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Director's Foreword 

The results of numerous published studies, both within and 
outside of the psychophysiological detection of deception (PDD) 
literature, are based on observation groups which are too small 
to provide results that are representative of the general 
population.  Such studies are described as having low or 
insufficient statistical power.  These publications not only 
represent a misuse of potentially useful resources, but may lead 
to unjustified, if not erroneous, conclusions.  Among the 
potential reasons for the prevalence of such studies in the 
literature are the limited awareness of statistical power 
analysis, and difficulty associated with the calculation of 
statistical power. 

This manuscript is the first of several computational guides 
to statistical power analysis to be developed at the Institute. 
It is designed to assist the investigator in designing, and 
understanding the analysis of, fixed effects in balanced 
factorial analysis of variance statistical designs.  Future 
guides will address statistical power calculation for the 
commonly used student-t  and chi-square inferential statistics. 
This and future documents should assist others, as they have the 
DoDPI faculty, in both the design and evaluation of PDD 
investigations. 

t^z^scJ^r- 
/John R. Schwartz y^j 
Acting Director 1/ 
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Abstract 

DOLLINS, A. B. A computational guide to power analysis of fixed 
effects in balanced analysis of variance designs, September 
1995, Report No. DoDPI95-R-0003.  Department of Defense 
Polygraph Institute, Ft. McClellan, AL  36205.--This manuscript 
provides a step-by-step guide to statistical power calculation 
for the fixed effects of analysis of variance (ANOVA) designs 
with an equal number of observations in each cell.  A brief 
history of ANOVA hypothesis testing theory is included to 
explain why power calculation is important and how the results 
can be used.  The relationship between lambda (X), the 
noncentrality parameter used to calculate power in the ANOVA, 
and Cohen's (1988) measure of effect size is provided. 
Algorithms are provided for power calculation and for conversion 
between X, Cohen's measure of effect size, and phi--the 
parameter used in many tables of the noncentral F distribution. 
The appendices contain power calculation examples for the main 
and interaction effects of 2 x 3 x 3 between- and within- 
subjects designs. 

Key Words:  Computation guide, analysis of variance (ANOVA), 
statistical power, lambda (X), alpha (a), beta (ß), effect size, 
algorithm. 
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Executive Summary 

DOLLINS, A. B.  A computational guide to power analysis of fixed 
effects in balanced analysis of variance designs. September 
1995, Report No. DoDPI95-R-0003.  Department of Defense 
Polygraph Institute, Ft. McClellan, AL  36205. 

The power of a statistical test is the probability that the 
test will correctly reject the null hypothesis.  Statistical 
power is commonly used to calculate the number of observations 
necessary to yield statistically significant results or to 
calculate the probability that a statistically significant 
effect would have been found if one existed.  The power of a 
statistical test should not be confused with the significance of 
a statistical test--which is the probability that a true null 
hypothesis is falsely rejected.  It is possible to obtain 
statistically significant effects with low or high power.  Most 
text books concerning statistics describe power calculation 
procedures, but they are usually brief, sometimes difficult to 
understand, and occasionally misleading.  This manuscript is an 
attempt to provide a clear, easy to understand, step-by-step 
guide to the calculation of statistical power for fixed effects 
of analysis of variance (ANOVA) designs with an equal number of 
observations in each cell.  A brief history of ANOVA hypothesis 
testing theory is presented to explain why power calculation is 
important and how its results can be used.  The confusing issue 
of whether a hypothesis may only be rejected, versus rejected or 
accepted, is explained.  The relationship between lambda (X), the 
noncentrality parameter used to calculate power in the ANOVA, 
and Cohen's (1988) measure of effect size is provided. 
Algorithms are provided for power calculation and for conversion 
between X, Cohen's measure of effect size, and phi--the 
parameter used in many tables of the noncentral F distribution. 
The appendices contain power calculation examples for the main 
and interaction effects of 2 x 3 x 3 between- and within- 
subjects designs. 
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Scheffe (1959, p. 3) roughly defines the analysis of 
variance (ANOVA) as "a statistical technique for analyzing 
measurements depending on several kinds of effects operating 
simultaneously, to decide which kinds#of effects are important 
and to estimate the effects."  Scheffe (1959, p. 3) attributes 
the development of ANOVA techniques chiefly to R. A. Fisher 
(1918, 1935), who was attempting to address agricultural 
rather than psychological research. 

In practice, the ANOVA is a set of procedures for 
calculating the probability that a particular set of 
observations could have occurred by chance (i.e., randomly). 
Thus, a hypothesis may be rejected, with some degree of 
confidence, that a similar set of observations would not occur 
by chance.  The hypothesis tested is usually the null hypothesis 
that two or more means (dependent variables), observed during 
two or more experimental manipulations (independent variables) 
are equal.  This hypothesis may only be rejected (i.e., the 
groups of values are not equal) based on the ANOVA of the 
observed values.  It is important to note that failure to reject 
a hypothesis does not, according to Fisherian logic, indicate 
acceptance of the hypothesis (Fisher, 1966, p. 16).  (Cohen 
[1990] argues that this is a flaw in Fisherian logic because the 
null hypothesis is always false in the real world - given a 
large enough sample size.)  If the probability that the observed 
values could have occurred by chance is less than a preset 
probability level (i.e., referred to as the significance 
criterion or alpha [a]), the null hypothesis is rejected. 

Neyman and Pearson (1928a, 1928b) proposed that the 
specification of an alternative hypothesis be added to the 
ANOVA.  (This concept was, according to Cohen [1990, p. 13 07], 
violently opposed by Fisher.)  Inclusion of an alternative 
hypothesis, to be accepted if the null hypothesis was rejected, 
revolutionized the decision process associated with the ANOVA. 
Now the ANOVA could be used to both support and reject 
hypotheses.  Including an alternative hypothesis, with an 
associated effect size, allows the calculation of the 
probability that the null hypothesis is not rejected when it is 
false, as well as the probability of rejecting the null 
hypothesis, given that the alternative hypothesis is true-- 
referred to as beta (ß)   or Type II error.  Calculation of ß 
allows calculation of its compliment (i.e., 1  -  ß),   power, the 
probability that the null hypothesis is correctly rejected.  The 
probability that the null hypothesis will be rejected when it is 
true, alpha (a), is referred to as the Type I error rate. 

The number of observations necessary to support a hypothesis 
can thus be calculated--given the desired a  and ß  probabilities 
and the magnitude of the difference between the null and 
alternate hypotheses.  The power of an ANOVA test can also be 
calculated--given the desired a  level, the number of 



observations, and the magnitude of the difference between the 
null and alternate hypotheses.  Power analysis is primarily used 
to determine the probability that a statistically significant 
difference will be obtained, given a specified difference among 
the observations, and a specified number of observations; or the 
probability that a statistically significant effect would have 
been obtained (where none is found) if one had existed.   While 
it is possible to calculate and use the parameters necessary to 
support a hypothesis with a relatively high degree of confidence 
it is, apparently, rarely done.  This is documented by the 
relatively low power (< .60) of the majority of studies, in 
numerous research fields, to detect small and medium effects 
(Bones, 1972; Brewer 1972; Brewer & Owne, 1972; Brown & Hale, 
1992; Chase & Tucker, 1975; Chase & Chase, 1976; Chase & Barnum, 
1976; Christensen & Christensen, 1977; Cohen, 1962; Crane, 1976; 
Daly & Hexamer, 1983; Fagley, 1985; Frieman, Chalmers, Smith, & 
Kuebler, 1978; Haase, 1974; Haase, Waechter, Solomon, 1982; 
Hall, 1982; Jones & Brewer, 1972; Julnes & Mohr, 1989; 
Kosciulek, 1993; Kosciulek & Szymanski, 1993; Kroll & Chase, 
1975; Orme & Combs-Orme, 1986; Orme & Tolman, 1986; Ottenbacher, 
1982; Penick & Brewer, 1972; Rossi, 1990; Rothpearl, Mohs, & 
Davis, 1981; Sawyer & Ball, 1981; Sedlmeier & Gigerenzer, 1989; 
Wolley, 1983; Wooley & Dawson, 1983).  According to S. E. Edgell 
(personal communication, August 14, 1995) the main problem with 
low power is that the researcher wastes time by running studies 
that have little chance of finding the result desired. 

Perhaps one of .the-'reasons that the power of F ratios are . 
not calculated or reported more frequently is the difficulty 
associated with power calculations.  Calculating the power of F 
ratios in ANOVA designs can be difficult, particularly for 
designs with more than one factor and/or repeated factors, 
because the majority of the calculations must be completed by 
hand.  The most complete text on the topic of power analysis is 
Jacob Cohen's Statistical Power Analysis for the Behavioral 
Sciences (1988)--which addresses power calculation for most 
commonly used parametric and non-parametric statistics. 
Unfortunately, Cohen's (1988) calculations for the ANOVA (pp. 
273-406, 550-551) are appropriate for one-way ANOVA designs but 
underestimate the power and overestimate the sample sizes of 
higher level designs (Koele, 1982).  (Note:  Koele was referring 
to the calculations described in the 1977 edition of Cohen's 
book - which remain the same in the more current 1988 version.) 
As can be seen in Appendices B and C, this is true for between- 
subject s designs, but the reverse is true for within-subjects 
designs.  Cohen (1988) does not describe power calculations for 
repeated measure ANOVA designs in any detail, but suggestions 
may be found elsewhere (Bavry, 1991, pp. 63-76; Davidson, 1972, 
p. 448; Koele, 1982; Kraemer & Thiemann, 1987, pp. 45-52; 
Lipsey, 1990, pp. 79-84; Winer, 1971, p. 516). 



Cohen (1988) does, however, note several important 
observations concerning power analysis.  Statistical 
significance levels have generally been set by convention to .05 
or .01 (Cowles & Davis, 1982).  No such convention exists for 
power levels, however, Cohen (1988, p. 56) suggests that the 
value of .80 be used when the investigator has no other basis 
for setting the desired power value.  Cohen (1988, pp. 284-288, 
3 55) further proposes that ANOVA effect sizes, for the 
behavioral sciences, be categorized into small (.10), medium 
(.25), and large (.40) for theoretical purposes.  Cohen (1988, 
pp. 364-367) also notes that it is possible to calculate power 
for separate effects of a complex factorial design 
independently.  This is somewhat analogous to the independent 
calculation of the effects in a complex factorial design. 

The following guide to calculating the power of fixed 
effects in balanced ANOVA design F tests is designed to 
summarize what can be a very confusing process.  The works of 
Bavry (1991), Borenstein and Cohen (1988), Cohen (1988), Koele 
(1982), and Winer (1971) were relied upon most heavily during 
the development of this guide.  It should be noted that the 
processes described herein are based primarily on statistical 
theory rather than empirical evidence.  Monte Carlo studies of 
the statistical power of ANOVA designs have, however, been 
reported (Cole, Maxwell, Arvey, & Salas, 1994; Cornell, Young, 
Seaman, & Kirk, 1992; Keselman, Rogan, Mendoze, & Breen, 1980; 
Klockars & Hancock, 1992).  The description below pertains only 
to power analysis of a complex fixed effect between-^- and within- 
subjects factorial ANOVA designs with an equal number'of 
observations in each cell (Cohen's, 1988, case 2).  Adjustments 
for an unequal number of observations in each cell are described 
by Cohen. 

Power Calculation 

To calculate the power of the F ratio of a complex fixed 
effect ANOVA design, it is necessary to know the:  significance 
criterion of the F ratio for which power is calculated (a); 
degrees of freedom of the numerator of the F ratio for which 
power is calculated; degrees of freedom of the denominator of 
the F ratio for which power is calculated; and, the 
noncentrality parameter associated with the F ratio.  As 
detailed below, the noncentrality parameter can be calculated 
using Cohen's effect size--f (1988).  If predicting the power 
of a repeated measure design using data from a between-subjects 
design, it is also necessary to calculate the (assumed constant) 
correlation between pairs of observations on the same element 
and factor level, as detailed below. 

According to Koele (1982), the power of a fixed effect 
ANOVA F test is the probability that (F > Fc given dfl, df2, 
lambda [X]).  Koele defines X as the noncentrality parameter; 



dfl and df2 as the numerator and denominator, respectively, 
degrees of freedom of the F ratio for which power is being 
calculated, and Fc as the critical F value (with dfl and df2 
degrees of freedom) that the F ratio must exceed at a given 
significance level.  It is distributed as a noncentral F 
distribution. 

Significance Criterion / Fc - Critical F Value 
Fc is the F ratio, associated with a given probability 

(a) level which the calculated F statistic must exceed to be 
significantly different from chance.  For instance, an observed 
F ratio with dfl = 3 and df2 = 20 must exceed Fc = 3.10 to be 
statistically significant at an a level of 0.05 and must 
exceed Fc = 4.94 to be statistically significant at an a 
level of 0.01.  This value can be calculated from the central F 
distribution given the a  level and the numerator and 
denominator degrees of freedom.  It can also be obtained from 
tables of the central F distribution given in most textbooks of 
statistical analyses (e.g. Winer, 1971; Keppel, 1991). 

Numerator Degrees of Freedom - dfl 
These are the degrees of freedom associated with the 

numerator of the F ratio for which power is calculated. 

Denominator Degrees of Freedom - df2 
These are the degrees of freedom associated with the 

denominator of the F ratio for which power is calculated. 

The Noncentralitv Parameter - X 
The noncentrality parameter is equal to the F statistic 

numerator sum of squares, with each term replaced by its 
expectation, divided by the within-cells error variance (i.e., 
the mean squares error term; Kendall & Stuart, 1966, p. 5; 
Scheffe, 1959, p. 39).  The noncentrality parameter, X is thus 
equal to the calculated F ratio times its numerator degrees of 
freedom.  For example, the X associated with F(2, 8) = 63.389 
would be 2 * 63.389 or 126.778, and the X associated with F(4, 
16) = 0.357 would be 4 * 0.357 or 1.427 (see Appendices A, B, 
and C for more examples). 

The Noncentral F Distribution 
Once Fc, dfl, df2, and X are determined, power 

calculation is completed by use of the noncentral F 
distribution.  Tables of this distribution are provided by 
Rotton and Schonemann (1978) , Tiku (1967) , and most textbooks on 
ANOVA.  Table powers are usually indexed by dfl, df2, and phi (0) 
rather than X.  According to Winer, Brown, and Michels 
(1991, p. 408) , X can be converted to <j>  using the 
following algorithm. 

<t>  = SQRT[X / (number of effect levels)] 



Laubscher (1960) describes a square root normal 
approximation of the noncentral F distribution (formula 6) which 
may be used to calculate the power of an F ratio using a hand 
calculator and tables of the central F and Z distributions. 
While both Cohen (1988, p. 550) and Laubscher (1960) describe a 
cube root normal approximation, Laubscher concluded that the 
square root approximation was slightly more accurate for the 
tested data set.  Cohen (1988, p. 550) comments that Laubscher's 
square root normal approximation of noncentral F "gave excellent 
agreement with exact value determinations given in the 
literature...except when n and f are small," but does not 
define small.  A somewhat simplified version of Cohen's 
adaptation of Laubscher's square root approximation of the 
probabilities given by the noncentral F distribution is: 

XI   =   (dfl  +  2   *   X)   /   (dfl   +  X) 
X2   =    (dfl   *   Fc)    /  df2 

Z   = 
SQRT[2   *    (dfl   +   X) -   XI]    -   SQRT[(2   *   df2   -   1)    *   X2] 

SQRT(X1   +   X2) 

Power >= 1 - [Probability of (Z)] 

Where: 
dfl = numerator degrees of freedom of the original F ratio. 
df2 = denominator degrees of freedom of the original F 

ratio. 
X = the non-centrality parameter. 

Fc = the. value of the critical F ratio given the original 
F ratio degrees of freedom and significance criterion. 

Z = A Z value, the probability of which may be determined 
using a table of proportions of area under the 
standard normal curve.  This probability is the 
probability of a Type II error (i.e., ß). 

The following computer programs and associated manuals were used 
in the preparation of this manuscript:  Statistical design 
analysis system (Bavry, in press); Stat-Power statistical 
design analysis system (Bavry, 1991);  and Statistical power 
analysis:  A computer program (Borenstein & Cohen, 1988).  A 
review of computer programs used to calculate power analyses may 
be found elsewhere (Goldstein, 1989) . 

Effect Size 

Calculating Effect Size 
Calculating the power of a completed F test is thus a 

relatively straightforward task given the significance 
criterion, F ratio degrees of freedom, and X.  As mentioned 
above, however, power analysis is primarily useful in predicting 
the number of observations needed to obtain a significant 



effect, if one exists, with a given power, or the probability 
that a statistically significant effect would have been obtained 
if one had existed.  In both cases, the F ratio necessary to 
predict X does not exist and must be estimated.  The 
discerning reader will realize that it may be difficult to 
estimate X on an a priori basis.  Several investigators 
have proposed ANOVA-based measures of effect size to assist in 
X estimation, as reviewed by Tatsuoka (1993).  Probably the 
most intuitive is Cohen's f, which is defined as the standard 
deviation of the effect means divided by the (common) within- 
cell standard deviation (Cohen, 1988, pp. 274-275).  While Cohen 
(1988, pp. 215-406) provides several examples of the standard 
deviation of the effect means calculations, a detailed 
explanation of the (common) within-cell standard deviation is 
not found.  Hedges (1981), however, demonstrated that the square 
root of the F ratio's within-cell mean square error term 
provides the best unbiased estimator of the within-cell standard 
deviation. Thus, the terminology of Cohen (1988) and Hedges 
(1981) are adapted as: 

Effect size (f) = SDm / SDe 
Where: 

f  = Cohen's ANOVA-based effect size (Cohen uses the letter 
f to indicate effect size - this should not be 
confused with the uppercase F which is used to denote 
the F ratio). 

SDm  = The standard deviation of the effect means. 
SDe   = The square root of the within-cell mean square 

error term. 

The effect size numerator (SDm) is calculated using one of 
three techniques depending on the type of factor (main effect 
vs. interaction) and the number of levels.  Calculation 
procedures for the effect size denominator (SDe) for a between- 
subject s ANOVA design differs from those for a within-subjects 
ANOVA design.  These are detailed below and numerical examples 
are provided in Appendix D.  Before proceeding with the 
examples, a short description of the notation used is necessary. 
The capital letter "M" is used to indicate the mean of a cell, 
lower case letters are used to indicate the factor, and arabic 
numbers are used to indicate the factor level.  A period will be 
used to indicate that a particular factor has been averaged. 
Thus: "Ma.." indicates the means associated with factor A; 
"Mai.." indicates the mean of factor A, level 1; "M.b." 
indicates the means associated with factor B; "M..c" indicates 
the means associated with factor C; "Mabc" indicates the cell 
means associated with the A x B x C interaction; and "M..." 
indicates the grand mean of all values in the data set.  For 
within-subject designs, the notation for specific observations 
follows the same pattern where: "Mai..si" indicates the average 
of subject l's scores over level 1 of factor A and "M..c4s3" 



indicates the average of subject 3's scores over level 4 of 
factor C. 

The following examples are for an A (2 levels) x B (3 
levels) x C (4 levels) design with 5 observations per cell.  The 
SDm is calculated in the same manner for both the within- and 
between-subjects designs.  The same SDe term is used to 
calculate the effect size of each factor in a between-subject 
design - in the same manner as a common mean square error term 
is used when calculating the F ratio for each test of a between 
subjects design.   The SDe term is used to calculate the effect 
size of each factor in a within-subjects design varies, as does 
the mean square error term used when calculating the F ratios of 
a within-subjects design. 

The SDe term for the A (2 levels) x B (3 levels) x C (4 levels) 
example with 5 independent observations in each cell is: 

2   3   4   5 
E  E  E  E  (Xaibjcksl - Maibjck.)A2 

i=l j=l k=l 1=1 
SDe SQRT 

2*3*4*(5-1) 

Note:  A = exponentiation, thus XÄ2 = X*X. 

Or, more simply, the square root of the average cell variance: 

SDe Factor 
A 
B 

SQRT[(VARalblcl + VARa2blcl +...+ VARa2b3c4) / 24] 
SQRT[(VARalblcl + VARa2blcl +...+ VARa2b3c4) / 24] 
SQRT[(VARalblcl + VARa2blcl +...+ VARa2b3c4) / 24] 

A x B x C  SQRT[(VARalblcl + VARa2blcl +...+ VARa2b3c4) / 24] 

Where:  VAR is the variance. 

The general SDe term for a within-subjects ANOVA is the 
square root of the within-cell mean square error term used in 
the F ratio for which the power is being calculated.  A general 
example is given below and examples of specific calculations for 
the various effects may be found in Appendix D: 

2      5 
E [ ( E   (Max..sy - Max...)Ä2 ] 

x=l   y=l 
SDe = SQRT 

8 (i.e., the F ratio denominator df) 



(1) Effect size of a main effect with 2 levels is calculated 
using: 

f = 
0.5 * (maximum Ma. minimum Ma..) 

SDe 

Note:  The standard deviation of two values is 0.5 * the 
difference between the two values. 

(2) Effect size of a main effect with more than 2 levels is 
calculated using: 

N 
SQRT{ [ E  ( M..ex - M...)A2] / N } 

x=l 
f =    

SDe 

(3) Interaction effect sizes are the square root of the summed 
squares of the contribution of each cell to the effect divided 
by the number of cells.  The contribution of each cell's effect 
is calculated by removing the contributions of other factors to 
that cells effect (i.e., using the linear model).  The process 
is similar to that used to calculate the sum of squares for an F 
ratio interaction.  For example, the effect size for Cohen's 
(1988) example 8.6 (pp. 368-372) A(2 levels) x B(3 levels) 
interaction would be calculated as: . 

Xalbl. = Malbl. - Mai.. - M.bl. + M-: . . 
Xalb2. = Malb2. - Mai.. - M.b2. + M. . . 
Xalb3. = Malb3. - Mai.. - M.b3. + M. . . 
Xa2bl. = Ma2bl. - Ma2.. - M.bl. + M. . . 
Xa2b2. = Ma2b2. - Ma2.. - M.b2. + M. . . 
Xa2b3. = Ma2b3. - Ma2.. - M.b3. + M. . . 

f = 

2    3 
SQRT{  E [  E ( Xaxby A 2)] / (2*3)} 

x=l  y=l 

SDe 

Note:  Calculating the cell contributions can become quite 
complex.  A good guide for the factors and signs may be found in 
Kirk (1968).  The X???s used to calculate the SDm for Cohen's 
example 8.6 A x B x C effect would be: 

Xabc = Mabc - Mab. - Ma.c M.bc + Ma. + M.b. + M. M. 



Converting Cohen's Effect Size to X 

Cohen's (1988) ANOVA-based measure of effect size can be 
converted to X using the following algorithm. 

X = f^2 * (the total number of observations analyzed for 
the effect) 

The total number of observations analyzed for an effect is 
the number of observations used in calculating the error term 
and will differ for within- and between-subjects ANOVA designs. 
For example, the number of observations for the effects of an A 
(2 levels) x B (3 levels) x C (4 levels) ANOVA with 5 
observations per cell, analyzed as a within- or between-subjects 
design would be: 

Total Number of Total Number of 
Observations Observations 

Effect           Within-subjects Between-subjects 
A                  10 120 
B                   15 120 

AxB                  15 120 
C                   20 120 

AxC                  20 120 
BxC                 120 120 

AxBxC                120 120 

A Note Concerning.Cohen7 s .Description of ANOVA Power Calculation 
The power tables for ANOVA designs provided by Cohen (1988, 

pp. 273-406) require specification of:  a desired significance 
criterion; an effect size; the F ratio numerator degrees of 
freedom; and the sample size.  Cohen (1988, p. 365) indicates 
that it is necessary to use an adjusted samples size to cope 
with the discrepancy in denominator (error) degrees of freedom 
between one-way and higher-way ANOVA designs.  Cohen (1988, p. 
365) describes the calculation of sample size (n') as follows: 

denominator df 
sample size = n' =   + 1 

u + 1 

Where: 
u = the degrees of freedom associated with the 

numerator of the F ratio for which power is 
to be calculated, 

denominator df = total number of observations in the analysis 
minus the total number of cells in the 
analysis. 

An example calculation of n for each of the effects in a 
2(A) x 3(B) x 4(C) ANOVA with 5 observations per cell (Cohen's 
example 8.6, p. 368-372) would be: 



Total observations = 120 (i.e., 2*3*4*5) 
Total number of cells = 24 (i.e., 2*3*4) 
Denominator df = 120 - 24 = 96 

Numerator 
Effect df n 

A 1 49.0 
B 2 33.0 
C 3 25.0 

A x  B 2 33.0 
A x  C 3 25.0 
B  x  C 6 14.7 
x  B  x  C 6 14.7 

This adjustment works well for a one-way ANOVA design. 
However, as noted by Koele (1982), and illustrated in Appendices 
B and C, using Cohen's technique to calculate the power of 
effects in higher-way ANOVA designs will result in an 
underestimation of the power of between-subjects design effects 
and overestimation of the power of within-subjects effects.  It 
is thus suggested that Cohen's ANOVA-based effect size measure 
be converted to and/or from A and noncentral F distribution 
probabilities be used to estimate power.  This will ensure 
accurate results and is, in addition, less complicated 
computationally. 

Constant Correlation 
An assumption in repeated measures ANOVA is that there is a 

"constant" correlation between pairs of observations on the same 
subject under different conditions (Winer, 1971, p. 516).  Winer 
(1971, p. 516) and others (Lipsey, 1990, pp. 79-84; Davidson, 
1972, p. 448; Kraemer & Thiemann, 1987, pp. 45-52) suggest that 
SDe should be increased or decreased according to the constant 
correlation when attempting to estimate the SDe for a within- 
subjects ANOVA design using existing data from a study with a 
between-subjects ANOVA design (details below).  A problem 
occurs when deciding how to estimate the constant correlation. 
When comparing only two observations, the product-moment 
correlation may be used as an estimate of the constant 
correlation.  Dr. Bavry (personal communication) and others 
(Silver & Dunlap, 1987; Silver & Hollingsworth, 1989; Viana, 
1980, 1993) suggest that the best estimate of the constant 
correlation is calculated by averaging the Fisher's Z transform 
(Fisher, 1921) of all of the within-subjects between-cell 
correlations, then converting that Fisher's Z transform average 
back to a correlation coefficient.  An numerical example of 
constant correlation calculation for data presented in Appendix 
A is given in Appendix E.  Fisher's Z transform and its inverse 
are as follows (Silver & Dunlap, 1987). 

10 



Fisher's Z transform is:  Z = 0.5 * loge [(1+r)/(1-r)] 

The inverse transform is:  r=(X-l)/(X + l) 

Where: 
r = the correlation coefficient 
X = expe (2 * Z) 

Note:  The constant correlation correction is only necessary 
when attempting to estimate the SDe for a within-subjects ANOVA 
design using existing data from a study with a between-subjects 
ANOVA design. 

According to Winer (1971, p. 516), the following correction 
should be used to adjust estimates of SDe obtained from between- 
subjects designs when calculating power analyses of F ratios 
involving repeated measures.  The SDe of repeated measure 
interaction and main effects should be adjusted by multiplying 
SDe by (1-r), where r is the constant correlation for that 
effect.  The SDe of between groups effects which are composed of 
repeated measures on each member of a group should be adjusted 
by multiplying SDe by (1 + W * r), where W is the tested effect 
degrees of freedom and r is the constant correlation for that 
effect. 

Description of the Appendices 

Appendix A contains the- results of between-subjects and 
within-subjects ANOVA of data presented by Winer (1962, p. 324; 
1971, p. 546).  Appendices B and C contain the results of a 
power analysis of the data in Appendix A using the suggested 
noncentral F distribution and Cohen's tables, respectively.  A 
comparison of the results obtained using the two methods 
illustrates the tendency of Cohen's technique to overestimate 
between-subjects and underestimate within-subjects higher-way 
ANOVA effect powers.  Appendix D contains a numerical example of 
the calculations necessary to obtain the data presented in 
Appendices B and C.  Appendix E contains a numerical example of 
the use of Fisher's Z transform to calculate the average 
correlation of data in Appendix A.  Appendix F contains 
algorithms for converting values among $, X, and Cohen's 
effect size for ANOVA (f). 

11 



References 

Bavry, J. L. (1991).  Stat-Power statistical design analysis 
system.  Chicago, IL:  Scientific Software, Inc. 

Bavry, J. L. (in press).  Statistical design analysis system. 
Chicago, IL:  Scientific Software, Inc. 

Bones, J. (1972).  Statistical power analysis and geography. 
Professional Geographer, 24., 229-232. 

Borenstein, M., & Cohen, J. (1988).  Statistical power analysis: 
A computer program.  Hillsdale, NJ:  Lawrence Erlbaum 
Associates. 

Brewer, J. K. (1972).  On the power of statistical tests in the 
American educational research journal.  American Educatonal 
Research Journal, 9., 391-401. 

Brewer, J. K., & Owne, P. W. (1972).  A note on the power of 
statistical tests in the journal of educational measurement. 
Journal of Educational Measurement, 10, 71-74. 

Brown, J., & Hale, M. S. (1992).  The power of statistical 
studies in consultation-liaison psychiatry.  Psychosomatics, 
33, 437-443. 

Chase, L. J., & Tucker, R. K. (1975).  A power-analytic 
examination of •'contemporary communication research.  Speech 
Monographs, 42, 29-41. 

Chase, L. J., & Chase, R. B. (1976).  A statistical power 
analysis of applied psychological research.  Journal of 
Applied Psychology, 61, 234-237. 

Chase, L. J., & Barnum, S. J. (1976).  An assessment of 
quantitative research in mass communications.  Journalism 
Quarterly, 53, 308-311. 

Christensen, J. E., & Christensen, C. E. (1977).  Statistical 
power analysis of health, physical education, and recreation 
research.  Research Quarterly, 48, 204-208. 

Cohen, J. (1962).  The statistical power of abnormal-social 
psychological research:  A review.  Journal of Abnormal and 
Social Psychology, 65, 145-153. 

Cohen, J. (1977).   Statistical power analysis for the 
behavioral sciences (rev. ed.).  New York:  Academic Press. 

12 



Cohen, J. (1988). Statistical power analysis for the behavioral 
sciences (2nd ed.).  Hillsdale, NJ:  Lawrence Erlbaum 
Associates. 

Cohen, J. (1990).  Things I have learned (so far).  American 
Psychologist. 45, 1304-1312. 

Cole, D. A., Maxwell, S. E., Arvey, R., & Salas, E. (1994).  How 
the power of MANOVA can both increase and decrease as a 
function of the intercorrelations among dependent variables. 
Psychological Bulletin, 115, 465-474. 

Cornell, J. E., Young, D. M., Seaman, S. L., & Kirk, R. E. 
(1992) .  Power comparisons of eight tests for sphericity in 
repeated measures designs.  Journal of Educational 
Statistics, 17, 233-249. 

Cowles, M., & Davis, C. (1982). On the origins of the .05 level 
of statistical significance. American Psychologist, 37, 553- 
558. 

Crane, J. A. (1976).  The power of social intervention 
experiments to discriminate differences between experimental 
and control groups.  Social Service Review, 50, 224-242. 

Daly, J. A., & Hexamer, A. (1983).  Statistical power in 
research in English education.  Research in the Teaching of 
English, 17, 157-164. 

Davidson, M. L. (1972). Univariate versus multivariate tests in 
repeated-measures experiments.  Psychological Bulletin, 77, 
446-452. 

Fagley, N. S. (1985).  Applied statistical power analysis and 
the interpretation of non-significant results by research 
consumers.  Journal of Counseling Psychology, 32, 391-396. 

Fisher, R. A. (1918).  The correlation between relatives on the 
supposition of Mendelian inheritance.  Transactions of the 
Royal Society, Edinburgh, 52, 399-433. 

Fisher, R. A. (1921). On the probable error of a coefficient of 
correlation deduced from a small sample.  Metron, 1,   1-32. 

Fisher, R. A. (1935).  The design of experiments.  Edinburgh: 
Oliver & Boyd. 

Fisher, R. A. (1966). The design of experiments (8th ed.). New 
York:  Hafner Publishing. 

13 



Freiman, J. A., Chalmers, T. C., Smith, H. Jr., & Kuebler, R. R. 
(1978).  The importance of beta, the type II error and sample 
size in the design and interpretation of the randomized 
control trial:  Survey of 71 "negative trials".  The New 
England Journal of Medicine, 299, 690-694. 

Goldstein, R. (1989).  Power and sample size via MS/PC-DOS 
computers.  The American Statistician, 43, 253-260. 

Haase, R. F. (1974). Power analysis of research in counselor 
education.  Counselor Education and Supervision, 14, 124-132. 

Haase, R. F., Waechter, D. M., & Solomon, G. S. (1982).  How 
significant is a significant difference?  Average effect size 
of research in counseling psychology.  Journal of Counseling 
Psychology, 29, 58-65. 

Hall, J. C. (1982).  The other side of statistical significance: 
A review of type II errors in the Australian medical 
literature.  Australia and New Zealand Journal of Medicine, 
12, 7-9. 

Hedges, L. B. (1981).  Distribution theory for Glass's estimator 
of effect size and related estimators.  Journal of 
Educational Statistics, 6., 107-128. 

Jones, B. J., & Brewer, J. K. (1972).  An analysis of the power 
of statistical tests reported in the Research Quarterly.. 
Research Quarterly, 43, 23-30. " ' 

Julnes, G. Mohr, L. B. (1989).  Analysis of no-difference 
findings in evaluation research.  Evaluation Review, 13(6), 
628-655. 

Kendall, M. G., & Stuart, A. (1966).  The advanced theory of 
statistics (Vol. 3). London:  Griffin. 

Keppel, G. (1991).  Design and analysis, a researcher's handbook 
(3rd ed.).  Englewood Cliffs, NJ:  Prentice Hall. 

Keselman, H. J. , Rogan, J. C, Mendoza, J, L., & Breen, L. J. 
(1980).  Testing the validity conditions of repeated measures 
F tests.  Psychological Bulletin, 87, 479-481. 

Kirk, R. E. (1968). Experimental Design: Procedures for the 
behavioral sciences. Belmont, CA: Brooks/Cole Publishing 
Company. 

Klockars, A. J., & Hancock, G. R. (1992).  Power of recent 
multiple comparison procedures as applied to a complete set 
of planned orthogonal contrasts.  Psychological Bulletin, 
111, 505-510. 

14 



Koele, P. (1982).  Calculating power in analysis of variance. 
Psychological Bulletin, 92, 513-516. 

Kosciulek, J. F. (1993).  The statistical power of vocational 
evaluation research.  Vocational Evaluation and Work 
Adjustment Bulletin, 26, 142-145. 

Kosciulek, J. F., & Szymanski, E. M. (1993).  Statistical power 
analysis of rehabilitation counseling research. 
Rehabilitation Counseling Bulletin, 36, 212-219. 

Kraemer, H. C., & Thiemann, S. (1987).  How many subjects? 
Statistical power analysis in research. London:  Sage. 

Kroll, R. M., & Chase, L. J. (1975). Communication disorders: 
A power analytic assessment of recent research. Journal of 
Communication Disorders, 8., 237-247. 

Laubscher, N. F. (1960).  Normalizing the noncentral t and F 
distributions.  Annals of Mathematical Statistics, 31, 
1105-1112. 

Lipsey, M. W. (1990).  Design sensitivity,  Newbury Park, CA: 
Sage. 

Neyman, J., & Pearson, E. S. (1928a) .  On the use and 
interpretation of certain test criteria for purposes of 
statistical inference (Part'. I).  Biometrika, 20A, 175-240. 

Neyman, J., & Pearson, E. S. (1928b).  On the use and 
interpretation of certain test criteria for purposes of 
statistical inference (Part II).  Biometrika, 20A, 263-294. 

Orme, J. G., & Tolman, R. M. (1986).  The statistical power of a 
decade of social work education research.  Social Service 
Review, 60, 620-632. 

Orme, J. G., & Combs-Orme, T. D. (Fall / 1986). Statistical 
power and type II errors in social work research. Social 
Work Research & Abstracts, 22, 3-10. 

Ottenbacher, K. (1982).  Statistical power and research in 
occupational therapy.  Occupational Therapy Journal of 
Research, 2,   13-25. 

Penick, J. E., & Brewer, J. K. (1972).  The power of statistical 
tests in science teaching research.  Journal of Research in 
Science Teaching, 9,   377-381. 

15 



Rossi, J. S. (1990).  Statistical power of psychological 
research:  What have we gained in 2 0 years?  Journal of 
Consulting and Clinical Psychology, 58, 646-656. 

Rothpearl, A. B., Mohs, R. C., & Davis, K. L. (1981). 
Statistical power in biological psychiatry.  Psychiatry 
Research, 5, 257-266. 

Rotton, J., & Schonemann, P. H. (1978).  Power tables for 
analysis of variance.  Educational and Psychological 
Measurement, 38, 213-229. 

Sawyer, A. G., & Ball, A. D. (1981). Statistical power and 
effect size in marketing research. Journal of Marketing 
Research, 18, 275-290. 

Scheffe, H. (1959).  The analysis of variance. New York:  Wiley. 

Sedlmeier, P., & Gigerenzer, G. (1989).  Do studies of 
statistical power have an effect on the power of studies? 
Psychological Bulletin, 105, 309-316. 

Silver, N. C., & Dunlap, W. P. (1987).  Averaging correlation 
coefficients:  Should'Fisher's Z transform be used?  Journal 
of Applied Psychology, 72, 146-148. 

Silver, N. C., & Hollingsworth, S. C. (1989) A Fortran 77 
program for averaging correlation coefficients.  Behavior 
Research Methods, Instruments, and Computers, 21, 647-650. 

Tatsuoka, M. (1993).  Effect size.  In G. Keren & C. Lewis 
(Eds.), The handbook for data analysis in the behavioral 
sciences:  Methodological issues (pp. 461-479).  Hillsdale, 
NJ:  Lawrence Erlbaum Associates. 

Tiku, M. L. (1967).  Tables of the power of the F test.  Journal 
of the American Statistical Association, 62, 525-539. 

Viana, M. A. G. (1980). Statistical methods for summarizing 
independent correlational results. Journal of Educational 
Statistics, 5, 83-104. 

Viana, M. A. G. (1993).  On a criterion for combining 
correlational data.  Journal of Educational Statistics, 18, 
261-270. 

Winer, B. J. (1962). Statistical principles in experimental 
design.  New York:  McGraw-Hill. 

Winer, B. J. (1971). Statistical principles in experimental 
design (2nd ed.).  New York:  McGraw-Hill. 

16 



Winer, B. J., Brown, D. R., & Michels, K. M. (1991). 
Statistical principles in experimental design (3rd ed.).  New 
York:  McGraw-Hill. 

Woolley, T. W. (1983).  A comprehensive power-analytic 
investigation of research in medical education.  Journal of 
Medical Education, 58, 710-715. 

Woolley, T. W., & Dawson, G. 0. (1983).  A follow-up power 
analysis of the tests used in the journal of research in 
science teaching.  Journal of Research in Science Teaching, 
20, 673-681. 

17 



Appendix A 

Example Data and Analyses of Variance 

The Raw Data (Winer, 1962, p. 324, 1971, p. 546): 

Period       PI P2 

Dial 

Subject Noise 

1 Nl 

2 Nl 

3 Nl 

4 N2 

5 N2 

6 N2 

P3 

Dl D2 D3 Dl D2 D3 Dl D2 D3 

45 53 60 40 52 57 28 37 46 

35 41 50 30 37 47 25 32 41 
60 65 75 58 54 70 40 47 50 
50 48 61 25 34 51 16 23 35 
42 45 55 30 37 43 22 27 37 

56 60 77 40 39 57 31 29 46 

Results of the analysis of Winer's data (1962, p. 324; 1971, p. 546) as a 

2(NOISE-between) x 3(PERIOD-within) x 3(DIAL-within) ANOVA 

BETWEEN SUBJECTS 

SOURCE SS 
NOISE 468.167 

ERROR 2491.111 

WITHIN SUBJECTS 

SOURCE SS 

PERIOD 3722.333 

NOISE*PERIOD       333.000 
ERROR 234.889 

GREENHOUSE-GEISSER EPSILON: 

DIAL 2370.333 

NOISE*DIAL 50.333 

ERROR 105.556 

GREENHOUSE-GEISSER EPSILON: 

PERIOD*DIAL 10.667 
NOISE*PERIOD*DIAL   11.333 
ERROR 127.111 

GREENHOUSE-GEISSER EPSILON: 

DF 

1 

4 

DF 

2 

2 

8 

2 

2 

8 

4 

4 

16 

MS 

468.167 

622.778 

F 

0.752 

P 

0.435 

MS ER 
1861.167    63.389   0.000 

166.500     5.671   0.029 

'29.361 
0.6476     HUYNH-FELDT EPSILON: 

1185.167    89.823   0.000 

25.167     1.907   0.210 

13.194 

0.9171     HUYNH-FELDT EPSILON: 

2.667     0.336   0.850 

2.833     0.357   0.836 

7.944 
0.5134     HUYNH-FELDT EPSILON: 

G-G 

0.000 
0.057 

0.000 

0.215 

729 

716 

H-F 

0.00 

0.02 

.0000 

0.00 

0.21 

.0000 

0.85 
0.83 

1.0000 

Results of the analysis of Winer's data (1962, p. 324; 1971, p. 

2(NOISE-between) x 3(PERIOD-between) x 3(DIAL-between) ANOVA 

546) as a 

SOURCE SS DF MS F P 

NOISE 468.167 1 468.167 5.696 0.022 

PERIOD 3722.333 2 1861.167 22.646 0.000 

DIAL 2370.333 2 1185.167 14.421 0.000 

NOISE*PERIOD 333.000 2 166.500 2.026 0.147 

NOISE*DIAL 50.333 2 25.167 0.306 0.738 

PERIOD*DIAL 10.667 4 2.667 0.032 0.998 

NOISE*PERIOD*DIAL 11.333 4 2.833 0.034 0.998 

ERROR 2958.667 36 82.185 
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Appendix B 

Power Calculations using the noncentral F distribution 

POWER of Winer's (1962, p. 324; 1971, p. 546) 2(NOISE-between) x 
3(PERIOD-within) x 3(DIAL-within) ANOVA example using Bavry's 
Non-central Cumulative F Probability calculation. 

Factor 
df 

Numerator Denominator 

Non-central  Power 
Cumulative   (1 - ß) 
Probability 

(0) 

NOISE 1 4 0.752 0.896 0.104 + 
PERIOD 2 8 126.778 0.000 0.999 
NOISE*PERIOD 2 8 11.342 0.303 0.697 
DIAL 2 8 179.652 0.000 0.999 
NOISE*DIAL 2 8 3.815 0.714 0.286 + 
PERIOD*DIAL 4 16 1.343 0.893 0.107 + 
NOISE*PERIOD*DIAL 4 16 1.427 0.889 0.111 + 

POWER of Winer's (1962, p. 324; 1971, p. 546) 2(NOISE-between) x 
3(PERIOD-between) x 3(DIAL-between) ANOVA data using Bavry's 
Non-central Cumulative F Probability calculation. 

df Non-central Power 

Factor A Cumulative 

Probability 
(1 - ß) 

Numerator Denominator 

(ß) 

NOISE 1 36 5.697 0.358 0.642 

PERIOD 2 36 45.292 0.000 1.000 
DIAL 2 36 28.841 0.002 0.998 

NOISE*PERIOD 2 36 4.052 0.610 0.390 + 

NOISE*DIAL 2 36 0.612 0.905 0.095 + 

PERIOD*DIAL 4 36 0.130 0.944 0.056 + 

NOISE*PERIOD*DIAL 4 36 0.138 0.944 0.056 + 

+ These power values are given to illustrate the use of the cited formulae. 
They are not indicative of the power of the original F ratio because the 
original F ratio did not reach significance at the 0.05 level. 
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Appendix C 

Power Calculations using Cohen's tables and technique 

POWER of Winer's (1962, p. 324; 1971, p. 546) 2(NOISE-between) x 
3(PERIOD-within) x 3(DIAL-within) ANOVA example using Cohen's method. 

U n/S jroup n' SDm SDe f POWER 

NOISE 1 000 3 000 3 000 2.944 8.318 0 354 0.111 + 

PERIOD 2 000 6 000 6 000 8.302 3.129 2 653 0.999 

NOISE*PERIOD 2 000 6 000 6 000 2.483 3.129 0 794 0.705 + 

DIAL 2 000 6 000 6 000 6.625 2.097 3 159 0.999 

NOISE*DIAL 2 000 6 000 6 000 0.965 2.097 0 460 0.337 + 

PERIOD*DIAL 4 000 9 800 10 800 0.444 2.818 0 157 0.117 + 

NOISE*PERIOD*DIAL 4 000 9 800 10 800 0.458 2.818 0 .163 0.123 + 

POWER of Winer's (1962, p. 324; 1971, p. 546) 2(NOISE-between) x 
3(PERIOD-between) x 3(DIAL-between) ANOVA data using Cohen's method. 

u n/< jroup n' SDm SDe f POWER 

NOISE 1 000 27 000 19 000 2.944 9.065 0 324 0.573 

PERIOD 2 000 18 000 13 000 8.302 9.065 0 916 0.999 

DIAL 2 000 18 000 13 000 6.625 9.065 0 731 0.980 

NOISE*PERIOD 2 .000 9 000 13 000 2.483 9.065 0 274 0.293 + 

NOISE*DIAL 2 .000 9 000 13 000 0.965 9.065 0 106 0.078 + 

PERIOD*DIAL 4 .000 6 000 8 200 0.444 9.065 0 049 0.051 .+ 

NOISE*PERIOD*DIAL 4 .000 3 000 8 .200 0.458 9.065 0 051 0.053 + 

+ These power values are given to illustrate the use of the cited formulae. 
They are not indicative of the power of the original F ratio because the 
original F ratio did not reach significance at the 0.05 level. 
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Appendix D 

Numerical Examples of Power Calculation 

Calculation of SDe for the data from Winer's (1962, p. 324; 1971, p. 546) 

2x3x3 example analyzed as a 2(NOISE-between) x 3(PERIOD-between) x 
3(DIAL-between) design. 

158.3333 

144.0000 

158.3333 

201.3333 

86.3333 

133.0000 

63.0000 

58.3333 

20.3333 

49.3333 

63.0000 

129.3333 

58.3333 

6.3333 

49.3333 

57.0000 

9.3333 
34.3333 

Grand Average = 44.2777  Var=     82.1852 

SDe = SQRT(82.1852) = 9.0656 

N#P#D#S 

1 1 1 . Mn= 

1 1 2 . Mn= 
1 1 3 . Mn= 

1 2 1 . Mn= 
1 2 2 . Mn= 
1 2 3 . Mn= 

1 3 1 . Mn= 

1 3 2 . Mn= 

1 3 3 . Mn= 
2 1 1 . Mn= 

2 1 2 . Mn= 

2 1 3 . Mn= 

2 2 1 . Mn= 

2 2 2 . Mn= 

2 2 3 . Mn= 

2 3 1 . Mn= 

2 3 2 . Mn= 
2 3 3 . Mn= 

46 6667 Var 

53 0000 Var 
61 6667 Var 

42 6667 Var 

47 6667 Var 

58 0000 Var 

31 0000 Var 

38 6667 Var 

45 6667 Var 
49 3333 Var 

51 0000 Var 

64 3333 Var 

31 6667 Var 

36 6667 Var 

50 3333 Var 

23 0000 Var 

26 3333 Var 
39 3333 Var 

44 2777 Var 
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Power Calculation for NOISE Effect: 

Calculation of SDm for the NOISE effect: 

N#P#D#S# 

1 . . . 

Xi 

2.944 

-2.944 

Xi  =Mn... -M.. 

2.944 =47.222 44 

-2.944 =41.333 44. 
278 

278 

SUM 

Xi^2 

8.670 

8.670 

17.340 

Sum of Squares 

(Xi*2) * (Observations/average) 
234.083 

234.083 

SUM = 468.167 
2 

SDm =  Sqrt( E (Xi^2) / I) =  SQRT(17.340 / 2) 
i=l 

2.944 

Calculation of SDe for the NOISE effect: 

1 .    1 
1  . .    2 
1  . .    3 
2    . .   4 
2    . .    5 
2    . .    6 

Yj 
-0.778 
-9.667 
10.444 
-3.222 
-3.778 
7.000 

Yj =Mn..s -Mn... 
-0.778 46.444 47.222 

-9.667 37.556 47.222 

10.444 57.667 47.222 

-3.222 38.111 41.333 

-3.778 37.556 41.333 

7.000 48.333 41.333 

SUM 

Yj~2 

0.605 

93.444 
109.086 

10.383 

14.272 

49.000 

276.790 

Sum of Squares 

(YjA2) * (Observations/average) 

5.444 

841.000 

981.778 

93.444 

128.444 

441.000 

SUM =2491.111 

SDe =  Sqrt( E (YjA2) / denominator df) 

j=l 

SQRT(276.790 / 4) =  8.318 

COHEN 

Effect Size = 

Effect Size = 

Effect Size = 

u = 1.0 
n'= (4 / (1 H 

Effect power 

f =  SDm /  SDe 

f = 2.944 / 8.318 

0.354 

1)) +1=3 

= 0.111 

BAVRY 

X =  SSm  /  MSe 

X = 468.167 / (2491.111/4) 

X = 0.752 

DFm  =  1.0 

DFe  =  4.0 

Effect power = 0.104 

Note: Cohen's Denominator df = (6/2 - 1) * 2 
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Power Calculation for the PERIOD and NOISE*PERIOD Effects: 

Calculation of SDm for the PERIOD effect: 

N#P#D#S# Xi =M.p.. -M.... 

. 1 . . 10.055 54.333 44.278 

. 2 . . 0.222 44.500 44.278 

. 3 . . -10.278 34.000 44.278 

Xi 

10.055 

0.222 

-10.278 

SUM 

3 
SDm =  Sqrt( E (Xi*2) / I) = 

i=l 

Xi 2 

101.103 

0.049 

105.637 

206.789 

Sum of Squares 

(Xi*2) * (Observations/average) 

1819.854 

.882 

1901.466 

= 3722.202 

SQRT(206.789 / 3) 

SUM 

8.302 

Calculation of SDm for the NOISE*PERIOD effect: 

N#P#D#S# 

1 1 

1 2 

1 3 . 

2 1 

2 2 . 

2 3 

Xi 
-3 499 

2 000 

1 500 

3 500 

-1 999 
-1 499 

Xi  =Mnp.. -M.p.. -Mn... +M.... 

-3.4995 53.778 54.333 47.222 44.277 
2.0001 49.444 44.500 47.222 44.277 
1.5001 38.444 34.000 47.222 44.277 
3.5006 54.889 54.333 41.333 44.277 
-1.9997 39.556 44.500 41.333 44.277 
-1.4997 29.556 34.000 41.333 44.277 

Xi 2 

12.246 

4.000 

2.250 

12.254 

3.999 

2.249 

SUM = 36.999 

Sum of Squares 

(Xi*2) * (Observations/average) 

110.219 

36.004 

20.253 

110.288 

35.989 

20.242 

SUM = 332.9937 

SDm =  Sqrt( £ (Xi*2) / I) =  SQRT(36.999 / 6) 

i=l 

2.483 
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Calculation of SDe for the PERIOD and N0ISE*PER10D Effects: 

N#P#D#S# Yj = =Mnp.s -Mnp.. -Mn..s +Mn 
1 1 . 1 -0 .333 52.667 53.778 46.445 47 .222 
1 1 . 2 -2 .111 42.000 53.778 37.556 47 222 
1 1 . 3 2 444 66.667 53.778 57.667 47 222 
2 1 . 4  -■ 1 333 53.000 54.889 38.111 41 333 
2 1 . 5 -3 778 47.333 54.889 37.556 41 333 
2 1 . 6 2 445 64.333 54.889 48.333 41 333 
1 2 . 1 1 000 49.667 49.445 46.445 47 222 
1 2 . 2 -1 778 38.000 49.445 37.556 47 222 
1 2 . 3 0 778 60.667 49.445 57.667 47 222 
2 2 . 4 0 333 36.667 39.556 38.111 41 333 
2 2 . 5 0 889 36.667 39.556 37.556 41 333 
2 2 . 6 -1 222 45.333 39.556 48.333 41 333 
1 3 . 1 -0 667 37.000 38.445 46.445 47 222 
1 3 . 2 3 889 32.667 38.445 37.556 47 222 

1 3 . 3 -3 222 45.667 38.445 57.667 47 222 
2 3 . 4 -1 667 24.667 29.556 38.111 41 333 
2 3 . 5 2 889 28.667 29.556 37.556 41 333 
2 3 . 6 

Yj 
-0.333 

-2.111 
2.444 

1.333 

-3.778 

2.445 

1.000 

-1.778 

0.778 

0.333 

0.889 
-1.222 

-0.667 

3.889 

-3.222 

-1.667 

2.889 

-1.222 

-1 222 35.333 29.556 

SUM = 

48.333 

Yj^2 

0.111 
4.457 

5.975 

1.778 

14.273 

5.976 
1.000 

3.161 

0.605 

0.111 

0.790 

1.494 

0.445 
15.125 

10.383 

2.778 

8.346 

1.494 

78.303 

41 333 

Sum of Squares 

(Yj^2) * (Observations/average) 

0.333 

13.372 

17.926 

5.333 

42.820 

17.929 

3.001 

9.483 

1.815 

0.333 
2.371 

4.482 

1.334 

45.375 

31.148 

8.333 

25.039 
4.482 

SUM = 234.910 

18 
SDe =  Sqrt( £ (Yj^2) / denominator df) 

j=l 

SQRT(78.303 / 8) =  3.129 
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Power Calculation for the PERIOD Effect: 

COHEN 
Effect Size = f = SDm /  SDe 
Effect Size = f = 8.302 / 3.129 
Effect Size = 2.653 
U = 2.0 
n'= (15 / (2 + 1)) + 1 = 6.00 
Effect power = 1.000 (0.9999) 

BAVRY 
X =  SSm / MSe 
X = 3722.333 / (234.889/8) 
X = 126.777 
DFm  =  2.0 
DFe  =  8.0 
Effect power = 1.000 (0.9999) 

Power Calculation for the NOISE*PERIOD Effect: 

COHEN 
Effect Size = f =  SDm  /  SDe 
Effect Size = f = 2.483 / 3.129 
Effect Size = 0.794 
u = 2.0 
n'= (15 / (2+1)) + 1 = 6.00 
Effect power = 0.7055 

BAVRY 
X =  SSm  /  MSe 
X = 333.000 / (234.889/8) 
X = 11.342 
DFm  =  2.0 
DFe  =  8.0 
Effect power = 0.6973 

Note: Denominator df = (18/3 1) 15 
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Power Calculation for the DIAL and NOISE*DIAL Effects: 

Calculation of SDm for the DIAL effect: 

.   .  1 . 

.    .    2 . 

.    .    3 • 

Xi 
-6 889 
-2 056 

8 944 

Xi =M..d. -M  

-6.889 37.389 44.278 

-2.056 42.222 44.278 
8.944 53.222 44.278 

SUM 

Xi 2 

47.458 

4.227 

79.995 

131.681 

Sum of Squares 

(Xi^2) * (Observations/average) 

854.250 

76.088 

1439.912 

SUM = 2370.251 

SDm =  Sqrt( £ (Xi*2) / I) = 

i=l 
SQRT(131.681 / 3) 6.625 

Calculation of SDm for the NOISE*DIAL effect: 

N#P#D#S# 

1.1. 
1 

1 

2 
2 

2 

2 

3 

1 

2 

3 

Xi =Mn.d. -M..d. -Mn... +M.... 

-0.221 40.111 37.389 47.222 44.278 

1.278 46.444 42.222 47.222 44.278 

-1.055 55.111 53.222 47.222 44.278 

0.222 34.667 37.389 41.333 44.278 

-1.277 38.000 42.222 41.333 44.278 

1.056 51.333 53.222 41.333 44.278 

Xi 
-0.221 

1.278 

-1.055 
0.222 

-1.277 

1.056 

SUM = 

Xi 2 
0.049 
1.634 
1.113 
0.050 
1.632 
1.115 
5.592 

Sum of Squares 

(Xi"'2) * (Observations/average) 

0.439 

14.702 
10.021 

0.446 
14.684 

10.036 
SUM = 50.326 

SDm =  Sqrt( £ (XiA2) / I) 

i=l 
SQRT(5.592 / 6) 0.965 
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Calculation of SDe for the DIAL and NOISE*DIAL Effects: 

Yj  =Mn.ds -Mn.d. -Mn..s +Mn... 

-1.667 37.667 40.111 46.444 47.222 
-0.444 30.000 40.111 37.556 47.222 
2.111 52.667 40.111 57.667 47.222 
-1.111 30.333 34.667 38.111 41.333 
0.444 31.333 34.667 37.556 41.333 
0.667 42.333 34.667 48.333 41.333 
1.667 47.333 46.444 46.444 47.222 
-0.111 36.667 46.444 37.556 47.222 
-1.556 55.333 46.444 57.667 47.222 
0.222 35.000 38.000 38.111 41.333 
2.111 36.333 38.000 37.556 41.333 
-2.333 42.667 38.000 48.333 41.333 
0.000 54.333 55.111 46.444 47.222 
0.556 46.000 55.111 37.556 47.222 

-0.556 65.000 55.111 57.667 47.222 
0.889 49.000 51.333 38.111 41.333 

-2.556 45.000 51.333 37.556 41.333 
1.667 60.000 51.333 48.333 41.333 

N#P#D#S# 
1 . 1 1 

1 1 2 

1 1 3 
2 1 4 
2 1 5 
2 1 6 

1 2 1 

1 2 2 

1 2 3 

2 2 4 

2 2 5 

2 2 6 

1 3 1 
1 3 2 
1 3 3 

2 3 4 
2 3 5 
2 3 6 

Yj 
-1.667 
-0.444 

2.111 

-1.111 

0.444 

0.667 
1.667 

-0.111 
-1.556 

0.222 

2.111 

-2.333 
0.000 

0.556 

-0.556 

0.889 

-2.556 

1.667 

Sum of Squares 

YjA2 (Yj*2) * (Observations/average) 

2.778 8.333 

0.198 0.593 

4.457 13.370 

1.235 3.704 

0.198 0.593 

0.444 1.333 

2.778 8.333 
0.012 0.037 

2.420 7.259 

0.049 0.148 

4.457 13.370 

5.444 16.333 

0.000 0.000 

0.309 0.926 

0.309 0.926 

0.790 2.370 
6.531 19.593 

2.778 8.333 
SUM = 35.185 SUM = 105.556 

18 

SDe =  Sqrt( Z   (Yj*2) / denominator df) =  SQRT(35.185 / 8) =  2.097 

j=l 
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Power Calculation for the DIAL Effect: 

COHEN 

Effect Size = f 

Effect Size = f 

Effect Size = 3 

u = 2.0 

n'= (15 / (2 + 1)) + 

Effect power = 1.000 

BAVRY 
SDm  /  SDe 

= 6.625 / 2. 

159 

097 

1 = 6.00 

(0.9999) 

X = SSm / 

X = 2370.333 / 

X = 179.652 

DFm = 2.0 

DFe  =  8.0 

Effect power 

Power Calculation for the NOISE*DIAL Effect: 

MSe 

(105.556/8) 

1.000 (0.9999) 

COHEN 

Effect Size = f =  SDm / SDe 

Effect Size = f = 0.965 / 2.097 

Effect Size = 0.460 

u = 2.0 

n'= (15 / (2 + 1)) + 1 = 6.00 

Effect power = 0.337 

BAVRY 

SSm  /  MSe 

50.333 / (105.556/8) 
3.815 

=  2.0 

=  8.0 

X = 

X = 

X = 

DFm 

DFe 

Effect power = 0.286 

Note Denominator df = (18/3 - 1) 15 

D-8 



Power Calculation for the PERIOD*DIAL and NOISE*PERIOD*DIAL Effects: 

Calculation of SDm for the PERIOD*DIAL effect: 

N#P#D#S# Xi  = =M.pd..-M..d.. -M.p...+M.... 
. 1 1 . 0.556 48.000 37.389 54.333 44.278 
. 1 2 . -0.277 52.000 42.222 54.333 44.278 
. 1 3 . -0.277 63.000 53.222 54.333 44.278 

. 2 1 . -0.444 37.167 37.389 44.500 44.278 

. 2 2 . -0.277 42.167 42.222 44.500 44.278 

. 2 3 . 0.723 54.167 53.222 44.500 44.278 

. 3 1 . -0.111 27.000 37.389 34.000 44.278 

. 3 2 . 0.556 32.500 42.222 34.000 44.278 

. 3 3 . -0.444 42.500 53.222 34.000 44.278 

Sum of Squares 

Xi XiA2 (XiA2) * (Observations/average) 

0.556 0.309 1.855 

-0.277 0.077 0.460 

-0.277 0.077 0.460 

-0.444 0.197 1.183 

-0.277 0.077 0.460 

0.723 0.523 3.136 

-0.111 0.012 0.074 

0.556 0.309 1.855 

-0.444 0.197 1.183 

SUM = 1.778 SUM = 10.667 

SDm =  Sgrt( E (XiA2) / I) 
i=l 

SQRT(1.778 / 9) 0.444 
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Calculation of SDm for the NOISE*PERIOD*DIAL effect: 

N#P#D#S#  Xi  =Mnpd.-Mnp.. -Ma.d. -M.pd. +Mn... +M.p.. +M..d. -M.... 

111. -0.555 46.667 53.778 40.111 48.000 47.222 54.333 37.389 44.277 
112. 0.278 53.000 53.778 46.444 52.000 47.222 54.333 42.222 44.277 
113. 0.278 61.667 53.778 55.111 63.000 47.222 54.333 53.222 44.277 
12 1. 0.779 42.667 49.444 40.111 37.167 47.222 44.500 37.389 44.277 
12 2. -0.721 47.667 49.444 46.444 42.167 47.222 44.500 42.222 44.277 
12 3. -0.055 58.000 49.444 55.111 54.167 47.222 44.500 53.222 44.277 
13 1. -0.221 31.000 38.444 40.111 27.000 47.222 34.000 37.389 44.277 
13 2. 0.446 38.667 38.444 46.444 32.500 47.222 34.000 42.222 44.277 
13 3. -0.221 45.667 38.444 55.111 42.500 47.222 34.000 53.222 44.277 
2 11. 0.555 49.333 54.889 34.667 48.000 41.333 54.333 37.389 44.277 
2 12. -0.278 51.000 54.889 38.000 52.000 41.333 54.333 42.222 44.277 
2 13. -0.278 64.333 54.889 51.333 63.000 41.333 54.333 53.222 44.277 
2 2 1. -0.778 31.667 39.556 34.667 37.167 41.333 44.500 37.389 44.277 
2 2 2. 0.722 36.667 39.556 38.000 42.167 41.333 44.500 42.222 44.277 
2 2 3. 0.055 50.333 39.556 51.333 54.167 41.333 44.500 53.222 44.277 
2 3 1. 0.222 23.000 29.556 34.667 27.000 41.333 34.000 37.389 44.277 
2 3 2. -0.445 26.333 29.556 38.000 32.500 41.333 34.000 42.222 44.277 
2 3 3. 0.222 39.333 29.556 51.333 42.500 41.333 34.000 53.222 44.277 

Xj 
-0.555 

0.278 

0.278 

0.7.79 
-0.721 

-0.055 
-0.221 

0.446 

-0.221 

0.555 

-0.278 

-0.278 

-0.778 
0.722 

0.055 

0.222 

-0.445 

0.222 

18 
SDm =  Sqrt( £ (Xi*2) / I) =  SQRT(3.778 / 18) =  0.458 

i=l 

Sum of Squares 

XjA2 (Xj "2) * (Observations/average) 

0.308 0.924 

0.077 0.232 

0.077 0.232 

0.607 1.821 

0.520 1.560 

0.003 0.009 

0.049 0.147 

0.199 0.597 

0.049 0.147 

0.308 0.924 

0.077 0.232 

0.077 0.232 

0.605 1.816 

0.521 1.564 

0.003 0.009 

0.049 0.148 

0.198 0.594 

0.049 0.148 

SUM = 3.778 SUM = 11.333 
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Calculation of SDe for the PERIOD*DIAL and NOISE*PERIOD*DIAL Effects: 

N#P#D#S# Yj*2 Yi = Mnpds -Mnpd. -Mnp.s -Mn.ds +Mnp.. +Mn.d. +Mn..s -Mn... 
1111 1.234 1.111 45.000 46.666 52.667 37.667 53.778 40.111 46.444 47.222 
1112 0.310 0.557 35.000 46.666 42.000 30.000 53.778 40.111 37.556 47.222 
1113 2.776 -1.666 60.000 46.666 66.667 52.667 53.778 40.111 57.667 47.222 
2 114 13.454 3.668 50.000 49.333 53.000 30.333 54.889 34.667 38.111 41.333 
2 115 0.048 -0.220 42.000 49.333 47.333 31.333 54.889 34.667 37.556 41.333 
2 116 11.854 -3.443 56.000 49.333 64.333 42.333 54.889 34.667 48.333 41.333 
112 1 0.309 -0.556 53.000 53.000 52.667 47.333 53.778 46.444 46.444 47.222 
112 2 0.012 -0.111 41.000 53.000 42.000 36.667 53.778 46.444 37.556 47.222 
112 3 0.445 0.667 65.000 53.000 66.667 55.333 53.778 46.444 57.667 47.222 
2 12 4 1.777 -1.333 48.000 51.000 53.000 35.000 54.889 38.000 38.111 41.333 
2 12 5 0.307 -0.554 45.000 51.000 47.333 36.333 54.889 38.000 37.556 41.333 
2 12 6 3.568 1.889 60.000 51.000 64.333 42.667 54.889 38.000 48.333 41.333 
113 1 0.309 -0.556 60.000 61.667 52.667 54.333 53.778 55.111 46.444 47.222 
113 2 0.197 -0.444 50.000 61.667 42.000 46.000 53.778 55.111 37.556 47.222 
113 3 1.000 1.000 75.000 61.667 66.667 65.000 53.778 55.111 57.667 47.222 
2 13 4 5.443 -2.333 61.000 64.333 53.000 49.000 54.889 51.333 38.111 41.333 
2 13 5 0.607 0.779 55.000 64.333 47.333 45.000 54.889 51.333 37.556 41.333 
2 13 6 2.421 1.556 77.000 64.333 64.333 60.000 54.889 51.333 48.333 41.333 
12 11 1.498 -1.224 40.000 42.667 49.667 37.667 49.444 40.111 46.444 47.222 
12 12 0.605 -0.778 30.000 42.667 38.000 30.000 49.444 40.111 37.556 47.222 
12 13 3.996 1.999 58.000 42.667 60.667 52.667 49.444 40.111 57.667 47.222 
2 2 14 7.113 -2.667 25.000 31.667 36.667 30.333 39.555 34.667 38.111 41.333 
2 2 15 0.605 0.778 30.000 31.667 36.667 31.333 39.555 34.667 37.556 41.333 
2 2 16 3.568 1.889 40.000 31.667 45.333 42.333 39.555 34.667 48.333 41.333 
12 2 1 5.968 2.443 52.000 47.667 49.667 47.333 49.444 46.444 46.444 47.222 
12 2 2 0.789 0.888 37.000 47.667 38.000 36.667 49.444 46.444 37.556 47.222 
12 2 3 11.116 -3.334 54.000 47.667 60.667 55.333 49.444 46.444 57.667 47.222 
2 2 2 4 0.000 -0.001 34.000 36.667 36.667 35.000 39.555 38.000 38.111 41.333 
2 2 2 5 1.234 1.111 37.000 36.667 36.667 36.333 39.555 38.000 37.556 41.333 
2 2 2 6 1.237 -1.112 39.000 36.667 45.333 42.667 39.555 38.000 48.333 41.333 
12 3 1 1.496 -1.223 57.000 58.000 49.667 54.333 49.444 55.111 46.444 47.222 
12 3 2 0.012 -0.111 47.000 58.000 38.000 46.000 49.444 55.111 37.556 47.222 
12 3 3 1.777 1.333 70.000 58.000 60.667 65.000 49.444 55.111 57.667 47.222 
2 2 3 4 7.108 2.666 51.000 50.333 36.667 49.000 39.555 51.333 38.111 41.333 
2 2 3 5 3.568 -1.889 43.000 50.333 36.667 45.000 39.555 51.333 37.556 41.333 
2 2 3 6 0.605 -0.778 57.000 50.333 45.333 60.000 39.555 51.333 48.333 41.333 
13 11 0.012 0.110 28.000 31.000 37.000 37.667 38.444 40.111 46.444 47.222 
13 12 0.049 0.222 25.000 31.000 32.667 30.000 38.444 40.111 37.556 47.222 
13 13 0.112 -0.334 40.000 31.000 45.667 52.667 38.444 40.111 57.667 47.222 
2 3 14 1.000 -1.000 16.000 23.000 24.667 30.333 29.555 34.667 38.111 41.333 
2 3 15 0.308 -0.555 22.000 23.000 28.667 31.333 29.555 34.667 37.556 41.333 
2 3 16 2.421 1.556 31.000 23.000 35.333 42.333 29.555 34.667 48.333 41.333 
13 2 1 3.572 -1.890 37.000 38.667 37.000 47.333 38.444 46.444 46.444 47.222 
13 2 2 0.607 -0.779 32.000 38.667 32.667 36.667 38.444 46.444 37.556 47.222 
13 2 3 7.108 2.666 47.000 38.667 45.667 55.333 38.444 46.444 57.667 47.222 
2 3 2 4 1.777 1.333 23.000 26.333 24.667 35.000 29.555 38.000 38.111 41.333 
2 3 2 5 0.308 -0.555 27.000 26.333 28.667 36.333 29.555 38.000 37.556 41.333 
2 3 2 6 0.605 -0.778 29.000 26.333 35.333 42.667 29.555 38.000 48.333 41.333 
13 3 1 3.158 1.777 46.000 45.667 37.000 54.333 38.444 55.111 46.444 47.222 

D-ll 



Calculation of SDe for the PERIOD*DIAL and NOISE*PERIOD*DIAL Effects 
(continued): 

N#P#D#S#  YjA2 Yi = Mnpds -Mnpd. -Mnp.s -Mn.ds +Mnp.. +Mn.d. +Mn..s -Mn... 
13 3 2   0.308 0.555 41.000 45.667 32.667 46.000 38.444 55.111 37.556 47.222 
13 3 3   5.448 -2.334 50.000 45.667 45.667 65.000 38.444 55.111 57.667 47.222 
2 3 3 4   0.112 -0.334 35.000 39.333 24.667 49.000 29.555 51.333 38.111 41.333 
2 3 3 5   1.234 1.111 37.000 39.333 28.667 45.000 29.555 51.333 37.556 41.333 
2 3 3 6   0.605 -0.778 46.000 39.333 35.333 60.000 29.555 51.333 48.333 41.333 

127.111 -0.006 

18 
SDe =  Sgrt( £ (YjA2) / denominator df) =  SQRT(127.111 / 16) =  2.818 

j=l 

Power Calculation for the PERIOD*DIAL effect: 

COHEN BAVRY 
Effect Size = f. =  SDm /  SDe       X =  SSm  /  MSe 
Effect Size = f = 0.444 / 2.818 X = 10.667 / (127.111/16) 
Effect Size = 0.157 X =  1.343 
u = 4.0 DFm  =  4.0 
n'= (49 / (4+1)) + 1 = 10.8 DFe  = 16.0 
Effect power = 0.117 Effect power = 0.1068 

Power Calculation for the NOISE*PERIOD*DIAL Effect: 

COHEN BAVRY 
Effect Size = f =  SDm /  SDe X = SSm  /  MSe 
Effect Size = f = 0.458 / 2.818 X = 11.333 / (127.111/16) 
Effect Size = 0.163 X = 1.427 
u = 4.0 DFm =  2.0 
n'= (49 / (4 + 1)) + 1 = 10.8 DFe = 16.0 
Effect power = 0.123 Effect power = 0.110 

Note: Denominator df = (54/5 - 1) * 5 = 49 
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Appendix E 

Calculation of the Averacre Correlation of Data from Appendix A 

Correlation Matrices: 

PI P2 P3 

Dl 

Dl D2 D3 Dl D2 D3 Dl D2 D3 

PI 9315 .9567 .6881 .4275 .8151 .5789 .3888 .5396 
PI D2 .9514 .8737 .6726 .9195 .8066 .6321 .8021 
PI D3 .7116 .4163 .7959 .6693 .3922 .6568 
P2 Dl .8655 .9157 .9665 .9183 .9212 

P2 D2 .8019 .7890 .9188 .8402 

P2 D3 .8332 .8072 .8464 

P3 Dl .8928 .9554 

P3 D2 .8642 

P3 D3 

Fisher S Z Transform of Correlation Matrices : 

PI P2 P3 

Dl D2 D3 Dl D2 D3 Dl D2 D3 

PI Dl 1.669 1.905 0.844 0 457 1.142 0.661 0.410 0.604 

PI D2 1.847 1.348 0 815 1.586 1.117 0.745 1.104 

PI D3 0.890 0 443 1.087 0.810 0.414 0.787 

P2 Dl 1 315 1.561 2.036 1.578 1.597 

P2 D2 1.104 1.069 1.581 1.222 

P2 D3 1.198 1.119 1.243 

P3 Dl 1.435 1.890 

P3 D2 1.310 

P3 D3 

* Values were rounded to three significant digits. 

Average Fisher's Z = 1.1652 
x = expe (2 * 1.1652) = 10. 

Average Correlation = (10.28 - 
.28 
1) / (10.28 + 1) .8226 

E-l 



Appendix F 

Useful Conversion Algorithms 

0 = SQRT(X / (number of effect levels)) 
(Winer et al., 1991, p. 408) 

0 = effect size  * SQRT(the total number of observations on 
which the effect estimate is based) 

(Winer et al., 1991, p. 409) 

X = effect size^2 * (the total number of observations on 
which the effect estimate is based) 

(adapted from Cohen, 1988, p. 550) 

X = F * df1      Where:  df1 = the numerator degrees of freedom 
(J. L. Bavry, personal communication, September 14, 1995) 

X = (Sum of Squares Between) / (Mean Square Error) 
(J. L. Bavry, personal communication, September 14, 1995) 
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