
4

ro

SIX-MONTH REPORT

OCTOBER 1, 1994 to MARCH 31,1995

INVESTIGATION OF MODULARLY CONFIGURED
ATTACHED PROCESSORS WITH INTELLIGENT MEMORIES

1. STATUS OF PROJECT

Objective 1 (register-level design of MCAP): Block diagrams
of all MCAP components have been completed and documented
(see Attachment A) by Glenn Gibson and an undergraduate
student. These diagrams include all of the important
registers in the components. More detailed designs based on
these block diagrams are currently being done in order to
fulfill the objectives below.

Objective 2 (architecture/algorithm case studies): The
simulator software package is now complete and this study is
now progressing at a stepped up pace. While learning the
MCAP system, a doctoral student under the direction of
Gibson has designed an architecture for performing matrix
operations and has written programs for executing matrix
multiplication and matrix inversion. If implemented in 1
micron CMOS, the architecture should have a peak performance
of 250 MFlops/s. Simulations of matrix multiplication can
be carried out at slightly more than 240 MFlops/s, giving a
processor efficiency of approximately 96%. The processor
efficiency for matrix inversion is currently less then 40%,
but the program is being rewritten and we are hoping to
attain an efficiency of over 60%. Another program for
performing Gaussian elimination will then be written. Upon

.^ completion of this work an article will be submitted to the
IC Journal on Computer Simulation. An undergraduate student,
■"^ also under the direction of Gibson, has designed an

architecture for performing iterative solutions to two-
«^ dimensional partial differential equations. Although he has

completed a program for solving LaPlace's equation, his
results are premature. Programs for other first and second

ro ^stsaranoK »TATEBJEHT * t TVTXO QUALITY I^...,^.^)
S

■3

OfetxfeSBCte UH&SSSKI

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION)
DEFENSE TECHNICAL INFORMATION CENTER

CAMEHON STATION
ALEXANDRIA, VIRGINIA 22304-6145

IN REPLY
REFER TO DTIC-OCC

SUBJECT: Distribution Statements on Technical Documents

TO:

OFFICE CF NAVAL RESEARCH
CORPORATE rACAR.A/!3 DiV!3!i

CNR 3E3
800 NORTH CURACY STREET
ARLINGTON, VA 222x7-b6S0

r^
a
^

X

1. Reference: DoD DirecUve 5230.24, Dislribution Slalemenls on Technical Documenls,

18 Mar 87.

2 The Defense Technical Information Center received the enclosed report (referenced
below) which is not marked in accordance with the above reference.
Uüiuw; w SIX-MONTH REPORT

N00014-93-1-1343
TITLE: INVESTIGATION OF
MODULARLY CONFIGURED ATTACHED
PROCESSORS WITH INTELLIGENT
MEMORIES

3. We request the appropriate dislribution statement be assigned and the report returned

to DTIC within 5 working days.

FOR THE ADMINISTRATOR:

1 End
GOPALAKRISHNAN NAIR
Chief, Cataloging Branch

FL-171
Jul93

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY- '
(Indicate Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicate Controlling DoD Office Below). «crtHMtu

DISTRIBUTION STATEMENT C:

/.nrt., . ^STRIBUT'°N AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS'
(tod cale Reason and Date Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicate Controlling DoD Office Below). «trtnHtu

DISTRIBUTION STATEMENT D:
I'

DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY" (Indicate Reason
and Date Below). OTHER REQUESTS SHALL BE REFERRED TO (1^16^^^^^.

DISTRIBUTION STATEMENT E:

OTHER RSSES^^ 0NLY: (,ndiCa,e ReaSon and Date Below), u i HtH HhUUtbI b SHALL BE REFERRED TO (Indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT F:

Be,ow, oS DODE
A
MuroTrONLY ** ""^ BY V"^ ^^ ™ «*» «™«°"

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATF iMnn/mi m o

ConfriS^'DOD Office) determinalion). CONTROLLING DOD OFFICE IS (Indicate

Itult^ZT ^ b9en reVleWed by COmPe,ent aulho^ and »he following distribution hereby authorized. statement is

lili
f'-^f"

tatemenl)
-ft;
CORO
0 N R
£00 f

L-'.'viy'ON
(Controlling DoD Office Name)

(Reason)

/

// y s
///.. . A' *Js?

(Signature S^typed Name) > ornr<F
(Assigning Office)

(Controlling DoD Office Address
City, State, Zip)

(Date Statemenrkssigned)

order equations will also be written. A doctoral student
and two master's level students are, under the supervision
of Sergio Cabrera, developing architectures and writing
programs for performing FFTs and signal processing
algorithms. This work began in January. Although it took
the students some time to learn the MCAP design philosophy,
their effort is progressing well now. Other journal
suomissions will be made as this work matures.

Objective 3 (two memory controller designs): Yu-Cheng Liu is
directing a master's level student and an undergraduate
student in this work. It began in earnest in November,
after the block diagrams in Attachment A were finalized.
The designs are at the logic level and are being done using
the Mentor Graphics software package. The address
generation and partition pattern logic for the single-access
(S) and dual- access (D) components have been completed.
Also, a preliminary study of an alternative design that uses
shift registers has been done. Their work to date is being
submitted to the '95 ISCA Int'1 Conf. on Computer Appl. in
Industry and Engr. in Honolulu.

Objective 4 (technology evaluations): This work involves two
doctoral students and two master's level students and is
being guided by Vijay Singh. Singh, Gibson, two doctoral
students and one master's level student attended the
multichip module conference, MCMC '95, in Santa Cruz,
California, in January and presented a paper (see Attachment
C). The presentation was made by one of the doctoral
students, Buck Gremel. Also, Singh's group has produced a
paper that has been accepted by the Int'l Journal of
Electronics (see Attachment D) and has submitted a paper to
the IEEE J. on Components, Packaging and Manufacturing Tech.
To date, the group has concentrated its efforts on the MCM
CMOS design of an architecture for performing matrix
operations, but one of the master's level students has been
investigating GaAs DCFL technology. Preliminary work on
Wafer Scale Integration (WSI) has also been done by Yi-
Chieh Chang and a graduate student under the supervision of
Singh. They will study the WSI implementation of MCAPs this
summer.

Objective 5 (simulator development): Although the simulator
software package, SIMARC, is complete and currently in use, y^W^T!
several enhancements are being made ~' ' ~~ These enhancements are

A
ßiist

. k»;

-■'■ ■

being done by a master's level student and an undergraduate
student under the direction of Gibson. They primarily
concern the display of simulation results and the ability to
dynamically change an architecture's attributes while a
simulation is being executed. It has been found that the
principal difficulty in using the SIMARC package is in
writing programs for the algorithms. The master's level
student has also begun working on a graphically assisted
assembler designed to alleviate this problem. The
instruction set for MCAPs has been finalized and
documentation of the SIMARC software began in December (see
Attachment B) and will continue through next summer. A
paper on this package will be presented at the '95
Simulation MultiConference in Phoenix in April (see
Attachment E).

2. CURRENT LEVEL OF EFFORT

Although no theses were completed during this six-month
period, the level of effort has increased dramatically. In
addition to the paper presented in Santa Cruz, the four
papers listed in the October 1, 1994, report were presented
in Taiwan and San Francisco. At present, there are four
doctoral stu-dents, eight master's level students and three
undergraduates involved in the project. Of these, four of
the graduate students are not currently supported (two are
part-time students) and two undergraduates are being
supported by stipends provided by the University. All
others are supported by stipends and research assistantships
through this grant.

3. PAPERS ACCEPTED FOR PUBLICATION (see attachments)

J. Singh, B.Gremel, V. Singh and G. Gibson, "Design Consid-
erations for implementing a Modularly Configured Attached
Processor in a Multi-Chip Module," Proc. of MCMC '95, Santa
Clara, CA, Jan., 1995, pp. 62-65.

G. Gibson, A. Brito, Y. Chang, D. Saenz and E. Castro,
"Simu-lation and Fast Prototyping of Modularly Configurable
Attached Processors," Proc. of 1995 Multiconference on High
Performance Computing, Phoenix, AZ, April, 1995.

J. Singh, B. Gremel, V. Singh, and G. Gibson, "Design Issues
in a CMOS Implementation of a Modularly Configured Attached

Processor", accepted by Int'l J. of Electronics.

4. PAPERS SUBMITTED FOR PUBLICATION

J. Singh, S. Nagabathula, V. Singh and G. Gibson,
"Comparative Evaluation of MCM and WSI Schemes for
Implementing a Modularly Configured Attached Processor
Architecture," submitted to IEEE Trans, on Components,
Packaging and Manufacturing Tech.--Part B: Adv. Packaging.

Y. C. Liu, G. Gibson and S. Vaishampayan, "Intelligent
Memory Controllers for Modularly Configured Attached
Processors," submitted to '95 Int'l Conf. on Computer Appl
in Industry and Engr. in Honolulu, Hawaii.

ATTACHWE'MT A
CHAPTER 1

MCAP DEFINITION

An MCAP is an attached processor that is constructed entirely from a standard set of

connections and components. This set consists of two types of connections and ten types of

components. The definitions of the connection and component types provide a standard set of

rules that allow the components to be easily configured in different ways to construct attached

processors that efficiently perform different sets of algorithms.

An MCAP is connected to its host using separate instruction and data streams. There is one

instruction stream and it flows from the hosts memory to the MCAP's only instruction com-

ponent. The instruction stream is depicted in Fig.1.1. It is assumed that, for each algorithm

the MCAP is to execute, the instructions for the algorithm have been permanently stored as a

subroutine in a ROM in the instruction component. The instructions sent from the host to the

instruction component's RAM designate which algorithm is to be executed and the parameters

needed by the algorithm(e.g., sizes and main memory locations of matrices). An algorithm is

executed by drawing from the set of instructions received from both the host and subroutine.

Using these instructions and the instruction component's register set and internal logic, an in-

struction stream, called the stream of external instructions, is produced and directed to the other

component's in the MCAP. The stream of external instructions provides the other components

with the information needed to perform the algorithm. Each external instructon is directed to

a component by putting the component's identifying address (i.e., component number) on the

address bus. The receiving component causes the contents of the instructon to be distributed to

its appropriate registers. It is the contents of the component's registers that dictate its actions

during the execution of an algorithm. For the given algorithm, the set of instructions that a

component receives must be sufficient to fill the registers needed by the algorithm.

There may be multiple data streams between the host and MCAP and they are connections

to one or more of the MCAP's memory subsystem components. The primary purpose of these

components is to buffer data between the host and the MCAP, although they may also rearrange

the data being input from or output to the host. Once the data has been put into the memory

subsystem components, other MCAP components may be used to process the data and return

results to the memory system components, from which the results may be output to the host's

main memory. All movement and processing of data to and from the host and within the MCAP

is determined by the external instructions sent from the MCAP's instruction component to other

components in the MCAP. These instructions set up memory-to-memory pipelines that route

and process the data according to the algorithm to be performed.

All MCAP connections are unidirectional and asynchronous. There are two types of con-

nections within an MCAP, instruction connections and data connections. A data connection

consists of a data bus and a Request/Acknowledge (Req/Ack) pair. A transfer begins when the

transmitting component puts the data on the data bus and activates the Req line. When the

receiving component recieves the Req signal and accepts the data, it pulses the Ack line. The

transfer is complete and the data and Req signals are dropped when the Ack pulse is received

by the transmitting component. An instruction connection is similar except that it may be

connected in more than one receiving component and includes an address bus. An address is

put onto this bus at the same time an instruction is put onto the data bus. Only the addressed

component can receive the data and return the Ack pulse.

The ten types of components fall into four categories and are summarized as follows:

Instruction (I)

Processor:

Elementary-one input, one output(E)

Two-input-two inputs, one output (T)

Comparator-two inputs, one output plus special outputs (C)

Router:

Join-multiple inputs, one output (J)

Fork-one input, multiple outputs (F)

Link-multiple inputs, multiple outputs (L)

Memory subsystem:

RAM-one input, one output, no partitions (R)

Single-access-one input, one output, has partitions (S)

Dual-access-two inputs, two outputs, has partitions (D)

The letter used to indicate each type of component is given in parentheses. These component

types are described in the subsections below.

1.1 Instruction Components

An MCAP contains exactly one instruction (I) component. A block diagram of an I compo-

nent is given in Fig. 1.2 . As explained above, an I component receives instructions from the

host and produces a stream of external instructions that are sent to the other components in the

MCAP. The instructions sent from the host are put into the I components RAM. These instruc-

tions are then brought in through the input instruction queue and decoded. They include the

parameter values needed by the algorithm to be executed and cause these values to be put into

the register set. The last instruction received from the host causes the subroutine that executes

the algorithm to be initiated. The instructions in the subroutine are then brought in through the

input instruction queue. There are two types of instructions, internal instructions and external

instructions. The internal instructions, the parameter values in the register set and the internal

logic of the I component are used to produce other parameter values that are also stored in the

register set. External instructions are those that are, perhaps, modified by the parameters in

the register set and sent out to the other MCAP components via the output instruction queue

and instruction connection. Internal instructions are capable of performing integer arithmetic

and logical operations, subroutine calls and returns, looping, unconditional branches, and con-

ditional branches based on flag signals received from the processing components. One of the

processing components must be a comparator. As discussed below, a comparator is capable of

determining a maximum or minimum of a sequence of numbers as well as comparing two values.

Therefore, not only are flag signals sent from the comparator that indicate >,<,>, <. = and

7^, but the comparator may also return the index within a sequence of a maximum or minimum

values. Such indices may be used to modify external instructions, particularly the instructions

for computing addresses.

In addition, the I component receives flags from the other processing components that indi-

cate exceptional conditions (e.g., division by zero, overflows, underflows and so on). These flags

are used to interrupt the host via the control bus when the MCAP aborts an algorithm.

1.2 Processor Components

The processor components are for performing unary and binary arithemtic/logic operations.

There are three types of processor components. There are one-input elementary (E) components,

two-input (T) components , and comparator (C) components. Figure 1.3 gives a block diagram,

programmable register summary, and mode register definition for an E component. As seen

from the block diagram an E component has an input instruction connection, an input data

connection, an output data connection, and a set of flag lines. It consists of an input queue

at its input connection, process logic for performing the required operation, and control logic

that contains four programmable registers. The mode register dictates the actions taken by

the component and it, along with the other three registers, determine the order and manner in

which the data inputs are used and when the component must input more instructions.

A list of the currently available modes for an E component are given in Table 1.1. Eight bits

in an E component's Mode register are used. Bit 0 indicates whether are not the component

is being used to perform an accumulation (e.g., sum a column of numbers). This bit is needed

only if the E component is part of a pipeline that can perform accumulations. When this bit is

1 the number in the NumOpsOut register is automatically modified according to the number of

stages in the pipeline, thereby taking into account the final accumulation steps. Bits 1 through

4 indicate the components current function with bit 4 specifying whether an unary or a binary

operation is to be conducted. If an E component is used for a binary operation, the first

operand is transferred to a latch and the operation proceeds when the second operand arrives.

It is possible for an E component to output a constant or perform a binary operation with one

of the operands being held constant. Whether a constant is being used is determined by bit 5.

If a constant is being is used it is possible to fill the latch by using an immediate instruction or

by using the first datum that arrives at the input data queue. Bit 6 is used to indicate one of

these two choices. Bit 7, 8 and 9 are not used. Bit 10 allows an E component to be put into

primitive mode. In primitive mode, an E component does not accept additional instructions,

but is simply a passive component that inputs and processes data as it becomes available.

Except for an E component in primitive mode or an I component, from the standpoint of

any component an algorithm is broken into tasks and. for each task, the component must receive

a sequence of instructions that determines what it is to do to execute the task. When the com-

ponent has completed a task, it must input another sequence of instructions. Instructions are

first used to fill the Mode, Number of Repetitions (NumRepetitions) and Decrement Amount

(DecAmt) registers. (If one or more of these registers is not filled, it's current contents are

used). Then, when an instruction fills the Number of Operands Out (NumOpsOut) register, the

component begins executing the task. The Number of Operands Out Constant (NumOpsOut-

Const) register is automatically loaded from the NumOpsOut register. As the task executes,

it draws inputs from it's input data queue(s), processes them, and outputs any results. Each

time there is an output, the i\TumOpsOut register is decremented. Each time the NumOpsOut

register becomes 0 the NumOpsOutConst register is decremented by DecAmt and used to reload

the NumOpsOut register. Also, the NumRepetitions register is decremented by 1. When both

NumOpsOut and NumRepetitions become 0 the task is complete and the component must input

another input sequence of instructions.

Figure 1.4 gives the block diagram, programmable register summary, and mode register

definition for a T component. It is similar to an E component, but the T component has two

input data connections and corresponding queues. A list of the currently available modes for

a T component are given in Table 1.2. Ten bits in a T component's Mode register are used.

with the first seven serving the same purposes as in an E component. However, if a constant

is input through one of the input data conections, the connection it arrives on is indicated by

bit 7. Bit 8 specifies whether one or both inputs are to be used, bit 9 specifies which input anv

nonconstant input value will arrive on.

Figure 1.5 gives the block diagram, programmable register summary and mode register

definition for a C component. A C component is a T component that has two special sets of

lines connecting it to the I component. There can be only one C component in an MCAP. As

usual, its current function is determined by its mode. A list of the currently available modes

for a C component are given in Table 1.3. One of its functions is to simply compare two inputs

and set relational flags that are then transmitted to the I component over one set of the special

lines. When performing comparisions there are no outputs other than the flag outputs. The C

component can, however, also determine the maximum or minimum of a sequence of numbers.

In this case, the second set of special lines is used to transmit the position, or index, of the

maximum or minimum within the sequence to the I component. If the maximum or minimum

occurs more than once in the sequence, the index always points to the first occurence. If a

maximum or minimum is being determined, then NumOpsOut is used to specify the length of

the input sequence (i.e., NumOpsOut really indicates the number of operands input). Also, the

maximum or minimum is output on the output data connection at the same time its index is

output on the index lines.

1.3 Routing Components

Routing components are for directing data along the proper paths. There are three types of

routing components, join (J) components with more than one input and one output, fork (F)

components with one input and more than one output, and link (L) components with more than

one input and more than one output.

Figure 1.6 shows the block diagram, programmable register summary, and mode register

definition for a J component. It has an input instruction connection, multiple input data con-

nections and an output data connection. It consists of a queue for each input, a bus, control

logic containing the same individual programmable registers as a processing component and a

programmable set of input pattern registers (InPattern). The registers in a pattern are summa-

rized in Fig.1.7. The NumRepetitions, DecAmt. NumOpsOut and NumOpsOutConst registers

are used as they are in the processor components. The sole purpose of the Mode register is

to distinguish between no accumulation and accumulation. As with processor components, J

and F components may be part of a pipeline capable of performing accumulation. A processor

component pipeline that performs accumulations always has a J component at one of its input

data connections, an F component at its output data connection, and a feedback data connec-

tion from the F component to the J component. These F and J components must increase

NumOpsOut by an amount that depends on the number of stages in the pipeline. Also, the

F component, which normally outputs to the feedback connection must output the final result

to a different output connection. This allows the pipeline to accumulate partial results and

then produce a final result and send the final result to its destination. In the no accumulation

mode, InPattern specifies the order in which the input connections are to be selected during the

execution of the algorithm being programmed. This pattern is continually cycled through until

NumOpsOut becomes 0. It may be reused by the next task or changed by a new instruction

that resets InPattern.

A pattern includes two subcycles. The Pattern Array (PArray) set of registers shown in

Fig.1.7 are set to a sequence of numbers that indicate input connections. The register Numberl

indicates the number of connections selected during the first subcycle and the register Count 1

indicates the number of registers from PArray that are to be included in the first subcycle.

Number2 and Count'2 serve the same purpose for the second subcycle. When the first subcycle

is exhausted, the second subcycle is begun, and when the second subcycle is exhausted, a return

is made to the first subcycle and so on.

For example, if Numberl=4, Countl=3, Number2=5, Count2=2 and PArray contains 2, 6,

4, 7 and 1, then the input connections are used in the order

2 64 2 71717 264 2 71717

The sequence continues until NumOpsOut becomes 0.

Figures 1.8 and 1.9 correspond to the F and L components, respectively. An F component,

because it has only one input and multiple outputs, has a set of output pattern registers,

OutPattern. instead of an input set. and an L component has both an InPattern and OutPattern.

Both InPattern and OutPattern are continually cycled through and determine the order in which

the input or output connections are used. An L component cannot be part of a pipeline and

does not need a mode register.

In addition both F and L components contain a set of broadcast registers denoted BcPattern.

If an entry in an output pattern is all ones, then the entry will not be used as an output

connection number, but there will be a simultaneous output to all output connections listed in

BcPattern.

1.4 Memory Subsystem

There are three types of memory subsystem comoponents, RAM (R) components, single

access (S) components, and dual-access (D) components. All memory subsystem components

are fcr automatically retrieving operands from and storing results in their associated memory

modules. AH memory subsystem components have an output data connection and an input

data connection. Therefore, they must be capable of handling both an output data stream and

an input data stream. In addition, a D component includes a second pair of input and output

connections. .All memory subsystem components have a queue in each of their input and output

data streams.

A significant difference between the memory subsystem components and the other compo-

nents is that a Number of Operands In (NumOpsIn) register as well as a NumOpsOut register

must be included. The NumOpsIn register serves the same purpose for the input data stream

as NumOpsOut does for the output stream. Both NumOpsIn and NumOpsOut must be zero

before new instructions can be distributed to the component's programmable registers.

Figure 1.10 gives the block diagram, programmable register summary, and mode register

definition for the R component. An R component is primarily used for temporary storage or as

a large queue. An R component has six modes related to the input and output of data. They

are:

InPut: Data is only stored in memory (i.e.. only the input data stream is used).

Output: Data is only retrieved from memory (i.e., only the output data stream is

used).

Input/Output: Data is first input to memory and then output from memory. The input

must stay ahead of the output.

Output/Input: Data is first output from memory and then input to memory. The output

must stay ahead of the input.

Input and Output: Data is input and output with no regard as to which is done first.

Zero: Put zeros in all memory locations.

Figure 1.11 gives a block diagram of an S component. An S component differs from an R

component in that it may be connected to more than one memory module and the memory as

a whole may be divided into partitions, called S partitions, that consist of blocks of memory

having consecutive addresses. The memory modules may be banked and/or interleaved (i.e.,

the high-order address bits specify the bank and the low-order bits specify the module within

the bank). The partitions, because they occupy consecutive addresses, are spread across the

modules and may even encompass more than one bank.

Because some S partitions are used for outputting from memory(i.e., providing the output

data stream) and some are for inputting to memory (i.e., terminating the input data stream),

there is a set of programmable registers referred to as the Output Partition Pattern, OutPartPat.

that determines the pattern in which the partitions providing the output stream are accessed.

Likewise, the Input Partition Pattern, InPartPat, determines the order in which the partitions

providing the input stream are accessed. In both cases the patterns determine the partition

sequence in the same way the connection sequences are determined by the routing components

(see Fig.1.7).

Each S partition is accessed as a circular memory (i.e., the first location in the partition

is considered to follow the last location in the partiton). A summary of the registers that

define a partition and are used to determine the order in which the locations within a partition

are accessed is given in Fig.1.12. A partition is defined by its Base register, that gives its base

address, and Size register, that designates its size. From Fig 1.12(b) it is seen that each partition

has a mode and can be put into any one of the first four modes permitted an R component.

If the mode of a partition allows output, a window must be defined within the partition. All

outputs must be from within the window and if there are inputs, they must be to locations

outside the window. An exception occurs when a partition is in its input before output mode.

In this case the window must be filled before output begins, but thereafter the input must be to

outside the window. The initial base address of the window is the same as that of the partition.

The window"s base is incremented with each repetition of a window pattern, which is described

below. The size of the window is defined by the contents of the WinSize register.

Within an S partition the sequence of input addresses is generated by

1=0

While NumOpsIn > 0 {
Input address = B + I mod S
Increment I by 1

}
where B and S are the base and size of the partition.

The addresses used for outputting are generated according to the output pattern defined by

the Patlnc, NumRepsl, Replncl, NumReps2, and Replnc2 registers and the offset pattern. Let

P, Nu R\. A2 and R2 be the contents of these registers respectively, and OS be the PArray in

the offset pattern (see Fig. 1.7.). Also, let N0 equal the initial NumOpsOut and A3 equal the

sum of Number 1 and Number2 from the offset pattern. Assuming Aj > 0 and Ar
2 > 0 then the

sequence of output addresses is generated by

A'o = A'i = K2 = M\ = M2 = M3 = 0
While M0 < A0{

A'i = 0

Mi = 0
While M0 < A'0 and Mx < N\{

K2 = 0
M2 = 0

While M0 < N0 and Mi < Aj and M2 < A"2{
M3 = 0

While M0 < A0 and Mi < A'i and M2 < N2 and M3 < A3{
Select I from offset pattern

Output address = B + (A'0 + Kx + K2 + OS[I]) mod S
Increment M0. Mi,M2 and M3

}
Incrementk'2 by R2

}
Incrementh'i by Aj

}
IncrementKo by P

}

For example, suppose that the offset pattern in

Numberl=4 Countl=3 Number2=Count2=0 PArray= {0.3,1}

and

B=0 S=12 A0 =25 P = l A1=20 A1=2 A2=7 A2=4.

Then Ar
3=4 and the sequence of addresses generated would be

031047 5 25 32697 47 5 48 11 14215

10

External instructions must, of course, be sent to an S corr ponent to specify the mode,

define the S partitions and specify the input and output partition patterns. The modes for the

partitions are determined by the mode of the S component. For each partition that produces

output, there must be external instructions for specifying the window size and overall output

pattern.

The format of an S component mode instruction is given in Fig. 1.13. Bits 0 through 29 are

divided into pairs with each pair specifying the mode of an S partition. Bits 0 and 1 specify

the mode for partition 0 and so on. When a mode instruction is recognized, its lower 30 bits

are seperated into pairs and the pairs are sent to the corresponding S partition mode registers.

Bit 30 is put in Bit 0 of the S component's mode register. The format of this register is given

in Fig. 1.14. Bit 30 is used to indicate whether only one data stream is to be used or both the

input and output streams are to be used.

A block diagram of a D component is given in Fig. 1.15. In a D component there are two

input streams and two output streams. The input stream logic in a D component is the same as

in a S component, but it is replicated. Also, the output stream logic is the same, but replicated.

The S partition logic is the same as in an S component.

The formats of the two D component mode instructions are shown in Fig. 1.16. The one

shown in Fig. 1.16(a) provides pairs of bits for specifying the S partition modes for partitions 0

through 12. These pairs are in Bits 0 through 25. Bit 26 indicates that the attached processor

output (AP out) stream is to be used when it is 1 and not to be used when it is 0. Similarly

Bits 27, 28 and 29 indicate the use of the attached processor input (AP in) stream, host output

(Host out) stream and host input (Host in) stream. The instruction in Fig. 1.16(b) gives the S

partition mode pairs for partitions 13 through 27. Bits 26, 27, 28, and 29 are put in the four

low-order bits of the D component's mode register. As with an S component, a mode instruction

distributes the mode bits to the corresponding S partition mode registers. The format of this

register is given in Fig.1.17.

11

1.5 Example Architecture

An MCAP for performing matrix operations is given in Fig. 1.18. The letter in each

component gives the component's type. The MCAP includes a comparator (a C component)

a negator/reciprocator (an E component), three four-stage adder/subtractors (a T component

followed by three E components), three four-stage multipliers (a T component followed by three E

components), several J, F and L components for routing the data and three memory subsystem

components. The small rectangles inside the memory subsystem components represent data

streams, address generators, memory buses and memory modules. The S component at the top

is for temporarily storing data. The D component acts as a buffer, but is also used to rearrange

and temporarily store data. The S component at the bottom is the MCAP's controller of the

host's main memory and determines how the MCAP accesses main memory. The I component,

instruction connections and host's connection to main memory are not shown.

12

Tab e 1.1: Summary of E Component Modes

Mode Description

OxxxllOfffO
OxxxOlOfffO
OxxxOOOfffO

OxxxlllfffO

OxxxOllfffO

OxxxOOlfffO

lxxxOOOfffa

x - not used
f - function code
a - if component

Immediate constant is output NumOpsOut times.
Constant is input and then output NumOpsOut times.
Unary operations are performed on NumOps Out inputs and NumOpsOut
results are output.

Binary operations are performed using an immediate constant with NumOp-
sOut inputs and NumOpsOut results are output.

Constant is input and then binary operations are performed using this input
with NumOpsOut additional inputs to produce NumOpsOut outputs.

Binary operations are performed on NumOpsOut pairs of successive inputs
and NumOpsOut results are output.

Component is put into primitive mode. For each input, a unary operation
is performed and a result is output.

bit assigned by designer.
is part of an accumulation pipeline it is 1: otherwise, it is 0.

Table 1.2: Summary of T Component Modes

Mode Description

OlOllOfffO Immediate constant is output NumOpsOut times.
OOcOlOfffO Constant is input and t.ien output NumOpsOut times.
vOOOOOfFfO Unary operations are performed on NumOpsOut inputs and NumOpsOut

results are output.

vOOlllfffO Binary operations are performed using an immediate constant with NumOp-
sOut inputs and NumOpsOut results are output.

vOcOllfffO Constant is input and then binary operations are performed using this input
with NumOpsOut additional inputs to produce NumOpsOut outputs. Only

one input connection is used and v and c are equal.

vlcOllfffO Same as previous mode except that two inputs connections are used, one for

the constant and one for the variables, and v and c are complements.

vOOOOlfffO Binary operations are performed on NumOpsOut pairs of successive inputs
arriving on a single input connection and NumOpsOut results are output.

OlOOOlfffO Binary operations are performed on NumOpsOut pairs of successive inputs
and NumOpsOut results are output. Both input connections are used and
for each operation one operand must arrive on one connection and the other
operand must arrive on the other connection.

OlOOOlfffl Component is to be used as a part of an accumulaltion pipeline. Both inputs
are used as required by the pipeline.

f - function code bit assigned by designer.
v - number of the input connection to be used to input the variables.
c - number of the input connection to be used to input the constant.

Table 1.3: Summary of C Component Modes Description

Mode Description

vOOHOOlfO Immediate constant is compared with NumOpsOut inputs. The minimum
is output and the index of the first minimum is sent to the I component. If
the immediate constant is equal to the minimum, the index is all O's and the
flags indicate that the immediate constant is equal to the minimum.

vOOHOlOfO Same as the first entry except that the maximum is found instead of the
minimum.

vOOl 101 lfO Same as the first entry except that both the maximum and the minimum are
found and both extrema and their indices are output. The minimum and its
index are output first.

vOOOOOOOfO A pair of inputs are compared and only the flags are output. Only one input
connection is used.

vOOOOOOlfO The minimum of NumOpsOut inputs is found. The first minimum is output
and its index is sent to the I component. Only one input connection is used.

vOOOOOlOfO Same as the fifth entry except that the maximum is found instead of the
minimum.

vOOOOOllfO Same as the fifth entry except that both the minimum and maximum are
found and both extrema and their indices are output. The minimum and its
index are output first.

01000000f0 The inputs on the two input connections are compared and only the flags
are output.

vlcOlOOlfO Same as the first entry except that the constant arrives on the input con-
nection not used by the variable input stream, v and c are complements.

vlcOlOlOfO Same as the second entry except that the constant arrives on the input
connection not used by the variable input stream, v and c are complements.

vlcOlOllfO Same as the third entry except that the constant arrives on the input con-
nection not used by the variable input stream, v and c are complements.

OlOOOlOOfO NumOpsOut inputs arrive on each of the two input connections and the
absolute values of the differences of the successive pairs of inputs are deter-
mined. These absolute values are compared with an immediate operand and
the flags indicate whether are not all of them are less than or equal to the
immediate operand. Only the flags are output.

vOOOOlOOfO Same as the preceeding entry except that the NumOpsOut input pairs arrive
on a single connection.

f - function code bit assigned by designer.
v - nuiiii'-: of the input connection to be used to input the variables.
c - number of the input connection to be used to input the constant.

Instructions to other
MCAP components

Instructions from host

Fig. 1.1. Instruction stream.

Instructions to other MCAP components

RAM

I
n
s
t
r

Output
instruction
queue

Internal
logic

Input
instruction
queue

Free

Index
(From
comparator

Flags

Flags
From
processing
components

Instructions from host To/from host

Fig.1.2. Instruction component.

Req-

Ack-

Data

V,

Reset Free Req Ack
4 i>

>

A
Xffi

Queue

Control logic

Q
u
E
U
E

Processing

logic

Data

(a) Block Diagram.

Mode NumOpsOutConst

Dec Amt NumOpsOut

NumRepetitions

(b) Programmable reeisters.

Req

Ack

>

Function

A
0 Normal mode
1 Primitive mode

J
0 Constant not immediate
1 Constant is immediate

0 Variable operands
1 Constant operand

nary
Binary

ONot accumulation
1 Accumulation

-0 Normal execute time
1 Extra execute time

(c) Mode register.

Fig. 1.3. E component

Reset Free Req Ack
ii n

Req-
Ack-

Data
>

Req-
Ack-

Data
>

Q
U
E
U
E

Q
U
E
U
E

A

XÄZ
Queue

Control logic

Processing

logic

(a) Block Diagram.

Data

Req

Ack

>

Mode NumOpsOutConst

Dec Amt NumOpsOut

NumRepetitions

[Z

(b) Programmable registers.

Variable input:
0 Input 0 used
1 Input 1 used

0 One input used
1 None or two inputs

Constant input:
0 Input 0
1 Input 1

Function

0 Unary
1 Binary

£
0 Not accumulation
1 Accumulation

r0 Normal execute time
1 Extra execute time

0 Variable operands
1 Constant operand

■ 0 Constant not immediate
1 Constant is immediate

(c) Mode register.

Fig. 4. T component

Reset Free Req Ack

Req-
Ack-

Data
>

Req-
Ack-

!Z

Data
>

AA
XfiZ

Queue

Control logic

Q
U
E
U
E

Q
U
E
U
E

Processing

logic

Req

Ack

Data
>

(a) Block Diagram.

Mode NumOpsInConst

Dec Amt NumOpsIn

NumRepetitions

(b) Programmable registers.

Variable input:
0 Input 0 used
1 Input 1 used

0 One input used
1 Two inputs used

Constant input
0 Input 0
1 Input 1

0 Does not compare differences to constant
1 Compares differences to constant

0 Normal execute time
1 Extra execute time

00 Not constant
01 Constant not

immediate
11 Constant

immediate

00 Compare
01 Find minimum
10 Find maximum
11 Find both

(c) Mode register.

Fig.5. C component

Reset Free Req Ack

Req-
Ack-

Data
>

Req-
Ack-

Data
>

w
Queue

Control logic

Q
U
E
U

fc

E
•
•

B

U
• s

Q
U
E
U
E

(a) Block Diagram.

Req

Ack

Data
>

V,

(b) Programmable registers.

Mode NumOpsOutConst

Dec Amt NumOpsOut

NumRepetitions

In Pattern

r ONot accumulation
1 Accumulation

(c) Mode register.

Fig. 1.6. J component

Numberl

Number2

PArray

Fig. 1.7. Pattern registers.

Reset Free Req Ack

Req-
Ack-

Data
>

Instruction
connection

xfiz
Queue

Control logic

B

U

s

Q
u
E
U
E

•
•

(a) Block Diagram.

Req

Ack

Data ^>

Data

*- Req

" Ack

>

Mode

Dec Amt

NumRepetitions

NumOpsOutConst

NumOpsOut

BcPatteni

OutPattem

z

(b) Programmable registers.

r 0 Not accumulation
1 Accumulation

(c) Mode register.

Fig. 1.8. F component

V,

Req— +•
Ack ■*

•
•

Data

Rm ■■

:>
Data

Reset Free Req Ack A I
i i i i d

d
n
s

' ' ' 1 vv
Queue

Control logic

Q
U
E _
U
E B

•
U

•
•

s
•

0
U
F,
U
E

Req

Ack

Data J>

Data

*- Req
_ Ack

>

(a) Block Diagram.

Mode NumOpsOutConst

Dec Amt NumOpsOut

NumRepeti lions
BcPattera

InPattem OutPattem

(b) Programmable registers.

fA

Note: Currently the entire mode register is not used

(c) Mode register.

Fig. 1.9. L component

Reset Free Req Ack

Req-*
rtLK

< I)ata

>
Data

(a) Block Diagram.

Mode NumOpsOutConst

Dec Amt NumOpsOut

NumRepetitions NumOpsInConst

NumOpsIn

(b) Programmable registers.

^^m^m*^^
Mode:
000 - Input only
001 -Output only
010 - Input before output
011 - Output before input
100 - Input and output
111 - Zero part of memory

(c) Mode register.

Fig. 1.10. R component

Req*

Ack-

c Data

Req.

Ack-

Data A
J

Reset Free Req Ack
11

NumOpsOut Queue

Q
u
e
u
e

Output Partition
Number Generator

OutPartPat

Output Partition
Number Queue

!». Output Address
Queue

Output Address Generator

S Partitions

HZ
Input Address Generator

Input Partition
Number Generator

InPartPat

Input Address
Queue

Input Partition
Number Queue

Q
u
e
u
e

NumOpsIn

B

U

s

c

o

N

T

R

O

L

L

O

G

I

C

Mode

Fig. 1.11. S -Component Block Diagram

Mode

Base

Size

WinSize

Patlnc

NumRepsl

Replncl

NumReps2

Replnc2

Offset pattern

(a) Registers

00 Input only
01 Output only
10 Input before output
11 Output before input

(b) Mode register format

Fig. 1.12. Registers in an S partition.

Partition modes :

00 Input only
01 Output only
10 Input before output
11 Output before input

0 one stream used
1 two streams used

Part.l Part.O

Fig. 1.13. S component mode instruction format.

0 one stream used
1 two streams used'

Fig. 1.14. S component mode register.

CZ3Q-

_T
OE

3D

" E E IP 1

□ 3D

U u

Fig 1.14 Example MCAP for performing matrix operations.

Partition modes *

(a) DMOD instruction

Partition modes
*

r
Part.27

(b) DXMD instruction

Part.13

///

4> • • • 1 1

* Partition modes :

00 Input only
01 Output only
10 Input before output
11 Output before input

Fig. 1.16. D component mode instruction formats.

Stream usage:
0 Not used
1 Used

Fig. 1.17. D component mode register.

ATTACUMEA/T ß

CHAPTER 2
PROGRAMS AND FILES ASSOCIATED WITH SIMARC

SIMULATION PACKAGE

Tie programs in the simulate architecture (SIMARC) system of programs communicate
through a collection of files. The relationship between the programs and the files they create and
access is summarized in Fig. 2.1. The text editor is not a member of the simulate architecture
program set, but may be any text editor capable of producing an ASCII text file. The editor
currently used is the DOS program EDIT.

The files used by the system may be given any legitimate DOS filenames, but must have
the extensions shown in the figure. These files are classified as follows:

Architecture file (.SAR) -

Architecture error file (.SAE) -

Information file (-SIE) -

Program file (.SAS) -

List file (.SIT) -

Load file (.SLD) -

Result file (.SRT) -

Irregular intervals file (.SIR) -

Fractional result file (.SFT) -

Summary file (.SUM) -

contains a complete description of an architec-
ture

contains connection errors made while generating
an architecture

contains a textual description of the architecture.

contains a source program in the form needed by
the assembler.

contains a list of the errors produced during an
assembly.

contains a program in the form needed by the
simulator.

contains the results produced by a simulation.

specifies the time at which results are to be taken
when the result intervals are irregular.

contains the same information as an .SRT file
except that the results are given as percentages.

contains automatically updated summary infor-
mation from succesive tests.

The programs are:

EDITOR - for creating a new architecture or changing an
existing architecture.

ARCHCHh - checks an architecture's connections for errors. It
is automatically executed each time a .SAR file
is created or updated.

A5 - for assembling a source program into a load form
that can be used by the simulator (SIMULATE).

SIMULATE - for simulating a given program on a given archi-
tecture and accumulating results of the simula-
tion.

DISPLAY - for displaying the results of a simulation on the
monitor.

SIMSLMM - for producing summary information a5 well as
storing the results as percentages

Each type of file is described in a subsection given below. Each subsection defines the
content and format of one of the file types.

2.1 Architecture File

An architecture (.SAR) file completely describes the architecture of an MCAP and provides
the graphics information needed to display the architecture and mnemonics required by the
assembler. An MCAP consists of a standard set of connections and components in which each
end of each connection is attached to exactly one component. An MCAP is completely defined
by specifying the

• Connection type for each connection and the component that is attached to each end of
each connection.

• Component type and the attributes of each component.

An architecture file is an ASCII file that is divided into two parts. The two parts are
separated by a string consisting entirely of one or more asterisks. The first part is for storing
connection information that can be easily used to modify an existing architecture. The second
part contains the information needed by the assembler and simulator.

The second part of the architecture file is broken into fields, one field for each component
in the MCAP. The first part of a field contains the information that is common to all components
and is summarized in Fig. 2.2. The remaining information in a field is determined by the
component's type. Figures 2.3 through 2.9 summarize this information for each type. In all of
these figures the data type for each entry or subfield is given in parentheses. Except for the
type, mnemonic and component number, the data corresponding to each major item in these
figures is on a single line in the architecture file, even if it is a single number.

2.2 Information File

An information (.SIF) file simply gives an easily readable description of an architecture. It has
the same file name as the architecture file that contains the architecture it describes and consist
of a listing of the components and their attributes. consists

2.3 Architecture Error File

An arrnieTnR
re "^ ('SAE) ^ ^^ descriPtions <* ^ connection errors made while

using EDITOR to create an architecture and a summary of all of the architecture's connections
It has the same file name as the architecture file containing the errors

2.4 Program Source File

A program source (.SAS) file is an ASCII file in which each line is blank, a remarks line or an
assembler language directive or instruction for an MCAP. At present, there are three directives
They are given m Fig. 2.10. In an EQU statement the symbol Name is assigned the value
Constant. Remarks* optional and can be any string of text. If Remarks is J present then
the semicolon is optional. Also, a line may begin with a semicolon, in which case the remainder
of the line can be any text. PROC and ENDP mark where instructions are placed that make
up procedures. An EQU statement can not be placed inside the directive pair PROC ENDP
and an instruction can not be placed outside them. "" *

There are two types of instructions, internal instructions and external instructions In-
ternal instructions are those that are executed entirely within the instruction component and
external instructions are those that are distributed to and executed by other non-memorv com
ponents. Instructions have the format: u^uion, com

Label: Mnemonic Component Operand,...,Operand .-Remarks

where Label the colon, the semicolon, and Remarks are optional, but if Label is present then the
colon must be present and if Remarks is present then the semicolon must be present. Complnent
appears in external instructions only. Mnemonic and Component must be followed byTlelst
one space character. Operands must be separated by a comma or at least one space character

Label is a string for identifying the instruction. Mnemonic indicates the instruction
t>pe and Component is a mnemonic that indicates the component that ultimately decodes and

:;:r;::ron-There may be none'one °r—*» - °— ^Jit
The internal instructions are summarized in Fig. 2.11. They include instructions for

implementing subprograms and loops, manipulating the data in the instruction component's
registers, and halting the computer. Also, a no-operation instruction is included.

_ The external instructions are summarized in Fig. 2.12. They are for putting values
into the various registers in the programmable components (i.e.. the E T C J F L R S and
D components). These registers determine the activities within their respective'components
During the execution of an algorithm, the values in these registers designate the number of
operands out, number of operands in. mode, and immediate operands: input and output patterns
for routing; and memory partitioning and access patterns for memory controllers. The value put
in one of these reglsters may be immediate (i.e., the value indicated bv the operand) or be in
the instruction component's register whose ID is indicated by the operand. A register ID begins
with an asterisk and ends with up to five digits.

2.5 List File

A list (.SLT) file consists of a simply listing of the errors produced during the assembly process
It has the same file name as the source program file that is assembled. The format for the list
nie consists of the error messages for each line containing an error followed bv the line itself

2.6 Load Files

A load (SLD) file is an ASCII file that is in the program format needed bv the simulator As
indicated in Fig. 2.13, the first line corresponding to an instruction begins with the instruc
t.on s opcode, the type of component that is to receive and execute the instruction, and the
component's number. The opcodes for the instructions are given in Fig. 2.14.

This information is followed by a sequence of numbers that are the operand* If an
instruction pertains to a particular partition, then the first of these numbers identifies the parti-

npvi nlTTUTZt", refer t0 a partkular Partition are S°SP, SPNI, SPBS, SWIS. DOSP
DPM DPBb. and DWIS (see Fig. 2.12 in Sec. 4). If an instruction includes an indeterminate
number of operands, then the number preceding the indeterminate set of operands indicates the
number of operands ,n the set. For JSIP, FSOP. LSIP. LSOP. SIPP, SOPP DIPP DOPP DPPI
and DPPO two sets of numbers are used to specify a pattern. In each set there is a sequence of
.terns of indeterminate length preceded by the number of items in a sequence, which is in turn
preceded by the total number of times the items of the sequence that are used before the other

FSqBepTndSASRP Tg; °f ^ S6qUenCeS akernate Whh the firSt SeqUeDCe bein= employed first. I bBP and LSBP include only one sequence but in order to make them consistent with the other
pattern instructions, two O's are appended to them. Fig. 2.15 gives a complete description of
the operands for the various instructions.

Note that for the SPNI and DPNI instruction the last four operands or the last two

operands may be omitted in the source code. If omitted, these operands are set to 0 in the load
code.

In Sec. 4 it was indicated that an operand may be immediate or the ID of an instruction
component register. If an operand is a register ID, then the corresponding operand in the load
file will begin with an asterisk and end with up to five digits. The five digits, of course, identify
the register.

2.7 Result File

The result (.SRT) file is an ASCII file that contains the results of a program simulation. As
indicated by Fig. 2.16(a), a result file consists of lines with the first line containing the filename of
the tested architecture. The second line indicates the number of components in the architecture.
The third line indicates whether regular or irregular intervals were used to collect the results,
the fourth gives the total area and the fifth provides the column headings. Column headings are
included to make the file more readable. The remainder of the file consists of a field for each
interval for which results were recordered.

As shown in Fig. 2.16(b), each field begins with the system time at which the data was
taken. In the remainder of a field is one or more lines for each component. Fig. 2.16(c) gives
the format of the lines. Each line corresponds to a component or, for I. R, S and D components.
a set of logic with a component. Each line begins with the component's mnemonic followed by
the area of the component or set of logic for wich the data was collected. The area is followed
by the current accumulated times the component or set of logic has spent in each state since the
beginning of the program and the maximum number of entries in the component's instruction
and data queues since the beginning of the program. Entries that do not apply to a component
or set of logic are filled with O's.

The possible states that a component can be in are defined below. A component is in
exactly one of these states at a time. Some types of components can assume any one of these
states at a given time, while others can assume only some of the states. The component types
that can take on a state are given in parentheses.

BUSY (all component types) - the component is actively performing one of
its functions.

WAIT (all component types) - the component is waiting for its output to be

taken or, for the I component, a flag to be set.

IDLE (I.E.T.C.J.F.L.R.S.D) - the component is waiting for input.

FREE (ail component types) - the component is completely inactive.

DIST (E,T.C,J,F,L,R,S,D) - the component is distributing instructions to
its registers.

For the S and D components, only the input stream logic and output stream logic can
take on all five states, the address generator, buses and memory modules can be only FREE
or BUSY. Also, depending on the component type, the state time data may be followed bv the
maximum numbers of entries in the component's instruction and data queues. The component
types I, B. E, T, C. J, F, L, R, S and D have instruction queues and the component types E,
T, C. J. F, L, R, S and D have input data queues. Component types J and L have multiple
input data queues and only the maximum number of entries taken over all queues is recorded.
Component types R and S also have output data queues and D components have two input
queues and two output queues. If a component does not have an instruction or data queue, then
a 0 is entered as the corresponding data.

Results can be saved at regular or irregular intervals. Regular intervals are used to
specify saving results every multiple of a value. For example, if a regular interval of 1000 is
specified, results will be saved at 1000, 2000. 3000. etc. up to the last multiple of 1000. In
addition, the results are saved at the end of the simulation if they weren't previously saved as
a multiple of the regular interval. If intervals other than a multiple of some specified" value are
required, irregular intervals must be used.

Irregular intervals specify the exact point(s) at which results are to be saved. As many
as 100 of these values may be entered for any simulation. In addition, the results are saved at
the end of the simulation unless this would be a duplication of the last interval specified.

2.8 Irregular Intervals File

When the user chooses to record results at irregular intervals, the system times for recording
the results may be entered through the keyboard or taken from an irregular intervals (.SIR) füe,
whose format is shown in Fig. 2.17. The file simply consists of the times followed bv a 0, which
serves as a terminator. If the user chooses to enter the times through the keyboard, then he or
she may also choose to store the times in an .SIR file so that they can be used later without
re-entering them.

2.9 Fractional Result File

A fractional result (.SFT) file contains the same information and has the same format as the
result (.SRT) file, except that the times spent in each state are replaced by percentages of times
spent in each state. For example, if the system time were 1500 and the time spent in the BUSY
state were 900. then 60 would replace 900 in the result data.

2.10 Summary File

A summary (.SUM) file is for storing BUSY and sustainable speed data from a sequence of tests.
Each time the file is accessed the user is asked to enter a comment through the keyboard and
the data needed to compute the BUSY and speed information is extracted from the specified
result (.SRT) file. The BUSY and speed information is then appended to the .SUM file using
the format given in Fig. 2.18.

Monitor

*EDIT

EDITOR

*-4 .SAS W AS

-0

l .SLT J

ARCHCHK —J .SAE)

-*(.SLD W SIMULATE Monitor

DISPLAY

z
SIMSUMM

Monitor

* t'^nf1? *e S!^RC package uses *e DOS Pr°8ram EDIT- any text ^tor capable of producin ASCH file, could be used to produce a .SAS file. 2 an

Fig. 2.1 Relationship between the SIMARC package's programs and Hies.

"Type (a single character I, B, M, E, T, C, J, F, L, R, S or D)

"Mnemonic (string of four letters and digits)

"Component number (positive integer)

Number of rectangles used to display component (positive integer)

"An array of quadruplets, each specifying a rectangle as follows:

Left (non-negative integer)

Top (non-negative integer)

Right (non-negative integer)

Bottom (non-negative integer)

A pair specifying position of component's displayed text

X position (non-negative integer)

Y position (non-negative integer)

Text size (non-negative integer)

Text orientation (positive integer)

Execution time (non-negative integer)

«Type must be the first character on a line and Type, Mnemonic and
Component ID constitute a line.

'*Size of array is the number of rectangles.

Fig. 2.2 Attributes common to all components

Instruction queue size (positive integer)

Memory Time (positive integer)

Area (positive integer)

Memory Area (positive integer)

(a) I component

Instruction queue size (positive integer)

Area (positive integer)

(b) B component

Fig. 2.3 Additional features for the I and B components.

10

Alternate execution time (non-negative integer)

Distribution time (positive integer)

'Number of stages in accumulation pipeline (non-negative integer)

Input connection (positive integer)

Output connection (positive integer)

Instruction queue size (positive integer)

Data queue size (positive integer)

Area (positive integer)

'Additional input connection (positive integer)

*n if 0 if component is not part of an accumulation pipeline
Included in T or C component only.

Fig. 2.4 Additional attributes for processor components.

11

Distribution time (positive integer)

*Number of stages in accumulation pipeline (non-negative integer)

Number of input connections (positive integer)

'* Array of input connection numbers (positive integers)

Output connection number (positive integer)

Instruction queue size (positive integer)

Data queue size (positive integer)

Area (positive integer)

*0 if component is not part of an accumulation pipeline
size of array is the number of input connections

Fig. 2.5 Additional attributes for the J component.

12

Distribution time (positive integer)

*Number of stages in accumulation pipeline (non-negative integer)

Input connection number (positive integer)

Number of output connections (positive integer)

'Array of output connection numbers (positive integers)

Instruction queue size (positive integer)

Data queue size (positive integer)

Area (positive integer)

*0 if component is not part of an accumulation pipeline
f*Size of array is the number of output connections

Fig. 2.6 Additional attributes for an F component.

13

Distribution time (positive integer)

Number of input connections (positive integer)

'Array of input connection numbers (positive integers)

Number of output connections (positive integer)

Array of output connection numbers (positive integers)

Instruction queue size (positive integer)

Data queue size (positive integer)

Area (positive integer)

*Size of array is the number of input connections
*^ze of array is the number of output connections

Fig. 2.7 Additional attributes for an L component.

14

Distribution t:me (positive integer)

Input connection number (positive integer)

Output connection number (positive integer)

Capacity of memory (positive integer)

Instruction queue size (positive integer)

Data queue size (positive integer)

Area (positive integer)

Fig. 2.8 Additional attributes for the R component.

15

Input execution time (non negative nteger)

Distribution time (positive integer)

Memory module capacity (positive integer)

Input connection number (positive iateger)

Output connection number (positive integer)

Number of memory modules per bank (positive integer)

Number of memory banks (positive integer)

Address time (positive integer)

Memory time (positive integer)

Memory bus time (positive integer)

Number of output memory buses (positive integer)

Number of input memory buses (positive integer)

Instruction queue size (positive integer)

Data queue size (positive integer)

Address queue size (positive integer)

Stream area for each stream (positive integer)

Memory area for each memory module (positive integer)

Bus area for each bus (positive integer)

Address generator area for each generator (positive integer)

*Host connection number in (positive integer)

xHost connection number out (positive integer)

*These attributes are for D components only.

Fig. 2.9 Additional attributes for the S and D components.

16

Name EQU Constant

(a) EQU directive.

label: mnemonic operand operand

label: mnemonic operand,..., operand

label: mnemonic operand,..., operand

(b) PROC ENDP directives.

Fig. 2.10 Directive summary.

17

Format Description

•

CALL Label Subroutine call to Label

RTRN Subroutine return

LOOP Operand, Label Repetition count =Operand

Branch address = Label

NOOP No operation

HALT Terminates the program

WAIT Operand 0 - waits for all components to be free

1 - waits for comparator to be free

MOVE R. Operand (R) <- Operand

ADDR R. Operand (R) <-(R)+ Operand

SUBR R. Operand (R) <-(R)- Operand

MULR R, Operand (R) <- (R) * Operand

DIVR R, Operand (R) <- Quotient (R)/ Operand

(R+l) <-Remainder (R)/ Operand

NEGR R (R) <- - (R)

BRAN Label Branch to Label

BREQ R, Operand. Label Branch to Label if(R)= Operand

BRNE R, Operand, Label Branch to Label if (R) o Operand

BRGT R, Operand, Label Branch to Label if(R)> Operand

BRGE R. Operand, Label Branch to Label if (R) >= Operand

BRLT R. Operand, Label Branch to Label if(R)< Operand

BRLE R, Operand, Label Branch to Label if (R) <=Operand

STOP Operand Sets a breakpoint at time specified by Operand

RSET Resets all components

Legend:

Label - instruction label

Operand - a constant or register ID

R - an instruction component register number

Fig. 2.11 Internal instruction summary.

18

Format Description

(Type) EMM Component Oprd
(Type)NOO Component Oprd
(Type)NOI Component Oprd
(Type)MOD Component Oprd Component*
(Type)REP Component Oprd
(Type)DEC Component Oprd
JSEP Component Wprd In ... In Wprd In... In
FSOP Component Wprd Out... Out Wprd Out
FSBP Component Out... Out
LSEP Component Wprd In ...In
LSOP Component Wprd Out... Out
LSBP Component Out... Out
SIPP Component Wprd Part... Part Wprd Part...
SOPP Component Wprd Part... Part Wprd Part...
SOSP Component Part Wprd Os ... Os Wprd Os ...
SPNI Component Part Patlnc NRl Rll NR2 RI2 **
SPBS Component Part PartBase PartSize
SWIS Component Part WinSize
DXMD Component Oprd
DIPP Component Wprd Part... Part Wprd Part...
DOPP Component Wprd Part... Part Wprd Part...
DOSP Component Part Wprd Os ... Os Wprd Os ...
DPN1 Component Part Patlnc NRl Rll NR2 RI2 **
DPBS Component Part PartBase PartSize
DWIS Component Part WinSize
DPPI Component Wprd Part... Part
DPPO Component Wprd Part... Part
DHNO Component Oprd
DHNI Component Oprd

Out

Part
Part
Os

Part
Part
Os

Immediate operand =Oprd
Number of operands out = Oprd
Number of operands in = Oprd
Mode = Oprd
Number of repetitions =Oprd
Decrement amount =Oprd
Set input pattern
Set output pattern
Set broadcast pattern
Set input pattern
Set output patera
Set broadcast pattern
Set input partition pattern
Set output partition pattern
Set partition offset pattern
Set repetitions and increments
Define partition
Define window
Extra mode = Oprd
Set input partition pattern
Set output partition pattern
Set partition offset pattern
Set repetitions and increments
Define partition
Define window
Set partition pattern in
Set partition pattern out
Number of host operands out = Oprd
Number of host operands in = Oprd

* For T and C component, Component indicates the single input or, for two inputs, the variable input; otherwise,
this operand is not present.

** The pair NR2. RI2 or both it and the pair NRl,Rll may be omitted, in which case each omitted operand is set to 0.

Note: Wprd may not be present, but must appear twice or not at all. If not present, then the entire list is continually
cycled through.

Legend:
Oprd
Component
In
Out
Part
Patlnc
NR1W2
Rll JRI2
PartBase
PartSize
Os
WinSize

- integer or, if preceeded by an asterisk, a register ID
- mnemonic of component to be programmed
- component mnemonic of data source
- component mnemonic of data destination or & if broadcasting
- partition number or register ID
- pattern increment or register ID
- number of repetitions or register ID
- repetition increment or register ID
- partition base address or register ID
- partition size or register ED
- offset in a partition's offset pattern or register ED
- window size or register ID

Fig. 2.12 External instruction summary.

19

Opcode Component type Component ID Sequence of numbers*

In the sequence of numbers some of the numbers may be preceded by an asterisk, in which case the number is a register ID.

Fig. 2.13 General format of a load file instruction.

20

Opcode Mnemonic

1 CALL

2 RTRN

3 LOOP

4 NOOP

5 HALT

6 WAIT

7 MOVE

8 ADDR

9 SUBR

10 MULR

11 DIVR

12 NEGR

13 BRAN

14 BREQ

15 BRNE

16 BRGT

17 BRGE

18 BRLT

19 BRLE

20 STOP

21 RSET

Opcode Mnemonic

50 (Type)IMM

51 (Type)NOO

52 (Type)NOI

53 (Type)MOD

54 JSD?

55 FSOP

56 FSBP

57 LSIP

58 LSOP

59 LSBP

60 SIPP

61 SOPP

62 SOSP

63 SPNI

64 SPBS

65 DIPP

66 DOPP

67 DOSP

68 DPNI

69 DPBS

70 DWIS

71 DPPI

72 DPPO

73 (Type)REP

74 (Type)DEC

75 DHNO

76 DHNI

77 SWIS

78 DXMD

(a) Internal instructions

Fig. 2.14

(b) External instructions.

Opcode assignments.

21

Immediate constant, number of operands out,
number or operands in, mode or number of repetitions

Number

(a) IMM, NOO, NOI, MOD, REP, DEC, DHNO or DHN1 instructs.

Number of items in fust pattern Number of items in second pattern

I First pattern I Second pattern

Number Number Number ... Number Number Number Number ... Number

Number of items taken from first .^T^ °f tf ^en fl0m

SSS ESS toe first

(b) JSIP. FSOP, LSIP, LSOP, SIPP. SOPP, DIPP, DOPP, DPPI or DPPO instruction.

Output connections in broadcast pattern
Number of outputs grvernn order of pattern
in pattern 1^\ J*^^^<C^

Number Number Number ... Number 0 0

(c) FSBP or LSBP instruction.

Partition no.—y ^_ Number of repetitions-.

Number Number Number Number Number Number

Pattern increment—* ^— Repetition increment^

(d) SPNI or DPNI instruction.

Note: Some Sumber fields may be followed by an asterisk, in which case the Number is a resister ID and the
contents of the register are to be used when the instruction is executed.

Fig. 15 Formats of the Sequence of Numbers field given in Fig. 14

22

Partition no. —. ,— size of partition

Number, Number, Number

Base address of partition—"

(e) SPBS or DPBS instruction.

Partition no. —\ ,— Window size

Number, Number

(0 SWIS and DWIS instruction.

Fig. 2.15 (Continued)

23

Architecture filename

Number of components in system

Type of interval (Regular Interval or Irregular Interval)

Total area

Column headings

Results field

Results field

(a) Overall format.

System time

Line of data

Line of data

(b) Results field format

♦Component Area BUSY time WAIT time IDLE time FREE time DIST time *IQ *DQ

+ Entries that are not applicable to a component are filled with O's.

* Maximum number of entries in the instruction or data queue up to the present
time. For multiple inputs, the maximum is taken over all data queues.

Note: For the I component the results occupy two lines, one for the decode
logic and one for the memory. For R co'mponents, the results occupy
two lines. one for the input stream and one for the output stream '
For S and D components, the results occupy one line for each data
stream, each address generator, each bus and each memory module.

(c) Line of data format.

Fig. 2.16 Result file format.

24

System time at end of interval

System time at end of interval

0

Note: The final zero serves as a terminator.

Fig. 2.17 Irregular interval file format.

25

Commer.t

Percent BUSY for E and T components: Percentage

Average sustainable speed: Value MFLOPS

Fig. 2.18 Format of a summary (.SUM) file entry.

26

ATTACHMENT c

DESIGN CONSIDERATIONS FOR IMPLEMENTING A
MODULARLY CONFIGURED ATTACHED PROCESSOR IN A

MULTI CHIP MODULE

J. Sanjay Singh, Buck W. Gremel, Vijay P. Singh, and Glenn A. Gibson
Electrical and Computer Engineering Department

The University of Texas at El Paso
El Paso, Texas 79968-0523

Abstract

Implementation of a novel modularly configured at-
tached processor (MCAP) architecture was evaluated
using 1 p.m CMOS logic on an MCM-D. The tran-
sistor count was approximately ten million transis-
tors, distributed on twenty-five chip dice. Delay, area,
and power calculations were performed using the SUS-
PE.\rS model. Rent's rule was found to be not ap-
plicable. Speed was calculated to be in the 100 MHz
range. The module foot print was found to be 90 cm2.
Power dissipation per unit area was low enough to al-
low air cooling.

1 Introduction

Attached processors [1], [2], [3] are commonly used
for the purpose of very quickly executing most of the
system's computational tasks. In such an organiza-
tion, "the host is a program manager which handles all
I/O, code compiling, and operating system functions,
while the attached processor concentrates on arith-
metic computation with data supplied by the host"

[!]■
In addition to quick execution, it is also desirable

to execute as broad a set of algorithms as possible
in order to create a more generally applicable pro-
cessor. Thus, the underlying goal of the designer is
to efficiently utilize the hardware for as broad a set
of algorithms as possible. However, for most current
designs, the average sustainable execution rates have
been found to be only 5% to 20% of their peak rates.
For example, the sustainable rates for the Cray X-MP
with four processors may be as low as 5% for some
algorithms [4]. Although some of the lost efficiency is
necessitated by the algorithms, much of it is due to
memory accessing and contention for shared resources

in general, including internal buses.
In this article we describe the implementation of a

novel modularly configured architecture wherein uti-
lization of each processor is greatly enhanced through:
(1) closely matching their architectures to the set of
algorithms they are to execute, (2) overlapping of
processing and memory accessing by using memory
prefetching, (3) minimizing the movement of data, (4)
using a high-speed CMOS with one micron technology,
and (5) having the whole MCAP on a single MCM-D.

2 Modularly Configured Attached
Processor (MCAP) Architecture

An MCAP is an attached processor that is con-
structed entirely from a standard set of connections
and components [5], [6]. This standard set consists
of three types of asynchronous connections and twelve
types of components. These component types are such
that each member of the class may include parallel
processing, memory to memory pipelines, and be con-
structed in a building block fashion. They encom-
pass routing as well as memory, control and processing
components. By overlapping processing with memory
accessing and matching an architecture with a set of
algorithms, the average sustainable rate for a specific
set of algorithms can attain at least 60% of the peak
rate. These rules allow the components to be easily
configured in different ways, thereby allowing the con-
struction of attached processors that efficiently per-
form different sets of algorithms.

An example architecture is given in Figure 1. It's
processing subsection includes a comparator, a nega-
tor (elementary component), a reciprocator (elemen-
tary component), a set of four pipelined adders capa-
ble of accumulation (via feedback), and a set of four
pipelined multipliers. Each adder and multiplier is

constructed of four stages (a two-input component fol-
lowed by three elementary components). All commu-
nications to and from the processing components are
through six link components, three on each side of the
processor. Join and fork components are provided to
allow flexible use of the link components. There is a
dual access component to provide intermediate mem-
ory and a connection to main memory. The single
access component provides internal storage.

ACCES CONTROUXX (M][Ei][EHiH]HBH

•J -JO!*

• F.FORK

DUAL ACCESS CO^OLLER jjjjtj jjj^ jEwj fcfl IHjjDMJ

MOST

FIGURE 1 AN EXAMPLE MCAP ARCHITECHT1.T!E

3 Design Considerations and Results

In our evaluation, CMOS was picked as the bench-
mark logic technology because of its commercial ma-
turity. In the future, we plan to evaluate other faster
technologies such as GaAs, BiCMOS. and ECL. Since
the signal delays associated with the conventional
printed circuit board (PCB) implementation are ex-
pected to be prohibitively excessive, it was decided
that the fabrication of an MCAP on a Multi Chip
Module (MCM) or Wafer Scale Integration (WSI) are
the only realistic alternatives for attaining high per-
formance. WSI integrates an undiced wafer of defect

tolerant VLSI chips with global power, clock, and sig-
nal distribution networks. MCM technology on the
other hand has discrete VLSI chips, probably of dif-
ferent types, mounted on a substrate that supports
global power, clock and signal distribution networks.
Since the chips are procured separately, the substrate
can be optimized and tested independantly before as-
sembly. Therefore defect tolerance is not required.
However, the "known good die" problem is yet to be
solved. Further, multichip modules are classified ac-
cording to the substrate technology: MCM-Ceramic,
MCM-Deposition, and MCM-Laminated. In this work
we used MCM-D for design evaluation. MCM-D man-
ufacturing processes are similar to those used in the
semiconductor industry and can be used to achieve
high densities and fine line geometries. In the phys-
ical design, we must face the traditional problems in
placement and routing required by the high perfor-
mance systems. As the clock frequency is increased,
we need to account for transmission line effects due
to long interconnections. Parasitics on the intercon-
nects, inductances on the power lines, and the I/O
pin limitation are the three vital shortcomings of cur-
rent packaging technologies, which could be tackled by
(a) minimum chip to chip interconnections, (b) high
interconnection density, and (c) parallel architecture.
Other factors which need to be considered are ground
and power plane generation and physical design ver-
ification. The thermal considerations are a direct re-
sult of the substrate type, bonding selection, and the

placement of chip dice.
A system level model, referred to as the SUS-

PENS model (Stanford University System PErfor-
maNce Simulator) [7] is used to predict the perfor-
mance of the MCAP. This model emphasizes the inter-
actions among devices, circuits, logic, packaging, and
architecture. The same model could be used in future
to compare logic technologies (e.g. CMOS, Bipolar,
and GaAs) and various packaging technologies (e.g.
MCM-D, MCM-C, PCB, and WSI).

3.1 Chip Level Design

3.1.1 Transistor Count

To illustrate the method used to estimate the total
number of transistors in the example MCAP (Fig. 1),
we will consider one of the floating point adders. Each
adder has four pipelined stages and uses the IEEE
double precision standard. Further this adder could
be broken down into: (a) nine 64-bit registers with
4032 transistors, (b) seventy-four 2-input XOR gates
with 592 transistors, (c) one hundred and twenty-six 2-

to-1 MUXs with 504 transistors, (d) two 11-bit adders
with 528 transistors, (e) one 52-bit adder with 1248
transistors, (f) a 64-bit leading zero detector with 5000
transistors, (g) two 52-bit barrel shifters with 4000
transistors, and (h) rounding and other control logic
taking 6500 transistors.

eters [7] are in Table 2.

ELEMENT DESCRIPTION • TRANSISTORS

Memorv Element Has 4 k each of RAM and ROM 1 MM

liK-ni.-inn Has 8 words of FIFO 10.0 K

Bus Has 8 words of FIFO 10.0 K

Eiementarv Has 8 words of FIFO 10.0 K

Two input
Has 8 words of FIFO I:.OK

Jotn
3 inputs and 8 FIFO 14. 0K

Fork 3 inputs and 8 FIFO 7.0 K

Link 4 inputs and 5 outputs 15.0 K

Static Ram 16 elements of Ik each 6.30 M

Single Access Controller Controls 8 Memory elements 11 OK

Dual Access Controller Controls 8 memory elements
and 6 DMA channels

61.0 K

Compare sends out Rags and Indices 15 OK

Reciprocate using Convergence method 500 K

Negate invert the sign bit 1.0 K

Fl Pi Adder using CLA's. Barrel shifters 23.0 K

Fl Pi Multiplier using Modified Booth's Alg 61.0 K

MCAP Total * or I ransistors 9.85 Million

MCM With ;< Chips and 600 I/O 's 9.85 Million

Parameter MCM-D

Pw(uM) 50
Nw 2
Wint(uM) 25

Hint (uM) 2
@ 1 Ghz (uM) 2

Rint (ohm/cm) 3.4

Dielectric constant 3.4
Vm (cm/nsec) 16
Cint (pF/cm) 1.0

Z0 (ohm) 60
Cpad (pF) 0.25

Pp(uM) 100

TABLE 2. THIN FILM HYBRID PARAMETERS.

Average Delay
In general, the minimum size of a logic gate has a

W/L ratio of 2. Therefore, we began with a ratio of
2 and, by stages, moved to higher values in order to
drive a load in a small amount of time.

TABLE 1. TRANSISTOR COUNT FOR THE VARIOUS MCAP COMPONENTS.

Thus the total number of transistors for the above
adder is approximately 23K. Similarly, the transistor
count for the pipelined 64-bit floating point multiplier
is approximately 61K (based on a modified Booth's al-
gorithm). Likewise, the transistor count for the other
elements in the MCAP were calculated and the re-
sults are presented in Table 1. The resulting number
of transistors for the whole MCAP is approximately
ten million.

3.1.2 Output Driver Design

In the proposed MCAP architecture, the bottle neck
is the communication through link, single-access, and
dual-access components because of their high fanout
and large interconnection lengths. This means that
the output buffers for these elements must be rela-
tively large. We present the delay, area, and power
dissipation calculations for the buffers as functions of
fanout (F) and interconnection length (I).

For the chip level model, we have assumed that the
input capacitance of a gate (including the lead and
ESD capacitances) is Ctn = I pF. Additional param-

FIGURE 2. BUFFER AND INTERCONNECT DELAY.

By dividing the driver into a number of buffers
with increasing W/L ratio, optimum speeds can be
achieved. It has been found that a stage ratio of e

[8] gives best results. We have used a stage ratio of
3 for simplicity. The optimum number of stages (N)
is dependant on the load capacitance (Ci). The rela-
tionship is

Ar = 0.91(lnC/ + 4.19)

where X is truncated (rounded down) to the nearest
integer.

Using the optimum number of stages, the average
delay is

Tav3 = 0.484(.V - 1) + 5Ci/3(.V - 1) + 0.076 ns

Delay calculations [9] are shown in Figure 2.
Buffer Area
A simple inverter with (W/L)n = (W/L)p - 2 will

need an area of 171 A2. A buffer with equal rise (ir)
and fall (tj) times requires {W/L)p = 2(W/L)n - 4
and the area is going to be 203 A2. The total area
of the buffer depends on the number of stages and,
hence, is a function of F and i. We have

Area % 220 x 3:V_! A2

Area calculations [9] are plotted in Figure 3.

Power dissipation calculations [9] are presented in
Figure 4. Since the design of an MCAP uses asyn-

FIGURE 4. POWER DISSIPATED ES THE BUFFER.

chronous communication, the transfers over a link
component involve the return of an acknowledge sig-
nal and the transmission of an output enable signal.
It is estimated that the transfer rate may be as high as
/ = l/2[Tav3 + Tehip] Hz (where Tchtp is the delay of
the chip and T3vg is the delay on the interconnection)

Load Capacitance
For the load capacitance

C\ = Cint,0t + F X Cin-

with

c,-„,10, = cint x e = e pF

where £ is in cm and dnt = 1 pF/cm. Therefore,

C, = (£+F)pF.

The resistance of the interconnect is

FIGURE 3. AREA OF THE BUFFERING STAGE.

Power Dissipation In The Buffer
In CMOS, most of the power is dissipated during

switching and, hence, dynamic power is approximately
equal to the total power. The dynamic power is

Pd~Cr x v2 x favg - v2(C) + Cbufj)/Tavg

where Cw/ = 0.0152(3'v-1) pF.

fl,„r,., = Rint x £ 0 .

3.1.3 Modified SUSPENS Model

Given (a) the approximate number of logic gates, (b)
the transistor technology parameters, (c) packaging
technology parameters, and (d) the number of pads
per chip (estimated from Rent's rule), the SUSPENS
model can estimate system performance. Rent's rule
is an empirical result obtained by observing existing

designs. The design philosophy and methodology af-
fect Rent's constants. If the predictions are made for
a system with an entirely different design philosophy
from the one from which Rent's data were obtained,
the results will have little meaning. The SUSPENS
rrodel, as originally proposed, used Rent's constants,
therefore we have developed constants that are ap-
plicable to the novel architecture of the MCA P. Our

INSTRL'CnON/ADDR/HÄFLAGS POWER/GND

Ctr (for 1 /im CMOS) = 3 fF

Rtr (for 1 fim CMOS) = 15 K

Ti = 0.41 ns

The output stage delay is

fgRtr
T0

K0

[iavCint + KiCtr]

£av (average interconnection length)

dm = 2 pF/cm

Rint = 375 fi/cm

The total gate delay, Tg = 7} + T0, is 0.84 ns. The
delay for an adder is

T chip

•*■ chip

FIGURE 5. BLOCK DIAGRAM Of THE ADDER CHIP

= fldT, + RintCintiDl/2) + (De/ve)

restrict the logic depth, f^, to 6

ve — 2.5 x 101" cm/sec

De = 0.3 cm

= 6(0.84 x 10-9) + 375(2 x 10"12)(0.32/2)

+(0.3/2.5 x 1012)

= 5.07 ns (which includes the latch time,

logic time, setup time, and clock skew)

Thus the maximum frequency of the adder chip is 197
MHz. By incorporating pipelining and recalling that
the total chip area actually has four of these floating
point 64-bit adders, the throughput is improved by a
factor of more than four.

approach to developing these constants was to deter-
mine the area needed for an inverter (with equal rise
and fall times) and a carry generator circuit. From this
we computed the average area per transistor. Thirty
percent of that area was assumed to be taken by the
interconnections, resulting in a figure of 203 A2 per
transistor. This result was used as input to the SUS-
PENS model for computations done at the chip level.
The I/O buffer areas were estimated separately as pre-
sented in section 3.1.2. To illustrate the use of the
SUSPENS model using table 3 [7], we will consider the
adder chip with alfi technology (see Figure 5). The
adder chip contains four 64-bit floating point adders.

The input stage delay is

p
T = fg ■ —rr- ■ 3A oCtr

fg (number of n — transistors in series) = 3

K{ (W/L ratio of input transistors) = 4

A'„ (W/L ratio of output buffer) = 4

Parameter CMOS

Leff 1.0

tgox (A) 250

Vdd (V) 3.3

Rtr (ohm) 15.000
Ctr(fF) 3.0

Wint (uM) 2.0

Wsp (uM) 2.0

Hint(uM) 0.4

pw (uM) 4.0

nw 3

Rint (ohm/cm) 375

Cint (pF/cm) 2.0

TABLE 3. 1 micron TECHNOLOGY PARAMETERS

The external capacitance of a gate is

Cezt — fg'avgCint + fgKiCtr — 36.5 fF,

where tavg = 81.3 x 10 6 cm. The internal capacitance
of a gate is

Cint ~ 3A'„Gr + ÖC'ir = 51 fF

The to al capacitance per logic gate. Cg = Ceit+Clnt,
is 87.5 fF.

3.2 Interconnection and Packaging Con-
siderations

Once the results for each technology have been ob-
tained (see Table 4), the package level model is in-
corporated using MCMs and WSI (Table 2).Layout of
MCAP in a MCM configuration is shown in Fig.6. The
average interconnection length at the module level (in
units of chip footprint size) is

Rm —

Rm —

2r A? -0 5 1 1 - AT -0.75

p/ 4H-0.5

Nc = 4

rj — 0.65 (see[7j)

1.33

1 -4"-
1 1 _ 4-7-0.75 J x _ ^r,-

Component # of Tran's Area # of i/o's fc Pc
(cm2) (Mhz) (watt)

Adder 176 k 0.41 660 13! 2.75

Multiplier 32Sk 0.41 660 122 3.44
C-N-R 118 k 0.55 874 139 2.54
SRAM
(4k.

1.57 M 0.58 150 110 8.66

SRAM
(16*Ik)

393 k
(* 16)

0.16 150
(*16>

no 2.36

ROM 262 k 0.11 80 110 1.66
D-control 82 k 0.56 846 120 3.67
S-control 32 k 0.14 222 114 0.70
Instn/Bus 20 k 0.14 200 135 1.65
Link 15 k 0.14 200 123 1.27

Module 10 M 42.0 60) 100 68.82

TABLE 4. PARAMETERS OF THE MCAP ON MCM-D.

(1 micron PROCESS)

As explained in section 3.1.2. the output driver is
designed for a critical length of 1.5 cm and fanout of

3. From Fig. 2, the buffer delay is found to be 2.45ns.
Further, the capacitive delay (caused by the loading of
the I/O pins and contact pads) and the time of flight
delay on the transmission lines are both calculated (for
a 1 p. technology) using

Taddt.ional — 2 ■ Z0 ■ Cpad + ^t'nf A'm = 0.124 ns

Adding in Tch\p — 5-07 ns, we determine that the total
delay of the adder chip = 5.07 ns + 2.45 ns + 0.124
ns = 7.64 ns. Thus, the adder chip can output at the
rate of 131 MHz.The dynamic power dissipation per
gate is based on the maximum adder chip operating
frequency (fc) and the percentage of gates that switch
during a clock period (fd)- The dynamic power dissi-
pation is

= i(131 x 106)(0.3)(83.5 x 10"

= 56.3 /i\V

2)(3.3)2

The power dissipation of the chip is the product
of the number of gates (Ar

3) and the dynamic power
dissipation per gate (P3).

Pc = yg-pg

= (176^/4) • (56.3 x 10~6)

= 1.65W

Thus the power density for the adder chip (area =
0.09 cm2) is 18.4 W/cm2. The parameters for other
chips are calculated as described above, and Table 4
gives the results. A similar procedure is repeated for
0.5 JJ. and 0.25 JJ. technologies. The area required by
the output buffers are added to the transistor area to
get the die area. Assuming an area distributed solder
bumps with 100 /im diameter and 250 /im pitch. The
footprint of the Adder chip die is found to be 0.64 cm.

The module frequency is, therefore appoximately
100 MHz (considering the processing and driving in-
volved in one cycle). The module size is 9.0 cm X 10.0
cm. Module power dissipation (Pm) is determined by

Cm =
Fc

l + Fc
A,.-Ap(3— —Ctr + '2Cpad+ RmPpCint)

1-5

C'. = 63.4 nF

1
Pm = -(FD){fs)(C-)(VßD) = 2Q.lW

The actual power dissipation is the greater of Pm and
the sum of the power dissipated at all the chip dice.
Thus we calculate the power dissipation for the mod-
ule to be 68.82 W.

4 Conclusions 5 Acknowledgements

Design evaluations for implementing a novel mod-
ularly configured attached processor architecture us-
ing CMOS logic on an MCM-D (Fig 6.) revealed
that approximately ten million transistors will be
needed.These could be placed on a set of twenty five
chip dice. Delay, area, and power calculations were
done with the SUSPENS model (however, Rent's rule
was not used). Delay calculations(including logic

FIGURE 6. LAYOUT OF MCAP ON MCM

(Ail the die areas have been optimized for 15 W/sq.cm)

of Transistors = 10 Million

of I/Os = 600

delay, interconnect delay and output driver delay)
showed that the MCAP module, on average, would
achieve speeds in the 150 MFLOPS range. The single-
access memory controller component chip (S-control)
was found to be the slowest, 110 MHz for 1 /im, 160
MHz for 0.5 pirn, and 220 MHz for 0.25 ßm CMOS.
The areas were optimized for power densities, low
enough to allow air cooling. Higher speeds would be
achievable with faster logic like BiCMOS. ECL, and
GaAs. Power dissipation calculation showed that ap-
proximately 70 watts will be dissipated in the MCAP
module and air cooling would suffice for the 1 fi de-
sign rule.We are in the process of performing fur-
ther design calculations involving Wafer Scale Inte-
gration(WSI)and GaAs technology.

The work reported in this paper was supported in
part by the Office of Naval Research under Grant No.
N00014-93-1-1343. Any opinions, findings, and con-
clusions or recommendations expressed in this paper
are those of the author; and do not necessarily reflect
the view of the funding agency. Thanks are due to
Swaroop N. Kumar for his help in the revision of this
manuscript.

References

[1] K. Hwang and F. A. Briggs, Computer Architec-
ture and Parallel Processing, McGraw-Hill, New
York, 1985.

[2] J. A. Swanson, G. R. Cameron, and J. C. Haber-
land, "Adapting the Ansys Finite-Element Anal-
ysis Program to an Attached Processor," IEEE
Computer, vol. 16, no. 6. pp. 85-91, June 1983.

[3] R. Hockney and C. Jesshope, Parallel Computers
2, Adam Hilger: Bristol, England, 1988.

[4] J. H. Tang and E. S. Davidson, "An Evaluation of
Cray I and Cray X-MP Performance on Vectoriz-
able Livermore FORTRAN Kernels," Proc. 1984
Int'l Conf. on Supercompuiing, pp. 510-518, 1988.

[5] G. A. Gibson, "Investigation of Modularly Config-
ured Attached Processors with Intelligent Memo-
ries," Technical Report to Office of Naval Research,
(Grant No. N00014-93-1-1343), March 31, 1994.

[6] G. A. Gibson, V. P. Singh et al "Application and
implementation of a modularly configurable at-
tached processor," To be presented at the Interna-
tional Symposium on High-Performance Computer
Architecture, Taiwan, December, 1994.

[7] H. B. Bakoglu, Circuits. Interconnections, and
Packaging for VLSI. Addison-Wesley Publishing
Company. 1990.

[8] K. E. N. Weste, Principles of CMOS VLSI design
- A Systems perspective. Addison Wesley, 1993.

[9] S. J. Singh, "A comparative evaluation of imple-
menting a novel MCAP architechture," M.S. The-
sis, E.C.E Department, The University of Texas at
El Paso, December, 1994.

ATTACHWEA/r V

SIMULATION AND FAST PROTOTYPING OF MODULARLY
CONFIGURABLE ATTACHED PROCESSORS

G. A. Gibson, A. Brito, Y. C. Chang, D. Saenz, and E. Castro

Department of Electrical and Computer Engineering
The University of Texas at El Paso

El Paso, Texas 79968-0523

Abstract
.4 broad class of attached processors (MCAPs) that are
constructed from a standard set of connections and com-
ponents is defined and a simulation package (SIMARC)
for evaluating members of the class relative to specified
sets of algorithms is described. Together the MCAP con-
nection and component definitions and SIM ARC package
provide a fast prototyping means when designing efficient
attached processors for executing computationally intense
algorithms. A dynamic multicolored graphical display dur-
ing a simulation facilitates the detection of bottlenecks and
a graphical editor permits easy modification of an architec-
ture. Use of SIM ARC requires specification of the architec-
ture and writing assembler-level programs for executing the
algorithms of interest. An example is presented in which
SIMARC is used to design an MCAP that achieves 95% ef-
ficiency (for the processing logic) while performing matrix
multiplication.

1 INTRODUCTION

Modern design procedures include analytical model-
ing, simulation modeling, simulation evaluation and
prototyping [1], with analytical modeling being the
mathematical and statistical analysis of a relatively-
crude system model. This phase of the design process
is the pencil and paper approach that can be done
quickly, but is the least accurate in predicting the per-
formance of the final product. Simulation modeling
requires a much more detailed level of system specifi-
cation, a level that is sufficient to provide the design
input to the computer simulation program, or simu-
lator, that is to be used. Test data is then selected
and the simulator is used to produce a more accurate
estimate of performance than can be obtained from
analytical modeling. The accuracy of this estimate de-
pends on the level of detail included in the simulator.
the quantity of test data and the care used in choos-
ing the test data. Simulation modeling and evaluation

1 The work reported in this paper was supported in part by
the Office of Naval Research under Grant No. N00014-93-1-
1343. Any opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors and do
not necessarily reflect the view of the funding agency.

are iterated until satisfactory results are obtained, at
which time a prototype is built. If the prototype needs
only minor adjustments, the design team may proceed
with the production design; otherwise, it must return
to an earlier phase and repeat the design process. Be-
cause prototyping is normally expensive, it is impor-
tant that the simulations be extensive enough to avoid
such returns. However, it is also important that the
prototyping stage be reached as quickly as possible,
and much attention has recently been given to devel-
oping simulation and performance evaluation systems
that permit fast prototyping.

For computer system design, simulation may be per-
formed at several levels, ranging from the major com-
ponent level, to the module level [printed circuit
board, multichip module (MCM) or wafer, whichever
is applicable], to the register transfer level, to the gate
level, and then to the transistor level. As one proceeds
from the major component level to transistor level,
clearly the amount of detail increases and the time
needed to execute a simulation increases accordingly.
Therefore, there is a tradeoff between simulation time
and accuracy. Normally, top-down design would be
used, which employs a component level simulator to
design the overall system and then progresses down-
ward to the transistor level, at which the layouts of the
individual integrated circuits are done independently.

To reduce the complexity of a simulator and quan-
tity of specifications required by it, simulators at the
major component and module levels are restricted in
various ways. They are normally restricted to a class
of architectures and sometimes to a particular type
of computer, which serves to specify the instruction
set. Eleven such performance evaluation tools that
relate algorithms and architectures and consider test-
ing of programs to meet real-time constraints are sum-
marized in [2]. Others are described in special issues
of the International Journal of Computer Simulation
[3], [4].

As always, the accuracy of the timing information
gathered depends on the level of detail being simu-
lated. Some simulators are very specific in their ap-
plication. The advantage in restricting the use of a
simulator is, of course, that highly reliable perfor-
mance data can be gathered in a reasonable amount
of simulation time. Of interest here is an architecture

sin ulation package, SIMARC, that simulates a fairly
bread class of attached processors referred as Mod-
ularly Configurable Attached Processors (MCAPs).
The primary advanta?? -f an MCAP is that it is con-
structed from a stan'; =et of connections and com-
ponents that can be y fit together to match the
set of algorithms it is xecute. The SIMARC pack-
ago allows the quick reconfiguration and simulation of
MCAP architectures so that an MCAP design with
high utilization of its logic for a given set of algo-
rithms can be achieved within a short time. Because
MCAPs are connected to host processors, there is no
need to simulate operating system functions. Also, be-
cause MCAPs use memory-to-memory pipelines, they
are inefficient when performing algorithms that in-
clude a considerable amount of decision-making (e.g.,
a binary search). Therefore, emphasis is placed on
computationally intense algorithms such as those for
performing matrix operations, signal processing and
image processing and for solving simultaneous linear
equations, partial differential equations and ordinary
differential equations.

Section 2 gives a brief MCAP definition and the next
two sections describe the simulator and provide an ex-
ample. The last section serves as a summary and in-
dicates future improvements to the simulator.

2 MCAP DEFINITION

An attached, or back-end, processor is a processing sys-
tem that is connected to a host computer for the purpose of
very quickly executing most of the overall system's compu-

tational tasks. Typical early attached processors were the
AP-120B and FPS-164 made by Floating Point Systems,
Inc., the IBM 3838, and the MATP made by Datawest,
Inc. [9]. Although the early attached processors included
limited multiprocessing, the more recently implemented

processing arrays are also controlled by a host (e.g.. the

PAX computer [10]) and are designed to perform most
of the overall system's computational tasks. The specific

purpose of an attached processor is to execute members
of a set of algorithms very quickly. The broader the set of
algorithms the more generally applicable the attached pro-
cessor. The underlying goal of the designer is to efficiently
utilize the hardware for as broad a set of algorithms as pos-
sible. By using the MCAP building block approach along
with the SIMARC package, efficient matches between ar-
chitectures and sets of algorithms are easily established.

An MCAP is an attached processor that is constructed en-
tirely from a standard set of connections and components.

This standard set consists of two types of asynchronous
connections and twelve types of components. The def-

initions of the connection and component types provide

a standard set of rules that allow the components to be
easily configured in different ways to construct attached
processors that can efficiently perform different sets of al-

gorithms.

An MCAP has exactly one instruction component and it is

connected to a memory component for storing instructions.

Most of this memory component is a ROM that contains
the subprograms needed to execute the algorithms, but
some of it is a RAM that can receive instructions (those
that initiate the subprograms) from the host.

An MCAP operates by drawing an instruction stream from

the instruction memory component into the instruction
component. The instruction component usts internal in-
structions in the stream to form external ins ructions that
are then distributed to the other non-memory components

through the MCAP's bus component. Th(external in-

structions are for setting up and supervising the inter-

connected memory-to-memory pipelines within the MCAP

that perform the operation needed to complete an algo-

rithm (or phase within an algorithm). The instruction
stream is illustrated in Fig. 1. Note that all components

in the instruction stream include input instruction queues.

When the non-memory components have received all of the

instructions needed to perform an algorithm, they auto-

matically prefetch the data from the memory components,

route the data to and from the processor components and
store the results back into the memory components. All
non-memory components have input data queues. Some

controller components, which are the components that su-
pervise all memory accessing, are used to automatically
transfer data between the host's main memory and the
MCAP's memory components. The instruction and data
streams are separate, thereby allowing the instructions
needed for the next algorithm to be distributed while the
current algorithm is executing.

nro

• • •

Other noo-memory components

Fig. 1. The instruction stream

The two types of connections are referred to as instruction
and data connections. All connections are unidirectional

and asynchronous. Memory components are considered

to be integral parts of controller/memory subsystems and
the design of the connections between the memory compo-
nents and their controllers is left to the designer of these
subsystems.

Instruction connections are for passing instructions from
the instruction component to the bus component and from
the bus component to one of the other non-memory compo-
nents. An instruction connection consists of unidirectional
instruction and address buses and a Req/Ack handshak-
ing pair. The component that is to receive the instruction
is indicated by the a component number on the address
bus. Data connections are used to pass data between com-
ponents and consist of only a unidirectional data bus and
a Req/Ack pair. All transfers include the latching of an
instruction or datum into a queue at the receiving end.

The twelve types of components are divided into six cate-
gories as indicated below:

Instruction (I)
Bus (B)
Memory (M)
Processor

Elementary-one input, one output (E)
Two-input-two inputs, one output (T)
Comparator-two inputs, one output plus
special outputs (C)

Router
Join-multiple inputs, one output (J)
Fork-one input, multiple outputs (F)
Link-multiple inputs, multiple outputs (L)

Controller
RAM-internal to MCAP, no partitions (R)
Single-access-internal to MCAP, has
partitions (S)
Dual-access-connects to main memory, has
partitions (D)

The letter used to indicate each type of component is
given in parentheses.
As mentioned earlier, an MCAP contains one mem-
ory component for storing instructions, one instruc-
tion component for executing internal instructions and
forming external instructions, and one bus component
for distributing the instructions. An MCAP may con-
tain several controller, router, and processor compo-
nents and several other memory components for stor-
ing data. However, the other memory components can
be connected to controller components only. Only con-
troller components are capable of being programmed
to prefetch data from and deposit data into data mem-
ory components.
Each non-memory component that is used during the
execution of an algorithm contains an instruction in-
put queue, one or more data input queues, and con-
trol logic that includes a number of registers. The
instructions for an algorithm received by a compo-
nent fill these registers and then the register contents
dictate the activity within the component while the
algorithm is executed. They determine the compo-
nent's mode and, for a routing component, the pat-
terns for accepting inputs and distributing outputs.

For a conti oiler component, they determine the mem-
ory part tions and patterns for prefetching operands
and storing results.
Each of the components that receives instructions con-
tains a Number of Operands Output (NOO) register
that is always the last register filled before the compo-
nent begins its part in the execution of the algorithm.
Each time the component outputs an operand, the
NOO register is decremented. When the NOO register
becomes zero, the component has completed its part
in executing the current algorithm (or phase). It may
then distribute new values, those needed for the next
algorithm, from its instruction input queue to its reg-
isters. This cycle may continue indefinitely. Except
for reacting to the handshaking (i.e., Req and Ack)
signals in its connections, each component acts inde-
pendently. The data is input to a data queue through
an input connection, processed or routed through a
bus, and output through an output connection.

All controller components have an output data con-
nection for outputting operands to the remainder of
the MCAP and an input data connection for inputting
results from the MCAP. Therefore, they must be ca-
pable of handling both an output data stream and
an input data stream. A queue is inserted in each of
these data streams. In addition to the NOO register,
a Number of Operands Input register is needed for the
input stream. A D controller also has a second set of
input and-output connections.

c|glciclclg|g|cl

MOST

Ftg. 2. An Example MCAP Architecture

For a more complete description of an MCAP refer
to [11]. An example architec ure is given in Fig. 2. Its
processing subsection includes a comparator (C com-
ponent), a negator (E component), a reciprocator (E
component), a set of *" ur pipelined adders capable of
accumulation, and of four pipelined multipliers.
Each adder or mul is constructed of four stages
(a T component folio > ;d by three E components). All
communications to and from the processing compo-
nents are through six link (L) components, three on
each side of the processor. J:>in (J) and fork (F) com-
ponents are provided to al ow flexible use of the L
components. Also, to allow for accumulation there is
a feedback connection between the F component at the
output from each adder and the J component at the
input to the adder. There is a dual-access controller
(D) component to provide intermediate memory and a
connection to the single-access controller (S) that con-
trols main memory. A second S component provides
additional internal storage.

3 SIMARC PACKAGE

SIMARC is a menu-driven package written using C++ and
is for PC compatible computers operating under DOS. By
using C++ both the components in an architecture and the
instructions in a program could be defined and operated
on as objects.

The programs in the SIMARC system communicate
through a collection of files. The relationships between
the programs and the files are summarized in Fig. 3. The
files axe:

Architecture (.SAR) -

Information (.SIF) -

Program (.SAS) -

List (.SLT) -

Load (.SLD) -

Result (.SRT) -

a complete description
of an architecture
a textual description of
the architecture.
a source program in the
form needed by the
assembler.
a list of the errors
produced during an
assembly.
a program in the form
needed by the simulator.
the results produced by
a simulation.

Irregular intervals (.SIR) - specifies the time at
which results are to be

Fractional result (.SFT) -

Summary (.SUM) -

taken.
same as an .SRT file
except results are
percentages.
summary information
from succesive tests.

The programs are:

EDITOR - creates a new architecture or
changes an existing architecture.

AS - assembles source program into

load form that can be used by
SIMULATE.

SIMULATE - simulates a program on an
architecture and accumulates results.

DISPLAY - displays the results of a simulation
on the monitor.

SIMSUMM - produces summary information and
stores results as percentages

When using the SIMARC pa:kage, the design proce-
dure is to:

1. Determine the set of algorithms around which the
MCAP is to be optimized, the technology and
packaging to be used and the MCAP's initial ar-
chitecture.

2. Use EDITOR to graphical enter the architecture's
description.

3. Use EDIT to write, or rewrite, programs for the
algorithms.

4. Assemble the programs using AS and the archi-
tecture file created by Step 2.

5. Simulate the programs using SIMULATE and de-
termine the bottlenecks by examining the graph-
ical output and the result files.

6. Redesign the architecture to eliminate the bottle-
necks as much as possible within the constraints
of the technology and packaging.

7. Repeat Steps 2 through 6 until the design is op-
timized.

«/ JAS V A3 *S JLDV

JB] (-ST

 _J (sn I I JVM !

" AN*««»fc *■ 5IMAÄC padaM «*s th* DOS prafrta ZDtT, M; W «altar capabai afaratfaKfet *■

Fig. 3. Relationship between the SIMARC packaged programs and files.

From other simulation packages [12,13], the value
of graphical output duiing simulation and graphical
specification of a system so that it can be easily cre-
ated and modified is well established. It is seen from
Fig. 3 that EDITOR, SIMULA TE and DISPLAY dis-
play information on the screen. The display is of the
architecture specified while executing EDITOR. In the
display each component is shown as a collection of
rectangles which may contain up to four characters of
text. Normally, the te> t is an identifying mnemonic
that has been assigned to the component at the time it
is created, but it may indicate the component's type,
percentage of time in a particular state, or the com-
ponent's identifying number. A component may also
be displayed using a color that represents its type or
current state. In addition, EDITOR can show an ar-
chitecture's connections.

Upon starting the execution of SIMARC, the main
menu appears. To create or edit either an architec-
ture or program the user would respond by typing
"E", which would cause the edit menu to appear. This
menu would allow the user to create or edit an archi-
tecture or program, assemble a program, or view the
errors resulting from an assembly.

3.1 EDITOR Program

The program EDITOR is for creating or modifying
an architecture file and is initiated by typing "E" in
response to the edit menu. It first requests the name
of the architecture file. If the file does not exist, then
the architecture is to be created; otherwise, an existing
architecture is to be modified.

An architecture is defined by the:(1) attributes of its
components, and (2). connections between its compo-
nents. There are two kinds of attributes. There are
graphical attributes for displaying the component and
physical attributes that give the component's char-
acteristics (its execution time, queue lengths and so
on). When an architecture is created, a menu of icons
that appears on the right side of the screen is used
to enter the component attributes and connections.
Because all MCAPs require exactly one each of the
instruction, bus and instruction memory components,
and the connections between these components and
the other components must always be the same, the
user must enter only the attributes of these compo-
nents. Their connections are made automatically. For
all other components, the user would typically enter
the physical attributes by responding to a series of
prompts, shape the component by defining its rectan-
gles, move the component to the position it is to be
displayed and make the desired data connections be-
tween it and the other components. A component's
graphical attributes are determined during the shap-
ing and moving actions. EDITOR includes an easy-
means of duplicating a component or flipping a com-
ponent's image with respect to either the horizontal
or vertical axis. Modifying an architecture may con-
sist of simply changing the attributes of some of the
components, deleting or adding components, or delet-
ing or adding connections. If a component is deleted,
all connections to the component are automatically
deleted.

3.2 EDIT and AS Programs
The DOS program EDIT is used for creating and edit-
ing source program files. It is initiated by typing "E"
in response to the edit menu. The language used
to create a source program is at the assembler level
with labels used to specify instruction addresses and
mnemonics used to specify instruction types. In addi-
tion, the mnemonics assigned to the components when
the architecture is created are used to specify the com-
ponents that are to receive the instructions, sources of
the input connections, and destinations of the output
connections.

The program AS is initiated by choosing "A" from
the edit menu. The user then enters the names of the
architecture and source program files. As the assembly
takes place any errors that occur are recorded in an
error file and, at the end of the assembly, the total
number of errors is displayed. By pressing <ENTER>
a return is made to the edit menu. By choosing "V"
from the edit menu, the program EDIT may be used
to view the contents of an error file.

3.3 SIMULATE Program

A flowchart of the program SIMULATE is given in
Fig. 4. When "S" is typed in response to the main
menu, the simulation begins by querying the user for
the names of the architecture, program and result files.
Also, it asks the user whether the results are to be
recorded at regular or irregular intervals and, if reg-
ular intervals are chosen, the length of the interval is
requested. If irregular intervals are chosen, the user
must either enter the times at which results are to
be recorded or the name of an irregular interval file.
SIMULATE then enters its main loop.

SIMULATE assumes that the possible states that a
component can be in are as defined below. The com-
ponent types that can take on a state are given in
parentheses.

BUSY (all component types) - component is actively
performing a function.

WAIT (all component types) - component is waiting
for its output to be
taken or, for the I
component, a flag to
be set.

IDLE (I,E,T,C,J,F,L.R.S,D) - component is waiting
for input.

FREE (all component types) - component is
completely inactive.

DIST (E,T,C.J.F,L.R.S.D) - component is distributing
instructions to registers.

Each time the main loop is executed the states of all
components are updated according to their current
states, including the states of their queues, and the
Ack inputs from their output connections. The state
diagram for components that can take on five states
is given in Fig. 5. Also, all queues are updated ac-
cording to their current states. Req inputs from their
input connections and whether or not they have been
popped by the components containing them. No more

than one state change can occur in a single execution
of the main loop. Each time around the loop to con-
sume one basic increment of time and system time is
measured in terms of the number of basic increments
(i.e., loop executions) that have occurred since the be-
ginning of the simulation. The simulation ceases (i.e.,
the loop is exited) after a HALT instruction has been
encountered and all components have returned to their
F-IEE states. The results that are recorded consist of
tr e times each component spends in each state and
the maximum number of entries in each queue. These
times and numbers of entries are also updated each
time around the main loop. Whenever the system time
becomes one of those specified as a time to record the
results, the results are output to the results file. The
results can be used to determine which components
need to be faster or replicated and which queues need
to be longer.

Queries - filenames and result tijnes

Displav architecture

Sei system time to 0

E
Update all BUSY components

t :
Lpd*ie aJI WATT component*

±
Update ill queues

Update ail IDLE components

Update ail FTt£E components

I
Update ail DIST components

Increment svstem time

Yes

Output Results

RETURN

Fig. 4. Flowchart of SIMULATE program.

Instruction qucir
Dot empty

Fig. S. Structure of state diagrams.

Before entering the main loop, the architecture is dis-
played on the screen just as it is displayed by ED-
ITOR, except that the rectangles are filled in with
light blue. Each state has been assigned a color as
follows: FREE is light blue, DIST is green, IDLE is
dark blue, BUSY is red and WAIT is magenta. Be-
cause all components begin in their FREE states, the
initial color of all components is light blue. Each time
a component changes its state, its display may be up-
dated; however, the updating of the display depends
on the current mode of SIMULATE.

SIMULATE may be dynamically put into different
modes by pressing different keys as follows: "s" for
single step, "a" for automatic stepping, "d" for free-
running with display updating, and "n" for free-
running with no display updating. In single step mode
the simulation pauses and waits for a key to be pressed
each time around the loop. Automatic stepping causes
a brief pause each time around the loop, but a key-
need not be pressed. A free-running mode includes no
pauses. Free-running with display is used to identify
the utilization and bottlenecks by viewing the colors
as the simulation progresses. The more red the bet-
ter, because red indicates a components logic is being
utilized. Dark blue shows that a component is waiting
for input and magenta shows it is waiting for output.
SIMULATE runs at its maximum speed when free-
running with no display is used. Pressing "q" causes
SIMULATE to terminate.

3.4 Other Main Menu Selections

The program DISPLAY, which is initiated by choosing
~D~ from the main menu, is used to superimpose per-
centage results on an architecture display. The user
must indicate the result file to be used and the state
of interest. The percent of the time spent in the spec-
ified state is displayed on the architecture. A display
of the results at the end of a simulation or displays
at the intermediate times for which the results were
recorded may be requested.

By selecting "'G'" from the main menu the user may-
create a fractional result file in which the times spent
in the states are replaced by the percentages of times
spent in the states. This selection also allows certain
summary information to be appended to a summary
file. The selection "A" simply causes an architecture

to be displayed. The user enters the name of the archi-
tecture file in response to a query. Typing "X" causes
SIMARC to terminate.

4 MATCHING AN ALGORITHM
TO AN MCAP ARCHITECTURE

Matching an architecture to a set of algorithms involves
a study relating the flows, storage, and processing of the
data required by the algorithms. Clearly, there is no point
in increasing the speed of a processing subsystem if the
current interconnections and memory hierarchy are inade-
quate to support the processing or vice versa. But a good
balance for one algorithm may not be a good balance for a
different algorithm. What is needed is a satisfactory trade-
off for the work mix expected of a system and a means of

evaluating the design chosen.

Space allows only a single example, so let us consider the
computation that most frequently occurs in computation-
ally intense algorithms, matrix multiplication. Let us ex-
amine how the MCAP in Fig. 2 could be analyzed for to the
algorithm AB = C using the middle product method [9]
where A. B and C are n x n matrices. Fig. 6 shows the
data flow through the MCAP.

Slngte-icceu Memory

Bank of Adders

<d Ltak burtouectio*

i.
Bank of Multiplier»

Dual-access Memory

,rm.i t>
Host's Main Memory

Fig. 6. Data flow for matrix multiplication using the middle product method.

The algorithm consists of the computations

Y, a<> B> = c< i = i,

J=I

where the atJs are the elements of -4. the B,s are the rows
of B, and the C,s are the rows of C. The algorithm pro-
ceeds by storing the first row of A in the D component's

memor.". Then the products a\,Bj, for j = l,...,n, are
summed and stored in the S component at the top of Fig. 2.
Next, the second row of A is brought into the D compo-
nent and the products aj, ß, are summed and the results
are sent to the S component. This continues for all rows
of A.

By matching this algorithm with the architecture in Fig. 2,
it is seen that each adder and multiplier must perform ap-
proxim ttely n3/4 operations and each link on the left and
two of -he links on the right must perform approximately
n3 transfers. (The third link on the right is not needed.)
The approximate number of accesses to the MCAP's S
component is about 2n3 and the number of accesses to the
D component and host's S component is about n3. If T
is the per stage processing time of the multipliers, then T
should also be the per stage processing time of the adders
and T/4 should be the transfer time of the links. The ac-
cess time of the MCAP's S component should be T/8 for
both reads and writes. For T = 40 ns, the link transfer
time should be 10ns, the average memory access time for
the MCAP's S component should be 5 ns, and the aver-
age memory access time for the D component and host's S
component should be 10 ns. The computation rate would
be 200 Mflops per second. If the MCAP were put into an
MCM or wafer, memory interleaving were used, and mul-
tiple connections are made to the host's memory, these
times would be within the capability of current HCMOS
technology.

To verify the above simple analysis, we have designed a
simulation program for the matrix multiplication to be
run by the MCAP simulator. The instruction set for an
MCAP architecture consists of two sets of instructions,
internal and external. The former is processed within
the instruction component and the latter is distributed
to the other components. In this paper we will only dis-
cuss the external instruction set. The external instruction
set consists of three types of instructions: (1) instructions
which set the number of operands to be output from or
input to a component. (2) instructions which set the mode
of a component, and (3) instructions which set input or
output connection patterns for the router components or
partition and operand patterns for the controller compo-
nents. When programming an MCAP architecture, each
component must be programmed individually. The oper-
ation mode, input/output connection patterns, number of
operands to be input or output, broadcasting connection
patterns, etc., are programmed for each component using
external instructions.

The operation of the leftmost link component, LINK, con-
sists of broadcasting one element of matrix A and dis-
tributing a row of matrix B among four of the join com-
ponents that are connected to the multipliers. Thus.
the number of operands to be output by LINK is „V =
n2(n + 1). The following instructions program the LINK
component for matrix multiplication:

lmodLINK, 2 ;set mode
lsip LINK, F077 ;set input

pattern
isbp LINK, J059, J057. J060, J062 .set broadcast

pattern
Isop LINK, #n, L. J059. J057, J060, J062 ;set output

pattern
lnoo LINK, N ;set number of

operands out

The first instruction sets the mode so that the first
output is to the first connection indicated by the out-
put pattern and the next n outputs are to the con-
nections indicated by cycling through the remainder
of the output pattern. The second instruction sets the
input pattern and causes all input to come from the
fork, F077. The third instruction sets the broadcast-
ing pattern by specifiing the components to receive the
broadcast operand. The fourth instruction sets the
output pattern, which causes the LINK component to
perform a broadcast, indicated by the symbol k, and
then to distribute n operands to the components listed
in the instruction. This pattern is repeated until all
operands have been output.

The processing components, T and E. can be pro-
grammed as follows. Since each multiplier and adder
is composed of four pipeline stages, one T component
followed by three E components are needed to config-
ure one multiplier or adder. The following instructions
assume M - n3/4. K = n2 and L = n/4 and set up
the T component for one of the multipliers:

tmod T013. 48
trep T013. K
tnoo T013. L

;set mode
:set number of repetitions
;set number of output operands

The mode of the T component is set so that the first
operand is latched and multiplied by the next I inputs.
The second instruction causes the L multiplications to
be repeated A' times.

5 SUMMARY AND CONCLUSION

Preliminary work indicates that MCAP component defini-
tions when used in conjunction with the SIMARC pack-
age do permit fast prototyping of attached processors de-
signed for high logic utilization while executing computa-
tionally intense algorithms. It is believed that SIMARC
can produce designs for which the sustainable computa-
tion rate can be made to average more than 60% of the
peak rate, even for fairly diverse sets of algorithms. In the
matrix multiplication example presented, the average rate
was 95% of the peak rate. Someone experienced with EDI-
TOR could produce the architecture shown in Fig. 1 in less
than two hours. However, creating the programs for simu-
lating the algorithms is much more difficult and exacting.
Minor errors can cause SIMULATE to cycle indefinitely
and force the user to abort the simulation. Future plans
call for a compiler for creating simulation programs that
provides graphical assistance in determining the memory-
to-memory pipelines. Such a program would move much of
the responsibility for details from the user to the compiler
and greatly reduce the chance for errors.

ACKNOWLEDGEMENTS

The aithors would like to acknowledge the contributions
of Steve Senyszyn, Claudia Ayala. George Lammers, and
Eric Adams to the SIMARC package. They helped write
and modify several parts of the package.

REFERENCES

[1] S. Z. Pasha and E. H. Welbon, "Performance Di-
rected Guidance Using Simulation," IBM RISC Svs-
tem/6000 Technology, Austin. TX: IBM Advanced
Workstation Division, pp. 78-85, 1990.

[2] K. M. Nichols, "Performance Tools." IEEE Soft-
ware Trans., Vol. 24 No. 5, pp. 21-30, May, 1990.

[3] K. K. Bagchi, "Simulation of Multiple Processor
Systems: The State of the Art," Int'l. Jour, in Comp
Sim.. Vol. 1, pp. 125-128, 1991.

[4] K. K. Bagchi and Ole Olsen, "Simulation of Multi-
ple Processor Systems." Int'l. Jour, in Comp. Sim
Vol. 3, pp. 107-110. 1993.

[5] R. Hockney and C. Jesshope, Parallel Computers
2. Adam HUger: Bristol. England, 1988.

[6] T. Hoshino, PAX Computer: High-Speed Parallel
Processing and Scientific Computing. Addison-Wesley
Publishing Company: Reading, Massachusetts, 1985'

[7] G. Gibson. V. Singh. S. Singh. Y.C. Liu, Y.C.
Chang, and S. Cabrera, "MCM Implementation of
Modularly Configured Attached Processors". IEEE
Int'l Computer Symp.. Taiwan, Dec. 1994.

[8] H. V. D. Le and M. E. Perkowski. "Real Time
Graphical Simulation of Systolic Arrays." Proceedings
IEEE Int'l. Symp. on Cir. and Sys.. Vol. 1 pp
171-174. 1989.

[9] F. Distante, V. Piuri, A. Aliquo. N. Chiapi. W.
Fornacian and P. Rostelli, "APES Implementation of
a CAD Tool for Array Processor Design: Textual Def-
inition Versus Graphic Description," Microprocessing
and Microprogramming. Vol. 28. No. 1. pp. 63- 67
March. 1990.

ATTACHMENT E

DESIGN ISSUES IN A CMOS IMPLEMENTATION OF A
MODULARLY CONFIGURED ATTACHED PROCESSOR1

J. Sanjay Singh, Buck \V. Gremel,
Vijay P. Singh, and Glenn fi . Gibson

Electrical and Computer Engineering Department
The University of Texas at El Paso

El Paso, Texas 79968-0523

ABSTRACT

Implementation of a novel modularly configured attached processor (MCAP) architecture
was evaluated using 1 ^m CMOS logic on an MCM-D. The transistor count was approximately
nine million transistors, distributed on twenty-five chip dies. Delay, area, and power calculations
were performed using the SUSPENS model. Rent's rule was found to be not applicable. Speed
was calculated to be in the 150 MFLOPS range. The module foot print was calculated as 90 cm2.
Power dissipation per unit area was low enough to allow air cooling.

Index Terms: CMOS; Chip Design; Delay; Power Density; Multichip Module (MCM); At-
tached Processors.

'The work reported in this paper was supported in part by the Office of Naval Research under Grant No.
N00014-93-1-1343 Any opinions, findings, and conclusions or recommendations expressed in this paper axe those
of the authors and do not necessarily reflect the view of the funding agency.

1 Introduction

An attached processor is a processing system that is connected to a host computer for the

purpose of very quickly executing most of the overall system's computational tasks. In such

an organization,"the host is a program manager which handles all I/O, code compiling, and

operating system functions, while the attached processor concentrates on arithmetic computation

with data supplied by the host" [1].

Typical early attached processors were the AP-120B and FPS-164 made by Floating Point

Systems, Inc., the IBM 3838, and the MATP made by Datawest, Inc. [1], [2], [3]. These attached

processors all have their own data memories and transfer data between these memories and

the main memories of their hosts using DMA data channels. They also include their own code

memories where subprograms may be permanently stored or downloaded from their hosts. These

subprograms are initiated by commands from the host and supervise the data flows from the

attached processor's data memories, through the attached processor's processing elements, and

back into the data memories.

In addition to quick execution, it is also desirable to execute as broad a set of algorithms

as possible in order to create a more generally applicable processor. Thus, the underlying goal

of the designer is to efficiently utilize the hardware for as broad a set of algorithms as possible.

However, for most current designs, the average sustainable execution rates have been found

to be only 5% to 20% of their peak rates, which are determined by summing the maximum

computational rates of the processing elements. For example, the sustainable rates for the Cray

X-MP with four processors may be as low as 5% for some algorithms [4]. Although some of

the lost efficiency is necessitated by the algorithms, much of it is due to memory accessing and

contention for shared resources in general, including internal buses.

In this paper we describe a modularly configured attached processor (MCAP) architecture

which can attain quickness and high utilization through: (1) closely matching their architectures

to the set of algorithms they are to execute, (2) overlapping of processing and memory accessing

by using memory prefetching, (3) minimizing the movement of data, (4) using a high-speed

CMOS with one micron technology, and (5) having the whole MCAP on a single MCM-D.

various

In Section 2, the MCAP architecture [5], [6] is summarized. Next, in Section 3, we evaluate

design options for implementing this MCAP architecture in CMOS logic.

2 MCAP Organization

An MCAP is an attached processor that is constructed entirely from a standard set of

connections and components [5]. This standard set consists of three types of asynchronous

connections and twelve type of components. These component types are such that each member

of the class may include parallel processing, memory to memory pipelines, and be constructed

in a building block fashion. They encompass routing as well as memory, control and processing

components. By overlapping processing with memory accessing and matching an architecture

with a set of algorithms, it is predicted that the average sustainable rate for a specific set of

algorithms can attain at least 60% of the peak rate. The definitions of the connections and

component types provide a standard set of rules. These rales allow the components to be

easily configured in different ways, thereby allowing the construction of attached processors that

efficiently perform different sets of algorithms.

Much of the MCAP's efficiency is gained by distributing the next instructions to the various

components while the cuirent instruction is being executed. Once the algorithm begins, these

instructions dictate the modes, routing patterns, prefetching patterns, etc. of the components

receiving them. Once an algorithm starts, each component operates more or less on its own,

except for responding to its handshaking signals. Efficiency is further enhanced by prefetching

operands from the memory subsystem.

An MCAP operates by drawing an instruction stream from the memory component into

the instruction component. The instruction component uses internal instructions in the stream

to form external instructions that are then distributed to the other non-memory components

through the MCAP's bus component. All components in the instruction stream include input

instruction queues. When the non-memory components have received all of the instructions

needed to perform an algorithm, they automatically prefetch the data from the memory compo-

nents, route the data to and from the processor components and store the results back into the

memory components. All non-memory components have input data queues. Some controller

components, which are the components that supervise all memory accessing, are used to auto-

matically transfer data between the host's main memory and the MCAP's memory components.

The instruction and data streams are separate, thereby allowing the instructions needed for the

next algorithm to be distributed while the current algorithm is executing.

The three types of connections are referred to as memory, instruction, and data connections.

Instruction transfers are made through instruction connections. Memory components are con-

nected to their controller components using memory connections and all other data transfers

are made by means of data connections. All connections are asynchronous and, therefore, must

include handshaking lines as well as data and, perhaps, address lines.

The twelve types of components are divided into six categories: (1) Instruction, (2) Bus,

(3) Memory, (4) Processor, (5) Router, and (6) Controller. The processor components can

be subdivided into elementary processors (one input, one output), two-input processors, and

comparators. The router components are subdivided into joins (multiple inputs, one output),

forks (one input, multiple outputs), and links (multiple inputs, multiple outputs). The controller

components consist of RAM controllers, single access controllers, and dual access controllers.

The dual access controllers connect to main memory.

An example architecture is given in Figure 1. Its processing subsection includes a comparator

(C-component), a negator (elementary component), a reciprocator (elementary component), a

set of four pipelined adders capable of accumulation (via feedback), and a set of four pipelined

multipliers. Each adder and multiplier is constructed of four stages (a two-input component

followed by three elementary components). All communications to and from the processing

components are through six link components, three on each side of the processor. Join and fork

components are provided to allow flexible use of the link components. There is a dual access

component to provide intermediate memory and a connection to main memory. The single

access component provides internal storage.

In order to efficiently use the available logic and interconnections, an architecture must be

carefully matched to an algorithm or a set of algorithms. This involves a study relating the flows,

storage and processing of the data required by the algorithm(s). Clearly, there is no point in

increasing the speed of a processing subsystem if the current interconnection delays and memory

hierarchy are inadequate to support the processing (or vice versa). But a good balance for one

algorithm may not be equally good for a different algorithm. What is needed is a satisfactory

tradeoff for the work mix expected of a system and a moans of evaluating tie design parameters

chosen.

Next we present the design considerations in implementing the architecture of Figure 1 in

CMOS logic.

3 Design Considerations and Results

In our evaluation, CMOS was picked as the benchmark logic technology because of its com-

mercial maturity. In the future, we plan to evaluate other faster technologies such as GaAs,

BiCMOS, and ECL. As for the interconnection and packaging, Deposited Interconnect Mul-

tichip Module technology (MCM-D) was picked as the preferable vehicle for implementation.

Since the signal delays associated with the PCB implementation are expected to be prohibitively

excessive, it was decided that the fabrication of an MCAP with MCM or Wafer Scale Integration

are the only realistic alternatives for attaining high performance. Further, multichip modules

are classified according to the substrate technology: MCM-Ceramic, MCM-Deposition, and

MCM-Laminated. In the physical design, we must face the traditional problems in placement

and routing required by the high performance systems. As the clock frequency is increased,

we need to account for transmission line effects due to long interconnections. Parasitics on the

interconnects, inductances on the power lines, and the I/O pin limitation are the three vital

shortcomings of current packaging technologies, which could be tackled by (a) minimum chip

to chip interconnections, (b) high interconnection density, and (c) parallel architecture. Other

factors which need to be considered are ground and power plane generation and physical de-

sign verification. The thermal considerations are a direct result of the substrate type, bonding

selection, and the placement of chip dice.

A system level model, referred to as the SUSPENS model (Stanford University System

PErformaNce Simulator) [7] is used to predict the performance of the MCAP. This model

emphasizes the interactions among devices, circuits, logic, packaging, and architecture. The

same model could be used to compare logic technologies (e.g. CMOS, Bipolar, and GaAs) and

various packaging technologies (e.g. MCM-D, MCM-C, PCB, and WSI).

3.1 Chip Level Design

3.1.1 Transistor Count

To illustrate the method used to estimate the total number of transistors in the example

MCAP (Fig. 1), we will consider one of the floating point adders. Each adder has four pipelined

stages and uses the IEEE double precision standard. Further this adder could be broken down

into: (a) nine 64-bit registers with 4032 transistors, (b) seventy-four 2-input XOR gates with

592 transistors, (c) one hundred and twenty-six 2-to-l MUXs with 504 transistors, (d) two 11-

bit adders with 528 transistors, (e) one 52-bit adder with 1248 transistors, (f) a 64-bit leading

zero detector with 5000 transistors, (g) two 52-bit barrel shifters with 4000 transistors, and (h)

rounding and other control logic taking 6500 transistors.

Thus the total number of transistors for the above adder is approximately 23K. Similarly, the

transistor count for the pipelined 64-bit floating point multiplier is approximately 58K (based

on a modified Booth's algorithm). Likewise, the transistor count for the other elements in

the MCAP were calculated and the results are presented in table 1. The resulting number of

transistors for the whole MCAP is approximately nine million.

3.1.2 Output Driver Design

In the proposed MCAP architecture, the bottle neck is the communication through link,

single-access, and dual-access components because of their high fanout and large interconnection

lengths. This means that the output buffers for these elements mast be relatively large. We

present the delay, area, and power dissipation calculations for the buffers as functions of fanout

(F) and interconnection length (I).

For the chip level model, we have assumed the following:

1. The input capacitance of a gate (including the lead and ESD capacitances) is Cin = 1 pF.

2. The width of the metal conductor used for an interconnection is Wint = 2.0 /im.

3. The capacitance of the interconnections is C,nt = 2.0 pF/cm.

4. The resistance of the interconnections is Ä,n(= 375 ft/cm.

5. The feature size is Lejj = 1 /»m.

Additional parameters can be found in Table 2.

Average Delay

In general, the minimum size of a logic gate has a W/L ratio of 2. Therefore, we began with

a ratio of 2 and, by stages, moved to higher values in order to drive a load in a small amount of

time. By dividing the buffering stages into the number of buffers with increasing W/L, optimum

speeds can be achieved. It has been found that a stage ratio of e [8] gives best results. We have

used a stage ratio of 3 for simplicity. The optimum number of stages (N) is dependent on the

load capacitance (C/). The relationship is

.V = 0.91(lnC/ + 4.19)

where S is truncated (rounded down) to the nearest integer.

Using the optimum number of stages, the average delay is

Tav3 = 0.484(iV - 1) + 5C//3(JV - 1) + 0.076 ns

Delay calculations are shown in Fig. 2.

Buffer Area

A simple inverter with (W/L)n = (W/L)p = 2 will need an area of 66 /im3. A buffer with

equal rise (tr) and fall (i/) times requires {W/L)? = 2(W/L)n = 4 and the area is going to be

101 Jim2. The total area of the buffer depends on the number of stages and, hence, is a function

of F and (.. We have

Area = 66 + 3[14(S - 1) + 36(1 + 3 + 32 + • • ■ + 3'v~2)] a 55 x 3,v_1 ^m2

Area calculations are plotted in Fig. 3.

Power Dissipation In The Buffer

In CMOS, most of the power is dissipated during switching and, hence, dynamic power is

approximately equal to the total power. The dynamic power is

Pd = CT*v2x fav3 = 3.32(C/ + C^ff)/Tavs

where Cw/ = 0.0152(3'v-1) pF.

Power dissipation calculations are presented in Fig. 4.

Since the design of an MCAP uses asynchronous communication, the transfers over a link

component involve the return of an acknowledge signal and the transmission of an output enable

signal. It is estimated that the transfer rate may be as high as / = l/2[TaV3 + TMP} HZ (where

Tlvg is the delay on the interconnection and T^ is the chip delay).

Load Capacitance

For the load capacitance

with

Ctnttat = Cint x * = * pF

where I is in cm and C,-nt = 1 pF/cm. Therefore,

Q = (l + F)?F.

The resistance of the interconnect is

Ri»tto, = Rint x i = 3.4 x I n .

3.1.3 Modified SUSPENS Model

Given (a) the approximate number of logic gates, (b) the transistor technology parameters,

(c) packaging technology parameters, and (d) the number of pads per chip (estimated from Rent's

rule), the SUSPENS model [7] can estimate system performance. Rent's rule is an empirical

result obtained by observing existing designs. The design philosophy and methodology affect

Rent's constants. If the predictions are made for a system with an entirely different design

philosophy from the one from which Rent's data were obtained, the results will have little

meaning. The SUSPENS model, as originally proposed, used Rent's constants, therefore we

have developed constants that are applicable to the novel architecture of the MCAP.

Our approach to developing these constants was to determine the area needed for an inverter

(with equal rise and fall times) and a carTy generator circuit. From this we computed the average

area per transistor. Thirty percent of that area was assumed to be taken by the interconnections,

resulting in a figure of 50.7 /im3 per transistor. This result was used as input to the SUSPENS

model for computations done at the chip level. The I/O buffer areas were estimated separately

as presented in section 3.1.2.

To illustrate the use of the SUSPENS model (using table 2), we will consider the adder chip

(see Fig. 5). The adder chip contains four 64-bit floating point adders. The input stage delay is

R
T, = fg ■ -jr- ■ ZK0CtT

fg (number of n — transistors in series) = 3

Ki (W/L ratio of input transistors) = 4

K0 (W/L ratio of output buffer) = 4

Ctr (for 1 /im CMOS) = 3 fF

Rtr (for 1 /im CMOS) = 15 K

T, = 0.41 ns

The output stage delay is

lav (average interconnection length)

Cint = 2pF/cra

Äin(= 375 ft/cm

The total gate delay, T3 = T, + T0, is 0.84 ns. The delay for an adder is

Tchi, = fuT, + Ri*Cint(Dl/2) + {Dc/vc)

restrict the logic depth, fw, to 6

vc - 2.5 x 1012 cm/sec

Dc = 0.3 cm

TchtT, = 6(0.84 x 10-9) + 375(2 x 10-12)(0.32/2) + (0.3/2.5 x 1012)

= 5.07 ns (which includes the latch time, logic time, setup time, and clock skew)

Thus the maximum frequency of the adder chip is 197 MHz. By incorporating pipelining and

recalling that the total chip area actually has four of these floating point 64-bit adders, the

throughput is improved by a factor of more than four.

The power dissipation for the adder chip is found as follows. The external capacitance of a

gate is

C^t = fAv3Cint + /, KiCtr = 36.5 fF,

where lavg - 81.3 x 10"6 cm. The internal capacitance of a gate is

Cint = 3K0CtT + bCtT = 51 fF

The total capacitance per logic gate, C3 = Cat + C,ni, is 87.5 fF.

The dynamic power dissipation per gate is based on the maximum adder chip operating

frequency (/.) and the percentage of gates that switch during a clock period (fj). The dynamic

power dissipation is

P, = \uhC9vlD

= -(131 x 106)(0.3)(83.5 x 10~12)(3.3)2

= 56.3/tW

The power dissipation of the chip is the product of the number of gates (Ng) and the dynamic

power dissipation per gate (P,).

Pc = Na-Pa

= (176Jt/4)-(56.3 x 10-6)

= 1.65W

Thus the power density for the adder chip (area = 0.09 cm2) is 18.4 W/cm2.

3.2 Interconnection and Packaging Considerations

Once the results for each chip have been obtained (see Table 4), the package level model is

incorporated using thin film hybrid parameters (Table 3). The average interconnection length

at the module level (in units of chip footprint size) is [7]

2 N*-°-s - 1 1 - JVe"-0-75. 1 - 4"-1

^™ = gl 4*1-0.5 _ i ~ \ _ 41-0.75 > i _ jyi-i

A'c = 4

T) = 0.65

R™ = 1.33

To find the number of interconnections for the adder chip, we assume that the output buffers

have a fanout of 3 and a critical length of 1.5 cm. Thus, from Fig. 3, we see that the buffer

delay is 2.45 ns. Further, the capacitive delay (caused by the loading of the I/O pins and contact

pads) and the time of flight delay on the transmission lines are both calculated using

Tadditional = 2Z0- C^d + Lint/vm = 0.124 ns

Adding in Tch,p = 5-07 ns, we determine that the total delay of the adder chip = 5.07 ns + 2.45

ns + 0.124 ns = 7.64 ns. Thus, the adder chip can output at the rate of 131 MHz.

The area required by the output buffers are added to the transistor area to get the die area.

Assuming an area distributed solder bumps with 100 urn diameter and 250 /im pitch. The

footprint of the Adder chip die is found to be 0.64 cm.

10

The results from repeating this process for the other chips are presented in Table 4 (Note

that all of the chip areas have been optimized for a power density of no more than 15 VV/cm2).

Hence, we determine that the module frequency is approximately 150 MFLOPS (considering

the processing and driving involved in one cycle). The module size is 9.0 cm x 10.0 cm. Module

power dissipation (Pm)\s determined by

Cm = J^NeNp{zlf\ctr+2Cpad + kmFpCint)
1 + Fe I - 0

= i25(600)[3^-^-3 x 10-15 + 2(0.25 x lO"12) + 1.33(0.64)(1 x 10~12)]
5 1 — 5

= 0.1 MF

Pm = \(FD)(f,)(cm)(vhD)

= I(0.5)(100x 106)(0.1 x 10~6)(3.32)

= 27.4 W

The actual power dissipation is the greater of Pm and the sum of the power dissipated at all the

chip dice. Thus we report the power dissipation for the module to be 68.82 W.

4 Conclusions

Design evaluation for implementing a novel modularly configured attached processor archi-

tecture using 1 pm CMOS logic on an MCM-D (see Fig. 6) revealed that approximately nine

million transistors will be needed. These could be placed on a set of twenty five chip dies. Delay,

area, and power calculations were done with the SUSPENS model (however, Rent's rule was

not used). Delay calculation (including logic delay, interconnect delay and output driver delay)

showed that the MCAP module, on average, would achieve speeds in the 150 MFLOPS range.

The single-access memory controller component chip (S-control) was found to be the slowest

(110 MHz). Higher speeds would be achievable with faster logic like BiCMOS, ECL, and GaAs.

In fact, further calculations using 0-5 /im CMOS and 0.25 ^m CMOS logic show that average

speeds of the S-control chip increase from 110 MHz (for 1 /im design rule) to 160 MHz (for

0.5 /im design rule) and 220 MHz (for 0.25 /un design rule).

11

Power dissipation calculation showed that apprDximately 70 watts will be dissipated in the

MCAP module and air cooling would suffice for the 1 /im CMOS design rule.

We are in the process of performing further design calculations involving wafer-scale inte-

gration (VVSI) and GaAs technology.

References

[1] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1985.

[2] J. A. Swanson, G. R. Cameron, and J. C. Haberland, "Adapting the Ansys Finite-Element
Analysis Program to an Attached Processor," IEEE Computer, vol. 16, no. 6, pp. 85-91,
June 1983.

[3] R. Hockney and C. Jesshope, Parallel Computers 2, Adam Hilger: Bristol, England, 1988.

[4] J. H. Tang and E. S. Davidson, "An Evaluation of Cray I and Cray X-MP Performance on
Vectorizable Livermore FORTRAN Kernels," Proc. 1984 Int'l Conf. on Supercomputing, pp.
510-518, 1988.

[5] G. A. Gibson, "Investigation of Modularly Configured Attached Processors with Intelligent
Memories," Technical Report to Office of Naval Research, (Grant No. N00014-93-M343),
March 31, 1994.

[6] G. A. Gibson, "Application and implementation of a modularly configurable attached pro-
cessor," International Symposium on nigh-Performance Computer Architecture, 1994.

[7] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley Pub-
lishing Company, 1990.

[8] K. E. N. Weste, Principles of CMOS VLSI design - A Systems perspective, Addison Wesley,
1993.

12

Captions to illustrations:

1. Fig. 1. An example MCAP architecture.

2. Fig. 2. Buffer and interconnect delay.

3. Fig. 3. Buffer area.

4. Fig. 4. Power dissipated in the Buffer.

5. Fig. 5. Block diagram of the Adder chip.

6. Fig. 6. Layout of the MCAP on an MCM.

ELEMENT DESCRIPTION # TRANSISTORS

Memory Element has 4K each of RAM and ROM 1.84M

Instruction has 8 words of FIFO 10.0 K

Bus has 8 words of FIFO 10.0 K

Elementary has 8 words of FIFO 10.0 K

Two input has 8 words of FIFO 12.0 K

Join 3 inputs and 8 FIFO 14.0 K

Fork 3 outputs and 8 FIFO 07.0 K

Link 4 inputs and 5 outputs 15.0 K

1 Static Ram 16 elements of 1 K each 06.3 M

Single Access Controller Controls 8 memory elements 11.0K

Dual Access Controller Controls 8 memory elements and 6
DMA channels

71.0K

Compare sends out Flags and Indices 25.0 K

Reciprocate using Convergence method 50.0 K

Negate invert the sign bit 01.0 K

Floating Point Adder using CLAs, Barrel shifters etc., 23.0 K

Floating Point Multiplier using modified Booth's algorithm 61.0K

MCAP has 12 types of components 9 Million

MCM with 25 chips and 6001/Os 9 Million

Table. 1 Transistor count for the various MCAP components

13

Parameter CMOS

L«W 1.0

UCA) 250

V«(v) 3.3

R^ohm) 15 K

C(«F> 3.0

w^Oi) 2.0

W.Oi) 2.0

H^Oi) 0.4

P.O*) 4.0

n. 3

Ru, (ohm/cm) 375

C« (pF/cm) 2.0

Table 2. Iß Technology parameters

14

Parameter MCM-D

PwW 50

N. 2

Wä(M) 25

W.W 25

H^Gi) 2.0

R^ (ohm/cm) 3.4

Diel, const. 3.4

Vn (cm/nS) 16

C^ (pF/cm) 1.0

Zo(ohm) 60

C^CpF) 0.25

P.GO 100

Table 3. Thin film hybrid parameters

15

*

I Parameters - # Transistors # of I/O Latency
(nS)

Power Diss.
(W)

Area
(cm2)

1 Component i

Instn/Bus 21.2 k 200 7.40 1.65 0.14

Link 16.2 k 200 8.16 1.27 0.14

S-control 32.7 k 222 8.76 0.70 0.14

D-control 85.4 k 846 8.34 3.67 0.56

ROM4k 262.6 k 80 9.07 1.66 0.11

SRAM-4k 1.57 M 150 9.07 8.66 0.58

SRAM-lk 393.6 k 150 9.07 2.36 0.16

Multiplier 330 k 660 8.17 3.44 0.41

CNR 120 k 874 7.19 2.54 0.55

Adder 178 k 660 7.61 2.75 0.41

MODULE 9 Million 600 — 68.8 90

Table 4. Various parameters of the MCAP

MCM-D using lfi CMOS process

(optimiMd for Q i 15 W/an*)

16

on an

1 SINGLE ACCESS CONTROLLER HHHHBBHE]

0QQ0QQE
DUAL ACCESS CONTROLLER Q [T| Q 0 0

Fig. l

17

Fig- 2

18

c
CO

Fig. 3

19

Fig. 4

20

INSTRUCTION/ADDR/H.S/FLAGS
POWER/GND

Z

<

Pig. 5

21

0 0 0 i—!_H 0
0 0

H ED [T]

000H00
00 B 00 0

t-M.;>:
*W;

Fig. 6

22

