
RL-TR-95-171
Final Technical Report
September 1995

RESEARCH DIRECTIONS IN DATABASE
SECURITY VI: PROCEEDINGS OF THE
SIXTH ROME LABORATORY MULTILEVEL
DATABASE SECURITY WORKSHOP -
22-24 JUNE 1994

SR! Internationa!

LouAnna Notargiacomo (Editor)

V*'. 0013 0'^;

J
1.,....»——

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19951026 009
Rome Laboratory

Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NT1S). At
NTIS it will be releasable to the general public, including foreign nations."

RL-TR-95-171 has been reviewed and is approved for publication.

APPROVED:

JOSEPH V. GIORDANO
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Porm Approved
OMB No. 0704-0188

Pubfc reportrig burden for thte cotaction of hf ormabon s esfrnosd to avsrsge 1 hour par radons«, ndurjng the ana for reviewing hstnjcüona, searchrig exsrjng data sources,
gatherng and martahng th» data needed and UJ i lieu IU, end reviswrig tha coäBcüon of nformation Send carrmerts rsgerdng this bi_rdan estmate or any other aspect of ths
colection of nformEtion, induoYTg ^HjUflftthlia for redudngthis burden, to rVsdfl^ui Headquarters Services, Dfrectorstefor nfurmation Operations andReports, 1215 Jefferson
Davis Highway, Suta 1204, Arlngtcn, VA 22202-4302, and to the Offico of Msnsgernar-t and Budget, Paperwork Reduction Project (0704-01BB), Wsshhgton DC 205CB

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE
September 1995

a REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE
RESEARCH DIRECTIONS IN DATABASE SECURITY VI: PROCEEDINGS
OF THE SIXTH ROME LABORATORY MULTILEVEL DATABASE SECURITY
WORKSHOP - 22-24 JUNE 1994

6. AUTHOR (S)
LouAnna Notargiacomo (Editor)

PE - 33401G
PR - 1068
TA - 01
WU - P9

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue ~,^^-:-=-z"
Menlo Park CA 94025-3493 % %\ ^S£

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

JL
TV r tS &=' fa

9. SPONSORING/MONITORING AGENCY NAME(S) AND $BDRESS(ES)

Rome Laboratory (C3AB)
525 Brooks Rd
Griffiss AFB NY 13441-4505

OCA 3 U V395. SO. SPONSORING/MONITORING
| AGENCY REPORT NUMBER

U Jf L-TR-95-171

,\
11. SUPPLEMENTARY NOTES ^^^^^

Rome Laboratory Project Engineer: Joseph V. Giordano/C3AB/(315) 330-3681

12a. DISTRIBUnON/AVAILABIUTY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT (Maxrrun 200 words)

This report documents the proceedings of the Sixth Workshop on Database Security,
which was sponsored by Rome Laboratoy. This workshop was held in Southwest Harbor,
Maine, during 22-24 June 1994, and is the sixth in a series of database security
workshops sponsored by Rome Laboratory. This workshop addressed current results of
research projects in the area of multilevel database security. The topics addressed
included multilevel database models, object-oriented database management, multilevel
secure database management system architectures, system assurance, distributed and
federated secure database management, inference control, usability of trusted
database management systems, and the transition of technology from the research
community to products and systems.

14. SUBJECT TERMS

Multilevel database security

15. NUMBER OF PAGES
184

18. PRICE CODE

17. SECURITY CLASSIFICATION

ffidESF SIFIED

1 A SECURITY CLASSIFICATION

UNCLISSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. UMITATION OF ABSTRACT

UL

NSN 7540-01-2HWS00 Standard Form 298 (Rev :- 891
Prescribed by ANSI Std 239-'8
296-102

ACKNOWLEDGMENTS

This workshop was sponsored by Rome Laboratory under sponsorship from Joseph V.
Giordano. We would like to thank Mr. Giordano for his support and participation in this
workshop. We would also like to thank Teresa Lunt for her involvement in organizing and
co-chairing this workshop. Finally, we would like to thank the participants of this workshop
for their papers, presentations, and discussions.

About the Authors and Discussion Leaders:

Rae Burns,3 AGCS, Inc.
Oliver Costich, Naval Research Laboratory
Judith Froscher, Naval Research Laboratory
Tom Garvey, SRI International
Thomas Haigh, Secure Computing Corporation
William R. Herndon, The MITRE Corporation
T Y. Lin, San Jose State University
Teresa Lunt,b SRI International
Donald Marks, National Security Agency
Catherine D. McCollum, The MITRE Corporation
LouAnna Notargiacomo, The MITRE Corporation
Dick O'Brien, Secure Computing Corporation
James P. O'Connor, Infosystems Technology, Inc.
Xiaolei Qian, SRI International
Ravi Sandhu, George Mason University
Marvin Schaefer, ARCA Systems, Inc.
Kenneth P. Smith, The MITRE Corporation
Dan Thomsen, Secure Computing Corporation
Sandra Wade, ONTOS
Simon Wiseman, U.K. Defense Research Agency
Jack Wool, ARCA Systems

Accesion For

NTIS CRA&j
DTiC TAB
Unannounced
Justification

D

By ^
Distribution /

Availability Codes

Dist

w±

Avail and /or
Special

a Rae Burns is currently employed with AGCS, Inc. At the time of the workshop, she was
employed with GTE Government Systems.

b Teresa Lunt is currently at the Advanced Research Projects Agency (ARPA).

TABLE OF CONTENTS

TITLE PAGE

1

3

Semantics of Security Classifications: Critical Review of MLS Data Model 5
T. Y. Lin, San Jose State University

Towards a Policy Framework for Multilevel Databases 17
Xaiolei Qian, SRI International

Discussion: Models 27
Discussion Leader: Marvin Schaefer, ARCA Systems, Inc.

29

Discussion of a New Secure Object-Oriented Data Model 31
William R. Herndon, The MITRE Corporation

Trusted ONTOS Prototype: Preliminary Considerations 35
Marvin Schaefer, ARCA Systems, Inc., and Sandra Wade, ONTOS

Discussion: Multilevel Object-Oriented Approaches 47
Discussion Leader: LouAnna Notargiacomo, The MITRE Corporation

Multilevel Secure Database Management System Architectures 49

Applying the Concept of TCB Subsets to Trusted Subject DBMS Architectures 51
James P. O 'Connor, Infosystems Technology, Inc.

SWORD on CMW 61
Simon R. Wiseman, U.K. Defense Research Agency

LOCK DBMS: Integrating Type Enforcement 69
Dan Thomsen, Dick O'Brien, and Tom Haigh, Secure Computing Corporation

Discussion: Architectures 73
Discussion Leader: Rae K. Burns, AGCS, Inc.

ii

TITLE PAGE

Assurance 75

A Position Statement: High Assurance DBMS 77
Rae K. Burns, AGCS, Inc.

Discussion: Assurance 81
Discussion Leader: Ravi Sandhu, George Mason University

Distributed/Federated Secure Database Management Systems 83

Contracts for Data Sharing among Autonomous Organizations 85
Catherine D. McCollum, The MITRE Corporation

MUSET and Multilevel Database Transactions 97
LouAnna Notargiacomo and Ken Smith, The MITRE Corporation

Discussion: Distributed/Federated Secure DBMS 109
Discussion Leader: Catherine D. McCollum, The MITRE Corporation

Technology Transition 111

SINTRA Technology Transfer: Lessons Learned So Far 113
Judith N. Froscher and Oliver Costich, Naval Research Laboratory

Discussion: Technology Transition 121
Discussion Leader: Tom Haigh, Secure Computing Corporation

Inference Control 123

Inference and Knowledge Discovery 125
Donald G. Marks, National Security Agency

Inference Control Tool: Project Summary 131
Thomas D. Garvey, SRI International

Discussion: Inference 135
Discussion Leader: Teresa hunt, SRI International

TITLE PAGE

Usability of MLS Database Management Systems 137

Design and Implementation of Multilevel Databases (Paper and Presentation) 139
Ravi Sandhu, George Mason University

Discussion: User Perspective 171
Discussion Leader: Jack Wool, ARCA Systems, Inc.

IV

MESSAGE FROM THE WORKSHOP CHAIRS

OVERVIEW OF THE WORKSHOP

The 1994 Rome Laboratory Workshop, Research Directions in Database Security VI, was
held from 22-24 June 1994 at the Claremont Hotel in Southwest Harbor, Maine. This
workshop is the sixth in a series sponsored by Rome Laboratory.

The focus of this workshop was to both look at the current state of research advances in
various areas of database security, but to also look at the needs of potential users of this
technology and ways to transition research results to products or fielded systems. This
workshop consisted of the presentation of research results in various database technology
areas and corresponding discussions assessing the state of technology and the requirements
for further investigation. Presentations and discussions were held on the following topics:

• Multilevel Secure Database Models
• Object-Oriented Database Management
• Multilevel secure Database Management System Architectures
• Assurance
e Distributed/Federated Secure Database Management Systems
9 Technology Transition
• Inference Control
• Usability of Multilevel Secure Database Management Systems

LouAnna Notargiacomo
Workshop Co-Chair

Teresa Lunt
Workshop Co-Chair

MULTILEVEL SECURE DATABASE MODELS

SEMANTICS OF SECURITY CLASSIFICATIONS
Critical Review of MLS Data Model

T. Y. Lin

Mathematics and Computer Science
San Jose State University

San Jose, CA 95192
1. INTRODUCTION

There are many misconception about the meaning of a security label and MLS data model.
We will discuss the meaning and structure of security labels. A MLS relational databases is
a mathematical model of a secure world. From that we derive the meaning of security
label:

Labeling Principle: The security label of a data is the security label of the
corresponding fact of the real world«

In particular, the label of an element is the label of a property of an entity. Moreover, in a
secure world, every objects or entities are classified, so we conclude from the meaning of
mathematical modeling that all information in a MLS database should be labeled:

Data Labeling Principle: All views and their instances should have their own
security labels.

If a MLS relational database is a Bell-LaPadula model, then we conclude that

Bell-LaPadula Labeling Principles: Bell-LaPadula Model implies that all views and
their instances should be labeled.

So we have the same conclusion as what should be labeled from two different sources. A
relational database is represented by a set of base relations. From the literature on
database theory we conclude that

Equivalency Principle: Two sets off base relations define the same relational
database iff they define the same set of views

A data in a mathematical model corresponds to a unique object in the real world.

Labeling Integrity Principle: A data can only be receive on label

Since the foreign key in guest table and the corresponding primary key at home table
represent the same fact in real world, in fact, they are represented by the same element in
the universal relation, so they should receive the same label:

The label off a foreign key (Ina gsasst table)
Sing primary key at home tebS®o

Referential Integrity Labeling
should eqiral to the label of (the

Finally, we point out some weak points in the "standard" element-level-labeling or tuple-
level-labeling MLS data model.

2, SEMANTICS OF SECURITY LABELS

2.1 What is a data?

A data is a mathematical representation of a piece of the real world. Each data represents
certain portion of the real world: A primitive data represents a primitive fact, a complex
data represent a complex fact. So the fundamental principle of the data labeling is :

Labeling Principle: The security label of a data is the security
corresponding fact of the real world.

off the

The principle sounds obvious,(it was mentioned many times in Sea View documents
[Lunt89]) in practice, there are misconceptions.

Digression.
Here we are using the notion of data modeling. "In data modeling we try to organize data
so that they represent as closely as possible the real world situation" [TsLo82, pp.1]. On
the other hand, in commercial world, data model often refers to the collection of the data
types (templates) of all the base relations. So data model of commercial world seems have
no data but have data structure only. The two notion sounds different. What is data
"type"? In entity relationship model, one often define the entity "type" as the set of
entities (under discussion) with the same attributes [Emas94, p.46]. Similarly, the data
type, mathematically, should be understood as the set of the data (under discussion) with
same structure, even though it is often interpreted as a template (or data structure) in a
computer memory in commercial world. Certainly, the template (in computer memory) is
intend to hold the data under discussion. So one can think of template as the set of
intended data. Therefore, intrinsically both notions agree. To avoid confusing, we will use
data models only in the sense of [TsLo§2] through out the whole paper.

2.2. Elements vs Raw Data.

In the relational model, the element is the most primitive data. Because of its primitive-
ness, its real world meaning is often miss-interpreted. Though an element is a data from

the domain, it is not a raw data. In the following relation, the first "50,000" represents
one aspect of the entity Mr. Smith. So if we do label the element 50,000 we are not
labeling 50,000 per se, it is Mr. Smith's 50,000. In general a tuple represents an entity in
the real world, and an element represents a property of the entity. So the label of an
element is a label ofthat property in the real world. A raw data (an element in the domain)
can not be assigned a label, because it does not have a real world meaning.

Example 1.

RECORD

Name CL1 Salary CL2 Telephone CL3 Occupation CL4
Smith S 50,000 S 123-456-7890 S Physicist S
Peterson S 65,000 s 321-654-0987 S Nuclear Engineer S
Jones U 50,000 u 123-654-0987 U Accounting U

There are two labels for 50,000 in this relation. This does not mean that the security
labeling is inconsistent or multi-labeling. It merely means that the raw data 50,000 was
used twice, first is representing Smith's salary, second Jone's salary. Element labeling is
never meant to be the labeling of raw data. In database, a tuple instance often represents
some real world entity and its elements represent attributes (properties) of the entity. The
security label of an element represents the labeling of this real world meaning (a
property of the entity).

2.3 Labeling of Complex Data

Let us consider the following query

SELECT Name, Salary
FROM Record
WHERE Name=Smith

The output data consists of "Smith" and "50,000". How these two data pass through the
reference monitor (the computer module which checks the security labels). Is it check

Case (1): one element at a time or
Case (2): two data together?

In Case (1), it checks two simple facts, namely the two elements, while in Case (2), it
check one complex fact, namely the tuple (Smith, 50,000).

Which is more meaningful? We believe Case (2) is more meaningful. Mathematically,

Case (I) implies that the system has no notion of aggregate (no set theory)
Case (2) has aggregate, therefore a complex fact should receive a new label.

By pushing the Case (2) to its foil strength, we believe we have

Data LabeMmg Principles AM views aimd their änstaimces §hmM have tlndr ©wia
security lafod§=

2.4. Computational Complexity

If an instance of a database has n elements, then potentially (in worst case) there are 2n

view instances. So labeling is an exponential problem. A complete labeling to all the view
instances is a formidable task. Some automation is needed or mathematically, it needs a
structure. Fortunately, Denning did introduce the notion of lattice model [Benn76] which
we have extended it to aggregated security algebra. The mathematical structure of these
labels or security classes allows us to label view instance Mon-the-flyM [Lin90b].

3. THE IMPLICATION OF BELL-LAPABULA MODEL
-- The Data Model As A Bell LaPadula Model.

What Should be Classified? In Bell-LaPadula Model (BLM), every object or subject is
assigned a security class(label). Now if we apply BLM to database systems, then BLM
requires that every object processed by database systems should have security label. What
are the objects processed by databases?

(1) Intentional Objects: They are objects in Data Dictionary, such as, names of attributes,
relation schema, query statements, and constraints. Security classes of intentional objects
hide the existence of high data.

(2) Extensional Objects: They are the elements, tuples, relations, view instances, and
relational algebraic expressions.

So a MLS data model is a special case of Bell-LaPaduaJ, therefore all view instances
should be labeled. So we have reached the same conclusion as in Section 2

Beli-LaPadtala Labeling Principles; Bell-LaPadulla Modd implies that all views and
their instances should b® labeled»

4 VIEWS AND A RELATIONAL DATABASE

There are misconceptions about relational data base.

Myth: A relational data base is a set of base relations

A relational data base is represented by a set of base relations, but such a representation is
not unique. In other words, the same data base may be represented by another set of base
relations. When two sets of base relations represent the same database? The answer is if
they give the same set of views.

All possible views

Theoretically
updatable

Views updatable in SQL

Although there is no official answer in the literature, however, the answer is implicit in the
literature. The so called normalization is a process of decomposing a universal relation
into a set of the "best" base-relations-representation, such as Boyce Codd Normal Form
(BCNF) or 5th Normal Form (5NF). In the process, a series of new sets of base relations
is constructed. Database designers believe that the series of base relations although are
different, they define the same relational database. Fundamentally, what can a user sees
from a given database ? The set of all possible views. So if the set of all possible views is
the same, from users' point of view, they are the same.

Equivalency Principle: Two sets of base relations define the same relational
database iff they define the same set of views.

5. REFERENTIAL INTEGRITY

The referential integrity problem is important in security e.g., [Burns90]. We will examine
it through the mathematical modeling. As mentioned above, the normalization process
decomposes a universal relation into a set of "best" base-relations-representation. Such
decomposition certainly introduces replica of a data into tables. Foreign keys are such
examples. A foreign key is a primary key of, say, a home table H appears in a "guest" table
G. A foreign key value in both tables H and G were the same element in the original table
before decomposition and represents the same real world fact, so, by our principle, they
should receive the same security label.

Referential Integrity Labeling Principles The label of a foreign key (in guest table)
should equal to the label of the corresponding primary key at home table

6. LABELING INTEGRITY

6.1. Tolerance of Inconsistency

The logical system adopted by natural science and engineering has very no tolerance on
inconsistency. Let us consider the following sentence

SI: If (x is not equal to x), then (any conclusion is true).

In the traditional logic system, this sentence is a valid statement. However, the conclusion
is not necessary a true statement until one can established the condition is a true statement
(modus ponens). In mathematical modeling, the underlying hypotheses is that the model
axioms are true statements, and its general goal is to infer more true statements. If there is
any inconsistency in the axioms of mathematical model, we can never be sure that any
conclusion is valid. The choice of such a logical system is, of course, a philosophical issue;
we could adopt other systems. However, if we do decide not to use the traditional logic,
then we have to redevelop "mathematics" and "science" based on the new logical
system(at least the portion that are used in our secure system). Obviously this is not
feasible. So we should stick to the traditional logical system.

A data in a mathematical model corresponds to a unique object. The data or the symbol
can be regarded a name ofthat object.

Labeling Integrity Principle; A data can only be referred to a unique object

The number 50,000 in Example 1 represent two data, one is Smith' 50,000, the other is
Jones'. If the domain is implemented in the database, then there is another data 50,000 in
the domain of Salary. Although, these data are all denoted by 50,000, they are all different
data mathematically. Their complete description is different, only their "short hand" looks
the same. Moreover, this principle is not in conflict of multi-valued modeling. There, a
data refers to a unique set of objects.

6.2 Multi-Labeling

Some authors believe a data can be given two labels. This is dangerous, it implies that the
data X * X (two labels means a data has two different meanings). As discussed above, in
traditional logic, such situation is not tolerated. In fact, mathematician uses that inequality
to represent the empty set; the empty set = (X: X * X}. The multi-labeling is invented
erroneously for dealing with composite labeling and context labeling.

6.1.2. Composite Labeling.

"Some thing about James Bond is top-secret, and some other thing is unclassified. So
James Bond should have two security labels" said by some colleague. Let us translate this
problem into much more precise form. Suppose we want to model the human being James

10

Bond in a computer system. So we create a document in which a paragraph, say A-
paragraph, is classified top-secret and a paragraph, say C-paragraph, is unclassified.
Should we assign the document two labels, simply because there are top-secret portion as
well as unclassified portion ?. We say no. Our classification scheme will give the A-
paragraph top secret, C-paragraph unclassified, and the total document - the "composite"
document- the least upper bound of A and C paragraphs. Incidentally, this implies that the
structure of security labels is important (see [Lin89c, 90b] for security algebra). Mapping
back to the original problem, the some thing about James Bound should be labeled top-
secret, and some other should be unclassified. The total thing about James Bond should be
labeled top-secret. As to the question what should be the correct label for James Bound
becomes what should be the proper label for the name of the document. I believe this
diffuse the confusing.

6.2. Context Labeling and Aggregation

Another reason for giving a data two labels is the so called context labeling. A piece of
data is insensitive, yet because of its context, it become sensitive. So that piece of data
should receive two labels. This is wrong approach, again it leads to logical contradiction.'
Our classification scheme will label (1) the piece of data unclassified, but (2) the
aggregate, which is the data together with its context, top-secret. Note that in data
modeling, the context is also expressible by a set of data.

6.3. Trusted Subjects

The trusted subjects include the downgrading operation, information flowing downward,
which leads to inconsistent with the constraint of the ""-property. To avoid logical
inconsistency, trusted subjects should not be included in the MLS data model, they should
be handled outside of the model [Lin93]

7. THE STRUCTURE OF SECURITY CLASSES

Information in databases are represented by views (view instances); a user get his
inforamtion by looking at view instances. Views are composite objects of primitive data.
So we need structure or algebra to handle the security labeling of composite objects. A
relation(or views) scheme is defined by attribute names. The security class of relation
scheme or its name can then be derived from the security classes of its attribute names. A
relation(or view) instance can be generated from elements (see [Lin92d,e,fj by set
representation). The security classes of intensional and extensional objects can in general
be derived from the labels of its primitive data. If the security semantics of composite data
implies differently, then that is the problem of aggregation [Lin89a, 90b].

11

So ELEMENT LEVEL LABELING

The so called element level labeling refers to the case of labeling of the elements only (no
other data are labeled). It is different from our labeling; we label elements as well as
tuples, views and etc..

The meaning of element labeling seems different from systems to systems. One proposal is
that (1) the label of an element is labeling the association between primary key and the
elements, and (2) the label of the primary key is labeling the existence of the tuple or
entity. This approach has several deficiency.

8.1. Incomplete Classification: This proposed approach is somewhat naive. A relation is a
very complex mathematical object. For example, let us consider the relation of Example 1.
the relation RECORD has the following mathematical sub-structures

(1) There are six associations (binary relationship):

Name CL1 Salary CL2

Name CL1 Telephone CL3

Name CL1 Occupation CL4

Salary CL2 Telephone CL3

Salary CL2 Occupation CL4

Telephone CL3 Occupation CL4

(2) There are four ternary relationship

Name CL1 Salary CL2 Telephone CL3

Name CL1 Salary CL2 I Occupation CL4

Name CL1 Telephone CL3 Occupation CL4

Salary CL2 Telephone CL3 Occupation CL4

12

(3) One quaternary relatioship (the whol relation)

Name CL1 | Salary CL2 | Telephone CL3 [Occupation CL4

Each relationship potentially has its own semantics, and is, in general, independent from
each other. However, in this approach, only the first four relationships (out of 11
relationships) are labeled. Could this four labels represent the 11 semantics? We would
say no. This is similar to the well-known "connection trap" where people tend erroneously
to use binary relationships to construct a ternary relationship [Date91].

In general, this proposal uses a subset of associations to represent the security semantics
of the whole relation. So the classification can not be complete, we beleive many
relationships (informations) are not protected.

8.2. Other Specific Problems

All key relations

Under this proposal, the security labeling will lost its power if the relation is the so called
all key relation(i.e., every attribute is participated in the primary key). The relationships
between attributes are not classified.

Relational operations and reorganization of databases

When we join two relations A, B to get a new relation C, the primary key of C usually can
not be the old primary keys of A or B. Since C has new a primary key, the binary
relationship between an element and the primary key changes, so the label of elements
needs to be changed too. So we have to re-label the whole new relation, element by
element, whenever we conduct any relatinal operation. In practice, a DBA often has to
restructure the database, because of the practicle performance problem. Each
reorganization changes the meaning of security labeling. Therefore the whole database has
to be re-labeled again. This appraoch is not acceptable.

9. TUPLE LEVEL LABELING

The so called tuple level labeling refers to labeling the tuples in base relations, but nothing
else. It is different from our labeling; we label elements as well as tuples, views and etc..

Incomplete Model Specification.

These models do not specify their rules of labeling new tuples created by any relational
operation. There are two possible default assumptions:

13

(1) the high-water-mark policy, and
(2) the least upper bound policy.

These two assumptions appear to be similar, but actually they are fundamentally different.

(1) High-water-mark policy: The label of derived data (e.g., the new tuple) are assigned by
implementations. In other words, it get the highest label it touched. So a piece of derived
data may reach the screen with different labels, because the label of a derived data depends
on how the data were traveled through the system. A query optimize may not choose the
same path (because of some other users) to answer the same query. This may result in a
serious miss judgment. For example, suppose the returned tuple from a query is the tuple
(Smith, Mission Taho). Whether the tuple is labeled top-secret or unclassified may lead to
different impression to a user, which could lead to disastrous decision.

(2) Least upper bound policy. Under this policy, if a user can see individual tuple of a set,
then he can see the whole set. In other words, there.is no aggregation problem in tuple
level, because the set of tuples will receive the least upper bound. However, at the element
level the aggregation problem could exit. Such a near inconsistency assumptions on the
model is not very healthy. The so called on second path analysis are based on such implicit
assumptions

Both default assumptions have some deficiency.

10. CONCLUSION

Recently DOD seems come to a conclusion that provable security system is impossible.
We will not dispute the conclusion itself. But we do want to remark that the conclusion
may be based on inaccurate studies. We hope DoD will keep the question open until more
studies are conducted.

REFERENCES

[Bums90] Rae Bums, Integrity and Secrecy: Fundamental Conflicts in the Database
Environment, Proceedings of The Third RADC Database Security Workshop, June 5-7,
1990, pp. 37-40.

[DateS 1,86,90] C. Date, Introduction to Database Management Systems, Addison-
Wesley, 1981,86,90.

[Denn76] D. E. Denning. "A Lattice Model of Secure Information Flow",
Communications of the ACM, Vol. 19, No. 5, May 1976, pp. 236 - 243.

14

[Elmas94] Elmasri and Navathe, Fundemental of Database Systems, Benjamin/Cumming
Inc., 1994

[Land82] Carl Landwehr, Formal Model fro Computer Security, ACM Computing
Surveys, September, 1981, pp.247-278.

[Lin92a] T.Y. Lin. Aggregation and Fuzzy Sets, Fifth Rome Laboratory Database
Security Workshop, October 4-7, 1992

[Lin92c] T. Y. Lin, Attribute Based Data Model and Polyinstantiation, Sept 7-11, Madrid,
Spain, IFIP Congress, 1992

[Lin92d] T.Y. Lin, Inference Secure Multilevel Databases, Proceeding of IFIP WG11.3
Workshop on Database Security, August 18-22, 1992.

[Lin92e] T. Y. Lin, The World Model and Polyinstantiation, TR December 1992

[Lin92fJ T. Y. Lin, Inferences in Multilevel Databases, TR December 1992

[Lin91] T.Y. Lin, "Inference" free multilevel database system, Proceeding of the Fourth
RADC Database Security Workshop, Providence, Little Compton, RI, April, 1991.

[Lin90a] T.Y. Lin, Probabilistic Measure on Aggregation, Proceeding of 6th Annual
Computer Security Application Conference, December, 1990.

[Lin90b] T.Y. Lin, Multilevel Database and Aggregated Security Algebra, Database
Security: Status and Prospects IV, edited by S. Jajodia and C. E. Landwehr, North
Holland, 1991 (Final Revision of Database, Aggregation and Security Algebra (Lattice),
IFIP WG11.3 Workshop on Database Security, Sept. 1990.

[Lin89a] T.Y. Lin, Commutative Security Algebra and Aggregation, Research Direction in
Database Security, II, Proceedings of the Second RADC Workshop on Database Security,
December 22, 1989.

[Lin89b] T.Y. Lin, A Generalized Information Flow Model and Role of System Security
Officer, Database Security: Status and Prospects n, edited by C. E. Landwehr, North
Holland, 1989.

[Lin89c] T.Y. Lin,16. Security Algebra and Formal Models, Proceedings of IFIP WG11.3
Workshop on Database Security, September 5-7, 1989 (with L. Kerschberg and R
Trueblood, and final revison appear at Database Security: Status and Prospects m, edited
by D. Spooner and C. E. Landwehr, North Holland, 1990.

15

[Lunt90] T. F. Lunt and Donovan Hsieh, "SeaView Secure Database System, A Progress
Report", Proc of European Symposium on Research on Computer security, France,
October, 1990.

[Lunt89j T. F. Lunt, "The True Meaning of PolyinstantiationH, The Proceedings of The
Third RADC Database Security Workshop, June 5=7, 1990, pp.26=36.

[Mai83] D. Maier, The theory of Relational Databases, Computer science Press, 1983.

[TsLo82] D. C. Tsichritzis and F. H. Lochovsky, Data Models, Prentice-Hal, Englewood
Cliffs, N.J., 1982

16

Towards A Policy Framework for Multilevel
Databases*

Xiaolei Qian
Computer Science Laboratory, SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025

1 Problem Statement
As more multilevel databases are built and connected through computer networks, a wide
variety of secure data sources will become accessible. A big challenge presented by this tech-
nology is the secure interoperation of multilevel databases containing data with mismatched
security policies. Providing secure interoperation of multilevel databases not only makes it
possible to reliably share data in isolated military and civilian databases, but also increases

users' confidence and willingness in such sharing.
As a prerequisite to the secure interoperation of multilevel databases containing data with

mismatched security policies, the security policies of component databases, as well as the
potential mismatches between them, have to be precisely characterized. Existing literature
has been vague on what constitutes a security policy, its content ranging from high-level
specifications such as the type of access control (mandatory or discretionary access control)
or the kind of model (noninterference or Bell-LaPadula), to designer's belief or preferences
such as whether polyinstantiation is allowed, to low-level specifications such as the number
of levels and categories allowed in a lattice. A formal policy framework is needed within

which security policies could be characterized and compared [6].
It has been widely accepted that a mandatory access control (MAC) policy consists of four

components: a set of subjects, a set of objects, a lattice, and a mapping that associates levels
in the lattice to subjects and objects [9]. This works well for multilevel operating systems,
because objects such as files do not carry semantics. For multilevel databases where data
carry semantics, the same mapping of levels to objects such as elements in tuples could have
completely different meanings [19]. For example, consider a relation SMD(Starship, Mid,

"This work was supported by U.S. Department of Defense Advanced Research Projects Agency and U.S.
Air Force Rome Laboratory under contract F30602-92-C-0140.

17

Destination). A secret label on element Rigel of tuple (Enterprise, 101, Rigel) in SMD could
mean that the fact "Enterprise is going to Rigel" is secret, or the fact "some starships are
going to Rigel" is secret, or even the word "Rigel" is secret. This confusion suggests that
something critical is missing with the traditional formulation of MAC policies in multilevel
databases, namely the semantics of object labels. This problem is crucial in the secure
interoperation of multilevel databases. For example, if the secret label on Rigel means that
the fact "some starships are going to Rigel" is secret in database A, and means that the word
"Rigel" is secret in database B, then unclassified users could query all existing destinations
in database A and obtain "Rigel" through interoperation with database B. The canonical
MAC policy for federated databases proposed in [13] does not solve this problem.

The formulation of a MAC policy in a multilevel database often includes some constraint
policies, such as the labeling policy of Seaview [11] and the classification constraints of LDV
[5]. Constraints are the most important means of specifying data semantics. However,
existing multilevel databases provide neither a precise definition of constraint validity nor
an efficient mechanism of constraint enforcement. In fact, it has been argued [1, 2, 12] that
integrity enforcement is in fundamental conflict with secrecy enforcement: no multilevel
databases could simultaneously satisfy both integrity and secrecy requirements.

An important characteristic of MAC policies is the upward information flow in the lattice,
which indicates the believability of low data at high levels. For multilevel operating systems
where objects do not carry semantics, low data are always believed at high. For multilevel
databases where data carry semantics expressed by constraints however, low data could
contradict high data. For example, if we require that high SMD tuples have unique Mid
elements and (Enterprise, 101, Rigel) is a high tuple in SMD, then the low tuple (Enterprise,
102, Rigel) in SMD could not be believed at high. This problem suggests that upward
information flow should be constrained in the formulation of MAC policies in multilevel
databases.

Constraints also bring about the danger of inference channels. Inference channels could
be obtained either by knowing the constraints enforced by a database or by observing the
behavior of a database in enforcing the constraints. For example, consider another relation
MT(MissionId, Type). If we require that every Mid element in relation SMD refers to a
Missionld element in MT, and a low Mid element refers to a high Missionld element, then
low users could infer the existence of the high Missionld element. If we require that every
high Mid element in SMD refers to a low Missionld element in MT, then the attempt to
delete a low Missionld element referred to by a high Mid element would either cause a
loss of high data or enable low users to infer the existence of the high Mid element. Thus
the formulation of MAC policies in multilevel databases should provide additional means to
detect and remove such inference channels.

2 Our Policy Framework

We restrict ourselves to multilevel databases whose MAC policies have the simple security
property and the *-property of the Bell-LaPadula model, which ensure that information does
not flow downward in the lattice.

0 The Simple Security Property A process is allowed a read access to a tuple only if the
former's clearance level is identical to or higher than the latter's classification level in
the lattice.

e The ^-Property A process is allowed a write access to a tuple only if the former's
clearance level is identical to or lower than the latter's classification level in the lattice.

Our formulation of a MAC policy in a multilevel database has seven components:

1. a lattice,

2. a set of subjects,

3. a set of objects,

4. a mapping of subjects and objects to levels in the lattice,

5. an interpretation policy,

6. a view policy, and

7. an update policy.

The first four components together correspond to the traditional formulation of MAC policies
in multilevel operating systems. In the rest of the paper, we discuss examples of the last
three components of our policy framework, using the lattice in Figure 1 and the schema in
Figure 2.

3 Interpretation Policy

An interpretation policy maps a multilevel database to a multilevel theory. Through this
policy, the superficial syntactic difference in object labels is abstracted away, and the seman-
tic difference hidden in object labels is made precise. As a consequence, the interpretation
policy makes it possible to compare the semantics of multiple MAC policies.

For example, suppose that a high label on element spy in tuple (Enterprise, spy,
Rigel) means in one database that low users should not know that "Enterprise is on a spy
mission", but means in another database that low users should not know that "there is a

19

Figure 1: A Lattice

Starship Mid Destination

Missionld Type

Figure 2: A Schema

starship on a spy mission". The semantic interpretation would map the high label to the
high formula (Bx)SMD(Enterprise, spy, x) for the first database, and to the high formula
(3x, y)S MB (Enterprise, x, y) for the second database. By comparing these two formulas, we
can infer that the second database has a weaker security policy about Enterprise than the

first database, because it protects less high information.
As case studies, we have developed natural interpretation policies for multilevel relational

databases with tuple-level and element-level labeling respectively, which have properties that
are commonly recognized as desirable. Based on these policies, we have identified practical
design trade-offs in choosing between tuple-level and element-level labeling [17].

4 View Policy

The simple property of the Bell-LaPadula model gives the visibility requirement on what low
data are visible at high. As we pointed out above, visibility should be distinguished from the
helievahility requirement on what low data are believed at high in order to avoid inconsistency.
A view policy states this believability requirement for a set of integrity constraints.

The filter function [7, 8, 10] and the security logic [3] proposed in the literature take
one extreme position by equating believability to visibility, thus maximizing believability.
However, integrity is compromised if a low tuple contradicts some high tuples with respect

20

to the constraints, which leads to an invalid high database. For example, consider the
following multilevel relation over the lattice of Figure 1 and the schema of Figure 2:

Starship Mission Destination

Enterprise

Enterprise

Enterprise

L

102

103

Talos

Rigel

Rigel

T

rti\

m2

When querying the mission of Enterprise at level T, users will get back both 102 and 103,
which contradicts the constraint "starships have unique missions".

Smith and Winslett proposed a belief-based semantics of the multilevel relational model
[20], which defines a multilevel relational database as a set of unrelated single-level relational
databases, one for every level. They made a clear distinction between visibility and believ-
ability, and took the other extreme position by allowing no low tuples to be believable at
high, thus minimizing believability. Their semantics serves as a nice framework within which
other semantics could be compared. However a multilevel relational database that directly
employs their semantics would no longer be multilevel — it would be a set of single-level
relational databases in which there is no upward information flow across levels. For exam-
ple, consider the following multilevel relation over the lattice of Figure 1 and the schema of

Figure 2:

Starship Mission Destination

Enterprise 102 Rigel _L

When querying the mission of Enterprise at level T, users will get back an empty answer,
because no information about Enterprise is considered believable at that level.

Thuraisingham first formalized the distinction between visibility and believability by a
proof-theoretic semantics of the multilevel relational model [21], which consists of a non-
monotonic inference rule stating that low data are believable at high as long as they do not
contradict high data. Given two low tuples labeled incomparably, what happens if either
tuple does not contradict high data, but their combination does? To determine what is
believable at high, the result of Thuraisingham's approach would depend on the (random)
order in which the nonmonotonic inference rule is applied to these two tuples, which intro-
duces ambiguity. For example, consider the following multilevel relation over the lattice of

Figure 1 and the schema of Figure 2:

21

Starship Mission Destination

Enterprise

Enterprise

102

103

Rigel

Talos

mi

m2

When querying the mission of Enterprise at level T, users will get back either 102 or 103
but not both. It should be noticed that such problems occur even with a totally ordered
security lattice, if we allow arbitrary constraints. For example, a constraint could state
that there should be no more than two starships going to Rigel. If we have one high tuple
(Enterprise, 101, Rigel) together with two low tuples (Voyager, 102, Rigel) and (Discovery,
103, Rigel), then at most one low tuple is believable at high, but it is unclear which one

should be.
A view policy should have three desirable properties:

1. it ensures the validity of constraints,

2. it maximizes upward information flow, and

3. it is deterministic.

As a case study, we have developed a view policy for multilevel relational databases with
tuple-level labeling, where the constraints consist of key-based functional and referential

dependencies, which has all the desirable properties identified above [16].

5 Update Policy
An update policy specifies the enforcement of a set of constraints in performing a set of

updates, such that inference channels are eliminated.
Let us consider the restricted-value policy of [18] and the insert-low policy of [22],

both of which are designed to eliminate inference channels in the enforcement of the no-
polyinstantiation constraint. For easy presentation, we adapt these policies to the context
of multilevel databases with tuple-level labeling. The no-polyinstantiation constraint states:

Two distinct tuples cannot have identical primary key values.

If low users insert a tuple which has the same primary key value as an existing high tuple,
then either the low insertion has to be rejected, leading low users to infer the existence of
the high tuple, or the high tuple has to be overwritten, causing a loss of high data. Similarly,
if high users insert a tuple which has the same primary key value as an existing low tuple,

22

then either the low tuple has to be deleted, leading low users to infer the existence of the
high tuple, or the high insertion has to be rejected, causing a loss of high data.

The example below illustrates how the restricted-value policy removes this dynamic in-
ference channel in the no-polyinstantiation constraint. Consider the following multilevel
relation over the lattice of Figure 1 and the schema of Figure 2:

Starship Mission Destination

Enterprise 102 Rigel J_

When users try to replace 102 by 101 at level T, the update is extended to:

1. Replace 102 by y/ at level _L

2. Insert (Enterprise, 101, Rigel) at level T.

The extended update ensures no-polyinstantiation at the price of introducing a (partial)
static inference channel, because users at level 1 can infer from the restricted-value y/ that
Enterprise has a high mission. Moreover, the high update is extended with a low insertion,
which is against the spirit of the *-property of the Bell-LaPadula model.

The example below illustrates how the insert-low policy removes this dynamic inference
channel in the no-polyinstantiation constraint. Consider the following multilevel relation
over the lattice of Figure 1 and the schema of Figure 2:

Starship Mission Destination

Enterprise 101 Rigel T

When users try to insert tuple (Enterprise, 102, Rigel) at level _|_, the update is extended to:

1. Delete (Enterprise, 101, Rigel) at level T.

2. Insert (Enterprise, 102, Rigel) at level 1.

The extended update ensures no-polyinstantiation at the price of losing high data.
An update policy should also have three desirable properties:

1. it does not introduce inference channels,

2. it does not affect data at lower or incomparable levels, and

23

3. it does not cause data loss at higher levels.

Based on these properties, we have provided practical design guidelines for the appropriate
specification of constraints, whose enforcement would not jeopardize secrecy requirements
[15]. We have also developed an update policy for multilevel relational databases with
tuple-level labeling where the constraints consist of polyinstantiation and referential security

properties, which has all the desirable properties identified above [14].

6 Conclusion

We have used our policy framework to compare the MAC policies commonly imposed in or
proposed for multilevel databases. The comparison makes it clear that the space of MAC
policy mismatches between heterogeneous multilevel databases is significantly larger than the
space of semantic mismatches between heterogeneous single-level databases. Our framework
could be used to capture and resolve the MAC policy mismatches in the interoperation of
heterogeneous multilevel databases. As an initial step in this direction, we have investigated
the secure interoperation of multilevel databases whose MAC policies mismatch in the lattice

component [4].

References
R. K. Burns. Referential secrecy. In Proceedings of the 1990 IEEE Symposium on

Research in Security and Privacy, pages 133-142, 1990.

R. K. Burns. Integrity and secrecy: Fundamental conflicts in the database environment.
In Proceedings of the Third RADC Database Security Workshop, Technical Report MTP

385, MITRE, pages 37-40, 1991.

J. Glasgow, G. MacEwen, and P. Panangaden. A logic for reasoning about security.
ACM Transactions on Computer Systems, 10(3):226-264, August 1992.

L. Gong and X. Qian. The complexity and composability of secure interoperation. In
Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages

190-200, May 1994.

J. T. Haigh, R. C. O'Brien, and D. J. Thomsen. The LDV secure relational DBMS
model. In S. Jajodia and C. Landwehr, editors, Database Security, IV: Status and

Prospects, pages 265-279. North-Holland, 1991.

H. H. Hosmer. Integrating security policies. In Proceedings of the Third RADC Database
Security Workshop, Technical Report MTP 385, MITRE, pages 169-173, 1991.

[7] S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In Proceed-
ings of the 1990 IEEE Symposium on Research in Security and Privacy, pages 104-115,
1990.

[8] S. Jajodia and R. Sandhu. Toward a multilevel secure relational data model. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, pages
50-59, 1991.

[9] C. E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247-278, September 1981.

[10] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The Seaview
security model. IEEE Transactions on Software Engineering, 16(6):593—607, June 1990.

*[11] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley. Secure distributed data views: Security policy and interpretation for DBMS
for a class Al DBMS. Technical Report RADC-TR-89-313, Vol. 1, Rome Air Develop-
ment Center, Air Force Systems Command, December 1989.

[12] C. Meadows and S. Jajodia. Integrity versus security in multilevel secure databases.
In C. Landwehr, editor, Database Security: Status and Prospects, pages 89-101. North-
Holland, 1988.

[13] G. Pernul. Canonical security modeling for federated databases. In Proceedings of the
IF1P TC2/WG2.6 Conference on Semantics of Interoperable Database Systems, 1992.

[14] X. Qian. A model-theoretic semantics of the multilevel secure relational model. Techni-
cal Report SRI-CSL-93-06, Computer Science Laboratory, SRI International, November
1993.

[15] X. Qian. Inference channel-free integrity constraints in multilevel relational databases.
In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages
158-167, May 1994.

[16] X. Qian. A model-theoretic semantics of the multilevel relational model. In M. Jarke,
J. Bubenko, and K. Jeffery, editors, Advances in Database Technology — EDBT'94,
Lecture Notes in Computer Science 779, pages 201-214. Springer-Verlag, March 1994.

[17] X. Qian and T. F. Lunt. Tuple-level vs. element-level classification. In B. M. Thu-
raisingham and C. E. Landwehr, editors, Database Security, VI: Status and Prospects,
pages 301-315. North-Holland, 1993.

[18] R. Sandhu and S. Jajodia. Eliminating polyinstantiation securely. Computers & Secu-
rity, 11:547-562, 1992.

*Although this report references the limited document noted above, no limited
information has been extracted. Document is limited to DOD and DOD contractors
only; critical technology; Dec 1989.

25

[19] G. Smith. Modeling security-relevant data semantics. IEEE Transactions on Software
Engineering, 17(11):1195-1203, November 1991.

[20] K. Smith and M. Winslett. Entity modeling in the MLS relational model. In Proceedings
of the Eighteenth International Conference on Very Large Data Bases, pages 199-210,
1992.

[21] B. M. Thuraisingham. A nonmonotonic typed multilevel logic for multilevel secure
database/knowledge-base management systems. In Proceedings of the Fourth IEEE
Workshop on Computer Security Foundations, pages 127-138, 1991.

[22] S. R. Wiseman. Control of confidentiality in databases. Computers & Security, 9(6):529-
537, October 1990.

26

Discussion: Models

Discussion Leader: Marvin Schaefer, ARCA Systems, Inc.

(paper not available)

27

OBJECT-ORIENTED DATABASE MANAGEMENT

29

Discussion of a New Secure Object-Oriented Data Model

William R. Herndon

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102
wherndon@raitre.org

1 Introduction

Object-oriented database management systems (OODBMSs) are gaining popularity due
to their inherent ability to represent conceptual entities as objects, paralleling the way
humans view the his power of representation has led to a new generation of object
database managers that can support applications such as computer aided design and
computer aided management (CAD/CAM), multimedia information processing, artificial
intelligence, and process control. However, these increasingly popular systems do not
provide adequate support for security of operation. That is, OODBMSs need to operate
securely, often in a multilevel fashion, in order to overcome both malicious corruption of
data and to prevent unauthorized access to and use of classified data. Consequently,
multilevel database management systems are needed in order to ensure that users cleared
to different security levels access and share a database with data at different security
levels in such a way that they obtain only the data classified at or below their level. Such
database systems are called multilevel secure (MLS) OODBMSs.

2 Background

Recently, several approaches to securing OODBMSs have been proposed. While these
efforts have made valuable contributions, some major issues remained unexamined,
including:

• Consistency with industry trends: For greater acceptance by users and vendors
we maximize consistency with de facto standards like C++ and the work of the
Object Management Group. Some existing models forbid multiple inheritance,
make method call a very expensive operation, or tie security to the language's
encapsulation (which C++ allows programmers to circumvent).

• Model flexibility: In the absence of installed products and applications, it is
difficult to distinguish which features and freedoms will be essential. Each
model restriction (e.g., requiring that all attributes of an object be at the same
security level) carries a major risk: It may later be found very harmful, and
impractical to remove from the implementation. Therefore, it seems desirable to
seek generality.

31

In a similar vein, some models impose restrictions to rale out states that appear
unreachable or unnecessary (such as an instance whose key is classified higher
than other attributes). Paradoxically, such restrictions often complicate the
model and implementation, since they must be documented and enforced. Also,
in special circumstances (created by privileged operations) such states can be
very useful.

0 Element-level access control: Our extensive analysis conducted at MITRE
concluded that applications should be written in terms of the natural conceptual
objects of the problem domain, and that these objects could include elements
(i.e., attribute values) at multiple security levels. Many of the existing models
provide protection at the object level. We also concluded that for the
combination of (application + DBMS), neither semantic clarity, assurability, nor
performance need degrade. Our model therefore permits each attribute of each
object to be labeled, independent of all other labels.

° Treatments of polyinstantiation: Existing object models provide a limited
treatment of conflicting data. Existing relational models either do not provide
clear semantics for such data (in terms of statements about the outside world) or
else provide too much semantics, making them well suited to some applications
but ill suited to others.

° Collections of data: Collections (e.g., sets, lists, trees) constitute the major
means by which a database organizes large amounts of information. Existing
secure relational models support one kind of collection, the relation as a set of
tuples. Commercial object models support additional structures. However,
collections appear not to be included in any published secure object model.

3 UFOS: A New Mode!

Due to the problems discussed above, we have created a new model, called Uniform
Finegrained Object Security (UFOS, pronounced U.F.O.s).

Secure OODBMSs are likely to combine technology specifically developed to secure
OODBMSs with technology from contemporary secure relational DBMSs. Therefore, in
an earlier work we have compared the problems and solutions of the object and relational
worlds. We also examined the security impact of capabilities unique to OODBMSs. We
have emphasized methods of providing security to the base of mainstream OODBMS
technologies, because object models and implementation techniques that are unique to the
security community will lead to systems having functional capabilities that substantially
lag behind that of mainstream systems and will too often be unacceptable to users. Thus,
the UFOS model has, as its basis, the following characteristics:

° A labeling scheme that is uniform throughout the model with respect to both
what is labeled and how it is labeled.

° Support for object collections

0 Support for multilevel conceptual objects

° A nonrestrictive model for class hierarchies and inheritance that circumvents
monotonicity restrictions

32

An model layer, existing above the base model, that supports the definition and
implementation of polyinstantiation semantics (the polystrorage layer)

Work to date includes the development of the basic and advanced data models and the
examination of the impact of security on the data model and the development of
applications. Currently, we are examining a number of commercial OODBMSs with the
intent of identifying the most appropriate product to host our model. We have developed
criteria for evaluating the products that require a close examination of the products'
underlying data model and architecture.

4 Model Utility

Current work on this task has focused on demonstrating the utility of our model by
applying it to a sample set of Navy applications that require support for multilevel
operation as well as a flexible fine-grained access control structure. These "envisioned"
applications include logistics support systems, maintenance information systems, and
combat information systems. All of these have need of DBMS services and can benefit
in a number of ways from MLS operation. In fact, some of the scenarios that have been
developed, point to the need for an integrated MLS database, possibly extending over
many heterogeneous DBMSs and systems. In such an environment, the novel aspects of
the UFOS model provide some distinct advantages.

For example, a maintenance information system for Navy aircraft, can benefit from all of
the model facets listed above: fine-grained labeling, collections, and polystorage. In
addition to direct support for querying over composite objects (made possible by fine-
grained labeling), a system based on the UFOS model could also be used to support
sophisticated level-based training simulations, where information appropriate to a given
technicians clearance level could easily be made available. Likewise, schematics and
component lists could be tailored to fit the level of a user through the use of polystorage
and secure collections. In addition, since maintenance personnel cannot always be
shielded from the knowledge of the existence of certain components, cover stories can be
inserted in the database to further enhance security.

33

Trusted ONTOS Prototype
Preliminary Considerations

Marvin Schaefer Sandra Wade
ARCA Systems, Inc. ONTOS, Inc.
Columbia, MD Vienna. VA

1. Project Overview & Scope

In the late summer of 1993, the authors1 began research under contract to the National Security
Agency and Rome Laboratory to begin development of an informal access control model [1] for
a trusted object-oriented database management system (ODBMS). This study is intended to
serve as the basis for future efforts to produce a trusted prototype of an ODBMS offering fea-
tures comparable to those required for Class B1 of the DoD's Trusted Computer System Evalu-
ation Criteria (TCSEC) and the associated Trusted Database Interpretation (TDI) of the TCSEC.

The philosophy behind object oriented technology is becoming the de rißueur standard for the
industry, even though there is presently no universal model that serves as a standard for individ-
ual ODBMS implementations. Several ODBMS products are currently serving a growing user
community. They are being used with greater frequency by the government and industry be-
cause they offer many benefits over existing technologies such as increased performance for
complex applications, support for unusual data types, and a highly flexible data model. Addi-
tionally, with the reduction of budgets in both the government and industry, object-oriented
technology is gaining a wider audience for its potential to reduce overall life cycle costs by
enabling component based software development, promoting software re-use, and supporting
extensible solutions. It is evident that ODBMS technology will be the basis for future DoD
database applications. There is a clear need for a high integrity, multilevel secure, ODBMS.

Although there have been numerous paper studies, there are presently no worked examples of a
trusted ODBMS, extant or under development. It is equally important to note that although the
more traditional concepts and architecture of relational DBMS (RDBMS) tend to dominate the
TDI, there are no interpretations of how specific TCSEC requirements are to be applied to an
ODBMS. The present effort is intended to support future research and development needed in
order better to understand a) the security related issues in the design and implementation and b)
the evaluation, and especially the assurance requirements for a high-integrity, multilevel secure
ODBMS that offers Bl features.

This study is intended to take a fresh look at the trusted DBMS problem. Previous, relational
model-based approaches, have largely been based on a set of security architectures that lead to

'Marv Schaefer was affiliated with CTA Incorporated at the time.

35

polyinstantiation or selective database replication as a means of preserving confidentiality.
However, use of this strategy is often at the cost of database consistency, integrity, performance,
and the ability to see updates without delay. Further, the semantics and operational conse-
quences of polyinstantiation have sometimes proven to be inadequately understood by users and
have resulted in database update inconsistencies. Given that object-oriented architectures invite
the introduction of new security architectures, the opportunity is present to re-examin© alterna-
tives that could result in a more favorable tradeoff between the objectives of confidentiality and
database integrity.

2. kmsmk

The approach taken in this study is based on a survey of relevant prior research in DBMS secu-
rity, with a concentration in object-oriented studies. For the most part, these consist of formal
and informal models and descriptions of hypothetical implementation strategies. Some of the
literature surveyed in the study identified specific constraints on the model and on the resultant
functionality that follow from sometimes identified aspects of the access control model or the
envisioned evaluation class. For example:

o B2 and higher evaluation classes concentrate heavily on issues of minimality in the TCB,
least privilege, and covert channels. These concerns tend to force the policy and design
into directions taken by SeaView, LOCK DataViews, etc. — so that potential channels
are reduced through the introduction of polyinstantiation or data replication at different
classification levels. This is done to preclude inferential attacks that may otherwise dis-
close sensitive information if known multilevel integrity constraints were to be probed by
a knowledgeable adversary.

© Least privilege considerations can interfere with the ability of a trusted DBMS to detect
cases in which inadvertent polyinstantiation or breaches in referential integrity have tran-
spired. This is particularly the case when a user logged in at a level lower than
"database-high" performs updates on the database. This is because the trusted DBMS
runs as a subject at the user's login level and its associated privileges, and cannot see any
of the database or metadata not dominated by that subject's need-to-know and clearance
level Since the DBMS cannot, under these circumstances, generally obtain a complete
and consistent view of a multilevel database, it is generally incapable of managing all
aspects of the data model itself.

© The above assurance considerations also have their affect on concurrency and transaction
management Contemporary user requirements call for DBMSs that support multiple
concurrent users and preserve transactional integrity. This topic is one of complexity and
intensive continuing research in the untrusted community, It only becomes more
complex and less certain when covert channel-free confidentiality requirements are
imposed.

36

The above constraints and complexity have largely come from an evolutionary approach to
DBMS security that is based on prior results from operating system security and initial attempts
to retrofit relational DBMSs onto trusted operating system architectures. The resultant trusted
DBMS policies have therefore largely been constrained by the intrinsic limitations of operating
system policy that could not be modified without placing an underlying trusted operating sys-
tem's TCSEC assurances anievaluation rating in jeopardy.

ODBMSs are evolutionary with respect to object-oriented operating systems which are largely
client-server based. Resulting experience, e.g., Trusted Mach, has shown that these latter archi-
tectures do not evaluate readily against the established TCSEC requirements; the latter fre-
quently require extensive interpretation in order to be applied to contemporary architectures.
We have concluded that much of the evaluation difficulty is not so much caused by inherent
weaknesses in an object-oriented operating system security architecture as by the mismatch
between the conceptual models on which the two syndromes are based.

Therefore, it would be productive to return to First Principles and begin with the definition of a
desired set of control objectives and database properties. Since modeling is the first step to be
taken in building the foundation for a proof of concept prototype, many of the decisions regard-
ing our policy model have been made with the goal of eventual implementation. We consider it
extremely important that the resulting policy model be amenable for refinement into a viable
commercial trusted product. Because of our familiarity with the ONTOS ODBMS architecture
and internals, we have systematically assessed concepts against the realities of modifying this
product to support the multilevel ODBMS model.

The proposed methodology for analysis is (a) to hypothesize a complete multilevel data model
including labeled database entities, (b) to establish through informal analysis that the model is
internally consistent, (c) to superimpose access rules onto this model, (d) to analyze the ade-
quacy of the model against multiuser database goals and objectives, (e) to establish the existence
of an acceptable implementation strategy, and (f) to study the expected security properties of the
resultant constrained abstract "design". Clearly, considerable iteration is required in the above.
We believe that this approach will yield a usable combination of an access control and integrity
model, a hypothetical security architecture, and an interpreted set of criteria against which to
measure any mathematically faithful implementation.

During the course of this study, the relevant literature was surveyed extensively. In particular,
we consulted the proceedings of all major DBMS security conferences and workshops, and both
published and internal reports from institutions conducting research in the field. We also con-
ducted numerous discussions with members of the trusted DBMS research community. The An-
nex contains a partial bibliography of materials used in this study.

The survey of existing literature took place in several passes. The first pass of the literature was
intended to identify common objectives and common restrictions. The second pass was engaged
to identify approaches and issues relevant to an object-oriented data model versus a relational
model. Finally, a third pass was conducted to identify those approaches appropriate to a C++
environment as opposed to Smalltalk (message passing) environment The last two passes are
discussed in more detail below.

37

While it appears possible to propose a straight-forward mapping between the relational data
model and the object model, and therefore apply an access control policy designed for relational
databases to object databases, the resultant model falls short in securing all aspects of the object
database. Because the object model subsumes the relational data model, not only does the access
control policy need to secure the data in an object database, the policy also needs to address
issues such as: how to handle inheritance in the data model; how to handle references between
objects; how to secure methods; and how to handle iteration over groups of objects stored in the
same aggregate. Unfortunately, much of the literature approached the problem of defining a
multilevel security policy for ODBMSs by relying on existing work on relational databases.
Because we were concerned with all aspects of the object model, much of this literature was
consulted, but only selectively considered, as a foundation from which to define our working
model.

Additionally, much of the literature that focused on the object model in its entirety discussed
message filtering approaches to multilevel ODBMS security which are specific to the Smalltalk
paradigm. Although Smalltalk was the predominant object-oriented language when much of the
literature in securing an ODBMS was written, for various reasons most of the commercial
ODBMS vendors such as ONTOS, Inc., Objectivity, Inc., Object Design, Inc., O2 Technology,
POET Software, and Versant Object Technology have written their products using the C++ lan-
guage. Only Servio Corporation has written its product using the Smalltalk language. While the
ability to pass information at runtime as messages between objects exists in Smalltalk, it does
not exist in C++. In C++, all "messages" are implemented as methods or procedures that must
be defined at compile time. Because there is no central message passing mechanism to control
information flow in a C++ environment, the message filtering literature was also excluded as
forming the basis from which to define our model.

3. Issues in Seeurino an QDBMS

As mentioned previously, defining a multilevel access control policy for an ODBMS is not as
straightforward as applying techniques that have successfully passed evaluation against the DoD
Trusted Computer System Evaluation Criteria and associated Trusted Database Interpretation.
In this section, we discuss aspects of the object model which are not present in the relational data
model and have not been given adequate attention as they relate to security. They include:
inheritance, relationships and referential integrity, aggregates,-and methods and polymorphism.

3.1. inhiiritaragi

In an ODBMS, classes are organized into a hierarchy with each subclass inheriting all of the
attributes and methods from its superclass(es). Because metadata information about a particular
class is established at run-time, it must be possible for an application to have access to all
metadata up its inheritance tree. To do so without potentially illegal inheritance information
flows appears to require monotonically non-decreasing class hierarchies. That is, the level of the
subtype must always dominate its supertype, i.e., its classification must be no less restrictive
than that of the supertype. While this guarantees that information flow down the hierarchy is

38

always confined according to the classification lattice, it does so with the known trade-off of
making the data model far more cumbersome for the database designer. The problem is that the
data model and the sensitivity of the data are orthogonal; the existence of a subclass does not
always imply the need for greater or equal sensitivity. Most models in the literature on
multilevel security for ODBMSs enforce the restriction of monotonically non-decreasing class
hierarchies. New ideas about dealing with inheritance without this restriction have been
discussed in [2].

3.2. Relationships and Referential Integrity

Referential integrity is a very important property to establish and preserve in database manage-
ment However, it is extremely difficult to find a means to implement truly multilevel
referential integrity in a multilevel DBMS. This is because of the need to deny operations that
would lead to a violation of referential integrity.

In relational DBMSs, referential integrity guarantees the existence of references to any foreign
key. For example, if in a military operations database there is a operation relation that refer-
ences tanks, there must exist corresponding tank tuples in the vehicles relation. It would be a
violation of referential integrity if (a) an operation tuple were created that referenced a specific
tank that did not exist in the vehicles relation; or (b) if a tank tuple were deleted from the vehi-
cles relation while there still existed one or more references to it in the operation relation. In the
relational model, tests for referential integrity are straightforward and well-defined.

In ODBMSs, references between objects are based on object-identity rather than values of keys.
Whether or not interobject references are well-defined depends, however, on existential con-
straints: a referenced object (i.e., referent) must exist for the reference to be valid. Conversely,
deletion of a referent object would be dependent on deletion of the reference. Tests for
referential integrity are more complex than in the relational context, but can be simplified
through provision of bi-directional references as in Morgenstem[3].

In DBMSs that enforce MAC, it is clear that the security level of the reference must dominate
the security level of the referent, since otherwise there would be a visible reference to an object
that could not be observed from the level of the referencing object. However, it would be
impossible to preserve referential integrity unless the security level of the referent object did not
also dominate the security level of the referencing object, since attempts to delete the referent
must be denied so long as there are any remaining references to it (i.e., the referent must be vis-
ible). Therefore, fullcompliance with the * -property would lead to the condusion that the reference and the
referent must have equal security levels. This constraint would be unacceptable for many real-world
applications.

There are many situations in which either the reference or referent must have distinct security
levels. For example, an unclassified vehicle may be necessary for several sensitive military
operations. The success of these operations would be jeopardized were needed vehicles to
become unavailable without coordination with the operation planners. It could also be com-
promised were its confidentiality to be prematurely breached. This causes there to be a conflict
between the goals of confidentiality and referential integrity. Confidentiality would require that

39

the database always permit the deletion of a vehicle independent of whether it is referenced from
a higher level, even if so doing would compromise referential integrity. This is because an adversary
could infer which vehicles are potentially involved in such operations by sequentially attempting
to delete the vehicles from the database and noting which vehicles could not be deleted.

We believe that this problem can be partially addressed at less than the Bl level of assurance by
having the DBMS maintain a database high log of violations to referential integrity as they
occur. The bi-directional references that simplify enforcing referential integrity will generally
involve an implicit breach of the ^-property and must be appropriately managed by the TCB and
hidden from uncleared users. The proposed model is structured to support the capability to
address this problem.

3.3. Aggrsgitii

Unlike relational DBMSs, which support only one type of aggregate (e.g., an unordered set of
tuples), object DBMSs support a variety of aggregates including Lists, Sets, Dictionaries, and
Arrays. While it is possible to apply the same techniques to securing a Table in an RDBMS to a
Set Aggregate in an ODBMS, the approach is inadequate for Lists, Dictionaries, and Arrays; all
of which possess an implicit or explicit ordering of the objects they contain. Multilevel aggre-
gates, therefore, require a means of interrelating the individual elements of the aggregate without
compromising information confidentiality or the basis for labeling. The semantics of how to
perform operations on multilevel, ordered-aggregates such as iteration over the members of the
list, querying for the cardinality of the list, testing for equality between two lists, querying to see
if the list is empty, and copying a list must be researched and identified.

3A i©fh@ds and Polymorphism

Morgenstern [3] and others have introduced the possibility of having classified methods with the
additional potential for several distinctly classified instances of a single method to coexist. An
example would be the requirement to support three separate implementations of the Method
get_3Dposition. Each implementation would have the identical signature:

[virtual] floaft get._3Dposition(int ^ int. y, im(t z)

The only difference between the three are the actual implementations. The Unclassified version
would return an approximation. The Secret version would return a rounded off value. The Top
Secret version would return the exact value.

Methods in an ODBMS are typically bound to a single programming language such as C++ or
Smalltalk. Many of the research studies in securing a multilevel ODBMS have focused on mes-
sage filtering approaches [5, 6]. This approach, while applicable to Smalltalk, is not suitable for
a C++ language binding. A central mechanism within the TCB, much like the central message
passing mechanism within [5, 6], must be identified which can intervene in a C++ environment
at ran-time to enforce security.

40

4. Objectives for a Multilevel ODBMS

In this section we provide motivation for the decisions made in developing our proposed
ODBMS model, and begin with a summary of the goals and objectives we believe are needed to
support a trusted ODBMS that offers an integration of multilevel confidentiality and integrity
while maintaining a reasonable user interface. It can be argued that the now traditional polyin-
stantiation approaches meet these objectives and can be used safely by sufficiently sophisticated
users. However, because of the subtleties inherent in the semantics of polyinstantiation and the
avoidance of covert channels, naive users are apt to commit errors or misinterpret data. Even
sophisticated users may find that their intentions are foiled by the confidentiality mechanisms
and the side effects of concurrent use by subjects at differing security levels. We outline some
of the motivating difficulties below:

4.1. Multilevel Trusted Subjects and Objects

In least privilege architectures, such as those required at and above the B2 level, no portion of
the TCB is capable of observing and modifying all of the interrelationships and data values
within a multilevel database. The difficulty this causes is that no multilevel update can transpire
as an atomic transaction, and concurrent transactions at other security levels may interfere with
the intended operation and its consistency. There can be serious problems, even if operating in a
single-user environment. For example, if a user operates at a level lower than the most sensitive
data, the DBMS's lack of ability to observe all data values and integrity constraints, while serv-
ing that user, may result in integrity compromises that cannot easily be detected by any user or
DBA, even though they could have been prevented in a commercial single-level environment.

Many of the integrity problems identified above can be eliminated if the DBMS is capable of
observing the overall database and its related integrity constraints. However, building a DBMS
this way could make it ineligible for B2 or higher levels of trust since it would appear to violate
the principles of least privilege, least common mechanism, and TCB minimality, and it could
introduce serious coven or inferential channels. The only way in which confidentiality could be
preserved would be to implement a TDI Trusted Subject DBMS security architecture. Even with
the more relaxed Bl assurance requirements, considerable attention to security-relevant deci-
sions is required in order to ensure that the TCB maintains continuous control over classified
data and labeling, and over the interface with the underlying trusted operating system base. This
would be defensible only if adequate analysis and confinement were possible. We believe that
the model developed in this study serves to justify a credible case that the required assurances
can be provided at the Bl level.

4.2. Granularity of Labeling

The TCSEC mandates that security relevant decisions be based on the interpretation of sensitiv-
ity (i.e., classification and clearance) labels associated with data and with subjects. Using labels
to enforce security works well with the classical processes, files, and modes of access that
translate into the abstract Read and Write operations of the Bell-LaPadula model. However, it
must be borne in mind that while label interpretation is always a syntactic issue, data classifica-

41

tion is a semantic issue and cannot, in general, be automated. In particular, the original creation
of a file derives its classification, in part, from a conscious and educated decision on the part of
its creator; subsequent actions on the operating system file are often safe because of the simpli-
fied interpretation of the permitted modes of access. While this is usually an acceptable
approach to take in a trusted operating system, it falls short of what is needed in a misted DBMS
because update and transaction semantics are far more complicated and involved.

Issues of implementation often mislead the designer from obtaining a clear understanding of
what is needed to fit the requirements of the application, and then considering whether and how
it can be represented and enforced. Many researchers have considered the objective of "field-
level" granularity of classification, leading to the possibility that the number 17.3 is considered
to be Top Secret (Woods Hole, q.v) while 17.4 and 0.1 are unclassified numbers. The point that
is being missed is rwt whether 17.4 - 0.1 is Top Secret, but rather what it is that causes 17.3 to
have such sensitivity. The reason is always tied to the relationship between the 17.3 and the unit
or category with which it is associated in the real or abstract world of the classification authority.
That is, it is not so much the value that is classified as the rdatwnsfdp between things that is
sensitive. Some researchers have based their entire approach to DBMS policy modeling on the
notion of data-dependent classification schemes based on data associations [4].

In this study, we concentrated on mechanisms for associating labels with data values as opposed
to associating them with the relationship a data value has with its Class, Attribute, or Reference
to another object. Our goal was to identify a simple and uniform means of labeling at the finest
granularity possible, which could be enforceable at runtime. Equally important was preserving
the benefits of the emerging ODBMS model. Based on our overall rationale for classification,
the variation on Morgenstern's [3] original concepts of Complete Object and of Object Instance
developed into the refined form shown in our model.

4.3. System Administration Coosidarattons

Databases, like enterprises, always evolve and undergo modification. Often the modifications
are planned, but at times they represent reaction to known compromises to integrity that require
rectification. To compensate for inconsistencies that arise from support of a multilevel ODBMS,
e.g., accidental polyinstantiation, an appropriate suite of high-integrity utilities needs to be
designed and provided.

In this study, considerable attention was focused on the goal of creating a model that would not
severely degrade the of ease-of-use of the multilevel ODBMS over a conventional single-level
ODBMS. We believe that the present model, which does not explicitly deal with operational
matters, will support this objective. In particular, the model is developed with the implicit
requirement that the TCB, in its support of users, have full access to all metadata, all data, and
all integrity constraints. This provides a planned means for interacting with cleared staff who
must define, redefine or repair portions of the database as a consequence of multilevel use.

Currently, the model does not explicitly define any policy-critical personnel roles or functions.
Further examination is required of implementation issues and their interplay before these opera-
tional considerations can be made precise.

42

4.4. Polyinstantiation and Data Replication

Many trusted DBMS efforts have several techniques of decomposing a multilevel database into
single-level components in order to counter potential covert channels or otherwise disallowed
information flows. A common approach in much of the literature is the concept of potyinstan-
tiation, with data replication as one of the ways in which it may be implemented. In some cases,
polyinstantiation is used to provide deliberate, but separate, realities at distinct sensitivity levels
— either in the form of disinformation or as plausible cover stories. In particular implementa-
tions, however, the device may be either an artifact of updates made by subjects acting at differ-
ent sensitivity levels, or the basic implementation strategy for a DBMS' security architecture.

In either case, the results of polyinstantion can be contrary to the goals of establishing and pre-
serving database consistency and semantic integrity. Many examples and paradoxes have been
presented in the literature that indicate that polyinstantiation is a rich complex that offers both
benefits and liabilities. The issues range over the foundations of a consistent data model (e.g.,
multiple tuples stemming from a single primary key to a relation), how to perform statistical
queries on a polyinstantiated database, etc. It appears that each issue can be dealt with indi-
vidually, but there is not yet an accepted universal theory.

Many investigators have chosen to differentiate between deliberate and accidental cases of
polyinstantiation and its manifestation. Deliberate cases include cover stories and corrections
performed by subjects cleared to view all of the relevant information. Accidental cases
(sometimes called automatic polyinstantiation) are those where, as a consequence of updates
performed by subjects acting at different security levels, the TCB appears to create object
instances that have the same object identity but that otherwise differ in value. The accidental
case can result either from the user acting on incomplete information or from vestiges of the *-
property. To distinguish all intentional cases from the accidental case, the model refers only to
the latter as Polyinstantiation.

4.5. Multilevel Transactions

A transaction is a set of operations that read and/or write persistent objects and satisfies the
SACYD properties (atomicity, consistency, isolation, and durability). Briefly, atomicity means that
the transaction is either executed in its entirety or not executed at all; consistency means that the
transaction maps a database from one consistent state to another, isolation means that the trans-
action does not read intermediate results of other noncommitted transactions; and durability
means that once a transaction is committed, its effects are guaranteed to endure despite system
failures. Scheduling of transactions, i.e., locking of data, needs to be accomplished such that
the user application is notified of the success or failure of each transaction. This notification,
unfortunately, could lead to illegal information flows and be in conflict with confidentiality pol-
icy requirements.

We have developed the proposed model with a view toward providing an adequate foundation
from which to address many issues of multilevel transactions and the ACID properties. These

43

are introduced in the model's concepts of: Basic Object, SubQbject, and Complete Object. We
have identified a strategy that uses these concepts to deal with potential conflicts resulting from
ACID properties. The strategy guarantees consistent transactions, and always allows adequately
cleared users to make informed decisions or corrections by dealing directly with the TCB over a
fully-isolated B3 trusted path.

5. Plans for the Futur©

Rome Laboratory has initiated a 30-month follow-on contract leading to development of a
Trusted ONTOS proof-of-concept prototype, 'TOP, based on the work reported above. The pro-
ject continues evolving the abstract access control model reported in [1] and will resolve many
of the known open issues in the model.

The open issues identified to date are delineated below.

DAC
© Auditing
o Trusted Subjects and Trusted Path
o Multilevel (Trusted) Methods
o Concurrency / Locking / Serializability
o Schema and Instance Migration
o Versioning
° Aggregates
o Backup / Recovery
o Trust Properties of Utilities

44

References

[1] Schaefer, M., and S. Wade, Requirements insecurity Policy: final'Hfyport ■ Preliminary Informed
Access Control Model, Contract No. MDA904-93-G-0006, CTA, Incorporated, Rockville,
MD, 31 March 1994.

[2] Herndon, W., "Can We Do Without Monotonically Non-decreasing Levels in Class Hier-
archies?", Unpublished Manuscript, The MITRE Corporation.

[3] Morgenstern M., "A Security Model for Multilevel Objects with Bidirectional Relation-
ships", 'Proceedings of the 4th If IP 113 'Working Conference in 'DataBase Security, Halifax,
England, 1990.

[4] Rosenthal, A., W. Herndon, B. Thuraisingham, and R. Graubart, "Multilevel Security for
Object-Oriented Database Management Systems", Working Paper No. WP-92B0000375,
The MITRE Corporation, Bedford, MA, 1993.

[5] Sandhu, R., R. Thomas, and S. Jajodia, "A Secure Kemelized Architecture for Multilevel
Object-Oriented Databases", Proceedings of the IT/LT, Computer Security foundations "Workshop
/<KJune 1991.

[6] Sandhu, R., R. Thomas, and S. Jajodia, "Supporting Timing Channel Free Computations
in Multilevel Secure Object-Oriented Databases", Proceedings of the 5th If IP 11.3 "Working
Conference in (DataBase Security, Shepherdstown, West Virginia. 1991.

45

Discussion: Multilevel Object-Oriented Approaches

Discussion Leader: LouAnna Notargiacomo, The MITRE Corporation

(paper not available)

47

MULTILEVEL SECURE DATABASE MANAGEMENT SYSTEM
ARCHITECTURES

49

Applying the Concept of TCB Subsets to Trusted Subject
DBMS Architectures*

James P. O'Connor
Infosystems Technology, Inc.

1835 Alexander Bell Drive, Suite 230
Reston, VA 22091

Abstract
This paper presents a multilevel secure DBMS architecture that was derived by

applying the concept of TCB subsets to a trusted subject DBMS architecture. The
resulting architecture retains many of the advantages of a trusted subject architecture
while allowing for a significantly higher level of assurance for mandatory access control.
Because it is based on concept of TCB subsets, the new architecture lends itself to
incremental evaluation which in turn simplifies the evaluation process, reduces the cost
of re-assessing a modified system, and provides the vendor a sound basis for supporting
a family of MLS DBMS products.

1 Introduction

The primary motivation for the development of the trusted computing base (TCB) subset
approach to trusted system design was the ability to build upon a previously evaluated TCB
without having to repeat any of the work that went into the evaluation of that TCB [1, 2).
This is a significant benefit, but it tends to obscure the fact that the TCB subset approach
is an important general-purpose trusted system design technique. This is particularly true
in the arena of multilevel secure (MLS) database management systems (DBMS) where
the term ''subset architecture" is often used to denote an architecture where the DBMS
is completely constrained by an underlying security kernel. An alternative to a subset
architecture is a "trusted subject architecture" where the DBMS contains some subjects
that are not completely constrained by the underlying security kernel. In this paper, we
argue that the TCB subset approach is a general-purpose design technique that can be
productively applied to DBMS architectures irrespective of whether or not they employ
trusted subjects.

Section 2 of this paper presents the concepts of TCB subsets and trusted subjects, and
discusses the relationship between the two. Section 3 discusses MLS DBMS architectures
based on each of these concepts and discusses their advantages and disadvantages. Section 4
presents an MLS DBMS architecture that combines the concepts of TCB subsets and trusted
subjects, and presents the advantages and disadvantages of this architecture. Section 5
presents conclusions and future work.

"This work was supported by the U.S. Air Force, Rome Laboratories, under contract F30602-90-C-0071.

51

2 C

2.1 TCB Subsets

In a trusted system based on the concept of TCB subsets, the overall system security policy
is hierarchically partitioned and allocated to different parts (subsets) of the system. Each
of these parts implements a reference monitor enforcing the corresponding policy. Each
part is similar to a conventional reference monitor, with the exception that, it may use
the resources of the more primitive subsets (lower in the hierarchy) to enforce its security
policy (the most primitive subsets use only the hardware). A subset architecture can be
incrementally evaluated, in that each of the parts can be separately evaluated against then-
respective policies. The evaluation of a given part depends upon the evaluation of the more
primitive subsets which it uses. Even though the parts can be incrementally evaluated, it
still must then be argued that when composed, parts enforce the original system security
policy.

The idea of having multiple levels of security kernels, each implementing a security
policy on its own objects, dates back to the design of the UCLA Virtual Machine System
[3]. The current concept of TCB subsets grew out of work on the concept of extensible
TCBs [4] and the first full treatment of this form of the concept was published in [1]. Here,
the basic idea was to generalize the reference monitor concept [5] to support the goal of
incremental evaluation of trusted systems. The Trusted Database Interpretation (TDI) [2]
of the Trusted Computer System Evaluation Criteria (TCSEC) [6] embraced the concept
of hierarchically related subsets as a basis for trusted DBMS development and evaluation.

The TDI formally defines a subset M as the a set of software, firmware, and hardware
(where any of these three could be absent) that mediates the access of a set S of subjects to
a set O of objects on the basis of a stated access control policy P and satisfies the properties:

1. M mediates every access to objects in O by subjects in S;

2. M is tamper resistant; and

3. M is small enough to be subject to analysis and tests, the completeness of which can
be assured.

Furthermore, the TDI specifies a set of conditions that a subset architecture must meet
in order to be eligible for an evaluation by parts. These conditions are:

1. The candidate TCB subsets are identified;

2. The system policy is allocated to the candidate TCB subsets;

3. Each candidate TCB subset M[i] includes all the trusted subjects with respect to its
technical policies P[i];

4. The TCB subset structure is explicitly described;

5. Each TCB subset occupies distinct subset-domains; and

52

6. The more primitive TCB subsets provide support for the reference validation mecha-
nism arguments for the less primitive TCB subsets.

Any architecture that claims to be a subset architecture must satisfy these conditions.

2.2 Trusted Subjects

A trusted subject is an entity (usually a process) that runs with special privilege that
allows it to bypass the security policy of an underlying reference monitor1. For example,
UNIX System V Release 4.2 ES allows a subject to be granted a number of privileges,
including: read-up (MACREAD), write-down (MACWRITE), and modify process level
(SETPLEVEL) [7]. Other operating systems provide a more granular privilege mechanism
where processes are only trusted within a range [8].

Trusted subjects are employed in a system design when the constraints implemented by
the underlying security mechanism make it impossible (or very difficult) to implement re-
quired functionality. They may be used as part of the implementation of a multilevel secure
operating system (and hence are evaluated as part of the operating system evaluation),
or they may be added later to support a trusted application (e.g., a guard application).
Since trusted subjects are not completely constrained by the underlying reference monitor,
it is crucial that they be carefully analyzed to ensure that they do not violate the intended
security policy.

2.3 Relationship Between Subsets and Trusted Subjects

The first issue that must be addressed is whether it is possible to apply the concept of TCB
subsets to an architecture utilizing trusted subjects. One way to illustrate that the concepts
of trusted subjects and TCB subsets are compatible, is to start with a valid TCB subset
architecture, add a trusted subject, and argue that the result can be made into a valid (but
different) subset architecture. A subset architecture is valid if it satisfies the six criteria
for a subset architecture, and each subset possesses the three reference monitor properties
required of a subset.

Assume that there exists a TCB that is layered into n hierarchical subsets M[0], M[l],
.... M[k], ..., M[n], and is valid by the above definition. Now suppose that we add a trusted
subject to subset M[kj (trusted with respect to subset M[k-1]). This situation is shown
on the left side of Figure 1. As modified, this architecture is not valid because it violates
condition 3. However, we can combine the subsets M[k] and M[k-1] into a single subset that
is allocated the combined policies of the two subsets.2 The resulting architecture, which is
shown on the right side of Figure 1, is a new candidate subset architecture.

It should be apparent that the candidate architecture satisfies the six conditions for a
subset architecture as listed above. The remainder of this section argues that the new subset
(M[k-1]) can satisfy the required reference monitor properties as well. The first property

1Even though most discussions of trusted subjects focus on the ability to circumvent mandatory access
control, a process can be trusted with respect to any aspect of the policy implemented by the reference
monitor (e.g., discretionary access control).

2In general, a trusted subject introduced in subset M[i], that is trusted with respect to level M[j], i > j,
will require all subsets M[k], i > k > j, to be combined.

53

Min] M[n-1]

Add Trusted
Subject

(wrt. M[k-lj)
M[k]

M[k-1]
M[k-1]

Mill

M[0]

M[l]

MfOl

Figure 1: Adding a Trusted Subject to a Subset Architecture.

can always be satisfied because the new subset can use the same mechanisms as the old M[k]
and M[k-1] subsets to ensure that it is not bypassed. The second property can always be
satisfied because the new subset can use the same mechanisms as the old M[k] and M[k-1]
subsets to ensure that it is tamper resistant. The satisfaction of third property depends
on characteristics of the original subsets that were combined. As noted in the TCSEC, the
third property is currently interpreted to mean that the TCB "must be of sufficiently simple
organization and complexity to be subjected to analysis and tests, the completeness of which
can be assured" [6]. It certainly can be argued that if the original two subsets satisfied this
criterion, and the additional trusted subject satisfied this criterion, then the new subset
would satisfy it. At higher assurance levels there is also the implication that modules that
are not protection critical have been excluded from the TCB. A similar argument could be
made that if the original two subsets were in some sense "minimal" given their respective
polices, the combined subset would also be minimal for the combined policy, provided that
the trusted subject itself were minimal.

The above argument demonstrates that, although trusted subjects have a definite impact
on subset architectures, they can not be determined a priori to be incompatible concepts.
The implication is that an MLS DBMS can be implemented using trusted subjects and may
still derive benefit from an application of the concept of TCB subsets.

3 MLS Dl

3.1 TCB Subset BBM£

The concept of TCB subsets has been applied in the domain of database architectures to
produce a TCB subset DBMS architecture. This architecture was first proposed as part
of the SeaView effort [9]. In this architecture, the DBMS runs as one or more untrusted
processes on top of a security kernel. This architecture consists of two subsets. The most
primitive subset is the underlying security kernel, which is responsible for all mandatory
access control enforcement. The DBMS forms a second subset which enforces a discretionary
access control (DAC) policy on its own objects.

The advantages of this architecture are ease of evaluation and assurance. The ease
of evaluation of this architecture is due to the fact that, since this architecture has no
trusted subjects, the DBMS is prevented from doing anything that would invalidate a

54

previous evaluation of the underlying security kernel. There is no need to perform any
re-evaluation of the underlying operating system. The mandatory assurance characteristics
of this architecture are derived directly from the mandatory assurance characteristics of the
underlying operating system. For this reason, the mandatory assurance level of the DBMS
should be the same as that for the underlying security kernel.

The disadvantages of this architecture are that it is inflexible, difficult to use, difficult
to implement, and inefficient. The architecture is inflexible because:

1. Poly instantiation is unavoidable. This is because the presence of similarly named
objects at higher or non-comparable levels cannot be detected. This is true not only
of tuples, but of databases, relations, and schemata.

2. Integrity constraints cannot always be enforced. This is because the enforcement of
certain constraints require the ability to detect the presence of objects at a higher or
non-comparable level or to remove objects at a lower or non-comparable level.3

3. DBMS Trusted subjects cannot be supported. This is because the DBMS itself cannot
circumvent MAC privileges, therefore it cannot offer any such services to its clients.

4. Information cannot be, downgraded. This is because downgrading requires a trusted
subject, which is not permitted in a TCB subset DBMS architecture.

The resulting DBMS is difficult to use for the above reasons as well as the fact the database
dumps, restores, and bulk loads must be performed at each level in the security lattice. The
implementation is difficult because:

1. Data must be fragmented. This is because the DBMS must store all multilevel data,
metadata, and log information in the single level objects provided by the security
kernel.

2. Concurrency control and recovery must be performed without global knowledge. Since
the subjects that perform these operations are necessarily single level, they can only
see the portion of the relevant data that they dominate.

3. DBMS processes must be replicated at each security level. Since the DBMS subjects
are necessarily single level, there must be one for each client security level to be
supported.

Finally, the architecture is less efficient because:

1. The amount of I/O is increased because of data/log fragmentation. This is because
the DBMS subject must read from one file for each level in the security level lattice
that it dominates. This will significantly reduce the effectiveness of buffering.

3It can be argued that this and the previous "disadvantage" are actually necessary characteristics of
a secure system (because both failure to support polyinstantiation and complete enforcement of integrity
constraints can introduce covert channels). The issue is that a system based on this architecture cannot give
the DBA the option to trade-off security and data integrity.

55

The DBMS must rely on the operating system file management. Database manage-
ment systems frequently implement their own file systems that are optimized for
database access. Since these file systems are necessarily multilevel, they cannot be
implemented using untrusted subjects.

3. Each DBMS process must be duplicated at each security level As noted above, the
DBMS TCB subset architecture requires the duplication of processes by security level.
This will have a negative impact on performance because of the additional context
switching overhead (and resource consumption).

3o2 THUS- »MS Architecture

In the trusted subject DBMS architecture, the DBMS includes one or more subjects that
are trusted with respect to the security policy of the underlying operating system. The
composed system (operating system plus application) implements a security policy that is
potentially different from the one originally implemented by the operating system.

The advantages of this architecture are performance, flexibility, ease of implementation,
and ease of use. The primary disadvantages of this architecture are low assurance and eval-
uation difficulty. Both of these disadvantages are a result of the fact that, since the DBMS
is not fully constrained by the underlying operating system TCB, flaws in its implementa-
tion can cause a breach of mandatory security. The difficulty of evaluating such a system is
compounded by that fact that the combination of the trusted subject and the TCB of the
underlying operating system can introduce information flows that cannot be discovered by
performing an analysis of the trusted subject alone. The implication of this is that it is not
sufficient to look at the trusted subject alone when evaluating the security characteristics
of the DBMS. At least some of the evaluation of the underlying operating system must be

repeated.

4 Proposed Architecture

The trusted subject and TCB subset architectures presented in the previous section are
generally considered to be disjoint, each having its own distinct advantages and disadvan-
tages [10]. This view is not consistent with the idea of TCB subsets as a general-purpose
design technique. As discussed in section 2.3, there is no technical reason why the concept
of TCB subsets cannot be productively applied within the domain of trusted subject DBMS
architectures. This section presents an MLS DBMS architecture derived by applying the
concept of TCB subsets to a trusted subject DBMS architecture.

4.1 Architecture Definition

Figure 2 shows an abstract MLS DBMS architecture that was derived by applying the
concept of TCB subsets to a trusted subject DBMS architecture. This architecture consists
of two subsets, M[0] and M[l]. The M[0] subset enforces a mandatory access control policy
on DBMS objects (e.g., tuples) and consists of the operating system TCB combined with
the minimal amount of trusted DBMS code required to implement the desired policy. The
M[l] TCB subset is layered upon M[0] and enforces a discretionary access control policy

56

Application
Programs

Untrusted
DBMS Code

High-Level Policy
Layer

Extended TCB
Layer

Operating System
TCB

M[l]

MfOl

Figure 2: Abstract Subset Architecture.

that is a refinement of the policy enforced by the M[0] TCB. Each of these subsets must be
isolated via a domain isolation mechanism (e.g., protection rings [11]).

This architecture is abstract in the sense that it can describe a wide range of actual
MLS DBMS systems. One important detail that has been omitted is the actual allocation
of DBMS functionality to the subsets. For the M[0] subset, some possibilities include: no
DBMS functionality (the conventional TCB subset case), a simple filter, and significant
DBMS functionality (e.g., access methods and scheduler). For the M[l] subset, some possi-
bilities include: a null subset (i.e., rely on the DAC, if any, provided at the M[0] subset) and
subsets whose functionality is determined by the granularity of the definition of protected
objects in the system's security policy (e.g., relations, columns, views).

The M[0] subset of this architecture actually consists of two "parts" (in the TDI sense)
that are isolated in separate protection domains. Since one of these parts contains subjects
trusted with respect to the other, these two parts do not qualify for an evaluation by parts.
As noted in the TDI, even though these parts do not qualify for an evaluation by parts, it
is likely that significant savings can be recognized by reusing the results of the evaluation
of the underlying security kernel. The problem encountered here is that there is no theory
that can be used to quantify these savings a priori.

It is also worth noting that the M[l] subset (or the M[0] subset for that matter) could
be further subdivided into additional subsets if desired. This would of course depend on a
meaningful decomposition of the security policy and the availability of the required domain
isolation mechanisms.

The remainder of the paper will focus on an instance of the above architecture in which
the extended TCB layer includes the minimal DBMS functionality required to retain the
significant advantages of the trusted subject architecture as discussed in 3.2.

4.2 Advantages

The proposed architecture retains the significant advantages of the trusted subject DBMS
architecture while mitigating its disadvantages. The advantages are retained through the
judicious use of trusted subjects (e.g., to avoid data fragmentation). The disadvantages
are mitigated by isolating all DBMS code that requires mandatory privilege to the lowest
level subset. The result is a system that offers significantly higher assurance for mandatory

57

access control and is more evaluatable than a similar system with a monolithic TCB. The
assurance advantages are a result of the fact that:

o The amount of code that can cause a violation of MAC is significantly decreased. The
amount of DBMS code in the M[0] subset is significantly less than that in the TCB as
a whole and only subjects in this subset can run with special MAC privileges. Since
subsets must satisfy the isolation and non-bypassability requirements for a reference
validation mechanism, these properties guarantee that only code in the M[0] subset
can cause a violation of MAC.

© The effectiveness of assurance techniques is increased. Assurance techniques are more
effectively applied at a lower level of abstraction. Since assurance techniques must be
applied to each subset, the TCB subsets approach forces you to apply these techniques
more directly to the portions of the system responsible for MAC enforcement (viz.,
the M[0] subset). Additionally, if you subscribe to the notion of balanced assurance
[12], this approach has the effect of focusing your assurance efforts where they will
have the most impact.

The proposed architecture is easier to evaluate because:

© The scope of global analysis is reduced. Developing a system using trusted subjects
requires that certain global analysis be performed on the combined underlying TCB
and the DBMS TCB (e.g., covert channel analysis). If the DBMS TCB has a multi-
subset TCB, only the M[0] TCB must be considered in these global analyses.

© The evaluation task can be partitioned. One of the primary benefits of the TCB subsets
approach is the ability to divide a complex system into parts and evaluate the parts
incrementally. This approach makes the evaluation of a complex TCB more tractable.

0 The re-assessment of modified or ported systems is simplified. A TCB subset archi-
tecture has the characteristic that the evaluation impact of certain changes is isolated
to the subset in which they occur. This can result in significant savings in the area of
re-assessment.

© Subsets can be. evaluated to different assurance levels. This architecture has the char-
acteristic that the different subsets can be evaluated to different assurance levels. That
is, the M[0] subset could be evaluated to a relatively high level (e.g., B3 or Al) while
the M[l] subset could be evaluated at a lower level (e.g., C2).4

In addition to the assurance and evaluation benefits, applying the concept of TCB
subsets to a trusted subject architecture permits a vendor to support a family of MLS
DBMS products without duplicating evaluation effort. A vendor could support an entire
product line (e.g., with products supporting different DAC policies) with the basic M[0]
TCB at its core. Since a subset architecture allows incremental evaluation, the underlying
M[0] TCB need only be evaluated once for the entire product line.

4Current evaluation practice is to require all subsets to be evaluated at a uniform assurance level. There
is, however, no technical reason to require a uniform assurance level provided that a given subset does not
depend upon a less assured subset.

4.3 Disadvantages

The application of the concept of TCB subsets to trusted subject DBMS architectures
has some disadvantages as well. Specifically, the proposed architecture has the following
disadvantages:

• Implementation difficulty associated with multiple protection domains. The architec-
ture presented above will require at least four hierarchical protection domains: one
for the operating system, one for the extended TCB layer, one for the M[l] subset,
and one to protect the integrity of the untrusted DBMS code. These domains can be
provided through a variety of mechanisms and each domain need not use the same
mechanism.

• Performance overhead associated with multiple protection domains. As noted above,
this architecture requires at least four hierarchical protection domains. Crossing do-
main boundaries is likely to have a negative impact on DBMS performance.

• Reduced Flexibility. This reduction in flexibility occurs because the M[l] subset cannot
violate policy of the M[0] subset even in cases where it would be desirable. For
example, it would not be possible to support trusted stored SQL procedures in a
DBMS in which SQL is outside of the mandatory subset. Exactly how much flexibility
is lost is determined by what DBMS functionality is placed in the M[0] subset.

These disadvantages are significantly less that those realized in the conventional TCB
subset DBMS architecture.

5 Conclusions

This paper proposed an MLS DBMS architecture that was derived by applying the concept
of TCB subsets to a trusted subject DBMS architecture. The proposed architecture retains
the strengths of the trusted subject architecture while mitigating its weaknesses. The
strengths of the trusted subject architecture are its performance, flexibility, ease of use, and
ease of implementation. These strengths are retained in the proposed architecture through
the judicious use of trusted subjects. The weaknesses of the trusted subject architecture are
mandatory assurance and evaluation difficulty. A significantly higher level of mandatory
assurance is possible in the proposed architecture because the amount of code that requires
mandatory privilege is minimized and that code is isolated in the lowest level subset. The
evaluatability of the architecture is improved because it can be evaluated incrementally,
and certain global analyses are only required on the lowest level subset. In addition, an
incremental evaluation can reduce the cost of re-assessing a modified system, and provide
the vendor a sound basis for supporting a family of MLS DBMS products.

We are currently prototyping the proposed architecture by reengineering the Trusted
RUBIX MLS DBMS [13]. The anticipated results of the prototyping effort are a demon-
stration of the feasibility of the new architecture and an improved understanding of the
properties of the architecture. Topics to be investigated include: size of the extended TCB,
trade-offs between extended TCB size and architectural flexibility, performance character-
istics, and resource utilization characteristics.

59

[10

[11

[12;

[13

W. Shockley and R. R. Schell. TCB subsets for incremental evaluation. Proceedings of
the Third Aerospace Computer Security Conference, December 1987.

National Computer Security Center. Trusted database interpretation of the trusted
computer system evaluation criteria. Technical Report NCSC-TG-021, National Com-
puter Security Center, April 1991.

G. J. Popek and C. S. Kline. A verifiable protection system. Proceedings of the Inter-
national Conference on Reliable Software, pages 294-304, 1975.

M. Schaefer and R. R. Schell. Toward an understanding of extensible architectures for
evaluated trusted computer system products. Proceedings of the 1984 Symposium on
Security and Privacy, pages 41-49, 1984.

J. P. Anderson. Computer security technology planning study Technical Report ESD-
TR-73-51 (AD-758206), J. P. Anderson Co., October 1972.

Department of Defense. Department of Defense trusted computer system evaluation
criteria. DOD Standard 5200.28-STD, Department of Defense, December 1985.

Unix System Laboratories. System V Release 4.1 ES Network User's and Administra-
tor's Guide, 1991.

R. R. Schell, T. F. Tao. and M. Heckman. Designing the Gemsos security kernel for
security and performance. Proceedings of the 8th National Computer Security Confer-
ence, 1985.

Teresa F. Lunt and Peter K. Boucher. The SeaView prototype: project summary. In
Proceedings of the 17th National Computer Security Conference, Baltimore, Maryland,
October 1994.

W. Timothy Polk and Lawrence E. Bassham III. Security issues in the database lan-
guage SQL. NIST Special Publication 800-8, National Institute of Standards and
Technology, August 1993.

M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing protection
rings. Communications of the ACM, 15(3):157-170, March 1972.

T. Lunt, D. Denning, R. Schell, M. Heckman, and W. Shockley. Element-level classi-
fication with Al assurance. Computers and Society, August 1988.

J. P. O'Connor. Trusted RUBIX: A multilevel secure client-server DBMS. In Proceed-
ings of the Eigth Annual IFIP Working Group 11.3 Working Conference on Database.
Security, August 1994.

60

SWORD on CMW

Simon R. Wiseman

Defence Research Agency
St. Andrews Road
Malvern, Worcestershire, WR14 3PS, England

wiseman@dra.hmg.gb

CMWs offer floating labels as a means of providing flexible secure operation. The SWORD
secure DBMS provides fine grain protection at the field level, with labels that do not float.
SWORD also supports clients which are trusted to label their queries appropriately. By
judiciously making the CMW labels float according to the result of a query, an ordinary CMW
process can be allowed the flexibility of a trusted client. This preserves some of the advantages of
floating labels without complicating the semantics of the DBMS.

The SWORD secure DBMS [1] was designed to overcome the problems that had been perceived with
the use of polyinstantiating DBMSs [2]. It was intended to be used as part of systems operating in
multi-level security mode, with labelled entities forming the basis of information flow security.
However, Compartmented Mode Workstations (CMWs) [3] have since become an important
component of secure systems and these, unlike other secure components, use a dual-labelling
system.

When DBMSs, or other secure subsystems, interact with CMWs, consideration must be given as to
how the DBMS's simple single-label scheme interacts with the dual-labels in the CMW. However,
in order to judge how this may be done effectively, it is necessary to ascertain what role the CMW
dual-labels are intended to fulfil.

The important feature of CMW dual-labels is that they provide floating labels. These float in
response to the flow of labelled data and offer a distinct advantage with respect to operating
Commercial-Off-The-Shelf (COTS) software in a secure system. In an ordinary secure Unix,
COTS software would be constrained to work at a single security level. If the software needed to
read files classified higher, or write files classified lower, than its "session level" it would be
prevented from doing so by the secure operating system. Since the software is unaware of labels, it
would not be expecting its read/write requests to be rejected and will at best provide meaningless
error messages to the user.

With floating labels, COTS software is not constrained by the operating system's labels, even
though it is unaware of them. If the software reads a highly classified file, the process' label is
raised. If the software writes to a lowly classified file, the file's label is raised. Problems occur
only if the software tries to work above the user's clearance, but this would not be expected in
normal operation.

© British Crown Copyright 1994 /DRA
Reproduced with the permission of the Controller of Her Britannic Majesty's Stationery Office

61

This paper briefly discusses how CMW dual-labels may be used and describes SWORD's
security controls. Then, one way in which SWORD may be used in a CMW environment is
described.

A CMW applies two labels to each entity: a Sensitivity Label and an Information Label. The
Information Label is initially set to lattice-bottom (the lowest possible label), but it floats upwards
as more classified data is moved into the entity. The Sensitivity Label is generally fixed and acts
as an upper bound to the Information Label.

The Information Label of an entity in a CMW is often considered to be a more appropriate
reflection of the sensitivity of the information contained in ih® entity than the Sensitivity Label.
However, the exact difference between the Information Label and Sensitivity Label is not
precisely specified. This is unfortunate since it is then difficult to decide whether some use of the
Information Label is appropriate.

It would seem reasonable to assume that, for active entities which communicate directly with the
user (such as windows), the user's clearance is used as the Sensitivity Label1. This reflects the
fact that the sensitivity of information presented to the user should not be higher than their
clearance. Sensitivity Labels on other entities, which are internal to the machine (such as files),
are also needed as part of the mechanism to ensure that Information Labels on windows do not
float too high [4].

The Information Label is intended to provide the classification which should be applied to the data
within an entity. However, classified information may theoretically be encoded in the state of an
entity, without this being reflected in the entity's Information Label. This is because the
Information Label only accounts for information flows that occur when data moves [4].

The CMW design allows the Information Label to ignore further subtle information flows, which
arise because of the way entities are addressed and printed outputs are labelled [4]. Also, some
implementations of CMW ignore various other flows relating to addressing.

It is hard to conceive of a system where meaningful information flows when data ceases to move,
unless the system is being actively attacked by sophisticated opponents using Trojan Horse
techniques. In low threat environments, vulnerabilities that can only be exploited by Trojan
Horses are considered to be an acceptable risk^. The additional flows allowed by the design, and
introduced by the implementations, also seem to be difficult to exploit. Thus, the Information
Label is likely to suffice as an accurate indication of the protection required for an entity's
contents.

To summarise, it would appear that there are two possible ways of using the dual labels of a CMW.
1. The Information Label is just some additional data about an entity, which is probably used

during downgrading operations to convey the requested new security class.
The Sensitivity Label gives the protection required of the data within an entity.

2. The Information Label gives the protection required of the data within an entity.
The Sensitivity Label is just an upper bound that is used to carry the user's clearance.

^Though the Sensitivity Label might be artificially lower than the users true clearance.
^The terminology of [11] is used, so roughly risk = vulnerability * threat

62

In the first case, the Information Label is relatively uninteresting. Its value is not really relevant
to the security of the overall system, because it plays no part in the enforcement of confidentiality.
If it becomes set to an inappropriate security class, the user who is to review the requested
downgrade will reject the request.

In the second case, the Sensitivity Label is relatively uninteresting, since it just conveys the
user's clearance. It is only needed in those systems where not all users have the same clearance,
or where some workstations cannot be used to access all information because they are in a less-
well protected area.

In the first case, the way in which the Information Label is affected by interaction with a secure
DBMS is not particularly crucial. However, in the second case it is critical. Thus, it is important
to consider the second case in deciding how a DBMS and CMW should interact.

3, SWQiU? Ste^tefiontefla

SWORD is a secure Relational DBMS which provides field level labelling, without forcing
designers to Polyinstantiate [5] or circumvent information flow security by using privileged
clients.

The field labelling in SWORD is not equivalent to row labelling, unlike the field labelling
schemes of SeaView [6]. In SWORD the existence of a highly classified field is generally
classified low, while in SeaView the existence of a field is always classified the same as its
contents. This means that SWORD only allows rows to be inserted by clients with low clearances
- the Insert Low approach [7]. A consequence of using this approach to support multi-level
databases, is that clients are able to attempt to observe the contents of a field for which their
clearance is insufficient. In SWORD the result of such attempts is a special "not cleared" value
[8].

SWORD has been designed so that a database can be maintained and operated by untrusted
clients. However, it does also support clients that can be trusted to label queries appropriately [9]. A
trusted client is not, however, trusted to avoid queries that cause inappropriate downward
information flows within the database. In SWORD, even trusted clients are prevented from
causing a downward flow in the databases. This constraint is enforced because the effect of a
query depends greatly upon the data in the database, and so it is difficult to have confidence that
the effect of a general downgrading query is always limited to affecting the data envisaged.

Thus, SWORD does not support downgrading of data in situ, so downgrading must be performed
in the application. This is not thought to be unreasonable, since downgrading is generally
subjected to stringent application specific controls, which can only be carried out in the
application.

A trusted client of SWORD is free to indicate the sensitivity of information encoded in the text of a
query and the fact that the query is issued, even if this is strictly lower than the clearance with
which it is to be evaluated1. The advantage of doing this is that the fact that changes are occurring
is often less sensitive than exactly what is changing. For example, the insertion of a new row into
a table may be much less sensitive than the values placed in some of the fields.

SWORD also provides detailed information labels on the results of select queries, which indicate
the source of the information it conveys [10]. SWORD's information labels are provided on both

*For untrusted clients, the sensitivity of the query (its text and the fact that it was issued) must
equal the clearance.

63

the fields and rows of the result. An information label in SWORD is not a floating label, unlike
the Information Labels in CMWs. In SWORD, the information label states the minimum
clearance required to ascertain some basic facts, specifically ignoring the reason that the basic
facts were retrieved.

The information label of a row is given by the least clearance required to ascertain that the select
query's where-clause expression is true for that row. This is discounting the fact that the text of the
where-clause may itself be sensitive information. The information label of a field is given by the
least clearance required to ascertain the value of the select list expression, in the corresponding
position, for that row. This is ignoring the fact that the row was selected, which may itself be based
on sensitive information.

In effect, the information labels state the sensitivity of the result, excluding sensitive information
derived from the addressing information which caused them to exist, ie. the where-clause and
select list expressions. They indicate which users with lower clearances may learn the same
basic facts, even if they must issue different queries to do so.

4 CMW Active Entities ggJgWfiBJlIäifinte

An active entity in a CMW may become a client of a SWORD database by connecting to it. From
SWORD's point of view the client must have a clearance, which is the maximum sensitivity of
information that will be returned to it. The Sensitivity Label of the client acts as an upper bound
on the sensitivity of information which may be included in the entity, thus the SWORD client's
Clearance is obviously the CMW entity's Sensitivity Label.

A query's text, and the fact that it is issued, is derived from the contents of the active entity. Thus,
the sensitivity of this information equals the sensitivity of the active entity's contents. Hence, it
seems reasonable that the query should be labelled with the active entity's Information Label.

The results of a query may be computed from information of a strictly higher sensitivity
compared with the active entity's Information Label. In this case it might seem reasonable to float
the Information Label to reflect this information flow. However, the CMW Information Labels
are not completely accurate, in that they ignore certain information flows such as those relating to
addressing. Thus, it might be appropriate to ignore some of the flows that occurred during query
evaluation. ■

In particular, a select query generally does not bring back a result for every row, usually because
the where-clause expression yields false for some rows. The fact that a row is not selected is
actually a flow of information back to the client, which reveals something about the values in the
ignored row. It might be reasonable to ignore this flow on the grounds that it is rather covert,
requiring the text of the query and the result to be tied together with details about what was not
retrieved in order to obtain "useful" information.

A similar argument could be made for ignoring the fact that the where-clauses of rows that are
selected all evaluate to true. However, this information is slightly more obvious since it does not
require additional knowledge.

In effect, ordinary untrasted CMW application software acts like a trusted client from SWORD's
point of view - assuming that the risk of using the Information Labels to protect information in the
way described is acceptable, given the perceived threat.

64

Genuinely trusted CMW software would be permitted to bypass the controls imposed by the dual-
labelling. For example, CMW software that is trusted to lower its Information Label would also be
permitted to set the label of a query strictly lower than the Information Label.

5. The SWORD Prototype

The SWORD prototype runs on Sun CMW and is implemented by front-ending standard Ingres.
The front end floats the active entity's Information Label by the information labels of all the rows
and fields in the result. Thus it discounts the flows arising from computing the where-clauses of
rows that are not returned. It also ignores the flows arising from update and delete queries, which
report back the number of rows affected. Strictly, this number reveals something about the fields
observed during the evaluation of the where-clause expression.

The following example shows the effect. The information label of the resulting row is
Confidential, since a clearance of Confidential is required to compute the where-clause for that
row.

Flights table:
Name Dest Mission

"Enterprise" [U] "Vulcan" [U]
"Constitution" [U] "Romulus" [C]

"Supply" [C]
"Attack" [S]

Query:

Query Sensitivity:
Clearance:

Result:

SELECT Name FROM Flights
WHERE Mission <> "Attack";

Unclassified (CMW Information Label)
Secret (CMW Sensitivity Label)

[C]
Name

'Enterprise" [U]

Resulting CMW Information Label: Confidential ([U] lub [C] lub [U])

From the result and the query, it is possible to deduce the Confidential information that the
Enterprise is not on an Attack mission. This is reflected in the resulting Information Label.
However, using the query "SELECT name FROM Flights;" to ascertain that no row for the
Constitution has been selected, it is also possible to infer that Constitution is on an Attack
mission. This information is derived from a Secret field, but this is not reflected in the
Information Label.

Thus SWORD used on a CMW in this way introduces additional vulnerabilities into the use of
Information Labels to protect classified information. However, these appear to be commensurate
with existing vulnerabilities that arise due to the controls over addressing entities, and it is
expected that in many systems the perceived threat is low enough to make the risk acceptable.

The dual-labelling system of CMWs can be used in a number of ways. The most useful appears to
be to directly use the floating Information Label to protect classified information. This method
allows label unaware COTS software to work unhindered in the presence of multi-level security
functionality.

65

The Information Label in a CMW does not account for all information flows. Thus there is a
question as to what information flows from a secure DBMS should be taken into account.
Unfortunately, this is an application specific decision which can only be made on the basis of a
security risk assessment. Hence, secure DBMSs must be prepared to interact with CMW dual
labels in a variety of ways.

The main question is how the client's Information Label should float in response to the results of
queries. The most obviously secure way is to float it up to the Sensitivity Label, but this seems
rather strong. The SWORD front end prototype is experimenting with another possibility, where
certain subtle information flows, that arise because of the way data is addressed, are ignored.
Other alternatives exist, for example the label could float according to the sensitivity of all fields
examined during query evaluation, however these would appear to be less effective, although
stronger.

SWORD does not provide floating labels in the database, and therefore does constrain COTS
software to an extent. For example, if a client attempts to update & lowly classified field with a
highly classified query (high Information Label), the request will fail - the field label does not
float. It remains to be seen whether this will cause practical problems, or whether floating labels
in a database are a practical proposition.

7. References

[1] The SWORD Multilevel Secure DBMS
A.W.Wood, S.R.Lewis & S.R.Wiseman
RSRE Report 92005, February 1992

[2] On the Problem of Security in Data Bases
S.R.Wiseman
Proceedings 3rd IFIP WG11.3 Working Conference on Database Security
Monterey, CA, September 1989

[3] Compartmented Mode Workstation Evaluation Criteria, Version 1 (final)
Defense Intelligence Agency report DDS-2600-6243-91, November 1991

[4] Using Security Models to Investigate CMW Design and Implementation
Clare L. Robinson & Simon R. Wiseman
To be presented at the 1994 Computer Security Applications Conference
Orlando, FL, December 1994

[5] Notes on the Polyinstantiation Problem
S.R.Wiseman
RSRE Memorandum 4504, July 1991

[6] Tuple-level vs. element-level classification
Xiaolei Qian & Teresa Lunt
Proceedings 6th IFIP WG11.3 Working Conference on Database Security
Vancouver, BC, August 1992

[7] Control of Confidentiality in Databases
S.R.Wiseman
Computers and Security Journal, Vol 9, Num 6, pp529-537, October 1990

All RSRE reports, RSRE memoranda and DRA reports are available from the author.

66

[8] Extending SQL to Support Secure Applications
S.R.Wiseman
DRA Report DRA/CIS/CSE2/TR94001, July 1994

[9] Field Level Classification and SQL
Simon R. Wiseman
To be presented: 8th IFIP WG11.3 Working Conference on Database Secunty
Bad Salzdefurth, Germany, August 1994

[10] Security Properties of the SWORD Secure DBMS Design
Simon R. Wiseman
Proceedings 7th IFIP WG11.3 Working Conference on Database Security
Huntsville, AL, September 1993

[11] Glossary of Computer Security Terms
CESG Computer Security Memorandum No. 1, issue 2.2
November 1993

67

LOCK DBMS: Integrating Type Enforcement
Dan Thomsen, Dick O'Brien and Tom Haigh

Secure Computing Corporation

2675 Long Lake Road

Roseville, Minnesota 55113

Introduction

SCC's LOCK DBMS program is developing an Exploratory Development Model
(EDM) of a high assurance, state-of-the-art Trusted Database Management System
(TDBMS) on the LOCK/SNS platform. The SNS system is a highly assured platform
that is based on the LOCK prototype, which was designed to meet the Class Al
requirements of the Trusted Computer Security Evaluation Criteria (TCSEC) [1]. The
commercial TDBMS that is being used for LOCK DBMS is Trusted Oracle Version 7
[2]. The LOCK DBMS EDM is scheduled for demonstration in June, 1994.

The LOCK DBMS EDM uses a TCB subset architecture to allow the underlying SNS
system to enforce a high assurance Mandatory Access Control (MAC) policy [3], [4].
One of the original goals of the LOCK DBMS program was to investigate how the
LOCK/SNS Type Enforcement mechanism could be used to provide additional
integrity and security to a commercial-off-the-shelf (COTS) TDBMS. The areas of par-
ticular interest were:

1 providing strong separation between the database entities (files and
processes) and other system entities

2 providing high integrity auditing on database objects

3 providing high integrity DAC enforcement on database objects

4 integrating high integrity SNS roles with DBMS roles.

This paper reports on the results of these efforts and identifies areas where future
research is needed.

Incorporating Type Enforcement into the EDM

The LOCK/SNS Type Enforcement mechanism [5] is used to restrict the access of
subjects (processes) to objects (data) and other subjects. Atype is associated with each
object and a domain with each subject on the system. The access a subject is permitted
to an object depends on the access capability that the subject's domain is permitted to
the object's type. Furthermore, the access a subject is permitted to another subject
depends on the access capability that the first subject's domain is permitted to the
second subject's domain.

In the LOCK DBMS EDM using special database domains and types, the database
system is completely isolated from the rest of the system, and access to the database
files is restricted, in a mandatory manner, to the TDBMS subjects. This prevents acci-

69

dental or malicious access to the database by other system subjects and shows that
objective 1 in the above list can be successfully achieved.

Without redesigning the Oracle TDBMS, however, the remaining objectives in the list,
can only be achieved either partially or not at all This fact is a consequence of the
underlying Oracle architecture. As Figure 1 shows, all Oracle database processes,
including the servers, have access to the Shared Global Area (SGA) object. Since the
servers can communicate through this shared object, Type Enforcement cannot be
used to ensure that separate server subjects do not share information. To achieve such
separation would require that each server have a separate SGA, which implies that a
separate instance, with all of its overhead, would be needed for each server. While
this approach has been used on the LOCK DBMS EDM to provide special mandatory
roles, in general, it is not appropriate to provide a stronger DAC because of the
negative performance and administrative impact.

In the following sections some other possible approaches and research issues are
discussed relating to objectives 2,3 and 4.

Providing Aydst 00 Database ©fejeets

In an MLS database, auditing must be performed at the granularity of database
objects and, hence, is done by the TDBMS. In Trusted Oracle, DBMS auditing is done
by recording SQL statements as they are received. The assurance of the DBMS audit is
not high since Trusted Oracle has only a Bl level of assurance. A possible approach

Client

Program
■ :lhterMe;;':>

Program
Interface

Server

ORACLE
Server

ORACLE
Server

System Global Area (SGA)

TDBMS Background Processes

Figyre 1 An ORACLE Smstame©.

All processes in the instance, including the servers, share a common global area (the SGA
object) through which information can flow. The architecture prevents Type Enforcement
from being used to separate servers, acting for different users in different domains. The
only current solution is have separate instances for each server so that they do not share
the same SGA.

70

that would increase the assurance of this type of auditing would be to monitor the
communication channel between the client and the DBMS server. Type Enforcement
can be used to ensure that all user requests to the server must go through a request
auditor, as illustrated in Figure 2. The request auditor would be a small piece of code
that logs all user SQL requests to the LOCK audit trail.

The drawback to this approach is that there is no higher assurance that the informa-
tion returned to the user or the operation performed is what the user requested and,
hence, what the audit record shows. Since the assurance of the server is not increased,
it could still perform any operation in response to the user's query.

Enforcing DAC on Database Objects

As mentioned earlier, a higher assurance DAC could be achieved by running separate
instances for each user, but this approach is not realistic. A less drastic approach
would be to partition the SGA into separate objects that could be protected by Type
Enforcement or the higher assurance DAC on files provided by the underlying TCB.
This approach is not really feasible, however, since it prevents DAC from being
enforced with the flexibility and granularity that DBMSs use, and it also sacrifices the
performance gain that is achieved by sharing data and SQL code (e.g. shared stored
procedures).

The only other alternative would be to provide higher assurance to those components
of the TDBMS that provide the DAC enforcement. Such an approach will probably
entail redesigning the TDBMS to separate the DAC component from the remainder of
the system. How to implement high assurance DBMS DAC, and whether it is even
necessary, remains an open research question.

untrusted trusted untrusted

Client Request Auditor DBMS Server

Figure 2 High integrity User Request Auditing

All user requests to the database must go through the request monitor which is trusted to
log the request to the LOCK audit log.

71

Both SNS and Trusted Oracle have their own concept of roles. The SNS Type Enforcement
mechanism allows roles to be implemented in a mandatory manner with Al assurance.
The ORACLE Trusted DBMS has roles defined as collections of traditional DAC con-
straints. An objective on the LOCK DBMS program was to integrate the two
approaches for defining roles to provide TDBMS roles enforced in a mandatory, Al
manner. As noted earlier, this was achieved to a certain degree by creating separate
instances of the TDBMS for specialized roles. The roles provided were a read-only role
and a read-write role.

In many ways providing high assurance role enforcement in a DBMS is just as
difficult as providing high assurance DAC. Consider the current trend in DBMS tech-
nology towards multi-threaded servers. Since the server is executing for several users
simultaneously, the server is responsible for maintaining user (and role) accountabil-
ity. A possible approach for higher assurance would be to have just one server for
each role, but this requires a mechanism for connecting a client to the proper server
and implies the overhead of one instance per server as discussed previously.

If a single multi-threaded server is used and the various user actions being performed
by the DBMS are individual threads, what is needed for a strong policy is separation
between threads. Since Type Enforcement is currently done by creating separate
subjects (processes) in different domains, it does not provide separation at the correct
granularity. Modifications to LOCK's current Type Enforcement mechanism might be
possible that would not require separate subjects be created before the mechanism
can supply separation. Conceptually, this could be done by creating a small interme-
diate TCB subset that provides a finer granularity mechanism on top of the Type
Enforcement mechanism. This remains an area for future research.

The LOCK DBMS program showed, that it is possible to use Type Enforcement to
increase the security and integrity of a COTS TDBMS by providing strong separation
of the DBMS system from the rest of the system and by allowing the TCB to enforce
certain roles. However, the underlying architecture of Trusted Oracle limited the
degree to which Type Enforcement could be used to enhance the system's assurance.

[1] National Computer Security Center. Trusted Computer Systems Evaluation Criteria (TCSEC) -
DoD 5200.28-STD. December 1985.

[2] Oracle Corporation. Trusted ORACLE Administrator's Guide. Oracle Corporation, Redwood
City, CA. 1992

[3] Secure Computing Corporation. System Specification for the LOCK DBMS Program. Secure
Computing Corporation, Roseville, MN. 1993

[4] National Computer Security Center. Trusted Database Interpretation of the TCSEC (TDD- NCSC
TG-0Z1. August 1990.

[5] W.E. Boebert and R.Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies",
Proceedings of the 8th National Computer Security Conference, NBS, 1985, pp. 18-27,

72

Discussion; Architectures

Discussion Leader: Rae K. Burns, AGCS, Inc.

(paper not available)

73

ASSURANCE

75

A Position Statement:
High Assurance DBMS

Rae K. Bums
AGCS, Inc.

91 Montvale Ave.
Stoneham, MA
(617) 279-2864

Current DBMS technology has evolved to the point where low assurance (C2/B1) MLS DBMS
products are available and B2 designs have been developed However, with the availability of
additional high assurance operating systems (e.g., LOCK, TMACH), the need for a high
assurance DBMS becomes more evident. For example, the MIS SI program, which is using high
assurance workstations as a foundation for multilevel operation, could benefit substantially from
high assurance DBMS products designed to integrate securely with the trusted operating system.
However, there is still no accepted approach for a high assurance MLS DBMS for a B3
environment.

Previous Approaches to MLS DBMS

To date there have been two basic approaches: the trusted subject approach and the Schaefer-Hinke
(SeaView) approach. The advantages and disadvantages of each have been well debated.

Approach
Trusted Subject

SeaView (Schaefer
Hinke)

Advantage
DBMS enforces the MAC policy and can
support a large number of sensitivity
levels. It can make trade-offs to balance
integrity requirements and secrecy
requirements
The DBMS is constrained by the OS
MAC policy; the high assurance of the
OS is not compromised

Disadvantages
The DBMS must have an OS privilege
to violate the MAC policy. For high
assurance, this extends the scope of
covert channel analysis and penetration
testing to include the DBMS
The database must be subdivided by
sensitivity level and accessed by different
instantiations of the DBMS. The
DBMS cannot enforce multilevel
integrity constraint. Also, there can be
no use of a trusted path for DBMS
operations since it is not part of the
TCB.

Some questions need to be addressed:

1. Are there other hybrid approaches that might mitigate some of the disadvantages of
each approach?

2. Do the microkernel systems (e.g., TMACH, SYNERGY) offer a better base than
traditional architectures for a high assurance DBMS?

3. Is DBMS technology moving toward DBMS architectures that would be a better
match for a B3 system (e.g., a more compact "kernel" that could be trusted)?

4. Do object-oriented DBMS architectures provide additional alternatives that could be
exploited for high assurance?

77

Hybrid Approaches

It may be possible to combine the two traditional approaches to minimize the amount of trusted
code in the DBMS. For example, if separate OS files were used, then any operations that
SELECTed data could be entrusted; update operations could be still be performed by trusted code
to assure that integrity constraints are enforced. To support a trusted path for SELECTS, there
would stil! need to be a DBMS TCB component that could be used to access a database for
SELECT, but it might not need to support a full set of query processing operations. Other hybrid
solutions might be feasible depending upon the features of the OS TCB.

Mlcrokerinid Arclnitectares

The microkernel architectures separate policy and enforcement mechanisms more clearly than in
traditional TCB architectures. The kernel enforces primitive policies and relies on different servers
to provide the policy interpretation and enforcement of the policy on system resources. In this type
of system, a DBMS server concept fits well, but still requires minimization to meet B3 system
architecture requirements. Figure 1 illustrates a possible architecture.

r^"J-^^"E=v:

i|^^SSI^MtM^S:P^?IfÄ^wl)l

l^.;:;:;:;.;:;:

TCB Components

Figure 1. Microkernel Architecture

78

DBMS Architectures

A major issue for a high assurance DBMS has been the complexity of the software that must be in
the DBMS "kernel." Typically, a DBMS kernel supports not only I/O operations but also performs
transaction management, concurrency controls, integrity constraint enforcement, and, in some
cases, complex query processing. Since DBMS performance is a major concern, the security
mechanisms generally have not been implemented using a "conceptually simple" mechanism; they
have been implemented with techniques to avoid the addition of performance bottlenecks.
However, research to identify minimal DBMS kernel functions could extend the microkernel
concepts into the DBMS arena.

Object-Oriented DBMS

While current OO DBMS products are primarily derived from 00 programming concepts, the
object-oriented paradigm offers potential for new DBMS architectures. By combining the
message passing paradigm of the microkernel architecture with a DBMS based on an object model,
it may be possible to support the minimization of TCB functions that is essential for high
assurance.

Summary

The concepts that underlay the microkernel operating system and that form the basis of the object-
oriented model may also be applicable to high assurance DBMS architectures. They offer potential
for resolving some of the issues that affect the more traditional approaches to multilevel database
management. With the advent of this new technology, it is important to investigate how it might be
used to move multilevel database technology to higher assurance solutions.

79

Discussion: Assurance

Discussion Leader: Ravi Sandhu, George Mason University

(paper not available)

81

DISTRIBUTED/FEDERATED
SECURE DATABASE MANAGEMENT SYTEMS

83

Contracts for Data Sharing among Autonomous Organizations

Catherine D. McCollum
The MITRE Corporation

7525 Colshire Drive
McLean, Virginia 22102

mccoilum@smiley.mitre.org

1. Introduction

Organizations' computing resources are increasingly being interconnected into large-scale
distributed systems. Distributed database capabilities for flexibly and conveniently retrieving
data stored in different databases, on separate network nodes and perhaps in different DBMSs
or file systems offer a great deal of power for gathering and integrating data from different
sources in such an interconnected system. This ability to access dispersed databases is key to
allowing organizations to share data to carry out a joint or common mission.

However, such large distributed systems are seldom fully under administrative control of any
one organization. Cooperation among organizations under different decision-making
authorities requires that distributed database functions be carried out in a way that respects
the autonomy of the constituent organizations (and their database systems).

A specific area where cooperating organizations may need to retain decision-making
authority is in controlling access to and protection of their sensitive data. Since different
organizations operate under different requirements for protection and control of their data,
security capabilities must be available that can support these differences. To be able to share
data with others, each organization must be able to arrange for its own data to be
appropriately protected even when used or stored on a system belonging to another
organizational entity. This implies a different kind of controls than those which are
following naturally from distributed systems extensions of database technology (e.g.,
ascertaining the identity of a user across the network to support checking of direct access
authorizations). Additional controls are needed that can represent agreements among the
separate, sovereign organizations concerning conditions under which they are willing to share
data with the other organization and its users, and the protection and handling responsibilities
that are incurred in return.

2. Federated Database Systems, Autonomy, and Security

Federated database technology, which is designed to provide distributed database capabilities
under conditions of decentralized control, is particularly attractive as a basis for data
protection in these circumstances. A fundamental goal of federated database systems is
autonomy: cooperation without sacrificing independence. This is the characteristic that
distinguishes them from other distributed database systems. Federated data management
seeks to allow partial, controlled sharing with negotiated coordination of shared activities,
while minimizing the role of any centralized authority [Heimbigner 1994]. The goal of
autonomy must of course be tempered somewhat, because a certain degree of cooperation is
necessary simply to carry out the mechanics of sharing data. And, when the systems handle
data of any sensitivity, the desire for highly autonomous interaction must in addition be
balanced against the responsibility to protect the security or privacy of the data. (In fact,
though DBMSs participating in a federated DBMS are commonly referred to as being
autonomous, it is perhaps more accurate to identify them as semi-autonomous [Oszu and
Valduriez], since, although they can operate independently, some modification is needed to
allow them to cooperate in executing distributed requests, and their acceptance of this limited

85

.pplies to multidatabase systems, where the BBMSs are unaware of each other.)

sweredl is wnat i
willing to share data in the first pi;

leratedl database systei
these organizations to eoi

ace. Concern about what'
same jurisdictions

*er to the

avc
.ere they are

the data ■_
tion of federations and sharing

We are aware of only limited work in the area of security for federated database systems

P . 1992] presents some
multilevel il, and issues for multilevel and discretionary security within a «si

[Idris et al. 1994] has looked at mapping security classes whm integral
database Schemas to a global schema in a multilevel secure distributed
Bittrich 1993] reviews work applicable to discretionary security in fede:

■es, a ref«
.base federal

sucn as a

met
locaHeve!) access control

s sp
federated systems that are not addressed by existing wort [Nie;

me:
srstrasz et al. 1992
stigating issues rs'

[Jonscher & Dittrich 1993]. The system is tightly coupled, in that it uses a global schema
CHASSIS places cooperating database systems (or systems providing other types of services)

suiates' "cells."
Interaction among the cells is handled! via type matenmg, ooject mapping, ma uunuciuuu
trading that occurs at the boundary, or "membrane" of each cell, to determine the security

a cell witn respect to me rest c
security, with decentralized authori
authorizations overriding positive author!.

es disi

s, and an extensive role capability. Much of
eroseneitv of the individual systems

discretionary security features,

a Tfia® NAIAD Sysfi

fe are taiong
management system that will overcon*

heNe developing the Negotiated Agreements for Interaction of Autonomous Batabases (NAIAD)

product features. Our emphasis is
exchange of data. We assume '

le, by heterogei

creating and carrying out policies specifically on the
for the time being that heterogeneity is addressed elsewhere,

§ distributed DBMS gateways and trans"

ineapp:
agreeme
obligations incurred in exchange
imported. This concept closely mimics me i
human domain. Generally, when two organ:

e data acces:
signing a

izaüons c
ets out

each. Each in effect concedes a smg
requested of it by the«

[leges and respons
.greeing to adhere
such as access to

le otner

The idea of contracts has been proposed for various uses in automated systems over the past
several years (see for example [ISO 1984, Greenberg & Rathman 1990, Meyer 1992]), often
in connection with integrity, determination of specific details of a particular interaction, or
information hiding. It has also been noted that the idea of contracts is particularly
appropriate within the federated database model. For example, [Alonso & Barbara 1989]
discusses dynamic negotiation for access to data among autonomous nodes in a federated
database system, but is primarily concerned with negotiating based on cost considerations;
i.e., determining whether a replica will be established at the importer site for future querying
and agreeing on the frequency of update to maintain the replica.

[Anisen et al. 1993] further developed the idea of contracts in database federations. Their
contracts, which represent bilateral agreements between nodes in the federation, consist of
terms on duration (initiation and termination conditions), object access (direct access versus
creating a replica on the importer site, as in [Alonso & Barbara 1989]), availability
(acceptable degree of deviation from expected behavior), authentication (procedure to verify
contract signatories), and accounting (cost for establishment and use of the contract). The
focus in this work is on a process for formation of contracts. Because they assume that the
same data may be available at different sites, they structure the dialogue to establish a
contract as follows: (1) an announcement phase in which a would-be importer advertises to
the federation its desires for the data it would like to obtain and proposed conditions, (2) a
bidding phase in which eligible nodes respond by submitting bids (effectively,
counterproposals with the conditions under which they are willing to offer the data), (3) a
negotiation phase in which the importer selects one of the bidders and the two successively
modify their positions until they reach agreement, and (4) a commitment phase in which the
sites affirm their intention to carry out the contract and create required contract objects.

NAIAD emphasizes, rather than the process of arriving at a contract, more complex policies
that may be represented as a contract. Contracts in NAIAD define requirements for
protection and handling of data. These requirements may include the traditional positive and
negative authorizations on access to data, based on users, roles, context- and content-
dependent conditions, but may also include an active element, such as a procedure that must
be carried out in connection with access to the data. The latter correspond to what [Jonscher
1993] refers to as normative policies, or duties, and what [Moffett et al. 1993] refers to as
imperatival policies. In including active, procedural controls, we are responding not strictly
to the federated paradigm, but to what we see as cross-jurisdictional sharing needs. Both the
authorization and active types of requirements are applied to create obligations concerning
the importer's handling of data imported under the contract. The idea is that with a
foundation of appropriate types of controls to ensure that data is handled properly by an
importer, the system owning the data will be willing to extend more generous access than
otherwise, under the condition that specified restrictions and procedures be followed. In the
rest of this paper, we briefly present the main features of NAIAD.

3.1 Architecture

NAIAD employs a loosely coupled architecture, in that no global schema is maintained1.
However, it is not as far to this end of the spectrum as the system described in [Ahlsen &
Johannesson 1993], in which the nodes need not have any knowledge of all nodes in the
federation, but just those with which they are directly acquainted. In NAIAD, the federation

1 [Jonscher & Dittrich 1993] refers to a choice between tightly coupled (global schema, location transparency)
and loosely coupled (no global schema, no location transparency). Our view falls somewhere in between: each
database system advertises its export schema, and any component system can use the collection of these export
Schemas (the parts accessible to it) to resolve unambiguous references. References that are ambiguous can be
resolved either by policy (e.g., assume local version unless instructed otherwise) or by reference to the user.

87

ies a base level of system capabilities and inter-organizational trust epos w,
members can rely. The reason for this basic level of trust is that the federation defines a
domain within which all the members are known, all have met some set of membership
requirements (in terms of system capabilities), and all have agreed to some set of groundrales
related to the overall mission for which they are cooperating»

.es :er SB©' pairs
Negotiation of acceptabl
contract is incorporated into the system as an automated specification. These contract
specifications explicitly document the mutual expectations for control of data under th
sharing arrangement. The contracts specify initiation conditions, the specific scope of

nat users at each node may play ^vith respect to the interaction, speciB
he owner imposes on the importer as a consequence of accessing or

events that trigger the contract's going into effect or being terminated (such as the arrival of a
particular date and time), and any required actions that must take place at that time. Roles in
the contract are specific to that contract and may be different from roles defined at the level
of the individual database system. The obligations may include restrictions constraining
access that will be allowed (either in $im or after transfer to an importer site) and may specify
procedures that must accompany access to the data. The latter means that the j

element that defines require"
importer must undertake i.

3X1 SsBaemma arclhl(t©cftiuir®

The schema architecture for NAIAD is simple. As shown in Figures la & lb, we describe it
in comparison to Sheth and Larson's five-level reference schema architecture,
local, component, export, federated, and external schemas [Sheth & Larson 19
we have submerged the issue of heterogeneity for now, we do not distinguish between a

Figure 1a Rv©-tevsl rsferertss scfKEsna arcftitscturs

IStJtuent!
and Larson. Above its local schema, e;
export schema with respsc

Figur© 1b. NAIAD sdieirtE aretiiisctut®

se svstem, as do 2
.as an
le

sden
i/ever9 does not offer access to the

of the federation. Although lay in me

federation without further constraints, others are available only to nodes which have
specifically contracted for access to them and agreed to all the strings attached. Thus, the
node's export schema represents the data which the node is making available to the
federation collectively, but, individually, other nodes may have access only to part of it.

There is no explicit federated schema. (Of course, the collection of all the individual export
Schemas could be considered a notional federated schema, but there is no federation-level
integration of Schemas). This in turn means that there are no external Schemas on the
federation schema. Data imported into a node from other members of the federation may be
represented as additional objects in its local schema, and external Schemas may exist over
this local schema (essentially in parallel to the schema it exports to the federation), but these
Schemas, if they exist, are immaterial to NAIAD.

NAIAD does, however, require that some federation information be known globally. All
members must know what sites are federation members, what the members' capabilities are,
and what the federation groundrules are. This information could either be fully replicated
throughout the federation, with some protocols for updating it when new members are
admitted, or could be maintained on a separate federation server, which then could also serve
as a membership gatekeeper.

3.1.2 System Architecture

NAIAD's system architecture is also quite simple. The architectural goals are that it be
transparent to users and applications of the local system, and that it be usable with off-the-
shelf DBMS products. The former means that queries are submitted in the same manner as
usual on the local database systems, and the latter means that the federation layer of NAIAD
should not interfere in the internal workings of the local DBMS.

As shown in figure 2, there are two top-level components, a Contract Manager and a
Distributed Data Manager. The Distributed Data Managers are the local DBMSs belonging
to the sites. Whether the local DBMSs themselves have distributed capabilities

request)

result 1

j

CONTRACT
MANAGER »

I expanded
requests

DISTRIBUTED
DATA MANAGER

|; CONTRACT!
I MA NAGER

&M>

expanded
requests

DISTRIBUTED
DATA MANAGER

SITE SITE

Figure 2. NAIAD System Architecture

is not critical; if they are absent, either the applications which submit database requests may
have distributed knowledge, or the local DBMS can be supplemented with a distributed data
management layer. A Contract Manager must be present on each database system
participating in a federation. The Contract Manager maintains a database of the contracts to
which the site has committed and implements the agreed-upon access restrictions and
obligations of the contracts. Collectively, the Contract Managers can be viewed as providing
a distributed reference monitor and situation monitor (in the terminology of [Moffett et al.
1993]).

89

The key aspect of the architecture is that the Contract Manager intercepts all requests which
would ordinarily be submitted directly to the local DBMS. Whether this is easily done in the
case of a particular local DBMS product depends on its capabilities. If the DBMS provides
retrieval and update triggering, it would be very easy. If these facilities are lacking, other
methods would need to be used to place the Contract Manager in the stream of input to the
DBMS.

When a database request is submitted, then, the Contract Manager examines it before it
reaches the local DBMS. Based on the data and operation requested, it determines whether
any contracts apply to the request. If no contracts apply, the request is forwarded for _ _
processing to the local DBMS, where it is checked against the DBMS's native authorizations
and executed. If there are applicable contracts, the Contract Manager checks the request
against contract-defined authorizations and then expands the request Expansion may replace
or modify the original request (for example, to be more restrictive) and may add database
actions (such as updating a log relation) in addition to the original or modified request The
expanded request (which maybe a "script" containing multiple requests) is then submitted to
the DBMS.

When the DBMS evaluates the queiy, if it determines that some of the relevant date is
located at another site, it may generate requests which are sent to the remote site. At the
remote site, these requests also must be intercepted by the Contract Manager at that site and
subjected to authorization checking and expansion.

32 Tto® Copffradt Liffeeyd©

Contracts, as defined in NAIAD, are static. Once installed and activated, they apply to all
subsequent access attempts within the scope of data and operations identified by the contract,
until they are suspended or terminated. Changes to the contracts require re-negotiation and
reinstallation. We identify the following states in the contract hfecycle:

1. proposed (under negotiation)
2. ratified (agreed to by both parties)
3. installed (incorporated into the automated system and awaiting the occurrence of the

event specified as the initiation condition)
4. initiated (in operation for database accesses)
5. suspended (temporarily disabled)
6. terminated (permanently disabled).

States (1) and (2) are outside the scope of the current system, since we are not attempting to
support dynamic negotiation within the system. Negotiation of an automated contract would
probably correspond to negotiation of a similar agreement in the human domain, such as a
memorandum of understanding. Because the policies represented by contracts are complex,
dynamic negotiation would be quite complicated. We limit our attention to static policies
negotiated outside of the automated system operation but which still can provide significant
useful capabilities. We are, however, interested in looking in the future at what sort of
automated tool support could be provided to assist with composition, negotiation, and
validation of the automated contracts.

Installation of the contract can be done independently on each participating site. Initiation,
suspension, and termination, on the other hand, may require some protocol for coordination
among the sites, to avoid the occurrence of situations where one site believes that a contract
is in effect and behaves accordingly while the other does not.

90

Further, when a contract is suspended or terminated, it will be necessary to distinguish
between requests that were received before the interruption but still have associated
processing in progress (for example, a contract might have delayed effects, such as requiring
that an imported data object be deleted after 10 days) and those received after the suspension
or termination. Actions associated with execution of the contract for a request that arrived
before the suspension would be allowed to proceed, while new requests would not invoke the
contract but would instead be passed through to the local DBMS and be checked instead
against its native authorizations. Typically, these native authorizations would be more
restrictive than those provided through the contract (since additional controls and procedures
are not being followed), and the request might be rejected.

3.3 Contract Language

Contracts are expressed in an extended version of SQL, the prevalent relational database
language. The main modification is to define an extended set of events on which triggered
actions can take place. In addition to triggering on update events, we include triggering on
retrievals, time-based events (absolute or interval), and receipt of messages.

In addition, several types of contract-specific information are represented in the contract
specification, to declare the contract-specific roles and authorizations, to define the scope of
data covered by the contract, and to specify recovery actions. We refer to these recovery
instructions in the contract specification as "fine print". The recovery actions would be
carried out if an execution of the contract fails for some reason, and might vary depending on
the point in its execution at which the failure occurred. The normal execution of a contract
may require that a series of actions be carried out over a period of time. The contract thus
does not correspond conveniently to a traditional database transaction, in which resources are
locked and partial results are not visible to other users until after the entire transaction
commits and completes. The use of a nested or long duration transaction model appears
more appropriate, and we are exploring the use of compensating transactions concepts from
those models to handle recovery of a partially completed contract execution.

3.4 Conflicts

Sites incur obligations with each contract they sign. If two contracts apply to the same or
overlapping data, it is possible that they might specify inconsistent or incompatible rules for
access and handling of the data. The rules implemented in contracts are of three types:
permissions ("cans"), prohibitions ("must nots"), and actions ("musts"). If one contract says
that an operation or action must not occur, and another says that it must, we refer to the
resulting impasse as a conflict.

We are currently investigating sufficient constraints that could be imposed on the definition
of contracts to be able to guarantee that a set of contracts will be free of conflicts. However,
it may be impractical to eliminate all conflicts for two reasons: first, the conflict-free
constraints may be too restrictive in practice (requiring that data referred to by the contracts
be disjoint, for example), and second, data owners may be willing to accept the risk of an
infrequent conflict (for example, a content-sensitive one that depends upon values arising in a
data object that meet two different conditions not usually encountered together) in exchange
for the ability to define the contracts more flexibly. Because of this, we do not assume that
system operation is free of conflicts. Conflicts may be resolved through a variety of simple
strategies, such as use of a priority scheme, in which a priority is assigned to a contract at the
time when it is defined. For example, contracts whose failure to execute would be
catastrophic would be given a higher priority than those which failure would create a
nuisance-level anomaly. When the impasse is encountered, the execution of the contract
with lower priority would be aborted, and steps defined in the contract fine print would be
taken to recover.

91

3<J ExesMftioira modeD

A high level view of the NAIAD execution model is given in Figure 3. A submitted request
undergoes contract-specific authorization checking before being expanded. A request that

Figure 3. Execution rrtodel

does not fall under the terms of any existing contract remains an ordinary database request
and is simply forwarded to the local DBMS for processing. A request that is found to be
subject to a contract is expanded to produce a set of "duties/5 which are themselves database
requests. The reason we distinguish them as duties rather than simply requests is that once it
has been determined that a request is permitted and falls under the terms of a contract., it
becomes obligatory to carry out all of the steps identified in the contract Next5 each of the
new duties must itself undergo authorization checking and expansion, in case it also falls
within the scope of a contract. A duty that runs afoul of the authorizations of another
contract cannot simply be rejected, since it is part of a set of actions the site has committed
itself to carry out, so it is sent for conflict resolution. A permitted duty is checked to see if it
must itself be expanded. (To prevent endless looping through the expansion step, an
annotation provided in the contract language can be used to signify the point at which a duty
should not be expanded further.)

When the expansion process has bottomed out, each duty is forwarded to the execution
management function, which coordinates with the local DBMS to execute it. Here also, there
is a distinction between ordinary requests and those executing as duties. Since duties result
from the existence of a contract, in which a site has agreed to carry out special conditions and
procedures set by the data owner and is in return extended special access to the data, a duty
executes with greater privilege (signified in the diagram by the hole in the DBMS
authorization checking). In addition, the execution of duties by the local DBMS is carefully
monitored by the execution management function of the Contract Manager, because if a duty

92

fails for any reason, including ordinary system exceptions, recovery according to the contract
which generated it must be carried out, and any other contracts in the expansion tree may also
need special recovery.

4. Conclusion

In the NAIAD system, we have defined a framework for the definition and enforcement of
very flexible controls, including both traditional authorizations and prohibitions, and active,
procedural controls, in a loosely coupled architecture. These controls are implemented as
contracts, which mimic a familiar mode of cooperation in human interaction. The contracts
model, along with the architecture we have developed, supports the creation of very flexible,
application-specific controls and allows the individual database systems to retain a high
degree of authorization autonomy.

However, we do not wish to minimize the difficulty of this problem, and there are many
significant issues that need to be worked out. For example, the whole notion of controlling
data once it has been imported into another system presupposes that there is some method
available of not only segregating or marking the data with its owner but also of constraining
the flow of the data into other containers. In practice, in many environments this is done
through trusted applications (not in the multilevel security sense) that allow only very
restrictive functions in the user interface, but a complete solution might require the
incorporation of a propagated authorization model such as [McCollum et al. 1990]. Many
other issues need signicant research. One is the question of how to analyze sets of contracts
to identify conflicts, particularly because actions within the contracts could modify
authorizations in response to events, creating a dynamic authorization environment. Another
is the question of how the two parties to a contract are each to satisfy themselves that the
other's contract specification, as translated to executable mechanisms of the DBMS, is
accurate and being reliably enforced. In addition, there are many semantic and
implementation questions, such as how the system can detect and respond to side-effects and
sub-requests (such as firing of database triggers or nested queries) without being more
closely integrated with the local DBMS. Also, it is not clear to what extent the Contract
Manager can be implemented generally and avoid being tied to a specific DBMS or class of
very similar DBMSs. Finally, research will be needed to discover how NAIAD can
incorporate support for heterogeneity in security models and mechanisms and be placed in
the broader context of distributed object management.

Nevertheless, we believe that this model has the potential for filling an important need. More
and more, organizations are under pressure to provide means of sharing data in support of
broader missions. At the same time they must continue to meet requirements for protecting
the security and privacy of data, which may differ from one organization to another and vary
according to the type of data. The need for distributed data management technology brings
with it a need for defining and enforcing appropriate protection of data being accessed across
jurisdictional boundaries. Cooperation of independent jurisdictional entities with minimal
loss of autonomy is not fully served by existing distributed database authorization models.
Our initial experience with prototyping these concepts indicates that, though the current
implementation is quite limited and crude, it is capable of providing interesting and useful
controls on the exchange of data in a cross-jurisdictional environment.

References

[Ahlsen 1993] M. Ahlsen and P. Johannesson, "Contracts in Database Federations,"
Stockholm University, ISBN 91-7153-101-7, March 1993.

93

[Alonso <& Barbara 1989] R. Alonso and D. Barbara, "Negotiating Data Access in
Federated Database Systems," in Proc. Fifth Internationa! Conference on Data Engineering,
Los Angeles, California, IEEE Computer Society Press, 1989.

[Greenberg & Rathman 1990] I. B. Greenberg and P. K. Rathman, Distributed Database
Integrity, Final Report, SRI International, Menlo Park, CA, 1990.

Peimbigner «&MeLecd 1985] 'D. Heimbigner and D. MeLeod, "A Federated Architecture
for Information Management," ACM Trans. Office Inf. Syst. (July 1985), 3(3): 253-278.

Peimbigner 1994] D. Heimbigner, "Infrastructure for Federated Software Environments,"
presentation to NIST, 18 March 1994.

[Idris et al. 1994] N. B. Idris, W. A. Gray, and M. A. Qutaishat, "Integration of Secrecy
Features in a Federated Database Environment," in Database Security, VII: Status and
Prospects (T.F. Keefe and C.E. Landwehr, cds.), pp. 89=108, North-Holland, 1994.

[ISO 1984] International Organization for Standardization, International Standard ISO
7498, Information Processing Systems - Open Systems Interconnection - Basic Reference
Model, ISO 7498-1984 (E), American National Standards Association, New York, 1984.

[Jonscher 1993] D. Jonscher, "Extending Access Control with Duties Realized by Active
Mechanisms," in Database Security VI: Status and Prospects (B. M. Thuraisingham and
C. E. Landwehr, eds.), pp. 91-111, North-Holland, 1993.

[Jonscher & Dittrich 1993] Dirk Jonscher and Klaus R. Dittrich, "Access Control for
Database Federations, A Discussion of the State-of-the-Axt," DBTA Workshop on
Interoperability of Database Systems and Database Applications, Fribourg, Switzerland,
October 1993.

[McCollum et al. 1990] C. McCollum, J. Messing, and L. Notargiacomo, "Beyond the Pale
of MAC and DAC - Defining New Forms of Access Control," in Proc. IEEE Symposium
on Research in Security and Privacy, Oakland, CA, 1990.

[Meyer 1992] B. Meyer, "Applying 'Design by Contract,'" IEEE Computer, October
1992.

[Moffett et al. 1993] J. D. Moffett, D. Jonscher, and J. A. McDermid, "The Policy Obstacle
Course: A Framework for Policies Embedded within Distributed Computer Systems,"
SCHEMA/York/93/l, Department of Computer Science, University of York, UK, 1993.

[Morgenstern et al. 1992] M. Morgenstern, T. F. Lunt, B. Thuraisingham, and D. L.
Spooner, "Security Issues in Federated Database Systems (Panel)," in Database Security,
V: Status and Prospects (C.E. Landwehr and S. Jajodia, eds.), pp. 131-148, North-Holland,
1992.

[Nierssrasz et al. 1993] O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher, "CHASSIS
- A Platform for Constructing Open Information Systems," Proc. AFCET 893, Versailles,
France, pp. 153-161,1993 (French version);

also published in: Visual Objects, D. Tsichritzis, ed. Universal de Geneve, Centre
Universitaire d'Informatique, pp. 235-245,1993 (English version).

94

[Sheth & Larson 1990] A. P. Sheth and J. A. Larson, "Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases," ACM Computing
Surveys, Vol. 22, No. 3,1990.

95

MUSET AND MULTILEVEL
DATABASE TRANSACTIONS l

LouAnna Notargiacomo and Ken Smith

The Mitre Corporation
McLean, Virginia

1 INTRODUCTION

Users in a multilevel environment typically are cleared to access data labeled up to a
particular sensitivity level, and they have an operational need to read and write data at all
security levels their clearance dominates. Although MLS relational DBMS products are
beginning to appear on the market (Informix, 1993; Oracle, 1992; Sybase, 1993), a limitation
of these products is that to ensure mandatory access control enforcement (MAC), an
application should only use untrusted processes executing single-level transactions. Each
single-level transaction is assigned a security level; a transaction can read data at its level or
below, but write data only at its level. This does not support applications that require both
the ability to write at various levels and the database integrity enforcement provided by
transactions. These products do allow for the execution of multilevel transactions, but only if
privileges are turned on to allow for the bypass of some or all mandatory access control
(MAC) enforcement.

These DBMSs also provide some homogeneous distributed data management functions
(including the necessary primitives for a distributed commit protocol) and, in some
situations, these products can be configured to allow the execution of multilevel distributed
requests, again only if privileges are turned on to allow for the bypass of MAC enforcement.

In the MUSET effort, we are concentrating on the development of a generic multilevel
distributed transaction execution capability that can be used in a variety of multilevel system
configurations (Blaustein, 1993a). This research assumes a multilevel secure (MLS)
distributed environment in which the nodes may operate at various accreditation ranges. This
includes single-level nodes, multilevel nodes with some overlap in accreditation ranges, and
nodes with disjoint accreditation ranges, all connected by an MLS network capability. An
example configuration can be seen in Figure 1.

In executing a user's multilevel transaction, the goal of the MUSET design is to be able to
transform a single multilevel transaction into a set of single-level subtransactions that can be
executed in such a way that the result would be equivalent to a single-site, single MLS
DBMS execution. In this way we can ensure that no remote subtransaction has to be
executed with MAC privileges at a remote site. While it can be envisioned that a user would
be able to execute a transaction with privilege at his local site, it is not appropriate to assume
that the user would be granted these same privileges when requesting access to data at a
remote site.

This work was funded by Rome Laboratory, under contract F19628-94-C-0001.

97

Unc:Conf

Dec CMW

Workstation

Secret :Conf

Sun CMW

Workstation

Workstation

Figure 1. A MUSET Configuration

In order to allow for the distributed execution of multilevel transactions, several key technical
problems need resolution. These include the ability to execute multilevel transactions
atomically without the introduction of channels that can be used to violate security; the
ability to execute these transactions so that they meet a high degree isolation2, and the overall
system can be returned to a stable state after a system failure; and the ability to protect the
overall integrity of the database when data are distributed over multiple systems. In addition,
it is critical that the developed distributed transaction algorithms work with the current suite
of commercial relational entrusted and trusted products.

1.1 Mated Work

Most of the work to date on transaction management for MLS DBMSs has focused on
concurrency control protocols for executing single-level transactions concurrently. Work in
(Jajodia, 1990; Costich, 1992a) has dealt with the execution of multiple single-level
transactions, where the transactions can operate at different security levels. By definition, a
single-level transaction has a fixed security level associated with it; the transaction can read

At least degree 2 (Gray, 1993).

98

data that are at its level or below, but it can write data only at its level. (Keefe, 1990) has
used a slightly more general model; his transaction can read data at or below its level, but can
write to data that are at or above its level.

Some work has been done on concurrency control protocols for limited classes of multilevel
transactions (which can perform reads and writes at multiple security levels). Transactions in
Costich and McDermott (Costich, 1992b) can read and write data at multiple levels, but have
the restriction that a transaction never writes to a lower level data item after accessing a
higher level data item. This work assumed that the applications would be written in this low-
to-high fashion before submission to the DBMS. The model adopted by Costich and Jajodia
(Costich, 1992c) is most general and allow transactions to read and write freely at multiple
security levels. This is done by introducing the notion of maintaining multiple versions
within a single transaction. This work also was optimistic in that it assumes that any subpart
of a transaction could always be executed successfully.

Although the ability to execute multilevel transactions concurrently is certainly desirable, it is
more difficult to ensure that they can be executed atomically without creating illegal
information flows. A major obstacle is that, if the portion of the transaction that is executing
at the high security level fails, aborting the portion that is executing at the low security level
would signal information.

In (Blaustein, 1993b), we developed a model of multilevel atomicity that defines varying
degrees of atomicity and recognizes that lower security level operations within a transaction
must be able to commit or abort independently of higher security level operations. This work
utilized dependency graphs to identify the semantic dependencies between single-level
sections of a multilevel transaction. It also used execution graphs as a tool for analyzing
atomicity requirements in conjunction with internal semantic interdependencies among the
operations of a transaction. Rules for determining the greatest degree of atomicity that can be
attained for a given multilevel transaction were also provided. This work also developed
several alternative transaction management algorithms that can be used to preserve multilevel
atomicity when combined for the execution of multilevel transactions.

2 OVERVIEW OF MUSET

2.1 Mandatory Security Policy

MUSET's mandatory security policy is a distributed data management interpretation of the
Bell and LaPadula model that supports both single-level and multilevel database applications.
For all MUSET subjects, when a subject is created, it is assigned an executing range. A
subject can be created by a user within a session or another subject and is assigned a range by
its creator. The range of a newly created subject must be within the range of its creator.

A session is established with the trusted DBMS on database open. Each session is associated
with the user who started it. A session has an access class range assigned by the user when it
is created. The logon level of the user must dominate the upper bound of the session's range,
and the lower bound of the session's range must dominate database low. Multiple

99

transactions can be executed during a session. A transaction is a mechanism to structure
application code so that sets of actions that impact a database occur atomically. A transaction
has an access class range assigned by the user when it is defined. A query is a labeled data
manipulation command that is contained within a transaction. The level of each query must
be within the bounds of the transaction's range. The label of language constants (reserved
words) is Unclassified. The label of data object identifiers (e.g., the name of an attribute
within a relation) is equal to the label of that object's metadata. The label of a variable string
can be specified by the user as part of the command syntax. If not specified, the sensitivity of
a variable string defaults to the high of the transaction range.

The read policy is the same for all objects within a database. An object can be read only if
the high of the subject's range dominates the level of the object. The level of the object's
read must also dominate the level of the read command to prevent the flow of information
from the command itself. A read request can specify a read range that must be within the
allowed read range.

The write policy is the same for all objects within a database. An object can be written only
if the level of the object is within the subject's range. The level of objects written must
dominate the level of the writing command in order to prevent an illegal flow of information
from the command to the object. A write command may specify a write range within the
allowed write range.

2.2 Execution) Scenario

Figure 2 presents an execution flow architecture that shows the major software processing
modules that would be involved in the execution of a multilevel distributed database
transaction. The MUSET system is being designed to be able to process multilevel
transactions that are initiated from applications that are operating over a range of sensitivity
levels. In all cases, where a range of levels is indicated, it is possible that the endpoints of the
range are equivalent, in other words, the process is operating at a single-level. In the case of
processes operating in system-high mode, we consider them to be single-level from a security
policy enforcement perspective.

The user's application program first initiates a session with MUSET. This establishes the
session sensitivity range. The session range must be within MUSET's processing range.
Each multilevel transaction sent to MUSET must have a range that is within the bounds of
the session range. Once the application session is established the application is free to
transmit database transactions to MUSET. Each transaction includes the transaction range.
In addition, each object within a transaction is labeled.

MUSET is trusted to operate over a range. The range corresponds to the operating range of
the operating system on which MUSET executes. The single-level (SL) marking in Figure 2
indicates that if the software is running on a single-level (system-high) system, then the upper
bound equals the lower bound, i.e., its running single-level.

When MUSET receives a multilevel transaction for execution, it is broken down into an
equivalent set of single-level subtransactions or sections. This is performed by the MUSET

100

process at the initiating application's site. The single-level sections are then sent to local or
remote MLS DBMSs for processing.

This approach has been taken because current MLS DBMSs cannot execute multilevel
transactions sent from a user's application unless the application is executing with the
privileged to write down. Executing under this privilege disables the enforcement of the Bell
and LaPadula *-property (prohibiting write-down operations). If the application is executing
with the privilege to write-down and the application includes a multilevel distributed
transaction, the MLS DBMS executes the multilevel distributed transaction in the same
manner as it would execute a single-level distributed transaction. No special actions are
taken to avoid invalid information flows from occurring. This opens the potential for
significant illegal information flow. This can be avoided by use of the MUSET system. This
is especially beneficial when a multilevel distributed transaction includes data accesses to
remote sites, since the MUSET approach avoids the requirement to execute the remote
sections as privileged processes.

Figure 2. High Level Execution Flow Diagram

The DBMS processes that execute sections are either single-level or multilevel, dependent on
the operating range of the system they run on. If the DBMS processes are multilevel, we
assume that they only support single-level user application processes, for remote users. What
we would like is for the combination of MUSET and MLS/SL DBMSs to be used (without
privileges turned on) to execute multilevel transactions.

The MUSET architecture uses the concept of a global data description stored in a global data
dictionary and directory (global DD/D). A separate global data dictionary exists for each

101

logical distributed database. In addition, each is supplemented with global directory
information containing the information needed to resolve the physical location of data
objects. The MUSET layer derives the necessary information for transaction execution
planning from the global DD/Ds. Each global DD/D contains the schema and directory
information that describes all information within the range of its multilevel distributed
database. A MUSET process will only be allowed to read the subset of global DD/Ds that it
is authorized to access. Since a MUSET process operates over a range, it is authorized to
read information dominated by its upper bound.

The global directory contains information about the physical distribution of data. For
example, if a multilevel relation is fragmented across sites with different ranges, it will
specify the range of the relation fragment stored at a particular host. The directory
information also contains information needed to establish communication connections, for
example host identifiers and host ranges (at least the range in common with this host).

The range of systems a MUSET process can communicate with is bounded by the range of
the MUSET process. Information that is labeled below the range of the MUSET process is
only accessible if the data resides on a system that's range intersects with the MUSET
process' executing range. This also bounds the range of data objects that can be accessed
through MUSET.

Single level sections are executed at the local or remote DBMSs and the data are sent back to
the MUSET layer. All the responses are merged and formatted for output to the user.

MUSET's execution controller orchestrates the actual execution of sections through a
multilevel transaction execution protocol. In a protocol, messages (such as "Precomitted,"
"OK to commit", and "release locks") are sent to and received from the component DBMSs,
to attempt to ensure the combined execution meets correctness criteria defined in Section 3.
Because of inherent conflicts between correctness criteria (such as security and atomicity), an
important problem is designing execution protocols which provide a variety of approaches to
making necessary correctness tradeoffs, satisfying the differing priorities of various users.

3 A FORMAL MODEL FOR MUSET TRANSACTIONS

In the following we define the basic building blocks of a formal model of MUSET
transactions: multilevel transactions, multilevel schedules and execution protocols for
multilevel transactions, and we define four desirable correctness properties for protocols and
the schedules they generate.

3.1 MuMkvefl Transactionns, SclhiedWes5 and Protocols

A multilevel transaction Tj consists of a set of read and write operations, partially ordered by
<i, executed at multiple levels, where each obeys the Bell-LaPadula *- and simple-security
properties. In a transaction Ti, operation ojj occurs at classification level j; thus ry and wy
refer respectively to a read and a write at level j. When the transaction is clear from the
context, Oj is used. If there is an operation in Tj at level j, we say j is represented in Tj. In

102

general, two operations conflict if they both operate on the same data item and at least one of
them is a write.

Definition (Multilevel Transaction). A multilevel transaction Tj is a set of operations o« e
{rjj[xk] I x is a data item at security level k and j dom k} u {wy[xj] I x is a data item at
security level j} that is partially ordered by <q. All conflicting operations in Tj must be
ordered by <j.

When a multilevel transaction is executed, events in the transaction are either aborted or
committed and a record of its execution called a schedule, is generated. Furthermore, actions
can be precommited to coordinate the execution of events in different sections (for atomicity
purposes). In a transaction Tj, the precommit operation p^ means that all operations in Ti at
level k have been executed and there are no foreseeable barriers to committing. Therefore, a
multilevel transaction schedule also includes events a (abort), c (commit), and p
(precommit). Because single-level sections are assumed to be atomic, the results of write
operations are not visible to other transactions until they are committed. Therefore, even
within a multilevel transaction, writes at a lower level are not visible to higher levels until the
lower level commit occurs.

Definition (Multilevel Transaction Schedule).3 A multilevel transaction schedule Sj-
(abbreviated 5/ when clear in context) for a multilevel transaction Tj is a total order of
operations, with ordering relation <sT- (abbreviated <$•) such that:

1. Si c Tj u {pij, ajj, Cjj}, where py is a precommit operation, aij is an abort operation,
and Cjj is a commit operation.

2. ay G S[iff cy € Si,
3. If t is Cjj or ay (whichever is in 5/), for any other operation oy € Sjv ojj <st t.

4. If t is cy or ay (whichever is in 5,), and py e 5/. then py <s{- t and there does not
exist an operation oy such that py <$• oy <£■ t.

5. For conflicting operations oy and oy', <st must preserve the <q ordering.
6. If wik[xk] <j ry[xk], then c^ <st ry [xk].

Condition (1) defines the events in a multilevel transaction schedule. Condition (2) says this
set contains a commit or an abort, but not both. Condition (3) says the commit or the abort
(whichever is in this transaction) comes after all other events, and condition (4) states that a
precommit, if present, comes immediately before the commit or abort with no intervening
actions. Condition (5) states that the execution must preserve the order of conflicting
operations within a level. Condition (6) states that when a read at a higher level follows a
lower-level write of the same data item, the read operation must follow the commit of the
write.

3 The definitions in this section are based on the standard definitions for single-level transactions given in
(Bernstein, 1987).

103

The criteria for a single-transaction schedule are used as the building blocks for schedules
over sets of multilevel transactions.

Deiraffiom (Multilevel Schedule), A multilevel schedule ST over a set T of multilevel
transactions TiJ^-Jn is a total ordering of all operations in schedules STJ, ..., Srn, with
ordering relation <$T, such that <sT preserves the ordering of all conflicting operations within
each STJ-

Note that when the set T consists of a single transaction Ti, the multilevel schedule ST is
identical to the multilevel transaction schedule Si. In the following, we will use the term
schedule for executions of both sets of transactions and single transactions.

There may be a large set of possible schedules for the same transaction or set of transactions.
The notions of correctness discussed in the next section rely on the idea of equivalent
schedules, defined here.

Deimtiom (Equivalent Schedules). Schedules S and S' are equivalent iff for every database
state D, executing S in state D produces the same state D' as executing S' in state D.

Corollary. Two schedules S and S' consisting of the same operations are equivalent iff every
write that commits in S also commits in S' all pairs of conflicting operations are ordered the
same in <s as in <s'.

Transactions are executed (generating schedules) by means of a transaction execution
protocol:

DeiEitioffl (Multilevel Tramisaction Execution Protocol). A multilevel transaction
execution protocol (or simply "protocol") P transforms a set of transactions Tinto a schedule
ST ■ We denote the transformation as P(T) = Sj.

3.2 Correctoess Properties

Similar to the ACID (Gray, 1993) properties of standard database schedules, we define four
"ACIS" correctness properties of multilevel schedules and protocols.

3.2.1 AtoefflcMy

In a fully atomic (A-correct) schedule, all operations within a transaction must either commit
or none may commit. In multilevel schedules, however, there is a commit or abort operation
corresponding to each level at which writes are done. The following definition adapts the
definition of atomicity to multilevel schedules.

___„. 1 (A-Correctauess). Let ST be a schedule for a set T of multilevel transactions. ST
is A-correct iff for all schedules Si in ST , if 3j such that cy e 5,-, then cfc e Si for all levels k
represented by write operations Wik e Tj.

104

3.2.2 Consistency

Unlike traditional schedules, operations may need to be reordered in multilevel schedules to
achieve the desired level of security. Consistency in a multilevel schedule requires the
execution to preserve the order of all conflicting operations in the as-submitted multilevel
transactions. We begin with a general definition of C-correctness and then make it more
specific for multilevel schedules.

Definition 2 (C-Correctness). A schedule 5/ for a multilevel transaction Ti is C-Correct iff
it is equivalent to a schedule Si' such that for all conflicting operations o, o' e Ti, <si-
preserves the order of <q.

C-Correctness requires the protocol to preserve the effects of the original ordering of all
intra-transaction conflicts. While condition 5 of the multilevel transaction schedule
definition ensures C-correctness within a security level, C-correctness must apply across
security levels, too.

Since the basic security properties restrict the level of write operations to equal the level of
the data item written, there can be no inter-level conflicts among write operations. Therefore,
within a transaction Tj there are two possible types of inter-level conflicts.

1. rj[xjj <j Wkfxk], where j sdom k (called read-first conflicts)
2. WktxjJ <, rj[xiJ, where j sdom k (called write-first conflicts)

In a schedule Si for Tj, these conflicts translate into conflicts between rj[xjj and the commit
Cfc. Therefore, the following corollary states that a schedule is C-correct if it is equivalent to
a schedule in which the order of higher-level reads and lower-level writes within the
transaction is preserved with respect to the higher-level reads and the lower-level commits
within the schedule.

Corollary. A schedule 5/ for a multilevel transaction Tj is C-correct iff it is equivalent to a
schedule S;' such that for all conflicting operations rj[xfc], Wk[xjJ e Tj, where j sdom k,
ij[xk] <i wk[xk] iff rj[xiJ <$,- ck.

3.2.3 Isolation

Our definition of isolation (I-correctness) is based on standard ideas of serializability
(Bernstein, 1987).

Definition 3 (Serial schedule). Let ST be a schedule for a set T of multilevel transactions.
ST is serial iff for all transaction schedules 5/ and Sj in ST , if 3oi e 5,, Oj e Sj such that oj <sT

Oj, then Voi'e 5,-, Oj'e Sj, Oj '<5r Oj'.

Definition 4 (I-Correctness). A schedule S is I-Correct iff there exists an equivalent serial
schedule S'.

105

3.2.4 Security

Multilevel transactions are required to conform to the simple-security and *-properties (Bell,
1975) which restrict information flows from higher to lower levels. However, the order of
execution of operations within a multilevel transaction may themselves introduce security
violations. For example, if operations at a higher level can cause an abort of operations at a
lower level, this interference violates security -- an observer at the lower level could infer the
existence of higher-level operations within the same transaction.

To capture this notion of non-interference, the S-correctness criterion, defined below,
compares a schedule with operations at higher and lower levels to the same schedule with
higher-level operations removed. If the results of the lower-level operations are the same in
both schedules, then the higher-level operations did not interfere with those at the lower
level. In the criteria that follow, we use the purge function to refer to schedules and
transactions with higher-level events removed.

For a schedule ST, a protocol P, and a set of multilevel transactions T, let the function
purge(£r, L) return a new schedule which is ST with all events not dominated by level L
removed. Similarly, let the function purge(T, L) return a new set of multilevel transactions
which is the set Fwith the events not dominated by level L removed from each member
transaction.

Definition 5 (S-Correcfaess). Let schedule ST = P(T) for some protocol P and set of
transactions T. ST is S-correct with respect to P iff, for all levels L, purge(5j, L) =
P(purge(T, L)) and no operation in ST must wait to start until an operation at a higher level
of ST completes.4

3.2.5 Protocols

These correctness properties can also be applied to protocols:

Definition) 6 (X-Coaxectaess for Protocols). A protocol P is X-Correct for some correctness
property X, where X 6 {A,C,I,S}, iff for any set of multilevel transactions T, ST= P (T) is X-
correct.

That is, P only generates X-correct schedules. In general, a subset of the letters A, C, I, and S
are used to describe the subset of the properties that hold for a given schedule or protocol.
For example, a protocol for which all properties but security hold is ACI-correct.

4 ONGOING AND FUTURE WORK

Correctness properties are not simply additive in protocols. Some combinations are provably
impossible for any protocol. The strong form of S-correctness used interferes with the ability
to attain other correctness properties. In particular, no protocol can be AS-correct, nor can

Timing of operations also unliimately depends on issues such as system and network load. We ignore these
factors here and only focus on timing dependencies between operations in schedules.

106

any protocol be IS-correct via a locking protocol (Smith, 1995). In this case, well-defined
partial correctness properties can often be defined and achieved. A protocol partially correct
for property X is designated X~-correct.

Given the above limitations, the best possible protocols would either ACIS'-correct or else
A-CIS-correct (obtaining I-correctness without using locking). In ongoing work, we are
developing protocols for use in MUSET which meet the various provable upper bounds of
correctness. We are also seeking protocols which are efficient and compatible with widely
used COTS products, that also reach high levels of correctness. Future plans for the MUSET
project call for the implementation of these multilevel transaction execution protocols in a
MUSET testbed.

5 REFERENCES

Bell, D. E., and L. J. LaPadula, "Secure Computer System: Unified Exposition and Multics
Interpretation," Technical Report MTR-2997, The MITRE Corporation, Bedford, MA, 1975.

Bernstein, P. A., Vassos Hadzilacos, and Nathan Goodman, Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

Blaustein, B. T., Jajodia, S., Jones, V. E., McCollum, C. J., Notargiacomo, L., Smith K. P.,
and Rosenthal, A. S., MUSET Multilevel Secure Distributed Database Management System,
MTR 93W0000236, The MITRE Corporation, McLean, VA, December 1993a.

Blaustein, B. T, Jajodia, S., McCollum, C. J., Notargiacomo, "A Model of Atomicity for
Multilevel Transactions," Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland, CA, pp. 120-134, May 1993b.

Costich, O., "Transaction Processing Using an Untrusted Scheduler in a Multilevel Database
with Replicated Architecture," Database Security, V: Status and Prospects (Carl E.
Landwehr and, Sushil Jajodia, eds.), North-Holland, pp. 173-190, 1992a

Costich, O., and J. McDermott, "A Multilevel Transaction Problem for Multilevel Secure
Database Systems and Its Solution for the Replicated Architecture," Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland, CA, pp. 192-203, May 1992b.

Costich, O., and S. Jajodia, "Maintaining Multilevel Transaction Atomicity in MLS Database
Systems with Kernelized Architecture," Proceedings of the IFIP WG 11.3 Sixth Working
Conference on Database Security, Vancouver, BC, pp. 227-252, August 1992c.

Gray, J.,Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993.

INFORMIX Guide to SQL, April 1993

Jajodia, S., and B. Kogan, May 1990, "Transaction Processing in Multilevel-Secure
Databases Using Replicated Architecture," Proceedings of the IEEE Symposium on Research
in Security and Privacy, Oakland, CA, pp. 360-368.

107

Keefe, T. F., and W. T. Tsai, May 1990, "Multilevel Concurrency Control for Multilevel
Secure Database Systems," Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland, CA, pp. 369-383.

ORACLE 7 Server: SQL Language Reference Manual, December 1992

Smith, K.P., B.T. Blaustein, S. Jajodia, and L. Notargiacomo, "ACIS Correctness Criteria for
Multilevel Transactions," submitted to IEEE Transactions on Knowledge and Data
Engineering, 1995.

Sybase Secure SQL Server Reference Manual, 1993.

108

Discussion: Distributed/Federated Secure DBMS

Discussion Leader: Catherine D. McCollum, The MITRE Corporation

(paper not available)

109

TECHNOLOGY TRANSITION

111

SINTRA Technology Transfer:
Lessons Learned So Far

Judith N. Froscher
Oliver Costich*

Naval Research Laboratory
Washington, D.C. 20375

1 Introduction

Over the past year, NRL has been quite active in technology transfer efforts for SINTRA (Secure
INformation Through Replicated Architecture) [1]-[13]. We will share some of our experiences
during that time and point to considerations that can smooth the endeavor. First, we discuss
how DoD information technology (IT) concerns and future plans should influence general security
research and technology. Then we describe how the SINTRA concept supports these IT goals. The
insight that we gained about the importance of replication in a cooperative, distributed computing
environment allowed us to appreciate the fundamental role that the SINTRA approach can have
in providing security for distributed computation.

Technology transfer is a chicken and egg problem. Vendors want to see user demand before
they invest in commercializing new technology. Users want to see and use MLS systems before
they move to them. This tension illustrates the differences that separate MLS technology from the
mainstream of information technology. Users want to benefit from recent advances in information
technology and are quite reluctant to accept MLS solutions because it is difficult for improved
capabilities to be integrated into these systems. The SINTRA approach allows MLS technology
and mainstream information technology to become alligned more closely.

Our goal is to commercialize MLS research results so that operational and perhaps commercial
users can acquire the technology and use it to solve their own security problems. However, commer-
cial vendors must be able to make a business case for investing their own resources to commercialize
the technology. Given the slow acceptance of MLS technology by the DoD, vendors' reluctance to
venture into this market is understandable. It makes our technology transfer efforts more difficult

as well as more important.

Before research results can be commercialized, we must be able to present a computing and

'Consultant to NRL

113

operational use approach that can both convince businesses to risk their capital and convince
operational users that MLS technology will allow them to be more successful in performing their
jobs. Even when we understand what a system must do, we don't always know how to use MLS
technology both to support the user in doing his job and to ensure that the information managed
by the system is protected. We need a secure system engineering approach as well as valid research
results. We will identify some areas of current interest and describe how the SINTRA approach
can be used to solve these problems.

Additionally, we should be sensitive to the following observations that were recently published
in the Joint Security Commission's (JSC) report [14]:

Those who steadfastly resist connectivity will be perceived as unresponsive and will
ultimately be considered as offering little value to their customers.

Our paradigm for managing information security must also shift from developing
security for each individual application, system, and network to developing security for
subscribers within the worldwide utility.

2 Technology Transfer

We first identify some questions that should focus technology transfer efforts:

o What are our technology transfer goals?

o To whom do we wish to transfer our technology?

o Are we really transferring technology or are we instead providing research results upon which
technology can be built?

o Do we expect someone else to figure out how the research results can be used? How should
they be used?

o Do they support distribution of data?

o How difficult is it to integrate new technology into this security paradigm?

o How hard is it to reconfigure computing resources to accommodate change in the operational
environment?

Our primary technology transfer goal is to provide a technical capability that allows secure
access to all the information a user needs to do his job, no matter whether that user is a DoD,
government, or commercial worker and no matter where a user or the data he needs are located.
The challenge for database security research and for technology transfer efforts is to develop systems
that distribute data securely and reliably.

114

Who is our customer? Our first concern has to be the DoD customer. In this respect, our
job is perhaps more difficult. Computing resources for operational users are only beginning to be
upgraded to modern, state-of-the-art processors. Although client-server architectures and relational
database technology have been introduced, the re-engineering of operational application software

has not exploited the full capabilities of the technology.

3 Legacy Systems

Today, tactical data is communicated through formatted military messages concerning readiness,
schedules, equipment failure and its impact on mission readiness, location of friendly forces, com-
mercial traffic, enemy platforms, and more. Users must access several systems, sometimes at
different security levels, to retrieve information through the application running on each system.
These systems were developed to support a specific mission and are updated through the parsing of
a formatted message. The "data fusion" problem is, in part, due to heterogeneous representation
schemes, inclusion of collection- specific information with the data, data access through appli-
cations, and little support for interoperability with other information systems. Changes made to
related data should result in consistent information. However, updates made to a single application
as a result of one formatted message are not necessarily propagated to other applications.

A major challenge for DoD is to move away from application-specific, "stove-pipe" information
processing to cooperative, distributed computing architectures. "Stove-pipe" refers to systems that
have been designed to accept data, transform it, and provide the output for a specific organizational
objective without any capability for interoperating with other systems. Often these systems have
been modified to support a changed operational mission. These systems are quite fragile, difficult to
modify, and expensive to maintain. Stove-pipe systems can not easily migrate to newer technology
because no one really understands what the system does. Yet, organizations depend on these
systems for their corporate survival and are reluctant to risk change in case some valuable corporrate
capability will be lost.

Today, organizations understand that both their information processing needs as well as infor-
mation technology itself will change. This realization imposes additional requirements to develop
systems that can take advantage of new technology to accommodate changing organizational re-

quirements.

Recent trends in cooperative, distributed computing promote use of powerful client worksta-
tions for application-specific processing, like situation assessment and mission planning, and use
of data management servers to provide transparent, reliable access to consistent data. When new
technologies, such as relational database management systems, are introduced, we must present
strategies for the migration of legacy systems upon which operational users depend to new op-
erational capabilities that allow them to do their jobs more efficiently and effectively. Likewise,
when MLS technology is introduced, a graceful migration strategy must be included and the MLS
technology had better support a reasonable, pragmatic approach for support of distributed, cooper-
ative computing. Recent publications, [15] and [16], describe in painful detail efforts to reengineer
legacy systems to take advantage of newer technology and support more comprehensive enterprise

115

computing requirements.

System development for a distributed computing environment is quite different than for an
autonomous, stand-alone system. It is more closely analogous to development for parallel proces-
sors. Hence, the technical concerns are different. Likewise, security engineering for a distributed
computing environment is different. As noted earlier from the JSC Report [14], we must work on
solutions for MLS distributed computing and move away from our current focus on composition of
MLS systems. To achieve this goal, our research efforts must concentrate on security architectures
for cooperative, distributed computing environments, not security architectures for stand-alone,
MLS systems. In such environments, we can take advantage of physical separation to achieve our
security goals and provide reliable, transparent access to the data users need.

4 The SINTRA Approach

The philosophy of protection for SINTRA was strongly influenced by a desire to minimize the
amount of software, both trusted and untrusted, which runs on a high assurance, painstakingly
crafted TCB and, at the same time, to maximize the database capability without introducing
security vulnerabilities. These objectives resulted in a protection mechanism that not only mediates
access to data but also mediates access to general computing execution cycles because protection
critical execution cycles are separated from general execution cycles. This approach has produced
an extremely strong protection mechanism that is not susceptible to the kinds of vulnerabilities that
are inherent in conventional MLS operating system approaches to system security, including those
for data management systems. Because security and application execution cycles are not shared,
malicious code in an untrusted application cannot exploit covert channels in the TCB. In other
words, SINTRA limits the opportunities for exploitation. Replication ensures that information

only flows upward in a security lattice.

SINTRA provides a straightforward, understandable approach to distribution and autonomy.
Physical separation protects information. Strong, effective identification and authentication (I&A)
mechanisms must be available on every component in a distributed system. Data need be replicated
only when the data will be shared. In the SINTRA approach to data management, replica control
is the only MLS requirement. Distribution requirements can be addressed at a single security level
and a trusted replica controller provides the capability for sharing the information at different
security levels. If the components in a distribution are heterogeneous, the translation mediation
can be handled at a single level. When a data owner enters into an agreement to share information
with another user, that data and changes to it can simply be replicated and sent to a cooperating
computing resource accessible to the other user. In general, replication promotes the availability
and sharing of information since the data owner is not required to expend his processing cycles
to support retrievals by other users. The management of and access to the data copy, including
any semantic translation requirements, can be provided securely, reliably, and transparently to the
requesting user through resources available to him.

Current untrusted data management technology has turned to data replication to ensure data
availability, reliability, autonomy, and fault tolerance. Replication provides a migration path for

116

legacy systems to reengineered systems. First, if a transaction can be defined for a legacy system,
updates to that system can be replicated to the reengineered systems with suitable translations
required by the new technology or by a semantic difference in the data representation. The reengi-
neered system can be operated alongside the legacy system until we have confidence that the legacy
system's required capabilities have been successfully implemented in the reengineered system.

While SINTRA does not provide any greater support for the reengineering of legacy systems
than any MLS relational database or other data management technology, it does provide a graceful
migration opportunity for the new technology to be inserted. The SINTRA approach for legacy
systems requires a clear specification of what an update and what a transaction are for the legacy
system. These updates can be replicated to legacy systems running at higher security levels.
This confederation of legacy systems connected through a replication controller provides an MLS
capability for the legacy system.

The SINTRA architecture easily accommodates technology upgrades to any relational database.
While the particular implementations of transaction management for other technologies, such as
object oriented DBMSs, have to be built, we believe that an MLS capability can be developed for
these technologies with an affordable security overhead.

In a cooperative, distributed computing environment, a trusted replica controller becomes a
building block for secure systems engineering. In effect, security can be integrated without agoniz-
ing about whether some feature of the desired system is protection critical because the protection
mechanisms are completely separated from the system's conventional features. The SINTRA ar-
chitecture does not allow illegal information flows. The trusted replica controller is analogous to a
cryto unit in the COMSEC world.

Probably most important to the operational community, however, the SINTRA approach al-
lows MLS technology to exploit current advances in information technology. The use of trusted
replica controllers as MLS connectors allows users and developers to concentrate their development
resources on implementing systems that satisfy operational requirements rather than focusing on
providing a MLS capability. The lifecycle management of single-level systems is more affordable
than lifecycle management for the MLS distribution of MLS systems as well.

5 Conclusions

We believe that this architectural approach makes reasoning about security in the large possible and
permits the scaling up of formal modeling, specification, and proof technology. Separation of the
protection critical execution cycles from general processing cycles makes this advantage possible.
Hence, well-understood assurance techniques can evolve incrementally to provide assurance for
future cooperative, distributed computing solutions.

With these advantages, how have our technology transfer efforts faired? We have had some
hard-won successes. However, like the vision for cooperative, distributed computing, we need
a "killer" application to demonstrate the technology. Both users and program managers have
difficulty understanding MLS in the large and are not always able to make the paradigm shift from

117

stand- alone MLS systems to an MLS confederation of systems. They are reluctant to accept MLS
data management without a complete security engineering solution for all their security problems.
Issues that must be addressed are distributed identification and authentications (I&A), a user
capability to write at different security levels, key management, and more.

1. Froscher, J.N., and C.L. Meadows, "Achieving a Trusted Database Management System
Using Parallelism," in Database Security II: Status and Prospects, C.E. Landwehr, ed., North
Holland, 1989, pp. 151-160.

2. Costich, 0., and I. Moskowitz, "Analysis of a Storage Channel in the Two Phase Commit
Protocol", Proc. of the Foundations of Computer Security Workshop IV, Franconia, NH June

1991, pp. 201-208.

3. McDermott, J., S. Jajodia, and R. Sandhu, "A Single-Level Scheduler for the Replicated
Architecture for Multilevel-Secure Databases", Proc. 7th Annual Computer Security Appli-
cations Conference, San Antonio, December 1991, pp. 2-11.

4. Costich, 0. "Transaction Processing Using an Untrusted Scheduler in a Multilevel Database
with Replicated Architecture", in Database Security V: Status and Prospects, eds. S. Jajodia
and C. Landwehr, North-Holland, 1992, pp. 173-190.

5. Costich, 0. and J. McDermott, "A Multilevel Transaction Problem for Multilevel Secure
Database Systems and Its Solution for the Replicated Architecture", Proc. 1992 IEEE Com-
puter Society Symposium on Research in Security and Privacy, Oakland, California, May
1992, pp. 192-203.

6. Kang, M., H.G. Dietz, and B. Bhargava, "Data Dependence Analysis for an Untrusted Trans-
action Manager in a Multilevel Database System" Proc. of ISMM First International Con-
ference on Information and Knowledge Management, Baltimore, 1992, pp. 441-448.

7. McDermott, J. and S. Jajodia, "Orange Locking: Channel-Free Database Concurrency Con-
trol via Locking", presented at 6th IFIP Working Conference on Database Security, August
1992, Vancouver, British Columbia, pp. 271-288.

8. Kang, M., J.N. Froscher, and O. Costich, "A Practical Transaction Model and Untrusted
Transaction Manager for a Multilevel-Secure Database system" Proc. 6th IFIP Working
Conference on Database Security, August 1992, Vancouver, British Columbia, pp. 289-310.

9. Kang, M., and I. Moskowitz, "A Pump for Rapid, Reliable, Secure Communication," Proc.
1st ACM Conf. on Computer and Communications Security, Fairfax, VA, Nov., 1993, pp.
119-129.

10. Kang, M. H., and R. Peyton, "Design Documentation for the SINTRA Global Scheduler,"
NRL Memorandum Report #5542-93-7362, June 30, 1993.

118

11. McDermott, J., and R. Mukkamala, "Performance analysis of transaction management algo-
rithms for the Sintra replicated- architecture database system," Proc. Seventh Annual IFIP
WG11.3 Working Conference on Database Security, Huntsville, AL, Sept. 1993, pp. 216-240.

12. Costich, 0., and M. Kang, "Maintaining multilevel transaction atomicity in MLS database
systems with replicated architecture," Proc. Seventh Annual IFIP WG11.3 Working Confer-
ence on Database Security, Huntsville, AL, Sept. 1993, pp. 333-357.

13. Kang, M. H., Costich, 0., and Froscher, J. N. Using object modeling techniques to design MLS
data models. The OOPSLA Conference Workshop on Security in Object-Oriented Systems

(1993).

14. U. S. Joint Security Commission, "Redefining Security: A Report to the Secretary of Defense
and the Director of Central Intelligence, Washington, DC, 28 February 1994.

15. P. Aikens, A. Muntz, and R. Richards, "DoD legacy systems: reverse engineering data re-
quirements," CACM, Vol. 37, No. 5, pp.26-41, May 1994.

16. M. Brodie, "The promise of distributed computing and the challenges of legacy information
systems", Advanced Database Systems: Proceedings of the 10th British National Conference
on Databases, P.M.D. Gray and R. J. Lucas (eds.), Springer-Verlog, New York/Heidelburg,

1992.

119

Discussion: Technology Transition

Discussion Leader: Tom Halgh, Secure Computing Corporation

(paper not available)

121

INFERENCE CONTROL

[23

Inference and Knowledge Discovery
Donald G. Marks

Department of Defense, Office of INFOSEC, computer science
Ft. Meade, Md

Abstract: Inference control has become a topic of considerable interest in secure database
implementation. It is generally recognized that access to certain types of information enables the
user to infer other information, even some that should not be available to them. This generally
occurs because users are able to construct datasets in ways that were not anticipated by the sys-
tem designer. Knowledge Discovery techniques are designed to automate this process and there-
fore pose an inference threat. Current inference control techniques are inadequate to protect
against this threat since they are limited to dealing with rules expressed at the schema level, that
is, functional dependencies. Knowledge Discovery, however, may also be used by the system
designer to find rules relating low and high data. If all these rules are classified "High" then there
can be no successful inference attacks against the knowledge in the database.

1.0 Definition of Inference

Inference control has become a topic of considerable interest in secure database
implementation. It is generally recognized that access to certain types of information
enables the user to infer other information, even some that should not be available to
them. Such inference does not take place magically, rather it is the integration of tech-
niques applicable to databases and those utilized by humans in making abstractions.

As a general rule, inference control is concerned with protecting knowledge, not
data. Individual data items are properly protected by standard classification techniques.
Knowledge, however, is inferred from a quantity of data, or a set of data associated with
attributes. In this study, it is assumed that the data is stored in a relational database con-
sisting of a series of tables. Each table represents one type of entity, with the column
labels identifying the attributes, or properties, of the entities. Each row in a table repre-
sents a specific instance of an entity associated with that table and is identified by a
unique primary key. In a secure database context, preventing knowledge from being
released requires preventing the release of both the data and the attributes in a manner
where they can be associated into a sensitive conclusion. The numbers and/or letters in
a database are meaningless until they are associated with an attribute. For example, the
word "Washington" could be a person's name, a city, a state, or a codeword. Numbers
are even less meaningful without knowing the applicable attribute. Data are only mean-
ingful when assigned to an attribute, or set of attributes. The ability to determine these
attributes associated with the data, is the critical point of inference. Inference in a data-
base is said to occur if, by retrieving a set of tuples {T}, having attributes {A}, from the

125

ase, it is possible to specify a ss
T] * {T} or {A6} *

Definition of Database Inference
I, that transforms ({T},{A}) info (fF}

• of tuples IT'}, Ii

1): ({T},{A}) implies ({T'llA'}) if there exists a nils
{A'}).

thisare:(l) BF({T}

(2) ({T},{A})=»({T'UA'}).

In Figure I, knowledge c 5w classi ate
(high classified) data set, A. Such inf
cleared user either knows or can re,

sifted high. In general this prin<
ad. If such a rale exists, then the data set B must also

and inference is cons:

-o

(Jyn^Q
tsxire2

igure'

set D is re-class:

and a rule R2, such that C implies B, as shown in Figure 2. If such a dataset exists, then it
sts another set C,
ataset exists, then

following a chain of

'/ a^ö ard
any point, the link connecting the low and high datasets is only connected by a high clas-

a), then the rest of the chain nees

However, it is possible, especially for complicated databases, for some of the data
ication official. In this case, the malicious

user may be able to construct a set of data in some way not envisioned by the classifica-
. a known rule in order to infer high clas-

Ö edata

side 1
■the

lats

t]
base. It is like
That is, the d,

ised to infer
vmg

is not m tin
s existed, anc neither reduce

in;

126

the database, that is, it avoids self-compromise. Therefore, the most optimistic situation
may be stated as:

If all the tuples in {T} and {V} are in the database, and all the properties in {A} and {A'}
are attributes in the database, then ({T},{A}) => ({T'},{A'}) is an inference rule capable of being
controlled by the database.

2.0 Current Efforts

Inference control efforts to date have dealt with the model of data and rules
described in Section 1 starting with the definitive formal model presented by Morgen-
stern [MORG87]. Practical efforts have approached the problem either by: 1) finding
low classified datasets that imply high classified datasets using only the known func-
tional dependencies as rules; or 2) finding new rules relating data and checking the rule
interactions for inference.

Approach (1) is taken by Binns [BWN92], who does not assume any database
structure, and considers arbitrary dataset combinations formed from the schema. The
computational complexity of such an approach limits its usefulness. Garvy et. al.
[G ARV92], assume a highly structured database schema, and construct datasets with
those dependencies that are known in advance. While this approach is computationally
tractable, it fails to address many inference rules, especially the more subtle ones. Both of
these approaches are limited to functional dependencies as specified in the database
schema.

Approach (2) is taken by Hinke [MNK92], who does not derive the rules from
the schema but has developed a knowledge engineering tool to assist the designer in
defining inference rules. Thuraisingham [THUR91] also uses a knowledge engineering
approach, but with conceptual graphs as a representation. These approaches extend the
capability of the database, but are incapable of determining when all the rules have been
found. They offer no possibility for assurance that all inference rules have been consid-
ered. Other studies have tended to focus upon sub-classes of the problem, or specific
types of inference problems and solutions.

In either case, the solution is to classify additional sets of data as high. As the data
was initially classified, it was scrutinized to insure that it cannot be easily derived from
unclassified information. However, we have now started re-classifying data in the data-
base for the purpose of controlling inference. We have no assurance that such data has
received adequate scrutiny regarding outside influence. It is desirable for the inference
controller to apply this scrutiny rather than to refer the problem back to the classification
officer. This iterative solution is a feature of most of the above proposals.

The major problem with these approaches is the requirement to specify all the
possible inference rules, and then check their interactions among themselves and with
the low classified data sets. Some of the aforementioned studies even attempt to specify
rules utilizing data outside the database. It is suggested that this is the wrong approach
for a system designer or administrator. The low data/rule approach is basically the
approach taken by a system attacker, but system designers or administrators have more

127

namely access
antstfoen our defiimu«,

*&**

Definition of Database Inference (2): ({T},{A}) implies (fF},{A'}
exists a rule, R, that transforms ({T},{A}) into CIT'UA'}).

gives us a method to provide some assurance regart

finite, the number of possible rales is finite, and the process will eventually te
These rules axe found by using artificial intelligence (AI) techniques, basicaB

methods. Such AI programs may be assured to find all the relevant
■ those rules, linking high and low data.

' W€

if,

3o0 jXnowledge Discoveiry

What is knowledge discovery? Knowledge discovery (KB) is
>lge, or meaning, from seemingly unconnected data. Security pracfitionc

should immediately be concerned by this definition. Here is a body of science whose
snce rules between the data. No longer are we dealing with a pe

■k certain meaningful data relationships, or simply be incapabls

cycles,: anteed to
sts, leading

everything. Therefore, if a low classified chain of reaso:
high data, we can be certain that it will be found. We can

a person would know all the relevant inference
■§: all sucn rules

instances populating the database schema. KB techniques can therefore handle parti:
mces, element level labeling, and content-dependant inference rules

[data does require, however, that all inference rules expressible in tne <dia
schema are reflected in the actual database instances. In this case, the KD deriv

se a superset of those special-case rules handled in the previous studies. Oil
flexibility and completeness does not come without a price: KD prog

cpu intensive. However, with the continued decline in the cost of computin;
such programs are becoming more reasonable every day. System attackers freque
have the luxury of dedicating their system, for days on end, to the task of compro:
the attacked system's data.

te interesting feature of KB techniques is their utilization of
les. such rules are not based upon causality, but upon simple cc

predicates. Material implications may be expressed as BF... THEN... statements. Th
f there exists a chain of inference, Aj implies Ai implies ... implies Aw then we n
sn this chain to the endpoints, or Aj implies An. A KB algoril

ztually follow the chain. Whether or not the datas;
inside or outside the database has no effect on the inference discovery. The existing

abase, i

:hisrule

projects that axe attempting to actually place outs:
therefore be making the problem harder than

128

4.0 Conclusions

If we desire any sort of assurance that a system is protected against inference
attacks, we cannot rely upon the techniques developed up until this time. None of them
are suitable for protection against KD types of attack. Perhaps the only method capable
of providing real protection against a KD-type attack is to use the same KD techniques to
implement security. Here we have an advantage over the attacker. An attacker can only
access low-classified data, while a trusted process can access both high and low data.
The low cleared KD tool must do a great deal of searching of the low data in order to
locate appropriate rules and carefully construct the target dataset. In a worst case, all
possible combinations of low classified datasets would have to be compared. System
security only requires that rules connecting low data to high data be unknown to the low
system users. Hence the trusted KD tool need check all combinations of low data and
high data, a formidable task, but usually much easier than checking all combinations of
datasets at the same level. The rules found by this method will contain all true inference
rules, plus many false rules that appear true due to coincidence. Each rule must, of
course, be evaluated before it is included in the system.

5.0 References

[BINN92] Binns, L., August 1992, "Inference through secondary path analysis," Proc. of
the 6th IFIP Working Conference in Database Security, Vancouver, BC.

[MORG87] Morgenstern, M, "Security and Inference in Multilevel Database and Knowl-
edge Base Systems". Proc. of the ACM SIGMOD Conference, San Francisco, April, 1987.

[THUR91] Thuraisingham, B., "The use of conceptual structures for handling the infer-
ence problem", Proc. 5th IFIP Working Conference on Database Security, Shepherdstown,
WV., Nov. 1991.

[HINK92] Hinke, T.N., and H. Delugach, "Aerie: an inference modeling and detection
approach for databases", Proc. 6th IFIP Working Conference on Database Security, Vancou-
ver, B.C., Aug. 1992.

[GARV92] Garvey, T.D./LF. Lunt, X. Qian, and M. Stickle, "Toward a tool to detect and
eliminate inference problems in the design of multilevel databases", Proc. 6th IFIP Work-
ing Conference on Database Security, Vancouver, B.C., Aug. 1992.

129

Inference Control Tool: Project Summary*

Thomas D. Garvey
Artificial Intelligence Center

SRI International
Menlo Park, California 94025

1 Introduction

The advent of commercially available trusted database systems introduces the capability to man-
age data at a variety of sensitivities and to enforce security policies that prohibit the unauthorized
disclosure of information to unauthorized or insufficiently authorized individuals. With these prod-
ucts, data are labeled with their degree of sensitivity and protected accordingly. However, these
products cannot protect data that is incorrectly labeled. One difficulty is that highly sensitive data
may be inferred from data labeled lower1. In such cases an inference problem exists. An inferential
link that may allow highly sensitive information to flow to a low user is termed an inference chan-
nel [?, ?]. It is the difficult task of the data designer to label the data so that the labels accurately
reflect the actual sensitivity of the data and adequately protect the information from inference. The
latter aim is extremely difficult for the human data designer to attain. SRI has developed an auto-
mated tool that can identify potential inference channels in a labeled database. DISSECT [?, ?, ?]
(Database Inference System Security Tool) can be used interactively by a data designer to analyze
candidate database Schemas to assist in the detection and elimination of inconsistent labeling that
can constitute inference problems. DISSECT uses schema-level analysis to avoid the costly task of
data-level analysis with every database query.

DISSECT can detect both compositional inference channels and inference channels that involve
type-overlap and near-key relationships. A potential compositional inference channel exists if two
attributes are connected by a pair of paths consisting of composed foreign key relationships, where
the two paths may have different sensitivities. A relationship can be inferred between any pair of
entities that are connected by a sequence of foreign key relationships. If a table contains a foreign
key to a second table, then there is a functional relationship from entities described by the first
table to entities described by the second. A foreign key relationship from the second table to a third
implicitly defines a composed functional relationship from entities described by the first table to
entities described by the third. If there is another sequence of foreign key relationships connecting
the first and third tables, and accessing the two sequences may require different authorizations,
there may be a compositional channel, since the two sequences of foreign key relationships may
describe the same or a too closely related relationship between the first and third entities.

"This research was supported by the United States Air Force, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-91-C-0092.

*We use the terms "high" and "low" informally to refer to data that is more or less sensitive.

131

Compositional channels involve relationships that are explicitly defined in the database schema.
The foreign key relationships that compose them are mappings from an attribute2 of one relation to
the primary key of another. The schema contains the information required to search for composi-
tional channels, but the security of the database can still be compromised by more indirect methods.
A foreign key relationship requires that the second attribute be a primary key and that every value
of the first attribute be included among the values of the second. Foreign key relationships specify
the join operations that the data designer intends the database user to perform. However, a user
can join any pair of attributes that have values in common. Moreover, neither attribute need be a
primary key. If one is a near key, joining on it can yield information about dependent attributes
nearly as well as the primary key. DISSECT allows the data designer to declare information about
attribute joinability and near keys to enable detection and elimination of the additional inference
channels they allow.

Rather than require that the data designer state explicitly list every pair of attributes that
are joinable, we allow him to associate types with attributes. Attributes whose types overlap are
joinable. A type-overlap relationship occurs between two attributes when the two attributes have
been declared to be of the same type and also have some overlap in the allowed sensitivity labels
for data elements of that type. For example, there may be some overlap between attributes home-
phone-number and office-phone-number, if they are both declared to be of type phone-number, and
if elements of each may also match in sensitivity level. Intuitively, a type-overlap relationship is
one which would allow the two attributes to be joined on matching data values and sensitivities. A
potential inference problem exists if there is a pair of different-sensitivity paths between the same
two entities, where the high path consists of a sequence of foreign key links, and the low path consists
of both foreign key and type-overlap links. Intuitively, we are looking for ways a low user could
use both declared foreign key relationships and fortuitous type-overlap relationships to compromise
an explicit high relationship consisting of a sequence of one or more foreign key relationships. To
allow DISSECT to discover inference channels that involve type-overlap relationships, the data
designer must make type declarations for the attributes in the database. Inclusion of type-overlap
relationships in DISSECT's detection algorithms allows DISSECT to detect inference problems
caused by a user's ad hoc queries that the data designer might not have considered.

The detection of inference channels that involve type-overlap and near-key relationships require
the data designer to make type declarations for the attributes in the database. The type declarations
need not be complete; where the data designer has not made type declarations, DISSECT assumes
nonoverlapping types.

In related work [?], Binns considered two attributes to be related if they had the same name.
He created inference paths by concatenating such relationships. A potential problem was detected
as a pair of such paths connecting the same end entities but having different security levels. Some
problems with his approach are that (1) many spurious inference problems will be detected, since
two attributes are not necessarily related or even joinable simply because they have the same name
(his solution to this was to impose the unrealistic requirement that attribute names be unique across
the database), and that (2) many relationships that could contribute to inference paths could go
undetected, since attributes can be meaningfully joined even though they do not share the same
name. Our type-overlap approach achieves the intent of Binns' approach (namely, of detecting
problems that could not have been anticipated by the data designer), but will detect all and only

2 For simplicity, we will discuss here only the case of relations among single attributes and not primary or foreign
keys composed of multiple attributes.

132

those paths formed of meaningful relationships.

References

[1] T.D. Garvey, T.F. Lunt, and M.E. Stickel. Characterizing and reasoning about inference chan-
nels. Proceedings of the Fourth RADC Workshop on Database Security, Little Compton, Rhode

Island, April 1991.

[2] T.D. Garvey, T.F. Lunt, and M.E. Stickel. Abductive and approximate reasoning models for
characterizing inference channels. Proceedings of the Fourth Workshop on the Foundations of
Computer Security, Franconia, New Hampshire, June 1991.

[3] X. Qian, M.E. Stickel, P.D. Karp, T.F. Lunt, and T.D^Garvey. Detection and elimination of
inference channels in multilevel relational databases. Proceedings of the 1993 IEEE Symposium
on Research in Security and Privacy, Oakland, California, May 1993.

[4] M.E. Stickel, X. Qian, T.F. Lunt, and T.D. Garvey. Inference Channel Detection and Elimina-
tion (Second Interim Report), Computer Science Laboratory, SRI International, Menlo Park,
California September, 1993.

[5] M.E. Stickel. Elimination of inference channels by optimal upgrading. Proceedings of the 1994
IEEE Symposium on Research in Security and Privacy, Oakland, California, May 1994.

[6] L.J. Binns. Inference through secondary path analysis. Proceedings of the Sixth IFIP Working
Conference on Database Security. August. 1992.

133

Discussion: Inference

Discussion Leader: Teresa Lunt, SRI International

(paper not available)

135

USABILITY OF MULTILEVEL SECURE
DATABASE MANAGEMENT SYSTEMS

[37

DESIGN AND IMPLEMENTATION
OF MULTILEVEL DATABASES

Ravi Sandhu

Department of Information and
Software Systems Engineering

George Mason University
Fairfax, VA 22030-4444
sandhu§isse.gam.edu

This paper briefly describes ongoing research at GMU on the problem of designing
and implementing multilevel databases. In a nutshell the objective of our research is
to close the semantic gap between sophisticated requirements of MLS applications and
the relatively meager facilities provided by emerging MLS DBMS products. There is
a missing links in previous research in the MLS database arena. Previous research
has tended to focus either on

e the behavior of a relational MLS DBMS and problems associated with imple-
menting this behavior in different MLS architectures, or

e on stating requirements for an MLS database using semantic data models and
related techniques.

There are several notable exceptions to this statement. Sell and Thuraising-
ham [ST94] have recently proposed a Multilevel Object Modeling Technique (MOMT),
patterned on OMT, for designing multilevel database applications using a relational
MLS DBMS platform. Lewis and Wiseman [LW93] have also recently described a
case study in mapping requirements stated in the SPEAR notation into SWORD
and SeaView. The RADC workshop several years ago did a case study of mapping
requirements into systems [Smi89, ST89, Hin89, Mai89, Stu89]. The TTCP XTP-1
Workshop on Research Progress in MLS Relational Database held prior to the 1994
RADC workshop also poses a case study.

Our research seeks to reconcile these two streams of activity by addressing the
missing-link question of how to achieve the stated requirements on a given data
model of MLS relations. It will build upon the prior research cited above. The Sell-
Thuraisingham and Lewis-Wiseman efforts were targeted at element-level labeling of
MLS relations. Our project will go beyond this work by also considering tuple-level
labeling. This is particularly important because emerging MLS DBMS products pro-
vide tuple-level labeling rather than the element-level labeling discussed in most of
the research literature. This fact widens the semantic gap identified above, and makes
the proposed research all the more topical and relevant to the practitioner seeking to
build MLS applications on these emerging platforms.

139

The basic premise of the proposed research is that the theoretical expressive power
of fairly simple models can be surprisingly general. The classic example of this is Tur-
ing machines, and related automata, which are capable of executing all computable
activity. At the same time, simple models are usually not practical to use directly
even though they are theoretically capable of solving the problem at hand. It is there-
fore necessary to develop additional tools to close the semantic gap in a practically
useful manner, rather than just declaring theoretical adequacy of a simple model.
This approach to closing the semantic gap has been repeatedly employed in com-

' puter systems. Our expectation is it will also succeed in the arena of MLS relational
databases.

The reason for considering tuple-level labeling is that most of the emerging MLS
DBMS products are adopting this approach. This is a natural approach for DBMS
vendors, in that the tuple is the basic storage and retrieval unit in typical relational
DBMS implementations.

There has been some theoretical discussion of equivalence between tuple-level la-
beling and element-level labeling. Qian and Lunt [QL93] have published an interesting
claim that tuple-level labeling is equivalent to the Sea View model (under a particular
definition of equivalence) . We feel this issue needs to be studied more carefully, and
in a broader context than the SeaView model. The notion of what is meant by equiv-
alence itself needs a rigorous examination. We now illustrate the subtleties involved
here by contrasting two interpretations of tuple-level labeling.

A SIMPLISTIC INTERPRETATION OF TUPLE-LEVEL
LABELS

Let us consider a simple mapping from tuple-level labels to element-level labels. Say
we have the following tuple

(ci,a2,...,a„,c)

where the a,-'s are the individual data elements of the tuple, and c is the security label
on the tuple. The simplest mapping to element-level labelling is to simply put c as
the label of each of the individual elements, as well as let c be the tuple class. This
would give us the following tuple (with element-level labeling).

(ai,c,a2,c,.,.Jan,cn,c)

Each c labels the data element to its left, except for the rightmost one which labels the
entire tuple. This simple mapping severely cripples the expressive power of tuple-level
labeling. It is impossible to translate the following tuple with element-level labels to
an equivalent one with tuple-level labels.

(auU, a2,S, ...,G„, S, S)

140

This tuple associates an unclassified data element a,\ with a number of secret data
elements a2.. .an. Such an association cannot be expressed with this simplistic in-
terpretation of tuple-level labeling. But this is not the only possible interpretation.

AN ALTERNATE INTERPRETATION OF TUPLE-LEVEL
LABELS

Let us consider an alternate interpretation. We caution the reader that this inter-
pretation is being presented only for sake of example. We are not suggesting it as
an interpretation to be recommended. Finding useful interpretations of tuple-level
labeling is a task for the proposed research.

Let us assume that A\ (i.e., the first attribute) of a tuple is the apparent key. Now
suppose the following tuples are coexisting in a relation (with tuple-level labeling).

(ai,a2,...,a„, t/)

(ai,a'2,...,a'n,S)

Note that there are two tuples with the same apparent key value (i.e., ai), so this
is a form of polyinstantiation. Now consider the following mapping to element-level
labeling.

® Data elements outside of the apparent key inherit the label of the tuple.

9 The apparent key is assigned a label equal to the greatest lower bound of the
labels of all tuples in which it occurs.

For the pair of tuples shown above we obtain the following two tuples (with
element-level labeling) respectively.

(ai,U, a2,U, ...,U, an, U,U)

(ai,U,a'2jS,...,a'n,S,S)

Furthermore, consider the following tuple (with element-level labels) which we could
not map to an equivalent one with tuple-level labels under the previous interpretation.

(ai, U,a2,S, ...,an,S,S)

With the current interpretation we can attempt to translate this into two tuples (with
tuple-level labels) as follows.

(ai,m///, ...,null, U)

(a1,a2,...,an,S)

141

The first of these essentially fixes the label of ca at U. The second gives the S values
associated with at. Moreover, these two tuples can be interpreted as respectively
corresponding to the U and S views of the tuple (with element-level labels) they were
derived from.

This alternate interpretation illustrates the important point that it is possible
to have a richer semantics for tuple-level labeling than obtained by the simplistic
interpretation given earlier. There a number of research questions that need to be
addressed here.

Firstly, it is not clear if there is a consistent and useful semantics for tuple-level
labeling along the lines sketched out above. The work of Qian and Lunt address
this question from one perspective. We feel that a more comprehensive study of
this problem is called for, particularly since considerable progress on understanding
polyinstantiation has been made in the meantime. Moreover, Qian and Lunt do not
consider dynamic aspects of the relations, such as update semantics. In short, much
work remains to be done.

Secondly, we must consider the semantics of tuple-level labeling supported in
the emerging products. In particular, the update behavior is determined by these
BBMS's. It therefore constrains the range of interpretations we can impose on these
products.

Thirdly, we must consider how to practically map element-level requirements to
tuple-level models. Even if we can establish some kind of theoretical equivalence, we
will still need tools and possibly human guidance in achieving an effective mapping.

References

[Hin89] Thomas H. Hinke. Secure database design panel. In Fourth Annual Computer
Security Application Conference, page 323, Tucson, AZ, December 1989.

[LW93] Sharon Lewis and Simon Wiseman. Database design k MLS DBMSs: An
unhappy alliance? In Ninth Annual Computer Security Application Confer-
ence, pages 232-243, Orlando, FL, December 1993.

[Mai89] Bill Maimone. Oracle corporation homework problem solution. In Fourth
Annual Computer Security Application Conference, page 324, Tucson, AZ,
December 1989.

[QL93] Xiaolei Qian and Teresa Lunt. Tuple-level vs. element-level classification. In
B. Thuraisingham and C.E. Landwehr, editors, Database Security VI: Status
and Prospects, pages 301-315. North-Holland, 1993.

142

[Smi89] Gary W. Smith. Multilevel secure database design: A practical application.
In Fourth Annual Computer Security Application Conference, pages 314-321,
Tucson, AZ, December 1989.

[ST89] Paul Stachour and Dan Thomsen. A summary of the ldv solution to the
homework problem. In Fourth Annual Computer Security Application Con-
ference, page 322, Tucson, AZ, December 1989.

[ST94] Peter J. Sell and Bhavani M. Thuraisingham. Applying omt for designing
multilevel database applications. In T. Keefe and C.E. Landwehr, editors,
Database Security VII: Status and Prospects, pages 41-64. North-Holland,
1994.

[Stu89] Edward D. Sturms. Secure database design: An implementation using a
secure dbms. In Fourth Annual Computer Security Application Conference,
page 325, Tucson, AZ, December 1989.

143

DESIGN AND IMPLEMENTATION OF
MULTILEVEL DATABASES

Ravi Sandhu

George Mason University
Fairfax, Virginia

145

LYINSTANTIATION, COV
TORIES AND CONFUSIO

© Polylnstantlatlon can cause confusion
if not managed properly

@ Polylnstantlatl
confusion If ma

® Polylnstantlat
eliminated If s

© Polylnstantlatl
co¥er stoiries If

need not cause
iged properly

can be complete
eslre(

can be m
desired

ea lor

NOTE? Analogy to GOT05s In
inEuages programming iia

Starship Objective Destination TC
Enterprise U Exploration U Talos U U

UNCLASSIFIED INSTANCE OF SOD

No. Starship Objective Destination TC

1 Enterprise U
Enterprise U

Exploration U
Spying S

Talos
Talos

U
u

U
s

2 Enterprise U
Enterprise U

Exploration U
Exploration U

Talos
Rigel

u
s

u
s

3 Enterprise U
Enterprise U

Exploration U
Spying S

Talos
Rigel

u
s

u
s

COVER STORIES

4 Enterprise U Exploration U Talos U u
Enterprise U Exploration U Rigel s s
Enterprise u Spying s Rigel s s

5 Enterprise u Exploration V Talos u u
Enterprise u Spying s Talos u s
Enterprise u Spying s Rigel s s

6 Enterprise u Exploration u Talos u u
Enterprise u Spying s Talos u s
Enterprise u Exploration u Rigel s s

7 Enterprise u Exploration u Talos u u
Enterprise u Spying s Talos u s
Enterprise u Exploration u Rigel s s
Enterprise u Spying s Rigel s s

CONFUSION

147

CORE INTEGRITY PROPERTIED

© Entity Integrity

© Inter=Instanee Integrity

© Polylnstantlatlon Integrity (PI

@ Pl-tnple class

© Foreign Key Integrity

@ Referential Integrity

® No Entity PolylnstantlatI

148

WHAT IS ALL THIS FUSS ABOUT?

• We cannot simply label data in
a single-level system and
thereby make it multi-level

® We cannot simply un-label data
in a multi-level system and
thereby make it single-level

149

Starship Objective Destination

Enterprise Exploration Talos

SINGLE LEVEL INSTANCE OF SOD

Starship Objective Destination TC
Enterprise U Exploration U Talos U U

ACCEPTABLE

Starship Objective Destination TC
Enterprise U Exploration S Talos U S

ACCEPTABLE

destination TC
Enterprise U Exploration U Talos S | S

ACCEPTABLE

Starship Objective Destination TC |
Enterprise U Exploration S Talos S S j

ACCEPTABLE

Starship Objective Destination TC

Enterprise S Exploration S Talos S S

ACCEPTABLE

150

Starship Objective Destination
Enterprise Exploration Talos

SINGLE LEVEL INSTANCE OF SOD

Starship Objective Destination TC
Enterprise S Exploration U Talos U S

UNACCEPTABLE

Starship Objective Destination TC
Enterprise S Exploration S Talos U S

UNACCEPTABLE

Starship Objective Destination TC
Enterprise S Exploration U Talos S S

UNACCEPTABLE

Starship Objective Destination TC
Enterprise S Exploration S Talos S S

ACCEPTABLE

Starship Objective Destination TC
Enterprise S Exploration S Talos TS TS

ACCEPTABLE

151

TITY VERSUS I
POLYINSTANTIATION

Starship
Enterprise U Exploration U

Spying S_
Ta!os U

TC

U

ENTITY POLYINSTANTIATION

2 ENTITIES WITH THE SAME KEY

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Spying S

Talos U
Rigel S

U
s

ELEMENT POLYINSTANTIATION

ENTITY WITH CONFLICTING INFORMATION ABOUT IT

152

ENTITY VERSUS ELEMENT
POLYINSTANTIATION

» Entity polyinstantiation is
incompatible with referential
integrity*

i Entity polyinstantiation can be
eliminated^ but only by
proactive mechanisms.

> Element polyinstantiation is
useful for cover stories, if
properly implemented»

► Element polyinstantiation can
be easily prevented by reactive
mechanisms.

153

POLYINSTANTIATION

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Spying S

Talos U
Rigel S

U
§

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Exploration U

Talos U
Rigel S

U
s

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Spying S

Talos U
Talos U

U
S

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Mining C Sirius C C
Enterprise U Spying S Rigel S S
Enterprise U Coup TS Orion TS TS

154

UNACCEPTABLE ELEMENT
POLYINSTANTIATION

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Spying U

Talos
Rigel

U
s

u
s

Starship Objective Destination TC

Enterprise U
Enterprise U
Enterprise U
Enterprise U

Exploration U
Exploration U
Spying S
Spying S

Talos
Rigel
Talos
Rigel

u
s
u
s

u
s
s
s

155

ACCEPTABLE EL
POLYINSTANTIATIOM

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Exploration S

Talos U
Talos S

U
S

Starship

se U
Exploration U
Exploration U

Talos
Talos

U

TC

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Exploration U

Talos U
null S

U
S

Starship Objective Destination TC

Enterprise U
Enterprise U
Enterprise U

Exploration U
Mining C
Exploration U

Talos U
Sirius C
Rigel S

U
c
s

Starship Objective Destination TC

Enterprise U
Enterprise U
Enterprise U

Exploration U
Mining C
Exploration U

Talos U
Sirius C
Talos U

U
c
s

156

REFERENTIAL INTEGRITY

Starship Objective Destination
Enterprise Exploration Talos

INSTANCE OF SOD

Captain Starship
Kirk Enterprise

PROPER REFERENCE FROM CS TO SOD

Captain Starship
Kirk null

NO REFERENCE FROM CS TO SOD

Captain Starship
Kirk Battlestar

DANGLING REFERENCE FROM CS TO SOD

157

REFERENTIAL AMBIGUITY

SHIP OBJ DEST TC

Enterprise U
Enterprise S

Exploration U
Spying S

Talos U
Rigel S

U
S

CAPTAIN SHIP TC
Kirk U Enterprise S S |

® neierenee uown iijm,jL-o«iuces
ambiguity due to entity
polyinstantiation
(Original SeaView)

Reference at your level
eliminates ambiguity
(Revised SeaView)

158

REFERENTIAL INCOMPLETENESS

SHIP OBJ DEST TC

Enterprise U
Enterprise U

Exploration U
Spying S

Talos U
Rigel S

U
S

CAPTAIN SHIP TC
Kirk U Enterprise S S

Reference at your level severely
limits modelling power
(Revised SeaView)

159

LUTION

9 Eliminate entity polyinstantiation

® Otherwise choose between

— referential ambiguity^ O
— referential ineonipletene

ELIMINATION OF ENTITY
POLYINSTANTIATIONi PART I

Preallocation of key space to security
classes»

— U Starships have names beginning
with A-E

— 8 Starships have names beginning
with F-K

— etcetera

Keys assigned by a trusted user
outside of the computer system.

Keys assigned by a trusted subject in
the computer system» Will introduce
a low bandwidth covert channel*

161

SLIMINATION OF ENTITY
LYINSTANTIATIONs PART II

SHIP OBJ BEST TC

Enterprise U
Voyager S

Exploration U
Spying S

Talos U
Rigel S

U
s

CAPTAIN RANK TC

Kirk U
Spock S

Admiral U
General S

U
S

REFERENCED RELATIONS

CAPTAIN SHI!

Kirk
Enterprise U
Enterprise U

Enterprise §

HOURS/WEEK

10

TC
U

REFERENCING RELATION

162

ELIMINATION OF ENTITY
POLYINSTANTIATION: PART II

SHIP OBJ BEST TC

Enterprise' U
Voyager S

Exploration U
Spying S

Talos U
Rigel S

U
S

CAPTAIN RANK TC

Kirk U
Spock S

Admiral U
General S

U
S

REFERENCED RELATIONS

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U 10 S S

ACCEPTABLE REFERENCING RELATION

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U
Kirk Enterprise U

15 U
10 S

U
S

ACCEPTABLE REFERENCING RELATION

163

JMINA
POLYINSTANTIATI PAET II

SHIP OBJ DEST TC

Enterprise U
Voyager §

Exploration U
Spying S

Talos U
Rige! S

U

CAPTAIN RANK TC

Kirk U
Spock §

Admiral U
General S

U
s

REFERENCED RELATIONS

CAPTAIN SHIP HOURS/WEEK TC
Kirk Enterprise S 10 S S

ENTITY POLYINSTANTIAT:

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U
Kirk Enterprise S

15 U
10 S

U
S

ENTITY POLYINSTANTIATION!

ELIMINATION OF ENTITY
POLYINSTANTIATION; PART II

® Seems we cannot keep
assignment of Kirk to Starship
Secret without opening up
possibility of entity
polyinstantiation.

® We can convert the perceived
entity polyinstantiation into
element polyinstantiation.

165

ELIMINATION OF ENTIT
LYINSTANTIATION: PAB ,T II

SHIP OBJ DEST TC |

Enterprise
Voyager

U
§

Exploration U
Spying S

Talos U
Rigel S

U
§

CAPTAIN RANK TC

Kirk U
Spock S

Admiral U
General S

U
S

REFERENCED RELATIONS

CAPTAIN SHIP HOURS/WEEK TC

ENTITY POLYINSTANTIATION

CAPTAIN SHIP HOURS/WEEK TC

Kirk
Kirk

Enterprise U
Enterprise U

15 U
10 s

U

NO ENTITY POLYINSTANTIATION!

SUMMARY

Prevent entity polyinstantiation by
proactive (and reactive) mechanisms

Permit or prevent element
polyinstantiation by reactive
mechanisms as desired on a
case-by-case and day-by-day basis

167

A

© Design wit
more abstract

5Hient-level la
semantic Hiod

or

@ H^iiiergiieg

tuple-leve
platforms provide

168

INTERPRETATION OF
TUPLE-LEVEL LABELS

Starship Objective Destination TC
Enterprise
Enterprise

Exploration
Spying

Talos
Rigel

U
s

Starship Objective Destination TC

Enterprise U
Enterprise S

Exploration U
Spying S

Talos U
Rigel S

U
S

ENTITY POLYINSTANTIATION

Starship Objective Destination TC

Enterprise U
Enterprise U

Exploration U
Spying S

Talos U
Rigel S

U
S

ELEMENT POLYINSTANTIATION

169

CONCLUSION

re are optimistic that It wi
jsslble to

Design mis databases wit
element-level labels (or m
abstract semantic models

Translate these designs o
emerging platforms with tuple-leve
labels

© Further R&D Is ne
substantiate this c

• Without such R&3
DBMSs with tupk
have a frustrating

eded to
aim

esignen
evel labe
xperience

wi

170

Discussion: User Perspective

Discussion Leader: Jack Wool, ARCA Systems, Inc.

(paper not available)

171

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address: ____^

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

3. DO any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out«"

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

aU.S. GOVERNMENT PRINTING OFFICE: 1995-610-126-20039

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in ail
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

