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INVESTIGATION OF MODULARLY CONFIGURED 
ATTACHED PROCESSORS WITH INTELLIGENT MEMORIES 

1. STATUS OF PROJECT 

Objective 1 (register-level design of MCAP): Block diagrams 
of all MCAP components have been completed and documented 
(see Attachment A) by Glenn Gibson and an undergraduate 
student.  These diagrams include all of the important 
registers in the components.  More detailed designs based on 
these block diagrams are currently being done in order to 
fulfill the objectives below. 

Objective 2 (architecture/algorithm case studies): The 
simulator software package is now complete and this study is 
now progressing at a stepped up pace.  While learning the 
MCAP system, a doctoral student under the direction of 
Gibson has designed an architecture for performing matrix 
operations and has written programs for executing matrix 
multiplication and matrix inversion.  If implemented in 1 
micron CMOS, the architecture should have a peak performance 
of 250 MFlops/s.  Simulations of matrix multiplication can 
be carried out at slightly more than 240 MFlops/s, giving a 
processor efficiency of approximately 96%.  The processor 
efficiency for matrix inversion is currently less then 40%, 
but the program is being rewritten and we are hoping to 
attain an efficiency of over 60%.  Another program for 
performing Gaussian elimination will then be written.  Upon 

.^   completion of this work an article will be submitted to the 
IC    Journal   on  Computer Simulation.   An undergraduate student, 
■"^   also under the direction of Gibson, has designed an 

architecture for performing iterative solutions to two- 
«^   dimensional partial differential equations.  Although he has 

completed a program for solving LaPlace's equation, his 
results are premature.  Programs for other first and second 
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order equations will also be written.  A doctoral student 
and two master's level students are, under the supervision 
of Sergio Cabrera, developing architectures and writing 
programs for performing FFTs and signal processing 
algorithms.  This work began in January.  Although it took 
the students some time to learn the MCAP design philosophy, 
their effort is progressing well now.  Other journal 
suomissions will be made as this work matures. 

Objective 3 (two memory controller designs): Yu-Cheng Liu is 
directing a master's level student and an undergraduate 
student in this work.  It began in earnest in November, 
after the block diagrams in Attachment A were finalized. 
The designs are at the logic level and are being done using 
the Mentor Graphics software package.  The address 
generation and partition pattern logic for the single-access 
(S) and dual- access (D) components have been completed. 
Also, a preliminary study of an alternative design that uses 
shift registers has been done.  Their work to date is being 
submitted to the '95 ISCA Int'1 Conf. on Computer Appl. in 
Industry and Engr. in Honolulu. 

Objective 4 (technology evaluations): This work involves two 
doctoral students and two master's level students and is 
being guided by Vijay Singh.  Singh, Gibson, two doctoral 
students and one master's level student attended the 
multichip module conference, MCMC '95, in Santa Cruz, 
California, in January and presented a paper (see Attachment 
C).  The presentation was made by one of the doctoral 
students, Buck Gremel.  Also, Singh's group has produced a 
paper that has been accepted by the Int'l  Journal   of 
Electronics   (see Attachment D) and has submitted a paper to 
the IEEE J.   on  Components,   Packaging and Manufacturing Tech. 
To date, the group has concentrated its efforts on the MCM 
CMOS design of an architecture for performing matrix 
operations, but one of the master's level students has been 
investigating GaAs DCFL technology.  Preliminary work on 
Wafer Scale Integration (WSI) has also been done by  Yi- 
Chieh Chang and a graduate student under the supervision of 
Singh.  They will study the WSI implementation of MCAPs this 
summer. 

Objective 5 (simulator development): Although the simulator 
software package, SIMARC, is complete and currently in use, y^W^T! 
several enhancements are being made  ~'      ' ~~ These enhancements are 
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being done by a master's level student and an undergraduate 
student under the direction of Gibson. They primarily 
concern the display of simulation results and the ability to 
dynamically change an architecture's attributes while a 
simulation is being executed.  It has been found that the 
principal difficulty in using the SIMARC package is in 
writing programs for the algorithms.  The master's level 
student has also begun working on a graphically assisted 
assembler designed to alleviate this problem.  The 
instruction set for MCAPs has been finalized and 
documentation of the SIMARC software began in December (see 
Attachment B) and will continue through next summer.  A 
paper on this package will be presented at the '95 
Simulation MultiConference in Phoenix in April (see 
Attachment E). 

2. CURRENT LEVEL OF EFFORT 

Although no theses were completed during this six-month 
period, the level of effort has increased dramatically.  In 
addition to the paper presented in Santa Cruz, the four 
papers listed in the October 1, 1994, report were presented 
in Taiwan and San Francisco.  At present, there are four 
doctoral stu-dents, eight master's level students and three 
undergraduates involved in the project.  Of these, four of 
the graduate students are not currently supported (two are 
part-time students) and two undergraduates are being 
supported by stipends provided by the University.  All 
others are supported by stipends and research assistantships 
through this grant. 

3. PAPERS ACCEPTED FOR PUBLICATION (see attachments) 

J. Singh, B.Gremel, V. Singh and G. Gibson, "Design Consid- 
erations for implementing a Modularly Configured Attached 
Processor in a Multi-Chip Module," Proc.   of MCMC   '95,   Santa 
Clara, CA, Jan., 1995, pp. 62-65. 

G. Gibson, A. Brito, Y. Chang, D. Saenz and E. Castro, 
"Simu-lation and Fast Prototyping of Modularly Configurable 
Attached Processors," Proc.   of 1995 Multiconference  on High 
Performance  Computing,   Phoenix, AZ, April, 1995. 

J. Singh, B. Gremel, V. Singh, and G. Gibson, "Design Issues 
in a CMOS Implementation of a Modularly Configured Attached 



Processor", accepted by Int'l  J.   of Electronics. 

4.  PAPERS SUBMITTED FOR PUBLICATION 

J. Singh, S. Nagabathula, V. Singh and G. Gibson, 
"Comparative Evaluation of MCM and WSI Schemes for 
Implementing a Modularly Configured Attached Processor 
Architecture," submitted to IEEE Trans,   on  Components, 
Packaging and Manufacturing Tech.--Part B:  Adv.   Packaging. 

Y. C. Liu, G. Gibson and S. Vaishampayan, "Intelligent 
Memory Controllers for Modularly Configured Attached 
Processors," submitted to '95  Int'l   Conf.   on  Computer Appl 
in  Industry and Engr.   in Honolulu, Hawaii. 



ATTACHWE'MT A 
CHAPTER 1 

MCAP DEFINITION 

An MCAP is an attached processor that is constructed entirely from a standard set of 

connections and components. This set consists of two types of connections and ten types of 

components. The definitions of the connection and component types provide a standard set of 

rules that allow the components to be easily configured in different ways to construct attached 

processors that efficiently perform different sets of algorithms. 

An MCAP is connected to its host using separate instruction and data streams. There is one 

instruction stream and it flows from the hosts memory to the MCAP's only instruction com- 

ponent. The instruction stream is depicted in Fig.1.1. It is assumed that, for each algorithm 

the MCAP is to execute, the instructions for the algorithm have been permanently stored as a 

subroutine in a ROM in the instruction component. The instructions sent from the host to the 

instruction component's RAM designate which algorithm is to be executed and the parameters 

needed by the algorithm(e.g., sizes and main memory locations of matrices). An algorithm is 

executed by drawing from the set of instructions received from both the host and subroutine. 

Using these instructions and the instruction component's register set and internal logic, an in- 

struction stream, called the stream of external instructions, is produced and directed to the other 

component's in the MCAP. The stream of external instructions provides the other components 

with the information needed to perform the algorithm. Each external instructon is directed to 

a component by putting the component's identifying address (i.e., component number) on the 

address bus. The receiving component causes the contents of the instructon to be distributed to 

its appropriate registers. It is the contents of the component's registers that dictate its actions 

during the execution of an algorithm. For the given algorithm, the set of instructions that a 

component receives must be sufficient to fill the registers needed by the algorithm. 

There may be multiple data streams between the host and MCAP and they are connections 

to one or more of the MCAP's memory subsystem components. The primary purpose of these 

components is to buffer data between the host and the MCAP, although they may also rearrange 

the data being input from or output to the host. Once the data has been put into the memory 

subsystem components, other MCAP components may be used to process the data and return 



results to the memory system components, from which the results may be output to the host's 

main memory. All movement and processing of data to and from the host and within the MCAP 

is determined by the external instructions sent from the MCAP's instruction component to other 

components in the MCAP. These instructions set up memory-to-memory pipelines that route 

and process the data according to the algorithm to be performed. 

All MCAP connections are unidirectional and asynchronous. There are two types of con- 

nections within an MCAP, instruction connections and data connections. A data connection 

consists of a data bus and a Request/Acknowledge (Req/Ack) pair. A transfer begins when the 

transmitting component puts the data on the data bus and activates the Req line. When the 

receiving component recieves the Req signal and accepts the data, it pulses the Ack line. The 

transfer is complete and the data and Req signals are dropped when the Ack pulse is received 

by the transmitting component. An instruction connection is similar except that it may be 

connected in more than one receiving component and includes an address bus. An address is 

put onto this bus at the same time an instruction is put onto the data bus. Only the addressed 

component can receive the data and return the Ack pulse. 

The ten types of components fall into four categories and are summarized as follows: 

Instruction (I) 

Processor: 

Elementary-one input, one output(E) 

Two-input-two inputs, one output (T) 

Comparator-two inputs, one output plus special outputs (C) 

Router: 

Join-multiple inputs, one output (J) 

Fork-one input, multiple outputs (F) 

Link-multiple inputs, multiple outputs (L) 

Memory subsystem: 

RAM-one input, one output, no partitions (R) 

Single-access-one input, one output, has partitions (S) 

Dual-access-two inputs, two outputs, has partitions (D) 



The letter used to indicate each type of component is given in parentheses.  These component 

types are described in the subsections below. 

1.1    Instruction Components 

An MCAP contains exactly one instruction (I) component. A block diagram of an I compo- 

nent is given in Fig. 1.2 . As explained above, an I component receives instructions from the 

host and produces a stream of external instructions that are sent to the other components in the 

MCAP. The instructions sent from the host are put into the I components RAM. These instruc- 

tions are then brought in through the input instruction queue and decoded. They include the 

parameter values needed by the algorithm to be executed and cause these values to be put into 

the register set. The last instruction received from the host causes the subroutine that executes 

the algorithm to be initiated. The instructions in the subroutine are then brought in through the 

input instruction queue. There are two types of instructions, internal instructions and external 

instructions. The internal instructions, the parameter values in the register set and the internal 

logic of the I component are used to produce other parameter values that are also stored in the 

register set. External instructions are those that are, perhaps, modified by the parameters in 

the register set and sent out to the other MCAP components via the output instruction queue 

and instruction connection. Internal instructions are capable of performing integer arithmetic 

and logical operations, subroutine calls and returns, looping, unconditional branches, and con- 

ditional branches based on flag signals received from the processing components. One of the 

processing components must be a comparator. As discussed below, a comparator is capable of 

determining a maximum or minimum of a sequence of numbers as well as comparing two values. 

Therefore, not only are flag signals sent from the comparator that indicate >,<,>, <. = and 

7^, but the comparator may also return the index within a sequence of a maximum or minimum 

values. Such indices may be used to modify external instructions, particularly the instructions 

for computing addresses. 

In addition, the I component receives flags from the other processing components that indi- 

cate exceptional conditions (e.g., division by zero, overflows, underflows and so on). These flags 

are used to interrupt the host via the control bus when the MCAP aborts an algorithm. 



1.2     Processor Components 

The processor components are for performing unary and binary arithemtic/logic operations. 

There are three types of processor components. There are one-input elementary (E) components, 

two-input (T) components , and comparator (C) components. Figure 1.3 gives a block diagram, 

programmable register summary, and mode register definition for an E component. As seen 

from the block diagram an E component has an input instruction connection, an input data 

connection, an output data connection, and a set of flag lines. It consists of an input queue 

at its input connection, process logic for performing the required operation, and control logic 

that contains four programmable registers. The mode register dictates the actions taken by 

the component and it, along with the other three registers, determine the order and manner in 

which the data inputs are used and when the component must input more instructions. 

A list of the currently available modes for an E component are given in Table 1.1. Eight bits 

in an E component's Mode register are used.   Bit 0 indicates whether are not the component 

is being used to perform an accumulation (e.g., sum a column of numbers). This bit is needed 

only if the E component is part of a pipeline that can perform accumulations. When this bit is 

1 the number in the NumOpsOut register is automatically modified according to the number of 

stages in the pipeline, thereby taking into account the final accumulation steps. Bits 1 through 

4 indicate the components current function with bit 4 specifying whether an unary or a binary 

operation is to be conducted.    If an E component is used for a binary operation, the first 

operand is transferred to a latch and the operation proceeds when the second operand arrives. 

It is possible for an E component to output a constant or perform a binary operation with one 

of the operands being held constant. Whether a constant is being used is determined by bit 5. 

If a constant is being is used it is possible to fill the latch by using an immediate instruction or 

by using the first datum that arrives at the input data queue. Bit 6 is used to indicate one of 

these two choices.  Bit 7, 8 and 9 are not used.  Bit 10 allows an E component to be put into 

primitive mode.   In primitive mode, an E component does not accept additional instructions, 

but is simply a passive component that inputs and processes data as it becomes available. 

Except for an E component in primitive mode or an I component, from the standpoint of 

any component an algorithm is broken into tasks and. for each task, the component must receive 



a sequence of instructions that determines what it is to do to execute the task. When the com- 

ponent has completed a task, it must input another sequence of instructions. Instructions are 

first used to fill the Mode, Number of Repetitions (NumRepetitions) and Decrement Amount 

(DecAmt) registers. (If one or more of these registers is not filled, it's current contents are 

used). Then, when an instruction fills the Number of Operands Out (NumOpsOut) register, the 

component begins executing the task. The Number of Operands Out Constant (NumOpsOut- 

Const) register is automatically loaded from the NumOpsOut register. As the task executes, 

it draws inputs from it's input data queue(s), processes them, and outputs any results. Each 

time there is an output, the i\TumOpsOut register is decremented. Each time the NumOpsOut 

register becomes 0 the NumOpsOutConst register is decremented by DecAmt and used to reload 

the NumOpsOut register. Also, the NumRepetitions register is decremented by 1. When both 

NumOpsOut and NumRepetitions become 0 the task is complete and the component must input 

another input sequence of instructions. 

Figure 1.4 gives the block diagram, programmable register summary, and mode register 

definition for a T component. It is similar to an E component, but the T component has two 

input data connections and corresponding queues. A list of the currently available modes for 

a T component are given in Table 1.2. Ten bits in a T component's Mode register are used. 

with the first seven serving the same purposes as in an E component. However, if a constant 

is input through one of the input data conections, the connection it arrives on is indicated by 

bit 7. Bit 8 specifies whether one or both inputs are to be used, bit 9 specifies which input anv 

nonconstant input value will arrive on. 

Figure 1.5 gives the block diagram, programmable register summary and mode register 

definition for a C component. A C component is a T component that has two special sets of 

lines connecting it to the I component. There can be only one C component in an MCAP. As 

usual, its current function is determined by its mode. A list of the currently available modes 

for a C component are given in Table 1.3. One of its functions is to simply compare two inputs 

and set relational flags that are then transmitted to the I component over one set of the special 

lines. When performing comparisions there are no outputs other than the flag outputs. The C 

component can, however, also determine the maximum or minimum of a sequence of numbers. 



In this case, the second set of special lines is used to transmit the position, or index, of the 

maximum or minimum within the sequence to the I component. If the maximum or minimum 

occurs more than once in the sequence, the index always points to the first occurence. If a 

maximum or minimum is being determined, then NumOpsOut is used to specify the length of 

the input sequence (i.e., NumOpsOut really indicates the number of operands input). Also, the 

maximum or minimum is output on the output data connection at the same time its index is 

output on the index lines. 

1.3     Routing Components 

Routing components are for directing data along the proper paths. There are three types of 

routing components, join (J) components with more than one input and one output, fork (F) 

components with one input and more than one output, and link (L) components with more than 

one input and more than one output. 

Figure 1.6 shows the block diagram, programmable register summary, and mode register 

definition for a J component. It has an input instruction connection, multiple input data con- 

nections and an output data connection. It consists of a queue for each input, a bus, control 

logic containing the same individual programmable registers as a processing component and a 

programmable set of input pattern registers (InPattern). The registers in a pattern are summa- 

rized in Fig.1.7. The NumRepetitions, DecAmt. NumOpsOut and NumOpsOutConst registers 

are used as they are in the processor components. The sole purpose of the Mode register is 

to distinguish between no accumulation and accumulation. As with processor components, J 

and F components may be part of a pipeline capable of performing accumulation. A processor 

component pipeline that performs accumulations always has a J component at one of its input 

data connections, an F component at its output data connection, and a feedback data connec- 

tion from the F component to the J component. These F and J components must increase 

NumOpsOut by an amount that depends on the number of stages in the pipeline. Also, the 

F component, which normally outputs to the feedback connection must output the final result 

to a different output connection. This allows the pipeline to accumulate partial results and 

then produce a final result and send the final result to its destination. In the no accumulation 



mode, InPattern specifies the order in which the input connections are to be selected during the 

execution of the algorithm being programmed. This pattern is continually cycled through until 

NumOpsOut becomes 0. It may be reused by the next task or changed by a new instruction 

that resets InPattern. 

A pattern includes two subcycles. The Pattern Array (PArray) set of registers shown in 

Fig.1.7 are set to a sequence of numbers that indicate input connections. The register Numberl 

indicates the number of connections selected during the first subcycle and the register Count 1 

indicates the number of registers from PArray that are to be included in the first subcycle. 

Number2 and Count'2 serve the same purpose for the second subcycle. When the first subcycle 

is exhausted, the second subcycle is begun, and when the second subcycle is exhausted, a return 

is made to the first subcycle and so on. 

For example, if Numberl=4, Countl=3, Number2=5, Count2=2 and PArray contains 2, 6, 

4, 7 and 1, then the input connections are used in the order 

2 64 2    71717    264 2    71717 .... 

The sequence continues until NumOpsOut becomes 0. 

Figures 1.8 and 1.9 correspond to the F and L components, respectively. An F component, 

because it has only one input and multiple outputs, has a set of output pattern registers, 

OutPattern. instead of an input set. and an L component has both an InPattern and OutPattern. 

Both InPattern and OutPattern are continually cycled through and determine the order in which 

the input or output connections are used. An L component cannot be part of a pipeline and 

does not need a mode register. 

In addition both F and L components contain a set of broadcast registers denoted BcPattern. 

If an entry in an output pattern is all ones, then the entry will not be used as an output 

connection number, but there will be a simultaneous output to all output connections listed in 

BcPattern. 



1.4    Memory Subsystem 

There are three types of memory subsystem comoponents, RAM (R) components, single 

access (S) components, and dual-access (D) components. All memory subsystem components 

are fcr automatically retrieving operands from and storing results in their associated memory 

modules. AH memory subsystem components have an output data connection and an input 

data connection. Therefore, they must be capable of handling both an output data stream and 

an input data stream. In addition, a D component includes a second pair of input and output 

connections. .All memory subsystem components have a queue in each of their input and output 

data streams. 

A significant difference between the memory subsystem components and the other compo- 

nents is that a Number of Operands In (NumOpsIn) register as well as a NumOpsOut register 

must be included. The NumOpsIn register serves the same purpose for the input data stream 

as NumOpsOut does for the output stream. Both NumOpsIn and NumOpsOut must be zero 

before new instructions can be distributed to the component's programmable registers. 

Figure 1.10 gives the block diagram, programmable register summary, and mode register 

definition for the R component. An R component is primarily used for temporary storage or as 

a large queue. An R component has six modes related to the input and output of data. They 

are: 

InPut: Data is only stored in memory (i.e.. only the input data stream is used). 

Output: Data is only retrieved from memory (i.e., only the output data stream is 

used). 

Input/Output: Data is first input to memory and then output from memory.  The input 

must stay ahead of the output. 

Output/Input:        Data is first output from memory and then input to memory. The output 

must stay ahead of the input. 

Input and Output: Data is input and output with no regard as to which is done first. 

Zero: Put zeros in all memory locations. 

Figure 1.11 gives a block diagram of an S component.  An S component differs from an R 



component in that it may be connected to more than one memory module and the memory as 

a whole may be divided into partitions, called S partitions, that consist of blocks of memory 

having consecutive addresses. The memory modules may be banked and/or interleaved (i.e., 

the high-order address bits specify the bank and the low-order bits specify the module within 

the bank). The partitions, because they occupy consecutive addresses, are spread across the 

modules and may even encompass more than one bank. 

Because some S partitions are used for outputting from memory(i.e., providing the output 

data stream) and some are for inputting to memory (i.e., terminating the input data stream), 

there is a set of programmable registers referred to as the Output Partition Pattern, OutPartPat. 

that determines the pattern in which the partitions providing the output stream are accessed. 

Likewise, the Input Partition Pattern, InPartPat, determines the order in which the partitions 

providing the input stream are accessed. In both cases the patterns determine the partition 

sequence in the same way the connection sequences are determined by the routing components 

(see Fig.1.7). 

Each S partition is accessed as a circular memory (i.e., the first location in the partition 

is considered to follow the last location in the partiton). A summary of the registers that 

define a partition and are used to determine the order in which the locations within a partition 

are accessed is given in Fig.1.12. A partition is defined by its Base register, that gives its base 

address, and Size register, that designates its size. From Fig 1.12(b) it is seen that each partition 

has a mode and can be put into any one of the first four modes permitted an R component. 

If the mode of a partition allows output, a window must be defined within the partition. All 

outputs must be from within the window and if there are inputs, they must be to locations 

outside the window. An exception occurs when a partition is in its input before output mode. 

In this case the window must be filled before output begins, but thereafter the input must be to 

outside the window. The initial base address of the window is the same as that of the partition. 

The window"s base is incremented with each repetition of a window pattern, which is described 

below. The size of the window is defined by the contents of the WinSize register. 

Within an S partition the sequence of input addresses is generated by 

1=0 



While NumOpsIn > 0   { 
Input address = B + I mod S 
Increment I by 1 

} 
where B and S are the base and size of the partition. 

The addresses used for outputting are generated according to the output pattern defined by 

the Patlnc, NumRepsl, Replncl, NumReps2, and Replnc2 registers and the offset pattern. Let 

P, Nu R\. A2 and R2 be the contents of these registers respectively, and OS be the PArray in 

the offset pattern (see Fig.  1.7.). Also, let N0 equal the initial NumOpsOut and A3 equal the 

sum of Number 1 and Number2 from the offset pattern. Assuming Aj > 0 and Ar
2 > 0 then the 

sequence of output addresses is generated by 

A'o = A'i = K2 = M\ = M2 = M3 = 0 
While M0 < A0{ 

A'i = 0 

Mi = 0 
While M0 < A'0 and Mx < N\{ 

K2 = 0 
M2 = 0 

While M0 < N0 and Mi < Aj and M2 < A"2{ 
M3 = 0 

While M0 < A0 and Mi < A'i and M2 < N2 and M3 < A3{ 
Select I from offset pattern 

Output address = B + ( A'0 + Kx + K2 + OS[I] ) mod S 
Increment M0. Mi,M2 and M3 

} 
Incrementk'2 by R2 

} 
Incrementh'i by Aj 

} 
IncrementKo by P 

} 

For example, suppose that the offset pattern in 

Numberl=4   Countl=3  Number2=Count2=0   PArray= {0.3,1} 

and 

B=0   S=12   A0 =25   P = l   A1=20  A1=2   A2=7   A2=4. 

Then Ar
3=4 and the sequence of addresses generated would be 

031047 5   25 32697  47 5 48 11    14215 

10 



External instructions must, of course, be sent to an S corr ponent to specify the mode, 

define the S partitions and specify the input and output partition patterns. The modes for the 

partitions are determined by the mode of the S component. For each partition that produces 

output, there must be external instructions for specifying the window size and overall output 

pattern. 

The format of an S component mode instruction is given in Fig. 1.13. Bits 0 through 29 are 

divided into pairs with each pair specifying the mode of an S partition. Bits 0 and 1 specify 

the mode for partition 0 and so on. When a mode instruction is recognized, its lower 30 bits 

are seperated into pairs and the pairs are sent to the corresponding S partition mode registers. 

Bit 30 is put in Bit 0 of the S component's mode register. The format of this register is given 

in Fig. 1.14. Bit 30 is used to indicate whether only one data stream is to be used or both the 

input and output streams are to be used. 

A block diagram of a D component is given in Fig. 1.15. In a D component there are two 

input streams and two output streams. The input stream logic in a D component is the same as 

in a S component, but it is replicated. Also, the output stream logic is the same, but replicated. 

The S partition logic is the same as in an S component. 

The formats of the two D component mode instructions are shown in Fig. 1.16. The one 

shown in Fig. 1.16(a) provides pairs of bits for specifying the S partition modes for partitions 0 

through 12. These pairs are in Bits 0 through 25. Bit 26 indicates that the attached processor 

output (AP out) stream is to be used when it is 1 and not to be used when it is 0. Similarly 

Bits 27, 28 and 29 indicate the use of the attached processor input (AP in) stream, host output 

(Host out) stream and host input (Host in) stream. The instruction in Fig. 1.16(b) gives the S 

partition mode pairs for partitions 13 through 27. Bits 26, 27, 28, and 29 are put in the four 

low-order bits of the D component's mode register. As with an S component, a mode instruction 

distributes the mode bits to the corresponding S partition mode registers. The format of this 

register is given in Fig.1.17. 

11 



1.5    Example Architecture 

An MCAP for performing matrix operations is given in Fig. 1.18. The letter in each 

component gives the component's type. The MCAP includes a comparator (a C component) 

a negator/reciprocator (an E component), three four-stage adder/subtractors (a T component 

followed by three E components), three four-stage multipliers (a T component followed by three E 

components), several J, F and L components for routing the data and three memory subsystem 

components. The small rectangles inside the memory subsystem components represent data 

streams, address generators, memory buses and memory modules. The S component at the top 

is for temporarily storing data. The D component acts as a buffer, but is also used to rearrange 

and temporarily store data. The S component at the bottom is the MCAP's controller of the 

host's main memory and determines how the MCAP accesses main memory. The I component, 

instruction connections and host's connection to main memory are not shown. 

12 



Tab e 1.1: Summary of E Component Modes 

Mode Description 

OxxxllOfffO 
OxxxOlOfffO 
OxxxOOOfffO 

OxxxlllfffO 

OxxxOllfffO 

OxxxOOlfffO 

lxxxOOOfffa 

x - not used 
f - function code 
a - if component 

Immediate constant is output NumOpsOut times. 
Constant is input and then output NumOpsOut times. 
Unary operations are performed on NumOps Out inputs and NumOpsOut 
results are output. 

Binary operations are performed using an immediate constant with NumOp- 
sOut inputs and NumOpsOut results are output. 

Constant is input and then binary operations are performed using this input 
with NumOpsOut additional inputs to produce NumOpsOut outputs. 

Binary operations are performed on NumOpsOut pairs of successive inputs 
and NumOpsOut results are output. 

Component is put into primitive mode.  For each input, a unary operation 
is performed and a result is output. 

bit assigned by designer. 
is part of an accumulation pipeline it is 1: otherwise, it is 0. 



Table 1.2: Summary of T Component Modes 

Mode Description 

OlOllOfffO Immediate constant is output NumOpsOut times. 
OOcOlOfffO Constant is input and t.ien output NumOpsOut times. 
vOOOOOfFfO Unary operations are performed on NumOpsOut inputs and NumOpsOut 

results are output. 

vOOlllfffO Binary operations are performed using an immediate constant with NumOp- 
sOut inputs and NumOpsOut results are output. 

vOcOllfffO Constant is input and then binary operations are performed using this input 
with NumOpsOut additional inputs to produce NumOpsOut outputs. Only 

one input connection is used and v and c are equal. 

vlcOllfffO Same as previous mode except that two inputs connections are used, one for 

the constant and one for the variables, and v and c are complements. 

vOOOOlfffO Binary operations are performed on NumOpsOut pairs of successive inputs 
arriving on a single input connection and NumOpsOut results are output. 

OlOOOlfffO Binary operations are performed on NumOpsOut pairs of successive inputs 
and NumOpsOut results are output. Both input connections are used and 
for each operation one operand must arrive on one connection and the other 
operand must arrive on the other connection. 

OlOOOlfffl Component is to be used as a part of an accumulaltion pipeline. Both inputs 
are used as required by the pipeline. 

f - function code bit assigned by designer. 
v - number of the input connection to be used to input the variables. 
c - number of the input connection to be used to input the constant. 



Table 1.3: Summary of C Component Modes Description 

Mode Description 

vOOHOOlfO Immediate constant is compared with NumOpsOut inputs.   The minimum 
is output and the index of the first minimum is sent to the I component. If 
the immediate constant is equal to the minimum, the index is all O's and the 
flags indicate that the immediate constant is equal to the minimum. 

vOOHOlOfO Same as the first entry except that the maximum is found instead of the 
minimum. 

vOOl 101 lfO Same as the first entry except that both the maximum and the minimum are 
found and both extrema and their indices are output. The minimum and its 
index are output first. 

vOOOOOOOfO A pair of inputs are compared and only the flags are output. Only one input 
connection is used. 

vOOOOOOlfO The minimum of NumOpsOut inputs is found. The first minimum is output 
and its index is sent to the I component. Only one input connection is used. 

vOOOOOlOfO Same as the fifth entry except that the maximum is found instead of the 
minimum. 

vOOOOOllfO Same as the fifth entry except that both the minimum and maximum are 
found and both extrema and their indices are output. The minimum and its 
index are output first. 

01000000f0 The inputs on the two input connections are compared and only the flags 
are output. 

vlcOlOOlfO Same as the first entry except that the constant arrives on the input con- 
nection not used by the variable input stream, v and c are complements. 

vlcOlOlOfO Same as the second entry except that the constant arrives on the input 
connection not used by the variable input stream, v and c are complements. 

vlcOlOllfO Same as the third entry except that the constant arrives on the input con- 
nection not used by the variable input stream, v and c are complements. 

OlOOOlOOfO NumOpsOut inputs arrive on each of the two input connections and the 
absolute values of the differences of the successive pairs of inputs are deter- 
mined. These absolute values are compared with an immediate operand and 
the flags indicate whether are not all of them are less than or equal to the 
immediate operand. Only the flags are output. 

vOOOOlOOfO Same as the preceeding entry except that the NumOpsOut input pairs arrive 
on a single connection. 

f - function code bit assigned by designer. 
v - nuiiii'-: of the input connection to be used to input the variables. 
c - number of the input connection to be used to input the constant. 
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Fig. 1.14. S component mode register. 
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Fig. 1.17. D component mode register. 



ATTACUMEA/T    ß 

CHAPTER 2 
PROGRAMS AND FILES ASSOCIATED WITH SIMARC 

SIMULATION PACKAGE 

Tie programs in the simulate architecture (SIMARC) system of programs communicate 
through a collection of files. The relationship between the programs and the files they create and 
access is summarized in Fig. 2.1. The text editor is not a member of the simulate architecture 
program set, but may be any text editor capable of producing an ASCII text file. The editor 
currently used is the DOS program EDIT. 

The files used by the system may be given any legitimate DOS filenames, but must have 
the extensions shown in the figure. These files are classified as follows: 

Architecture file (.SAR) - 

Architecture error file (.SAE) - 

Information file (-SIE) - 

Program file (.SAS) - 

List file (.SIT) - 

Load file (.SLD) - 

Result file (.SRT) - 

Irregular intervals file (.SIR) - 

Fractional result file (.SFT) - 

Summary file (.SUM) - 

contains a complete description of an architec- 
ture 

contains connection errors made while generating 
an architecture 

contains a textual description of the architecture. 

contains a source program in the form needed by 
the assembler. 

contains a list of the errors produced during an 
assembly. 

contains a program in the form needed by the 
simulator. 

contains the results produced by a simulation. 

specifies the time at which results are to be taken 
when the result intervals are irregular. 

contains the same information as an .SRT file 
except that the results are given as percentages. 

contains automatically updated summary infor- 
mation from succesive tests. 

The programs are: 

EDITOR - for creating a new architecture or changing an 
existing architecture. 



ARCHCHh - checks an architecture's connections for errors. It 
is automatically executed each time a .SAR file 
is created or updated. 

A5 - for assembling a source program into a load form 
that can be used by the simulator (SIMULATE). 

SIMULATE - for simulating a given program on a given archi- 
tecture and accumulating results of the simula- 
tion. 

DISPLAY - for displaying the results of a simulation on the 
monitor. 

SIMSLMM - for producing summary information a5 well as 
storing the results as percentages 

Each type of file is described in a subsection given below.  Each subsection defines the 
content and format of one of the file types. 

2.1      Architecture File 

An architecture (.SAR) file completely describes the architecture of an MCAP and provides 
the graphics information needed to display the architecture and mnemonics required by the 
assembler. An MCAP consists of a standard set of connections and components in which each 
end of each connection is attached to exactly one component. An MCAP is completely defined 
by specifying the 

• Connection type for each connection and the component that is attached to each end of 
each connection. 

• Component type and the attributes of each component. 

An architecture file is an ASCII file that is divided into two parts. The two parts are 
separated by a string consisting entirely of one or more asterisks. The first part is for storing 
connection information that can be easily used to modify an existing architecture. The second 
part contains the information needed by the assembler and simulator. 

The second part of the architecture file is broken into fields, one field for each component 
in the MCAP. The first part of a field contains the information that is common to all components 
and is summarized in Fig. 2.2. The remaining information in a field is determined by the 
component's type. Figures 2.3 through 2.9 summarize this information for each type. In all of 
these figures the data type for each entry or subfield is given in parentheses. Except for the 
type, mnemonic and component number, the data corresponding to each major item in these 
figures is on a single line in the architecture file, even if it is a single number. 



2.2      Information File 

An information (.SIF) file simply gives an easily readable description of an architecture. It has 
the same file name as the architecture file that contains the architecture it describes and consist 
of a listing of the components and their attributes. consists 

2.3      Architecture Error File 

An arrnieTnR
re "^ ('SAE) ^ ^^ descriPtions <* ^ connection errors made while 

using EDITOR to create an architecture and a summary of all of the architecture's connections 
It has the same file name as the architecture file containing the errors 

2.4      Program Source File 

A program source (.SAS) file is an ASCII file in which each line is blank, a remarks line or an 
assembler language directive or instruction for an MCAP. At present, there are three directives 
They are given m Fig. 2.10. In an EQU statement the symbol Name is assigned the value 
Constant. Remarks* optional and can be any string of text. If Remarks is J present then 
the semicolon is optional. Also, a line may begin with a semicolon, in which case the remainder 
of the line can be any text. PROC and ENDP mark where instructions are placed that make 
up procedures. An EQU statement can not be placed inside the directive pair PROC ENDP 
and an instruction can not be placed outside them. ""   * 

There are two types of instructions, internal instructions and external instructions   In- 
ternal instructions are those that are executed entirely within the instruction component and 
external instructions are those that are distributed to and executed by other non-memorv com 
ponents. Instructions have the format: u^uion, com 

Label: Mnemonic Component Operand,...,Operand .-Remarks 

where Label the colon, the semicolon, and Remarks are optional, but if Label is present then the 
colon must be present and if Remarks is present then the semicolon must be present. Complnent 
appears in external instructions only. Mnemonic and Component must be followed byTlelst 
one space character. Operands must be separated by a comma or at least one space character 

Label is a string for identifying the instruction.   Mnemonic indicates the instruction 
t>pe and Component is a mnemonic that indicates the component that ultimately decodes and 

:;:r;::ron-There may be none'one °r—*» - °— ^Jit 
The internal instructions are summarized in Fig.   2.11.   They include instructions for 



implementing subprograms and loops, manipulating the data in the instruction component's 
registers, and halting the computer. Also, a no-operation instruction is included. 

_ The external instructions are summarized in Fig.   2.12.   They are for putting values 
into the various registers in the programmable components (i.e.. the E T C J F L R S and 
D components). These registers determine the activities within their respective'components 
During the execution of an algorithm, the values in these registers designate the number of 
operands out, number of operands in. mode, and immediate operands: input and output patterns 
for routing; and memory partitioning and access patterns for memory controllers. The value put 
in one of these reglsters may be immediate (i.e., the value indicated bv the operand) or be in 
the instruction component's register whose ID is indicated by the operand. A register ID begins 
with an asterisk and ends with up to five digits. 

2.5      List File 

A list (.SLT) file consists of a simply listing of the errors produced during the assembly process 
It has the same file name as the source program file that is assembled. The format for the list 
nie consists of the error messages for each line containing an error followed bv the line itself 

2.6      Load Files 

A load ( SLD) file is an ASCII file that is in the program format needed bv the simulator   As 
indicated in Fig.   2.13, the first line corresponding to an instruction begins with the instruc 
t.on s opcode, the type of component that is to receive and execute the instruction, and the 
component's number. The opcodes for the instructions are given in Fig. 2.14. 

This information is followed by a sequence of numbers that are the operand*    If an 
instruction pertains to a particular partition, then the first of these numbers identifies the parti- 

npvi nlTTUTZt", refer t0 a partkular Partition are S°SP, SPNI, SPBS, SWIS. DOSP 
DPM DPBb. and DWIS (see Fig. 2.12 in Sec. 4). If an instruction includes an indeterminate 
number of operands, then the number preceding the indeterminate set of operands indicates the 
number of operands ,n the set. For JSIP, FSOP. LSIP. LSOP. SIPP, SOPP DIPP DOPP DPPI 
and DPPO two sets of numbers are used to specify a pattern. In each set there is a sequence of 
.terns of indeterminate length preceded by the number of items in a sequence, which is in turn 
preceded by the total number of times the items of the sequence that are used before the other 

FSqBepTndSASRP Tg; °f ^ S6qUenCeS akernate Whh the firSt SeqUeDCe bein= employed first. I bBP and LSBP include only one sequence but in order to make them consistent with the other 
pattern instructions, two O's are appended to them. Fig. 2.15 gives a complete description of 
the operands for the various instructions. 

Note that for the SPNI and DPNI instruction the last four operands or the last two 



operands may be omitted in the source code. If omitted, these operands are set to 0 in the load 
code. 

In Sec. 4 it was indicated that an operand may be immediate or the ID of an instruction 
component register. If an operand is a register ID, then the corresponding operand in the load 
file will begin with an asterisk and end with up to five digits. The five digits, of course, identify 
the register. 

2.7      Result File 

The result (.SRT) file is an ASCII file that contains the results of a program simulation. As 
indicated by Fig. 2.16(a), a result file consists of lines with the first line containing the filename of 
the tested architecture. The second line indicates the number of components in the architecture. 
The third line indicates whether regular or irregular intervals were used to collect the results, 
the fourth gives the total area and the fifth provides the column headings. Column headings are 
included to make the file more readable. The remainder of the file consists of a field for each 
interval for which results were recordered. 

As shown in Fig. 2.16(b), each field begins with the system time at which the data was 
taken. In the remainder of a field is one or more lines for each component. Fig. 2.16(c) gives 
the format of the lines. Each line corresponds to a component or, for I. R, S and D components. 
a set of logic with a component. Each line begins with the component's mnemonic followed by 
the area of the component or set of logic for wich the data was collected. The area is followed 
by the current accumulated times the component or set of logic has spent in each state since the 
beginning of the program and the maximum number of entries in the component's instruction 
and data queues since the beginning of the program. Entries that do not apply to a component 
or set of logic are filled with O's. 

The possible states that a component can be in are defined below. A component is in 
exactly one of these states at a time. Some types of components can assume any one of these 
states at a given time, while others can assume only some of the states. The component types 
that can take on a state are given in parentheses. 

BUSY (all component types) -     the component is actively performing one of 
its functions. 

WAIT (all component types) -     the component is waiting for its output to be 

taken or, for the I component, a flag to be set. 

IDLE (I.E.T.C.J.F.L.R.S.D) -      the component is waiting for input. 

FREE (ail component types) -     the component is completely inactive. 

DIST (E,T.C,J,F,L,R,S,D) -        the component is distributing instructions to 
its registers. 



For the S and D components, only the input stream logic and output stream logic can 
take on all five states, the address generator, buses and memory modules can be only FREE 
or BUSY. Also, depending on the component type, the state time data may be followed bv the 
maximum numbers of entries in the component's instruction and data queues. The component 
types I, B. E, T, C. J, F, L, R, S and D have instruction queues and the component types E, 
T, C. J. F, L, R, S and D have input data queues. Component types J and L have multiple 
input data queues and only the maximum number of entries taken over all queues is recorded. 
Component types R and S also have output data queues and D components have two input 
queues and two output queues. If a component does not have an instruction or data queue, then 
a 0 is entered as the corresponding data. 

Results can be saved at regular or irregular intervals. Regular intervals are used to 
specify saving results every multiple of a value. For example, if a regular interval of 1000 is 
specified, results will be saved at 1000, 2000. 3000. etc. up to the last multiple of 1000. In 
addition, the results are saved at the end of the simulation if they weren't previously saved as 
a multiple of the regular interval. If intervals other than a multiple of some specified" value are 
required, irregular intervals must be used. 

Irregular intervals specify the exact point(s) at which results are to be saved. As many 
as 100 of these values may be entered for any simulation. In addition, the results are saved at 
the end of the simulation unless this would be a duplication of the last interval specified. 

2.8      Irregular Intervals File 

When the user chooses to record results at irregular intervals, the system times for recording 
the results may be entered through the keyboard or taken from an irregular intervals (.SIR) füe, 
whose format is shown in Fig. 2.17. The file simply consists of the times followed bv a 0, which 
serves as a terminator. If the user chooses to enter the times through the keyboard, then he or 
she may also choose to store the times in an .SIR file so that they can be used later without 
re-entering them. 

2.9      Fractional Result File 

A fractional result (.SFT) file contains the same information and has the same format as the 
result (.SRT) file, except that the times spent in each state are replaced by percentages of times 
spent in each state. For example, if the system time were 1500 and the time spent in the BUSY 
state were 900. then 60 would replace 900 in the result data. 



2.10      Summary File 

A summary (.SUM) file is for storing BUSY and sustainable speed data from a sequence of tests. 
Each time the file is accessed the user is asked to enter a comment through the keyboard and 
the data needed to compute the BUSY and speed information is extracted from the specified 
result (.SRT) file. The BUSY and speed information is then appended to the .SUM file using 
the format given in Fig. 2.18. 
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Fig. 2.1 Relationship between the SIMARC package's programs and Hies. 



"Type (a single character I, B, M, E, T, C, J, F, L, R, S or D) 

"Mnemonic (string of four letters and digits) 

"Component number (positive integer) 

Number of rectangles used to display component (positive integer) 

"An array of quadruplets, each specifying a rectangle as follows: 

Left (non-negative integer) 

Top (non-negative integer) 

Right (non-negative integer) 

Bottom (non-negative integer) 

A pair specifying position of component's displayed text 

X position (non-negative integer) 

Y position (non-negative integer) 

Text size (non-negative integer) 

Text orientation (positive integer) 

Execution time (non-negative integer) 

«Type must be the first character on a line and Type, Mnemonic and 
Component ID constitute a line. 

'*Size of array is the number of rectangles. 

Fig.  2.2 Attributes common to all components 



Instruction queue size (positive integer) 

Memory Time (positive integer) 

Area (positive integer) 

Memory Area (positive integer) 

(a) I component 

Instruction queue size (positive integer) 

Area (positive integer) 

(b) B component 

Fig. 2.3 Additional features for the I and B components. 
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Alternate execution time (non-negative integer) 

Distribution time (positive integer) 

'Number of stages in accumulation pipeline (non-negative integer) 

Input connection (positive integer) 

Output connection (positive integer) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Area (positive integer) 

'Additional input connection (positive integer) 

*n if 0 if component is not part of an accumulation pipeline 
Included in T or C component only. 

Fig. 2.4 Additional attributes for processor components. 
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Distribution time (positive integer) 

*Number of stages in accumulation pipeline (non-negative integer) 

Number of input connections (positive integer) 

'* Array of input connection numbers (positive integers) 

Output connection number (positive integer) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Area (positive integer) 

*0 if component is not part of an accumulation pipeline 
size of array is the number of input connections 

Fig. 2.5 Additional attributes for the J component. 
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Distribution time (positive integer) 

*Number of stages in accumulation pipeline (non-negative integer) 

Input connection number (positive integer) 

Number of output connections (positive integer) 

'Array of output connection numbers (positive integers) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Area (positive integer) 

*0 if component is not part of an accumulation pipeline 
f*Size of array is the number of output connections 

Fig.  2.6 Additional attributes for an F component. 
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Distribution time (positive integer) 

Number of input connections (positive integer) 

'Array of input connection numbers (positive integers) 

Number of output connections (positive integer) 

Array of output connection numbers (positive integers) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Area (positive integer) 

*Size of array is the number of input connections 
*^ze of array is the number of output connections 

Fig.  2.7 Additional attributes for an L component. 
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Distribution t:me (positive integer) 

Input connection number (positive integer) 

Output connection number (positive integer) 

Capacity of memory (positive integer) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Area (positive integer) 

Fig. 2.8 Additional attributes for the R component. 
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Input execution time (non negative  nteger) 

Distribution time (positive integer) 

Memory module capacity (positive integer) 

Input connection number (positive iateger) 

Output connection number (positive integer) 

Number of memory modules per bank (positive integer) 

Number of memory banks (positive integer) 

Address time (positive integer) 

Memory time (positive integer) 

Memory bus time (positive integer) 

Number of output memory buses (positive integer) 

Number of input memory buses (positive integer) 

Instruction queue size (positive integer) 

Data queue size (positive integer) 

Address queue size (positive integer) 

Stream area for each stream (positive integer) 

Memory area for each memory module (positive integer) 

Bus area for each bus (positive integer) 

Address generator area for each generator (positive integer) 

*Host connection number in (positive integer) 

xHost connection number out (positive integer) 

*These attributes are for D components only. 

Fig.  2.9 Additional attributes for the S and D components. 
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Name        EQU Constant 

(a) EQU directive. 

label: mnemonic  operand operand 

label: mnemonic  operand,..., operand 

label: mnemonic  operand,..., operand 

(b) PROC ENDP directives. 

Fig. 2.10 Directive summary. 
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Format Description 

• 

CALL Label Subroutine call to Label 

RTRN Subroutine return 

LOOP Operand, Label Repetition count =Operand 

Branch address = Label 

NOOP No operation 

HALT Terminates the program 

WAIT Operand 0 - waits for all components to be free 

1 - waits for comparator to be free 

MOVE R. Operand (R)      <- Operand 

ADDR R. Operand (R)      <-(R)+   Operand 

SUBR R. Operand (R)      <-(R)-    Operand 

MULR R, Operand (R)      <- (R) *   Operand 

DIVR R, Operand (R)      <- Quotient (R)/ Operand 

(R+l) <-Remainder (R)/ Operand 

NEGR R (R)     <- - (R) 

BRAN Label Branch to Label 

BREQ R, Operand. Label Branch to Label if(R)=   Operand 

BRNE R, Operand, Label Branch to Label if (R) o Operand 

BRGT R, Operand, Label Branch to Label  if(R)>   Operand 

BRGE R. Operand, Label Branch to Label  if (R) >= Operand 

BRLT R. Operand, Label Branch to Label  if(R)<   Operand 

BRLE R, Operand, Label Branch to Label if (R) <=Operand 

STOP Operand Sets a breakpoint at time specified by Operand 

RSET Resets all components 

Legend: 

Label - instruction label 

Operand - a constant or register ID 

R - an instruction component register number 

Fig. 2.11 Internal instruction summary. 
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Format Description 

(Type) EMM Component Oprd 
(Type)NOO Component Oprd 
(Type)NOI Component Oprd 
(Type)MOD Component Oprd Component* 
(Type)REP Component Oprd 
(Type)DEC Component Oprd 
JSEP Component Wprd In ... In Wprd In... In 
FSOP Component Wprd Out... Out Wprd Out 
FSBP Component Out... Out 
LSEP Component Wprd In ...In 
LSOP Component Wprd Out... Out 
LSBP Component Out... Out 
SIPP Component Wprd Part... Part Wprd Part... 
SOPP Component Wprd Part... Part Wprd Part... 
SOSP Component Part Wprd Os ... Os Wprd Os ... 
SPNI Component Part Patlnc NRl Rll NR2 RI2 ** 
SPBS Component Part PartBase PartSize 
SWIS Component Part WinSize 
DXMD Component Oprd 
DIPP Component Wprd Part... Part Wprd Part... 
DOPP Component Wprd Part... Part Wprd Part... 
DOSP Component Part Wprd Os ... Os Wprd Os ... 
DPN1 Component Part Patlnc NRl Rll NR2 RI2 ** 
DPBS Component Part PartBase PartSize 
DWIS Component Part WinSize 
DPPI Component Wprd Part... Part 
DPPO Component Wprd Part... Part 
DHNO Component Oprd 
DHNI Component Oprd 

Out 

Part 
Part 
Os 

Part 
Part 
Os 

Immediate operand =Oprd 
Number of operands out = Oprd 
Number of operands in = Oprd 
Mode = Oprd 
Number of repetitions =Oprd 
Decrement amount =Oprd 
Set input pattern 
Set output pattern 
Set broadcast pattern 
Set input pattern 
Set output patera 
Set broadcast pattern 
Set input partition pattern 
Set output partition pattern 
Set partition offset pattern 
Set repetitions and increments 
Define partition 
Define window 
Extra mode = Oprd 
Set input partition pattern 
Set output partition pattern 
Set partition offset pattern 
Set repetitions and increments 
Define partition 
Define window 
Set partition pattern in 
Set partition pattern out 
Number of host operands out = Oprd 
Number of host operands in = Oprd 

* For T and C component, Component indicates the single input or, for two inputs, the variable input; otherwise, 
this operand is not present. 

** The pair NR2. RI2 or both it and the pair NRl,Rll may be omitted, in which case each omitted operand is set to 0. 

Note: Wprd may not be present, but must appear twice or not at all. If not present, then the entire list is continually 
cycled through. 

Legend: 
Oprd 
Component 
In 
Out 
Part 
Patlnc 
NR1W2 
Rll JRI2 
PartBase 
PartSize 
Os 
WinSize 

- integer or, if preceeded by an asterisk, a register ID 
- mnemonic of component to be programmed 
- component mnemonic of data source 
- component mnemonic of data destination or & if broadcasting 
- partition number or register ID 
- pattern increment or register ID 
- number of repetitions or register ID 
- repetition increment or register ID 
- partition base address or register ID 
- partition size or register ED 
- offset in a partition's offset pattern or register ED 
- window size or register ID 

Fig. 2.12 External instruction summary. 
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Opcode Component type Component ID Sequence of numbers* 

In the sequence of numbers some of the numbers may be preceded by an asterisk, in which case the number is a register ID. 

Fig. 2.13 General format of a load file instruction. 
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Opcode    Mnemonic 

1 CALL 

2 RTRN 

3 LOOP 

4 NOOP 

5 HALT 

6 WAIT 

7 MOVE 

8 ADDR 

9 SUBR 

10 MULR 

11 DIVR 

12 NEGR 

13 BRAN 

14 BREQ 

15 BRNE 

16 BRGT 

17 BRGE 

18 BRLT 

19 BRLE 

20 STOP 

21 RSET 

Opcode Mnemonic 

50 (Type)IMM 

51 (Type)NOO 

52 (Type)NOI 

53 (Type)MOD 

54 JSD? 

55 FSOP 

56 FSBP 

57 LSIP 

58 LSOP 

59 LSBP 

60 SIPP 

61 SOPP 

62 SOSP 

63 SPNI 

64 SPBS 

65 DIPP 

66 DOPP 

67 DOSP 

68 DPNI 

69 DPBS 

70 DWIS 

71 DPPI 

72 DPPO 

73 (Type)REP 

74 (Type)DEC 

75 DHNO 

76 DHNI 

77 SWIS 

78 DXMD 

(a) Internal instructions 

Fig. 2.14 

(b) External instructions. 

Opcode assignments. 
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Immediate constant, number of operands out, 
number or operands in, mode or number of repetitions 

Number 

(a) IMM, NOO, NOI, MOD, REP, DEC, DHNO or DHN1 instructs. 

Number of items in fust pattern Number of items in second pattern 

I First pattern I Second pattern 

Number Number Number ... Number Number Number Number ... Number 

Number of items taken from first .^T^ °f tf ^en fl0m 

SSS ESS toe first 

(b) JSIP. FSOP, LSIP, LSOP, SIPP. SOPP, DIPP, DOPP, DPPI or DPPO instruction. 

Output connections in broadcast pattern 
Number of outputs grvernn order of pattern 
in pattern     1^\ J*^^^<C^ 

Number Number Number ... Number 0 0 

(c) FSBP or LSBP instruction. 

Partition no.—y ^_ Number of repetitions-. 

Number Number Number Number Number Number 

Pattern increment—* ^— Repetition increment^ 

(d) SPNI or DPNI instruction. 

Note: Some Sumber fields may be followed by an asterisk, in which case the Number is a resister ID and the 
contents of the register are to be used when the instruction is executed. 

Fig. 15 Formats of the Sequence of Numbers field given in Fig. 14 
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Partition no. —. ,— size of partition 

Number, Number, Number 

Base address of partition—" 

(e) SPBS or DPBS instruction. 

Partition no. —\ ,— Window size 

Number, Number 

(0 SWIS and DWIS instruction. 

Fig. 2.15 (Continued) 
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Architecture filename 

Number of components in system 

Type of interval (Regular Interval or Irregular Interval) 

Total area 

Column headings 

Results field 

Results field 

(a) Overall format. 

System time 

Line of data 

Line of data 

(b) Results field format 

♦Component    Area    BUSY time    WAIT time    IDLE time    FREE time    DIST time    *IQ    *DQ 

+ Entries that are not applicable to a component are filled with O's. 

* Maximum number of entries in the instruction or data queue up to the present 
time. For multiple inputs, the maximum is taken over all data queues. 

Note:   For the I component the results occupy two lines, one for the decode 
logic and one for the memory. For R co'mponents, the results occupy 
two lines. one for the input stream and one for the output stream     ' 
For S and D components, the results occupy one line for each data 
stream, each address generator, each bus and each memory module. 

(c) Line of data format. 

Fig. 2.16 Result file format. 
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System time at end of interval 

System time at end of interval 

0 

Note: The final zero serves as a terminator. 

Fig. 2.17 Irregular interval file format. 
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Commer.t 

Percent BUSY for E and T components: Percentage 

Average sustainable speed: Value MFLOPS 

Fig. 2.18 Format of a summary (.SUM) file entry. 
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Abstract 

Implementation of a novel modularly configured at- 
tached processor (MCAP) architecture was evaluated 
using 1 p.m CMOS logic on an MCM-D. The tran- 
sistor count was approximately ten million transis- 
tors, distributed on twenty-five chip dice. Delay, area, 
and power calculations were performed using the SUS- 
PE.\rS model. Rent's rule was found to be not ap- 
plicable. Speed was calculated to be in the 100 MHz 
range. The module foot print was found to be 90 cm2. 
Power dissipation per unit area was low enough to al- 
low air cooling. 

1     Introduction 

Attached processors [1], [2], [3] are commonly used 
for the purpose of very quickly executing most of the 
system's computational tasks. In such an organiza- 
tion, "the host is a program manager which handles all 
I/O, code compiling, and operating system functions, 
while the attached processor concentrates on arith- 
metic computation with data supplied by the host" 

[!]■ 
In addition to quick execution, it is also desirable 

to execute as broad a set of algorithms as possible 
in order to create a more generally applicable pro- 
cessor. Thus, the underlying goal of the designer is 
to efficiently utilize the hardware for as broad a set 
of algorithms as possible. However, for most current 
designs, the average sustainable execution rates have 
been found to be only 5% to 20% of their peak rates. 
For example, the sustainable rates for the Cray X-MP 
with four processors may be as low as 5% for some 
algorithms [4]. Although some of the lost efficiency is 
necessitated by the algorithms, much of it is due to 
memory accessing and contention for shared resources 

in general, including internal buses. 
In this article we describe the implementation of a 

novel modularly configured architecture wherein uti- 
lization of each processor is greatly enhanced through: 
(1) closely matching their architectures to the set of 
algorithms they are to execute, (2) overlapping of 
processing and memory accessing by using memory 
prefetching, (3) minimizing the movement of data, (4) 
using a high-speed CMOS with one micron technology, 
and (5) having the whole MCAP on a single MCM-D. 

2    Modularly     Configured      Attached 
Processor (MCAP) Architecture 

An MCAP is an attached processor that is con- 
structed entirely from a standard set of connections 
and components [5], [6]. This standard set consists 
of three types of asynchronous connections and twelve 
types of components. These component types are such 
that each member of the class may include parallel 
processing, memory to memory pipelines, and be con- 
structed in a building block fashion. They encom- 
pass routing as well as memory, control and processing 
components. By overlapping processing with memory 
accessing and matching an architecture with a set of 
algorithms, the average sustainable rate for a specific 
set of algorithms can attain at least 60% of the peak 
rate. These rules allow the components to be easily 
configured in different ways, thereby allowing the con- 
struction of attached processors that efficiently per- 
form different sets of algorithms. 

An example architecture is given in Figure 1. It's 
processing subsection includes a comparator, a nega- 
tor (elementary component), a reciprocator (elemen- 
tary component), a set of four pipelined adders capa- 
ble of accumulation (via feedback), and a set of four 
pipelined multipliers.    Each adder and multiplier is 



constructed of four stages (a two-input component fol- 
lowed by three elementary components). All commu- 
nications to and from the processing components are 
through six link components, three on each side of the 
processor. Join and fork components are provided to 
allow flexible use of the link components. There is a 
dual access component to provide intermediate mem- 
ory and a connection to main memory. The single 
access component provides internal storage. 

ACCES CONTROUXX        (M][Ei][EHiH]HBH 

•J -JO!* 

• F.FORK 

DUAL ACCESS CO^OLLER jjjjtj jjj^ jEwj fcfl IHjjDMJ 

MOST 

FIGURE 1  AN EXAMPLE MCAP ARCHITECHT1.T!E 

3    Design Considerations and Results 

In our evaluation, CMOS was picked as the bench- 
mark logic technology because of its commercial ma- 
turity. In the future, we plan to evaluate other faster 
technologies such as GaAs, BiCMOS. and ECL. Since 
the signal delays associated with the conventional 
printed circuit board (PCB) implementation are ex- 
pected to be prohibitively excessive, it was decided 
that the fabrication of an MCAP on a Multi Chip 
Module (MCM) or Wafer Scale Integration (WSI) are 
the only realistic alternatives for attaining high per- 
formance.  WSI integrates an undiced wafer of defect 

tolerant VLSI chips with global power, clock, and sig- 
nal distribution networks.   MCM technology on the 
other hand has discrete VLSI chips, probably of dif- 
ferent types, mounted on a substrate that supports 
global power, clock and signal distribution networks. 
Since the chips are procured separately, the substrate 
can be optimized and tested independantly before as- 
sembly.    Therefore defect tolerance is not required. 
However, the "known good die" problem is yet to be 
solved.   Further, multichip modules are classified ac- 
cording to the substrate technology:  MCM-Ceramic, 
MCM-Deposition, and MCM-Laminated. In this work 
we used MCM-D for design evaluation. MCM-D man- 
ufacturing processes are similar to those used in the 
semiconductor industry and can be used to achieve 
high densities and fine line geometries.   In the phys- 
ical design, we must face the traditional problems in 
placement and routing required by the high perfor- 
mance systems.   As the clock frequency is increased, 
we need to account for transmission line effects due 
to long interconnections.   Parasitics on the intercon- 
nects, inductances on the power lines, and the I/O 
pin limitation are the three vital shortcomings of cur- 
rent packaging technologies, which could be tackled by 
(a) minimum chip to chip interconnections, (b) high 
interconnection density, and (c) parallel architecture. 
Other factors which need to be considered are ground 
and power plane generation and physical design ver- 
ification. The thermal considerations are a direct re- 
sult of the substrate type, bonding selection, and the 

placement of chip dice. 
A system level model, referred to as the SUS- 

PENS model (Stanford University System PErfor- 
maNce Simulator) [7] is used to predict the perfor- 
mance of the MCAP. This model emphasizes the inter- 
actions among devices, circuits, logic, packaging, and 
architecture. The same model could be used in future 
to compare logic technologies (e.g. CMOS, Bipolar, 
and GaAs) and various packaging technologies (e.g. 
MCM-D, MCM-C, PCB, and WSI). 

3.1     Chip Level Design 

3.1.1     Transistor Count 

To illustrate the method used to estimate the total 
number of transistors in the example MCAP (Fig. 1), 
we will consider one of the floating point adders. Each 
adder has four pipelined stages and uses the IEEE 
double precision standard. Further this adder could 
be broken down into: (a) nine 64-bit registers with 
4032 transistors, (b) seventy-four 2-input XOR gates 
with 592 transistors, (c) one hundred and twenty-six 2- 



to-1 MUXs with 504 transistors, (d) two 11-bit adders 
with 528 transistors, (e) one 52-bit adder with 1248 
transistors, (f) a 64-bit leading zero detector with 5000 
transistors, (g) two 52-bit barrel shifters with 4000 
transistors, and (h) rounding and other control logic 
taking 6500 transistors. 

eters [7] are in Table 2. 

ELEMENT DESCRIPTION • TRANSISTORS 

Memorv Element Has 4 k each of RAM and ROM 1 MM 

liK-ni.-inn Has 8 words of FIFO 10.0 K 

Bus Has 8 words of FIFO 10.0 K 

Eiementarv Has 8 words of FIFO 10.0 K 

Two input 
Has 8 words of FIFO I:.OK 

Jotn 
3 inputs and 8 FIFO 14. 0K 

Fork 3 inputs and 8 FIFO 7.0 K 

Link 4 inputs and 5 outputs 15.0 K 

Static Ram 16 elements of Ik each 6.30 M 

Single Access Controller Controls 8 Memory elements 11 OK 

Dual Access Controller Controls 8 memory elements 
and 6 DMA channels 

61.0 K 

Compare sends out Rags and Indices 15 OK 

Reciprocate using Convergence method 500 K 

Negate invert the sign bit 1.0 K 

Fl Pi Adder using CLA's. Barrel shifters 23.0 K 

Fl Pi Multiplier using Modified Booth's Alg 61.0 K 

MCAP Total * or I ransistors 9.85 Million 

MCM With ;< Chips and 600 I/O 's 9.85 Million 

Parameter MCM-D 

Pw(uM) 50 
Nw 2 
Wint(uM) 25 

Hint (uM) 2 
@ 1 Ghz (uM) 2 

Rint (ohm/cm) 3.4 

Dielectric constant 3.4 
Vm (cm/nsec) 16 
Cint (pF/cm) 1.0 

Z0 (ohm) 60 
Cpad (pF) 0.25 

Pp(uM) 100 

TABLE 2. THIN FILM HYBRID PARAMETERS. 

Average Delay 
In general, the minimum size of a logic gate has a 

W/L ratio of 2. Therefore, we began with a ratio of 
2 and, by stages, moved to higher values in order to 
drive a load in a small amount of time. 

TABLE 1. TRANSISTOR COUNT FOR THE VARIOUS MCAP COMPONENTS. 

Thus the total number of transistors for the above 
adder is approximately 23K. Similarly, the transistor 
count for the pipelined 64-bit floating point multiplier 
is approximately 61K (based on a modified Booth's al- 
gorithm). Likewise, the transistor count for the other 
elements in the MCAP were calculated and the re- 
sults are presented in Table 1. The resulting number 
of transistors for the whole MCAP is approximately 
ten million. 

3.1.2     Output Driver Design 

In the proposed MCAP architecture, the bottle neck 
is the communication through link, single-access, and 
dual-access components because of their high fanout 
and large interconnection lengths. This means that 
the output buffers for these elements must be rela- 
tively large. We present the delay, area, and power 
dissipation calculations for the buffers as functions of 
fanout (F) and interconnection length (I). 

For the chip level model, we have assumed that the 
input capacitance of a gate (including the lead and 
ESD capacitances) is Ctn = I pF. Additional param- 

FIGURE 2. BUFFER AND INTERCONNECT DELAY. 

By dividing the driver into a number of buffers 
with increasing W/L ratio, optimum speeds can be 
achieved.   It has been found that a stage ratio of e 



[8] gives best results. We have used a stage ratio of 
3 for simplicity. The optimum number of stages (N) 
is dependant on the load capacitance (Ci). The rela- 
tionship is 

Ar = 0.91(lnC/ + 4.19) 

where X is truncated (rounded down) to the nearest 
integer. 

Using the optimum number of stages, the average 
delay is 

Tav3 = 0.484(.V - 1) + 5Ci/3(.V - 1) + 0.076 ns 

Delay calculations  [9] are shown in Figure 2. 
Buffer Area 
A simple inverter with (W/L)n = (W/L)p - 2 will 

need an area of 171 A2. A buffer with equal rise (ir) 
and fall (tj) times requires {W/L)p = 2(W/L)n - 4 
and the area is going to be 203 A2. The total area 
of the buffer depends on the number of stages and, 
hence, is a function of F and i. We have 

Area % 220 x 3:V_!   A2 

Area calculations   [9] are plotted in Figure 3. 

Power dissipation calculations  [9] are presented in 
Figure 4.   Since the design of an MCAP uses asyn- 

FIGURE 4. POWER DISSIPATED ES THE BUFFER. 

chronous communication, the transfers over a link 
component involve the return of an acknowledge sig- 
nal and the transmission of an output enable signal. 
It is estimated that the transfer rate may be as high as 
/ = l/2[Tav3 + Tehip] Hz (where Tchtp is the delay of 
the chip and T3vg is the delay on the interconnection) 

Load Capacitance 
For the load capacitance 

C\ = Cint,0t + F X Cin- 

with 

c,-„,10, = cint x e = e pF 

where £ is in cm and dnt = 1 pF/cm. Therefore, 

C, = (£+F)pF. 

The resistance of the interconnect is 

FIGURE 3. AREA OF THE BUFFERING STAGE. 

Power Dissipation In The Buffer 
In CMOS, most of the power is dissipated during 

switching and, hence, dynamic power is approximately 
equal to the total power. The dynamic power is 

Pd~Cr x v2 x favg - v2(C) + Cbufj)/Tavg 

where Cw/ = 0.0152(3'v-1) pF. 

fl,„r,., = Rint x £ 0 . 

3.1.3    Modified SUSPENS Model 

Given (a) the approximate number of logic gates, (b) 
the transistor technology parameters, (c) packaging 
technology parameters, and (d) the number of pads 
per chip (estimated from Rent's rule), the SUSPENS 
model can estimate system performance. Rent's rule 
is an empirical result obtained by observing existing 



designs. The design philosophy and methodology af- 
fect Rent's constants. If the predictions are made for 
a system with an entirely different design philosophy 
from the one from which Rent's data were obtained, 
the results will have little meaning. The SUSPENS 
rrodel, as originally proposed, used Rent's constants, 
therefore we have developed constants that are ap- 
plicable to the novel architecture of the MCA P. Our 

INSTRL'CnON/ADDR/HÄFLAGS     POWER/GND 

Ctr (for 1 /im CMOS)  =  3 fF 

Rtr (for 1 fim CMOS)  =   15 K 

Ti    =    0.41 ns 

The output stage delay is 

fgRtr 
T0 

K0 

[iavCint + KiCtr] 

£av (average interconnection length) 

dm  =  2 pF/cm 

Rint  =  375 fi/cm 

The total gate delay, Tg = 7} + T0, is 0.84 ns.   The 
delay for an adder is 

T chip 

•*■ chip 

FIGURE 5. BLOCK DIAGRAM Of THE ADDER CHIP 

=     fldT, + RintCintiDl/2) + (De/ve) 

restrict the logic depth, f^, to 6 

ve  —  2.5 x 101" cm/sec 

De  =  0.3 cm 

=    6(0.84 x 10-9) + 375(2 x 10"12)(0.32/2) 

+(0.3/2.5 x 1012) 

=    5.07 ns (which includes the latch time, 

logic time, setup time, and clock skew) 

Thus the maximum frequency of the adder chip is 197 
MHz. By incorporating pipelining and recalling that 
the total chip area actually has four of these floating 
point 64-bit adders, the throughput is improved by a 
factor of more than four. 

approach to developing these constants was to deter- 
mine the area needed for an inverter (with equal rise 
and fall times) and a carry generator circuit. From this 
we computed the average area per transistor. Thirty 
percent of that area was assumed to be taken by the 
interconnections, resulting in a figure of 203 A2 per 
transistor. This result was used as input to the SUS- 
PENS model for computations done at the chip level. 
The I/O buffer areas were estimated separately as pre- 
sented in section 3.1.2. To illustrate the use of the 
SUSPENS model using table 3 [7], we will consider the 
adder chip with alfi technology (see Figure 5). The 
adder chip contains four 64-bit floating point adders. 

The input stage delay is 

p 
T      =      fg ■ —rr- ■ 3A oCtr 

fg (number of n — transistors in series)   =   3 

K{ (W/L ratio of input transistors)   =   4 

A'„ (W/L ratio of output buffer)   =   4 

Parameter CMOS 

Leff 1.0 

tgox (A) 250 

Vdd (V) 3.3 

Rtr (ohm) 15.000 
Ctr(fF) 3.0 

Wint (uM) 2.0 

Wsp (uM) 2.0 

Hint(uM) 0.4 

pw (uM) 4.0 

nw 3 

Rint (ohm/cm) 375 

Cint (pF/cm) 2.0 

TABLE 3.   1 micron TECHNOLOGY PARAMETERS 

The external capacitance of a gate is 

Cezt — fg'avgCint + fgKiCtr — 36.5 fF, 



where tavg = 81.3 x 10   6 cm. The internal capacitance 
of a gate is 

Cint ~ 3A'„Gr + ÖC'ir = 51  fF 

The to al capacitance per logic gate. Cg = Ceit+Clnt, 
is 87.5 fF. 

3.2     Interconnection and Packaging Con- 
siderations 

Once the results for each technology have been ob- 
tained (see Table 4), the package level model is in- 
corporated using MCMs and WSI (Table 2).Layout of 
MCAP in a MCM configuration is shown in Fig.6. The 
average interconnection length at the module level (in 
units of chip footprint size) is 

Rm    — 

Rm    — 

2r  A? -0 5 1     1 - AT -0.75 

p/    4H-0.5 

Nc = 4 

rj — 0.65 (see[7j) 

1.33 

1 -4"- 
1 1 _ 4-7-0.75 J x _ ^r,- 

Component # of Tran's Area # of i/o's fc Pc 
(cm2) (Mhz) (watt) 

Adder 176 k 0.41 660 13! 2.75 

Multiplier 32Sk 0.41 660 122 3.44 
C-N-R 118 k 0.55 874 139 2.54 
SRAM 
(4k. 

1.57 M 0.58 150 110 8.66 

SRAM 
(16*Ik) 

393 k 
(* 16) 

0.16 150 
(*16> 

no 2.36 

ROM 262 k 0.11 80 110 1.66 
D-control 82 k 0.56 846 120 3.67 
S-control 32 k 0.14 222 114 0.70 
Instn/Bus 20 k 0.14 200 135 1.65 
Link 15 k 0.14 200 123 1.27 

Module 10 M 42.0 60) 100 68.82 

TABLE 4. PARAMETERS OF THE MCAP ON MCM-D. 

(1 micron PROCESS) 

As explained in section 3.1.2. the output driver is 
designed for a critical length of 1.5 cm and fanout of 

3. From Fig. 2, the buffer delay is found to be 2.45ns. 
Further, the capacitive delay (caused by the loading of 
the I/O pins and contact pads) and the time of flight 
delay on the transmission lines are both calculated (for 
a 1 p. technology) using 

Taddt.ional — 2 ■ Z0 ■ Cpad + ^t'nf A'm = 0.124 ns 

Adding in Tch\p — 5-07 ns, we determine that the total 
delay of the adder chip = 5.07 ns + 2.45 ns + 0.124 
ns = 7.64 ns. Thus, the adder chip can output at the 
rate of 131 MHz.The dynamic power dissipation per 
gate is based on the maximum adder chip operating 
frequency (fc) and the percentage of gates that switch 
during a clock period (fd)- The dynamic power dissi- 
pation is 

=    i(131 x 106)(0.3)(83.5 x 10" 

=    56.3 /i\V 

2)(3.3)2 

The power dissipation of the chip is the product 
of the number of gates (Ar

3) and the dynamic power 
dissipation per gate (P3). 

Pc = yg-pg 

=    (176^/4) • (56.3 x 10~6) 

=    1.65W 

Thus the power density for the adder chip (area = 
0.09 cm2) is 18.4 W/cm2. The parameters for other 
chips are calculated as described above, and Table 4 
gives the results. A similar procedure is repeated for 
0.5 JJ. and 0.25 JJ. technologies. The area required by 
the output buffers are added to the transistor area to 
get the die area. Assuming an area distributed solder 
bumps with 100 /im diameter and 250 /im pitch. The 
footprint of the Adder chip die is found to be 0.64 cm. 

The module frequency is, therefore appoximately 
100 MHz (considering the processing and driving in- 
volved in one cycle). The module size is 9.0 cm X 10.0 
cm. Module power dissipation (Pm) is determined by 

Cm = 
Fc 

l + Fc 
A,.-Ap(3— —Ctr + '2Cpad+ RmPpCint) 

1-5 

C'. = 63.4 nF 

1 
Pm = -(FD){fs)(C-)(VßD) = 2Q.lW 

The actual power dissipation is the greater of Pm and 
the sum of the power dissipated at all the chip dice. 
Thus we calculate the power dissipation for the mod- 
ule to be 68.82 W. 



4    Conclusions 5     Acknowledgements 

Design evaluations for implementing a novel mod- 
ularly configured attached processor architecture us- 
ing CMOS logic on an MCM-D (Fig 6.) revealed 
that approximately ten million transistors will be 
needed.These could be placed on a set of twenty five 
chip dice. Delay, area, and power calculations were 
done with the SUSPENS model (however, Rent's rule 
was not  used).     Delay calculations(including logic 

FIGURE 6. LAYOUT OF MCAP ON MCM 

(Ail the die areas have been optimized for 15 W/sq.cm) 

# of Transistors = 10 Million 

# of I/Os = 600 

delay, interconnect delay and output driver delay) 
showed that the MCAP module, on average, would 
achieve speeds in the 150 MFLOPS range. The single- 
access memory controller component chip (S-control) 
was found to be the slowest, 110 MHz for 1 /im, 160 
MHz for 0.5 pirn, and 220 MHz for 0.25 ßm CMOS. 
The areas were optimized for power densities, low 
enough to allow air cooling. Higher speeds would be 
achievable with faster logic like BiCMOS. ECL, and 
GaAs. Power dissipation calculation showed that ap- 
proximately 70 watts will be dissipated in the MCAP 
module and air cooling would suffice for the 1 fi de- 
sign rule.We are in the process of performing fur- 
ther design calculations involving Wafer Scale Inte- 
gration(WSI)and GaAs technology. 
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N00014-93-1-1343. Any opinions, findings, and con- 
clusions or recommendations expressed in this paper 
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the view of the funding agency. Thanks are due to 
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Abstract 
.4 broad class of attached processors (MCAPs) that are 
constructed from a standard set of connections and com- 
ponents is defined and a simulation package (SIMARC) 
for evaluating members of the class relative to specified 
sets of algorithms is described. Together the MCAP con- 
nection and component definitions and SIM ARC package 
provide a fast prototyping means when designing efficient 
attached processors for executing computationally intense 
algorithms. A dynamic multicolored graphical display dur- 
ing a simulation facilitates the detection of bottlenecks and 
a graphical editor permits easy modification of an architec- 
ture. Use of SIM ARC requires specification of the architec- 
ture and writing assembler-level programs for executing the 
algorithms of interest. An example is presented in which 
SIMARC is used to design an MCAP that achieves 95% ef- 
ficiency (for the processing logic) while performing matrix 
multiplication. 

1    INTRODUCTION 

Modern design procedures include analytical model- 
ing, simulation modeling, simulation evaluation and 
prototyping [1], with analytical modeling being the 
mathematical and statistical analysis of a relatively- 
crude system model. This phase of the design process 
is the pencil and paper approach that can be done 
quickly, but is the least accurate in predicting the per- 
formance of the final product. Simulation modeling 
requires a much more detailed level of system specifi- 
cation, a level that is sufficient to provide the design 
input to the computer simulation program, or simu- 
lator, that is to be used. Test data is then selected 
and the simulator is used to produce a more accurate 
estimate of performance than can be obtained from 
analytical modeling. The accuracy of this estimate de- 
pends on the level of detail included in the simulator. 
the quantity of test data and the care used in choos- 
ing the test data. Simulation modeling and evaluation 

1 The work reported in this paper was supported in part by 
the Office of Naval Research under Grant No. N00014-93-1- 
1343. Any opinions, findings, and conclusions or recommenda- 
tions expressed in this paper are those of the authors and do 
not necessarily reflect the view of the funding agency. 

are iterated until satisfactory results are obtained, at 
which time a prototype is built. If the prototype needs 
only minor adjustments, the design team may proceed 
with the production design; otherwise, it must return 
to an earlier phase and repeat the design process. Be- 
cause prototyping is normally expensive, it is impor- 
tant that the simulations be extensive enough to avoid 
such returns. However, it is also important that the 
prototyping stage be reached as quickly as possible, 
and much attention has recently been given to devel- 
oping simulation and performance evaluation systems 
that permit fast prototyping. 

For computer system design, simulation may be per- 
formed at several levels, ranging from the major com- 
ponent level, to the module level [printed circuit 
board, multichip module (MCM) or wafer, whichever 
is applicable], to the register transfer level, to the gate 
level, and then to the transistor level. As one proceeds 
from the major component level to transistor level, 
clearly the amount of detail increases and the time 
needed to execute a simulation increases accordingly. 
Therefore, there is a tradeoff between simulation time 
and accuracy. Normally, top-down design would be 
used, which employs a component level simulator to 
design the overall system and then progresses down- 
ward to the transistor level, at which the layouts of the 
individual integrated circuits are done independently. 

To reduce the complexity of a simulator and quan- 
tity of specifications required by it, simulators at the 
major component and module levels are restricted in 
various ways. They are normally restricted to a class 
of architectures and sometimes to a particular type 
of computer, which serves to specify the instruction 
set. Eleven such performance evaluation tools that 
relate algorithms and architectures and consider test- 
ing of programs to meet real-time constraints are sum- 
marized in [2]. Others are described in special issues 
of the International Journal of Computer Simulation 
[3], [4]. 

As always, the accuracy of the timing information 
gathered depends on the level of detail being simu- 
lated. Some simulators are very specific in their ap- 
plication. The advantage in restricting the use of a 
simulator is, of course, that highly reliable perfor- 
mance data can be gathered in a reasonable amount 
of simulation time. Of interest here is an architecture 



sin ulation package, SIMARC, that simulates a fairly 
bread class of attached processors referred as Mod- 
ularly Configurable Attached Processors (MCAPs). 
The primary advanta?? -f an MCAP is that it is con- 
structed from a stan'; =et of connections and com- 
ponents that can be y fit together to match the 
set of algorithms it is xecute. The SIMARC pack- 
ago allows the quick reconfiguration and simulation of 
MCAP architectures so that an MCAP design with 
high utilization of its logic for a given set of algo- 
rithms can be achieved within a short time. Because 
MCAPs are connected to host processors, there is no 
need to simulate operating system functions. Also, be- 
cause MCAPs use memory-to-memory pipelines, they 
are inefficient when performing algorithms that in- 
clude a considerable amount of decision-making (e.g., 
a binary search). Therefore, emphasis is placed on 
computationally intense algorithms such as those for 
performing matrix operations, signal processing and 
image processing and for solving simultaneous linear 
equations, partial differential equations and ordinary 
differential equations. 

Section 2 gives a brief MCAP definition and the next 
two sections describe the simulator and provide an ex- 
ample. The last section serves as a summary and in- 
dicates future improvements to the simulator. 

2    MCAP DEFINITION 

An attached, or back-end, processor is a processing sys- 
tem that is connected to a host computer for the purpose of 
very quickly executing most of the overall system's compu- 

tational tasks. Typical early attached processors were the 
AP-120B and FPS-164 made by Floating Point Systems, 
Inc., the IBM 3838, and the MATP made by Datawest, 
Inc. [9]. Although the early attached processors included 
limited multiprocessing, the more recently implemented 

processing arrays are also controlled by a host (e.g.. the 

PAX computer [10]) and are designed to perform most 
of the overall system's computational tasks. The specific 

purpose of an attached processor is to execute members 
of a set of algorithms very quickly. The broader the set of 
algorithms the more generally applicable the attached pro- 
cessor. The underlying goal of the designer is to efficiently 
utilize the hardware for as broad a set of algorithms as pos- 
sible. By using the MCAP building block approach along 
with the SIMARC package, efficient matches between ar- 
chitectures and sets of algorithms are easily established. 

An MCAP is an attached processor that is constructed en- 
tirely from a standard set of connections and components. 

This standard set consists of two types of asynchronous 
connections and twelve types of components. The def- 

initions of the connection and component types provide 

a standard set of rules that allow the components to be 
easily configured in different ways to construct attached 
processors that can efficiently perform different sets of al- 

gorithms. 

An MCAP has exactly one instruction component and it is 

connected to a memory component for storing instructions. 

Most of this memory component is a ROM that contains 
the subprograms needed to execute the algorithms, but 
some of it is a RAM that can receive instructions (those 
that initiate the subprograms) from the host. 

An MCAP operates by drawing an instruction stream from 

the instruction memory component into the instruction 
component. The instruction component usts internal in- 
structions in the stream to form external ins ructions that 
are then distributed to the other non-memory components 

through the MCAP's bus component. Th( external in- 

structions are for setting up and supervising the inter- 

connected memory-to-memory pipelines within the MCAP 

that perform the operation needed to complete an algo- 

rithm (or phase within an algorithm). The instruction 
stream is illustrated in Fig. 1. Note that all components 

in the instruction stream include input instruction queues. 

When the non-memory components have received all of the 

instructions needed to perform an algorithm, they auto- 

matically prefetch the data from the memory components, 

route the data to and from the processor components and 
store the results back into the memory components. All 
non-memory components have input data queues. Some 

controller components, which are the components that su- 
pervise all memory accessing, are used to automatically 
transfer data between the host's main memory and the 
MCAP's memory components. The instruction and data 
streams are separate, thereby allowing the instructions 
needed for the next algorithm to be distributed while the 
current algorithm is executing. 

nro 

•   •   • 

Other noo-memory components 

Fig. 1. The instruction stream 

The two types of connections are referred to as instruction 
and data connections. All connections are unidirectional 

and asynchronous.    Memory components are considered 



to be integral parts of controller/memory subsystems and 
the design of the connections between the memory compo- 
nents and their controllers is left to the designer of these 
subsystems. 

Instruction connections are for passing instructions from 
the instruction component to the bus component and from 
the bus component to one of the other non-memory compo- 
nents. An instruction connection consists of unidirectional 
instruction and address buses and a Req/Ack handshak- 
ing pair. The component that is to receive the instruction 
is indicated by the a component number on the address 
bus. Data connections are used to pass data between com- 
ponents and consist of only a unidirectional data bus and 
a Req/Ack pair. All transfers include the latching of an 
instruction or datum into a queue at the receiving end. 

The twelve types of components are divided into six cate- 
gories as indicated below: 

Instruction (I) 
Bus (B) 
Memory (M) 
Processor 

Elementary-one input, one output (E) 
Two-input-two inputs, one output (T) 
Comparator-two inputs, one output plus 
special outputs (C) 

Router 
Join-multiple inputs, one output (J) 
Fork-one input, multiple outputs (F) 
Link-multiple inputs, multiple outputs (L) 

Controller 
RAM-internal to MCAP, no partitions (R) 
Single-access-internal to MCAP, has 
partitions (S) 
Dual-access-connects to main memory, has 
partitions (D) 

The letter used to indicate each type of component is 
given in parentheses. 
As mentioned earlier, an MCAP contains one mem- 
ory component for storing instructions, one instruc- 
tion component for executing internal instructions and 
forming external instructions, and one bus component 
for distributing the instructions. An MCAP may con- 
tain several controller, router, and processor compo- 
nents and several other memory components for stor- 
ing data. However, the other memory components can 
be connected to controller components only. Only con- 
troller components are capable of being programmed 
to prefetch data from and deposit data into data mem- 
ory components. 
Each non-memory component that is used during the 
execution of an algorithm contains an instruction in- 
put queue, one or more data input queues, and con- 
trol logic that includes a number of registers. The 
instructions for an algorithm received by a compo- 
nent fill these registers and then the register contents 
dictate the activity within the component while the 
algorithm is executed. They determine the compo- 
nent's mode and, for a routing component, the pat- 
terns for accepting inputs and distributing outputs. 

For a conti oiler component, they determine the mem- 
ory part tions and patterns for prefetching operands 
and storing results. 
Each of the components that receives instructions con- 
tains a Number of Operands Output (NOO) register 
that is always the last register filled before the compo- 
nent begins its part in the execution of the algorithm. 
Each time the component outputs an operand, the 
NOO register is decremented. When the NOO register 
becomes zero, the component has completed its part 
in executing the current algorithm (or phase). It may 
then distribute new values, those needed for the next 
algorithm, from its instruction input queue to its reg- 
isters. This cycle may continue indefinitely. Except 
for reacting to the handshaking (i.e., Req and Ack) 
signals in its connections, each component acts inde- 
pendently. The data is input to a data queue through 
an input connection, processed or routed through a 
bus, and output through an output connection. 

All controller components have an output data con- 
nection for outputting operands to the remainder of 
the MCAP and an input data connection for inputting 
results from the MCAP. Therefore, they must be ca- 
pable of handling both an output data stream and 
an input data stream. A queue is inserted in each of 
these data streams. In addition to the NOO register, 
a Number of Operands Input register is needed for the 
input stream. A D controller also has a second set of 
input and-output connections. 

c|glciclclg|g|cl 
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Ftg. 2. An Example MCAP Architecture 



For a more complete description of an MCAP refer 
to [11]. An example architec ure is given in Fig. 2. Its 
processing subsection includes a comparator (C com- 
ponent), a negator (E component), a reciprocator (E 
component), a set of *" ur pipelined adders capable of 
accumulation, and of four pipelined multipliers. 
Each adder or mul is constructed of four stages 
(a T component folio > ;d by three E components). All 
communications to and from the processing compo- 
nents are through six link (L) components, three on 
each side of the processor. J:>in (J) and fork (F) com- 
ponents are provided to al ow flexible use of the L 
components. Also, to allow for accumulation there is 
a feedback connection between the F component at the 
output from each adder and the J component at the 
input to the adder. There is a dual-access controller 
(D) component to provide intermediate memory and a 
connection to the single-access controller (S) that con- 
trols main memory. A second S component provides 
additional internal storage. 

3    SIMARC PACKAGE 

SIMARC is a menu-driven package written using C++ and 
is for PC compatible computers operating under DOS. By 
using C++ both the components in an architecture and the 
instructions in a program could be defined and operated 
on as objects. 

The programs in the SIMARC system communicate 
through a collection of files. The relationships between 
the programs and the files are summarized in Fig. 3. The 
files axe: 

Architecture (.SAR) - 

Information (.SIF) - 

Program (.SAS) - 

List (.SLT) - 

Load (.SLD) - 

Result (.SRT) - 

a complete description 
of an architecture 
a textual description of 
the architecture. 
a source program in the 
form needed by the 
assembler. 
a list of the errors 
produced during an 
assembly. 
a program in the form 
needed by the simulator. 
the results produced by 
a simulation. 

Irregular intervals (.SIR) -  specifies the time at 
which results are to be 

Fractional result (.SFT) - 

Summary (.SUM) - 

taken. 
same as an .SRT file 
except results are 
percentages. 
summary information 
from succesive tests. 

The programs are: 

EDITOR -      creates a new architecture or 
changes an existing architecture. 

AS - assembles source program into 

load form that can be used by 
SIMULATE. 

SIMULATE - simulates a program on an 
architecture and accumulates results. 

DISPLAY -    displays the results of a simulation 
on the monitor. 

SIMSUMM -  produces summary information and 
stores results as percentages 

When using the SIMARC pa:kage, the design proce- 
dure is to: 

1. Determine the set of algorithms around which the 
MCAP is to be optimized, the technology and 
packaging to be used and the MCAP's initial ar- 
chitecture. 

2. Use EDITOR to graphical enter the architecture's 
description. 

3. Use EDIT to write, or rewrite, programs for the 
algorithms. 

4. Assemble the programs using AS and the archi- 
tecture file created by Step 2. 

5. Simulate the programs using SIMULATE and de- 
termine the bottlenecks by examining the graph- 
ical output and the result files. 

6. Redesign the architecture to eliminate the bottle- 
necks as much as possible within the constraints 
of the technology and packaging. 

7. Repeat Steps 2 through 6 until the design is op- 
timized. 

«/ JAS  V A3 *S JLDV 
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Fig. 3. Relationship between the SIMARC packaged programs and files. 



From other simulation packages [12,13], the value 
of graphical output duiing simulation and graphical 
specification of a system so that it can be easily cre- 
ated and modified is well established. It is seen from 
Fig. 3 that EDITOR, SIMULA TE and DISPLAY dis- 
play information on the screen. The display is of the 
architecture specified while executing EDITOR. In the 
display each component is shown as a collection of 
rectangles which may contain up to four characters of 
text. Normally, the te> t is an identifying mnemonic 
that has been assigned to the component at the time it 
is created, but it may indicate the component's type, 
percentage of time in a particular state, or the com- 
ponent's identifying number. A component may also 
be displayed using a color that represents its type or 
current state. In addition, EDITOR can show an ar- 
chitecture's connections. 

Upon starting the execution of SIMARC, the main 
menu appears. To create or edit either an architec- 
ture or program the user would respond by typing 
"E", which would cause the edit menu to appear. This 
menu would allow the user to create or edit an archi- 
tecture or program, assemble a program, or view the 
errors resulting from an assembly. 

3.1    EDITOR Program 

The program EDITOR is for creating or modifying 
an architecture file and is initiated by typing "E" in 
response to the edit menu. It first requests the name 
of the architecture file. If the file does not exist, then 
the architecture is to be created; otherwise, an existing 
architecture is to be modified. 

An architecture is defined by the:( 1) attributes of its 
components, and (2). connections between its compo- 
nents. There are two kinds of attributes. There are 
graphical attributes for displaying the component and 
physical attributes that give the component's char- 
acteristics (its execution time, queue lengths and so 
on). When an architecture is created, a menu of icons 
that appears on the right side of the screen is used 
to enter the component attributes and connections. 
Because all MCAPs require exactly one each of the 
instruction, bus and instruction memory components, 
and the connections between these components and 
the other components must always be the same, the 
user must enter only the attributes of these compo- 
nents. Their connections are made automatically. For 
all other components, the user would typically enter 
the physical attributes by responding to a series of 
prompts, shape the component by defining its rectan- 
gles, move the component to the position it is to be 
displayed and make the desired data connections be- 
tween it and the other components. A component's 
graphical attributes are determined during the shap- 
ing and moving actions. EDITOR includes an easy- 
means of duplicating a component or flipping a com- 
ponent's image with respect to either the horizontal 
or vertical axis. Modifying an architecture may con- 
sist of simply changing the attributes of some of the 
components, deleting or adding components, or delet- 
ing or adding connections. If a component is deleted, 
all connections to the component are automatically 
deleted. 

3.2 EDIT and AS Programs 
The DOS program EDIT is used for creating and edit- 
ing source program files. It is initiated by typing "E" 
in response to the edit menu. The language used 
to create a source program is at the assembler level 
with labels used to specify instruction addresses and 
mnemonics used to specify instruction types. In addi- 
tion, the mnemonics assigned to the components when 
the architecture is created are used to specify the com- 
ponents that are to receive the instructions, sources of 
the input connections, and destinations of the output 
connections. 

The program AS is initiated by choosing "A" from 
the edit menu. The user then enters the names of the 
architecture and source program files. As the assembly 
takes place any errors that occur are recorded in an 
error file and, at the end of the assembly, the total 
number of errors is displayed. By pressing <ENTER> 
a return is made to the edit menu. By choosing "V" 
from the edit menu, the program EDIT may be used 
to view the contents of an error file. 

3.3 SIMULATE Program 

A flowchart of the program SIMULATE is given in 
Fig. 4. When "S" is typed in response to the main 
menu, the simulation begins by querying the user for 
the names of the architecture, program and result files. 
Also, it asks the user whether the results are to be 
recorded at regular or irregular intervals and, if reg- 
ular intervals are chosen, the length of the interval is 
requested. If irregular intervals are chosen, the user 
must either enter the times at which results are to 
be recorded or the name of an irregular interval file. 
SIMULATE then enters its main loop. 

SIMULATE assumes that the possible states that a 
component can be in are as defined below. The com- 
ponent types that can take on a state are given in 
parentheses. 

BUSY (all component types) - component is actively 
performing a function. 

WAIT (all component types) - component is waiting 
for its output to be 
taken or, for the I 
component, a flag to 
be set. 

IDLE (I,E,T,C,J,F,L.R.S,D) -  component is waiting 
for input. 

FREE (all component types) - component is 
completely inactive. 

DIST (E,T,C.J.F,L.R.S.D) -     component is distributing 
instructions to registers. 

Each time the main loop is executed the states of all 
components are updated according to their current 
states, including the states of their queues, and the 
Ack inputs from their output connections. The state 
diagram for components that can take on five states 
is given in Fig. 5. Also, all queues are updated ac- 
cording to their current states. Req inputs from their 
input connections and whether or not they have been 
popped by the components containing them. No more 



than one state change can occur in a single execution 
of the main loop. Each time around the loop to con- 
sume one basic increment of time and system time is 
measured in terms of the number of basic increments 
(i.e., loop executions) that have occurred since the be- 
ginning of the simulation. The simulation ceases (i.e., 
the loop is exited) after a HALT instruction has been 
encountered and all components have returned to their 
F-IEE states. The results that are recorded consist of 
tr e times each component spends in each state and 
the maximum number of entries in each queue. These 
times and numbers of entries are also updated each 
time around the main loop. Whenever the system time 
becomes one of those specified as a time to record the 
results, the results are output to the results file. The 
results can be used to determine which components 
need to be faster or replicated and which queues need 
to be longer. 

Queries - filenames and result tijnes 

Displav architecture 

Sei system time to 0 

E 
Update all BUSY components 

t        : 
Lpd*ie aJI WATT component* 

± 
Update ill queues 

Update ail IDLE components 

Update ail FTt£E components 

I 
Update ail DIST components 

Increment svstem time 

Yes 

Output Results 

RETURN 

Fig. 4. Flowchart of SIMULATE program. 

Instruction qucir 
Dot empty 

Fig. S. Structure of state diagrams. 

Before entering the main loop, the architecture is dis- 
played on the screen just as it is displayed by ED- 
ITOR, except that the rectangles are filled in with 
light blue. Each state has been assigned a color as 
follows: FREE is light blue, DIST is green, IDLE is 
dark blue, BUSY is red and WAIT is magenta. Be- 
cause all components begin in their FREE states, the 
initial color of all components is light blue. Each time 
a component changes its state, its display may be up- 
dated; however, the updating of the display depends 
on the current mode of SIMULATE. 

SIMULATE may be dynamically put into different 
modes by pressing different keys as follows: "s" for 
single step, "a" for automatic stepping, "d" for free- 
running with display updating, and "n" for free- 
running with no display updating. In single step mode 
the simulation pauses and waits for a key to be pressed 
each time around the loop. Automatic stepping causes 
a brief pause each time around the loop, but a key- 
need not be pressed. A free-running mode includes no 
pauses. Free-running with display is used to identify 
the utilization and bottlenecks by viewing the colors 
as the simulation progresses. The more red the bet- 
ter, because red indicates a components logic is being 
utilized. Dark blue shows that a component is waiting 
for input and magenta shows it is waiting for output. 
SIMULATE runs at its maximum speed when free- 
running with no display is used. Pressing "q" causes 
SIMULATE to terminate. 

3.4    Other Main Menu Selections 

The program DISPLAY, which is initiated by choosing 
~D~ from the main menu, is used to superimpose per- 
centage results on an architecture display. The user 
must indicate the result file to be used and the state 
of interest. The percent of the time spent in the spec- 
ified state is displayed on the architecture. A display 
of the results at the end of a simulation or displays 
at the intermediate times for which the results were 
recorded may be requested. 

By selecting "'G'" from the main menu the user may- 
create a fractional result file in which the times spent 
in the states are replaced by the percentages of times 
spent in the states. This selection also allows certain 
summary information to be appended to a summary 
file. The selection "A" simply causes an architecture 



to be displayed. The user enters the name of the archi- 
tecture file in response to a query. Typing "X" causes 
SIMARC to terminate. 

4    MATCHING AN ALGORITHM 
TO AN MCAP ARCHITECTURE 

Matching an architecture to a set of algorithms involves 
a study relating the flows, storage, and processing of the 
data required by the algorithms. Clearly, there is no point 
in increasing the speed of a processing subsystem if the 
current interconnections and memory hierarchy are inade- 
quate to support the processing or vice versa. But a good 
balance for one algorithm may not be a good balance for a 
different algorithm. What is needed is a satisfactory trade- 
off for the work mix expected of a system and a means of 

evaluating the design chosen. 

Space allows only a single example, so let us consider the 
computation that most frequently occurs in computation- 
ally intense algorithms, matrix multiplication. Let us ex- 
amine how the MCAP in Fig. 2 could be analyzed for to the 
algorithm AB = C using the middle product method [9] 
where A. B and C are n x n matrices. Fig. 6 shows the 
data flow through the MCAP. 

Slngte-icceu Memory 

Bank of Adders 

<d Ltak burtouectio* 

i. 
Bank of Multiplier» 

Dual-access Memory 

,rm.i t> 
Host's Main Memory 

Fig. 6. Data flow for matrix multiplication using the middle product method. 

The algorithm consists of the computations 

Y, a<> B> = c< i = i, 

J=I 

where the atJs are the elements of -4. the B,s are the rows 
of B, and the C,s are the rows of C. The algorithm pro- 
ceeds by storing the first row of A in the D component's 

memor.". Then the products a\,Bj, for j = l,...,n, are 
summed and stored in the S component at the top of Fig. 2. 
Next, the second row of A is brought into the D compo- 
nent and the products aj, ß, are summed and the results 
are sent to the S component. This continues for all rows 
of A. 

By matching this algorithm with the architecture in Fig. 2, 
it is seen that each adder and multiplier must perform ap- 
proxim ttely n3/4 operations and each link on the left and 
two of -he links on the right must perform approximately 
n3 transfers. (The third link on the right is not needed.) 
The approximate number of accesses to the MCAP's S 
component is about 2n3 and the number of accesses to the 
D component and host's S component is about n3. If T 
is the per stage processing time of the multipliers, then T 
should also be the per stage processing time of the adders 
and T/4 should be the transfer time of the links. The ac- 
cess time of the MCAP's S component should be T/8 for 
both reads and writes. For T = 40 ns, the link transfer 
time should be 10ns, the average memory access time for 
the MCAP's S component should be 5 ns, and the aver- 
age memory access time for the D component and host's S 
component should be 10 ns. The computation rate would 
be 200 Mflops per second. If the MCAP were put into an 
MCM or wafer, memory interleaving were used, and mul- 
tiple connections are made to the host's memory, these 
times would be within the capability of current HCMOS 
technology. 

To verify the above simple analysis, we have designed a 
simulation program for the matrix multiplication to be 
run by the MCAP simulator. The instruction set for an 
MCAP architecture consists of two sets of instructions, 
internal and external. The former is processed within 
the instruction component and the latter is distributed 
to the other components. In this paper we will only dis- 
cuss the external instruction set. The external instruction 
set consists of three types of instructions: (1) instructions 
which set the number of operands to be output from or 
input to a component. (2) instructions which set the mode 
of a component, and (3) instructions which set input or 
output connection patterns for the router components or 
partition and operand patterns for the controller compo- 
nents. When programming an MCAP architecture, each 
component must be programmed individually. The oper- 
ation mode, input/output connection patterns, number of 
operands to be input or output, broadcasting connection 
patterns, etc., are programmed for each component using 
external instructions. 

The operation of the leftmost link component, LINK, con- 
sists of broadcasting one element of matrix A and dis- 
tributing a row of matrix B among four of the join com- 
ponents that are connected to the multipliers. Thus. 
the number of operands to be output by LINK is „V = 
n2(n + 1). The following instructions program the LINK 
component for matrix multiplication: 

lmodLINK, 2 ;set mode 
lsip LINK, F077 ;set input 



pattern 
isbp LINK, J059, J057. J060, J062 .set broadcast 

pattern 
Isop LINK, #n, L. J059. J057, J060, J062   ;set output 

pattern 
lnoo LINK, N ;set number of 

operands out 

The first instruction sets the mode so that the first 
output is to the first connection indicated by the out- 
put pattern and the next n outputs are to the con- 
nections indicated by cycling through the remainder 
of the output pattern. The second instruction sets the 
input pattern and causes all input to come from the 
fork, F077. The third instruction sets the broadcast- 
ing pattern by specifiing the components to receive the 
broadcast operand. The fourth instruction sets the 
output pattern, which causes the LINK component to 
perform a broadcast, indicated by the symbol k, and 
then to distribute n operands to the components listed 
in the instruction. This pattern is repeated until all 
operands have been output. 

The processing components, T and E. can be pro- 
grammed as follows. Since each multiplier and adder 
is composed of four pipeline stages, one T component 
followed by three E components are needed to config- 
ure one multiplier or adder. The following instructions 
assume M - n3/4. K = n2 and L = n/4 and set up 
the T component for one of the multipliers: 

tmod T013. 48 
trep T013. K 
tnoo   T013. L 

;set mode 
:set number of repetitions 
;set number of output operands 

The mode of the T component is set so that the first 
operand is latched and multiplied by the next I inputs. 
The second instruction causes the L multiplications to 
be repeated A' times. 

5    SUMMARY AND CONCLUSION 

Preliminary work indicates that MCAP component defini- 
tions when used in conjunction with the SIMARC pack- 
age do permit fast prototyping of attached processors de- 
signed for high logic utilization while executing computa- 
tionally intense algorithms. It is believed that SIMARC 
can produce designs for which the sustainable computa- 
tion rate can be made to average more than 60% of the 
peak rate, even for fairly diverse sets of algorithms. In the 
matrix multiplication example presented, the average rate 
was 95% of the peak rate. Someone experienced with EDI- 
TOR could produce the architecture shown in Fig. 1 in less 
than two hours. However, creating the programs for simu- 
lating the algorithms is much more difficult and exacting. 
Minor errors can cause SIMULATE to cycle indefinitely 
and force the user to abort the simulation. Future plans 
call for a compiler for creating simulation programs that 
provides graphical assistance in determining the memory- 
to-memory pipelines. Such a program would move much of 
the responsibility for details from the user to the compiler 
and greatly reduce the chance for errors. 
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ABSTRACT 
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1    Introduction 

An attached processor is a processing system that is connected to a host computer for the 

purpose of very quickly executing most of the overall system's computational tasks. In such 

an organization,"the host is a program manager which handles all I/O, code compiling, and 

operating system functions, while the attached processor concentrates on arithmetic computation 

with data supplied by the host" [1]. 

Typical early attached processors were the AP-120B and FPS-164 made by Floating Point 

Systems, Inc., the IBM 3838, and the MATP made by Datawest, Inc. [1], [2], [3]. These attached 

processors all have their own data memories and transfer data between these memories and 

the main memories of their hosts using DMA data channels. They also include their own code 

memories where subprograms may be permanently stored or downloaded from their hosts. These 

subprograms are initiated by commands from the host and supervise the data flows from the 

attached processor's data memories, through the attached processor's processing elements, and 

back into the data memories. 

In addition to quick execution, it is also desirable to execute as broad a set of algorithms 

as possible in order to create a more generally applicable processor. Thus, the underlying goal 

of the designer is to efficiently utilize the hardware for as broad a set of algorithms as possible. 

However, for most current designs, the average sustainable execution rates have been found 

to be only 5% to 20% of their peak rates, which are determined by summing the maximum 

computational rates of the processing elements. For example, the sustainable rates for the Cray 

X-MP with four processors may be as low as 5% for some algorithms [4]. Although some of 

the lost efficiency is necessitated by the algorithms, much of it is due to memory accessing and 

contention for shared resources in general, including internal buses. 

In this paper we describe a modularly configured attached processor (MCAP) architecture 

which can attain quickness and high utilization through: (1) closely matching their architectures 

to the set of algorithms they are to execute, (2) overlapping of processing and memory accessing 

by using memory prefetching, (3) minimizing the movement of data, (4) using a high-speed 

CMOS with one micron technology, and (5) having the whole MCAP on a single MCM-D. 



various 

In Section 2, the MCAP architecture [5], [6] is summarized. Next, in Section 3, we evaluate 

design options for implementing this MCAP architecture in CMOS logic. 

2    MCAP Organization 

An MCAP is an attached processor that is constructed entirely from a standard set of 

connections and components [5]. This standard set consists of three types of asynchronous 

connections and twelve type of components. These component types are such that each member 

of the class may include parallel processing, memory to memory pipelines, and be constructed 

in a building block fashion. They encompass routing as well as memory, control and processing 

components. By overlapping processing with memory accessing and matching an architecture 

with a set of algorithms, it is predicted that the average sustainable rate for a specific set of 

algorithms can attain at least 60% of the peak rate. The definitions of the connections and 

component types provide a standard set of rules. These rales allow the components to be 

easily configured in different ways, thereby allowing the construction of attached processors that 

efficiently perform different sets of algorithms. 

Much of the MCAP's efficiency is gained by distributing the next instructions to the various 

components while the cuirent instruction is being executed. Once the algorithm begins, these 

instructions dictate the modes, routing patterns, prefetching patterns, etc. of the components 

receiving them. Once an algorithm starts, each component operates more or less on its own, 

except for responding to its handshaking signals. Efficiency is further enhanced by prefetching 

operands from the memory subsystem. 

An MCAP operates by drawing an instruction stream from the memory component into 

the instruction component. The instruction component uses internal instructions in the stream 

to form external instructions that are then distributed to the other non-memory components 

through the MCAP's bus component. All components in the instruction stream include input 

instruction queues. When the non-memory components have received all of the instructions 

needed to perform an algorithm, they automatically prefetch the data from the memory compo- 

nents, route the data to and from the processor components and store the results back into the 



memory components. All non-memory components have input data queues. Some controller 

components, which are the components that supervise all memory accessing, are used to auto- 

matically transfer data between the host's main memory and the MCAP's memory components. 

The instruction and data streams are separate, thereby allowing the instructions needed for the 

next algorithm to be distributed while the current algorithm is executing. 

The three types of connections are referred to as memory, instruction, and data connections. 

Instruction transfers are made through instruction connections. Memory components are con- 

nected to their controller components using memory connections and all other data transfers 

are made by means of data connections. All connections are asynchronous and, therefore, must 

include handshaking lines as well as data and, perhaps, address lines. 

The twelve types of components are divided into six categories: (1) Instruction, (2) Bus, 

(3) Memory, (4) Processor, (5) Router, and (6) Controller. The processor components can 

be subdivided into elementary processors (one input, one output), two-input processors, and 

comparators. The router components are subdivided into joins (multiple inputs, one output), 

forks (one input, multiple outputs), and links (multiple inputs, multiple outputs). The controller 

components consist of RAM controllers, single access controllers, and dual access controllers. 

The dual access controllers connect to main memory. 

An example architecture is given in Figure 1. Its processing subsection includes a comparator 

(C-component), a negator (elementary component), a reciprocator (elementary component), a 

set of four pipelined adders capable of accumulation (via feedback), and a set of four pipelined 

multipliers. Each adder and multiplier is constructed of four stages (a two-input component 

followed by three elementary components). All communications to and from the processing 

components are through six link components, three on each side of the processor. Join and fork 

components are provided to allow flexible use of the link components. There is a dual access 

component to provide intermediate memory and a connection to main memory. The single 

access component provides internal storage. 

In order to efficiently use the available logic and interconnections, an architecture must be 

carefully matched to an algorithm or a set of algorithms. This involves a study relating the flows, 



storage and processing of the data required by the algorithm(s). Clearly, there is no point in 

increasing the speed of a processing subsystem if the current interconnection delays and memory 

hierarchy are inadequate to support the processing (or vice versa). But a good balance for one 

algorithm may not be equally good for a different algorithm. What is needed is a satisfactory 

tradeoff for the work mix expected of a system and a moans of evaluating tie design parameters 

chosen. 

Next we present the design considerations in implementing the architecture of Figure 1 in 

CMOS logic. 

3    Design Considerations and Results 

In our evaluation, CMOS was picked as the benchmark logic technology because of its com- 

mercial maturity.   In the future, we plan to evaluate other faster technologies such as GaAs, 

BiCMOS, and ECL. As for the interconnection and packaging, Deposited Interconnect Mul- 

tichip Module technology (MCM-D) was picked as the preferable vehicle for implementation. 

Since the signal delays associated with the PCB implementation are expected to be prohibitively 

excessive, it was decided that the fabrication of an MCAP with MCM or Wafer Scale Integration 

are the only realistic alternatives for attaining high performance.  Further, multichip modules 

are classified according to the substrate technology:   MCM-Ceramic, MCM-Deposition, and 

MCM-Laminated. In the physical design, we must face the traditional problems in placement 

and routing required by the high performance systems.   As the clock frequency is increased, 

we need to account for transmission line effects due to long interconnections. Parasitics on the 

interconnects, inductances on the power lines, and the I/O pin limitation are the three vital 

shortcomings of current packaging technologies, which could be tackled by (a) minimum chip 

to chip interconnections, (b) high interconnection density, and (c) parallel architecture. Other 

factors which need to be considered are ground and power plane generation and physical de- 

sign verification. The thermal considerations are a direct result of the substrate type, bonding 

selection, and the placement of chip dice. 

A system level model, referred to as the SUSPENS model (Stanford University System 



PErformaNce Simulator) [7] is used to predict the performance of the MCAP. This model 

emphasizes the interactions among devices, circuits, logic, packaging, and architecture. The 

same model could be used to compare logic technologies (e.g. CMOS, Bipolar, and GaAs) and 

various packaging technologies (e.g. MCM-D, MCM-C, PCB, and WSI). 

3.1     Chip Level Design 

3.1.1     Transistor Count 

To illustrate the method used to estimate the total number of transistors in the example 

MCAP (Fig. 1), we will consider one of the floating point adders. Each adder has four pipelined 

stages and uses the IEEE double precision standard. Further this adder could be broken down 

into: (a) nine 64-bit registers with 4032 transistors, (b) seventy-four 2-input XOR gates with 

592 transistors, (c) one hundred and twenty-six 2-to-l MUXs with 504 transistors, (d) two 11- 

bit adders with 528 transistors, (e) one 52-bit adder with 1248 transistors, (f) a 64-bit leading 

zero detector with 5000 transistors, (g) two 52-bit barrel shifters with 4000 transistors, and (h) 

rounding and other control logic taking 6500 transistors. 

Thus the total number of transistors for the above adder is approximately 23K. Similarly, the 

transistor count for the pipelined 64-bit floating point multiplier is approximately 58K (based 

on a modified Booth's algorithm). Likewise, the transistor count for the other elements in 

the MCAP were calculated and the results are presented in table 1. The resulting number of 

transistors for the whole MCAP is approximately nine million. 

3.1.2    Output Driver Design 

In the proposed MCAP architecture, the bottle neck is the communication through link, 

single-access, and dual-access components because of their high fanout and large interconnection 

lengths. This means that the output buffers for these elements mast be relatively large. We 

present the delay, area, and power dissipation calculations for the buffers as functions of fanout 

(F) and interconnection length (I). 



For the chip level model, we have assumed the following: 

1. The input capacitance of a gate (including the lead and ESD capacitances) is Cin = 1 pF. 

2. The width of the metal conductor used for an interconnection is Wint = 2.0 /im. 

3. The capacitance of the interconnections is C,nt = 2.0 pF/cm. 

4. The resistance of the interconnections is Ä,n( = 375 ft/cm. 

5. The feature size is Lejj = 1 /»m. 

Additional parameters can be found in Table 2. 

Average Delay 

In general, the minimum size of a logic gate has a W/L ratio of 2. Therefore, we began with 

a ratio of 2 and, by stages, moved to higher values in order to drive a load in a small amount of 

time. By dividing the buffering stages into the number of buffers with increasing W/L, optimum 

speeds can be achieved. It has been found that a stage ratio of e [8] gives best results. We have 

used a stage ratio of 3 for simplicity. The optimum number of stages (N) is dependent on the 

load capacitance (C/). The relationship is 

.V = 0.91(lnC/ + 4.19) 

where S is truncated (rounded down) to the nearest integer. 

Using the optimum number of stages, the average delay is 

Tav3 = 0.484(iV - 1) + 5C//3(JV - 1) + 0.076 ns 

Delay calculations are shown in Fig. 2. 

Buffer Area 

A simple inverter with (W/L)n = (W/L)p = 2 will need an area of 66 /im3. A buffer with 

equal rise (tr) and fall (i/) times requires {W/L)? = 2(W/L)n = 4 and the area is going to be 



101 Jim2. The total area of the buffer depends on the number of stages and, hence, is a function 

of F and (.. We have 

Area = 66 + 3[14(S - 1) + 36(1 + 3 + 32 + • • ■ + 3'v~2)] a 55 x 3,v_1   ^m2 

Area calculations are plotted in Fig. 3. 

Power Dissipation In The Buffer 

In CMOS, most of the power is dissipated during switching and, hence, dynamic power is 

approximately equal to the total power. The dynamic power is 

Pd = CT*v2x fav3 = 3.32(C/ + C^ff)/Tavs 

where Cw/ = 0.0152(3'v-1) pF. 

Power dissipation calculations are presented in Fig. 4. 

Since the design of an MCAP uses asynchronous communication, the transfers over a link 

component involve the return of an acknowledge signal and the transmission of an output enable 

signal. It is estimated that the transfer rate may be as high as / = l/2[TaV3 + TMP} HZ (where 

Tlvg is the delay on the interconnection and T^ is the chip delay). 

Load Capacitance 

For the load capacitance 

with 

Ctnttat = Cint x * = * pF 

where I is in cm and C,-nt = 1 pF/cm. Therefore, 

Q = (l + F)?F. 

The resistance of the interconnect is 

Ri»tto, = Rint x i = 3.4 x I n . 



3.1.3    Modified SUSPENS Model 

Given (a) the approximate number of logic gates, (b) the transistor technology parameters, 

(c) packaging technology parameters, and (d) the number of pads per chip (estimated from Rent's 

rule), the SUSPENS model [7] can estimate system performance. Rent's rule is an empirical 

result obtained by observing existing designs. The design philosophy and methodology affect 

Rent's constants. If the predictions are made for a system with an entirely different design 

philosophy from the one from which Rent's data were obtained, the results will have little 

meaning. The SUSPENS model, as originally proposed, used Rent's constants, therefore we 

have developed constants that are applicable to the novel architecture of the MCAP. 

Our approach to developing these constants was to determine the area needed for an inverter 

(with equal rise and fall times) and a carTy generator circuit. From this we computed the average 

area per transistor. Thirty percent of that area was assumed to be taken by the interconnections, 

resulting in a figure of 50.7 /im3 per transistor. This result was used as input to the SUSPENS 

model for computations done at the chip level. The I/O buffer areas were estimated separately 

as presented in section 3.1.2. 

To illustrate the use of the SUSPENS model (using table 2), we will consider the adder chip 

(see Fig. 5). The adder chip contains four 64-bit floating point adders. The input stage delay is 

R 
T,   =   fg ■ -jr- ■ ZK0CtT 

fg (number of n — transistors in series)  =   3 

Ki (W/L ratio of input transistors)  =  4 

K0 (W/L ratio of output buffer)  =  4 

Ctr (for 1 /im CMOS)  = 3 fF 

Rtr (for 1 /im CMOS)  =  15 K 

T,   =   0.41 ns 

The output stage delay is 



lav (average interconnection length) 

Cint   =  2pF/cra 

Äin(   =  375 ft/cm 

The total gate delay, T3 = T, + T0, is 0.84 ns. The delay for an adder is 

Tchi,   =   fuT, + Ri*Cint(Dl/2) + {Dc/vc) 

restrict the logic depth, fw, to 6 

vc - 2.5 x 1012 cm/sec 

Dc  =  0.3 cm 

TchtT,   =   6(0.84 x 10-9) + 375(2 x 10-12)(0.32/2) + (0.3/2.5 x 1012) 

=    5.07 ns (which includes the latch time, logic time, setup time, and clock skew) 

Thus the maximum frequency of the adder chip is 197 MHz. By incorporating pipelining and 

recalling that the total chip area actually has four of these floating point 64-bit adders, the 

throughput is improved by a factor of more than four. 

The power dissipation for the adder chip is found as follows. The external capacitance of a 

gate is 

C^t = fAv3Cint + /, KiCtr = 36.5 fF, 

where lavg - 81.3 x 10"6 cm. The internal capacitance of a gate is 

Cint = 3K0CtT + bCtT = 51 fF 

The total capacitance per logic gate, C3 = Cat + C,ni, is 87.5 fF. 

The dynamic power dissipation per gate is based on the maximum adder chip operating 

frequency (/.) and the percentage of gates that switch during a clock period (fj). The dynamic 

power dissipation is 

P,  =  \uhC9vlD 

=   -(131 x 106)(0.3)(83.5 x 10~12)(3.3)2 

=   56.3/tW 



The power dissipation of the chip is the product of the number of gates (Ng) and the dynamic 

power dissipation per gate (P,). 

Pc   =    Na-Pa 

=    (176Jt/4)-(56.3 x 10-6) 

=    1.65W 

Thus the power density for the adder chip (area = 0.09 cm2) is 18.4 W/cm2. 

3.2    Interconnection and Packaging Considerations 

Once the results for each chip have been obtained (see Table 4), the package level model is 

incorporated using thin film hybrid parameters (Table 3). The average interconnection length 

at the module level (in units of chip footprint size) is  [7] 

2    N*-°-s - 1      1 - JVe"-0-75. 1 - 4"-1 

^™    =    gl   4*1-0.5 _ i  ~   \ _ 41-0.75 > i _ jyi-i 

A'c = 4 

T) = 0.65 

R™   =    1.33 

To find the number of interconnections for the adder chip, we assume that the output buffers 

have a fanout of 3 and a critical length of 1.5 cm. Thus, from Fig. 3, we see that the buffer 

delay is 2.45 ns. Further, the capacitive delay (caused by the loading of the I/O pins and contact 

pads) and the time of flight delay on the transmission lines are both calculated using 

Tadditional = 2Z0- C^d + Lint/vm = 0.124 ns 

Adding in Tch,p = 5-07 ns, we determine that the total delay of the adder chip = 5.07 ns + 2.45 

ns + 0.124 ns = 7.64 ns. Thus, the adder chip can output at the rate of 131 MHz. 

The area required by the output buffers are added to the transistor area to get the die area. 

Assuming an area distributed solder bumps with 100 urn diameter and 250 /im pitch. The 

footprint of the Adder chip die is found to be 0.64 cm. 
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The results from repeating this process for the other chips are presented in Table 4 (Note 

that all of the chip areas have been optimized for a power density of no more than 15 VV/cm2). 

Hence, we determine that the module frequency is approximately 150 MFLOPS (considering 

the processing and driving involved in one cycle). The module size is 9.0 cm x 10.0 cm. Module 

power dissipation (Pm)\s determined by 

Cm   =   J^NeNp{zlf\ctr+2Cpad + kmFpCint) 
1 + Fe I - 0 

=    i25(600)[3^-^-3 x 10-15 + 2(0.25 x lO"12) + 1.33(0.64)(1 x 10~12)] 
5 1 — 5 

=   0.1 MF 

Pm  =  \(FD)(f,)(cm)(vhD) 

=    I(0.5)(100x 106)(0.1 x 10~6)(3.32) 

=   27.4 W 

The actual power dissipation is the greater of Pm and the sum of the power dissipated at all the 

chip dice. Thus we report the power dissipation for the module to be 68.82 W. 

4    Conclusions 

Design evaluation for implementing a novel modularly configured attached processor archi- 

tecture using 1 pm CMOS logic on an MCM-D (see Fig.  6) revealed that approximately nine 

million transistors will be needed. These could be placed on a set of twenty five chip dies. Delay, 

area, and power calculations were done with the SUSPENS model (however, Rent's rule was 

not used). Delay calculation (including logic delay, interconnect delay and output driver delay) 

showed that the MCAP module, on average, would achieve speeds in the 150 MFLOPS range. 

The single-access memory controller component chip (S-control) was found to be the slowest 

(110 MHz). Higher speeds would be achievable with faster logic like BiCMOS, ECL, and GaAs. 

In fact, further calculations using 0-5 /im CMOS and 0.25 ^m CMOS logic show that average 

speeds of the S-control chip increase from 110 MHz (for 1 /im design rule) to 160 MHz (for 

0.5 /im design rule) and 220 MHz (for 0.25 /un design rule). 
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Power dissipation calculation showed that apprDximately 70 watts will be dissipated in the 

MCAP module and air cooling would suffice for the 1 /im CMOS design rule. 

We are in the process of performing further design calculations involving wafer-scale inte- 

gration (VVSI) and GaAs technology. 
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Captions to illustrations: 

1. Fig. 1. An example MCAP architecture. 

2. Fig. 2. Buffer and interconnect delay. 

3. Fig. 3. Buffer area. 

4. Fig. 4. Power dissipated in the Buffer. 

5. Fig. 5. Block diagram of the Adder chip. 

6. Fig. 6. Layout of the MCAP on an MCM. 



ELEMENT DESCRIPTION # TRANSISTORS 

Memory Element has 4K each of RAM and ROM 1.84M 

Instruction has 8 words of FIFO 10.0 K 

Bus has 8 words of FIFO 10.0 K 

Elementary has 8 words of FIFO 10.0 K 

Two input has 8 words of FIFO 12.0 K 

Join 3 inputs and 8 FIFO 14.0 K 

Fork 3 outputs and 8 FIFO 07.0 K 

Link 4 inputs and 5 outputs 15.0 K 

1             Static Ram 16 elements of 1 K each 06.3 M 

Single Access Controller Controls 8 memory elements 11.0K 

Dual Access Controller Controls 8 memory elements and 6 
DMA channels 

71.0K 

Compare sends out Flags and Indices 25.0 K 

Reciprocate using Convergence method 50.0 K 

Negate invert the sign bit 01.0 K 

Floating Point Adder using CLAs, Barrel shifters etc., 23.0 K 

Floating Point Multiplier using modified Booth's algorithm 61.0K 

MCAP has 12 types of components 9 Million 

MCM with 25 chips and 6001/Os 9 Million 

Table. 1 Transistor count for the various MCAP components 
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Parameter CMOS 

L«W 1.0 

UCA) 250 

V«(v) 3.3 

R^ohm) 15 K 

C(«F> 3.0 

w^Oi) 2.0 

W.Oi) 2.0 

H^Oi) 0.4 

P.O*) 4.0 

n. 3 

Ru, (ohm/cm) 375 

C« (pF/cm) 2.0 

Table 2. Iß Technology parameters 
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Parameter MCM-D 

PwW 50 

N. 2 

Wä(M) 25 

W.W 25 

H^Gi) 2.0 

R^ (ohm/cm) 3.4 

Diel, const. 3.4 

Vn (cm/nS) 16 

C^ (pF/cm) 1.0 

Zo(ohm) 60 

C^CpF) 0.25 

P.GO 100 

Table 3. Thin film hybrid parameters 
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* 

I Parameters - # Transistors # of I/O Latency 
(nS) 

Power Diss. 
(W) 

Area 
(cm2) 

1 Component i 

Instn/Bus 21.2 k 200 7.40 1.65 0.14 

Link 16.2 k 200 8.16 1.27 0.14 

S-control 32.7 k 222 8.76 0.70 0.14 

D-control 85.4 k 846 8.34 3.67 0.56 

ROM4k 262.6 k 80 9.07 1.66 0.11 

SRAM-4k 1.57 M 150 9.07 8.66 0.58 

SRAM-lk 393.6 k 150 9.07 2.36 0.16 

Multiplier 330 k 660 8.17 3.44 0.41 

CNR 120 k 874 7.19 2.54 0.55 

Adder 178 k 660 7.61 2.75 0.41 

MODULE 9 Million 600 — 68.8 90 

Table 4. Various parameters of the MCAP 

MCM-D using lfi CMOS process 

(optimiMd for Q i 15 W/an*) 
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Fig-  2 
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Fig.  4 

20 



INSTRUCTION/ADDR/H.S/FLAGS 
POWER/GND 

Z 

< 

Pig.   5 

21 



0 0 0 i—!_H 0 
0 0 

H ED       [T] 

000H00 
00 B 00 0 

t-M.;>: 
*W; 

Fig.   6 

22 


