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ABSTRACT 

The theory of the sound pressure scattered from a fluid-filled spherical shell immersed 
in a second fluid is developed. An arbitrary combination of fluids may be used to fill 
the shell, and both the sound source and the receiver may be in the near field. The 
theory is used to calculate the pressure field in both the interior and exterior fluids and 
is extended to determine the time-dependence of the reflected signal and the target 
strength. The dependence of these quantities as a function of frequency and pulse 
type; shell material, diameter and wall thickness; fluid combination; temperature; and 
distance of the receiver from the sphere is examined, and is shown to be sensitive to 
most of these parameters. The performance of spheres filled with a Freon-113™ - 
ethanol or Fluorinert FC-72™ - n-hexane mixture is considered. 
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Calculations of the Sound Scattering from Fluid- 
Filled Spherical Shell Sonar Targets 

Executive Summary 

The theory of the sound pressure scattered from a fluid-filled spherical shell 
immersed in a second fluid is developed. The prime reason for developing the theory 
is to aid in the design of fluid-filled spheres of known target strength, the target 
strength being a measure of the reflected intensity. An arbitrary combination of 
fluids may be used to fill the shell, and both the sound source and the receiver may 
be placed near to or far from the sphere. The theory is used to calculate the pressure 
field in both the interior and exterior fluids and is extended to determine the time- 
dependence and intensity of the reflected signal. 

Not only is the target strength found to be sensitive to a number of material 
parameters, but with a given selection of materials, it is also sensitive to both the 
form of the incoming sound waves and the environment. The target strength varies 
greatly for small changes in the frequency if continuous waves are used. 
Fortunately, these variations can be largely eliminated by the use of pulsed signals, 
which effectively average over many frequencies. 

A shell of aluminium or pyrex glass optimises the target strength, but as these are 
soft or brittle materials, stainless steel might be preferable as it is more robust. As 
might be expected, increasing the diameter of the sphere will give a larger target 
strength. A thin shell wall will also lead to a large target strength, but may be too 
difficult to manufacture and will be easily damaged. A thickness of 0.8 mm might be 
classed as a reasonable compromise. The target strength is quite sensitive to the 
thickness, so variations in the wall thickness need to be avoided in the 
manufacturing. 

Choice of the optimum combination of fluids with which to fill the shell depends 
on the temperature. Variations of a few degrees will make only a modest change to 
the target strength, but a combination chosen for warm waters will behave quite 
differently in cool waters. For frequencies below 200 kHz a mixture of Freon-113™ 
and ethanol, or Fluorinert FC-72™ and n-hexane will work quite well if the ratio of 
liquids is chosen to give a refractive index between 1.8 and 1.9. At frequencies above 
250 kHz the same liquids mixed to give a refractive index between 1.6 and 1.7 will 
produce high target strengths. 
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1. Introduction 

For the calibration of sonar systems, spherical targets are advantageous in that they are 
aspect independent. That is, they scatter the same intensity of sound into a particular 
direction, regardless of the target's orientation. However, a major limitation is that a 
solid sphere or air-filled spherical shell is usually a weak scatterer in comparison to 
non-aspect independent reflectors made up of multiple corner reflectors. An attractive 
alternative, providing both aspect independence and strong scattering, is a fluid-filled 
spherical shell in which the filling fluid is chosen so as to cause focusing of the 
reflected sound in the backscatter direction. This direction is important experimentally. 

This study considers such sonar targets and the effect the various parameters have on 
their performance. The aim is to enable selection of appropriate materials and to show 
how the performance of the target alters with small changes in the material or 
environmental parameters. 

The scattering of sound from spherical objects has been the subject of some 
investigation in the past. Rayleigh (1945) considered the limiting case where the 
scatterer was small compared to the wavelength. Morse (1936) derived a solution for 
rigid immovable spheres, which were not necessarily small compared to the 
wavelength. Faran (1951) allowed penetration of sound into solid spheres; Junger 
(1952) considered the scattering by thin hollow elastic shells. Goodman and Stern 
(1962) also considered elastic spherical shells, but with the internal and external fluids 
the same. Hickling (1964) analysed evacuated metal spheres in water. 

Apart from restrictions on the interior fluid, in each of these studies it was assumed 
that the sphere was in the far field of the projector. However, the theory enabling the 
scattered sound pressure to be calculated will be developed in the following section 
without these limitations, by solving the wave equation for a fluid-filled spherical shell 
immersed in another fluid. A point source of sound waves and a point isotropic 
receiver are located in the external fluid. The former may be arbitrarily placed, but the 
receiver must be no further away from the centre of the sphere than the projector. 

2. Theory 

2.1 Continuous Waves 

Consider a fluid medium of infinite extent whose density is p, and which supports 
longitudinal sound waves of speed cv In the medium is a fluid-filled spherical shell, 
with its centre located at the origin of the spherical coordinate system, as shown in 
Fig. 1. The inner and outer radii of the shell are a and b, respectively. The shell has a 
density p2 and supports both longitudinal and transverse waves of velocity cL2 and 
cT2, respectively. The interior fluid has a density p3 and a longitudinal sound speed of 
cy    Located at r = r   and 6 = 0 with respect to the origin is a point source of 
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continuous sinusoidal sound waves.  The incident pressure a distance R away in the 
external fluid is 

Pi=Po 

,}(2nft-kLilR) 

R 
(1) 

where PQ is the amplitude of the pressure wave 1 m from the source,/is the frequency 
of the wave and kL1 is the wavenumber in the fluid. kLl is related to/ by 

(2) 

The displacement component of the incident pressure can be written as 

Pi = P0- R 
(3) 

Receiver 

Projector 

Medium 1 

Figure 1:  Geometry for projector, receiver and fluid-filled sphere. 

When the sound waves strike the sphere, some of the sound will be transmitted into 
the shell and the filling fluid, and some will be scattered back into the exterior 
medium. The prime focus of this study will be to derive the scattered pressure at the 
listening point of r = rT and 9 = 6r. This can be found by satisfying the boundary 
conditions at the surfaces of the shell. For a fluid and shell behaving in a linear 
fashion, a shell of zero viscosity and with no cavitation occurring, these are: 

i)     the pressure in the fluid must be equal to the normal component of stress in the 
shell at the interfaces, 
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ii)    the normal (radial) component of displacement of the fluid must be equal to the 
normal component of displacement of the shell at the interfaces, and 

iii)   the tangential components of shearing stress must vanish at the surfaces of the 
shell. 

Symbolically, 

A =-[rr\ 
MM   = "r,2 

[re]=[r(J)] = 0 

ft = -M 
at r = b     ur3 = ur 2 

[re]=[r(()] = 0 

•   at r = a (4) 

where the px and p3 are the pressures in the external and internal fluids, with the 
former being the sum of the incident and scattered pressures 

Pl=Pi+P,- (5) 

The ur are the radial components of the displacement in the various media and [r r], 

[r 0] and [r <}>] are the radial and tangential components of the stress in the shell. 
The pressures in the fluids can be found by solving 

V2P = 
1   d2P 

(6) 

in which i is 1 or 3. This is done in Appendix A using the spherical coordinate system, 
separating out the time and position variables and noting that P has no <|> dependence, 
to yield 

P = p(r,Q).T(t) 

where in the external and internal fluids p{r,Q) is 

(7) 

A^P^coseJiW^r,) (8) 
/=o 

and 

A=EP/(coser)5;j/(^3rr) (9) 
/=o 

respectively,   h, and j, are the spherical Hankel and Bessel functions of order /; P, is 
the Legendre function of order /. 
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It will be more convenient to use different summations at a later stage. Using a series 
expansion given by Morse and Feshbach (1953, p. 1574), the incident pressure in 
equation (3) can be written as 

P, = -i^uS^D'^+^^u'-Jj/t^/JPAcoseJ       for 0 < rr < rp (10) 
(=0 

where the listening point is at r = rr and 0 = Qr with respect to the origin, and R, rp, rr 

and 6r are related by the cosine rule: 

R2 = r?+r2
p-2rrrp cos9r (11) 

Using an expression of Morse and Ingard (1968, p. 419) it can be shown that at the 
listening point of r = rr and 9 = 9r, the scattered pressure will be 

Ps = P0*uX(-1)'(2Z+1)C'h'^1-)h'^W-r)Pi(«>ser)        for 0 < rr < rp (12) 
/=o 

where the C, are coefficients to be determined. Once these coefficients have been 
obtained, the scattered pressure will be known, which is the main focus of this study. 
The pressure in the external fluid, as given in equation (5), is found by summing 
equations (10) and (12). The pressure in the internal fluid is of the same form as in 
equation (10), namely 

Pi = -iPo^L^D'^+DAWUw'-Jj.fe'-rJPiCcoseJ       for 0 < rr < rp (13) 

where the Dl are coefficients to be determined. 

The radial displacements in the fluids are found by using 

1 
■Vp 

to yield 
4TI7P 

1      fo 
47t2/2Pi ^ 

= _44_f (_l)'(2/+l)Pl(coser)h;(*wrJ 
47t2/2p, tt 

-ijj-j/W+Q^W 

(14) 

(15) 

(16) 

and 
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u    _       1       M 
r'3    4TTV

2
P3 dr 

(17) 

= ^ft^t(-1)'(2/+l)P;(coSer)h;(^3rjDi|-j/(y) 
4rc / p3 to                                                       dy 

(18) 

for the external and internal fluids respectively, where x - kLlrr and v = kLir 

To find the displacements and stresses in the shell requires the solution of the wave 
equation t 

c2
LMv.ü)-clVxVxü = ^. 
■    v      ;                         dt2 

(19) 

The displacement is derived from a scalar and vector potential. 

i^-Vy + VxA (20) 

where 

C2L,2    OS 
(21) 

and 

(7      Y7       7         192Ä -VxVx/l = ---T-. 
cT dt 

(22) 

Equation (21) is of the same form as equation (6), and can be solved as in Appendix A 
to give 

»P=\|/(r,e)T(0 (23) 

where 

V = XP/(cosGr)[£,j/(A;ii2rr) + ^n/(fcwrr)]. (24) 

n; is the spherical Neumann function of order /. Again using the spherical coordinate 

system, separating out the time and position variables and noting that   A. - --(o,o,\), 
equation (22) can be solved (see Appendix B) to yield 

A,=a^(r,d,<b).T(t) (25) 

5 
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where 

«♦=s4p/(cose
r)[G/j/(vr)+^/(vr)l (26) 

Returning to equation (20), the displacements in the shell are 

(rapine) __3y 1       3 
ir-2~  ar + r2sineae' 

'/(/+i) 
= £-P/(cosejp^[GJi(Vr) + ^n/(Vr)] + ^,: 

;=o 

3 3 
EL— )l{z) + Fl^-nl{z) 

1 3y       13 
62        /-30    rsin0 3rV    * 

(ra. sine) 

(27) 

(28) 

(29) 

= £^^sine|l[£j/(fcwrJ+/rnj(^2rJ]+I[GJ/(vJ+H/nl(*|.rr)] ;=o    3T) lrr rr 

+fc. 

and 

G,|j,W + «,|n,W 

M$,2 = 0 

(30) 

(31) 

where T| = cos6,., z = fcL-2
rr' and T = *rrr- 

The stresses in the shell are (Faran, 1951) 

[rr] = 2p2c
2

Ta - V.W + —-— 
l-2o 

[r0] = |l 
3M92    M92 | 1 9M,I2 

r      r 36 

[r<t>] = |l 
1     3ttr2     du^2     u^2 

rsin0  30       3r        r 

(32) 

(33) 

(34) 

where a and |i are Poisson's ratio and the Lame elastic constant of the shell material, 
respectively. Using 
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l a l   d 
V.w =-ö"TT- v2ur2)-\ ;——(sin0.we2) + 

-2 drv ~~r'1' rsineae r   or 

1     <fy 
rsin0 9(j) 

= SPI(coser)^2[£:/j/(^2rr) + ^n/(*;wrr)] 

(35) 

(36) 

these become 

[rr] = 2p242XP/(coseJ^fcL%[^;(^2rr)+F,n,(/:L/2rr)]-/:L
2
2 

+^[qd/(Vr)+HA^rrr)]-^*r Gibi{x)+Hihi{x) 

E>£^+F>B^ 
(37) 

[re] = ^^sinerj-4[£J,(^rr) + ^nJ(fcwrr)] + 
2Jk L,2 Eihiiz)+Fiizni{z) 

■l^^lGlil(krrr) + Hfll(kTrr)] + l4 G'a?j'(x)+H/^n'(x) A2 

3x2 
(38) 

and 

[r(|,]=^l^{&S[G/j/(ferrr)+H/nIp:rrr)]+fcw E||jiW^|nlW" 

(39) 

Substitution of equations (5), (10), (12), (13), (16), (18), (28), (30), (37), (38) and (39) into 
equation (4) and evaluation at r = a and r = b yields eight simultaneous equations 
from which the coefficients C, needed to evaluate the scattered pressure can be 
determined. After some simplification these are given by 
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Yii Y12 Yl3 Yl4 Si 0 

Y21 Y22 Y23 Y24 0 Y26 

Y31 Y32 Y33 Y34 §3 0 

Y41 Y42 Y43 Y44 0 Y46 

Ysi Y52 Y53 Y54 0 0 

Q=-i- 
Yea Y62 Y63 

Yl3 

Y64 

Yl4 

0 

Yl5 

0 

0 Y11 Y12 

Y21 Y22 Y23 Y24 0 Y26 

Y31 Y32 Y33 Y34 Y35 0 
Y« Y42 Y43 Y44 0 Y46 

Ysi Y52 Y53 Y54 0 0 
Y61 Y62 Y63 Y64 0 0 

(40) 

The coefficients required to evaluate equation (40) are listed in Appendix C.   The 
coefficients Dl needed to calculate the pressure in the filling fluid are given by 

D,=- 

Yn Y12 Yl3 Yl4 Yis £1 
Y21 Y22 Y23 Y24 0 0 

Y31 Y32 Y33 Y34 Y35 £3 

Y41 Y42 Y43 Y44 0 0 

Ysi Y52 YS3 YS4 0 0 

kL,ih/(kL,irp) Y61 Y62 Y63 Y64 0 0 

kL,3h;K3rp) Y11 

Y21 

Yl2 

Y22 

Yl3 

Y23 

Yl4 

Y24 

Yl5 

0 
0 

Y26 

Y31 Y32 Y33 Y34 Y35 0 
Y41 Y42 Y43 Y44 0 Y46 

Ysi Y52 YS3 YS4 0 0 
Yei Y62 Y63 Y64 0 0 

(41) 

where the elements of the determinants are again as listed in Appendix C. 

Inserting the coefficients of equation (40) into equation (12) yields the scattered 
pressure at the listening point of r = rr and 9 = 9r. A convenient way of presenting 
this pressure is to relate it to that incident upon the sphere, in the form 

20 log r r P r 
(42) 

If 9 = 180° and rr is sufficiently large so that spherical spreading applies, i.e. in the far- 
field, then this term equals the backscatter target strength, defined by 
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TS = 20 log *I8=180V=1 (43) 

where the scattered pressure is evaluated 1 m from the centre of the sphere along the 
axis to the source. In the comparisons reported below, the scattered pressure will be 
given as the target strength via expression (42) with 0 = 180° and both r and rr 

generally set to 1000 m to ensure equivalence with equation (43). 

2.2 Pulsed Signals 

Until now the point source has been considered as producing continuous sinusoidal 
waves. However, in an experiment tone bursts or chirped signals are more likely to be 
used. The scattered pressure for these two cases will now be considered. 

2.2.1 Tone Bursts 

Consider first a tone burst of central frequency f0 and duration At. Defining 

o  _27t/0 (44) 

and 

rect(f) = • 
for 

elsewhere 
Yi^Yi (45) 

we have, from equation (1), 

Pi{t) = & e
i2*rect -U-- 

R UA    c)J 
(46) 

which has the Fourier transform 

'<W-f 
„At/   p P~^L,\K 

AtA     R 
ei2nf0te-i2nftdt 

_P0e-Vsm[n(f-f0)At} 

R        *{f-h) 

(47) 

(48) 

as the frequency components.   As this is the product of a continuous wave mono- 
frequency   source   and   a   weighting   function,   the   scattered   pressure   frequency 



DSTO-RR-0020 

components may be represented by the continuous wave solution multiplied by the 
same weighting function. Thus 

Ps(f)=Ps(f) 
sin[7t(/-/0)Af] 

(49) 

where ps is given by equation (12). Applying the inverse Fourier transform, we obtain, 

as a function of time, 

J-~ Af-fo) 
(50) 

2.2.2 Chirps 

For a chirped signal of start frequency /0, stop frequency /,, central frequency fc and 
duration At, equation (46) is altered to 

/>(,) = ^ e 
R 

fc<+ 
(fi-fo] 

2AI Jrect — t— UA    c) 
(51) 

where 

kc K
L,\ 

2nfc (52) 

The incident signal frequency components are 

P,e P(f)=^e      pv 
(fc-f)>^r 

dt. 

The integral in equation (53) is evaluated in Appendix E to give 

At/      i2n % 
J-Ar, 

(/,-/)'■ 

(/i-/o),2 
2A< dt 

(53) 

At 

2(/,-/o) 
exp 

(/i-/o) 

1+i 
erf 

2 l/.-/o 
f(/,-/o) 

Ar « + /c-/ 

^2 

(54) 

10 
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At/      i2n % P,if) = P,(f)j*e 
({c-f)l+[lizhlr- 

2 At 
dt (55) 

where ps is again given by equation (12). As a function of time 

ps(t) =£/>.(/)■ 
i2n {f f)t+{frMr- 

2At 

&/. *dt yin"df. (56) 

In both equations (55) and (56) the integral over time can be replaced by the expression 
on the right hand side of equation (54). 

In both equations (50) and (56) the scattered pressure varies in amplitude as a 
function of time. If the tone burst or chirp lasts for a time At, the backscatter target 
strength can be considered as 

TS= 20 log 

= 20 log 

rt+At 

J,     ps(fle=i80V=i dt' 

t+At.     .   „2 J't+M,       ,    Nl 

1   rt+At ps(n\ 8=180o,r=l 

Pi(n 
dt' 

(57) 

(58) 

The right hand side of equation (58) is equivalent to 

/ 

20 log 
1   f'+A« 

V 

Ps(t') 
dt' (59) 

when 9 = 180° and rp and rr are large. 

It follows from equation (58) that the target strength can be calculated for any value 
of t corresponding to different portions of the return signal. The most intense 
reflections will be the specular reflection from the front of the sphere, and the first 
focused return from the rear of the sphere. For 6 = 180° these start when 

rp + rr- 2b    At 
(60) 

and 

11 
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r+rr-2b    2(b-a)    Aa    At .,,. 
t-JL—: + _!; '- +  (61) 

c, c, c,      2 

respectively. In the results reported below, the target strength of the sphere will be 
considered as the maximum of the two values calculated via expression (59) at these 
two starting times. 

2.3 Binary Fluids 

In practical applications of the above theory it is common to use a mixture of two 
liquids for the interior fluid. For a binary liquid solution the longitudinal sound speed 
of the interior fluid becomes 

,,    vmM, 
VM3 J 

(62) 

where 

^3.ap3,fl + VxtVxb (63) 

p3=    v^ + v» 

VMAf.3=Vm.3fl^+VMi^3iJp (64) 

M3 = NXaMXa+NXbMXb. (65) 

V3a and V3b are the volumes of the two liquids, p3a and p3b are their densities, vmia 

and vm ib are their molecular velocities, N3a and N3b are the mole fractions, and MXa 

and M3b are the molecular masses. In general, the densities and velocities are a 
function of temperature, so the speed of sound of the interior fluid will likewise be 
temperature dependent. 

3. Physical Data 

Consider a spherical shell filled with a fluid or mixture of two fluids and placed in the 
sea. If a small sound projector directs a continuous sinusoidal, tone burst or chirped 
signal at it, the reflected signal picked up by a hydrophone in the same or another 
location will depend on a large number of factors. Parameters from the incident sound 
include the distance from the source to the centre of the sphere, the frequency for a 
continuous signal, the frequency and pulse length for a tone burst, and the start and 
stop frequencies and pulse length for a chirped signal. The distance from the centre of 
the sphere and angular position of the receiver are other factors, as are a number 
associated with the reflecting sphere.    These include the diameter, thickness, and 

12 
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material out of which the shell is made. The latter factor determines the density of the 
shell, as well as Poisson's ratio for the material, and the velocity of longitudinal and 
shear waves in it. The temperature, salinity and depth of the propagation path set the 
density and sound velocity of the fluid surrounding the sphere. The temperature and 
the filling fluid or mixture of fluids chosen affect the interior fluid's density and sound 
velocity. 

Clearly, when long projector-to-sphere ranges are used, sound absorption in the 
water may be significant. As this will not affect a comparison of different 
sphere/filling fluid/signal type parameters, it has not been included in the calculations 
reported. Nor has absorption within the sphere or its filling fluid, as the ranges 
considered are so small. 

Table 1 lists the parameters for the shell materials studied. For the fluids the density 
and sound velocity depend on a number of factors, as noted above, so equations are 
needed to express these dependences. Millero and Poisson (1981) give the density of 
sea water (in kgmf3) as 

(        \ 
o 

Pi = 
P 

1-* 
V     KJ 

(66) 

where 

p ° = 999.842594 + 6.793952 x 1(T21 - 9.095290 x 10-312 +1.001685 x 10^ t3 

-1.120083 x 10"614 + 6.536336 x 10~915 + (8.24493 x 10_1 - 4.0899 x 10~31 

+7.6438 x 10-512 - 8.2467 x 10-713 + 5.3875 x 10-914 )s + (-5.72466 x 10-3 

+1.0227 x 10"41 -1.6546 x 10~6t2 )s% + 4.8314 x 10"4 S2 (67) 

K = 19652.21 +148.4206* - 2.327105*2 +1.360477 x 10~213 - 5.155288 x 10~514 

+S(54.6746-0.603459* +1.09987x 10~212 -6.1670x 10~5t3)+S^(7.944x 10~2 

+1.6483 x 10~21 - 5.3009 x 10-412 ) + ?[3.239908 +1.43713 x 10~31 +1.16082 x 10-412 

-5.77905 x 10"713 + s(2.2838 x 10~3 -1.0981 x 10"51 -1.6078 x 10"612 ) 

+S%(l.91075xlO~4) +P2[8.50935xl0~5 -6.12293xl0~6t + 5.2787xlO-8*2 

+s(-9.9348 x 10~7 + 2.0816 x 10"81 + 9.1697 x 10~1012 )1 (68) 

and 

13 
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' = \px8dy. (69) 

P is the gauge pressure in bars, with P - 0 at the water surface under 1 atm of air 
pressure. A rough rule of thumb is that the pressure increases by 1 bar for every 10 m 
of water depth. S is the salinity in %o, t is the temperature in °C, d is the depth in m 
and g is the acceleration due to gravity. The speed of sound (in ms"1) is given as 

c, =1412 + 3.21r + 1.195 + 0.0167d (70) 

by Francois and Garrison (1982). 

Table 1: 

Material Density Poisson's ratio Velocity of longitudinal Velocity of shear waves 

(kg m'3) waves (ms ) (ms"1) 

Aluminium 2700 0.355 6420 3040 

Brass 8600 0.374 4700 2110 

Nickel 8900 0.336 6040 3000 

Pyrex glass 2320 0.17 5640 3280 

Steel 7910 0.29 5790 3100 

The above data were obtained from Gray (1972). 

To achieve a high target strength in the backscatter direction, a filling fluid with a 
refractive index between 1.5 and 2.0 is needed to obtain the necessary thin lens 
focusing. This is most easily accomplished by mixing two liquids of different sound 
speeds, one above and the other below the required speed. Other considerations are 
cost and safety of the liquids. Some of the potential liquids, such as CCI4, are 

hazardous. Initially Freon-113™ and ethanol, mixed in varying ratios, were studied as 
the filling liquid, as they are cheap, relatively safe and readily available. However due 
to expected difficulties in obtaining Freon-113™, Fluorinert FC-72™ and n-hexane 
have also been studied. From Gray (1972) the density and speed of sound in ethanol 
are 

p3fl=785.06-0.8591(r-25)-5.6xlO^(r-25)2-5xlO-6(r-25)3        forl0<r<40 
(71) 

and 

cia = 1232.13 - 3.5739/ + 2.39 x 10"V + 2.65 x 10~Y - 2.4 x Kr7/4        for 0 < t < 58. 
(72) 

Fitting curves to the data of Leader et al. (1969), the density and speed of sound in 
Freon-113™ are 
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p3fc = 1614.5 - 2.04?        for 0 < r < 40 (73) 

and 

f786.l-3.345r       for 0<r<20 
c3fc= • (74) xb     [778.7-2.975r       for 20<r<40 

Fitting a curve to the data of Timmermans (1950), the density of n-hexane is 

p3a=676.891-0.846r-l.lxl0-y. (75) 

Kaye and Laby (1973) quote the speed of sound in it at 30°C as 1060 ms"1, so using 
the relation 

c=  P (76) 
VP 

where B is the bulk modulus, the speed of sound in n-hexane can be given as 

(77) 
650.5X10602 

V P3.„ 

3M's Fluorinert™ Liquids, Product Manual gives the density of Fluorinert FC-72™ as 

p3i=1740-2.61r. (78) 

From the data for the speed of sound, 

c3i=582-2.8r. (79) 

In the results reported below, comparison will be made with an air-filled sphere. At 
sea level, Kaye and Laby (1973) give the density of air for 50% relative humidity as 

= IM3O7X101.3-0.2443P 
K3 101.325 

where the saturated vapour pressure psvcan be found by fitting a curve to their data to 
yield 

Piv=0.6116 + 4.365xl0"2r + 1.567xl0"3r2+1.74xl0"5r3+5.5xl0"7r4. (81) 

15 
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The speed of sound in air for sound waves of frequency / is (Kneser, 1931) 

T 
\fr) 

2    ,      2 

1 + (4 \fr) 

(82) 

where the zero-frequency speed can be found by substituting into the equation of 
Miller (1937) to yield 

c. = 331.46xj 1 + 
273 

0.5psv xri-324    18.01534 A 

101.3    U.403    28.9644;. 
(83) 

The infinite-frequency speed c„,exceeds this by 0.12 ms ' at 20°C (Harris, 1971).  The 
relaxation frequency at 50% relative humidity is (Piercy, 1969) 

fr = 3.05x10' 
50ps 

>1.3 

0.5Psv + 101.325 
(84) 

4. Computational Considerations 

The summation in equation (12) is theoretically over an infinite number of terms, 
although in practice the summation was halted when the relative difference of the 
scattered pressure after summation to the Zth and /-lth terms was less than 0.01% and 
after summation to the /-1th and /-2th terms was also less than 0.01%. To ensure 
convergence care had to be taken in calculating the spherical Bessel functions and their 
derivatives. Details of the techniques used are given in Appendix D. 

As a check on the formulae, computational techniques and the computer programs 
used to calculate the results presented in the next section, the magnitude of the form 
function, defined by 

I/o. 
*I> 

I(-1)'(2/+1)C/ 
/=o 

(85) 

was calculated for an iron shell of 20 cm diameter, 20 mm wall thickness, longitudinal 
and shear wave sound speeds of 5950 and 3240 ms"1, respectively, and Poisson ratio 

of 0.292. This shell was immersed and filled with water of density 1000 kgrrT3 and 

sound speed 1410 ms"1.   The results are displayed in Fig. 2 along with those of 

16 
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Hickling (1964) for a similar set of parameters. The agreement is generally good, 
although there are some variations attributed to two sources. The magnitude and 
position of some of the peaks and troughs do not align perfectly, due to a small 
inconsistency in Hickling's shear and Lame elastic constants and longitudinal and 
shear sound speeds for iron. In addition, the narrow spikes are sensitive to the 
evaluation frequency, which was not identical for both data sets. 

5. Results 

Fig. 3 shows the calculated absolute value of the scattered pressure field in a 4 m by 4 
m section centred about a stainless steel spherical shell of 20 cm diameter and 0.8 mm 
wall thickness. The sphere is indicated by the white circle and is filled with a mixture 
of 34% Fluorinert FC-72™ and 66% n-hexane by volume and deployed at shallow 
depths in sea water of 20°C and 35% salinity. The ratio of filling fluids was chosen to 
give a refractive index of 1.8 at 20°C The projector is located 1000 m to the left of the 
origin and 1 m from it (the projector) the amplitude was unity. The scattered pressure 
amplitudes are relative to this value. The projector emits continuous waves of 100 
kHz frequency. The field shows strong focusing in the forward scattering direction, as 
well as the presence of weak intensity regions and nodes. There is also some focusing 
in the backscatter direction. 

Fig. 4 shows the scattered pressure amplitude field with the same sphere and 
environment parameters. The projector emits continuous waves of 200 kHz. Note the 
narrower focusing in the backscatter direction. 

Fig. 5 displays the total (incident plus scattered) pressure amplitude field in a section 
through the centre of the sphere, in the vicinity of the sphere, whose inner and outer 
walls are shown by the black circles. The parameters are as for Fig. 3. The waves to 
the left show what may be spherical spreading but with a radius of curvature slightly 
larger than that of the sphere. To the right of the sphere the nodes and antinodes form 
a pattern radial from a point somewhat to the left of the centre of the sphere. The wave 
pattern inside the sphere is complex. A set of nodes and antinodes occurs both radially 
and circumferentially, with the greatest intensity along the axis from the projector. 

Fig. 6 shows the total pressure amplitude field under the same conditions for 
continuous waves of 200 kHz. The features are similar to that for Fig. 5, but on a 
smaller scale commensurate with the higher frequency. 

Fig. 7 overlays four sets of calculated backscattered target strength values for a 
projector and receiver collocated 1000 m from a sphere. The sphere is of stainless steel 
of 20 cm diameter and 0.8 mm wall thickness and is filled with a mixture of 68% Freon- 
113™ and 32% ethanol by volume and deployed at shallow depths in sea water of 20°C 
and 35 %o salinity. The ratio of filling fluids was chosen to give a refractive index of 1.8 
at 20°C. 

17 
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The wildly varying line is the target strength as a function of frequency for steady 
state conditions. The target strength was calculated in 100 Hz steps from 100 Hz to 
500 kHz. For very low frequencies the sphere is small compared to the wavelength of 
sound in water, and very little sound is reflected. With increasing frequency the target 
strength increases, but fluctuates wildly with small changes in the frequency. Beyond 
450 kHz it takes on an oscillatory nature. 

The target strength as a function of frequency in 1 kHz steps to 450 kHz is shown for 
both 100 and 500 us tone bursts. The result for 500 |as chirps of 10 kHz bandwidth 
centred on frequencies taken in 1 kHz steps to 450 kHz is also shown. Although there 
are small variations between the last three curves, especially below 50 kHz and above 
400 kHz, these are of a minor nature. 

Fig. 8 shows the fine detail of the steady state data of Fig. 7 between 100 and 120 kHz, 
calculated in 25 Hz steps. It is compared with data in 100 Hz steps. The overall result 
is the same, although several narrow spikes are evident in the former set of data. The 
curves indicate that most of the major target strength variations are somewhat 
oscillatory, with a period of approximately 1.6 kHz. Overlaid on this is a fine structure 
with a width of less than 25 Hz. 

The target strength as a function of frequency in 1 kHz steps from 100 to 120 kHz is 
also shown in Fig. 8 for 100 (is tone bursts. One curve shows the results based on 
steady state data calculated in 25 Hz steps; the other shows the result when the steady 
state data has been calculated in 100 Hz steps. The results are almost identical, 
indicating that the fine structure has little effect for 100 us tone bursts. 

The complexity of the target strength as a function of frequency for both continuous 
and pulsed waves is due to the existence of resonances of several types, which occur in 
the fluid and the shell. At low frequencies "Franz" or "creeping" waves circumnavigate 
the shell in the external fluid. The eigenfrequencies depend upon the shape and size of 
the shell and correspond to constructive interference between the specularly reflected 
waves and those circumnavigating the sphere. "Rayleigh" and "whispering gallery" 
waves, which depend on the composition of an elastic target, occur at frequencies for 
which multiple half-integral wavelengths correspond to the circumference, thereby 
producing standing waves on the surface which radiate back into the fluid. These are 
applicable to solid elastic targets. "Lamb" waves are the analogue for the elastic shell, 
with extensional and flexural resonances occurring. They depend on the composition 
of the shell. Other resonances occur when the multiple half-integral wavelength 
associated with the compressional waves in the shell equals the shell thickness. 

Figs 9 and 10 display the target strength as a function of frequency to 450 kHz for 
refractive indices of 1.5,1.6,1.7,1.8 and 1.9. In each diagram the projector and sphere 
are deployed at shallow depths in sea water of 20°C and 35%o salinity. The projector 
and receiver are located 1000 m away and the former emits 100 JUS tone bursts. The 
spherical shell is made of stainless steel and is 20 cm in diameter and of 0.8 mm wall 
thickness. In Fig. 9 the shell was filled with a mixture of Freon-113™ and ethanol; in 
Fig. 10 the filling liquids were Fluorinert FC-72™ and n-hexane. The ratios of the two 
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sets of liquids were chosen to give the same velocities of sound, but the densities were 
not identical. In general, the target strengths with the Fluorinert FC-72™ and n-hexane 
combination are less than for the Freon-113™ and ethanol combination, but the overall 
shape of each pair of curves is similar. 

Figs 11 and 12 show the effect of shell material composition on the target strength for 
100 |is tone bursts of frequencies to 450 kHz. Again the projector and receiver were 
located 1000 m from a 20 cm diameter shell of 0.8 mm wall thickness in shallow depths 
of sea water of 20°C and 35% salinity. In Fig. 11 the shell was filled with 68% Freon- 
113™ and 32% ethanol by volume; in Fig. 12 the liquids were 34% Fluorinert FC-72™ 
and 66% n-hexane by volume. In each case the refractive index was 1.8. The structure 
of the curves is similar for each pair of liquids, but again the target strengths with the 
Fluorinert FC-72™ and n-hexane combination are less than for the Freon-113™ and 
ethanol combination. Generally, glass and aluminium yield substantially larger target 
strengths than for the other materials, although stainless steel and nickel are more 
likely to be used as targets in practice because of their greater durability. 

Concentrating on stainless steel as the shell material, Fig. 13 shows the effect of 
varying the shell diameter. All other parameters are as for Fig. 12. As expected, the 
target strength increases with diameter. The oscillatory behaviour evident in Fig. 7 is 
very pronounced for the 10 cm diameter sphere. 

Keeping to a stainless steel shell, Figs 14 and 15 display the effect of varying the wall 
thickness. All other parameters are as for Figs 11 and 12, respectively. Again, the 
Fluorinert FC-72™ - n-hexane combination results in lower target strengths than the 
Freon-113™ - ethanol combination. For very thin walls, which are not physically 
practical, the target strength increases relatively smoothly with frequency, and is less 
than that for thicker walls at low frequencies. As the thickness increases, the target 
strength rises to a maximum with frequency, then declines. The frequency and height 
of the maximum decreases with increasing wall thickness. As the wall thickness 
increases the oscillatory behaviour referred to above starts to appear, and begins at 
progressively lower frequencies. The curve for 1.6 mm wall thickness indicates that 
this oscillatory response does not continue for all higher frequencies, but only occurs 
over a limited frequency range, before dying out and returning to a more regular 
response. 

Figs 16 and 17 show how the refractive index varies for changes in the percentage by 
volume of Freon-113™ and ethanol, and Fluorinert FC-72™ and n-hexane, respectively. 
The curves are plotted for waters of 35% salinity and water (and filling liquid) 
temperatures of 0, 5,10,15, 20, 25, 30 and 35°C. Both sets of curves show sensitivity of 
the refractive index to temperature, and since Figs 9 and 10 in turn indicate sensitivity 
of the target strength to refractive index, it can be expected that with all other 
parameters constant, the target strength will change with temperature. 
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Figs 18 and 19 show how the target strength alters for 100 |is tone bursts of 
frequencies up to 450 kHz, for temperatures of 10, 20 and 30°C. Again the projector 
and receiver were located 1000 m from a 20 cm diameter stainless steel shell of 0.8 mm 
wall thickness in shallow depths of sea water of 35%o salinity. In Fig. 18 the shell was 
filled with 68% Freon-113™ and 32% ethanol by volume; in Fig. 19 the liquids were 
34% Fluorinert FC-72™ and 66% n-hexane by volume. Below 50 kHz temperature 
changes produce only a small change in the target strength, but for higher frequencies 
the changes get progressively larger, especially in going from 10 to 20e. Of course 
smaller temperature variations will alter the target strength by correspondingly less. 

Fig. 20 compares the target strengths for 100 us tone bursts of frequencies to 450 kHz, 
for a 20 cm diameter stainless steel spherical shell of 0.8 mm wall thickness deployed at 
shallow depths in sea water of 20°C and 35%o salinity. The filling fluids were 68% 
Freon-113™ and 32% ethanol by volume, 34% Fluorinert FC-72™ and 66% n-hexane by 
volume, air of 50% relative humidity, and water of 35%o salinity. The target strength 
for the air-filled sphere is fairly constant and in close agreement to the formula for 
specular reflection from a sphere whose size is large compared to the wavelength, viz. 

i 2 

75 = 10 log —. (86) 

Above 100 kHz the target strength of the water-filled sphere shows periodic changes of 
about 10 dB, with a period in the frequency domain of approximately 90 kHz. In 
general the values are higher than for the air-filled sphere. However, the Freon-113™ - 
ethanol and Fluorinert FC-72™ - n-hexane filled spheres have even larger target 
strengths, which vary relatively smoothly with frequency. In comparison to the air- 
filled sphere, there is a gain in excess of 10 dB in target strength at all frequencies 
studied. As noted previously, the performance of the two pairs of liquid combinations 
is similar, but not identical. 

Although the theory developed is not restricted to the far field, the results of Fig. 7 to 
20 were based on the projector and receiver being 1000 m from the centre of the sphere. 
Keeping the projector 1000 m from the centre of the sphere, but varying the distance of 
the receiver out along the axis from the centre of the sphere towards the projector, Fig. 
21 shows the variation in apparent target strength for a 20 cm diameter stainless steel 
shell of 0.8 mm wall thickness deployed at shallow depths in sea water of 20°C and 
35%o salinity when filled with 34% Fluorinert FC-72™ and 66% n-hexane by volume. 
At 100, 200, 300 and 400 kHz the farfield condition 

<^ (87, 

is satisfied at approximately 2.7, 5.3, 8 and 10.7 m, respectively. Examination of the 
curves in Fig. 21 shows constancy of the apparent target strength occurs at ranges 
slightly beyond these at the respective frequencies. Below approximately 200 kHz, the 
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apparent target strength increases with range; at higher frequencies it generally 
decreases with range. 

Figs 7 to 21 have shown intensities in the frequency domain. Figs 22 to 25 show the 
reflected signal in the time domain, where 0 ms corresponds to the arrival of the first 
portion of the reflected signal at the receiver. The pressure is relative to a value of 1 at 
the projector. In each diagram the waves impinge upon a 20 cm diameter stainless 
steel shell of 0.8 mm wall thickness deployed at shallow depths in sea water of 20°C 
and 35% salinity filled with 68% Freon-113™ and 32% ethanol by volume. In Fig. 22 
the signal emitted by the projector was a 200 kHz tone burst of 100 us duration. The 
most intense signal corresponds to the focused reflection from the rear of the sphere, 
which arrives 0.44 ms after the front surface specular reflection. Subsequent reflections 
are related to multiple internal reflections within the sphere. Fig. 23 shows the 
equivalent signal for a tone burst lasting 500 us. Due to the long duration of the tone 
burst there is overlap of signals returning from different parts of the sphere, but that 
from the rear surface still dominates. 

In Figs 24 and 25 a chirped signal of 10 kHz bandwidth centred on 200 kHz was 
used. In Fig. 24 the duration of the chirp was 100 us and although the signal from the 
rear surface dominates, a later multiply-reflected signal is almost as large. Fig. 25 
shows that a 500 us chirp results in much interference of returns from different parts of 
the sphere. The first rear surface reflection and a somewhat later multiply-reflected 
signal are the most prominent returns. 

6. Conclusions 

Selection of the appropriate materials to make a fluid-filled spherical shell target of a 
required target strength is no easy matter, for not only is the target strength sensitive to 
a number of material parameters, but with a given selection of materials, the target 
strength is sensitive to both the form of the incoming sound waves and the 
environment. 

Consider first the incoming sound waves. Fig. 7 shows that the target strength varies 
greatly for small changes in the frequency if continuous waves are used. 
Experimentally the implication is that drift in the frequency will lead to a large change 
in the target strength. Fortunately, these variations can be largely eliminated by the 
use of pulsed signals, which effectively average over many frequencies. However, 
there are some target strength variations with pulse length below about 50 kHz, or in 
the region of oscillatory target strength behaviour. 
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Now consider the material parameters which will lead to a large target strength 
above 100 kHz. A shell of aluminium or pyrex glass would optimise the target 
strength, but as these are soft or brittle materials, stainless steel might be preferable as 
it is more robust. As might be expected, increasing the diameter of the sphere will give 
a larger target strength. A thin shell wall will also lead to a large target strength, but 
may be too difficult to manufacture and will be easily damaged. A thickness of 
0.8 mm might be classed as a reasonable compromise. Figs 14 and 15 indicate that the 
target strength is quite sensitive to the thickness, so variations in the wall thickness 
need to be avoided. In particular, a sphere made by welding together two spun 
hemispheres is not appropriate, as the process of spinning leads to a variable wall 
thickness. 

Choice of the optimum combination of fluids with which to fill the shell depends on 
the temperature. Variations of a few degrees will make only a modest change to the 
target strength, but a combination chosen for warm waters, say off northern Australia, 
will behave quite differently in cool waters off southern Australia. For frequencies 
below 200 kHz a mixture of Freon-113™ and ethanol, or Fluorinert FC-72™ and n- 
hexane will work quite well if the ratio of liquids is chosen to give a refractive index 
between 1.8 and 1.9. At frequencies above 250 kHz the same liquids mixed to give a 
refractive index between 1.6 and 1.7 will produce high target strengths. 

In general, a well selected fluid-filled sphere can give a large target strength, but it 
will be somewhat sensitive to temperature and hence refractive index of the filling 
fluids. Consequently, the water temperature at the site at which it is to be used should 
be measured so the target strength can be calculated. Better still, the target strength 
should actually be measured at the site. 

If it is difficult to manufacture a shell with a uniform wall thickness, consideration 
could be given to spherical shells composed of rubber-coated metals or non-metallic 
materials, such as plastics. It is possible that the target strengths may be less sensitive 
to variations in their shell parameters. Because of their significant viscosity, the above 
theory is not valid, so they were not compared in this study. The required theory is an 
extension of that presented here. 
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Appendix A 

To solve for P in equation (6) the spherical coordinates 

x=rsin0cos(j) 

y- rsin0sin(t) 

z = rcos0 

(Al) 

(A2) 

(A3) 

are used and it is noted that P has no <|> dependence.   Hence equation (16) can be 
rewritten as 

i_d_( 2dpy   i   9LD
3/,
IL^ 

r2dr V    or J 
+ 

-2sineae^     30 J  c2
Li dt2 (A4) 

Solution  of  equation  (A4)   proceeds  by  separating  out  the  time  and  position 
dependence of P as 

P = p(r,B).T(t) 

and substituting this into equation (A4). Hence 

i a (   -z„\ dp 
+ ■ 

1 

r2pdr\    dr J    pr2 sin 9 88 

a (. jp\    i d2r 
sin0-^-   = 

V 30 -Lr dt 2   ' 

(A5) 

(A6) 

The left and right hand sides of equation (A6) are independent and can now be set 
equal to a constant -k2

Li, so the right hand side becomes 

d2T 

dt2 + klclT = 0 

for which the solution is 

T = e - e 

From the left hand side of equation (A6), 

1 a_ 
r2dr 

op 1       3 ( .   adp 
sin0- + k2

up = 0 
drj    r2 sin 0 30 V   """30 

which can be solved by a separation of variables. Substituting 

p{r,Q) = R(r).Y(Q) 

(A7) 

(A8) 

(A9) 

(A10) 
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into equation (A9) yields 

L±(r2^] + k2r2= , 
RdA    dr)     u YsinQdBV      dQ 

r — \ + Kir  =-- .   - — I sin9 (All) 

Again the left and right hand sides of equation (All) are independent and are set equal 
to/(/ + l). The right hand side becomes 

sin0 

»dY    .   ad
2Y 

cos Ö—+sin 6—T 
dQ dQ2 + /(/+l)7 = 0. (A12) 

which can be solved by making the substitution r\ = cosG and noting that 

sin6=(l-ri2)/ 
(A13) 

de 
= -sin6 

d\ 

dQ2 
= -COs6 =-T| 

dY 
dQ 

_dY dr\ 

~ dr\ dQ 

■  ndY      u      2\K dY = -sin6— = - l-riz Y   — 
dx\      V          /     dr\ 

d2Y = d (dYdv^ 
dQ2     dd{dr[dQ 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

dlY 

dx\' 

dy\\    d'r\ dY 

dQ)      dQ2 dr\ 
(A19) 

= K) d
2Y dY 

dx\ *"% 
(A20) 
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Substitution into (A12) gives Legendre's equation 

drf        dr\ 
(A21) 

The only solutions which are finite across the range T| = [-1,1] occur for / = 0,1, 2,. 
These are the Legendre polynomials 

Y = P,(r\) = P,(cosQ). 

The left hand side of equation (All) can be expressed as 

■[k2
Lir

2-l(l+\)]R = 0 

(A22) 

„   dR     2d
2R 

2r — + r2—=- 
dr        dr2 + (A23) 

which after substitution of C, = kLir and using 

*-k - KL,i 

dR 
dr 
dR    dR di; 

= kLi — 
dr     dC, dr       ' dL, 

d2R     didRd^dC, 

dr2    rfC dC, dr dr 

-Jfc2   dlR 

can be rewritten as 

(A24) 

(A25) 

(A26) 

(A27) 

g + 2|+p.I(/+1)]*.0 (A28) 

for which the possible outward going wave solutions are '},{$, n,(C)/ or h,(^)(Morse 
and Feshbach, 1953, p. 1465; Morse and Ingard, 1968, p. 337). These are the spherical 
Bessel, Neumann and Hankel functions of order I, respectively. The spherical Hankel 
function is related to the other two functions via 

h, =j,+in;. (A29) 

In the internal fluid the range, and hence £,, can fall to zero, at which stage n;((j and 

h,(0 are unbounded. Thus the only valid solution is j;(C)- On the other hand, in the 

external fluid where the range, and hence £, can approach infinity, h,(£) is a valid 
solution. Consequently, in the two media 
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A = jocose, )4h,(*urr) (A30) 

P3=SP/(cos8r)ßJ,(*t,3rr) (A31) 
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Appendix B 

To solve for A in equation (22) it is first noted that 

A = (0,0, A<). 

Hence, 

and 

VxA= 
1     d 

rsin0d0v  *" 
(^sine)r--f(M,) 

rdr 

VxVxA= 
1    a 

r2 sin 0 3(]) dr 
k) r + J      1 

rsin0 3([) 

1     3 (A* sine) 

(Bl) 

(B2) 

r   dr 4M d_ 

30 

1   a 
eae rsin (Vine) * (B3) 

where r, 0 and <j) are the unit vectors in the spherical coordinate system. Substitution 
of equation (B3) into equation (22) gives 

i^=!l(Mj+'if-Ll(Vi.e) 
„2      -u2 „  3   2  V       *'        ,-2   3ß     cir,ft^ftV     * ' sineaev ♦' 

(B4) 
4   3f2       r3r2V ~"    r'dQ 

Solution of equation (B4) is again achieved through a separation of variables, 

/L=a4(r,e,<|>)T(r) (B5> 

which gives 

1   d2T       1    3: 

c2
TT dt2      a^rdr' K) + 1      3 

aAr
2 30 si 

!_1 
~n0 30 

(a$sin0) (B6) 

Both sides of equation (B6) are independent and are set equal to -k2.   Thus the left 
hand side becomes 

*I- + k2c2T = 0 
dt2 

(B7) 
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the solution of which is 

j — e-
ikTcr' 

The right hand side of equation (B6) becomes 

i a 0 = ^T 
f ,3a 

r2dr 

2 ""> 1     3 
+ — 

r 
2ae 

i   a 
sineae 

(a^sine) + K.TCL^ 

(B8) 

(B9) 

which is solved by a further separation of variables into 

a, = X(r).Z(Q) (BIO) 

to give 

i a (7dx\ ,2 2     l a 
+ kTr  = — ■ 

Xd I     dr) Z36 
i  a 

sineae 
(ZsinB) (Bll) 

Again both sides of equation (Bll) are independent and are set equal to /(/ +1). From 
the left hand side, 

d_ 

dr 
(r2—) + k2r2X = l(l+l)X (B12) 

for which the solution is 

X = G,i,{kTr) + Hlnl{kTr) (B13) 

since A^ applies to medium 2, which has bounds not equal to 0 or °°.  The right hand 

side of equation (Bll) gives, after some simplification, 

d2Z JZ 
0=—r+cot0—+ 

dQ2 dB 
/(/+!)-- 

sin29 
(B14) 

for which the solution is 

_a_ 
ae 

Z = — P,(cos9). (B15) 

Hence, 

(B16) 
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Appendix C 

The coefficients required to calculate C; and D; from equations (40) and (41) are 

Yn = rVM)2 j,M)-M)2 jf(*«*) (C1) 1-20 

Y12 = r^-M)2n,M)-M)2nr(^) (C2) 
l-2a 

Yn =Kl+l)h{kTb)-l(l+l)kTbyi{kTb) (C3) 

Yl4 =/(/+l)n,(ikrfc)-/(/+l)Jkrfen;(Ä7.fc) (C4) 

M2 
Y.5   = 2p X(M) (C5) 

2 

2p2 

Y21 =r—z-^k^ h(kL.2a)-(kuia) }'i(kL,2a) (C7) 
1-2C 

Y22   =7-r-(kL2a)   ni(kL.2a)-(kL,2a)   n"(kL,2a) (C8) l-2a 

y23 =/(/+l)j/(Jkra)-/(/+l)MJj(M) (C9) 

y24 = /(M-l)n, (*ra) - /(/+l)£7a
n/(MO (CIO) 

YM=%^-JiUi,3«) («I) 2p2 

Y3,=*«*);(*«*) (C12) 

Y32=WM) (03) 

Y33 =/(/+D J/M (C14) 

yi4=l{l+\)n,{kTb) (C15) 
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k, ,b      /       \ 

p. 
(C16) 

Pi 
(C17) 

Y4I = ""Z.,2aJ/lAi„20/ (C18) 

Y42 = *L.2flnl(*Mfl) (C19) 

Y43='('+l)j,(M) (C20) 

y44=l(l+l)nl{kTa) (C21) 

P3 

(C22) 

Y5i=2^2fcj;(*wfc)-2j,(*L,2fc) (C23) 

y52=2kL2bn'l(kL2b)-2nl(kL2b) (C24) 

Y53 =(M)j;t^) + [/(/+D-2]j/(M) (C25) 

Y54 = (/^Kt^) + [/(/+l)-2]n, {kTb) (C26) 

1(,i=2K2a)'l(kL2a)-2]l(kL2a) (C27) 

y62=2kL,2<m',(kL2a)-2nl(kL2a) (C28) 

Y63=(M)J;,(M)+W/+D-2]J/(M) (C29) 

yM =(/cra)nr(V) + ['(^+l)-2]n;(V) (C30) 

The spherical Bessel, Neumann and Legendre functions and their derivatives needed 
to evaluate the above equations are listed in Appendix D. 
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Appendix D 

The spherical Bessel, Neumann and Legendre functions and their derivatives are 
commonly computed using the following recurrence relations: 

h(z) = 

sinz 

sin z    cos z 

z z 

 j,-i(z)-j<-2(z) 
I   z 

for / = 0 

for / = 1 

for / > 1 

(Dl) 

J;U)= 

cosz    sinz 

2 (12 
-yC0sz + j |sinz 
z \z   z 

(2/-1) Jl-iU)     j/-i(z) -iUz) 

for / = 0 

for / = 1 

for / > 1 

(D2) 

jfr) = 

2  n .     2 
—— sinz—5-cosz 
z    z) z 

6    3 
4 2 

z    z 
-r—=- sinz+ r cosz 

1    6 
3 

z   z 

(2/-1) 
jM   2jUz)2j,Jz) 

2 ,3 
z z z 

V;-2(z) 

for /=0 

for /=1 

for />1 

(D3) 

n,(z) = 

cosz 

sinz    cosz 

z 
2/-1 

n, ,(z)-n/_2(z) 

for / = 0 

for / = 1 

for / > 1 

(D4) 

n|(z) = 

sinz    cosz 

2    1 
sinz + | -Y— Icosz 

z 

(2/-1) 

z    z. 

nl-i(z)    nM(z) -n;_2(z) 

for / = 0 

for / = 1 

for / > 1 

(D5) 

76 



DSTO-RR-0020 

n;-(z)= 

1__2 

z   z3 

1__6 

z   z3 

(2/-1) 

cosz- 

sinz+ 

sinz 

3    6 
cosz 

n'SJz)   2n;_1(z)|2nM(z) 
';-2 (z) 

for /=0 

for /=1 

for />1 

(D6) 

P,U) = 

1 

z 

2/-1 

/ 
ZPMW-^P^U) 

for /=0 

for /=1 

for / > 1 

(D7) 

For fixed z and varying / the behaviour of the spherical Bessel and Neumann 
functions is different in the ranges 0 < / < z and z<l <°° ■ The functions oscillate 
with slowly varying amplitude in the first range. In the second range the spherical 
Bessel function tends rapidly to zero, whereas the spherical Neumann function tends 
rapidly to -°°. In this latter range the recursion relation of equation (D4) is stable, but 
that of equation (Dl) is unstable and leads to increasing errors with increasing order. 
A further difficulty arises in calculating sin(z) or cos(z) when z approaches a zero of 
either trigonometric function. The rounding error associated in representing it in 
double precision is reflected in the result. The error may be amplified when z is both 
near a zero and large, as an imprecise value for K may be used in the argument 
reduction method needed for the sine and cosine routines. The procedures used to 
overcome these difficulties are outlined below. 

The spherical Bessel function was calculated by one of three different methods, 
depending upon argument z and order I. For z<10~A, the ascending series 
(Abramowitz and Stegun 1965, p. 437) 

h(z) = 
1-3-5...(2/ + 1) 

1     2 

2Z 

l!(2/ + 3)    2!(2/ + 3)(2/ + 5) 
(D8) 

was used. 

For z > 25 and / < z +1, an asymptotic expansion (Abramowitz and Stegun 1965, p. 
437) was used to obtain the first two terms. The forward recursion formula of equation 
(Dl) provided sufficient accuracy for higher order terms: 
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m- !H'4! |sin In 
-ß|/ + -,z|cos 

In 

2/-1 
Ji-i(z) —Ji-2(z) 

for/= 0,1 

for / > 1 

(D9) 

where 

ßl/+2'ZJ=   ^0  (-
1)'tZ + i'2m + 1J(2z) 

l + -,m   =—!L
- —r 

2     )    m\T{l-k + \) 

(D10) 

(Dll) 

(D12) 

and £ is a reduced sinusoidal argument related to z by 

r =z- — xroundf—Vo.001935307179586476925286767 xroundf—]   (D13) 
s 32 Kin) \2n) 

For all other arguments and orders a method primarily attributed to J.C.P. Miller by 
Abramowitz and Stegun (1965, p. 452) was used: 

)l{z) = \Jl{z) for/„</</„ (D14) 

where I is a proportionality factor found by either 

= j,.(z) 
1 J,_(fi) 

(D15) 

when j; (z) is known, such as when the recursion is continued down to lm = 0, or from 

l = 

I(2/ + lV,2(z) 
l ;=o 

(D16) 

In practice the summation in equation (D16) is continued up to /max.  The Jt(z) terms 

are found for decreasing / via the recurrence relation 
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4U) = 
o 
l 

2/+3 

I   z 

for/ = /m„+l 
for / = /max 

JM(z)-JM{z) for/„,</</max-l 

(D17) 

/max needs to be chosen with some care. By trial and error it was found that provided 
L.„ satisfies 

.        < i p.2.1769+0.175271ogj+2.7941xl0"2(log:)2+6.4446xl0"3(log;)3 + 1.7055xl0_3(logz)'1 

"mar    —   *■ *-' (D18) 

the backward recursion is stable down to /,„ = 0. For larger values of / the recursion 
is unstable. /max was usually obtained from equation (D18), which was always greater 
than the maximum / needed to evaluate equation (12). More computationally efficient 
methods are outlined by Gautschi (1967) and Olver and Sookne (1972). 

Although equations (D2) and (D3) for the first and second derivatives of the spherical 
Bessel function do not diverge as quickly as equation (Dl), inaccuracies in their 
evaluation do nevertheless occur when they are used, especially as the order increases. 
Better results were achieved by using 

Jte) = 
1 

JM(Z)-UZ)-^ (D19) 

and 

j»(-)=   3   : (.) ! J/+i(z)-J/-i(z) , J/-2 (^) ~ 2J/ (z) + Ji+2 (z) 
' Az2 lz 4 

(D20) 

The recursion formula of equation (D4) for the Neumann functions was used as it was 
stable for the arguments and orders encountered. To speed computations 

n;w 
1 

i/-i(z)-n/+i(z)- 
n,(z)' 

(D21) 

and 

nr(e) = An;(^)+n;+l(z)"n,-(z) + n'-2(z)"2n,(z) + n;+2(z)        (D22) 
' Az2 2z A 

were used in place of equations (D5) and (D6). 
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Appendix E 

The integral over time in equation (53) can be evaluated as 

r *&/2     '2JC (fc-f)'+
(J^r 

= f^ Cos\n^S+2n(fc-f)t df + i£sin 
J~A'A At J        J  h 

dt 

. Jx    Jo 
%J^JtLti+2n(fc-f)t 

At 

At 

2(/,-/o) 
cos 

(/,-/o) 

2At 

(/,-/o) 

'{fx-fo) 
At 

t + ifc-f) 

dt   (El) 

+sin Mfc-f)2 

(fx-fo) 

2At 

+i 
Ar 

cos 

-sin 

2(/,-/o) 

iMfc-f) 

'(/,-/o) 

(/,-/o) 

(/i-/o) 
Ar 

2Ar 

' + (/«"/) 

'(/1-/0) 

'(/.-/o) Ar t + {fc-f) 

(/1-/0) 

2Ar '(/.-/o) 

Ar 

2(/,-/o) 
exp 

'(/i-/o) 

-J7tAr(/c-/)2 

(/1-/0) 

Ar 
t + {fc-f) 

-A// 

2Ar 

(/.-/o) 

(/,-/<>) 
Ar 

t + {fc-f) 

(E2) 

+iS 
2Ar 

(/.-/o) 

(/,-/o) 
Ar 

f + (/c-/) 
JJ -A// 

Ar 

2(/,-/o) 
exp 

-mAt{fc-ff 

(fx-fo) 

1+i 
erf ^(1-i) p^- 

2 1/,-Zo 

(E3) 

((/,    f*\ + f    f 

,.« 

Ar 
' JJ _A(/ 

(E4) 
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where C and S are the Fresnel integrals 

C(z) = £ cosf -t2jdt (E5) 

and 

S(z) = JJsin(-r2\ft (E6) 

and erf is the error function 

erf z = —F= I e~' dt 
V7tJo 

(E7) 
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