Issues in Seeurino an QDBMS 

As mentioned previously, defining a multilevel access control policy for an ODBMS is not as 
straightforward as applying techniques that have successfully passed evaluation against the DoD 
Trusted Computer System Evaluation Criteria and associated Trusted Database Interpretation. 
In this section, we discuss aspects of the object model which are not present in the relational data 
model and have not been given adequate attention as they relate to security. They include: 
inheritance, relationships and referential integrity, aggregates,-and methods and polymorphism. 

3.1.     inhiiritaragi 

In an ODBMS, classes are organized into a hierarchy with each subclass inheriting all of the 
attributes and methods from its superclass(es). Because metadata information about a particular 
class is established at run-time, it must be possible for an application to have access to all 
metadata up its inheritance tree. To do so without potentially illegal inheritance information 
flows appears to require monotonically non-decreasing class hierarchies. That is, the level of the 
subtype must always dominate its supertype, i.e., its classification must be no less restrictive 
than that of the supertype. While this guarantees that information flow down the hierarchy is 
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always confined according to the classification lattice, it does so with the known trade-off of 
making the data model far more cumbersome for the database designer. The problem is that the 
data model and the sensitivity of the data are orthogonal; the existence of a subclass does not 
always imply the need for greater or equal sensitivity. Most models in the literature on 
multilevel security for ODBMSs enforce the restriction of monotonically non-decreasing class 
hierarchies. New ideas about dealing with inheritance without this restriction have been 
discussed in [2]. 

3.2.     Relationships and Referential Integrity 

Referential integrity is a very important property to establish and preserve in database manage- 
ment However, it is extremely difficult to find a means to implement truly multilevel 
referential integrity in a multilevel DBMS. This is because of the need to deny operations that 
would lead to a violation of referential integrity. 

In relational DBMSs, referential integrity guarantees the existence of references to any foreign 
key. For example, if in a military operations database there is a operation relation that refer- 
ences tanks, there must exist corresponding tank tuples in the vehicles relation.   It would be a 
violation of referential integrity if (a) an operation tuple were created that referenced a specific 
tank that did not exist in the vehicles relation; or (b) if a tank tuple were deleted from the vehi- 
cles relation while there still existed one or more references to it in the operation relation. In the 
relational model, tests for referential integrity are straightforward and well-defined. 

In ODBMSs, references between objects are based on object-identity rather than values of keys. 
Whether or not interobject references are well-defined depends, however, on existential con- 
straints: a referenced object (i.e., referent) must exist for the reference to be valid. Conversely, 
deletion of a referent object would be dependent on deletion of the reference. Tests for 
referential integrity are more complex than in the relational context, but can be simplified 
through provision of bi-directional references as in Morgenstem[3]. 

In DBMSs that enforce MAC, it is clear that the security level of the reference must dominate 
the security level of the referent, since otherwise there would be a visible reference to an object 
that could not be observed from the level of the referencing object. However, it would be 
impossible to preserve referential integrity unless the security level of the referent object did not 
also dominate the security level of the referencing object, since attempts to delete the referent 
must be denied so long as there are any remaining references to it (i.e., the referent must be vis- 
ible). Therefore, fullcompliance with the * -property would lead to the condusion that the reference and the 
referent must have equal security levels. This constraint would be unacceptable for many real-world 
applications. 

There are many situations in which either the reference or referent must have distinct security 
levels. For example, an unclassified vehicle may be necessary for several sensitive military 
operations. The success of these operations would be jeopardized were needed vehicles to 
become unavailable without coordination with the operation planners. It could also be com- 
promised were its confidentiality to be prematurely breached. This causes there to be a conflict 
between the goals of confidentiality and referential integrity. Confidentiality would require that 
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the database always permit the deletion of a vehicle independent of whether it is referenced from 
a higher level, even if so doing would compromise referential integrity. This is because an adversary 
could infer which vehicles are potentially involved in such operations by sequentially attempting 
to delete the vehicles from the database and noting which vehicles could not be deleted. 

We believe that this problem can be partially addressed at less than the Bl level of assurance by 
having the DBMS maintain a database high log of violations to referential integrity as they 
occur. The bi-directional references that simplify enforcing referential integrity will generally 
involve an implicit breach of the ^-property and must be appropriately managed by the TCB and 
hidden from uncleared users. The proposed model is structured to support the capability to 
address this problem. 

3.3.     Aggrsgitii 

Unlike relational DBMSs, which support only one type of aggregate (e.g., an unordered set of 
tuples), object DBMSs support a variety of aggregates including Lists, Sets, Dictionaries, and 
Arrays. While it is possible to apply the same techniques to securing a Table in an RDBMS to a 
Set Aggregate in an ODBMS, the approach is inadequate for Lists, Dictionaries, and Arrays; all 
of which possess an implicit or explicit ordering of the objects they contain. Multilevel aggre- 
gates, therefore, require a means of interrelating the individual elements of the aggregate without 
compromising information confidentiality or the basis for labeling. The semantics of how to 
perform operations on multilevel, ordered-aggregates such as iteration over the members of the 
list, querying for the cardinality of the list, testing for equality between two lists, querying to see 
if the list is empty, and copying a list must be researched and identified. 

3A      i©fh@ds and Polymorphism 

Morgenstern [3] and others have introduced the possibility of having classified methods with the 
additional potential for several distinctly classified instances of a single method to coexist. An 
example would be the requirement to support three separate implementations of the Method 
get_3Dposition. Each implementation would have the identical signature: 

[virtual] floaft get._3Dposition(int ^ int. y, im(t z) 

The only difference between the three are the actual implementations. The Unclassified version 
would return an approximation. The Secret version would return a rounded off value. The Top 
Secret version would return the exact value. 

Methods in an ODBMS are typically bound to a single programming language such as C++ or 
Smalltalk. Many of the research studies in securing a multilevel ODBMS have focused on mes- 
sage filtering approaches [5, 6]. This approach, while applicable to Smalltalk, is not suitable for 
a C++ language binding. A central mechanism within the TCB, much like the central message 
passing mechanism within [5, 6], must be identified which can intervene in a C++ environment 
at ran-time to enforce security. 
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4.        Objectives for a Multilevel ODBMS 

In this section we provide motivation for the decisions made in developing our proposed 
ODBMS model, and begin with a summary of the goals and objectives we believe are needed to 
support a trusted ODBMS that offers an integration of multilevel confidentiality and integrity 
while maintaining a reasonable user interface. It can be argued that the now traditional polyin- 
stantiation approaches meet these objectives and can be used safely by sufficiently sophisticated 
users. However, because of the subtleties inherent in the semantics of polyinstantiation and the 
avoidance of covert channels, naive users are apt to commit errors or misinterpret data. Even 
sophisticated users may find that their intentions are foiled by the confidentiality mechanisms 
and the side effects of concurrent use by subjects at differing security levels. We outline some 
of the motivating difficulties below: 

4.1. Multilevel Trusted Subjects and Objects 

In least privilege architectures, such as those required at and above the B2 level, no portion of 
the TCB is capable of observing and modifying all of the interrelationships and data values 
within a multilevel database. The difficulty this causes is that no multilevel update can transpire 
as an atomic transaction, and concurrent transactions at other security levels may interfere with 
the intended operation and its consistency. There can be serious problems, even if operating in a 
single-user environment. For example, if a user operates at a level lower than the most sensitive 
data, the DBMS's lack of ability to observe all data values and integrity constraints, while serv- 
ing that user, may result in integrity compromises that cannot easily be detected by any user or 
DBA, even though they could have been prevented in a commercial single-level environment. 

Many of the integrity problems identified above can be eliminated if the DBMS is capable of 
observing the overall database and its related integrity constraints. However, building a DBMS 
this way could make it ineligible for B2 or higher levels of trust since it would appear to violate 
the principles of least privilege, least common mechanism, and TCB minimality, and it could 
introduce serious coven or inferential channels. The only way in which confidentiality could be 
preserved would be to implement a TDI Trusted Subject DBMS security architecture. Even with 
the more relaxed Bl assurance requirements, considerable attention to security-relevant deci- 
sions is required in order to ensure that the TCB maintains continuous control over classified 
data and labeling, and over the interface with the underlying trusted operating system base. This 
would be defensible only if adequate analysis and confinement were possible. We believe that 
the model developed in this study serves to justify a credible case that the required assurances 
can be provided at the Bl level. 

4.2. Granularity of Labeling 

The TCSEC mandates that security relevant decisions be based on the interpretation of sensitiv- 
ity (i.e., classification and clearance) labels associated with data and with subjects. Using labels 
to enforce security works well with the classical processes, files, and modes of access that 
translate into the abstract Read and Write operations of the Bell-LaPadula model. However, it 
must be borne in mind that while label interpretation is always a syntactic issue, data classifica- 
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tion is a semantic issue and cannot, in general, be automated. In particular, the original creation 
of a file derives its classification, in part, from a conscious and educated decision on the part of 
its creator; subsequent actions on the operating system file are often safe because of the simpli- 
fied interpretation of the permitted modes of access. While this is usually an acceptable 
approach to take in a trusted operating system, it falls short of what is needed in a misted DBMS 
because update and transaction semantics are far more complicated and involved. 

Issues of implementation often mislead the designer from obtaining a clear understanding of 
what is needed to fit the requirements of the application, and then considering whether and how 
it can be represented and enforced. Many researchers have considered the objective of "field- 
level" granularity of classification, leading to the possibility that the number 17.3 is considered 
to be Top Secret (Woods Hole, q.v) while 17.4 and 0.1 are unclassified numbers. The point that 
is being missed is rwt whether 17.4 - 0.1 is Top Secret, but rather what it is that causes 17.3 to 
have such sensitivity. The reason is always tied to the relationship between the 17.3 and the unit 
or category with which it is associated in the real or abstract world of the classification authority. 
That is, it is not so much the value that is classified as the rdatwnsfdp between things that is 
sensitive. Some researchers have based their entire approach to DBMS policy modeling on the 
notion of data-dependent classification schemes based on data associations [4]. 

In this study, we concentrated on mechanisms for associating labels with data values as opposed 
to associating them with the relationship a data value has with its Class, Attribute, or Reference 
to another object. Our goal was to identify a simple and uniform means of labeling at the finest 
granularity possible, which could be enforceable at runtime. Equally important was preserving 
the benefits of the emerging ODBMS model. Based on our overall rationale for classification, 
the variation on Morgenstern's [3] original concepts of Complete Object and of Object Instance 
developed into the refined form shown in our model. 

4.3.     System Administration Coosidarattons 

Databases, like enterprises, always evolve and undergo modification. Often the modifications 
are planned, but at times they represent reaction to known compromises to integrity that require 
rectification. To compensate for inconsistencies that arise from support of a multilevel ODBMS, 
e.g., accidental polyinstantiation, an appropriate suite of high-integrity utilities needs to be 
designed and provided. 

In this study, considerable attention was focused on the goal of creating a model that would not 
severely degrade the of ease-of-use of the multilevel ODBMS over a conventional single-level 
ODBMS. We believe that the present model, which does not explicitly deal with operational 
matters, will support this objective. In particular, the model is developed with the implicit 
requirement that the TCB, in its support of users, have full access to all metadata, all data, and 
all integrity constraints. This provides a planned means for interacting with cleared staff who 
must define, redefine or repair portions of the database as a consequence of multilevel use. 

Currently, the model does not explicitly define any policy-critical personnel roles or functions. 
Further examination is required of implementation issues and their interplay before these opera- 
tional considerations can be made precise. 
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4.4. Polyinstantiation and Data Replication 

Many trusted DBMS efforts have several techniques of decomposing a multilevel database into 
single-level components in order to counter potential covert channels or otherwise disallowed 
information flows. A common approach in much of the literature is the concept of potyinstan- 
tiation, with data replication as one of the ways in which it may be implemented. In some cases, 
polyinstantiation is used to provide deliberate, but separate, realities at distinct sensitivity levels 
— either in the form of disinformation or as plausible cover stories. In particular implementa- 
tions, however, the device may be either an artifact of updates made by subjects acting at differ- 
ent sensitivity levels, or the basic implementation strategy for a DBMS' security architecture. 

In either case, the results of polyinstantion can be contrary to the goals of establishing and pre- 
serving database consistency and semantic integrity. Many examples and paradoxes have been 
presented in the literature that indicate that polyinstantiation is a rich complex that offers both 
benefits and liabilities. The issues range over the foundations of a consistent data model (e.g., 
multiple tuples stemming from a single primary key to a relation), how to perform statistical 
queries on a polyinstantiated database, etc. It appears that each issue can be dealt with indi- 
vidually, but there is not yet an accepted universal theory. 

Many investigators have chosen to differentiate between deliberate and accidental cases of 
polyinstantiation and its manifestation. Deliberate cases include cover stories and corrections 
performed by subjects cleared to view all of the relevant information. Accidental cases 
(sometimes called automatic polyinstantiation) are those where, as a consequence of updates 
performed by subjects acting at different security levels, the TCB appears to create object 
instances that have the same object identity but that otherwise differ in value. The accidental 
case can result either from the user acting on incomplete information or from vestiges of the *- 
property. To distinguish all intentional cases from the accidental case, the model refers only to 
the latter as Polyinstantiation. 

4.5. Multilevel Transactions 

A transaction is a set of operations that read and/or write persistent objects and satisfies the 
SACYD properties (atomicity, consistency, isolation, and durability). Briefly, atomicity means that 
the transaction is either executed in its entirety or not executed at all; consistency means that the 
transaction maps a database from one consistent state to another, isolation means that the trans- 
action does not read intermediate results of other noncommitted transactions; and durability 
means that once a transaction is committed, its effects are guaranteed to endure despite system 
failures. Scheduling of transactions, i.e., locking of data, needs to be accomplished such that 
the user application is notified of the success or failure of each transaction. This notification, 
unfortunately, could lead to illegal information flows and be in conflict with confidentiality pol- 
icy requirements. 

We have developed the proposed model with a view toward providing an adequate foundation 
from which to address many issues of multilevel transactions and the ACID properties. These 
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are introduced in the model's concepts of: Basic Object, SubQbject, and Complete Object. We 
have identified a strategy that uses these concepts to deal with potential conflicts resulting from 
ACID properties. The strategy guarantees consistent transactions, and always allows adequately 
cleared users to make informed decisions or corrections by dealing directly with the TCB over a 
fully-isolated B3 trusted path. 

5.        Plans for the Futur© 

Rome Laboratory has initiated a 30-month follow-on contract leading to development of a 
Trusted ONTOS proof-of-concept prototype, 'TOP, based on the work reported above. The pro- 
ject continues evolving the abstract access control model reported in [1] and will resolve many 
of the known open issues in the model. 

The open issues identified to date are delineated below. 

DAC 
© Auditing 
o Trusted Subjects and Trusted Path 
o Multilevel (Trusted) Methods 
o Concurrency / Locking / Serializability 
o Schema and Instance Migration 
o Versioning 
° Aggregates 
o Backup / Recovery 
o Trust Properties of Utilities 
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Abstract 
This paper presents a multilevel secure DBMS architecture that was derived by 

applying the concept of TCB subsets to a trusted subject DBMS architecture. The 
resulting architecture retains many of the advantages of a trusted subject architecture 
while allowing for a significantly higher level of assurance for mandatory access control. 
Because it is based on concept of TCB subsets, the new architecture lends itself to 
incremental evaluation which in turn simplifies the evaluation process, reduces the cost 
of re-assessing a modified system, and provides the vendor a sound basis for supporting 
a family of MLS DBMS products. 

1     Introduction 

The primary motivation for the development of the trusted computing base (TCB) subset 
approach to trusted system design was the ability to build upon a previously evaluated TCB 
without having to repeat any of the work that went into the evaluation of that TCB [1, 2). 
This is a significant benefit, but it tends to obscure the fact that the TCB subset approach 
is an important general-purpose trusted system design technique. This is particularly true 
in the arena of multilevel secure (MLS) database management systems (DBMS) where 
the term ''subset architecture" is often used to denote an architecture where the DBMS 
is completely constrained by an underlying security kernel. An alternative to a subset 
architecture is a "trusted subject architecture" where the DBMS contains some subjects 
that are not completely constrained by the underlying security kernel. In this paper, we 
argue that the TCB subset approach is a general-purpose design technique that can be 
productively applied to DBMS architectures irrespective of whether or not they employ 
trusted subjects. 

Section 2 of this paper presents the concepts of TCB subsets and trusted subjects, and 
discusses the relationship between the two. Section 3 discusses MLS DBMS architectures 
based on each of these concepts and discusses their advantages and disadvantages. Section 4 
presents an MLS DBMS architecture that combines the concepts of TCB subsets and trusted 
subjects, and presents the advantages and disadvantages of this architecture. Section 5 
presents conclusions and future work. 

"This work was supported by the U.S. Air Force, Rome Laboratories, under contract F30602-90-C-0071. 
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2    C 

2.1    TCB Subsets 

In a trusted system based on the concept of TCB subsets, the overall system security policy 
is hierarchically partitioned and allocated to different parts (subsets) of the system. Each 
of these parts implements a reference monitor enforcing the corresponding policy. Each 
part is similar to a conventional reference monitor, with the exception that, it may use 
the resources of the more primitive subsets (lower in the hierarchy) to enforce its security 
policy (the most primitive subsets use only the hardware). A subset architecture can be 
incrementally evaluated, in that each of the parts can be separately evaluated against then- 
respective policies. The evaluation of a given part depends upon the evaluation of the more 
primitive subsets which it uses. Even though the parts can be incrementally evaluated, it 
still must then be argued that when composed, parts enforce the original system security 
policy. 

The idea of having multiple levels of security kernels, each implementing a security 
policy on its own objects, dates back to the design of the UCLA Virtual Machine System 
[3]. The current concept of TCB subsets grew out of work on the concept of extensible 
TCBs [4] and the first full treatment of this form of the concept was published in [1]. Here, 
the basic idea was to generalize the reference monitor concept [5] to support the goal of 
incremental evaluation of trusted systems. The Trusted Database Interpretation (TDI) [2] 
of the Trusted Computer System Evaluation Criteria (TCSEC) [6] embraced the concept 
of hierarchically related subsets as a basis for trusted DBMS development and evaluation. 

The TDI formally defines a subset M as the a set of software, firmware, and hardware 
(where any of these three could be absent) that mediates the access of a set S of subjects to 
a set O of objects on the basis of a stated access control policy P and satisfies the properties: 

1. M mediates every access to objects in O by subjects in S; 

2. M is tamper resistant; and 

3. M is small enough to be subject to analysis and tests, the completeness of which can 
be assured. 

Furthermore, the TDI specifies a set of conditions that a subset architecture must meet 
in order to be eligible for an evaluation by parts. These conditions are: 

1. The candidate TCB subsets are identified; 

2. The system policy is allocated to the candidate TCB subsets; 

3. Each candidate TCB subset M[i] includes all the trusted subjects with respect to its 
technical policies P[i]; 

4. The TCB subset structure is explicitly described; 

5. Each TCB subset occupies distinct subset-domains; and 
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6. The more primitive TCB subsets provide support for the reference validation mecha- 
nism arguments for the less primitive TCB subsets. 

Any architecture that claims to be a subset architecture must satisfy these conditions. 

2.2 Trusted Subjects 

A trusted subject is an entity (usually a process) that runs with special privilege that 
allows it to bypass the security policy of an underlying reference monitor1. For example, 
UNIX System V Release 4.2 ES allows a subject to be granted a number of privileges, 
including: read-up (MACREAD), write-down (MACWRITE), and modify process level 
(SETPLEVEL) [7]. Other operating systems provide a more granular privilege mechanism 
where processes are only trusted within a range [8]. 

Trusted subjects are employed in a system design when the constraints implemented by 
the underlying security mechanism make it impossible (or very difficult) to implement re- 
quired functionality. They may be used as part of the implementation of a multilevel secure 
operating system (and hence are evaluated as part of the operating system evaluation), 
or they may be added later to support a trusted application (e.g., a guard application). 
Since trusted subjects are not completely constrained by the underlying reference monitor, 
it is crucial that they be carefully analyzed to ensure that they do not violate the intended 
security policy. 

2.3 Relationship Between Subsets and Trusted Subjects 

The first issue that must be addressed is whether it is possible to apply the concept of TCB 
subsets to an architecture utilizing trusted subjects. One way to illustrate that the concepts 
of trusted subjects and TCB subsets are compatible, is to start with a valid TCB subset 
architecture, add a trusted subject, and argue that the result can be made into a valid (but 
different) subset architecture. A subset architecture is valid if it satisfies the six criteria 
for a subset architecture, and each subset possesses the three reference monitor properties 
required of a subset. 

Assume that there exists a TCB that is layered into n hierarchical subsets M[0], M[l], 
.... M[k], ..., M[n], and is valid by the above definition. Now suppose that we add a trusted 
subject to subset M[kj (trusted with respect to subset M[k-1]). This situation is shown 
on the left side of Figure 1. As modified, this architecture is not valid because it violates 
condition 3. However, we can combine the subsets M[k] and M[k-1] into a single subset that 
is allocated the combined policies of the two subsets.2 The resulting architecture, which is 
shown on the right side of Figure 1, is a new candidate subset architecture. 

It should be apparent that the candidate architecture satisfies the six conditions for a 
subset architecture as listed above. The remainder of this section argues that the new subset 
(M[k-1]) can satisfy the required reference monitor properties as well.  The first property 

1Even though most discussions of trusted subjects focus on the ability to circumvent mandatory access 
control, a process can be trusted with respect to any aspect of the policy implemented by the reference 
monitor (e.g., discretionary access control). 

2In general, a trusted subject introduced in subset M[i], that is trusted with respect to level M[j], i > j, 
will require all subsets M[k], i > k > j, to be combined. 
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Figure 1: Adding a Trusted Subject to a Subset Architecture. 

can always be satisfied because the new subset can use the same mechanisms as the old M[k] 
and M[k-1] subsets to ensure that it is not bypassed. The second property can always be 
satisfied because the new subset can use the same mechanisms as the old M[k] and M[k-1] 
subsets to ensure that it is tamper resistant. The satisfaction of third property depends 
on characteristics of the original subsets that were combined. As noted in the TCSEC, the 
third property is currently interpreted to mean that the TCB "must be of sufficiently simple 
organization and complexity to be subjected to analysis and tests, the completeness of which 
can be assured" [6]. It certainly can be argued that if the original two subsets satisfied this 
criterion, and the additional trusted subject satisfied this criterion, then the new subset 
would satisfy it. At higher assurance levels there is also the implication that modules that 
are not protection critical have been excluded from the TCB. A similar argument could be 
made that if the original two subsets were in some sense "minimal" given their respective 
polices, the combined subset would also be minimal for the combined policy, provided that 
the trusted subject itself were minimal. 

The above argument demonstrates that, although trusted subjects have a definite impact 
on subset architectures, they can not be determined a priori to be incompatible concepts. 
The implication is that an MLS DBMS can be implemented using trusted subjects and may 
still derive benefit from an application of the concept of TCB subsets. 

3    MLS Dl 

3.1    TCB Subset BBM£ 

The concept of TCB subsets has been applied in the domain of database architectures to 
produce a TCB subset DBMS architecture. This architecture was first proposed as part 
of the SeaView effort [9]. In this architecture, the DBMS runs as one or more untrusted 
processes on top of a security kernel. This architecture consists of two subsets. The most 
primitive subset is the underlying security kernel, which is responsible for all mandatory 
access control enforcement. The DBMS forms a second subset which enforces a discretionary 
access control (DAC) policy on its own objects. 

The advantages of this architecture are ease of evaluation and assurance. The ease 
of evaluation of this architecture is due to the fact that, since this architecture has no 
trusted subjects, the DBMS is prevented from doing anything that would invalidate a 
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previous evaluation of the underlying security kernel. There is no need to perform any 
re-evaluation of the underlying operating system. The mandatory assurance characteristics 
of this architecture are derived directly from the mandatory assurance characteristics of the 
underlying operating system. For this reason, the mandatory assurance level of the DBMS 
should be the same as that for the underlying security kernel. 

The disadvantages of this architecture are that it is inflexible, difficult to use, difficult 
to implement, and inefficient. The architecture is inflexible because: 

1. Poly instantiation is unavoidable. This is because the presence of similarly named 
objects at higher or non-comparable levels cannot be detected. This is true not only 
of tuples, but of databases, relations, and schemata. 

2. Integrity constraints cannot always be enforced. This is because the enforcement of 
certain constraints require the ability to detect the presence of objects at a higher or 
non-comparable level or to remove objects at a lower or non-comparable level.3 

3. DBMS Trusted subjects cannot be supported. This is because the DBMS itself cannot 
circumvent MAC privileges, therefore it cannot offer any such services to its clients. 

4. Information cannot be, downgraded. This is because downgrading requires a trusted 
subject, which is not permitted in a TCB subset DBMS architecture. 

The resulting DBMS is difficult to use for the above reasons as well as the fact the database 
dumps, restores, and bulk loads must be performed at each level in the security lattice. The 
implementation is difficult because: 

1. Data must be fragmented. This is because the DBMS must store all multilevel data, 
metadata, and log information in the single level objects provided by the security 
kernel. 

2. Concurrency control and recovery must be performed without global knowledge. Since 
the subjects that perform these operations are necessarily single level, they can only 
see the portion of the relevant data that they dominate. 

3. DBMS processes must be replicated at each security level. Since the DBMS subjects 
are necessarily single level, there must be one for each client security level to be 
supported. 

Finally, the architecture is less efficient because: 

1. The amount of I/O is increased because of data/log fragmentation. This is because 
the DBMS subject must read from one file for each level in the security level lattice 
that it dominates. This will significantly reduce the effectiveness of buffering. 

3It can be argued that this and the previous "disadvantage" are actually necessary characteristics of 
a secure system (because both failure to support polyinstantiation and complete enforcement of integrity 
constraints can introduce covert channels). The issue is that a system based on this architecture cannot give 
the DBA the option to trade-off security and data integrity. 
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The DBMS must rely on the operating system file management. Database manage- 
ment systems frequently implement their own file systems that are optimized for 
database access. Since these file systems are necessarily multilevel, they cannot be 
implemented using untrusted subjects. 

3. Each DBMS process must be duplicated at each security level As noted above, the 
DBMS TCB subset architecture requires the duplication of processes by security level. 
This will have a negative impact on performance because of the additional context 
switching overhead (and resource consumption). 

3o2    THUS- »MS Architecture 

In the trusted subject DBMS architecture, the DBMS includes one or more subjects that 
are trusted with respect to the security policy of the underlying operating system. The 
composed system (operating system plus application) implements a security policy that is 
potentially different from the one originally implemented by the operating system. 

The advantages of this architecture are performance, flexibility, ease of implementation, 
and ease of use. The primary disadvantages of this architecture are low assurance and eval- 
uation difficulty. Both of these disadvantages are a result of the fact that, since the DBMS 
is not fully constrained by the underlying operating system TCB, flaws in its implementa- 
tion can cause a breach of mandatory security. The difficulty of evaluating such a system is 
compounded by that fact that the combination of the trusted subject and the TCB of the 
underlying operating system can introduce information flows that cannot be discovered by 
performing an analysis of the trusted subject alone. The implication of this is that it is not 
sufficient to look at the trusted subject alone when evaluating the security characteristics 
of the DBMS. At least some of the evaluation of the underlying operating system must be 

repeated. 

4    Proposed Architecture 

The trusted subject and TCB subset architectures presented in the previous section are 
generally considered to be disjoint, each having its own distinct advantages and disadvan- 
tages [10]. This view is not consistent with the idea of TCB subsets as a general-purpose 
design technique. As discussed in section 2.3, there is no technical reason why the concept 
of TCB subsets cannot be productively applied within the domain of trusted subject DBMS 
architectures. This section presents an MLS DBMS architecture derived by applying the 
concept of TCB subsets to a trusted subject DBMS architecture. 

4.1    Architecture Definition 

Figure 2 shows an abstract MLS DBMS architecture that was derived by applying the 
concept of TCB subsets to a trusted subject DBMS architecture. This architecture consists 
of two subsets, M[0] and M[l]. The M[0] subset enforces a mandatory access control policy 
on DBMS objects (e.g., tuples) and consists of the operating system TCB combined with 
the minimal amount of trusted DBMS code required to implement the desired policy. The 
M[l] TCB subset is layered upon M[0] and enforces a discretionary access control policy 
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Figure 2: Abstract Subset Architecture. 

that is a refinement of the policy enforced by the M[0] TCB. Each of these subsets must be 
isolated via a domain isolation mechanism (e.g., protection rings [11]). 

This architecture is abstract in the sense that it can describe a wide range of actual 
MLS DBMS systems. One important detail that has been omitted is the actual allocation 
of DBMS functionality to the subsets. For the M[0] subset, some possibilities include: no 
DBMS functionality (the conventional TCB subset case), a simple filter, and significant 
DBMS functionality (e.g., access methods and scheduler). For the M[l] subset, some possi- 
bilities include: a null subset (i.e., rely on the DAC, if any, provided at the M[0] subset) and 
subsets whose functionality is determined by the granularity of the definition of protected 
objects in the system's security policy (e.g., relations, columns, views). 

The M[0] subset of this architecture actually consists of two "parts" (in the TDI sense) 
that are isolated in separate protection domains. Since one of these parts contains subjects 
trusted with respect to the other, these two parts do not qualify for an evaluation by parts. 
As noted in the TDI, even though these parts do not qualify for an evaluation by parts, it 
is likely that significant savings can be recognized by reusing the results of the evaluation 
of the underlying security kernel. The problem encountered here is that there is no theory 
that can be used to quantify these savings a priori. 

It is also worth noting that the M[l] subset (or the M[0] subset for that matter) could 
be further subdivided into additional subsets if desired. This would of course depend on a 
meaningful decomposition of the security policy and the availability of the required domain 
isolation mechanisms. 

The remainder of the paper will focus on an instance of the above architecture in which 
the extended TCB layer includes the minimal DBMS functionality required to retain the 
significant advantages of the trusted subject architecture as discussed in 3.2. 

4.2    Advantages 

The proposed architecture retains the significant advantages of the trusted subject DBMS 
architecture while mitigating its disadvantages. The advantages are retained through the 
judicious use of trusted subjects (e.g., to avoid data fragmentation). The disadvantages 
are mitigated by isolating all DBMS code that requires mandatory privilege to the lowest 
level subset. The result is a system that offers significantly higher assurance for mandatory 

57 



access control and is more evaluatable than a similar system with a monolithic TCB. The 
assurance advantages are a result of the fact that: 

o The amount of code that can cause a violation of MAC is significantly decreased. The 
amount of DBMS code in the M[0] subset is significantly less than that in the TCB as 
a whole and only subjects in this subset can run with special MAC privileges. Since 
subsets must satisfy the isolation and non-bypassability requirements for a reference 
validation mechanism, these properties guarantee that only code in the M[0] subset 
can cause a violation of MAC. 

© The effectiveness of assurance techniques is increased. Assurance techniques are more 
effectively applied at a lower level of abstraction. Since assurance techniques must be 
applied to each subset, the TCB subsets approach forces you to apply these techniques 
more directly to the portions of the system responsible for MAC enforcement (viz., 
the M[0] subset). Additionally, if you subscribe to the notion of balanced assurance 
[12], this approach has the effect of focusing your assurance efforts where they will 
have the most impact. 

The proposed architecture is easier to evaluate because: 

© The scope of global analysis is reduced. Developing a system using trusted subjects 
requires that certain global analysis be performed on the combined underlying TCB 
and the DBMS TCB (e.g., covert channel analysis). If the DBMS TCB has a multi- 
subset TCB, only the M[0] TCB must be considered in these global analyses. 

© The evaluation task can be partitioned. One of the primary benefits of the TCB subsets 
approach is the ability to divide a complex system into parts and evaluate the parts 
incrementally. This approach makes the evaluation of a complex TCB more tractable. 

0 The re-assessment of modified or ported systems is simplified. A TCB subset archi- 
tecture has the characteristic that the evaluation impact of certain changes is isolated 
to the subset in which they occur. This can result in significant savings in the area of 
re-assessment. 

© Subsets can be. evaluated to different assurance levels. This architecture has the char- 
acteristic that the different subsets can be evaluated to different assurance levels. That 
is, the M[0] subset could be evaluated to a relatively high level (e.g., B3 or Al) while 
the M[l] subset could be evaluated at a lower level (e.g., C2).4 

In addition to the assurance and evaluation benefits, applying the concept of TCB 
subsets to a trusted subject architecture permits a vendor to support a family of MLS 
DBMS products without duplicating evaluation effort. A vendor could support an entire 
product line (e.g., with products supporting different DAC policies) with the basic M[0] 
TCB at its core. Since a subset architecture allows incremental evaluation, the underlying 
M[0] TCB need only be evaluated once for the entire product line. 

4Current evaluation practice is to require all subsets to be evaluated at a uniform assurance level. There 
is, however, no technical reason to require a uniform assurance level provided that a given subset does not 
depend upon a less assured subset. 



4.3    Disadvantages 

The application of the concept of TCB subsets to trusted subject DBMS architectures 
has some disadvantages as well. Specifically, the proposed architecture has the following 
disadvantages: 

• Implementation difficulty associated with multiple protection domains. The architec- 
ture presented above will require at least four hierarchical protection domains: one 
for the operating system, one for the extended TCB layer, one for the M[l] subset, 
and one to protect the integrity of the untrusted DBMS code. These domains can be 
provided through a variety of mechanisms and each domain need not use the same 
mechanism. 

• Performance overhead associated with multiple protection domains. As noted above, 
this architecture requires at least four hierarchical protection domains. Crossing do- 
main boundaries is likely to have a negative impact on DBMS performance. 

• Reduced Flexibility. This reduction in flexibility occurs because the M[l] subset cannot 
violate policy of the M[0] subset even in cases where it would be desirable. For 
example, it would not be possible to support trusted stored SQL procedures in a 
DBMS in which SQL is outside of the mandatory subset. Exactly how much flexibility 
is lost is determined by what DBMS functionality is placed in the M[0] subset. 

These disadvantages are significantly less that those realized in the conventional TCB 
subset DBMS architecture. 

5     Conclusions 

This paper proposed an MLS DBMS architecture that was derived by applying the concept 
of TCB subsets to a trusted subject DBMS architecture. The proposed architecture retains 
the strengths of the trusted subject architecture while mitigating its weaknesses. The 
strengths of the trusted subject architecture are its performance, flexibility, ease of use, and 
ease of implementation. These strengths are retained in the proposed architecture through 
the judicious use of trusted subjects. The weaknesses of the trusted subject architecture are 
mandatory assurance and evaluation difficulty. A significantly higher level of mandatory 
assurance is possible in the proposed architecture because the amount of code that requires 
mandatory privilege is minimized and that code is isolated in the lowest level subset. The 
evaluatability of the architecture is improved because it can be evaluated incrementally, 
and certain global analyses are only required on the lowest level subset. In addition, an 
incremental evaluation can reduce the cost of re-assessing a modified system, and provide 
the vendor a sound basis for supporting a family of MLS DBMS products. 

We are currently prototyping the proposed architecture by reengineering the Trusted 
RUBIX MLS DBMS [13]. The anticipated results of the prototyping effort are a demon- 
stration of the feasibility of the new architecture and an improved understanding of the 
properties of the architecture. Topics to be investigated include: size of the extended TCB, 
trade-offs between extended TCB size and architectural flexibility, performance character- 
istics, and resource utilization characteristics. 
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CMWs offer floating labels as a means of providing flexible secure operation. The SWORD 
secure DBMS provides fine grain protection at the field level, with labels that do not float. 
SWORD also supports clients which are trusted to label their queries appropriately. By 
judiciously making the CMW labels float according to the result of a query, an ordinary CMW 
process can be allowed the flexibility of a trusted client. This preserves some of the advantages of 
floating labels without complicating the semantics of the DBMS. 

The SWORD secure DBMS [1] was designed to overcome the problems that had been perceived with 
the use of polyinstantiating DBMSs [2]. It was intended to be used as part of systems operating in 
multi-level security mode, with labelled entities forming the basis of information flow security. 
However, Compartmented Mode Workstations (CMWs) [3] have since become an important 
component of secure systems and these, unlike other secure components, use a dual-labelling 
system. 

When DBMSs, or other secure subsystems, interact with CMWs, consideration must be given as to 
how the DBMS's simple single-label scheme interacts with the dual-labels in the CMW. However, 
in order to judge how this may be done effectively, it is necessary to ascertain what role the CMW 
dual-labels are intended to fulfil. 

The important feature of CMW dual-labels is that they provide floating labels. These float in 
response to the flow of labelled data and offer a distinct advantage with respect to operating 
Commercial-Off-The-Shelf (COTS) software in a secure system. In an ordinary secure Unix, 
COTS software would be constrained to work at a single security level. If the software needed to 
read files classified higher, or write files classified lower, than its "session level" it would be 
prevented from doing so by the secure operating system. Since the software is unaware of labels, it 
would not be expecting its read/write requests to be rejected and will at best provide meaningless 
error messages to the user. 

With floating labels, COTS software is not constrained by the operating system's labels, even 
though it is unaware of them. If the software reads a highly classified file, the process' label is 
raised. If the software writes to a lowly classified file, the file's label is raised. Problems occur 
only if the software tries to work above the user's clearance, but this would not be expected in 
normal operation. 

© British Crown Copyright 1994 /DRA 
Reproduced with the permission of the Controller of Her Britannic Majesty's Stationery Office 
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This paper briefly discusses how CMW dual-labels may be used and describes SWORD's 
security controls. Then, one way in which SWORD may be used in a CMW environment is 
described. 

A CMW applies two labels to each entity: a Sensitivity Label and an Information Label. The 
Information Label is initially set to lattice-bottom (the lowest possible label), but it floats upwards 
as more classified data is moved into the entity. The Sensitivity Label is generally fixed and acts 
as an upper bound to the Information Label. 

The Information Label of an entity in a CMW is often considered to be a more appropriate 
reflection of the sensitivity of the information contained in ih® entity than the Sensitivity Label. 
However, the exact difference between the Information Label and Sensitivity Label is not 
precisely specified. This is unfortunate since it is then difficult to decide whether some use of the 
Information Label is appropriate. 

It would seem reasonable to assume that, for active entities which communicate directly with the 
user (such as windows), the user's clearance is used as the Sensitivity Label1. This reflects the 
fact that the sensitivity of information presented to the user should not be higher than their 
clearance. Sensitivity Labels on other entities, which are internal to the machine (such as files), 
are also needed as part of the mechanism to ensure that Information Labels on windows do not 
float too high [4]. 

The Information Label is intended to provide the classification which should be applied to the data 
within an entity. However, classified information may theoretically be encoded in the state of an 
entity, without this being reflected in the entity's Information Label. This is because the 
Information Label only accounts for information flows that occur when data moves [4]. 

The CMW design allows the Information Label to ignore further subtle information flows, which 
arise because of the way entities are addressed and printed outputs are labelled [4]. Also, some 
implementations of CMW ignore various other flows relating to addressing. 

It is hard to conceive of a system where meaningful information flows when data ceases to move, 
unless the system is being actively attacked by sophisticated opponents using Trojan Horse 
techniques. In low threat environments, vulnerabilities that can only be exploited by Trojan 
Horses are considered to be an acceptable risk^. The additional flows allowed by the design, and 
introduced by the implementations, also seem to be difficult to exploit. Thus, the Information 
Label is likely to suffice as an accurate indication of the protection required for an entity's 
contents. 

To summarise, it would appear that there are two possible ways of using the dual labels of a CMW. 
1. The Information Label is just some additional data about an entity, which is probably used 

during downgrading operations to convey the requested new security class. 
The Sensitivity Label gives the protection required of the data within an entity. 

2. The Information Label gives the protection required of the data within an entity. 
The Sensitivity Label is just an upper bound that is used to carry the user's clearance. 

^Though the Sensitivity Label might be artificially lower than the users true clearance. 
^The terminology of [11] is used, so roughly risk = vulnerability * threat 
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In the first case, the Information Label is relatively uninteresting. Its value is not really relevant 
to the security of the overall system, because it plays no part in the enforcement of confidentiality. 
If it becomes set to an inappropriate security class, the user who is to review the requested 
downgrade will reject the request. 

In the second case, the Sensitivity Label is relatively uninteresting, since it just conveys the 
user's clearance. It is only needed in those systems where not all users have the same clearance, 
or where some workstations cannot be used to access all information because they are in a less- 
well protected area. 

In the first case, the way in which the Information Label is affected by interaction with a secure 
DBMS is not particularly crucial. However, in the second case it is critical. Thus, it is important 
to consider the second case in deciding how a DBMS and CMW should interact. 

3, SWQiU? Ste^tefiontefla 

SWORD is a secure Relational DBMS which provides field level labelling, without forcing 
designers to Polyinstantiate [5] or circumvent information flow security by using privileged 
clients. 

The field labelling in SWORD is not equivalent to row labelling, unlike the field labelling 
schemes of SeaView [6]. In SWORD the existence of a highly classified field is generally 
classified low, while in SeaView the existence of a field is always classified the same as its 
contents. This means that SWORD only allows rows to be inserted by clients with low clearances 
- the Insert Low approach [7]. A consequence of using this approach to support multi-level 
databases, is that clients are able to attempt to observe the contents of a field for which their 
clearance is insufficient. In SWORD the result of such attempts is a special "not cleared" value 
[8]. 

SWORD has been designed so that a database can be maintained and operated by untrusted 
clients. However, it does also support clients that can be trusted to label queries appropriately [9]. A 
trusted client is not, however, trusted to avoid queries that cause inappropriate downward 
information flows within the database. In SWORD, even trusted clients are prevented from 
causing a downward flow in the databases. This constraint is enforced because the effect of a 
query depends greatly upon the data in the database, and so it is difficult to have confidence that 
the effect of a general downgrading query is always limited to affecting the data envisaged. 

Thus, SWORD does not support downgrading of data in situ, so downgrading must be performed 
in the application. This is not thought to be unreasonable, since downgrading is generally 
subjected to stringent application specific controls, which can only be carried out in the 
application. 

A trusted client of SWORD is free to indicate the sensitivity of information encoded in the text of a 
query and the fact that the query is issued, even if this is strictly lower than the clearance with 
which it is to be evaluated1. The advantage of doing this is that the fact that changes are occurring 
is often less sensitive than exactly what is changing. For example, the insertion of a new row into 
a table may be much less sensitive than the values placed in some of the fields. 

SWORD also provides detailed information labels on the results of select queries, which indicate 
the source of the information it conveys [10]. SWORD's information labels are provided on both 

*For untrusted clients, the sensitivity of the query (its text and the fact that it was issued) must 
equal the clearance. 
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the fields and rows of the result. An information label in SWORD is not a floating label, unlike 
the Information Labels in CMWs. In SWORD, the information label states the minimum 
clearance required to ascertain some basic facts, specifically ignoring the reason that the basic 
facts were retrieved. 

The information label of a row is given by the least clearance required to ascertain that the select 
query's where-clause expression is true for that row. This is discounting the fact that the text of the 
where-clause may itself be sensitive information. The information label of a field is given by the 
least clearance required to ascertain the value of the select list expression, in the corresponding 
position, for that row. This is ignoring the fact that the row was selected, which may itself be based 
on sensitive information. 

In effect, the information labels state the sensitivity of the result, excluding sensitive information 
derived from the addressing information which caused them to exist, ie. the where-clause and 
select list expressions. They indicate which users with lower clearances may learn the same 
basic facts, even if they must issue different queries to do so. 

4 CMW Active Entities ggJgWfiBJlIäifinte 

An active entity in a CMW may become a client of a SWORD database by connecting to it. From 
SWORD's point of view the client must have a clearance, which is the maximum sensitivity of 
information that will be returned to it. The Sensitivity Label of the client acts as an upper bound 
on the sensitivity of information which may be included in the entity, thus the SWORD client's 
Clearance is obviously the CMW entity's Sensitivity Label. 

A query's text, and the fact that it is issued, is derived from the contents of the active entity. Thus, 
the sensitivity of this information equals the sensitivity of the active entity's contents. Hence, it 
seems reasonable that the query should be labelled with the active entity's Information Label. 

The results of a query may be computed from information of a strictly higher sensitivity 
compared with the active entity's Information Label. In this case it might seem reasonable to float 
the Information Label to reflect this information flow. However, the CMW Information Labels 
are not completely accurate, in that they ignore certain information flows such as those relating to 
addressing. Thus, it might be appropriate to ignore some of the flows that occurred during query 
evaluation.  ■ 

In particular, a select query generally does not bring back a result for every row, usually because 
the where-clause expression yields false for some rows. The fact that a row is not selected is 
actually a flow of information back to the client, which reveals something about the values in the 
ignored row. It might be reasonable to ignore this flow on the grounds that it is rather covert, 
requiring the text of the query and the result to be tied together with details about what was not 
retrieved in order to obtain "useful" information. 

A similar argument could be made for ignoring the fact that the where-clauses of rows that are 
selected all evaluate to true. However, this information is slightly more obvious since it does not 
require additional knowledge. 

In effect, ordinary untrasted CMW application software acts like a trusted client from SWORD's 
point of view - assuming that the risk of using the Information Labels to protect information in the 
way described is acceptable, given the perceived threat. 
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Genuinely trusted CMW software would be permitted to bypass the controls imposed by the dual- 
labelling. For example, CMW software that is trusted to lower its Information Label would also be 
permitted to set the label of a query strictly lower than the Information Label. 

5. The SWORD Prototype 

The SWORD prototype runs on Sun CMW and is implemented by front-ending standard Ingres. 
The front end floats the active entity's Information Label by the information labels of all the rows 
and fields in the result. Thus it discounts the flows arising from computing the where-clauses of 
rows that are not returned. It also ignores the flows arising from update and delete queries, which 
report back the number of rows affected. Strictly, this number reveals something about the fields 
observed during the evaluation of the where-clause expression. 

The following example shows the effect. The information label of the resulting row is 
Confidential, since a clearance of Confidential is required to compute the where-clause for that 
row. 

Flights table:  
Name Dest Mission 

"Enterprise" [U]      "Vulcan"        [U] 
"Constitution" [U]       "Romulus"      [C] 

"Supply"       [C] 
"Attack"       [S] 

Query: 

Query Sensitivity: 
Clearance: 

Result: 

SELECT Name FROM Flights 
WHERE Mission <> "Attack"; 

Unclassified (CMW Information Label) 
Secret (CMW Sensitivity Label) 

[C] 
Name 

'Enterprise"      [U] 

Resulting CMW Information Label: Confidential ([U] lub [C] lub [U]) 

From the result and the query, it is possible to deduce the Confidential information that the 
Enterprise is not on an Attack mission. This is reflected in the resulting Information Label. 
However, using the query "SELECT name FROM Flights;" to ascertain that no row for the 
Constitution has been selected, it is also possible to infer that Constitution is on an Attack 
mission. This information is derived from a Secret field, but this is not reflected in the 
Information Label. 

Thus SWORD used on a CMW in this way introduces additional vulnerabilities into the use of 
Information Labels to protect classified information. However, these appear to be commensurate 
with existing vulnerabilities that arise due to the controls over addressing entities, and it is 
expected that in many systems the perceived threat is low enough to make the risk acceptable. 

The dual-labelling system of CMWs can be used in a number of ways. The most useful appears to 
be to directly use the floating Information Label to protect classified information. This method 
allows label unaware COTS software to work unhindered in the presence of multi-level security 
functionality. 
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The Information Label in a CMW does not account for all information flows. Thus there is a 
question as to what information flows from a secure DBMS should be taken into account. 
Unfortunately, this is an application specific decision which can only be made on the basis of a 
security risk assessment. Hence, secure DBMSs must be prepared to interact with CMW dual 
labels in a variety of ways. 

The main question is how the client's Information Label should float in response to the results of 
queries. The most obviously secure way is to float it up to the Sensitivity Label, but this seems 
rather strong. The SWORD front end prototype is experimenting with another possibility, where 
certain subtle information flows, that arise because of the way data is addressed, are ignored. 
Other alternatives exist, for example the label could float according to the sensitivity of all fields 
examined during query evaluation, however these would appear to be less effective, although 
stronger. 

SWORD does not provide floating labels in the database, and therefore does constrain COTS 
software to an extent. For example, if a client attempts to update & lowly classified field with a 
highly classified query (high Information Label), the request will fail - the field label does not 
float. It remains to be seen whether this will cause practical problems, or whether floating labels 
in a database are a practical proposition. 
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Introduction 

SCC's LOCK DBMS program is developing an Exploratory Development Model 
(EDM) of a high assurance, state-of-the-art Trusted Database Management System 
(TDBMS) on the LOCK/SNS platform. The SNS system is a highly assured platform 
that is based on the LOCK prototype, which was designed to meet the Class Al 
requirements of the Trusted Computer Security Evaluation Criteria (TCSEC) [1]. The 
commercial TDBMS that is being used for LOCK DBMS is Trusted Oracle Version 7 
[2]. The LOCK DBMS EDM is scheduled for demonstration in June, 1994. 

The LOCK DBMS EDM uses a TCB subset architecture to allow the underlying SNS 
system to enforce a high assurance Mandatory Access Control (MAC) policy [3], [4]. 
One of the original goals of the LOCK DBMS program was to investigate how the 
LOCK/SNS Type Enforcement mechanism could be used to provide additional 
integrity and security to a commercial-off-the-shelf (COTS) TDBMS. The areas of par- 
ticular interest were: 

1 providing  strong  separation  between  the  database  entities  (files  and 
processes) and other system entities 

2 providing high integrity auditing on database objects 

3 providing high integrity DAC enforcement on database objects 

4 integrating high integrity SNS roles with DBMS roles. 

This paper reports on the results of these efforts and identifies areas where future 
research is needed. 

Incorporating Type Enforcement into the EDM 

The LOCK/SNS Type Enforcement mechanism [5] is used to restrict the access of 
subjects (processes) to objects (data) and other subjects. Atype is associated with each 
object and a domain with each subject on the system. The access a subject is permitted 
to an object depends on the access capability that the subject's domain is permitted to 
the object's type. Furthermore, the access a subject is permitted to another subject 
depends on the access capability that the first subject's domain is permitted to the 
second subject's domain. 

In the LOCK DBMS EDM using special database domains and types, the database 
system is completely isolated from the rest of the system, and access to the database 
files is restricted, in a mandatory manner, to the TDBMS subjects. This prevents acci- 
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dental or malicious access to the database by other system subjects and shows that 
objective 1 in the above list can be successfully achieved. 

Without redesigning the Oracle TDBMS, however, the remaining objectives in the list, 
can only be achieved either partially or not at all This fact is a consequence of the 
underlying Oracle architecture. As Figure 1 shows, all Oracle database processes, 
including the servers, have access to the Shared Global Area (SGA) object. Since the 
servers can communicate through this shared object, Type Enforcement cannot be 
used to ensure that separate server subjects do not share information. To achieve such 
separation would require that each server have a separate SGA, which implies that a 
separate instance, with all of its overhead, would be needed for each server. While 
this approach has been used on the LOCK DBMS EDM to provide special mandatory 
roles, in general, it is not appropriate to provide a stronger DAC because of the 
negative performance and administrative impact. 

In the following sections some other possible approaches and research issues are 
discussed relating to objectives 2,3 and 4. 

Providing Aydst 00 Database ©fejeets 

In an MLS database, auditing must be performed at the granularity of database 
objects and, hence, is done by the TDBMS. In Trusted Oracle, DBMS auditing is done 
by recording SQL statements as they are received. The assurance of the DBMS audit is 
not high since Trusted Oracle has only a Bl level of assurance. A possible approach 

Client 

Program 
■ :lhterMe;;':> 

Program 
Interface 

Server 

ORACLE 
Server 

ORACLE 
Server 

System Global Area (SGA) 

TDBMS Background Processes 

Figyre 1   An ORACLE Smstame©. 

All processes in the instance, including the servers, share a common global area (the SGA 
object) through which information can flow. The architecture prevents Type Enforcement 
from being used to separate servers, acting for different users in different domains. The 
only current solution is have separate instances for each server so that they do not share 
the same SGA. 
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that would increase the assurance of this type of auditing would be to monitor the 
communication channel between the client and the DBMS server. Type Enforcement 
can be used to ensure that all user requests to the server must go through a request 
auditor, as illustrated in Figure 2. The request auditor would be a small piece of code 
that logs all user SQL requests to the LOCK audit trail. 

The drawback to this approach is that there is no higher assurance that the informa- 
tion returned to the user or the operation performed is what the user requested and, 
hence, what the audit record shows. Since the assurance of the server is not increased, 
it could still perform any operation in response to the user's query. 

Enforcing DAC on Database Objects 

As mentioned earlier, a higher assurance DAC could be achieved by running separate 
instances for each user, but this approach is not realistic. A less drastic approach 
would be to partition the SGA into separate objects that could be protected by Type 
Enforcement or the higher assurance DAC on files provided by the underlying TCB. 
This approach is not really feasible, however, since it prevents DAC from being 
enforced with the flexibility and granularity that DBMSs use, and it also sacrifices the 
performance gain that is achieved by sharing data and SQL code (e.g. shared stored 
procedures). 

The only other alternative would be to provide higher assurance to those components 
of the TDBMS that provide the DAC enforcement. Such an approach will probably 
entail redesigning the TDBMS to separate the DAC component from the remainder of 
the system. How to implement high assurance DBMS DAC, and whether it is even 
necessary, remains an open research question. 

untrusted trusted untrusted 

Client Request Auditor DBMS Server 

Figure 2   High integrity User Request Auditing 

All user requests to the database must go through the request monitor which is trusted to 
log the request to the LOCK audit log. 
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Both SNS and Trusted Oracle have their own concept of roles. The SNS Type Enforcement 
mechanism allows roles to be implemented in a mandatory manner with Al assurance. 
The ORACLE Trusted DBMS has roles defined as collections of traditional DAC con- 
straints. An objective on the LOCK DBMS program was to integrate the two 
approaches for defining roles to provide TDBMS roles enforced in a mandatory, Al 
manner. As noted earlier, this was achieved to a certain degree by creating separate 
instances of the TDBMS for specialized roles. The roles provided were a read-only role 
and a read-write role. 

In many ways providing high assurance role enforcement in a DBMS is just as 
difficult as providing high assurance DAC. Consider the current trend in DBMS tech- 
nology towards multi-threaded servers. Since the server is executing for several users 
simultaneously, the server is responsible for maintaining user (and role) accountabil- 
ity. A possible approach for higher assurance would be to have just one server for 
each role, but this requires a mechanism for connecting a client to the proper server 
and implies the overhead of one instance per server as discussed previously. 

If a single multi-threaded server is used and the various user actions being performed 
by the DBMS are individual threads, what is needed for a strong policy is separation 
between threads. Since Type Enforcement is currently done by creating separate 
subjects (processes) in different domains, it does not provide separation at the correct 
granularity. Modifications to LOCK's current Type Enforcement mechanism might be 
possible that would not require separate subjects be created before the mechanism 
can supply separation. Conceptually, this could be done by creating a small interme- 
diate TCB subset that provides a finer granularity mechanism on top of the Type 
Enforcement mechanism. This remains an area for future research. 

The LOCK DBMS program showed, that it is possible to use Type Enforcement to 
increase the security and integrity of a COTS TDBMS by providing strong separation 
of the DBMS system from the rest of the system and by allowing the TCB to enforce 
certain roles. However, the underlying architecture of Trusted Oracle limited the 
degree to which Type Enforcement could be used to enhance the system's assurance. 
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A Position Statement: 
High Assurance DBMS 

Rae K. Bums 
AGCS, Inc. 

91 Montvale Ave. 
Stoneham, MA 
(617) 279-2864 

Current DBMS technology has evolved to the point where low assurance (C2/B1) MLS DBMS 
products are available and B2 designs have been developed However, with the availability of 
additional high assurance operating systems (e.g., LOCK, TMACH), the need for a high 
assurance DBMS becomes more evident. For example, the MIS SI program, which is using high 
assurance workstations as a foundation for multilevel operation, could benefit substantially from 
high assurance DBMS products designed to integrate securely with the trusted operating system. 
However, there is still no accepted approach for a high assurance MLS DBMS for a B3 
environment. 

Previous Approaches to MLS DBMS 

To date there have been two basic approaches: the trusted subject approach and the Schaefer-Hinke 
(SeaView) approach. The advantages and disadvantages of each have been well debated. 

Approach 
Trusted Subject 

SeaView (Schaefer 
Hinke) 

Advantage 
DBMS enforces the MAC policy and can 
support a large number of sensitivity 
levels. It can make trade-offs to balance 
integrity requirements and secrecy 
requirements 
The DBMS is constrained by the OS 
MAC policy; the high assurance of the 
OS is not compromised 

Disadvantages 
The DBMS must have an OS privilege 
to violate the MAC policy. For high 
assurance, this extends the scope of 
covert channel analysis and penetration 
testing to include the DBMS 
The database must be subdivided by 
sensitivity level and accessed by different 
instantiations of the DBMS. The 
DBMS cannot enforce multilevel 
integrity constraint. Also, there can be 
no use of a trusted path for DBMS 
operations since it is not part of the 
TCB.   

Some questions need to be addressed: 

1. Are there other hybrid approaches that might mitigate some of the disadvantages of 
each approach? 

2. Do the microkernel systems (e.g., TMACH, SYNERGY) offer a better base than 
traditional architectures for a high assurance DBMS? 

3. Is DBMS technology moving toward DBMS architectures that would be a better 
match for a B3 system (e.g., a more compact "kernel" that could be trusted)? 

4. Do object-oriented DBMS architectures provide additional alternatives that could be 
exploited for high assurance? 
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Hybrid Approaches 

It may be possible to combine the two traditional approaches to minimize the amount of trusted 
code in the DBMS. For example, if separate OS files were used, then any operations that 
SELECTed data could be entrusted; update operations could be still be performed by trusted code 
to assure that integrity constraints are enforced. To support a trusted path for SELECTS, there 
would stil! need to be a DBMS TCB component that could be used to access a database for 
SELECT, but it might not need to support a full set of query processing operations. Other hybrid 
solutions might be feasible depending upon the features of the OS TCB. 

Mlcrokerinid Arclnitectares 

The microkernel architectures separate policy and enforcement mechanisms more clearly than in 
traditional TCB architectures. The kernel enforces primitive policies and relies on different servers 
to provide the policy interpretation and enforcement of the policy on system resources. In this type 
of system, a DBMS server concept fits well, but still requires minimization to meet B3 system 
architecture requirements. Figure 1 illustrates a possible architecture. 

r^"J-^^"E=v: 

i|^^SSI^MtM^S:P^?IfÄ^wl)l 

l^.;:;:;:;.;:;: 

TCB Components 

Figure 1. Microkernel Architecture 
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DBMS Architectures 

A major issue for a high assurance DBMS has been the complexity of the software that must be in 
the DBMS "kernel." Typically, a DBMS kernel supports not only I/O operations but also performs 
transaction management, concurrency controls, integrity constraint enforcement, and, in some 
cases, complex query processing. Since DBMS performance is a major concern, the security 
mechanisms generally have not been implemented using a "conceptually simple" mechanism; they 
have been implemented with techniques to avoid the addition of performance bottlenecks. 
However, research to identify minimal DBMS kernel functions could extend the microkernel 
concepts into the DBMS arena. 

Object-Oriented DBMS 

While current OO DBMS products are primarily derived from 00 programming concepts, the 
object-oriented paradigm offers potential for new DBMS architectures.  By combining the 
message passing paradigm of the microkernel architecture with a DBMS based on an object model, 
it may be possible to support the minimization of TCB functions that is essential for high 
assurance. 

Summary 

The concepts that underlay the microkernel operating system and that form the basis of the object- 
oriented model may also be applicable to high assurance DBMS architectures. They offer potential 
for resolving some of the issues that affect the more traditional approaches to multilevel database 
management. With the advent of this new technology, it is important to investigate how it might be 
used to move multilevel database technology to higher assurance solutions. 

79 



Discussion: Assurance 

Discussion Leader: Ravi Sandhu, George Mason University 

(paper not available) 

81 



DISTRIBUTED/FEDERATED 
SECURE DATABASE MANAGEMENT SYTEMS 

83 
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1. Introduction 

Organizations' computing resources are increasingly being interconnected into large-scale 
distributed systems. Distributed database capabilities for flexibly and conveniently retrieving 
data stored in different databases, on separate network nodes and perhaps in different DBMSs 
or file systems offer a great deal of power for gathering and integrating data from different 
sources in such an interconnected system. This ability to access dispersed databases is key to 
allowing organizations to share data to carry out a joint or common mission. 

However, such large distributed systems are seldom fully under administrative control of any 
one organization. Cooperation among organizations under different decision-making 
authorities requires that distributed database functions be carried out in a way that respects 
the autonomy of the constituent organizations (and their database systems). 

A specific area where cooperating organizations may need to retain decision-making 
authority is in controlling access to and protection of their sensitive data. Since different 
organizations operate under different requirements for protection and control of their data, 
security capabilities must be available that can support these differences. To be able to share 
data with others, each organization must be able to arrange for its own data to be 
appropriately protected even when used or stored on a system belonging to another 
organizational entity. This implies a different kind of controls than those which are 
following naturally from distributed systems extensions of database technology (e.g., 
ascertaining the identity of a user across the network to support checking of direct access 
authorizations). Additional controls are needed that can represent agreements among the 
separate, sovereign organizations concerning conditions under which they are willing to share 
data with the other organization and its users, and the protection and handling responsibilities 
that are incurred in return. 

2. Federated Database Systems, Autonomy, and Security 

Federated database technology, which is designed to provide distributed database capabilities 
under conditions of decentralized control, is particularly attractive as a basis for data 
protection in these circumstances. A fundamental goal of federated database systems is 
autonomy: cooperation without sacrificing independence. This is the characteristic that 
distinguishes them from other distributed database systems. Federated data management 
seeks to allow partial, controlled sharing with negotiated coordination of shared activities, 
while minimizing the role of any centralized authority [Heimbigner 1994]. The goal of 
autonomy must of course be tempered somewhat, because a certain degree of cooperation is 
necessary simply to carry out the mechanics of sharing data. And, when the systems handle 
data of any sensitivity, the desire for highly autonomous interaction must in addition be 
balanced against the responsibility to protect the security or privacy of the data. (In fact, 
though DBMSs participating in a federated DBMS are commonly referred to as being 
autonomous, it is perhaps more accurate to identify them as semi-autonomous [Oszu and 
Valduriez], since, although they can operate independently, some modification is needed to 
allow them to cooperate in executing distributed requests, and their acceptance of this limited 
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The idea of contracts has been proposed for various uses in automated systems over the past 
several years (see for example [ISO 1984, Greenberg & Rathman 1990, Meyer 1992]), often 
in connection with integrity, determination of specific details of a particular interaction, or 
information hiding. It has also been noted that the idea of contracts is particularly 
appropriate within the federated database model. For example, [Alonso & Barbara 1989] 
discusses dynamic negotiation for access to data among autonomous nodes in a federated 
database system, but is primarily concerned with negotiating based on cost considerations; 
i.e., determining whether a replica will be established at the importer site for future querying 
and agreeing on the frequency of update to maintain the replica. 

[Anisen et al. 1993] further developed the idea of contracts in database federations. Their 
contracts, which represent bilateral agreements between nodes in the federation, consist of 
terms on duration (initiation and termination conditions), object access (direct access versus 
creating a replica on the importer site, as in [Alonso & Barbara 1989]), availability 
(acceptable degree of deviation from expected behavior), authentication (procedure to verify 
contract signatories), and accounting (cost for establishment and use of the contract). The 
focus in this work is on a process for formation of contracts. Because they assume that the 
same data may be available at different sites, they structure the dialogue to establish a 
contract as follows: (1) an announcement phase in which a would-be importer advertises to 
the federation its desires for the data it would like to obtain and proposed conditions, (2) a 
bidding phase in which eligible nodes respond by submitting bids (effectively, 
counterproposals with the conditions under which they are willing to offer the data), (3) a 
negotiation phase in which the importer selects one of the bidders and the two successively 
modify their positions until they reach agreement, and (4) a commitment phase in which the 
sites affirm their intention to carry out the contract and create required contract objects. 

NAIAD emphasizes, rather than the process of arriving at a contract, more complex policies 
that may be represented as a contract. Contracts in NAIAD define requirements for 
protection and handling of data. These requirements may include the traditional positive and 
negative authorizations on access to data, based on users, roles, context- and content- 
dependent conditions, but may also include an active element, such as a procedure that must 
be carried out in connection with access to the data. The latter correspond to what [Jonscher 
1993] refers to as normative policies, or duties, and what [Moffett et al. 1993] refers to as 
imperatival policies. In including active, procedural controls, we are responding not strictly 
to the federated paradigm, but to what we see as cross-jurisdictional sharing needs. Both the 
authorization and active types of requirements are applied to create obligations concerning 
the importer's handling of data imported under the contract. The idea is that with a 
foundation of appropriate types of controls to ensure that data is handled properly by an 
importer, the system owning the data will be willing to extend more generous access than 
otherwise, under the condition that specified restrictions and procedures be followed. In the 
rest of this paper, we briefly present the main features of NAIAD. 

3.1 Architecture 

NAIAD employs a loosely coupled architecture, in that no global schema is maintained1. 
However, it is not as far to this end of the spectrum as the system described in [Ahlsen & 
Johannesson 1993], in which the nodes need not have any knowledge of all nodes in the 
federation, but just those with which they are directly acquainted. In NAIAD, the federation 

1 [Jonscher & Dittrich 1993] refers to a choice between tightly coupled (global schema, location transparency) 
and loosely coupled (no global schema, no location transparency). Our view falls somewhere in between: each 
database system advertises its export schema, and any component system can use the collection of these export 
Schemas (the parts accessible to it) to resolve unambiguous references. References that are ambiguous can be 
resolved either by policy (e.g., assume local version unless instructed otherwise) or by reference to the user. 
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particular date and time), and any required actions that must take place at that time. Roles in 
the contract are specific to that contract and may be different from roles defined at the level 
of the individual database system. The obligations may include restrictions constraining 
access that will be allowed (either in $im or after transfer to an importer site) and may specify 
procedures that must accompany access to the data. The latter means that the j 
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federation without further constraints, others are available only to nodes which have 
specifically contracted for access to them and agreed to all the strings attached. Thus, the 
node's export schema represents the data which the node is making available to the 
federation collectively, but, individually, other nodes may have access only to part of it. 

There is no explicit federated schema. (Of course, the collection of all the individual export 
Schemas could be considered a notional federated schema, but there is no federation-level 
integration of Schemas). This in turn means that there are no external Schemas on the 
federation schema. Data imported into a node from other members of the federation may be 
represented as additional objects in its local schema, and external Schemas may exist over 
this local schema (essentially in parallel to the schema it exports to the federation), but these 
Schemas, if they exist, are immaterial to NAIAD. 

NAIAD does, however, require that some federation information be known globally. All 
members must know what sites are federation members, what the members' capabilities are, 
and what the federation groundrules are. This information could either be fully replicated 
throughout the federation, with some protocols for updating it when new members are 
admitted, or could be maintained on a separate federation server, which then could also serve 
as a membership gatekeeper. 

3.1.2 System Architecture 

NAIAD's system architecture is also quite simple. The architectural goals are that it be 
transparent to users and applications of the local system, and that it be usable with off-the- 
shelf DBMS products. The former means that queries are submitted in the same manner as 
usual on the local database systems, and the latter means that the federation layer of NAIAD 
should not interfere in the internal workings of the local DBMS. 

As shown in figure 2, there are two top-level components, a Contract Manager and a 
Distributed Data Manager. The Distributed Data Managers are the local DBMSs belonging 
to the sites. Whether the local DBMSs themselves have distributed capabilities 
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Figure 2. NAIAD System Architecture 

is not critical; if they are absent, either the applications which submit database requests may 
have distributed knowledge, or the local DBMS can be supplemented with a distributed data 
management layer. A Contract Manager must be present on each database system 
participating in a federation. The Contract Manager maintains a database of the contracts to 
which the site has committed and implements the agreed-upon access restrictions and 
obligations of the contracts. Collectively, the Contract Managers can be viewed as providing 
a distributed reference monitor and situation monitor (in the terminology of [Moffett et al. 
1993]). 
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The key aspect of the architecture is that the Contract Manager intercepts all requests which 
would ordinarily be submitted directly to the local DBMS. Whether this is easily done in the 
case of a particular local DBMS product depends on its capabilities. If the DBMS provides 
retrieval and update triggering, it would be very easy. If these facilities are lacking, other 
methods would need to be used to place the Contract Manager in the stream of input to the 
DBMS. 

When a database request is submitted, then, the Contract Manager examines it before it 
reaches the local DBMS. Based on the data and operation requested, it determines whether 
any contracts apply to the request. If no contracts apply, the request is forwarded for _    _ 
processing to the local DBMS, where it is checked against the DBMS's native authorizations 
and executed. If there are applicable contracts, the Contract Manager checks the request 
against contract-defined authorizations and then expands the request Expansion may replace 
or modify the original request (for example, to be more restrictive) and may add database 
actions (such as updating a log relation) in addition to the original or modified request The 
expanded request (which maybe a "script" containing multiple requests) is then submitted to 
the DBMS. 

When the DBMS evaluates the queiy, if it determines that some of the relevant date is 
located at another site, it may generate requests which are sent to the remote site. At the 
remote site, these requests also must be intercepted by the Contract Manager at that site and 
subjected to authorization checking and expansion. 

32 Tto® Copffradt Liffeeyd© 

Contracts, as defined in NAIAD, are static. Once installed and activated, they apply to all 
subsequent access attempts within the scope of data and operations identified by the contract, 
until they are suspended or terminated. Changes to the contracts require re-negotiation and 
reinstallation. We identify the following states in the contract hfecycle: 

1. proposed (under negotiation) 
2. ratified (agreed to by both parties) 
3. installed (incorporated into the automated system and awaiting the occurrence of the 

event specified as the initiation condition) 
4. initiated (in operation for database accesses) 
5. suspended (temporarily disabled) 
6. terminated (permanently disabled). 

States (1) and (2) are outside the scope of the current system, since we are not attempting to 
support dynamic negotiation within the system.   Negotiation of an automated contract would 
probably correspond to negotiation of a similar agreement in the human domain, such as a 
memorandum of understanding. Because the policies represented by contracts are complex, 
dynamic negotiation would be quite complicated. We limit our attention to static policies 
negotiated outside of the automated system operation but which still can provide significant 
useful capabilities. We are, however, interested in looking in the future at what sort of 
automated tool support could be provided to assist with composition, negotiation, and 
validation of the automated contracts. 

Installation of the contract can be done independently on each participating site. Initiation, 
suspension, and termination, on the other hand, may require some protocol for coordination 
among the sites, to avoid the occurrence of situations where one site believes that a contract 
is in effect and behaves accordingly while the other does not. 
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Further, when a contract is suspended or terminated, it will be necessary to distinguish 
between requests that were received before the interruption but still have associated 
processing in progress (for example, a contract might have delayed effects, such as requiring 
that an imported data object be deleted after 10 days) and those received after the suspension 
or termination. Actions associated with execution of the contract for a request that arrived 
before the suspension would be allowed to proceed, while new requests would not invoke the 
contract but would instead be passed through to the local DBMS and be checked instead 
against its native authorizations. Typically, these native authorizations would be more 
restrictive than those provided through the contract (since additional controls and procedures 
are not being followed), and the request might be rejected. 

3.3 Contract Language 

Contracts are expressed in an extended version of SQL, the prevalent relational database 
language. The main modification is to define an extended set of events on which triggered 
actions can take place. In addition to triggering on update events, we include triggering on 
retrievals, time-based events (absolute or interval), and receipt of messages. 

In addition, several types of contract-specific information are represented in the contract 
specification, to declare the contract-specific roles and authorizations, to define the scope of 
data covered by the contract, and to specify recovery actions. We refer to these recovery 
instructions in the contract specification as "fine print". The recovery actions would be 
carried out if an execution of the contract fails for some reason, and might vary depending on 
the point in its execution at which the failure occurred. The normal execution of a contract 
may require that a series of actions be carried out over a period of time. The contract thus 
does not correspond conveniently to a traditional database transaction, in which resources are 
locked and partial results are not visible to other users until after the entire transaction 
commits and completes. The use of a nested or long duration transaction model appears 
more appropriate, and we are exploring the use of compensating transactions concepts from 
those models to handle recovery of a partially completed contract execution. 

3.4 Conflicts 

Sites incur obligations with each contract they sign. If two contracts apply to the same or 
overlapping data, it is possible that they might specify inconsistent or incompatible rules for 
access and handling of the data. The rules implemented in contracts are of three types: 
permissions ("cans"), prohibitions ("must nots"), and actions ("musts"). If one contract says 
that an operation or action must not occur, and another says that it must, we refer to the 
resulting impasse as a conflict. 

We are currently investigating sufficient constraints that could be imposed on the definition 
of contracts to be able to guarantee that a set of contracts will be free of conflicts. However, 
it may be impractical to eliminate all conflicts for two reasons: first, the conflict-free 
constraints may be too restrictive in practice (requiring that data referred to by the contracts 
be disjoint, for example), and second, data owners may be willing to accept the risk of an 
infrequent conflict (for example, a content-sensitive one that depends upon values arising in a 
data object that meet two different conditions not usually encountered together) in exchange 
for the ability to define the contracts more flexibly. Because of this, we do not assume that 
system operation is free of conflicts. Conflicts may be resolved through a variety of simple 
strategies, such as use of a priority scheme, in which a priority is assigned to a contract at the 
time when it is defined. For example, contracts whose failure to execute would be 
catastrophic would be given a higher priority than those which failure would create a 
nuisance-level anomaly. When the impasse is encountered, the execution of the contract 
with lower priority would be aborted, and steps defined in the contract fine print would be 
taken to recover. 
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3<J ExesMftioira modeD 

A high level view of the NAIAD execution model is given in Figure 3. A submitted request 
undergoes contract-specific authorization checking before being expanded. A request that 

Figure 3. Execution rrtodel 

does not fall under the terms of any existing contract remains an ordinary database request 
and is simply forwarded to the local DBMS for processing. A request that is found to be 
subject to a contract is expanded to produce a set of "duties/5 which are themselves database 
requests. The reason we distinguish them as duties rather than simply requests is that once it 
has been determined that a request is permitted and falls under the terms of a contract., it 
becomes obligatory to carry out all of the steps identified in the contract Next5 each of the 
new duties must itself undergo authorization checking and expansion, in case it also falls 
within the scope of a contract. A duty that runs afoul of the authorizations of another 
contract cannot simply be rejected, since it is part of a set of actions the site has committed 
itself to carry out, so it is sent for conflict resolution. A permitted duty is checked to see if it 
must itself be expanded. (To prevent endless looping through the expansion step, an 
annotation provided in the contract language can be used to signify the point at which a duty 
should not be expanded further.) 

When the expansion process has bottomed out, each duty is forwarded to the execution 
management function, which coordinates with the local DBMS to execute it. Here also, there 
is a distinction between ordinary requests and those executing as duties. Since duties result 
from the existence of a contract, in which a site has agreed to carry out special conditions and 
procedures set by the data owner and is in return extended special access to the data, a duty 
executes with greater privilege (signified in the diagram by the hole in the DBMS 
authorization checking). In addition, the execution of duties by the local DBMS is carefully 
monitored by the execution management function of the Contract Manager, because if a duty 
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fails for any reason, including ordinary system exceptions, recovery according to the contract 
which generated it must be carried out, and any other contracts in the expansion tree may also 
need special recovery. 

4. Conclusion 

In the NAIAD system, we have defined a framework for the definition and enforcement of 
very flexible controls, including both traditional authorizations and prohibitions, and active, 
procedural controls, in a loosely coupled architecture. These controls are implemented as 
contracts, which mimic a familiar mode of cooperation in human interaction. The contracts 
model, along with the architecture we have developed, supports the creation of very flexible, 
application-specific controls and allows the individual database systems to retain a high 
degree of authorization autonomy. 

However, we do not wish to minimize the difficulty of this problem, and there are many 
significant issues that need to be worked out. For example, the whole notion of controlling 
data once it has been imported into another system presupposes that there is some method 
available of not only segregating or marking the data with its owner but also of constraining 
the flow of the data into other containers. In practice, in many environments this is done 
through trusted applications (not in the multilevel security sense) that allow only very 
restrictive functions in the user interface, but a complete solution might require the 
incorporation of a propagated authorization model such as [McCollum et al. 1990]. Many 
other issues need signicant research. One is the question of how to analyze sets of contracts 
to identify conflicts, particularly because actions within the contracts could modify 
authorizations in response to events, creating a dynamic authorization environment. Another 
is the question of how the two parties to a contract are each to satisfy themselves that the 
other's contract specification, as translated to executable mechanisms of the DBMS, is 
accurate and being reliably enforced. In addition, there are many semantic and 
implementation questions, such as how the system can detect and respond to side-effects and 
sub-requests (such as firing of database triggers or nested queries) without being more 
closely integrated with the local DBMS. Also, it is not clear to what extent the Contract 
Manager can be implemented generally and avoid being tied to a specific DBMS or class of 
very similar DBMSs. Finally, research will be needed to discover how NAIAD can 
incorporate support for heterogeneity in security models and mechanisms and be placed in 
the broader context of distributed object management. 

Nevertheless, we believe that this model has the potential for filling an important need. More 
and more, organizations are under pressure to provide means of sharing data in support of 
broader missions. At the same time they must continue to meet requirements for protecting 
the security and privacy of data, which may differ from one organization to another and vary 
according to the type of data. The need for distributed data management technology brings 
with it a need for defining and enforcing appropriate protection of data being accessed across 
jurisdictional boundaries. Cooperation of independent jurisdictional entities with minimal 
loss of autonomy is not fully served by existing distributed database authorization models. 
Our initial experience with prototyping these concepts indicates that, though the current 
implementation is quite limited and crude, it is capable of providing interesting and useful 
controls on the exchange of data in a cross-jurisdictional environment. 
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1 INTRODUCTION 

Users in a multilevel environment typically are cleared to access data labeled up to a 
particular sensitivity level, and they have an operational need to read and write data at all 
security levels their clearance dominates. Although MLS relational DBMS products are 
beginning to appear on the market (Informix, 1993; Oracle, 1992; Sybase, 1993), a limitation 
of these products is that to ensure mandatory access control enforcement (MAC), an 
application should only use untrusted processes executing single-level transactions. Each 
single-level transaction is assigned a security level; a transaction can read data at its level or 
below, but write data only at its level. This does not support applications that require both 
the ability to write at various levels and the database integrity enforcement provided by 
transactions. These products do allow for the execution of multilevel transactions, but only if 
privileges are turned on to allow for the bypass of some or all mandatory access control 
(MAC) enforcement. 

These DBMSs also provide some homogeneous distributed data management functions 
(including the necessary primitives for a distributed commit protocol) and, in some 
situations, these products can be configured to allow the execution of multilevel distributed 
requests, again only if privileges are turned on to allow for the bypass of MAC enforcement. 

In the MUSET effort, we are concentrating on the development of a generic multilevel 
distributed transaction execution capability that can be used in a variety of multilevel system 
configurations (Blaustein, 1993a). This research assumes a multilevel secure (MLS) 
distributed environment in which the nodes may operate at various accreditation ranges. This 
includes single-level nodes, multilevel nodes with some overlap in accreditation ranges, and 
nodes with disjoint accreditation ranges, all connected by an MLS network capability. An 
example configuration can be seen in Figure 1. 

In executing a user's multilevel transaction, the goal of the MUSET design is to be able to 
transform a single multilevel transaction into a set of single-level subtransactions that can be 
executed in such a way that the result would be equivalent to a single-site, single MLS 
DBMS execution. In this way we can ensure that no remote subtransaction has to be 
executed with MAC privileges at a remote site. While it can be envisioned that a user would 
be able to execute a transaction with privilege at his local site, it is not appropriate to assume 
that the user would be granted these same privileges when requesting access to data at a 
remote site. 

This work was funded by Rome Laboratory, under contract F19628-94-C-0001. 
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Figure 1. A MUSET Configuration 

In order to allow for the distributed execution of multilevel transactions, several key technical 
problems need resolution. These include the ability to execute multilevel transactions 
atomically without the introduction of channels that can be used to violate security; the 
ability to execute these transactions so that they meet a high degree isolation2, and the overall 
system can be returned to a stable state after a system failure; and the ability to protect the 
overall integrity of the database when data are distributed over multiple systems. In addition, 
it is critical that the developed distributed transaction algorithms work with the current suite 
of commercial relational entrusted and trusted products. 

1.1 Mated Work 

Most of the work to date on transaction management for MLS DBMSs has focused on 
concurrency control protocols for executing single-level transactions concurrently. Work in 
(Jajodia, 1990; Costich, 1992a) has dealt with the execution of multiple single-level 
transactions, where the transactions can operate at different security levels. By definition, a 
single-level transaction has a fixed security level associated with it; the transaction can read 

At least degree 2 (Gray, 1993). 
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data that are at its level or below, but it can write data only at its level. (Keefe, 1990) has 
used a slightly more general model; his transaction can read data at or below its level, but can 
write to data that are at or above its level. 

Some work has been done on concurrency control protocols for limited classes of multilevel 
transactions (which can perform reads and writes at multiple security levels). Transactions in 
Costich and McDermott (Costich, 1992b) can read and write data at multiple levels, but have 
the restriction that a transaction never writes to a lower level data item after accessing a 
higher level data item. This work assumed that the applications would be written in this low- 
to-high fashion before submission to the DBMS. The model adopted by Costich and Jajodia 
(Costich, 1992c) is most general and allow transactions to read and write freely at multiple 
security levels. This is done by introducing the notion of maintaining multiple versions 
within a single transaction. This work also was optimistic in that it assumes that any subpart 
of a transaction could always be executed successfully. 

Although the ability to execute multilevel transactions concurrently is certainly desirable, it is 
more difficult to ensure that they can be executed atomically without creating illegal 
information flows. A major obstacle is that, if the portion of the transaction that is executing 
at the high security level fails, aborting the portion that is executing at the low security level 
would signal information. 

In (Blaustein, 1993b), we developed a model of multilevel atomicity that defines varying 
degrees of atomicity and recognizes that lower security level operations within a transaction 
must be able to commit or abort independently of higher security level operations. This work 
utilized dependency graphs to identify the semantic dependencies between single-level 
sections of a multilevel transaction. It also used execution graphs as a tool for analyzing 
atomicity requirements in conjunction with internal semantic interdependencies among the 
operations of a transaction. Rules for determining the greatest degree of atomicity that can be 
attained for a given multilevel transaction were also provided. This work also developed 
several alternative transaction management algorithms that can be used to preserve multilevel 
atomicity when combined for the execution of multilevel transactions. 

2 OVERVIEW OF MUSET 

2.1 Mandatory Security Policy 

MUSET's mandatory security policy is a distributed data management interpretation of the 
Bell and LaPadula model that supports both single-level and multilevel database applications. 
For all MUSET subjects, when a subject is created, it is assigned an executing range. A 
subject can be created by a user within a session or another subject and is assigned a range by 
its creator. The range of a newly created subject must be within the range of its creator. 

A session is established with the trusted DBMS on database open. Each session is associated 
with the user who started it. A session has an access class range assigned by the user when it 
is created. The logon level of the user must dominate the upper bound of the session's range, 
and the lower bound of the session's range must dominate database low. Multiple 
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transactions can be executed during a session. A transaction is a mechanism to structure 
application code so that sets of actions that impact a database occur atomically. A transaction 
has an access class range assigned by the user when it is defined. A query is a labeled data 
manipulation command that is contained within a transaction. The level of each query must 
be within the bounds of the transaction's range. The label of language constants (reserved 
words) is Unclassified. The label of data object identifiers (e.g., the name of an attribute 
within a relation) is equal to the label of that object's metadata. The label of a variable string 
can be specified by the user as part of the command syntax. If not specified, the sensitivity of 
a variable string defaults to the high of the transaction range. 

The read policy is the same for all objects within a database. An object can be read only if 
the high of the subject's range dominates the level of the object. The level of the object's 
read must also dominate the level of the read command to prevent the flow of information 
from the command itself. A read request can specify a read range that must be within the 
allowed read range. 

The write policy is the same for all objects within a database. An object can be written only 
if the level of the object is within the subject's range. The level of objects written must 
dominate the level of the writing command in order to prevent an illegal flow of information 
from the command to the object. A write command may specify a write range within the 
allowed write range. 

2.2 Execution) Scenario 

Figure 2 presents an execution flow architecture that shows the major software processing 
modules that would be involved in the execution of a multilevel distributed database 
transaction. The MUSET system is being designed to be able to process multilevel 
transactions that are initiated from applications that are operating over a range of sensitivity 
levels. In all cases, where a range of levels is indicated, it is possible that the endpoints of the 
range are equivalent, in other words, the process is operating at a single-level. In the case of 
processes operating in system-high mode, we consider them to be single-level from a security 
policy enforcement perspective. 

The user's application program first initiates a session with MUSET. This establishes the 
session sensitivity range. The session range must be within MUSET's processing range. 
Each multilevel transaction sent to MUSET must have a range that is within the bounds of 
the session range. Once the application session is established the application is free to 
transmit database transactions to MUSET. Each transaction includes the transaction range. 
In addition, each object within a transaction is labeled. 

MUSET is trusted to operate over a range. The range corresponds to the operating range of 
the operating system on which MUSET executes. The single-level (SL) marking in Figure 2 
indicates that if the software is running on a single-level (system-high) system, then the upper 
bound equals the lower bound, i.e., its running single-level. 

When MUSET receives a multilevel transaction for execution, it is broken down into an 
equivalent set of single-level subtransactions or sections. This is performed by the MUSET 
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process at the initiating application's site. The single-level sections are then sent to local or 
remote MLS DBMSs for processing. 

This approach has been taken because current MLS DBMSs cannot execute multilevel 
transactions sent from a user's application unless the application is executing with the 
privileged to write down. Executing under this privilege disables the enforcement of the Bell 
and LaPadula *-property (prohibiting write-down operations). If the application is executing 
with the privilege to write-down and the application includes a multilevel distributed 
transaction, the MLS DBMS executes the multilevel distributed transaction in the same 
manner as it would execute a single-level distributed transaction. No special actions are 
taken to avoid invalid information flows from occurring. This opens the potential for 
significant illegal information flow. This can be avoided by use of the MUSET system. This 
is especially beneficial when a multilevel distributed transaction includes data accesses to 
remote sites, since the MUSET approach avoids the requirement to execute the remote 
sections as privileged processes. 

Figure 2. High Level Execution Flow Diagram 

The DBMS processes that execute sections are either single-level or multilevel, dependent on 
the operating range of the system they run on. If the DBMS processes are multilevel, we 
assume that they only support single-level user application processes, for remote users. What 
we would like is for the combination of MUSET and MLS/SL DBMSs to be used (without 
privileges turned on) to execute multilevel transactions. 

The MUSET architecture uses the concept of a global data description stored in a global data 
dictionary and directory (global DD/D). A separate global data dictionary exists for each 
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logical distributed database. In addition, each is supplemented with global directory 
information containing the information needed to resolve the physical location of data 
objects. The MUSET layer derives the necessary information for transaction execution 
planning from the global DD/Ds. Each global DD/D contains the schema and directory 
information that describes all information within the range of its multilevel distributed 
database. A MUSET process will only be allowed to read the subset of global DD/Ds that it 
is authorized to access. Since a MUSET process operates over a range, it is authorized to 
read information dominated by its upper bound. 

The global directory contains information about the physical distribution of data. For 
example, if a multilevel relation is fragmented across sites with different ranges, it will 
specify the range of the relation fragment stored at a particular host. The directory 
information also contains information needed to establish communication connections, for 
example host identifiers and host ranges (at least the range in common with this host). 

The range of systems a MUSET process can communicate with is bounded by the range of 
the MUSET process. Information that is labeled below the range of the MUSET process is 
only accessible if the data resides on a system that's range intersects with the MUSET 
process' executing range. This also bounds the range of data objects that can be accessed 
through MUSET. 

Single level sections are executed at the local or remote DBMSs and the data are sent back to 
the MUSET layer. All the responses are merged and formatted for output to the user. 

MUSET's execution controller orchestrates the actual execution of sections through a 
multilevel transaction execution protocol. In a protocol, messages (such as "Precomitted," 
"OK to commit", and "release locks") are sent to and received from the component DBMSs, 
to attempt to ensure the combined execution meets correctness criteria defined in Section 3. 
Because of inherent conflicts between correctness criteria (such as security and atomicity), an 
important problem is designing execution protocols which provide a variety of approaches to 
making necessary correctness tradeoffs, satisfying the differing priorities of various users. 

3   A FORMAL MODEL FOR MUSET TRANSACTIONS 

In the following we define the basic building blocks of a formal model of MUSET 
transactions: multilevel transactions, multilevel schedules and execution protocols for 
multilevel transactions, and we define four desirable correctness properties for protocols and 
the schedules they generate. 

3.1 MuMkvefl Transactionns, SclhiedWes5 and Protocols 

A multilevel transaction Tj consists of a set of read and write operations, partially ordered by 
<i, executed at multiple levels, where each obeys the Bell-LaPadula *- and simple-security 
properties. In a transaction Ti, operation ojj occurs at classification level j; thus ry and wy 
refer respectively to a read and a write at level j. When the transaction is clear from the 
context, Oj is used. If there is an operation in Tj at level j, we say j is represented in Tj. In 
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general, two operations conflict if they both operate on the same data item and at least one of 
them is a write. 

Definition (Multilevel Transaction). A multilevel transaction Tj is a set of operations o« e 
{rjj[xk] I x is a data item at security level k and j dom k} u {wy[xj] I x is a data item at 
security level j} that is partially ordered by <q. All conflicting operations in Tj must be 
ordered by <j. 

When a multilevel transaction is executed, events in the transaction are either aborted or 
committed and a record of its execution called a schedule, is generated. Furthermore, actions 
can be precommited to coordinate the execution of events in different sections (for atomicity 
purposes). In a transaction Tj, the precommit operation p^ means that all operations in Ti at 
level k have been executed and there are no foreseeable barriers to committing. Therefore, a 
multilevel transaction schedule also includes events a (abort), c (commit), and p 
(precommit). Because single-level sections are assumed to be atomic, the results of write 
operations are not visible to other transactions until they are committed. Therefore, even 
within a multilevel transaction, writes at a lower level are not visible to higher levels until the 
lower level commit occurs. 

Definition (Multilevel Transaction Schedule).3 A multilevel transaction schedule Sj- 
(abbreviated 5/ when clear in context) for a multilevel transaction Tj is a total order of 
operations, with ordering relation <sT- (abbreviated <$•) such that: 

1. Si c Tj u {pij, ajj, Cjj}, where py is a precommit operation, aij is an abort operation, 
and Cjj is a commit operation. 

2. ay G S[ iff cy € Si, 
3. If t is Cjj or ay (whichever is in 5/), for any other operation oy € Sjv ojj <st t. 

4. If t is cy or ay (whichever is in 5,), and py e 5/. then py <s{- t and there does not 
exist an operation oy such that py <$• oy <£■ t. 

5. For conflicting operations oy and oy', <st must preserve the <q ordering. 
6. If wik[xk] <j ry[xk], then c^ <st ry [xk]. 

Condition (1) defines the events in a multilevel transaction schedule. Condition (2) says this 
set contains a commit or an abort, but not both. Condition (3) says the commit or the abort 
(whichever is in this transaction) comes after all other events, and condition (4) states that a 
precommit, if present, comes immediately before the commit or abort with no intervening 
actions. Condition (5) states that the execution must preserve the order of conflicting 
operations within a level. Condition (6) states that when a read at a higher level follows a 
lower-level write of the same data item, the read operation must follow the commit of the 
write. 

3     The definitions in this section are based on the standard definitions for single-level transactions given in 
(Bernstein, 1987). 
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The criteria for a single-transaction schedule are used as the building blocks for schedules 
over sets of multilevel transactions. 

Deiraffiom (Multilevel Schedule), A multilevel schedule ST over a set T of multilevel 
transactions TiJ^-Jn is a total ordering of all operations in schedules STJ, ..., Srn, with 
ordering relation <$T, such that <sT preserves the ordering of all conflicting operations within 
each STJ- 

Note that when the set T consists of a single transaction Ti, the multilevel schedule ST is 
identical to the multilevel transaction schedule Si. In the following, we will use the term 
schedule for executions of both sets of transactions and single transactions. 

There may be a large set of possible schedules for the same transaction or set of transactions. 
The notions of correctness discussed in the next section rely on the idea of equivalent 
schedules, defined here. 

Deimtiom (Equivalent Schedules). Schedules S and S' are equivalent iff for every database 
state D, executing S in state D produces the same state D' as executing S' in state D. 

Corollary. Two schedules S and S' consisting of the same operations are equivalent iff every 
write that commits in S also commits in S' all pairs of conflicting operations are ordered the 
same in <s as in <s'. 

Transactions are executed (generating schedules) by means of a transaction execution 
protocol: 

DeiEitioffl (Multilevel Tramisaction Execution Protocol). A multilevel transaction 
execution protocol (or simply "protocol") P transforms a set of transactions Tinto a schedule 
ST ■ We denote the transformation as P(T) = Sj. 

3.2 Correctoess Properties 

Similar to the ACID (Gray, 1993) properties of standard database schedules, we define four 
"ACIS" correctness properties of multilevel schedules and protocols. 

3.2.1 AtoefflcMy 

In a fully atomic (A-correct) schedule, all operations within a transaction must either commit 
or none may commit. In multilevel schedules, however, there is a commit or abort operation 
corresponding to each level at which writes are done. The following definition adapts the 
definition of atomicity to multilevel schedules. 

___„. 1 (A-Correctauess). Let ST be a schedule for a set T of multilevel transactions. ST 
is A-correct iff for all schedules Si in ST , if 3j such that cy e 5,-, then cfc e Si for all levels k 
represented by write operations Wik e Tj. 
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3.2.2 Consistency 

Unlike traditional schedules, operations may need to be reordered in multilevel schedules to 
achieve the desired level of security. Consistency in a multilevel schedule requires the 
execution to preserve the order of all conflicting operations in the as-submitted multilevel 
transactions. We begin with a general definition of C-correctness and then make it more 
specific for multilevel schedules. 

Definition 2 (C-Correctness). A schedule 5/ for a multilevel transaction Ti is C-Correct iff 
it is equivalent to a schedule Si' such that for all conflicting operations o, o' e Ti, <si- 
preserves the order of <q. 

C-Correctness requires the protocol to preserve the effects of the original ordering of all 
intra-transaction conflicts. While condition 5 of the multilevel transaction schedule 
definition ensures C-correctness within a security level, C-correctness must apply across 
security levels, too. 

Since the basic security properties restrict the level of write operations to equal the level of 
the data item written, there can be no inter-level conflicts among write operations. Therefore, 
within a transaction Tj there are two possible types of inter-level conflicts. 

1. rj[xjj <j Wkfxk], where j sdom k (called read-first conflicts) 
2. WktxjJ <, rj[xiJ, where j sdom k (called write-first conflicts) 

In a schedule Si for Tj, these conflicts translate into conflicts between rj[xjj and the commit 
Cfc. Therefore, the following corollary states that a schedule is C-correct if it is equivalent to 
a schedule in which the order of higher-level reads and lower-level writes within the 
transaction is preserved with respect to the higher-level reads and the lower-level commits 
within the schedule. 

Corollary. A schedule 5/ for a multilevel transaction Tj is C-correct iff it is equivalent to a 
schedule S;' such that for all conflicting operations rj[xfc], Wk[xjJ e Tj, where j sdom k, 
ij[xk] <i wk[xk] iff rj[xiJ <$,- ck. 

3.2.3 Isolation 

Our definition of isolation (I-correctness) is based on standard ideas of serializability 
(Bernstein, 1987). 

Definition 3 (Serial schedule). Let ST be a schedule for a set T of multilevel transactions. 
ST is serial iff for all transaction schedules 5/ and Sj in ST , if 3oi e 5,, Oj e Sj such that oj <sT 

Oj, then Voi'e 5,-, Oj'e Sj, Oj '<5r Oj'. 

Definition 4 (I-Correctness). A schedule S is I-Correct iff there exists an equivalent serial 
schedule S'. 
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3.2.4 Security 

Multilevel transactions are required to conform to the simple-security and *-properties (Bell, 
1975) which restrict information flows from higher to lower levels. However, the order of 
execution of operations within a multilevel transaction may themselves introduce security 
violations. For example, if operations at a higher level can cause an abort of operations at a 
lower level, this interference violates security -- an observer at the lower level could infer the 
existence of higher-level operations within the same transaction. 

To capture this notion of non-interference, the S-correctness criterion, defined below, 
compares a schedule with operations at higher and lower levels to the same schedule with 
higher-level operations removed. If the results of the lower-level operations are the same in 
both schedules, then the higher-level operations did not interfere with those at the lower 
level. In the criteria that follow, we use the purge function to refer to schedules and 
transactions with higher-level events removed. 

For a schedule ST, a protocol P, and a set of multilevel transactions T, let the function 
purge(£r, L) return a new schedule which is ST with all events not dominated by level L 
removed. Similarly, let the function purge(T, L) return a new set of multilevel transactions 
which is the set Fwith the events not dominated by level L removed from each member 
transaction. 

Definition 5 (S-Correcfaess). Let schedule ST = P(T) for some protocol P and set of 
transactions T. ST is S-correct with respect to P iff, for all levels L, purge(5j, L) = 
P(purge(T, L)) and no operation in ST must wait to start until an operation at a higher level 
of ST completes.4 

3.2.5 Protocols 

These correctness properties can also be applied to protocols: 

Definition) 6 (X-Coaxectaess for Protocols). A protocol P is X-Correct for some correctness 
property X, where X 6 {A,C,I,S}, iff for any set of multilevel transactions T, ST= P (T) is X- 
correct. 

That is, P only generates X-correct schedules. In general, a subset of the letters A, C, I, and S 
are used to describe the subset of the properties that hold for a given schedule or protocol. 
For example, a protocol for which all properties but security hold is ACI-correct. 

4 ONGOING AND FUTURE WORK 

Correctness properties are not simply additive in protocols. Some combinations are provably 
impossible for any protocol. The strong form of S-correctness used interferes with the ability 
to attain other correctness properties. In particular, no protocol can be AS-correct, nor can 

Timing of operations also unliimately depends on issues such as system and network load. We ignore these 
factors here and only focus on timing dependencies between operations in schedules. 
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any protocol be IS-correct via a locking protocol (Smith, 1995). In this case, well-defined 
partial correctness properties can often be defined and achieved. A protocol partially correct 
for property X is designated X~-correct. 

Given the above limitations, the best possible protocols would either ACIS'-correct or else 
A-CIS-correct (obtaining I-correctness without using locking). In ongoing work, we are 
developing protocols for use in MUSET which meet the various provable upper bounds of 
correctness. We are also seeking protocols which are efficient and compatible with widely 
used COTS products, that also reach high levels of correctness. Future plans for the MUSET 
project call for the implementation of these multilevel transaction execution protocols in a 
MUSET testbed. 
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1     Introduction 

Over the past year, NRL has been quite active in technology transfer efforts for SINTRA (Secure 
INformation Through Replicated Architecture) [1]-[13]. We will share some of our experiences 
during that time and point to considerations that can smooth the endeavor. First, we discuss 
how DoD information technology (IT) concerns and future plans should influence general security 
research and technology. Then we describe how the SINTRA concept supports these IT goals. The 
insight that we gained about the importance of replication in a cooperative, distributed computing 
environment allowed us to appreciate the fundamental role that the SINTRA approach can have 
in providing security for distributed computation. 

Technology transfer is a chicken and egg problem. Vendors want to see user demand before 
they invest in commercializing new technology. Users want to see and use MLS systems before 
they move to them. This tension illustrates the differences that separate MLS technology from the 
mainstream of information technology. Users want to benefit from recent advances in information 
technology and are quite reluctant to accept MLS solutions because it is difficult for improved 
capabilities to be integrated into these systems. The SINTRA approach allows MLS technology 
and mainstream information technology to become alligned more closely. 

Our goal is to commercialize MLS research results so that operational and perhaps commercial 
users can acquire the technology and use it to solve their own security problems. However, commer- 
cial vendors must be able to make a business case for investing their own resources to commercialize 
the technology. Given the slow acceptance of MLS technology by the DoD, vendors' reluctance to 
venture into this market is understandable. It makes our technology transfer efforts more difficult 

as well as more important. 

Before research results can be commercialized, we must be able to present a computing and 

'Consultant to NRL 
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operational use approach that can both convince businesses to risk their capital and convince 
operational users that MLS technology will allow them to be more successful in performing their 
jobs. Even when we understand what a system must do, we don't always know how to use MLS 
technology both to support the user in doing his job and to ensure that the information managed 
by the system is protected. We need a secure system engineering approach as well as valid research 
results. We will identify some areas of current interest and describe how the SINTRA approach 
can be used to solve these problems. 

Additionally, we should be sensitive to the following observations that were recently published 
in the Joint Security Commission's (JSC) report [14]: 

Those who steadfastly resist connectivity will be perceived as unresponsive and will 
ultimately be considered as offering little value to their customers. 

Our paradigm for managing information security must also shift from developing 
security for each individual application, system, and network to developing security for 
subscribers within the worldwide utility. 

2     Technology Transfer 

We first identify some questions that should focus technology transfer efforts: 

o What are our technology transfer goals? 

o To whom do we wish to transfer our technology? 

o Are we really transferring technology or are we instead providing research results upon which 
technology can be built? 

o Do we expect someone else to figure out how the research results can be used? How should 
they be used? 

o Do they support distribution of data? 

o How difficult is it to integrate new technology into this security paradigm? 

o How hard is it to reconfigure computing resources to accommodate change in the operational 
environment? 

Our primary technology transfer goal is to provide a technical capability that allows secure 
access to all the information a user needs to do his job, no matter whether that user is a DoD, 
government, or commercial worker and no matter where a user or the data he needs are located. 
The challenge for database security research and for technology transfer efforts is to develop systems 
that distribute data securely and reliably. 
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Who is our customer? Our first concern has to be the DoD customer. In this respect, our 
job is perhaps more difficult. Computing resources for operational users are only beginning to be 
upgraded to modern, state-of-the-art processors. Although client-server architectures and relational 
database technology have been introduced, the re-engineering of operational application software 

has not exploited the full capabilities of the technology. 

3    Legacy Systems 

Today, tactical data is communicated through formatted military messages concerning readiness, 
schedules, equipment failure and its impact on mission readiness, location of friendly forces, com- 
mercial traffic, enemy platforms, and more. Users must access several systems, sometimes at 
different security levels, to retrieve information through the application running on each system. 
These systems were developed to support a specific mission and are updated through the parsing of 
a formatted message. The "data fusion" problem is, in part, due to heterogeneous representation 
schemes, inclusion of collection- specific information with the data, data access through appli- 
cations, and little support for interoperability with other information systems. Changes made to 
related data should result in consistent information. However, updates made to a single application 
as a result of one formatted message are not necessarily propagated to other applications. 

A major challenge for DoD is to move away from application-specific, "stove-pipe" information 
processing to cooperative, distributed computing architectures. "Stove-pipe" refers to systems that 
have been designed to accept data, transform it, and provide the output for a specific organizational 
objective without any capability for interoperating with other systems. Often these systems have 
been modified to support a changed operational mission. These systems are quite fragile, difficult to 
modify, and expensive to maintain. Stove-pipe systems can not easily migrate to newer technology 
because no one really understands what the system does. Yet, organizations depend on these 
systems for their corporate survival and are reluctant to risk change in case some valuable corporrate 
capability will be lost. 

Today, organizations understand that both their information processing needs as well as infor- 
mation technology itself will change. This realization imposes additional requirements to develop 
systems that can take advantage of new technology to accommodate changing organizational re- 

quirements. 

Recent trends in cooperative, distributed computing promote use of powerful client worksta- 
tions for application-specific processing, like situation assessment and mission planning, and use 
of data management servers to provide transparent, reliable access to consistent data. When new 
technologies, such as relational database management systems, are introduced, we must present 
strategies for the migration of legacy systems upon which operational users depend to new op- 
erational capabilities that allow them to do their jobs more efficiently and effectively. Likewise, 
when MLS technology is introduced, a graceful migration strategy must be included and the MLS 
technology had better support a reasonable, pragmatic approach for support of distributed, cooper- 
ative computing. Recent publications, [15] and [16], describe in painful detail efforts to reengineer 
legacy systems to take advantage of newer technology and support more comprehensive enterprise 
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computing requirements. 

System development for a distributed computing environment is quite different than for an 
autonomous, stand-alone system. It is more closely analogous to development for parallel proces- 
sors. Hence, the technical concerns are different. Likewise, security engineering for a distributed 
computing environment is different. As noted earlier from the JSC Report [14], we must work on 
solutions for MLS distributed computing and move away from our current focus on composition of 
MLS systems. To achieve this goal, our research efforts must concentrate on security architectures 
for cooperative, distributed computing environments, not security architectures for stand-alone, 
MLS systems. In such environments, we can take advantage of physical separation to achieve our 
security goals and provide reliable, transparent access to the data users need. 

4    The SINTRA Approach 

The philosophy of protection for SINTRA was strongly influenced by a desire to minimize the 
amount of software, both trusted and untrusted, which runs on a high assurance, painstakingly 
crafted TCB and, at the same time, to maximize the database capability without introducing 
security vulnerabilities. These objectives resulted in a protection mechanism that not only mediates 
access to data but also mediates access to general computing execution cycles because protection 
critical execution cycles are separated from general execution cycles. This approach has produced 
an extremely strong protection mechanism that is not susceptible to the kinds of vulnerabilities that 
are inherent in conventional MLS operating system approaches to system security, including those 
for data management systems. Because security and application execution cycles are not shared, 
malicious code in an untrusted application cannot exploit covert channels in the TCB. In other 
words, SINTRA limits the opportunities for exploitation. Replication ensures that information 

only flows upward in a security lattice. 

SINTRA provides a straightforward, understandable approach to distribution and autonomy. 
Physical separation protects information. Strong, effective identification and authentication (I&A) 
mechanisms must be available on every component in a distributed system. Data need be replicated 
only when the data will be shared. In the SINTRA approach to data management, replica control 
is the only MLS requirement. Distribution requirements can be addressed at a single security level 
and a trusted replica controller provides the capability for sharing the information at different 
security levels. If the components in a distribution are heterogeneous, the translation mediation 
can be handled at a single level. When a data owner enters into an agreement to share information 
with another user, that data and changes to it can simply be replicated and sent to a cooperating 
computing resource accessible to the other user. In general, replication promotes the availability 
and sharing of information since the data owner is not required to expend his processing cycles 
to support retrievals by other users. The management of and access to the data copy, including 
any semantic translation requirements, can be provided securely, reliably, and transparently to the 
requesting user through resources available to him. 

Current untrusted data management technology has turned to data replication to ensure data 
availability, reliability, autonomy, and fault tolerance.   Replication provides a migration path for 
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legacy systems to reengineered systems. First, if a transaction can be defined for a legacy system, 
updates to that system can be replicated to the reengineered systems with suitable translations 
required by the new technology or by a semantic difference in the data representation. The reengi- 
neered system can be operated alongside the legacy system until we have confidence that the legacy 
system's required capabilities have been successfully implemented in the reengineered system. 

While SINTRA does not provide any greater support for the reengineering of legacy systems 
than any MLS relational database or other data management technology, it does provide a graceful 
migration opportunity for the new technology to be inserted. The SINTRA approach for legacy 
systems requires a clear specification of what an update and what a transaction are for the legacy 
system. These updates can be replicated to legacy systems running at higher security levels. 
This confederation of legacy systems connected through a replication controller provides an MLS 
capability for the legacy system. 

The SINTRA architecture easily accommodates technology upgrades to any relational database. 
While the particular implementations of transaction management for other technologies, such as 
object oriented DBMSs, have to be built, we believe that an MLS capability can be developed for 
these technologies with an affordable security overhead. 

In a cooperative, distributed computing environment, a trusted replica controller becomes a 
building block for secure systems engineering. In effect, security can be integrated without agoniz- 
ing about whether some feature of the desired system is protection critical because the protection 
mechanisms are completely separated from the system's conventional features. The SINTRA ar- 
chitecture does not allow illegal information flows. The trusted replica controller is analogous to a 
cryto unit in the COMSEC world. 

Probably most important to the operational community, however, the SINTRA approach al- 
lows MLS technology to exploit current advances in information technology. The use of trusted 
replica controllers as MLS connectors allows users and developers to concentrate their development 
resources on implementing systems that satisfy operational requirements rather than focusing on 
providing a MLS capability. The lifecycle management of single-level systems is more affordable 
than lifecycle management for the MLS distribution of MLS systems as well. 

5    Conclusions 

We believe that this architectural approach makes reasoning about security in the large possible and 
permits the scaling up of formal modeling, specification, and proof technology. Separation of the 
protection critical execution cycles from general processing cycles makes this advantage possible. 
Hence, well-understood assurance techniques can evolve incrementally to provide assurance for 
future cooperative, distributed computing solutions. 

With these advantages, how have our technology transfer efforts faired? We have had some 
hard-won successes. However, like the vision for cooperative, distributed computing, we need 
a "killer" application to demonstrate the technology. Both users and program managers have 
difficulty understanding MLS in the large and are not always able to make the paradigm shift from 
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stand- alone MLS systems to an MLS confederation of systems. They are reluctant to accept MLS 
data management without a complete security engineering solution for all their security problems. 
Issues that must be addressed are distributed identification and authentications (I&A), a user 
capability to write at different security levels, key management, and more. 
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Inference and Knowledge Discovery 
Donald G. Marks 

Department of Defense, Office of INFOSEC, computer science 
Ft. Meade, Md 

Abstract: Inference control has become a topic of considerable interest in secure database 
implementation. It is generally recognized that access to certain types of information enables the 
user to infer other information, even some that should not be available to them. This generally 
occurs because users are able to construct datasets in ways that were not anticipated by the sys- 
tem designer. Knowledge Discovery techniques are designed to automate this process and there- 
fore pose an inference threat. Current inference control techniques are inadequate to protect 
against this threat since they are limited to dealing with rules expressed at the schema level, that 
is, functional dependencies. Knowledge Discovery, however, may also be used by the system 
designer to find rules relating low and high data. If all these rules are classified "High" then there 
can be no successful inference attacks against the knowledge in the database. 

1.0  Definition of Inference 

Inference control has become a topic of considerable interest in secure database 
implementation. It is generally recognized that access to certain types of information 
enables the user to infer other information, even some that should not be available to 
them. Such inference does not take place magically, rather it is the integration of tech- 
niques applicable to databases and those utilized by humans in making abstractions. 

As a general rule, inference control is concerned with protecting knowledge, not 
data. Individual data items are properly protected by standard classification techniques. 
Knowledge, however, is inferred from a quantity of data, or a set of data associated with 
attributes. In this study, it is assumed that the data is stored in a relational database con- 
sisting of a series of tables. Each table represents one type of entity, with the column 
labels identifying the attributes, or properties, of the entities. Each row in a table repre- 
sents a specific instance of an entity associated with that table and is identified by a 
unique primary key. In a secure database context, preventing knowledge from being 
released requires preventing the release of both the data and the attributes in a manner 
where they can be associated into a sensitive conclusion. The numbers and/or letters in 
a database are meaningless until they are associated with an attribute. For example, the 
word "Washington" could be a person's name, a city, a state, or a codeword. Numbers 
are even less meaningful without knowing the applicable attribute. Data are only mean- 
ingful when assigned to an attribute, or set of attributes. The ability to determine these 
attributes associated with the data, is the critical point of inference.  Inference in a data- 
base is said to occur if, by retrieving a set of tuples {T}, having attributes {A}, from the 

125 



ase, it is possible to specify a ss 
T] * {T} or {A6} * 

Definition of Database Inference 
I, that transforms ({T},{A}) info (fF} 

• of tuples IT'}, Ii 

1): ({T},{A}) implies ({T'llA'}) if there exists a nils 
{A'}). 

thisare:(l) BF({T} 

(2) ({T},{A})=»({T'UA'}). 

In Figure I, knowledge c 5w classi ate 
(high classified) data set, A. Such inf 
cleared user either knows or can re, 

sifted high. In general this prin< 
ad. If such a rale exists, then the data set B must also 

and inference is cons: 

-o 

(Jyn^Q 
tsxire2 

igure' 

set D is re-class: 

and a rule R2, such that C implies B, as shown in Figure 2. If such a dataset exists, then it 
sts another set C, 
ataset exists, then 

following a chain of 

'/ a^ö ard 
any point, the link connecting the low and high datasets is only connected by a high clas- 

a), then the rest of the chain nees 

However, it is possible, especially for complicated databases, for some of the data 
ication official. In this case, the malicious 

user may be able to construct a set of data in some way not envisioned by the classifica- 
. a known rule in order to infer high clas- 

Ö edata 

side 1 
■the 

lats 

t] 
base. It is like 
That is, the d, 

ised to infer 
vmg 

is not m tin 
s existed, anc neither reduce 

in; 

126 



the database, that is, it avoids self-compromise. Therefore, the most optimistic situation 
may be stated as: 

If all the tuples in {T} and {V} are in the database, and all the properties in {A} and {A'} 
are attributes in the database, then ({T},{A}) => ({T'},{A'}) is an inference rule capable of being 
controlled by the database. 

2.0   Current Efforts 

Inference control efforts to date have dealt with the model of data and rules 
described in Section 1 starting with the definitive formal model presented by Morgen- 
stern [MORG87].   Practical efforts have approached the problem either by: 1) finding 
low classified datasets that imply high classified datasets using only the known func- 
tional dependencies as rules; or 2) finding new rules relating data and checking the rule 
interactions for inference. 

Approach (1) is taken by Binns [BWN92], who does not assume any database 
structure, and considers arbitrary dataset combinations formed from the schema. The 
computational complexity of such an approach limits its usefulness. Garvy et. al. 
[G ARV92], assume a highly structured database schema, and construct datasets with 
those dependencies that are known in advance. While this approach is computationally 
tractable, it fails to address many inference rules, especially the more subtle ones. Both of 
these approaches are limited to functional dependencies as specified in the database 
schema. 

Approach (2) is taken by Hinke [MNK92], who does not derive the rules from 
the schema but has developed a knowledge engineering tool to assist the designer in 
defining inference rules. Thuraisingham [THUR91] also uses a knowledge engineering 
approach, but with conceptual graphs as a representation. These approaches extend the 
capability of the database, but are incapable of determining when all the rules have been 
found. They offer no possibility for assurance that all inference rules have been consid- 
ered. Other studies have tended to focus upon sub-classes of the problem, or specific 
types of inference problems and solutions. 

In either case, the solution is to classify additional sets of data as high. As the data 
was initially classified, it was scrutinized to insure that it cannot be easily derived from 
unclassified information. However, we have now started re-classifying data in the data- 
base for the purpose of controlling inference. We have no assurance that such data has 
received adequate scrutiny regarding outside influence. It is desirable for the inference 
controller to apply this scrutiny rather than to refer the problem back to the classification 
officer. This iterative solution is a feature of most of the above proposals. 

The major problem with these approaches is the requirement to specify all the 
possible inference rules, and then check their interactions among themselves and with 
the low classified data sets. Some of the aforementioned studies even attempt to specify 
rules utilizing data outside the database. It is suggested that this is the wrong approach 
for a system designer or administrator. The low data/rule approach is basically the 
approach taken by a system attacker, but system designers or administrators have more 
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4.0  Conclusions 

If we desire any sort of assurance that a system is protected against inference 
attacks, we cannot rely upon the techniques developed up until this time. None of them 
are suitable for protection against KD types of attack. Perhaps the only method capable 
of providing real protection against a KD-type attack is to use the same KD techniques to 
implement security. Here we have an advantage over the attacker. An attacker can only 
access low-classified data, while a trusted process can access both high and low data. 
The low cleared KD tool must do a great deal of searching of the low data in order to 
locate appropriate rules and carefully construct the target dataset. In a worst case, all 
possible combinations of low classified datasets would have to be compared. System 
security only requires that rules connecting low data to high data be unknown to the low 
system users. Hence the trusted KD tool need check all combinations of low data and 
high data, a formidable task, but usually much easier than checking all combinations of 
datasets at the same level. The rules found by this method will contain all true inference 
rules, plus many false rules that appear true due to coincidence. Each rule must, of 
course, be evaluated before it is included in the system. 
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Inference Control Tool: Project Summary* 

Thomas D. Garvey 
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1    Introduction 

The advent of commercially available trusted database systems introduces the capability to man- 
age data at a variety of sensitivities and to enforce security policies that prohibit the unauthorized 
disclosure of information to unauthorized or insufficiently authorized individuals. With these prod- 
ucts, data are labeled with their degree of sensitivity and protected accordingly. However, these 
products cannot protect data that is incorrectly labeled. One difficulty is that highly sensitive data 
may be inferred from data labeled lower1. In such cases an inference problem exists. An inferential 
link that may allow highly sensitive information to flow to a low user is termed an inference chan- 
nel [?, ?]. It is the difficult task of the data designer to label the data so that the labels accurately 
reflect the actual sensitivity of the data and adequately protect the information from inference. The 
latter aim is extremely difficult for the human data designer to attain. SRI has developed an auto- 
mated tool that can identify potential inference channels in a labeled database. DISSECT [?, ?, ?] 
(Database Inference System Security Tool) can be used interactively by a data designer to analyze 
candidate database Schemas to assist in the detection and elimination of inconsistent labeling that 
can constitute inference problems. DISSECT uses schema-level analysis to avoid the costly task of 
data-level analysis with every database query. 

DISSECT can detect both compositional inference channels and inference channels that involve 
type-overlap and near-key relationships. A potential compositional inference channel exists if two 
attributes are connected by a pair of paths consisting of composed foreign key relationships, where 
the two paths may have different sensitivities. A relationship can be inferred between any pair of 
entities that are connected by a sequence of foreign key relationships. If a table contains a foreign 
key to a second table, then there is a functional relationship from entities described by the first 
table to entities described by the second. A foreign key relationship from the second table to a third 
implicitly defines a composed functional relationship from entities described by the first table to 
entities described by the third. If there is another sequence of foreign key relationships connecting 
the first and third tables, and accessing the two sequences may require different authorizations, 
there may be a compositional channel, since the two sequences of foreign key relationships may 
describe the same or a too closely related relationship between the first and third entities. 

"This research was supported by the United States Air Force,  Rome Laboratory,  and the Advanced Research 
Projects Agency under Contract F30602-91-C-0092. 

*We use the terms "high" and "low" informally to refer to data that is more or less sensitive. 
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Compositional channels involve relationships that are explicitly defined in the database schema. 
The foreign key relationships that compose them are mappings from an attribute2 of one relation to 
the primary key of another. The schema contains the information required to search for composi- 
tional channels, but the security of the database can still be compromised by more indirect methods. 
A foreign key relationship requires that the second attribute be a primary key and that every value 
of the first attribute be included among the values of the second. Foreign key relationships specify 
the join operations that the data designer intends the database user to perform. However, a user 
can join any pair of attributes that have values in common. Moreover, neither attribute need be a 
primary key. If one is a near key, joining on it can yield information about dependent attributes 
nearly as well as the primary key. DISSECT allows the data designer to declare information about 
attribute joinability and near keys to enable detection and elimination of the additional inference 
channels they allow. 

Rather than require that the data designer state explicitly list every pair of attributes that 
are joinable, we allow him to associate types with attributes. Attributes whose types overlap are 
joinable. A type-overlap relationship occurs between two attributes when the two attributes have 
been declared to be of the same type and also have some overlap in the allowed sensitivity labels 
for data elements of that type. For example, there may be some overlap between attributes home- 
phone-number and office-phone-number, if they are both declared to be of type phone-number, and 
if elements of each may also match in sensitivity level. Intuitively, a type-overlap relationship is 
one which would allow the two attributes to be joined on matching data values and sensitivities. A 
potential inference problem exists if there is a pair of different-sensitivity paths between the same 
two entities, where the high path consists of a sequence of foreign key links, and the low path consists 
of both foreign key and type-overlap links. Intuitively, we are looking for ways a low user could 
use both declared foreign key relationships and fortuitous type-overlap relationships to compromise 
an explicit high relationship consisting of a sequence of one or more foreign key relationships. To 
allow DISSECT to discover inference channels that involve type-overlap relationships, the data 
designer must make type declarations for the attributes in the database. Inclusion of type-overlap 
relationships in DISSECT's detection algorithms allows DISSECT to detect inference problems 
caused by a user's ad hoc queries that the data designer might not have considered. 

The detection of inference channels that involve type-overlap and near-key relationships require 
the data designer to make type declarations for the attributes in the database. The type declarations 
need not be complete; where the data designer has not made type declarations, DISSECT assumes 
nonoverlapping types. 

In related work [?], Binns considered two attributes to be related if they had the same name. 
He created inference paths by concatenating such relationships. A potential problem was detected 
as a pair of such paths connecting the same end entities but having different security levels. Some 
problems with his approach are that (1) many spurious inference problems will be detected, since 
two attributes are not necessarily related or even joinable simply because they have the same name 
(his solution to this was to impose the unrealistic requirement that attribute names be unique across 
the database), and that (2) many relationships that could contribute to inference paths could go 
undetected, since attributes can be meaningfully joined even though they do not share the same 
name. Our type-overlap approach achieves the intent of Binns' approach (namely, of detecting 
problems that could not have been anticipated by the data designer), but will detect all and only 

2 For simplicity, we will discuss here only the case of relations among single attributes and not primary or foreign 
keys composed of multiple attributes. 
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those paths formed of meaningful relationships. 
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This paper briefly describes ongoing research at GMU on the problem of designing 
and implementing multilevel databases. In a nutshell the objective of our research is 
to close the semantic gap between sophisticated requirements of MLS applications and 
the relatively meager facilities provided by emerging MLS DBMS products. There is 
a missing links in previous research in the MLS database arena. Previous research 
has tended to focus either on 

e the behavior of a relational MLS DBMS and problems associated with imple- 
menting this behavior in different MLS architectures, or 

e on stating requirements for an MLS database using semantic data models and 
related techniques. 

There are several notable exceptions to this statement. Sell and Thuraising- 
ham [ST94] have recently proposed a Multilevel Object Modeling Technique (MOMT), 
patterned on OMT, for designing multilevel database applications using a relational 
MLS DBMS platform. Lewis and Wiseman [LW93] have also recently described a 
case study in mapping requirements stated in the SPEAR notation into SWORD 
and SeaView. The RADC workshop several years ago did a case study of mapping 
requirements into systems [Smi89, ST89, Hin89, Mai89, Stu89]. The TTCP XTP-1 
Workshop on Research Progress in MLS Relational Database held prior to the 1994 
RADC workshop also poses a case study. 

Our research seeks to reconcile these two streams of activity by addressing the 
missing-link question of how to achieve the stated requirements on a given data 
model of MLS relations. It will build upon the prior research cited above. The Sell- 
Thuraisingham and Lewis-Wiseman efforts were targeted at element-level labeling of 
MLS relations. Our project will go beyond this work by also considering tuple-level 
labeling. This is particularly important because emerging MLS DBMS products pro- 
vide tuple-level labeling rather than the element-level labeling discussed in most of 
the research literature. This fact widens the semantic gap identified above, and makes 
the proposed research all the more topical and relevant to the practitioner seeking to 
build MLS applications on these emerging platforms. 
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The basic premise of the proposed research is that the theoretical expressive power 
of fairly simple models can be surprisingly general. The classic example of this is Tur- 
ing machines, and related automata, which are capable of executing all computable 
activity. At the same time, simple models are usually not practical to use directly 
even though they are theoretically capable of solving the problem at hand. It is there- 
fore necessary to develop additional tools to close the semantic gap in a practically 
useful manner, rather than just declaring theoretical adequacy of a simple model. 
This approach to closing the semantic gap has been repeatedly employed in com- 

' puter systems. Our expectation is it will also succeed in the arena of MLS relational 
databases. 

The reason for considering tuple-level labeling is that most of the emerging MLS 
DBMS products are adopting this approach. This is a natural approach for DBMS 
vendors, in that the tuple is the basic storage and retrieval unit in typical relational 
DBMS implementations. 

There has been some theoretical discussion of equivalence between tuple-level la- 
beling and element-level labeling. Qian and Lunt [QL93] have published an interesting 
claim that tuple-level labeling is equivalent to the Sea View model (under a particular 
definition of equivalence) . We feel this issue needs to be studied more carefully, and 
in a broader context than the SeaView model. The notion of what is meant by equiv- 
alence itself needs a rigorous examination. We now illustrate the subtleties involved 
here by contrasting two interpretations of tuple-level labeling. 

A SIMPLISTIC INTERPRETATION OF TUPLE-LEVEL 
LABELS 

Let us consider a simple mapping from tuple-level labels to element-level labels. Say 
we have the following tuple 

(ci,a2,...,a„,c) 

where the a,-'s are the individual data elements of the tuple, and c is the security label 
on the tuple. The simplest mapping to element-level labelling is to simply put c as 
the label of each of the individual elements, as well as let c be the tuple class. This 
would give us the following tuple (with element-level labeling). 

(ai,c,a2,c,.,.Jan,cn,c) 

Each c labels the data element to its left, except for the rightmost one which labels the 
entire tuple. This simple mapping severely cripples the expressive power of tuple-level 
labeling. It is impossible to translate the following tuple with element-level labels to 
an equivalent one with tuple-level labels. 

(auU, a2,S, ...,G„, S, S) 
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This tuple associates an unclassified data element a,\ with a number of secret data 
elements a2.. .an. Such an association cannot be expressed with this simplistic in- 
terpretation of tuple-level labeling. But this is not the only possible interpretation. 

AN ALTERNATE INTERPRETATION OF TUPLE-LEVEL 
LABELS 

Let us consider an alternate interpretation. We caution the reader that this inter- 
pretation is being presented only for sake of example. We are not suggesting it as 
an interpretation to be recommended. Finding useful interpretations of tuple-level 
labeling is a task for the proposed research. 

Let us assume that A\ (i.e., the first attribute) of a tuple is the apparent key. Now 
suppose the following tuples are coexisting in a relation (with tuple-level labeling). 

(ai,a2,...,a„, t/) 

(ai,a'2,...,a'n,S) 

Note that there are two tuples with the same apparent key value (i.e., ai), so this 
is a form of polyinstantiation. Now consider the following mapping to element-level 
labeling. 

® Data elements outside of the apparent key inherit the label of the tuple. 

9 The apparent key is assigned a label equal to the greatest lower bound of the 
labels of all tuples in which it occurs. 

For the pair of tuples shown above we obtain the following two tuples (with 
element-level labeling) respectively. 

(ai,U, a2,U, ...,U, an, U,U) 

(ai,U,a'2jS,...,a'n,S,S) 

Furthermore, consider the following tuple (with element-level labels) which we could 
not map to an equivalent one with tuple-level labels under the previous interpretation. 

(ai, U,a2,S, ...,an,S,S) 

With the current interpretation we can attempt to translate this into two tuples (with 
tuple-level labels) as follows. 

(ai,m///, ...,null, U) 

(a1,a2,...,an,S) 
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The first of these essentially fixes the label of ca at U. The second gives the S values 
associated with at. Moreover, these two tuples can be interpreted as respectively 
corresponding to the U and S views of the tuple (with element-level labels) they were 
derived from. 

This alternate interpretation illustrates the important point that it is possible 
to have a richer semantics for tuple-level labeling than obtained by the simplistic 
interpretation given earlier. There a number of research questions that need to be 
addressed here. 

Firstly, it is not clear if there is a consistent and useful semantics for tuple-level 
labeling along the lines sketched out above. The work of Qian and Lunt address 
this question from one perspective. We feel that a more comprehensive study of 
this problem is called for, particularly since considerable progress on understanding 
polyinstantiation has been made in the meantime. Moreover, Qian and Lunt do not 
consider dynamic aspects of the relations, such as update semantics. In short, much 
work remains to be done. 

Secondly, we must consider the semantics of tuple-level labeling supported in 
the emerging products. In particular, the update behavior is determined by these 
BBMS's. It therefore constrains the range of interpretations we can impose on these 
products. 

Thirdly, we must consider how to practically map element-level requirements to 
tuple-level models. Even if we can establish some kind of theoretical equivalence, we 
will still need tools and possibly human guidance in achieving an effective mapping. 
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Starship               Objective         Destination    TC 
Enterprise    U    Exploration    U    Talos      U        U 

UNCLASSIFIED INSTANCE OF SOD 

No. Starship Objective Destination TC 

1 Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos 
Talos 

U 
u 

U 
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2 Enterprise    U 
Enterprise   U 

Exploration    U 
Exploration    U 

Talos 
Rigel 

u 
s 

u 
s 

3 Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos 
Rigel 

u 
s 

u 
s 

COVER STORIES 

4 Enterprise U Exploration U Talos U u 
Enterprise U Exploration U Rigel s s 
Enterprise u Spying s Rigel s s 

5 Enterprise u Exploration V Talos u u 
Enterprise u Spying s Talos u s 
Enterprise u Spying s Rigel s s 

6 Enterprise u Exploration u Talos u u 
Enterprise u Spying s Talos u s 
Enterprise u Exploration u Rigel s s 

7 Enterprise u Exploration u Talos u u 
Enterprise u Spying s Talos u s 
Enterprise u Exploration u Rigel s s 
Enterprise u Spying s Rigel s s 

CONFUSION 
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CORE INTEGRITY PROPERTIED 

© Entity Integrity 

© Inter=Instanee Integrity 

© Polylnstantlatlon Integrity (PI 

@ Pl-tnple class 

© Foreign Key Integrity 

@ Referential Integrity 

® No Entity PolylnstantlatI 
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WHAT IS ALL THIS FUSS ABOUT? 

• We cannot simply label data in 
a single-level system and 
thereby make it multi-level 

® We cannot simply un-label data 
in a multi-level system and 
thereby make it single-level 
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Starship Objective Destination 

Enterprise Exploration Talos 

SINGLE LEVEL INSTANCE OF SOD 

Starship              Objective         Destination   TC 
Enterprise    U    Exploration    U    Talos      U        U 

ACCEPTABLE 

Starship               Objective         Destination    TC 
Enterprise    U    Exploration    S    Talos       U         S 

ACCEPTABLE 

destination    TC 
Enterprise    U    Exploration    U    Talos       S     |    S 

ACCEPTABLE 

Starship               Objective         Destination    TC | 
Enterprise    U    Exploration    S    Talos       S         S   j 

ACCEPTABLE 

Starship Objective Destination TC 

Enterprise    S Exploration    S Talos       S S 

ACCEPTABLE 
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Starship       Objective       Destination 
Enterprise   Exploration   Talos 

SINGLE LEVEL INSTANCE OF SOD 

Starship               Objective         Destination    TC 
Enterprise    S    Exploration    U    Talos      U        S 

UNACCEPTABLE 

Starship              Objective         Destination    TC 
Enterprise    S    Exploration    S    Talos      U        S 

UNACCEPTABLE 

Starship               Objective         Destination    TC 
Enterprise    S    Exploration    U    Talos       S         S 

UNACCEPTABLE 

Starship              Objective         Destination    TC 
Enterprise    S    Exploration    S    Talos       S         S 

ACCEPTABLE 

Starship              Objective         Destination    TC 
Enterprise    S    Exploration    S    Talos     TS      TS 

ACCEPTABLE 
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TITY VERSUS I 
POLYINSTANTIATION 

Starship 
Enterprise    U Exploration    U 

Spying S_ 
Ta!os      U 

TC 

U 

ENTITY POLYINSTANTIATION 

2 ENTITIES WITH THE SAME KEY 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos      U 
Rigel       S 

U 
s 

ELEMENT POLYINSTANTIATION 

ENTITY WITH CONFLICTING INFORMATION ABOUT IT 
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ENTITY VERSUS ELEMENT 
POLYINSTANTIATION 

» Entity polyinstantiation is 
incompatible with referential 
integrity* 

i Entity polyinstantiation can be 
eliminated^ but only by 
proactive mechanisms. 

> Element polyinstantiation is 
useful for cover stories, if 
properly implemented» 

► Element polyinstantiation can 
be easily prevented by reactive 
mechanisms. 
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POLYINSTANTIATION 

Starship Objective Destination TC 

Enterprise    U 
Enterprise   U 

Exploration    U 
Spying             S 

Talos      U 
Rigel      S 

U 
§ 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Exploration    U 

Talos      U 
Rigel       S 

U 
s 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos      U 
Talos      U 

U 
S 

Starship Objective Destination TC 

Enterprise    U Exploration     U Talos       U U 
Enterprise    U Mining              C Sirius      C C 
Enterprise   U Spying               S Rigel       S S 
Enterprise   U Coup               TS Orion    TS TS 
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UNACCEPTABLE ELEMENT 
POLYINSTANTIATION 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Spying             U 

Talos 
Rigel 

U 
s 

u 
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Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 
Enterprise    U 
Enterprise    U 

Exploration    U 
Exploration    U 
Spying              S 
Spying              S 

Talos 
Rigel 
Talos 
Rigel 

u 
s 
u 
s 

u 
s 
s 
s 
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ACCEPTABLE EL 
POLYINSTANTIATIOM 

Starship Objective Destination TC 

Enterprise   U 
Enterprise   U 

Exploration    U 
Exploration    S 

Talos      U 
Talos      S 

U 
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Starship 

se    U 
Exploration    U 
Exploration    U 

Talos 
Talos 

U 

TC 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Exploration    U 

Talos       U 
null          S 

U 
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Starship Objective Destination TC 

Enterprise   U 
Enterprise    U 
Enterprise    U 

Exploration    U 
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Exploration    U 

Talos       U 
Sirius      C 
Rigel       S 
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Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 
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Exploration    U 
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c 
s 
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REFERENTIAL INTEGRITY 

Starship        Objective        Destination 
Enterprise    Exploration   Talos 

INSTANCE OF SOD 

Captain    Starship 
Kirk          Enterprise 

PROPER REFERENCE FROM CS TO SOD 

Captain    Starship 
Kirk          null 

NO REFERENCE FROM CS TO SOD 

Captain    Starship 
Kirk          Battlestar 

DANGLING REFERENCE FROM CS TO SOD 
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REFERENTIAL AMBIGUITY 

SHIP OBJ DEST TC 

Enterprise    U 
Enterprise    S 

Exploration    U 
Spying             S 

Talos    U 
Rigel    S 

U 
S 

CAPTAIN           SHIP           TC 
Kirk      U      Enterprise    S      S   | 

® neierenee uown iijm,jL-o«iuces 
ambiguity due to entity 
polyinstantiation 
(Original SeaView) 

Reference at your level 
eliminates ambiguity 
(Revised SeaView) 
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REFERENTIAL INCOMPLETENESS 

SHIP OBJ DEST TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos    U 
Rigel    S 

U 
S 

CAPTAIN           SHIP           TC 
Kirk      U      Enterprise    S      S 

Reference at your level severely 
limits modelling power 
(Revised SeaView) 
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LUTION 

9 Eliminate entity polyinstantiation 

® Otherwise choose between 

— referential ambiguity^ O 
— referential ineonipletene 



ELIMINATION OF ENTITY 
POLYINSTANTIATIONi PART I 

Preallocation of key space to security 
classes» 

— U Starships have names beginning 
with A-E 

— 8 Starships have names beginning 
with F-K 

— etcetera 

Keys assigned by a trusted user 
outside of the computer system. 

Keys assigned by a trusted subject in 
the computer system» Will introduce 
a low bandwidth covert channel* 
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SLIMINATION OF ENTITY 
LYINSTANTIATIONs PART II 

SHIP OBJ BEST TC 

Enterprise   U 
Voyager        S 

Exploration    U 
Spying              S 

Talos    U 
Rigel    S 

U 
s 

CAPTAIN RANK TC 

Kirk       U 
Spock     S 

Admiral    U 
General     S 

U 
S 

REFERENCED RELATIONS 

CAPTAIN    SHI! 

Kirk 
Enterprise    U 
Enterprise    U 

Enterprise    § 

HOURS/WEEK 

10 

TC 
U 

REFERENCING RELATION 
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ELIMINATION OF ENTITY 
POLYINSTANTIATION: PART II 

SHIP OBJ BEST TC 

Enterprise'   U 
Voyager         S 

Exploration    U 
Spying              S 

Talos    U 
Rigel    S 

U 
S 

CAPTAIN RANK TC 

Kirk       U 
Spock     S 

Admiral    U 
General     S 

U 
S 

REFERENCED RELATIONS 

CAPTAIN    SHIP HOURS/WEEK TC 

Kirk                Enterprise    U 10              S S 

ACCEPTABLE REFERENCING RELATION 

CAPTAIN    SHIP HOURS/WEEK TC 

Kirk               Enterprise    U 
Kirk                Enterprise    U 

15             U 
10              S 

U 
S 

ACCEPTABLE REFERENCING RELATION 
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JMINA 
POLYINSTANTIATI PAET II 

SHIP OBJ DEST TC 

Enterprise    U 
Voyager        § 

Exploration    U 
Spying             S 

Talos    U 
Rige!    S 

U 

CAPTAIN RANK TC 

Kirk       U 
Spock     § 

Admiral    U 
General     S 

U 
s 

REFERENCED RELATIONS 

CAPTAIN    SHIP                   HOURS/WEEK    TC 
Kirk               Enterprise    S    10              S                S 

ENTITY POLYINSTANTIAT: 

CAPTAIN    SHIP HOURS/WEEK TC 

Kirk               Enterprise    U 
Kirk               Enterprise    S 

15             U 
10              S 

U 
S 

ENTITY POLYINSTANTIATION! 



ELIMINATION OF ENTITY 
POLYINSTANTIATION; PART II 

® Seems we cannot keep 
assignment of Kirk to Starship 
Secret without opening up 
possibility of entity 
polyinstantiation. 

® We can convert the perceived 
entity polyinstantiation into 
element polyinstantiation. 
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ELIMINATION OF ENTIT 
LYINSTANTIATION: PAB ,T II 

SHIP OBJ DEST TC | 

Enterprise 
Voyager 

U 
§ 

Exploration    U 
Spying             S 

Talos    U 
Rigel    S 

U 
§ 

CAPTAIN RANK TC 

Kirk       U 
Spock     S 

Admiral    U 
General     S 

U 
S 

REFERENCED RELATIONS 

CAPTAIN    SHIP HOURS/WEEK    TC 

ENTITY POLYINSTANTIATION 

CAPTAIN SHIP HOURS/WEEK TC 

Kirk 
Kirk 

Enterprise    U 
Enterprise    U 

15              U 
10            s 

U 

NO ENTITY POLYINSTANTIATION! 



SUMMARY 

Prevent entity polyinstantiation by 
proactive (and reactive) mechanisms 

Permit or prevent element 
polyinstantiation by reactive 
mechanisms as desired on a 
case-by-case and day-by-day basis 
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© Design wit 
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INTERPRETATION OF 
TUPLE-LEVEL LABELS 

Starship Objective Destination TC 
Enterprise 
Enterprise 

Exploration 
Spying 

Talos 
Rigel 

U 
s 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    S 

Exploration    U 
Spying              S 

Talos      U 
Rigel       S 

U 
S 

ENTITY POLYINSTANTIATION 

Starship Objective Destination TC 

Enterprise    U 
Enterprise    U 

Exploration    U 
Spying              S 

Talos      U 
Rigel       S 

U 
S 

ELEMENT POLYINSTANTIATION 
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CONCLUSION 

re are optimistic that It wi 
jsslble to 

Design mis databases wit 
element-level labels (or m 
abstract semantic models 

Translate these designs o 
emerging platforms with tuple-leve 
labels 

© Further R&D Is ne 
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DBMSs with tupk 
have a frustrating 

eded to 
aim 

esignen 
evel labe 
xperience 

wi 

170 



Discussion: User Perspective 

Discussion Leader: Jack Wool, ARCA Systems, Inc. 

(paper not available) 
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Rome Laboratory 

Customer Satisfaction Survey 

RL-TR- 

Please complete this survey, and mail to RL/IMPS, 
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and 
feedback regarding this technical report will allow Rome Laboratory 
to have a vehicle to continuously improve our methods of research, 
publication, and customer satisfaction. Your assistance is greatly 
appreciated. 
Thank You 

Organization Name: (Optional) 

Organization POC:  (Optional) 

Address: ____^  

1.   On a scale of 1 to 5 how would you rate the technology 
developed under this research? 

5-Extremely Useful    1-Not Useful/Wasteful 

Rating  

Please use the space below to comment on your rating.  Please 
suggest improvements.  Use the back of this sheet if necessary. 

2.  Do any specific areas of the report stand out as exceptional? 

Yes  No  

If yes, please identify the area(s) , and comment on what 
aspects make them "stand out." 



3. DO any specific areas of the report stand out as inferior? 

Yes  No  

If yes, please identify the area(s), and comment on what 
aspects make them "stand out«" 

4. Please utilize the space below to comment on any other aspects 
of the report. Comments on both technical content and reporting 
format are desired. 

aU.S. GOVERNMENT PRINTING OFFICE:     1995-610-126-20039 



MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in ail 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


