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Preface 

The Third International Workshop on Computational Electronics was held at the Benson Hotel in 
downtown Portland, Oregon, on May 18,19, and 20,1994. The workshop was devoted to a broad range 
of current issues in computational electronics related to the simulation of electronic transport in 
semiconductors and semiconductor devices, particularly those which require large computational resources. 
The present workshop evolved from earlier workshops on the same theme held at the Beckman Institute 
in Urbana-Champaign under the auspices of the NSF National Center for Computational Electronics 
(NCCE). In 1992, the scope of the NCCE workshop was expanded to become an international forum for 
the discussion of current trends and future directions of computational electronics. Thus, the First 
International Workshop on Computational Electronics was held on May 28,-29, 1992, at the Beckman 
Institute. The following year, the Second rWCE was held at the University of Leeds in the United 
Kingdom on August 11-13, 1993. We are grateful for support of the 1994 workshop by the National 
Science Foundation, the Office of Naval Research and the Army Research Office, as well as local support 
from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology 
Education. 

There were over 100 participants in the Portland workshop, of which more than one quarter represented 
research groups outside of the United States including Austria, Canada, France, Germany, Italy, Japan, 
Switzerland, and the United Kingdom. The emphasis of the contributions reflects the interdisciplinary 
nature of computational electronics with researchers from the Chemistry, Computer Science, Engineering, 
Mathematics, and Physics communities participating in the workshop. We are very grateful to the 
members of the Program Committee for the selection of invited speakers and review of contributions to 
the workshop. We thank S. Subramanian and April Melton for their help in the workshop organization. 
We are also grateful to the Advisory Committee for helpful comments and suggestions. Finally, we wish 
to thank all the participants for the general high quality of their presentations at the workshop and of the 
articles contained herein. 

Stephen M. Goodnick 

Oregon State University, June 1993 
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A COMPARISON OF BTE-BASED ELECTRON TRANSPORT SIMULATIONS FOR SILICON 

J.M. Higman * 
Motorola 

Advanced Products Research and Development Laboratory, MD K-10 
3501 Ed Bluestein Blvd., Austin, Texas 78721 

ABSTRACT 

A unique study of several previously reported computer simulations which solve the Boltzmann 
Transport Equation (BTE) for electrons in silicon has been completed. A total of 47 individuals represent- 
ing 19 laboratories in 6 countries participated in this comparison, with a total of 21 data sets contributed. 
Most of the simulations are based on the Monte Carlo particle technique, and have been used here to cal- 
culate a set of transport characteristics for intrinsic silicon at room temperature with a homogeneous elec- 
tric field. From a global perspective the results vary widely, but they provide for the first time a quantita- 
tive comparison of many silicon transport models. If we group the data sets according to their bandstruc- 
ture models and compare groups to one another the separate effects of bandstructure and phonon scatter- 
ing rates can be seen. In the group of full-band models we observe a striking and unexpected agreement 
between 4 of the data sets, and the possible significance of this observation will be discussed. 

I. INTRODUCTION 

In this study, initiated within the National Center for Computational Electronics, we present a com- 
parison [1] of many of the computer simulation codes which have been developed throughout the world 
for simulating electron transport in silicon. A number of researchers solved the BTE (all but one using the 
Monte Carlo particle method) for a specific set of conditions, and the results of all of these simulations 
have been compiled allowing the first direct comparison of a broad spectrum of transport models. The 
focus of this study is on the physical models and how they might affect the calculated distributions, and 
not programmer-dependent qualities such as computational speed or the algorithms. 

Each simulation code was used to calculate the energy distribution of electrons in homogeneous, 
intrinsic silicon at room temperature with time-invariant applied electric fields of 30kV/cm, 150kV/cm 
and 300kV/cm. For each field, the percentage of electrons above l.leV, 1.8eV and 3.1eV were calcu- 
lated. 

II. RESULTS 

Each of the 21 data sets are listed after the references, with a brief description of the bandstructure 
model, a list references to the literature which describes the model, and the names of the contributors. It is 
useful to separate the data sets into three groups according to their bandstructure models, and all of the 
figures are organized according to this scheme. The first group (sets 1 through 7) consists of models 
which use effective mass bands; these are either spherical or ellipsoidal constant-energy surfaces, and can 
be either parabolic or nonparabolic. The second group (sets 8 through 16) contains data sets which use 
"fit" bandstructure models. These models differ from one another in detail but in principle they are all 
constructed of analytic functions which contain a number of adjustable parameters such that some proper- 
ties of the full bandstructure of silicon at higher energies can be emulated, while retaining the simplicity 
of analytical expressions. For example, the bandstructure may be fit to the density-of-states extracted from 
a full bandstructure calculation. Set number 8 is included in the fit-band group although it uses only effec- 
tive-mass bands, but since it uses both X- and L-valleys it is similar to the other models in this group. The 



third group (sets 17 through 21) consists of the full-band Monte Carlo simulations where the £(k) relation 
is calculated using the pseudopotential method, tabulated on a three-dimensional grid in k-space, and 
interpolated as needed during the monte carlo simulation. 

All data sets except 19, 20, and 21 use electron-phonon models based on phenomenological cou- 
pling constants. Both the acoustic deformation potential and the intervalley coupling constants are 
adjusted to reproduce (some) measured data. Data sets 19 through 21 represent the newest attempts at 
physical models for the transport without any fitting parameters per se. In these transport models the 
pseudopotential description of the crystal is used to calculate both the bandstructure and the electron- 
phonon interaction, thus treating the free propagation of the electron on the same footing with scattering. 

Figures 1(a) through (c) show the total electron-phonon scattering rates (emission plus absorption) 
for the effective mass, fit-, and full-band groups of data, respectively. Although this is an incomplete rep- 
resentation of any particular transport model - the relative magnitudes of rates for different mechanisms 
and the impact ionization rate are not shown - it does give some indication about structure in the elec- 
tronic density-of-states and the strength of the electron-phonon coupling used in the model. At high elec- 
tric fields the impact ionization scattering rate may have a strong effect on the electron energy distribution 
and the details of the ionization scattering rates can be found in the references given for each data set. 

Figures 2(a) through (c) show the energy distribution of electrons for 30kV/cm, for the three groups 
of data. Each of the three groups has one model with a much more highly populated tail than the others 
(sets 2, 10, and 19). The model for set number 2 uses a parabolic, spherical band resulting in a low scat- 
tering rate and large population at high energies. In order to understand Figure 2 further we use the effec- 

1 A2 

tive deformation potential (DK)y = [ £ A?, p and effective phonon energy Qi<o)f =        2 X =r~ for 
n W&)ij  v  n(an 

the conduction band edge, which were introduced in [14]. The subscripts ij indicate a pair of conduction 
band minima and A, is the coupling constant for phonon branch TJ. Averaging (£>#)(/ and (7uy),y over all 
possible minima ij give average effective scattering parameters shown for each model in Fig. 3. The 
arrows on Fig. 3 indicate the three apparently outlying data sets of Fig. 2, showing that these data sets 
have the smallest average coupling < (DK) > in their respective groups. Judging from the fit- and full- 
band data, at lower fields (30kV/cm in this case) the electron-phonon coupling has the strongest influence 
on the tail of the distribution. 

Figure 4 shows the three groups of data as in Figure 2, for an applied electric field of 150kV/cm. In 
Fig. 4(a) we see again that due to the bandstructure model used in set 2 it falls far from the nonparabolic 
band models. The fit-band model distributions shown in Fig. 4(b) exhibit considerable scatter in the tail 
populations at this intermediate field value. The consistency among the full-band models is improving as 
the field is increased, with set 19 still showing a much larger population at high energies. 

The electron distributions for an applied electric field of 300kV/cm are shown in Figure 5. For the 
effective mass bands, Fig. 5(a), the non-parabolic models predict more consistent distributions than do the 
fit-band models of Fig. 5(b), and the agreement among the full-band models has improved over the 
150kV/cm case. This observation concerning the full-band models is unexpected since the electron- 
phonon interaction models differ dramatically, from phenomenological coupling constants of models 17 
and 18, to the pseudopotential-based, anisotropic coupling of models 19, 20, and 21, and quite different 
impact ionization models. This suggests that at higher electric fields the bandstructure has more influence 
on the electron distribution; the fit-band models, which use a variety of analytic expressions and fitting 
schemes to determine the bandstructure give widely varying results at higher fields. The non-parabolic, 
effective mass band models (excluding for the moment the spherical-parabolic model of set 2) and full- 
band models, which have well-defined, consistent bandstructures from one model to another, become 
more consistent with one another at higher fields. It is important to note that consistent results among any 
group of models does not necessarily indicate that they are close to the correct result. 



Figures 6 and 7 show information about the integrated distribution, fraction of electrons above 
l.leV (near the impact ionization threshold) for an applied field of 150kV/cm, and the average energy for 
each data set at 150 and 300kV/cm. These figures emphasize the disagreement across all data sets, as we 
observe that the average energy varies by a factor of 5 at these fields (a factor which becomes worse at 
lower fields). 

III. CONCLUSION 

In summary, we can say that the disagreement among the results is unacceptably large, and from a 
global perspective the data is discouraging, but by dividing the data into groups according to the band- 
structure models we see that some encouraging trends exhibit themselves. In addition, the data hints at 
some potentially fundamental observations about the relative role of bandstructure and electron-phonon 
scattering in different field ranges: At higher fields the distribution is much less dependent on the details 
of the scattering rates and is determined largely by the bandstructure. These conclusions are tentative at 
best, but they indicate the kind of information that is available, and the importance of such broad-based 
studies. 
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Figure 1. Electron-phonon scattering rates for (a) effective mass band models, (b) fit-band models, 
and (c) full-band models. 
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Figure 2. Electron distribution for an applied electric field = 30 kV/cm, for (a) effective mass band 
models, (b) fit-band models, and (c) full-band models. 
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Figure 3. Effective intervalley deformation potential and effective intervalley phonon energy for each 
data set. 
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Figures 4 and 5. Electron distribution for 150kV/cm (Fig.4) and 300kV/cm (Fig.5), for 
(a) effective mass band models, (b) fit-band models, and (c) full-band models. 
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Figure 6. Fraction of electrons above 1.1eV; 
applied electric field = 150kV7cm. 
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CELLULAR AUTOMATON SIMULATIONS OF PLANAR DOPED BARRIER 

FIELD EFFECT TRANSISTOR IN SILICON 
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Physik Department and Walter Schottky Institut, TU München, D-85747 Garching, FRG 

Abstract 

We report new developments in cellular automata transport simulations and present a study of vertically 
grown Si ultra-short channel FETs with these new methods. The probabilistic scattering rates for the 
electric field have been replaced in the cellular automaton by a new deterministic scattering rule in a fully 
three-dimensional momentum-discretization, leading to a significant suppression of statistical errors. We 
have also developed a fast multigrid-solver for the Poisson equation that offers the possibility to solve 
the Boltzmann and Poisson equations asynchronously in a multi-processor environment. 

I. Introduction 

Simulation of nanostructured devices has become a crucial and strategic part of today's microelectronics 
[1-3]. Conventional drift-diffusion approaches [4] are no longer valid for modeling of ultra-short devices 
with a gate length below 100 nm because they cannot predict hot carrier effects such as velocity overshoot 
quantitatively. Recently, the cellular automaton (CA) approach [5] has been developed as a discrete 
variant of the Monte Carlo (MQ technique [6,7]. So far, several tests of its applicability to sub-^m 
device modeling have been carried out successfully [5-9]. We introduce a new implementation of the 
CA method in this paper that allows precise control and efficient suppression of statistical errors in 
the CA. The central point is to replace the probabilistic treatment of the electric field used in [5] by a 
deterministic hopping of the particles in a three dimensional and periodic k-space. Furthermore, to take 
advantage of the high intrinsic speed of the CA, we have adapted the multigrid method to general device 
geometries in order to obtain a fast and efficient Poisson solver. These new developments have been 
implemented in our CA device simulator to study transport in planar doped barrier field effect transistors 
(PDBFET) with a gate length below 50 nm. We demonstrate that this new ultra-short Si-based device 
yields a high transconductance and transit-time frequency. 

II. New developments in the Cellular Automaton approach for device simulations 

Recently [5], the full Boltzmann equation (BE) has been transformed into a CA, where the kinetic terms 
of the BE are replaced by hopping probabilities in such a way that the equation of motion are fulfilled 
on the average for an ensemble of quasi particles. In an explicit procedure, the drift term of the BE has 
been transformed into probabilistic field scattering rates. This corresponds to a substitution of the free 
flight by a random walk. For very high electric fields, this procedure leads to artificial diffusion effects 
on the k-space lattice. For a periodic momentum discretization, this statistical error can be estimated 
analytically as follows. The CA-scattering probability to nearest neighbor sites due to the electric field 
E{R) at lattice site R is given by [5] PE = eAtE(R)/(hAk), where Ak is the lattice constant of the 
periodic k-space lattice, Ar the timestep, e the elementary charge and % the Plank constant. A particle 
moves in one time step with probability PE to one of the nearest neighbor cells and remains in the cell 
with the probability 1-PE- Associated with this random walk, there is a diffusion in k-space given by 
Dart = AA

2
PB(1 - Pß)/(2At) which causes an artificial enhancement of the kinetic energy, the entropy 

and the longitudinal diffusion in real space of the system. In principle, this error can be reduced by a 
sufficiently small lattice constant Ak but this becomes impractical in a three dimensional momentum 
space. 

We now show that it is possible to transform the drift term of the BE into a new deterministic 



scattering rule of the CA that completely suppresses this statistical error. The main point is to replace 
the probabilistic scattering rate by a discrete free flight We derive this scattering rule by calculating the 
number of time steps N a particle needs to change its momentum by an amount equal to the lattice constant 
Ak in k-space. To illustrate the procedure, we restrict ourselves to one dimension; the generalization to 
more dimensions is straightforward. Integration of the semiclassical equation of motion k - eE(r(t))/h 

gives 
t+T 

Ak = k(t + r)- k(t) = |  / dt'E (r (*'))  . (1) 

t 

Let us denote the initial time by t = to, and assume that T = N At = t^ - t0 and set the real space 
position at time u equal to lattice vector R(ti). The discrete version of Eq. (1) reads 

N 

Ak = ^At^E(R(ti)) , (2) 
t=0 

which is a condition for N and yields a deterministic scattering rule for the electric field: A particle 
remains in its k-cell for N time steps and hops subsequently into its nearest neighbor cell. Consequently, 
this procedure confines the statistical error to one k-cell. With this procedure, only of the order of 103 

3-D k-cells are required for a nonparabolic band structure up to 2 eV. The lattice we have chosen is a 
hexagonal close-packed structure where each cell has twelve nearest neighbors. The restriction to nearest 
neighbors transforms the drift-term of the BE into a local interaction on momentum cells, in complete 
analogy to the treatment of the real-space diffusion-term of the BE [5]. 

Importantly, we found that the new implementation of the CA does not require more computer time 
per iteration than our earlier two-dimensional implementation [5] even though it is significantly more 
accurate. 

III. Multigrid-solver for the Poisson equation 

An important component of self consistent device simulations is an efficient solver for the Poisson 
equation (PE). For a sub-micron device with high doping such as a Si MOSFET, for example, we find 
that the solution of the PE dominates the total computer time and constitutes a bottleneck of the overall 
simulation if we employ the standard SOR (successive over-relaxation) algorithm. We have therefore 
developed an iterative multigrid PE solver to provide an efficient coupling to the CA. 

The basic idea of the multigrid approach [10,11] is to improve an approximate solution of the PE on 
many length scales simultaneously. Indeed, the major deficiency of the SOR is to reduce errors only on 
the length scale of the smallest grid. The SOR method tends to reduce local errors within a few iterations 
but often shows "critical slowing down" for the global, long-wavelength errors. In contrast, the multigrid 
method shows the same rapid convergence on all wavelengths. 

We have implemented the multigrid method for general device geometries with irregular two- 
dimensional grids, allowing for any type of electrostatic boundary condition. For rectangular grids, 
we use a "zebra"-type line relaxation scheme along both x- and y-directions[ll]. When the ratio of the 
grid spacing in x- and y-direction lies in the range 0.85 < Ax/Ay < 1, we employ instead a checkerboard 
point relaxation method [11]. 

We find this multigrid solver to be 5 to 10 times faster than the SOR and consequently to provide a 
significant speed-up. The gain in computer time is the larger the more complex the boundary conditions 
are. This algorithm thus eliminates the bottleneck posed to the simulation by the PE and offers the 
attractive possibility to solve the CA and the PE concurrently in an asynchronous way since both methods 



are iterative and require comparable computer time per iteration. We are currently developing decoupling 
schemes for the solution of BE and PE in the time-domain and in the space domain by slicing. 

IV. Transport simulations of PDBFETs 

In order to test the present new CA, detailed calculations of Si-PDBFET's [12] have been carried out 
This transistor is a vertically grown variant of a Si-MOSFET that contains a 8-p*-layer in the intrinsic 
region between the contacts instead of a homogeneous p-buffer (Fig. 1 (a)). Typical gate lengths that 
can be achieved are 50 ran or smaller. Consequently, one may expect a high transconductance and other 
short-channel effects in such a device. In the present simulations, we used a gate length of 50 nm and 
have varied the thickness of the p+-layer from 5 to 20 nm. We found that a doping concentration of the 
#-layer up to 5xl018cm"3 guarantees that no free holes are present to deteriorate the device performance. 
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FIG 1. (a) Geometry of a vertically grown 50 nm planar-doped barrier FET. The n** doping concentration is 1019cm"3, the 
5-buffer has a width of 5 nm and a maximum doping concentration of 5 x 1018cm~3. (b) Typical calculated drain-current 
characteristics for two gate voltages UG=0.7 V and 1.4 V. The high channel conductance is indicative of pronounced short 
channel behavior. 

Fig. 1 (b) depicts the computed drain characteristics of a PDBFET with a 5nm tf-layer. The results 
show typical short-channel effects. In particular, the drain current does not saturate at higher drain 
voltages. This is due to the fact that the drain current cannot be efficiently controlled by the gate. In 
addition, velocity overshoot already appears at low drain voltages, as shown for a bias point at UD=0.2 

V and UG=1.4 V in Fig. 2 (b). The corresponding longitudinal electric field is plotted in Fig 2 (a). The 
dashed line denotes the field in the bulk diode, which forces the electrons to remain in the n++ regions, 
whereas the full line shows the field in the inversion channel. In contrast to the continously increasing 
field in the inversion channel of an ultra-short MOSFET, the field in the two intrinsic regions is nearly 
homogeneous and has a magnitude of approximately 20 kV/cm. In the narrow p-buffer, on the other 
hand, there is a strongly inhomogeneous field that causes velocity overshoot of the carriers. For higher 
drain voltages, the field maintains its high value from the p-layer through the complete i-zone up to the 
n"1"1" region of the drain contact. This leads to velocity overshoot nearly over the total channel length. 

Our calculations predict a very high transconductance of at least 1000 mS/mm and a maximum 
transient time frequency of about 200 GHz. In contrast to short channel MOSFETs, where the junction 
fields reach values of more than 700 kV/cm, the significantly lower electric fields in the studied PDBFET's 
cause impact ionization to be considerable reduced. 
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FIG 2. (a) Longitudinal electric field for a bias point at UG=l-4 V and UD= 0.2 V (other parameters as in Fig. 1). The field in 
the inversion channel (full line) is approximately constant in the intrinsic regions and exhibits a sharp maximum in the p-layer. 
The field in the bulk diode (dashed line) confines the electrons to the n** regions, (b) Comparison of CA and ensemble Monte 
Carlo simulations for the vertically averaged drift velocity of the electrons. The agreement is excellent. For the chosen bias, 
velocity overshoot only occurs close to the p-buffer. v— denotes the saturation velocity. 

V. Conclusion 

We have presented new improvements in the cellular automaton approach for high field transport in 
semiconductors. A deterministic rule for the electric field in the CA leads to a dramatic reduction of the 
statstical errors in a fully three dimensional k-space discretization. In very good agreement with Monte 
Carlo results, we demonstrated the high speed capability of Si-PDBFET's resulting in a transconductance 
of 1000 mS/mm, a transit-time frequency of 200 GHz and no relevant influence of impact ionisation 
compared to short channel MOSFETs. 

"""Permanent address: Dipartimento di Ingegneria Elettronica, Universitä di Roma 'Tor Vergata", 1-00133 
Rome, Italy 
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Abstract 

The scattering matrix approach to device simulation is extended to include the full bandstructure of 
silicon as evaluated by the emperical psuedopotential method. Both a determinsitic and a fast stochastic 
solution technique are presented. Results are given for bulk silicon and for a non self-consistent 
structure. Descretization of the Brillouin Zone is idetified as an key issue. It is concluded that one 
dimensional full band simulations are feasible on contemporary workstations. 

I. Introduction to the Scattering Matrix Approach 

The scattering matrix approach (SMA) is a deterministic technique for solving the Boltzmann 
Transport Equation. The problem is set by dividing the device into thin slabs and resolving the carrier 
fluxes between them into modes in momentum space as shown in fig. 1. The thickness of the slabs is 
typically 10 to 100A and need not be uniform throughout the device. The maximum slab thickness in a 
particular region of the device is determined by the spatial resolution requested by the user or the 
maximum allowable potential drop across a slab. Transport across each slab is treated by a scattering 
matrix. A column of a scattering matrix relates an incident mode in momentum space to all exiting 
modes in momentum space. The scattering matrices are generated by a Monte Carlo experiment. A 
number of carriers in a particular incident mode in momentum space are shot at thin slab of 
semiconductor. The exiting distribution of them in momentum space is mapped onto a column of the 
scattering matrix. 

A self-consistent solution is achieved by a three step iterative process. First, the scattering 
matrices appropriate for the electric fields throughout the device are determined. This is done by 
interpolating between matrices in a library. Second the electron and hole fluxes are solved for. Thirdly 
the new potential distribution is determined by solving Poisson's equation for the new charge 
distribution. These steps are repeated until convergence has been achieved. 

Presently we have two techniques available for solving for the fluxes. The first is a deterministic 
technique using Gauss-Seidel iterations. It operates by sweeping from left to right through the device 
and back. At each slab the exiting fluxes are updated based on the current guess at the incoming fluxes. 
One cycle through the device is a Gauss-Seidel iteration. It should be pointed out that Gauss-Seidel 
techniques are known to converge slowly and that acceleration techniques do exist. The second 
technique is a stochastic technique that we refer to as scattering matrix Monte Carlo. In the field of 
neutron transport the same idea is referred to as condensed history Monte Carlo. The technique operates 
by following a single flux through the device. Instead of the incoming flux being split to all coupled 
exiting modes, one is selected at random by treating the column of the scattering matrix as a probability 
distribution. The flux is then transmitted or reflected to the appropriate mode. The advantage of this 
technique is that it is extremely fast compared to the deterministic technique. The disadvantage is that 
statistical noise is present in a solution generated this way. 
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II. Full Band Work 

We consider the full band work done to date to be a feasibility study. The work has focused on 
the issues of how to discretize the Brillouin Zone and how to deal with the large sparse matrices that 
result. The problem of discretization actually has two parts. First, due to the symmetry of the Brillouin 
Zone, only a fraction of it must be discretized. In the case of Monte Carlo simulations this fraction is 
typically l/48th. For the SMA, the fraction that must be discretized is larger and depends on the real 
space geometry, crystal orientation, and electric field direction. If the electric field and the transport 
direction are both along the same <100> direction then l/8th of the Brillouin Zone must be discretized 
(fig. 2). If they lie in the same <111> direction then l/6th of the zone is required. It should be noted 
though that the first two conduction bands of silicon are treated, so the required fraction of the zone must 
be discretized twice, once for each band. 

The second part of the discretization problem is how to discretize the required portion of the 
Brillouin Zone. This does not have such a clear cut solution. For the proof of concept work we have 
used a straightforward cubic discretization in the components of the wave vector. 7413 cubes were used 
to discretize the irreducible l/48th of the Brillouin Zone. From using this discretization we have learned 
that there are problems with it. Since the quantities of interest are the energy and velocity of the carriers, 
a discretization in the wavevector is not well suited to resolving these quantities. Second, since a mode 
boundary cannot appear at a constant energy, it is difficult to get the band to band transitions resolved 
correctly. We are currently investigating other discretization schemes, but the current work is sufficient 
to establish the viability of the full band S-matrix simulation. 

The discretization in the components of the wavevector mentioned above results in very large 
sparse matrices. Our matricies are generated using the full band Monte Carlo code from the University of 
Illinois at Urbana Champaign [4]. A typical matrix is approximately 93000 elements on a side, 0.015% 
full and requires approximately 15MB of storage. A simple extrapolation significantly overestimates the 
memory requirements for a device simulation due to the existence of a memory saving technique known 
as splitting. With this and some other techniques in place, the memory requirements for a 1-D device 
simulations should be only about 35 MB. 

ffl. Results 

Thus far two types of simulations have been demonstrated using the full band matrices. The first 
is of bulk silicon with an electric field applied. Due to its speed and simplicity this is usually the first 
test of a new scattering matrix. The simulation is done by imposing periodic boundary conditions on a 
single slab or matrix and iterating until convergence is achieved. The periodic boundary conditions are 
equivalent to and infinite chain of such slabs. Results are presented here for electric fields of 300kV/cm 
(fig. 3) and lkV/cm (fig. 4). Notice that at 300kV/cm both the SMA and the scattering matrix Monte 
Carlo closely match the direct Monte Carlo results. This is expected since the scattering matrices were 
generated with the same Monte Carlo program that produced the results. Notice however that the 
deterministic solution technique (SMA) resolves the distribution accurately for several orders of 
magnitude beyond the stochastic techniques (direct Monte Carlo and scattering matrix Monte Carlo). At 
lkV/cm the results do not match so well due to the poor discretization at low energies and the problems 
it has with coupling to the second band. 

Results using the SMA and scattering matrix Monte Carlo for a non-self consistent model 
structure are presented in fig. 5. This structure features three electric field regions of lkV/cm, 300kV/cm 
and lkV/cm with periodic boundary conditions applied. Notice that both the velocity overshoot and 
undershoot are well resolved. Also notice that the low field saturation velocity is about four times higher 
than it should be. One factor of two is due to our discretization of momentum space. The other factor of 
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two is due to the fact that the Monte Carlo program was designed for studying high field transport and 
does not accurately reproduce low field results. There are two primary differences between the two 
results. First, since the scattering matrix Monte Carlo technique is stochastic, it shows statistical noise. 
Second, the scattering matrix Monte Carlo takes 57 seconds to run on an RS6000/580 while the SMA 
takes 2500 seconds using a Gauss-Seidel iteration accelerated by a technique known as fine mesh 
rebalancing. 

IV. Conclusions 

We have four important conclusions about the full band scattering matrix approach. First, the 
results presented here demonstrate that one dimensional full band self consistent simulations are feasible 
on contemporary workstations. Second, discretization of the Brillouin Zone is a key issue that must be 
addressed. Third, the scattering matrix Monte Carlo technique offers a very fast way of doing Monte 
Carlo simulations. Finally, the results suggest that two dimensional full band simulations should be 
feasible on high end workstations or parallel computers. 
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Fig. 1 Section of the Brillouin zone 
discretised for one-dimensional 
transport simulation. The electric 
field is assumed to lie along a <100> 
direction. Symmetry considerations 
dictate that l/8th of the BZ, or 6 
irreducible wedges are needed. 

Fig. 2 Definition of fluxes and the 
full band scattering matrix. 
Subscripts refer to the band, 1 or 2, 
and each flux is an M X 1 vector, 
where M=22239. 

Fig. 3 Computed energy distributions 
for electrons in bulk Si at an electric 
field of 300kV/cm. For comparison, 
we also display the results of a direct 
Monte Carlo simulation using the same 
program used to evaluate the 
S-matricies [4]. For the S-matrix 
approach, we show results for a 
deterministic solution procedure as 
well as for Monte Carlo solution 
procedure. 

Figs. 4&5 Computed average energy 
and velocity vs. position for electron 
transport in a model Si device 
consisting of a low-high-low field 
profile. Again, results are shown for 
both the deterministic and Monte Carlo 
solution techniques. The Monte Carlo 
S-matrix solution took 57sec on an IBM 
RS-6000/580 workstation, most of which 
was overhead involving loading of the 
matricies. 

Position {urn) 
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Abstract 

We present an original technique for the solution of the Boltzmann equation in bulk semiconductors: the 
Scattered Packet Method. This method intends to combine advantages and to overcome shortcomings of the 
direct solutions of the Boltzmann equation and of the Monte Carlo methods. The detailed procedure of the 
Scattered Packet Method is described and applied to the case of p-type silicon. The results obtained for first 
and second order transport parameters are found to be in excellent agreement with classical methods. 

I. INTRODUCTION 
Classical methods of solution of transport equations in semiconductors, such as the Monte Carlo (MC) 

method and the direct solution of the Boltzmann equation (BE), have shown their efficiency to provide 
transport coefficients. Anyway both methods have some inherent shortcomings. Direct solutions of the BE 
calculate distribution functions with high accuracy but don't take into account fluctuations. MC methods, due 
to the stochastic nature of the procedure and the limited number of carriers involved, meets with difficulties 
in calculating with high accuracy quantities on a hydrodynamic time scale such as the transient response of 
drift velocity and energy, small signal coefficients, etc. In order to combine the advantages of the above two 
methods, we have developed a new technique called the Scattered Packet (SP) Method. In this 
communication, the SP procedure is discussed in detail. Then, the theory is applied to the case of the p-type 
silicon and the results are compared with those obtained through classical methods. 

II. THEORY 
We consider a volume of the k-space large enough so that the number of carriers outside it is negligible. 

This volume is a sphere of radius km!SX which, in spherical coordinates with the polar axis along the applied 
electric field E, is described by: 0 < k < kmax, 0<6<7C, 0<<p<27t. The bandshapes are taken spherical, 
so that the variable <p can be omitted due to the symmetry around the electric field. 

We discretize this volume in meshes DL = Dtj centered in kL = k(kit 6j) and limited as follows: 
ki-Ak/2<k'<kj+Ak/2 and 0j-Ae/2<G'<dj+A9/2 (1) 

The volume of the mesh DL is: 

Vr = \      d<p\        stnOde] k2dk (2) 
^       Jp=0 J9J-AB/2 Jkt-jJk/2 

Relations (1) and (2) are of course modified at the boundary of the domain. 
The ensemble of carriers located in the volume VL are defined as the packet PL. nL (t) - n(kt, 0;, t) is 

the number of carriers  contained in  VL  at time  t.  The  distribution function is  simply given by 
fL(t) = nL(t)/VL. 
The purpose of the method is now to determine a time-independent evolution matrix B that gives n(t + At) 
when applied to n(t), i.e. in matrix form: 

[n(t + At)} = [B][n(t)] (3) 
The matrix element BML of [B] is the transition probability from the cell number L to the cell number M 

during the time interval At. In order to increase the accuracy in the calculations of [B] we divide each mesh in 
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submeshes of volume Vh so that VL - ]T Vh . The number of carriers contained in the subcell h is given by 

nh = nLVh/VL. Now, we want to determine the repartition of this sub-packet on the different meshes of the 
domain after a time-step At sufficiently short so that the probability of having more than one collision during 
At is negligible. In order to calculate this repartition, we use some kind of Monte Carlo procedure with 
constant time-step. Under the application of an electric field, the carriers of the subcell h make a free-flight 
of duration At which transfer them into another subcell j of centered vector kj=kj1+eEAt/Ä. Let p0 be the 
probability to have no collision during At, px the probability for an optical phonon absorption, etc. Therefore 
the number of carriers having no collisions is n; = p0nh and these carriers are located in the cell N which 

contains the subcell;'. The element B^ of [B] is incremented by nj. The number of carriers undergoing an 
optical phonon absorption is «drcfet =p1nh. These carriers are scattered along a sphere of constant energy 
according to the angular repartition probability. In a mesh M of this sphere, the number of carriers is (for an 
isotropic interaction): 

nM      ndrclek \r
+M/2sme'd0']\rsmd'de; 

\)eM-Aen JLJo (4) 

The element B^ of [B] is then incremented by nM. For anise-tropic interactions Eq. (4) is slightly modified. 
The column L of [B] is filled when all the sub-packets of PL have been scattered in k-space. By repeating the 
same procedure for all the initial packets we finally evaluate the evolution matrix [B] which satisfies Eq. (3). 
We notice that [B] depends only on the material, the carrier concentration, the lattice temperature, the electric 
field, the time-step and the number of meshes used for the discretization of the k-space. 

t = 0 

■JT* 

Fig. 1: 3-D representation of one packet of carriers 
centered in k = 109 m~l,0= 0. Calculations are 

performed for the case ofp-Si with Na=0, T=300 K 
and E=20 W/cm. 

t= At 

WUE 

Fig. 2: Evolution during one time-step At=lfs of one 
packet initialy centered in k = 10 m~ ,6—0. 

Calculations are performed for the case ofp-Si with 
Na=0, T=300 K andE=20 W/cm. The vertical scale is 
not linear in order to enhance small values ofn(k,At). 

To better clarify for the reader the repartition of a packet in k-space, let us consider one packet PL 

centered in k = 109w_1 and 6=0 at time t=0 as shown in Fig. 1. By construction, the column L of the 
matrix [B] represents the packet repartition at time At when the initial number is equal to unity and located in 
kL. We have drawn on Fig. 2 n(t=At) which is proportional to the column L. The peak corresponds to the 
carriers that have been only displaced by the electric field without being scattered, and the circle at the same 

I k | refers to carriers which have undergone an elastic scattering. The inner and outer circle correspond to 
carriers having emitted or absorbed an optical phonon, respectively. 

To study the transient regime, at time t=0 the number of carriers in the state kj^ is nL chosen equal to the 
thermodynamic value of the number of carriers of this state. Then, using Eq. (3) n(k,At) is computed and so 
on untill the stationary regime is obtained.The resulting algorithm (similar to the lattice-gas cellular- 
automaton method [1]) is physically equivalent to an ensemble MC method, using a considerable amount of 
carriers and without any use of random number. 
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III. CALCULATION OF THE VELOCITY AUTOCORRELATION FUNCTION 
By neglecting cross correlation terms between velocities of different carriers, the autocorrelation function 

of the fluctuations of the drift velocity can be written as follows: 

C^ = £fv;.fO-vJfv,f0j-vJ (5) 
1=1 

where N is the total carrier number, vy (t) the velocity of the carrier i at time t, vd the drift velocity. 
Let us define by Fjj\4(t) the ensemble of carriers leaving the state kL at an initial time and reaching the state 
kM at time t. By construction, these ensembles verify the two following properties: 

(i) they constitute a partition of the whole system, 
(ii) the carriers belonging to a given ensemble have the same initial and final velocity: V(0)=VL and 

v(t)=v)yi, where VL and vjy[ are the projections along the electric field of the carrier velocities in state L and 
M. 
Therefore, the correlation given by Eq. (5) can be obtained by summing elementary contributions from each 
family FLM(t): 

with 

Cm(t) = »iM(0(yL - \i)(vM -Td) (7) 
where nLM (t) is the carrier number of the family Fj_\f(t). At time t=0 the number of carriers in the state ICL 

is nL chosen equal to its steady state value in the applied electric field E and njj^L ^ taken equal to zero. 
Using the SP method njj^t) and CjjY[(t) are computed. The number of simulations is equal to the number 
of meshes in k space (about 500). An acceleration technique described in Ref. [2] is used in order to reduce 
the CPU time. The diffusion coefficient can then be obtained taking the Fourier transform of Eq. (6). 

0 2 

o  0.1 - 

9      -1 

Fig. 3: 3-D representation of the steady-state carrier 4. ^.^ a^LnfunrtonMJ along the 
population. Calculations are^rformedfor■ he case        elecMcfieldinp.SiwithNa=0, T=300KandE=20 

ofp-SiwithNa=0, T=300KandE=50kV/cm. w/cm The dashed line refers to the direct solution of 

the BE and the solid line to the SP method. 
IV. RESULTS 

We present the results obtained for the first and the second order transport coefficients in the case of a p 
type silicon at T=300 K. The microscopic model is based on a single spherical nonparabolic-band and 
considers scattering with acoustic, impurity and non-polar optical phonon mechanisms as described in Ref. 
[3]. 

Figure 3 shows the steady-state number of earners given by the SP method. The number of carriers in the 
cells located near k=0 (centre of the plot) and along the direction of the field is small, due to k sinO = 0 (cf 
Eq. (2)). 
Figure 4 shows the steady-state distribution function fiTc^ along the electric field for an acceptor 
concentration Na=0. We observe an excellent agreement with results obtained from the direct solution of the 
BE [3]. The same agreement is found for the drift velocity as a function of time which is reported in Fig. 5, 
for three different electric fields. 
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Therefore we have shown that the SP method keeps the accuracy of the direct solution of the BE in 
calculating first order transport parameters. 

v(10Ws) 
1.S 

T = 300K 

Na = 0 

l  - r^ E = 50kV/cm 

0.5 - /^-_ E = 20kV/cm 

n - 
f^ E = l  kV/cra 
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Na=  0 
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* » MONTECARLO 

1 
t(ps) 

Fig. 5: Average velocity as a function of time for the 
reported electric fields in p-Si with Na=0 and T=300 
K. The dashed line refers to the direct solution of the 

BE and the solid line to the SP method. 

0i , 1 1  

0 5 10 15 20 
E (kV/em) 

Fig. 6: Diffusion coefficient as a function of the 
electric field in p-Si with Na=0 and T=77 K. The 

stars refer to the MC method and the solid line to the 
SP method 

As concerning second order transport parameters, Fig. 6 shows the low frequency diffusion coefficient as 
a function of the electric field. Also in this case the agreement between results obtained by the MC method 
[5] and the SP method is excellent. 

Using about 500 cells, in order to compute precisely the 500*500 matrix elements B^, we compute (see 
Eq.(4)) how many particles from each of the 62500 subcells of each cell L are scattered in each of the 500 
cells M. Due to the energy conservation, with about 16 steps in 6, this requires 62500*17*500 computations 
for each scattering mechanism. With optical absorption and emission, acoustical and impurity scatterings, the 
calculation of the matrix [B] takes about 30 minutes, the stationary regime of the distribution function is 
obtained after few seconds for a time-step of 1 fs and the correlation functions after few minutes on an IBM 
3090. 

V. CONCLUSIONS 
We have presented a new technique to simulate carrier transport in bulk semiconductors based on an 

original numerical solution of the Boltzmann Equation. The results obtained for the distribution function, the 
first and second order transport coefficients have been found to be in excellent agreement with classical 
methods. The advantages of this method can be summarized as follows: a procedure closed to the corpuscular 
reality, a high accuracy calculation of distribution functions and fluctuations within a reasonable CPU time. 

Developments of the Scattered Packet Method towards the device simulation and the study of electronic 
noise seems to be promising. 
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Abstract 

The energy-dependent impact ionization rate in silicon is derived by a first-order pertur- 
bation theory. The scattering rate is close to that obtained experimentally with a soft x-ray 
photo-emission spectroscopy. The reasonableness of the calculated results is also supported by 
the close agreement of simulation results to available experimental data. Key features of the 
derived impact ionization rate are (1) impact ionization rate for initial electrons with energy be- 
low 3 eV shows strong anisotropy, and (2) energy-dependent impact ionization rate has a large 
power exponent. For practical device simulation, we also derived a simple analytical expression 
of impact ionization rate under exponentially varying electric field conditions. 

I. Introduction 

The down-scaling of MOSFETs induces higher electric fields in the channel because the 
power supply voltage has been scaled less aggressively than device geometries. In deep submi- 
cron MOSFETs, the number of hot carriers is expected to increase quite rapidly, leading to the 
degradation of device characteristics. In order to ensure long term operation of MOSFETs, it 
is essential to model the behaviors of high energy electrons. 
Device simulators developed in the last decade now make it possible to reproduce device char- 
acteristics but none of these can accurately estimate the distribution of high energy carriers. 
Note that high energy carriers directly affect long term reliability of devices as well as electron 
injection efficiency in FLASH memory. For more predictable T-CAD, high energy carriers have 
to be simulated more accurately. This requires the use of precise physical models instead of a 
traditional parameter fitting approach. Among several physical models, an impact ionization 
rate model is far more important in order to estimate the distribution of high energy carri- 
ers. The aims of this paper are twofold: (1) to derive impact ionization rate theoretically and 
a simple impact ionization model applicable for practical device simulation and (2) to verify 
the reasonableness of the derived impact ionization rate through the comparison with available 
experimental data. 

II. Theory of impact ionization 

Impact ionization process is a kind of electron-electron interaction taking place at the 
presence of high electric field. When a high energy electron collides with a valence electron, it 
gives up its kinetic energy to the valence electron which is ionized over the band gap. Thus two 
conduction electrons and a hole are left. 
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Theory of impact ionization process in silicon has been well established[1]. The impact ionization 
rate is obtained from the Fermi's golden rule. 

SIJ.O-, 2 -)• l', 2') = Y [\Ma\
2 + \Mb\

2 + \Ma - Mb\
2} x S(£l + e2 - ev - e2>) 

Where 1 and 2 denote the conduction and valence electron states before scattering, while 1' 
and 2' the conduction electron states after scattering. We used the Coulomb potential as an 
interaction Hamiltonian. The direct matrix element Ma is given in the forms as 

M0 = (^(r1)^(r2) 
e2 

4ne(q,u>)\ri — r2| 
Mri)Mr2) 

To calculate the matrix elements, we need (1) wave functions of electrons involving impact 
ionization process and (2) a frequency- and wave vector-dependent dielectric function. After 
expanding the Coulomb potential into Fourier series, the direct matrix element is given by 

Ma   = E -^TT—T^i'(Gi'>M^2'(G2',M^i(GiA) 
CTi,Or2,Cr1;,<J2i 

xA2(G2,fc2)*(-*i' + fci ~ fc2' + k2 + G) 

In the calculation, both momentum and energy among the particles are conserved through the 
delta functions. Also, both the normal and umklapp processes were took into account. Final 
wave vector-dependent impact ionization rate was derived from the integration over an eight- 
dimensional k space numerically. In our calculations, we used 113 plane waves and 15 reciprocal 

lattice vectors. 

III.    Calculated impact ionization rate 

Figure 1 shows the calculated impact-ionization rate as a function of initial electron energy. 
The calculated results scatter in a rather wide range for initial electrons with kinetic energy 
below 3 eV because of its strong anisotropic nature. The anisotropy diminishes with increasing 
the electron energy. In Fig. 1, several reported analytical impact ionization rates[2-5] are also 
plotted. Although they differ in three orders of magnitudes, they all reported that the calculated 
impact ionization coefficients agree with experimental data. This means that none of these 
impact ionization rates have not been well verified. In other words, simulated results could be 
fitted to any experimental data by simply adjusting phonon scattering rates. 
Recently Cartier et al. reported a new combined experimental and theoretical effort to find 
the electron-hole pair production rate[6j. This was achieved by using soft X-ray photoemission 
spectroscopy and by performing Monte Carlo simulations. The thin solid curves shown in Fig. 1 
is the results of their experiment. Although there exist some undulations in the curves due to 
an artificial fitting to three sets of Keldysh formula[7], our calculated data are essentially the 

same as theirs. 
For more practical use, we derived analytical form of impact ionization rate averaged over 

all initial electron states with a given energy. 

Su.(e) = 1.0 x 10n(e - l.le^)4-6 

Compared with the Keldysh form with power exponent of two, the new isotropic impact ion- 
ization rate has much larger power exponent of 4.6, indicating soft impact ionization threshold. 

Figure 2 shows the impact ionization rates based on other first principle calculations[8- 
11]. The overall trend of the calculated results shows similar characteristics since the impact 
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ionization rate simply reflects the energy band structure of silicon. However, one point to note 
is that there still exists about one order of magnitude discrepancy among the reported values. 
The reasons for the discrepancy are not clarified yet. There may be several reasons: choices of 
the integration method, pseudopotential form factors used, dielectric function, energy allowance 
used in the numerical calculation. 

IV.    Comparison with experimental results 

(1) Transient impact ionization using anisotropic and isotropic I.I. rates 
In order to study the reasonableness of the derived isotropic impact ionization rate, we 

simulated the number of impact ionization events under non-steady state conditions by using 
isotropic and anisotropic scattering rates. No appreciable differences between the two cases 
indicate that it is reasonable to use isotropic impact ionization rate instead of more elaborate 
anisotropic ones without losing any physical meaning. In addition, the use of the isotropic 
impact ionization rate greatly improves the efficiency of Monte Carlo simulation in terms of 
memory capacity as well as computational time. 
(2) Impact ionization coefficient 

The number of impact ionization events produced by one carrier per unit length is defined 
as impact ionization coefficient, which varyies with the electric field as Aexp(-B/E). The open 
circles shown Fig. 3 are the simulated impact ionization coefficient under constant electric field. 
Good agreement with the experimental data demonstrates the validity of the impact ionization 
rate derived. 
(3) Non-local impact ionization coefficient in exponentially varying electric field 

In MOSFETs electric field in the velocity saturation region changes so rapidly that the 
channel electrons are no more equilibrium. According to simulation studies, the electric field 
in MOSFETs was found to vary exponentially with distance from the pinch-ofF point toward 
the drain. The data points in Fig. 4 show calculated impact ionization coefficients under 
exponentially varying electric field conditions. All the points below the solid line are the data 
calculated under increasing electric field condition, while the solid points above the solid line 
are the data for decreasing electric field conditions. Simulated characteristics length, A, of the 
velocity saturation region is simply expressed with the gate oxide thickness and junction depth. 

Figure 4 shows two interesting features: (l)under the increasing electric field, non-local 
impact ionization coefficient is significantly smaller than that in equilibrium state and (2)at 
lower electric field, the decrease of the impact ionization rate becomes more pronounced. 
(4) Simulation of substrate current 

Figure 5 shows the substrate currents calculated using two different impact ionization mod- 
els. The solid line shows the experimental data. 

A conventional drift-diffusion simulation using the local impact ionization coefficient over- 
estimates substrate current. However, the use of the non-local impact ionization coefficient 
shown in Fig. 4 results in a reasonable agreement with experimental data. Note that even quite 
simple device simulator based on the drift-diffusion model can predict impact ionization current 
correctly once the non-local impact ionization coefficient is implemented in a device simulator. 
(5) Quantum yield 

We simulated quantum yield to further verify the derived impact ionization rate. By using 
p-ch MOSFET, electrons are injected from the gate electrode to the silicon substrate through 
the gate oxide. If the injected electrons has enough energy to make impact ionization, some of 
them create electron-hole pairs in the silicon substrate. The generated holes are collected into 
the inversion layer while electrons flow to the substrate electrode. By measuring the electrode 
currents, the average number of generated electron-hole pairs per injected electron is calculated. 
This is the definition of quantum yield. 
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Figure 6 shows the calculated quantum yields using the MC simulation together with ex- 
perimental data[13-15]. The calculated data agree quite well with the data reported by Takagi 
and Toriumi.   The discrepancy among the reported quantum yields may originate from the 
calibration error of the injected electron energy. 
(6) Transient impact ionization 

We investigated the anisotropic impact ionization in Si MOSFETs reported by Takagi[16]. 
The devices used for their experiment were n-ch Si MOSFETs with single drain structures on 
the (100) surface. The measured data shows the gate voltage dependence of the substrate cur- 
rent with different channel directions. They found that the substrate current along the 45° off 
the (Oil) direction, meaning (001) direction, becomes larger than that along 0 or 90°. The 
anisotropy decreases with increasing substrate current. We simulated impact ionization process 
with similar device structures. 
The calculated impact ionization agrees well with the experimental data; the anisotropy dimin- 
ishes with increasing ionization rate. 

V.    Conclusions 

We theoretically derived impact ionization rate. The energy dependence of the rate was 
found to be the same as the pair generation rate obtained from the soft x-ray photo-emission 
spectroscopy. The reasonableness of the models is also supported by the close agreement of the 
simulation results to available experimental data. Key features of the derived impact ionization 
rate are (1) impact ionization rate for initial electrons with the energy below 3 eV shows strong 
anisotropy which directly reflects energy band structure of silicon, (2) energy dependent impact 
ionization rate shows large power exponent, indicating the soft threshold of impact ionization, 
(3) we demonstrated that both isotropic and anisotropic impact ionization rates lead to the 
same results. This means that for more practical Monte Carlo simulation we can use the energy 
dependent impact ionization rate instead of more complicated wave-vector dependent impact 
ionization. 
Using the Monte Carlo simulation, we derived a simple analytical expression of non-local im- 
pact ionization coefficient under exponentially varying electric field conditions. We demon- 
strated that the newly derived impact ionization coefficient well reproduces substrate current 
of MOSFETs even in a drift-diffusion device simulation. 
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Figure 1. Calculated impact ionization 
rates. Bold solid line represents a best fit- 
ted curve to the calculated impact ioniza- 
tion rates. The other four lines except the 
solid lines represent impact ionization rate 
expressed by Keldysh formula. The thin solid 
curves show the impact ionization rate fitted 
to a set of three Keldysh formula. 

Figure 2. Comparison of reported impact 
ionization rates averaged over all initial elec- 
tron states as a function of energy measured 
from the bottom of the conduction band. 
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Figure 5. Simulated substrate current to- 
gether with experimental result at Vj}=3.0V 
for an n-ch MOSFET with the channel length 
of 1.0 /im. Gate oxide thickness of 10 
nm and channel doping concentration of 
1.2xl017/cm2. 
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Figure 6. Quantum yield at room temper- 
ature as a function of electron energy. Open 
circles show the calculated results. Curves 
are the experimental results. 
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Abstract 

The ensemble Monte Carlo method for simulating relaxation of the nonequilibrium electron- 
phonon system in quasi-one-dimensional quantum wires is presented. Employing this method we 
have found that nonequilibrium (hot) phonon effects in quantum wires are well pronounced for 
electron concentrations higher than 105 cm'1 and depend strongly on the energy distribution of 
excited electrons. Two opposite effects of nonequilibrium phonons in two different relaxation stages 
have been revealed. The buildup of hot phonons leads to the substantial reduction of the electron 
gas cooling rate for t > 0.5 ps due to strong reabsorption of nonequilibrium phonons. In contrast, 
the very initial relaxation stage (t < 0.5 ps) is faster in the presence of hot phonons. 

I. INTRODUCTION 

When electrons are heated well above the lattice temperature they relax via cascade emission 
of phonons and drive the phonon system out of equilibrium. Hot phonons, in turn, affect the 
entire relaxation dynamics of hot electron gas. Moreover, the quasi-one-dimensional (ID) nature 
of electrons and optical phonons in quantum wires (QWIs) results in some specific peculiarities 
of hot phonon buildup that strongly modify nonequilibrium electron-phonon dynamics in QWIs 
[1]. Therefore, it is necessary to simulate coupled nonequilibrium electron-phonon system self- 
consistently [1,2]. 

In this paper we present ensemble Monte Carlo simulation results of the relaxation of ID 
nonequilibrium electron-phonon system in QWIs after short pulse excitation. The accurate al- 
lowance for the peculiarities of coupled nonequilibrium ID electron-phonon system within the 
Monte Carlo technique is discussed. 

II. PECULIARITIES OF ID ELECTRON-PHONON SYSTEM 

In general, the phonon wave number is defined by the energy and momentum conservation 
equations and is given by: 

q =  Vk2 + k'2-2kk'cos0 , (1) 

where k is the electron wave number before scattering, k' = y/k2 ± 2m*w0/K is the electron wave 
number after absorption (sign +) or emission (sign -) of the optical phonon of frequency u0, and 
0 is the angle between electron wave vectors before and after scattering. Due to optical phonon 
quantization and the resultant ID momentum conservation in quantum wires, electrons can emit 
or absorb optical phonons with wave vectors which are strictly defined by the electron momentum 
and the phonon energy. In ID structures there are just two final states for scattered electrons: 
forward scattering with cos# = 1 or backward scattering with cosö = — 1. Consequently, there 
are two possible phonon wave vectors available for emission (and two for absorption) by any single 
electron: 

q-min   =    |*-*'|,    Qmax   =   k + k'. (2) 

In contrast, in quasi-two-dimensional (2D) quantum wells (or bulk materials) due to existence of 
additional degree(s) of freedom, cos 6 can take any value in the range (—1, +1), so that there is an 
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entire range of a phonon q values from \k - k'\ to k + k' available for electron interactions. Fig. 
1 depicts qmin and qmax as a function of electron energy. The dashed area shows the region of 
available phonon modes for electron to interact with in bulk (3D) or 2D systems. In ID systems 
electrons can emit optical phonons only with wave numbers represented by the curve surrounding 
this dashed area. It is evident from Fig. 1 that nonequilibrium phonon distributions generated by 
electrons with different energies in 2D and bulk systems overlap. In contrast, electrons in QWIs with 
different energies generate nonequilibrium phonons in different g-space points. Hence, unlike in 2D 
and 3D systems nonequilibrium phonons in QWIs can be reabsorbed only by the electrons that have 
generated them. Consequently, in bulk materials and quantum wells the reabsorption rate for any 
single electron generally depends on the total phonon population, whereas in QWIs it depends on 
the occupation number of just two modes with qmin and qmax. On the other hand, the total phonon 
population is proportional to the total electron concentration, while the occupation number of single 
modes is determined by the concentration of electrons with certain energies {energetic density of 
electrons). If the electron energy distribution spreads and the total concentration remains the 
same, the energetic density of electrons decreases. Therefore, the total nonequilibrium phonon 
population remains constant because more nonequilibrium phonon modes are amplified, but the 
occupation number of each mode decreases. As the result the reabsorption rate in 2D and 3D 
systems does not change with the spread of electron energy initial distribution (it depends on 
total phonon population), whereas the reabsorption rate in ID systems decreases (it depends on 
particular phonon occupation numbers). We come to the fundamental conclusion that, unlike 
in bulk materials and quantum wells, in QWIs hot phonon effects become more pronounced when 
narrowing energy distribution of excitated (injected) hot electrons. 

Fig. 1. Minimum and maximum 
phonon wave numbers versus elec- 
tron energy normalized to phonon 
energy. The lower scale applies to 
emission and the upper for to ab- 
sorption of phonons. Dashed area 
shows the range of phonon modes 
for electron scattering in 2D and 
3D systems. The Ag/ and Agj, 
depict the spread in nonequilibri- 
um phonon distribution caused by 
electron energy spread Ae for for- 
ward and backward scattering, re- 
spectively. 

These peculiarities of hot phonon buildup in QWIs must be taken into account in numerical 
calculations. In Monte Carlo simulations of 3D and 2D nonequilibrium electron-optical phonon 
systems, the mesh interval for the phonon occupation number Aq is not a crucial parameter, pro- 
vided that the interval is much less than the g-space region populated by nonequilibrium phonons: 
Aq < qmax ~ qmin- This region is sufficiently large (see Fig. 1) so that above condition is easily 
satisfied. However, in ID systems, as we already mentioned above, there are just two single phonon 
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modes (gm,„ and qmax) available for a single electron to interact with. Therefore, when dealing 
with near-monoenergetic electron excitation virtually coherent phonon modes are amplified. Fig. 
1 illustrates how energy broadening of excited electrons leads to the spread of phonon distribution 
in g-space. One can see that even substantial electron energy broadening (Ae > Kw/2) results in 
very narrow g-space region for hot phonons generated in forward scattering, Ag/. Therefore, we 
generally cannot satisfy the condition Ag <C Ag^j, because the fundamental limit of accuracy of 
determination of phonon wave vector sets the lower limit Aq > 2ir/Lx, where Lx is the length of a 
QWI. For a QWI of the length Lx = 10 microns this limit is 2ir/Lx » 6 X 103 cm,-1. 

III. MODEL AND METHOD 

In our simulations we consider rectangular GaAs QWI embedded in AlAs. We have assumed 
infinitely-deep potential well for electrons. The hot electron energy dissipation model includes 
electron interactions with confined longitudinal optical (LO), localized surface (interface) optical 
(SO) phonons, and inelastic interaction with bulk-like acoustic phonons. We start the simulation 
of electron relaxation after the initial excitation by a short pulse with a duration of 0.1 ps. We 
have not simulated electron relaxation in coherent regime (t < 100 fs) which requires a quantum 
mechanical description. Instead, we have focused our attention on the time range t > 0.1 ps when 
electrons can be treated semiclassically [3-6]. We do not take into account the electron-hole inter- 
action. The initial state of electron relaxation accounts for the broadening of the electron energy 
distribution due to two effects: (i) uncertainty in electron initial energy due to the short electron 
lifetime at the excited level and (ii) spectral broadening of the exciting pulse with duration of the 
order of 0.1 ps [7]. In accounting for these effects we assume that they both lead to a Gaussian 
distribution of electron energy at t = to [8], which corresponds to the end of the excitation pulse. 
We vary the excitation energy e^, which corresponds to the center of a Gaussian distribution, as 
well as, Ae, the half-width of this distribution. 

Hot phonon thermalization due to the decay of optical phonons into acoustic phonons is taken 
into account by recalculating Nq for every mesh interval at the end of each time step. For sim- 
ulations we have used the bulk value of the phonon thermalization time rph = 7 ps. We have 
not taken into account the increase in the acoustic phonon population as a result of the decay of 
nonequilibrium optical phonons. The reason for this is that acoustic phonons in a QWI embed- 
ded in surrounding material with similar elastic properties (GaAs in AlAs in our case) can easily 
penetrate through GaAs/AlAs interfaces and escape from the QWI. Therefore, we have excellent 
thermal conductivity and the QWI should not be heated much more than the whole GaAs/AlAs 
structure. Given that the surrounding AlAs is sufficiently massive, the increase in temperature 
would be negligible even if the QWI strongly radiates acoustic phonons. 

IV. MONTE CARLO SIMULATION RESULTS 

We have found that hot phonon effects in QWIs are well pronounced for electron concentrations 
of the order of 105 crrT1 and depend strongly on the energy distribution of excited electrons. We 
have considered various half-widths of Gaussian electron distribution ranging from the extremelly 
narrow of 4 meV to the broad but still less than optical phonon energy of 30 meV. Figure 2 illus- 
trates electron cooling dynamics in a 150 X 250A2 QWI at T = 30 K after initial electron excitation 
at an energy 4.5 times the LO phonon energy for two extreme limits of Gaussian electron distribu- 
tion half-widths. For comparison, we plot the electron relaxation dynamics without nonequilibrium 
optical phonons. One can see that hot phonons lead to a substantial reduction of the electron gas 
cooling rate for t > 0.5 ps due to strong reabsorption of nonequilibrium phonons [1]. In contrast, 
the very initial relaxation stage (t < 0.5 ps) is faster in the presence of hot phonons. As we have 
already mentioned above, hot phonon effects in both relaxation stages are more pronounced for 
narrow electron distributions (see Fig. 2). Hence, the higher nonequilibrium phonon populations 
are created (4 meV), the faster is the very initial relaxation stage. 
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Fig. 2. Mean electron energy as a 
function of time after initial electron 
excitation at an energy equal to 4.5 
times the LO phonon energy, for two 
initial widths of electron energy dis- 
tribution. Electron concentration is 
n = 105cm_1 and lattice tempera- 
ture is T = 30 K. Solid curve de- 
scribes the energy evolution for the 
case of an equilibrium phonon dis- 
tribution. Results apply to the case 
of a single-subband QWI neglecting 
SO phonons. 

This effect can be understood if one first considers the temperature dependence of the relaxation 
rate. At high temperatures both the emission and absorption rates are higher. This leads to 
fast energy redistribution of excited electrons. The cooling rate of electrons which emit optical 
phonons increases and that of electrons which absorb phonons decreases because of the e-1'2 

energy dependence of ID density of states and scattering rates. The increase, however, is faster 
than the decrease due to the same e-1/2 function. Therefore, the total ID electron gas cooling 
rate increases when the electron energy redistributes due to emission and absorption of optical 
phonons. Hence, the very initial electron cooling rate in QWIs increases when increasing the 
lattice temperature, provided that electrons are excited well above optical phonon energy and 
thermal equilibrium energy. To observe an appreciable temperature effect on the relaxation rate 
it is necessary that phonon occupation number be greater than 1. Under phonon equilibrium 
such occupation numbers could even be unachievable in a solid state. However, due to strong 
buildup of nonequilibrium phonons at high excited electron concentrations the occupation number 
for certain phonon modes may be considerably higher than 1. This is why the initial relaxation is 
faster for higher nonequilibrium phonon occupations and thus, for narrower initial electron energy 
distributions. . 
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Abstract 
We present a microscopic analysis of electronic noise in semiconductor unipolar structures 

based on Monte Carlo simulations of the carrier motion self-consistently coupled with a Poisson 
solver. Current and voltage noise operations are applied and their respective representations dis- 
cussed. As applications we consider the cases of homogeneous resistors, n+nn+ structures, and 
Schottky-barrier diodes. As a general result, noise spectroscopy is proven to be a source of valuable 
information to investigate and characterize transport properties of semiconductor materials and 
devices. 

I. INTRODUCTION 
The primary quantity which describes electronic noise is the spectral density of current (volt- 

age) fluctuations <5j(/) [<SV(/)]- It can be measured more or less directly in different ranges of 
the frequency / and microscopically interpreted from the calculation of its theoretical counterpart 
which is the associated correlation function Cj(i) [Cv(*)]. This methodology has recently led to the 
development of a noise-spectroscopy which has proven to be very fruitful for investigating transport 
properties of materials and devices [1]. In this paper we deal with the problem of how simulating 
electronic noise from a microscopic point of view. To this end, we make use of the Monte Carlo 
(MC) technique which, by naturally incorporating all the microscopic noise sources, has recently 
emerged as a very powerful method. The main issues which will be addressed are: (i) to present a 
general theory and the algorithms for the calculation of the current and voltage spectral densities; 
(ii) to investigate systems with increasing degree of complexity; (iii) to decompose the obtained 
spectra in terms of their sources and spatial contributions. 

II. THEORY 
In studying electronic noise two different modes of operation, which are mutually exclusive, 

can be used: current noise operation and voltage noise operation. In the former, the voltage drop 
at the terminals of the device is kept constant in time and the current fluctuations in the external 
circuit are analyzed. In the latter the current in the device is kept constant in time and the voltage 
fluctuations at its terminals are analyzed. Both modes axe of interest since, as it will be shown in 
the following, they provide different and complementary information. 

From the Wiener-Khintchine theorem [2] it is: 
r+oo 

exp(i2Trft)Cx(t)dt (1) Sx(f) = 2[ 
J—c 

Cx(t) = SX(t')6X(t' + t) (2) 
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Fig. 1 - Autocorrelation functions of current 
fluctuations for the different applied voltages re- 
ported. Calculations refers to a Si homogeneous 
structure with n = 1017 cm~3, L = 0.6fim at 
T = 300 K. 
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Fig. 2 - Autocorrelation function of voltage fluc- 
tuations in the same structure and conditions as 
Fig. 1. 

where 6X(t) = X(t) - X is the fluctuation of X around the average value X, X being the current 
or the voltage. The problem is to provide a microscopic calculation of Cx(f). 

III. MICROSCOPIC CALCULATION 
Under current noise operation the total current I(t) as measured in the outside circuit is 

calculated as [3]: 
NT(t) 

I(t)=j £>(*) = ^T(*KW (3) 

where e is the absolute value of the electronic charge, L the length of the sample, i>j the instanta- 
neous value of the velocity component in the field direction of the i-th carrier, JVr(t) the total num- 
ber of carriers which are instantaneously present in the sample and Vd(t) = [l/iVx(t)] J^iJi ««(*) 
is the drift-velocity. 

Under voltage noise operation I(t) = IQ and the time derivative of the voltage drop at the 
contacts AV(t) = [V(L,t) - V(0,t)] is calculated as [3]: 

sAV«>=^ 
Nr(t) 

[jX>(*)-/o] 
«=1 

(4) 

where A is the cross-sectional area of the sample, e0 the vacuum permittivity and er the relative 
static dielectric constant of the background medium. The instantaneous voltage drop between the 
terminals can be obtained from a numerical integration of Eq. (4) over time. 

In practice, the determination of Cjr(i) is performed from the knowledge of the time series I(t) 
[AV(t)] as calculated from an ensemble MC simulation eventually coupled with a self-consistent 
Poisson solver, and taking appropriate boundary conditions concerning carrier injection-extraction 
from the contacts of the device. To this end, the total simulation, neglecting the initial transient, is 
recorded on a time-grid of step-size At. Then, by defining the time length in which the correlation 
function should be calculated as mAt, with TO integer, the correlation function is obtained as: 

M—m 

CjrO'Ai) = X(t')X(t> + jAt) =  £ X(iAt)X[(i + j)At] 
»=i 

(5) 

with j = 0,1,..., TO ; M > TO. Typical values are: M = 50 m, TO = 100. The corresponding Sx(f) 
is determined by Fourier transformation. 
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Fig. 3 - Autocorrelation function of current- 
density fluctuations at equilibrium for a Si 
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Fig. 4 - Spectral density of voltage fluctuations 
as a function of frequency and position at equi- 
librium for a Si n+nn+ structure at T = 300 K 
with n+ = 1017 cm"3, n = 1016 cm,-3, and 
length 0.20 - 0.20 - 0.20 pm, respectively. 

IV. APPLICATIONS 
In this Section we report the results obtained by the MC technique applied to different systems 

with increasing degree of complexity. 

1. Resistor 
The system we consider is a submicron Si resistor of length L = 0.6 pm with a donor con- 

centration n = 1017 cm,-3 at 300 K. Figure 1 shows the current correlation function calculated 
at increasing applied voltages where its faster decay is associated with the onset of hot-carrier 
conditions. The presence of a negative part in Cj(t) is attributed to the coupling between energy 
and velocity relaxation processes [3]. Figure 2 shows the voltage correlation functions Cy(t) for the 
same resistor. At low voltages plasma and differential dielectric-relaxation times are responsible 
for the oscillatory and damping behaviors, respectively. At increasing applied voltages the sub- 
ohmic behavior of the current-voltage characteristics implies a significant increase of the dielectric 
relaxation time which, by becoming longer than the plasma time, washes-out the oscillations. 

2. n+nn+ structure 
The system we consider is a submicron Si n+nn+ structure at 300 K with two abrupt homo- 

junctions. According to Ref. [3], the total correlation function can be decomposed as the sum of a 
diagonal and an off-diagonal contribution which are shown in Fig. 3. The former, describing the 
autocorrelation of the single particle-velocity, is responsible for the exponential decay. The latter, 
being associated with correlations due to the long-range Coulomb interaction, is responsible for an 
oscillatory behavior related to the plasma frequency of the n+ and n regions. 

Figure 4 shows the spectral density of the voltage fluctuations between x = 0 and the position 
x as function of x and frequency for the same structure of Fig. 3 but with n = 1016 cm,-3 and 
n+ = 1017 cmr3. Here, the different influence of each region in the structure is clearly emphasized. 
At low frequencies, most of the noise is originated in the n region due to its larger resistance. 
When going to higher frequencies, the contribution to the spectral density coming from the n 
region decreases, while that of the TI

+
 regions increases, reaching its maximum value near the 

associated plasma frequency (1275 GHz). At this frequency it can be clearly observed that the 
only contribution to the spectral density comes from the re+ regions. 

3. Schottky-Barrier diode 
The system we consider is a one-dimensional GaAs n+ - n — metal structure at 300-K". The 

height of the .barrier considered in the simulation is 0.735 V, which leads to an effective built-in 
voltage between the n region of the semiconductor and the metal of 0.640 V. 

Figure 5 shows <?/(/) at increasing applied voltages. The complexity of the spectrum is under- 
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Fig. 6 - Low-frequency value of tie spectral den- 
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Fig. 5. The semiconductor-metal contact is at 
x = 0.7 urn. 

stood on the basis of a strong coupling between fluctuations in carrier velocity and the self-consistent 
electric field. Two peaks are observed, one in the region below 103 GHz and another at about 
2.2 x 103 GHz. The first is attributed to carriers that have insufficient kinetic energy to surpass the 
barrier and return to the neutral semiconductor region. The second originates from the coupling 
between fluctuations in carrier velocity and in the self-consistent field due to the inhomogeneity 
introduced by the ra+ — n homojunction as discussed in Section 2. 

Figure 6 shows a spatial analysis of the low-frequency value of the voltage spectral density. 
For voltages lower than 0.640 V shot-noise is dominant [2], and most of the noise arises in the 
depletion region close to the barrier. At increasing voltages, thermal noise associated with the 
series resistance prevails, and the noise becomes spatially more distributed, mainly originating 
from the n region of the device. Finally, at the highest voltages, the presence of hot carriers and 
intervalley mechanisms in the n region leads to the appearance of an excess noise. 

V. CONCLUSIONS 
We have presented a theoretical simulation of electronic noise in semiconductor materials and 

two-terminal devices. Calculations are based on the Monte Carlo technique which, to include 
fluctuations of the self-consistent electric field, is coupled with a Poisson solver. The current 
representation, by allowing a decomposition in terms of different noise contributions, is found 
to provide useful information on the nature of the noise sources. The voltage representation, 
by allowing a spatial analysis to be carried out, is found to provide a local information on the 
strength of the noise sources. We believe that the generality of the approach here proposed, besides 
providing a rigorous basis for the interpretation of noise-spectroscopy measurements, still leaves 
wide possibilities of implementation for the analysis of more complicated systems. 
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ABSTRACT 

An important numerical constraint on self consistent Monte Carlo device simulation is the stability 
limit on the time step imposed by plasma oscillations. The widely quoted stability limit for the time step 
between Poisson field solutions, At<2/o)p where cop is the plasma frequency, is specific to the leapfrog 
particle advance used in collisionless plasma simulation and does not apply to typical particle advance 
schemes used for device simulation. We present a stability criterion applicable to several algorithms in 
use for solid state modeling; this criterion is verified with numerical simulation. This work clarifies the 
time step limitation due to plasma oscillations and provides a useful guide for the efficient choice of time 
step size in Monte Carlo simulation. Because frequent solution of the Poisson equation can be a sizable 
computational burden, methods for allowing larger time step are desirable. The use of advanced time 
levels to allow stability with cOpAt»! is well known in the simulation of collisionless plasmas; we have 
adapted these implicit methods to semiconductor modeling and demonstrated stable simulation for time 
steps larger than the explicit limit. 

I. TIME STEP STABILITY 

One important constraint on self consistent simulations of both solid state devices and plasmas is 
numerical stability of plasma waves. This limitation imposes a maximum on the allowed time step 
interval between Poisson field solutions At, relative to the plasma frequency cop, and is particularly 
important for simulations of devices with high carrier concentrations, such as found in heavily doped 
contact regions. Motivated by analysis of numerical schemes for plasma simulation, many authors have 
quoted the stability limit copAt<2 [1]. This limit of copAt<2, however, is specific to the leapfrog particle 
advance used in plasma simulation and is generally not applicable to algorithms used for solid state 
device simulation. In contrast to the leapfrog algorithm which is centered and advances the particles with 
a fixed time increment equal to the time step between field solves, At, solid state simulations typically use 
non-centered algorithms with a particle time step 8t#At. Furthermore the particle time step is often picked 
stochastically based on mean free collision times determined not only by physical parameters but also by 
details of the numerical implementation such as self-scattering. 

The numerical stability of typical algorithms used for Monte Carlo device simulation has been 
investigated in Ref. [2]. This analysis is applied to a variety of algorithms in different regimes; here we 
confine our discussion to the case of 8t«At which is generally applicable to any scheme which only uses 
the electric field at the old time level in advancing the particles. This situation could correspond to the 
case of high collision rate (perhaps due to a large self scatter rate), or simply an attempt to ensure very 
accurate particle orbits. In this limit the particle advance approximates an exact orbit. Then the numerical 
solution corresponds to solving the Boltzmann equation exactly between times tn and tn+l=tn+At with the 
time independent electric field, Eft11). A dispersion relation is obtained, which shows the surprising result 
that in the absence of collisions, instability occurs for all time steps. In practice, collisions allow stable 
simulation for finite time step. The appropriate collision rate is the rate of momentum transfer vc, defined 
by the first velocity moment over the Boltzmann collision operator, and may be related to the mobility by 
vc=e/fjm* with e and m* the electron charge and effective mass. The amount of collisionality required to 
offset the tendancy for growth is determined by the threshold for stability (zero growth, )*=0), 
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and plotted in Fig. 1. Stable solutions lie above the stability threshold shown as a solid line in Fig. 1. For 
values of the collision rate below this threshold, unstable growth is present. 0^3.72 corresponds to the 
point C in Fig. 1 where the threshold crosses the boundary between complex and real roots denoted by a 
dotted line. An approximate expression for the stability limit, valid for yAt«l and vc4f«l, is given by, 

a)pAt<2vc/ü)p (2) 
This condition is plotted as a straight dashed line in Fig. 1 and comparison with the exact threshold (solid 
line) shows that it remains a good approximation out to values of ©pAf approaching unity. 

A number of simulations have been performed to explore the stability boundary in the space of VcfOp 
vs. (DpAt shown in solid line in Fig. 1. The code used allows multiple nonparabolic, elliptic bands and 
scattering processes appropriate for simulation of GaAs or Si. The particle advance is performed as 
described by Hockney and Eastwood with 8t picked randomly based upon the total scattering rate r which 
includes self scattering. A grid with uniform spacing Ax is used; interpolation from the particles to the 
grid uses standard linear weighting, and the Poisson equation is solved directly without spatial smoothing. 
Results from simple simulations which closely conform to the analysis are shown in Fig. 1. For these runs 
a single spherical parabolic band is used, and collisions correspond to elastic, isotropic scattering which is 
independent of energy. Simulation results are plotted as solid markers if unstable growth is observed, and 
as open markers if the ran was observed to be stable (yAKO.Ol). The circles are from simulations with 
r=vc, while triangles represent simulations with r=5vc. It can be seen that the stability condition implied 
by the boundary between solid and open markers is in reasonable agreement with the analysis, but 

Fig. 1. Numerical stability as a function of collisionality, vc/<Op, and time step between Poisson solves, (OpAt. 
Markers represent results of simulations: open for stable, closed for unstable. 
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indicates a slightly more stringent stability condition; this is due to the effects of finite temperature which 
are neglected in the analysis. 

As an example relevant to realistic device simulations, consider GaAs at a doping density of 
Af£>=1.0xl017 cm-3; assuming the electron density is equal to the doping density we have 
ü)p=2.0xl013 s_1. At a lattice temperature of 7=300 K, the low field mobility is /x=5.3xl03 cm2/V-s; this 
corresponds to an effective collision frequency vc=5.0xl012 s"1. Then vc/(Op~0.25, and the stable time 
step limit is predicted to be cOpAt^O.5 or <df=2.6xl0-14 s. At a lattice temperature 7=77 K, 
/*=9.2xl03 cm2/V-s corresponding to vc=2.9xl012 s"1. Then vc/cop=0A5 and the stability limit is 
<apAt=0.3 O4r=1.5xl0-14 s). Simulations of the two cases described above (7=300 K, (OpAt=0.5; 7=77 K, 
(OpAt=0.3) performed using realistic models for GaAs show weak instability; stability requires somewhat 
smaller values of the time step consistent with the effect of finite pressure. Unstable runs were observed 
to saturate by heating the electrons. In some cases, mobilities were noticably reduced and significant 
numbers of electrons promoted to the upper valleys. 

H. LARGE TIME STEP ALGORITHM 

Frequent solution of the Poisson equation to resolve plasma oscillations can be a sizable 
computational burden. Caution suggests that the condition presented above not be approached to closely, 
since finite pressure effects slightly lower the stability limit. Additionally, near the stability limit 
unphysical heating of the carriers may be a more insidious effect than the catastrophic instability which 
occurs well above the limit. The necessity of using advanced time levels for numerical stability with 
G)pAt»\ has long been known in the case of collisionless plasma simulation, and stable large time step 
simulations have been achieved using time-implicit methods [3]. 

The key ingredient for large time step stability is to advance the particles using the advanced electric 
field En+1, such as 

x»+l = X0+ßAt2^, (3) 
m* 

where XQ depends only on quantities at the past time level f- and ß is the implicitness parameter. Because 
the new field depends on the new particle positions through the solution to the Poisson equation, however, 
an implicit solution for the electric field is required. The implicit field equation may be found by writing 
the Poisson equation at the new time level, and linearizing the charge density with respect to perturbations 
due to the advanced field, 

dEn+1    AK   „+I    4n r    ,    .    _ -, ... 
-^— = —pn+=—{po(xo)+Sp}. (4) 

OX £ £ 
The perturbation to the charge density, 8p, may be expressed in terms of the perturbation to the particle 
position 8x by, 

8p = -f(p08x) = -^-(p0-^ßAt2En+l). (5) 
ax ax       m* 

Substituting into Eq. (5), and rearranging, the field equation becomes 

£Hf}~TA> • *^PO><2=^, 
with % the effective susceptibility due to the partial advance of the particles to *o- Strict implementation of 
such a scheme requires writing these equations with the spatial derivatives replaced by finite differences 
generalized to include the interpolation between the grid and particles. This leads to a matrix system for 
the new electric field which is completely consistent with the particle push but has a larger stencil than the 
original explicit system. Simplified differencing (and reduced computational stencil) can be obtained by 
simply writing Eq. (2) in finite difference form; this is appropriate if (OpAt is not too large. 
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Fig. 2. Time history of (a) average particle energy and (b) electrostatic field energy (arbitrary units) from two 
diode calculations: explicit a>pAt=0A2 (dashed line) and implicit C0pAt=2.24 (solid line). 

We have adapted these implicit plasma techniques to semiconductor modeling and demonstrated 
stable simulation for (OnAt larger than the limit given in Section I. At each time step, particles which 
undergo one or more collisions (8t<At) are advanced explicitly. These collisional particles contribute only 
to po and not to the susceptibilities. Particles which do not undergo a collision (8t>At) are advanced 
implicitly by performing a partial push and accumulating the necessary susceptibilities. Then the implicit 
field equation is solved and the positions of the implicit particles corrected, completing the time step. 
Calculations of a submicron GaAs diode [4] have been performed as a realistic test. The diode is 
composed of a 0.25 urn undoped active layer between 0.35 urn n "Mayers doped at density ND=2.Q*10

17 

cm"^(6^r=2.7xl013 s"1). The simulation model is substantially the same as used by Tomizawa et al., and 
for their time step, 4t=1.0xl0"14 s, similar results are obtained. Figure 2 shows time histories of the 
average particle energy and electrostatic energy from simulations with an applied voltage of 0.25 volts 
(rising from zero in 1.0 ps) and lattice temperature of 77 K. An explicit calculation with 4r=1.5xl0"14 s 
is unstable fas predicted above for (OpAt=QA2), while in contrast, the implicit calculation (ß=0.75) with 
41=8.0x10" *4 s (<0pA/=2.24) is well behaved. The increase in time step which can be realized is limited, 
because as At is increased, the fraction of particles which are treated implicitly decreases. As rAt becomes 
of order unity, most of the particles are treated explicitly, and the stability limit of Eq. (1) becomes 
effective. Although the time savings in one dimension is modest, appreciable gains in multi-dimensional 
simulation might be realized because of the increased computational burden of the Poisson solve. 

* This work was supported by the U. S. Department of Energy at Lawrence Livermore National 
Laboratory under Contract W-7405-Eng-48. 
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Abstract 

In this work, we report on a study of submicron MOSFET structures, performed with a 
full band Monte Carlo simulator. In order to obtain a systematic understanding of the hot 
electron effects in scaled structures, we investigate a series of devices with scaled geometry, 
both with constant and scaled bias. 

I. INTRODUCTION 

As the dimensions of integrated devices continue to shrink, investigation of hot electron 
effects becomes increasingly important to assess the influence of overshoot phenomena and 
reliability problems, like breakdown due to impact ionization, defect generation, and injection 
into the gate oxide. In strucures used for flash memory applications, it is important to control 
or even enhance the hot electron population. In order to investigate these effects in detail, it 
is necessary to introduce knowledge of the bandstructure in the model, because at the high 
electron energies involved, simple models of the band are inaccurate. Because of the massive 
computational resources needed [1,2], full band Monte Carlo applications for complete device 
structures have been possible only in relatively recent times, beginning with the development 
of the simulator DAMOCLES [3,4] at IBM, Yorktown Heights. In this work we report on a 
study of submicron MOSFET structures performed with a full band Monte Carlo simulator 
which includes the first two branches of the silicon conduction band. 

II. MODEL 

Knowledge of the bandstructure is necessary to accurately calculate the electron trajectories 
in real and in momentum space and to determine the density of states and therefore the 
scattering rates at high electron energies. Large tables store the information used to obtain 
the electron velocity and to relate energy and momentum for the determination of the final 
state after scattering. The inclusion of the band structure causes considerable numerical 
and memory overhead, but due to improvements in the solution techniques and to increased 
computational power, full band calculations are now possible on modern workstations. 

In the simulator for this study, the band structure for Si is calculated using the empirical 
pseudopotential model of Cohen and Bergstresser [5]. All the necessary information is stored 
for the k points inside the irreducible wedge of the Brillouin zone and is mapped to all 
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the points of momentum space by using symmetry properties. The silicon model includes 
intravalley acoustic phonon scattering, F and G type X-X intervalley phonon scattering, X-L 
intervalley phonon scattering, ionized impurity scattering, and impact ionization. Ridley's 
statistical screening is used in the ionized impurity scattering calculation [6], and Bude's 
model for impact ionization is used [7]. The total scattering rate is adjusted so that at high 
energies, it follows the total density of states as implemented in [8]. 

The random flight times for the electron trajectories are generated using the vectorized 
ensemble constant time technique [9]. At the beginning of every iteration, the electron den- 
sity in real space is evaluated using a 2-D cloud-in-cell scheme [10], and Poisson's equation 
is solved numerically using a simple vectorized relaxation scheme. Holes are included in the 
constant quasi-Fermi level approximation [3]. The boundary layer in the contacts are kept 
neutral by injecting the necessary number of electrons. 

III. SIMULATION RESULTS 

Both constant and variable bias scaling were applied to the test structure shown in Fig- 
ure 1. Figure 2 shows the effect of constant bias scaling on the energy distribution at the 
drain/channel junction for Vgs= 2.5 V and Vds= 3.0 V. The doping is increased and all device 
dimensions within the silicon are decreased by a constant factor as the device is scaled. The 
oxide thickness is decreased by the square root of this factor. Figure 3 shows the energy 
distribution when the bias is scaled with the square root of the channel length. 

rv. CONCLUSION 

Full band Monte Carlo is a valuable tool for studying high energy effects in scaled MOS- 
FETs. We have demonstrated how the method can be used to generate the electron energy 
distribution for such devices. Analysis of the energy distribution can serve as a guideline 
to determine scaling rules and to assess the necessary level of statistical enhancement to 
study the energy tails. Future work will include the simulation of more realistic MOSFET 
structures and the calculation of gate and substrate currents using a stratification technique 
to enhance the high energy tails [11]. 
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FIG 1.Schematic of device that is scaled by variable and constant bias scaling. Drain and 
source doping is No = 1019cm~3 and substrate doping is NA = 1016cm-3. Vsub = Vs= 0 V. 
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FIG 2. Energy distribution at drain/channel junction for devices with channel lengths of (a) 
lfim, (b) .5/i/m, and (c) .25yum with constant biases of Vgs = 2.5 V and Vds = 3.0 V 
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FIG 3. Energy distribution at drain/channel junction for devices with channel lengths of (a) 
l//m, (b) .5/xm, and (c) .25/mi with scaled biases. 
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ABSTRACT 

A rejection method is presented that sidesteps much of the labor necessary in the usual 
techniques for choosing a scattered state after an electron-phonon collision with full band structure. 
The phonon wave number is chosen randomly, then tested to see if the resultant collision will satisfy 
energy conservation to within some accuracy. If not, the collision is rejected, and if so, then the wave 
number is adjusted in order to enforce energy conservation more precisely. The price one pays is in 
a high rejection rate. If the cost of a rejection is small, however, this rejection rate can be tolerated. 
This method will not compete with analytical models (near valley minima), but may outperform the 
more usual techniques. Accuracies of a few percent are practical. 

I. INTRODUCTION 

In Monte Carlo simulations, a time-consuming problem is the calculation of the phonon 
scattering rate for a given particle, and the selection of the scattered state given that a scatter has 
occurred. Typically, these two problems are dealt with separately. The scattering rate is usually 
tabulated in some fashion, and the scattered state is found randomly taking into account the surface 
within the Brillouin zone on which energy is conserved, and the density of states at each point on that 
surface. 

One advance made early in deciding when to scatter a particle was the invention of the Null- 
Scatter, or Rejection method. In this method the scattering rate is assumed to be some simple 
function of the wave number (usually a step function) that is always larger than the true scattering 
rate. The true scattering rate at the time of the scatter can then be applied by rejecting some fraction 
of the intended scatters, i.e., not scattering the particle. This technique has become almost universal. 

Choosing a scattered state for a particle is a more difficult task, since momentum and energy 
must be conserved, implying that the scattered particle must he on a complex surface within the 
Brillouin zone. Furthermore, the local density of states varies over that surface, and the scattering rate 
is proportional to the density of states. At least two groups have addressed this problem with 
reasonably accurate band structures. My interpretation of their techniques is the following: Fischetti 
and Laux [1], divide the Brillouin zone into small cubical cells, locate all the cells through which the 
energy-conserving surface passes, weight each cell according to the density of states, the scattering 
rate and the area of the energy-conserving surface contained within the cell, then choose a cell 
randomly according to these weights. The scattered state is chosen from the plane within the cell that 
approximates the energy-conserving surface. Yoder et al. [2], also choose such cubical cells 
randomly, and by a similar method. They then choose the scattered state by a rejection method: 
states are chosen randomly within the cell with a uniform distribution; if energy is not conserved 
within a given tolerance, the state is rejected and another state chosen at random until a suitable state 
is found. The present technique shares some features with that of Yoder et al, but dispenses with the 
cells. 

H. THE METHOD 

The scattering rate from wave number k to wave number k' can be written in the form 

S(k,k') = /(k,k')g(p)<5(E-E'±Ep) 
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where p = ±(k,-k), is the phonon wave number, E is the initial particle energy, E' is the final particle 
energy, and En is the phonon energy. Usually/does not vary strongly with k and k', and can be 
approximated by a constant — if this is not good enough, the rejection method can be used to correct 
the scattering rate.  In the present work it is assumed that/is constant.   For Polar optical phonons 
(most important for Gallium Arsenide), g(p)°= V P% f°r small p. 

The basis of the present method is to approximate the scattering rate as 

5(k,k') = /(k,k')g(p)~H(AE-|E-E'±Ep|) 
2AE ■ ' 

where H is the Heavyside step function, and AE can be virtually anything, as long as it is small 
enough to give an accurate measure of the local density of states. States are chosen at random over 
some domain known to encompass the energy-conserving surface (allowing for the energy mismatch 
AE), and those within the energy tolerance AE are accepted, while those that do not are rejected, and 
treated as null scatters. States that are accepted are then moved onto the energy-conserving surface 
using a second-order Newton's method (using both the first and second derivatives). 

This technique has the advantages that no energies, densities of states, or surface areas must be 
computed and tabulated within cubical cells, nor need the actual scattering rate be calculated. 
Furthermore, the method is not tied to a mesh, and so its speed does not suffer when meshes are 
refined. It has the obvious disadvantage that a high rate of rejection is likely, so that fast evaluation 
of the energy is critical to minimize the time spent on rejections. (A mesh is used in the evaluation of 
the band energy.) 

The accuracy of the method is limited by the value of AE. If one is not close to a critical energy 
(a valley, saddle point or maximum), the density of states is smooth, and it is easy to see that the error 
in the effective density of states will be of order AE2. If one is close to a critical energy, one must 
either be sure that the resulting inaccuracy is of little consequence (as for maxima and saddle points, 
or when AE«£T), or ensure that AE is small enough. For a parabolic ellipsoidal valley, one can 
show that as long as E - AE is above the energy of the valley minimum, the density of states is 
reasonably accurate. This fortuitous fact makes it possible to use this method near valleys, but since 
an analytic technique can be used near any but the X valleys in GaAs (which are not close to 
parabolic or ellipsoidal), it would probably not be the method of choice. Nonetheless, it has been 
implemented here. 

Several techniques can be used to increase the speed of the method. For low energies one can 
reduce the ik-space volume to be sampled to the regions around the valleys. This is especially easy 
when the scattering is independent of p, since then choosing p uniformly is equivalent to choosing k' 
uniformly, and any shape volume in which a wave number can easily be chosen with uniform 
probability density can be used; in particular, ellipsoids bounding the valleys can be used, 
eliminating most of the volume of the Brillouin zone. In this case, acceptance rates of 20%-50% can 
be achieved near valleys, with AE proportional to the energy above the valley minimum. At higher 
energies (sampling from the entire Brillouin zone), with AE = 0.2 eV, acceptance rates of 10%-20% 
are typical (this is about as large as one can reasonably make AE). 

When g is not constant, as in polar optical phonons, it is necessary to work in the phonon 
Brillouin zone. A fair amount of work is necessary to locate and surround the valleys (with a conical 
section of a spherical shell, in this case), making the method unattractive for low-energy scattering 
when analytical methods are applicable. This technique was used here as a proof-of-principle, 
regardless of its attractiveness. Another difficulty in the polar optical case is that for small p, g 
changes so rapidly that one must limit AE to less than about 1/5 of the phonon energy for reasonable 
accuracy.  This would be a fatal restriction if it were necessary for AE to be independent of p. By 
making AE a function of p (in this work ÄE°c*{p for intra-valley and full-band scattering, constant 
for inter-valley scattering), AE can be made small only for small p. The result of this technique is an 
overall acceptance rate of between 4% and 6%, with the high-energy acceptance rate being on the low 
end. 

The limits on the accuracy of this method might seem to be a drawback, but a fundamental limit 
exists in the accuracy of the semi-classical model. The source of this limit is in the application of 
Fermi's Golden Rule in computing the scattering rate. The Golden Rule assumes that a long period 
of time is available during which the interaction (a scatter in this case) may occur.  In fact, the mean 
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scattering time is itself a limit on the time available for interaction. Heisenbergs uncertainty principle 
is applicable here, and indicates that the selection rules for momentum conservation and energy 
conservation will only hold to within limits determined by the mean free path, and the scattering time 
(and phonon life-time) respectively, according to Ak>l/2X and AE>h/2r. This should not be 
interpreted as non-conservation of energy, of course, but as an indeterminacy in the band energy. 
For most semiconductors at high fields, the scattering rate implies an uncertainty in the carrier energy 
of almost 0.1 eV; of course, at low fields the scattering rates are much lower, and the bands are 
accordingly very narrow. This implies that the accuracy of the semi-classical model is probably 
limited to a few percent at high fields, and it would be pointless to attempt to reduce simulation errors 
below this level. 

Once a scattered state has been accepted, it must be brought to the energy-conserving surface. 
To do this quickly requires at least the first derivatives of the energy with respect to the wave number, 
and preferably the second derivatives. In the present work a cubic interpolation scheme was used to 
compute the energy as a function of wave number. This scheme required most of those derivatives, 
and could interpolate them as well. The accuracy of interpolated derivatives used in Newton's method 
was of some concern, but the scheme has worked extremely well, with only one or two iterations 
necessary in most cases. If four iterations do not suffice, the state is discarded (this is very rare). One 
must also specify a direction in which the wave number will be moved in order to bring it to the 
energy-conserving surface. In general, this direction was taken to be the gradient at each iteration, 
but when the wave number was in a valley, it was constrained to move in a line through the center of 
the valley. 

m. RESULTS 

Simulations were performed with the first conduction band of Gallium Arsenide. The band 
structure was calculated using the pseudopotential method with the form factors of Cohen and 
Bergstresser [3]. Ten thousand particles were advanced in momentum, but not in space, with a 
uniform and constant electric field. Only polar optical phonon scattering was allowed, but both 
absorption and emission were included. The phonon temperature was 0.026 eV, and all phonons 
were assumed to have an energy of 0.0355 eV. No attempt was made to properly scale the time, 
electric field, velocity or scattering constant, but the time scale is a consequence of the electric field 
and the scattering constant, and the velocity is purely a diagnostic, so no arbitrary physical parameters 
are introduced. The simulation was run on a CRAY-YMP, but was not vectorized (much vectorization 
should be possible, but was avoided for simplicity). 

The drift velocity versus electric field in the 100 direction is shown in Figure 1 (arbitrary units, 
lines delimit rough statistical error bounds). Acoustic phonon scattering is important for scattering at 
moderately large energies, so the saturation level should not be taken too seriously, but negative 
differential resistivity is clearly exhibited. 

Drift Velocity 

8   9  10 

Electric field 

Fig. 1. Drift velocity versus field, polar optical scattering only. 
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Numerous tests were performed to ensure that the various parts of the test code were performing 
properly. These included scattering of an ensemble of particles from a single initial state, scatter plots 
of randomly chosen states from limited regions of the Brillouin zone and zero-field runs at various 
temperatures, as well as scatter plots of the actual simulation runs. These tests cannot guarantee that 
the code contains no errors, but serious error is unlikely and no potential errors are likely to affect 
the timing, which is of the most interest in assessing the usefulness of the scheme. 

At low electric fields (with few particles outside the T valley) the mean computer time per actual 
scatter, including the cost of null scatters, is 1.6 ms. At higher electric fields (in the saturated regime), 
the mean time per scatter is 2.6 ms. The time required for a rejection outside the valleys is 70 us, 
while an acceptance requires 140 us. Within the valleys, a rejection requires 105 us (an acceptance 
175 us), which is more than compensated by the higher acceptance rate for valley scatters. An 
evaluation of the electron energy requires 15 us, and an evaluation of the energy with all its first and 
second derivatives requires 30 us. For reference, a scalar multiply on the CRAY YMP requires 50 ns. 
All these times are for no vectorization at all. Obviously vectorization would improve the 
performance. 

IV. SUMMARY 

The rejection scheme for selection of scattered states presented here has been successfully 
implemented, and may be competitive when analytic methods are not applicable. When the scattering 
rate does not depend directly on the phonon momentum, the scheme is reasonably efficient. The 
scheme has a higher rejection rate when the scattering is not uniform in the phonon momentum. The 
high rejection rate may be compensated by the computational simplicity of the method and the 
relative speed of rejections. 

The scheme can be extended to a complete and realistic scattering model, given the necessary 
data on band structures, overlap integrals and so on. The possible techniques for increasing the 
acceptance rate and improving the speed of rejections have not been exhausted. 

* This work was supported by the U. S. Department of Energy at Lawrence Livermore National 
Laboratory under contract W-7405-Eng-48. 
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Abstract 

A new method for a more efficient calculation of correlation functions for stationary and Markovian 
processes described by the Boltzmann transport equation is given. The conditional probability 
representing the dynamics of the system is expanded with spherical harmonics. In the resulting 
discrete system the evaluation of the correlation functions involves only matrix-vector operations 
which can be performed very efficiently. The results for different electric and magnetic fields agree 
very well with standard Monte Carlo results and the cpu time usage is about one order of magnitude 
smaller. 

I. INTRODUCTION 

Macroscopic balance equations derived from the Boltzmann transport equation (BTE) rely on 
transport coefficients which in part can not be directly determined from experiment [1,2]. A pow- 
erful tool to obtain these coefficients is the correlation function analysis of certain microscopic 
quantities by Monte Carlo (MC) simulations of stationary homogeneous bulk systems [3,4]. The 
diffusion constant for example can be obtained from the time integral over the velocity autocor- 
relation function [5]. Since MC simulations are cpu time intensive and the correlation functions 
are needed for various doping concentrations as well as electric and magnetic field conditions more 
efficient methods are required. 

II. DESCRIPTION OF THE METHOD 

Correlation functions are calculated with the joint distribution function f(k,t,ko,to) which can be 
expressed by the conditional probability P(k,t\ko,to) times the normalized distribution function 
f(ko,to)- P(k,t\ko,to) describes the dynamics of the system and f(k0,t0) the state of the particle 
ensemble. The correlation function of the microscopic quantities X(k) and Y(k) is given by: 

< X(t)Y(to) >= ^ jd3k jd3k0X(k)P(k,t\k0,to)f(ko,t0)Y(k0), (1) 

where Q denotes the system volume. P(k, t\ko,to) is the conditional probability (CP) that a 
particle started at time to with wavevector k0 appears at time t with wavevector k. Since our MC 
model includes only one particle scattering processes the CP is also the Green's function of the 
corresponding BTE. We investigate only stationary processes with constant electric and magnetic 
fields. Thus P(k,t\k0,t0) equals P(k,t - t0\k0,0)- Since the process is Markovian the CP for the 
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discrete times (iSt, 0) with i > 1 can be calculated as the i-times product of the CP for the time 
step St utilizing the Chapman-Kolmogorov equation [6]: 

P(k,iSt\ko,0) 
Ü 

(2x)3j 

t-i 

/'*■-•••/ d
3ifciP(ifc,Ä*|&j_i,0)---P(fci, «|*o,0).        (2) 

In our new approach the CP is discretized by a spherical harmonics expansion in the solid angles 
[7] and an equidistant discretization of the absolute values of k and k0. The spherical harmonics 
expansion is especially well suited for this problem because the investigated microscopic quantities 
involve only spherical harmonics up to the second order. The discrete CP has the form of a matrix 
and equation (2) reads: 

£(tft|0)= [£(«|0)]2. (3) 

The correlation function is now calculated by multiplying the CP matrix from the left and right 
with the vectors of X{k) and Z(k0) = f(k0,0)Y(kQ) as resulting from the discretization: 

< X(iSt)Y(0) >= X £(8t\0) (4) 

The direct calculation of the i-th power of the CP matrix being very cpu time intensive can be 

avoided by an iterative calculation of E(6t\0) Z. In the first time step (i = 1) the product of the 

CP matrix and the vector on the right-hand side is performed. The result of this operation is again 
a vector. For the next time step this vector is multiplied with the CP matrix once more. Thus 
only matrix-vector operations have to be performed which are much faster than matrix-matrix 

operations. 
The CP can be obtained from the BTE directly with a perturbation series expansion [9,10]. 

This formulation is equivalent to the MC method but direct numerical evaluation is very tedious 
and the MC method is normally preferred. But for zero electric field and a scattering rate 5(e) 
which depends only on energy e the CP has a simple form. Truncating the perturbation series 
expansion after the second term and including particle number conservation results in the following 
expression for the CP (arbitrary magnetic field): 

P(M|£o,0) = exp[-S(e(k))t]s(k-k0 + M   dTv{r) x ß) (5) 

+ 
(2 
^- J' dt1ex?[-S(e(k))(t-t1)]s(k+ e-^ drv(r) x ß\k0 - Jjf * drv(r) X S) 

where S(k\kQ) denotes the transition rate and v the particle velocity. Since only one scattering 
event has been considered in eq. (5), the time t must be chosen sufficiently small compared with the 
scattering rate. The extension to multiple scattering events for longer times t is straight forward. 
With eq. (5) the discrete formulation of the CP can be calculated analytically and the setup time 
is reduced by three orders of magnitude in relation to an evaluation of the CP by the MC method. 

In the case of arbitrary electric and magnetic fields the MC method is used, because the 
discretization of the equation corresponding to eq. (5) for nonzero electric field is very difficult. 
The discrete CP is evaluated by simulating particles with different initial wavevectors k0,60,<po 
(spherical coordinates) for the time St using a MC method [8]. The initial absolute values of 
the wavevectors are given by the discretization.  The initial angles of the particles 60 and (p0 are 
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chosen from an equidistant grid between 0 and IT and 0 and 2ir, respectively!. Since the final 
absolute values of the particles wavevectors do not match the values given by the discretization, 
they are mapped onto the grid by linear interpolation. A coefficient of the discrete CP is obtained 
by summing over all particles with the appropriate k, ko multiplied with the proper spherical 
harmonics of the initial and final state. If the electric and magnetic field are parallel to the polar 
axsis, the CP has the following symmetry property: 

P(k,9,<p,i6t\k0,e0,ipo,0) = P(k,9,ip- <p0,iSt\k0,90,0,0), (6) 

due to the employed Si-model [8]. This effect can be exploited to reduce the variance of the MC 
method for the setup of the CP by integrating analytically over the angle <po in the spherical 
harmonics expansion. The setup procedures and the calculation of the correlation functions are 
well suited for parallelization. 

III. RESULTS 

The CP matrix has been discretized with about 50 points for the absolute value of k and an 
expansion up to the fourth order involving 25 spherical harmonics. Thus the dimension of the 
CP matrix is about 1250. 13 microscopic quantities for X and 13 different microscopic quantities 
for Y have been investigated resulting in 169 auto- and cross-correlation functions. In Table I 
execution times are listed for the new method and a MC simulation on a 4D 480 SGI computer. 
The new method is at least eight times faster than the MC simulation. Figure 1 shows stationary 
expectation values calculated with the new method and MC simulation as a function of the applied 
field for undoped silicon at room temperature [8] and good agreement is found. 

TABLE I. Comparison of execution times for 
the setup of a CP matrix based on a 4th or- 
der expansion, calculation of correlation func- 
tions, total time and standard MC simulation 
for three electric fields. 

1.E7 

8.E6 

E 
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2- 

field Setup cor. fun. total MC 

(kV/cm) (s) (s) 00 00 
1 1131 200 1331 48568 

10 1179 465 1644 12520 

100 858 463 1321 13116 
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FIG. 1. Stationary expectation values for drift 
velocity and mean energy with the new method 
(lines) and MC simulation (symbols). 

In Fig. 2 longitudinal and transversal velocity autocorrelation functions are shown and no difference 
is found between MC simulation and the new method based on an expansion up to the 3rd and 
4th order. Results for other correlation functions involving 2nd order spherical harmonics (velocity 
is 1st order) showed differences between the expansion up to 3rd or 4th order. Therefore the 4th 

t The particle weight is modulated in ^-direction satisfying the Simpson rule and in 920-direction 
satisfying a trapezoidal rule to ensure sufficient orthogonality of the spherical harmonics in the 
process of numerical integration with the MC method. 
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order expansion was used for which the results agreed very well with MC data. In the case of weak 
correlation the new method is superior to the MC simulation because of the high statistical noise 

of the MC method. 
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FIG. 2. Autocorrelation functions for longitu- 
dinal and transversal velocity calculated with 
MC and CP matrices based on 3rd and 4th or- 
der expansions for 10kV/cm (300ÜT). 

In Fig. 3 elements of the diffusion constant tensor for zero electric field are shown as a function of 
the magnetic field up to 400T neglecting quantization effects. The magnetic field lies parallel to 
the z-axsis which is the polar axsis. The setup time of the CPs was below three seconds using the 
analytical method mentioned above. 

10" 10' 

magnetic field \J] 

FIG. 3. Elements of diffusion constant ten- 
sor (Dxx,Dyy,Dzy) for a magnetic field in in- 
direction and zero electric field (3Q0K). 

IV. CONCLUSION 

A new method for the calculation of correlation functions has been developed which is much faster 
than the standard MC simulation and less noisy. It agrees very well with MC results for different 
electric and magnetic fields. The method is well suited for parallelization. 
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Abstract 
We present a detailed investigation of the transient transport regime in InP at room tem- 

perature based on an original method to solve numerically the coupled hot-phonon-hot-carrier 
time-dependent Boltzmann Equations. The method enables a study of the perturbation of the 
phonon distribution function induced by hot carriers and the corresponding modifications of the 
carrier distribution function. As a consequence of the high numerical accuracy of the method, the 
time behavior of the main transport parameters can be investigated in great detail. 

I. INTRODUCTION 
The influence of hot phonons on carrier transport parameters in polar semiconductors has 

been theoretically studied in relation with non-ohmic transport [1], laser photoexcitation [2], and 
noise phenomena [3]. As concerning the transient regime, the influence of non-equilibrium phonons 
has been recently investigated in Ref. [1] by means of a Monte Carlo simulation in n-type GaAs. 
However, a detailed and extensive investigation of the effect of a non-equilibrium phonon population 
on the carrier distribution function (CDF), phonon distribution function (PDF) and main transport 
parameters is still lacking in the literature. In this communication we present a detailed analysis of 
the transient transport regime in InP at room temperature under spatially homogeneous conditions. 
We take advantage of an original method to solve numerically the coupled hot-phonon-hot-carrier 
Boltzmann Equations (BE) in the time domain. The method enables a study of the perturbation of 
the longitudinal-optical (LO) PDF induced by hot carriers and the corresponding modifications of 
the CDF. As a consequence, the time behavior of the main transport parameters can be investigated 
in great detail with an accuracy far beyond other existing numerical methods. 

II. THE SYSTEM OF COUPLED EQUATIONS 
To take into account the perturbation of the LO phonon population, it is convenient to write 

the time dependent BE for the CDF /(k,i) in the following form: 

d-^ = cncf(k,t) + cpof(k,t) - £M (i) 

Here Cnc is the operator including the external field term and collisions with acoustic deformation 
potential, piezoelectric, impurity, intervalley and intravalley non-polar optical phonon scatterings; 
Cpo is the input term for polar-optic LO-phonon scattering and [/(k,t)/rpo(k)] the output term, 
l/rpo(k) being the polar-optic scattering rate. The detailed expressions for the above operators 
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can be found in Ref.[4]. We remark that Cpo and rpo depend on the PDF and, as a consequence, 
Eq. (1) becomes non-linear since its solution requires the knowledge of the PDF. 

The time dependent phonon BE gives the time variation of the PDF N(q,t). This variation is 
the result of the balance between two terms: the former is associated with the phonon appearance 
and disappearance due to carrier emission and absorption and the latter is associated with the 
nonelectronic lattice relaxation of the phonons. Therefore, we write the phonon BE in the following 

>^.C^M-1>^M-WS&^ (2) 

where Cph and £>ph are the gain and loss operators related to emission and absorption of phonons 
by carriers, respectively, NL is the thermal-equilibrium Bose-Einstein distribution and TL the non- 
electronic phonon relaxation time. 

III. NUMERICAL SIMULATION 
The main task is now to solve the system of coupled equations (1) and (2). To do that, we 

have devised the following procedure: 
(i) The CDF and PDF at thermal equilibrium are introduced in Eqs. (1) and (2) thus calculating 

[df(k,t)/dt]t=0 and [dJV(q,f)/0i]fcO. 
(ii) From the knowledge of these quantities we determine /(k, At) and N(q, At) by Taylor expan- 

sion, 
(iii) The new CDF and PDF at time At are introduced in Eqs.   (1) and (2) thus calculating 

[df(k,t)/dt)t=At and [dN(q,t)/dt]t=At. 
(iv) From the knowledge of these quantities we determine /(k,2Ai) and JV(q,2Ai). 
(v) Steps (iii) and (iv) are iteratively repeated until the stationary regime is reached. 

This self consistent procedure has been found to present some numerical problems. As a matter 
of fact, when solving the usual BE (not coupled with the phonon BE) the different operators which 
appear are independent of time: this enables their associated matrix to be calculated only at the 
beginning of the simulation. In the present case the operator associated with the LO-phonon 
interaction depends on the PDF, which is a time dependent quantity: therefore Cpo must be 
recalculated at each time step. Furthermore, the inclusion of the equation for the time evolution of 
the PDF has been found to increase significantly the duration of the transient regime. This leads 
to the necessity of adopting some kind of optimization of the numerical algorithm in order to save 
computer time. 

As concerning the carrier BE we notice that Eq. (1) can be written in matrix form as: 

df 
dt = [C]ne[f} + [C]po[f] + [/] (3) 

where [C]     and [l/rpo] are the matrices associated with the LO operator depending on time 
through the PDF, and [C]nc is the time-independent matrix associated with the operator Cnc- The 
calculation of the first two matrices is the part of the program which requires most of the computer 
time. To try to avoid this problem we have verified that the increase in the time-duration of the 
transient is due to the slow time variation of the PDF. Therefore, we have calculated the time- 
dependent matrices ONLY when one value of N(q,t) has undergone a significative variation (about 
1%). 

As concerning the phonon BE, Eq. (2) can be written in the following form: 

■dNjjt) 
dt ££<;/;(*) *W + £*/iW-^ + £ (4) 

TL TL 

The coefficients Eij and Fij are independent of the CDF and therefore independent of time: this 
enables to calculate the matrices [E] and [F] only at the beginning of the simulation, thus saving 
a significant amount of computer time. 
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Fig. 2 - Phonon distribution function N(q,0 = 
0) along the electric field in InP, for TL = 300 K, 
ND = 1017 cm-3, E = 10 ibV/cm and tie re- 
ported times from the beginning of the tran- 
sient. 

kzClO'nT1) 

Fig. 1 - Carrier distribution function f{kz) = 
f{kx = 0,Aij, = 0,kz) along the electric field 
as a function of &2, in the T valley of InP, for 
TL = 300 K, ND = 1017 cm"3, 5 = 10 kV/cm 
and tie reported times. Solid lines: calculations 
taking into account hot-phonons; dashed lines: 
calculations assuming phonons to be at thermal 
equilibrium. 

To evaluate the gain in computer time some tests have been performed on an IBM 3090. By 
using the optimization procedure here described we were able to reduce the CPU time of a typical 
simulation from 120 hours to about 6 hours, thus gaining a factor of about 20. 

IV. RESULTS 
The theory is applied to the case of n-type InP at a temperature Tj_, = 300 K, a doping 

concentration ND = 1017 cm'3 and with the same material parameters as reported in the Appendix 
B of Ref. [4]. Two spherical and non-parabolic bands (one T and four equivalent L valleys) are taken 
into account. The simulation includes the following intra and intervalley scattering mechanisms: 
acoustic deformation potential (in elastic approximation), piezoelectric (in elastic approximation), 
polar optical, impurity (in Brooks-Herring model including a screened Coulomb potential) and 
non-polar optical intervalley. The LO-phonon relaxation time TL has been taken as 5.8 ps. 

Figure 1 reports the CDF in the T valley, at different times from the beginning of the transient 
and for an abruptly applied electric field of 10 kV/cm. Since some time is required in order to 
perturb the PDF from its equilibrium value, for times shorter than 0.4 ps no significant difference 
is observed between the values of the CDF assuming phonons to be perturbed or at thermal 
equilibrium. For times longer than 0.4 ps the two CDF begin to differ one from each other, the 
difference becoming more evident at increasing times. We notice also that the presence of a non- 
equilibrium phonon population is responsible for an increase in the time duration of the transient. 

Figure 2 reports the results for the PDF at different times from the beginning of the transient 
and for an electric field of 10 kV/cm. The appearance of the perturbation of the PDF is related 
to the displacement of the carriers in the high energy region [4]. At the beginning of the transient 
the CDF is displaced under the action of the electric field; as a consequence the PDF develops 
a peak at small positive phonon wave-vectors associated with the phonons emitted by carriers at 
high energy. This peak progressively increases with time due to the enhanced LO-phonon emission 
by the carriers. 

Figure 3 reports the results for the drift-velocity at three electric fields of 5, 10 and 20 kV/cm. 
For very short times (< 0.4 ps) there is nearly no difference between the values of the drift-velocity 
obtained with and without hot-phonons. For an intermediate electric field of 10 kV/cm, a second 
overshoot is observed which is related to the perturbation of the PDF. 

Figure 4 reports the results concerning the average carrier energy for the same electric fields 
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Fig. 3 - Mean-carrier drift-velocity as a func- 
tion of time in InP, for TL = 300 K, ND = 
10ir cm~3, and the reported electric fields. The 
solid lines refer to calculations taking into ac- 
count hot-phonons and the dashed lines to cal- 
culations obtained assuming phonons to be at 
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Fig. 4 - Mean-carrier energy as a function of 
time in InP, for TL = 300 K, ND = 1017 cm"3, 
and the reported electric fields. The solid lines 
refer to calculations taking into account hot- 
phonons and the dashed lines to calculations ob- 
tained assuming phonons to be at thermal equi- 
librium. 

as in Fig. 3. Also in this case we observe that the presence of non-equilibrium phonons is found 
to be responsible for modifications in the transient regime. As already noticed for the case of the 
drift-velocity, these modifications appear after a time required for the perturbation of the PDF to 
take place. 

V. CONCLUSIONS 
We have presented a detailed investigation of the transient transport regime in InP at room 

temperature. We take advantage of a numerically extremely efficient method for solving the cou- 
pled hot-phonon-hot-carrier Boltzmann Equations in both the linear and non-linear regime. The 
accuracy of the method is particularly evident during the transient which is fundamental to the per- 
formances of high-frequency semiconductor devices. The non-linearity introduced by the phonon 
disturbance is responsible for a great complexity in looking for a solution of the whole problem and 
noticeable effort has been made in order to optimize the code and obtain a reasonable CPU time. 
Modifications of the transient regime at low and intermediate electric fields are observed. 
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Abstract 
We present two original methods which yield the small-signal response around the d.c. bias 

in bulk semiconductors, using direct numerical resolutions of the perturbed Boltzmann equation. 
The first method operates in the frequency domain. An a.c. sinusoidal electric field perturbation 
superimposed to the d.c. field produces an ax. perturbation of the distribution function which 
is computed at each frequency. The second method operates in the time domain. A step electric 
field perturbation is superimposed at time t=0 to the d.c. field. The resulting perturbations of the 
distribution function and of the average velocity are then computed as a function of time. These 
methods are applied to the case of holes in silicon at T=300 K under hot-carrier conditions and 
used to compute the differential-mobility spectrum. 

I. INTRODUCTION 
Small-signal response functions around the bias point are known to play a fundamental role 

in the investigation of hot-carrier transport and noise in bulk semiconductors. In the time domain 
they reflect both dynamic and relaxation processes inherent to the hot-carrier system and can be 
used for the detailed investigation of kinetic phenomena. In the frequency domain they provide 
the differential mobility spectrum which is necessary for several purposes, such as: to evaluate a 
possibility of amplification and generation, to calculate the gain or the absorption coefficients, to 
obtain the noise temperature using additionally the spectral density of velocity fluctuations, etc. 
To date the most comprehensive theoretical analysis of these phenomena is based on numerical so- 
lutions of the Boltzmann Equation (BE), typically by means of Monte Carlo simulations. However, 
together with evident advantages, the Monte Carlo method has also inherent shortcomings mainly 
related to the stochastic nature of the procedure: as a matter of fact, the standard Monte Carlo 
scheme meets difficulties in calculating with high accuracy quantities on a hydrodynamic time scale 
such as the small-signal kinetic coefficients. Other alternative methods deals with the steady state 
hot-carrier transport and often cannot be reformulated in terms of the time-dependent BE. In this 
communication, we present two original deterministic (as opposite to stochastic) methods which 
yield the small-signal response around the d.c. bias in bulk semiconductors, using direct numerical 
resolutions of the perturbed BE. 

II. THEORY 
The distribution function /(k,i) of carriers in homogeneous nondegenerate semiconductors 

with a uniform external applied electric field E(i) is the solution of the time-dependent BE. In 
a constant electric field E, of magnitude E„ /(k,i) takes the stationary value /,(k). If a small 
electric field SE{t) is superimposed on E4, it produces a variation of the distribution function 
Sf(k,t) which is the solution of the perturbed BE in time domain [1]: 

g^/(k,t) + ^ • v**/(k,t) - cff/CM) = -^W • v*/.(k) (i) 
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where h is the reduced Planck constant and C the collision operator. 

1. Harmonic-Response Method 
When the perturbation is sinusoidal [SEhar = SEexpfat)], the response is also sinusoidal 

Sf(k,t) = Sf(k,u)exp(iwt)]. Then from Eq. (1) we obtain the perturbed BE in frequency domain 

iwSf^u) + ^ • Vk8f (k,u>) - CSfQcu) = -^ • Vfc/.(k) (2) 

Prom the knowledge of 5f(k,u) we obtain the Fourier transform Sv(u) of 5v(t) as: 

6v(u) = I v(k)Sf(k,w)d3k    j fs(k)d?k 
-l 

(3) 

The complex quantities 6v(u>) and SE are linearly related through the ax.  differential mobility 
fi(u) as: 6v{u) = fj.(w)SE. 

By assuming a spherical symmetry of the band model the perturbation term o/(k,w) can 
be written as Sf(k,9,u) where k = |k| and 9 = (E,k). After discretization, the gradient and 
the collision operators in Eq. (2) appear as linear combinations of Sf(k,9,u). In practice, the 
computed quantity is SfB = Sf(k,9,u)/SE, represented by a column matrix [SfE] which has a real 
part [SfEJre and an imaginary part [Sfslim calculated as: 

-l 
[SfE]re = [A]([Af+u2[l\y [</] 

[sfE]im = -"(w2+»2my1i9] 

where the square matrix [A] represents the discretized operator [(eEa/ti)Vk-C], the column matrix 
[g] represents the discretized vector (e/7i)Vfc/s(k), and [I] is the identity matrix. The unknowns 
on the left-hand side of Eq. (4) are easily obtained using standard numerical techniques (Gauss 
procedure). This method enables to use an arbitrary value of SE: indeed, since the computed 
quantity is SfE the actual value of SE does not appear in Eq. (4). Furthermore, the solution of Eq. 
(4) requires a specific program. We remark also that the solution of Eq. (2) presents difficulties 
for low frequencies (< 108 Hz) because its associated determinant becomes small [2]. 

2. Impulse-Response Method 
In this case we apply a step-like electric field perturbation, £E,tep(t) = SEu(t) where u(t) is 

the step function u(t) = 1 if t > 0 and u(t) = 0 if t < 0. The step distribution response Sfstep(k,t) 
is then the solution of Eq. (1), and the step velocity response 6vaiep(t) is given by Eq. (3) where 
6f(k,u) is replaced by Sf3tep(k,t). To obtain the transient distribution function Sfstep(k,t), we 
first solve (using a direct method [3]) the transient BE in the constant field Es, so calculating f3(k). 
Then we solve the transient BE in a constant field E, + SE, with the initial distribution equal to 
/s(k), thus evaluating the transient f(k,t). The step distribution response is then calculated by 
difference as Sfatep(k,t) = f{k,t) - /,(k). Then 6v(u) is calculated as: 

Sw(u) = / 
+°° ^'^^expi-^dt (5) 

dt 

Thus Eq. (5) provides a second method to obtain the a.c. differential mobility. 
This method can be used by employing the same program developed for the direct solution 

of the BE [3] or the Scattered Packet Method [4] since the accuracy of these methods is sufficient 
to compute precisely dSvstep(i)/dt. On the other hand, with respect to the harmonic-response 
method, it is necessary to take a value of SE large enough (typically between 1 and 10 % of Es). 
This calculation can take advantage of an acceleration technique described in Ref. [5]. 
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[8f(k,e,ü>)]r v=   1012Hz 

Fig. 1 - 3-D representation of the real paxt 
of the perturbation of the distribution func- 
tion [6f(k,0,w)]re (harmonic-response method), 
in arbitrary scales, at frequency v = w/2x = 
1012 Ez, for holes in Si, T = 300 K, Ea = 
10 kV/cm, corresponding to a perturbing held 
SE = 1 Vj cm. 
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Fig. 2 - Drift velocity (right scale) and time 
derivative of the transient response of the drift 
velocity (left scale). Calculations refer to holes 
in Si with T = 300 K, E, = 50 kV/cm and the 
reported values ofSE. 

III. RESULTS 
The above procedures are used to calculate the small-signal response characteristics of holes 

in Si at T=300 K. The microscopic model is based on a single spherical nonparabolic-band and 
considers scattering with acoustic and non-polar optical phonon mechanisms as described in Ref. 
[6]. 

Figure 1 shows the real part of the perturbation of the distribution function 6f(k, 6,u>) calcu- 
lated using the harmonic-response method [see Eq. (4)]. Each radial curve gives the variation of 
Sf(k,0,u) at a given value of the angle 0. In analogy with the Drude model for the a.c. conduc- 
tivity, the real part describes the dissipative contribution which is in phase with the field while the 
imaginary part (here not reported) describes the optical contribution which is in quadrature with 
the field. Figure 2 reports the time dependence of the drift velocity when at time t = 0 a step elec- 
tric field is superimposed to Ea. The same figure shows the time derivative of the transient response 
of the drift velocity for two different values of SE (we notice that, in order to compare the two 
curves, the reported values have been divided by 6E/(1 V/m)). The excellent agreement observed 
shows that a 6E of few percents of Es can be employed in order to compute the linear response of 
the system. Figure 3 shows the time-derivative of the velocity response-function Svstep(t) (divided 
by SE/(1 V/m)) whose Fourier transform gives 6v(u) according to Eq. (5). At time t=0, all curves 
have practically the same value of [dSvatep(t)fdt}t=o = eSE/m*, where m* is the effective mass. 
The small changes at t = 0 are due to the non-parabolicity of the band. At zero and low electric 
fields, the shape of the velocity response- function is practically exponential with a characteristic 
time constant which corresponds to momentum relaxation. At higher fields the shape becomes 
more complicated by exhibiting a negative part which is understood as follows. At the initial stage 
of the velocity relaxation, carriers obtain extra velocity, since their initial momentum relaxation 
time rp is somewhat longer than that in the new steady-state. Then, the energy relaxation affects 
TP (i.e. Tp becomes shorter) and this extra velocity is lost. Therefore, the energy relaxation is 
responsible for the negative contribution of the velocity response-function. 

The harmonic and impulse response methods are further used to calculate the differential mo- 
bility spectrum which is reported in Fig. 4. The circles and the solid line show the a.c. mobility 
computed respectively with the harmonic- and the impulse-response method. The agreement be- 
tween the two techniques is excellent, thus validating the present approach. In particular, from Fig. 
4 significant deviations from the simple Drude slope of fir and /z» are evidenced. This peculiarity 
is explained as follows. At zero and low d.c. electric fields the impulse velocity response decreases 
monotonously with increasing time (see Fig. 3), and the characteristic relaxation time involved is 
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Fig. 3 - Time derivative (divided by 
SE/(1 V/m)) of the transient response of the 
drift velocity. Calculations refer to holes in 
Si with T = 300 K, and SE = 1 V/cm for 
Es = 0, and SE = Q.1E3 otherwise. 1: E, = 0; 
2: E, = 5 JbF/cm; 3: E3 = 10 fcV/cni; 4: 
Es = 20 A:y/cm. 
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Fig. 4 - Real part \LT and imaginary part mof 
the a.c. mobility for holes in Si at an applied 
d.c. electric Held Es = 50 kV/cm. Circles : 
harmonic-response method with SE — IVI cm; 
Solid line: impulse response-method with SE = 
O.LE,. 

then the momentum relaxation time. At higher fields, the energy relaxation time begins to play a. 
role. This results in a negative value of [dSvsiep(t)/dt], which corresponds to a bump m fir With 
increasing electric field, fj,r increases in the low frequency region, which implies a positive value of 
Hi then decrease resulting in a negative value of &. 

IV. CONCLUSIONS ,  ,    ,     ,. 
We have presented two methods for calculating the small-signal response around the d.c. bias 

in bulk semiconductors, using direct numerical resolutions of the perturbed Boltzmann equation. 
Both methods have been validated for the case of holes in Silicon and proven to give exactly the 
same results when used to compute the differential mobility spectrum. The harmonic-response 
method requires to perform a simulation for each frequency of interest while the impulse-response 
method gives directly the whole spectrum within one simulation. The methods are deterministic 
and therefore overcome the difficulties of the stochastic methods (such as Monte Carlo simulations) 
in calculating with high accuracy transport parameters on a hydrodynamic time scale. 
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Abstract 

We introduce a scaled ensemble Monte Carlo (SEMQ technique to simulate high field electron transport. 
This technique is designed to improve the accuracy of the phase-space statistics of the non-equilibrium 
carrier distribution. As recognized in weighted-ensemble Monte Carlo, increasing the number of simulated 
particles is inefficient, since it substantially increases the computation times without ensuring adequate 
representation of the sparsely populated regions of phase space. A scaled scheme is especially important for 
these transient simulations, since one cannot average the electronic trajectories over sufficiently long times. 

The SEMC technique we propose overcomes this problem by redistributing the computational effort 
to weight the low-density regions of k-space more heavily. This is done through a formulation which uses 
an energy-dependent factor to scale the distribution functions and the scattered rates. The technique has the 
advantage of flexibility and simplicity in coding, is very similar to the traditional non-weighted approach, 
and doesn't involve particle-splitting. In the present work, the SEMC procedure is applied to simulate 
impact ionization for high-field transport, using a soft threshold. Since the impact ionization coefficient is 
strongly affected by the high-energy tail of the distribution function, we apply SEMC to evaluate this. In 
general, results depend sensitively on band structure and on coupling to other energy dissipation modes. 

I. INTRODUCTION 

The simulation of impact ionization is, in principle, not very different from the simulation of other scattering 
processes in semiconductors: an instantaneous, energy-dependent microscopic scattering rate R(E) is 
determined used directly in Monte Carlo simulation; or a parameter a determined from R(E) and the non- 
equilibrium distribution function is used in drift-diffusion simulation. The main practical difficulty is that 
the total scattering rate, and a, depend sensitively on the distribution function at very high energy. This is 
true even for the low fields where a is approximately field independent. Since only a small fraction of 
particles are found at the relevant high energies, ordinary Monte Carlo techniques produce results with large 
statistical uncertainties, and special modifications must be used which enhance the accuracy of the 
simulation in the low particle-density regimes. Here we describe the use of a new method, scaled ensemble 
Monte Carlo (SEMC), to perform this function. 

Like most Monte Carlo treatments, the present one is based on an essentially classical description. In the 
absence of significant interparticle correlations, the system is described formally by a time-dependent single- 
particle distribution function /(r,p;f) = f(x;t) [x = (r,p) is a phase space coordinate]. The distribution 
function obeys the Liouville equation: 

where H = H(x) is the time-independent single-particle Hamiltonian, and {•,•} is the Poisson bracket In 
our simulations, we used a multi-valley Hamiltonian for electrons in GaAs bulk [2], with central T and 
satellite L and X valleys. In our band model, the different satellite minima communicate only via 
deformation scattering—the wave vector is unrestricted in principle, although the region of crystal momenta 
between minima is essentially unoccupied for energetic reasons. This standard model is augmented by a 
uniform electric field. 

We make the usual assumptions that collisions or scattering events take place on time scales much shorter 
than the time between collisions, so effects such as collision broadening can be neglected. Further, the 
scattering events are in fact approximated as instantaneous, so that intracollisional field effects can also be 
ignored. In this approximation we treat acoustic and optical phonon scattering by deformation potential, 
and polar optical scattering. All important sources of potential and phonon scattering can be written in the 
form 
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(rw^ioü=~r(x;t) f(x;t)+1 r(x'x ';0/(x f;t) dx' • (2) 

n. SCALING FORMALISM 

Our approach, which has been developed previously for the zero-field case, depends primarily on the 
observation that an energy- and time-dependent scaling factor commutes with noncollisional term on the 
right-hand side of (1): 

s(H,t) {//,/} = {H,s(H,t)f} . (3) 

Thus, we define a scaled distribution function defined by 

f(x;t) = s(H(x),t)f(x;t). (4) 

The principal advantage of multiplying by an energy-dependent factor arises from counting statistics. If we 
are interested in the distribution function in some region about the phase space point x, we consider as a 
function of time the number of simulation particles N in the vicinity of that point. The fractional error in / is 
then IHN, which is the fractional error in / = srlxf as well. For regions of low phase-space density, N is 
proportional to f(x;t). Thus, for example, to examine regions where the phase space density is down by 
seven orders of magnitude from the maximum, one needs many times often million simulation particles to 
keep the error from exceeding the estimate. 

A standard solution to this problem — weighted EMC — defines distinct regions of phase space with 
different ratios of simulation points to actual particles (the ratio is constant within each region). When 
particles cross between regions, particle trajectories must be "split" (for multiple simulation) or decimated. 
If the density falls smoothly, there is no single efficient place to draw the boundary between regions, and 
many regions and multiple particle-splitting interfaces must be defined [3]. 

Our approach is based upon seating the distribution function that is simulated by EMC, rather than upon a 
weighting the EMC simulation of an unsealed distribution function. The choice of s determines the 
trajectory density. In principle, these two approaches may be equivalent in particular cases. However, a 
weighted EMC eliminates the usual identification between individual initial particles and individual 
trajectories sampled (in what is the Monte Carlo integration of the Boltzmann equation). As a result, one 
loses the intuitive simplicity of regarding sampled trajectories as individual particles of a large ensemble. In 
a scaled EMC, on the other hand, one preserves a one-to-one correspondence of initial condition to 
trajectory, and it remains possible to regard the trajectories sampled as the actual paths of individual 
particles. As we describe below, however, in order to redistribute the statistical sampling weight, one pays 
the price that the trajectories do not follow the paths of ordinary particles. 

m. TIME-DEPENDENT SCALING 

Particle-number conservation imposes an important constraint on how s(H(x),f) is allowed to be chosen. 
By appropriate normalization, the total number N of simulation particles in the simulation of / is the integral 
of the scaled distribution function: 

W) = J fcx) dx = J s (x)/(x) dx . (5) 

If s is chosen to emphasize high-energy regions which have low density, then during a relaxation, 
thermalization will cause a transfer of (real) electrons to lower-energy regions where s is smaller. If s is not 
allowed a time-dependence to compensate, the total number of simulation particles of/ must decrease — 
degrading the statistics in /. Conversely, a heating mechanism would increase the number of simulation 
particles, improving statistical precision but possibly requiring undesirable computational expense. By 
allowing s to have a time-dependence, we accomplish in the time domain what the energy dependence of s 
accomplishes for the energy domain: reduce variations in particle number so that fractional errors can be 
kept at an acceptable level throughout the region of interest, with the least computational effort. 

58 



We chose a simple form for the joint energy-and-time dependence of s: we let them be independent factors. 
This can be written 

s(H,t) = exp(cc(0+Y(//)) • (6) 

Furthermore, we let the function y(K) = -HI kßTeff. This is appropriate for distributions / which are 
approximately characterized by effective temperatures below Te" [Higher temperatures lead to 
normalization problems with /.] This choice is also convenient computationally: a linear function y implies 
that inelastic scattering rates (described below) are space-position-independent, and can be stored efficiently 
in look-up tables. 

The time evolution of a is then defined specifically so that the total number of simulation points is constant 

oc = # J dx dx' G(x,x') J(x';f) , (7) 
N 

where 

G(x,xO = J(x) rW) frCxOr1 = exp[Y(//(x))-Y(//(x'))] rT(x,x') (8) 
is essentially the unsealed total in-scattering rate, adjusted for the change in scaling factor experienced by a 
particle that undergoes a change in energy. (The I-subscript is explained below.) Equation (7) is a 
necessary condition for / to be simulable by scattering events alone, without independent generation and 
recombination (or other gain/loss) mechanisms. That it is sufficient is demonstrated constructively by 
finding the appropriate scattering rates. 

Using (2), we find that f obeys a modified Liouville equation 

in which the "collision" or scattering term is defined by 

(£L-F(!>-'(gL- <l0> 
Equations (2) and (10) specify completely the modified scattering term (df/dt)co\\. However, in order to 
implement a Monte Carlo time-evolution, one must determine scattering rates for the scaled problem which 
are analogous to the out-scattering rates T(x;t) and the in-scattering rates r(x,x';r) of the unsealed problem. 
There is some freedom in way this is done. One well-known degree of freedom is associated with self- 
scattering: 

fr(x;r)      -> T(x;t) + AT(x;t) 1 

1 r(x,x';0 -4 r(x,x';r) + Ar(x;f) 8(x-x') j  ' 

where ordinarily AT is chosen to make the total out-scattering a positive constant. This is a kind of gauge 
transformation, in which the physically-significant total scattering rate is fixed, while unobservable 
components of the in- and out-scattering rates make the numerical implementation tractable. Another choice 
of gauge (the in-scattering gauge used in (8) and indicated by a superscript I) uses AI\x) = ~r(x), to set the 
out-scattering to zero. In any case, the off-diagonal part of the out-scattering is a gauge invariant. Making 
some further transformations, we arrive at 

r(x,x') = G(x,x 0 + K(x) ^ f(x)     for x * x', (12) 
N 

where 

K(x) = jG(x',x)dx' . (13) 
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The second terai on the right-hand side of (12) leads to a kind of attractive interparticle scattering. This 
performs a role similar to that of trajectory iteration in weighted-EMC approaches: simulation particles 
entering critical regions are given greater weight, and are effectively caused to perform multiple traversals. 
However, in SEMC this weighting is implemented smoothly, rather than abruptly at the boundary of a 
region of interest, and it is accomplished with a fixed number of particles undergoing essentially ordinary 
scattering. 

IV. SIMULATIONS 

We have applied the SEMC technique to bulk GaAs semiconductor at 300 K. We used parameters 
(deformation potentials, phonon energies, band structure, etc.) that have been confirmed empirically in 
previous simulations [2]. The SEMC simulation used an effective temperature of 400 K. The system was 
allowed to reach a steady state under a uniform field. The figure below illustrates a typical result The total 
particle density (T, L and X valleys) is plotted as a function of local energy (that is, for each particle, the 
energy is measured from the local position of the conduction band minimum). Results are shown for 70 
kV/cm. The striking feature is the range of densities estimated—sixteen (16) orders of magnitude. 

0.5 

Energy 

Fig. 1: Particle distribution function /(£), including all valleys, as a 
function of local energy above the conduction band, in a 70 kV/cm field. 
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Abstract 

We present here a consistent approach for determining impact ionization coefficients for a multi- 
band model in silicon. Using first-order perturbation theory and a random-A: approximation, the 
impact ionization rate is determined to reflect the multi-band density of states in silicon. To account 
for the actual density of states, we have solved four coupled Boltzmann transport equations by 
combining a generalized Legendre polynomial expansion method with numerical techniques using 
finite differences and sparse matrices. Calculated values for the impact ionization coefficients agree 
very well with experiment for electrons in silicon, while being obtained in significantly less CPU 
time than required by analogous Monte Carlo calculations. 

I. INTRODUCTION: 

Fundamental analytical work on impact ionization was performed by Keldysh [1]. Since Keldysh 
presented his expression for impaction ionization rate, several analytical or quasi-analytical investi- 
gations of impact ionizations have been performed which use Keldysh's results [2, 3]. These inves- 
tigations have provided considerable insight into impact ionization, and the nature of Boltzmann 
equation in semiconductors. However, in the past, analytical formulations were usually constrained 
to an energy range which is limited to silicon's first conduction band, and therefore did not reflect 
silicon's true density of states. Furthermore, while agreement with experiment has been obtained, 
the use of Keldysh's formulation for silicon has not been fully justified since, from a theoretical 
point of view, Keldysh's expression was derived for a single parabolic conduction band, which is 
not strictly appropriate for silicon. 

In this work, we extend these quasi-analytical investigations to a larger energy range which 
reflects silicon's actual density of states. Furthermore, instead of using the Keldysh expression, 
we derive an expression for impact ionization rate which is consistent with the actual density of 
states in silicon. The expression for impact-ionization is based on the random-fc formalism, initially 
introduced by Kane [4]. Once an expression for impact ionization is obtained, we then use it, 
in conjunction with a quasi-analytical method of solving the Boltzmann transport equation, to 
calculate impact ionization coefficients. 

II. ANALYTICAL FORMULATION: 

A. Impact Ionization Rate: 

To calculate impact ionization rates which accurately reflect the density of states in silicon, we 
begin with the random-A: approximation presented by Kane [4]. With this formulation, Kane found 
that if he required energy to be conserved, but neglected conservation of crystal momentum, he 
obtained virtually the same results for impact ionization rates as when he required both energy and 
crystal momentum be conserved. In other words, Kane found that the energy dependent impact 
ionization rate could be expressed accurately in terms of the density of states. Mathematically, this 
energy-conserving, random-A; approximation gives the following expression for impact ionization: 

1    =A 
ii\5) «2,713,714 

X    / Priii^PnA^Pmie^He + s4 - s2 - e3)de2de3de4 (1) 
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where £4,7^4 refer to the energy and band containing the valence band electron; £2^2 and £3,713 
are the energies and bands of the final electron states; pni(£) is the density of states function in 
band ra,-; and A is an ionization coupling constant which can be determined empirically. 

The sum over «2? «3? and «4 in equation (1) accounts for permutations of possible final energy 
bands allowed by energy conservation. The range of the summations is determined by the band 
structure and the conservation of energy. To evaluate equation (1), we take values for the density of 
states functions, pi(si), from the effective, multi-band silicon dispersion relation given by Brunetti 
et. al. [5]. This band structure averages the actual dispersion relation over spheres, thereby 
providing the actual density of states. By accurately providing the density of states, this averaging 
is consistent with the use of the random-A; approximation. 

After making the approximation that holes are generated mostly at the top of the valence band, 
and inserting limits consistent with the spherical band model, equation (1) becomes 

2 re-cg-l.75 rl.75 
—7^    =   A Pl(s2)p2(e - eg - e2)de2 + A p1(e2)pi(e - eg - e2)ds2 
Tu{£) JO Je-£g-1.75 

rs—sg 
+A /       p2(e2)pi(e -eg- e2)ds2 for  e-eg> 1.75 (2) 

J1.75 
2 fe-£g 

—j-^-   =   A Pi(s2)pi(e - eg - e2)ds2 for   e - eg < 1.75 (3) 
i"ii(.£) Jo 

where eg = \.\2eV is the energy gap for silicon. 

B. Impact Ionization Coefficients: 

To determine the impact ionization coefficients, we used the following expression which accounts 
for the density of states in higher bands: 

Oin = ihr^'W'* (4) 
where fo\s) is the isotropic distribution function in band i; p^\e) is the density of states function 
in the ith band; and vj, is the silicon saturation velocity. 

Before we can calculate the impact ionization coefficients, we must first solve the Boltzmann 

transport equation (BTE) to find fo  (e). 

C. Formulation of the BTE: 

To obtain fo (e), we use the Legendre polynomial (LP) expansion method for solving the BTE. 
Previously, investigators used a state of the art LP approach for impact-ionization studies which 
incorporated a first order LP expansion that accounted for one or two conduction bands in Si [6]. In 
this work, we use a generalized approach for obtaining the distribution function to arbitrarily-high 
LP order. We also include the effects of silicon's higher conduction bands. 

To solve the BTE to arbitrarily high order and for densities of states which correspond to higher 
conduction bands, we first write a steady-state, homogeneous Boltzmann equation for each of the 
four bands of the spherically averaged silicon dispersion relation [5]. We also include the effects 
of acoustic, intervalley, interband phonon scattering, and impact ionization. The equation for a 
specific band is coupled to the other equations through impact ionization and interband scattering. 

Next, with the LP approach, we expand the distribution function in each band, f^(k), in terms 
of Legendre polynomials to an arbitrarily high order: 

00 

fU{k) = Y,tiXe)Pn{cos9) (5) 
n=0 
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where 6 is the angle between k and electric field E; Pn(cos6) are the Legendre polynomial basis 

functions which provide the angular dependence of the distribution function; and fn(s) represent 
the unknown coefficients of the basis functions. 

Once the distribution function has been expressed in terms of the LP expansion, the goal is to 
find the unknown coefficients /n (e). We find the coefficients by using a variation of the generalized 
LP expansion approach [7]. With this method, LP orthogonality and recurrence relations are used 

to generate a system of equations for the unknown coefficients, fn(s). The powerful aspect of this 

technique is that the equations for all the coefficients, /n (e), have identical forms and are thus 
automatically generated to arbitrarily high order. In addition, in order to reduce the number of 
equations required for solution, and also improve upon numerical characteristics, we substituted 
odd-indexed LP equations into even-indexed LP equations and reformulated the Boltzmann equa- 
tion into a system of second-order, linear, differential-difference equations. The analytical form of 
the generalized equation for even-indexed Legendre coefficients /„(s) in band i, can be written as: 
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where an = 2n+i'i Ti an<i li are the 1st and 2nd derivatives of 7; with respect to energy; r,(£) is 
the total mean free time between collisions; and r[ is the 1st derivative of r,- with respect to energy. 

A similar system of equations is obtained for each band. To solve the system, we first truncate 
the expansion. Then, the entire system is discretized and then solved directly using Gaussian 
elimination for sparse matrices. 

III. RESULTS: 

In Fig. 1 we show the distribution function we obtained from solving the multi-band BTE. The 
solid line shows calculated values for the symmetrical part of the distribution function when 20 LP 
terms were used, while the dotted line shows the results of using only 2 LP terms; the diamonds 
give the results of Monte Carlo calculations which used the same Brunetti transport model. Solving 
the BTE to 20'th LP order required approximately 28 CPU seconds on a SUN4 workstation, while 
comparable Monte Carlo calculations took considerably longer. 

Using the above method, we were able to obtain values for ionization coefficients with the use 
of only one unknown adjustable parameter, the ionization coupling factor A. The value of A has 
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been determined to be 45000 when an expansion of 20 LP terms was employed; and 55000 when 
only 2 LP terms were used. Fig. 2 demonstrates the agreement between the values obtained from 
our calculations and the experimental data of Lee et. al. [8] for impact ionization coefficients. 

IV. CONCLUSION: 

We have developed an efficient and physics-based method in obtaining impact ionization co- 
efficients for the multi-band model in silicon. The impact ionization rate is derived from basic 
principles with a suitable random-A; approximation for the multi-band model considered. A gen- 
eralized Legendre polynomial expansion method is combined with numerical techniques to solve 
the system of four coupled multi-band Boltzmann equations. Excellent agreement has been ob- 
tained between our calculations and the results of both Monte Carlo method and experiment. 
The efficiency of this method makes it well suited for studying impact ionization and hot-electron 
phenomena in semiconductor devices. 
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ABSTRACT 

VIDSIM[1] (Vacancy and Interstitial Diffusion Simulator), a program for Monte Carlo simulation of 
point defect diffusion and interaction in diamond and zinc-blend crystal structures has been developed and 
used to carry out some fundamental studies in Si and AlGaAs. We report here the latest result of a 
computer simulation designed to examine the diffusion into Si, in the presence of vacancy (V) clusters, 
of Au or similar transition metals that migrate mainly as interstitials but reside as substitutional impurities. 
Frank-Turnbull mechanism is assumed in the diffusion process. Also, we investigate the effect of vacancy 
(V) clusters distributed in the sample on the profile. Au distribution of both interstitials (Au;) and 
substitutionals (AuSi) are presented. 

I. INTRODUCTION 

People have been showing great interest in doing research on diffusion in semiconductors because of its 
importance in industry as well as in science. A variety of models for point defect migration, interaction 
and reaction have been proposed and a great amount of theoretical work has been done to account for, 
in one way or another, experimental results or observations. Yet, there is much controversy over the 
validity of the models or mechanisms, such as kick-out (KO)[2] and Frank-Turnbull (FT)[3] mechanism, 
because we believe, there have been no rigorous connections between atom level assumptions and 
macroscopic consequences prior to our simulation program. For most differential equations which describe 
the diffusion processes, there exist no analytical solutions. 

VIDSIM has been developed to resolve the relation between atom level assumptions and macroscopic 
consequences. It assumes no differential equation. It uses an atom level Monte Carlo algorithm and 
involves an enormous amount of computation to obtain statistically significant results. The program 
models the evolution of a user-defined initial set of defects in space and time for any mechanisms the user 
chooses to simulate. The complex relationship between assumptions and consequences is thus obtained 
without any of the approximating passage to limits that have confused the previous literature. We have 
previously published direct simulations of the KO mechanism, for the set of assumptions advocated by 
those who suggest it accounts for Au diffusion into Si, which showed that the true result is very different 
from that expected by those advocates [4,5]. 

We notice[5,6] that much needs to be understood in the diffusion process involving vacancies as well 
as clusters of them. We report here our latest work on a computer simulation designed to examine the 
diffusion into Si of Au via Frank-Turnbull mechanism in the presence of vacancy clusters. Results are 
applicable to Cu or Pt or similar transition metals, which, like Au, migrate mainly as interstitials but reside 
primarily as substitutional impurities. 

* Supported in part by Komatsu Silicon USA, Inc. and by SEH America, Inc. and previously by the 
Air Force Office of Scientific Research and by Wacker Siltronic. 
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II. SIMULATION SET-UP 

This particular simulation assumes that no Si self interstitials, Si;'s are initially present and none can be 
produced during the diffusion process, that there are vacancies initially present as clusters in the bulk and 
that single vacancies can be created and annihilated at the surfaces normal to the x direction. It also 
assumes that a source of Aii; is on the normal surface of the positive x boundary where Au; will be 
annihilated if it returns there, and a reflexive boundary condition for AUj is imposed on the far side, i.e., 
the negative x boundary. While vacancies are generated at a rate of 1.84xl0"9 per surface site per attempt 
period (a.p.), which, in Si, is estimated to be 74 fs, the zone boundary phonon period, the Au; source 
injects AUj on the surface at a rate of 1.84xl0"9 per attempt period per surface site or 184 injections (on 
average) per diffusion step r = 5xl06 a.p.. The sample simulated is 2000 a thick in x direction and 100 
a both in the y and z directions, where a is the lattice constant for the material of interest. Periodic 
boundary conditions are imposed on the y and z directions. Initially the sample is perfect except for 19 
clusters of 5 V's (V5) each spaced at 100 a intervals in the x direction through the bulk of the sample, 
which corresponds to a concentration [V] = 3.0xl016 cm-3, a conservative estimated of [V] at the melting 
temperature based on the positron lifetime results reported by Dannefaer et al[7]. 

We assert that the above conditions are appropriate for the case that Au-Si molten alloy has formed on 
one side and that an amorphous thermal oxide layer, with no molten alloy, is present on the far side. 

We collect an ensemble of 20 of the sample runs of simulation, each of which extends to 240 steps of 
5xl06 a.p. i.e., 12xl09 a.p.. There were a total of about 6.25xl010 atomic hops in the simulation. Of the 
8.75xl05 Au atoms injected, 1289 are retained as AuSi and 224 are retained as AUj at the end. Of 1.75xl06 

vacancies injected, 3075 are retained. Note that less than 0.2% of the defects that are introduced survive 
at the end of this simulation. 

III. RESULTS OF COMPUTER SIMULATION AND DISCUSSIONS 

We show in Table 1 the rates at which vacancy clusters of various sizes emit V's and diffuse for a 
particular set of atom level assumptionsfl]. 

We observe that, for the simulation of clusters of type V5, most of the original clusters break up into 
single vacancies after 4 r simulation time; they do not migrate a significant fraction of the 100 a initial 
minimum spacing between them before they totally disperse. Those scattered V's from the original clusters 
join newly diffusing-in V's from the surfaces and can form new clusters of various sizes. Simulation 
shows that there are clusters of size of 6, 7, 8 and 9 that form spontaneously from single vacancies during 
the process. We notice that there are "magic numbers" for which small clusters are particularly stable, e.g., 
n = 6. Some of these also diffuse very slowly. We suppose that small clusters of such size account for the 
450 ps signal observed in many, but not all positron annihilation spectra[8]. We also study the sample with 
a 17 V (V17) cluster initially present and find that the simulation requires a great deal of commuter effort 
because there is so much atomic diffusion around the surface of the cavity. Having simulated a total time 
of 20 r, we have observed no emission of any V from such a cluster. Thus, we conclude that the 
mean time to emit a V exceeds 5 r. These clusters also diffuse very slowly. We suggest that such large 

Table 1. Diffusivity and mean time to emit one or more vacancy from clusters of n vacancies. Time unit 
r s 5xl06 a.p.. These values result from the parameters assumed[l]. 

n= 1 2 3 4 5 6 7 8 17 

Dn(aVr) 1177 594 559 419 236 4.0 47 171 1.5 

En(r) - 0.66 0.39 0.41 0.35 11.3 3.25 2.25 >5 
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clusters correspond to the 1.5 ns signal in all positron annihilation spectra and for the D defects that are 
so difficult to anneal out[9]. 

We observe that more vacancy clusters of various sizes larger than divacancies are found to be on the 
far side of the sample, which might result from the asymmetric Au injection that gives rise to more 
break-up of clusters by Au; near the source side. For example, referring the vacancy distribution at step 
160, as shown in Fig.l, we see a peak at the location somewhere around 1650 a, i.e., about 350 a from 
the far surface. Investigation shows that the vacancy clusters, esp. of size 6, (V6) which is surprisingly 
stable, are responsible for the sharp rise in the profile. Distribution of V6 at several steps are shown in Fig. 
2. 
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Fig. 1. The profile of vacancy concentration in the 
sample at step 160. 
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Fig. 2. Vacancy clusters of type V6 observed at 
step 100, 160 and 240. 

In Fig. 3 we show the profile of divacancies, [V2], which demonstrates a U shape. Since the [V](x) for 
single vacancies is not uniform, as shown in Fig. 1, some variation in [V2] as predicted from the Law of 
Mass Action if "local equilibrium" is assumed. This would imply [V2] should vary as ([V])2. Also, it is 
obvious that [V2] profile should dip at the sample surfaces because annihilating boundary conditions for 
vacancies are imposed. Fig. 4 shows a profile of AuSi for t = lxlO8, 2xl08, 4xl08, and 1.2xl09 a.p., and 
Fig. 5 demonstrates the distribution of Au; concentration through the sample at the same time period as 
in Fig. 4. 
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Fig. 3. The profile of divacancies, V2 in the 
sample, observed at step 100 and 240. 
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Fig. 4. The profile of Au substitutionals in the 
sample, observed at step 20, 40, 80 and 240. 

From the Fig. 4 and Fig. 5, we see the distribution of Aii; is similar to that of AuSi and not much more 
uniform despite the fact that the Au; have a diffusivity of 22,894 a2 r"1, 19 times the diffusivity of the V's 
and dramatically larger than the effective diffusivity of AuSi's. The ratios of concentrations on both 
surfaces for both AuSi and Au; are observed to be about the same, which is similar to the result we 
reported when we simulated Au diffusion into Si assuming KO model[3,4]. In simulating KO model, we 
allowed no V's and made the Sii's diffuse less rapidly than the Au;'s. However, there is no rise of [AuSi] 
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near the far surface. The results shown in Fig. 4 are contrary to the assertions or assumptions of many 
previous investigators, particularly those who advocate the KO mechanism. In contrast to the monotonic 
distribution of Au< shown in Fig. 4, they assert that since the AUj diffuses so rapidly, a uniform distribution 
of AUi will be established from the very beginning of the diffusion. We also note that the [AuJ rises with 
[ AuSi]' at the far side and the profile of [AuJ tends to be flat at the far side as simulation time elapses. The 
flatness of [AuJ(x) near the far end is a result consistent with the reflexive boundary conditions used in 
our simulation. 

In Fig. 6 we show the variation of [AuSi] in the center versus the square root of time. The trend shown 
is not exactly that as reported in previous literature. Two distinctions are found. First, the best fit of linear 
regression shows that the best straight line does not pass through the origin, as the previous authors' 
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Fig. 5.  The  profile  of Au interstitials in the 
sample, observed at step 20, 40, 80 and 240. 
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Fig. 6. The variation of Au substitutionals in the 
center of the sample versus the square root of 
diffusion time. 

claim, but reaches [AuSi] = 0 at finite positive time, which is necessary for Au; to reach the center of the 
sample. Secondly, although the longer time data and the shorter time period can be fitted to a line, there 
is an inflection point that was not reported previously. To some extend, the simulation result is consistent 
with the result of our laboratory experiments[10]. 

REFERENCES 

1. U. Schmid, N. C. Myers, and J. A. Van Vechten, Comp. Phys. Commun. 58, 329(1990). 
2. A. Seeger, and W. Frank, J. Electron. Mater. 14a, 159 (1985). 
3. F. C. Frank and D. Turnbull, Phys. Rev. 104, 617 (1956). 
4. U. Schmid, J. A. Van Vechten, N. C. Myers, and U. Koch., Mat. Res. Soc. Symp. Proc. 163, 609 

(1990). 
5. J. A. Van Vechten, U. schmid, and Zhang Q. S., J. Electron. Mater 20, 431, (1991). 
6. T. K. Monson, J. A. Van Vechten and Q. S. Zhang, Phys. Rev. B49, 2972(1994). 
7. S. Dannefaer, T. Bretagnon, K. Abdurahman, D. Kerr, an D. Hahn, Mat Res. Soc. Symp. Proc, 262, 

(1992). 
8. P. J. Roksnoer and M. M. B. Van den Boom, J. Cryst. Growth 53, 563 (1981). 
9. S. Dannefaer, P. Mascher, and D. Kerr, Phys. Rev. Lett. 56, 2195 (1986) 
10. R. K. Graupner, J. A. Van Vechten, P. Harwood, and T. K. Monson, Mat. Res. Soc. Symp. Proc. 262, 

(1992). 

68 



ADVANCES IN MULTI-DIMENSIONAL TCAD 

W. Fichtner 
Integrated Systems Laboratory, Swiss and Federal Institute of Technology 

and 
ISE integrated Systems Engineering AG 

Gloriastrasse 35 
CH-8092 Zürich 

Switzerland 

Over the past few years, numerical process and device simulation have become increasingly 
popular in academic and industrial environments. Analogous to other fields such as biochemistry, 
petroleum and aerospace engineering, and weather forecasting, the use of software tools offers 
many advantages over the classical experimental approach. 

Modern computing environments such as the latest generation of workstations permit simulations 
that were thought to be impossible before. Based on these impressive advances in computer 
hardware, TCAD (Technology Computer Aided Design) is one of the premier candidates for a 
virtual reality approach towards understanding, optimizing and predicting new process 
technologies, devices and circuits. 

The push towards higher device density, smaller active feature sizes and more advanced 
fabrication steps puts stringent requirements on the quality, robustness and accuracy of TCAD 
software tools. The enormous complexity of todays micro- and opto-electronic devices has 
generated a strong need for better modeling support, especially in two and three dimensions. 

In this presentation, a survey of the present multi-dimensional process and device simulation tools 
will be given. Particular emphasis will be laid upon structure and grid generation, the impact of 
numerical methods and computer architectures, and the need for parallel processing to tackle the 
problems of tomorrow. 
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Abstract 

This paper presents a method for solving the 3-D hydrodynamic (HD) model in submicron 
semiconductor devices. The main features of this method are the fairly low memory and CPU 
time requirements, and excellent convergent property. Simulation results of a 3-D submicron 
MOSFET are provided. 

I. Introduction 

As device dimensions continue to shrink, 3-D-related phenomena, including the MOS bird's 
beak and narrow channels effects, can significantly impact device characteristics. As a result, 
demand for 3-D simulations has appeared[1,2]. As far as we know, very few robust 3-D device 
simulators exist, and we know of none which are based on the hydrodynamic model. In general, 
the HD model is difficult to solve because it is a highly nonlinear, singularly perturbed, highly 
coupled system of partial differential equations. While these difficulties are readily evident in 
2-D, they are compounded when 3-D simulations are attempted. In addition to the standard 
obstacles of traditional 2-D simulations, the increased difficulties for 3-D simulation can be 
summarized as follows: (1) Memory: 3-D simulation of electrons and holes requires the solution 
of between 105 and 106 simultaneous discrete equations. Use of the standard Newton's method 
requires storing extremely large matrices to accomodate this large number of discrete equations. 
(2) Algorithm: Solving such large matrices is very difficult and readily leads to round-off errors 
and instabilities. (3) Boundary conditions in 3-D are more complicated than their 2-D coun- 
terparts, which leads to changes in the matrix structure and more difficulties when nonplanar 
surfaces are encountered. (4) Convergence and stability: More complicated coupling relations 
between mesh points and between equations significantly increase the nonlinearities already 
associated with the HD model. 

We have overcome numerical problems associated with 3-D HD modeling, and developed 
an efficient 3-D HD simulator for predicting deep-submicron MOSFET performance. Instead 
of using solution techniques, such as Newton's method or the conjugate gradient approach, we 
adapt our solution approach specifically for 3-D HD device simulation. This required extending 
our highly stable and routinely convergent method for 2-D HD modeling to 3-D[3,4], 

To tailor our approach specifically for the 3-D problem, we use a fixed point iterative ap- 
proach which totally avoids solving large matrices. By defining new Slotboom-like variables 
for the HD model, we transform the original HD equations to self-adjoint form which guaran- 
tees that each discretized HD equation will correspond to a diagonally dominant matrix. A 
Scharfetter-Gummel-like (S-G) discretization is then performed on the self-adjoint forms of the 
current-continuity and energy balance equations. The S-G-like schemes resolve rapid variations 
of unknown variables, not only due to the mesh refinement, but due to the special design of the 
finite difference schemes as well, thereby helping to reduce the number of mesh-points, equa- 
tions, and time to convergence. The coupled system is solved using SOR-type methods where 
the equation for each mesh point is updated explicitly. The explicit method obviates the need 
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to solve large matrices, and, due to the diagonal dominance, each HD equation is guaranteed 
to converge[5,6]. The explicit method is independent of matrix structure so implementing ad- 
ditional 3-D related boundary conditions do not noticeably affect the solution. Furthermore, 
memory requirements of the fixed-point iteration method are fairly low, thereby facilitating 
solution in 3-D. Finally, the explicit method is intrinsically parallel. 

II. Solution of 3-D HD Equations 

The Self-Adjoint form of the HD model 
To solve the HD model in 3-D, we begin with the standard HD equations[7]. By using 

the Slotboom-like variables variables u,v,gn,gp for the standard HD variables n,p,Tn,Tp, the 
electron current density and electron energy flux can be expressed in the compact form: 

Jn = Dnni exp I - + Yjr) V «, (1) 

Sn = -«en expOn/ar) V9n + ^(^n^J- (2) q z 

u = exp(-r%-)>     Tn=gnexp(i,JaT),     aT = T^- = -J^± = 0.0207F     (3) 

By substituting above expressions into the original HD equations, one can transform the HD 
model into self-adjoint form: 

■2.      QUi ( ,   Tn-TL  ,     q<j> TP-TL        q<f>    \      qD 
v  , = _ ^exp(____ + __) _ ,exp(-^- - _)j - - (4) 

/ rp       rp i \ 

V • (Dnni exp(—"y       + J-JT) V «J = #0* u, v) (5) 

V • (Kcn exp(i)n/aT) V 9n) = 
_ f kBgn expQJar) + |m>gn - u0      -    - (Jn\   , 2 \ n ~ Jn-E-\/-[—-mnvdn) (6) 

Tnw \ q   2 J 

It is clear from the above expressions that the Poisson, the current-continuity, and the energy- 
balance equations are each self-adjoint differential equations with respect to the variables <f>, u 
and gn. 

Iterative Method for HD Equations 
We use an S-G-type method to discretize the current-continuity and energy-balance equa- 

tions. This S-G approach helps to analytically resolve the rapid variations in n and Tn, thereby 
reducing the number of mesh-points which can become quite large for 3-D applications. With 
the S-G-like discretization, we assume that Sn and Jn are constant between mesh-points. In- 
tegration of the above self-adjoint forms between the mesh-points is then readily performed. 
The overall variation of Sn and Jn is then accounted for discretely on the mesh-points. This 
discretization yields the following 3-D general expression for the current-continuity and energy- 
balance equations: 
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+Ci,j-l,kHi,j-l,k + CiJ,fc+l-ffi,j,A;+l + Ci,j,k-l3itjtk-l 
-(ci+ij,fc + Ci_iJ,fc + Cij+i,fc + Cij-ltk + Ci,j,k+1 + Ci,j,k-1 + Li,j,k))Si,j,k = ~li,j,k (7) 

In the above equation #i,j,fc represents the discrete form of the Slotboom variable either u or gn. 
The c's are the discretization coefficients corresponding to each HD equation. Lijtk represents 
the diagonal term arising from the RHS of the self-adjoint equations, while 7;j,fc represents the 
'constant' term on the RHS of eqns.(5) and (6). It is interesting to note that the discretization 
of the self-adjoint forms yields coefficient matrices which are diagonally dominant. This can be 
observed since all the coefficients c;j,fc, as well as £;,j,fc, have the following property: 

Ci+i,j,k > 0,    Ci-i,j,k > 0,    Ci,j+i,k > 0,    citj-i,k > 0,    Cij,fc+i > 0,    Ci^k-i > 0, Lijyk > 0. 
(8) 

Eqn.(7) represents a system of N = (NiXNjXNk), where JV,-, Nj, Nk represent the number of 
meshpoints in each dimension, respectively. Ordinarily, such a system would be solved implicitly 
using a Newton-type approach. However, such an approach would yield extremely large matrix 
equations which have extensive memory requirements and are susceptable to round-off error. 

Our approach, which has been specially tailored for hydrodynamic 3-D applications, allows 
for eqn.(7) to be solved explicitly, thereby avoiding large matrices entirely. We solve eqn.(7) for 
Hijki a fixed-point method, such as Jacobi iteration technique, is then applied to update the 
HD-Slotboom variable at each mesh-point using the following equation: 

An)     . 
jr(n+l) _  Ai,j,k + 7tj,* ,gs 

^k        Bij,k + L^k V ; 

where A^nK represents the sum of the off-diagonal 'cff' terms in eqn.(7), and Buk represents 
the sum of the 'c' coefficients of the diagonal term Hij^- 

This iteration scheme minimizes memory allocation, requiring only a few vectors of length 
N. Furthermore, due to the property of diagonal dominance, the convergence for the solution 
of each HD equation is guaranteed [4,5], while the convergence of the overall system is obtained 
with a modified Gummel method. Finally, by observing the decoupled algorthm of eqn.(9), it 
is clear that the method is readily parallelized. 

III. Numerical Results 

To examine the new method, we simulated a semi-recessed, 3-D submicron MOSFET, as 
shown in Fig. 1. The MOSFET has 0.5/im of channel length and 0.5(J,m of channel width. The 
electron temperature distribution at Vds = 1.0V and Vgs = 3.5F is shown in Fig.2. Narrow 
channel effects can be observed. 
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Fig.l. Semi-recessed MOSFET device with 0.5//m effective channel length and 0.5/xm chan- 
nel width. 
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Fig.2. Electron temperature for the device with Vdrain = 1-OV and yffote = 3.5^. (We have 
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THREE-DIMENSIONAL SIMULATION OF THE EFFECT OF RANDOM IMPURITY 
DISTRIBUTIONS ON CONDUCTANCE FOR DEEP SUBMICRON DEVICES 

J-R. Zhou and D. K. Ferry 
Department of Electrical Engineering and 
Center for Solid State Electronics Research 

Arizona State University, Tempe, AZ 85287-6206 

Abstract 

We present a 3-D simulation of small semiconductor devices, investigating the random 
impurity fluctuation and distribution effect on the conductance. Instead of using a uniform 
background charge for the impurities, discrete charges are assigned atomistically to computing cells 
by checking the assigned random numbers generated by computer, so that the scheme satisfies that 
the requirement that the mean value of the total discrete charge equals that of the uniform doping. 
The simulation is performed for MESFET structures. The random impurity distribution effect on 
devices with gate lengths less than 0.1 |im and narrow width will cause non-negligible conductance 
variations and be a major source of device variability within a single chip. 

I. INTRODUCTION 

In general, semiconductor device operation depends on the use of electrical potential barriers 
(such as gate depletion) in control of the carrier (electrons and holes) transport through the devices, 
in order to achieve signal switching and signal modulation. Although a successful device design is 
quite complicated and involves many aspects, the device engineering is mostly to devise a "best" 
device design by defining optimal device structures and manipulating impurity profiles to obtain 
optimal control of the carrier flow though the device. This becomes increasingly difficult as the 
device scale becomes smaller and smaller. New problems keep hindering the high performance 
requirement. Well-known problems include hot carrier effects, short-channel effects, etc. We discuss 
a potential problem caused by impurity fluctuation [1] which can not be perfectly controlled by the 
device engineer as devices become too small, and intend to provide better understanding of its effect 
on device design requirement for small devices. 

0.100 
Gate length (|xm) 

1.000 

Fig. 1   Number of electrons under the gate versus gate length (L) for two gate width (W) to gate 
length ratio. 

Impurities in semiconductor devices are randomly distributed as a result of the nature of 
processing, such as ion implantation.  Although electron transport in the devices always experiences 

*Work supported by the Army Research Office. 
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the effect of the random distribution of the impurities, the statistical contribution of these effects to 
the electronic performance of devices with a large operation domain (in space dimension, such as 
volume in which electrons flow) is negligible, and a simplified uniform background impurity 
distribution (the average of the impurity charges in space) is adequate in describing the effect of the 
fixed charges in the devices. Only devices with a small active domain which is susceptible to a large 
percentage fluctuation of the impurities, will exhibit noticeable conductance variations. For device 
scaling to the deep submicron regime, especially for device feature size less than 0.1 |im, as shown in 
Fig. 1, the number of impurity under the gate will approach the hundreds level and several tens of 
dopant number level. When the active device region contains so few dopant atoms that the statistical 
fluctuation of the dopant is comparable to the dopant number itself, the dopant fluctuation, either in 
total number and/or in spatial distribution, in the device will cause non-negligible effects on device 
performance. The anticipated effects include the classical statistical effects such as the device current 
level shift and threshold voltage shift due to the total dopant number fluctuation and/or distribution. 
Only a few attempts have been devoted to study the effect of random atomistic impurity on device 
performance, with the most recently reported research [3] using a drift-diffusion model to simulate 
the random impurity effect on sub-0.1 um MOSFET devices. We investigate the classical effects 
from the simulation of a 3-dimensional device structures for MESFET by using hydrodynamic 
equations, with the discrete 3-dimensional random impurity distribution and fluctuation included. 

II. DEVICE SIMULATION 

The device structure considered is a 3-D volume as depicted in Fig. 2, which shows the 
contact definitions and a possible impurity distribution. The discrete impurity region is defined only 
in the highly doped layer away from the simulation domain boundary (smooth uniform doping is 
used at the contact ends) in order to use the existing simulation program and avoid dealing with very 
complicated rough-boundary conditions for the time being. This treatment should not affect the 
simulation results since most of the active device region (the channel) is well inside the discrete 
impurity distribution region and device operation is dominated by the electron transport through this 
region. The charge in a discrete cell is set to be either one or zero following a distribution scheme. 
The corresponding uniform doping in the highly doped layer is 1.5 x 1018 cm"3. In sampling of 
5000 devices, we plot the frequency as a function of dopant number under the gate in Fig. 3, which 
has a mean value at 36 (approximately one tenth of the mean value for the total discrete impurities in 
the device, since the volume of the gate region is one tenth of the volume of the total discrete region), 
with a standard deviation of 5.99. 

700 1 in i i I in i 
3D Device 

Source 

Drain 

Substrate 

360 nm x42 nm x 100 rim 
L  = 24 nm, W  = 42 nm-: 

O 

mini 
50    58    66 

Number of dopant atoms under the gate 

Fig. 2  A 3D device model and computer 
simulated discrete impurity distribution. 

Fig. 3 Statistical frequency as a function of the 
number of impurity under the gate for 5000 
devices. 
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The simulation domain is discretized into uniform small volume cells of 3 nm x 3 nm x 3 nm, 
and various physical quantities are computed for these small cells. The device simulation method is 
the same as that used in [4], which numerically solves a set of hydrodynamic equations that describe 
the conservation of particle, momentum and energy of electrons, in conjunction with Poisson's 
equation, using a finite-difference algorithm. 

The simulated device structure (Fig. 2) is a domain of 0.36 urn (L) x 0.1 um (H) x W, with W 
in the range of 0.042 um to 0.162 urn. The thickness of the highly-doped layer is 40 nm, and results 
for two different gate lengths are discussed here. In Fig. 4, we plot the drain current versus gate 
voltage for three different MESFETs, where the drain potential is 0.5 V in all cases. One may notice 
that for the 24 nm gate devices, the current increase is not linearly proportional to the device width, as 
one would expect for the uniform doping case. Since there is no narrow width effect included in this 
simulation, and the number of impurity under the gate is 24 and 56 for W = 42 and W = 60 (more 
than doubled for the later case), respectively, the deviation from the expected behavior is apparently 
due to the impurity fluctuation and distribution in the devices. It is worth while to point out that the 
total impurity for the entire discrete region is not doubled: 358 for W = 42 and 610 for W = 60, 
respectively. 
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Fig. 4 I-Vg characteristics of MESFETs for three different gate cases, for V<j = 0.5 V. 

The current fluctuation, caused by the variation in random impurity distribution and 
fluctuation, is pronounced for the device geometry simulated here. In Fig. 5 and Fig. 6, we plot the 
drain current as a function of gate voltage and drain voltage, respectively, for different number of 
impurities under the gate. Two characteristics are obvious. First, the total dopant fluctuation under 
the gate causes significant current variations. Secondly, it's not necessarily that more impurity under 
the gate will definitely cause more current flow, one can see the numbers are not ordered in both 
figures. This means that not only the number of impurities under the gate is important, but also the 
actual positions of the impurities. In Fig. 5, the current difference becomes wider as the gate bias 
becomes more negative. This is expected since the number of impurities in the opening channel 
becomes smaller as the depletion under the gate becomes wider, thus the fluctuation increases until 
the channel is completely depleted. For comparison, in Fig. 6, the results of simulation with uniform 
background doping is also included. Obviously, the current levels with discrete impurities fluctuates 
the current level of the uniform doping. The simulation shows that the variations can be as large as 
30 per cent for the particular MESFET device structure. 
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Fig. 5 I-V characteristics of gate voltage for a 
24 nm gate MESFET, showing the current 
fluctuation as the impurity fluctuate under the 
gate. 

Fig. 6 I-V characteristics of drain voltage for a 
24 nm gate MESFET, showing the current 
fluctuation as the impurity fluctuate under the 
gate. 

We emphasize here that the current fluctuation mainly depends on the fluctuation and the 
distribution of the impurities under the gate, by inspecting the relation of the current fluctuation and 
the total dopant in the whole discrete region, we find that the current variation doesn't follow the total 
dopant fluctuation in the discrete dopant region clearly. This means that the impurity fluctuation in 
the whole device region is much less critical to the current flow through the channel, compared to the 
influence of the impurities under the gate. This is as expected, since the critical region that 
determines the current flow is the region under the gate, and also the impurity fluctuation and 
distribution under the gate are essentially independent of that of the whole device region. 

IV. CONCLUSION 

We investigated the effect of random impurity fluctuation and distribution on small device 
operations. For the device structure simulated here, the results suggest that the effects of random 
impurity fluctuation and distribution can cause large current variation for small devices if the total 
gate area is very small. As we expected, from our simulation, the random impurity effect on the 
device performance will be reduced with increase of the gate length or gate width. But the effect 
could be effective, even for a device with gate length close to 0.1 |j.m. A wider gate length device will 
be helpful in suppression of the effect of random impurity fluctuation. A full 3-D simulation of the 
device including the random impurity effect for engineering application may not be practical. We 
think that a combination of limited 3-D simulation plus statistical method might be needed in 
providing an applicable method to estimate the random impurity effect on device performance for 
device down scaling to 0.1 |im range. 
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ABSTRACT 

A new quasi-two-dimensional HFET model has been developed that solves the physical device 
equations in a more rigorous fashion than previously reported. The model incorporates a quantum 
mechanical description of the free electron concentration, self-consistently solving Schrödinger's and 
Poisson's equations, making it applicable to devices with scale lengths smaller than 20nm. The 
conventional one-dimensional charge control simulation is shown to be inadequate at the drain edge 
of the gate and is replaced by a quasi-two-dimensional version that more accurately describes the 
channel under drain-source bias. This modification produces much improved pinch-off 
characteristics which are essential for digital and low-noise characterisation. 

Quasi-two-dimensional (Q2D) FET models are based upon the fact that in the active region of the 
device the equipotential lines are essentially parallel, normal to the free surface, allowing the full 
two-dimensional device equations to be separated into their x and v components [1,2]. Conventional 
HFET models then proceed to solve these equations in terms of a charge-control law, taken 
perpendicular to the heterojunction(s), and a 'channel simulation' involving the carrier dynamics. 
The charge-control element typically consists of a self-consistent solution of Poisson's equation with 
the charge density (1) but with the first term, dWJdx, set to zero. 

dx dy        e0 
v 

(1) 

The channel simulation then solves the full Poisson equation together with the current-continuity 
and the energy and momentum conservation equations. Here the values for dWy/ty and ND

+ 

obtained from the charge-control law are used, and the equations solved in a 'current-driven' form. 
However, the omission of the dgjdx term in the charge-control equation leads to important errors. 
When the d&Jdx: term tends to -«the electron density increases indefinitely to compensate, but 
when the opposite extreme is approached, d^Jdx tending to +», the electron density can only be 
reduced to zero. The equations described above do not operate in this fashion since as the d^Jdx 
term in the channel simulation increases to +»they predict the sheet electron density tends to -«, 
which is clearly wrong. This leads to poor simulation of the pinch-off characteristics where the most 
extreme fields are produced. 
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II. THE QUASI-TWO-DIMENSIONAL MODEL 

The new scheme described in this paper modifies the charge-control law, making the d%y/dy and 
ND* terms functions of dS'Jdx. This is performed by supplementing the one-dimensional Poisson 
equation used in the charge-control law with a constant term representing d&Jdx which is applied 
to the channel and substrate penetration regions, Figure 1. 

Gate / free surface 

^^->^^     ^*"\       ^    substrate ^|| 
region over . 

which dgjdz 
is applied * % Lg 

Figure 1 Slice of the conduction band edge illustrating the region 
over which the constant term, d&Jdx, is applied. 

This produces typical conduction band-edge diagrams illustrated in Figure 2. Here the d&Jcbc term 
is varied illustrating the effect at extreme biases. 
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Figure 2 Conduction band profiles for various values of d&Jdx 

To accommodate the small scale lengths associated with heterostructure devices quantum mechanics 
is introduced by including Schrödinger's equation in the charge-control law. The self-consistent 
solution of Poisson's and Schrödinger's equations is performed within the framework of a modified 
Newton-Raphson iterative scheme that rapidly, accurately and robustly solves the equations over 
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all appropriate biases. This method requires the partial derivatives of X and W with respect to 
electrostatic potential [3]. Applying perturbation theory to Schrödinger's equation, these parameters 
turn out to be -1 and 0 respectively (2). 

^ = -1   ,   Ü = 0 (2) 
dV dV 

The equations are then solved for a range of biases and the results stored in a look-up table. This 
produces the two-dimensional surface illustrated in Figure 3, where the two-dimensional nature of 
this term is apparent. Here the 'effective sheet electron density' listed on the z axis represents the 
integral of d^/dy + ND+ over the whole of a vertical slice. The two-dimensional look-up table is 
then used in the channel simulator which extracts the value of this combined term using a 
two-dimensional cubic spline routine. 

Figure 3   Two-dimensional  variation   of the   effective  sheet 
electron density (jd^/dy + ND

+jfy) 

Figure 4 illustrates the effect the two-dimensional charge control law has on the pinch-off 
characteristics of a simulated device. Here the poor pinch-off of the conventional scheme is 
illustrated and compared with the improved results of the new model. It is worth noting that 
accurate simulation of pinch-off is essential for digital device modelling and also that most low-noise 
devices are operated in this region. 

The S-parameter calculation requires the microwave gate current to be calculated together with the 
access capacitances. The first term is proportional to the capacitance associated with the 
charge-control law and turns out to be relatively independent of the dgjdx term. Hence a 
one-dimensional look-up table is sufficient. This method provides an accurate estimate of the gate 
current evident in the good agreement between measured and simulated S-parameters illustrated 
in Figure 5. 

This project is funded by M/A-COM, Corporate R&D, Boston, USA 
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Figure 5 Comparison of measured and simulated S-parameters 
for a British Telecom AlGaAs/GaAs HEMT 
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Abstract 

Dual energy transport (DUET) model in semiconductor devices including heterostruc- 
tures has been developed to simulate the distribution of carrier and lattice temperatures 
in addition to profiles of the electrostatic potential and carrier concentrations. The 
modeling approach is in consistency with the conventional drift-diffusion (DD) model, 
making it easy to implement in the existing code. Carrier energy dependent mobility 
and impact ionization models have been examined and are used for simulation of vari- 
ous velocity overshoot and hot electron effects. Two simulation examples, one for the 
submicron MOSFET and another for the deep-submicron SOI, are presented through 
comparison with measurement data to demonstrate the improvement of the new model 
over DD model in predicting the device characteristics for modern (submicron) struc- 
tures. 

I    INTRODUCTION 

As the feature size of semiconductor devices shrinks to the quarter-micron regime, nonlocal ef- 
fects such as hot electrons and velocity overshoot become important in determining the device 
characteristics. The conventional drift-diffusion transport model has been and continuously been 
used in industry and academia for design and analysis of IC devices largely because its auxiliary 
physical models such as the field-dependent mobility model and impact ionization model are well 
calibrated. But it fails to predict those device characteristics which becomes critical in sub- and 
deep sub-micron devices. A notable example is the substrate current in MOSFET. Neither can DD 
model provide such vital information as to the average kinetic energy of carriers in the device. On 
the other hand, Monte Carlo (MC) method can provide very detailed information about the carrier 
distribution in real and momentum spaces. But in addition to the excessive CPU time requirement 
and complexity of model parameters, most present MC codes can only simulate one-carrier device 
behavior, thus are not yet suitable for the design of practical devices. Through tracing back to the 
origin of DD model from Boltzmann Transport Equation (BTE) and by relieving the constraints of 
constant effective mass and temperature, we were able to develop a more complete transport model 
in semiconductors, which reveals not only the carrier concentration and current density (essentially 
a measure of carrier average velocity) but also the carrier energy density. Assuming Fermi-Dirac 
(FD) statistics as the basis for the distribution function and applying the perturbation theory, the 
average kinetic energy can be linked to the temperature parameter used in FD statistics in the 
same formulation as for an ideal gas in classical thermodynamics, thus correctly identifying the 

*also with Los Alamos National Lab. 
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concept of carrier temperature. Moreover, the lattice temperature can easily be incorporated in 
the model by considering the energy exchange among the carrier subsystems and lattice. We thus 
proposed a dual (carrier and lattice) energy transport model (DUET) for semiconductor devices, 
and have successfully implemented the model in Stanford's device simulation code, PISCES, as ver- 
sion 2ET. Since the code was up to work we have conducted several tests and results obtained from 
the simulation are encouraging. Recently, we also extend the capabilities of the code to cover the 
electrical simulation of heterostructures such as light emitter diodes (LEDs) and surface emitting 
diodes (SELs). 

In the following we first introduce the complete formulation of the DUET model, and describe 
the energy dependent physical models as implemented in PISCES-2ET code. Finally, examples are 
given and future work is discussed. 

II    DUET MODEL FORMULATION 

DUET model uses six state variables - potential (^), electron and hole concentrations and temper- 
atures (n, p, Tn, and Tp), and lattice temperature [T£) to describe the status of a semiconductor 
device. All governing equations for these variables are derived from the conservation or balance 
principle for matter and energy. Except of the Poisson's equation for tp, this conservation principle 
can be expressed in the following equation using Fick's second law: 

du 
-V-F+g-r (1) 

where u represents the concerned physical quantity, F is the flux of u, and g and r are generation 
and recombination rates of u, respectively. The key issue in the modeling is thus to find expressions 
for F, g, and r in terms of u. It is well known that in DD model, the carrier flux consists of the 
diffusion and drift terms, or by introducing the quasi-Fermi level Ep, is proportional to the gradient 
of Ep. The fundamentals behind the DD model He actually in BTE, which itself is a representation 
of the continuity principle, 

d .,   ,   .,      Of 

**™=et (2) 

where k is the wavenumber vector, and the way of constructing the distribution function of /. 
Following Stratton's approach [1], in the existence of the electric field by applying the perturbation 
theory and relaxation time approximation (ETA) the distribution function at any instant can be 
expressed as 

/(r, k) = /0(r, E) - r(r, e)—(k- Vr/0 - q^£ ■ k) (3) 
TO* de 

where E is the carrier energy and e is the kinetic part of E, /o is the even part of / in k—space and 
is dependent on the carrier kinetic energy only. The relaxation time r is assumed to depend on e 
only too. £ is the electric field. All other symbols have conventional meanings. If /o is taken as 
the Fermi-Dirac distribution function, one can readily obtain the expression for the carrier density 
and flux by definition as follows: 

NcF1/2 
EFU - Ec 

kßTn 

nfinVEpn + qn/inQnVTn 

(4) 

(5) 

where Nc is the effective density for the conduction band and Ec is the energy level for the 
conduction band edge, Ft/2 is the Fermi integral of order one half.   Coefficients (in and Qn in 
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Eq. (5) are electron mobility and thermopower, respectively, and are related to each other. It is 
obvious that when Tn is constant the above expression for the current is reduced to the conventional 
DD model. 

To find the governing equation for carrier temperature, we start from the balance equation for 
the kinetic energy. For electrons, we have 

dwn 

dt 
v   ' &n T in ' £"n (6) 

where wn is the electron kinetic energy density, sn is the energy flux, and uwn is the net energy loss 
rate. The Joule heat term of jn • £n represents the conversion from the potential to kinetic energy 
and the subscript n in £n indicates the fact that for heterostructures, the electric field might be 
different for electrons and holes. Again using Eq. (3) and by definition wn and sn are computed as 
follows: 

Wn    ~    -nkBTn~jn 

Sn     —     ~ ^n^-nin ~~ ^n^J-n 

(7) 

(8) 

where ~/n is the degeneracy factor which equals unity when Boltzmann statistics is used, Pn and 
Kn are thermoelectric power and thermal conductivity for electrons, respectively. From Eq. (7) 
and taking 7„ = 1, we can identify that Tn indeed has the meaning of temperature for a classical 
electron gas. 

The remaining task in completing the model formulation is to find the carrier and its energy 
exchange among sub-systems. For carrier exchange, i.e., recombination and generation, we include 
the Shockley-Read-Hall (SRH), Auger, and radiative recombinations, and impact ionization. All 
these carrier exchanges are accompanied by the energy exchange. In addition, we also include 
the energy exchange between carriers and lattice through phonon scattering modeled using energy 
relaxation times, rwn and r, wp- 

We thus arrive at the following set of equations: 
Poisson's equation 

V • (-eVtp) = q(p-n + N% *X) 
Carrier continuity equations: 

dn 

~dt 
dp 
~di 

Energy balance equations for carriers: 

dwn 

dt 
dwp 

L   . 
-V-Jn -U 

—V-jp-u 
9 

V * &n T in ' &n       ^u 

(9) 

(10) 

(11) 

- V • Sp + ip • Cp *>wp 

where 

(usrh + urad)2kBTn     (un,Auger     gn,zmp) 

3 ,  wn(Tn) - wn(TL) 
9p, imp cy ^B •*- n   i 

Eg(TL) + -kBTp 

(12) 
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bwp y&srh T Israel) cy&B-i-p       \%>, Auger       9p,imp) 

_ 3 Wp(Tp) - wp(TL) 
9n, imp 0 "'B-t p T 

Ea(TL) + ^kBTn 

(13) 
1 wp 

Thermal diffusion equation for lattice: 

CL- 
dt 

V • (KLVTL) + usrh hBTn + Eg(TL) +hBTp 

wn(Tn) - wn(TL)     wp(Tp) - wp(TL) 
(14) 

' wp 

In the transport expressions for the current density and energy flux, there are four coefficients, 
fi, Q, P, and K, and they are all related to each other through the relaxation time, r. This is one of 
the advantages of the DUET model. Once one of them is known, the others can be deduced from the 
known parameter. In reality, however, these coefficients can be treated as empirical parameters or 
obtained from experiment. For example, knowing the dependence of fi on the carrier temperature, 
thermopower Q can be obtained for electrons: 

Vn — 
k]B_ 

qn 
i + r„—lnMn(r,rn (15) 

Finally, we list the energy dependent mobility and impact ionization models as used in PISCES- 
2ET: 

ß(N,TL,E±,Tc) = (Mr
(NFT^frl FFv (16) 1 + l{N,TL,EL)[w(Tc) - w{TL)] 

where the subscript c for n or p, and 7(i\r,Ti,,JEi) = PO(N,TL, E±.)/[qTwv%at(TLJ] [2].   And the 
impact ionization rate, a, 

a = Aexjp[-(b/Seff)
m]       with   £eff = ^I^JEk 

£   <1     TwVsat 
(17) 

III SIMULATION EXAMPLES 

We present two examples which show that the DD model is no longer accurate in predicting I — V 
characteristics for submicron devices when the non-stationary phenomena such as the velocity 
overshoot and nonlocal field dependence of physical parameters such as the impact ionization rate 
become important. While both DD and DUET models provide good simulation results compared 
to the measurement for devices with relatively long channel length, DD model starts to break for 
output characteristics of SOI at Lejj = 0.12 /um (Fig. 1) and substrate current of MOSFET at 
Leff = 0.8 yum (Fig. 2). On the other hand DUET can consistently model the device characteristics 
well even when the device size is scaled down to the deep submicron range. 

IV CONCLUSION 

DUET model follows the same moment approach as DD model does but has two obvious advantages. 
Firstly, it closes the system in a more consistent way and resolves the conflict intrinsic to DD model, 
i.e., the field dependent mobility model as commonly used in device simulators employing DD model 
vs. the constant temperature assumption leading to the DD current expression. Secondly, it is able 
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Figure 1: Simulation results for the substrate current in MOSFET with two different channel 
length (2 and 0.8 /xm) and the comparison is made for 0.8 fim case between the ET-simulated and 
measured results (from MIT and UC Berkeley, respectively). The upper curves are simulated using 
DD model while the lower curves are obtained from ET simulation. 
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Figure 2: Simulated and measured data for SOI structure with different channel length. 

to provide information regarding the carrier kinetic energy. However, there is still a need to carefully 
calibrate the transport coefficients and to develop more reliable energy-dependent physical models. 
Especially for the impact ionization and breakdown simulation, since these phenomena are basically 
determined by the high energy tail of the carrier distribution, the dependency on the average energy 
has to be elaborated and verified through experiments. 
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GALERKIN METHODS FOR THE BOLTZMANN EQUATION USING VARIABLE 
COORDINATE SYSTEMS 

Christian Ringhofer *) 
Department of Mathematics, Arizona State University, Tempe, AZ85287, USA 

1. INTRODUCTION 
In this paper we present a solution method for the Boltzmann transport equation based on a series expansion 
in a variable coordinate system. In an appropriately scaled form, the Boltzmann transport equation is given 

by 

s2dtf + edivx{v{k)f) + edivk{Ff) = Qf, (1) 

Equation (1) is already given in a scaled and dimensionless form where the dimensionless parameter e stands 
for the scaled mean free path. The term Qf on the right hand side of equation (1) denotes the collision 
operator. For the purpose of this paper we restrict ourselves to the collision operator resulting from the 
relaxation time approximation. This means, that the operator Q in (1) is given by 

Qf(x, k, t) = a{p, u, t)M(x, k) - 60, u, T)f, (2) 

where M(x, k) is a given equilibrium distribution and o and b are functions of the density p , the group 
velocity u, and the scaled temperature T , given by 

p(x,t) =  [  f(x,k,t)dk,    pu(x,t)= [  v(k)f(x,k,t)dk,    p(3T+|u|2)= /   \v\2f(x,k,t)dk.       (3) 
jRs

k JR\ JR\ 

The hydrodynamic model equations are usually obtained by by integrating equation (1) against the functions 
l,v(k) and |u(fc)|2, assuming either a parabolic band structure or making an effective mass approximation, 
and assuming that the density function / has the shape of a drifted Maxwellian in the wave vector direction. 

,/      ,      N POM) r — \v — u(xlt)\2, ,.s 
f{X'*' t] = «pjieXP[ 2T ]• (4) 

For elastic scattering terms, which preserve momentum and energy, the hydrodynamic model can be justified 
via asymptotic analysis for small values of the scaled mean free path, the quotient of the mean free path and 
the length scale under consideration [BAR]. For inelastic collision processes, which are usually present for 
electron transport in solids, a similar asymptotic analysis exists, leading to slightly different model equations 
[POU]. However, the hydrodynamic model is frequently used in regimes where the scaled mean free path is 
actually quite large. An alternative approach is to expand the solution of the Boltzmann transport equation 
in a set of basis functions in velocity space (c.f. spherical harmonics) with coefficients which are dependent on 
position and time. After using a Galerkin approximation a set of macroscopic equations is obtained for these 
coefficients [VEN], [LIN]. However, the resulting expansion converges quite slowly in the presence of high 
velocities and strong forces. In this paper we present a series expansion method, also based on a Galerkin 
procedure which is better suited for high field regimes and a relatively large mean free path. The basic idea 
is to use a coordinate transformation in phase space which adapts locally to the shape of the distribution 
function /. This transformation is chosen such that the resulting expansion reduces to the hydrodynamic 
model if only a few terms are used. 

2. GALERKIN APPROXIMATION 
The method presented in this paper is a Galerkin approximation of the Boltzmann transport equation (1) in 
a weighted I? space, using a variable transformation in the velocity variable which is dependent on position 
and time. We employ the coordinate transformation k —> w, given in general by 

w = G(x,k,t) (5) 

and expand the solution of the Boltzmann transport equation as 
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f(x,k,t) «53/(a:,n,«)^n(a:,*!,t). (6) 
neN 

where the basis functions ipn are given by some suitable set of basis functions <j>n under the variable trans- 
formation G, which will be chosen such as to adapt locally to the shape of the distribution function /. 

ipn(x,k,t) = <f>n(w)    ,    w = G(x,k,t) (7) 

holds. N in (6) denotes some suitable, finite index set. We introduce the weighted L2 inner product for two 
scalar functions f(x, k, t) and g(x, k, t) and two vector valued functions f(x, k, t) and g(x, k, t) by 

<f,g>(x,t)= [ n{G{x,k,*))/(»,k,t)g(x,k,t)dk,     < f,g > (x,t) = j   fifgdk. (8) 
Jnl JR\ 

The variable transformation G is assumed to be affine and the basis functions <j>n are assumed to be normal- 
ized. So 

/   y,(w)4>n{w)(f)m{w)dw = Smt7l (9) 
M 

holds. Taking the inner product < .,. > of the Boltzmann transport equation with the test function ipm, meN 
yields the macroscopic equations for the coefficients f(x,n, t). Inserting the expansion (6) into the Boltzmann 
transport equation (1), taking the scalar product with the basis function lipm, gives 

3 

W™ + E E 9*i [A^M - Y, B™>"f" = Cm' (10) 

y=l neN neN 

where the tensors A, B and C are given by 

(a)    A,-,m>n(x, t) =< ipm, Vjipn >,     (b)    Cm(x,t) = a<if>m,M> -bfm (11) 

Bm,n(x> *) =< -Vv, dtißtpm) + v® Vx(jnl!m) + F • Vv(piipm) > . 
A* 

To this point the equations (10) represent a Galerkin approximation of the Boltzmann transport equation 
in a variable coordinate system, which will be convergent, provided the equations (10) are stable and the 
derivatives of the density function / stay bounded in the weighted L? space with the weight //. We make the 
following choices for the basis functions ipm and <3>m and the weight function /u, which lead to a generalization 
of the hydrodynamic model equations. We set 

(a)    n(w) = exp(\w\2),    (b)    $m(w) = exp(-\w\2)Pm(w),    c)    i>m{x,k,t) = $m(G(x,k,t),    meN   (12) 

where the Pm are chosen as suitably orthogonalized polynomial functions. Furthermore, we choose the affine 
transformation G such that 

holds for some vector p and some scalar a. The basic idea behind these choices is that, because of (12), 
taking the scalar product of a given function with the basis function tpm corresponds to computing a certain 
linear combination of the moments ofthat function, and, because of (13), the zero order basis functions will 
have the shape of the drifted Maxwellian (4). This results in the hydrodynamic model being a special case 
of the above approximation procedure. 

To this point we have not specified the choice of the functions a{x, t) and p(x, t) , which make up the 
variable transformation in velocity space. Indeed, any choice of a(x, t) and p(x, t) would yield a convergent 
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Galerkin method for the Boltzmann transport equation, provided the density function f(x, k, t) is sufficiently 
smooth. We now choose p and a dependent on the solution itself in order to minimize the number of terms 
needed in the expansion procedure. We choose p(x, t) as the mean velocity u given by the solution of the 
Galerkin approximation. So we set 

p(x,t) = ^—r   f   Vf(x,k,t)dk     . (14) 
p{x, *) JR\ 

The function a is chosen such that it matches the macroscopic temperature T in (3). So we set 

a{x,t) = J\J-^-r(\v^f{x,k,t)dk-\p\i    with    p(x,t)= [  f(x,k,t)dk. (15) 
V    3 Y   p(X, t)  Jj^ J/J3 

Of course, this choice of a and p transforms the linear problem (10) into a nonlinear one. 

The hyperbolic system (10) can be discretized by any method suitable for systems of hyperbolic con- 
servation laws. For the purpose of this paper the method of choice is the Lax - Wendroff scheme. 

3. A NUMERICAL TEST EXAMPLE 
To demonstrate the effect of the corrections to the hydrodynamic model resulting from the above approxi- 
mation procedure, we present a one dimensional example of the reflection of an electron wave at a potential 
barrier. Assuming a parabolic band structure, the density function f(x, k,t) remains cylindrically symmetric 
around the k^— direction in the one dimensional case. So 

/(s,M) = /(*i>*i,*2+*!.*) 

holds. The affine variable transformation G in (5) is given by 

G(x,k,t) 
k — p(x,t)e 

a(x, t) 
e = (l,0,0)3 

(16) 

(17) 

and the polynomial basis functions Pm in (12) are given by the standard Laguerre polynomials. Calculations 
were performed for the scaled mean free path e in (1) equal to 0.2, which corresponds to the regime where the 
hydrodynamic model is usually applied. Figure 1 shows the force F corresponding to the potential barrier. 
Figure 2 shows the currents at a given point in time resulting from three different calculations. The solid 
line has been obtained by using 10 terms in the expansion, 5 in the k\— direction times 2 in the orthogonal 
k\ + k\— direction. The dotted line gives the current resulting from the corresponding hydrodynamic model, 
using only three terms in the expansion. Finally, the the dashed line represents the 'numerically exact' 
solution, obtained by using 32 times 8 modes. As observed in the past, the hydrodynamic solution exhibits 
artificial velocity overshoot phenomena. These phenomena are not present when 10 terms are used, and the 
current is essentially compute correctly. Figure 3 shows the L2 norm of various modes as a function of time. 
It can be seen that the higher order modes produce a significant correction. In particular, a simple algebraic 
calculation shows that the (1,0) term is responsible for non - scalar temperatures. Finally, Figure 4 shows 
a snapshot of the distribution function / at the midpoint x = 0.5 and a certain point in time as a function 
of ki and k\ + fc|. If the assumptions underlying the hydrodynamic model were correct, the distribution 
function would have to be a Maxwellian, shifted along the ki— direction. The additional peak in the exact 
distribution function is responsible for the artificial velocity overshoot in the hydrodynamic model. 

*) supported by ARPA Grant No. F49620-93-1-0062 
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APPLICATION OF HIERARCHICAL TRANSPORT 
MODELS FOR THE STUDY OF DEEP SUBMICRON 

SILICON N-MOSFETS 
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C. M. Maziar and A. F. Tasch Jr. 

Microelectronics Research Center 
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Abstract 

In this paper, we present an integrated tool set with a 
hierarchy of transport models ranging from the drift- 
diffusion (DD), through various hydrodynamic(HD) to 
Monte Carlo (MC) models. Good agreement is 
achieved between experimental long-channel n- 
MOSFET drain current data and simulations using the 
DD, HD, and MC models. The MC simulator is also 
applied to the study of transport in deep submicron, 
silicon n-MOSFETs with special attention given to 
issues related to power supply scaling.- 

I. INTRODUCTION 

Moment-based simulators based on drift-diffusion (DD) 
and hydrodynamic (HD) formalisms provide tools for 
device design and research. It is widely recognized that 
these formalisms do not account for all phenomena of 
importance to deep submicron device performance. A 
more complete and physical, but expensive, description 
of the device behavior can be obtained from Monte 
Carlo (MC) simulations. While carefully tuned DD 
simulators do a remarkably good job of predicting 
device terminal characteristics, especially for longer 
channel MOSFETs, HD and MC simulators offer deeper 
insights useful for the design of deep submicron 
MOSFETs. 
In this paper, we analyze the effects of scaling channel 
length and power supply on device reliability and drive 
using our HD and MC simulators. Two nMOS 
transistors with effective channel lengths of 0.13 and 
0.08 |jm and realistic doping profiles are considered. 

II. MOMENT-BASED   SIMULATORS 

The two-dimensional MOSFET simulator includes a 
hierarchy of transport models ranging from the 

This work was supported in part by the Semiconductor 
Research Corporation (SRC- 94-SJ-099), Texas Advanced 
Technology Program (TATP), NSF-PYI, ECS9057633, 
Advanced Micro Devices (AMD) and Motorola.- 

traditional DD, a parabolic and a non-parabolic HD [1], 
an energy transport model and the HD model proposed 
by Stettier et al. [2]. The hierarchical implementation 
is embedded within the device simulator MINIMOS 5.2 
[3]. A unified,, robust and efficient discretization 
method was used to discretize the hierarchical HD 
models. We have also extended the field-dependent 
mobility model of Shin et al. [4] to HD applications 
by replacing the local longitudinal electric field with an 
"effective" field obtained from the full band MC energy 
versus field relation. Each of the HD models is cast 
into a generalized form allowing a uniform numerical 
discretization for all models. A specific HD model is 
selected by choosing the values of H, T], Rx, and R^ 
[1]: 

Current Flow: 

J = pcnE + ßHJVn + fin(l + T])V(HT)  (1) 

Energy Flow: 

S = -^RJT-j^nßT^T 

III. MONTE CARLO SIMULATOR 

(2) 

The Monte Carlo simulator is based on SLAPSHOT 
[5], a tool that uses analytic fits to the pseudopotential 
bandstructure of silicon. Advanced features of 
SLAPSHOT include a scattering rate computation based 
on the pseudopotential bandstructure and a detailed 
calculation of the impact ionization rate based on an 
anisotropic energy threshold. Ionized impurity 
scattering, acoustic intra- and inter-valley phonon 
scattering and optical phonon scattering are included. 
The impact ionization strength was tuned to give good 
agreement with the experimental ionization rates in 
bulk silicon [5]. Surface scattering is included via 
surface roughness and interface fixed charge scattering 
[6]. Additionally, the transport kernel in the MC device 
simulator has two windows for repetition in real space 
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and one in the energy domain. Convergence to a self- 
consistent solution is obtained through iterations with a 
non-linear Poisson solver. 

IV      MODEL DEVELOPMENT AND 

An important application of our MC simulator has been 
in the development of our HD model. Quantities such 
as the relaxation time, field dependence of the average 
energy and velocity, amount of heat flux have all been 
determined using SLAPSHOT. As pointed out by 
Ramaswamy et al. [7], MC plays a significant role in 
verifying the contributions of the various quantities in 
the HD equations. 

The different models in the hierarchy of device 
simulators will have to demonstrate reasonable 
agreement in the device characteristics with 
experimental data for long channel MOSFETs (with 
smoothly varying lateral fields) before they can be used 
to study deep submicron MOSFETs. Drain current 
calculations were performed with all three simulators for 
a range of drain and gate biases for two different sources 
of devices. The first device is an LDD MOSFET with 
an effective channel length of 0.48 microns. As seen 
from Figure 1, surface scattering plays a significant role 
in decreasing the drain current in the linear region. 
However, its role is quite small in the saturation region. 
The second device is a single drain MOSFET with an 
effective channel length of 0.32 microns. The 
agreement with the experimental data is very good 
(Figs. 1 and 2) and suggests cautious optimism in the 
use of the HD and MC simulators for shorter channel 
lengths. This agreement is partly due to the work that 
has gone into describing surface scattering in the HD 
and MC codes. Also, recent work by Ramaswamy et al. 
[7] suggests, once again, the utility of our nonparabolic 
HD model. In the remainder of this work, "HD model" 
refers to our nonparabolic HD model. 

V.      CHANNEL LENGTH  AND POWER 
SUPPLY   SCALING 

HD and MC simulations were performed on two test 
structures with effective channel lengths of 0.13 and 
0.08 microns. These are representative channel lengths 
for future MOSFET technologies. The devices are 
single drain MOSFETs with a junction depth of 40 nm, 
oxide thickness of 5 nm and a step-like channel doping. 
We looked at single drain MOSFETs to ascertain if they 
offer reasonably good device performance. We were also 
interested in device performance at these dimensions 
under worst case conditions. The doping at the surface 
(mid to high 10*7 cm~3) was adjusted to obtain good 
turn-off characteristics (threshold voltage of 0.5 V in 
saturation for both the channel lengths) and a deep 

implant (low 10*° cm~3) was included to minimize 
punchthrough. 

For constant lateral fields, shorter channel lengths have 
shown higher reliability (lower substrate current) [8]. 
However, operation at peak substrate current can 
determine the lifetime of a device and is hence of great 
interest. For this reason gale voltages that maximized 
substrate current at a given drain bias (power supply) 
and channel length were chosen. 

£ 0.3 

P 

. '   1 ' '    1 ■ ■ I ■ ' '  1 ' ■ 
■   Source F K«= 0.4C lim ■ 

■    — Experiment 
.   ooo DD + + + MC without surface scattering 

XXX HD «see© MC with surfs ce scattering . 

+ 
&_ 

* 
Vc= 3 v ; 

• +/ s    s = z v ; 

L-»r -r-*- —*- T*- T-Pr T®" ~T~&~~79 .  . \ 
v : 

0 1 2 3 4 5 

VD (Volts) 

Figure 1: Comparison of the Ijy vs Vß characteristics 
as simulated by the DD, HD and MC tools with 
experimental data for the device with Leff=0.48 
microns. 
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Figure 2: Comparison of the ID VS VD characteristics 
as simulated by the DD, HD and MC tools with 
experimental data for the device with Leff = 0.32 
microns. 
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VI.   RELIABILITY 

Substrate current is an index of the amount of impact 
ionization in a device. Impact ionization degrades 
threshold voltage, transconductance and affects oxide 
integrity through electron trapping in the oxide and at 
the interface. The energy distributions of the carriers 
provide information on the amount of hot carriers in the 
device. The average electron distributions are shown in 
Figures 3 and 4 respectively for the two drain voltages. 
Even though the two channel lengths exhibit similar 
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Figure 3: The electron distributions with 2.5 V on the 
drain and 1.5 V on the gate for channel lengths of 0.08 
microns (solid line) and 0.13 microns (dots). 
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Figure 4: The electron distributions with 1.5 V on the 
drain and 0.9 V on the gate for channel lengths of 0.08 
microns (solid line) and 0.13 microns(dots). 

distributions in energy, the distribution at about 1.4 eV 
(where impact ionization takes place) is much higher for 
the 2.5 V case (and higher for the shorterchannel 
length). Also, please refer to Figure 5 for a plot 
showing the average electron energies (from both HD 
and MC simulations) in the channel. This suggests a 
much higher substrate current with 2.5 V on the drain. 
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Figure 5: Average electron energies with HD and MC 
models: 1.5 V on the drain and 0.9 V on the gate for 
channel lengths of 0.08 microns (solid line) and 0.13 
microns (dashes); 2.5 V on the drain and 1.5 V on the 
gate for channel lengths of 0.08 microns (dots) and 0.13 
microns (dots and dashes). Symbols are used for the 
MC data. 

Contrary to the observed dependencies of substrate 
current on channel lengths for constant field cases, we 
observe that substrate current increases with a decrease 
in the channel length when operation at peak substrate 
current is considered. This supports previous studies [9] 
which predicted continued degradation of device lifetime 
with channel length scaling at sub 0.2micron channel 
lengths. However, as expected, the dependence of 
substrate current on the drain bias (power supply) is 
much greater than on the channel length (more so as we 
get close to the threshold for impact ionization). 

Despite the increasing role of interconnects on the 
overall circuit delay, device speed is still an important 
issue. The larger the drive current the faster the charge 
transfer and hence the circuit speed. The drain currents 
in the two devices were obtained to be 0.23 and 0.3 
mA/micron respectively from MC simulations for the 
2.5 V case, while for the 1.5 V case, the drain currents 
in the two devices were 0.07 and 0.09 mA/micron 
respectively. The average lateral velocities obtained 
from MC simulations are shown in Fig. 6. Velocity 
overshoot is comparable over the two channel lengths 
and drain biases, but the drain currents themselves are 
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different. This is due to the differences in the velocities 
before the overshoot (closer to the source). It is 
interesting to note that the overshoot is actually smaller 
with 2.5 V on the drain. This is probably due to the fact 
that average energies are larger with 2.5 V on the drain 
(as compared to the 1.5 V case) (resulting in increased 
scattering). 
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Figure 6: Average lateral velocities with: 1.5 V on the 
drain and 0.9 V on the gate for channel lengths of 0.08 
microns (solid line) and 0.13 microns (dashes); 2.5 V 
on the drain and 1.5 V on the gate for channel lengths 
of 0.08 microns (dots) and 0.13 microns (dots and 
dashes). 

It is evident that scaling to sub 0.1 micron channel 
lengths should be accompanied by a decrease in the 
power supply. Also, further scaling at sub 0.1 micron 
channel lengths leads to limited gains in the drive 
current and negligible increase in the hot carrier 
degradation. The biggest drawback with scaling the 
power supply is the decrease in the drive current. A 
decrease in power dissipation is an added benefit of 
decreasing the power supply. As long as the device 
speed is a significant factor determining the overall 
circuit speed, serious attention must be paid to 
maximizing the drive current as well. Different 
structures and/or doping profiles can be investigated for 
this purpose. The above discussion suggests that a 
trade-off between drive and substrate currents can be 
achieved by choosing a suitable power supply with or 
without additional device design. 

channel lengths of 0.32 and 0.48 microns. Using this 
agreement as a first test of model validity, we applied 
the MC tool to test devices with channel lengths of 
0.13 and 0.08 microns. Some issues related to power 
supply voltage selection such as its effect on device 
reliability and drive current were highlighted. 
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VII.   SUMMARY 

In this paper, we presented an application of a hierarchy 
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between the experimental drain current data and our 
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Abstract 

The physical processes responsible for microwave power generation in submicron n+nn+ InP 
diodes are analyzed through the spatial profiles of the impedance-field spectrum calculated by a 
closed hydrodynamic approach. The usual subdivision of the n-region into a dead and active zone is 
carried out. The dead zone is found to manifest itself as a purely real resistance which is practically 
independent of the frequency. One or more spatial zones which are responsible for the generation 
are shown to be formed in the active region of the diode. By reducing the 7i-region length the 
additivity of the contributions from each part of the device into the generation spectrum is proven. 

I. INTRODUCTION 

Near-micron n+nn+ InP diodes are widely used in modern electronics as generators in the mil- 
limeter region of the electromagnetic spectrum [1,2]. To improve the high-frequency performance 
of these generators various doping profiles [2,3] and a reduction of the n-region length [4,5] are 
usually suggested. For a proper choice of these parameters and to clarify some problems related 
to their design, an appropriate physical modeling of these devices is mandatory. To provide the 
detailed description of the physical processes responsible for the diode performance a quantitative 
analysis of the parameters which allow for a spatial analysis of various physical quantities has to be 
preferred. Indeed, by allowing one to construct a spatial map of the device properties of interest, 
the designing of the device is significantly facilitated. The main aim of this paper is to demonstrate 
that the impedance field can be successfully used for this sake. 

II. THE IMPEDANCE FIELD APPROACH 

When considering n+nn+ diodes as microwave power generators, the characteristics which 
describe the capabilities of the device to amplify small perturbations are of great importance. 
Under current-driven operation, these capabilities can be rigorously described through the local 
impedance-field, which is given by the ratio of the Fourier components of the local electric-field 
SEu(x) and the total current 6jw(x) at circular frequency u = 2-nf in point x as: VZ(w,x) = 
SEu;(x)/6ju,(x). Since for the one-dimensional structure considered here, the total current is con- 
stant in space, the impedance field reflects spatial behavior of possible perturbations of the local 
electric field caused by harmonic perturbation of j. Integration of the impedance field throughout 
the structure gives the small-signal impedance of the whole diode, Z{u) = J0'VZ(ct},x)dx. Since 
the impedance field describes the additive contributions which every point of the diode gives to the 
small-signal impedance, VZ(u, x) can be used for a detailed spatial analysis of the diode perfor- 
mance. To simulate the carrier transport in submicron n+nn+ InP diodes the full hydrodynamic 
model [4-10] based on the carrier concentration, drift velocity and mean energy conservation equa- 
tions coupled with the Poisson equation for the self-consistent electric field is used. This model 
was demonstrated to provide an excellent agreement with the Monte Carlo calculations for both 
bulk semiconductors [7-9] and short n+nn+ structures [4-6,10]. In the present paper we apply it to 
study the contributions of the various parts of the diode to Z(CJ) and its dependence on reducing 
the diode length.   For this sake we use an impulsive procedure [10] which enables us to obtain 
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under the current-driven operation simultaneously the spectra of both VZ{u,x) and Z{UJ) in the 
frequency range of interest. 

III. RESULTS AND DISCUSSION 

We consider a n+nn+ structure at T = 300 K with parameters which are typical^of to-date 
diode generators [1,2]: the n-region length ln = 1 fim, n = 2 x 1016 cm'3, n+ = 1018 cm 3. Abrupt 
homojunctions between n and n+ regions are assumed. The cathode and anode n+-region lengths 
are taken to be 0.1 and 0.3/zm, respectively. 

Under the current driven operation the electron heating in the diode can be considered (to 
somewhat extent) as a local property. This is illustrated in Fig. 1, which presents a stationary 
profiles of the drift velocity in the structures with different lengths of the n region calculated for the 
same total current j0. Reduction of the n region length does not change the velocity profile in the 
common region and it looks as a cut of the corresponding part of 7i-region which is on the anode 
side. For the case of ln = 1 pm (Ud = 8 V) the velocity overshoot results in the spatial negative 
differential-conductivity (SNDC) in the space region 0.3 < x < 1.1 fim, where the drift velocity 
decreases with increasing the spatial coordinate. The real part of the small-signal impedance 
calculated for the considered n+nn+ structure is reported for different lengths of the 7i-region in 
Fig. 2. For the case of ln = 1 fim (see curve 1), the amplification condition, Re[Z(f)] < 0, is 
fulfilled inside the two bands: / = 70 ~ 200 and 250 + 340 GHz where microwave power generation 
is possible. We remark that, by shortening the rc-region, the condition for amplification shifts to 
high frequencies, as expected. Figures 3 (a) and (b) report the spatial profile respectively of the 
real and imaginary parts of the impedance field for the structure with ln - 1 fim. Curves 1,2, and 
3 correspond, respectively, to the frequencies /i = 55 GHz, f2 = 125 GHz, and /3 = 290 GHz. 
As it follows from Fig. 3, VZ(f, x) is practically independent from frequency in the near-cathode 
area of the 7i-region (x = 0.10 4- 0.30 fim). 

From the comparison with curve 1 of Fig. 1, we find that this is the region where the drift 
velocity exhibits a sharp increase up to its maximum value. This space region is usually called 
as the dead zone of short diodes. Comparing Figs. 1 and 3, one can conclude that the dead 
zone manifest itself as a near cathode region with a pure real and positive resistance which is 
independent from the frequency up to the plasma range, and the end of the dead zone coincides 
with the maximum value of velocity overshoot. The remaining part of the n-region, where SNDC 
takes place, can be considered as the active region of the diode. By increasing the frequency, the 
active region with negative values of Re[VZ{f)] appears at first close to the anode and then widens 
and shifts towards the cathode. There, at sufficiently high frequencies several spatial regions with 
Re[VZ(f)] < 0 can appear. In general, the maximum number of active regions which shows up in 
the spatial dependence of Re[VZ(f)] is equal to the number of generation bands in the frequency 
dependence of Re[Z(f)]. It due to the fact that the curves in Fig. 3 correspond to the growing 
space-waves of the local electric field starting at the beginning of the active zone and vanishing at 
the anode contact. 

Figure 4 reports the effect of a reduction of the n region length on Re[VZ(f)\ calculated at 
/3 = 290 GHz. Curve 1 corresponds to ln = 1.0 fim and curve 2 to ln = 0.9 fim when the 
anode 7i+-region is shifted to the left up to the first nearest point in which Re[VZ(f)] vanishes. 
We observe that, in doing so, the second generation band disappears, the new profile practically 
coincides with curve 1 in the common region, and only one active zones followed by a zone with 
positive values of Re[VZ(f)] remains. Moreover, Re[Z{f)] of the whole diode becomes positive at 
/3 = 290 GHz (see curve 2 in Fig. 2). To make Re[Z(f)] at this frequency negative again, it is 
necessary to shift the n+-anode contact to the second point where Re[VZ(f)] crosses the zero axis. 
This case is illustrated by curves 3 in Fig. 4 (analogously as in Figs. 1 and 2) which is calculated 
for ln = 0.72 fim. In this way one removes the near-anode region with Re[VZ(f)] > 0 and, as a 
consequence, the diode can again generate at frequency /3 = 290 GHz since its Re[Z(f3)] becomes 
again negative (see Fig. 4, curve 3). The generation band of the shorted diode is so extended to 
the higher frequency range which fully covers the second generation band of the initial diode. 
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Fig. 1 - Spatial profiles of the drift veloc- 
ity calculated for n+nn+ InP diodes with 
different n-region length ln : 1 — 1.0 (J,m, 
2 - 0.9 fim, 3 - 0.72 [im (curves 1 to 3, 
respectively). 

Fig. 2 - Frequency dependence of the real 
part of the small-signal impedance. The 
notation is the same of Fig. 1. 
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Fig. 3 - Spatial profiles of (a) the real and (b) imaginary part of the impedance field calculated 
with the HD approach for the n+nn+ InP diode of Fig. 1 with ln = 1.0 fim at three different values 
of the frequency: 1-55 GHz, 2 - 125 GHz, 3 - 290 GHz. ln = 1.0 /xm. Ud = 8 V. 
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IV. CONCLUSIONS 

The spatial dependence of the impedance field we have obtained in the whole frequency range 
of interest constructs a map which reflects the main physical processes occurring in the different 
regions of the device and can be used for several purposes such as: to give a comprehensive analysis 
of the device performance, to provide a proper choice of the device design, etc. Under current 
operation mode, the diode can be considered as a sequence of seriesly connected zones which give 
additive contributions to the amplification (and generation) spectrum. Each contribution can be 
described by a local impedance-field. Moreover, since the carrier flux starts at the source and ends 
at the drain, the local characteristics depend on the pre-history of carrier motion from the source 
only and contain no information about a further motion of carriers towards the drain. 
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AN ALTERNATIVE METHOD FOR COMPACT MODEL 
CONSTRUCTION AND PARAMETER EXTRACTION 

Edwin C. Kan and Robert W. Dutton 
Center for Integrated Systems, Stanford University, Stanford CA 94-305 

ABSTRACT 

The conventional method to extract circuit parameters from device simulators is through I-V 
and C-V curve-fitting on a presumed device model, whose basic form is often analytically derived 
using drift-diffusion equations with space-charge-region approximation. The resulting device model 
is usually either too simple to reflect detailed device behaviors or too complex that most of its in- 
ternal parameters are rule-of-thumb fitting factors. In consideration of the device simulation level, 
the profile information on dopings and physical quantities is mostly lost after fitting of only the 
terminal characteristics. In this paper, we implement an alternative methodology for linking the 
device and circuit simulators based on the lumped-element (LE) model [1] and a new compiler- 
based circuit simulation environment [2]. Since the device model is not hard-wired, we show that 
a more flexible tradeoff between accuracy, predictivity and efficiency may be obtained. 

I. INTRODUCTION 

Compact device models used in circuit simulation remain as the base of the electronic CAD 
design system, since it is the first abstraction level beyond the spatial coordinates. Yet compact 
models were less useful in consideration of predictive designs during technology evolution owing to 
many nonphysical fittings for the purpose of accuracy. In recent years as the computational re- 
sources become more powerful and accessible, technology CAD tools and environment have grown 
mature on their usage and calibration in the device level. However, on a typical module level with 
500 to 10,000 transistors), TCAD tools, even though they can be presumed as very accurate and 
predictive (for a summary of TCAD limitations and recent developments, see [3]), are still too 
expensive even in any scale. Hence, the abstraction step toward compact models must be applied. 
Traditionally, parameter extraction for compact models is based on optimal fit of IV or CV data 
obtained from lab measurements or simulated TCAD terminal characteristics (see [4-6] for exam- 
ples). The compact model usually has different levels of complexity, but within each level the circuit 
linkage is hard-wired. For the most complex level, the physical meaning of each element is often 
sacrificed for fitting accuracy. This procedure will also lose most of the insight and sensitivity of 
the detailed profile information provided by the TCAD simulations. Therefore, we choose to imple- 
ment another method for compact model construction and parameter extraction, which can have 
flexible configuration inside the model and utilize the profile information from TCAD to construct 
its parameters. This method can be conveniently implemented in compiler-based circuit simulation 
environment [2J. We will demonstrate the procedure by a transient study of a 1-D n -\—p junction 
diode [7]. 

II. The LUMP-ELEMENT METHOD 

The lumped-element (LE) method (sometime called the equivalent-circuit method) [1] has been 
proposed more than three decades ago as an alternative representation of the drift-diffusion (DD) 
and generation-recombination (G-R) mechanisms inside a device besides the partial-differential 
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equations (PDE) representation. In LE, the device is partitioned to charge elements, and within 
the element, the fluxes (Jn the electron, Jp the hole and Jn the displacement currents) are con- 
nected with charge storage elements and current sources representing the time derivative of carrier 
concentrations and G-R, while the continuity equation becomes Kirchhoff's Current Law (KCL) 
in the newly constructed equivalent circut. If every spatial node in the PDE scheme corresponds 
to a dual charge element, these two representations can be regarded as equivalent. Nearly all of 
today's device simulators [3], however, employ the PDE scheme for discretization owing to its bet- 
ter and more convenient numerical properties (such as the Scharfetter-Gummel scheme and tight 
relations to computational geometry). Nevertheless, for construction of compact models, LE offers 
very important and direct physical insight. It has been shown that the one-lump model of the 
bipolar transistor is analogous to the Ebers-Moll model [1]. Moreover, it has been demonstrated 
that by including the geometrically distributed effects, the compact model can be more flexible and 
accurate [8]. Yet, the number of lump levels to account for distributed effects can be kept very 
small [9]. 

Based on these observations, we implement the LE scheme only at the parameter extraction 
step. Given the solution profiles from device simulators, a more flexible and physically transparent 
compact model can be constructed accordingly. For a simple example of an n+ — p junction diode, 
the compact model can be extracted to optimally fit the IV and CV data (the conventional method, 
see Fig. 1) or can be constructed so that each element corresponds to some profile variation (the 
LE method, see Fig. 2). The resistors are identified with variations in potential while the carrier 
concentrations are almost constant and net charge trivial. The junction capacitor is identified with 
a net immobile charge dipole, and the diffusion capacitor is identified with a surplus of minority 
carriers. The values of these circuit elements are bias (or state) dependent (nonlinear resistors and 
capacitors, current sources and charge-storage elements), and advanced circuit simulators which 
provide two-terminal table-lookup and nonlinear parameter calculations can take these inputs with 
little extra efforts [2, 7, 10]. 

Below we will demonstrate the LE scheme for transient analyis step by step on the 1-D n-\—p 
junction diode. The material parameters and device structure is chosen arbitarily to minimize 
computational efforts and confusion (such as the device is much longer than the minority carrier 
diffusion length, simplified doping profiles and physical models in device simulation, etc.). The 
diode is first simulated with steady-state device simulators. The device states at reverse bias, close 
to and at equilibrium, at subthreshold and at heavy injection are recorded and analyzed. The 
charge profiles and corresponding model elements for reverse bias and heavy injection states are 
shown in Figs. 3-5, respectively. When the circuit element is not necessary at certain state (for 
instance, the diffusion capacitance at the reverse bias), it is simply given a trivial value in the 
nonlinear table lookup entry. For detailed analyses on junction operations that can be predicted by 
device simulators, see [11]. Fig. 6 shows the transient simulation results using the device simulator, 
the best-fit scheme and the present LE scheme. 

III. ANALYSIS 

Our approach has the following advantages over the conventional method of parameter extrac- 
tion using optimal fitting: 

1. the linkage and the number of circuit elements is not hard-wired. Since the contours of equal 
potentials or concentrations become circuit nodes in the new compact model and the tradeoff 
between accuracy and efficiency can be readily made. Exact accuracy of the device simulator 
can be obtained by constructing the full node-to-element LE scheme. However, the compu- 
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tational efforts to achieve acceptable accuracy should be much, smaller than full LE (most 
of the important electronic mechanisms happen at a small portion of the entire device), and 
much smaller than the PDE scheme using smart-grid adaptation where Steiner points from 
grid construction can be surplus due to the geometrical constraints. 

2. the error in device simulation parameters (such as mobility) can be directly reflected on the 
circuit element parameters (such as resistance). The errors from the abstraction steps and 
from the input parameters of device simulation can be easily separated. In comparison with 
parameters extraction based on the optimal fit of IV and CV data, statistical analysis and 
worst-case estimation on process variations can be performed more efficiently. Also, since the 
abstraction over the spatial coordinates has been solely performed in one step, the concept 
of statistical metrology [12] for manufacturing becomes clear. 

3. since the optimal fitting of all element parameters on lumped terminal IV and CV data is 
never invoked, advanced (and hence time-consuming) numerical algorithms like numerical 
annealing to find multiple local minimum are not necessary. 

4. the circuit elements are physically transparent. The improvement of compact models can be 
done in an automatic, evolutionary way, based on the the progress of the device simulation. 

Acknowledgement: This work is supported by National Center for Computational Electron- 
ics (NCCE) through NSF ELS-9200560-A1. 
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Fig. 1. Compact model of a p-n diode for the 
optimal-fit method. 

Fig. 2. Compact model of a p-n diode fof the 
equivalent-circuit method, p is the net charge. 
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TRANSPORT IN TWO-DIMENSIONAL QUANTUM WELL HEMTS 

John P. Kreskovsky* and H.L. Grubin* 
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Abstract 

A parametric study of quantum well HEMT structure is performed through numerical simulations 
based on a set of quantum hydrodynamics equations. From a reference structure, the effects of variations in 
planar layer doping, gate recess depth and channel depth on device performance are investigated. The role of 
the quantum potential in establishing the 2-DEG in the channel is also examined. 

I. Introduction 

Advances in modeling and computational techniques have now made it possible to simulate and 
study relatively complex devices on a highly sophisticated level. In this paper we apply a set of quantum 
hydrodynamic equations to the simulation of an advanced quantum well HEMT to further gain an 
understanding of the detailed transport within such structures and to demonstrate how such a simulation can 
be used to obtain quantitative information on how variations of relevant design parameters affect device 
performance. We begin with the reference structure shown in Fig. 1, an InP-based HEMT with an 800 
angstrom InGaAs channel on an AlInAs buffer layer. A 200 angstrom AlInAs Schottky enhancement layer 
separates the channel from the N* InGaAs cap layer, and a 30 angstrom spacer layer separates the channel 
from the Si doped planar layer. The gate is recessed 100 angstroms into the enhancement layer. Such 
structures have been the focus of much recent attention; e.g., Refs. [1-3]. The role of quantum mechanics in 
the analysis of such structures is readily apparent in that the channel is a quantum well in which a 2-DEG 

gas forms at the interface 
SOURCE DRAIN O 

between the channel and the 
spacer layer. This 2-DEG is 
seeded by the planar doped 
layer. 

The equations implement- 
ed in our simulation 
procedure are the hydro- 
dynamics transport equations 
with corrections for quantum 
mechanical effects. Various 
formulations of these 
equations have appeared in 
the literature [4]. 
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Figure 1. Quantum well HEMT structure used in one and 
two dimensional simulations. 
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II. Simulated Results 

i «■- 

To begin our simulations we compute the equilibrium solution at zero bias to establish the 2-DEG in 
the channel. We compare the distribution of electrons in the channel with the classical result in Fig. 2. 

Figure 2a shows the result under 
the cap layer and 2b shows the 
result under the gate. We note 
that the quantum effects reduce 
the peak and raise the rninimum 
densities at the heterojunction and 
yield a continuous density 
variation. It is also of interest to 
examine the quantum potential in 
the region surrounding the gate. 
Figure 3 shows a blow-up of the 
quantum potential under 
equilibrium conditions. The 
region extends only partly into the 
channel. The most significant 
feature here is that the quantum 
potential shows a nearly one- 
dimensional structure in the 
direction normal to the 
heterojunction interfaces, even at 
the edge of the gate recess. Some 
two-dimensionality is observed at 
the edge of the gate, at the gate 
surface, but in the channel the 
structure is still primarily one- 
dimensional in spite of the 
depletion of the 2-DEG. This is 
because the gradients of the 
density normal to the 
heterojunction are much greater 
than those associated with the gate 
depletion region. The quantum 
potential thus plays its major role 
in establishing the structure of the 
2-DEG profile normal to the 
interfaces. 

Figure 2- Comparison of classical and quantum 
corrected density distributions in a a plane 
normal to the device surface, a) under cap layer, 
b) under gate. 

Figure 3. Blowup of surface plot of equilibrium 
quantum potential in region between 
the center of the gate contact and to 
the source side of the gate recess. 

30.0 

20.0 

10.0 

0.5 1.0 
Drain Voltage, Vds, Volts 

Figure 4. Current-voltage characteristics for reference device structure. 

Figure 4 shows the predicted current voltage 
characteristics for the reference structure and Figure 5 
shows surface plots of density, potential, velocity and 
temperature at a bias of V& = 0.5 volts and Vgs = 0.4 volts. 
The high concentration of electrons under the source and 
drain contacts was introduced to mimic the metalization of 
the contacts. We also not that the density, potential and 
velocity in the 2-DEG are almost constant except directly 
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Figure S. Surface plots of a) density, b) potential. 
c) velocity and d) temperature at V«s - 0.5. 
Vos = 0.4 volts. 

0.5 1.0 
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Figure 6. Current-voltage characteristics tor a 20% reduction in planar layer doping. 
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Figure 7. Cunent-vcltage characteristics for a gate recess Increased from 100 to 150 angstroms. 

under the gate. Under the gate the velocity approaches 
1.35 x 107 cm/sec. There is also some heating of the 
electrons; however, this is surprisingly small. The peak 
temperature at this bias reaches only 340°K. For this 
structure we obtained a transconductance of 705 ms/mm, a 
capacitance of 0.0387 pf and a cutoff frequency of 
144.7 GHz at V* = 1.0 volts and Vgs = 0.2 volts. The 
transconductance was nearly constant over the gate bias 
investigated while ft varied from 156 GHz atVgs = 0.0 to 
135 GHz at J^ = 0.4. 

Having established the performance and 
characteristics of the reference structure we then began our 
parametric study by reducing the doping of the planar 
layer. The I-V characteristics for this structure are shown 
in Fig. 6. The results show a reduction in the current level 
due to the reduced conductivity of the channel. The 
saturation characteristics of this device are also slightly 
harder indicating higher output resistance. The 
transconductance, capacitance and cutoff frequency for this 
structure were found to be 587 ms/mm, 0.035 pf and 
135.5 GHz, respectively at V* = 1.0 volts and Vgs = 0.2 
volts. The transconductance varied from 530 ms/mm to 
640 ms/mm, while^ ranged from 138 GHz to 131 GHz. 

We next increased the gate recess depth to 150 Ä. 
This would be expected to reduce the current levels since 
the closer proximity of the gate to the channel would result 
in greater depletion at a given bias level. We would also 
expect an increase in the transconductance and 
capacitance. Figure 7 shows that this is indeed the case. 
The current levels are significantly lower than the reference 
structure. A bias of 0.6 volts on the gate is required to 
obtain current levels previously obtained at Vgs = 0.4 volts. 
At Vgs = 0.2 volts and V& = 1.0 volts the transconductance, 
capacitance and cutoff frequency are virtually the same as 
the original structure. However, when we compared the 
results based on the drain current level we found that this 
structure did exhibit higher tranconductance and 
capacitance, but the cutoff frequency remained in the range 
of 145 GHz. At Vgs = 0.4 volts gm was approximately 
850 ms/ms and the capacitance about 0.45 pf. This 
structure also showed significantly greater variation in 
transconductance and capacitance with gate bias than the 
other structure. 

The final simulations were performed for a device 
in which the channel depth was reduced to 200 angstroms. 
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Figure 8. Current-voltage characteristics for a reduction in channel depth 
from 800 to 200 angstroms. 

The current-voltage characteristics for this structure are 
shown in Fig. 8, where they are compared to the reference 
structure. The reduced channel depth results in greater 
confinement and harder saturation. This difference in the 
output conductance is further reflected in the 
transconductance, capacitance and cutoff frequency. At 
Vgs = 0.2 and 1^= 1.0 these quantities were 680ms/mm, 
0.037 pf and 147 GHz. Another interesting result for this 
structure was that the transconductance decreased with 
increasing gate bias, from 737ms/mm at ^ = 0.0 to 
625 ms/mm at Vgs = 0.4. In all the other devices the 
transconductance increased with increasing gate bias. The 
result was such that at low gate bias the cutoff frequency 
exceeded 190 GHz but at high gate bias it dropped to a low 
of 111 GHz. Thus, this device exhibited the highest and 
lowest cutoff frequencies of any of the devices investigated, 
depending on the bias level. 

BEL Conclusions 

We have applied a set of quantum corrected hydrodynamic equations to investigate transport in 
quantum-well HEMTs. The results of the study show the importance of the quantum potential in 
establishing the distribution of charge in the 2-DEG in the channel. Surprisingly the results also show that 
quantum effects predominantly influence the density distribution normal to the heterojunction interfaces. The 
role of the quantum potential in affecting transport in the 2-DEG along the channel, even under the gate, 
appears limited. This is because the gradients in the density normal to the interfaces are much greater than 
those along the channel, including channel-wise gradients at the edges of the depletion region. However, the 
quantum mechanical corrections must be included if the distribution of charge and the charge sheet density of 
the 2-DEG is to be accurately predicted. 

We have also applied our simulation procedure to study the effect of various device design 
parameters on device performance. In this way we have demonstrated the usefulness of such a procedure in 
both initial device design and optimization of a device. 
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BREAKDOWN SIMULATION OF SEMICONDUCTOR DEVICES INCLUDING 
ENERGY BALANCE AND LATTICE HEATING 

Y. Apanovich, R. Cottle, E. Lyumkis, B. Polsky, A. Shur, A. Tcherniaev and P. Blakey 
Silvaco International 4701 Patrick Henry Drive, Bldg. 3, Santa Clara, CA 95054, USA 

Abstract 

A self-consistent nonisothermal energy balance model has been incorporated into a general purpose 
device simulator, ATLAS. The breakdown characteristics of submicron BJT and SOI transistors have 
been investigated and compared with the results predicted by simpler models. 

I. INTRODUCTION 

Most semiconductor device simulation uses the drift-diffusion and isothermal (constant lattice 
temperature) approximations. These can lead to poor accuracy in predicting the electrical characteristics 
of modern semiconductor devices. 'Energy balance' models can account for non-local transport effects; 
and 'nonisothermal' models can account for lattice heating. Most advanced simulation has focused on 
isothermal energy balance models and on nonisothermal drift-diffusion models. However, models that 
include both energy balance and nonisothermal effects have started to appear [1-5]. 

The implementation and use of a nonisothermal energy balance model is described here. The breakdown 
characteristics of deep submicron BJT and SOI devices are calculated using four different models: 
isothermal drift-diffusion (DD), nonisothermal drift-diffusion (NDD), isothermal energy balance (EB), 
and nonisothermal energy balance (NEB). Direct comparisons are made, and interesting physical effects 
are identified. 

II. PHYSICAL MODEL AND NUMERICAL TECHNIQUES 

The NEB model is a set of six partial differential equations for electrostatic potential, electron and hole 
concentrations, electron and hole carrier temperatures, and lattice temperature. The dependencies of all 
transport parameters on both carrier temperature and lattice temperature are included. The NEB model is 
an extension of Stratton's energy balance model [6,7], and is similar to the models used in [1] and [5]. 

A general 2D implementation of the NEB model is now available in the ATLAS device simulator. 
Numerical solutions are obtained using box integration on a general triangular grid, and Sharfetter-Gum- 
mel type discretizations for carrier current and energy flux densities. The implementation of the NEB 
supports realistic heat-sinks and very general thermal boundary conditions [8]. The fully coupled Newton 
algorithm, and several decoupled block schemes [9,10], can be used to solve the discretized nonlinear 
algebraic systems. 
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Figure 1. Log collector current versus collector-base voltage for 
the DD, NDD, EB and NEB models. Veb=-0.7V. 

III. BJT EXAMPLE 

The BJT structure has doping concentra- 
tions in the emitter, base, n" collector, and 
n* collector of 5 1019, 5 1Q18, 4 1017 and 
1019 cm"3 respectively. The emitter, base, 
n" collector, and n+ collector region 
widths are 50, 50, 100, and 50 nm 
respectively. The heat flux is set equal to 
zero at boundaries, except at the bottom 
of the device where different values of a 
thermal resistor are connected to a 300 K 
source. The collector is connected to the 
collector supply voltage Vcc through an 
external resistance. V« is ramped with 
the emitter-base voltage held at -0.7V. 

Figure 1 shows the calculated collector 
current vs base-collector voltage as pre- 
dicted by the DD, NDD, EB and NEB 
models. Figure 2 shows the maximum 
lattice temperature in the device vs 
collector voltage for the NEB model with 
Rth=3.33 10"4 Kcm2/W and Rth=33.3 
10"4 Kcm2/W, and for the NDD model 
with Rth=33.3 10"4 Kcm2/W. These re- 
sults display several interesting features. 
In the limit of low collector voltage and 
low current the results are, as anticipated, 
very close. The shift of breakdown 
voltage predicted by the EB model, as 
compared to the DD model, is due to the 
well-known overestimation of impact 
ionization in the DD model. If the 
thermal resistance is set to zero the NEB 
and NDD produce virtually the same 
results as the EB and DD, respectively. 
This is because the active region of the 
device is very small, and specifying an 
isothermal boundary condition provides effective "cooling". The situation changes dramatically when a 
realistic thermal resistance is added to the bottom of the device. For Rth=3.33 10 Kern /W the NEB 
predicts almost the same breakdown voltage (first snap back) as the EB. However, the predicted 
behaviour in the high current region is very different The NEB predicts second (temal) breakdown, 
which is not predicted by the EB. Increasing the value of Rth to a value of 33.3 10 Kern /W leads to a 

decrease in the first and second breakdown voltages. 

Figure 2. Maximum lattice temperature versus collector-base 
voltage for tne NDD and NEB models. Veb=-0.7V. 
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The  NDD   and   NEB   models  predict 
behavior that is qualitatively similar. For 
currents around 10"2 A/um the results of ;   i                              I 

the  NEB  and  NDD  are quantitaively 
0.0O5— NDDi   { DD                     EB 

similar.  This is  an initially  surprising j  ; 
result  The explanation is that carrier | |                                I 
temperatures   are   close  to   the  lattice a. \ j                               \(^ 
temperature, and the drift diffusion ap- <c 

/ 
proximation becomes reasonable for such 

C    O.OOJ— 

j  I                              \ 
conditions. c 

-g    0.002— 

C3 
|]             / 

IV. SOI EXAMPLE 0.001— \)        J) 
The SOI device has gate oxide, body, and 
substrate  oxide   thicknesses   of  0.017, 
0.16, and 0.5 urn respectively. The chan- 
nel  length is  0.5um  and the doping 

17        3 
concentration in the channel is 10    cm . 
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Figure 3. Drain current versus drain voltage for the DD, NDD, 

EB and NEB models. Vg=1.5V. 

The lattice temperature is set equal to 300 

K on the gate and along the bottom of the 

device, and the normal component of the 

heat flux is set equal to zero on the other 
1100— 

part of the boundary. 

Figure 3 shows the predicted drain cur- 2 
NDD 

NEB 

rent as a function of drain voltage, for a O)         900— 
Z3 

gate voltage of 1.5 V, calculated using the 
o_    800~ 

DD, EB, NDD and NEB models. Figure E      : 
03 

4 shows the maximum lattice temperature 
QJ        700- 

in the device, as a function of drain CD 
—       600— 

voltage, calculated using the NDD and 
fcz 

NEB models. The significant shift of the 
•-        500- 
o 

breakdown voltage between the DD and 400— 

EB models is again observed. The NEB 

and the  NDD  models  show  a slight 

decrease in breakdown voltage compared 

with   the  EB   and  DD   models.   The 

predicted   behavior   in   the   high   cur- 

300— 

Drain bios (V) 

Figure 4. Maximum lattice temperature versus drain voltage for 

the NDD and NEB models. Vg=1.5V. 

rent/high temperature region is very dif- 

ferent, even qualitatively, between the EB ai ad NEB models. The large difference between the results 

predicted by the EB and NEB models is due to decreased impact ionization rates at higher lattice 

temperatures. This indicates that the NEB model is required for accurate simulation in the strong 

breakdown region. 
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V. CONCLUSIONS 

A self-consistent nonisothermal energy balance model has been incorporated into a general purpose 2-D 
device simulator. The breakdown characteristics of submicron BJT and SOI devices have been 
investigated for the first time with a model of this generality, and have been compared with the results 
predicted by simpler models. The results demonstrate clearly the influence of both nonisothermal and 
energy balance effects on the device characteristics in the strong breakdown region, and the magnitude 
and nature of the discrepancies associated with the use of less general models. 
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A GENERAL HYDRODYNAMIC SOLVER FOR DEEP SUBMICRON 
SILICON DEVICES 

Mei-Kei Ieong and Ting-wei Tang 
Department of Electrical and Computer Engineering 

University of Massachusetts. Amherst MA 01003, USA 

Abstract 

In order to study the effect of different hydrodynamic (HD) transport parameters/models on the 
simulation of deep submicron device characteristics, we have developed a general purpose 2-D HD 
solver which is capable of solving various HD models. The code is written so that it dose not 
depend on a specific form of the parameters/model's which is introduced only at the final stage. 
There are other unique features of the code which make it versatile and efficient. 

I. INTRODUCTION 

In recent years, the hydrodynamic (HD) model has become a very popular device simulation tool 
because of its capability for describing nonstationary and nonlocal phenomena in semiconductor 
devices and yet requiring less computation time than the more rigorous Monte Carlo (MC) method. 
Besides Poisson's equation, the hydrodynamic equations (HDE) consist of particle, momentum and 
energy conservation equations. However, there exist many HD transport models which use different 
assumptions and approximations [l](e.g., ansatz on the momentum distribution function, simple 
energy band structure.the relaxation time approximation,...etc.). Many of these approximations 
become questionable in the simulation of semiconductor devices in the deep submicron regime. 
With this in mind, we have developed a general purpose 2-D HD solver which is capable of solving 
different HD models on virtually the same computer code and therefore making it easier to compare 
the effect of different HD models. 

II. PHYSICAL TRANSPORT MODELS 

The system of HD equations for electrons used in our solver consists of[l]: 

V ■ (nV) = 0 

qnV = nß*  F - U ■ Vn - (1 - AP)V • U 

V • (nS) = n V -F- 
W - W0 

(1) 

(2) 

(3) 

nS = b.nrwi+Ü)-V+^ 
fi* (1 

-ÜL 

WI + U) -U -R\-Vn 

(1 - Aep)V • R - (1 - XP)(WI + Ü) ■ (V • Ü) 
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where V = (v) is the average particle velocity, F = ~qE is the electric force on the electron, 

Ü = (vhk) is an energy tensor, W = (e) is the average particle energy, 5 = (ev) is the average 

energy flux, J is the unity tensor, p* is the bulk electron mobility, rs is the energy relaxation time, 

)i* is the bulk energy mobility and R = (vehk) is a fourth-order moment. The parameters Xp 

and Xsp are dimensionless constants of order unity which represent the deviation of the collision 
moments Cp and C~ip [1] from their corresponding homogeneous values. Eqs.(l)-(3) represent the 
conservation of particles, momentum and energy, respectively. Eq.(4) represents the conservation of 

the third-order moment (like). It has been shown that this general HD model can represent most of 

existing HD models[3]. For instance, with the choice of W = \kBTe, U = §W, R = fW2, ß*s = ß* 
and Xp - Xep = 0, the above equations reduce to the simplified HD model, or the energy balance 
equation [2]. The Eqs.(l)-(4) are supplemented by the Poisson equation and the continuity equa- 

tion for holes. 

III. NUMERICAL IMPLEMENTATION 

Most of the previous strategies [4] for the discretization of HDE are basically extension of Scharfetter- 
Gummel discretization scheme[5] which requires the solution of a first-order differential equation. 
Some difficulties arise when transport coefficients which appear in the coefficient of the differential 
equation are complicated function of energy. In our simulator, instead, the concept of artificial dif- 
fusivity [6] was introduced. Eqs.(2) and (4) can be rearranged and viewd as the convection-diffusion 
equations for the carrier density, n, and the average energy, W, respectively. It is well known that 
when the mesh Reynolds number is larger than 1, the numerical solution often shows wiggles. In 
order to overcome the numerical stability, we added the artificial (numerical) diffusivity [6] to the 
respective diffusion term in Eqs.(2) and (4). Depending on the mesh Reynolds number, a, one may 
choose artificial diffusivity as: 

Da = [{l~6)(aCoth(a)-l)+\a\6]Dn, (5) 

where, Dn represents the real (physical) diffusivity, 0 < 6 < 1 and «5=1 corresponds to the 
upwind scheme, while 6 = 0 corresponds to the optimum scheme. One can also show that the 
optimum scheme is equivalent to the Scharfetter-Gummel scheme when the coefficient of the first- 
order convection-diffusion equation are constant. So far, the optimum scheme, 6 = 0, exhibits a 
good stability in all of the numerical experiments. Since our solver was intended for solving as 
many different HD models as possible, it was designed in such a way that the user does not have to 
calculate the derivatives in assembling the Jacobian matrix. We used a numerical finite-difference 
scheme to compute the derivatives from any user-supplied function. Thus, the final form of the 
models/parameters can be introduced by users in this stage. The resulting Jacobian matrix requires 
a further row scaling to ensure that the Jacobian matrix is well-conditioned. The conjugate gradient 
square (CGS) method with incomplete Lü-decomposition (ILU) as preconditioner is used to solve 
the Jacobian matrix. Finally, a modified Gummel's decoupled method is applied to the solution of 
HDE's in which the energy balance equation is decoupled from the rest of the equations. 

Another feature of our simulator is that it can be run under the parallel mode. The message pass- 
ing architecture was used to distribute works onto different processors. A portable software system 
PVM (Parallel Virtual Machine [7]) was utilized to handle all of the processor communications. 
Various transport models and/or bias conditions can be processed simultaneously. So far, the per- 
formance of the parallel mode has been evaluated only on a network of DECstations. An average 
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speed-up of 8.9 on a network running of 10 DECstations-5000 has been achieved. 

IV. NUMERICAL RESULTS 

Using our newly developed HD solver, we have simulated several deep submicron devices. The first 
example is a Si double-gate thin-film SOI MOSFET structure (see Fig.l) The calculated electric 
field and average electron energy at the front interface with gate length of Lg = 0.15,0.1,0.05/um are 
shown in Fig.2 and Fig.3, respectively. Inspite of decrease in the gate length for the same applied 
Vds and Vgs, the peak electric field and the corresponding peak average energy remain relatively 
unchanged. These results agree qualitatively with the MC data published by[8]. Another expample 
compares the influence of transport parameters on the simulated characteristic of a thin-film fully 
depleted SOI MOSFET (not shown) with t0Xf = 7nm,t0Xi = SOnm, tsi = ZOnm and Lg = 0.1/um. 
The two-dimensional distribution of electrostatic potential is shown in Fig.4. Fig.5 shows the drain 
current as a function of the drain voltage obtained from (a) the DD model and the HD model 
with (b) Xp = l,Aep = 0; (c) Ap = X£p = 0.5; (d) Xp = Xsp = 0. It is observed that the HD 
models (b),(c), and (d) produce a higher drain current than the DD model (a) due to the velocity 
overshoot effect. The calculated drain current in these models varies as much as 30 percent. As 
illustrated in Fig.6, the velocity profiles (averaged along the channel) heavily depend on the choice 
of Ap and Aep. The DD model (a) fails to predict the velocity overshoot effect. The velocity in 
the channel predicted by the model (b) is the largest due to a higher energy in the channel. The 
velocity predicted by the model (c) does not show any spurious velocity overshoot near the drain 
junction and is qualitatively in agreement with the Monte Carlo result reported in the literature. 
The simplified HD model (d) overestimates the velocity near the drain junction while predicting a 
lower velocity (thus, a lower drain current) in the channel when compared to the models (b) and (c). 

V. CONCLUSIONS 

We have developed a general purpose 2-D HD solver which can be adopted to almost any existing 
HD models. The stability of the numerical solution of discretized HDE's is achieved by introducing 
a suitable amount of artificial diffusity. We have also discussed some unique features of the code 
which make it versatile and efficient. Finally, the effect of transport parameters, Ap and Xsp, on the 
hs - Vds characteristics of thin-film fully depleted SOI-MOSFET is demonstrated. 
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INCLUSION OF VISCOUS EFFECTS IN THE HYDRODYNAMIC 
MODELING OF ULTRASMALL SILICON DEVICES 

Ting-wei Tang and Joonwoo Nam 
Department of Electrical and Computer Engineering 

University of Massachusetts, Amherst MA 01003 

Abstract 

The effect of viscosity on the modeling of the second moment energy tensor U was investigated 
for the narrow base width Si BJT's. The overestimation of velocity overshoot occurring at the base- 
collector junction often predicted by the conventional hydrodynamic (HDj models can be reduced 

if a viscous term is included in the modeling of U. However, the overall effect of including the 
viscous effect in the HD model on the device characteristics is yet to be investigated. 

I. INTRODUCTION 

In recent years, many advanced HD models have been developed for the simulation of deep 
submicron MOSFET's or ultranarrow base width Si BJT's. One of the objectives is to accurately 
predict the velocity overshoot phenomenon. Although much progress has been made, most of 
currently existing HD models tend to overestimate the velocity overshoot [1]. This overestimation 
may become worse, for example, as the base width of BJT's reduces to 0.1 urn or less. In this 
paper, we propose to include a viscous term in the modeling of second moment energy tensor Ü as 
a possible mechanism for reducing the velocity overshoot. 

II. MODELING OF U 

The macroscopic equation governing the velocity (or momentum) can be rigorously derived 
by taking the first moment of the Boltzmann transport equation and integrating over the entire 
momentum space.   In the momentum transport equation so obtained, a second-order moment 

U = /vhk\ sometimes called energy tensor or momentum flux tensor appears as a result of taking 

the moment. The simplest model for U is kBTel where 1 is a unity tensor. A slightly more advanced 
model is given by U = ^mcVV + kßTel [2] where V = (v) and mc is the effective mass. A recent 

Monte Carlo (MC) calibrated model gives U = Vp+ [§W + u(W)] 1 where P = (hk), W = (e(k)} 

and u(W) is an empirical expression fitted to MC data [3]. 

In all the models for U mentioned above, none of them contains a viscous term. It is well known 
in gasdynamics that the Navier-Stokes equation includes a viscous term which is proportional to 
the gradient of velocity. For example, assuming a parabolic band structure and a heated displaced 
Maxwellian for the distribution function under the homogeneous field, an iterative solution for the 
inhomogeneous field yields a second-order viscous term for IK e.g., in one dimension, {Vxx)Vi$c. = 
—fjTcmcV^^-. where rc is the collision relaxation time and rj is a dimensionless coefficient of order 

unity.   A recent analysis based on extended thermodynamics [4] gives (Uxx)ViSC. = — |fc{,Te7v^|f- 
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where ra is the viscous stress relaxation time. In this work, we examine whether or not such a 
second-order effect should be included in the modeling of Ü, and if so, what the approximate value 
of fj based on the MC data is. 

III. MODEL CONSISTENCY TEST 

We focus our investigation on ultrasmall base width Si BJT's since the gradient of velocity near 
the base-collector junction is known to be very large in these devices. A one-dimensional BJT as 
shown in Fig.l was used as a prototype for model testing. 

Our MC model consistency test proceeds as follows [1]. First, we solve a HD model for the BJT 
to obtain an electric field profile within the device. Using this electric field, we perform a fixed-field 
MC particle simulation to obtain all the necessary macroscopic quantities such as V, P, W, U, etc. 

To test the consistency of a model, say, Ü = |W1 or in one dimension Uxx = |W, we plot Uxx vs 
W using the position in the device as an implicit parameter. Since the average electron energy W 
always increases from its thermal equilibrium value W0 to a maximum and then falls back to W0 

inside the device, the plot of Uxx vs W will trace the horizontal axis twice. If Uxx vs W traces a 
curve without a "hysteresis" loop, then Uxx is indeed a single-value function of W and Uxx = \W 
is a consistent (good) model. In general, Uxx vs W will trace a loop and the larger the loop, the 
poorer the model. Thus, if Uxx is modeled as Uxx = VXPX + §W + u(W), we should expect the plot 
of (Uxx ~ VXPX) vs W to exhibit a very small hysteresis since fW + u(W) - Uxx - VXPX is supposed 
to represent a single value function of W. 

In the following,we compare two sets of MC data. One is without the viscous effect, i.e., the 
plot of (Uxx - VXPX) vs W. Another, with the viscous effect included, is the plot of (Uxx - VXPX -f 
fjSiiL^VxPx^-) vs W where fi is the electron mobility and fj is a dimensionless parameter to be 

adjusted until the loop disappears. As shown in Fig.2, when (Uxx - VXPX) is plotted against W, 
a large "hysteresis" loop exists in the high energy range 0.1 eV < W < O.SeV and a small one in 
the low energy range, 0.04eF < W < O.leV. The relatively large loop is a result of a rather crude 
approximation for Ü by incorporating a tensorial component equal to VP in the modeling of U 
[3]. This energy range is beyond the range in which velocity overshoot takes place. By including a 
viscous term we hope that the small hysteresis loop in the energy range 0.04eV < W < O.leV can 
be substantially reduced. This is indeed the case as when (Uxx - VXPX + fj^/iVxPx^) is plotted 

against W, the small loop virtually disappears if fj is chosen to be approximately § (see. Fig.2). 

Next, we compare the modeled Ü with the input data from the MC and the Ü directly obtained 
from the MC. In order to compare the two models, Uj£ - VXPX + \W + u(W) and U(

X
2J = 

VXPX + 1W + u(W) - f]^fiVxPx^, we can input the MC data for VS,PX,W, etc. on the right- 

hand side of Uxi
}, U{

X
2J and compare both of them with the UXX

IC) as a function of position. The 
comparison between the modeled Uxx's with and without the viscous term and that of MC data 
is shown in Fig. 3. At first glance, the difference between the two models appears very small. 

However, since the electron velocity is given by V = -E
q \qE + Ü • V(ln n) + (1 - Ap)V • Ü   [3], it 

is easy to see that Vx is very sensitive to the slope, ^*. Based on the MC consistency test [1], the 
model accuracy for predicting Vx is compared in Fig. 4 for the two Uxx models. The effect of the 
viscosity is seen to reduce the velocity peak in a better agreement with the MC result and is also 
confirmed by other investigation [5]. We also performed a. similar study for n+ - n - n+ structures 
with active region less than 0.1 /.im. Although inclusion of the viscous term with fj ss 2 makes a 
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more accurate representation for Uxx, its effect on the velocity overshoot is not as significant as in 
the BJT's. 

IV. CONCLUSION 

From the MC consistency test, it seems to suggest that a more accurate modeling for U should 
include a viscous term. In one-dimensional case, we found that Uxx = VXPX + |W>" + u{W) - 
fjm^iiVxPx^- where fj ss | ~ 2 fits best with the MC data. This range of coefficient for fj also 

agrees with values predicted by the others [4]. Since the emphasis of this work is to see whether 
it is necessary to include the viscous effects in the simulation of narrow base with Si BJT's, the 
solution to the full set of HD equation including the viscous term was not attempted. A rigorous 
numerical solution to such a system of equations requires a solution strategy different from the 
conventional one. This is because when the viscous term is included, the order of differential 
equation representing the momentum conservation is raised by one and the added viscous term 
represents a singular perturbation in the limit of vanishing viscosity [5]. Although it is yet to be 
confirmed, we believe that the viscous effect may be important in modeling of advanced BJT's with 
ultranarrow bases because the gradient of velocity at the base-collector junction of such devices is 
usually very large. 
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Formulation of A Full Dynamic Transport Model for Heterostructure 
Devices * 
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Abstract 

A Full Dynamic Transport Model consisting of the Momentum Conservation, Energy Conserva- 
tion, and Particle Conservation Equations, along with Poisson Equation is presented. In this model, 
the velocity and energy of carriers are taken as variables of the system. The resulting system of 
equations are numerically solved for electrostatic potential, carriers energies, carries velocities, and 
carriers densities. Most Drift-Diffusion models are based on the fundamental assumption that the 
transport parameters such mobility, diffusion constant, and drift velocity are constant through- 
out the structure under any applied biasing conditions. In heterostructures, however, specially 
in AlxGai-xAs/GaAs heterostructures, where the velocity-field characteristics exhibit the veloc- 
ity overshoot, the assumption of constant mobility becomes seriously invalid. The Pull Dynamic 
Transport Model (FDTM) presented here is a nonlinear model incorporating carriers velocities and 
energies, which eliminates the necessity of calculating the carriers mobilities and diffusion constants. 
The hot electron phenomena, such as velocity overshoot, have been accounted for by including the 
third moment of Boltzmann Transport Equation, which provides for energy conservation. 

The results of the simulations of a one-dimensional p-n heterojunction are presented. The 
simulations are performed for different emitter doping levels. It has been found that by increasing 
the emitter doping from 1016cm-3 to 5xl017cm-3, the turn-on voltage of an Alo.3Gao.7As/GaAs 
heterojunction diode increases from 1.09V to 1A4V which is consistent with the results reported by 
others [1] - [4]. The Maximum velocity of electrons reduces from 2.5xl07cm/sec to I.82IO7 cm/sec, 
which is due to the increased collision of electrons with doping impurities. This is also the reason for 
increased electron average energy from 270mev to 640mev. We also observed a significant velocity 
overshoot in the vicinity of the space charge region of the device. The results obtained are in good 
agreement with the experimental and simulated results reported by others [1] — [6]. 

I.    The Full Dynamic Transport Model 

Most Drift-Diffusion (DD) models presently available in the literature are based on a thermal equi- 
librium approximation. [3] — [6] The DD models are linear-velocity models in which the electrons 
are assumed to be subject to a drift force and a diffusive force, and the electron velocity is: vn = 
—finE — ^fVn. The main difficulty with this approach is in accurate estimation of electron mobility 
and diffusion constant. Also, in DD models, the effects of high field electron dynamics are neglected 
due to the thermal equilibrium assumption. 

The Full Dynamic Transport Model (FDTM) presented here, is a nonlinear model involving the 
carriers velocities and average energies, which eliminates the necessity of calculating the mobility and 
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diffusion constants.  The particle, momentum, and energy conservations, and Poisson equations are 

given, respectively, by: 

-R ¥ + V.(«,)- 

dwn 

dt 

dVn 

dt 

■q(vn 

qE 

mn 

2 1 v 
 V(nwn) - vnV.vn + —V(nvl) + — 
3mnn on rm 

E) - vn{Vwn) - —V 
on 

i i mn    2\s       Vn <dW\ {nvn(wn - -g-vj) - — QT - {-^r)coii 
dt 

V.E = -(p-n + C) 

(1) 

(2) 

(3) 

(4) 

In the above equations the subscript n represents the variables associated to electrons; with v and w 
as carrier velocity and average energy, respectively. 

In Eq. (1) the term R is the rate of recombination of electrons through traps. In Eq. (2), rm is the 
momentum relaxation time, the term (-^), is the acceleration due to the crystal potential and the 

external electric field. The second term, (-g^V(n«;n)), represents the diffusive acceleration, which 
forces electrons to move in the direction that minimizes the concentration and energy of electrons. 
The third term, (-vnV.vn), causes convective electron flow, giving electrons a tendency to move to an 
area where electrons move the fastest. The term (^V(n^)) is due to the kinetic energy of electrons. 
The last term, (-^-), accounts for collisions. The right hand side of Eq. (3) describes how individual 
forces contribute to changes in the total energy of electrons: the first term, {-q(vn ■ E)) corresponds 
to the contribution of the electric field, and the second term, (-vn(Vwn)) is due to the convection 
of energy flow. The third term, (-^V - (nvn(wn - ^vl))), is a combination of the second and 
fourth terms in Eq. (2). The term ~QT accounts for the gradients of heat generation, and it is 
assumed to be negligible. This assumption has been shown to be valid when the distribution function 
is symmetrical about some mean value in the momentum space, which implies that the temperature 
is constant throughout the device [7]. The last term, (-(^f )C<>H), is the change in energy due to 
collisions, and is represented by H~a, where TW is the energy relaxation time, and w0 is the initial 

average electron energy equal to \kT0, and T0 is the effective electron temperature. 
In this paper, we study a steady-state case only, and make the assumptions that others [7]-[8] have 

made, namely, neglecting the convective term, vVv, and the terms with the kinetic energy, \mv2. The 
reason for neglecting \mv2 is that the total energy : w = \kT0 + \mv2, and at room temperature the 
kinetic energy is negligible compared to the thermal energy. Equations similar to Eqs. (1) through (3) 
are written for holes, providing a system of seven equations and seven unknowns which is numerically 
solved for: i/j,n,p,vn,vp,wn, and wp. Auxiliary equations (such as rate of recombination through 
traps) are used in each iteration cycle. 

II.    Results and Conclusions 

An- Al0.3Ga0.7As/p - GaAs hetero junction device with 1016/cm-3 of n-type emitter doping, and 
1 ixm of emitter thickness is simulated at 300° K. The doping level and thickness of the p-type base 
are also 1016/cm~3, and 1 //m, respectively. The simulation program begins with an initial guess for 
the charge density (p), that is used to calculate the electrostatic potential, i/;, by solving the Poisson 
Equation. The remaining six differential equations are then numerically solved and values of carriers 
concentrations, energies, and velocities are calculated. A new value for p is recalculated from the new 
n, and p, and Poisson Equation is solved again. When convergence is achieved (with the current value 
of variables being within 1% of the previous iteration), we proceed to calculate the current densities.' 
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Fig.(la) shows the electrostatic potential, tp, in the device for different applied voltages ranging 
from 1.2 V to -2.2 V. As expected, the width of the space charge region decreases as the forward 
applied voltage increases. Also, there is no discontinuity of ip at the heterojunction. Figs, (lb), (lc), 
and (Id) show the electron concentration n, electron velocity vn, and electron energy wn, respectively, 
throughout the device for different applied voltages ranging from a forward bias voltage of 1.2V- to a 
reverse bias of —2.2V. There is a discontinuity in the electron density at the heteroj unction which 
is due to AEC- In the n-type region the electron concentration is basically equal to iVp, the donor 
concentration. In the p-type region the electron concentration depends on the applied voltage. 

The electron velocity (Fig lc) shows the overshoot effect at both ends of the space charge region. 
There is a large change in the electron velocity at the heteroj unction due to different characteristics 
of the two materials. Also, as the width of the space charge region decreases, the peak value of the 
electron velocity in the center of the space charge region decreases due to the fact that electrons do not 
reach the saturation velocity. At the center of the space charge region, the carrier velocity saturates, 
but the carrier energy increases due to the increase in the electric field.(Fig. Id) This is because the 
total energy of the electrons depends on the potential and the kinetic energy. The potential energy 
dependents on the electric filed which is the highest at the center of the space charge region. 

The i — v characteristic of device is shown in Figure (2a). The turn-on voltage is about 1.0 V, 
and the current increases somewhat exponentially as the voltage increases. To investigate the effects 
of doping, we increased the doping levels of both sides of the junction from 1016cm-3 to 5xl017cm-3. 
As shown in Fig. (2b) the turn-on voltage increases from 1.09 V to 1.44 V as the doping level is 
increased, which is consistent with the results reported by others [1] - [4]. The maximum electron 
velocity decreases from 2.5xl07cm/sec to 1.8xl07cm/sec at the edge of the space charge region in the 
GaAs. This is due to the fact that the increased scattering rate with the ionized impurities tends to slow 
down the electrons. As the doping level increases, the electron average energy increases from 270mev 
to 640mev. This is due to the field dependency of the electron energy. The results obtained from 
our model agrees well with those published by others. (See Tomizawa [9].) Specifically, the velocity 
overshoot effect that occurs at about 2.0kV/cm agrees well with those reported by [9]. The maximum 
electron velocity has been reported to be 0.7xl07cm/sec in Al.zGa.jAs and 2.2xl07cm/sec in GaAs.[9] 
From our simulations we obtained a maximum electron velocity of 0.6xl07cm/sec for Al.3Ga.7As and 
2.5xl07cm/sec for GaAs. This maximum velocity reduces from 2.5xl07cm/sec to 1.8xl07 cm/sec, 
with increase in doping, which is due to the increased collision of electrons with doping impurities. 
This is also the reason for increased electron average energy from 270mev to 640mev. 
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Figure 1: (a) Electrostatic potential, (b) electron density, (c) electron velocity, and (d) electron energy 
for different applied voltages ranging from forward +1.2 V to reverse -2.2 V, for the device with 
emitter doping of 1016Cm-3. 
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Figure 2:  The i - v characteristics of the device with emitter doping of (a) 1016Cm-3, and (b) 
5xl017Cm~z. 
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Abstract 
In an abrupt AlGaAs/GaAs HBT, transport in the Conduction Band Spike (CBS) can be the mechanism 
which limits the overall transport current within the HBT. In this paper closed-form analytic models are 
presented that describe the transport of carriers in the CBS. These models retain their connection to the 
physical attributes of the abrupt HBT, yet are simple enough to use in simulators such as SPICE. 

I. INTRODUCTION 

In an HBT with an abrupt emitter-base heterojunction, and a doping concentration in the narrow- 
bandgap base that is much larger than that in the wide-bandgap emitter, the Conduction Band Spike (CBS) is 
as shown in Fig. 1. As has been reported [l]-[5], this CBS plays a vital role in current transport within HBTs 
and can, in certain cases, completely determine the collector current [5]. Therefore, one must accurately 
model current transport in the CBS in order to accurately predict the performance of abrupt HBTs. 

For the structure depicted in Fig.l, with base doping concentration around 10 cm and emitter 
doping around 1017 cm"3, the relevant width of the CBS, as regards tunneling, is about 100 Ä. As has been 
demonstrated by the aforementioned authors, based largely upon the work of Stratton, Padovani, and 
Christov [6]-[8], an accurate account of tunneling in abrupt HBTs is essential. The basic limitation of the 
published works regarding the modelling of CBS transport, is that the models can in general only be solved 
by appealing to numerical techniques; this hides the rich interplay that exists between the physical 
attributes such as doping concentration, temperature, effective mass, electron affinity, bias conditions, and 
the final transport model for the CBS. The work to be presented deals with the account of said tunneling in 
order to arrive at workable, analytic models for current transport across the CBS in abrupt HBTs. 

II. THEORY OF CURRENT TRANSPORT IN ABRUPT HBTS WITH TUNNELING 

Assuming that transport of electrons through the space charge region is not a limiting factor, then 
transport in the CBS is determined by both thermionic emission and tunneling. In such a case we find ([5], 
(32)) that the overall transport current Jc (which in general is equal to the collector current) within the 
HBT is given by: 

--AE, Jn0 

kT 
exp 1    kT    . 

where 
NA Nr 

N     - — rat     NA+Nr 

and using the notation and results of [1], 

A£„0 = AEc-"TrNrat
Vbi N* Vbl = 7log 

fNAND 

(1) 

+ A£ 

y = 1+ exp 
£c«n] i 

kT 

EA0-) 

max [Ec (xp), 0] 
Ec(0~) 

)exp 
IkTJ 

d£. v = 
(  kT  \ 1/2 

\2Tim*n 
(2) 

with NA(D) being the base(emitter) doping concentration, nip the intrinsic carrier concentration in the base, 
AEC the conduction band discontinuity, Vbi the built-in potential, VBE the applied base-emitter potential, 
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and v the effective electron velocity that results from integrating over all particle velocities with some 
component parallel to the direction of the transport charge flow. 

Y is the tunneling factor [1] and (2) is valid as long as the energies Ex over which there is significant 
contribution to the tunneling current are well above the electron quasi-Fermi energy. Furthermore, due to the 
limits of integration for y, it is assumed that the transmission coefficient D(£/) is unity above the CBS, i.e., the 
WKB approximation for the calculation of D(£/) is asserted. Using the depletion approximation for an abrupt 
metallurgical junction, and assuming a coincident metallurgical/hetero-junction interface, D(U) is [1], [7]: 

D(U) = exp 
m*Z f 

log 
V 

Ji-u+n 
lu 

U-Jl-U (3) 

In (3), U is the normalised energy and is given by U=Ex/Ec(0'), where £c(0~) is the height of the CBS 
and is given by Ec{Qr)=qNrat(Vbi-VBE), i.e., U= 1 at the top of the CBS. In order to gain a familiarity with 
(2) and (3), Fig. 2 plots the normalised emission flux density (given by the integrand in (2)) that emerges to 

17. -3. 
the right of the CBS for an abrupt HBT with the following material parameters: ND: 5x10 cm" ; NA: 
lxl019cm-3; £n. 12.2e0; 30% Al in the emitter; AEC: 0.24eV; nip: 2.25xl06cm"3; -> AEf 77.3 meV; Vbi: 
1.671 V; m*: 0.09lm0. Unexpectedly, the normalised energy U for the peak emission flux density is not a 
function of applied bias. After some manipulation of the integrand in (2) (using (3)), it is found that the 
energy for peak emission Umax, and the normalised peak emission flux density Fmax are: 

^rat(Vbl-VBE)tmh(Up)- 
exp 

kT U„ 
Umax   =  COsh~ (up) 

The fact that Umax is independent of the applied potential is interesting in that, relative to the top of the 
CBS, the emitted electron flux density is always centred at the same place. Discussion of this result will 

follow in Section III. 
Now, given that Umax is independent of applied potential, that Fmax has an exponential characteristic, 

and the emission flux density has a highly symmetric shape (Fig. 2), there promises to be a potentially 
simple analytic result for evaluating y in (2). Through a series of transformations the normalised emission 

flux can be written as: 

-UEC((T) 

D(t/)e    "=     dU = --r-e     dr 
r dr C, = 

EC(Q-) 

UpkT 

y = r cosh 2 (U + r) - tanh (U + r) 

U = cosh"2 (Up + r) 
(4) 

Equation (4) provides for the exact solution to the tunneling current. If the transform function y(r) 
were in verüble so that r(y) could be determined, then (4) would yield the desired solution in the y domain. 
However, r(y) cannot be determined analytically in an exact form, but does yield to an approximate form, 
e.g., the second-order expansion given in (5). Using this approximate y(r) to solve the integral in (4), with 
limits of ±oo (which implies that most of the emission flux should be contained within the limits specified 

in (2)), then yis given by: 
Ec(0-) 

\4%smh(U)U Ec(0~)    -JT- 
y= 1 +    {— e 

■'        cosh3 (Up)kT 

tanh(ty 

where    y: 
sinh (Up)    2 

cosh3(tyr ■tanh(I/p). (5) 

Equation (5) is the simple analytic form for the tunneling factor y that we desire; its simplicity suits it to 
implementation in simulators such as SPICE. Further simplification of yis possible by dropping the factor of 1, 
such as would be appropriate in cases where the tunneling significantly exceeds the thermionic emission current. 

in. DISCUSSION 

Examination of (1) shows that Jc is proportional to y Thus, the quantum mechanical nature of the CBS 
directly manifests itself, through y, in the determination of Jc. This result reaffirms the statement that 
modelling the current transport in the CBS is of paramount importance to the understanding of abrupt HBTs. 
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Further consideration of the subsidiary equations for Umax and Up reveals, the following general 
traits: as Up increases from 0 towards infinity, Umax tends from 1 towards zero, and tunneling becomes 
increasingly dominant over thermionic emission; as ND increases, or E„ decreases, the width of the CBS 
decreases and Umax becomes smaller, showing that tunneling is increasing; as m*n decreases the 
probability of tunneling should increase, as is confirmed by the associated reduction in U^^; finally, in the 
limit as h goes to zero, the system should evolve to a state that is purely describable by classical 
mechanics, and it is found that U^^ goes to 1, which indicates that there is indeed no tunneling. Therefore, 
the general traits of the emission flux, as presented, follow physical expectations. 

Before presenting the final form of JQ, with y from (5) included, the error associated with the form 
given by (5) is illustrated via the plots shown in Fig. 3. Note that as T increases y decreases; this is 
expected as more carriers can be thermally excited at higher T, and thus tunneling becomes less important 
relative to thermionic emission. The discrepancy between (5) and the exact form (2) at first decreases with 
bias. This is because the exact lower limit of integration (used in (2) and shown in Fig. 2) tends to the limit 
of -oo as VBE increases. This improvement in accounting for the emission flux at energies below the 
maximum Umax, more than outweighs the discrepancy at higher energies which increases with bias (see 
Fig. 2 and note the placement of the upper limit). This latter discrepancy amounts to an inclusion of the 
thermionic-emission flux in the tunneling integral, i.e. a double-counting in y of the emission flux density 
above the peak of the CBS. It is this double-counting that results in the increasing discrepancy between (5) 
and the exact form (2) at high biases. 

The final form for JQ is achieved by substituting (5) into (1) to give: 
    _AE        Nra,Vbi(      tanhCtyN   Nra,tanh(Up)qVBE 

=      <,   4*s.nh (Up) UpEe(0-) e—;— l-—J.-qT-if 
N

A>\ cosh3 (Up)kT 
Examination of (6) shows that Jc is basically proportional to exp[^iVmrtanh(L'/,)Vß£/([/pÄ;7)] (this is 
achieved by disregarding the small variation with bias of £c(0") in the square root term of (6)). Thus we 
find the customary exponential relationship between Jc and VBE that is found experimentally. However, 
we now realise that the injection index n is not 1 (as is given by Shockley boundary conditions) but is 
instead given by n=UJ(Nratta.nh(Up)). For the device considered in Section II this gives n = 1.13, which is 
almost exactly what is found experimentally. In fact, the slightly larger values found for n experimentally 
can be accounted for by the bias dependence of the term in the square root of (6). 

IV. CONCLUSION 

We have achieved a tractable, analytic formulation for both the tunneling factor y (5) and the transport 
current JQ (6), and both formulations are suitable for implementation in simulators such as SPICE. Finally, 
due to the analytic nature of these results, clear physical insight into the connection between material 
parameters and device operation is obtained, e.g., the new formulation for the injection index of JQ. 
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ABSTRACT 

We describe a semiconductor device modeling program based on hydrodynamic balance equations. 
This program is is capable of treating multiple carriers in compositionally nonuniform (such as 
heterostructures) and spatially inhomogeneous device structures, as well as high electric field and 
associated nonlinear effects. Unlike other balance equation based approaches to device modeling, 
where the various relaxation rates are treated phenomenologically, or imported from Monte Carlo 
calculations, our approach is self-contained in that these rates are calculated within the simulation 
program. The momentum and energy relaxation rates are cast in the form of electric field dependent 
frictional force and energy transfer functions, with full account of carrier-carrier interaction effects, 
such as dynamical screening/descreening. These effects are embodied in the dielectric function of 
the system, which is treated within the random-phase approximation here but can also include 
exchange-correlation effects. Another advantage of our balance equation approach is that arbitrary 
energy band structures can be treated, making it suitable for high-field and microwave applica- 
tions. The simplicity of our technique permit fast and efficient modeling of device performance 
characteristics, requiring only a fraction of the CPU time needed for Monte Carlo simulations. We 
have tested the modeling program on simple devices such as an n+-n-n+ diode and have obtained 
good agreement with Monte Carlo simulations. 

I. INTRODUCTION 
An increasingly popular approach in device modeling is the hydrodynamic balance equation 

technique, which solves the first few moments of the Boltzmann equation. But the moments 
equations by themselves do not form a closed set of equations, requiring input of momentum 
and energy relaxation rates from outside the system. These relaxation rates are supplied from 
experimental measurements, or from Monte Carlo calculations, and sometimes they are simply 
taken to be constants. A third way of circumventing this difficulty is to postulate the distribution 
function with unknown parameters, and use balance equations to solve for these parameters. 

Recently, a new balance-equation method for high-field transport in uniform system has been 
developed1. This has subsequently been generalized to weakly nonuniform systems2. In addition 
to the simplicity and transparency of its mathematical structure, the advantages of this method 
also include its generality of description of nonlinear transport in the presence of an electric field 
of arbitrary strength, and its ease of treating dynamic, nonlocal carrier-carrier scattering. All 
the important transport properties are expressed in terms of the carrier density-density correla- 
tion function which includes full carrier-carrier interaction within the random-phase approximation 
(RPA) or beyond. 

In this presentation we will describe our balance equation based device modeling, giving partic- 
ular attention to points of departure from other, more conventional balance equation based device 
modeling programs. 
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II. BALANCE EQUATIONS 
Within the balance equation approach the following balance equations are used to describe the 

carrier transport. These are, the equation of continuity, 

*£ + f .(»*) = <), (1) 
at 

the force/momentum balance equation, 

— + v(V-v) = -- + —E+ /, {*) 
dt 3 mn     m mn 

and the energy balance equation 

— = v- Vu - -~uiy -v) - w-v- f, (3) 
dt                       3 

along with the Poisson equation 
V2<j> = --[n(R)-ND]. (4) 

These are supplemented by the expression of the average local kinetic energy density of the carrier 

<R) = 2X>ic/<fe ~ »(R))/kBTe(R)}, (5) 
k 

and that of the local chemical potential fi(R) which is related to the local electron density n(R) 

via the relation 
n(R) = 2 J2 /<,[(££ - n(R))/kBTe(R)}, (6) 

k 

where e^ = h2k2/2m and f0 is the Fermi-Direc function. 
The resistive force and the energy loss rate are 

+2£ \M(lA)PP!(9>„ + 0«,) [if (H) - N (^^ 
q,X 

(7) 

w = 2^|M(g,A)|2ng-An2(g,a;o + Ü qX, \kBTj V      kBTe 
(8) 

where u0 = q ■ v(R), N(x) is the Bose-Einstein factor, n/ is impurity density, %A is the phonon 
frequency of wave vector q and branch index A, u(q) is the electron-impurity interaction potential, 
M(q, A) is the electron-phonon coupling matrix element, n2(<?>) is the density-density correlation 
function of electrons which can be obtained within the RPA or beyond. Note that /and w depend 
on the position vector R through the quantities n(R), Te(R), and v(R). 

These equations will uniquely determine v(R), Te(R), u(R), n(R), //(£), and <j>(R), for given 
initial and boundary conditions. All these variables may be time dependent for transient or ac 
transport processes. Following standard procedures3-4, these differential equations are turned into 
difference equations on a space-time grid. The resulting simultaneous nonlinear difference equations 
are solved using the Newton method4. 
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III. AN EXAMPLE—MODELING OF AN n+-n-n+ DIODE 
The process of device simulation developed here is applied to the simulation of a one-dimensional 

problem, an n+ -n-n+ Si diode. This is a symmetric, 0.55 fim structure, with the middle 0.25 /im 
doped to Np - 1015 cm~3, and the anode and cathode (each is 0.15 \xm long) doped to 5 X1017 cm'3. 
There is some smooth grading in doping density at the junctions between the electrodes and the 
middle, low doping region. 

We carry out our modeling for a lattice temperature T = 300 K. In addition to ionized impu- 
rity scattering, we include nonpolar optical phonon scattering and deformation potential acoustic 
phonon scattering. All materials parameters are those of single crystal Si. 

For a bias voltage of 0.5 V we have calculated the steady-state carrier density, drift velocity, 
energy, and electrostatic potential, all as functions of position along the device length. These are 
depicted in Figure 1. In addition, we also present the calculated resistive force and energy-loss rate 
in Figure 2. 

In summary, we have developed a semiconductor device modeling program, based on hydro- 
dynamic balance equation approach to charge transport. Instead of the usual relaxation rates 
employed in traditional balance equation based modeling, our method relies on a resistive force 
function and an energy-loss rate function, which are calculated within the program. 
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Figure 1: Electron density, drift velocity, energy, and electrostatic potential as functions of position 
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Figure 2: Resistive force and energy-loss rate as functions of position for a bias of 0.5 V. 
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Abstract 

In this paper, the doping induced distortion to the conduction band density of states is calculated by 
considering the many-body interactions of the electron-impurity system, following the work of Schwabe et 
al, [3]. The results demonstrate that, at a high impurity density, the majority of states within the band tail 
are extended in real space and therefore contribute to current flow. Thus, a hydrogenic donor description is 
inappropriate for devices such as HBTs and HEMTs. For doping densities typically occurring in MESFETs, 
however, there is still a significant portion of donor states which are localised. The assumption of complete 
ionisation of donors may, therefore, lead to errors when modelling MESFETs. 

I Introduction 

In recent years, the inclusion of heavily doped layers within heterostructure based devices has become more 
widespread. It is common for pseudomorphic HEMTs to incorporate a very narrow and heavily doped donor 
layer, often described as S or planar doping, in order to supply electrons to the conducting channel. Typically 
a few monolayers are grown epitaxially with a sheet donor density of 5 x 1012 cm-2 which translates to a 
density of 1 x 1020 cm-3. It is common to assume complete ionization of donors in the case of MESFETs. 
Some authors have introduced a hydrogenic-like shallow donor level when considering parasitic charge build 
up in HEMTs. In this work, the distortion to the density of states (DOS) is accounted for via a multiple 
scattering approach described in [1] in order to consider the density of localised states for various donor 
concentrations. 

II Theory 
The interacting electron-impurity system can be described using the one-electron Green's function, 

G(k'£^F^PP) (1) 

where E and k are the electron energy and wave-vector respectively. The function, e(k), defines the eigen- 
values of the unperturbed system, 

e(k) = h2k2/2m* (2) 

Many-particle interactions are accounted for via the self-energy, £, 

S(k,S) = S:cc(k,£) + Se_i(k,£) (3) 
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where Exc and Ee_; refer to electron-electron and electron-impurity interactions respectively. 
The DOS is then derived from the spectral density, 

A{KE)=T-%{G(k,E±iO)} 

k,CT 

The self-energy is calculated using Klauder's 5th multiple scattering approximation, [2], 

Ze-i{k,E) = U(k,k,E) - NDV(0) 

[/(k, q, E) = NDV(k - q) + -^ J d3q'V(q - q)G(q', E)U(k, q , £) 

(4) 

(5) 

(6) 

(7) 

Schwabe et al [3] point out that the exchange-correlation contribution to the self-energy results in a rigid 
shift to the band edge and so has been omitted from the calculation. 

The impurity potential, which includes screening via the inverse screening length, K, is given by, 

V(q) = - 
47re 

es   q
z + K

Z (8) 

The Separable Potential Approximation transforms the integral equation into a secular equation, the 
roots of which define the DOS at a particular E. 

4TT 
£(k,£) = 

k2 + K- 
;NDS(E) 

\{K
2
 -E) + p2*^2 + 4irNDS(E) 

1/2- 

1/2- 

1/2 

1/2 

+ 

+ 

(9) 

(10) 

(11) 

^ = ^{m~z-{K2+E) 

S(E) 

S(E)     \ 

=    0 

1 - ZS(E) J 
(12) 

III    Results and Discussion 

Figure 1 shows the density of states for various donor concentrations. At low donor densities an impurity 
band is formed which slowly merges with the conduction band density of states, usually described by CE1/2, 
until a band tail is formed. It is clear from the figure that the transfer from impurity band to band tail 
occurs at a low doping density of around 5 x 1015 donors cm"3. 

In order to investigate the spatial behaviour of the electron wavefunction, the spectral density has been 
considered in figure 2, defining the probability that an electron with energy E is in state k. The doping 
density has been used at which the transition from impurity band to band tail takes place. The transition 
from localised to free states can clearly be seen where the spectral density changes from a function distributed 
in k-space with a maximum at k - 0 to a function which exhibits a well defined maximum at some finite 
value of k. This follows from the uncertainty principle with a small value of Afc implying a state that is 
extended in real space. The degree of localisation can be estimated using R = A(k = 0)/Amax, [!]• 
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Figure 1: Effect of donor concentration on conduction band density of states. 
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Figure 3 shows the ratio of localised state density to donor density as a function of impurity density. The 
localised state density is calculated by integrating the density of states function from the band tail edge to the 
point at which the transfer from localised to free states takes place. Serre and Ghazali define this transition 
at R = 10%. As the impurity density is reduced in the low concentration regime, the localised state density 
approaches the donor density as predicted by the hydrogenic donor description. At higher doping densities, 
however, it is clear that the hydrogenic description is inappropriate with there being less than 10% of donor 
states which are localised {ND greater than 1 x 1018 cm-3). Interestingly, at doping levels typically occurring 
in MESFETs (1017 donors cm-3) there is still between 10 % and 30 % of donor states which are localised. At 
high doping densities, greater than 1 x 1019, the majority of states are extended in real space and therefore 
contribute to a conduction band current. 

icr K" io" 
Doping Density (donors cm'3) 

10" 

Figure 3: Fracton of localised donor states as a function of impurity concentration. 

IV    Conclusion 
The analysis has shown that the hydrogenic donor model is invalid for doping concentrations typically 
occuring in HBTs, MESFETs, and HEMTs. Furthermore, the assumption that all donors are ionised appears 
to be incorrect for doping densities typically occurring in MESFETs. This approximation does, however, 
seem appropriate for HBTs and HEMTs where the doping density is typically greater than 5 x 1018 cm 3. 
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Abstract 

A heterostructure is composed of different materials where in each section effective mass of an 
electron and the minimum energy of the conduction band are different. To model dynamics of 
electrons in a heterostructure we derive the hydrodynamic equations for a gas of electrons with 
position dependent mass moving in a potential field. First we write the Boltzmann equation and 
then we derive the fluid equations by taking the first three moments of the Boltzmann equation and 
deriving a generalized hydrodynamic model. The jump conditions at the junction are obtained using 
two different methods. First method relies on using the conservative form of the equations. The 
second method is based on solving the problem of motion of one electron as it passes through the 
junction and deriving the necessary conditions on the density functions on two sides of the junction; 
By taking moments of the density functions we obtain the jump conditions. Jump conditions are 
obtained as continuity of flux for number of particles, energy, tangential momentum, and square of 
the tangential momentum. 

I. INTRODUCTION 
We are concerned with derivation of the hydrodynamic model for devices with a heterojunction. 

By the hydrodynamic model we shall mean the first three moments of the Boltzmann equation 
coupled to the Poisson equation [2]. We derive the hydrodynamic model for a gas of electrons 
with a differentiable position dependent mass arid differentiable electric potential. At the interface 
between the two material there is a discontinuity in the effective mass of electrons and in the 
minimum energy of the conduction band. We study the problem of the jump conditions at the 
discontinuity. 

A set of equations similar to the hydrodynamic equations were used by D. Widiger, K. Hess, 
and J. Coleman in [13] and [14]. The equations were derived by considering the first four moments 
of the Boltzmann equation and simplifying them in order to obtain a closed system for evolution 
of density and energy. They model a high electron mobility device (HEMT) by writing two sets of 
equations, a two dimensional system for the electrons in the bulk and a one dimensional system for 
the electrons in the channel and then coupling the two through flux relations. 

A hydrodynamic model including the effects of the position dependent mass was derived by E. 
M. Azoff in [1]. Our derived equations are similar to his equations but he does not consider the 
discontinuity in the mass or the potential energy. T. Shawki, G. Salmer, and 0. El-Sayed have done 
numerical simulations of 2D devices using finite difference methods for a set of equations similar to 
the ones derived by E. M. Azoff [11]. In their work they replace the discontinuities in the conduction 
band by a smoothed out profile and use an energy dependent relation for effective mass. A different 
approach was taken by T. Wang and C-H. Hsieh to model the heterostructure devices [12]. They 
solve a one dimensional hydrodynamic model in the channel coupled to a Schroedinger equation in 
the perpendicular direction and to a 2D Poisson equation. The problem of interface conditions for 
the hydrodynamic model has been considered by Schroeder, [9] and [10]. He assumes a perturbed 
Maxwellian for the density function and from that he derives the interface conditions by taking the 
moments. 

In this paper we present the derived hydrodynamic model for a position dependent mass and 
the jump conditions at the interface between the two materials. We investigated the problem of 
electron transfer at the junction where there is a discontinuity in the effective mass and the potential 
energy. The jump conditions at the discontinuity can be derived using two different methods. One 

1This research was supported by the Swiss National Science Foundation under grant no. 21-33862.92. 
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can derive the general conservation laws and write them in conservative form. The jump conditions 
are readily obtained using mathematical arguments. One can also solve the problem of one single 
electron passing through the junction and deriving the conditions on the density functions and then 
deriving the jump conditions by taking moments of the density functions on both sides. The two 
methods yield the same results. 

II. QUANTUM MODEL AND BOLTZMANN EQUATION 
An electron in a heterostructure consisting of two different semiconductors can be modeled by an 
electron in an electric potential Q(x) such that 

Q(x) = <5+(x) for xl > 0 and Q(x) = Q"(x) for xr < 0. (1) 

Here x = (x1,x2,x3) is the spatial coordinate variable and functions Q+ and Q~ are periodic, 
possibly with different periods, corresponding to the lattice potential in each semiconductor. The 
Schroedinger equation for an electron in a heterostructure with an applied external potential 4> is 
written as 

h 
- — Atf(x) + Q(x)f (x) + flKx)tt(x) = A* (x). (2) 

Although the problem is easy to state, analytic or computational solutions of the problem are quite 
complicated. We have obtained some partial results on the above problem [4]. 

Our results in this paper are based on modeling the electrons in each semi-space as a semi- 
classical particle. We assume that in each semi-space each electron has an effective mass corre- 
sponding to the underlying lattice potential and is moving in a potential field equal to the energy of 
the bottom of the conduction band plus the applied electric potential. The laws of motion for such 
a particle and the BTE equation for an ensemble of such particles are easy to derive. We let (a;, y, z) 
be the position variable, (p,q,r) the momentum variable, t time, and m(x,y,z) be the effective 
mass of an electron moving in a potential field F(x,y,z) = Ec(x) + q>{x,y,z), such that Ec(x) is 
the energy level of the conduction band and discontinuous at x — 0 and <j>{x,y,z) is the applied 
potential and differentiable everywhere. The Hamiltonian for motion of one electron is written as 

H(x, y, z,p, q, r, t) = {p2 + q2 + r)/(2m) + Ec(x) + <f>(x, y, z). 

Then the Boltzmann equation for a gas of such electrons is written as 

8J + dx(p/mf) + d7J(q/mf) + d,(r/mf) + 

dq(-HJ) + dq(-Hyf) + dr(-HJ) = C(f, f) 

where f(x,y,z,p,q,r,t) is the density function, 

Vtf = (Hx, Hy, Hz) = -Vm(p2 + q2 + r2)/(2m2) + VEC + V<p, 

(3) 

(4) 

(5) 

and C(f,f) is the collision operator of all the scattering mechanisms present. The fluid equations 
can be derived from the above Boltzmann equation. This derivation is standard for constant mass, 
[5], but here we also have calculated the extra terms coming from the dependence of the mass on 
position. 

III. HYDRODYNAMIC MODEL 
We present the derived hydrodynamic model of electrons in a heterostructure in this section, please 
see [4] for the details. We use as dependent variables: 

© Density of Electrons, n 

© Momentum, mnu = (mnu.mnv. rnnw) 

• Energy, ec 

a Electric Potential, d>. 
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Temperature, T. is defined using the main variables by 

-nT = ec - -mn(u~ + v + w). (6) 

The other quantities are defined in terms of the above or are specified. 

• charge of an electron, e > 0 

• conduction band minimum energy, Ec(x) 

• number of ionized donors, Np(x,y,z) 

• momentum relaxation time, rp 

• and energy relaxation time, TW 

Then the hydrodynamic model is written in the following form: 

nt + V • (mi) = 0 (7) 

^\J JYI 772 TlU 
(mreu), + V • (rrmu' • u) + V(raT) - ec = enV<?> + nVEc  (8) 

771 Tp 

e  - ^nT 
eet + V • (uec + unT + {e<p + Ec)nu) = (e<b + EC)V ■ (nu) - l—i + V • q (9) 

'in 

V-(eV^) = (iV+-n). (10) 

The heat conduction vector can be calculated in the first approximation [5], 

5^vr+  ™ 2r_25^2 

2m 4m2 

r is the relaxation time coefficient of the density function and is approximately of order of rp. The 
electric potential satisfies the Poisson equation and e has a discontinuity at the junction but <f> and 
the normal component of eV<f> are continous at the junction. At the interface the following jump 
conditions are standard 

[<£] = (),     [c^] = 0. (12) 

We use the notaion [d>] = 4>2 — 4>i to denote the jump in the variables across the junction. We 
suggest the following jump conditions for the fluid variables 

[nu] = 0    [rnv} = 0    [mtii] = 0    [T] = 0    [m{u2 + v2 + w2) + (3 + ß(m))T + 2E] = 0.        (13) 

The first jump condition is conservation of number of particles across the jump, the next two are 
conservation of tangential momentum, and the last two are consequences of conservation of energy, 
conservation of the square of the tangential momentum, and some assumptions about the shape of 
the density functions near the junction. The function N£, number of ionized donors, is defined in 
terms of the electric potential and the Fermi level, ß is defined 

and as for 2/3 < ml/m'2 < 3/2 are defined as 

m1/m2 + 3 — clra-1l'm1 
a, 

m1/m2 + m2/mi 

m2/mi + 3 — 2m1/rTi2 

m2/rrii + m1/m2 
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We considered semi-classical dynamics of electrons in a semiconductor where effective mass and 
minimum energy of the conduction band are functions of position. We have derived the hydrody- 
namic model for such electrons from the Boltzmann equation. We considered in detail dynamics of 
electrons as they pass through the junction and the necessary conditions on the density functions at 
the junction where there is a discontinuity in the mass and electric field. The jump conditions were 
obtained by taking the moments of the density functions and writing them in terms of the fluid 
variables invoking the usual closure assumptions for fluid equations. The derived jump conditions 
for the conservation of mass and energy equations are satisfactory, but the jump conditions for the 
momentum equation is yet to be shown satisfactory. We have derived the jump conditions here but 
their numerical implementation and physical implications are subject of a future study. 
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ABSTRACT 
We discuss the problem of solving the Schrödinger equation on a finite domain for the current-carrying 
"scattering states" that are frequently of interest from a device viewpoint. We compare approaches based 
on the finite difference approximation with finite element and green function methods. 

I. INTRODUCTION 
In exploring theoretically the properties of mesoscopic structures it is frequently of interest to be able to 
calculate current densities and transmission coefficients for the case of purely ballistic transport with no in- 
elastic scattering in the structure. In a typical idealized structure, current carrying leads with constant width 
are connected to a device region in which scattering from geometrical features of the potential landscape 
occurs. A straight-forward approach to the problem is to discretized the device region on a real-space mesh 
and numerically solve the equations which result from discretizing the Schrödinger equation for the 
wavefunction in that region. The desired current densities and transmission coefficients can then readily be 
obtained from the wavefunction directly. A difficulty which occurs is to express boundary conditions for 
the wavefunction at the interface between the leads and the device region. The wavefunction at the input is 
the sum of the incident and scattered wave, but the reflection (and transmission) coefficients are unknown 
at the beginning of the calculation. We have used a boundary-condition method, the Quantum Transmitting 
Boundary Method [1], and employed it in a finite element (FEM) discretization useful in many two- 
dimensional problems [2]. Here we compare the implementation of these boundary conditions in the finite 
difference method (FD) and FEM, and also compare with a recently developed Green function approach 
We will restrict ourselves to one-dimensional problems for simplicity. The generalizations to higher 
dimensions have either been treated elsewhere in detail or are straight-forward. 

n. BOUNDARY CONDITIONS ON THE WAVE FUNCTION 

We examine first the problem of expressing the condition on the boundaries as a constraint on the 
wavefunction and its derivative. Figure 1 shows the geometry schematically. An arbitrary scattering 
potential in the device region from x=0 to x=L results in scattered and transmitted plane waves. We 

x=0 x=L 

FIGURE 1. Schematic of ID Schrödinger scattering problem. (1) 
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assume a plane wave of unit amplitude is incident from the left. In the lead to the left of the device region 
the wavefunction has the form 

while in the right lead the wavefunction is, 
\|f(jc) = eikx + re-ikx. 

ikx \\f(x) = te 
Evaluating the derivative at the left boundary we have, 

Y (0) = ik(l-r) = 2ik- iky (0) 
Similarly in the right lead we have 

\|f(jc) = teikx, 
so that at the boundary with the right lead we have, 

Y (Q = iky (L). 
The conditions at the boundaries of the discrete domain can therefore be expressed as follows: 

\|/'(0) +ijfc\|f(0) = 2ik 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Y(L) -iky(L) = 0     . (7) 
Equations (6) and (7) are the fundamental boundary conditions for open boundaries in one dimension. The 
inhomogeneous source term on the right-hand-side of equation (6) results in an incoming plane wave of 
unit amplitude. The generalization to higher dimensions must include the projection of the normal 
derivatives onto the various transverse mode of the leads and the existence of evanescent, exponentially 
decaying, modes. 

H. FINITE DIFFERENCE FORMULATION 

The boundary conditions in (6) and (7) can readily be expressed in terms of finite difference 
approximations to the derivatives at the boundaries. If the nodal points are numbered from 0 to N in the 
device region, the difference equations become 

where h is the distance between nodal points. The resulting FD equations can be expressed in terms of an a 
hopping energy parameter, 

A = ^-3r(—). (9) 
2m     h2 

The resulting equations form a linear system with the term 2ik from (6) giving the right-hand-side vector. 
The equations can be written in the form 

(H-EI)u=p, (10) 
where u is the column vector of the values of the wavefunctions at the nodal points. If we assume that at 
the boundaries the potential is zero, this equation becomes, 
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(11) 

<*-*> <i> 
-A       (2A-£+Vj) -A 

-A (2A-E + V2) -A 

-A (2A-E + V3) 

-A (2A-£ + Vw_j)      -A 

1 .,    1 
h h 

2ik 

0 

0 
0 

0 
0 

The relationship between the wavevector, k, and the energy, E, bears some attention. For free (effective 
mass) electrons the dispersion is given by 

E = 
2m 

(12) 

The finite difference approximation is equivalent to a tight-binding model and the dispersion is quadratic 
only in the limit when h —» 0. At any finite mesh size, the numerical dispersion is given by, 

EFD(k) = 2A[l-cos(jfcÄ)] (13) 

m. FINITE ELEMENT FORMULATION 

A finite element formulation begins by developing the weak form of the Schrödinger equation (S.E.). This 
is done by multiplying the original S.E. by an arbitrary test function \jr which obeys the same essential 
boundary conditions as the wavefunction, and integrating over the interval. 

- (;r—*-) \dx \j7(x)\|/"(x) + \dx \j7(x) V(x)\|/(x) = E\dx \|7(x)\\f (x) (14) 
o o 

Integrating by parts we obtain the weak form of the S.E.: 

T>2    L %2 L 

(f-*)jdx rCOY'to + iy-w) [?(0)V'(0) -y(L)Y(L)] + \dx y(x)V(x)y(x) 

= E\dx \|/(x)\)/(x) 

Notice that the derivative of the wavefunction at the boundary occurs naturally here. The constraint 
equations (6) and (7) can now be applied. When both the wavefunction and the test function are expanded 
in the basis of finite element shape functions (here we use linear functions), we obtain the matrix equation 

(T+C + V-EM)u = p. (15) 
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The matrices T and V represent the kinetic and potential energy operators in this basis. The "mass" matrix 
M results from the non-orthogonality of the FEM basis functions. The transmitting boundaries are 
represented by the matrix C. The structure of the FEM matrices is displayed below. 

T= (A) 

a  -A 

A 2A -A 

-A 2A -A 

-A 2A 
... -A 

-A 2A -A 

-A A 

M = 
$ 

2 1 
1 4 1 

1 4  1 
1 4  .. 

1 
4 1 
1 2 

P = 
2m* 

-2ifc 
0 
0 
0 

0 
0 

C = (Az) 

-ikA 

-ik& 

The Green function operator for the S.E. can be expressed in terms of the FEM matrices. 

(16) 

(17) G = (EM-T-C(k)-V)-1 

The wavefunction is then obtained by operating with the green function on the inhomogeneous "source' 
term, u = G {—p). 

The numerical dispersion relation for the FEM mesh is given by, 

1 - cos (kh) 
EFFMW ~ 6A (18) 

2 + cos (kh) 
A comparison between the dispersion relations for the continuum, FD, and FEM meshes is given in Figure 
2. 

W 

■ 

1 1           '           1           '           1           ■/-"" 

 Continuum 

 FD /              / 

- 

 FEM FEM/       / - 

/   /'Continuum 

y^^^^YD 

■ 

i.i.i. 
0.00 0.20 0.40 0.60 0.80 1.00 

(kh)/K 
FIGURE 2. Comparison of dispersion relations for the continuum free electron model, the 
finite difference (FD) model, and the finite element (FEM) model. 
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IV. GREEN FUNCTION METHOD 

An alternative to applying the conditions (6) and (7) on the wavefunction is to apply boundary conditions 
to the Green function. Let H0 represent the Hamiltonian for the device isolated from the leads. Let V 
represent the interaction which couples the 0th and N*A nodes in the device to the leads. The leads are 
assumed to be tight-binding (FD) chains of nodes with the same hopping parameter as in the device, but no 
potential energy. We can write the Green function as follows: 

1 1 
G = (19) 

(E-H0-V)        (G-i_y) 

The Green function for the uncoupled system can be calculated easily, making use of the known solutions 
for the Green function of a semi-infinite lead. Because V couples only to nodes -1 and N+l in the lead, we 
can perform the inversion shown in (19) using only our knowledge of the on-site Green function for the 
left and right leads: 

Jh 
*L(-1,-1) = gL(N+l,N+l) = 

—e 
A 

(20) 

The green function for the coupled system can the be calculated by performing the matrix inversion shown 
below. 

-i-i 

-Ae-ikh A 
A       (E-2A-V0) A 

A (£-2A-Vj) A 

A (£-2A-V2) 

A   (E-2A-VN)       A 

-Ae -ikh 

(21) 

Since only the value of the Green function, G(N,0), is required to find the transmission coefficient, one can 
solve a simple linear system rather than actually calculating the full inverse of the matrix. The transmission 
coefficient can then be calculated using the relation 

T= (±)(fiv)2\G(N,0)\2. 
h2 

Generalization to higher dimension requires only the block-tridiagonal nature of the Hamiltonian. 

(22) 

V. ERROR ANALYSIS 

Figure 3 shows an error analysis for each of the techniques discussed here. The transmission coefficient 
through a single barrier, for which exact results are available, was calculated for a range of energies from 0 
to twice the barrier height. The error was calculated using the expression below. 

error 
T<Ei) -*•«.„(£,) 

exact (Ei) 
(23) 
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FIGURE 2. Comparison of the error in calculating the transmission coefficient using 
various numerical approximation. The comparison is made for the case of transmission 
through a single barrier. 

For both FEM, Green function (GF), and FD techniques, the numerical dispersion relations were used. The 
curve labeled FEM/C employed the continuum dispersion for comparison. The curve labeled FEM/LM 
used the so-called "lumped mass" approximation for which the FEM matrices V and M are approximated 
by diagonal matrices. The results show that the GF method slightly improves on the FEM approach. One 
can see comparing (16) and (21) that the FEM matrix results actually is the second order expansion of the 
exponential in (20). 

The GF and FEM approaches are sufficiently similar in performance that the choice of method will often 
be dictated by other strengths. The FEM is particularly well suited to complicated boundary shapes in 
higher dimensions and has been generalized to include applied magnetic fields [3]. The GF method is 
useful in small problems because analytical results for the matrix inversion can be obtained. Further, it can 
be used with Keldysh Green function to handle non-equilibrium and dissipative problems [4]. 
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Abstract 

Quantum transport in low dimensional nanostructures is examined with an exactly solvable real- 
space three-dimensional supercell model. Applications to the following examples are discussed : 
(1) finite length quantum wires, (2) alloy clustering effects in single barrier tunnel structures, and 
(3) quantum dot arrays. 

I. INTRODUCTION 

We developed a flexible 3D model aimed at exploring issues relevant to quantum transport in 
nanostructures, including effects of reduced dimensionality and structural inhomogeneities. Using 
our method we have demonstrated that interfacial inhomogeneities in double barrier resonant tun- 
neling diodes can induce lateral localization of wave functions [1]; strongly attractive impurities can 
produce additional transmission resonances [2]; and surface roughness in quantum dots can cause 
large fluctuations in transmission characteristics [3]. In this paper, we examine transport through 
single barrier tunnel structures with alloy clustering, and relate it to transport through quantum 
wires. We also examine transport through quantum dot arrays. 

II. METHOD 

We use a planar supercell tight-binding Hamiltonian and specify the active region of a structure as 
a stack of Nz layers perpendicular to the z-direction, with each layer containing a periodic array of 
rectangular planar supercells of Nx x Ny sites. Within each planar supercell, the potential assumes 
lateral variations as dictated by device geometry. Our method obtains exact scattering plane wave 
solutions [1, 2], subject to supercell periodic boundary conditions in the x- and y-directions, and 
open boundary conditions in the z-direction. Our method requires accurate and efficient solutions 
of large sparse linear systems, which is achieved using the quasi-minimal residual method [4]. 

III. APPLICATIONS 

We apply our method to the following examples : (1) finite length quantum wires, (2) quantum dot 
arrays, and (3) clustering effects in alloy barriers. In all three cases, the band edge and effective 
mass values for well- and barrier-type materials used are : E^ = 0 eV, m*^ = 0.0673 mo, EQ = 
1.05 eV, m*B = 0.1248 mo; the choice of these material parameters nominally correspond GaAs and 
AlAs, respectively. 

1. Finite Length Quantum Wires 

We first examine finite-length quantum wire electron waveguides. We consider GaAs quantum 
wires surrounded on the sides by AlAs walls, and the ends by GaAs electrodes.  The wires have 
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40ÄX40Ä cross-section, and wire lengths ranging from 50Ä to 800Ä. We study the dependence 
of quantum wire transmission properties on channel length. The transmission spectra in Fig. 1 
show that as the quantum wire channel length increases, the number of transmission resonances 
increases, corresponding to an increasing number of modes in the wire. Note that in all the spectra 
shown, transmission coefficient tends to be quite small for electron energy below « 0.3 eV. In Fig. 2 
we plot the same set of transmission spectra on a semilogarithmic scale to reveal the sub-threshold 
behavior. We see that there is a cutoff energy (analogues to cutoff frequency in metallic waveguides 
for electromagnetic waves), and that the cutoff becomes sharper as the channel length increases. 

Cross Section= 40A x 40A Cross Section= 40A X40A 
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Fig. 1. Transmission coefficients for a set of quan- 
tum wire structures with various channel lengths. 

0.2 0.3 
em 

Fig. 2.    Transmission coefficients for structures 
similar to those in Fig. 1, shown in semilog scale. 

2. Alloy Clustering Effects in Single Barrier Tunnel Structures 

We next consider tunneling characteristics of single barrier GaAs/Alo.sGao.sAs structures of varying 
thickness. It can be demonstrated that for totally random alloy configurations, the virtual crystal 
approximation yields transmission characteristics which are in agreement with supercell calculation 
results. However, if we allow the AlAs sites (equivalently, the GaAs sites) in the barrier to cluster, 
then tunneling characteristics can change significantly. Fig. 3 shows the transmission spectra for 
50Ä, 100Ä, and 200Ä thick barriers, with cluster size (average in-plane cluster "diameter") of A = 
65Ä. Note that the spectra show typical single barrier tunneling characteristics below a threshold 
energy (äS 0.18 eV). Above the threshold, the even thick barriers becomes somewhat transparent. 
The threshold energy decreases as cluster size increase, as depicted in Fig. 4. The above-threshold 
behavior can be explained in terms of short wavelength electrons penetrating through the barrier 
via channels formed by GaAs clusters.   The transport mechanism is analogous to that in finite 
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length quantum wires; a comparison between Fig. 3 and Figs. 1 & 2 shows qualitative similarities. 
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Fig. 3. Transmission coefficients a set of single al- 
loy barrier tunnel structures with different barrier 
thickness. 
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3. Quantum Dot Arrays 

In the final example we study transmission properties of quantum dot arrays, which consist of 
(40 Ä)3 dots arranged in a 2D square lattice, embedded between a pair of 20 Ä barrier layers. 
We consider the following three cases as illustrated in Fig. 5 : (1) isolated dots, where the dots 
are separated laterally by 40 Ä barriers, (2) interacting dots, where the interdot barriers are 10 
A wide, and, for comparison, (3) the limiting case of zero interdot separation, which is simply a 
double barrier structure. Transmission spectra for these structures with various values of lateral 
incoming plane wave momentum are shown in Fig. 6. While all the spectra show resonances 
corresponding to the quantized levels in the quantum dots (quantum well), they differ significantly 
in their ky dependence. The double barrier structure shows ky dispersion similar to bulk GaAs, as 
expected. The array of isolated dots shows no ky dispersion, due to OD quantum confinement. The 
array of interacting dots can be considered as a 2D solid composed of interacting artificial atoms, 
forming its own band structure differing significantly from that of bulk GaAs. This is quite evident 
in Fig. 6. We note in particular that the splitting of the n = 2 peak due to the interaction of p-like 
bands. 
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Fig. 5. Illustrations of closely-spaced and isolated 
quantum dot arrays. A double barrier structure is 
included for comparison. 
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Fig. 6. Transmission coefficients a structures illus- 
trated in Fig. 5. 

IV. SUMMARY 

We examine transport through single barrier tunnel structures with alloy clustering, and relate it 
to transport through quantum wires. This demonstrates that structural imperfections can not only 
produce additional scattering processes in a perturbative sense, but also alter quantized electronic 
states, leading to substantially modified transport properties. We also studied arrays of mesoscopic 
devices, where transport properties are strongly influenced by coherence among closely-spaced 
device structures. 
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Abstract 

A quasi 3D simulation of a quantum waveguide coupler has been performed. The Schrödinger 
and Poisson equations have been solved self-consistently in each of the 2D slices into which the 
device has been subdivided. A modified recursive Green's function algorithm is used to compute 
the waveguide and tunneling conductances. 

I. DEVICE MODEL 

We have studied a device model based on the structure reported by Eugster et al. in Ref. 1, 
assuming a layer arrangement (Fig. 1) for the shallow heterostructure as reported in Ref. 2. The 
gate geometry of our model corresponds faithfully to the real device in the central portion, where 
coupling between the two waveguides takes place, while differs in the outer regions (dashed lines 
in Fig. 2), where we have assumed semiinfinite quantum wires instead of tapering off from a 
2DEG, for reasons of computational convenience. The model has been divided into 2D slices 
along the longitudinal direction, assuming that the potential profile is going to be constant within 
each slice. The Schrödinger and Poisson equations have been solved self-consistently in each slice, 
obtaining eigenvalues and eigenfunctions to be used for the conductance calculation. Our quasi- 
3D approach is based on the hypothesis of quasi-adiabatic variation of the potential along the 
longitudinal direction, which allows solving for the potential separately in each slice. Finally, the 
Green's functions for the whole structure are computed and from them we obtain the transmission 
coefficients and, consequently, the conductances, via the Landauer formula. 
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Fig. 1. Layer diagram of the heterostructure Fig. 2. Gate geometry 
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II. MODIFIED GREEN'S FUNCTION METHOD 

In order to compute the transmission and reflection coefficients and thus the conductances in 
our model device, we have used a modified version [3] of the Recursive Green's Function Formalism 
[4,5,6]. 

The basic idea consists in computing the Green's functions for ID chains with Dirichlet bound- 
ary conditions at their ends. Each ID chain represents the propagation of a 2D transverse mode 
within a slice characterized by a constant transverse potential profile. Due to the invariance of 
the potential along the longitudinal direction, the various transverse modes do not couple within a 
single slice, therefore their representation with ID chains is rigorously correct. 

The Dirichlet boundary conditions imply isolation of each section from the neighboring ones. 
The Green's functions of the connected structure are evaluated by applying a perturbation corre- 
sponding to joining the ends of the chains belonging to different sections and removing the Dirichlet 
boundary conditions. The perturbed Green's functions are obtained from the Dyson equation, eval- 
uating the effect of the perturbation to all orders 

G = G0 + G0VG, 

where G0 is the Green's function for the unperturbed system, G the one for the perturbed system 
and V represents the perturbation potential, corresponding to coupling between neighboring slices. 

The Green's functions for each ID chain are computed with a discretization based on a tight- 
binding description of the device geometry. The present approach, however, differs from the one 
of Ref. 6, because we are not using a square tight-binding lattice. Usage of a square lattice is 
convenient when studying disorder induced phenomena, i.e. when rapid fluctuations of the poten- 
tial occur in all directions. In the present calculation we use a tight-binding discretization only 
along the longitudinal direction parallel to the waveguides, while along the transverse direction we 
consider simply a number of modes sufficient to accurately describe the coupling between slices. 
This formulation of the problem yields an immediate advantage: it is possible to use a very fine 
discretization in the longitudinal direction, while keeping the number of transverse modes and 
therefore the size of the matrices to be inverted [6] down to reasonable values. A fine discretization 
in the longitudinal direction is important to obtain a good representation of the continuum energies: 
the actual tight-binding dispersion relation is cosinusoidal, only in the region around the origin it 
properly reproduces the parabolic dispersion relation of continuum. 

The elements of the coupling matrix V are the mode overlaps between the transverse modes of 
the corresponding pair of slices, multiplied by the tight-binding hopping potential [6]. The mode 
overlaps are computed taking the discretized overlap integral between the wave functions relative 
to the modes being considered. 

Numerical resolution of transverse modes in each slice requires a fine 2D grid in the quantum 
well (QW) region. The overlap integrals are computed on a common grid which must be fine over 
the QW regions of all slices and which therefore has very many lines. We use specialized methods 
to solve the resulting large, sparse eigenvalue problems. 

III. SELF-CONSISTENT SCHRÖDINGER-POISSON SOLUTION 

As in Ref. 7, the resolution of the transverse modes in each slice is an iteration to self- 
consistency of the Schrödinger equation for the wavefunctions and a nonlinear Poisson equation for 
semi-classical charges such as ionized dopants. We take the surface charge density to be constant 
between contacts at -3.3 x 1012 cm"2. At 1.6 K, this Poisson equation is highly nonlinear, with 
effects such as acceptor freezeout in the substrate occurring practically discontinuously, which re- 
quires a grid refinement at the freezeout depth. The coupling between the Poisson and Schrödinger 
equations is also very dramatic, with slight perturbations in the potential resulting in a complete 
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change in the number and shape of the occupied wavefunctions. For this sensitive problem, we use 
a fixed-point iteration in the most sensitive quantity, the quantum electron density. 

The iteration progresses by successive solution of the nonlinear Poisson and Schrödinger equa- 
tions. It is clear that a fixed point of this iteration corresponds to a self-consistent solution. It is 
also clear that the nature of the iteration will be oscillatory, with underfull wavefunctions causing a 
deepening of the QW, leading to overfull wavefunctions, and vice versa. In the early iterations, we 
use adaptive underrelaxation to stabilize the oscillations. Close to the solution, we use a Jacobian- 
free approximate Newton method to accelerate the convergence to self-consistency. Our experience 
is that this is a very effective way to handle the nonlinearlity in the model [8]. 

The nonlinear Poisson equation is solved using a Newton method with inexact linesearch. We 
take zero-field boundary conditions in the air above the contacts and to the sides, Dirichlet bound- 
ary conditions in the contacts that include a Schottky barrier of 0.9 eV, and Dirichlet boundary 
conditions in the substrate for charge-neutrality, determined by a bisection search of the bandgap. 
The Jacobian is solved for the Newton direction using the Conjugate Gradient (CG) method on 
a reduced system obtained by block Gaussian elimination of a red-black reordering of the matrix 
from a 5-point discretization on a rectangular grid, as in [8]. This gives an order of magnitude 
speedup over straight CG. 

The eigenvalue problem for the Schrödinger equation can be effectively solved with a version of 
RITZIT [9] modified to use column operations, providing the spectrum is first shifted to make the 
desired eigenvalues the largest in modulus. However, we have developed a more efficient Chebyshev- 
preconditioned Krylov subspace method. Both of these solvers are projection methods [10], which 
reduce the complexity of the eigenvalue problem by finding a small invariant subspace of a matrix 
rather than its entire spectral decomposition. Although the fine grid to resolve the transverse 
wavefunctions results in a large, sparse eigenvalue problem, only the few lowest energy levels that 
are occupied are relevant to the problem. The higher energy levels are squashed by Chebyshev 
preconditioning in both solvers, so that the subspace iteration in RITZIT and our Krylov subspace 
iteration converge specifically to the desired modes. 

IV. RESULTS 

We have been interested in simulating lD-to-lD tunneling in this structure, therefore we have 
chosen electrode bias values tuned to obtain significant coupling between the wires. It turns out 
that appreciable coupling is reached only with a central gate bias of -0.6 V, which corresponds to 
the threshold for depletion of the 2DEG under an infinite gate. In our model device this does not 
lead to coupling between the outgoing leads, due to the depleting action of the source and drain 
electrodes that are in close proximity of the gate. In the real device geometry, at this gate voltage 
the two channels would probably be short-circuited, due to strong coupling far from the central 
region. This may be the explanation for the problems reported [11] in the observation of lD-to-lD 
tunneling. 

In Fig. 3 we report the results for the conductance between the ends of the same waveguide 
(upper curve) and between the end of one waveguide and the other end of the other waveguide 
(lower curve) vs. the length of the central slice, where most of the coupling takes place. Bias values 
are constant: VG=—0.6 V, VD = Vs=—1.65 V. As expected, we observe a substantially oscillatory 
behavior of the tunneling conductance for increasing length of the central section. Oscillations in 
the tunneling conductance have opposite phase with respect to the ones in the direct conductance 
in order for the total current to be constant. Even in this extreme bias condition the coupling never 
reaches 2e2/h. 
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Fig. 3. Conductance between the end of the same 
waveguide (upper curve) and tunneling conduct- 
ance (lower curve) vs. coupling length. 
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Source bias (V) 

Fig. 4. Conductance of the drain waveguide (dot- 
ted line), of the source waveguide (dashed line) 
and tunneling conductance (solid line) vs. bias. 

In Fig. 4 results are shown for the conductance of the source-side waveguide (dashed line), 
the drain-side waveguide (dotted line) and between the two waveguides (solid line) as a function 
of the bias of the source electrode. The gate and drain biases are kept constant at -0.6 V and 
-1.7 V, respectively. We observe peaks (indicated by arrows) of the tunneling conductance in 
correspondence with the opening of new modes in the source waveguide, in analogy with what has 
been observed experimentally for the lD-to-2D tunneling. Conductance quantization for the source 
waveguide when the source bias is swept is rather poor, as in the experimental results of [1]. This 
may also be due to reflections in the bends, besides the effects of finite temperature (1.6 K) and of 
coupling. 
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Abstract 

The detailed spatial variation of the electronic scattering states in open and unconfined mesoscopic 
systems is of interest in both the asymptotic far-field regime and the near-field regime in the vicin- 
ity of the scattering potential. We are interested in solving the multidimensional effective mass 
Schrödinger equation for the scattering states which are compatible with the outward Sommerfeld 
radiation condition. We present our findings in a comparison of two numerical solution meth- 
ods which implement non-reflecting boundary conditions on an artificial boundary enclosing the 
multidimensional problem domain and are compatible with standard finite element techniques. 

I. INTRODUCTION 

It is of interest to study the near-field scattering states in open-boundary multidimensional 
ballistic structures. The importance of these scattering states is demonstrated in recent scanning 
tunneling microscope experiments on metals which support a 2DEG by surface state confinement 
[1,2]. The interference behavior near point scatterers and step edges is directly related to the two- 
dimensional local density of states of the electronic scattering system. It has also been pointed 
out [3] that local field effects in mesoscopic scattering systems are closely related to the electronic 
scattering states, which have been previously studied for Q1D ballistic structures [4] in the near 
field regime. To this end, we present a comparison of two numerical methods which implement 
non-reflecting boundary conditions which are compatible with the outward Sommerfeld radiation 
condition to solve the single-electron effective-mass Schrödinger equation. 

II. SOLUTION METHOD 

Two methods for implementing non-reflecting boundary conditions (NRBC) on an artificial 
boundary are presented. The first is an exact method which uses the known far-field solution 
for the asymptotic scattering state by matching the known partial-wave expansion to the near-field 
solution on the artificial domain boundary, and likewise matching the boundary normal derivatives. 
The Schrödinger equation is integrated by parts with the boundary normal derivatives inserted into 
the surface term which results in a non-local densely coupled boundary. The second NRBC method 
is an approximate boundary condition formulated from the application of operators which are, by 
construction, compatible with the outward Sommerfeld radiation condition in the far-field regime. 
The boundary condition is again inserted into the surface integral term but results in only a local 
tridiagonally coupled boundary. The model system is presented followed by a brief synopsis of both 
the non-local exact NRBC and the local approximate NRBC. 

'This work has been supported by the Office of Naval Research and the Air Force Office of Scientific Research. 
^H.K.rl. is grateful for a fellowship from the Center for Applied Mathematics of the University of Notre Dame. 
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1. Model System 
We seek explicit solutions to the multidimensional single-electron effective-mass Schrödinger 

equation, 
V 

V- 
1 

nr 
■V^(r) + V(r)^(r) = EI/>E(T). (1) 

A two dimensional domain will be assumed for simplicity, although the method is easily generalized 
to three dimensional geometries. As shown schematicaUy in Fig. 1, the scattering domain has an 
artificial boundary at a radius R0 from the center of the scattering potential which encloses the 
solution domain, Q,0- The potential is assumed con- 
stant outside the artificial domain boundary in the 
region labeled J2j, and is taken as the zero ref- 
erence. As indicated in the figure, an electronic 
flux, injected by some outside source, is incident 
upon the mesoscopic scattering region, fi0- It will 
be assumed that the wave-function for the incident 
flux can be described by a plane wave of the form 

ij)inc = aexp[ik • r], where k - |k| = \J2m*EjT?. 

Figure 1. Schematic diagram of the solution 
domain enclosing the scattering potential. 

2. Non-Reflecting Boundary Conditions 
In this section a brief synopsis of the exact non-reflecting boundary condition for the solution 

of Eq. 1 will be presented and the reader is referred to the recent publication [5] by two of the 
authors for a detailed derivation. The formulation begins with the partial wave expansion of the 
known far-field solution to Eq. 1, 

4(r > Ro, 0) = Anc + $. scatt — oe       + 

oo 

E ■■ 
m=—co 

^H^ikry (2) 

where a is the amplitude of the incident plane wave, H$ is the Hankel function for the outgoing 
scattered wave with unknown amplitude bm. The unknown coefficients, bm in Eq. 2 may be elim- 
inated through the use of the orthogonality of the angular modes. The known far-field solution is 
used to obtain the exact normal derivatives of the scattering state on the boundary. The integration 
by parts of Eq. 1 results in the surface integral term into which this boundary condition is inserted. 
The resulting formulation using the finite element approximation ip « J2i Vw> where u{ is the i* 
shape-function, recast into matrix notation has the form of the linear system, 

+ V + C]V = P, (3) 

where T;J = % Jüo Vui-^Vu^ du and V^- = /fio w; [V - E] UJ dQ, are the kinetic and potential en- 

ergy matrix element, respectively, C^ = --j- J0 
■2w 1 

H£\kRo) 
X 

AmS RQd6 is the matrix element which results from, the boundary integral, and the right-hand-side 

vector pi = \ /0
27r Wj.r^r akj^. «OO 

771 = J'm(kR0)~Jm(kRo)^TJ^ HÜ\kR0) 
AmQ RodO contains the 

incident plane wave contribution. The embedded integral around the boundary in C is inherently 
non-local and results in a numerical formulation whose discretized boundary is densely coupled. 

The approximate non-reflecting boundary condition is based on the method of Bayliss and 
coworkers [6]. In solving Eq. 1 for the scattering states, a constraint on the artificial boundary is 
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imposed which restricts the solutions to the class of wave-functions which are compatible with the 
outward Sommerfeld radiation condition. The boundary constraint is exact in the limit of RQ —*■ oo 
and has a radially decaying truncation error on the artificial boundary. 

In the two-dimensional case, the scattered part of the wave-function may be expanded in the 
form i^scatt oc etkr X^j^o /i(^)/(^r)'7+^- A se^ of linear operators, Bm, compatible with the outgoing 
Sommerfeld radiation condition are constructed such that on the artificial boundary each mth higher 

order term is eliminated when Bm operates on the far-field expansion, Bmipscatt\r = O (R0    
2 

The set of operators are therefore defined as Bo — 1, Bm = (dr — ik + am/r)Bm-i, where am is a 
constant chosen to eliminate the mth term of the expansion. In the two-dimensional case, the first 
two non-trivial operators are given by: 

Bx      =(dr-ik + ±)      ;   £?iVwt|r = 0(R~5/2) (4.a) 

B2   =(dr-ik + £)Bt    ;   B2i>scatt\r = ö(R-9/2). (4.b) 

Expanding B2i>scatt\r and imphcitly using the original Schrödinger equation,  -0- =  -7^ - 

r2   QQ1 h^iv ~ k2tj), the result of operating with B2 on tp may be rearranged to obtain the boundary nor- 

mal derivative of the wave-function:   -^ r = {3^ [Mine+ ±u-&+*?*+2*v] }r ■ 
Similar to the derivation of the exact non-local NRBC, this boundary normal derivative may be 
used in the surface term resulting from the integration by parts of Eq. 1. Within the finite el- 
ement method, the linear system given by Eq. 3 is again obtained, where now the boundary 

terms are given by C{j = ^ivlt ^|rlw|r
d0 + &i.V ~ Z ~ 2l) ^ui\T

ui\T
d9 and P» = 

2^7 {-7 Jo2,r Ui{cos6 - l)2ipincd6 + UQ
T

 Ui(cos9 - l)4>inCd0 + TJ J
2T

 Uitpincd9J , where ipinc is the in- 

cident wave, 7 = 2(S), i = 2(SX' and V = *2(i-ikRoV Unlike the exact NRBC method' 
this formulation does not contain any embedded integral terms in C and results in a numerical 
formulation whose discretized boundary is only tridiagonally coupled. This local NRBC, however, 
has an approximation error due to the neglected terms of the far-field expansion. This error may be 
made less than the inherent discretization error in the domain by using a sufficiently large radius. 

III. PERFORMANCE 

The approximation error of the local NRBC method is expected to improve with increasing ra- 
dius and approach the exact solution compatible with the outward Sommerfeld radiation condition. 
To compare the two algorithms, it is necessary to fix the discretization error of both the interior 
domain and the artificial boundary. To this end, a series of regular concentric circular meshes of in- 
creasing radius were generated such that the discretization error was held constant by keeping both 
khr and kh$ equal between grids. The number of nodes was therefore increased with increasing 
domain radius while keeping the wavevector, k, constant. For the non-local NRBC computations, 
the infinite sums in the boundary condition were truncated to 40 terms and the linear system, Eq. 
3, was solved to obtain the "exact" scattering states. Likewise, the local NRBC was implemented 
on the same set of problem domains, using the B2 operator, and the system was solved for the 
"approximate" solutions. The reflection coefficients, bm, were obtained from the "exact" solutions 
and Eq. 2 by integrating around the boundary using the orthogonality of the angular modes. The 
approximation error of the local NRBC method is determined from Bmw — Bm(xpscatt - v), where 
v is the approximate solution computed by enforcing Bmv = 0 on the boundary and i>Scatt is the 
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m 

"exact" formulation of the scattered wave in Eq. 2 using the numerically computed bm coefficients. 
Plotted in Fig. 2 is the norm of the computed error of the local NRBC, normalized for the number 

of nodes on the boundary, for both the 
Bi (circles) and B2 (triangles) oper- 
ators as a function of increasing do- 
main radius. Each point was obtained 
from solutions computed using differ- 
ent grids with increasing domain ra- 
dius. Also shown are the computed 
fits for the next four higher order 
terms from Eq. 4.a, y = ci(kR0)~

5/2+ 
c2{kR0)-

7l2 + ..., and Eq. 4.b, 
y = d^kRo)-9'2 + d2{kR0)-

nl2 + ..., 
which are neglected by the B\ and B2 

local NRBC approximations, respec- 
tively. The local approximation error 
also improves with increasing wavevector, k, [6] so one may expect better results with higher energy. 
These results demonstrate that the two NRBC methods approach the same solution at larger radii, 
neglecting any difference in the discretization error on the boundary. For the non-local method, 
the accuracy of the embedded boundary integral is sensitive to the number of boundary nodes. 
For solutions far from the scattering potential, where a large number of nodes must be placed on 
the boundary, the efficiency of the local NRBC makes it superior to the densely coupled non-local 
"exact" method. If a given 2-D mesh has N nodes and an effective bandwidth ß = 0(y/W), then for 
the non-local NRBC method the storage requirement is 0(Nß) non-zero matrix entries as opposed 
to the tridiagonally coupled local NRBC O(N) requirement. The difference in storage will also be 
reflected in the execution time. For the non-local NRBC, the execution time is Ö(N ß2) for a direct 
solve and approximately O(Nß) for an iterative solution. The local NRBC also has an execution 
time of 0(N2) for the direct solve, but the mulplicative constant is much lower. The time for an 
iterative solve is approximately 0(Nlog N), which is feasible for three-dimensional problems. 

Figure 2. Approximation error as a function of domain 
radius, R0, for B\w (circles) and B2w (triangles). Also 

shown are the fits for the next few expansion terms. 

IV. SUMMARY 

Two methods for implementing non-reflecting boundary conditions (NRBC) which are compat- 
ible with the outward Sommerfeld radiation conditions were compared for the solution of the single 
electron effective-mass Schrödinger equation. The exact NRBC results in a non-locally coupled 
boundary condition whereas the approximate NRBC method is local. The approximation error 
of the local method, however, requires that the artificial boundary be placed sufficiently far from 
the scattering center that the neglected higher order terms in the approximation have decayed. 
The non-local NRBC method has greater accuracy for an artificial boundary placed closer to the 
scattering potential. The efficiency in both storage and execution time of the local NRBC over the 
non-local NRBC suggests that, for realistic 3-D problems, only the local NRBC method is feasible. 
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Abstract 

Electron-phonon and electron-electron interactions are commonly included in semiclassical device 
simulation programs. However, such interactions are often neglected in the simulation of quantum 
devices. In this talk we will describe a general approach to quantum device simulation based on the 
non-equilibrium Green's function (NEGF) formalism that allows us to include these interactions. 

I. INTRODUCTION 

The cornerstone of semiclassical transport theory is the Boltzmann equation 

OUtf v. Vf + (eE / h). Vkf + SUULf = S1" (1 - f) (1.1) 

which describes the behavior of the distribution function f(r,k). This description is based on a physical 
picture which views electrons as particles that move in the external electric field according to "Newton's 
laws" (the quotes are used as a reminder that bandstructure effects are included) and are scattered by 
the random microscopic fields arising from impurities, phonons or other electrons (described by the 
functions Sin(r,k) and Sout(r,k)). The Boltzmann equation effectively combines semiclassical dynamics 
with a stochastic description of the scattering processes: 

Boltzmann "Newton's laws" + Random scattering 

This approach works quite well for most devices under most conditions. However, there are quantum 
devices like resonant tunneling diodes which cannot be described at all within this semiclassical 
framework. Their operation is based on quantum interference effects arising from the wave nature of 
electrons. Moreover, as devices shrink to smaller dimensions, it is expected that quantum interference 
effects will become increasingly significant even in the operation of conventional devices. In order to 
include these effects we need a quantum version of the Boltzmann equation which combines quantum 
dynamics with a stochastic description of the scattering processes. The non-equilibrium Green's 
function (NEGF) formalism (also referred to as the Keldysh formalism) provides us with just that: 

NEGF "Schrodinger equation" + Random scattering 

In this talk we will briefly summarize this formalism. For more details we refer the reader to the cited 
references and the references therein. 

H. BASIC CONCEPTS 

Before we can introduce the NEGF formalism we need to discuss a few basic concepts. 
Consider a homogeneous conductor. In the semiclassical picture we can describe the electrons by 
specifying the distribution function f(k) which tells us the number of electrons occupying a particular 
state 'k'. But in the quantum mechanical picture this is not enough. We also need to specify the phase- 
relationship among the different states. One way to do this is to define a density matrix p(k,k'). The 
distribution function f(k) only gives us the diagonal elements of this matrix: 
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f(k)   =   [P(k,k')]k,=k 

The rest of the story is contained in the off-diagonal elements which cannot be neglected unless the 
phase-relaxation length is much shorter than the other length scales. 

It will be noted that although we have used a representation in terms of k-states to define the 
correlation function, we can always transform to other representations using an appropriate unitary 
transformation. For example we could transform to a real space representation as follows: 

p(r5r') = (r|p|r')   = £<r|k)<k|p|k')<k'|r'» 
k,k' 

=   — ^p(k,k) exp[i(kr - k* r")] (V = normalization volume) 
Vk,k 

In principle it is possible to find a representation that diagonalizes the correlation function. In such a 
representation there are no phase-correlations to worry about and we could use semiclassical 
reasoning. In practice it may not always be convenient to find this special representation or to use it. 

To include the time coordinate into this description, in general we need a two-time correlation 
function of the form Gn(k,k';t,f). In steady-state problems, the correlation function depends only on 
the difference between the two times and can be Fourier transformed to yield 

Gn(k,k';E)S   JdxGn(k,k';x)e-iEt/Ä       (tst-tf) (II.D 

One way to understand the Fourier transform relationship between the energy 'E and the difference 
time coordinate (t-f) is to note that the wavefunction of a particle with energy E evolves in time with a 
phase factor of exp [-iEt/ ft]. Consequently 

\(/(t) Y* (f ) ~ exp [-iE(t - f) / ft] 

This suggests that the Fourier transform of the correlation function with respect to (t-f) should yield 
the energy spectrum. . 

Some treatments of quantum transport are based on the equal time correlation function 
obtained from Gn(k,k';t,t') by setting t' = t. It is straightforward to show that this is equivalent to 
integrating Gn(k,k'; E) over all energy: 

Gn(k,k';t,f)l       =       f^Gn(k,k';E) 
J t=t' J 2K 

As a result the energy-resolved information is lost making it difficult to describe scattering processes 
which transfer electrons from one energy to another. In general we need to use the full two-time 
correlation function. Since our interest is confined to steady-state transport, the correlation function 
depends only on the time difference (t - t') and can be Fourier transformed to obtain Gn(k,k'; E) as 
described above. This energy-dependent correlation function is what we will use in this talk. 

In the semiclassical picture we can define a function Sout(k,t) that tells us the rate at which 
electrons are scattered out of a state 'k' assuming it is initially full. In a quantum mechanical 
description we have to generalize this concept, too, to include phase-correlations: 

Sout(k,t)   -»   Zont(k,k';t,t:) 

Once again for steady-state problems the outscattering function depends only on the difference time 
coordinate and can be Fourier transformed yield an energy-dependent outscattering function 
lOUt^k'; E). 
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In deriving semiclassical kinetic equations we usually balance the outflow of electrons against 
the inflow of electrons. The inflow of electrons can alternatively be viewed as an outflow of 'holes' 
(whose number is given by (1-f)). We use the quotes as a reminder that we are talking about holes in 
the conduction band itself (we are considering only one band) and not in some other valence band. 
To describe the outflow of holes in the quantum formalism we define a hole correlation function GP 
and an inscattering function Ein (which is a hole outscattering function) using exactly the same 
argument as we used above for electrons. 

Before proceeding further we should point out that we are using a notation that is slightly 
different from the standard notation in the literature. We have deliberately chosen the notation to 
reflect the physical meaning of these functions. The correspondence, however, is quite straightforward: 

Gn,Gp,Ein,Zout   ->       -iG<,+iG>,-iE<,+iS> 

This set of four functions Gn, GP, Xin and Lout (which are the quantum analogs of the semiclassical 
concepts f, (1-f), Sin and Sout) provide us with the language needed to include phase-correlations into 
a transport theory. If we represent our device by a set of 'N' nodes (in real space or in momentum 
space or in some other representation), then each of these quantities is a matrix of dimensions (NxN) 
at a given energy *E". From hereon we will not write the energy coordinate 'E' explicitly for clarity. 

m. KINETIC EQUATION 

The correlation function is related to the scattering function by the relation 

Gn=GREinGA (IIL1) 

This equation is written in matrix notation and could be applied in any convenient representation. The 
Green's function GR is calculated from a Schrodinger-like equation 

[EI-H0-£
R
]G

R
=I (III.2) 

where Ho is the Hamiltonian operator describing the device and I is the identity matrix (the other new 
function GA is just the Hermitian conjugate of GR). 

To understand the physical meaning of the Green's function we note that in ordinary quantum 

mechanics the wavefunction of an electron is described by a Schrodinger equation pI-H0JxF = 0. 

Comparing with Eq.(in.2) for GR we note two differences. Firstly there is a delta function source term 
(I) on the right hand side of Eq.(III.2) suggesting that the function GR(r,r') be interpreted as the 
wavefunction at Y due to a delta function source at r' in the position representation. Similar 
interpretations are of course possible in other representations as well. Secondly there is an extra term 
SR known as the self-energy. It represents the effective potential that an electron feels due to its 
interactions with phonons, other electrons etc (which are not included in Ho). 

It is interesting that we can rewrite the Boltzmann equation (Eq.(I.l)) in a form that looks a lot 
like Eqs.(III.l) and (III.2). We could define a Green's function gR as follows 

v.VgR + (eE/ ft).VkgR + (Sout + Sin) gR(r,k;r',k') = 5(r-r') 8(k-k')   (III.3a) 

and express the distribution function in terms of this Green's function: 

f(r,k) = Jdr' dk' gR(r,k;r',k') Sin(r' ,k') (III.3b) 
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IV. SELF-ENERGY FUNCTIONS 

In order to perform any concrete calculations based on the Boltzmann equation we need a 
recipe for calculating the functions Sin and Sout. These functions describe the physics of the 
interactions and the precise recipe depends on what interaction we want to describe and what 
approximation we wish to use. In the quantum formalism the same is true of the functions Ein, Sout 

andZR. For a detailed description of different types of interactions we refer the reader to [2]. Here 
we will simply summarize the results for electron-phonon interactions in the self-consistent Born 
approximation (SCBA) and for electron-electron interactions in the Hartree-Fock approximation. 

Phonon scattering in lowest order perturbation theory is described by 

X^fcF ;E) = Jd(»co) D(r,F ;to)Gn(r,F ;E-Äco) (IV.la) 

Soot(r,r' ;E) = Jd(to)D(r9F ;to)Gp(r,F ;E + to) (IV.lb) 

where the function D describes the spatial correlation and energy spectrum of the phonons (fco) > 0 
corresponds to absorption and h(£> < 0 to emission). 

D(f,F ;fta>) = ]£ 
q 

q 

2 exp[-iq. (f - F)] N 8(GO - oo ) 

+ exp[+iq. (f - F)] (N  +1) S(Cü + co ) 
(IV.2) 

where Nq is the number of phonons with wavevector q and frequency Q)q and Uq is the potential felt 
by an electron due to a single phonon with wavevector q. Assuming that the bath of phonons is always 
maintained in thermal equilibrium Nq is given by the Bose-Einstein function. The self-energy function 
is given by 

ER(E) = rH(E) + -r(E)       where   r(E) = Zin(E) + Lout(E) (IV.3) 

and TH(E) is the Hubert transform of T(E). 
Electron-electron interactions in the Hartree-Fock approximation, do not give rise to any Em, 

20Ut. It only contributes to LR: 

SR(r,? ;E) = UH(f) S(r -?) + SF(r,F) (IV.4) 

The first term is the Hartree potential: 

UH(r) = f d? f ^ Gn(F ,F ;E)        * (IV.5) H J      J 2% 47t£ I r - r I 

The second term is the exchange potential: 

V(r,F) = -fdEGns(f,F;EV       * (IV.7) 
b J 4n£ I r —r | 

The superscript 's' is added as a reminder that an electron only feels an exchange potential due to 
other electrons of the same spin. 
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V. TERMINAL CURRENT 

In general we are interested in calculating the current that flows when a conductor is connected 
by to two (or more) contacts across which a potential difference is maintained by an external source. 
So far we have not worried about the leads connected to the conductor. One way to treat the leads is to 
impose an appropriate boundary condition on Gn(r,r';E) and GR(r,r';E) when solving Eqs.(III.l) and 
(III.2), in the same way that we impose boundary conditions on the distribution function f(r,k) in 
semiclassical theory. Once we have solved for Gn(r,r';E), we can calculate the current density J(r,E) 
throughout the conductor and then integrate over the cross-section to obtain the current in the contact 
[6,7]. 

An alternative approach that is often very convenient is to introduce the effect of the leads 

through functions SjJJ, SJJJ" and LR (defined for each lead 'm') and add it to the functions X™, 

Eout and l£ describing the interactions. 
9 <P b 

yin,out,R _    £in,out,R+y j-in,out,R (V.l) 

m 

Using a discrete lattice, or what is often referred to as the 'tight-binding' model, the self-energy 
function due to the leads can be written as [5] 

2:S(iJ;E)=-t(i)m(i)eik-a(!>*m(j) (V.2) 

where E = Um + 2t(l - cos(kma)) 

1 1 Here T and 'j' are points on a discretized lattice with spacing 'a' and t = h  12ma . The self-energy is 
non-zero only for lattice sites that are adjacent to the lead with mode 'm' and 9m represents the 
transverse wavefunction corresponding to mode 'm'. Um is the potential energy in lead 'm'. 

The inscattering and outscattering functions corresponding to the leads are given by 

Zm(i,j;E) = fm(E)rm(i,j;E) (V-3a) 

^ut(i,j;E) = (l-fm(E))rm(i,j;E) (V.3b) 

hv     * 
where r   (i,j;E) =   t® —t^ and      Ävm =8E/3km =2at sin(kma) 

3. 

Here we have assumed that each mode 'm' in the leads is maintained in local equilibrium with some 
Fermi distribution fm(E). 

It seems feasible to do something similar in semiclassical theory as well, namely, define 
;jOUt 
m 

calculated from the relation 
functions Sm(k) and S^Qc) corresponding to each contact 'm'. The current in lead 'm' can then be 

Im~    £s£(k)a-f(k))-S°ut(k)f(k) (V.5) 
k 

We are not aware of anyone using this approach in semiclassical theory, but it has been used 
successfully in the quantum version. The quantum analog of Eq.(V.5) is given by 
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m =    ^fdE 
h J 

Tr ZjnGP 
m 

(V.6) 

VI. EXAMPLES 

To apply Eqs.(III.la,b) to a specific conductor we could discretize the spatial coordinate into a 
discrete lattice with N points. All the matrices like Gn, GR, Xin etc. are then of order (NxN). the 
energy coordinate TE' too has to be discretized into a convenient number of nodes. At each energy 
node, we have to invert (NxN) matrices. The functions Ein, £out and LR then have to be 
recomputed and the calculation repeated till the process converges.At low temperature and bias a 
single energy node is adequate allowing us to handle conductors with many spatial nodes. So far we 
have applied this formalism to (1) two -dimensional conductors at low temperature and bias. This 
includes the study of the Hall effect (low and high magnetic fields) in ballistic as well as disordered 
conductors [6] and (2) one-dimensional conductors at room temperature and large bias. This involves 
the study of current flow and energy dissipation in single barrier and double barrier structures [7]. 

m FUTURE DIRECTIONS 

The NEGF formalism provides a general framework for quantum transport comparable to that 
provided by the Boltzmann formalism for semiclassical transport. In this talk we have described how 
this formalism can be used to describe steady-state transport in mesoscopic devices. Although the 
basic ideas seem clear, much remains to be done in terms of incorporating realistic scattering models 
and bandstructure effects. 

There are two areas where the basic concepts are not fully clear. One is the area of transient or 
ac response. The other is the area of transport in strongly interacting systems. The Coulomb blockade 
regime which has attracted much attention lately belongs to this category. The calculation of self- 
energy and scattering functions describing the interactions (Section IV) is based on perturbation 
theory which is not valid for strong interactions. Under these conditions we cannot use Eqs.(III.l) and 
(III.2) to calculate Gn, GR etc. Alternative non-perturbative techniques are needed [8,9]. Interestingly 
the Boltzmann formalism too runs into similar difficulties when applied to strongly interacting 
systems. We then have to worry about higher order (two-particle, three-particle) distribution functions. 
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Abstract 

Electron mobility in a quantum wire of GaAs/AlGaAs heterostructure is calculated by using the 
Boltzmann transport equation and detailed balance equation, where the results of self-consistent 
calculations for the eigen states and energies of electrons in the quantum wire system are used to 
evaluate the conductivity. Resonant behavior of the conductivity is expected due to the resonant 
scattering of electrons between the subbands induced by longitudinal optical phonon scattering. 
The resonance is shown to depend on the magnitude of one-dimensional form factors which are 
proportional to the transition probability of electrons in quasi-one dimensional system. 

1. INTRODUCTION 

It has been pointed out that the suppression of small angle scattering in quasi-one dimensional 
structures results in an enhancement of electron mobility at low temperatures [1]. At high temper- 
atures, however, electron-longitudinal optical (LO) phonon scattering will play an important role in 
quantum wires (QWs) of GaAs/AlGaAs. In QWs fabricated on GaAs/AlGaAs heterostructures, 
electrons are confined just below the hetero-interface and the gate electrodes fabricated on the 
surface form quasi-one dimensional electron gas (Q1DEG), where the electron density in channel 
area can be controlled by gate voltage. In other words, electronic states may be changed by the 
gate voltage, and thus we can tune the inter-subband energy to the optical phonon energy. Since 
the electron mobility in QWs at high temperatures is limited by the optical phonon scattering, an 
oscillatory behavior of electron mobility is expected when the gate voltage is changed [2,3] or when 
a high magnetic field is applied [4,5]. In the present work, we calculate the conductivity in a typi- 
cal gated QW structure and show that the resonant behavior similar to magnetophonon resonance 
appears by changing the gate voltage without the presence of magnetic field. For this purpose 
we solve the Poisson and Schrödinger equations self-consistently and obtain one dimensional eigen 
states and then calculate electron mobility in a QW at high temperatures. The magnitude of the 
resonance depends strongly on the parity of the wave functions in the direction perpendicular to 
the heterointerface. 

2. SELF-CONSISTENT CALCULATION 

We consider a mesa etched quantum wire structure [6] shown in Fig 1. As shown in Fig 1, we 
choose y and z directions as parallel and normal to the interface, respectively, and the motion of 
electrons is quantized in these two directions. Up to 20 subbands are calculated self-consistently in- 
cluding different confinement in z direction, where we solved the Poisson and Schrödinger equations 
numerically by discretizing the structure in a nonuniform rectangular mesh. In Fig 2, we present 
calculated results of subband energies as a function of gate voltage. The subband index (n, m) is 
used in Fig 2, which represents node number n of the wave function in the y and node number m in 
the z directions. For example, eigen state (0,1) indicates the first quantization state in y direction 
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Figure 1: Cross-section of a mesa etched 
Al-gated QW structure used for the 
present calculations. The device consists 
of an unintentionally p-doped GaAs sub- 
strate (iVA< 1014cm-3), followed by an 
undoped AlGaAs spacer layer and an n- 
doped AlGaAs cap layer (JVD = 1.5 x 
1018cm-3). 

0.1 0.2 
Gate voltage Vg(V) 

Figure 2: The electron eigen energies in 
the QW shown in Fig 1 at T = 150 K. 
The dotted lines represent the eigen states 
(n, 0) and the dashed lines represent the 
eigen states (n, 1). The arrows indicate 
relevant transitions. The index (n, m) rep- 
resents the number of nodes n of the wave 
functions in the y direction and m in the 
z direction. 

0.3 

and the second quantization state in z direction. It is seen in Fig 2 that the eigen energies are 
lowered when the gate voltage is swept in the forward direction, and that many subbands move 
below the Fermi level (OeV of the vertical scale), resulting in an enhancement of carrier population 
and the reduction of subband spacing. A typical result of the electron wave functions in the QW 
is shown in Fig 3, where the subband energies and potential profile are also plotted by dotted 
lines and dashed curve, respectively. As shown in Fig 3, the potential profile along z direction is 
quasi-triangular and the first peek (lefthand side) of the wave functions appears at almost the same 
position. Since the matrix elements (the form factors) are expressed by the overlap integral [4], 
we may expect a large value for the overlap integral between eigen states of same confinement in 
the y direction and different confinement in the z direction and the strong transition between the 
(ra,0) and (n, 1) states. In the following we present a calculated result of the conductivity in the 
QW structure. 

3. CALCULATION OF CONDUCTIVITY IN A QUANTUM WIRE 

The form factor Gu> and the scattering probability Wa> between subband i and i' are given by the 
following equations [4]. 

Gii'(fc) = JdPlJdp2K0{qx\Pl - P2\WAPl)^i{plWi{p2)^i'{p2 (1) 

Wn,(k, k>) = <W^r (N0 + 1± 0 GiAq)S{e(kf) - e(k) + E{, - E{ ± M,) (2) 

(q = k- k'), 

where *i(p)(p = {y, z)) is the wave function of the eigen state i = (n,m) and K0 is the modified 
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Figure 3: Calculated electron wave func- 
tions (solid lines) and potential profile 
(dashed line) along z direction of the QW 
shown in Fig 1 at Vs = 0.0 V. *oo and ¥0i 
are the wave functions of the (0,0) state 
(ground state) and the (0,1) state, respec- 
tively. 
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Figure 4: Calculated conductance as a 
function of gate voltage in the QW shown 
in Fig 1 atT= 150 K. 

Bessel function of the second kind, a is the Fröhlich's coupling constant, m* — 0.067roo is the 
electron effective mass and hu>0 - 36.2 meV is the LO-phonon energy in GaAs bulk, N0 is phonon 
number, and £?,• denotes subband energy of eigen state i. The ± sign in equation (2) corresponds 
to the emission and the absorption of LO-phonon, respectively. 

The electron conductivity in a QW is calculated as a function of gate voltage using the Boltz- 
mann transport equation and the detailed balance principle. Figure 4 shows the calculated result 
of conductance-gate voltage characteristic of a QW at T = 150 K. It is very interesting to point out 
that the calculated magnitude of the conductivity is very close to the experimental result of Ismail 
[2], where he used similar structure of a quantum wire. He observed a dip in the conductance-gate 
voltage characteristic, whereas the present calculation shows several weak dips in the region from 
0.1 to 0.3 V. The increase in the conductivity with the gate voltage is interpreted in terms that the 
electron density increases with increasing the gate voltage. In order to see the weak structure in 
the conductance curve more clearly, we deduced the oscillatory components by deducting a smooth 
curve of the least square fit from the conductance. The oscillatory component thus obtained is 
plotted in Fig 5, where we see more detailed structure. Although the oscillatory structure is very 
complicated, some of them are well explained with the help of the results shown in Fig. 2, where 
the arrows show the resonant transition of the electrons (the length of the arrow is the LO phonon 
energy). From a comparison between Fig. 2 and Fig. 5, the oscillatory structures at about 0.2 
and 0.24 V are ascribed to the resonant transition from the subband with the index m = 0 to the 
subbands with the index m — 1. Other transitions indicated by the arrows in Fig 2 are expected 
to be weaker because of the small value of the form factor as discussed in previous section. From 
the present work we find that the strength of transitions between the subbands in a QW structure 
strongly depends on form factors. We present the calculated form factors in Fig 6 for a gate voltage 
Vg = 0.2 V. It is clearly seen in Fig 6 that the form factor for the transition between the (0,0) 
state and the (0,1) state is large enough to dominate the reduction in the conductance because the 
energy separation between the subbands is very close to the LO phonon energy at this gate voltage. 
Similar situation occurs at the gate voltage V$ = 0.24. These oscillatory structures are found to be 
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0.1 0.2 
Gate voltage Vg(V) 

Figure 5: The oscillatory structures of the 
conductance at T = 150 K. 
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Figure 6: The form factors Goi (see the 
text for the definition) between the ground 
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Vg = 0.2V (solid circles : C?(o,o)->(n,o)i 
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very weak compared with the experimental result reported by Ismail [2]. Taking into account the 
difficulty in obtaining a uniform QW structure, the energy subband structure of a real QW is not 
so sharp compared with the ideal one used in the present calculation and the broadened nature of 
the density of states will allow the LO phonon scattering in wider range of energy, resulting in a 
broadened conductance minima. 

4. CONCLUSION 

Self-consistent calculation was carried out to obtain electronic eigen states in a QW and the conduc- 
tance was evaluated by calculating the electron mobility based on Boltzmann transport equation. 
The calculated conductance was found to exhibit minima as the resonant intersubband transition 
occurs. The dominant contribution to the minima arises from the intersubband transition between 
the (0,0) and (0,1) subbands in the QW structure used in the present calculations. 
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ABSTRACT 

We present a theoretical study of the dynamics of free photo-generated carriers in asymmetric 
GaAs-AlGaAs double wells. Pnoto-generation occurs on a sub-picosecond time scale and produces 
a coherent ensemble of electron-hole pairs in the wider well. The simultaneous thermalization and 
tunneling of electrons between the two wells is analyzed within the density matrix approach. The 
interplay between tunneling and Coulomb scattering is analyzed at several levels of approximation 
regarding free carrier screening. We find that the Coulomb interaction represents an effective agent 
to destroy phase coherence and to damp out charge oscillations. Nevertheless, our calculations 
predict that, if the free carrier Coulomb interaction represents the dominant dephasing mechanism, 
charge density oscillations associated with free carriers should be observable up to carrier sheet 
densities of about 1010 cm-2 . 

I. INTRODUCTION 

Various optical techniques have been used to monitor transport (tunneling) and thermalization of 
hot photo-generated carriers in quantum-well structures and superlattices. Recently, measurement 
of dipole radiation signals has been used to demonstrate both the existence of Bloch oscillations in 
superlattices and charge oscillations due to tunneling in semiconductor double wells.[1-4] To our 
knowledge, all charge oscillations which have been observed up to now have been attributed to 
excitons. No evidence for charge oscillations associated with free carriers has been presented so 
far. There are several reasons why excitons are more likely to exhibit charge oscillations than free 
carriers. Excitons are less exposed to structural imperfections in the double well. Moreover, any 
imperfections tend to detune the exciton levels and their optical excitation is inhibited. Excitons 
are neutral quasiparticles and thus interact with each other and free carriers more weakly than free 
carriers among each other, leading to longer phase coherence times. Finally, excitons are known to 
dominate the four-wave mixing signal, even when vastly outnumbered by free carriers.[5] 

In this work we investigate the possibility of inducing charge oscillations of free carriers in dou- 
ble well structures. In particular, the role of free-carrier screening is investigated. 

II. THEORY 

We apply the density matrix approach to a situation in which a sub-picosecond laser pulse generates 
free electron-hole pairs of low to moderate densities in asymmetric GaAs-AlGaAs double-wells.[6,7] 
We consider an experimental situation identical to the one under which excitons have been created 
resonantly in double wells, except that here the laser energy of maximum intensity exceeds the 
energy gap by typically 10 to 20 meV.[2,4] As the hole bands involved in the excitation process are 
far off resonance, hole dynamics is neglected. Due to the low excess photon energy, optical phonon 
emission is unimportant. Here, the formation of excitons via LO phonon emission is neglected. 

The problem reduces to a study of the time-evolution of an electronic one-particle density 
matrix 

(   /LL(M) = (b{kbLk)(t)     fLR(k,i) = (blkbRk)(t)  \ 
V fRL(k,t) = (bRkbLk)(t)   fRR(k,t) = (b^bRkW) ) 

with 
(A) = Tr{pA}{t) 

for an electron observable A and density operator p.    fLL(k,t) and fRR(k,t) are the electron 
distribution functions associated with left and right well, respectively,   k denotes the magnitude 
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of the k-vector associated with in-plane motion.  The off-diagonal element /RL(M) denotes the 
"polarization". 

The time evolution of the density matrix originates from several sources: 
® Firstly, laser generation of electron-hole pairs is incorporated as a generation term of the form 

-JT/LI. (M) |/aser- 

As we are not concerned with ultra-short pulses this term should be adequate for the present 
purpose. 

m Secondly, elastic tunneling between left and right well is taken into account within a two- 
subband approximation and the Hamiltonian 

H0 = J^{€LkblkbLk + emb^bRk + V[b[kbRk + bRkbLk]} 
k 

The basis states \Lk) and \Rk) are linear combinations of the two lowest eigenstates of the double 

well, \+,k) and \-,k) with eigenvalues e+ik and c^, respectively.   Here, eaik = ea + ^r," = 
±,L,R.   Perfect interfaces are assumed.   This provides a major reduction in complexity of the 
problem, but may be somewhat unrealistic in real structures. 

© Thirdly, the Coulomb interaction between free carriers, 

a,ß,-y,S,q,k,k' 

a,ß,-y,6 = L,R, leads to nonlinear terms in the equations of motion which tend to destroy phase 
coherence in the system.[8] 

We apply a decomposition procedure of the structure (b4}(t) ss (b2)(t)(b2)(t) to truncate the 
BBGKY hierarchy in the many-particle density matrix elements and arrive at a self-consistent and 
closed Markovian set of non-linear differential equations of first-order in time.[8] 

The Coulomb matrix elements vaßlS are evaluated approximately for wave functions associated 
with infinitely deep wells. In particular we consider only matrix elements of the form vaßaß. Ter- 
mination of the BBGKY hierarchy at second order in v requires implementation of free-carrier 
screening by hand. Here, we adopt a commonly used short-cut and treat screening within the 
random-phase approximation (EPA). The retarded density fluctuation correlation function is eval- 
uated within the plasmon-pole approximation (PPA) 

D°(q,LJ) « DpPAa{q,u) = —-r-- —^ -q—2    , v 

Lü2
la(q) = (2-Ke2na)l(e0m*)q is the square of the plasmon frequency at sheet charge density na.[7] 

Ka — _2-/aa(0) is the q = 0 screening wave vector in two dimensions and a*B is the effective Bohr 
aB 

radius. 

III. NUMERICAL RESULTS AND DISCUSSION 

For a discussion of our numerical results we choose the left well £ to be a 170Ä GaAs well and the 
right well R to be a 120l GaAs well, separated by a 17Ä AlGaAs barrier. Here, we consider an 
electric field which provides resonance between the lowest electronic subband associated with each 
of the (isolated) quantum wells. The duration of the excitation pulse was varied between "0" and 
0.5 ps with an average carrier excess energy of up to 20meV. The latter is to ensure validity of the 
two-subband approximation, as well as the neglect of optic phonon effects. The pulse width used 
was 4.2meV. Particle densities between 109 and 1011 cm-2 have been considered. 
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Fig. 1. Charge density in left and right well as a function of time. 

A typical set of data is given in Figs. 1 to 3. Fig. 1 shows the time-evolution of the total 
number of electrons in the left well, solid line, and in the right well, dashed line. The undamped 
solid line gives the carrier density in the left well in the absence of the free carrier interaction, 
while the dotted line gives the total number of carriers in the double well. At 5 x 109 carriers per 
cm2, we observe charge oscillations, however, the Coulomb interaction provides strong damping of 
the latter. The polarization is plotted as a function of time in Fig. 2. It also displays a damped 
oscillatory behavior. Its second time derivative is proportional to the radiated electric field. In 
case of resonant exciton excitation, up to about 15 such oscillations have been observed in a similar 
structure.[2] 
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Fig. 2. Electron polarization /L.R(2) as a function of time. 

Simultaneous to the damping of the charge oscillations, thermalization among the electrons takes 
place on the time-scale of a few picoseconds. Fig. 3 (lhs) and Fig. 3 (rhs), respectively, give 
fLL(k,t) and fp.R(k,t) as a function of k at selected times. 
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Fig. 3. Ills: distribution function /LL(&); rhs: distribution function /##(&) at selected times. 

IV. SUMMARY AND OUTLOOK 

Our results can be summarized as follows. Charge oscillations due to free photo-generated car- 
riers should be observable in asymmetric semiconductor double wells of high structural quality, 
provided that the inter-carrier Coulomb interaction provides the dominant dephasing mechanism. 
They should be observable up to about 1010 carriers per cm2. Above this value the Coulomb in- 
teraction becomes so effective that it suppresses the onset of charge oscillations. Simultaneous to 
the destruction of phase coherence, the Coulomb interaction provides rapid thermalization of the 
photo-excited electrons. 

It is remarkable that our results are rather insensitive to the screening model which is employed. 
The (dynamical) PPA, static RPA, Debye-Hückel, and Thomas-Fermi approximation produce 
practically identical results. This is largely due to the long-range nature of the Coulomb interaction 
and competing terms in the balance equations. 

Further improvements, such as inclusion of electron-hole scattering, carrier-phonon interac- 
tions, and excitons, are desirable to clarify their role in the dephasing process. 
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INCORPORATING SPATIALLY VARYING EFFECTIVE-MASS IN THE WIGNER-POISSON 
MODEL FOR AlAs/GaAs RESONANT-TUNNELING DIODES 

K. K. Gullapalli and D. P. Neikirk 
Microelectronics Research Center, MER 1.604 I 79900 

The University of Texas at Austin, Austin, TX 78712  (512)-471-8104 

Abstract 

We present a single band equation of motion for the Wigner function, incorporating the 
effects of a spatially varying band structure. The transport equation is discrete in position, shedding 
light into the numerical aspects of the problem. While conventional upwind differencing to 
approximate the drift term was found adequate for Alo.3Gao.7As/GaAs devices, it is completely 
unsatisfactory in modeling AlAs/GaAs resonant-tunneling diodes, particularly when the large change 
in effective-mass is included. Suggesting a new approach, meaningful steady state conduction curves 
for AlAs/GaAs diodes are presented for the first time. 

Physical Model 

With the need for studying effects of the detailed bandstructure such as T-X transfer in mind, 

the band structure is Fourier expanded: E(k) = Y^=i\4h2lnm*n a
2\l-cos(nka/2)], a being the 

lattice constant.   The Brillouin zone is [ -2n/a , 2n/a ].   Given that the masses m*n are spatially 
varying, we obtain the following equation of motion for the Wigner function: 

df _    ~ 2 h sm(nka/2) 

n=\ n m.- 'n, GaAs a . 

f{q + na/4,k)-f{q-na/4,k'j 

naß 
l^\dk'f{q,k')V{q,k-k') + ?f 
nh at coll. 

4    ft ,   . (nk'a 
2      2   ^' siTo 

n=l/r na   I V I f U+7>*' K U+T-*-*' M*-T'*'W*-T'*-*' 

+\dk' cos 
nk'a ^t^W,t2,1-Arf,.^W,.»l-r 

(0 

00   4    9ft 
+ S-5-—2-J<ft7M'K(?,*-*') 

n=\n   na 

where the first line in eq. 1 is the equation of motion if the effective-mass were uniform and 

Me
n{q,k) = \dr 

sin[2k(q — r)] 
cos[2k(q-r)].  M°(q,k) = \dr —L-~vj     - 'i,V(q,k) = \dr v(r)Sin[2k(q -r)} 

mn(r) mn(r)     mn,GaAs 

v(r) includes, in addition to the self-consistent potential, the T-T offset between the two materials. 

Using the "minimal Hermitian form" (H = -(h2/2)d/dz(l/m*)d/dz + v)[l] to describe the 

effects of spatially varying effective-mass is inconsistent with the Weyl transform.   By the Weyl 
correspondence rule, the Hamiltonian in position representation for a parabolic energy band is [2]: 

H = — 
1     d2     „ <?    l     d     d2     1 

■+2- 1 —+ ■ 
m 

+ v(z) 
\z)dz2       dzm\z)dz    dz2m\z)^ 

The equation of motion for the Wigner function in a parabolic band is just the a —» 0 limit of eq. 1. 
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Numerical Model 

Computational resources limit the numerical treatment to nearest and second nearest 
neighbor coupling, and hence only two (appropriately chosen) components in eq. 1 can be included. 
For r-r tunneling the n=4 component is sufficient. The rate of change of the Wigner function f(q , 
k) being determined only by its values at q, q+a, and q-a, eq. 1 is solved on the discrete phase-space 

given by   [qj\ qj =jA;j = l,2,...,Nq}.an&   {kn\ kn = x(2n-l-Nk)/(2NkA);n = l,2,...,Nk]  with 

A=a (5.6533 Ä).  We get a set of linear algebraic equations Y,fn'
Ljn;j'n' fj'n' ~b jn wnere 

L-    ■' ' jn;j n 

sin{2kn,A)M %_n. (S/j+1 - Srj_j )   cos{2kn,A)M ?w (8yj+1 + Syj.j ^ 

2NkA 2A 

+ 
M%_n,+ 2V/n_n,              Srj 
 dj>j+   

Nk xf 

4Nk 
(2) 

Hq~    n'n 
If 

V"' 

+ T-    ■' ' jn;j n 

J 
and b is the boundary contribution. The resulting matrix equation is solved using block LU 
factorization. T, the discrete drift term (the first term on the right-hand-side of eq. 1) will be 
discussed shortly. Me, M° and V are evaluated using fast sine and cosine transforms: 

M {-If 
j n—n 

l l 
 +—i— 

M jn—n 

Nkl2-l 

=     I 

nj+Nkl2     mj-Nk/2     mGa4j 

n(n'-n)j' 

( 
1 1 

™j      "TGaAsj 

Nk/2-l 

+      X 
1 1 

rrij+j'     m.j_j>    mGaAs 

Tl{n' - n)j' 

Nk/2    . 

1 

Kmj+r  mj-n 
Nk/2 

Nk'2-1 n{n - n)j' 
Nk/2 

For a parabolic energy band, the drift term appears as the spatial derivative of the Wigner 
function.   It is then suggested that a stable numerical model be obtained by upwind differencing the 
drift term [1, 3, 4].   Here however, the drift term is already discrete in position.   We obtain a 
numerically stable model by making the following approximation in T: 
[f(q + A)-f(q-A)]-*[f(q + A)-f(q-A)]+ä[f(q + A)-2f(q) + f(q-A)] (3) 

where I 5 l«l so that the deviation from eq. 1 is small, and k5 < 0 for stability (upwind bias). When 
181=1, we have first order upwinding, which is used at the device boundaries. When 181=0, we have 
centered differencing. We apply an upwind bias only to T, the constant effective-mass drift term. 
The current density is defined to satisfy the discrete current continuity equation: 

Jj+J/2 
8NkA- n 

sin{2knA)[{l±8)fMn+{l+8)fjn\ ^ 

m*GaAs N, 
■%sin(2kn>AJ\Mj+ln_n>fj+ln' + Me

jn_n'fjn' 

The top sign is used for k < 0 and the bottom sign for k > 0. Since V(q,k-k') strongly couples the 
upwind and downwind flows, the fact that the differencing in eq. 3 is not transportive should not be 
of major concern.  In any case, the exact equation of motion is not transportive either. 

Simulation Results 

The above model is first applied to the most commonly simulated Alo.3Gao.7As/GaAs 
resonant-tunneling diodes[l, 3, 4]. The conduction band offset is 0.27eV, m*GaAs=0.067mo, and 
m*AlGaAs=0-092mo. 30Ä barriers sandwich a 50 Ä well. The applied bias is dropped linearly 
across the double barrier quantum well structure. The contact is doped n-type at 2xl018 cm'3. 
Figure 1 shows the flat-band results. The results due to Tsuchiya et al. [1] are also shown. 
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Tsuchiya et. al (Ref. 1) 

AEc = 0.27 eV 
i i  

0.2 0.3 0.4 
Bias (V) 

Figure 1: Wigner conduction curves with first order upwinding for Alo.3Gao.7As/GaAs diode. Collisions are 
ignored.  Nq = 80, A = a, Nk = 64 as in [1].  Solid lines: our model, dashed lines: Tscuhiya et al.  [1]. The 
current density should decrease with increasing effective-mass in the barriers. 

AlAs/InGaAs or AlAs/GaAs diodes are the choice for high speed applications due to their 
high peak current densities and peak-to-valley ratios [5-7]. The inadequacy of the first order 
upwinding begins to surface as we attempt to simulate AlAs/GaAs resonant-tunneling diodes. Here 
we consider our baseline AlAs/GaAs resonant-tunneling diode. o The conduction band offset is taken 
to be l.OeV, m*GaAs=0.067mo, and m*AlAs=0.15m(). 17 Ä barriers sandwich a 50 Ä well. On 
either side of the tunneling structure is a three step spacer layer consisting of 50 A undoped GaAs 

300 

250 

* * 
m B = m GaAs 

350 

Figure 2: Conduction curves for AlAs/GaAs diode a) heavy lines: flat-band Wigner curves using first order 
upwinding. Schrodinger curves are shown as light dashed lines, b) self-consistent curves. The heavy lines are 
Wigner curves using second order upwinding (SDS), the light dashed lines using first order upwinding (UDS). 
Collisions are ignored. Nq = 268, A = a, Nk = 128 in the Wigner calculations. The results are far from being 
satisfactory. Increasing Nk to 256 led to similar results. A = a/2, Nq = 536, Nk = 256 does not help either. 

closest to the barriers, 100 A, 5xl016 cm"3 n-type GaAs and 100 A, 6xl017 cm-3 n-type GaAs. The 
contact regions are 4x10*8 cm"3 n-type GaAs.  Figure 2a shows the Wigner conduction curves using 
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first order upwinding under flat-band conditions. For comparison the Schrödinger results are also 
shown. Figure 2b shows the self-consistent (potential is self-consistent to within 10"4eV) Wigner 
conduction curves obtained by using first and second order upwinding. Flat-band, constant mass 
calculations have been reported for InGaAs/AlAs diodes using first order upwinding [8] and as can 
be seen from fig. 2a, under such conditions, the problems with the approach are not obvious. 

To improve the fidelity of the numerical model to the exact equation, we use 18 1= 0.1 in eq. 
3. The resulting curves are shown in fig. 3a. The improvement over the other approaches is 
remarkable. For comparison, the Schrödinger-Poisson curves are also shown. Finally, including 
coUisions in the relaxation time approach (x =100fs) and using 15 I = 0.01, the simulated and measur- 

250 

Figure 3: Improved Wigner conduction curves for AlAs/GaAs diode, a) heavy lines show the Wigner-Poisson 
results (collision free, I 6 | = 0.1) and the light lines are due to the Schrödinger-Poisson model, b) x = lOOfs, 181 
= 0.01. Nn = 268, A = a, Nk = 128. Also shown is a typical measured curve (300K) for our baseline, 

ed curves are compared in fig. 3b.   The poor agreement beyond the peak is an unresolved problem 
and has been the subject of intense discussions. 

In conclusion, self-consistent steady state conduction curves for GaAs/AlAs resonant- 
tunneling diodes have been presented for the first time. The inclusion of the higher effective-mass in 
AlAs is essential. A new approach to obtaining meaningful conduction curves has been proposed 
and leads to much improved results. 

Calculations were done on IBM RS/6000 models 590 and 320H. This work was sponsored 
in part by the Joint Services Electronics Program under Grant No. AFOSR 49620-92-C-0027, and by 
the Air Force Office of Scientific Research under AASERT Grant No. AFOSR F49620-93-1-0479. 
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EVALUATION OF THE ELECTRON DENSITY OF STATES IN A SI-SI02 INTERFACE 
USING THE ZERO-TEMPERATURE GREEN'S FUNCTION FORMALISM1 

Dragica Vasileska-Kafedziska, Paolo Bordone2 and David K. Ferry 
Center for Solid State Electronics Research, Arizona State University 

Tempe, Az, 85287-6206, USA 

Abstract 

We develop the zero-temperature Green's function formalism to study transport in Si-Si02 

inversion layer subject to both impurity and surface-roughness scattering. Surface-roughness is treated as 
a random potential scattering with a Gaussian correlation function. For the sake of simplicity, we assume 
that the electrons are scattered by randomly located but identical 5-function impurity potentials. The 
position of the subband minima and the electron concentration have been obtained by the self-consistent 

solution of the Poisson, Schrödinger and Dyson equations for each value of the effective transverse 
electric field. We give the analytical expression for the broadening of the electronic states in each subband, 
and the expression for the conductivity that includes the correction due to the normal particle-hole ladder 
diagram. In addition, the numerical results for the density of states function (DOS) for various values of 
the effective field are given. Finally, we present the numerical results for the mobility for various fitting 
parameters. The results for the mobility are in agreement with the experimental results of Kawaji obtained 
at 4.2 K in the region where surface-roughness dominates the transport properties of the system. 

I. INTRODUCTION 

We study transport properties of a (100) Si-inversion layer at zero temperature. We also give the 
results of the numerical self-consistent calculations for the density of states function, electron density and 
mobility for various fitting parameters and different effective fields. The dependence of mobility on the 

electron concentration Ns provides information for the strength of the considered dissipative mechanisms. 
Our calculations are based on two major approximations. We assume that the effective-mass 

approximation is valid, so that we can use the effective masses and the dielectric constants of the perfect 
crystal. We also assume that the envelope functions for the inversion-electrons that satisfy the one- 

dimensional Schrödinger-wave equation vanish in the oxide. This is a valid assumption for moderately 
high surface fields. At very high surface fields, the wavefunction of the first subband extends less than 1 
nm in the semiconductor and in this case the approximation probably fails. 

Transport properties of Si-inversion layers at low temperatures are dominated by the elastic 
processes such as impurity and surface-roughness scattering. Surface-roughness is important only at high 
effective fields, where most of the inversion-electrons are trapped in the lowest subband. 

The impurities are described by a random potential u(R) with zero mean value and a correlator 

(«(RMR'^-t/^R-R'). (1) 

^ork supported in part by ONR. 
2 On leave from: Dipartimento di Fisica ed Instituto Nazionale di Fisica della Materia, Universitav di Modena, Via 
Campi 213/A, 41100 Modena, Italy. 
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where nt is the impurity concentration. The <...> denote averaging over all impurity configurations. The 

strength of the impurity scattering is described through the constant U0, equal to the matrix element for 
scattering from a single impurity. 

Surface-roughness is introduced through a random local-potential term, proportional to the linear 
term of the Taylor expansion of the surface potential, of the form [1] 

Hsr(R) = f(r)eEs (2) 

where Es is the surface field. The random function /(r) that describes the deviation from the atomically 
flat surface is described by a two parameter Gaussian model, with autocorrelation function of the form 

W5r(|r-r*|) = A2exp 
r-r ■ |2 

¥ (3) 

Parameters A and C, characterize the root-mean-square height of the bumps on the surface and the 
roughness correlation length, respectively. 

From the coupled Dyson's equations for the retarded Green's function, we find that, within the 
diagonal approximation, the broadening of the electronic states for the n-th subband is obtained as a 
solution of the equation 

CO 

r„(efc,eF)=-^XjrfsW£
?'

e^x 
4 ith m   o 

x- ntU
2

0Onm +SmnK{eE£Afl0 —— ^ 
m*£" 

'-k^q exp 
m*C, 

2h 
2     \&k +Eq 

(4) 

I0 is the modified Bessel function of the zeroth order, am(zq,zF) is the spectral density function for the m- 

th subband, eF is the Fermi e-^y, e^ is the kinetic energy and Onm is the overlap factor. The details of 

this derivation are given in [2]. 
Within linear response, the expression for the conductivity can be summarized as 

an(£k>BFK   e K 

2"*T i      r„<e„eF)   2!t*t 1-V„J„ n 0 ^n(
ek'BF^ 
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7X is modified Bessel function of first order and e„ is the subband energy. The first term on the right-hand 

side of (5) represents the Drude result. The second term gives the correction to the Drude conductivity due 
to the normal particle-hole ladder diagrams, as explained in [2]. This term yields a replacement of the 
relaxation time by a transport lifetime for the conduction electrons [3]. 

II. SIMULATION RESULTS 

The self-consistent calculation of the coupled Schrödinger and Poisson equations gives the solution 
for the broadening of the electronic states according to (4). This is then used for the calculation of the 
density of states function and electron density. The process starts with an initial estimate for the potential 
energy profile and then solves all of the forementioned equations successively [4-6]. For the numerical 

solution of the Schrödinger equation, we have applied the Numerov algorithm [7], which is one order of 
magnitude more accurate that the fourth-order Runge-Kutta method. The matching tolerance for the 
wavefunctions was taken to be 10'5 . Finite-difference methods were used for the solution of the Poisson 
equation. We have used Gauss-Legendre integration for the energy integrations in (4-6) to speed the 
computation and decrease round-off errors. 

The potential energy profile is given in Fig. 1. The Fermi energy corresponds to the zero-energy 
level on the figure. The electric field in the oxide is 2xl06 V/cm. The wave-functions for the first two 
subbands for the lowest valleys are shown in the insert. The corresponding electric field profile, is given in 
Fig. 2. The spectral density function due to impurities and surface-roughness scattering is presented in Fig. 

3. The fitting parameters for surface roughness are: A = 0.2nm and C, = l.3nm. In the numerical 
simulation for the broadening of the electronic states, instead of the surface field, we have used the average 
field that is felt by the electrons. The field in the oxide is the same as in Figs. 1-2. In Fig. 4, we present the 
form of the DOS function for various oxide fields. The fitting parameters for surface-roughness are the 
same as above. Due to quantum-size effects, we observe a change in the slope of the DOS curves near the 
subband threshold. This effect is more pronounced at higher electric fields, where surface-roughness 
dominates the transport properties of the system. The shift in the subband energies is due to the increase of 
the oxide field. The mobility curve, as a function of the inversion charge density, is given in Fig. 5 . The 
dots represent the experimental results obtained by Kawaji at 4.2 K [4]. In the region where surface- 
roughness dominates the transport (high inversion charge concentration), we achieve very good agreement 
with the experimental data. In the other region, the fitting failed because of the assumed simplified model 
for impurity scattering. In order to improve the results, we need to consider the Coulomb interaction 
properly. From the results presented in Fig. 6, we can deduce the relationship between the average field and 
the inversion density. We calculate that the average electric field varies as Eav=e (0.52Ns+Ndepl)/(eoesc) . 
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RESONANT TUNNELING CALCULATIONS VIA THE DENSITY MATRIX 
IN THE COORDINATE REPRESENTATION 

H. L. Grubin and T. R. Govindan 
Scientific Research Associates, Inc. 

PO Box 1058 
Glastonbury CT 06033 

ABSTRACT 

Solutions of the quantum Liouville equation in the coordinate representation, including dissipation, 
have be implemented for studying the double barrier resonant tunneling diode. 

I. INTRODUCTION 

Simulations of the quantum Liouville equation in the coordinate representation have been obtained 
for resonant tunneling structures. The coordinate representation equation includes dissipation represented 
via a quasi Femi level. The two relevant equations (apart from Poisson's equation) are the equation of 
motion for the density matrix p (x, x', t): 

9 d     \p(x,x',t) + [(V(x)-V(x'))-{EF(x)-EF(x'))]p(x,x',t) (1) ih 
dp(x,x!,i) _    h2 

dt 2m dx2    dx" 

and the equation constraining the quasi-Femi level, the current density ;', the position dependent scattering 
rate, T(x), and the density p(x) = p(x,x): 

(2) EF(x) -EF{x') = -j£dx"mT(x") I p{x") 

Each of these equations has been discussed in recent publications [1,2 ]. In particular, the algorithm used 
to solve these equations was discussed in [2]. Recent improvements summarized below have resulted in 
greater robustness and enable some of the calculations of this paper. 

II. THE RESONANT TUNNELING STRUCTURE 

The application of equations (1), (2) and Poisson's equation is to resonant tunneling structures. We 
treat a 200nm structure, with two 5 nm - 300 mev barriers separated by a 5nm well. The structure has a 
nominal doping of lO^/m3 except for a central 50nm wide region where the doping is reduced to lO^/m3. 
The effective mass is constant and equal to that of GaAs (0.067m0); Fermi statistics are imposed; the 
ambient is 77K; and current is imposed through the density matrix equivalent of a displaced distribution at 
the boundaries (see [2]). 

The signature of the RTD is it's current-voltage relation with the region of negative differential 
conductivity; for the structure considered this is displayed in figure 1. The current is numerically negligible 
until a bias of approximately 50 mev, with the peak current occurring at 260 mev, followed by a sharp but 
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modest drop in current at 270 mev. The interpretation of these results is assisted by figures (2) and (3) and 
the Böhm quantum potential: 

(3) ß = - 
hz 

2m ^jp(x)d x 

Current vs Applied Potential Energy (77K) 

We have found, through an extensive number of numerical simulations, that the value of V(x)+Q(x), 
between the barriers of an RTD is a measure of the position of the quasi-bound state. 

Consider figure 2 which displays the 
equilibrium self-consistent potential for the RTD. Also 
shown is the value of the equilibrium Fermi energy 
(approximately 54 mev) and the values, at five different 
values of applied potential energy, of V(x)+Q(x) within 
the quantum well. At 100 mev the quasi-bound state is 
approximately equal to the equilibrium Fermi energy 
and significant current begins to flow. The current 
continues to increase until the bias equals 260 mev, 
where there is a sudden drop in current. 

Equilibrium Potential Energy, Bias Dependent V(x)+Q(!t) 

Figure  1.      Current versus  voltage for the 
resonant tunneling structure. 

To see what is happening we blow up the 
region on either side of the emitter barrier, where 
we display values of V(x)+Q(x) before the emitter 
barrier and within the quantum well (figure 3). 
Within the quantum well we see the quasi bound 
state decreasing as the bias on the collector is 
increasing. In the region prior to the emitter 
barrier where a 'notch' potential forms signifying 
charge accumulation, we see the formation with 
increased bias of a region where V(x)+Q(x) is 
relatively flat. Of significance here is that for 
values of bias associated with the initial current 
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Figure 2. Equilibrium potential energy and the 
bias dependence ofV(x)+Q(x) within the quantum 
well. Legend denotes collector bias. 

increase the value of V(x)+Q(x) within the quantum well is greater then its value in the emitter region. The 
current reaches a maximum at the cross-over where V(x)+Q(x) in the emitter region and in the quantum 
well are approximately equal. (Implementation of an earlier algorithm, generally resulted in solutions 
oscillating between high and low values of current when this condition was reached). While it is tempting 
to associate V(x)+Q(x) within the emitter region with a quasi-bound state, this association may be 
premature. 

The distribution of potential energy V(x) as a function of bias is displayed in figure 4, where the 
notch potential is deepened with increasing bias, signifying increased charge accumulation. This is 
accompanied by a smaller share of the potential drop across the emitter barrier, relative to the collector 
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Blas Dependent V(x)+Q(x) Surrounding Emitter Barrier 
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barrier region. In particular, comparing the slopes of 
the voltage drop across the emitter and collector 
barriers, it is apparent that larger fractions of potential 
energy fall across the collector barrier. 

92       94       96 

Distance (nm) 

Figure 3. Blow up of figure 2 in the region 
surrounding the emitter barrier. 

Explicit in this calculation is dissipation 
which is incorporated through the quasi-Fermi 
level. Within the vicinity of the boundaries the 
quasi-Fermi level is parallel to the conduction 
band edge. Indeed, for this calculation the quasi- 
Fermi level departs from the conduction band edge 
only within the vicinity of the barriers. The quasi- 
Fermi level is displayed in figure 5 at a bias of 
260 mev, where we see that the quasi-Fermi level 
is relatively flat until the middle of the first barrier 
at which point there is a small drop in value 
followed by a flat region within the quantum well. 
There is a strong drop of the quasi Fermi level 
within the second barrier. 

The charge distribution accompanying 
these variations in bias shows accumulation on the 
emitter side of the barrier along with charge 
accumulation within the quantum well. The 
increase in charge within the quantum well and 
adjacent to the emitter region is accompanying by 
charge depletion downstream of the second 
barrier, with the result that the net charge 
distribution throughout the structure is zero. 
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Figure 4. Potential energy V(x) as a function of 
collector bias 

Potential and Quasi Fermi Energies at 260meV 
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In all of the computations associated with 
figure (1), only one set of scattering rates was   Figure 5 Potential and quasi-Fermi energy at a 
used.   Variations in the quasi Fermi level were   bias of 260 mev. 
accompanied by variations in density and current which were all obtained in a self-consistent manner. 
Supplemental computations were performed in which the quasi-Fermi level was varied by altering the 
scattering rates. The calculations were applied to the post threshold case with values for the scattering rate 
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chosen so to provide a large drop in current. Indeed a current drop by greater than a factor of three was 
obtained followed by a shallow current increase with increasing bias. The significant difference leading to 
these changes was the manner in which the quasi-Fermi level changed. Rather than the shallow change 
depicted in figure 5, there was a larger change in tiie quasi-Fermi level across the first barrier (figure 6), a 
result similar to that obtained for single barriers [1]. 

Ill COMMENTS ON THE ALGORITHM 

The calculations discussed in this paper 
were obtained from a new solution algorithm that 
was constructed for the quantum Liouville equation 
and permits a more convenient specification of 
boundary conditions, in particular when the device 
is under bias. The algorithm is based on a 
reformulation of the governing equations in which a 
higher order differential equation in me local 
direction [(x+x')/2] is constructed from the quantum 
Liouville equation. The reformulated equation 
behaves like an elliptical equation in the local 
direction rather than the hyperbolic behavior of the 
quantum Liouville equation. With appropriate 
boundary conditions, solutions to the two forms of 
the quantum Liouville equations are equivalent. 
However the reformulated equation allows 
construction of a more robust algorithm that 
provides desired solution behavior at the contacts by 
boundary condition specification at both contacts. 

Potential and Quasi Fermi Energies at 270meV 

Distance (nm) 

Figure 6. As in figure 5 but for enhanced 
scattering. 

W SUMMARY 

The Liouville equation in the coordinate representation has been implemented for studying resonant 
tunneling structures. The results provide the first explicit relationship between the range of bias prior to 
the drop in current and the movement of the quasi-bound states. Additionally, the results provide the first 
explicit connection between quasi-Fermi levels and the magnitude of the peak to valley ratio in RTDs, and 
provide evidence that the behavior of RTDs is strongly controlled by dissipation. 
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QUANTUM TRANSPORT USING LIOUVILLEAN QUANTUM-FIELD 
DYNAMICS AND FUNCTIONAL APPROACH TO SELF-CONSISTENT MANY- 

BODY AND SCATTERING EFFECTS 

F.A. Buot and A.K. Rajagopal 
Naval Research Laboratory, Washington, D.C. 20375 

Abstract 

Quantum dynamics in Liouville space is used for discussing quantum transport in 
nanoelectronics. A synergism between the two formalisms treated here, namely, the "super" 
Green's function technique and the generalized functional approach is expected to pave the way 
towards more accurate self-consistent numerical calculations of many-body and scattering effects in 
nanolectronics and optoelectronics. 

I. INTRODUCTION 

There is a need for a self-consistent treatment of the nonlinear dynamics of interacting 
quantized fields, e.g., interactions between electrons, ions, and electromagnetic fields. These kinds 
of problems arise in high frequency and/or high power nanoelectronic and optoelectronic devices. 
So far, highly nonequilibrium situations are treated by assuming that all the subsystems other than 
the one of interest are behaving classically and/or in equilibrium condition. In this paper, non- 
equilibrium quantum transport is formulated in terms of the Liouville space (L-space) dynamics 
thus treating all the fields quantum mechanically on equal footing. This description also unifies 
classical and quantum statistical dynamics within the L-space dynamical framework [1]. 

The L-space formulation is equivalent to the nonequilibrium Green's function technique [2] 
originated by Schwinger, and Keldysh. However the major advantage of the L-space formalism is 
that it allows for a straightforward application of quantized field theoretical techniques since only 
real-time axis is used. This is in contrast to the double-time contour of the corresponding Hubert 
space (H-space) formalism which leads to awkward calculational procedure for obtaining the self- 
energies of interest. Another major advantage of the L-space formalism is that it provides a 
common starting point for a many-body functional technique, which is rooted in the powerful 
density functional method for calculating many-body effects [3], and the real-time Green's function 
technique based on the $-derivable method [4] for the self-energies. The synergism of these two 
independent techniques is expected to yield a more powerful many-body functional technique for 
numerically simulating bonafide scattering effects. 

For simplicity of presentation in what follows, we focus our discussion on the electron 
system. The corresponding discussion of the ions and electromagnetic fields involve a parallel 
treatment, which will be discussed elsewhere. 

II. QUANTUM DYNAMICS IN LIOUVILLE SPACE 

In Liouville space quantum dynamics, the density-matrix equation formulation of the 
quantum statistical dynamics in H-space becomes a dynamical equation in L-space defined as 
follows: 

mji\p)) = j?\p)), (l) 
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where p is the density matrix of the system in H-space, and |p)) is its corresponding supervector 

in L-space. Note that &\p)) corresponds to the commutator [<%f,p\ in H-space. Here the 

Liouvillean g = 3&-3&, where the "hat" and "tilde" superoperators are defined below. If the set 
{\n)} is an orthonormal basis in H-space in the number representation of the many-body states, 

then the corresponding set {{||m)(n|))}} is an orthonormal basis supervectors in L-space. The 

annihilation and the creation quantum-field operators, yr, y/' in H-space become the "hat"("tilde") 

annihilation, y/{yf) and creation, y/' (y/1') operators in L-space. They are defined as follows: 

£+||m)<n|» = |^VX»l». (2) 
W'\\m){n\)} = (-arn+l\\m)(n\yr)), (3) 

y\\m)(n\)) = \y\m){n\)}, (4) 

W\\m){n\)) = {-arn\\m){n\w')), (5) 
where <7 is -1 for bosons and +1 for fermions. Due to the doubling of operators in L-space 
corresponding to each operator in H-space, it is more convenient to introduce a two-component 
annihilation and creation operators in L-space. For fermions, we have 

and   ¥+ = (y'    yf). (6) 

We also define a unit supervector as |l)) = 2|m)(m| » s0 that the average of an arbitrary operator A 
m 

can be written as (A) = TrpA = ((1 \A\p}). 

\p. 

III. NON-EQUILIBRIUM GREEN'S FUNCTION IN L- SPACE DYNAMICS 

A "super" or non-equilibrium Green's function in L-space is defined as 
g = (TWw(t)%(t'))/ih, (7) 

where T is the usual time ordering operator. In the above expressions, the superoperators are 
written in the "super"-Heisenberg representation, e.g., 

Vn{t,t0) = W{t0,t)W{t,t0), (8) 

where W(t,t0) = T expj --\3? dt' \. Thus, in the "super"-interaction representation in L-space, we 

can also write Eq. (7) as 
& = ((l\S(~,t)*¥j(t)S{t,t')W}(t')S(t',-~>) P^»/«I|5K—)P^>>, (9) 

where   S(t,t0)   is  the  "super"-S-matrix,  obtained by  substituting    <g   in    W(t,t0)   by 

SjM =yfI
(x) -^(1) in the "super"-interaction picture. In Eq. (9), the time axis is from -°° to +°° 

and therefore the theory is formally the same as for the "zero-temperature" Green's function. 
Similar equations for the respective Green's functions can be constructed for the ion and 
electromagnetic fields. The full dynamics of ion motion including phonons is described by the 
correlation function of the ion positions. 

We will now develop the transport equations in L-space from the above Green's functions. 
Following the Keldysh approach in H-space, the transport equations for nonequilibrium plasmas 
and radiation has been given by DuBois [5]. A similar transport equation for a system of ions may 
be found in Kwok [6], which is based on the Green function associated with ion positions. In a 
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separate paper [7], we will derive the appropriate transport equations for the coupled system of 
electrons, ions, and electromagnetic fields. 

IV. TRANSPORT EQUATIONS AND SELF-ENERGIES 

In terms of the familiar correlation functions, G} ,and G(, the matrix equation for the 
"super"-Green's function, <g, is exactly the same as the following expression 

'Gc   -GO 
(10) 

ß}   -Gac) 
where Gc and Gac, which can be expressed in terms of G) and G{, are the chronological and 
antichronological Green's functions respectively. Equation (10) is exactly the same as the 
nonequilibrium matrix Green's function expression obtained by other authors [2], using the time 
contour formulation of Schwinger and Keldysh. Integro-differential transport equations for the 
matrix elements of & , can be readily obtained from @~x@ = 8 and its adjoint. We make use of the 

relations: F(>t = -FQ,   Fct = -Fac, to obtain the transport equations for all the matrix elements of 
^ 

(11) 
ih(d/dt + d/dt')Gu = [-h2V2/2m + <peff + ReZr,G>'<] 

+ [z>'<,ReGr]^A,Z>'<}/2w{r,G>'<}/2, 

ih(d/dt + d/dt')Gc = [- n2 V 2/2m + <peff + Se, Gc ] + G{J) - £<G>, (12) 

ih(d/dt + d/dt')Gac =[-Ä2V2/2m + <pe#-i:ac,Gac] + E)G<-G>Z<, (13) 

where Gr and YJ represent the retarded Green's function and its associated self-energy, and 

q>eff is the effective potential. It is clear from the last two equations that the term G{l) - I(G) and its 
counterpart describe effects beyond the finite-lifetime quasi-particle concept, and represent 
bonafide nonequilibrium scattering effects. These are similar to those occurring in the last two 
terms of Eq. (11) for Gu. The equation for Gu is exactly identical to the Keldysh results [2], 
while the equations for Gc and Gac also contain collision terms. 

The "super" self-energy has formally the same functional form as that of the "zero- 
temperature" self-energy. In the L-space approach, each of the self-energy matrix elements is 
calculated using the equation of motion of the "hat" and "tilde" superoperators, which is a 
straightforward application of quantum field theoretical techniques. Similar transport equations are 
deduced [7] for the ion and electromagnetic fields from their respective Green functions and self- 
energies. The self-energies depend on all the field variables exhibiting the mutual interactions 
among the fields. Thus all the Green's functions become mutually coupled, requiring thereby a 
self-consistent analysis. 

V. FUNCTIONAL TECHNIQUE IN L-SPACE DYNAMICS 

The stationary action principle is the foundation of the time-dependent density functional 
theory of pure-state quantum mechanical systems. The "Schrodinger" Eq. (1), also provides a 
stationary action principle for nonequilibrium statistical mechanics. 

We write the functional of the action in the form 
1 'r//-,..J~ d ^ ^0) = ^\({^n\[mj--^ \P(t')))dt\ 

dt 
(14) 
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subject to the thermal equilibrium initial condition for the p. Thus by varying the left supervector 
and setting the result equal to zero, we obtain the superket Eq. (1). The factor 1/2 is chosen to 
account for the presence of "twins" (doubling) in L-space. 

It is shown elsewhere [8], that W(t,t0) is a functional of averaged fields and they 

completely characterize the supervector |p)). We use the "physical" functional given by 

((®(r)| = ((l| in Eq.(14) which is now stationary with respect to the variations of the average 

currents J^rt) , average electromagnetic potentials AM(rt), and average ion positions R(lxt) , 
where I represents the lattice point and K labels the ion species, for a system of electrons, ions, 
and electromagnetic fields. Thus the stationarity of W leads to the equations: 

8W/SJß=0,  ÖW/8Aß=0, and 8w/öR = 0. (15) 
The first of the equations in Eq.(15) leads to an effective one-particle Schrodinger equation, the 
second leads to an effective Maxwell's equation, and the third leads to an effective Newton's 
equation for the ions. In general, these equations involve "effective potentials", equal to the 
average potentials in addition to terms describing the mutual interactions with other fields. 

By re-expressing these equations in terms of the Green function language, we can identify 
the terms corresponding to self-energies of the respective fields, given by the "super" Green 
function approach. Thus, we can incorporate the functional form of the appropriate diagrammatic 
expressions into a self-consistent scheme within the functional approach for calculating many-body 
effects which now includes the effects of scatterings. These are discussed in more detail by the 
authors in a separate paper [8]. 

VI, SUMMARY AND CONCLUDING REMARKS 

The functional theory discussed here provides a self-consistent method for incorporating 
many-body and scattering effects in the self-energy to be used in the transport equations. By 
inserting the diagrammatic approximation to the self-energy in a self-consistent loop of the coupled 
equations in functional theory, a more accurate self-consistent self-energy can be generated. This 
algorithm may be considered as a generalization in device physics of the well-known self- 
consistent method of solving the Poisson equation along with the quantum transport equation [2]. 
For numerical simulation, it is desirable to take the Weyl transform [2] of Eqs.(ll-13, 15). It is 
hoped that this work would lead to the numerical implementation of the algorithm proposed here in 
self-consistent analyses of nanoelectronics and optoelectronics problems. 

This work is supported in part by the Office of Naval Research. 
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QUANTUM   TRANSPORT   AND   COHERENCE   IN   BOUNDARY   LIMITED 
ELECTRONIC   DEVICES:   RECURSIVE   DYSON   HAMILTONIAN   GREEN'S 

FUNCTION   AND   FINITE   ELEMENT   TECHNIQUES   IN 
HETEROSTRUCTURES 

Clifford M. Krowne 
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Abstract 

With the decreasing scale of electronic devices, increasing attention is being paid to the 
finite sized nature of the resulting structures. This necessitates particular efforts to take into 
account the constraining as well as limiting behavior of the device boundaries. Methods to 
efficiently formulate theoretically these effects, and then to construct user friendly, flexible, time 
efficient computer codes are becoming very important. Such issues will be addressed here as we 
discuss ballistic transport in ID Aharonov - Böhm rings using a discrete tight - binding 
Hamiltonian, the 3D quantum transmission into and out of a multiport cavity in the linear single - 
particle weak - like variational formulation, and the nature of the above techniques in view of 
general variational and weighted residual techniques possible for extremely general media found in 
microwave and electromagnetic problems . 

I.   TRANSPORT   IN   ID   AHARONOV-BOHM   HETEROSTRUCTURE   RINGS 

Electron transport through quantum interference device-like structures is of interest where 
microstructure fabrication allows multiple channels of quantum wave flow to occur. This is 
possible to achieve in finite width heterostructure waveguides. For narrow width channels, the 
channels may be considered ID chains and analyzed in discretized form using tight-binding 
functions [1]. Non-local vector potential effects will alter relative phase information in the electron 
wave functions and cause varying interference behavior at channel intersections. For wide 
channels this tight-binding Hamiltonian technique, which yields recursive Green's functions, may 
not be the best way to approach the 2D nature of the problem. Finite element techniques which 
can easily allow for finite wall locations and arbitrary geometries may be a much more general 
method based upon solving the suite of physical field and transport governing equations. Section 
n discusses that method appropriate for 3D problems. 

An infinite chain is intercepted at sites 0 and (N +1) by a finite loop, with N' sites. By 
choosing a symmetric gauge, the vector potential, A(r) is given by: 

A(r)   -  iHxr ([) 

By the use of Peierl's substitution [2], the hopping potential which appears in the tight-binding 
Hamiltonian, becomes (h is Planck's costant divided by 2K): 

% - HiACrO-r,) (2a) 

Upon substitution of (1) and (2), and using well known vector identies, we find: 

V« - VexpfilHxriTj) = Vex^-nxr,) ^ 

Here, Vy represents the hopping matrix element in a nearest-neighbor tight-binding formulation, so 
that Vij * 0 for i = j ± 1, and = 0 otherwise. To compute the effect of the loop induced 
scattering on the transmission amplitude, we use Dyson's equation [3]. Go(n, m) represents the 
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G«x, ß)   =   G0(a, ß) + Go(a, 0)V(0, l')G(l*, ß) 
+ G0(a, N +1)V(N +1, N')G(N',ß) (3) 

a an ß indicate respectively the extreme left and right of the infinite chain, primes denote the loop 
locations, and 0 and N + 1 indicate respectively the intersections of the infinite chain and loop at 
the left and right. Unlike the field-free case [3], 

V(i,j)   =  [%i)]* (4) _ 
We start the derivation with the propagator for an infinite one-dimensional tight-binding 

chain [4]: 
r , —1   1 r -i - i 

.2V   '  "V x "l2V/ J (5) G(l,m; z = E) = 2 V*/l (JLf 
\2V> 

where we have used E  =  2Vcoska for a tight-binding band, the site energy  Eo  being set 

arbitrarily to zero. Setting ka = 8, we find E/2V  = cos6, which yields: 

Go(l,m;E) = - -(cos9 + isinB) 
l-m| ie i|l-m|0 

G(0, 0; E)^1 ■ m|e 

2Vsin8 2Vsin9 (6) 
For a tight-binding chain of atoms, we start with a single site and add sites iteratively through the 
Dyson equation. For a single site [4], 

God, 1;E)   =  ^ ~ 1 
2Vcos9 (7) 

For two sites, we write the basic Dyson equation ( previously used to generate equation (3)), 
where Go = Green function for the single site, and G = Green function for the two sites, and V 
= the hopping matrix element between the two sites: 

G   =   Go + GoVG 
Then applying (8) to both the diagonal and off-diagonal matrix element: 

G(l, 1)   =   G0(l, 1) + G0(l, 1)V12G(2, 1) 

G(2, 1)   =   0 + G0(2,2)V21G(1, 1) 
Substituting (9b) into (9a), we obtain: 

G(l, l)[l - G0(l, 1)V12G0(2, 2)V21]   =   G0(l, 1) 
God, !)   _       1 4cos46      _ 

(8) 

(9a) 

(9b) 

G(l, 1) = sin29 

(10) 1 - V2G0(1, 1)G0(2, 2)       2Vcos6 4cos29 - 1      Vsin39 
Notice that the phase factors found in the hopping matrix elements in (2) cancel out in the (10) 
expression. To find the off-diagonal matrix element G(l, 2) we again write: 

G(l,2)   =   God, l)Vi2G(2, 2) (Ha) 

G(2,2)   =   G0(2, 2) + G0(2, 2)V21G(1, 2) (lib) 
Substituting (lib) into (11a), 

Vexp(^§-H-rixr2) 1 4cos29 
G(1 2) =     God, l)Vi2G0(2, 2)     = \2hc ;4V2cos29 = ^7(1, r> sin9 

1 - V2G0(1, 1)G0(2, 2) 4cos2e . i sin39 
(12) 

where the argument of the phase factor has been replaced by 7(1, 2). 
For finite chains of arbitrary length N, we use the results for one and two sites and apply a 

recursive Green's function technique [5] to generate further sites. Continuation of this process 
leads to finding the transmission amplitude. 

The transmission amplitude, t, is defined by: 
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(13) 

The transmission amplitude, t, is defined by: 
_  G(a, ß)   _ amplitude for propagation through whole structure 

Qn(a R) amplitude without upper loop 

while the transmission coefficient is, 
TNN<E, (j>)   =   t-t* (14) 

where E is the energy of the incident electron and § is the ratio of the flux enclosed by the loop 

to the flux quantum <\>Q = hc/e. The final result for TNNOE, <|>) is: 

TNN'(E, <t>)  =  4 cos2ysin2acos2ß + sin2ysin2ßcos2a 

|[sin(2a) + cot9(cos2a - cos2ß)] 

where 

:os({) +1 + cotesin(2a) - (3 1—]c°s2a " (— ljcos^ | 
I       2sin29/ hshfa       I       J 

(15) 

a  = _  N + N'  +2 Q 

ß  =   Nl N e 
(16a) 

(16b) 

and where 0 is related to the energy in a single tight-binding band: 

E = 2Vcos9 (17) 
It can be verified easily that (15) reproduces the result for the field-free case derived by Ginuea and 
Verges [3] when § = 0. 

H. 2D AND 3D MODELLING OF ELECTRON WAVE PROPAGATION IN 
HETEROSTRUCTURE DEVICES USING FINITE ELEMENTS 

The description starts with the Schrodinger equation in 3D 

- ^(P - |A)V(X, y, z) + V(x, y, z)¥(x, y, z)   =   E¥(x, y, z) 

where  h  is  Planck's constant divided by  2% . For a uniform magnetic field, the gauge is 
nonunique which leads to a A choice. Following Wang et. al. [6], A = (- By/2, Bx/2) and 

- £- VV(x, y, z) + V(x, y, z)¥(x, y, z)   =   E¥(x, y, z) 

V(x,y,z) = V(x,y,z) - ^(y^ - x£-  + #^(x2 + y2) 
2mc \ dx 3yl      8mc2 ' ' ' (19) 

Performing the 3D integral over the device volume, with an input port on the left at x = xi and 
an output port at the bottom at y = y2, and using Green's theorem, 

hi I j       v5-V¥dQ +  III    ^fv-E^dß   =  ^Y H WF-när 2™))L JJJQO 2mÄ/Jri (20) 
Apply a finite element discretization in the cavity region. 

*F(x, y, z) = N(x, y, z)U     ;     ¥(x, y, z) = N(x, y, z)U (21) 

Here N(x, y, z) is the global shape function, U is a vector of all the unknown wave function T 
values on the nodes, and U tilde the trial U. Then (20) becomes 
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U(T + V)U   =   l^-X ft   ^v^-n^r 
mi = i iin (22) 

The surface integral in (22) which includes a depth d in the z-direction5 requires a minor 
modification to convert from a line to a surface integral. The result is 

U(T + V)U   =  UiP - UiC^i - U2C2U2 

where 

Pi   = 

C--   = 

<(>J(x, y, z)[h!(y, z) - h2(y, z)S-1s]adT 

>   fo (x, y, z) X hm(y, z)S^nTnjdT 
p m, n 

0i (x, y, z) ^ gm(x5 z)R^nTj,jdT 
m, n 

(23) 

(24) 

(25) 

(26) 
In (23), Ui and U2 only correspond respectively to the subset of nodes on port surfaces 1 and 
2. Since Pi is known due to the specified incident wave amplitude vector a, we know that the 
partial global vectors Ui and U2 can be moved to the left hand side of (23) after proper assembly 
procedure [7] and [8] 

U]P  =  if?    ;    üTc^i   =  tfc^U     ;    Ülc2U2   =  U^U (27) 
as done in [9] and [10]. The solution follows immediately. 

(T + V + C1 + C2)U   =  P (28) 

REFERENCES 

[1] W. R. Grise, C. M. Krowne, F. A. Buot, "Ballistic Transport in 1 Dimensional Aharonov - 
Böhm Rings," to be published. 
[2] R. Peierls, Z. Phys., "Zur Theorie Des Diamagnetismus Von Leitungselektronen, vol. 80, pp. 
763-791, 1933. 
[3] F. Guinea and J. Verges, Phys. Rev. B, "Localization and Topological Disorder," vol. 35 pp. 
979-986, 1987. 
[4] E. N. Economou, Green's Functions in Quantum Physics, 2 nd ed., Springer-Verlag, 1983. 
[5] F. Sols, M. Macucci, U. Ravaioli, and K. Hess, J. Appl. Phys., "Theory for a Quantum 
Modulated Transistor," vol. 66, p. 3892-3906, 1989. 
[6] Y. Wang, J. Wang, and H. Guo, "Magnetoconductance of a Stadium-Shaped Quantum Dot: A 
Finite-Element-Method Approach," Phys. Rev. B, vol. 49, pp. 1928-1934, 1994. 
[7] C. M. Krowne, "Vector Variational and Weighted Residual Finite Element Procedures for 
Highly Anisotropie Media," IEEE Trans. Antennas and Propagation, vol. AP-42, in press, 1994. 
[8] D. S. Burnett, Finite Element Analysis, Addison-Wesley, 1988. 
[9]   C. S. Lent and D. J. Kirkner, "The Quantum Transmitting Boundary Method," J. Appl. 
Phys., vol. 67, pp. 6353 - 6359, May 1990. 
[10] D. J. Kirker, C. S. Lent, and S. Sivaprakasam, "The Numerical Simulation of Electron 
Transmission Through a Two-Dimensional Quantum Device by the Finite Element Method," 
Intern. J. Numerical Meth. Engin., vol. 29, 1527-1537, 1990. 

190 
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Abstract 

The scattering rates for electron - confined acoustic phonon interactions in free-standing quantum wells are 
calculated numerically. We have considered the relaxation times in the test particle approximation as well as 
in the approximation corresponding to the kinetic equation solution through the polar functions expansion. 
The quantization of acoustic phonons in free-standing quantum wells results in peculiarities in transport 
coefficients. 

I. INTRODUCTION 

Free-standing quantum structures attract considerable attention because they are promising for 
optoelectronic and electronic applications, as sensitive sensors, and for probing the local properties 
of solids. Furthermore, the free-standing structures are very interesting physical objects which 
display new physical phenomena and they are challenging objects for nanotechnology. The main 
feature of the acoustic phonon subsystems in free-standing structures is the quantization of the 
acoustic phonon wavevectors in the direction of the confinement. This quantization is responsible for 
the peculiarities of the acoustic phonon interactions with electrons and photons displayed as a set of 
peaks in the differential conductances [1] and luminescence spectra [2] of quantum microstructures. 
In this paper we concentrate our attention on the electron - confined acoustic phonon interactions 
in free-standing quantum wells (FSQWs) and on the peculiarities of the transport coefficients due 
to the acoustic phonon quantization. We have developed a model of the electron scattering by 
confined acoustic phonons interacting through the deformation potential. This model is used in 
collision integral of the kinetic equation. We solved the kinetic equation both in the test particle 
approximation and reducing it to the Fredholm equation of the second kind. 

II. ELECTRON - CONFINED ACOUSTIC PHONON SCATTERING 

We will consider FSQW of width a. The electron wavefunctions will be taken in the approxi- 
mation of the infinitely deep quantum well. The electron states are characterized by the in-plane 
wavevector ky and the subband number n. The acoustic phonon eigenmodes in FSQW and their 
dispersion relations were obtained in [3, 4, 5]. The acoustic phonons are characterized by the 
in-plane wave vector qy, the mode number m, and the symmetry a. 

In accordance with the Fermi golden rule the probability density for the electron transition 
(k||,7i) —> (k||,ra') due to the confined phonon absorption (upper sign) or emission (lower sign) is 
given by the formula 

2 

w{&} _ * K ("5„m + | T |) I F«,m I2 (<&» - g,2)2 (qjm + fe2) 
11        II Apu}nJ{q\\) 

x tscl{^) 9{n',n,a1%m) *k||±q||,k|| 5{e ± ^(q,,) - s') , 

where we use the same notations as in Ref. [5, 6], the function tsca — sin, if a — dilatational and 
tsca = cos, if a = flexural, Q(n\ n, a, q) is the overlap integral. 
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To analyse the electron transport properties we will need scattering rates in the following form 

_-i Wi 
n',k;.,tt,77i,q||,/3 

kii ,n-»k' ,n' ' „' G (2) 

where ß is either absorption or emission, G is some given function which may depend on all variables 
over which we take sum. We will also use {TQ)~

1
 and (rgm)-1 which are defined in a similar way 

with the only distinction that we sum up either only absorption terms or only emission terms. 
There is an obvious relation between them: TQ

1
 = (rgfc)_1 + (r^771)"1. If we employ the formulae 

for transition probabilities (1) we may obtain the following relations for scattering rates 

.Hi E2
am 

2irh2pk 

              /■(so jab I I 

(3) 
n',0£,m     i 

where 

,:{«}  = K||,™ + I T |) 1 Fa>7n j2 (g»m - qx
2f (ggm + g,2)2 ^    flft|m 

(a) 

and angles ^^ G [0,7r] are solutions of the transcendental equation 

mwL^i)      fm(en-en>) 
cos * = —— "- ±    —-j-  

ft«ll<7ll V       ft   All I «II I «II 2 An 

III. RELAXATION TIMES IN THE TEST PARTICLE APPROXIMATION 

In the test particle approximation, the scattering rate, r, the momentum relaxation rate, TP, 

and the energy relaxation rate, TC are given by the formulae 

f° 
JT>I 

~l = E Wp-P' T~^ 
W •'P 

(4) 

>(p)_1 = 

=(P)_1 

W, P-»P' 
p' 

p' cos ^ 

p 

W, P-+P 1- 

Wp1 ' 

1-/S ' 

(5) 

(6) 

where /£ is the Fermi distribution function, ^ is the angle between p and p'. 
We have computed integrals in (4), (5), and (6) for the electron scattering by the dilatational 

phonons in the lowest electron subband numerically and obtained the scattering rates r-1 , T~
X
 , 

and T~
X
 as functions of energy. The calculations were made for GaAs QW of width a = 100Ä, 

for temperatures T = 300if, T = 77if, and T — 4.2ÜT , for both degenerate and nondegenerate 
electron gas. The degenerate electron gas was characterized by the Fermi energy fi = 50meV 
and corresponding to it the electron concentration n3 = 1.4 X 1012 cm"2. The most interesting 
dependences are depicted in the Fig. 1 through 4. Fig. 1 and 2 correspond to the case of 
nondegenerate electron gas at temperatures T = 300K and T = A.2K accordingly and Fig. 3 
and 4 correspond to the case of degenerate electron gas at temperatures T = 77ÜT and T — 4.2K 
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accordingly. The solid lines in the Fig. 1 through 4 correspond to the acoustic phonon emission 
and the dotted lines correspond to the acoustic phonon absorption. It should be noted that the 
relaxation times r and rp are very similar, therefore we will provide the graphs of only rp. The 
quantities r"1 for phonon absorption are obviously negative due to the factor [1 — e'/e], however 
we use the same axes as for the energy relaxation rate corresponding to the phonon emission and 
plot them as positive functions. 

IV. THE KINETIC RELAXATION TIME 

The kinetic equation for the electron distribution function, /, may be solved in the case of 
small deviation from equilibrium.   In this case / = /p + fi p/p, where the nonequilibrium part 

df° 
of the distribution function may be represented in the form fip = —T\ (p) F -§-jp . The momentum 
relaxation time, T\ satisfies the Fredholm equation of the second kind 

i-X no») = rip) + r{p) £ w^pl ^^ ntf) — 
P' P l   Jp f° (7) 

We solved Eq.  (7) by iterations.  The electron conductivity may be expressed through T\ in the 
following way 

a = 
2Trh2m2T 

/»OO 
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Figure 1. The momentum relaxation rate, rp 
1, (left) and the energy relaxation rate, rE 

1, (right) in GaAs 
FSQW of width a = 100Ä. Nondegenerate case, T = 300ÜT, solid line corresponds to the phonon emission, 
dotted line corresponds to the phonon absorption. 
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Figure 3. The momentum relaxation rate, r"1, (left) and the energy relaxation rate, r"1, (right) in GaAs 

FSQW of width a = lOOA. Degenerate case, T = 77K, solid line corresponds to the phonon emission, dotted 
line corresponds to the phonon absorption. 
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FSQW of width a = lOOA. Degenerate case, T — 4..2K, solid line corresponds to the phonon emission, 
dotted line corresponds to the phonon absorption. 
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MONTE CARLO SIMULATION OF ELECTRON STREAMING CAUSED BY 
INELASTIC ACOUSTIC-PHONON SCATTERING IN QUANTUM WIRES 

R. Mickevicius and V. Mitin 

Department of Electrical and Computer Engineering 
Wayne State University, Detroit, MI 48202 

Abstract 
We have simulated by the Monte Carlo technique a qualitatively new regime of electron 

transport in quantum wires, which resembles electron streaming. Unlike conventional streaming 
caused by optical-phonon scattering, the streaming reported here is due to inelastic aconstic- 
phonon scattering. Both the analytical model and the Monte Carlo simulations yield E1/5 

field dependence of the drift velocity as a function of electric field E in the streaming regime. 
We demonstrate that this regime of electron transport is accompanied by strong radiation of 
nonequilibrium acoustic phonons from a quantum wire. 

I. INTRODUCTION 

Qualitatively new regime of electron transport in quasi-one-dimensional (ID) quantum wires 
(QWIs) has been predicted recently [1]. This regime resembles electron streaming and originates 
from strongly inelastic acoustic phonon scattering in QWIs [2]. unlike conventional streaming 
due to electron scattering by optical phonons [3-5] the streaming-like electron behavior reported 
in [1] is caused by strongly inelastic acoustic-phonon scattering. The streaming due to acoustic- 
phonon emission leads to non-linear velocity-field dependence and to oscillating electron velocity 
autocorrelation function. 

In this paper we present the results of Monte Carlo simulation of electron streaming due to 
acoustic-phonon emission in QWIs. 

II. ANALYTICAL APPROACH 

Let us first consider idealized model in order to obtain simple analytical expressions. We 
neglect acoustic-phonon absorption and assume that electrons are scattered exactly to the subband 
bottom after emission of acoustic phonon. Let us define ec as the characteristic acoustic-phonon 
energy determined by uncertainty of momentum conservation in ID structures. It is given [2] by 
ec « 2irhu/L where u is the sound velocity in the material of a QWI and L is the effective thickness 
of the structure L~2 = L~2 + L~2. At low energies (e < ec) the acoustic-phonon emission rate can 
be approximated by: 

A(e)  =  A e2 , (1) 

where A is a constant independent of cross-section of a QWI. The mean free flight time < r > 
generally reads as, 

< r > J°° dr r A[e(r)] exp (- jT dt A[e(i)])  , (2) 

where A is the total scattering rate, in our case equal to acoustic-phonon emission rate given by Eq. 
(1). In electric field electron momentum during free flight is governed by: dp/dt = eE. Substituting 
energy expressed through momentum e = p2/2m* and assuming that electron after a free flight 
is scattered exactly to the subband bottom, we get the solution in the form of e = (eEt)2/2m*. 
Substituting it into Eq. (1), then Eq. (1) into Eq. (3), and performing integration we get, 

/     5     N1/5 

<^>= MF)   r' (3) 
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where C = e/\/2m* and constant T = T(6/5) « 0.9182 is the value of the Gamma function. Then 
averaging energy e(t) over the mean free flight 0 - < r > we find the mean electron energy, 

hu 

T' <6>=T, (4) 

where huj is the average acoustic-phonon energy emitted by electrons, 

to = Q2/5r2E2/5. (5) 

Similarly averaging instant electron velocity over < r > the drift velocity is obtained, 

Vd   = (6) 

Hence, the mean electron energy is a E2/5 function and the drift velocity is Exl function of the 
electric field. The drift velocity and the mean electron energy are simply related to each other: 
< e >= 2/3 m* v\. The relationships (4) and (6) are the same as for conventional streaming due 
to optical phonon emission [5], but the characteristic acoustic phonon energy (5), unlike optical 
phonon energy, depends on electric field. Therefore, in contrast to conventional streaming where 
vd and < e > saturate [5], the streaming due to acoustic-phonon emission leads to field-dependent 
Vd and < e >. . 

The conventional streaming due to optical phonons can be realized if certain conditions are met 
{4]: (i) the temperature must be low enough, generally kBT < huj, where hu is phonon energy, 
(ii) the phonon emission rate must exceed all other scattering rates near the emission threshold, 
(iii) the electric field should be strong enough to accelerate electron up to the phonon emission 
threshold without scattering, but weak enough to avoid deep electron penetration beyond the 
emission threshold and thus to assure scattering by phonon emission down to the conduction band 
bottom. 

In the case of electron streaming due to periodic acousizc-phonon emission the first two condi- 
tions, however, are generally fulfilled for acoustic-phonon scattering if ec > kBT. Let us estimate 
the range of electric fields Emin < E < Emax, where the streaming due to acoustic-phonon emission 
occurs. First, we define the "passive region" as the energy range where acoustic-phonon emission 
rate is less than absorption rate. By requiring that electron acceleration time through the "passive 
region" be much less than the absorption time, we get the lower field limit Emin. The condition 
huj < ec sets the upper field limit of Emax. The lower field limit Emin weakly depends on the cross- 
section and is approximately equal to 1 V/cm. The upper limiHs around 200 V/cm for 40 X 40A 
QWI, 35 V/cm for 80 X 80A2 QWI, and 4 V/cm for 250 x 150A2. 

III. MONTE CARLO SIMULATIONS 

1. Model 

We have carried out Monte Carlo simulations of electron transport in a wide range of electric 
fields. We have considered rectangular GaAs QWIs embedded in AlAs with infinitely deep po- 
tential well for electrons. We have chosen several different cross-sections of a QWI, from rather 
thick 250 x 150A2 QWI, where separation between two lowest subbands is less that optical phonon 
energy, to unrealistically thin 40 X 40A2 QWI, which represents the extreme limit. Simulations have 
been performed for low temperature T = 4 K and non-degenerate electron gas. Electron scattering 
by confined longitudinal optical (LO) phonons and localized interface (surface) SO phonons [6,7] 
as well as by bulk-like acoustic phonons [2] has been taken into account in our model. Our model 
incorporates as many subbands as there are actually occupied by electrons. Ionized impurities are 
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assumed to be located sufficiently far from the QWI so that their influence on the electron motion 
inside the wire is negligible. 

2. Results 

Fig. 1 demonstrates drift velocity as a function of electric field calculated by the Monte Carlo 
technique. There are four distinguishable regions on velocity-field dependence. The near-ohmic 
velocity-field dependence in a field range below 1 V/cm turns into a sub-linear dependence. Then 
the slope again increases and decreases approaching saturation at high electric fields. The first 
sub-linear region extends through the two orders of magnitude in electric fields in 40 X 40Ä2 QWI 
(2 V/cm to 200 V/cm) and appears just as a small kink in 250 X 150l2 QWI at around 2 V/cm. 
In the field range of 5 V/cm to 200 V/cm in 40 X 40Ä2 electron drift velocity increases near as 
E1!* function of electric field as is predicted by Eqs. (5)-(6). Note that this field range coincides 
with the above estimated range 1 V/cm < E < 200 V/cm for this QWI, where electron streaming 
due to acoustic-phonon emission occurs. At high electric fields the optical-phonon emission starts 
dominating and the drift velocity saturates. The transition from the acoustic-phonon controlled 
electron transport to the optical-phonon controlled transport occurs at lower electric fields in thick 
QWIs, where acoustic phonon scattering rate is lower [2]. 

106 

T = 4K 

10' 

ELECTRIC FIELD (V/cm) 

Fig. 1. Electron drift veloci- 
ty versus applied electric field. 
Curve 1 represents velocity for 
250 x 150A2 QWI, curve 2 - 
80 x 80i2 QWI, and curve 3 - 
40 x 40l2 QWI; curve 4 rep- 
resents analytical dependence 
given by Eqs. (6) and (5). 

Fig. 2 demonstrates the relative scattering efficiency (ratio of the number of corresponding 
scattering events to the total number of real scattering events) versus electric field. One can see that 
in the field range below about 1 V/cm there is a balance between acoustic-phonon absorption and 
emission efficiency indicating the ohmic regime of electron transport. Then the emission efficiency 
gradually increases and the absorption efficiency decreases up to electric fields of about 200 V/cm 
reflecting the transition to the acoustic phonon controlled electron streaming. The emission of 
acoustic phonons remains the sole scattering mechanism in the field range of 10 V/cm to 200 V/cm. 
Strong emission of acoustic phonons suggests that QWIs should radiate nonequilibrium acoustic 
phonons in the streaming regime. The question is which part of this radiation is directed along 
the QWI and which part goes into surrounding material. The ratio of the transverse component of 

acoustic phonon wave vector to the total magnitude of the wave vector 77 = qr/yll + IT roughly 
defines the relative fraction of the radiation going outside a QWI in the total radiation of acoustic 
phonons. We have calculated 77 as a function of electric field by the Monte Carlo technique. Our 
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calculations show that 77 > 0.98 in the entire field range of 1 V/cm to 1000 V/cm. Consequently, a 
QWI radiates acoustic phonons predominantly in the perpendicular to a QWI direction. We believe 
that strong radiation of nonequilibrium acoustic phonons and their angular distribution could be 
experimentally measurable in the streaming regime. 
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Fig. 6. Relative efficiency of various scattering mechanisms versus electric field for 40 X 40A2 

QWI. 

The fields of about 300 V/cm and up are strong enough to heat the electrons up to the lowest 
optical phonon energy (in our case, GaAs-like interface mode energy equals 34.5 meV) and one can 
see the rapid onset of SO phonon scattering. With further increase of electric field the LO phonon 
scattering comes into play, and thus the electron transport in the fields exceeding 400 V/cm is 
primarily controlled by optical phonon scattering. 

We have investigated qualitatively new regime of electron transport in QWIs, which closely 
resembles electron streaming due to acoustic-phonon emission. Both analytical and Monte Carlo 
calculations yield non-linear velocity-field relationships in the streaming regime. It is demonstrated 
that a QWI becomes effective radiator of nonequilibrium acoustic phonons in the streaming regime. 
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Abstract 

The confined acoustic phonons in free-standing quantum wells are considered. Their spectrum may deter- 
mined from the dispersion equations. We have developed a special stable algorithm to obtain numerical 
solutions of these equations. We have calculated the acoustic phonon density of states in a free-standing 
quantum well. The density of states is , on the average, a quadratic function of energy, however it has 
singularities corresponding to the extrema in the dispersion relations. 

I. INTRODUCTION 

In low dimensional microstructures acoustic phonon states may undergo significant modifica- 
tions due to the quantization in one, two, or three directions. Acoustic phonon confinement will 
strongly affect the electron and photon interactions with acoustic phonons resulting in peculiari- 
ties of electron transport properties and light scattering. Therefore it is necessary to develop an 
adequate model of acoustic phonon states in low dimensional structures and their interactions with 
electrons and photons. 

In this paper we consider confined acoustic modes in a thin solid slab of isotropic material. 
We have calculated the confined phonon spectrum and the corresponding density of states (DOS). 
The equation governing the elastic vibrations in our system is the Navier equation for a relative 
displacement vector and it is supplemented by appropriate boundary conditions which are the 
conditions of free (unstressed) surfaces [1, 2, 3]. We have transformed the problem at hand to an 
eigenvalue equation with a Hermitian matrix differential operator. The solutions of this eigenvalue 
problem are three different types of modes with different symmetries: shear waves, dilatational 
waves and flexural waves. Although the general form of the solution may be obtained analytically, it 
includes several parameters (phonon quantum numbers) which should be determined by numerically 
solving the system of nonlinear dispersion equations. These phonon quantum numbers are complex 
valued functions of the in-plane phonon wave vector and they may approach each other so closely 
for some values of the in-plane wave vector, that the numerical solution of the dispersion equations 
leaps from one branch to another. We have developed a special stable algorithm to obtain these 
solutions. 

II. CONFINED ACOUSTIC PHONON SPECTRUM 

Shear waves have the simplest quantization rules. A vector of relative displacement in shear 
waves has only one nonzero component in the direction perpendicular to both the direction of 
propagation and the direction perpendicular to the slab . The dispersion relation for shear waves 
is 

(1) w» St v^ + «ii 
where st is the transverse sound velocity in the bulk material, q\\ is an in-plane wave vector, 
qn = (TU/a), n= 0,1,2,... 
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Dilatational waves and flexural waves have two nonzero components of the vector of relative 
displacement - in the direction of wave propagation and in the perpendicular to the slab direction. 
The pattern of the vector of relative displacement is symmetric in respect to the slab midplane for 
dilatational waves and antisymmetric for flexural waves. The dispersion relations for dilatational 
waves are given implicitly by the system of equations 

<•£ = *? («8 + £) = A (?II +1), (2) 

tanfaa/2) _       4gjfk*n , . 
tan(U/2)  ~       (9JPIF 5 [  } 

where 5; is the longitudinal sound velocity in the bulk material, parameters ln and tn are determined 
from equations (2) and (3), which have many solutions as denoted by the index n. The dispersion 
relations for flexural waves are given implicitly by eq. (2) and the equation 

tan(U/2) _       Sktn (A\ 
tan^o/2) ~       {q\-tlf  " ^ 

The graphs of functions ojn(qu) obtained by numerical solutions of the system of eqs. (l)-(4) is shown 
in the Fig. la, 2a and 3a for shear waves, dilatational waves and flexural waves, respectively. We 
used elastic constants of GaAs and took the slab width as a — 100A These graps are plotted for 
the 12 lowest modes. 

IIL ACOUSTIC PHONON DENSITY OF STATES 

The peculiarities of the acoustic phonon spectrum will be markedly pronounced in the their 
density of states (DOS). The DOS of confined phonons is defined by the formula 

dwn/dq\\\ 

where A is the area of the slab, and the sum is taken over phonon modes; integral in (5) is taken 
over the curve of constant energy and TV is a function of the energy. 

We have to specify the Brillouin zone to calculate the DOS over a wide range of energy. For 
a model estimation we accepted a simple square Brillouin zone. So we take into account only 
those acoustic phonons in integral (5) which have wavevectors inside the first Brillouin zone. The 
lattice constant is taken equal 5.65A which corresponds to the case of GaAs. The graph of the 
DOS obtained by numerical calculation of the integral of (5) for shear, dilatational and flexural 
phonons is depicted in Fig. lb, 2b, and 3b, respectivelyly. At energies lower than some critical 
energy (corresponding to the edge of the Brillouin zone) the DOS is, on the average, a quadratic 
function of energy. This functional dependence occurs when many phonon branches contribute to 
the DOS and it corresponds to the case of bulk acoustic phonons. It is obscured in Fig. lb, 2b, 
and 3b because the graphs are plotted in the semilogarithmic scale to emphasize the singularities 
of the DOS. These singularities correspond to the extrema in the dispersion relation; formally the 
DOS goes to infinity in such points. In Fig. lb, 2b, and 3b, the DOS is plotted for energies up to 
10 meV. At higher energies the finiteness of the Brillouin zone becomes important and the function 
J\f saturates in the average. 

The DOS may be determined experimentally from neutron scattering spectra [4, 5] or from 
Brillouin light scattering spectra [6, 7]. It is a very important function characterizing the acoustic 
phonon subsystem and determining peculiarities of phonon interactions with phonons, photons 
and electrons. The singular points of the DOS make the observing conditions for the neutron 
scattering spectra and the Brillouin light scattering spectra more favorable, because the intensity 
of the scattered (reflected) radiation is proportional to the DOS of acoustic phonons. 
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IV. CONCLUSIONS 

We have calculated the acoustic phonon modes and their density of states in free-standing 
quantum wells. The density of states has singularities related to the extrema of the acoustic 
phonon dispersion law. In these singular points the DOS formally goes to infinity. It makes the 
observing conditions for light and neutron scattering spectra more favorable. 
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Figure 1. The dependences of the phonon energy, %ajn , on the in-plane wavevector, qu , (a) and 
the density of states, Af , on the phonon energy, fko , (b) for shear phonons in a free-standing 
GaAs quantum well of width lOOA. 
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Figure 2. The dependences of the phonon energy, hun , on the in-plane wavevector, qu , (a) 
and the density of states, J\f , on the phonon energy, hw , (b) for dilatational phonons in a 
free-standing GaAs quantum well of width 100.Ä. 
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Figure 3. The dependences of the phonon energy, Twjn , on the in-plane wavevector, qu , (a) and 
the density of states, Af , on the phonon energy, fiu , (b) for fiexural phonons in a free-standing 
GaAs quantum well of width 10(M. 
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Abstract 

A model has been developed for studying the effect of the electron-polar optical 
phonon interaction on electron transport in a GaAs/Alj.Ga^.j.As rectangular quantum 
wire system. The objective of this work is to investigate electron transport in ultra- 
submicron devices for which the inverse scattering rate can be on the order of the 
transit time. We solve the 3D, time-dependent Schrödinger equation non-perturbatively 
for the time evolution of the wavefunction of the coupled electron-LO and -SO phonon 
sytem. The time evolution of the mean electron momentum and directed energy are 
presented as a function of initial directed electron energy and applied voltage between 
the ends of the wire. Comparisons are made to semi-classical Monte Carlo results which 
are shown to significantly overestimate the amount of scattering on 100 fs time scales. 

I.  INTRODUCTION 

The emerging capabilities in nanoscale electronic device fabrication have spurred 
the development of fully quantum mechanical electron transport models in 
semiconductors. Two important aspects of electron transport in nanoscale devices that 
necessitate a quantum treatment are confinement in one or more dimensions and ultra- 
short (i.e., sub-picosecond) transit times. To correctly model electron transport under 
conditions where transit times are comparable to mean free collision timess ( ~ 100 fs), 
a dynamical treatment of the electron-phonon interaction should be incorporporated. 
This precludes the common treatment of electron-phonon scattering based upon the use 
of predetermined Fermi's Golden Rule (FGR) obtained scattering rates. A dynamical 
treatment requires a quantum mechanical (coherent state) description for both the 
electron and the lattice phonons. In this paper we develop such a quantum transport 
model (QTM) for a quantum wire (QWI), which describes the time evolution of an 
electron wavepacket coupled to the non-equilibrium phonon mode spectrum. As a 
model problem we consider placing an electron wavepacket in a rectangular, finite 
length GaAs QWI surrounded by Al^-Ga^As, and model its time evolution as it 
simultaneously accelerates in response to an applied electric field, and interacts with 
either the confined LO or interfacial SO phonon modes. 

H.  QUANTUM TRANSPORT MODEL 

We seek the time-dependent wavefunction ^(r,t) of the coupled system, 
consisting of a single electron, and either the LO or SO polar optical lattice modes with 
which the electron interacts. The lattice temperature is taken to be OK, in order for 
$(r,i) to describe a coherent state with a well-defined initial condition. We solve the 
3D time-dependent Schrödinger equation in the effective mass approximation, 

ih^ = (He + H ph + He_p)V(r,t) (1) 
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where 

He = h2V2 

2m* 
V(r) (2) 

H
Ph=m(ak+^)' 

9 
(3) 

V(f) is the potential energy for both the conduction band minimum and an externally 
applied voltage, and hu> is the phonon energy. In (1), the interaction Hamiltonians for 
LO and SO phonons, appropriate for an embedded rectangular QWI, are [1] 

H™ =2iCoo8 [m cos 
fe): m^k aqe tqz a\e~ %qz (4) 

TTSO n e-p 
9 

e)^x,y)(jfcf ane tqz   a\e~^ (5) 

where q = qz is the LO or SO phonon wave number corresponding to the direction of 
free propagation, along the wire. In this study, since we limit the transport time to 150 
fs, we neglect inter-subband transitions, and assume that the electron remains in the 
transverse (x,y) ground state. Hence, in Eq (4), only the dominant, lowest order 
transverse LO phonon mode has been retained. 

We write the solution $(r, t) as a superposition over the orthogonal basis of LO 
phonon number states, 

*(F, t) = a(f, t) e ~ »""(AW | 0) + E ßfc t) e ~ ^ + N/2)t I l)t 
£=1 

N2 

+ Y:7m(r,t)e-i^2 + N^t\2)m+--^ (6) 
m=l 

where | i) ■ represents the zth order phonon number state for the jth unique combination 
of phonon mode occupancies in the quantum wire, e.g., 

0)   =|0000...0) 

1)1 = |1000...0), |1)2 = |0100...0), - 

2)1 = |1100...0), |2)2 = |1010...0), .. 

%2_^ + 1 = |2000...0),..., |%2: 

0th order (vacuum state) 

1st order 

2nd order 

10000...2) 

and where the modes span the spectrum of wavenumbers q. It follows that for a system 
of TV modes, there are N combinations of 1st order number states and /V2 = N(N + l)/2 
combinations of 2nd order number states. For this study, we retain terms only up 
through 2nd order in Eq (6). From Eqs (l)-(3), (4) or (5), and (6), the required set of 
coupled differential equations for the coefficients a(z,t), ß^(z,t), im{z,t) is obtained by 
directly applying the Hamiltonian operators to ^(r,i) in (6) and then equating 
coefficients associated with each unique number state. Previously [2], we have reported 
an approximate ID solution to this problem for the LO interaction, in which the 
replacement cos(Trx/ix)cos(ny/iy)—>1 in Eq (4) was made to enable a separable solution 
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to Eq (1).  Results for both the ID and 3D models are presented here. 

m. RESULTS AND DISCUSSION 

The  initial   condition  for   ^(r,0)   is  ßg[z,0) = 7m(-z,0) = 0   for   all   I  and  m 
(corresponding to the lattice vacuum state at T = OK), and 

a{r, 0) = exp[ - {z - z0)2/2{Az{f + ik{z] <f>0(x, y), (7) 

where 4>0(x,y) is the 2D ground state eigenfunction for the GaAs/Al^Gai xAs system 
(x = .45 or 1.0). The effective strength of electron-LO phonon scattering (using the ID 
model and x = .45) as a function of electron energy is shown in Fig la, in which {kz)t is 
plotted for several initial directed electron energies, E^ with initial spread Aki = 5 x 107 

m , and no applied field. The initial flatness of the curves in Fig la is a result of the 
time ( ~ 1/WLO) required for conservation of energy. In Fig lb, plots of (kz)^ calculated 
from a semiclassical Monte Carlo Model (MCM) are shown. The MCM consists of an 
ensemble average over 10,000 electrons, with identical initial conditions, propagating 
along the wire, and interacting with the lattice by means of forward and backward 
scattering rates obtained from the approximate ID LO Hamiltonian. The MCM 
predicts a much faster momentum relaxation since, over 150 fs, virtually all the 
electrons in the ensemble scatter one or more times, whereas the QTM results predict 
that a significant fraction of the initial electron wavepacket remains unscattered during 
this time period. 

The effect of LO phonon scattering (using the ID model and x = .45) on {kz}^ has 
been studied for various electric field strengths with E^ = 0 and Akj = 5 x 10' m , as 
shown in Fig 2a. For each field strength, the (kz)f curves increase linearly with time 
until {kz)t= k i — Aki = 2.0 x 10 m, at which time some of the electron 
wavenumber components begin to emit LO phonons. The corresponding results 
predicted by the MCM are shown in Fig 2b. Due to the singular scattering rate at the 
LO phonon energy of 36.2 meV, all electrons in the ensemble scatter when they reach 
an energy of 36.2 meV. In contrast, the QTM predicts only partial scattering of the 
electron wavepacket, so that the unscattered portion of the wavepacket can be 
accelerated (for the larger field strengths) to energies well in excess of 36.2 meV. 

In Fig 3, (kz)t is plotted for Ei = 50 meV, Aki = 5 x 107 m~ *, and no applied 
field, for both x = .45 and 1.0, using either the 3D electron-LO or -SO Hamiltonians 
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Fig. 1.  {kz)t vs. t (a) QTM and (b) MCM for E{ = 0.05, 0.1, 0.15, 0.20, 0.25, 0.30 eV. 
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[Eqs (4)-(5)]. In agreement with published scattering rates for GaAs/AlAs quantum 
wires [1], the electron-LO interaction is more effective than the electron-SO interaction 
at dissipating the directed electron momentum. In addition to a greater interation 
strength for HLO versus Hso, the electron-LO interaction is more effective at 
randomizing the scattered wavevectors. This can be seen in Fig 3b, in which the 
electron probability density is plotted along the kz axis at 150 fs for the cases from Fig 
3a corresponding to x = 1.0, for each type of interaction. A large unscattered 
component is evident for the Hso curve, and it can be seen that the forward- and back- 
scattered wavevector components (centered about kz = 0) are much more nearly equal 
in magnitude for the HLO curve compared to the Hso curve, also in agreement with 
scattering rate predictions [3]. 
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Abstract 

A simple numerical method is presented to include the phenomenon of a finite quantum well capture time 
in the numerical simulation of quantum effect devices. If the time taken to leave the quantum well 
(through tunnelling) is sufficiently short the electron states in the quantum well will remain relatively 
unoccupied due to the finite scattering time from the three dimensional continuum into the two 
dimensional states. A numerical formulation is presented which models this phenomenon by using an 
effective Fermi function for the occupancy of the two dimensional states, enabling the method to be used 
in conjunction with general purpose device simulators. The method is applied to a simple tunnel barrier 

to show the generality of the model. 

I. INTRODUCTION 

In the operation of single or double heterobarriers the accumulation of electrons at the heterointerface can 
have significant effects on the performance of the device. The principle of operation is shown in figure 1. 
As the bias is increased across the heterobarrier a potential induced accumulation layer forms at the 
heterointerface. Electrons in the accumulation layer have their energies quantised in the direction of 

propagation. 

Figure 1: Principle of operation 
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To model this phenomenon requires accurate knowledge of the electron concentration in the accumulation 
layer. As the bias is increased above zero volts it is no longer valid to assume that the electrons in the 
accumulation layer are in thermal equilibrium. If the time required to enter the 2D states is much longer 
than the time required to leave the 2D states then the 2D states will remain relatively unoccupied. A 
numerical model for such structures is presented next. 

II. NUMERICAL MODEL. 

In order to simulate the steady state characteristics of the device the following equations must be solved self 
consistently. To obtain the electrostatic potential throughout the device Poisson's equation must be solved 
(assuming majority carrier operation) 

V.(eVq>) = -q(-n+ND) (1) 

where £ is the composition dependent permittivity, q is the electronic charge, 9 is the electrostatic 
potential, n is the electron concentration, and Np is the concentration of ionised donors. The electron 
density is calculated from the addition of 2D electrons in bound energy states and 3D thermal electrons. 

^ m*kBT   , 
n= X—-;—f: In 1 + exp 

kBT 

2D 

M  +NCF, 1/2 

rE   -E  A 

k„T 

3D 

(2) 

where f is the non-equilibrium modification factor, kB is Boltzmann's constant, Ef is the quasi-Fermi 
energy, Nc is the effective density of states, Eb represents the energy above which electrons are unbound 
(usually the top of the quantum well), Fj/2 represents the Fermi integral, m* is the electron effective mass 
and h is Planck's constant h/27t. Ej and % are the quantised energy levels and wavefunctions respectively, 
calculated from the effective mass Schrödinger equation, 

1-tc 

Vrn 
+ V Pi =E;cp; (3) 

where V is the potential defining the quantum well (the conduction band edge). 

To calculate the tunnelling current through the barrier a modified Tsu-Esaki formula [1] is used. In the 
case of an accumulation layer there are 2 components to the current density, a two dimensional 
component J2D and a three dimensional component T3j> 

208 



•" 2D       Zu 
i=l 
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JJ 

dE 

dE (4) 

(5) 

where T(E) is the energy dependent tunnelling probability through the barrier (obtained from a solution to 
(3)) and Vbi is the voltage drop across the heterobarrier. Note that due to coupling between the quantum 
well and the collector the integral for the 2D current cannot be replaced by a summation. 

The non-equilibrium factor f is used to cope with the non-equilibrium of electrons and is derived as [2]. 

r = ^f°g3+T21flgl (6) 

T2i represents the peak tunnelling probability through the barrier, x^ represents the resident time of an 
electron above the quantum well, xs represents the scattering time into the well, f represents the occupancy 
probability and g represents the density of states. The subscripts refer to figure 1. The only unknowns are 
f i and gi and these can easily be calculated. 

To model the effects of scattering on energy spectrum a simple method proposed by [3] is used. Lorentzian 
broadening of the tunnelling probability spectrum is assumed, the magnitude of which is calculated from the 
phase relaxation time, the time between phase altering events. In this way the tunnelling probability T(E) 
for any particular energy E is modified according to 

T*(E) = T(E) 
r 1 
rA+[(E-Er)/(r/2)]J 

(7) 

where T*(E) is the modified transmission probability of the barrier at energy E, Ej- is the resonance energy 
of the well, T is the total energy width due to coupling outside the quantum well and phase breaking 
inside the well, T = Tc + Tp where Tc and Tp are the coupling width and the width caused by phase 
breaking respectively. The relationship between the width caused by phase breaking and the phase 
breaking time xp is given by the uncertainty principle. 

III. APPLICATIONS 

Figure 2a shows how the occupancy of the weU decreases with decreasing width of barrier. In this example 
the scattering time into the well is taken to be lps in agreement with recent experimental results[4]. The 
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result clearly indicates the importance of considering a finite scattering time in the case of narrow barriers. 
At barrier of widths of 8nm and above the quantum well may be taken as fully occupied (within the bounds 
of the underlying Fermi-Dirac statistics) but below 8nm this is clearly not so. At barrier widths of 2nm and 
below the occupancy of the two dimensional states in the quantum well drops rapidly after a small applied 
voltage and plays only a small part in the current operation of the device. 

Figure 2b shows how the occupancy of the well varies for various scattering times into the quantum well. 
The barrier width in this example is taken to be 4nm. At a scattering time of lps the occupancy of the well 
drops linearly with applied voltage. As the scattering time into the quantum well increases so the occupancy 
of the well decreases, as would be expected. 

0.4 
0.3 1.0 

Voltage (V) 

2.0 

f* 

0.0 
1.0 

Voltage (V) 

Figure 2 Occupation probability vs. a) scattering time and b) barrier thickness 

IV. CONCLUSIONS 

In summary a simple formalism has been derived to calculate the reduced occupancy of a quantum well due 
to a finite capture time which is both easy to calculate and to implement within existing device simulators. 
The results show the importance of including the finite capture time in tunnel barrier simulation for narrow 
barriers where the occupancy can be reduced to around 10% of its equilibrium value at a moderately high 
applied voltage. 
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ABSTRACT 

A self-consistent, one-dimensional solution of Schrodinger-Poisson equations is obtained by 
Newton-Raphson iteration technique using a finite-difference method with a non-uniform mesh. The 
method is applied to the simulation of a Schottky barrier placed on the surface of a single quantum well 
structure. The capacitance of the structure is calculated directly from the solution of the a.c. Poisson 
equation. The simulated apparent carrier profile is shown to be in excellent agreement with the 
experimental carrier profile obtained by C-V measurements on a GaAs/InGaAs/GaAs strained layer single 
quantum well structure. 

I INTRODUCTION 

A number of papers in the literature deal with the self-consistent solution of one-dimensional 
Schrodinger-Poisson equations [1-4]. The most commonly used technique to obtain the required self- 
consistent solution is the so-called relaxation method. In this method, a trial potential distribution V^x) 
is used to solve the Schrodinger equation and the resulting wavefunctions and the energy eigenvalues are 
used to calculate the charge density in the quantum well regions. Poisson equation is then solved using 
this charge density to get the new potential distribution Vout(x). For the solution of Schrodinger equation 
in the next iteration, a linear combination of Vin(x) and V0l)t(x) given by 

Vyx) = Vin(x) + f(Vout(x)-Vin(x)) ...(1.1) 
is used as the input potential, where f is known as the relaxation factor. The whole procedure is repeated 
until convergence, viz. the input and the output potentials Vin(x) and Vout(x) are equal within the desired 
accuracy. A small value of f usually gives a safe but slow convergence. A number of methods have been 
described for the choice of f which give faster convergence [1]. Yet, the convergence of relaxation method 
is generally slow. In this paper, we describe an alternative method of obtaining the self-consistent solution 
by solving the Poisson equation by Newton-Raphson (NR) iteration technique. The application of NR 
method for the solution of non-linear Poisson equation when the charge density can be expressed explicitly 
as a function of the potential is well known. This paper basically extends this method to the case when 
the charge density calculation requires the solution of Schrodinger equation. 

II NEWTON-RAPHSON METHOD 

Newton-Raphson method in N dimension deals with the solution of N non-linear equations 
FiCx,^, xN) = 0,     i=l,2, N. ...(2.1) 

In the vector notation, eq.(2.1)  is written as 
F(x) = 0 ...(21a) 

where x and F stand for the vectors (xbx2 xN) and (F„F2,....FN), respectively. Eq. 2.1a is solved by 
starting with a trial vector XQ, and adding to it a correction vector 8x given by 

F(Xo+5x) = F(Xo) + J.8x = 0 ...(2.2) 
or,                                                                J.Sx = -F(XQ) ...(22a) 
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where the elements of the Jacobian matrix J  are given by 
Jy = BFi /9Xj. ...(23) 

The matrix equation 2.2a is solved by standard LU decomposition and the solution vector is found by 

\>Id + Sx. ...(2.4) 

III       BASIC EQUATIONS AND THE ITERATIVE PROCEDURE 

In this section, we summarize the basic equations and the iterative procedure that we used for the 
self-consistent solution. The one-dimensional Schrodinger equation is : 

-•h2/2m'(x) d2y(x)/dx2 + V(x)y(x) = E y(x) ...(3.1) 
where y(x) is the wavefunction, E is the energy eigen value, m* is the effective mass and V(x) is the 
potential energy. With a given potential energy distribution V(x), eq. 3.1 is solved numerically to get the 
energy eigenvalues E^ and the corresponding wavefunctions yk(x). The electron density distribution in the 
quantum well region is given by 

n(x) = mVrih2 S; kT ln(l+exp((EF-Ek)/kT)) I yk(x) I2 ...(3.2) 
where the summation (LJ is carried out over all the allowed bound states in the well and Ep is the Fermi 
energy. The electron density distribution in the regions outside the quantum well is given by the 
conventional 3-D Fermi-Dirac statistics, viz. 

n(x) = 2/VTT NC Flfl [(Ep-V(x))/kT] ...(3.3) 
where Nc is the effective density of states in the conduction band, and F1/2 is the Fermi-Dirac integral. 
The Poisson equation in one-dimension is 

d20(x)/dx2 = - f (x)/e(x) ...(3.4) 
where <I> is the electrostatic potential, e(x) is the dielectric constant, and the charge density P(x) is given 
by 

P(x) = q(Nd
+(x)-n(x)). ...(3.5) 

In eq. 3.5, Nd
+(x) and n(x) are the ionized donor density and the electron density distribution, respectively. 

The Poisson equation 3.4 is solved numerically by Newton-Raphson method as described in section IV. 
The potential energy V(x) for the solution of Schrodinger equation in the next iteration is calculated from 
the electrostatic potential O(x) through the relation 

V(x) = -qO>(x) + Eg(x) ...(3.6) 
where E is the bandgap of the semiconductor. In eq. 3.6, the exchange-correlation term is neglected and 
the zero of energy is taken to be the valence band maximum. The whole procedure is repeated until the 
potential energy distribution V(x) is equal for successive iterations, within a desired accuracy. 

IV  NUMERICAL SOLUTION OF POISSON EQUATION 

In order to apply Newton-Raphson (NR) method for the solution of Posisson equation, we first 
rewrite eq. 3.4 in the form of eq.2.1 using a three point finite difference scheme and a non-uniform mesh: 

F, = RA-i " 0+Ri)<E>i + ^ /£ih2Ri(l+Ri)/2 + *i+I = 0,     i=l...N, ...(4.1) 
where h( is the width of the i'th grid and Ri=hi+1/hi. As described in section II, eq. 4.1 can be solved by 
starting with a trial vector <&°, and adding a correction vector given by the solution of the matrix equation 

J.SO = -F. ...(4.2) 
The Jacobian matrix J is seen to be of the familiar tridiagonal form with elements given by 

= Ri. 
= l, 
= -(l+Ri)+hi

2Ri(l+Ri)/2Ei d P{/d% 
= 0, 

j = i-1, 
j = i+1, 

otherwise. 

...(4.3) 
...(43a) 
...(43b) 
...(43c) 
...(43d) 
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The dPj /dOj term required in eq.4.3c is obtained by differentiating eq.3.5: 
dPi/dOj  = qfdN/COiVdOi + dnCOiVdOJ. ...(4.4) 

The first term in eq.4.4 is easily evaluated all points. The second term in eq.4.4 is also easily evaulated 
at points outside the quantum well region. In order to evaluate the second term of eq.4.4 in the quantum 
well region, we make the approximation that the wavefunctions and the energies of the bound states with 
respect to the bottom of the well do not change for a small change in potential dCE>. Our numerical 
experience shows that this approximation is generally quite valid. Thus, assuming 

dl yik iVdOj = 0, and d^-Ep) = -qd^, ...(4.5) 
eq.3.2 can be differentiated to give 

dn(x)/dOi = (mV;*2) 2^ l/(l+exp((Ek-EF)/kT)) I y> I2 ...(4.6) 
in the quantum well region. Thus, dfj /dOj is evaluated at all points including the quantum well region, 
and hence all the elements of the Jacobian matrix can be calculated using eqs. 4.3, and the correction 
vector SO can be found by solving eq. 4.2. The new potential for the solution of Schrodinger equation 
in the next iteration is given by 

Onew = O0 + 80, ...(4.7) 
and the whole procedure can be iterated. 

V NUMERICAL SOLUTION OF SCHRODINGER EQUATION 

Schrodinger equation 3.1 is discretized using a three point difference scheme and using a non- 
uniform mesh: 

-•n2/2m* {Riy„ - (1+Ri)yi + yi+1}/(hi
2Ri( 1+^/2) + V, y-t = E ys, i=l,2, N ...(5.1) 

where, once again, h; is the width of the i' th grid and Rj = hi+1/h;. Eq. 5.1 can be written in the matrix 
form 

H.y = Ey ...(5.2) 
where the Hamiltonian matrix H has the tridiagonal form given by 

Hy        =-(n2/2m*)/{hi
2Ri(l+Ri)/2}Ri, j=i-l, ...(53a) 

= -(h2/2m*)/{hi
2Ri(l+Ri)/2}, j=i+l, ...(53b) 

= V; + (1+Rj) (n2/2m*)/{hi
2Ri(l+Ri)/2}, j=i, ...(53c) 

= 0, otherwise, ...(53d) 
and y = (yi,y2,....yN)IS a c°lumn vector. We used an inverse iteration procedure to solve eq. 5.2. Starting 
with a trial eigenvalue cc,. and a corresponding normalized trial eigenvector y\ the solution of the 
following equation 

(H - cckI).b
k = yk ...(5.4) 

where I is the unit matrix, gives an improved eigenvector bk , and 
E, = cc, + l/(bk.yk) ...(5.5) 

gives an improved estimate of the energy eigenvalue. The procedure is iterated by normalizing bk and 
using in place of y* until Ey and yk are determined to the desired accuracy. The whole procedure is 
repeated until the eigenvalues and the eigenvectors of all the possible bound states in the quantum well 
are obtained. 

VI   CALCULATION OF CAPACITANCE 

We calculate the capacitance of the structure by directly solving the a.c. Poisson equation [5]. The 
change in the electrostatic potential distribution for a small change 8V in the bias across the device is 
given by the solution of the a.c. Poisson equation (obtained by differentiating eq. 3.4) 

d2u(x)/dx2 = -(d?(x)/dO)u(x)/e(x) ...(6.1) 
where u(x) = dO(x)/dV. From Gauss's law, the total charge per unit area can be obtained from the surface 
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electric field: 
Q = -e d€»/dx lx=0 ...(6.2) 

The small signal capacitance is given by 
C = dQ/dV = -e du(x)/dx lx=0 ...(6.3) 

Thus, by solving eq. 6.1 using the values of dP(x)/d€> obtained in section IV, and using eq. 6.3 the 
capacitance of the structure is easily determined. 

VII      RESULTS AND DISCUSSION 

14 

12 

10 

GoAs/ln,aGa7sAs/GoAs '124^.75 
= 300K 

The method was applied to the simulation of a strained GaAs/InGaAs/GaAs single quantum well 
structure grown by metal-organic chemical vapor deposition (MOCVD). A Schottky barrier was assumed 
to be placed on the surface of the sample and the simulations were carried out to calculate the capcitance 
of the structure for different voltages applied to the Schottky contact with respect to the bottom GaAs 
layer. From the calculated capacitance-voltage (C-V) data, the apparent carrier concentration profile was 
calculated using the standard relations, 

n(x) = 2/(q£A2dC2/dV), and x = eA/C, ...(7.1) 
where x is the depth below the Schottky barrier plane, and A is the area of the device. The only fitting 
parameter used for the simulation was 
the band offset AEC. All the other 
parameters required for the simulation, 
such as the quantum well width, the 
nominal Indium composition in the well, 
etc. were estimated from the growth 
conditions. Figure 1 shows a comparison 
between the simulated and the 
experimental carrier profiles. To 
demonstrate the sensitivity of the 
simulated profile to the value of the 
fitting parameter^Ec, the simulations are 
shown for two different values of AEC. 
Excellent agreement between the 
simulated and the measured profiles is 
obtained for^ Ec = 0.165 eV. We have 
also developed a modified Kroemer's 
analysis for the determination of AEC 

directly from the experimental carrier 
profile [6]. From this analysis we get 
AEC = 0.162 eV in excellent agreement 
with the value obtained from simulation. 

Expt 

-SimAEc=0,165eV 
-SimiEc=0.145eV 

2 - 

0.2 0.3 0.4 0.5 0.6 

X  Urn) 

Figl. Experimental and simulated carrier profiles 
of GaAs/InGaAs/GaAs strained SQW structure. 
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Abstract 

We present numerical simulations of electron confinement in gated AlGaAs/GaAs quantum dot structures. 
The confining quantum dot potentials are obtained from solutions of the axisymmetric Poisson equation. 
Our model takes into account the effect of surface states by viewing the exposed surface as the interface 
between the semiconductor and the dielectric. We investigate the confining potentials and the dot occupa- 
tion as a function of different physical models for surface states at the exposed semiconductor surface. 

I. INTRODUCTION 

In recent years, fabrication techniques have made possible confinement of a two-dimensional electron 
gas into wires or dots where quantum effects are significant. Typically, such device structures are defined 
by metallic gates. In order to model electronic confinement in these structures, one has to solve the Poisson 
and the Schrödinger equations. For solving the Poisson equation, one needs to specify boundary conditions 
for the potential and/or flux at the exposed semiconductor surface. This is a crucial problem, especially in 
quantum devices where the confined electrons reside close to the surface. In previous work [1], we have 
shown that different choices for the boundary conditions at the exposed surface result in noticeable differ- 
ences for the confining potentials. Highly accurate models of the potential or dielectric flux variation on 
the exposed semiconductor surface will be needed to realize recently proposed computing architectures for 
quantum devices, so called Quantum Cellular Automata, which consist of cells of coupled quantum dots in 
the few electron regime [2]. 

In our formulation [1], we view as the natural problem domain both the semiconductor and the dielec- 
tric, as schematically shown in Fig. 1(a). Thus the usual Dirichlet or Neumann boundary conditions at the 
exposed semiconductor surface are replaced by more physical matching conditions at the interface 
between the semiconductor and the dielectric. We assume that the potential is continuous across this inter- 
face and that the jump in the normal dielectric flux density is equal to the surface/interface charge density, 
Qint, which is determined by microscopic models for surface/interface states. We apply our coupled finite- 
element/boundary-element (FBEM) algorithm to quantum dot structures with axisymmetry. The numerical 
formulation of the problem is developed in Sec. II and numerical results are presented in Sec. III. 

II. PROBLEM FORMULATION 

1. Problem Statement 

A model quantum dot structure with axisymmetry is shown in Fig. 1. In the semiconductor domain, a 
quantum dot is realized at the AlGaAs/GaAs heterojunction and is defined by applying a sufficiently nega- 
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Figure 1: The model quantum dot heterostructure. Fig. 1(a) shows the whole problem domain with axial symmetry 
which consists of both the semiconductor ( Qj and ß2) and the dielectric ( Q.d) regions. Fig. 1(b) indicates the two 
dimensional generating areas and boundaries with typical dimensions. Fig. 1(c) shows the FBEM mesh, which is dense 
inside the semiconductor region and only consists of the discretized boundary surrounding the dielectric region. 

tive gate voltage VG to the metal gate on the top surface, which contains a circular opening thus exposing 
the semiconductor surface. For axial symmetry, Poisson's equation can be written in cylindrical coordi- 
nates (r,9,z) as, 

a 1 d        du(r,z) N 

~;r(r£—5 ) r or or 
au{r,z) 

dz dz 
= -f[u(r,z)], (1) 

where u = (Ec ((j>) - EF) /kT is a reduced variable which measures the separation between the con- 
duction band edge and the Fermi level in units of the thermal energy kT, f = ep/kT is the charge den- 
sity term in the semiconductor, e is the dielectric constant, and rn is the effective mass. The generating 
domains and boundaries are shown in Fig. 1(b). 

Equation (1) is a boundary value problem. We solve it by our FBEM algorithm [1], which is a com- 
bined finite element method (FEM) for the semiconductor domain and a boundary element method (BEM) 
for the dielectric region. For the semiconductor domain Qs, with Qs 

cretization of equation (1) results in the following non-linear system of equations, 
= Q.l u Q2, the standard FEM dis- 

[uug + Kl2uBA - Pf, 

y\2Uo + **-22UBA   ~  *BA> (2) 

where uBA and PS
BA contain the potentials and nodal forces at the nodes on the interface dü.BA between the 

semiconductor and the dielectric, whereas uB and Ps
f contain the potentials and nodal forces at all other 

nodes inside the semiconductor domain, and K is the stiffness matrix. 
The dielectric domain, Q,d, is a charge free region. The governing equation is Laplace's equation. 

Since the fundamental solution of Laplace's equation is known, a boundary integral equation technique 
can be employed. With the known three dimensional fundamental solution of Laplace's equation in cylin- 
drical coordinates and its associated dielectric flux density [3], the boundary contour dQd can be calcu- 
lated explicitly in terms of complete elliptic integral of the first and second kind, K(m) and E{m), 
respectively. The resultant system of equations can be expressed as, 

Suu0 + SnuBA = Pd 

S2\U0 + S22uBA BA> (3) 
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where S is the equivalent stiffness matrix, and P^ is the equivalent nodal force vector. 
The matching conditions at the exposed surface [1] are given in discretized form by, 

lBA =  U BA =  U BA and PBA + Pd
BA = -jfiQin,, (4) 

where QiM - Qint (uBA) is the nodal charge density on the exposed semiconductor surface. A global sys- 
tem of equations is formed by coupling the semiconductor, equation (2), to the dielectric, equation (3), 
while enforcing the matching conditions (4), 

5n Su   0   0 
d 

'Ft] 
21      22 «BA Qint 

0  KnKu 0 

0  K22 Kn -I 

s 

fBA _0_ 

(5) 

Solution of this set yields the potential distribution in the semiconductor and dielectric domains, including 
the interface dQ.BA, and the nodal flux on d£lBA. 

2. Interface Charge Density on the Exposed Semiconductor Surface 

In order to solve the above problem, the surface charge density, Qint, must be given to specify the 
matching condition (4). It is known that surface states lying within the energy band gap play a dominant 
role in the surface charge Qint on exposed semiconductor surfaces [4-6]. 

In this model, the characters of the surface states are assumed to be acceptor-, DS
A, and donor-,DD, 

like. Typical energy distributions of surface states are shown in Fig. 2 [4,5]. The semiconductor surface 
charge density, as a function of surface potential uBA, is given by Fermi-Dirac statistics with an appropriate 
quasi-Fermi level for cases of applied bias, 

QUMBA)  = -*J 
D\ 

l+exp[(E-Es
F)/kT] 

dE + e\ 
Ds

Dexp[{E-Es
F)/kT) 

l + exp[(E-Es
F)/kT] 

dE, (6) 

The strong non-linearity of the surface charge as 
a function of the potential may cause numerical con- 
vergence problems, particularly for low tempera- 
tures. We implemented a modified Bank-Rose 
damping scheme [7] to stabilize the convergence by 
adaptive underrelaxation and to accelerate the con- 
vergence speed of Newton's method. The combina- 
tion of our coupled finite-element/boundary- 
element algorithm and the adaptive damping 
scheme performs quite satisfactorily in our numeri- 
cal examples. 

III. NUMERICAL RESULTS 

Figure 2: Typical energy distributions of interface states 
across the semiconductor bandgap; (a) uniform, and (b) 
localized distributions. 

An example heterostructure is shown in Fig. 1 with its relevant physical dimensions indicated. In the 
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semiconductor domain, a quantum dot is realized at the AlGaAs/GaAs heterointerface by applying a suffi- 
ciently negative gate voltage VG to the patterned metal gate on the top surface. The n-type doping density 
is assumed to be 10  cm in the AlGaAs layer and 1015cm  in the GaAs substrate. We assume both uni- 
form and gaussian localized energy distributions of surface states across the semiconductor bandgap, as 
shown in Fig. 2. The characters of the surface states are assumed to be acceptor-, DS

A, and donor-,DD, 
like. A semi-classical Thomas-Fermi charge model is assumed in the semiconductor domain. 
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Figure 3: Surface potential § on the surface of AlGaAs 
as a function of the surface density of states for both uni- 
form and gaussian localized energy distributions. Here, 
DS

A — DS
D is assumed. 

0.9 1.0 
Gate Bias 

Figure 4: Comparison of the number of confined electrons 
as a function of gate bias for the three types of boundary 
conditions on the exposed semiconductor surface. The inset 
shows surface potential profiles on the semiconductor sur- 
face for -0.8 Vgate bias. 

As shown in Fig. 3, the semiconductor surface potential, §s, varies with the surface density of states 
for low defect densities on the surface. For higher surface density of states, however, the surface poten- 
tial«)) saturates, and the surface Fermi level is then pinned at or near to the energetic position of the neutral 
level, E0, shown in Fig. 2. This pinning behavior is observed for both uniform and localized energy distri- 
butions of surface states. 

Figure 4 presents a comparison of the number of confined electrons as a function of gate bias for dif- 
ferent boundary conditions at the exposed semiconductor surface, namely the more conventional Dirichlet 
and Neumann boundary conditions, and our FBEM matching technique. The parameters and dimensions 
of the quantum dot structure are the same as those given in Fig. 1. We see that the different formulations 
produce significantly different results. Specifically, the Dirichlet boundary condition produces a signifi- 
cantly higher number of electrons than the FBEM algorithm, and the Neumann boundary condition pro- 
duces a much lower quantum dot occupation. 
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Abstract 

We present a numerical technique which yields, as the solutions of a linear eigenvalue problem, the posi- 
tions of transmission poles and zeros in resonator structures with arbitrary potential profiles. We present 
several examples to demonstrate the utility of this numerical technique. 

I. INTRODUCTION 

A common computational problem is to find the quasi-bound states of resonant transmitting systems. 
For an isolated bound system, because of the zero wavefunction boundary conditions, the Hamiltonian of 
the system is Hermitian, hence the system has only bound states. However, for an open unbound system, 
because the wavefunctions at the boundary are non-zero, the complex boundary condition may lead the 
Hamiltonian of the system non-Hermitian, hence the system possesses quasi-bound states for resonant 
transmission [1]. In general, to find the quasi-bound states of a given system with scattering boundary con- 
ditions requires to search for the zeros of an energy-dependent matrix determinant [2, 3]. 

In this paper, we use another approach to solve this problem. Based on the quantum transmitting 
boundary method (QTBM) and a finite element discretization [4], we present an eigenvalue algorithm 
which yields the positions of the transmission poles. We can also use this algorithm to calculate the posi- 
tions of transmission zeros in quantum waveguide systems [5]. 

II. APPROACH 

In general, a transmission problem shown in Figs. 1(a) and 2(a) may be formulated as an inhomoge- 
neous problem, Au=ccP Here, A is an energy-dependent coefficient matrix, u is the unknown wavefunc- 
tion, and ocP is the source flux. Specifically, a can be either the incoming amplitude, i(E) in figure 1(a), or 
the transmission amplitude, t(E) in figure 2(a), and P is an energy-dependent vector. For a given source 
flux ocP, the solution of the inhomogeneous system is uniquely determined. We can also force the source 
flux aP=0, as shown in figures 1(b) and 2(b), which results in a homogeneous problem, Au=0. This is, in 
general, a nonlinear eigenvalue problem. Using the finite element discretization, furthermore, results in a 
linear eigenvalue problem. 

For the transmission problem, shown in Fig. 1(a), Schrodinger's equation can be written as the follow- 
ing inhomogeneous system, where all matrices are constant and the energy dependence is shown explicitly, 

(H-EQ+ kLBL + kRBR)\|/ = i(E)kLp (1) 

Here, i(E) is the amplitude of the forcing incoming flux at energy E. The wavenumbers at the left and right 
boundaries of the system are kL and kR, respectively, which are related through the external bias Vbias by, 
kR

2-kL
2 = (2m*eVbias)/fi

2; all symbols have their usual meaning. The bound state problem is contained in 
the above system as (H - E Q) \\f = 0, and the matrices BL, BR, and p arise due to the open boundaries. 
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A u = i(E) P 

Au = 0 

Figure 1. Schematic diagram of a resonant structure with a 
forcing incoming flux (thick arrow), (a) shows an incident 
wave from the left (source) with its transmitted and reflected 
components, which results in an inhomogeneous problem; (b) 
setting the incident wave (source) to zero, leads to an eigen- 
value problem. Its solutions give us the quasi-bound states of 
the system, or the positions of the transmission poles. 

i(E)e ikLx 

Resonator 

r(E)e ■ikLx 

Au = t(E)P 

(a) 

i(E)e 
ikLx 

Resonator 

r(E)e ikLx 

An = 0 

(b) 

Figure 2. Schematic diagram of a resonant structure with a 
forcing transmitted flux (thick arrow), (a) shows an incident 
wave from the left with its transmitted (source) and reflected 
components, which results in an inhomogeneous problem; (b) 
setting the transmitted wave (source) to zero, leads to an 
eigenvalue problem. Its solutions give us the positions of the 
transmission zeros. 

Forcing the incoming flux to zero, i(E)=0 as shown in Fig. 1(b), produces the decaying quasi-bound 
states of the system. Equation (1) becomes a polynomial eigenvalue problem of degree p=2 for an unbi- 
ased system (Vbias = 0 and kL=kR) and of degree p=4 for a biased system. In the latter case, we perform the 
following transformations, kR=k+A and kL=k-A, with A=(m*eVbias)/(2rl2k). This leads to a fourth-order 
polynomial eigenvalue problem in k, 

;3 A.   j.0 A.1„r_n (2) 
(■ 

l0 + kAj + k2. i2 + kJ A3 + k4A„ )¥ = 0 

where the above A's are related to the matrices in equation (1). The polynomial eigenvalue problems of 
degree p can be rearranged into linear eigenvalue problems with p times the original matrix size. Since the 
resulting matrix is not Hermitian in this case, the eigenvalues are located in the complex-energy plane. The 
real and imaginary parts of these eigenvalues correspond to the energies and lifetimes of the quasi-bound 
states of the resonant transmission system. 

The transmission problem may also be viewed as one in which the resonant structure is forced to yield 
a certain transmitted amplitude t(E), as schematically shown in Fig. 2(a). In this case, the required incident 
and reflected amplitudes are the unknowns. Using the boundary condition \|/(xR) = t(E) exp(ikRxR) at the 
right edge xR of the system, we may re-write equation (1) in a form where only terms proportional to t(E) 
appear on the right-hand-side. Terms proportional to the incident amplitude i(E) appear on the left-hand- 
side, and i(E) now is part of the solution vector \|/ which contains the unknowns. 

Forcing the transmitted flux to zero, t(E)=0 as shown in figure 2(b), produces the transmission zeros. It 
can be shown that the corresponding eigenvalue problem is linear in the energy, and has the form, 

(H'-EQ')v'=0 (3) 

where the matrices H' and Q' are related to the corresponding ones in (1). For t-stub systems, furthermore, 
it can be shown that H' is also Hermitian. As a consequence, the eigenvalues in this case, which are the 
energies of the transmission zeros, always occur on the real-energy axis. This result is consistent with our 
previous scattering matrix investigations, where we also proved that transmission zeros always occur on 
the real-energy axis [5]. 
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ffl. EXAMPLES 

We now present several examples to demonstrate the utility of our approach. First, we apply our 
method to a multi-barrier resonant-tunneling structure with applied external bias. Next, we locate the posi- 
tions of transmission poles and zeros in quantum waveguide systems, which include t-stub and loop struc- 
tures. We compare the results of our direct eigenvalue method to the more conventional method of 
searching in the complex-energy plane for the zero of the system determinant. 

1. Multi-Barrier Resonant-Tunneling Structure with Applied Bias 

As our model system, we consider a 10-barrier resonant-tunneling structure in a uniform electric field 
of £=150 kV/cm. The barrier width and height are 1.4 nm and 5.0 eV, respectively, and the well width is 
4.9 nm. For the finite element discretization, we use an average mesh size of 0.7 nm for the numerical cal- 
culation, which yields matrices of dimension 92 in equation (1). We choose the middle of the structure as 
the zero point of the potential. 

Applying our eigenvalue method to this structure, we obtained the energies of the quasi-bound states, 
which are the poles of the transmission amplitude in the complex-energy plane. It is well known that no 
transmission zeros exist in this case. It is an easy matter to numerically obtain the eigenvalues of the linear 
system (2) with dimension 368. The results are plotted in Fig. 3, and the numerical values for the real and 
imaginary parts of the poles are given in tabular form. The horizontal lines indicate the computed spatial 
electron densities in each quasi-bound state. The formation of minibands is evident, which are derived 
from the individual states in each well. The imaginary part of each pole gives the inverse of the lifetime for 
the corresponding quasi-bound state. As one would expect, the longest-lived states are concentrated in the 
middle of the structure, and states toward the edges are more "leaky." Note that the imaginary parts vary 
by many orders of magnitude. This makes a direct search for the locations of the poles in the complex- 
energy plane very costly since a very fine mesh has to be used in order to avoid missing poles. In contrast, 
our direct method yields the energies of all poles, without any search, as the solutions of a linear eigen- 
value problem. 

Third Miniband (eV) 

2.83 - 3.7X10-05 

2.73 - 6.4xl0"08 

2.64-2.2x10-" 
2.54 - 6.2xl0"14 

2.45-1.8X10-15 

2.36 - 2.0X1043 

2.26 - 2.6X1CT10 

2.17-2.0X10-07 

2.08 - 5.0X10"05 

20.0 30.0 40.0 
Position z (nm) 

Figure 3. The quasi-bound states of a multi-barrier resonant tunneling structure in a uniform electric field. The states are plotted 
as horizontal lines at the real energy of the resonance, and the lines are drawn for those positions at which the absolute value of the 
wavefunction is larger than a threshold value. The real- and imaginary-parts of the resonances in each miniband are also given. 
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Figure 4. Shown are 
contour plots of the 
absolute value of the 
transmission amplitude 
for t-stub and loop struc- 
tures, which are sche- 
matically shown in the 
insets. The '+' and 'X' 
symbols represent the 
positions of transmission 
poles and zeros, respec- 
tively, which were calcu- 
lated by our direct 
eigenvalue method. The 
energy of the first stand- 
ing wave in the stub 
(E]=56.2 meV) is used 
as the unit of energy. The 
results obtained by both 
methods agree very 
well. 

We choose t-stub and loop structures as our model systems, which are schematically shown in the 
insets of Fig. 4. The solid lines represent the waveguides which are transmission channels. The shaded 
boxes represent tunneling barriers (0.5 eV high and 1 nm thick) and the full filled box terminates the stub. 
For the t-stub structures, the length of the stub is 10 nm and the distance between two tunneling barriers on 
the main transmission channel is 4 nm. For the asymmetrical loops shown here, the lengths of the two arms 
are 10 and 11 nm, respectively. Spatial mesh dimensions of 0.2 nm are used in the numerical calculations. 

It is well known that these systems possess both transmission poles and zeros [5]. The contour lines in 
Fig. 4 represent the absolute value of the transmission amplitude in the complex-energy plane, which is 
obtained from a solution of the inhomogenoues problem (1). Poles and zeros, which occur on the real- 
energy axis, are easily discerned. Using the appropriate eigenvalue problem, we also show the directly cal- 
culated locations of the transmission poles and zeros which are indicated by the symbols '+' and 'X', 
respectively. Note the perfect agreement between the two methods. Again, our technique directly yields 
poles and zeros without a need to search for them in the complex-energy plane. 

IV. SUMMARY 

We presented a new approach for directly calculating the positions of transmission poles and zeros in 
resonant transmission structures. In general, a transmission problem is an inhomogeneous problem. Forc- 
ing the source flux to zero, for either the incoming wave or the transmitted wave, results in a non-linear 
eigenvalue problem. Using the finite element method, furthermore, these eigenvalue problems become lin- 
ear. It is then an easy matter to directly calculate the energies of the transmission poles and zeros. 
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Abstract 

We numerically examine the ballistic transport properties of an electron channel with a single scatterer, an 
antidot, when a perpendicular magnetic field is present. Formation of magnetic quasi-bound-states 
(MQBS) is observed in such a structure. The MQBS's couple magnetic edge states, resulting in 
resonances. In the multiple mode regime, coupling can occur between opposite edge states, resulting in 
resonant reflection, or anti-resonance. An edge state can also tunnel through the scattering region via an 
MQBS, resulting in resonant transmission. These resonances are closely related to those observed in quasi- 
one-dimensional systems such as T structures where such resonances are associated with transmission 
poles in the complex energy plane. 

I. INTRODUCTION 

For a quantum channel with an impurity in a perpendicular magnetic field, there exist three types of 
electronic states: (1) Circulating Landau states in the bulk region of the channel, (2) localized states 
corresponding to the circulating orbits around the impurity, and (3) extended states corresponding to 
classical skipping orbits near the channel walls, illustrated in Figure 1. The first type is highly degenerate 
therefore does not carry net current; the second type forms magnetic bound-states, which do not carry net 
current either; the third type forms magnetic edge states, which move in opposite directions on opposite 
walls, carrying net current. For a wide channel in high magnetic field, the impurity potential does not 
couple edge states on opposite walls, therefore back-scattering is suppressed. This implies unity 
transmission probabilities for edge states, leading to the integer quantization of Hall resistance [1]. For a 
narrower channel where the extension of the circulating orbits around the impurity overlaps with the edge 
states, magnetic quasi-bound-states (MQBS) form. Through the interference of MQBS's, an edge state on 
the upper wall can be back-scattered to its counterpart on the lower wall, resulting in resonant reflection; or 
an edge state on the left side of the impurity can tunnel to the same edge state on the right side of the 
impurity on the same wall, resulting in resonant transmission. This resonance phenomenon was suggested 
by Jain and Kivelson in a semiclassical calculation [2]. In this paper we present a quantum mechanical 
calculation of an electron channel with an antidot by using the Quantum Transmitting Boundary Method 
(QTBM) in which magnetic field is taken into account in the whole device, including the lead regions [3]. 
The suggested resonances are confirmed in our results. 

Figure 1. Electronic states in a quantum channel 
with an impurity. Circulating orbits around the 
impurity    form    magnetic    bound-states    or 

(1)\^ JFlTJJ V^y        ^^ magnetic quasi-bound states; skipping orbits on 
the channel walls form magnetic edge states. 

CM (2)® ® 
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IL MODEL AND METHODS 

Figure 2 shows the schematic geometry. The channel 
width is d, the radius of the antidot r. Device domain is 
marked by the dashed lines with an extension a in x- 
direction. We present the results for the particular case 
where r/d=l/20. By including enough evanescent modes 
in the QTMB calculation, a can be chosen arbitrarily 
provided that the device region encloses the scatterer 
(antidot). We adopt the single-band, effective mass 
model with m/m*=0.067, appropriate for GaAs. Hard 
wall potentials are assumed to define the channel edges 
and the antidot area and zero potentials assumed 
elsewhere in the channel. We choose the vector potential 
in the Landau gauge, A = -Byx. The two-dimensional 
Schrödinger equation becomes 

Figure 2. Schematic geometry of a 
quantum channel with one antidot as 
a single scatterer in a perpendicular 
magnetic field. 

2 m 
n\2+i\e^l+{\j}W)+Vo(x>y))yUy)=Ey{x,yh 

m dx 2-f- m 
(1) 

where V0 (x, y) is the potential in the device region. We employ the QTBM to solve Equation (1) for the 
scattering state. Boundary conditions are implemented in the QTBM by expanding the scattering state in a 
lead region as a superposition of the local transverse (including both traveling and evanescent) modes. 
Transverse modes {(pn (y) } are obtained by using the form y. (x, y) = exp (iknx) <pn (y) for lead region i. 
The original Schrödinger equation becomes a quadratic eigenvalue problem for wavevector kn at given 

energy E 

-#+(T-J 
1m vs(y) kW 

2m 
■Eo (y) ■ (2) 

r   "    ; " r 
From the full wavefunction solution, complex energy-dependent transmission and reflection amplitudes 
for each transverse mode are obtained. Then we use the two-terminal Landauer formula to obtain the 
conductance in the linear response regime, G = (2e2/h) Tr(ttf). We also compute the particle current 
density in the device region from the following definition 

7 = -V (Vv¥* 
m 

Vv¥) UM 
m 

(3) 

IIL RESULTS AND DISCUSSIONS 

we plot the conductance as a function of magnetic field and incident energy. The strength of the 
^asured by the parameter ß = eBd2/h = d /l2

H where ZH is the magnetic length. Energy is 
In Figure 3 
field is measured 
expressed in units of the first bulk Landau level EL (ß) = fico/2 = HeB/2m* . Notice that the energy units 
EL (ß) are different for different fields. In the inset we plot the individual transmission coefficients Tj and 
T2 at ß=40 when the incident electrons are in the first edge state and second edge state respectively. 

Should there be no scatterer (antidot), the conductance would be a series of smooth platforms with its 
height corresponding to the number of existing edge channels. In the presence of the antidot, however, 
scattering of edge states takes place and more structure develops in the conductance. Particularly, the 
spikes, as in a one-dimensional double barrier device, indicate certain resonant processes. They are evident 
at high fields in Figure 3, with dips indicating resonant reflection and peaks resonant transmission. When 
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the field is lowered, both the dips and the peaks are broadened and smoothed and they eventually disappear 
in very low fields. We now examine the wavefunctions of the electron scattering states for such resonant 
reflection state and resonant transmission state. 

2e2/h 

ß= --40 «n T2 

J r LRR T, 

E/EL 

Figure 3. Conductance verses Energy E and magnetic field ß. E is expressed in 
units of the first bulk Landau level £L(ß)=7zCOc('ß)/2. Inset: modal transmission 
coefficients for the first edge state (Tj) and second edge states (T2) at magnetic 
field ß=40. RR is a resonantly reflected state, RT a resonantly transmitted state. 

(a) State RR (b) State RT 
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Figure  4.  Particle  current  density   (top)   and  probability  density  (bottom) 
distribution, (a) Resonant reflection state RR. (b) Resonant transmission state RT. 

In Figures 4 we plot the distribution of the particle current density (vector field) and the probability density 
(contour lines) in a domain of a=2d for states RR and RT indicated in the inset of Figure 3. In both cases 
strong circulating orbits are observed around the antidot, forming magnetic quasi-bound states. For state 
RR, the incident wave is in the first edge mode on the left upper wall; through the MQBS, it scatters to the 
first edge mode on the left lower wall, resulting in resonant reflection. For state RT, the incident wave is in 
the second edge mode on the left upper wall; through the MQBS, it tunnels to the second edge mode on the 
right upper wall, giving rise to resonant transmission. For a ID double barrier (or T stub) structure, 
resonant tunneling (or reflection) occurs when the incident energy coincides with the energy levels of the 
quasi-bound states formed in the potential well (or in the stub); transmission probability on the real energy 
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axis can be deduced from the positions of reflection zeros (or transmission zeros for T stub) and 
transmission poles on the complex energy plane, both of which can be obtained by using an eigenvalue 
technique[4]. For our quasi ID channel in a magnetic field, resonances are likewise induced by the quasi- 
bound states in the system, only now they are of magnetic in origin and formed around the antidot. The 
physical association between resonance and magnetic quasi-bound state is nevertheless evidently shown in 
our numerical calculation. So, when the magnetic field is decreased, the circulating orbit is held less tightly 
to the antidot and magnetic quasi-bound states eventually dissolves into the extended states. Interference 
between edge states due to the scattering potential of the antidot still occurs but resonances disappear. 

We further introduce an additional stripe of potential 
barrier V0 

t0 the channel and the conductance results at 
ß=40 are shown in Figure 5 for V<JEL=0, 1, 3, 5 and r/d=l/ 
20 and w/d=l/20. In a wave packet calculation, a similar 
(but wider) structure was used by Müller to illustrate the 
lack of destructive interference of edge states where the 
potential barrier was mainly considered as to force the 
incident wave to split into a tunneling part directly through 
the potential stripe and a scattered part via the antidot [5]. 
Our geometry shows clear destructive interference 
manifested by the dips and peaks in conductance curves in 
Figure 5. However, the resonances, both reflection and 
transmission, evident at Vo=0-0> are weakened for non- 
zero Vo's- So, by introducing more overlaps between the 
circulating orbits and the edge states, one effect of the 
potential stripe is to lessen even eliminate the formation of 
MQBS's, hence broaden even lift the resonances. 

Figure 5. Conductance of a 
quantum channel with one antidot 
and a strip of potential barrier VQ. 

for VQ/EL=0, 1,3 and 5 at ß=40. 

IV. SUMMARY 

We have calculated the magneto transport properties of a quantum channel with a single antidot. Resonant 
reflection and resonant transmission are observed at high magnetic fields. They are induced by the 
tunneling processes of the edge states, via the magnetic quasi-bound states formed around the antidot. The 
resonances are broadened in lower magnetic fields because the MQBS's are less localized. The smoothing 
of resonances is also observed when an additional potential barrier is introduced in the channel which also 
tend to hinder the formation of MQBS's. 
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P. Douglas Tougaw and Craig S. Lent 
Department of Electrical Engineering 

University of Notre Dame 
Notre Dame, IN 46556 

ABSTRACT 

We examine the dynamic behavior of a large group of coupled quantum dots responding to a changing 
electrostatic environment. The electrons occupying the quantum dots interact Coulombically and tunnel 
between neighboring dots. To model this system, we solve the time-dependent Schrödinger equation over 
finite and semi-infinite domains. These ideas are used to model the dynamic behavior of binary wires, the 
most fundamental elements of quantum cellular automata. The results of these simulations highlight the 
importance of kink propagation at polarization domain interfaces. 

I. INTRODUCTION 

The use of quantum mechanics to design and model computational elements has given rise to several 
new paradigms for computation. Among these is computing with the ground state, in which the time- 
independent behavior of a system can be used to perform useful logical functions. When an input is 
applied to such a system, it changes the boundary conditions of the quantum state so that the system is no 
longer in the ground state. Unavoidable dissipation then drives the system into the ground state 
corresponding to the new input. Mapping inputs to outputs enables one to perform useful computation 
using the dissipation inherent in the array. Since the devices use the ground state to perform calculations, a 
great deal of design work can be done without regard to the dynamic behavior of the devices. It is possible 
that some devices will be unable to reach the ground state due to the presence of metastable states, but such 
states should be quite rare. Information about response time and the possible existence of metastable states 
requires time-dependent modeling of the system. Such dynamic modeling is the topic of this research. 

One example of a system that uses computing with the ground state, quantum cellular automata, is 
explained in section II. This is followed in section III by a description of the energy-absorbing boundary 
conditions recently introduced by Heliums and Frensley. Section IV presents results showing the dynamic 
behavior of two different binary wires. Finally, section V presents conclusions and areas for further work. 

II. QUANTUM CELLULAR AUTOMATA 

One new scheme that takes advantage of computing with the ground state is called quantum cellular 
automata, or QCA [1-3]. As shown in figure 1, the cells that compose a QCA consist of four quantum dots 
where tunneling is allowed between neighbors and with two electrons shared among the four dots. The 
model Hamiltonian for this system is: 

i, o i >j, o 

+ 
i>j, a, o        \Ki-Kj\      k*m,j       \Kkj-Kmj\ 
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This Hamiltonian contains second-quantized terms including on-site energies, tunneling between 
neighbors, and intracellular and intercellular Coulombic repulsion. Due to this repulsion between the two 
electrons, the charge density of the ground state of the cell is almost completely aligned in one of the two 
polarization states shown in figure 2. We can use this bistable saturation behavior to encode one bit of 
binary information in the quantum state of the cell. 

40—-Q1 O—® #—O 

#—Ö Q-# 
Figure 2. Antipodal alignment of electrons due to 
Coulombic repulsion.The ground state is highly 
bistable. 

Figure 1. Schematic of a QCA cell. Two electrons 
are shared among the four sites, and tunneling is 
allowed between neighbors. 

Figure 3 shows an arrangement of cells referred to as a binary wire [4]. In this arrangement, the 
polarization of each cell causes its neighbors to align in a similar direction, and the polarization 
information contained in the cell at one end of the wire is transmitted to the other end. The binary wire will 
be used to transmit polarization information from point to point in our scheme. 

Figure 4 shows a group of cells which act as a majority logic gate. The cells on the top, bottom, and 
left sides have fixed polarizations, while the center cell and the output cell on the right are free to react to 
the polarizations of the other cells. When such a system is simulated, we find that the polarization of the 
free cells always aligns in the direction of a majority of the driving neighbors. Therefore, such an 
arrangement of cells performs majority logic on the three inputs. 

If one of the three inputs is defined to be a program line, the device can be thought of as a 
programmable AND-OR gate. For example, if one of the inputs is held in the logical one state, the output 
of the majority device will also be one unless both of the other inputs are zero. The device therefore 
performs the OR operation on the two non-program inputs. Likewise, a zero on the program line causes the 
device to perform AND logic on the two non-program inputs. 

Similar arrangements of QCA cells have been designed to perform inversion of a signal, coplanar 
crossing of wires, and dedicated AND and OR gates. Combinations of these devices have been used to 
synthesize more complex devices including exclusive-OR gates and full adders [5]. 

1 

iC 1 

Figure 3. A binary wire. Dot radius on each site is 
proportional to the actual calculated charge 
density on that site. Data is transmitted from one 
end of the wire to the other. 

Figure 4. Majority logic gate. The 
state of the two free cells matches 
that of a majority of the driving cells. 

ID. ENERGY-ABSORBING BOUNDARY CONDITIONS 

We model dissipation of kink energy in our system by the presence of a semi-infinite line of similar 
cells which can absorb kink energy. In this case, the time-dependent Schrödinger equation for the entire 
system (QCA device and reservoir) can be written as [6]: 

ih 
dt 

= (2) 

where Hs is the Hamiltonian of the system given in equation (1), Hr is the Hamiltonian of the reservoir, and 
Hj is the interaction Hamiltonian between the two. As demonstrated recently by Heliums and Frensley, the 
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effect of Hr is included by using the Green function of a semi-infinite line, which is well known. H; 
introduces a time-dependent convolution integral over the past history of the system, which makes the 
equation non-separable and causes the boundary condition to be non-Markovian. 

These non-Markovian boundary conditions cause the dynamics of the QCA device to be irreversible, 
even though the dynamics of the combined system are reversible. Proper impedance matching of the 
system-reservoir interaction will prevent kink reflections at the system-reservoir interface, while poor 
impedance matching can increase the relaxation time for kinks to leave the system. 

IV. KINK PROPAGATION IN THE BINARY WIRE 

When these ideas are applied to the binary wire shown in figure 3, we can demonstrate the dynamic 
response of a kink traveling from end of the wire to the other. Figure 5 shows the dynamic response of a 
wire with relatively low tunneling barriers, while figure 6 shows the response of a wire with higher 
barriers. At t=0, the polarization of the cell at the left end of the wire is switched and held constant. This 
introduces a kink in the polarization profile of the wire and places the system in an excited state. The kink 
propagates away from the fixed end and eventually leaves the wire through the open boundary condition. 
This dynamic analysis shows that the response time of the faster wire is approximately 30 ps, that of the 
slower wire is approximately 150 ps, and there are no metastable states to prevent the systems from 
returning to the ground state. Higher tunneling barriers cause slower relaxation but more highly polarized 
cells, while lower barriers give a faster relaxation time with more weakly polarized cells. 
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Figure 5. Kink propagation in a binary wire with a semi-infinite reservoir at the right end. These charge 
density plots show the state of the wire at different time steps. At t=0, a kink is introduced by flipping the 
left-most cell, and this kink has propagated out of the system into the semi-infinite reservoir by t=30 ps. 
Here, the tunneling coefficient is 3 meV, indicating relatively low tunneling barriers. 
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Figure 6. Kink propagation in a binary wire. The tunneling coefficient of this wire is 1.1 meV, 
indicating relatively high tunneling barriers. The response time of the wire is 150 ps, but the 
slower response time is accompanied by more highly polarized cells. 

V. CONCLUSIONS 

The introduction of open boundary conditions to the time-dependent model of QCA devices has 
allowed us to model the relaxation of the devices to their ground state. This dynamic analysis has provided 
useful information about relaxation times, as well as demonstrating the absence of metastable states. The 
importance of kink propagation in the relaxation of the binary wire was demonstrated. 

Future directions for this research include more realistic models of dissipation throughout the 
system, dynamic modeling of more complex devices, and investigation of the impact of finite temperatures 
on device dynamics. 
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Abstract 

We have developed a multi-subband Monte Carlo simulation of nonequilibrium transport in quasi- 
one-dimensional AlGaAs/GaAS quantum wire systems. The simulation includes scattering due to 
confined polar optical phonons, carrier-carrier scattering, and scattering due to elastic mechanisms 
such as boundary roughness and impurity scattering. In the present work, we present a detailed 
Monte Carlo investigation of the effect of ionized impurity scattering in quantum wires under an 
applied electric field. Static screening in the long wavelength limit is assumed using the multisub- 
band RPA dielectric function for the quasi ID system. We studied separately the effect of uniformly 
distributed impurities in the wire and of remote impurities. The former strongly affects transport, 
particularly at low electric fields and at low temperature. The effect of remote doping is much 
weaker and practically negligible at room temperature. 

I. INTRODUCTION 

Recent advances in nanostructure semiconductor technology have allowed the fabrication of wire- 
like structures where quasi one-dimensional confinement is achieved in a semiconductor material 
surrounded by another semiconductor with larger band gap [1]. In particular, such wire-like struc- 
tures have been fabricated with rectangular cross sections [2]. In general, carrier dynamics in wires 
may be expected to differ from the bulk case: the carrier-phonon scattering rate is affected by 
changes in the electronic [3] and vibrational [4] properties induced by reduced dimensionality. In 
the last few years a lot of attention has been dedicated to the study of the electron-phonon inter- 
action in these systems [3-7]. This is certainly the more important interaction and almost the only 
one present if we are interested in the optical properties of wires. On the other hand, if we hope 
to be able to take advantage of the reduced ID density of states to produce electronic devices with 
higher mobility, the electron-impurity interaction must be seriously considered. The aim of this 
work is to accurately study the effect of this interaction in quantum wires through a Monte Carlo 
simulation [8]. 

II. THEORY 

We start by considering the bare unscreened interaction with an impurity located in the point 
(X, Y, Z), the matrix element is given by: 

•      H(qx) = (Vi(x,V,z) I H | *,■(*,y,z)> = -^JdzjdyhfazWjfaz)- 

V 
f,-i(kx-kx)x 

dx 
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where qx = kx - k'x. The total scattering rate for a carrier in a given sub-band i and with a given 
wave vector kx is the sum over all available final states: 

i [l3 Kx) — 
47T2e2ft3L 2J J2L (| F(fcx - O |2 + | F(*x + k'x) |2) (2) 

This is the probability for an electron to interact with one impurity. If nj is the linear density of 
impurities in the wire, we generate in our simulator their position randomly and then we sum over 
all the impurities to compute the total scattering rate. In the present work, we used a randomly 
uniform distribution in the three spatial directions, although the model can handle any profile 
distribution in the same way. The sum over j in Eq. 2 represent the sum over all possible final 
subbands. For each final subband there are only two contributions, forward (kx - kx) and backward 
(kx + k'x) scattering. When the initial and the final subbands are the same, only the backward 
scattering remains. Looking at Eq. 2 we can also draw some initial conclusions: As in all many- 
subband systems this scattering is mainly effective through the intrasubband scattering (due to the 
larger matrix element). In this case there is only one relevant final state available, i.e. kx = -kx. 
If the scattering rate is sufficiently high, the effect of this interaction will be to balance the number 
of carriers in kx and -kx and doing so will drastically reduce the drift velocity when an external 
electric field is applied. On the other hand, the coulomb interaction is strongly dependent on qx 

and we can expect it to decrease strongly for large values of qx, i.e. for large values of kx. When an 
intersubband scattering takes place, we have two different final states and the scattering probability 
will favor the one which involves the smaller change in momentum. So, when an electric field is 
applied and we have a population with a given (say positive) average momentum, the preferred 
scattering will be the forward one and the reduction in the average velocity of the system will not 
be as dramatic as for the intrasubband scattering. Nevertheless, due to the divergent density of 
states at the bottom of each subband, most of the scattering will take place from an high energy 
states in one subband to a low energy states (near to the bottom of the final subband) in higher 
energy subband. This will result in an almost zero final velocity for the carrier. 

Impurities, both inside the wire and in the confining barriers, are screened by the free carriers, 
as the interaction with these impurities is elastic we can introduce a screening model based on the 
static limit approximation. In this case the total scattering rate is simply obtained substituting 
the bare matrix element with the screened one. As a first approximation, this can be done with 
the substitution: 

where e(qx) is the dielectric matrix obtained in the multisubband RPA approximation. 

III. RESULTS AND CONCLUSION 

We have investigated the effect of this interaction by varying the electric field, the lattice tempera- 
ture and the doping concentration from 105 to 106 cm"1. We also consider both remote impurities 
(in the AlGaAs layer) and uniform bulk doping. Two interesting effects are observed: At low tem- 
perature, and in particular at small electric field, most of the carriers occupy the bottom states in 
the band where the scattering rate is very high. Both the transient overshoot and the stationary 
value of the drift velocity are shown in Fig. 1 (a) and (b) for a 300 Ä wide quantum wire and a 
doping concentration of 106 cm-1. Here 12 subbands are included in the simulation, although only 
the first four are significantly populated for the fields considered. We can see that the drift veloci- 
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Fig.   1.  Drift velocity for a wire without impurities (solid line), with remote (dashed line) 
and bulk (dotted line) impurities (106 cm-1). 

ty is strongly reduced by impurities in the wire (dotted line) and remote impurities (dashed line) 
play an important role as well (the solid line represent an ideal system with no impurities). 

In Fig. 2 we plot the room temperature transient velocity under the same conditions. In this 
case, the remote impurities do not affect the drift velocity at all and even the effect played by the 
bulk impurities is strongly reduced. This is mainly due to the fact that at room temperature, most 
of the carriers are in higher energy states where the scattering rate is significantly smaller. 

xlO6 

12 3 4 
Time (ps) Time (ps) 

Fig.  2.  Drift velocity for a wire without impurities (solid line), with remote (dashed line) 
and bulk (dotted line) impurities (106 cm-1). 
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Fig 3 Drift velocity for a wire without impurities (solid line), with remote (dashed line) 
and bulk (dotted line) impurities (5 x 105 cm"1). The dash-dotted line represents a system 
with a bulk doping of 105 cm-1. 

Fig. 3 shows the same results but with a doping concentration of 5 x 105 cm"1. As in the previous 
case the effect of remote impurity is totally negligible and, as expected, the reduction of the drift 
velocity caused by bulk impurity is smaller. In the same figure the dash-dot line represents a system 
with a bulk doping of 105 cm"1. Even with this low doping the drift velocity is slightly reduced 

In conclusion, we have presented a Monte Carlo investigation of impurity scattering in multi- 
subband quantum wires. Our results show that remote impurity do not affect significantly the 
transport properties of the system while direct doping in the wire can reduce the drift velocity 
significantly. In both cases the effect is weaker at room temperature than at low ones. 

IIIL REFERENCES 

See e.g. Nanostructure Physics and Fabrication, edited by M. A. Reed and P. Kirk, Academic 

Press, Boston (1989). 
T Demel D. Heitmann, P. Granbow, and K. Ploog, Phys. Rev. B 38, 12732 (1988). 
see e g  U Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990), and references therein. 
see e.g. P. A. Knipp and T. L. Reinecke, Phys. Rev. B 48 5700 (1993), and references therein. 
S Briggs and J. L. Leburton, Phys. Rev. B 38, 8163 (1988). 
K. W. Kim, M. A. Stroscio, A. Bhatt, R. Mickevicius, and V. V. Mitin, J. Appl. Phys. 70, 

319 (1991). 
L. Rota, F. Rossi, S. M. Goodnick, P. Lugli, E. Molinari, and W. Porod, Phys. Rev. B 47, 

1632 (1993). n    .     „.     .   . 
C. Jacoboni and P. Lugli,  The Monte Carlo Method for Semiconductor Device Simulation 
(Springer-Verlag, Berlin, 1989), and references therein. 

[1] 

[2] 
[3] 
[4] 
[5] 
[6] 

[7] 

[8] 

234 



INTRINSIC HIGH FREQUENCY CHARACTERISTICS OF TUNNELING 
HETEROSTRUCTURE DEVICES 

Chenjing L. Fernando, William R. Frensley 
Program in Electrical Engineering 

Erik Jonsson School of Engineering and Computer Science 
The University of Texas at Dallas 

Richardson, TX 75083 

Abstract 

We have developed a general numerical method to solve the periodic time-dependent Schrödinger 
equation where Quantum Transmitting Boundary Method (QTBM) is used to formulate the bound- 
ary conditions of the far-from-equilibrium open systems. The approach is applied to the resonant 
tunneling diode (RTD) with a superposition of a dc and sufficiently small ac bias. Results of the 
linear admittance, rectification coefficient and second harmonic generation coefficient are presented 
as a function of frequency and bias. The calculation has shown that at high frequency (several 
THz), the intrinsic linear response of RTD becomes capacitive in the NDR region and the recti- 
fication coefficient and second harmonic generation coefficient show a resonant enhancement. It 
indicates that the intrinsic high frequency limit (fmax)1S influenced more by the electron exchange 
between the reservoir and the resonant state in the well than by the resonant width. Our results are 
consistent with those obtained by Wigner function, but in disagreement with most of the results 
obtained by Schrödinger equation and Green's function. This contradiction is solely due to the 
problems of definition of reactive current component in the literature. 

I INTRODUCTION 

High speed device and circuit applications generate considerable interest for the study of the tunnel- 
ing heterostructure devices. Since the first detection of resonant tunneling diode (RTD) at 2.5 GHz 
by Sollner and co-workers [1] both experimental and theoretical research work have been widely 
carried out [2-6]. 

The existing theoretical results unfortunately conflict with one another. For example, those 
obtained by conventional tunneling theory based on Schrödinger equation predict inductive behavior 
at high frequency while Wigner function gives capacitive results. To settle the contradiction, we 
have developed a systematical numerical method based on single-particle Schrödinger equation with 
boundary conditions set up by Quantum Transmitting Boundary Method (QTBM)[7j. This method 
performs task under any bias condition. The application to RTD shows a consistent characteristics 
with that of Wigner function. The electron exchange between the reservoir and the resonant state 
in the well plays more important role in the high frequency response than we expected. Two 
definitions of the current reactive component are to be discussed and compared, which will unify 
the conflicting results by different approaches. 

II THEORETICAL MODEL 

In this section, an one-dimensional numerical model of periodic time-dependent Schrödinger equa- 
tion is to be presented. We consider an open system with two boundary regions (reservoirs): left. 
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left reservoir 

Er t-2 

right reservoir 

Figure 1: The numerical model of periodic time-dependent Schrödinger equation. 

and right. The left voltage is Vfc/t = VL + vLcosut, the right Vright = VR + vRcosut, and inside 
the system v(x, t) = vdc(x) + v(x) cosut. All the incoherent processes are ignored and the flat band 
potential distribution is assumed, as illustrated in Fig. 1. 

Within the open system the wavefunction has the form: 

(2.1) 

Inserting (2.1) into the time dependent Schrödinger equation ihdip/dt = Hip and collecting terms 
of equal frequency leads to these equations, in discretized form [8] : 

-SJVOJ-I + (dj - E) ip0,j - sj+1tpo,j+i   =   0, 

-5i#TU-i + (di -E±tiu) ^u - 5i+i^Tij+i - ( Y ) Voj   =   0, 

Sj^hmj-l + (dj - E± mhuj) ^Tmj - Sj+i^mJ+i -  ( -X- ) ^(m-l),i      -     0, (2-2) 

where dj and sj are the diagonal and off-diagonal elements of the Hamiltonian matrix defined in 
[8], respectively. 

Since we are now dealing with the open system, the appropriate boundary conditions should 
be applied to (2.2). Fig. 1 shows the physical picture of a single electron with energy E incident 
from the left reservoir. At the two boundary regions, the wavefunction can be written as [9] : 

-ilwt (2.3) 
l——oo 

where B - L ( left reservoir) or B = R ( right reservoir) and Ji{x) is the Bessel function. 

We formulate the boundary conditions by implementing Quantum Transmitting Boundary 
Method (QTBM) to the boundary wavefunctions (2.3). Incorporate these boundary conditions 
with (2.2), a set of linear equations are readily formed, which compose a block tridiagonal matrix. 
This final matrix is the system to be solved. 
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Figure 2: Linear response of a RTD structure. 

Ill    AC SMALL SIGNAL RESPONSE 

The total current can be represented as: 

I = -qh/m* J2 pklm < i>*^- > (3.1) 

where Pk is the probability for the wave vector k. 

The current components are defined as {y = VR — vi): 

I h + \{yveiM + y*ve-^) + \aTectv
2 + ^(a2wv2e2i^ + a^e'2^) 

or one can rewrite the above definition in a sinusoidal form: 

i"   =   Io +Re(y)vcos(ojt) — Im(y)vsm(ut) 
11 1 

+T<W4ü
2
 + -Re(a2u>)v2 cos(2wi) - -Im(a2lJj)v

2 sm(2cot) 

(3.2) 

(3.3) 

Because these authors neglected the minus sign in the definition of the sinusiodal form, the 
inductive results [3,4] claimed by them are essentially capacitive which is in agreement with our 
calculation as well as with that of Wigner function. 

IV    RESULTS 

We apply our method to a GaAs/AlGaAs RTD structure with barrier width 28.25 A and well width 
45.2 A. The results of the linear response (yr = Re(y) , yi = Im(y)) and the nonlinear reponse of 
the second order( a2w , arect) are demonstrated in Fig. 2 and Fig.3. Our calculations confirm that 
the linear response of RTD is capacitive at high frequencies and the nonlinear responses ( a2w and 
o-rect) do show enhancement peaks. According to our calculation the fmax derived from the linear 
responses and the peak positions of the nonlinear responses are less influenced by the width of the 
resonant state ET. They are more closely related with the energy difference between the resonant 
state Er and the reservoir. 
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Figure 3: Non-linear response of a RTD structure. 

V    CONCLUSIONS 

We have demonstrated for the first time the three dimensional plots of the linear admittance and 
the nonlinear responses of the second order for a RTD structure as a function of bias and frequency. 
The results obtained from the periodic-time dependent Schrödinger equation and Wigner function 
are characteristically agreeable. The numerical method presented here is able to be applied to any 
tunneling heterostructure with arbitrary potential distribution within the device. 
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Abstract 

I describe the non-equilibrium Green function approach to modeling wide-cross-sectional area 
quantum devices such as resonant tunneling diodes. Several approximations for treating scatter- 
ing are discussed: Born, self-consistent Born, and a single-electron multiple sequential scattering 
algorithm. A generalized treatment of open-system boundaries is presented. 

I HAMILTONIAN AND BASIS 

The general form of the Hamiltonian is H = H0 + Hpop + Hac + HIR where H0 contains the kinetic 0 > „ : ' 
s 

energy and the effects of the band structure, the applied potential, and the Hartree potential. The 
three terms to the right represent the potential felt by the electrons due to polar optical phonons, 
acoustic phonons, and interface roughness, respectively. The underbrace and S indicate that these 
terms are included through self-energies.   For numerical reasons, H0 is broken down into three 
terms, H0 - H

D + H% + HR, which represent the Hamiltonian of the device, the left contact, and 

the right contact, respectively. The underbrace indicates that the effect of the contacts on the 
device is also taken into account through a self-energy, S^. 

The Hamiltonian matrix will explicitly be written in terms of the basis (r|k, n) =  etk'rt<f>i(z)/y/Ä 
where k is the transverse wavevector and <&(z) is a localized (Wannier) function localized around site 
T. Keeping only nearest neighbor matrix elements, the matrix elements of E0 are (k,i|.ff0|k,.7) = 
(€k. + ei)S{J - tißi,j±1. The site energies and hopping elements can be related to the discretized 

effective mass Hamiltonian, H0 = =^fz^)fz + V(z)in the usual wa^ 

II EQUATION OF MOTION FOR GR and G< 

The non-equilibrium Green function (NEGF) formalism provides a method for calculating the 
non-equilibrium statistical ensemble average of the single particle correlation operator, (h = 1), 
G-(k;i,f') = i(c^k(Oc»",k(*)) where ci)k is the electron annihilation operator for an electron in 
localized state 'i' with transverse momentum k. Once the correlation function G< is known, it 
immediately provides the electron density, m = ^ £k / ff G%(k, E) and the current density, 

4+1/2  =  -*£k/f [kmGf+u(k,E) - t^Gf^iKE) . 

The two equations of motion that must be solved are (in matrix notation) 

{E-H0-HR-i:RB)GR = 1 (2.1) 

(E - H0 - Sfi - SfiB)G< - (S< + S<B)G-Rt (2.2) 

In Eqs. (2.1) and (2.2), the effects of the scattering are contained in Sfi and £< and the effect of 
the open boundaries are contained in T,RB and S<s 
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Ill    OPEN BOUNDARY SELF ENERGIES 

For a device consisting of sites 1,...,JV, I include the coupling to the leads, *0,i and £/V,JV+I ex- 
actly using Dyson's equation to obtain the boundary self energies: T,ff = gR

0\to,i\2, EJv^ = 

g%+1,N+1\tN,N+i\\ rftl = ao,o|*o,i|2, T%<N = aN,N\tN,N+i\\ £<f = ifLTfilt and Z<B
N = ifRT^N; 

where gR is the Green function of the unconnected lead, a is the corresponding spectral function, 
and / is the Fermi-factor. The boundary self-energies SßB and TB are valid even if the leads have 
spatially varying potentials, and S<B is valid if the lead is in equilibrium. 

An explicit representation of GR for a device of 3 sites is 

G R 
E - Cfe,i - €1 - Sia 

*1,2 - Sl,2 

-RB 
Jl,l 

3,1 

*1,2 - S1;2 — ^1,3 

Cfc,2 - e2 - S2j2 *2,3 ~ S2j3 

*3,2 — 23)2 
£- - Cjt,3 — €3 — S3)3 - " -^3,3 

-1 

Ä SQ 0 is obtained from #£0, 

„R    - 
-/_2e -ry-.2°- 

-1,-2 

0 
£■ 

*-2,-l 

- €/c-1 " 

*0,-l 

€_1 

0 

*-l,0 

E - €fc,0 - eo 

-1 

0,0 

(3.3) 

(3.4) 

In Eq. (3.4), I have again taken into account the semi-infinite uniform potential region to the left 
by a self energy which can be calculated analytically, S_2,_2 A- »I*- ■3,-21 -t_3,-2e

t7ia, and 
used the dispersion relation, E = ek^L + eL - 2icos(7z,a), to simplify the (-2,-2) element. 

Substituting Dyson's equation, G^ = gR
0(-t0,i)Gfj + g£0(-to,i)Gftj, into the current ex- 

pression for J1/2, using G< = GR(S< + Z<B)GRt and A = Gfi(r + Ts)GÄt gives 

B J1/2(k, E)   =    e»r1?1 ^l,7i   fL^n,m + (1 ~ /i)^n,: G; 771,1 

n,m6{l,...,JV} 

+ erftlr^|^Ar|
2(/L-/i?) (3.5) 

The terms in (3.5) are functions of k and E. The first term is the contribution to the current 
from scattering and the second term is the contribution from direct transitions from the left to 
right contact. With no scattering, the first term is absent, and the second term is the usual 
tunneling formula using the Fisher-Lee form of the transmission coefficient [1]. The T^'s need 
not be simply factors of velocity but can account for leads with spatially varying potentials. The 
boundary conditions may provide a unified treatment within a Tsu-Esaki formulation of current 
from continuum states and emitter quasi-bound states [2]. 

IV    COMBINING BORN AND SELF-CONSISTENT BORN SELF ENERGIES 

The non-local self-energy due to polar-optical phonons couples Eqs. (2.1) and (2.2) in energy, E and 
momentum, k, necessitating the storage of four four-dimensional functions, Gfj(k,E), GRj(k,E), 
£f •(&,£), and S^-(fc, J5). This is not feasible for any modestly sized device. Therefore, I combine 
a first Born treatment of the polar optical phonons and a self consistent Born treatment of the 
elastic scattering mechanisms: interface roughness and high temperature acoustic phonons. The 
new equations of motion are found from the Dyson equation for the path ordered Green function 

Gp = gp + gpEpGp (4.6) 
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where the matrix notation now denotes both summing over sites and integrating over the Keldysh 
contour. In a Born or self-consistent Born approximation, E has three contributions, one from 
each scattering process, acoustic phonon, polar optical phonon, and interface roughness: Ep = 
££ + ££op + TF1R. I iterate once keeping only the first order term in E£op to obtain Gv - 
gp + gP[£Pp + ZP

IR]GP + gvY?povg
v. Since Y?vov is being used in a first Born approximation, it must 

be calculated in the first Born approximation to conserve current. In keeping with the notation 
of big G"s and little #'s, little <r's will be used to denote the self energies due to the polar optical 
phonons. Breaking up Gp along the two branches of the time path [3], gives 

GR = gR + gRZRGR + gRaRgR (4.7) 

and 
G< = g< + gRY,RG< + gRX<GA + g<XAGA + gRaRg< + gRa<gA + g<aAgA (4.8) 

where the large E is the sum of the self energies that I treat in the self-consistent Born approxima- 
tion, ie. £ = Eap + E/i?. Operating on (4.7) and (4.8) from the left with E-ek-H0 -E^5 and using 
the equations of motion for gR and g<,(E-€k-H0- ZRB)gR = 1 and (E-ek-H0- ^RB)g< = 
T,<BgA gives the final form of the equations that I need to solve. 

(£ _ €fc _ Ho - EÄ - T,RB)GR = 1 + <rRgR (4.9) 

and 
(E-€k- H0-ER - SBB)G< = (E< + H<B)GA + aRg< + a<gA (4.10) 

Equations (4.9) and (4.10) conserve current. 

Treating the polar optical phonons in the first Born approximation leads to an immense simpli- 
fication in the numerical solution. Since the self-energies due to high temperature acoustic phonons 
and interface roughness are elastic, equations (4.9) and (4.10) decouple in energy. Also, EK becomes 
only a function of GR so that Eq. (4.9) for GR is a closed loop in an iterative solution of T,R and 
GR. Furthermore, Efj is diagonal a <5;j. Therefore, for a given energy, in the iterative solution 
of (4.9), I only need to store the diagonal elements Gfjk) and E^-(fc) and invert a tri-diagonal 
matrix. 

V    SINGLE-ELECTRON MULTIPLE SEQUENTIAL SCATTERING ALGORITHM 

A self-consistent Born approximation (SCBA) requires a converged solution of the E's and the G's 
to conserve current. This can be numerically problematic. The following is an alternative. 

The point-of-view which informs the work of Roblin and Liou [4] is used to create a multiple 
sequential scattering (MSS) algorithm for non-equilibrium Green functions. The point-of-view is 
as follows. A plane wave, ip0, injected from the contact propagates into the device and scatters due 
to the random potential of phonons and interface roughness. Flux is removed from the incident 
wave and fed into the scattered wave, ^i, which has no phase coherence with V'o- V'l now scatters 
creating ^2, etc. The MSS approach is a single electron approach which does not account for the 
Pauli-exclusion principle, but it provides a means to truncate at any order the infinite expansion 
leading to the SCBA and still conserve current. In the limit of infinite sequential scattering, MSS 
is the SCBA for zero electron density. 

JV sequential scattering events give rise to N + 1 retarded Green functions, GR, and N + 1 
correlation functions, G<, where n = {0,..., JV}. Here, I consider only elastic processes. For a given 
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total energy, E, the general form of the retarded self energy is T,R(EZ) = /.^ dE'zD(Ez, E'Z)G (E'z) 
where E is the total energy, the integral over Ez is the sum over transverse momentum, and 
D(EZ, E'z) is a known function determined by the type of scattering considered. I have suppressed 
the position coordinates. The equations defining the propagators GR for the JV scattered waves 

are: 

go _Ho_ ^RB _  fE dElD(E°z,El)GK(El) 
J—oo 

GR(E°Z)   =   1 

Ez — H0 EßS -  fE dE2
zD(El,El)GR(E2

z) 
J—oo 

GR{El)   =   1 

E N-l H0 - SBB - 
J—oo 

G&-1W1) 
<N-1\     _ 

E* - H0 
■^RB G^(EZ)   =   1     (5.11) 

Since the last wave, by definition, does not scatter, the retarded Green function governing its 
propagation, Gfj, is simply the bare Green function, gR. Starting with the last propagator, GN = 
gR, and back-substituting into each higher equation, one calculates each GR. 

The equations defining G< are 

(E°z - H0 - £
fiB - XR)G<(E°Z)   =   X<BGR\E°Z) 

(El-H0-ZRB-XR)G<(El)   =    [E dE0
zD{ElE0

z)G<{E°)GR\El) 
J—oo 

(E? - H0 - £ RB 2#)Gft(^)   =    lE dE^DiE^E^G^E^GfliE?) 
J—oo 

(5.12) 

One solves the set of equations (5.12) by starting at the top, solving for G£, substituting that into 

the second equation, and so on working downward. Notice that the source term, £< G , for G0 

is due to injection from the contacts while the source terms for the scattered waves (n = 1, ...,N) 
come from the scattering of the previous waves. 

The resulting electron density and current density per unit energy are ni{E) = -i En=o I-oo °^ 

P2D(EZ)G<.(EZ) and Ji+1/2{E) = \ E£=O/-OO dEzp2D(Ez)\Uyi+1\22ReG<ti+1(Ez) where the sub- 
script iV is the site index that has been suppressed. 

Acknowledgement: I acknowledge a very useful discussion with S. Hershfield. 
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Abstract 

In device structures with dimensions comparable to carrier inelastic scattering lengths, the quantum 
nature of carriers will cause interference effects that cannot be modeled by conventional techniques. The 
basic equations that govern these "quantum" circuit elements present significant numerical challenges. We 
describe the block recursion method, an accurate, efficient method for solving the quantum circuit problem. 
We demonstrate this method by modeling dirty inversion layers. 

I.  INTRODUCTION 

Numerical "pre-testing" of proposed integrated circuit elements can vastly reduce development time 
and expense [1]. "Conventional," semiclassical device modeling methods fail, however, for structures with 
dimensions comparable to the distance between carrier inelastic (e.g., electron-phonon) collisions. On this 
submicron scale, without inelastic collisions to destroy electron wave coherence, the quantum wavelike 
nature of a carrier will produce interference effects as the carrier scatters from device walls, individual 
dopants, and other deviations from crystallinity [2]. Modeling such a "quantum circuit element" presents 
significant numerical challenges. 

In this paper we describe the block recursion method, an efficient, accurate algorithm for solving the 
quantum circuit problem. We have presented thorough derivations and analyses of this method, and some 
applications, in specialized papers, [3,4,5] and block recursion software is publicly available [5]. Our pur- 
pose here is to present the salient points in a manner accessible to a broader audience. Readers interested in 
more detail should consult the references or authors. 

H. THE BASIC EQUATIONS OF QUANTUM CIRCUIT THEORY 

Conventional device modeling starts with a basic set of coupled equations (diffusion-drift, continuity, 
Poisson, etc.) that are discretized (e.g., by finite difference or finite element schemes) and solved. Quantum 
effects are only considered implicitly (through effective masses, carrier/band energetics, etc.) [1]. At each 
node, Ohm's Law relates the local current to the local electric field using conductivity, an intensive, local 
property. 

In quantum circuits, however, resistance cannot be locally defined. When electron waves scatter and 
interfere between two barriers (device walls, dopant atoms, etc.) total resistance depends not only on prop- 
erties of each scatterer, but on electronic DeBroglie wavelengths and distances between scatterers. It is more 
useful, then, to calculate a device's total conductance, an extensive property. Without inelastic scattering, 
the conductance X of a device with carriers of energy E is given by the Landauer formula [6], 

Z(£) = (2e2lh)T(E). (1) 

e is the carrier charge; h is Planck's constant divided by 2%. The transmittance T is the probability that an 
incident electron will be pass through a device. When transport occurs only near the Fermi Energy, we take 
this as E. T is calculated by solving the time independent Schrödinger Equation, 

{(-h2/2m*)V2  + V(x,y,z)} yr   = Eyr, (2) 
for an unknown quantum state x//. (-h2/2m*) V2 + V(x,yj) is H, the Hamiltonian operator. V, the electric 
potential within the device, arises from fields caused by device walls, dopants, gates, etc. m* is the effective 
carrier mass. In a crystalline region, \j/ is a traveling wave. If a device is connected to crystalline "leads," the 
transmittance is found by applying boundary conditions of incident and reflected waves in one lead and a 
transmitted wave in the other. The transmittance is the ratio of transmitted to incident wave amplitudes. 
*Operatedforthe U.S. Dept. of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. 
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transmitted wave in the other. The transmittance is the ratio of transmitted to incident wave amplitudes. 
V must be specified on an atomic level, since electrons scatter from individual atoms. Moreover, Eq. (2) 

must be solved over an inelastic scattering volume (« 0.01 \i wide at room temperature [7]), even if this 
region extends beyond a single device (i.e., an "extended structure"). Electrons can scatter and interfere at 
interfaces with leads and with other devices. Any model must preserve carrier phase relationships between 
these boundaries. (Larger volumes require a hybrid quantum/conventional model; this is beyond the scope 
of this paper.) 

Eq. (2) may be discretized by a tight-binding method [8]. This is like a simple finite element model, with 
one node per atom. For example, consider a simple quantum circuit (Fig. 1): an (n-2) atom device connected 
to one-dimensional leads. First, we convert Eq. (2) to a matrix eigenvalue equation by defining a set of nx 1 
vectors {fa: ™= 1,2,...«}. The mth element of fa equals one, and all other elements equal zero, fa repre- 
sents an electron localized at node m. In this basis, H is a matrix whose diagonal elements Hmm = Vm equal 
the potential V at each node m. We set the off-diagonal elements of// equal to energy v for nearest neighbor 
atoms, and zero for all other atom pairs, v can be fit to the device band width. This model is now a discrete 
network (shown by the solid lines in Fig. 1) through which carriers move. Using this matrix form of//, Eq. 
(2) becomes a matrix eigenvalue equation whose solution is an «xl vector *F. The n components of vector ¥ 
equal the function values of state y at each of the n nodes. The boundary condition[the values of y at nodes 
0, 1, n-1 and n (Fig. 1)] must be satisfied; the solution algorithm presented in Sec. Ill does this automati- 
cally.) 

This model is appropriate for simple potentials, and carriers confined to a single band. More compli- 
cated potentials can be modeled by varying the off-diagonal elements of//, and multiple bands by adding 
more basis vectors per node. 

0       1 

lead 1 

device 
interior 

Figure 1. Schematic representation of a model of a simple two-lead quantum device with n atoms. Nodes 
(circles) are located at atoms. Lines connect nearest neighbors. Nodes (atoms) at the lead-device interfaces 
are numbered. 

ffl„ THE BLOCK RECURSION ALGORITHM 

Eq. (2) presents significant numerical challenges. First, solids have on the order of 100 atoms per cubic 
nanometer. Models of even small device models may require millions of nodes. Moreover, this problem 
requires calculation of extremely sensitive coupling between leads. Many previous algorithms have worked 
only for small atomic clusters. For realistically sized devices, unstable matrix inversions or divergent recur- 
sions made these earlier algorithms impractical (for a review, see [5]). 

We developed the Block Recursion Method for this problem. To illustrate this approach, consider the 
device in Fig. 1. Suppose we define an «x2 matrix, u\, whose columns are the vectors representing 0i and 
fa2 respectively. Similarly, let the columns of UQ be 0o and fa\. We then use these two matrices to 
generate a set of nx2 matrices U2, «?,... %/2- The (m + l)th member of this set is generated from the mth 
and (m -l)th elements using the following recurrence: 

f w?n-s-l#m+l = H um - umAm - um.\Bm' 
where Am.] = um'Hum    and   Bm' - um.]' Hum . (3) 

The Am and Bm are 2x2 matrices. wm+ißm+i is factored by requiring the columns of um+\ to be mutually 
orthonormal. When this procedure is finished, the columns of the um form a new basis for the matrix eigen- 
value problem of Eq. (2). The new basis has two important features. First, in this basis H is block tridiagonal: 
if// is divided into 2x2 blocks, the Am form the diagonal blocks, the Bm and Bmi form, respectively, the 
super- and sub-diagonal blocks, and all elements of all other blocks of H equal zero. Second, although most 
new basis elements no longer represent electrons localized on a single atom, the basis states in UQ and MI still 
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represent electrons localized on atoms at the lead-device interface. This means that the boundary conditions 
can still be imposed on these components of the solution *F. 

This transformation, in effect, replaces the network of Fig. 1 with a different network (Fig. 2), without 
altering the description of the leads. We call this new network an "effective quantum circuit," analogous to 
the effective circuit theory used to calculate the total impedance of a network of conventional resistors. This 
result is general—any device geometry can be transformed to a model like Fig. 2. More importantly, the 
transmittance of such an effective network is given by the following: 

T(E) = 4sm2k\[eikI - vG(E)Yl\^\2,  where (4a) 
G(E) = [El - A\ - B2HEI - Al -... Yl B2T1 . (4b) 

k is the crystal momentum given by E = h2k2/(2m*). I is the 2x2 identity matrix. The subscript" 1,2" signi- 
fies the off-diagonal element of the symmetric 2x2 matrix calculated in Eq. (4a). 

This algorithm is descended from the Lanczos method of matrix diagonalization. The high stability and 
efficiency of this class of methods is well understood. [9] Briefly, a large rounding error is introduced in the 
transformation described by Eq. (3). This causes a rapid loss of orthogonality of the new basis vectors as the 
recursion progresses. These errors do not affect the calculated transmittance, however, because the new 
elements of H contained in the Am and Bm are still accurate, to within a simple rounding error, for the new, 
nonorthogonal basis vectors. 

In practice, the orthogonality loss prevents the recurrence relation Eq. (3) from terminating after n new 
vectors have been produced. That is, new vectors will continue to be generated, eventually leading to an 
overspecified basis. This presents no real problem; the matrix continued fraction (4b), which is highly stable, 
need only be continued until the transmittance converges. While this may take more than n levels; in prac- 
tice it usually takes far less. 

This method has impressive numerical performance. First, the number of operations required is propor- 
tional to n (most conventional schemes require «3). Second, using Eqs. (3) and (4) provides transmittances 
correct to machine precision (that is, on random rounding architectures, the number of mantissa digits lost to 
rounding error will be approximately logiö ^")- FiS- 3 demonstrates the accuracy of this method by showing 
the calculated transmittance as a function of the number of levels used in the continued fraction (Eq. (4b)), 
for a model system whose transmittance is exactly known (dashed line). The calculation converges sharply 
to the correct value, once enough basis vectors are included. 

We have tested the accuracy of this method for elastic scattering volumes containing up to 105 atoms 
(nodes). This exhausted our available computer memory. However, algorithmic advances and the availabil- 
ity of massively parallel architectures make much larger calculations possible. Multiple lead geometries can 
be accommodated by tridiagonalizing in larger blocks. 

lead 1        0    1 
—^""^""^^T^T^r'' Figure 2. The block recursion method 

...    Q  Q   l\l\l transforms the device model into an 
.     . ^jr~P~°—<J equivalent network without altering lead 
lead2//    "equivalent" nodes. 

n-2     n-1          device 

IV. AN EXAMPLE: DIRTY INVERSION LAYERS 

We have modeled inversion layers as clusters of atoms arranged in a two dimensional square lattice 
[3,4,5]. Fig. 4a shows conductance as a function of Fermi Energy (controlled by gate voltage) for a "clean" 
(pure crystalline) device. Fig. 4b represents a "dirty" layer (having a high concentration of defects, dopants, 
etc.) Both layers are 1 00 atoms square (n = 10^), roughly equivalent to an elastic scattering area of a metallic 
layer at room temperature [7]. Here, we will only highlight some important results of this study. 

In the clean sample, carriers with energies within the band conduct well because the electronic states of 
a crystal obey Bloch's theorem [7], and are thus extended through the layer and have high mobility. There is 
noticeable resistance, however, this comes from electron reflection and interference at the device walls and 
device-lead interfaces. At the band edge, conductance falls off sharply, since carriers above this energy must 
tunnel through the band gap. 

Conduction in the disordered layer is weaker. Quantum states in a disordered system do not obey Bloch's 
theorem, and instead tend to destructively interfere, and hence decay with distance. This lowers carrier 
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mobility compared to a crystal [10]. Fig. 4b shows a "kink" in conductance, similar to the crystal band edge, 
at a "critical" energy Ec. However, Ec is not at the band edge (E/v = 6.0 for the disordered layer). We have 
shown that there are large numbers of allowed states for carriers with energies above Ec; however, their 
spatial decay length is much shorter than states with energies at or below Ec. That is, carrier mobilities 
change drastically when the Fermi Energy passes through Ec. 

This result is surprising. Previously, it was widely believed that in disordered layers the strength of 
carrier state decay (and hence mobility) varied smoothly with carrier energy. Instead, we find a singularity at 
Ec. This mobility transition explains the sharp switching of even highly disordered FETs. If mobility varied 
smoothly with energy, current in such a device should switch gradually with gate voltage. Our results sug- 
gest, however, that the switching occurs when the Fermi energy sweeps past Ec, not the band edge. In other 
words, the current shuts off not because there are no carriers, but because carrier mobility has decreased 
sharply. This conclusion is supported by capacitance measurements in dirty inversion layers, which measure 
carrier densities as well as conductance [11]. Obtaining this result in a simulation, however, would be 
difficult without the sensitivity and resolution of the block recursion algorithm. 

o 
n > o 

II > 

E/v 
4.05 4.10 4.15 4.05 4.10 4.15 

Figure 4. The variation of the logarithm of the transmittance with electron density for an ordered device (a), 
and a disordered device (b). 
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Domain Decomposition Applied to the Drift-Diffusion Equations 

W. M. COUGHRAN, JE.' Eric Grosse 
AT&T Bell Laboratories 

Murray Hill, NJ 07974, USA 

For a number of years, AT&T Bell Laboratories has depended on Cray Eesearch com- 
puters for semiconductor modeling. Recently, we started to explore a variety of domain 
decomposition methods employing a collection of high-performance workstations connected 
via 100Mb/s FDDI. We will describe our experience with such approaches for the drift- 
diffusion equations and our perceptions of the evolving workstation cluster alternatives. 

'Speaker. 
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Abstract 

Numerical solution schemes based on adaptive grid redistribution and iterative techniques are 
investigated for submicron semiconductor devices. The grid adaptation strategy involves construct- 
ing a mathematical optimization problem to determine grid point locations. This is accomplished 
by defining an objective function which takes into account the numerical error and various geo- 
metric properties of the grid that affect accuracy. The iterative solution strategies considered here 
include multilevel nested iteration, and non-symmetric gradient-type iterative solvers for algebraic 
systems. Numerical tests are carried out using a non-parabolic hydrodynamic model for carrier 
transport. 

Introduction 

The use of adaptive gridding and iterative solution methods has proven very effective in many 
transport applications. Such techniques are particularly useful for problems involving multiple 
length scales or sharp solution gradients, which typically give rise to large algebraic systems. Semi- 
conductor device applications are known to be grid-sensitive and they involve severe solution gra- 
dients, especially as device sizes shrink into the deep submicron regime. Thus, it is natural to 
consider iterative and adaptive grid approaches for device simulation. 

Grid Adaptation 

The present adaptive grid redistribution approach is developed using a discrete optimization 
model [2, 3]. This involves constructing a mathematical objective function that defines the desired 
grid properties, and then adjusting the grid to minimize this function. The optimization procedure 
is initiated by first computing an approximate solution using a simple initial grid, and then con- 
structing an objective function based on a local feature or error indicator derived from this solution. 
The objective function takes into account properties of the numerical solution as well as geometric 
properties of the grid - for example, smoothness and orthogonality of grid lines - which may affect 
accuracy. The locations of the grid points constitute the unknowns in the objective function. For 
instance, a composite objective function which incorporates a measure of the solution error E, grid 
smoothness S and orthogonality O would be of the form 

F(v) = F(E(v),S(v),0(v)) (1) 

where v is a vector representing the grid point coordinates. Then the optimization problem can be 
stated as 

minimize        F(v) 

vec (2) 

Here C is the constraint set, which represents the space of all feasible grids with a given surface and 
boundary configuration. This constraint is needed to ensure, for example, that the redistributed 
nodes remain within the device domain, and to preserve the boundary or interface geometry. 
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The objective function may be generalized to include additional properties, and there are a 
variety of approaches for constructing its individual components. For example, S(v) and 0(v) in 
(1) may be denned using a geometric approach, which can be illustrated in 2D with the help of 
Figure 1. The figure shows a representative patch of four cells surrounding any interior grid point 
(i,j). Local functions for the smoothness and orthogonality may be defined as: 

Jij T\ ■ r-i + r2 ■ r2 + r3 • r3 + r4 ■ r4 (3) 
Oij    =    (rx-rif + ^-rzf + irs-uf + iu-nf 

where r; are the vectors shown in Figure 1. Similarly, a local feature/error adaptivity indicator 
Wij can be defined at (i,j) and scaled by the local Jacobian (which is related to the patch area) to 
construct the adaptivity measure 

En = wart (4) 

The functions in (3) and (4) can be accumulated over the entire grid to obtain global measures, 
and the objective function may be defined as a linear combination: 

F(v) = aE(v) + ßS(v) + jO(v) (5) 

with a, ß and 7 being positive constants that may be chosen to enforce adaptivity, smoothness and 
orthogonality to varying degrees. 

(i-lj) 

(i,j-l) 

(i+U) 

Figure 1: Representative interior patch of 4 cells around grid-point (i,j). 

This formulation permits adapting the grid to the error or any desired feature of the problem. 
For example, in the semiconductor device problem a natural choice is to use the doping profile to 
adapt the initial grid as indicated in Figure 2. 

Hydrodynamic Model and Discretization 

The semiconductor device model used in our numerical experiments consists of the non-parabolic 
hydrodynamic transport system developed by Bordeion et al. [1]. The resulting coupled Poisson 
and transport equations that relate the electrostatic potential (<£), carrier density (n), velocity (v) 
and energy (w) have the following form: 

d(A(w)nv) 
Ft 
d(nw) 

+ 

dn 

-y{B(w)nw) 

V • (cVc£) 

+ V-(nv) 0 
ND) 

-nV(j)   = 
nv 

3m*    v   v   '     '     m* 

+ V • (Qnwv + Q) - qnv ■ V<j5>   = =    — n 

(6) 
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with A(w) = 1 + 2üaw, B(w) = (1 + aw)/(l + 2aw), Q = "heat flux" = -nDwVw, and with 
empirical constants a = 0.5eF_1, tt = 1.3 and £>„, ~ 10 cm2/sec. 

In the present work, the equation system is first analytically mapped to a reference domain 
to facilitate discretization on general non-uniform grids. The spatial derivatives and metrics in 
the transformed equations are then discretized using second-order finite-differencing. We use an 
extension of the Scharfetter-Gummel treatment for the current density and energy flux. For the 
hydrodynamic system (6), following the usual procedure, we assume locally constant current density 
and electric field, and linear variation in energy. This yields an approximation of the form 

nv 
m+i 

v '     wi J\ hi(wi+1/Wi) 

ci de. 

Aj= (2 + (c2^)/(Cl^))lnK+1M) (7) 

where subscripts i and i+1 denote nodal values in the reference coordinate direction £, c\ and c2 

are coefficients in the scaled momentum equation, and B(x) = x/(ex - 1) denotes the Bernoulli 
function. Similarly, assuming locally constant energy flux (5) and exponential n one can derive the 
approximation 

S   =   [wi+1B(-As)-WiB(As)}^- 

As = WZ)l(d2u) (8) 

v = In (ni+1/ni) [re,-+i n,-/ (ni+1 - n,-)] 

where dx and d2 are coefficients in the scaled energy equation. The resulting semi-discrete equation 
system is integrated to steady state in a fully-coupled form using backward Euler or semi-implicit 
Runge-Kutta schemes. 

Iterative solution 

Solution techniques of special interest in the present work include multigrid-type schemes as well 
as generalized gradient iterative solvers. Multigrid techniques are based on the use of a sequence of 
nested grids over the given domain, and solving the problem using a cyclic iterative process which 
exploits each grid's preferential convergence behavior [4]. The resulting algorithm is usually far 
more efficient than traditional single-grid iterative algorithms. In this work we focus on nested grid 
schemes, wherein the solution process begins most economically at the coarsest level and proceeds 
to finer levels using projection to generate good starting iterates. Figure 3 shows sample results 
obtained using a two-grid scheme to solve the non-parabolic hydrodynamic model for a 0.08 micron 
(channel-length) n+ - n - n+ diode structure. In this example we first computed a drift-diffusion 
solution on the coarse grid for use as initial approximation to the coarse grid hydrodynamic solution. 
This was interpolated to the fine grid using an approach consistent with the Scharfetter-Gummel 
assumptions. 

Generalized gradient iterative methods such as bi-conjugate gradients (BCG) and conjugate 
gradient squared (CGS) are also under investigation. Implicit integration of the fully-coupled 
hydrodynamic system yields large block-structured algebraic systems at each integration step, which 
must be solved efficiently for enhancing the efficiency of the overall simulation process. For a simple 
MOSFET test case such as the one shown in Fig. 2, preliminary calculations have shown an order 
of magnitude improvement on a 129 x 33 non-uniform grid when a CGS scheme is used instead of 

a band solver. 
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Figure 2: (a) Representative MOSFET doping profile; and (b) grid adapted to doping. 
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Figure 3: Hydrodynamic simulation of carrier velocity and energy at 3 volts bias for 0.08/jm 
n+ _ n _ n+ diode with 129 grid points; doping concentration varies 5 orders of magnitude at 
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Abstract 

We study the effect of the common practice of neglecting the convective terms (inertial approx- 
imation) in the hydrodynamic model in the simulation of n+-n-n+ diodes and two dimensional 
MESFET devices. We find that the inertial approximation is invalid near the diode junctions, 
and near the contact regions of the MESFET device. We also test the hyperbolicity of the first 
derivative part in the hydrodynamic model, and in related energy transport models. We find that 
the first derivative part of the system is hyperbolic, for the hydrodynamic model, the modified hy- 
drodynamic model, and the energy transport model. This suggests and validates the use of shock 
capturing algorithms for the simulation. 

I. TRANSPORT EFFECT. 

In earlier work (see [5]), we have advocated using modern nonlinear hyperbolic based shock 
capturing algorithms (e.g., the ENO algorithm in [11]) in device simulations with hydrodynamic 
(HD) and energy transport (ET) models. Introductions to these models may be found in [10] and 
[7], respectively. The first use of such methods in device simulation was [2]. 

A common practice in the interpretation of the hydrodynamic model is to employ the inertial 
approximation, which in our terminology characterizes the transport effect as small if 

; + u\ + vl + vl « 1, (1) 

where rv is the momentum relaxation coefficient and (u, v) is the velocity vector. The reader can 
find this approximation employed in many reduced hydrodynamic models (cf. [9]). As discussed in 
[10], it allows the extension of the Scharfetter-Gummel method to a hydrodynamic model setting. 
This hypothesis is well known in fluid mechanics, where the resulting flow is termed a Stokes' flow. 
In the electrical engineering community, one speaks of neglecting the convective terms. 

In this work, we simulate the standard one dimensional n+-n-n+ channel and a two dimensional 
MESFET, using the complete HD model, as introduced in [10], with Baccarani-Wordeman relax- 
ation expressions (see [1]), and then check the validity of (1). From a physical point of view, we 
wish to check whether the transport effect is uniformly small. If it is, hyperbolic based algorithms 
probably need not be used, and the inertial approximation would appear justified. The numerical 
scheme we use is the ENO (Essentially Non-Oscillatory) scheme [11], adapted to device simulations 
in [2] and [5]. It has the advantage of both high order accuracy and monotone sharp gradient 
transitions. 

The one dimensional n+-n-n+ channel is a standard silicon diode with a length of 0.6//m, with a 
doping defined by nd = 5 x 10 V«-3 in [0,0.1] and in [0.5,0.6], and nd = 2 x lO3^™-3 in [0.15,0.45], 

■'Research supported by the National Science Foundation under grant DMS-9123208. 
2Research supported by the National Science Foundation under grant ECS-9214488 and the Army Research Office 

under grant DAAL03-91-G-0123. Computation supported by the Pittsburgh Supercomputer Center. 
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joined by smooth junctions. The lattice temperature is taken as T0 — 300 K. We apply a voltage 
bias of vbias - 0.5V, 1.0V and 1.5V, respectively. Other relevant parameters can be found in [5]. 
We use a high order ENO scheme (third order) and a very refined grid (200 points), in order to 
ensure that the physical model is fully resolved by our numerical result. 

Fig. 1 (left) clearly shows that the transport effect (the quantity in Eqn. (1)) is not small near 
the junctions. In order to verify that this is not an artifact of the spurious velocity overshoot at 
the right junction, we also simulate with a reduced heat conduction coefficient K0 = 0.5 to reduce 
this spurious overshoot (see [4]). The result, Fig. 1 (right), still shows significant transport effect 
at the junctions, especially at the left junction. 

vbias=0.5 

■ vbias=1.0 

■ vbias=1.5 

vbias=0.5 

vbias=1.0 

vbias=1.5 

kappaj = 0.5 

Fig. 1: The transport effect rpux for the one dimensional n+-n-n+ channel. Left: the HD model; 
right: the HD model with a reduced heat conduction coefficient K0 = 0.5. 

To see the effect of ignoring this transport effect and using a reduced hydrodynamic model, 
we also make the simulation of the same diode using the reduced HD model with the inertial 
assumption. This reduced HD model does not have a momentum equation, is a fully parabolic 
system, hence is much easier to solve numerically. The velocity is a derived quantity from the 
concentration and energy. We can see from Fig. 2 that the reduced HD model underestimates the 
velocity. 
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Fig. 2: Velocity at vbias - 1.5. Left: the HD model and the reduced HD model; right: the same 
with a reduced heat conduction coefficient K0 = 0.5. 

Next we simulate a two dimensional MESFET of the size 0.6 x 0.2fim2.   The geometry as 
well as the doping (in jim~3) is shown in Fig.   3, left.   We apply, at the drain, a voltage bias 
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vbias = 2V. The gate is a Schottky contact, with a negative voltage bias vgate = -0.8V and a 
very low concentration value n = 3.8503 X 10_8^m"3. The lattice temperature is again taken as 
T0 = 300 K. A high order (third order) ENO scheme with a very refined grid of 192 x 64 points is 
used. Again, this is to ensure that the physical model is fully resolved by the numerical scheme. 
Boundary conditions and other parameters can be found in [5]. 

Fig. 3, right, shows that the transport effect is not small near the contacts. For easy presen- 
tation, we have listed an integer at every other grid point in the MESFET in Fig. 3, right. This 
integer is ten times the transport effect formula in Eqn. (1), capped from above by nine. 
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Fig. 3: Two dimensional MESFET. Left: the geometry and the doping nd; Right: the transport ef- 
fect. The integers denote the integer part often times the transport effect: [ IQTP^U

2
X + v?y + v2 + v2 

If it is larger than 9, then 9 is shown. 

From these two examples we can conclude that, in device simulations, the transport effect is 
not uniformly small. This justifies the usage of hyperbolic based shock capturing schemes (e.g., [5]) 
for device simulation. It also justifies the usage of the full HD model. 

II. TEST FOR HYPERBOLICITY. 

In this section, we would like to discuss the hyperbolicity check of the first derivative part in 
the following Eqn. (2), for the HD model, the modified HD model in [13], and for the ET model in 
[7]. Both HD and ET models can be expressed in the following form: 

wt + fi(w)x + h{w)y = r{w), (2) 

where the right-hand-side r(w) contains both the forcing terms due to the relaxation, which are 
nonlinear functions of w, and the second derivative terms due to the heat conduction. The analysis 
of the first derivative component of the HD and ET models should not be confused with the 
mathematical classification of the complete systems (2). Exclusive of the Poisson equation, these 
are classified as parabolic/hyperbolic and parabolic, respectively. Such classification can be found 
in, e.g., [3]. Since we are interested in the situation that higher derivatives in the system have 
relatively small coefficients, and first derivative terms are either dominant or at least are significant, 
we will study only the first derivative part. 

The definition of the first derivative part fi(w)x + /2(u>)y. as hyperbolic is: £i/iO) + 6/2!^) 
with real £1 and f2, has only real eigenvalues and a complete set of eigenvectors. If the first 
derivative part is hyperbolic, and if the first derivative part dominates the system or is at least 
significant, then hyperbolic based algorithms (like ENO) can be very effective. On the other hand, 
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if the first derivative part is not hyperbolic, the system is of mixed hyperbolic-elliptic type, and 
the mathematical theory about the solution to (2), when the right-hand-side tends to zero, is very 
complicated and in many cases still unsolved. Likewise, numerical methods for such mixed type 
systems are also complicated and under developed (see e.g., [12]). We would thus desire to avoid 
the appearance of mixed type first derivative part when modifying the models. Notice also that in 
many modifications to the hydrodynamic models (e.g., [13],[8]), the right-hand-side of Eqn. (2) is 
changed to contain some first derivative terms also. Although in practical computations these terms 
are treated as small perturbations and approximated separately, the justification that these terms 
are indeed "small" can only come from moving these terms to the left-hand-side, absorbing them 
into fi(w) and /2(tu), and then checking hyperbolicity. We have performed such a hyperbolicity 
check for the standard HD model, the modified HD model [13], and the ET model [7]. It is found 
that all three cases have hyperbolic first derivative parts. The details can be found in [6]. We 
have to resort to numerical techniques to check the hyperbolicity of the first derivative part for the 
modified HD model in [13]. 
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Abstract 

Hydrodynamic simulations of high-field transport are performed using a flux-corrected transport 
algorithm. This efficient algorithm uses careful control of numerical diffusion to achieve high 
accuracy in simulating flow phenomena in the presence of steep gradients as can occur in small 
devices where overshoot phenomena are significant. We apply the flux-corrected transport scheme to 
a preliminary evaluation of various hydrodynamic descriptions of high-field transport. 

I. INTRODUCTION 

Continuum or hydrodynamic descriptions of electron transport have long been applied in the 
analysis and design of semiconductor devices because they provide a useful compromise between 
computational simplicity and physical fidelity. As devices continue to scale deep into the sub-micron 
regime such descriptions will continue to be of value although ultimately they must break down. The 
transport in deep submicron regimes is often characterized by high electric fields, rapidly varying 
densities and history-dependent phenomena (including inertia) which make the governing equations 
more hyperbolic in character. From a computational standpoint these factors and particularly the 
need to obtain accurate results in the vicinity of steep gradients represent significant challenges. One 
numerical approach capable of handling these difficulties which has been widely used for fluid 
simulation in other fields is flux-corrected transport (FCT) [1]. In essence, FCT is an explicit, 
spatially high-order finite-difference scheme in which a conservative "flux-limiting" procedure is 
used to prevent the otherwise inevitable unphysical ripples which would appear in the numerical 
solution near steep gradients. In this work, we apply an FCT algorithm to solving hydrodynamic 
equations describing electron transport in small-geometry n+-n-n+ silicon diodes. 

In addition to studying the numerical issues, a primary purpose of our effort is to examine and 
give a preliminary evaluation of various hydrodynamic descriptions of high-field electron transport. 
Such descriptions are founded on a continuum approximation, i.e., that meaningful density variables 
can be defined, and in electron transport work are typically derived by taking velocity moments of 
the Boltzmann equation. Alternatively, hydrodynamic descriptions may be developed using classical 
field theory [2]. The former approach emphasizes the connections to the underlying microscopic 
physics whereas the latter, which takes the density variables as primitives, focuses on the consequences 
of general principles of balance, invariance and symmetry, i.e., on what is physically possible given a 
certain set of primitive densities. Obviously, the larger this set the more physics can be described at 
the expense of utility. In Sec. II we outline the equations which stem from standard choices for the 
density variables and then discuss numerical methods and solutions in Sees. Ill and IV. 

H. HYDRODYNAMIC MODELS OF ELECTRON TRANSPORT 

We consider describing the flow of the population of conduction band electrons through a 
semiconductor as the flow of a single fluid through a solid. The primitives of the theory are 
therefore the quantities which define this electron fluid and its interaction with itself, with the lattice 
and with the electrostatic field at every point. As a first case, we assume that the fluid is describable 
by the primitives of mass/charge density, momentum density and energy density.  The laws of mass, 
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momentum and energy balance and of electrostatics then lead to a set of equations constraining these 
densities as follows [2]: 

(la)      nt + V-(nu) = 0 

den 

mri du 
"dt 

= - Vpn + V-xn - qn(E + En),     V D = q(ND - n) , 

9e] dP 
(lb)   mn^ = - V-qn+xn:d+^-^-+qnE"-u+mnsn,    p^- = - V-q!+E- —+qnE"-u+ps1 , 

dt n dt a at dt 
where n, u, mnen, qn, mnsn are the number density, velocity, energy density, heat flux and energy 
source density of the electron gas, p, No, pe1, q1 and ps1 are the mass density, ionized impurity density, 

energy density, heat flux and energy source density of the lattice, E" and E£ are the recoverable and 
dissipative parts of the force (per charge) exerted by the lattice on the gas, p" and xn are the electron 
gas pressure and viscous stress, E and D (=P+4rcE) are the electric field and electric displacement, d is 
the rate-of-deformation tensor and d/dt is the material derivative. 

The differential equations (1) represent a set of physical constraints on the density variables; 
they are not sufficient however to determine these densities. To make the system determinate 
constitutive equations specifying the material response must also be supplied. For example, the usual 
energy transport (ET) model [3] results if we select the following constitutive equations 

"TTl 

(2) 
men _ lkTn 

pn = k'Pn ,       xn = 0, 

qn = - f-D^nkVT11, 

En = 0, 
r 

Fn u 
^LFT

1 

mnsn = ps1 = - -Q- 
x w 

nr -uu + 3kj "pn _ 'rl ] 

where m* is the electron effective mass, T1 and T1 are electron and lattice temperatures, U.LF 
and DLF 

are the low-field mobility and diffusivity and xw is an energy relaxation time. Now, as discussed in 
Ref. 2, when heat conduction is small the density variables of mass and momentum become adequate 
to describe the system. In this case, the energy balance equations (lb) need not be solved and the 
governing equations become (la) plus constitutive equations which in Ref. 2 were selected as 

where 
(3a) 

(3b) 

pn = kTJn, xn = X IV-u + 2p d , V ~v      ' 

2PLF 

En=- 
r X du 

dt d    P 

Es E-xdfj rdt 

X.v and pv are viscosity coefficients, % [=(m*-m)/q] is a drag rate coefficient arising from Bragg 
reflection, usat is the saturation velocity and xr is a "scattering equilibration time". We note the 
important inclusion in these equations of i) viscous effects and ii) memory or rate effects in the 
scattering (including as the origin of effective mass). The mobility model in (3b) is that of Ref. 5 
with a rate term introduced to represent the delay associated with scattering. This reduced set of 
electrohydrodynamic (EHD) equations, which may be regarded as a physically well-founded version 
of Thornber's augmented diffusion-drift description [4], has obvious computational advantages and 
will be explored in our simulations below. 

m. FLUX-CORRECTED TRANSPORT 

Flux-corrected transport (FCT) is a powerful numerical method for integrating generalized 
continuity equations [1] which has been widely used for fluid simulation in other fields but has not 
been applied heretofore to semiconductor transport problems. FCT is an explicit, spatially high- 
order finite-difference scheme which is especially effective at providing high-accuracy solutions in 
the vicinity of steep gradients without exhibiting the unphysical ripples often seen in conventional 
schemes as a result of numerical dispersion. It accomplishes this by carefully controlling the amount 
of numerical diffusion in the scheme using a conservative "flux-correction" procedure which 
preserves monotonicity with maximal accuracy. Explicitly, FCT first computes provisional values for 
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the density (of mass, momentum or energy) p* at the next time step k at each mesh point i using a 
low-order, strongly-diffused scheme. It then improves the accuracy of these values by removing as 
much of the numerical diffusion as possible without generating new or accentuating existing extrema. 
This is done in a conservative manner via 

(4a) ^k_ 

where 

(4b) 

pr=Pi 1+1/2       i-1/2 

£   2 = S-max|0,min|S- Pi+2 Pi+J' M- i+l/2' 
/~k       ~k\   „   /~k    ~k   \ 
|Pi+l-Pi)'S-(Pi-Pi-ll 

is the corrected flux, S = sgn(p^+1 - p^) and U-i+i/2 is an antidiffusion coefficient chosen to minimize 
the residual numerical error [6]. That the corrections are functions of the solution means that the 
scheme is nonlinear. We note that the idea behind FCT has been incorporated in a number of other 
numerical schemes known collectively as nonlinear monotone methods. Among these are the 
essentially non-oscillatory (ENO) schemes [7] which have been applied to semiconductor transport 
problems [8]. All of these methods have similar advantages; we believe FCT to be preferred only 
because of its conceptual simplicity which enables, for example, straightforward generalization to 
more than one dimension [9]. In the calculations of this paper, FCT is used to solve the 
hydrodynamic equations and the electrostatics is solved conventionally in a Gummel iteration. 

IV. SIMULATION RESULTS 

As a test problem we model the standard n+-n-n+ diode with the geometry and doping levels 
chosen to match those of Refs. 10 and 11. A one-dimensional boundary value problem modeling 
this structure is readily formulated in the ET [(1) with (2)] and EHD [(la) with (3)] descriptions. We 
first solve this problem using FCT in the familiar ET case. The calculated steady-state velocity profile 
for a 0.4u.m diode biased at 1.5V is shown in Fig. 1 along with the electron temperature profile. 
These results are essentially the same as those obtained in Ref. 11 using an implicit scheme. The ET 
description exhibits velocity overshoot which is qualitatively reasonable apart from the well-known 
spurious peak seen near the anode. The origin of the latter has been widely discussed and is not of 
interest here. However, in one additional run (Fig. 1) we included viscosity [using in of (3a)] in the 
ET simulation and found that the spurious peak largely disappears indicating that viscosity needs to 
be considered if the ET model is to be fully understood. In any event, our main point is that FCT 
provides an efficient scheme for performing conventional energy transport simulations. 

We next apply FCT to solving the EHD equations. Considering the same problem as in Fig. 1, 
the qualitatively reasonable result shown in Fig. 2 is obtained. We note that the EHD simulation 
shows no evidence of the spurious peak seen in the ET simulation.   In Fig. 2 we also give an 
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Fig. 1.    ET velocity (with and without viscosity) 
and temperature profiles. 

Fig. 2.    Profiles of the EHD velocity and the 
relative error in the steady-state current. 
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indication of the numerical error introduced by the FCT scheme. We plot the deviations from 
uniformity in the steady state current as a relative error; the high accuracy possible with an FCT 
algorithm (here in single precision) is evident. Next, in Fig. 3 we compare the ET and EHD 
descriptions with profiles computed using diffusion-drift theory (DD) and by Monte Carlo solution 
of the Boltzmann equation (MC) [10]. This calculation is for a 0.1u.m diode biased at IV and the 
prediction of DD theory shows that the diode is operating in a strong velocity overshoot regime. In 
comparison with the "exact" MC solution, the EHD description is seen to do quite well both 
qualitatively and quantitatively. In this calculation, the one fitting parameter is the choice of xr to be 
0.13psec. The ET description does significantly less well both in shape and magnitude, however, it 
should be said that no effort to adjust parameters such as the thermal conductivity has been made in 
the simulation. Finally, in Fig. 4 we exhibit the important roles of viscous and rate effects in the EHD 
description. The viscous effects smooth velocity gradients via dissipation, an effect which is partially 
offset by the rate effects which steepen the solution by delaying the onset of velocity saturation. 
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Fig. 3. Comparison of ET and EHD velocity 
profiles with diffusion-drift (DD) and 
Monte Carlo (MC). 

V. CONCLUSIONS 

0   50  100 150 200 250 300 
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Fig. 4.    EHD velocity profiles computed with and 
without mobility rate and viscous terms. 

The main conclusion from this work is that the FCT algorithm provides a robust numerical 
approach to solving hydrodynamic equations descriptive of high field transport in semiconductors. 
It is a conceptually simple approach for which there exists a wide body of experience and software. 
It provides efficient, high accuracy solutions in the presence of steep gradients, and it is readily 
extendable to more than one space dimension. In this work, we applied this algorithm to the study of 
two high-energy transport theories. In the context of modeling overshoot phenomena, we find that 
an electrohydrodynamic description in which an energy balance equation is not solved gives accurate 
solutions with significant computational savings. Although these results are promising it is clear that 
more work is needed to fully validate this description and to determine its precise limitations. 
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Abstract 

We describe the development of some parallel iterative techniques for solving boundary value 

problems for elliptic partial differential equations. Using domain decomposition techniques, we 

modify standard sequential iterative techniques to obtain effective parallel methods. We contrast 

implementations on distributed-memory and shared-memory scalable parallel processors. We de- 

scribe the use of two different programming paradigms, one involving explicit parallelism in a 

distributed-memory model and the other utilizing simple loop decompositions in a shared-memory 

model. Our primary conclusion is that parallel computing on existing commercial parallel su- 

percomputers makes it routine to do three-dimensional modeling of semiconductor devices using 

drift-diffusion models. The implications this has for the use of more realistic models of submicron 

devices using Boltzmann-type equations will be mentioned. 

I. Introduction 

We discuss several techniques for solving elliptic boundary value problems via iterative methods 

which have a high degree of parallelism. These techniques are being developed to solve as broad a 

class of problems as possible, but our primary motivation has come from computing the electrostatic 

potential around molecules of biological significance [8]. Moreover, implementation of the methods 

has been done as part of an existing code UHBD [5]. This makes the code development more 

complex but also provides an assessment more realistic than would be available by looking only at 

computational kernels. In addition, we have applied some of the computational techniques to solve 

prototypical problems related to semiconductor device simulation [3]. 

We have studied several variants of standard iterative methods which we have designed to have 

good parallelism. These include variants of the well known ICCG and SOR iterative methods. In 

addition, we have proposed new types of iterations especially suitable for parallel computation [12]. 

We anticipate that all of these methods will be useful as coarse grid solvers for parallel multigrid 

methods [9]. 
In addition to studying different parallel iterative methods, we have used different parallel 

programming paradigms. Two of these are (1) Pfortran [1] and (2) shared memory constructs 

supported by Kendall Square's KSR-1 Fortran [10]. Both approaches have proved adequate for 

implementing the parallel algorithms presented here, due to the high degree of regularity of the 

loops involved. Less regular loops in UHBD, related to its Brownian dynamics phase, have been 

easier to parallelize using shared-memory constructs [4]. 

260 



II. PSOR 
The Jacobi method for approximating the solution of a linear system is naturally parallel, but 

the typically more efficient Gauss-Seidel method is essentially sequential. In the Jacobi method, 

each component Xi of the approximate solution vector X — (Xi,..., XN) can be computed sepa- 

rately of all others, which we can write schematically as 

X?+1=Fi(X$,...,X$r),    for   i = l,2,...,iV, (2.1) 

where the Fi are functions of N variables. For example, F = (i<\,... ,i<V) is an affine function 

in the case of solving a linear system. Typically F is sparse, depending only on entries near the 

diagonal, which we indicate by Fi(..., Xi-1}Xi, Xi+1,...). With Gauss-Seidel, it is frequently the 

case that Xf+1 depends on X*: schematically it is 

X?+1 = Fi(...,x¥1\X?,X?+1,...)    for    i = l,2,...,N. (2.2) 

The same applies for the SOR method, which is just a relaxed (or accelerated) version of Gauss- 

Seidel. 

One approach taken to deal with the sequential nature of SOR is to reorder the unknowns so 

that one group of components Xi can be computed independently of others. This is often referred 

to as a coloring of the index set. The most well known case is that of two colors, usually called 

"red-black" ordering since it is similar to a chess board in simple cases. While this can be quite 

effective, it requires communication to be done for each color as opposed to just once for each 

iteration, as is the case for the Conjugate Gradient (CG) method. The number of colors required 

depends on the extent of the sparcity of F. 

A simple technique used in practice is to decompose the index domain (the set of indices i) in 

a way to minimize the communication (either the number of messages required, or the size) among 

neighboring domains. Gauss-Seidel (or SOR) is used within each domain, without updating using 

the appropriate neighboring values. In the two-processor case, it takes the form 

X*+1=Fi(...,X*+1\X?,Xl1,...)   Vi, l<z<iV/2, 
N  . .   . .   , „ (2-3) 

LAT/2'^AT/2+l' - • -'-^i-l ' ^« '-^i+D • • •)       vt'    2 X?+1=Fi(...,XL2,X™,...,X¥1
l,X?,Xl1,...)      V*'   ^ + 1<^<^- 

Once the local Gauss-Seidel (or SOR) sweep is done, neighboring values are exchanged, similarly to 

what would be done in the Jacobi iteration. For this reason, we refer to this method as the Jacobi- 

Gauss-Seidel (JGS) algorithm (or JSOR for its accelerated or relaxed variant). While appealing 

for its simplicity, this algorithm frequently requires a much larger number of iterations than the 

sequential case. 

Remarkably, a simple alternative [14] to JGS and JSOR has convergence properties similar to 

the sequential case, but with communication features similar to JGS/JSOR. We will not attempt 

a complete description of the most general case, but will simply describe an example and present 
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numerical results. Consider the following algorithm: 

Xk+1 =Fi{..., X^,Xt..., Xk
N/2,X

k
Ny2+v ...)   V i, 1 < i < N/2, 

X«+1 =Fi(. ,X N/2 
yk+1 

'-^-JV/2+1' 
yk + 1    yk    yk N (2-4) 

V i, — + l<i<N. 

This algorithm, which we call PGS (and PSOR for its accelerated or relaxed variant) is parallel 

for sparse F to the extent that the values X^t2
x,..., X^+1 which are produced by the processor 

computing the second line can be computed and made available to the processor computing the first 

line before they are needed. In the case that the functions Fi are suitably sparse, this constraint 

poses no practical limitation to parallelism. 

Figure 2.1 shows performance analysis for calculations done with the 5-point discretization of 

Laplace's equation using a strip decomposition (algorithm (2.4) in the case of two processors). We 

use this type of performance analysis graph to isolate different parts of a code. The computation 

time decreases even superlinearly [4] whereas the communication time (due to the use of a strip 

decomposition) remains nearly constant. The category "other time" simply reflects the part of the 

total time that cannot be accounted for in either of these categories; in this case it is quite small 

(being less that a second for two and four processors). 

PSOR for Poisson Equation on 512 x 512 Grid 
10' 

10 

Optimal relaxation parameter = 1.99 
The floating point performance for P = 1 is 6.58 Mflops 

Total Time : + 

Linear Speedup: 

Comp. Time: o 

Comm. Time 

Other Time 

10 10 
Number of Processors (on KSR1) 

10 

Figure 2.1. Performance analysis for PSOR for the 5-point discretization 

of Laplace's equation using a strip decomposition on the KSR-1. 

We note that the code for this test was implemented in Pfortran and compiled separately for 

the Delta and KSR-1, without change of source code. The resulting speedup is almost identical for 
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both systems. In fact, the computation and communications times are largely the same for both 

systems. Although it is certainly possible to optimize performance for these distinct architectures, 

this shows that a single programming paradigm can provide efficient execution across a variety of 

different parallel architectures. 

III. PICCG 

Our parallel variants of ICCG have been implemented as part of the code UHBD [5,6] which was 

developed to study the interaction of two molecules of biological significance. One phase involves 

computing the electrostatic potential around the dominant molecule, and the second phase simulates 

Brownian motion of the second molecule in this electrostatic force field. The first phase solves the 

nonlinear Poisson-Boltzmann (NLPB) equation for the electrostatic potential. 

We have modified the electrostatic solver to be able to model semiconductor devices [3]. This 

has provided a stronger test both of the linear and nonlinear parts of the solver, but the principal 

conclusion is that semiconductor devices can be modeled quite effectively on massively parallel 

computers. For example, the following table shows that the solver is scalable in the sense that 

larger problems can be solved without increasing the execution time, by increasing the number of 

processors used. 

Total CPU time in seconds for a MOSFET simulation 

on the Intel Delta for P nodes and mesh of size N3 

N3 P = 1        2 4 8 16 32 64 128 256 

303 22 14 9 6 4 4 4 5 8 

603 192 99 52 35 20 15 12 13 16 

903 214 94 62 36 28 26 28 

1403 184 127 90 91 76 

2003 252 228 197 

2603 440 

One particular case of interest is the so-called memory constrained scaling, the times for which 

are indicated in bold face. This is the case using the smallest number of processors which can run 

the problem, i.e., can fit the problem in local memory. We note nearly constant run times for this 

case. The slanted numbers indicate a different scaling which corresponds to a number of processors 

yielding an execution time that is an order of magnitude smaller. In this case, local memory is not 

utilized fully. 

Most importantly, this table indicates that very large problems can be solved in just a few 

minutes (or just a few seconds, depending on resources available), allowing repeated designs to be 

tested or even optimized. We note also that the best decomposition has not been used for the 

case of large P and moderate N. If a block decomposition were used in this case, even better 

performance would be realized for the times away from the diagonal in the table. 
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One striking conclusion of our work so far [2, 3, 4] is that the total execution time for the 

elliptic solver portion of UHBD is essentially the same for quite disparate computer architectures and 

programming paradigms, as shown in Figure 3.1. The computations on each machine have quite 

distinct internal characteristics. For example, each calculation in done in each machine's single 

precision, which is 8-bytes on the KSR-1 and 4-bytes on the Delta. Due to the shorter word length, 

more iterations actually are done to reach the prescribed tolerance (the same for both machines). 

Comparison of LPBE Solvers on 100x100x100 Grid 
10 

10 

PICCG on Delta 

10 10 10 
Number of Processors 

10 

Figure 3.1. Timing for the linear and nonlinear solvers 

in UHBD on a test problem with a single atom. 

In addition, quite different programming paradigms are being used in each case. For the'Delta 

computations, we used Pfortran [1], an explicitly parallel language. For the KSR computations, 

we used the KSR "tiling" directives [10]. However, the total time is almost identical for 16 and 32 

processors for a uniform mesh of size 1003. 

IV. Conclusions and future work 

We view the current state of affairs in our work as incomplete. We have identified a number 

of promising parallel iterative methods, but we have not yet begun to quantify their domains 

of applicability (and superiority). Moreover, we anticipate these will ultimately find their best 

application as coarse grid solvers in a parallel multigrid technique. 

On the other hand, just using these parallel variants of standard iterative methods, we are able 

to solve two and three dimensional problems of substantial industrial interest remarkably quickly 

For example, the simulation shown in Figure 3.1 solves a three dimensional problem with a million 
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unknowns in less than a minute using 32 processors. For this reason, it seems appropriate to consider 

more accurate models of semiconductors, e.g., the Boltzmann equation [7], together with methods 

for accelerating such calculations using a diffusion approximation [13]. The understanding of such 

methods in the context of neutral particles (photons, neutrons, etc.) has advanced dramatically 

recently [11]. However, application of these ideas to electron transport is still in a formative stage. 

We hope to address this at a later date. 
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ABSTRACT 

The numerical simulation of a GaAs MESFET device on a transputer-based parallel system is presented. 
The physical modelling consists of a comprehensive two-dimensional energy transport model taking into 
account thermal heating effects within the device lattice. The semiconductor equations were solved by 
an SOR point iterative method using a finite difference discretisation scheme. Algorithms targeted at 
message passing Multiple-Instructions Multiple-Data (MIMD) distributed memory architectures are 
described. The efficiency and stability of the parallel algorithms are briefly discussed. A parallel speed- 
up of 14.3 was obtained on an array of 16 transputers. 

1. INTRODUCTION 

Semiconductor simulation is a very important tool in the design and understanding of new semiconductor 
devices. However, the use of accurate physical models usually requires expensive high performance 
computing resources. The recent advances in parallel processing technology offer a cheap and scalable 
alternative computing solution. However, parallel algorithms are still needed to complement these 
systems. This paper presents the parallel numerical simulation of the characterisation of an n-channel 
MESFET semiconductor device using a time-dependent SOR iterative method. Parallel algorithms for 
this type of iterative solver were designed specifically for a message-passing MIMD distributed memory 
transputer architecture. The simulation used a comprehensive electro-thermal MESFET model and the 
numerical solution was achieved with the finite difference discretisation scheme. 

2. THE GAAS MESFET ELECTRO-THERMAL MODEL 

The electro-thermal model used in this work is based on an Energy Transport model [1] coupled with a 
Thermal model [2]. This comprehensive model accounts for hot carriers effects and the influence of 
lattice heating on the electron flow not included in the standard Drift-Diffusion Transport model. A 
Scharfetter-Gummel formulation for current density and energy flux was used. The governing equations 
for the MESFET device are as follows: 

Poisson VV = —{ND-n) (1) 
£„£_ o    r 

Current Continuity — = — V • ,/„ + G (2) 
at     q 

Current Density Jn = q[in (wn )nE + qDn (wn)Vn (3) 

Energy Density Conservation -—JL = Jn-E — 'V-Sn 
2—-—^ (4) 

on xw„OJ 

Energy Flux Sn = -\La(wB)nE + qD„(wn)VWn (5) 

Thermal V -(kLVTL) + Hs =0 (6) 

Wn-Wno 
Heat Generation Hs=q — — (7) 

Tw SWn) 
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where V|/, ND,n,t,Jn, G,\ln, E, Dn are, respectively, the potential, donor density, electron 
concentration, time, current density, recombination, mobility, electric field, diffusion coefficient, 
Wn, Sn, Wng, X w are, electron energy flux, energy density, equilibrium energy flux, energy relaxation 
time and kL,TL, Hs are lattice thermal conductivity, lattice temperature, heat generation respectively. 

3.  TIME-DEPENDENT NUMERICAL ALGORITHM 

The numerical solution is achieved using a finite difference discretisation scheme. The semiconductor 
equations consisting of the closely coupled Poisson, continuity and energy equations are solved by a 
Gauss-Seidel point iteration method with successive relaxation for a time-dependent solution [3]. 

The thermal model couples with the carrier transport model to form a coupled electro-thermal model. 
The solution of this model is obtained by sequentially solving the Poisson (1), current continuity (2) and 
energy density conservation (4) partial differential equations once per time-step. This time-stepping 
process is repeated until a steady state solution is reached. The elliptic thermal equation (6) is also solved 
with the SOR technique but for steady state conditions as the lattice temperature usually remains constant 
at the DC bias condition [2]. The lattice temperature is therefore solved at regular intervals in the time 
stepping process, i.e. for a total simulation time of 2.5ps, for time-steps of 5fs, the thermal equation is 
solved every 0.25ps and the new lattice temperature obtained is subsequently used. 

Source OV 1.2e23 
AW\\VW\WW 

Drain 9V 

Thermal Domain       11 

2.0 

All dimensions in microns 

Low Field Mobility = 0.8 m2Vs"' Gate Width = 400e-6 m 

Figure 1.   Generic Power GaAs MESFET Device 

The thermal boundary has been restricted to the same domain as the carrier transport equations, therefore 
equivalent third-order boundary conditions are required. To obtain accurate results, the domain for 
analysis has to be extended horizontally for 2 to 3 times the source-drain spacing and to a depth of 5 to 
10 times the active region of the device [2]. Instead of solving the equation over the electrical domain 
(i.e. 3.5 by 0.5 microns - greyed) a much wider thermal domain (i.e. 7.5 by 2.0 microns - white) has to be 
solved as depicted in Figure 1. As a result, more computational resources both in memory and processor 
time are needed to solve the device problem This is naturally suited to a scalable parallel system. 

4.  PARALLEL ALGORITHMS & IMPLEMENTATION 

The parallel system used consists of an array of TRAnsputer Modules (TRAMs) connected in a ring 
network topology. Each TRAM has a transputer and some local memory. The device simulation 
problem has been parallelised using a one dimensional geometric domain decomposition [4] as shown in 
Figure 2. A sub-domain of the whole MESFET is locally stored on each TRAM's memory and each 
transputer computes the solution of its sub-domain concurrently. 

The finite difference discretisation of the semiconductor equations results in a five-point discretisation 
scheme. This requires some communication of boundary data between neighbouring processes. The 
efficient design of communication protocols is very important in a parallel environment. The aim is to 
minimise communication overheads. 
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The two main overheads are attributed to the control and data exchange protocol. The control protocol 
is based on a driver-slave principle. The driver sends messages via the control channel to the slaves to 
perform specific tasks. The iterative nature of the numerical algorithms requires messages from all the 
slaves to the driver so that the latter can test for the convergence of solution across the whole domain. 
The data exchange communication protocol ensures data consistency across boundaries between 
neighbouring processes. The algorithm communicates data via the exchange channels (refer to Figure 2). 

Tn-1 Tn-2 T1 "TO 
3 

0 
; o    3 ,—s 

0 
& 

[      "' 

1 ! 2      1 

Tn=TRAMn I 
| Data 

D0=Driver     f ^  \  ^            <, ^ Exchange Channels 
JT™               DO     1   Process      "a 

Sn=Slaven   \         J 
^_^                      -a—  -  ■    Control Channel (CPUJ 

 s 
Figure 2.   Configuration and Mapping of Simulation on an Array of TRAMs (n=16) 

The convergence of the iterative solution requires a modified red/black checker-board one-dimensional 
partitioning method named as the RB ID SOR [5]. This parallel ordering method is essential for the 
optimum convergence of the point iterative scheme. 

5.    RESULTS AND PERFORMANCE 

Simulation and system performance results were obtained from the parallel system by simulating the 
recessed-gate GaAs MESFET depicted in Figure 1 using a uniform grid for the bias condition shown. 
Figure 3 shows the electron and lattice temperature profiles of the GaAs MESFET device. 

!*- 

Figure 3.   Electron and Lattice Temperature of GaAs MESFET device 

Although the parallel simulator was shown to performed adaptive meshing efficiently[5] for an electrical 
model, the electro-thermal simulation has been restricted to a uniform grid of 96x60 owing to memory 
limitations on the TRAMs. Table 1 shows the performance of the parallel system, solving the full 
electro-thermal equations iteratively using the RB ID SOR partitioning method, with the solution 
computed over a time of 2.5ps (500 time steps of 5fs ) for steady state solution. 
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The numerical solution for this particular problem converges in roughly the same number of iterations 
when simulated on the parallel system. Using a single transputer, it took about 6.5 hours to compute that 
solution but only about 0.5 hour with 16 transputers. 

Nodes Iteration Number Time 

(hr) Poisson Current Energy Thermal 

1 21380 2718 2061 491 6h36 

4 21351 2718 2062 492 lh43 

8 21324 2659 2042 492 0h53 

12 21295 2716 2058 492 0h36 

16 21256 2709 2060 491 0h28 

Speed 
Up 

- // 
.-><- 

-^ 
.s" 

s 
12 16 

Transputers 

Ideal --— Overall 

Table 1.   Performance of the Parallel Simulation Figure 4.   Overall Parallel Performance 

As shown in Figure 4 a speed increase of up to a factor of 14.3 on 16 transputers is possible with the 
current algorithm. The drop in performance for large number of transputers is attributed to the increase 
in the communication to computation ratio due to a fix domain size. Increasing the size of the problem as 
the number of processors is usually recommended for efficient use of parallelism. Otherwise most time 
is spent on communication of data rather than useful computation as is the case for very small domains. 

6.  CONCLUSION 

A complete parallel numerical simulator for the characterisation of a GaAs MESFET device has been 
presented. Geometric domain decomposition was the natural way of parallelising the problem enabling a 
logical map on a distributed memory system. In addition to the numerical algorithms, efficient parallel 
algorithms are required to manage the communications protocols in this distributed-data environment. 
We found that careful implementation of the communication protocols is important to achieve high 
parallel efficiencies. A modified red/black partitioning updating method is also required to provide 
optimum convergence. The Gauss-Seidel point iterative method with successive relaxation was very 
suitable for parallel implementation. An advantage of this method is that the inclusion of additional 
equations such as the energy density conservation and thermal equations follow the same parallel 
principle that is used for Poisson and current continuity equations. The parallel methods developed and 
implemented in this work proved that parallel processing is a feasible computing alternative that can be 
used to provide fast characterisation of semiconductor devices. 
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Abstract 
This paper presents a parallel multigrid algorithm for solving semiconductor device equations in two- 
dimensions and its implementation on a MMD parallel machine with distributed memory. The 
numerical experiments of a GaAs MESEET device simulation demonstrate the combined high 
efficiency of the domain decomposition method and the multigrid method. The parallel multigrid 
method using 16 processors is up to 60 times faster than a single-grid iterative solver using a 

processor. 

I. INTRODUCTION 

Semiconductor device simulations are an important tool for both physicists and device design engineers 
to analyse physical phenomena inside semiconductor devices and to predict the performance of new 
devices prior to fabrication. These physical models require the solutions of the Poisson equation for 
electrical potential and the current continuity equations for electron and hole concentrations. More 
complex models will also solve for the energy and temperature distributions. Numerical techniques must 
be used to solve these equations which require extensive computing power. The increasing complexity 
of both devices and physical models have challenged the available computing resources. 

Many attempts have been made to design fast simulations. Multigrid (MG) methods offer a fast and 
robust iterative method for solving PDEs and have found applications in semiconductor device simulation 
[1-3]. The simulation of semiconductor devices possesses an inherent parallelism which requires many 
repeated operations on different grid points. It is clear that by exploiting the parallelism of the numerical 
algorithms leads to good speed ups of the simulation. The direct solution method has been used on MIMD 
parallel computers for device simulation [4], however this does not show good efficiency in the case of 
normal grid sizes. The Jocobi-SOR, Frankel iterative methods[5] and conjugate gradient iterative 
methods[6] have been implemented on SIMD Connection Machines. This approach is limited when 
modelling the irregular structures of modern devices. Transputer networks have also been used in 
semiconductor device simulation using a Monte Carlo method in [7] and finite difference methods in [8]. 

In this paper we present for the first time a parallel implementation of the multigrid iterative method for 
the solution of two-dimensional device equations on a medium-grain MIMD parallel machine with 
distributed memory and demonstrate its parallel efficiency for device simulation. 

II. SEMICONDUCTOR DEVICE EQUATIONS 

The semiconductor model used is based on the drift-diffusion approximation. It includes the Poisson 
equation, the current continuity equations for electrons and holes. The coupled system consists of an 
elliptic differential equation and two parabolic partial differential equations with dependent variables 
potential \\i, electron concentration n and hole concentration p. After discretisation using a finite difference 
scheme on a rectangular grid with N grid points, together with boundary conditions, we obtain a set of 
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3xN equations with 3xN variables \|/, n, and p. We can write them in symbolic form as 

F( u ) = / (!) 

where F denotes the nonlinear difference operators, /a constant and u is a matrix including \\r, n, and p. 
The Gauss-Seidel (GS) technique coupled with successive over-relaxation (SOR), GS-SOR, is used for 
the Poisson equation along with successive under-relaxation (SUR), GS-SUR, for the continuity equations. 
The coupled Poisson and the continuity equations are solved using Gummel's approach[9]. 

III. MULTIGRID METHOD 

It is obvious that PDEs need to be solved on a fine-enough grid to obtain accurate solutions. In 
semiconductor simulation a large truncation error may cause convergence problems. In some circumstances 
the larger the grid spaces the smaller the time step is required to maintain solution stability [10]. Classical 
iterative methods slow down with increasing grid point number. Multigrid iterative methods are highly 
efficient solvers for PDEs, in which the combination of fine grid relaxation and coarse grid correction 
produces a fast convergence rate. The multigrid full approximation scheme (MG-FAS) [11] is used in this 
work. To solve the system F(u)=f the MG method uses a sequence of grids, Gk(l<k<K), where Gj is the 
finest grid and GK is the coarsest grid. There exists a system Fk(uk)=fk on each grid Gk. Pk

k+1 is a 
prolongation operator from a coarse grid Gk+1 to a fine grid Gk and R\A is a restriction operator from a 
fine grid Gk_, to a coarse grid Gk. MG-FAS cycles may be defined as follows. 

(a) Interpolate ut and f1 to each of the grids and solve Fk(uk)=Fk(R
k
k.]uk_I) + Rk

k.,(Jk-i - 

Fk-j"k-i) 
(b) IF Gk is the coarsest grid (k=K) 

solve F^UK)=FK exactly 
Prolongation correction VK = I uK

new - uK
old I to the next fine grid GK_, 

ELSE 
Solve Fk(uk)=fk+Pk+1

kVk+1 

Prolongation correction Vk - I uk
new - uk

M I to the next fine grid Gk_, 
(c) Do (b) until to the finest grid G, 

The Gauss-Seidel method is used as smoothing operator on all grids except on the coarsest grid where the 
GS-SOR/SUR method is employed to speed-up the solution. The interpolation operators are bi-linear 
prolongation and half-weighting restriction. 

IV. PARALLELISATION AND IMPLEMENTATION 

There are two methods to exploit parallelism in multigrid methods [12]. One is straightforward and based 
on the domain decomposition technique. In this method the multigrid is divided into several smaller sub- 
grids, where each sub-grid includes all levels from the finest to the coarsest. These sub-grids are then 
distributed onto several processors and all processors do the same multigrid operations on different sub- 
grids in parallel. This method is referred to as data-parallel multigrid (DPMG). The other method is to 
carry out the multigrid operations concurrently by many processors on different grid levels, in which the 
multigrid is not partitioned but each level of the multigrid is assigned to a processor and several MG 
operations on different grid levels are done at the same time. The second method may be called operation- 
parallel multigrid (OPMG). The DPMG method is used in this work. 

Fig.l shows a 3 level multigrid decomposition and sub-domain mapping onto 3 processors. All operations 
mentioned above, solving, smoothing, computing errors, and interpolations between different level, are 
local to each processor. At inter-sub-domain boundaries relaxations and interpolations in a sub-domain will 
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need the boundary data of the adjoining sub-domains. Column dummy points at each side of sub-domains 
along the boundaries are allocated and communications are required at all grid levels to update the values 
of the dummy points. 
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Fig.l  Partitioning and Distributing the Multigrid onto 3 Processors 

Thus all levels of the multigrid are partitioned and sub-grids are mapped onto the processors in a way that 
the locality of the interprocessor communication profits from the locality of the discretisation grid to 
reduce the communication overheads. A transputer-based machine hosted by a workstation is used in this 
implementation. The machine includes 16 processors with 2 Mbytes of memory each. These are connected 
as a ring. The parallel version of multigrid operations includes the following steps, 

(a) Solving equations (or smoothing errors) on a grid level and updating boundary points of 
the grid level after every iteration. 

(b) Calculating the errors on a grid level. 
(c) Prolongation from a coarse grid level to the next fine grid level. 
(d) Updating boundary points on the fine grid level. 
(e) Restriction from a fine grid level to the next coarse grid level. 
(f) Updating boundary points on the coarse grid level. 

It is obvious that the amount of communication is proportional to the number of grid points on the side 
boundaries of sub-grids for a ring of processors. The amount of the computation, including all multigrid 
operations, is proportional to the number of grid points in the sub-domains. The parallel overhead is the 
ratio of the amount of the communication and the amount of the computation. So the overhead becomes 
larger as the grid becomes coarser. 

V. EXPERIMENTAL RESULTS 

A GaAs MESFET device with 1 micron channel length has been used in the current work. For a GaAs 
MESFET device, which is entirely unipolar, only the Poisson equation and the continuity equation for the 
majority carrier of electrons need to be solved. The bias voltages applied to the contact source and the 
contact gate are OV with a built-in voltage of - 0.8V on the gate. The external drain voltage is increased 
linearly from 0V to 5V over 1 ps and then fixed at 5V. Comparisons are made between the GS-SOR/SUR 
methods and the MG-FAS method both on a single processor and 16 processors. The simulation time 
required using the two methods are listed in Table 1. The speedup factors due to the multigrid method 
and due to the data-parallel algorithm are calculated from the execution time. 
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It can be seen from the table that the multigrid method is implemented on the transputer-based system 
without significantly impairing the efficiency of the multigrid. The parallel multigrid still produces a 
typical parallel speedup of domain decomposition techniques. Since only a few grid points are left on a 
very coarse grid, communication overhead becomes more significant; the speedup of the parallel multigrid 
method drops from 7.10 to 4.62. The speedup due only to the data-parallel method also decreases from 
13.1 to 8.51 for the same reason. The speedup of both sequential and parallel multigrid is affected by the 
fact that the solution of a time-step can be started from the solution of the previous time-step as a very 
good initial guess and so the initial error is normally smaller compared with general initial problem. Even 
so the overall speedup from the combination of the multigrid method and the domain decomposition 
method is still over 60. 

VI. CONCLUSIONS Table 1   Execution Time(in seconds) and Speedup(Sp) 

It has been demonstrated that it is possible to obtain fast 
solutions for the coupled semiconductor equations using 
the   multigrid   method   on   a  medium-grain   parallel 
machine with distributed memory. Both the parallel 
efficiency of the underlying data-parallel algorithm and 
the   convergence    rate    of   multigrid    method    are 
maintained. By using the parallel multigrid method on a 
16 processor machine the simulation time is reduced by 
more than 60 times compared with the single grid 
sequential solver with the Gauss-Seidel method coupled with successive over/under-relaxation scheme. The 
parallel efficiency is expected to improve with an increase in the problem size. 

Processor No. GS- 
SOR/SUR 

MG-FAS MG-Sp 

1 4087 575.6 7.10 

16 312.1 67.60 4.62 

Data-Para. Sp 13.10 8.51 60.46* 
t Overall Speedup 
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Abstract 

A new computationally efficient full-zone k-p method for use in valence band transport and 
optical studies of Si and Ge has been developed. This method generalizes the traditional k-p 
method by avoiding, in part, the use of perturbation theory. New band parameters have also been 
computed. 

I. INTRODUCTION 

Full-zone carrier transport investigations are becoming increasingly popular. Band-structures 
used in these simulations are often calculated with the pseudopotential method, which uses plane 
waves as basis functions. However, due to the rapidly varying angular behavior exhibited by the true 
eigenfunctions, a large number of plane waves are needed (typically 50-100). Thus, band structure 
calculations usually require considerable CPU time, and full-zone transport calculations often resort 
to interpolation and to look-up tables, where the results of these pseudopotential calculations are 
stored. Under certain conditions, however, it may be preferable to calculate the band structure 
values while the transport simulation is taking place ('on the fly'). To allow for these circumstances, 
we have developed a full-zone k-p method, which very quickly calculates an eigenvalue anywhere 
in the zone for the relevant valence bands. Determining an eigenvalue requires approximately 5 
milliseconds on a 486PC-33, and values agree well with results from pseudopotential calculations. 
The procedure is also invertible to give k(e), making this method attarctive for Monte Carlo 
calculations. The calculations have also lead to the development of new band parameters. 

II. METHOD OF SOLUTION 

The k-p method is based on second-order degenerate (Rayleigh-Schrödinger) perturbation the- 
ory applied to a one-electron crystal Schrödinger wave equation [1,2]; given a knowledge of a 
relatively small number of band energies at a particular point k0 in k-space the method allows the 
band structure to be calculated very accurately for small deviations 6k about k0. For sufficiently 
small 6k analytic solutions are possible [1], while for somewhat larger <5k, a numerical solution is 
required [2,3]. The k-p method has also been applied extensively to superlattice structures [4,5]. 

With our k-p calculations, we do not resort to perturbation theory, but solve exactly an 18 
band k-p secular determinant with spin-orbit coupling included. Specifically, we have generalized 
the well-known 3x3 k-p valence band Hamiltonian of Dresselhaus et al. (DKK) [1] to include 
all momentum coupling arising from an underlying 18-band k-p Hamiltonian. This allows direct 
use of the Kane cubic [2], but now with energy-dependent coefficients. We have computed direct 
(momentum) coupling matrix elements using the five Luttinger parameters [6,7], and have computed 
new indirect coupling matrix elements using a fitting procedure. 

Once the secular equation is established, we find the eigenvalues using a determinant decom- 
position method, which to our knowledge has never been applied to band calculations, and is 
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closely related to "Schur complement domain decomposition" [8]. With this method, the matrix 
is block-partitioned and then reduced to lower (block)-triangular form. This allows the associated 
determinant to be factored into a product of lower-order determinants. We then only have to solve 
the low-order determinant associated with the valence bands of interest. This 3rd order secular 
determinant is quickly solved with Newton's method to obtain the eigenvalues. The mathematical 
basis of our method is as follows. 

We wish to solve the eigenvalue problem 

(H - e) \<t>) = (H0 + H'- en) \<f>) = 0 (1) 

where the Hamiltonian has been split into two parts, one of which representing an independently 
soluble problem 

(Ho-en)\i>n) = 0; H0 = -V2 + V; {^n}n complete on H (2) 

In the present context, H' represents the k-p terms, as well as (formally) spin-orbit coupling. Now, 
we partition 7i as 

H = HA®HB; nA=  span{V>n}„6>i; nB =  span{^,JneB (3) 

and \<f>), accordingly, as 

\<f>) = PA \<t>) + (1 - PA) \<f>); PA = £ |^> <^l (4) 
neA 

Substitution of (4) into (1) then leads to the following eigenvalue problem, restricted to HA 

Y,{{1>i\PAH'PA\1>3) + Si3ei 
jeA 

- mPAH'(l - PA)[(1 - PA)(H - e)(l - PATHI - PA)H'PA\^j) - V><^#) = 0   (5) 

This result follows in a more straightforward manner directly from (1), if we partition the matrix H 
in accordance with (3) and employ a determinant reduction formula involving the Schur complement 

(I-# = 0 \H-e\ = 
A-s      S 

5f      B-e 
= |^-5(5-£)-15t-£| = 0, (6) 

the final reduced-order determinant being equivalent to (5) with the following identifications 

(A)ij   =    (^IPAH'PAI^); 

(S)ij   =   (^\PAH'(1-PAMY, 

(5-£)-.x   =   WMl-PAXH-eXl-PA))-1]^) 

(7) 

Standard k-p perturbation theory follows from (6) by treating (B — e)'1 as a perturbation. We 
do not do this, but instead analytically reduce (6) to an expression involving matrices of 0(A) 
only. We employ 18 (cubic harmonic) basis functions, partitioning this set in accordance with 
standard k-p perturbation theory applied to diamond-type semiconductors (A(3x3) ~ I^s valence 
bands, -B(15xl5) ~ all other bands). Our new reduced-order 3 x 3 k-p Hamiltonian replaces the 
DKK valence band Hamiltonian [1], and we then make use of the Kane solution [2], otherwise 
unmodified. 
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We have computed the required momentum matrix elements based on the measured Luttinger 
parameters of Hensel and Suzuki [6] for Ge and Lawaetz [7] for Si, and have generated new matrix 
elements associated with intra-conduction band coupling. 

To compute valence band energies, we solve the reduced secular determinant using Newton- 
Raphson iteration, obtaining the three (heavy, light, and splitoff band) energies individually. Typ- 
ically, fewer than 5 iterations are required to compute each energy to better than 6 decimal places 
for arbitrary (reduced) k. Running on a 486PC-33 computer this corresponds to about 20-25 mil- 
liseconds per energy determination for random k throughout the Brillouin zone, and to about 2-4 
milliseconds per energy for closely spaced wavevectors. 

III. COMPUTED VALENCE BANDS IN SI AND GE 

Dispersion relations for the valence bands in Si computed using our extended k-p method are 
shown in Fig. 1, along with selected values given by the pseudopotential calculation of Chelikowsky 
and Cohen [9]. Agreement with the pseudopotential result is quite good throughout the Brillouin 
zone. It is also evident that for large k our bands tend to fit the local pseudopotential result 
somewhat better that the nonlocal result. The corresponding result for Ge is provided in Fig. 2. 
Agreement with the pseudopotential result is also good, though somewhat less dramatic than in Si. 
It is worth noting that each of these plots requires just over one second to compute on a 486PC-33 
computer. Each dispersion curve consists of 100 energy evaluations (hence 300 per plot). Energy 
contours for the heavy and light hole bands in Si are illustrated in Figs. 3 and 4; these are surface 
projections in the (100) plane. 

IV. SI 

We have developed a computationally efficient method for computing valence band energies 
throughout the Brillouin zone in bulk diamond-type semiconductors. We have applied this method 
to Si and Ge, obtaining very good agreement with pseudopotential calculations. We have also 
computed new k-p valence band parameters. Our approach is to solve the underlying secular 
equation on a lower dimensional subspace exactly, rather than perturbatively as in traditional k-p 
perturbation theory. Our method is quite general, and in particular, application to both valence 
and conduction bands of zincblende materials is possible. 

Acknowledgements 
This work has been completed under support of a National Needs Graduate Fellowship, and 

partial support from the Semiconductor Research Corporation. 

[1] G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955) 
[2] E. 0. Kane, J. Phys. Chem. Solids 1, 82 (1956) 
[3] J. M. Hinckley and J. Singh, Phys. Rev. B 41, 2912 (1990) 
[4] G. Bastard, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New 
York, 1991), Vol. 44, p. 229 
[5] D. L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990) 
[6] J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974) 
[7] P. Lawaetz, Phys. Rev. B 4, 3460 (1971) 
[8] T. F. Chan and D. Goovaerts, SIAM J. Matrix Anal. Appl. 13, 663 (1992) 
[9] J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B 14, 556 (1976) 

276 



-10.0 10.0 
A    x    r z    K    r A       L A    x    r z     K    r A      L 

Present work 
> Nonlocal pseudopotential 
< Local pseudopotential 

Present wotk 
► Nonlocal pseudopotential 
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hole band in Si. hole band in Si. 
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Abstract 

In this paper a generalized Monte Carlo method recently developed by the authors for the solution of the 
coupled set of quantum kinetic equations for the distribution functions and the interband polarization is 
presented. The aim of this method is to combine the advantages of the description within a fully quantum 
mechanical picture with the power of the Monte Carlo technique for the treatment of stochastic processes. 
It is based on a decomposition of the kinetic equations in a coherent and an incoherent part. The former is 
integrated directly while the latter is sampled by means of a Monte Carlo simulation. This allows us to treat 
on the same kinetic level carrier thermalization and relaxation as well as dephasing processes. 

I. INTRODUCTION 

The Monte Carlo (MQ method, which has been applied for more than 25 years to the analysis of semiclas- 
sical charge transport in semiconductors, is the most powerful numerical tool for microelectronic device 
simulation [1]. On the other hand, the present-day technology allows the investigation of relaxation and 
dephasing phenomena in semiconductors with a time resolution which has now reached a few femtoseconds 
[2]. On such a time-scale, coherent aspects play an important role and the carrier dynamics cannot be treated 
in terms of the traditional semiclassical transport theory. Therefore, in order to study this partially coherent 
dynamics, a generalization of the conventional MC method is required. 

The aim of the present invited paper is to review a method recently proposed by the authors [3] and to 
discuss its application to the analysis of ultrafast carrier dynamics in photoexcited semiconductors [4, 5]. 
The main peculiarity of the method is to retain the big advantages of the MC method in treating scattering 
processes and, at the same time, to take into account on the same kinetic level also coherent phenomena. 
Compared to the conventional MC technique, which simply provides a solution of the semiclassical Boltz- 
mann Transport Equation (BTE), this generalized MC approach provides a solution of the Semiconductor 
Bloch Equations (SBE). In addition to a simulation of the various distribution functions, this will result in a 
simulation of the interband polarization induced by the coherent light field. 

Such an approach allows a selfconsistent description of the carrier photogeneration process [5]. The 
energy broadening due to the finite pulse duration and due to the decay of the interband polarization has not 
to be introduced as a phenomenological parameter as in any conventional MC simulation [6] but it comes 
out selfconsistently with its full time dependence. 
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H. PHYSICAL SYSTEM AND THEORETICAL APPROACH 

Let us consider a bulk-semiconductor model characterized by two spherical and parabolic bands. In a 
semiclassical picture, only the carrier distribution functions over single-particle states are considered as 
kinetic variables. All interactions between carriers and other types of quasiparticles, and in particular also 
the interaction with the external light field, are treated as perturbations. They are usually described in 
terms of scattering processes within Fermi's Golden Rule. Such approximations lead to the BTE for the 
distribution functions of electrons (/k) and holes (/k): 

d fe,h -El 
k' 

L5k.k'-'k' 
e,h 
k' 

e,h    fe,h 
sk',k 

fe,t (1) 

with scattering rates sk^k. On this level all coherence or correlation effects are neglected. 
For the analysis of coherent phenomena, the phase relation between different types of carriers, induced 

by the light-matter interaction, has to be treated explicitly [3,7,8]. Therefore, the kinetics cannot be simply 
described in terms of distribution functions (intraband density matrices) but we have to include as kinetic 
variables also the interband polarization (interband density matrix) pk. For the unperturbed dynamics a 
closed set of equations can be easily obtained [3]. However, this fully coherent dynamics is modified by 
the presence of the various interaction mechanisms. They give rise to an infinite hierarchy of equations of 
motion which has to be truncated at some level. 

Here, we will limit ourselves to contributions up to second order in the interaction matrix elements. The 
second-order terms are treated within the usual Markov approximation [3] and all second-order contributions 
which involve second or higher powers of the polarization are neglected. Within such an approximation 
scheme, the resulting system of SBE takes the general form [3]: 

d_ 
~dl /k = 5kW + E^/k dr U="®+zUL (2) 

d_ 
Jt1 Pk = ^{(«k + *-k + "k)Pk + (MkA0(t)e-^ + Ak)(l -fi- /\)} + £ ftPk\3.n (3) 

with a generation rate 

gk = - [(MkAo(*)e-^ + Ak)j£ - (M£A5(i)e^< + Ak)Pk] , (4) 

where Ao(t) is the envelope of the vector potential of the external light field with angular frequency wL, 
Mk is the dipole matrix element, and the index j refers to the various interaction mechanisms. They 
result to modify the system dynamics with two different contributions: (i) Coherent terms which lead to a 
renormalization of the free-carrier energies £k

h by a self-energy % and of the external light field by an 
internal field Ak, and (ii) incoherent terms which lead to relaxation and dephasing processes. 

Denoting by Tk the generic kinetic variable (distribution functions or polarization), the SBE (2,3) can 
be schematically rewritten as 

d _        d _ i       d 

df* = Jf*\ at      I 

with a coherent part 

dt *k| = 4 ({*}) + ECL (W). 

(5) 

(6) 

where Ck is some functional of the kinetic variables. Within the approximations discussed it is easy to realize 
a strong formal similarity between the various kinetic equations. In particular, the incoherent contributions 
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have exactly the same formal structure of the "Boltzmann collision term" in Eq. (1) also for the case of the 
interband polarization: 

dT\ 
dt        \mco 

where <Sk k, denotes the scattering rate for a transition k' -+ k induced by the j-th interaction mechanism. 
This strong similarity constitutes the starting point of our generalized MC approach. 

ffl. GENERALIZED MONTE CARLO PROCEDURE 

As a starting point, let us briefly recall the basic ideas of the conventional MC simulation. As discussed 
above, the semiclassical transport theory is based on the BTE (1). This is, in general, a non-linear equation 
which is usually transformed into a locally linear one by means of a time-step solution. Due to this local 
linearity, the distribution function at any time t within the time-step can be written as 

/?*(') = EGkt(*.*»)^(*«) 
k< 

(8) 

where G, called Boltzmann propagator, has a direct physical interpretation: it describes the probability that 
a particle in state k' at time t0 will be found in state k at time t. Equation (1) and (8) can be regarded as 
the starting point of the traditional Ensemble Monte Carlo (EMC) technique [ 1,11 ] which simply provides 
a MC sampling of the sum in Eq. (8). Such sampling is performed through a stochastic simulation of a 
suitable ensemble of carriers. These "simulative carriers" are, in general, not real physical particles; such 
an ensemble of particles is only representative for the real carrier system. For each simulative carrier, a 
sequence of random "free flights", interrupted by random "scattering events", is generated. It can be shown, 
that such a "random walk" in k-space is just a MC sampling of the Boltzmann propagator Gk/5k,.(i, *<>), 
where k,- and k/ denote, respectively, the initial and the final state of the generic random walk [11]. 

Let us now come back to the system of quantum kinetic equations (5). Since this is again a system 
of nonlinear equations, as in the semiclassical case, we introduce a time discretization. In the proposed 
numerical procedure, for each time step At, the coherent contributions (6) are evaluated by means of a direct 
numerical integration while the incoherent contributions (7) are "sampled" by means of a generalized MC 
simulation. Let us now focus our attention on the explicit form of the incoherent contributions (7): For 
all the kinetic variables (including the polarization field) the various <Skk- are within our approximations 
positive-definite quantities, i.e. they can be regarded as "true" scattering probabilities from state k' to state 
k. However, the function T is now a complex function. Due to the local linearity of our transport equation 
over the time-step, the kinetic variable at time t can be written as 

*k(0 !Pk,k'(Mo)-^k'(*o) (9) 

where Q is now a generalized Boltzmann propagator corresponding to the kinetic variable. As for the 
semiclassical case, the propagator Q results to be a positive-definite solution of the generalized Boltzmann 
equation (7). Therefore, it can be again sampled by means of a conventional EMC simulation. 

Equation (9) constitutes the starting point of our generalized MC approach. As for the semiclassical case, 
such sampling is again performed through a stochastic simulation of a suitable ensemble of carriers which, 
in general, have nothing to do with real physical particles. The structure of the proposed MC procedure 
can then be summarized as follows: The total time is divided into time-steps. The simulation starts before 
the laser has been switched on. The system is chosen to be in its fundamental state, i.e. the vacuum of 
electron-hole pairs. The simulation then results in a loop over the various time steps. For each time step: 
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(i) we introduce an ensemble of Nk(t0) "simulative particles" with Nk(t0) oc |.Fk(i0)|; (") we attach to 
each "particle" i a phase-factor wt- according to the phase of Tk{t0); (iii) for each "particle" we sample its 
propagator Q by means of a conventional EMC simulation [1] i.e. a random sequence of free flights and 
scattering events; (iv) at the end of the time-step the new value of T is evaluated: f^U + At) = £; wi- 
The usual "counting" of the particles in k is then replaced by a sum of these phase-factors wi which reflects 
the complex nature of the kinetic variable 7. A similar approach has been recently used by the authors 
for a MC simulation of four-wave mixing experiments [4]. In this case, a MC simulation of the various, in 
general complex, Fourier components of the distribution functions is required. 

IV. APPLICATIONS 

We will now present some numerical results concerning simulations characterized by a laser energy far from 
the band gap (excess energy £ex = 0.18 eV, pulse duration TL = 50 fs). This is the typical situation for 
energy-relaxation experiments [2]. 

0.65 0.40 0.45 0.50 0.55 
k (nrrf') 

0.60 0.65 

FIG. 1. Generation rates for a final density n =    FIG. 2. Same as FIG. 1, but for a final density n = 
1016 cm-3, (a) obtained from the SBE, and (b) in    1018 cm-3, 
the semiclassical limit. 

For a better understanding, let us first consider a "simulated experiment" characterized by a final carrier 
density n = 1016 cm-3. In Fig. 1 the self-consistent generation rates obtained from this MC simulation are 
shown as a function of the wave-vector k for different times during the laser pulse. Figure 1 (a) shows the 
generation rates for the full generation model while in (b) the corresponding rates for the semiclassical case 
are plotted. Due to the Markovian limit, the latter ones do not contain regions with negative values. On the 
contrary, the rates in (a) exhibit a strong time-dependence also in the shape. In particular, at short times, the 
shape of the generation rate is found to be much broader than estimated from the uncertainty principle using 
the pulse width as uncertainty of time. The reason is that the "observation time" has to be used for a correct 
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estimation of the line width. For longer times we note a narrowing of the generation rate, this narrowing, 
however, is accompanied by the build-up of negative regions off-resonance which can be interpreted as a 
stimulated recombination process. Thus, the distribution of the generated carriers does not only become 
narrower with increasing time due to a generation mainly in resonance but also due to a recombination of 
those carriers which have been generated performing "energy non-conserving transitions" at short times. 

The above result shows that a self-consistent treatment of the generation process can be important if 
either the evolution is analyzed already during the pulse or if some scattering mechanism is so strong that 
it can remove those carriers generated with the "wrong" energy before they can recombine. The latter one 
is exactly the situation that we obtain by repeating the above "simulated experiment" for the case of a final 
density n - 1018 cm-3. The self-consistent generation rates obtained in this case are shown in Fig. 2. Due 
to the strong efficiency of carrier-carrier scattering, already during the laser pulse carriers are removed from 
their initial distribution and, therefore, the stimulated recombination of Fig. 1(a) is strongly reduced. As a 
consequence, in this case the carrier distribution after the end of the laser pulse results to be significantly 
broader compared to the corresponding semiclassical case. The energy shift of the generation rate especially 
in the high density case is due to band gap renormalization. This effect is present in the semiclassical model 
as well as in the full generation model. Phase space fdhng effects lead to the asymmetries in the generation 
rate in the high density case at 0 fs and especially at 40 fs. 
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Electron energy distribution for different    FIG. 4. Polarization as function of time. 

In Fig. 3 the electron distribution as a function of energy at different times is also shown. It corresponds 
to the first simulated experiment (n = 1016 cm-3) with the full generation model (see Fig. 1(a)). The figure 
shows the typical scenario of carrier thermalization due to carrier-carrier scattering and energy relaxation 
due to carrier-phonon scattering. In the electron energy distribution we notice still some structure related to 
the discrete emission of optical phonons, which becomes more pronounced in the case of lower densities. 

In Fig. 4 the polarization of the carrier system is shown as a function of time: The solid curve refers to the 
absolute value of the total polarization Pcoh = | £kpk|. It decays due to the inhomogeneous broadening 
in k-space since each contribution pk in the sum rotates with a different frequency. Its decay strongly 
depends on the width of the carrier distribution and, therefore, on the properties of the laser pulse, and its 
time scale is typically much shorter than that related to incoherent phenomena. The dashed curve refers to 
the incoherently summed polarization pincoh = £k \pk\. It is a measure of the degree of coherence still 
present in the system and after the pulse it decays due to incoherent scattering processes. The dephasing 
time is of the order of 100 fs which in this case is mainly due to carrier-carrier interaction. 
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V. CONCLUSIONS 

We have presented a numerical method which enabled us to include coherent phenomena in a MC simulation. 
The theory is based on the SBE for the distribution functions of electrons and holes, as well as for the 
interband polarization. Within this method the generation process is treated in a self-consistent way with 
its full time-dependence. We have obtained the time-dependence of the total polarization as well as of the 
incoherently summed polarization, which describes the degree of coherence still present in the system. Thus 
we can analyze the various times relevant for the dephasing process. 
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Abstract 

The relaxation of photo-excited carriers in GaAs is investigated at 300K using an Ensemble Monte 
Carlo approach. The screening of the carrier-carrier(c-c) interaction is treated dynamically using a 
momentum and frequency dependent dielectric function in the Random Phase Approximation and 
in the Plasmon Pole Approximation. Calculated effective carrier temperatures agree with experi- 
mental data for time delays longer than 200fs. 

Femtosecond lasers allow the study of thermalization and initial relaxation of photo-excited carriers 
in bulk semiconductors [1, 2] as well as in quantum well structures [3]. Experimental investigations 
are paralleled by theoretical calculations, mostly Monte Carlo(MC) simulations[1, 2, 4]. Recently 
polarization related phenomena have also been introduced in an MC model[5], and such model is ex- 
pected to give more information about the early moments following semiconductor laser excitation. 
MC simulations with the screening of the c-c interaction treated statically deviate from experimen- 
tal data during the first 100-500fs after laser excitation, because static screening underestimates 
c-c scattering rates[l]. On the other hand, Molecular Dynamics(MD) provides a better agreement 
with the experiment [2] because MD realizes dynamic screening. However, MD requires an extensive 
CPU time. In this paper, we report on an alternative model for treating dynamic screening of the 
c-c interaction in MC simulations. The model takes into account the wave-vector and frequency 
dependence of the dielectric function. Simulations are performed for two different implementations. 
The first uses the Random Phase Approximation(RPA) to the dielectric function as in the ana- 
lytical calculations of Meyer and Bartoli[6]. The second approach implements the Plasmon Pole 
Approximation(PPA) to the dielectric function, recently used by Collet[7] in analytical calculations. 
The model is applied to carrier relaxation in p-type and i-type GaAs. A laser of 2eV photon energy 
and 50fs duration is assumed. Two excitation densities of 2 X 1018cm~3 and 2.5 X 1016cm~3 are 
simulated, so that c-c and carrier-phonon processes could be observed. Results show a good agree- 
ment between the proposed dynamic approach and the experiment for time delays longer than 200fs. 

II. COMPUTATIONAL MODEL 

The Monte Carlo model for the electrons includes non-parabolic T, L and X valleys. The MC 
program for electrons considers elastic acoustic phonon scattering, the intervalley deformation po- 
tential, the screened polar-optical phonon, dynamically screened electron-electron(e-e) and electron- 
hole(e-h) scattering. The MC program for holes is based on a 3-band model where the heavy and 
light hole bands are warped, while the split-off band is spherical parabolic. Scattering mechanisms 
included are elastic acoustic phonon, optical phonon scattering, self-consistent screened polar opti- 
cal phonon and screened hole-hole scattering. 
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An alternative formulation of the c-c interaction is implemented, where use is made of a wavevector 
and frequency dependent dielectric function in the interaction potential. Following the approach 
of Meyer and Bartoli[6], the interaction potential can be written as: 

e2 

^(q) = 2   /     x (!) q2e0e{q,w = q.vcm) 

where e(q, u) is the dielectric function, q is the relative wavevector, and vcm is the velocity of the 
center of mass. The general expression of the RPA is used in the determination of the free-carrier 
contributions to the dielectric function. Making use of the above interaction potential, the e-h 
scattering rates are given by: 

re_h(kh) =       3        XÜ f*h /   ~zTt \|2 (2) 2irfire0
2g^    h Jo   q3\e(q,w)\ 

where e is the electron charge, p is the hole density, \i is the reduced mass of the interacting 
particles, and g is a relative wavevector defined as: 

g = 2rt£ - £) (3) 

where ke(kh) is the electron(hole) wavevector, and me(mh) is the electron(hole) mass. In the e-e 
interaction, p is replaced by n, and electron wave vector and mass rather than hole wavevector and 
mass are used in g. 

The scattering rates are calculated in the Monte Carlo program as follow. First the components of 
the center of mass velocity of the interacting particles and the components of the relative wavevec- 
tor are found. In order to determine q, the knowledge of both the initial and final carrier states 
are required, which is a problem as scattering has not taken place yet. An approximate value can 
be found by using virtual scattering processes: for a given electron, we choose at random an en- 
semble of target particles to scatter with, determine the resulting virtual next state and change in 
wavevectors for each collision. However, the states of the scattering charge carriers are not updated. 
Thereafter, it becomes possible to determine the components of q and to calculate the frequency. 
The next step is the determination of the total dielectric function, where the free carrier contri- 
butions are obtained by numerically integrating the corresponding expressions. After repeating 
this process with an ensemble of target carriers, an average of the c-c scattering rate for the given 
electron is found. The average c-c scattering rates obtained in the current calculation were about 
3 to 7 times higher than the values obtained in the self-consistent static approach of reference [4]. 
Ideally, the c-c scattering rates should be calculated every time a scattering process takes place. 
However, the computation time can be reduced by using a three-dimensional scattering table in 
k-space, where a given scattering rate is stored in a corresponding k-cell to be accessed whenever 
necessary. For an iteration step of 2.5fs with the scattering table updated every iteration for the 
first 200fs, one picosecond simulation of 5000 particles took about 11 hours on the IBM3090. 

Recently Collet[7] used the PPA dielectric function. This is a simpler analytical approximation, 
which results in saving of CPU time, as the dielectric function is free of integrations. The scattering 
rates are still determined using eq.2, and following the procedure presented above. This implemen- 
tation requires about 3 times less CPU time when compared to the S.PA approach. 
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IIL RESULTS 

The cooling of photo-excited carriers in p-GaAs was investigated at 300K. The assumed 2„0eV laser 
photon energy excites carriers from the heavy, light and split-off bands in the ratio 0.46:0.32:0.22, 
in accordance with recently published data[l].  Figure 1 shows the time evolution of the electron 
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energy, where the origin of the time axis corresponds to the peak of the exciting laser. The figure 
shows that dynamic screening of the c-c interaction results in faster cooling of the electrons when 
compared to the time-dependent static model of reference [4]. The faster cooling during the first 
500 femtoseconds is mostly due to electron energy loss to holes. Accordingly, holes heat up, but the 
gained energy is rapidly dissipated through non-polar and polar phonon emission. The faster cooling 
in p-GaAs demonstrates that added hole concentration due to doping results in additional electron 
energy loss to holes. In the dynamic case, electrons redistribute energy and momentum among 
themselves and lose energy to the holes at a faster rate when compared to the static approach. 
Figure 2 compares the results of the RPA and PPA implementations of the dynamic screening of 
the c-c interaction. It can be seen that the PPA approximates well the RPA results. The two cases 
are within 10% of each other. 

Figure 3 shows the theoretical effective carrier temperatures extracted from the slope of the near 
exponential tail of the luminescence intensity for the RPA, the PPA, the static screening model, and 
the experimental data[l] in i-GaAs, for nexc = 2 X 1018cm~3. The calculated electron temperature 
is within 10% of the experimental values for time delays longer than 300fs in i-GaAs, and within 
10% at 200fs in p-GaAs. It can be seen that the static screening model always predicts electron 
temperatures higher than the experiment and the present model for time delays shorter than 500fs. 
However, the dynamic screening models still predict electron temperatures that are higher than 
experimental data at time delays shorter than 200fs. This is partly due to the approximations 
used in the calculation of the dielectric functions. Additionally, this model does not include the full 
details of the energy band structure, ignores higher order quantum corrections in the scattering rate 
calculations, and polarization and quantum coherence which become important at short time scales. 

The simulation was repeated at the lower excitation and doping density of 2.5 X 1016cm~3 to ex- 
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amine the role of c-c and c-phonon processes for both dynamic and static screening. It can be seen 
in Fig.4 that the average energy is not strongly affected by the screening model used in calculating 
c-c scattering rates, because, at low carrier densities, the e-phonon interactions are the main energy 
loss channels. 

IV. CONCLUSION 

An expression for dynamically screened c-c scattering that takes into account the wavevector and 
frequency dependence of the dielectric function in the RPA and in the PPA was developed and 
implemented in an MC program. The relaxation of photo-excited carriers in GaAs was examined 
using these two screening models, in addition to static screening. The obtained carrier effective 
temperatures are in good agreement with the experiment for time delays longer than 200fs in the 
dynamic cases, compared to 500fs in the static case. 
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Abstract 

A Mlband ensemble Monte Carlo investigation of high-field transport in the ZnS phosphor of 
ac thin-film electroluminescent (ACTFEL) devices is presented. A full band dispersion computed 
using empirical pseudopotentials is used to model the first two conduction bands in ZnS. Computed 
electron energy distributions at high fields reveal a reasonable fraction of electrons energetic enough 
to impact-excite luminescent centers in the phosphor layer. 

I. INTRODUCTION 

Alternating current thin-film electroluminescent devices are used in the production of high-resolution, 
flat-screen displays and are being increasingly researched [1-5]. An ACTFEL device essentially con- 
sists of a wide bandgap semiconductor such as ZnS (referred to as the phosphor layer) sandwiched 
between two insulating layers. Carriers that are sourced into the semiconductor by surface states in 
the semiconductor-insulator interface, are accelerated under the influence of very high electric fields. 
The energetic electrons traversing the phosphor layer are then responsible for impact exciting the 
(intentionally introduced) luminescent centers. Luminescence is obtained as the excited electron 
states in these centers radiatively relax to their ground states. An understanding of the high-field 
carrier transport in the phosphor layer and the physics of the different threshold processes such 
as band-to-band impact ionization and impact excitation of luminescent impurities is essential for 
device design, especially when newer phosphors are being continually developed in the quest for a 
full-color EL display. 

In this paper, we present the results obtained using a full band model for ZnS for fields in the 
range 1-2 MV/cm. By including band-to-band impact ionization as well as impact excitation of 
Mn2+ centers, a unified picture of the physical processes crucial to electroluminescence is achieved. 

II. MONTE CARLO MODEL 

We use a full band dispersion for ZnS, computed using empirical (local) pseudopotentials[6]. The 
first two conduction bands included in the simulation, span in energy to values sufficiently higher 
than the most energetic electrons encountered for the electric fields considered. The low-energy 
scattering rates are computed using a non-parabolic dispersion for the different valleys in the first 
conduction band. The scattering rates however are corrected at higher energies using the full band 
density of states thereby forcing the scattering rates to behave as the density of states. Figure 1 
shows the total scattering rates computed in the T valley of ZnS at 300K. While polar-optic phonon 
scattering is the dominant scattering mechanism at low energies, intervalley scattering mechanism 
becomes important beyond 1.5 eV (which is roughly the energy separation between the T valley 
and the X and L valleys). Other scattering mechanisms included in the model are ionized impurity 
scattering, acoustic phonon scattering, band-to-band impact ionization (at high energies), and 
impact excitation of Mn2+. Impact ionization is included in the model using a simple Keldysh 
formulation [7], which specifies the ionization rate as, 

Ta(E)   =   Tph(Eth) P (^f^)2 (1) 
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Figure 1: Total scattering rate in the central valley of ZnS at 300 K. Rates for non-parabolic band 
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where Tu, the energy dependent impact ionization rate is proportional to Tph(Eth), the total phonon 
scattering rate at Eth, the threshold energy for impact ionization, given as 

Eth   = 
2me + nth 

EG (2) 

where me, rah and EQ are the electron and hole band edge effective masses and the energy gap 
respectively. Our work included a threshold (computed as above) of 4.3 eV and the value of P used 
was 100. Figure 2 shows the variation of the impact ionization coefficient a,-,- with the inverse of 
the electric field, obtained from the Monte Carlo model, fitted to reported experimental values [8] 
by tuning the deformation potentials for intervalley phonon scattering in the second band, showing 
a reasonable fit in the electric field values of most interest.   Impact excitation is the process in 
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Figure 2: Plot of impact ionization coefficient a,-,- as a function of inverse electric field. Plots Dj 
and DTT correspond to two different sets of deformation potentials for phonon scattering in the 
second band. 

which a hot electron interacts with a luminescent impurity in the host phosphor, to excite valence 
electrons in the luminescent center to excited states, losing energy in the process. In this work, we 
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model the excitation cross-section for a center with a threshold energy E{e as [9] 

a{E) = 
cV 'E — E;e 

4xeLE2 E 
(3) 

where e is the electronic charge, and e^ is the high frequency dielectric constant. The constant 
factor c2 is related to the overlap integral between the hot electron and the interacting impurity's 
electron wavefunctions, and was fitted to obtain a peak value of lxl0~15cm2 for the cross-section. 
The associated scattering rate is then simply given as 

r. a{E)vdNli (4) 

where Vd is the average velocity of the carriers, and Nu the density of the centers in the host 
phosphor (typically about 0.5 atomic %). 

III. RESULTS AND DISCUSSION 

Figure 3 shows the energy distribution of electrons for three different (typical) phosphor fields, 
along with the excitation cross-section (in arbitrary units) of Mn2+ ions. It is observed that the 
distribution gets hotter (increasing average energies) with increasing phosphor fields. For Mn2+ 

centers (used for yellow luminescence) with an excitation threshold energy of about 2.1 eV, it is 
seen that a considerable number of electrons in the ensemble are energetic enough to cause impact 
excitation.  By counting the number of impact excitation events occurring during the simulation 
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Figure 3: Electron energy distribution at three different phosphor fields plotted along with the 
excitation cross-section of Mn2+ centers. 

at steady state over a length of time, an estimate is obtained of the average number of impact 
excitations effected by an electron as it traverses the entire length of the phosphor layer. This 
parameter is linked to the maximum observable brightness of the devices. Figure 4 shows a plot of 
this internal quantum yield parameter as a function of the phosphor field, revealing an almost linear 
variation, and the existence of a possible cutoff field as the lower limit. Figure 4 also shows the 
variation of the number of ionization events per transferred electron. There are few ionization events 
for fields below 1.5 MV/cm, but a significant number of events is observed at higher fields. This 
variation is consistent with the threshold energies of the impact excitation and impact ionization 
processes being 2.1 eV and 4.3 eV respectively. 
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Figure 4: Plot of recorded impact ionization and impact excitations events per transferred electron 
as a function of the phosphor field. 

IV. CONCLUSIONS 

A full band Monte Carlo modeling of ZnS phosphor in ACTFEL devices reveals that band-to-band 
impact ionization plays a crucial role in stabilizing the electron distributions. The steady state 
electron energy distributions obtained for different phosphor fields reveal a significant fraction of 
the electrons energetic enough to participate in impact exciting luminescent centers in the host 
phosphor. Increasing phosphor fields results in hotter energy distributions and relatedly, the esti- 
mated internal quantum yield varies linearly with the phosphor field. Impact excitation processes 
while being the basis of the functionality of these devices do not affect the hot electron energy 
distributions to any significant degree. 
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Abstract 

The numerical models available for optoelectronic devices are quite limited. In the case of vertical 
cavity surface emitting lasers, almost no models have been developed. For the numerical modeler, this 
presents the opportunity to develop new insights but makes it difficult to determine which effects are 
dominant. Our group has maintained a very active program in vertical cavity lasers in which there has 
been a strong interaction between numerical modeling and experiment. Based on that experience, 
numerical simulations have been developed which predict the optical, electrical and current to light 
characteristics for index-guided vertical cavity lasers. This paper discusses the various physical effects 
we have modeled and points out the research areas which demand more involved calculations. 

Vertical cavity lasers represent a relatively new class of semiconductor lasers. The development of 
epitaxially grown distributed Bragg reflectors with reflectivities in excess of 99% has enabled their 
realization in recent years. Interest in the lasers was originally based on their low divergence beams 
and potential for array applications. Initial experimental results showed low output powers and high 
drive voltages. Improvements have lead to low drive voltages, high differential efficiency, sub- 
milliamp thresholds and output powers well above 1 mW. More recently, it has been demonstrated 
that they can be designed to have temperature stabilized operation. The complex nature of the 
devices and the time and expense of fabrication cycles has driven the development of numerical 
models to aid the device design. Along with optical models to determine the electromagnetic fields, 
we have developed an LI simulator which includes thermal effects, carrier diffusion, stimulated 
emission and spatial hole burning[l]. 

Due to their small size and the distributed nature of the reflectors, many of the models used for 
conventional in-plane semiconductor lasers must be modified. The two lasers are contrasted in Fig. 
la. The low optical losses of the vertical cavity require accurate calculations. For example, additional 
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Fig la. Schematic comparing the optical power flow 
in an in-plane laser and a vertical cavity laser. The 
low losses of the high Q cavity requires accurate 
calculations 

Fig lb. Relationship of the cavity mode hv and the 
band gap of the laser active region. The quasi-Fermi 
level separation is required to be greater than the 
photon energy. 

round trip propagation losses of only 0.5% would reduce the optical efficiency nearly in half, 
resulting in a large reduction in the slope of the LI curve. The short cavity length results in a wide 
spacing of the Fabry-Perot modes, and thus only a single longitudinal mode falls within the optical 
gain spectrum of the quantum wells. As shown schematically in Fig. lb, the bandgap shrinks toward 
lower energy (longer wavelengths) due to both ohmic heating and increasing carrier densities while 
the cavity mode, hv, essentially stays fixed. For lasing to occur, the necessary population inversion 
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requires the quasi-Fermi level separation to be greater than the photon energy. At the optimum 
alignment of the cavity mode with the gain peak, the threshold current is at a minimum. Depending 
on°their relative position at room temperature, a gain offset can be used to produce temperature 
stabilized operation. Once temperature rises have reduced the bandgap below the photon energy of 
the mode carrier densities rise rapidly and carrier leakage can then become very important. 
Confirmation of these effects in three quantum well Ino.2Gao.8As vertical cavity lasers has been 
reported in reference[2]. An earlier design of the Hum diameter laser showed a threshold minimum 
near 35°C and a strong increase in carrier leakage over the Al0.2Ga0.8As cladding layers at higher 
temperatures. Grown with a longer cavity and higher barrier Alo.5Gao.5As cladding layers, the newer 
design exhibited a minimum threshold current of 1.6 mA at 70°C with a variation of less than 0.5 mA 
over a 80°C range. 

The small size of these lasers makes it possible to achieve very low threshold currents. At the same 
time the small size makes surface effects very important. Even with the relatively low surface 
recombination velocities of these InGaAs wells, - 2 x 105 cm/s, surface recombination accounts for 
more than half of the threshold current for etched pillar, bottom emission designs. With 
improvements in the growth and fabrication technologies, new structures are being investigated. A 
schematic of an intra-cavity contacted laser[3] is shown in Fig. 2a. Both contacts to this top surface 
emitting laser are made using p and n doped layers within the optical cavity. A current constriction 
etch above the active layer is used to force the current into the optical mode, removing surface 
recombination from the region of current injection. The resulting LI characteristics are shown in Fig. 
2b The lasers have sub-milliamp thresholds with output powers well above 1 mW. bpatial hole 
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Fig. 2. Structure of an intra-cavity contacted vertical 
cavity laser and the measured LI characteristics of 
various diameters. The inset shows the optical spectrum 
of the 7 pun laser at 3 mA bias. 
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burning and surface scattering losses are competing effects, resulting in a wide variation in the 
transverse modal properties of the lasers depending on diameter. The 5 U.m device lases in a single 
fundamental mode (MSR > 30 dB) while the 15 (im laser has four competing modes. The use ot 
intra-cavity contacts allow both mirrors to be undoped, enabling microwave characterization using 
high speed probes and co-planer waveguides to make the transition from the probes to the lasers, lo 
model these devices the following models have been developed. 

I. Optical Model 

The problem has been assumed to be separable into axial (growth direction) and transverse mode 
profiles The transverse modes are calculated using the standard approach for determining the Hfc 
modes of a dielectric waveguide in cylindrical coordinates, using the averaged value for the index in 
the semiconductor. A transmission matrix approach is used to calculate the resonant cavity 
wavelength threshold gain and optical losses for the axial fields. A transmission matrix is calculated 
for each layer in the cavity, and then they are multiplied together to find the transmission and 
reflection coefficients for the entire structure. To determine the lasing condition, a search is made in 
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wavelength and gain to find the poles in reflectivity, so that light is emitted for no incoming field. 
The resulting gain is the threshold optical gain required for the particular design. Included in the 
formulation are complex dielectric constants, allowing the addition of optical gain or loss in any 
layer. It is important to use accurate models for the dispersion of the index for the various materials, 
in the AlGaAs system the data from Afromowitz[4] is often used. For the optical losses, the dominant 
losses are free carrier absorption. This plasma effect is modelled phenomenologically by using an 
absorption coefficient of llcm-i per 10i8cm-3 p-type carriers and 5cm-1 per 10i8cm-3 n-type carrier 
for a wavelength of 1 p.m in GaAs. Very little data of the accuracy required exists in the literature. 
Proper calculation of this effect requires complex bandstructure models. It is important because 
resistance due to lower doping leads to heating which limits output power while higher doping leads 
to optical losses which reduce the output power. A balanced design requires more detailed knowledge 
of the tradeoffs. 

To determine the optical efficiency, defined as the fraction of photons generated that are emitted out 
of the cavity, the threshold gain is calculated with and without optical losses. The ratio is the optical 
efficiency, typically between 50 and 70% for our designs. The transmission coefficient, Tr, can be 
calculated using the ratio of the field inside and outside the cavity. As shown schematically in Fig. 1, 
the round trip gain must compensate for the losses of transmission and internal loss. This is expressed 
as G = L + Tr where the round trip gain G is related to the material gain g by: 

G = 2glact£enh (1) 

where the two is for two passes (round trip), lact is the total quantum well thickness and Qnh is the 
enhancement factor due to the standing wave effect. For our three 80Ä quantum well design, £enh has 
a value of 1.83 instead of the ideal 2 for an infinitely thin layer placed at the antinode. A final note is 
that the inclusion of diffraction losses requires complete 3D solutions, a much more complex 
problem given the relatively large index discontinuities at each interface of the distributed Bragg 
reflectors. Furthermore, gain-guided structures pose an even more complex problem. The transverse 
modes are dominated by the weak index guide generated by the thermal gradients associated with the 
current flow, and thus the thermal, electrical and optical properties must be solved self consistently in 
3D. We restrict ourselves here to strongly index-guided structures. An additional point is that the 
local temperature may need to be included in the calculation as the bandgaps (and hence indices of 
refraction) of the various layers shift at different rates relative to the lasing wavelength resulting in a 
changing transmission coefficient for the mirror. While we have not yet included this effect, others 
have reported[5] on significant reductions in the transmission coefficient at elevated temperatures. 

DL Gain Model 

The gain model for vertical cavity lasers must provide the material gain as a function of carrier 
density, temperature and wavelength. Due to the small size of the lasers, their thermal impedance is 
high, and typically junction temperature rises as the output "rolls over" are above 100°C. In 
addition, carrier densities exceed 1019cm-3 due to spatial hole burning and bandgap shifts from 
heating. The position of the cavity mode shifts due to index dispersion at a rate of =0.8A/°C while the 
bandgap shifts at =3.4Ä/°C. Thus the gain spectrum must be known as well since the gain peak shifts 
its relative position during laser operation. To determine the gain spectrum, we use a first principle 
gain model that includes valance band mixing and the effects of strain [6]. Typical output is shown in 
Fig. 3. It has proved to be critical to include the band shrinkage effect in order to explain the 
threshold characteristics observed as a function of temperature. This has been included using the 
phenomenological formula AEg = -Cn^ and can be seen as the shift of the band edge towards longer 
wavelengths with increasing carrier densities in Fig. 3a. Finally, the gain model also provides the 
spontaneous emission as a function of carrier density. This is calculated using the band structure, the 
matrix elements, and assuming a virtual photon in each radiation mode. As can be seen in Fig. 3b, it 
is inappropriate to assume a linear relationship for the peak gain as a function of carrier density. For 
the following models, either curve fits or lookup tables for the gain data shown in Fig. 3 have been 
used to speed the calculations. 
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Fig. 3   Calculated gain spectra and peak gain for the strained InGaAs quantum wells 

DDL LI Model 

The current to light (LI) model is shown schematically in Fig. 4a. The carrier density profile is 
solved self consistently in cylindrical coordinates. The radial ambipolar diffusion currents, stimulated 
emission, spontaneous emission, Auger recombination, surface recombination and carrier leakage 
currents are balanced in each cell. Input parameters include the transverse mode profile, the injected 
current density profile for each voltage, the cavity mode shift with temperature, and an effective 
thermal conductivity. The temperature rise is assumed constant across the junction and calculated 
using the analytic formula for a disc on a semi-infinite substrate [7]: 

ATjc: = l/4ractksub (2) 

where ATjCt is the junction temperature rise, ract is the active region radius and ksub is the effective 
thermal conductivity. Note that the thermal conductivity of the ternary and quaternary materials can 
be 10-20 times higher than the binaries such as GaAs due to random alloy scattering of phonons. 
The simple etched pillar structures that we fabricate make the analytic approximation reasonable. 
Fully buried structures such as the proton implanted gain-guided designs require numerical 
calculation. Complete continuous wave (CW) LI characteristics are calculated using this approach. 
Most of our calculations assume a single transverse mode for simplicity, however, the calculations can 
be run with multiple transverse modes at the expense of slower convergence. 
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Fig. 4. Schematic of the LI model and a simulation of the threshold current for varying gain offsets 
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Results of a calculation with the LI model for determining the threshold current under pulsed 
operation (ATjCt = 0) are shown in Fig. 4b. Several different curves are shown, corresponding to 
varying offsets of the cavity mode and the gain peak. The calculation used an ambipolar diffusion 
constant of 20cm2/s and a surface recombination velocity of 2x105 cm/s. This temperature insensitive 
operation is radically different from the behavior of in-plane lasers, whose threshold current always 
increases with increasing temperature. The reduced threshold with increasing temperature is a result 
of the interplay of the band shrinkage effect and the spectral gain curve while the increase in 
threshold at elevated temperatures is primarily due to Auger recombination. The coefficient used for 
our calculations of these InGaAs quantum wells has been fit to the data using the typical CAn3 

dependence with an Auger coefficient CA =lxl029 cm6/s, three times higher than bulk GaAs. It is 
interesting that bandgap renormalization and Auger recombination play a dominant role in these 
lasers, typically they are second order effects for in-plane lasers in the GaAs system. As researchers 
attempt to make vertical cavity lasers at other wavelengths, accurate models for these effects will 
become more important. In particular, Auger recombination at high carrier densities can be reduced 
by modifying the bandstructure with strain. This will be very important in the telecommunication 
wavelengths and requires much more complex numerical calculations. 

IV. Current Injection 

For top emitting laser structures or those using dielectric distributed Bragg reflectors, ring contacts 
such as those shown in Fig. 1 are inevitable. The concern is that current crowding will occur at the 
periphery of the laser where the fundamental optical mode is weak. The result will be reduced 
internal efficiency and the tendency to promote multimode operation by enhancing the gain near the 
perimeter. We have taken care to model the current injection for our intra-cavity contacted designs. 
Accurate models for the JV characteristics of the p-i-n and heterojunctions are required as it is the 
differential resistance which determines the distribution of current once the diodes have been forward 
biased. Particularly in Be doped AlGaAs, the dopants can diffuse during growth resulting in unknown 
dopant profiles. To model our diodes we have grown test active regions and measured their JV 
characteristics under uniform injection conditions. The measured characteristics are used in the 
simulation. To calculate the injected current density as a function of radius the laser is divided into a 
mesh in cylindrical coordinates as shown in Fig. 5a where the nonlinear materials are lightly shaded. 
The voltage and current distribution is found using an Alternating Direction Iteration (ADI) 
technique where the diodes have been linearized. The diode resistance values are adjusted during the 
iteration process so that the final solution uses the correct JV characteristics. The results of such a 
calculation are shown in Fig. 5b. For this particular doping, diodes and geometry, the current flowing 
through the p-i-n junction shows current crowding at the edge only above 6 mA of drive current. 
Since the threshold current for this laser is below 1 mA, this is an acceptable design. 
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Fig. 5. Grid used for IV simulation and the injected current density profile at the p-i-n junction 

V. Intra-Cavity Laser Simulation 

Combining the output of the current injection calculations with the LI simulation gives a complete 
current, voltage, light characteristic simulation of the intra-cavity contacted devices of Fig. 2. The 
results of such a calculation are shown in Fig. 6a for the 7 fxm diameter laser. With all input variable 
determined by the model for the uniformly injected lasers, the only parameter adjusted for fitting was 
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the gain offset. Spectral measurements and room temperature photoluminescence of the active 
material had indicated a gain offset on the order of 10 nm, in good agreement with the chosen gain 
offset of 5nm. The calculated carrier density profiles are shown in Fig. 6b. Two important points can 
be determined from the plot. First, that the effects of surface recombination have been greatly 
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Fig. 6. Comparison of calculated and experimental LI characteristics for the 7pm intra-cavity laser of 
Fig. 2. The radial carrier density profile for varying bias currents is shown on the right. 

reduced by this current constricted design. Second, that there is a large inefficiency resulting from 
the carriers injected at the edge of the optical waveguide where the optical mode is weak. If, instead, 
the current constriction could be made to a diameter less than the transverse mode diameter, greater 
internal efficiency would be observed while the single mode operation would be enhanced. These 
more difficult  "gain apertured" designs are currently under investigation in our lab and others. 

VI. Conclusion 

Models for the optical.electrical and LI characteristics of vertical cavity lasers have been presented to 
demonstrate the current state of the laser simulation and to point out the dominant device physics. 
While agreement with experiment is good, most of the approximations have been made possible by 
restricting our analysis to strongly index guided structures. As research begins to focus on designs 
which combine the features of the index guided and gain guided structures, fully self consistent 
solutions of the current, thermal and optical problems will be required. In addition, many important 
physical effects have been included using phenomenological models. The high optical gain 
requirements of the short vertical cavity pose challenges to develop efficient vertical cavity lasers at 
shorter and longer wavelengths. Comprehensive models of free carrier absorption, Auger 
recombination and band gap renormalization in strained and unstrained materials may provide 
insights into better designs for these more challenging material systems. This work was sponsored by 
ARPA via the Optoelectronics Technology Center. 
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A TRANSITION MATRIX STUDY OF LASER DYNAMICS 

Muhammad A. Alam and Mark S. Lundstrom 
Purdue University, West Lafayette, IN 47907 

ABSTRACT 

Semiconductor laser dynamics are simulated by a transition matrix approach. We analyze a set 
of experiments to illustrate the intrinsic gain dynamics of a laser and to clarify the role of various 
scattering rates in determining carrier relaxation under lasing conditions. We conclude with a study 
of the effects of photons and hot phonons on gain compression. We find that while hot phonons 
effects are important, they are not the rate limiting factor of a semiconductor laser. 

I. INTRODUCTION: 

Recently, there has been considerable interest in the microscopic dynamics of semiconductor 
quantum well lasers both because of their technological importance and the interesting device 
physics issues. Although carrier relaxation in quantum wells (QWs) in the presence of carrier- 
carrier and carrier-phonon interactions has been investigated by a number of experimental and 
theoretical groups[l], its implication for lasers is less well understood. To understand QW laser 
carrier dynamics, one must consider ultrafast stimulated emission, carrier thermalization by the 
large thermal carrier population at threshold, transport in the separate confinement layers, and the 
capture of carriers from the barrier region to the quantum well itself. 

In this paper, we explore the intrinsic response of a quantum well laser systematically using a 
new transition matrix approach (TMA)[2]. Specifically, we examine the role of electron-electron 
and electron-nonequilibrium phonon interactions on laser gain and the distribution function. We 
also study how carrier dynamics are affected by strong electron-photon interactions. 

II. TRANSITION MATRIX APPROACH: 

Briefly, the TMA is a Monte Carlo technique to directly solve the time dependent but space- 
independent Boltzmann equation. A transition matrix relates the distribution of particles (elec- 
trons, phonons, or photons) at a given time t to the particle distribution at time t + St. For density 
independent scattering events, such as carrier relaxation in absence of light or Coulomb interaction, 
this matrix is time invariant, however, when the scattering processes depend on the density, then 
this matrix will evolve in time. To compute the transition matrix, the input momentum space is 
first divided into a large number of bins, a large number of particles is injected in each of these 
bins, and these particles are tracked for a time <5t by a 2-D Monte Carlo simulation [2,3]. At this 
point, positions of the particles in momentum space are noted, and the ratio of the particles for a 
pair of initial and final bins gives the transition matrix element. If one has a initial distribution of 
particles in momentum space, by repeatedly multiplying the evolving distribution by the transition 
matrix, one can track particle evolution as a function of time. 

Our model includes electron, phonon, and photon dynamics. Electron transport has been 
treated semiclassically. The scattering mechanisms included are polar optical phonons, acoustic 
phonons, and electron-electron scattering [3]. Static screening was assumed for e-e scattering, 
but dynamic screening can be readily treated by the TMA. Transition matrix elements were first 
computed assuming that the destination states were always empty and the partner state ( for 
electron-electron scattering) was always full. During simulation, one obtains dynamic estimate of 
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the distribution function, f, and the matrix elements are modified accordingly.   For example, ee 
scattering matrix element at the n-th time step is given by 

An) Jo) 
ij,mn ij.mn /jB)(i-ÄB))(i-/iB)), 

where i^„ is the scattering rate of an electron at state i colliding with a particle at state j, with 

final destination to states m and n. This rate was computed by assuming that /] equals unity 

and /i0) and fi0) equal zero. At each time step, this rate is then modified by the Fermi factors as 
shown above to account for the band filling effects. 

We considered hot phonon effects by solving a Boltzmann equation for phonons in the relaxation 
time approximation [4]. The phonons emitted during a time step are sorted according to their wave- 
vectors, q. In the next time step, a fraction of these phonons will be reabsorbed, and some of the 
phonons will decay by nonelectronic means with a finite lifetime. The excess phonons affect the 
POP scattering rates in the following way, 

.0  iVg      T 2 ^ 2 

^N^ + Hh 
(2) 

(°)« where Uj is the POP scattering rate from state j to state i, N^ ' is the equilibrium phonon population 

and JVg"' is the phonon population at n-th time step. 
Finally, the electron-photon interaction is described through standard multiband effective mass 

formalism. The hole bandstructure was computed by using a 4x4 k.p Hamiltonian for the quantum 
well. The optical transition matrix elements were computed using polarization and wave-vector 
dependent band to band scattering rates assuming strict wavevector and energy conservation. The 
dynamic, energy dependent broadening of the joint density of states were subsequently accounted 
for by a energy dependent Lorenzian broadening factor [5]. 

III. RESULTS: 

Using the model described above, we discuss three sets of experiments to clarify gain dynamics 
issues. First, we analyze a pump-probe experiment in which the quantum well is initially empty, 
next we discuss pump-probe experiments for a gain-inverted laser diodes operated in the amplifier 
mode, and finally, we examine the effects of gain compression and hot phonons on laser performance. 

In the first type of experiments, the quantum well may either be empty or modulation doped. 
A light pulse excites carriers from the valence band to the conduction band, and a delayed laser 
beam then probes the carrier distribution as it relaxes. These experiments study carrier relaxation 
in quantum well via POP and electron-electron scattering. Since they have been simulated in detail 
by Goodnick and Lugli [3], they provide a good test for our approach. 

In this simulation, we use a rectangular laser pulse to excite carriers at 0.23 eV above the 
conduction band. Figure 1 shows the relaxation dynamics as a function of time. Initially, carriers 
relax by emitting polar optical phonons. Therefore, the distribution function develops a set of 
well defined peaks separated by the phonon energy (35 meV). At higher densities, these peaks are 
washed away be electron-electron scattering within 800 fs; at lower densities, the peaks persist for 
a longer time. These conclusions are in reasonable agreement with Goodnick's results, which were 
obtained by direct Monte Carlo simulation. 

The second set of experiments, also a pump-probe variety, are more relevant to laser gain 
dynamics. In these experiments, facets of a laser diode are coated with an antirefiection coating, 
so that it operates in the amplifier mode. Various bias currents put this diode in various levels of 
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Fig. 1 Relaxation of carriers in an AlGaAs/GaAs/AJGaAs 
QW. Carriers are injected at t=0 into the third subband 

and they subsequently relax too subband 1. 
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Fig. 2 The gain dynamics of a 150 A QW after a 100 fs of TE 
laser pulse. 

inversion. A pump beam is then launched in the cavity. Depending on the bias level, the pump 
beam will either stimulate emission (in gain region) or stimulate absorption (in the loss region). A 
delayed probe beam, as before, monitors the distribution function as the spectral hole is filled in 
or as the spectral 'heap' diffuses away (in energy). This experiment is relevant to lasers, because 
lasers are generally biased near threshold, so the nature of screening and the relative importance 
of various scattering events is expected to be very similar. This is also a significantly more difficult 
system to describe by simulation, because the change in probe gain may be only a few percent, 
therefore, noise in the simulation is unacceptable. 

Figure 2 shows the dynamics in the gain region. The pump beam is a rectangular pulse of 100 
fs duration. The lowest subband population goes down immediately due to stimulated emission, so 
does the probe gain. Within a few ps, the subband population relaxes by redistributing the carrier 
population and the relaxation time of « 0.72 ps is well within experimental range. As the spectral 
hole fills up, so does the gain. The gain finally saturates at a lower value, however, because of net 
decrease of carrier concentration in the quantum well. In the absorption region, on the other hand, 
electrons are pumped into the conduction band. The increase in number of carriers is reflected in 
both gain spectrum and subband population. Also, the net increase of carriers is reflected in higher 
saturated values for gain. In both the gain and absorption region, the average energy goes up - 
cold carriers are removed in the gain region from the conduction band, hot carriers are added in 

the loss region. 
The role of electron-electron scattering is significant in these experiments and needs some dis- 

cussion. When a spectral hole is burned in the distribution function by a pump beam, e-e scattering 
is not very effective in filling up the hole, because electron-electron scattering requires two empty 
final levels, and the spectral hole provides only one. This explains why it takes picoseconds to 
fill up a spectral hole, as opposed to femtoseconds as one would expect for a system dominated 
by electron-electron scattering. Therefore, the time requirement is more consistent with phonon 
scattering requirements. 

Finally, we discuss gain compression and hot phonon issues. Gain compression is a important 
figure of merit, and it affects the maximum frequency of oscillation and maximum gain in a very 
significant way. Recently, there has been a lot of discussion on the factors determining gain including 
band filling effects, spectral hole burning, hot phonon effects. We can now address these issues from 

300 



1.2 
2000 

1500 

1000 /^" ~^fv^ o 0.8 

E 

c 

500 

0 

-500 

-1000 

  S=0 
  S=1.7x1015m"2 

 S=1.7x10,5m": , T = 2 ps 

V.  " 

c 

03 

0.4 

-1500 
1. 

T i 

55 
0 0 

40 1.45 1.50 1. 
photon energy (eV) 

Fig. 3 Gain compression due to stimulated emission and 
hot phonon effects. 

S=0 

0.0 0.1 0.2 
energy (eV) 

0.3 

Fig. 4 Electron distribution function at subband 1 in 
the presence of stimulated emission and hot phonons. 

a semiclassical point of view. 
Figure 3 shows three gain curves, and Fig. 4 shows the corresponding distribution functions. 

The first one is the gain curve for a laser biased to 3.0xl016 per m-2 without any light or hot phonon 
effects. Broadening due to polarization dephasing has been accounted for by including both the 
inscattering and outscattering rates of POP and e-e scattering. The second curve is the gain curve 
in presence of photons (1.7xl015 m~2) at 1.46 eV. If we increase phonon lifetime, there is even larger 
heating and gain compression. In the first case, the gain compression factor is 1.2xl0-16 m-2, in 
the second case this factor increases to 1.6xl0-16 m-2. If a photon lifetime of 2 ps is assumed, 
then the maximum frequency of oscillation is 195 GHz without hot phonons and 187 GHz with hot 
phonons. In contrast to recent phenomenological treatments, we conclude that the net effect of hot 
phonons is not very significant, and intrinsic dynamics is not the rate limiting factor of diodes now 
in fabrication. 

TV. SUMMARY: 

Using a new transition matrix approach, we have analyzed a set of experiments to clarify the 
gain dynamics of quantum well lasers. Our investigation sheds light on gain dynamics explored by 
recent pump-probe experiments. Also, we find that gain compression due to hot phonons is not as 
significant as it was previously thought. We ascribe this to the q dependence of hot phonon effects. 
To understand the gain dynamics of issues one should also include transport, this is a research issue 
we shall investigate in the future. 
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COUPLING CLASSICAL CARRIER TRANSPORT, CAPTURE, AND SIZE 
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Abstract 

A model for the coupling of the classical and quantum regions of a quantum well laser diode is pre- 
sented. The calculation of carrier transport in different regions of the laser is first discussed. Then 
a discretization of the carrier continuity equations in and around the quantum well is presented in 
detail. The model is finally tested through the simulation of three different GaAs/AlGaAs lasers. 
The results are discussed, and the importance of carrier capture is demonstrated. 

I. INTRODUCTION 

There are several different approaches to quantum well laser simulation. One approach is based 
on the Statz-de Mars rate equations [1] and is widely used because of its simplicity and flexibility. 
However, it can not be used to calculate the actual transport of carriers, and therefore it can not 
yield local variations in the carrier densities. An alternative approach involves the self-consistent 
solution of the semiconductor equations with carrier transport. Several such simulators have been 
produced for a two-dimensional cross section of the laser [2,3,4]. Some self-consistent simulators 
use drift-diffusion theory throughout the entire device [5], while others have complemented drift- 
diffusion theory with thermionic emission theory at abrupt heterojunctions [2,4]. However, the 
code presented in this paper is the only laser simulator that treats the capture of carriers and size 
quantization in the quantum well. 

This paper will discuss the simulation of carrier transport in the laser simulator called Minilase. 
In particular, the numerical implementation of capture and quantization will be presented in detail. 
Modulation responses will then be calculated by Minilase to illustrate the importance of carrier 

capture. 

II. THE LASER MODEL 

The device equations for a laser diode consist of those that describe the carrier dynamics and 
those that describe the photon dynamics. The carrier dynamics can be expressed by Poisson's 
equation and the continuity equations for electrons and holes. Since the spatial distributions of 
free carriers in the quantum well are determined by size quantization, Schrödinger's equation for 
the conduction and valence subbands must also be solved in this region [6]. 

The photon dynamics can be calculated by including optical gain, spontaneous emission, and 
cavity losses in a photon rate equation for each longitudinal mode. The mode gain and spontaneous 
emission are determined by the amount of inversion, the optical matrix element, and the photon 
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density. The inversion charge is determined by the carrier dynamics, and the optical matrix element 
can be calculated from Fermi's Golden Rule [7]. The photon populations can be mapped into local 
photon densities through the solution of MaxweU's equations for the laser cavity [6]. 

Since the continuity equations include the divergence in carrier flux, carrier transport must 
be calculated throughout the device. Because the electric field is normally moderate in the bulk 
regions of the device, the parabolic band approximation and drift-diffusion theory are appropriate 
in these regions [8]. Abrupt heterojunctions, however, are modeled in Minilase as discontinuities 
in the band edges. Carrier fluxes at such discontinuities are better calculated with the ballistic 
transport found in thermionic emission theory [9]. This theory requires a carrier injected from 
one material into another to immediately scatter into thermal equilibrium with the carriers in the 
latter material. This is a good approximation for a single heterojunction because most carriers will 
inelastically scatter within a mean free path after crossing the interface. 

Since the quantum well is the region of optical gain, it is very important to accurately calculate 
the carrier dynamics in and around this region. Drift-diffusion theory can be used in the surrounding 
bulk regions, and ballistic transport determines the injection of carriers into the well. However, 
since the size of the well is on the order of a mean free path, thermionic emission must be augmented 
to account for the probability that a carrier traverses the well without inelastic scattering. This 
can be done by carefully discretizing the quantum well as shown in figure 1. 

rnbulk Drift- 
Diffusion 

QW Continuum States 

QW Bound States    "'"- 

Ballistic       Nonclassical 
Transport        Transport 

f/v-0--<5)....<6R7). 

Bulk States 
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Mesh Points 
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Nonclassical 
Transport 

Figure 1: A schematic diagram showing the discretization of the quantum well and its coupling to 
the classical regions. 

The quantum well must be partitioned into the continuum states above the well and the lower 
energy bound states. Our choice of the boundary between continuum and bound states is neither 
purely classical nor quantum mechanical. It accounts in part for quantum reflections, and quantum 
resonances are incorporated through the scattering rate between the two partitions. Associated 
with each partition is a unique quasi-Fermi level. Carriers injected from the bulk into the quantum 
well are restricted to the continuum states. This ballistic injection can be easily calculated from 
the quasi-Fermi levels for the bulk and the continuum using an expression similar to thermionic 
emission. For example, using the node numbers in the figure, 

Jn,2^3 A*T2 exp 
"nbulk,2 EC< 

kT 
exp 

^n3D,3 ~ -SC2 
kT (1) 

A carrier in the continuum can transfer back into the classical region via an analogous expression, 
or it can inelastically scatter and be captured into a bound state. The scattering process is modeled 
with a net capture term similar to Hall-Shockley-Read recombination [10]. The spatial distributions 
of quantum well carriers are determined by their wave functions. The continuum wave functions 
are approximated by plane waves, and those in the bound states are obtained from Schrödinger's 
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equation. Also, according to size quantization, all the mesh points in the continuum must have the 
same quasi-Fermi levels, and similarly Fn2B must be constant. 

To illustrate the discretization of the quantum well, the electron continuity equations for the con- 
tinuum and the bound states, discretized in one dimension, are shown below. The two-dimensional 
case is analogous. First, let us pick the continuum node 5 (any continuum node can be chosen). 
The equation for this node is then 

8   fi 8 

dt 
(2) 

i-3 

where /,- is the length associated with node i according to the box integration method [11]. The 
equations for continuum points j=3,4,6,7,8 are simply Fn3D,j = i^3D,5- Similarly, let us pick bound 
mesh point 14. Its continuity equation is 

18 dn 18 

/ y     a,  'i ~"   / j \Uca.p,i       Urec,i)H 

2=11 
dt 

(3) 
i=u 

and the equations for bound points j=ll->13,15-»18 are simply Fn2D,j = ^20,14- 
Although the quantum well mesh points that share the same real space coordinates have different 

quasi-Fermi levels, the electrostatic potential is single valued and is determined by the total charge 
at each real space coordinate. To illustrate, let us pick heterojunction node 2 (nodes 3 or 12 could 
also have been picked) and write the discrete Poisson's equation in one dimension. 

n     v^      ^2 -fa     , AT+ 0 = y, £2,*i r ~ TO.2 N72)(h + h) J2   (Pi-nj)lJ 
.7=2,3,12 

(4) 

Note that node 2 belongs to the bulk and node 3 belongs to the continuum. Therefore, h = 
(x2 - a>i)/2 and /3 = (x4 - x3)/2 according to the box integration method. Since the bound states 
overlap into the bulk regions, l12 - (x13 - xn)/2. Equation (4) determines ip at node 2, and the 
potentials at nodes 3 and 12 immediately follow because i> is continuous (to a very close approxi- 
mation) at the interface, i.e. ifrj = fa where j=3,12. 

III. Results 

The importance of the carrier dynamics in and around the quantum well is made very clear 
by the modulation response. To demonstrate this, three 100 Ä GaAs single quantum well laser 
diodes were simulated. One diode contained an Alü.?,Ga0.7As separate confinement region (SCR) 
measuring 1450 Ä on each side of the well. Another diode contained an SCR that measured 2950 
Ä on each side. In the third device, the SCR was asymmetric, measuring 2950 Ä on the p-side and 
950 Ä on the n-side. The results are shown in figure 2. The frequencies and heights of the resonant 
peaks are influenced by photon dynamics. The rates of roll-off near zero frequency, however, are 
directly related to carrier capture, and they differ for the three devices. Reducing the size of the 
n-side has caused the asymmetric device to roll off more gradually than the wide device. This is 
due primarily to the number of holes that were not captured by the well. Figure 3 shows these 
holes for the two devices. These carriers are not used to modulate the optical output power but, 
instead, contribute to parasitic diffusion capacitance. The number of wasted holes is clearly smaller 
for the asymmetric device, and therefore this device has smaller diffusion capacitance and a more 
gradual roll-off in the modulation response. 
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Figure 2: Modulation responses for three dif- 

ferent separate confinement regions. 

Figure 3: Hole densities on the n- sides of the 

asymmetric and wide lasers. 

IV. Conclusions 

An accurate simulation of a quantum well laser diode requires the treatment of carrier and 
photon dynamics throughout the entire device. The carrier dynamics can be calculated by treat- 

ing transport appropriately in different regions of the laser. Coupling the quantum well to the 
surrounding bulk regions is particularly critical because it determines the pumping of the active 
region. We have described a model which permits the simulation of classical transport in bulk 
regions as well as size quantization and carrier capture in the quantum well. Furthermore, we have 

presented a discretization of this model that is suitable for numerical solution. 
This work was funded by NSF support through the NCCE. 
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HIGH FIELD ELECTRON 
IED DENSITY OF STATES 

John Fogarty, Weiran Kong and Raj Solanki 
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Oregon Graduate Institute 
P.O. Box 91000 Portland, OR 97291 

An ensemble Monte Carlo simulation has been developed for electrons in ZnS which includes three 
nonparabolic valleys in the first conduction band as well as a single nonparabolic valley in the second con- 
duction band. The density of states for the first band was modeled phenomenologically to resemble the 
density of states obtained by numerical pseudopotential calculations. This density of states was used only 
in the calculation of the scattering probabilities and no attempt was made to modify the conductivity effec- 
tive mass. The scattering probabilities included in the simulation are those due to ionized impurities, 
acoustic phonons, polar optical phonons, intervalley phonons, and impact ionization. It is found that the 
inclusion of the second band and modification of the density of states effective mass has a dramatic effect 
on the energy distribution, especially at fields above lMV/cm. When the field exceeds lMV/cm, the distri- 
bution begins to show a secondary peak associated with the second band that is not found in previous 
investigations. At lower fields, the second band contributes a high energy tail but does not alter the peak of 
the energy distribution noticeably. The importance of introducing the second band is that, because the 
width of the first band is less than the band gap, it is believed that nearly all band to band impact ionization 
is due to electrons in the second conduction band. This has specific relevance in the operation of ZnS AC 
thin-film electroluminescent devices. 

An understanding of the high field transport properties of electrons in ZnS is essential for the design 
and operation of many AC thin film electroluminescent (ACTFEL) devices. These devices operate at 
fields ranging from 0.5 MV/cm to 2.0 MV/cm and rely on highly energetic (hot) electrons for both the 
excitation of the activator as well as the for the process of carrier multiplication via band to band impact 
ionization. At present very few attempts have been made to investigate the behavior of this material in the 
high field regime. Previous studies, [1,2] have indicated that the electron distribution in ZnS is relatively 
cool with the high energy tail of the distribution ending at less than 4.0 eV even for fields up to 2.0 MV/ 
cm. While Brennan [1] included the full structure of both the first and second conduction band, it is not 
clear what his results imply in terms of impact ionization in ZnS, since his work is mainly a comparison 
between ZnS and ZnSe, and results for fields in excess of 1.0 MV/cm were not reported. Bhattacharyya et 
al [2] used a model that included only the first conduction band in a infinite nonparabolic three valley 
model. Their model is not consistent with the band structure or density of states of ZnS at these high fields 
because the electrons were found to have energies exceeding the energy depth of the first conduction band. 
Müller et al [3] have used a single parabolic valley in the first conduction band. This again is unrealistic at 
these fields and this model leads to an unstable distribution with ballistic, loss free transport. 

One method of including higher bands is to use a method suggested by Brunetti et al [4]. This model 
uses a band structure so chosen as to give the density of states function a good fit with experimental and 
theoretical determinations. Our model consists of three valleys in the first conduction band and one valley 
in the second conduction band with the valley parameters of the second conduction band chosen so as to 
give a good fit with the density of states as determined by numerical pseudopotential calculations [5,6]. 
Typically, when an effective mass approach is taken, no steps are taken to insure that the density of states 
of the first conduction band begins to decrease when the top of the band is approached. We have taken the 
density of states effective mass to be energy dependant so that the density of states does not extend infi- 
nitely. This method affects the scattering rate only by not allowing transitions to states at energies within 
valleys where no states exist. We have also added a second conduction band, with a single valley X2, that 
has valley parameters similar to the X valley in the first band. The energy of the X2 valley bottom was 
taken to be 2.2 eV above the bottom of the gamma valley. The conductivity effective mass was not altered 
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and is energy independent. Other than this change, we have used the same scattering rate calculations as 
Bhattacharyya et al [7,8]. Since the ACTFEL devices that are of interest to us are polycrystalline, the elec- 
tric field is not taken in any specific crystal direction. 
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Fig. 1. The electron density of states in the conduction 
band of ZnS in both the simple infinite valley nonpara- 
bolic model, and our approach. 

II. RESULTS 

Fig. 2. The electron total scattering rate in the gamma 
valley for the simple infinite valley nonparabolic 
model, and our approach. 

Fig 1. shows the density of states of the conduction band in our approximation as well as the simple, 
nonparabolic model used by Bhattacharyya. Our approximation more closely resembles the density of 
states computed by pseudopotential model than the simple infinite nonparabolic valleys yet it also requires 
much less computational time than that of Brennan's full band approach. Fig 2 shows the total scattering 
rate for the gamma valley as a function of energy. Because of the way that the density of states mass is 
defined, the scattering rates represent a sort of convolution of the scattering rate given by Bhattacharyya 
and the theoretical density of states. The simple infinite valley approach tends to overestimate the scatter- 
ing rates at high energies, resulting in cooler distributions. For the gamma valley, polar optical scattering 
dominates at low energies. At 1.5 eV intervalley scattering to first conduction band valleys begins to dom- 
inate. When the electrons have acquired enough energy to scatter to the second band this process begins to 
dominate until the threshold for impact ionization is reached. Impact ionization is the dominant scattering 
mechanism for electrons in any valley once the total energy exceeds the threshold energy for impact ion- 
ization. Acoustic scattering is more important at high energies while ionized impurity scattering is more 
important at low energies but neither of these scattering mechanisms are ever dominant at any energy. For 
all of the upper valleys, intervalley scattering is the dominant scattering mechanism at all energies until the 
onset of impact ionization. 
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Fig. 3. Four valley, two band electron energy distribu- 
tion for ZnS at 1.5 MV/cm in the simple infinite val- 
ley nonparabolic model. 

Fig. 4. Four valley, two band electron energy distribu- 
tion for ZnS at 1.5 MV/cm in our model 
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Figs. 3 and 4 show the steady state electron energy distribution n(E) plotted as a function of energy for 
each valley in the first two conduction bands for an electric field of 1.5 MV/cm which is a typical field for 
an ACTFEL device [9]. Fig. 3 shows the distribution as it is calculated in the infinite valley approach and 
showing the cool distribution, while Fig. 4 shows the same distribution calculated in our approach showing 
an enhanced tail which extends past the threshold for impact ionization. At low fields, the total distribution 
is not that much different from the results of Bhattacharyya et al, the tail of the distribution begins to slope 
off at less than 4.0 eV. For higher fields, the results are quite new. We predict an enhanced tail and the 
formation of a secondary peak in the energy distribution at about 3.3 eV. The inclusion of the second con- 
duction band, and lowering of the scattering rates allows the energy distribution to become hotter. 

Impact ionization rates were calculated at several different fields, and Fig. 5 shows the impact ioniza- 
tion rate vs. the inverse field plotted on a semi-log scale to show the linear dependence. The data points 
are obtained from the simulation while the solid line is the impact ionization field dependence we have 
used to model ZnS ACTFEL devices as shown in Fig. 6. The impact ionization rate dependance supports 
the work of Shockley [10] which gives an ionization rate that depends on the field as 

a- exp(iET) 

where E is the electric field strength and B is a constant. The results of the simulation determine B to be 
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Fig. 5. Impact ionization rate for electrons in ZnS as a 
function of the inverse applied electric field. 
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Fig. 6.1-V curve for a ZnS ACTFEL device showing 
both experimental data and device modeling based on 
the impact ionization rate derived from the simulation. 

EH. DISCUSSION 

The results of the simulation clearly indicate that because of the high field heating of the electrons, the 
second conduction band can not be ignored. This simulation was not meant to include the full band struc- 
ture in the calculations but rather a first approximation to the behavior of the electrons when a second con- 
duction band is included. Just blindly adding a second band will not have much effect on the distribution 
though, since the infinitely extending valleys lead to an overestimation of the density of state in the first 
band which in turn leads to unrealistically high intervalley transfer into the first band. At low fields, the 
results of our simulation agree qualitatively with the results of Bhattacharyya et al [2] and this is evidence 
of the validity of the approximation in the limit of low fields. The simulation suggests that the second 
conduction band is sufficiently populated to support impact ionization rates that are high enough to drive 
the current voltage characteristics of a typical ZnS ACTFEL device. Previously it was thought [1,2,11] 
that impact ionization was at best a secondary source of electrons with the most important contributions 
coming from the tunneling of electrons from the interface states. Our simulation suggests that impact ion- 
ization is probably the dominant source of the electrons involved in the gain behavior of the devices. The 
work of Müller et al [3] and Mach [12] was done with a single parabolic valley and ballistic electron trans- 
port was reported. In our model, the single valley in the second conduction band acts in a similar manner, 
and if impact ionization is not included in the simulation, ballistic electron transport is also encountered 
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with an unstable energy distribution. We believe that the first conduction band supports a stable electron 
distribution due to the high scattering rates that intervalley scattering introduces. In the second conduction 
band on the other hand, the electrons in the X2 valley will impact ionize before they have enough energy to 
scatter to other second band valleys. Only electrons with low kinetic energy can scatter back into the first 
conduction band because there are no states available at higher energies in the first conduction band for 
them to transfer to. The first conduction band is still responsible for the supply of electrons that impact 
excite the luminescent centers since most of these have excitation energies of 2-3 eVs. At high enough 
fields however, the simulation suggests that there will be a second peak in the distribution. The secondary 
peak is in the second band and is located around 3.3 eV. This peak could be utilized to excite other lumi- 
nescent centers if a proper dopant is found. 

IV. CONCLUSIONS 

Monte Carlo simulation of electrons in ZnS indicates the importance of the inclusion of the second 
conduction band. The electron population of the second band has a significant impact on the electron 
energy distribution as well as the impact ionization rate. Because the density of states of the first conduc- 
tion band was limited so that electrons were not able to scatter into states with energy greater that the top of 
the band, there is a reduction in the scattering rate in the second band at about 3.0 eV. This reduction of 
scattering rates leads to a second peak in the conduction band which begins to show up for fields above 1.0 
MV/cm. Results show that impact ionization is a reasonable candidate for a source of carrier multiplica- 
tion in ZnS ACTFEL devices. 
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SIMULATION OF PERIODICALLY SEGMENTED WAVEGUIDES AS CONCURRENT BRAGG 
REFLECTORS AND QUASI-PHASE-MATCHED SECOND HARMONIC GENERATORS 

Cangsang Zhao and Reinhart Engelmann 
Department of Electrical Engineering and Applied Physics 

Oregon Graduate Institute of Science & Technology 
P. O. Box 91000, Portland, OR 97291-1000 

Abstract 

A simplified method has been developed to simulate the quasi-phase-matched (QPM) second har- 
monic generation (SHG) and distributed Bragg reflection (DBR) properties in a periodically segmented 
(PS) waveguide with graded index profiles for the purpose of designing a concurrent DBR and QPM SHG 
waveguide device. 

In the past several years QPM SHG has drawn considerable interest in the development of coherent 
blue or green light sources. Conversion efficiencies as high as 20% and blue light powers over 20 mW 
have been achieved in nonlinear crystals like lithium niobate (LiNb03) [1], lithium tantalate (LiTa03) [2], 
and potassium titanyl phosphate (KTP) [3]. Using semiconductor diode lasers as the sources in the QPM 
scheme has the potential of making compact coherent blue or green sources, and much work has been done 
to develop this kind of system in various crystals [2], [4], [5]. Either an optical isolator or an extended-cav- 
ity configuration using a bulk diffraction grating for feedback has to be used in the frequency doubling sys- 
tem to stabilize the diode laser sources, which will lead to a less compact and high cost device. A more 
attractive scheme of achieving coherent compact blue or green light sources is to make a concurrent QPM 
SHG and DBR waveguide [6], [7]. The waveguide itself then functions not only as the QPM SHG device 
but also as an extended-cavity mirror to stabilize the diode laser source. In the PS waveguide suitable for 
QPM SHG, in addition to the non-linear optical coefficient the linear optical constant (refractive index) is 
also periodically modulated along the propagation direction. This allows the waveguide to serve simulta- 
neously as a distributed Bragg reflector. To achieve both QPM SHG and Bragg reflection at the same 
wavelength 1 the QPM condition (order q): 

(NV2-N;t)A = f      (q = 1,2.-.-) w 

and the DBR condition (order m): 

mX „ ... 
N,A = —        (m = 1,2, ...,oo) (2) A 2 

have to be concurrently satisfied. Thus it is very critical to accurately estimate the mode indices Ny2 and 
N^ of the periodically segmented structure in order to determine the periods A which satisfy both the con- 
ditions (1) and (2). It has been verified [8], [9] that in order to calculate in a PS step-index slab waveguide 
the effective mode index and the field distribution, one can safely replace the PS waveguide with a uniform 
waveguide such that its refractive index is equal to the weighted average of the high and low indices. This 
procedure can also be applied to a PS step-index channel waveguide [9]. But the intensity of the Bragg 
reflection cannot be easily derived in this approach unless a complicated numerical calculation is used [8], 
[9]. Also, the more realistic graded refractive index distributions in both vertical and lateral directions 
make it highly complicated or even impossible to find the effective mode indices and the Bragg reflection 
intensity in PS channel waveguides. In the following a simplified method will be presented to calculate the 
mode indices and the Bragg reflection intensity in order to design a device which can simultaneously sat- 
isfy DBR and QPM SHG conditions in a PS channel waveguide with more realistic graded-index distribu- 
tions. 
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II.     MODE INDEX CALCULATION CONSIDERATIONS 

In principle, a PS waveguide can be viewed as a lens waveguide whose guided modes periodically 
diffract and refocus with negligible diffraction loss [10]. When a mode is propagating in the PS waveguide, 
it is locally guided or "refocused" in the high index sections, and unguided or "diffracted" in the substrate 
index sections and it is the guiding region which leads to the overall waveguiding. So it is reasonable to 
expect a homogeneous waveguide to have an equivalent guiding behavior as the PS waveguide [8], [9]. As 
shown in Figs. 1(a) and 1(b) for a PS step-index channel waveguide the effective mode index N can be cal- 
culated from an equivalent homogeneous step-index channel waveguide with weighted average of the high 
and low indices in the two sections [9]. In the high index sections the mode is guided locally as in a homo- 
geneous step-index channel waveguide as shown in Fig. 1(c), and the local mode can be described by a 
mode index Nhigh calculated therefrom. But in the substrate index sections the mode is actually unguided 
and cannot be described by a mode index locally. In order to estimate the DBR reflectance in such a 
waveguide, an average index Niow, which describes the mode propagating speed in the substrate index sec- 
tions, can be calculated from 

N = DNhigh+(l-D)N low (3) 

where D is the duty cycle of the PS waveguide. Thus the reflectance of the DBR can be calculated as in a 
periodically layered media with index Nhigh and NIow as shown in Fig. 1(d). 
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Figure 1 (a) Periodically segmented (PS) step-index channel waveguide; (b) Equivalent waveguide for calculat- 
ing the mode index N; (c) Equivalent waveguide for calculating mode index N^; (d) Equivalent layered media 
for calculating DBR properties. 

For more realistic index distributions in a PS channel waveguide shown in Fig. 2(a), the mode index 
Nhigh can always be calculated by using the effective index method when the index profiles are given. As 
shown in Fig. 2(b), an equivalent step-index waveguide having the same local mode index Nhigh as in Fig. 
2(a) can be found to simulate the guiding behavior in the high index sections. Thus the waveguide problem 
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Figure 2   (a) Periodically segmented (PS) graded-index channel waveguide; 
(b) Equivalent periodically segmented (PS) step-index channel waveguide. 
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reduces to a PS step-index waveguide problem, which has been solved previously. In waveguides as shown 
in Fig. 2(a) the index profiles are mostly Gaussian, squared hyperbolic tangent, or exponential functions, 
the mode index Nhi„h can be calculated analytically (approximately, but accurate enough for mode index 
calculation). Thus tie simulation of the concurrent DBR and QPM SHG device can be accomplished very 
rapidly and accurately. 

For a KTP PS waveguide as shown in Fig. 2(a) exhibiting high-index sections with a step-index 
function in the lateral direction (w = 8 |im; a lateral step-index approximation is good enough when w is 
not too small), a squared hyperbolic tangent index function in the vertical direction (characteristic depth d 
= 3 lira, surface index difference Ans = 0.016), and a duty cycle D = 0.52, the equivalent PS step-index 
channel waveguide has been found with a uniform index difference ~M = 0.012. From this result the con- 
current DBR and QPM grating periods and fundamental wavelengths as shown in Fig. 3(a) have been cal- 
culated for the first order (q=l) QPM condition and various order DBR conditions. In Rb/Ba-diffused 
waveguides in KTP, temperature tuning allows one to shift the relative position of XDBR and XQPM by 
0.051 nm/°C [11]. Consequently if one is constrained to temperature tuning of the KTP waveguidefby say 
± 10 °C, then, at the center of the temperature band, XDBR ^ ^QPM should match within some 0.51 nm. 
This corresponds to a fabrication allowance of ± 0.005 )im deviation of the grating period from 4.202 (im 
according to the enlarged plot shown in Fig. 3(b) for m=18 and q=l. At the intersection point, the calcu- 
lated material index n is 1.840, and the effective mode index N is 1.842, Nhigh and Nlow are 1.847 and 
1.837 respectively, which are used to calculate the DBR reflectance as shown in Fig. 3(c). An interesting 
behavior of the waveguide especially from a device design point of view is shown in Fig. 3(d). By choos- 
ing three different Ans = 0.01, 0.015, and 0.02, and varying the duty cycle from 0.5 to 0.75, one can choose 
the preferable wavelengths in a relatively wide range of about 10 nm. The refractive index data used above 
is obtained from previously reported index measurements on hydrothermally grown KTP [12]. 
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Figure 3 (a) Concurrent DBR and QPM grating periods and wavelengths in a KTP PS waveguide; (b) Enlarged 
plot of (a) at a certain cross-over point (q=l, m=18); (c) DBR reflectance vs. waveguide length at the concurrent 
DBR and QPM point of (b); (d) Concurrent DBR and QPM grating periods and wavelengths with various Ans and D. 
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IV.    SUMMARY AND CONCLUSIONS 

We have presented a simplified method to calculate the mode indices in a periodically segmented 
graded-index channel waveguide for the practical design of a concurrent DBR and QPM SHG device. The 
method has been used to model a simple device structure in a KTP crystal in which the fabrication toler- 
ance is extremely tight. Similarly, the method can be used to model the superperiod structure which has 
been proposed for loosening the fabrication tolerance of a concurrent DBR and QPM SHG waveguide in 
KTP [7]. We intend to use the method to simulate the DBR and QMP SHG properties for designing a more 
efficient device structure with practically achievable fabrication tolerances. 
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A comprehensive band filling model including the injection induced carrier confinement effect has 
been developed for device simulation of QW lasers, based on self-consistently solving the Schroedinger and 
Poisson equations. A simplified approach has also been derived for quick evaluation in gain calculation. 

I. INTRODUCTION 

The Separate Confinement Heterostracture (SCH) Single Quantum Well (SQW) laser is a commonly 
used structure to achieve low threshold current density operation. In such a structure, as shown in Fig.l, the 
carriers (electrons and holes) are mainly confined by the band offsets AEC and AEV between QW and barriers 
(optical guiding layers). In real laser structures, AEC and AEV are often less than 0.2 eV. As the injection 
level becomes increasingly higher, quasi-Fermi levels are raised and carrier distributions in the barriers will 
increase. This carrier spill-over may becomes significant, especially in diode lasers operating at high 
temperature or in laser structures with low band offsets (poor carrier confinement). Generally, due to the 
structural difference between conduction and valence band, (e.g. electron-to-hole effective mass ratio is 
about 1/6 in ZnCdSe/ZnSSe based lasers), the spill-over of electrons and holes tend to be different. This will 
result in an internal electrostatic field which works to reduce the difference of the electron and hole 
distributions, leading to the modification of the band profile. 

An extreme case of this kind of 
injection-induced carrier confinement can 
be found in some laser structures where one 
of the conduction or valence band is 
completely flat or even slightly type-II. In 
such a case, it is still possible to get some 
carrier localization due to the electrostatic 
attraction generated by space charges as 
demonstrated in reference[l]. In some 
more general cases, even with structures 
that have type-I band alignment, the 
threshold carrier density for lasing may be 
very high and the carrier confinement is 
relatively poor, as in most wide bandgap II- 
VI compounds based lasers. It is still 
necessary to evaluate this injection-induced 
electrostatic confinement effect in gain/ 
threshold current calculations for device 
design and optimization. Also, the 
quantitative modeling of this effect can 

QW 

Barriers' 
'Claddings- 

X 

p(E) 

Fig.l SCH SQW structure and density of states. 

314 



help us gain more understanding about the influence on device performance of band offset ratio Qc= AEC/ 
(AEC+AEV), whose value for the time being is still very difficult to predict. In this paper we will present a 
comprehensive band filling model for a SCH SOW laser structure which including the spill-over carriers 
contribution. 

The numerical method is based on solving the coupled set of Poisson and Schroedinger equations. 
An accurate picture of carrier distributions can be obtained from this comprehensive model. Based on these 
we then developed a simplified approach for quick evaluation of this effect in gain/threshold-current 
calculation through band offset ratio adjustment. The controversy on band offset ratios can possibly be 
clarified in this way. As an example, the numerical simulation results on a ZnCdSe/ZnSSe based laser will 
be presented. 

II. BAND FILLING MODEL 

Flat quasi-Fermi levels across the hetero-junction between QW and barrier are assumed and the 
carrier densities in QW and barrier regions are obtained under Fermi-Dirac distributions. The two- 
dimensional carrier density distribution in the z-direction can be described by 

n(z) = kBT^\FeJ(z)\2xpcJxln(l+e(EfF-E'-')/(kBT)), 
i 

Piz) = kBT^\FKi(z)f x pv>, x /i. (1 + e&'-WW) ^ 
i 

where kB is Boltzmann constant and T is the temperature. EF
C and EF

V are the quasi-Fermi levels in 
conduction and valence band, respectively. Ee; and Eh; are the quantized energy levels, and pci and pv; are 
the density-of-states functions of electrons and holes of the i-th subband. Here we also include those 
unconfined (spill-over) states in the barrier with z-direction energy higher than the band off set AEC and 
AEV. The envelope functions Fei(z) of electrons and Fh;(z) of holes are described by Schroedinger 
equations: 

^-^+Ue{z)+ V(z) V ,.(Z) = Ee> ,-F ,(z), 

(      h1     J2 "N (?) 

\   lmhdz J 

For simplicity the effective masses n^ and mh are considered constant. Ue(z) and Uh(z) are the conduction 
and valence band-edge potentials. V(z) is the electrostatic potential generated by space charge due to the 
imbalance of electron and hole spatial distribution, which can be described by Poisson's equation: 

2 2 

^V(z) = e-[n(z)-p(z)] (3) 

The numerical solutions of the above problem are similar to those applied in HEMT (high electron mobility 
transistor) simulations, except now both electrons and holes need to be considered at the same time. The 
solution of Poisson's equation is based on a standard finite difference method. The solution of 
Schroedinger's equation follows the Numerov process as described by P. C. Chow[2]. The band profile and 
carrier distributions are then obtained by self-consistent iteration procedures. Based on the detailed 
simulations, a simplified approach has also been developed for easy incorporation into gain calculation. 
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in. SIMPLIFIED APPROACH FOR GAIN MODELING 

In practice, it is important to have a flexible modeling program available that allows to elucidate 
trends in a large parameter space rather than a sophisticated procedure that generates highly accurate data 
for specialized situations. The injection-induced confinement effect can be incorporated into gain modeling 
in a simplified way. The basic feature of this approach assumes that the injection induced space charge 
distribution is an interface dipole sheet, and this dipole sheet only changes the built-in potential of the 
hetero-junction. In other words, we use the band offset Qc as an adjustable parameter to fulfill the charge 
neutrality condition in both QW and barrier regions. Thus, an injection level dependent Q. which makes 
the carrier densities of electrons and holes in both QW and barrier almost equal, can be derived. Based on 
this, we can then calculate the gain spectrum and the radiative current including the influence of barrier 
recombination, in a self-consistent manner. The gain/current calculations are based on the model introduced 
in Ref.[3] except in our case we also include the barrier recombinations. 
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Fig.2 Band profile (without QW band gap) and carrier distribution, (a) Initial band diagram 
(b) Band diagram including injection induced carrier confinement   (c) Unbalanced carrier 
distribution of configuration (a), (d) balanced carrier distribution of configuration (b). 
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IV. RESULTS 

As an example, we consider a particular device structure (SCH SQW Cdo^Zno.sSe/ZnSo.oöSep 94 6.5 
nm QW, 100 nm barrier) to perform our numerical calculations. The injection levels is about 5x10 cm" 
which is close to the threshold carrier density measured in the experiments. The initial band configuration 
is shown in Fig.2a, as estimated from strain effect and common anion rule. The Q. value (refers to heavy 
hole band-edge) in this case is about 0.62. As we keep the total charge neutrality in the combined barrier 
and QW region, the locally unbalanced carrier distribution at this injection level is shown in Fig.2c, where 
in this particular case there are more electrons in QW and more holes in barriers. The modification of the 
band profile due to the locally unbalanced carrier distribution is obtained with the comprehensive model as 
shown in Fig.2b. The injection induced carrier confinement can be clearly observed when compared to the 
balance carrier distribution shown in Fig.2d. 

Next we use our simplified approach to evaluate gain/threshold current relation. Here Qc is changed 
to provide for the same quasi-Fermi levels as those in comprehensive model. Once this condition is satisfied, 
Qc = 0.53 is obtained and the carrier distribution are found to be very close to those calculated in the 
comprehensive model and the charge neutrality condition in both QW and barrier region are then satisfied 
as shown in Fig.3. The gain and threshold current density is as calculated for Q,, = 0.53 is plotted in Fig.4. 
The results are very close to the value of 500 A cm"2 which has been observed experimentally. 
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Fig. 4 Gain vs. radiative current density. 

V. CONCLUSIONS 

In summary, we have developed a comprehensive theoretical approach to analyze the injection 
induced carrier confinement and its influence on band filling process of SCH SQW lasers. A simplified 
approach has also been derived for quick evaluation. It has been shown that in modeling of ZnCdSe/ZnSSe 
based diode laser, the method can give satisfied explanation of observed results. 

Acknowledgment: Supported in part by ARPA/ONR though a subcontract with the University of Florida. 
A HEMT simulator (SPS) courtesy by Claus Fischer, Technical University Vienna, Austria. 
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A Self-Consistent Simulation of the Modulation Response of 
Quantnin°Wefl Lasers Including the Effect of Strain 
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University of Illinois.at 'Urbana-Champaign, Urbana, IL 61801 

A self-consistent simulation of a InGaAsP quantum-well laser is conducted to study the 
effect strain has on the modulation response. This study is an extension of the work done 
in * where the effect of carrier capture on the modulation response was studied. There are 
a number of factors determining the modulation response of a quantum well laser. One 
must consider the majority carrier drift outside the quantum well which produces the low 
frequency roll-off in the modulation response. In addition, minority carrier diffusion and 
ballistic emission into the quantum well need to be included. These transport processes 
are also affected by the carrier capture in the quantum well which sensitively influences 
the modulation response» The difficulty in the simulation lies in coupling the transport 
across the classical portion of the device (i.e. separate confinement and optical confinement 
regions) with the quantum well region where size quantization is considered. This was done 
by treating the classical regions with drift-diffusion and thermionic emission theories and 
coupling them to the quantum well regions by including the relaxation of injected carriers 
into bound states. 

Strain is incorporated into our existing model by approximating the nonparabolic valence 
bands as being anisotropic but parabolic parallel and perpendicular to the growth plane 2. 
By including the corresponding effective masses , % and raj], in the appropriate equations 
we present the effect strain has on the modulation response. We also study how the low 
frequency roll-off is affected as the capture and emission rates axe varied while including 
strain. 
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ELECTRON-HOLE IMBALANCE IN THE ACTIVE REGION OF QW 
LASERS, AND ITS EFFECT ON THE THRESHOLD CURRENT. 

G. A. Kosinovsky, M. Grupen, K. Hess 
Beckman Institute, University of Illinois, Urbana, IL 61801 

Abstract 

This study predicts that the electron/hole density ratio in thin quantum wells (QW's) of 
GaAs/AlGaAs laser diodes with intrinsic QW active regions (QW PIN lasers) can be signifi- 
cantly different from unity and depends on the doping density near the active region. These 
deviations from local charge neutrality can have significant effects on the laser threshold. 

I. INTRODUCTION. 
Macroscopic 1-D studies of threshold currents in QW lasers, based on the gain threshold 

condition and radiative rate equations, have frequently been performed (Ref. [1-4]). Later, 
efforts have been made to formulate self-consistent 2-D simulators for diode lasers (Ref[5- 
7]). These simulators are more precise for studying semiconductor lasers and obtaining 
quantitatively meaningful data on laser performance. Here we describe a particular aspect 
of the physics of threshold current in ideal lasers. 

In macroscopic 1-D investigations of the threshold current dependence on QW width 
(Ref[2-4]), the balance of mobile charge (n=p), i.e local charge neutrality, has been used 
as one of the constraints in the quantum well regions of PIN diodes. This is an accurate 
assumption for any sizable active region, since in normal device operation Poisson's equation 
does not permit a large build up of net charge. However, for the dimensions of quantum 
wells this is not strictly valid, since the local charge neutrality, is not necessarily preserved. 
It is difficult to incorporate such charge imbalance into rate equation based simulators with- 
out making arbitrary assumptions. We show here that the deviation from charge neutrality 
follows naturally in the solution of our self-consistent simulator MINILASE (Ref. [6,8]). We 
also show that this has important consequences for laser threshold currents. 

II. INVESTIGATION OF THE EFFECT OF CHARGE IMBALANCE USING 
A RATE EQUATION MODEL. 

We derive the effect on the predicted threshold current that is obtained from a simple rate 
equation simulator when the n/p ratio is varied, rather than set to 1. We have performed 
a simulation based on solving the laser gain equation and used the fact that spontaneous 
emission dominates the diode laser current value at the onset of stimulated emission (Ref [2- 
4]). We took the quantum well width to be 50 A, and the distributed loss factor of 5200m-1, 
which was taken for consistency with MINILASE simulations, described in more detail later. 
The relationship between threshold current and the n/p ratio is shown on Fig.l. We see 
that for this QW structure the nominal threshold current density increases monotonically 
with the increase in the n/p ratio. The reason for the variation of threshold current with 
the k=n/p ratio follows logically from the underlying physical model. Consider the following 
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equation for the rate of stimulated emission (rfk) at threshold: 

r?h = £ B(E?>\ Ey) • g{E?* - E?*) ■ (/.(jf, E?*) + fh(F?, E?**) ~ 1),        (1) 
i 

which is used to calculate the quasi-Fermi levels Ff1 and Ff1 at threshold. Here B is the 
Einstein coefficient, g is the reduced density of states (assuming no line broadening), fe, fh 
are the Fermi functions for electrons and holes respectively, and E%°'\ E^0'1 are the conduction 
and valence band levels (with respect to minimum of the z-th subband) contributing to lasing 
mode v0. Our calculations for a 50 A well show that (for the given range of k) i/0 is always 
the lowest allowable optical mode. Therefore, g is constant and has non-zero value only for 
i=l, B is constant, and fe, fh are functions of Ff1 and F*h only. Hence equation (1) reduces 
to 

r. = A-(f,(F?)+MF?)-l), (2) 

were A is a known factor. Since rfh is fully determined by the gain threshold value Gth - 
5200m-1 (see discussion above), fe{Ff) and fh(F*h) must vary by equal and opposite 
amounts as k varies. Because of the effective mass disparity in GaAs (and most other mate- 
rials), the slope of fe(Fc) at F*h is usually small, while the slope of fh(Fv) at Ff is large. For 
example, Ä « 3.7 • Ä for k=.6, and A » 44 • ßt for k=1.5. Therefore, as k=n/p in- 

creases, the increase in Ff is much greater than the decrease in F™. Since the calculation of 
the threshold current involves the summation of terms including fe(F*h, E?%) x fh{F^h, ££•') 
over all optical modes v and subbands i (see Ref.[l]), it is clear that the large increase in Ff- 
outweighs the much smaller decrease in F%h, and the threshold current will increase with k. 

1IL MINELASE SIMULATIONS. 
In order to see whether the n-p imbalance and its effects on threshold current are phys- 

ically meaningful we turned to the self-consistent 2-D simulator MINILASE, originally de- 
scribed in a previous paper (REF[6]). It consists primarily of the coupled discretized solution 
of Poisson's equation and the electron and hole current continuity equations, iterated with 
the photon mode rate equations. The 2-D Helmholtz equation is also solved to determine 
the transverse intensity profile of the lasing mode(s) (Ref[9]). 

The system of the continuity and Poisson's equations is solved by the Newton iteration 
on its Jacobian. The solution variables of this system are the electrostatic potential and 
the electron and hole quasi-Fermi levels. In this formalism, there is no rigid local charge 
neutrality constraint. The physical charge neutrality constraint is globally enforced through 
Poisson's equation. Since the original publication (Ref[6]), one of the key changes made has 
been the addition of the Schroedinger Equation for the QW active region, solved iteratively 
with the continuity-Poisson Newton system. Considering the true quantum nature of the 
active region, this addition was critical for investigation of any physical effects related to the 
electronic properties of the active region, notably in our case, the charge distribution and 
the radiative recombination. For more details see Ref. [8] 

The structure considered for our example is the quasi-one dimensional buried Separate 
Confinement Heterostructure (SCH) laser. This structure has a total width of 3//m and 
has symmetric material structure. There is a 50A GaAs QW active region in the middle, 
then 975Ä AlOAGa0.6As light guiding regions to each side, followed by 1.4/jm AZo.65Gao.35As 
regions bounded by electrodes. The doping profiles on this structure were varied in order 
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to achieve the n-p imbalance and investigate the resulting effects. We investigated three 
different structures. Structure A had the 1.4^m region under the top (bias) electrode p- 
doped at 5.0xl018cm~3 and the 1.4/xm region above the bottom (ground) electrode n-doped 
at 5.0xl018cm~3. The waveguide region was kept intrinsic. Structure B had the top 1.4//m 
region and the adjacent half of the waveguide region p-doped at 3.0xl018cm-3, while the 
bottom 1.4/um region was n-doped at 2.0xl018cm~3. The bottom half of the waveguide 
region and the active region were kept intrinsic. Structure C had the top 1.4^m region p- 
doped at 3.0 x 1018cm~3, while the bottom lAfixn region and the bottom half of the waveguide 
region was n-doped at 3.0xl018cm~3. The top half of the waveguide region and the active 
region were kept intrinsic. The doping concentrations were chosen not only to optimize the 
n-p imbalance in structures B and C, but also to achieve approximate equality of the gain 
threshold (loss factor) among the three structures. Table I shows the results. 

Notice that the threshold current versus k=n/p ratio dependence for these structures 
follows qualitatively the trend suggested by the simplified calculation that led to Fig.l. 
Quantitatively, there is about a 25% difference between the threshold current values obtained 
from MINILASE and listed in Table I and the corresponding points of Fig.l. This difference 
is acceptable, considering the simplicity of the rate equation model and, in fact, underscores 
the importance of the self-consistent simulators for accurate quantitative analysis. 

Comparing the MINILASE data of Table I for different structures, we note that the 
lasing threshold current difference between structure B (k=0.66) and structure C (k=1.47) 
is a very considerable 49.4%. More importantly, we note the difference between structure 
A, representing a "conventional" PIN laser with n-p neutrality preserved, and structure B, 
where the heavy p-doping up to the quantum well results in a much higher concentration 
of holes than electrons in the well. We can see that decreasing the n/p ratio from 1 to 0.66 
results in a 15.6% lowering of the threshold current value, which is a significant improvement. 

IV. CONCLUSION. 
We have shown that, due to a large hole-electron effective mass difference in GaAs, the 

lowering of the electron concentration in the quantum well relative to that of the holes 
improves laser threshold performance. This lowering may be achieved by appropriate mod- 
ulation doping. 

We acknowledge financial support from the National Science Foundation through NCCE 
and from the Office of Naval Research. 
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A NUMERICAL MODEL FOR COMPUTING THE EMISSION SPECTRUM 
IN TIME-RESOLVED PHOTOLUMINESCENCE EXPERIMENTS 
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Abstract 

A detailed numerical model is presented for computing the luminescence spectrum in a 
semiconductor layer which properly accounts for the effects of photon recycling. The resulting 
model is incorporated into a 1-D drift-diffusion simulation package, and used to simulate time- 
resolved photoluminescence (TRPL) experiments on AlGaAs/GaAs/AlGaAs double heterostrucrures 
in order to extract carrier recombination and transport information. Results of initial simulations are 
compared with measured spectra to verify the accuracy of the model. 

I. INTRODUCTION 

A common method for determining minority carrier lifetimes in compound semiconductors 
is time-resolved photoluminescence (TRPL), which measures the decay of photoluminescence 
intensity in response to pulsed laser excitation. The effects of re-absorption of photons emitted via 
radiative recombination (commonly referred to as "photon recycling") have been shown to 
significantly affect the measured lifetime in direct-gap semiconductors such as GaAs when radiative 
recombination is dominant or nearly dominant [1]. In order to permit the investigation of the 
physical processes underlying the experimental technique, a detailed numerical model for the 
emission intensity has been incorporated into a complete 1-D numerical semiconductor simulation 
package developed at Purdue University. Simulations of AlGaAs/GaAs/AlGaAs double 
heterostrucrures (DHs) are performed in order to explore the sensitivity of the measurement to 
various device and material parameters. 

Luminescence Intensity (arb. units) 
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Fig. 1: Experimental time-resolved photoluminescence spectrum of a 10 um DH. 

Because the near-bandedge absorption coefficient increases with photon energy, self- 
absorption will shift the externally observed emission peak towards lower energies. Thus, as carriers 
diffuse away from the front surface after the excitation pulse, an increasing fraction of the higher- 
energy portion of the luminescence will be reabsorbed, resulting in a red shift of the observed 
spectrum with time. Such an effect has been observed experimentally in AlGaAs/GaAs/AlGaAs 
double heterostrucrures (Fig. 1), and simulation results predict similar behavior. Although TRPL is 
typically used to extract minority carrier lifetimes, the temporal behavior of the peak energy can 
provide information about the minority carrier diffusivity as well. Thus, an accurate numerical model 
for TRPL can provide insight into both carrier recombination and transport. 
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II. NUMERICAL APPROACH 

A. Solution of Semiconductor Equations 
A one-dimensional finite difference/ finite box discretization technique is applied to the self- 

consistent solution of the Poisson equation and the electron and hole current continuity equations. 
Newton-Raphson iteration is employed to solve the resulting set of coupled nonlinear partial 
differential equations for the electrostatic potential as well as hole and electron concentrations at 
discrete mesh points within the modeled device. The self-absorption of photons emitted through 
radiative recombination ("photon recycling") is accounted for by calculation of an effective 
generation rate after the method of Kuriyama et. al. [2], which is introduced through the generation 
term in both current continuity equations [3]. 

B. Numerical Emission Intensity Model 
The expression for luminescence intensity begins with assuming rotational symmetry in a 

cylindrical geometry (r, <j), z) having infinite transverse dimensions; the device geometry is taken to 
vary along the z axis. Assuming infinite transverse dimensions will not affect the accuracy provided 
that the physical dimensions of the device being modeled are greater than the inverse absorption 
coefficient corresponding to the emitted photon energy. Photons are assumed to be emitted via 
radiative recombination throughout the 3-D cylindrical volume, and incident upon a line through the 
origin (r=Q, <j), z). A 1-D expression is obtained by assuming that there is no transverse variation in 
physical variables (i.e. p, n, and V), so that the photon path lengths may be written in terms of a 
longitudinal component along the z-axis. Considering a differential slab of thickness dz' emitting a 
flux of ®o = 0.5 B [n(z')p(z') - n^Jdz' towards the front surface (z' = 0), the fraction of photons 
incident on the interior surface in a differential solid angle dß is given by [4]: 

d«S> = ®0 exp(-ocz'/ cos6) dQ.12% = <J>0 exp(-az'/ cos0) sin8 d0 d<j> 12% (i) 

where 8 is the angle between the emission ray and the z-axis. The expression includes self-absorption 
through the exponential decay term, where a is the absorption coefficient. The rotational symmetry 
of the chosen geometry permits integration over the angular coordinate <|>, resulting in a factor of 2re. 
Integrating over the angle 8 by making the variable substitution u = a z'/ cos 0, equation 1 becomes: 

^incident = %<&'(   T^U = % E2((Xz') 
Jaa'   Li 

(2) 

where E2 is a member of the family of functions known as exponential integrals [5]. The equation 
differs from the simple exponential expression commonly used to describe absorption ($ = OQ e -az') 
because the majority of photons incident on the interior surface travel further than z' (since the 
emission is isotropic rather than collimated), resulting in greater absorption of the total flux. 

In order to provide the external PL spectrum due to radiative recombination everywhere 
within the device layer, the contribution from angles greater than the critical angle of reflection (8C) 
must be subtracted from equation 2, and the result multiplied by the polarization-averaged 
transmissivity of the interface (1 - R). Equation 2 must also be integrated over the entire device width 
(w), and integrated over energy [6]: 

^emission = J   dE tfE) j   dz'|n(z') p(z') - n?] {{1 - Rf) [E2(a(E) Z') - cosec E2(a(E) z'/cosBc)] 

+   X      (1"Rf) R^ Rf/2 tE^a(E) tkw + z'^ "COS0C E^aJ^> tkw + ^/cos0c)] 
k even, > 0 

+    X      (1 " Rf)Rbk + m ^ " 1)/2 tE^a(E) [<k+1>W " Z']) " COS°c E2(a(E) [(k+l)w - A /COSGJ J 
kodd,>0 

where 7(E) represents the normalized van Roosbroeck- Shockley representation of the spontaneous 
emission spectrum [2]. In the above equation, k is the number of reflections between interfaces 
before a photon either escapes or is reabsorbed. To completely account for all spontaneous emission 
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photons, an infinite number of reflections (k) is required. However, numerically only about 10 
reflections are required to obtain a reasonable degree of accuracy, depending on the geometry. 

C. Relation to Photon Recycling 
In 1-D, the generation rate due to band-to-band absorption of photons is given by: 

G(z) = -f 
Using this relation on equation 2, an effective photon recycling generation rate can be computed [6]: 

GF(z) = -O0-^E2(az) = aOoE^az) 

which is equivalent to the general expression presented by Kuriyama, et. al. [2]. Thus, the total 
emission (including emission from the front surface, and loss to the substrate) can be expressed in 
terms of the effective photon recycling generation rate: 

O emission 

./slab 

[Rradiative(z) - Gpr(z)] dz 

In our implementation, self absorption/ photon recycling is incorporated into the solution by 
computing the effective generation rate and adding it to the external optical generation rate in the 
current continuity equations. The emission spectrum is then computed as a post-processing step after 
each iteration so that it is self-consistent with the current solution. 

m. SIMULATION RESULTS 

In order to determine the quantitative effects of the minority carrier diffusivity on the 
observed time-dependent PL spectrum, a series of simulations were performed on a 10 u.m GaAs DH 
with a doping of n ~ 1.3 x 1017 cm-3. The absorption coefficients were obtained from transmission 
measurements on an identical series of structures with various GaAs layer thicknesses [7]. Fig. 2 
shows the calculated time-dependent PL spectrum for the structure assuming a bulk nonradiative 
lifetime of 1.3 u.s, a radiative recombination coefficient of 2.45xl0"10 cm3/s, and a minority hole 
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Fig. 2: Calculated time evolution of the 
PL spectrum of the 10 u.m GaAs DH. 

Fig. 3: Comparison of PL spectra 
for different values of hole mobility. 

mobility of 70 cm2/V/s. As can be seen, the calculated behavior is similar to the experimental results 
plotted in Fig. 1. The predicted external PL peak as a function of time is plotted in Fig. 3 for 
minority hole mobilities of 70, 150 and 290 cm2/V/s. As expected, the peak energy shifts much more 
quickly with larger values of the mobility, as diffusion moves the excess carriers further away from 
the front surface before they can recombine. 
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Initial simulations of the measurement in Fig. 1 did not predict quite as large of a red shift, 
even with very large values of minority hole mobility. In order to examine this in more detail, steady 
state PL was performed on the same structure. The results of the best fit are plotted in Fig. 4 (as 
"predicted PL"), along with the experimental data. As in the TRPL simulations, the predicted external 
PL peak is approximately 5 meV bluer than the experimental data. However, by assuming a flat 
excess carrier profile, the E2 integral expression may be integrated and used to remove the effects of 
self-absorption on the PL peak. Working backwards in such an approximate fashion results in a 
reasonable fit to the peak energy, also plotted in Fig. 4 (as "shifted experimental") along with the van 
Roosbroeck-Shockley (VRS) relation. The disagreement of the "shifted experimental data" curve 
with the VRS curve away from the peak suggests that either the absorption model or the emission 
expression may need further refinement. The lack of agreement to the lower energy side of the VRS 
curve, however, provides a possible explanation for the lack of agreement between the experimental 
and simulated PL curves, as that energy region overlaps the experimental PL peak. 
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Fig. 4:   Experimental steady-state PL of the 10 um DH.   The highlighted region shows where the 
absorption model accuracy leads to difficulty in predicting external PL. 

IV. SUMMARY 

A detailed numerical model for computing the emission spectrum in time-resolved 
photoluminescence experiments has been incorporated into a 1-D semiconductor simulation 
package. The calculation of the photoluminescence (PL) is performed self-consistently with 
calculation of the photon recycling generation rate, thereby automatically accounting for the effects 
of self-absorption on the externally observed emission spectrum. While detailed modeling of the 
decay of PL intensity provides information with regard to recombination processes, the temporal 
behavior of the PL spectrum depends on the minority carrier diffusivity as well. Thus, detailed 
modeling of the TRPL experiments can provide information about both minority carrier transport 
and recombination. 
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ABSTRACT 

We present a model for investigating filamentary structures observed in laser-triggered 
photoswitches. Our model simulates electrons and holes in two-dimensional cylindrical (r-z) geometry, 
with realistic electron and hole mobilities and field dependent impact ionization. Because of the large 
range of spatial and temporal scales to be resolved, we are using an explicit approach with fast, direct 
solution of the field equation. A flux limiting scheme is employed to avoid the time-step constraint due to 
the short time for resistive relaxation in the high density filament. Self-consistent filament propagation 
with speeds greater than the carrier drift velocity are observed in agreement with experiments. 

I. INTRODUCTION 

Laser-triggered solid-state switches operating at high fields have promising applications to fast 
pulse-power technology, to microwave generation, and may play an important role in impulse radar. 
Experiments with semi-insulating GaAs switches have shown exceptionally fast low-jitter operation in the 
high-gain regime, where the laser trigger energy is small compared to the switched electrical energy; see 
e.g. [1]. Connected with this efficient high-gain operation is the experimental observation of filamentary 
structures, which are suspected of carrying the bulk of the device current [2]. An understanding and 
characterization of these filaments is important for improving device performance and lifetime, and is the 
primary goal of our simulations. 

Our model simulates electrons and holes in two-dimensional cylindrical (r-z) geometry. The 
continuity equation for each species s, with density ns, is advanced in time with the particle flux 
expressed through a drift-diffusion type relation: 

dt 
= -V*(nsus) + Zas'\us'\ns 

e 
Realistic coefficients for mobility ßs and impact ionization as are included, both non-linearly dependent 
on the electric field. For the time and space scales of interest, both diffusion and recombination are 
unimportant, but could be easily included. In fact, the physical diffusion would be small relative to 
numerical diffusion. The electrostatic field is found from the Poisson equation (in CGS units), 

V20 = -—ZWs E = -VO 

where e is the crystal dielectric (assumed to be a constant), and the charge of a species is qs (-e and +e for 
electrons and holes respectively). 

Our strategy for numerical solution of this model is determined by the necessary time and space 
scales that must be resolved. Experimentally, these filaments are observed to have a radius on the order of 
tens of microns, thus we anticipate a typical cell size Ar~Az<\\xm. The switches are typically one to 
several millimeters in dimension, hence our system sizes will be many hundreds of zones on a side and 
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total number of grid cells A^105-106. The relevant time scale to be resolved is the ionization time, 
At<(uayl=®.5 ps. Switching times are of the order of 100 ps -1 ns, so we can anticipate several thousand 
cycles necessary for a simulation. 

II. NUMERICAL IMPLEMENTATION 

Apart from accuracy, ie. properly resolving the phenomena of interest, there are stability restrictions 
on the time step, determined by the choice of numerical algorithms. The Courant limit on the continuity 
equation requires that the flow not transit a cell in less than one time step (similar arguments would lead 
to a time step restriction for explicit diffusion). For the spatial zoning typically employed in these 
simulations, however, neither of these conditions limits the time step beyond what is required for 
resolving the phenomena of interest. A more limiting constraint is due to the resistive relaxation time. A 
region of space charge tries to relax under the action of its self-consistent electrostatic field; if the time 
step is too large, the motion over-compensates generating an oppositely directed field of larger 
magnitude. The stability requirement for explicit differencing is that the resistive decay time be resolved, 

Af <T, Tr = 
4xeZnsßs 

For intrinsic GaAs at 300 K (/i-5.3xl03 cm2/V-s), the resistive decay time is approximately 
Tr=(1300 s/cnr3)/«e. Because of nonlinear mobilities, At > xr may be acceptable due to nonlinear 
saturation of the unstable oscillations. However, in the high density, low-field region of the filament this 
limit can be a serious constraint. Typical carrier densities in the filament are found to be n=1017- 
1018 cm-3, and so the resistive decay time is very small, vclO fs. 

Typical semiconductor device simulation is concerned with steady state behavior and solution 
schemes use implicit methods, where all the terms on the right-hand side of the continuity equation are 
written at the advanced time. This requires the solution of large block matrix systems, which are iterated 
due to non-linearities in the equations. These methods are robust and efficient at finding final steady 
states, but excessively costly for our application. An alternative is to treat only the most troublesome term 
by using the advanced electric field to define the drift velocity; substituting into the Poisson equation 
determines the field equation for a non-iterative scheme. However, this non-separable field equation still 
precludes the use of very efficient rapid-elliptic-solvers, which are the preferred solution method because 
of the large system size and necessary number of cycles. 

We have implemented a flux limiting scheme which still allows use of a direct, rapid solver for the 
Poisson equation. The drift term is defined by limiting the velocity compared to a simple explicit 
definition, 

<l = n's -ArVo Ss.  
e (1 + Af/Tr) 

/i'=n" + AfI< 

where superscripts denote time level and the primed density on the right hand side includes other terms 
advanced explicitly in time. In regions where the resistive decay time is well resolved (low density, low 
mobility), At«rr, the flux takes on its usual value. In regions where Ar»Tr, (high density, high 
mobility) this flux limiting ensures that only enough density moves to shield out electric field 
fluctuations. 

Currently, spatial differencing of the transport is fully upwind; with the diffusion neglected, this is 
equivalent to Scharfetter-Gummel [3] differencing in the (appropriate) high field limit. The problem 
domain is restricted to be "rectangular", ie. 0<z<Zmax and 0<r<Rmax- The zoning is logical rectilinear, 
but can be variable in space, specified at problem set up. We have implemented two choices for the field 
solution, a fast Fourier transform method (FFT) and a cyclic reduction (CR) package. Although restricted 
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to uniforai zoning in the z direction, the FFT package is substantially faster on vector machines like the 
CRAY Y-MP. The left and right boundaries for z are electrodes, and so defined to be equipotential 
surfaces. The system potential may be fixed or determined by an external circuit At r=0, the radial 
electric field Er must vanish in the absence of a line charge on axis; similarly Er =0 at r=Rmax to 
approximate a transition to plane parallel equipotential surfaces. 

HL REPRESENTATIVE RESULTS 

To demonstrate the utility of our model, we present representative results from simulations of 
filament propagation. The system is 0<z<Zmax=256 |im, and 0<r<Rmax =100 |im. Zoning in the z- 
direction is constant, Az =0.50 um; there are 51 radial zones, with Ar=0.50 u.m at the axis and 
monotonically increasing to the radial boundary. This small system size and coarse zoning was picked to 
allow a calculation with small enough time step to avoid instability without flux limiting. Material 
parameters are typical for GaAs, except that the mobility model used here is monotonic to avoid 
complications from NDR and Gunn domain formation. A uniform background of electrons and holes 
representing the photo-generated carriers is initialized with a density of no =lxl014 cm"3. To initiate the 
filament, a high density needle is initialized at the left hand side of the system, with radius 10 |xm, length 
60 urn, and density lxlO17 cm"3. The system is initially charge neutral, so that at time i=0, the electric 
field is uniform with Eo=10Q kV/cm (negative z-direction); the system potential is fixed in time. In the 
first few picoseconds of the simulation, the electric field is excluded from the needle with a large 
enhancement developing at the tip, which eventually breaks down. The filament then propagates, with the 
density and tip shape determined self-consistently. A contour plot of electron density at £=140 ps (Fig. la) 
clearly shows the initial perturbation (z<60 u.m), a transition region (60 u.m<z<80 u.m), and the 
propagating filament (z>80 urn); contours of potential are shown in Fig. lb. As the filament transits the 
device, the potential drop occurs over a smaller distance between filament head and anode increasing the 
field strength which leads to increasing filament radius and density. This qualitative effect of increasing 
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Fig. 1    Flux limited filament calculation at /=140 ps, showing (a) contours of electron density, and (b) contours of 
electric potential; time step is At=5.0x\0'^ s. 
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Fig. 3 Magnitude of electric field at filament head 
versus time: solid, At=2.5xl0"^ (no flux limit); 
dashed (flux limited) and dotted (no flux limit), 
At=5.0xWus. 

radius is missing in previous filament simulations which mocked up the field enhancement in one 
dimensional calculations and picked the filament radius as a parameter [4]. 

This calculation was performed with flux limiting and a time step of At=5.0xlQ~^ s. An otherwise 
identical calculation but without flux limiting is compared in Fig. 2as which shows the axial (r=0) profile 
of electron density ne at time t=l40 ps; unstable oscillations are obvious. The gross features of the two 
simulations are quite similar, except for a somewhat smaller propagation speed in the flux limited case. 
The calculation without flux limiting might be considered satisfactory, except that as the filament finally 
completes its transit across the system, instability terminates the calculation and prevents the subsequent 
determination of the switched current. A comparison of the previous two calculations with one using a 
time step At=2.5xl0~15 s and no flux limiting is presented in Fig. 2b, which shows the magnitude of the 
electric field at the filament head versus time. 

* This work was supported by the U. S. Department of Energy at Lawrence Livermore National 
Laboratory under Contract W-74Q5-Eng-48. 
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