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ABSTRACT 

Direct numerical simulations of separated-reattaching and separated flows have 
been performed on massively parallel processing computers.  Two basic geometrical 
configurations have been studied: the separated-reattaching flow past a normal flat plate 

with an attached downstream splitter plate and the separated flow past a flat plate held 

normal to a uniform stream A high-order finite-difference formulation on collocated 
grids has been developed to perform unsteady fluid flow simulations in rectangular 
geometries. The numerical procedure is based on a fifth-order upwind-biased scheme for 
the convective terms and a fourth-order accurate stencil for the diffusive terms. A direct 
solver based on eigenvalue decomposition has been developed for the pressure-Poisson 
equation. A mixed Fourier-spectral/rmite-difference formulation is used for the spanwise 
discretization, and a data-parallel algorithm has been developed for the CM-5.  The 

performance of the algorithm has been evaluated on various grid sizes in model flow 
problems and for different partition sizes. 

The characteristics of the separated-reattaching flow have been investigated 
through two-dimensional simulations in the steady and unsteady regimes. The shedding 
mechanism is characterized by two major modes at Re = 250 and a single mode at Re = 
375 and 500. Further, the instability of the separated shear layer is found to be consistent 
with inviscid theory. For the two-dimensional study of the separated flow past a normal 
flat plate, the time-mean flow quantities are observed to be over-estimated compared to 
the experiments. The time-mean drag coefficient is also over-predicted by a factor of up 
to 2. This is attributed to the high coherence of the vortices predicted by the two- 
dimensional simulations. Two interaction regions have been identified in the far wake for 
Re = 500 and 1000 and are observed to occur pseudo-periodically. 

Large-scale computations of the three-dimensional separated flow have also been 
carried out The flow is seen to break down into small-scale structures and the spanwise 
development of these structures has been studied. Streamwise ribs and spanwise rolls are 
identified in the near wake through visualization techniques. The presence of these 
coherent structures corroborates the experimental observations and numerical calculations 
for mixing layers and wakes of circular cylinders. The time-mean velocities and Reynolds 

stresses are found to agree well with the experiments conducted at higher Reynolds 
numbers. 
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1.        INTRODUCTION 

1.1      Problem Considered 

Separated flows have been described by Moikovin (1964) as a 'kaleidoscope of 
challenging fluid dynamic phenomena'. Flow separation can be induced by several 
means. An attached boundary layer on a surface can separate if an adverse pressure 
gradient or a centrifugal force directed away from the wall is applied. Separated flows 
are also generated when a bluff body is placed normal to the flow. At low Reynolds 
number, a steady wake region is formed downstream of the body. Above a critical 
Reynolds number, the separated shear layer becomes unstable resulting in the shedding of 

Karman vortices. The study of wake instability dates back to the Renaissance when 
Leonardo daVinci sketched the flow patterns of circular cylinder wakes based on visual 
observations. However, the major work did not progress until the end of the nineteenth 
century with the studies of Slrouhal (1878) and the theoretical analyses of von Karman 
(1912). 

The study of wake instability past bluff bodies provides a rich and challenging 
environment from fundamental fluid dynamics to basic engineering applications. During 
the past five decades, separated flows have been extensively studied because of their 
relevance to drag on vehicles, flow over ship hulls, and submarines. Studies of vehicle 
propulsion are aimed on drag reduction and shape optimization. The wake signatures of 
ships and submarines are also of importance for defense surveillance and detection 
purposes. Bluff bodies such as plates, discs, circular and rectangular cylinders, and V- 
shaped prisms, are used in combustors to enhance the scalar mixing process and provide a 
flame-stabilizing region. Other considered applications have been offshore platforms, 

buildings, skyscrapers and bridges. Several basic geometrical configurations including 
circular and rectangular cylinders, flat plates, and airfoils have been experimentally and 
numerically investigated to understand the fundamental aspects of flow separation and 
wake instability. Further, the responses of the Karman vortices to perturbations in the 
freestream have been analyzed.   Such perturbations are relevant to flow-induced 
vibrations of bluff bodies.  A 'lock-on' mechanism is induced in a certain frequency 
range; as a result, the forced frequency of the perturbation becomes dominant and hinders 
the natural shedding frequency.   The forces exerted on the bluff body increase 
significantly from the value for an unperturbed flow. These aspects are of interest to the 

study of flow-induced oscillations of buildings, marine structures and offshore platforms. 
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Wake-control mechanisms and their effects on the far-wake dynamics have also been 
proposed and include base mass injection, splitter plates, and immersion of small 
structures in the vicinity of the bluff body. These mechanisms have been observed as 
either enhancing the shear layer instability or eliminating the vortex shedding. 

Hows with separation and reattachment, confining regions referred to as 
'separation bubbles', are also of much interest in the design of heat exchangers, diffusere, 

combustors and flow meters. Separated regions cause excessive pressure losses and are 
also associated with high rates of heat transfer and scalar mixing. For the study of shear- 

layer instability from sharp-edged corners, several configurations have evolved as basic 
test cases: the backward-facing step, the blunt plate, and the normal plate with a long 
attached downstream splitter plate. At low Reynolds numbers, the shear layer separation 
is steady for steady upstream conditions.  As the Reynolds number is increased, the 
separated shear layer becomes unstable and begins rolling into vortices. These vortices 
stan growing by entraining mass from the uniform stream, coalesce half way from the 
time mean reattachment point, and finally are shed pseudo-periodically from the 
reattachment line. Rapid growth of the vortical structures develops in the first quarter of 
the time mean reattachment length and reaches a plateau downstream of the reattachment 
line.   Much of the literature concerning unsteady separated flows has been in the 
turbulent flow regime. 

The objectives of the present research are to study the fundamental aspects 
inherent in wake instability and separated-reattaching flows. To this end, two basic 
geometrical configurations have been considered. For the wake instability study, the 

flow past a flat plate held normal to a freestream is investigated. For such a 
configuration, the flow separates from the two fixed edges of the plate, and, unlike the 
circular cylinder, the separation point is independent of Reynolds number. For the 
separated-reattaching flow, the flow past the the normal plate with a long attached 
downstream splitter plate is studied. For this configuration, the flow separates from a 
fixed edge and subsequently reattaches on the splitter plate surface. The formation, 
evolution and propagation of the unsteady vortical structures are interesting fundamental 
fluid dynamic phenomena, and, to our knowledge, few studies have documented the 
characteristics of these flows in the low Reynolds number regime. 



1.2     Technical Approach 

Computational fluid dynamic studies are based on the solution of a non-linear 

system of equations, the Navier-Stokes equations, and complement experiments in 
understanding and predicting fundamental fluid dynamic mechanisms. These studies can 
be categorized under two principal types.   The first approach referred to as Direct 

Numerical Simulation (DNS) integrates the time-dependent Navier-Stokes equations with 
resolution of all the temporal and spatial scales.  In the laminar unsteady regime, the 
spatial scales can be resolved with modest sized grids. However, in the turbulent regime, 

very fine spatial resolution, up to the Kolmogorov scales, is required, thus mandating a 
corresponding fine temporal resolution. The grid requirements in a DNS vary as Re9/4 
where Re is the Reynolds number.   Hence, these simulations are performed at low 

Reynolds numbers and are not in the range of practical interest.  The computational 
complexity of such direct numerical simulations is enormous and high-speed vector 
supercomputers have been used over the past decade. 

A second promising approach is the Large-Eddy Simulation (LES) concept, in 
which only the large anisotropic scales are resolved and the small scales are modeled. 
Since the computational resources required by large-eddy simulation are not as 
demanding as for direct numerical simulations, calculations can be performed in a more 
practical range of Reynolds numbers. Models for the small scales have been suggested to 
relate the effect of small scales on the large scales.   Recent research in turbulence 

modeling has concentrated on this aspect.  In the large-eddy simulation concept, the 
resolved scales are separated from the subgrid scales by applying a spatial filter to a 
continuous function in space and time (the velocity vector field, for example).  The 

filtered Navier-Stokes equations represent the transport of the resolved-scale velocity 
field and include the contributions of the unresolved scales through a subgrid stress. The 
subgrid stresses quantify the interaction between the resolved scales and the unresolved 
scales, and the filtered equations require a turbulence model for closure. Although the 
LES concept has not been used in the current research study, we believe that it is a viable 
approach to investigate flows in a practical range of Reynolds number. 

Since DNS and LES calculations resolve the temporal and spatial flow 
characteristics, accurate computational methods are needed in order to minimize the 

numerical errors. Direct numerical simulations of fluid flows have been primarily 
performed using spectral methods (Canute et al., 1984).   These methods have been 



successfully applied to study turbulent flow in a straight channel (Moin and Kim, 1980), 

turbulent flow through a square duct (Madabhushi et al., 1993), etc.  However, one 
shortcoming of the spectral schemes is the difficulty of their extension to complex 

geometries. Although spectral domain decomposition and spectral-element methods have 

been successfully used to study some complex flows (Macaraeg and Streett, 1986; Patera, 
1984; Karniadakis, 1989; Kamiadakis and Triantafyllou, 1992), such schemes are 

computationally more expensive and complicated to program.  In comparison, finite- 
difference methods are simple and efficient for the simulation of flows within complex 
boundaries.  In recent years, high-order accurate finite-difference schemes have been 
successfully applied to perform direct numerical simulations of unsteady incompressible 
fluid flows (Clarksean and McMurtry, 1990; Rai and Moin, 1991; Najjar and Vanka, 

1993). Both staggered and non-staggered (i.e., collocated) grid arrangements have been 
used to discretize the governing equations.   In the collocated-grid arrangement, all 
dependent variables (i.e., velocities and pressure) are located at the same physical 
location in contrast to the staggered arrangement where velocities are centered with the 
pressure locations.  In general, the collocated arrangement of velocities and pressure 
reduces the amount of interpolation required when compared with discretization on a 
staggered mesh. Further, the collocated arrangement is more convenient for the use of 
high-order discretizations as well as general curvilinear coordinate systems. Recenüy, 
second-order accurate collocated schemes have successfully calculated several model 
flows with good accuracy (Strikwerda, 1984; Abdallah, 1987a,b; Birigen and Cook, 
1988; Sotiropoulos and Abdallah, 1991; Armfield, 1991). 

The computational requirements to perform direct numerical simulations are 
intensive even with vector supercomputer technology such as CRAY Y-MP and CRAY 

C-90. Several hundred hours on a CRAY Y-MP are required to perform simulations at 

low Reynolds numbers and these requirements considerably increase as higher Reynolds 
numbers are attempted. The advent of high-performance, scalable, massively parallel 
computers permits one to efficiently perform large-scale fluid flow computations. DNS 
of separated flows are ideally suited to scalable massively parallel processing (MPP) 
architectures such as the Thinking Machine CM-5, the Intel Paragon, and the CRAY T- 
3D platforms. The need for high spatial and temporal resolution in direct numerical 
simulations makes it an ideal application for the development of efficient parallel 
processing algorithms. Novel numerical algorithms are currently being devised to exploit 

the improved speeds of computation and the availability of larger memories on parallel 
machines. Several parallel processing architectures have been developed including the 



Single-Instruction, Multiple-Data (SIMD) concept, and the Multiple-Instruction, 
Multiple-Data (MIMD) concept with shared and distributed memories (Ortega, 1989). 
With the advent of massively parallel processors, the computational fluid dynamics 

(CFD) field has been radically revised. Recent finely-resolved CFD simulations of 
compressible flows (Agrawal, 1989; Long et al., 1989; Wake andEgolf, 1989; Jespersen 
and Levit, 1989; Olsson and Johnsson, 1990; Oran et al., 1990; Saati et al., 1990), 
compressible reacting flows (Planche and Reynolds, 1992; Oran et al., 1992) and 

incompressible flows (Robichaux et al., 1992; Perot, 1992) have shown that parallel 
supercomputers such as the hypercubes IPSC/860 and CM-2 can attain speed-up factors 

of 5 over the CRAY vector supercomputers. In the present research effort, a data parallel 
CFD code on the Connection Machine 5 (CM-5) has been developed to perform large- 
scale computations of separated and separated-reattaching flows. 

1.3      Present Contributions 

The main contributions of the present research effort may be summarized as 
follows: 

(i) A high-order accurate finite-difference procedure has been developed to integrate 
the time-dependent Navier-Stokes equations. The governing equations are integrated by 
the fractional step method and discretized with a fully-explicit, Adams-Bashforth, high- 
order, finite-difference scheme on collocated grids. The convective terms are formulated 
using a fifth-order upwind biased scheme and the diffusive terms are discretized with 

fourth-order central-difference stencils. The discrete pressure-Poisson equation has a 
finite-volume formulation and is solved using matrix diagonalization. Further, the 
numerical procedure is extended to simulate three-dimensional flows. Fourier-spectral 
discretization is applied in the homogeneous spanwise direction. 

(ii) A scalable computational fluid dynamics computer program has been developed 
for use on massively parallel processing platforms. The data-parallel algorithm is based 
on a SIMD computing mode and is designed in a structured modular manner with 
emphasis on easy portability to various MPP machines. Most recent compile directives 
as well as library routines have been used to construct an algorithm with high parallel 
efficiency. The modular and general code structure will permit the calculations of a 
variety of fluid dynamics problems. 



(iii) The separated-reattaching flow past a normal flat plate with an attached 

downstream sputter plate has been investigated through two-dimensional simulations. 
Finely-resolved calculations have been performed at several Reynolds numbers. The 
characteristics of the flow in the steady and unsteady regimes are studied. 

(iv) Two-dimensional simulations of the separated flow past a normal flat plate have 
also been carried out A systematic grid refinement study is performed to obtain accurate 
numerical results. Several interesting pairing processes of the Kaiman vortices have been 
identified. 

(v) Finally, a three-dimensional direct numerical simulation of the flow past a normal 
flat plate has been performed. Time-mean statistics are obtained and are seen to agree 
satisfactorily with the experiments conducted at higher Reynolds numbers. The temporal 
evolution of the coherent structures and their spanwise development have been studied. 

1.4      Outline of the Thesis 

The next six chapters present the various aspects of this dissertation. A review of 
previous work is summarized in Chapter 2. In Chapters 3 and 4, the governing equations 
and details of the numerical methods are presented. The data-parallel algorithm as well 
as the performance and representative timings are described in Chapter 5. Chapter 6 
presents the results from the two-dimensional simulations for separated-reattaching and 
separated flows. The results from the three-dimensional calculation are discussed in 
Chapter 7. A summary of the present research effort and recommendations for future 
work are given in Chapter 8. 



2.        LITERATURE REVIEW 

2.1      Separated-Reattaching Flows 

Much of the literature concerning unsteady separated-reattaching flow past a 
normal flat plate with an attached splitter plate has been in the turbulent flow regime. 
Early experimental work dates back to Arie and Rouse (1956) who used Pitot tubes to 

characterize the time-mean velocities and turbulence intensities in the separation bubble. 
The Reynolds number (based on half of the plate height) range was from 7x10* to 
3.5x104. They determined the streamline profile with an analytical model based on a 

sink-source formulation. Their measurements characterized the time-mean velocities and 
turbulence intensities in the separation bubble. Further, the force exerted on the plate was 
measured and the mean drag coefficient was found to be 1.4. Roshko and Lau (1965) 

used Preston tubes to measure the time-mean pressure distributions on the splitter plate 
for various body configurations.  The Reynolds number was varied from 1.4x103 to 
5.3x10^.  Based on their extensive measurements, a renormalized pressure coefficient 
was defined and used to characterize the pressure recovery profile for a wide range of 
separated-reattaching flows.   Smits (1982) measured the velocity and pressure field 
within the separation bubble using a square edged circular Pitot tube and a disc static 

probe with a rounded edge.  The measurements included the «attachment length, the 
distribution of the pressure coefficient along the sputter plate, the spanwise variation of 

the wall friction factor, and the streamwise velocity profile.   Further, Smits (1982) 
investigated the effect of tunnel blockage ratio and reported a decrease in the 
reattachment length and an increase in the bubble height with increase in blockage ratio. 

Recently, advances in experimental techniques, such as pulsed-wire anemometry, 
laser-Doppler velocimetery (LDV), and the split-film method, permitted detailed 

measurements of velocity, Reynolds stresses, energy spectra, pressure coefficient and 
skin-friction factor in the separation bubble. Experiments have been conducted by 

Ruderich and Fernholz (1986), Castro and Haque (1987, 1988), and Jaroch and Fernholz 
(1989). The Reynolds numbers of these studies were in the range of Ixl0*-2xl0* where 

the flow is quite turbulent. Depending on the freestream conditions, a large «circulation 
length in the range of 16-30 hF (where hF is the height of the plate above the sputter 
plate) was measured. The concentrated efforts in these recent experiments were aimed at 
characterizing the large-scale vortical structures that are shed from the shear layer. 

Measurements were made of the shedding frequency, power spectra, space-time and auto 



correlations, integral length-scales and the coherence of the structures. The turbulence in 

the freestream, the model aspect ratio, and the tunnel blockage were observed to 

significantly affect the length and height of the separation bubble as well as its two- 
dimensionality in the spanwise direction. 

Ruderich and Femholz (1986) have performed experimental measurements using 
hot-wire and pulsed-wire anemometers in the Reynolds number range of 9x10s-1.4x10*. 

They described the topological development of the time-mean flow through oil-flow 
visualizations and revealed the formation of three-dimensional 'near-corner' vortices and 
the presence of a reseparation region near the plate (x = 2JhF).   The streamwise 
distribution of the modified time-mean and root-mean square pressure coefficient and 
skin-friction factor as well as the reverse-flow parameter were discussed.  Spanwise 
variations of the wall shear stress, the time-mean velocity and the Reynolds stresses 
emphasized the three-dimensionality of the time-mean flow. Profiles of the time-mean 
velocity and Reynolds shear and normal stresses were measured in the streamwise 
direction and showed the fast recovery of the time-mean flow to a boundary-layer-like 
distribution.   Near-wall measurements of the streamwise velocity did not show the 
existence of a logarithmic profile.   Loci of the maximum streamwise velocity and 
Reynolds stresses were also determined. Time-mean quantities such as the streamwise 
velocity and the Reynolds stresses revealed a self-similar behavior upstream of 
reattachment.   Jaroch (1987) conducted oil-flow visualization to quantify the three- 
dimensional characteristics in the near-corner regions. 

Castro and Haque (1987) undertook detailed measurements of the mean velocity, 
and the Reynolds stresses using pulsed-wire anemometry. The Reynolds number was 

l.lxlO4. The streamwise distributions of the pressure coefficient, skin-friction factor, 
vorticity growth thickness, and the velocity difference were presented. The loci of the 
center of the shear layer, the zero and maximum streamwise velocity were also 

determined. The spatial variation of the separated shear layer was further quantified 
through measurements of the time-mean velocity field and the Reynolds stresses. They 
emphasized that the current flow development did not follow the concepts derived for 
mixing layers. The large-scale structures shed from the separated shear layer were 
characterized through measurements of the auto-correlations and integral time-scales. A 
dominant frequency of 0.12UOJXR was identified as a low-frequency motion of the 
separated shear layer. Castro and Haque (1988) further extended their previous study to 
analyze the effect of freestream turbulence on the flow structure.  To this end, they 
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installed a square mesh upstream of the plate to generate small-scale turbulence in the 

freestream flow. It was observed that the increase of freestream turbulence intensity 
enhances the mixing and results in a decrease in the «attachment length. Significant 
differences were obtained from their measurements with freestream turbulence compared 

to those from their earlier study without freestream turbulence. It was concluded that 
freestream turbulence enhances shear-layer entrainment rates, reduces the «attachment 
length, and modifies the low-frequency flapping of the shear layer. 

Jaroch and Fernholz (1989) applied pulsed-wire anemometry to quantify the 
three-dimensional aspects of the separated-reattaching flow. The Reynolds number in the 

experiments was lAxlO4 with a very low freestream turbulence level of 0.08%. Their 
experimental set-up was based on a large aspect ratio of 26 and a small blockage ratio of 
2.75% while the model aspect ratio (W/hF where Wis the spanwise model width) was 64. 

Due to the high aspect ratio, no end plates were used in these experiments. 
Measurements of mean velocities and Reynolds stresses quantified the large spanwise 
variations present in the flow. Time-mean measurements revealed higher turbulence 
intensities than previous studies (Ruderich and Fernholz, 1986; Castro and Haque, 1987). 

The maximum streamwise turbulent stress, «^ was measured to be 022 compared to 0.13 
and 0.09 reported by Ruderich and Fernholz (1986), and Castro and Haque (1987), 
respectively. The streamwise development of the integral length-scales showed a rapid 
growth of the large-scale structure up to the reattachment point followed by a plateau. 
Detailed measurements of the power spectra did not reveal any dominant frequency in the 
separated shear layer. It was concluded from their study that the current flow 

configuration cannot be characterized as nominally two-dimensional as the three- 
dimensional aspects are very strong. 

Subsequently, McCluskey et al. (1991) quantified the three-dimensional topology 
of the separation bubble using flow visualization techniques and conducted 
measurements of the mean velocities and Reynolds stresses using a 'smalT pulsed-wire 
probe. The experiments have been performed with model aspect ratios of 755 and 174 at 

a Reynolds number of / .6x103. Significant three-dimensional effects were observed even 
at these large aspect ratios. Measurements of the streamwise and spanwise velocity 
components as well as the Reynolds turbulent stresses were discussed. Further, 
McCluskey et al. (1991) noted that the results of Jaroch and Fernholz (1989) are affected 
significantly by three-dimensional effects due to the wind tunnel side walls. Recendy, 



Hancock and Castro (1993) performed experiments with model aspect ratios varying 
from 20 to 80 and blockage ratios ranging from 1% to 3.4% for a Reynolds number of 

1.8x10s. Their measurements of the maximum streamwise turbulent stresses,^ atx/XR 

= 05 (where XR is the reattachment length) agree more closely with the data of Ruderich 
and Fernholz (1986), Castro and Haque (1987) and Dengel and Hancock (1992) but were 
half the values presented by Jaroch and Fernholz (1989). The maximum streamwise 
Reynolds stresses near the reattachment point were found to be nearly invariant with 
model aspect ratio. They concluded that a model aspect ratio of 20 to 40 was sufficient to 
minimize the effects of the side walls; however, they were unable to explain the 

differences in the observed Reynolds stress at the reattachment point between their 
experiments and previous results. 

In related configurations, Nakamura and Nakashima (1986) conducted 

experiments on a variety of prisms with H and I— shaped cross-sections. The hydrogen- 

bubble method was used to visualize the temporal evolution of the flow. Measurements 
with hot-wire probes were undertaken to determine the shedding frequency. The 
variation of the Strouhal number for various configurations was presented. Further, 
Govinda Ram and Arakeri (1990) have investigated the pressure distribution on a variety 
of bluff bodies with an attached sputter plate. Measurements of the surface time-mean 
and fluctuating pressure coefficients were presented for nose model shapes ranging from 
triangular (including flat plate), blunt edge, semicircular to elliptical geometries. It was 
observed that for most of the bluff bodies considered the maximum rms pressure 
coefficient in the shear layer is nearly equal to the maximum surface rms pressure 
coefficient. 

Compared to the experimental studies, only a limited number of calculations has 
been performed for this configuration. Castro et al. (1982) performed numerical 

simulations in the steady laminar regime (WgReZlOO) using finite-difference and 
finite-element (FE) techniques. Several upwinding schemes including the hybrid- 

difference scheme (HDS) and vector-differencing scheme (VDS) have been investigated 
to determine their effects on the solution field. The computational domain extended from 

-20 to 47 fence heights in the streamwise direction with a cross-stream height of 5 fence 
heights. Three non-uniform grid distributions with resolutions of 40x40 and 50x40 were 
used in this study. The minimum and maximum mesh sizes were 0.06 and 4.0 fence 
heights in the streamwise direction and 0.014 and 05 fence heights in the cross-stream 
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direction. The HDS method revealed a high numerical diffusion leading to poor 
predictions of the flow, particularly the reattachment length, while the VDS method 

resulted in more accurate predictions. The results of the finite-element method were 
found to have the least numerical diffusion. Jaroch and Graham (1988) performed a 
numerical study using the discrete vortex method. Their calculated time-mean velocity 
profiles were in satisfactory agreement with the experimental data, but the turbulence 
moments were over-predicted considerably. 

Studies of related configurations, mainly the backward-facing step and the flat 
blunt plate, have also provided much information on the dynamics of separation and 
reattachment. Chandrsuda and Bradshaw (1981), and Driver and Seegmiller (1985) have 
reported measurements for the backward-facing step, while Adams and Johnston (1988) 
and Devenport and Sutton (1991) investigated the near-wall behavior.  An extensive 
review of this flow configuration until 1981 is given by Eaton and Johnston (1981). For a 
blunt plate placed in a freestream, the flow separates from the leading edge of the plate 

and «attaches on the downstream section. Similar to the flat plate, experimental work 
has been concentrated in the turbulent regime in the Reynolds number range of 2x10*. 
6x104. Ota and coworkers (1974, 1976, 1978, 1983) conducted experiments using hot- 
wire anemometry techniques.   The Reynolds number was varied from 2.1x10* to 
6.6x10*.   Detailed measurements of the time-mean velocity and surface pressure 
coefficient, the turbulent kinetic energy and the spatial correlations were reported. The 
reattachment length was found to be nearly invariant of the Reynolds number with a 
value of 4-5 plate thicknesses.   Lane and Loehrke (1980) reported measurements of the 
reattachment length in the laminar regime (100 < Re £325) using dye injection 
techniques while Ota et al. (1981) used aluminum powder to measure the reattachment 
length for 75 <Re <270. In both studies/the steady reattachment length was seen to 
increase linearly with the Reynolds number. The experiments agreed with the trends of 
the numerical simulations of Ghia and Davis (1974). Hillier and Cherry (1981), Kiya and 
Sasaki (1983a-b, 1985) and Cherry et al. (1983, 1984) have provided detailed 

measurements in the turbulent region. A low-frequency flapping of the separated shear 
layer with a magnitude of 0.12-020UJXR was observed in the experiments of Cherry et 
al. (1984). Kiya et al. (1982) performed unsteady two-dimensional calculations using the 
discrete-vortex method.  Dijlali et al. (1990) studied the two-dimensional steady-state 
flow and compared their results with experimental values.  However, this work is of 

limited use since the unsteady flow characteristics are not captured. Recently, Tafti and 

Vanka (1991a,b) carried out detailed two and three-dimensional time-dependent 
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numerical studies of the flow over a blunt plate at low Reynolds numbers. Satisfactory 

comparisons with experimental data were obtained, especially when three-dimensional 
spanwise variations were included. Recent review papers of separated-reattaching flows 

have been presented by Kiya (1989) for the blunt plate, and Castro (1990) for the flat 

plate with an attached splitter plate. Experimental investigations of separated-reattaching 
flows, spanning a period of four decades, are compiled and summarized in Table 2.1.1. 

2.2      Separated Flows 

Various geometrical configurations including circular and rectangular cylinders, 
flat plates, and airfoils have been experimentally and numerically investigated to 
understand the fundamental aspects of wake instability. The flow past a flat plate is 
characterized by a fixed separation point, namely the edge of the plate, while the 
separation point for a circular cylinder moves along the cylinder surface as the Reynolds 
number is varied. Early theoretical analyses to characterize the mean flow past a normal 
flat plate were performed by Kirchhoff (1869) and extended by Rayleigh (1876) to 
include the case of plates at angles of attack to the freestream. The drag force was found 
to be solely based on the dynamic pressure on the front face of the plate and was 
formulated as follows (Lamb, 1932): 

,,       2%sin a 
4+Ksin a (2.2.1) 

where a is the angle of attack. Based on the above relation, the mean drag coefficient 
was evaluated to be 0.88 for a = 90°. However, the experimental studies of Stanton 

(1903) and Fage and Johansen (1927) measured a significantly higher drag coefficient 
Fage and Johansen (1927) conducted extensive measurements for the flow over a plate 
held at different angles of attack. Pressure taps built in the plate were used to measure the 
pressures on the front and rear faces of the plate. They determined the time-mean drag 
coefficient to be approximately 2.0. The underestimation of the drag coefficient 

calculated by the Kirchhoff-Rayleigh theory was attributed to several limiting 
assumptions. First, the base pressure at the rear face of the plate was set to be equal to 
the freestream pressure which implies a zero pressure coefficient Second, the velocity at 
the separation point was set equal to the free-stream velocity. However, in reality, the 
pressure at the rear face of the plate is lower than in the free stream and the velocity in the 
separated shear layer is higher than the free-stream velocity. Based on the measurements 
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of Fage and Johansen (1927), the Strouhal number was observed to be approximately 
constant and equal to 0.148 for a range of a between 30° and 90°. 

Subsequently, Roshko (1954a, 1955) improved the classical free-streamline 
Kirchhoff-Rayleigh theory by modifying the base pressure coefficient, Cps, as follows : 

Cps = l-k2 (2.2.2) 

where k is the base pressure parameter given by k = UJU^ and Us is the velocity on the 
free streamline at separation. The time-mean drag coefficient based on the modified base 
pressure in Equation (2.2.2) was found to agree well with the experiments of Fage and 

Johansen (1927) for a value of k = 154. Roshko (1954b) reported a drag coefficient of 
1.74 and a Strouhal number of 0.135 for the flow past a normal flat plate. Fail et al. 
(1957) studied wakes of normal plates for different aspect ratios ranging from 1 to 20. 
The drag coefficient was observed to increase with aspect ratio while the length of the 
time-mean wake region was observed to decrease. Abernathy (1962) performed 
experiments in the Reynolds number range of 3.6x10* to 1.4x10$ and found a time-mean 
drag coefficient of 2.15 and a Strouhal number of 0.15. Hoerner (1967) reported the drag 

coefficients as well as the Strouhal numbers for a wide variety of bluff bodies including 
the flat plate. 

Castro (1971) investigated wakes behind perforated plates in the Reynolds 
number range of 25x10* to 9.0x10* for a porosity factor varying from 0 to 0.645. The 

measurements were carried out using pulsed-wire anemometry. For zero porosity, the 
drag coefficient and the Strouhal number were measured to be 7.57 and 0.14, 

respectively. Two distinct regimes were observed depending on the plate porosity. Fora 
porosity factor below 0.2, the vortex street dominated the wake; while, for a porosity 

factor above 02, the drag coefficient decreased suddenly as a result of the disappearance 
of the vortex street. Bradbury and Moss (1975) measured the turbulence statistics in the 
wake of a normal flat plate in uniform and shear flows using the pulsed-wire technique. 
Their measurements, conducted for Reynolds numbers in the range of 15x10* to 45x10*, 

showed that the streamwise and spanwise normal stress components were nearly equal 
while the cross-stream normal stresses were found to be significantly larger.   The 
Strouhal number was calculated to be nearly constant (0.14) in the range considered. 
Sarpkaya and Kline (1982) used force transducers to measure the instantaneous lift and 
drag forces and moments on circular and D-shaped cylinders as well as flat plates. The 
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Reynolds number was 2.1 xlO4 and two angles of attack (a = 60° and 90°) were 
considered. The drag coefficient was found to reach a constant value of 22 for a = 90° 
and had an oscillatory behavior for a = 60°. 

Perry and Steiner (1987), and Steiner and Perry (1987) performed a detailed 
experimental study for normal and inclined plates at Re = 2x10* using flying hot-wire 

probes. The Strouhal number was found to vary from 0.161 to 0248. The velocity field 

and phase-averaged streamline contours were identified for sixteen phases of the vortex 

shedding cycle. The phase-averaged spanwise voracity and Reynolds stresses were 
found to be similar to those observed by Cantwell and Coles (1983) for the wake of a 
circular cylinder. Using the triple decomposition scheme, the phase-averaged 
contributions to the turbulent stresses were found to be 25% for«2 ,45% for"v^ and 
50% for uV. Kiya and Matsumura (1988) applied the triple decomposition method 

(Reynolds and Hussain, 1972) to study the turbulent wake flow past a normal flat plate at 
Re = 2.3X104. Based on the triple decomposition method, an instantaneous flow variable 
(0) is decomposed as follows : 

<p = (p + 0 + <f>' {223) 

where <p represents the time-mean component, # is the phase-averaged or coherent 
component, and <f>' is the random or incoherent component. The measurements of the 

time-mean streamwise velocity and Reynolds stresses were made using hot-wire 
anemometry in a normal plane eight plate heights downstream of the plate. The 
contribution of the incoherent components was found to be negligible for the streamwise 
and spanwise stresses, but significant (up to 50%) for the cross-stream stress. The 

primary Strouhal number was computed to be 0.146 and the convective velocity of the 
structures was calculated to be 0.85 of the freestream velocity in the far-wake region. 
Frequency analyses were carried out to identify the dominant frequencies contributing to 
incoherent turbulent fluctuations. The distributions of the incoherent energy and shear 
stress were also presented. Arrangements of the ribs and rollers structures were 
postulated. 

Chua et al. (1990) investigated the flow past non-oscillating and oscillating 
normal flat plates using tow-tank experiments. The Reynolds number was in the range of 
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5x103 to lxlO4 at angles of attack varying from 85° to 95°. After an initial transient 
stage during which the drag coefficient had a peak value of 4, the drag coefficient for the 

non-oscillating case was found to have a steady state value of 2.05±0.05. The Strouhal 

number was measured to be 0.133. For the oscillating case, the drag coefficient was 
found to be slightly higher (by 0.2 to 05) than the non-oscillating case; the shedding 
frequency locked on to the forcing frequency. Leder (1991) performed measurements at 

Re = 2.8X104 using Laser-Doppler anemometry and extracted six phases of the vortex 
shedding cycle. A wake length of 2.5 plate heights was measured. The Strouhal number 
of 0.14 was found to be nearly constant over a range of Reynolds number from 103 to 
105. Further, phase-averaged normal and shear stress fields were presented for the six 
phases.  Recently, Lisoski (1993) extended the work of Chua (1990) in the tow-tank 
facility. The Reynolds number was varied from lxlO3 to 125X104 at angles of attack of 
875° and 90°. A force balance method was used to measure the instantaneous lift and 

drag coefficients. A visualization technique based on Laser Induced Fluorescence (LIF) 
captured the vortical structures in the wake of the plate. The drag coefficient was found 
to be 2.1 and a Strouhal number of 0.149 was measured. LIF visualizations of the wake 
flow were also performed in a stratified tank. 

Experiments (Taneda and Honji, 1971) and calculations (Yoshida and Nomura, 
1985) have also been reported on impulsively started flow past a flat plate. The initial 
transient stage has been discussed extensively and the temporal development of the wake 
length was measured. Further, studies in related geometries have included rectangular 

and triangular prisms. Sarpkaya and Ihrig (1986) performed measurements similar to 
those of Sarpkaya and Kline (1982) for impulsively started flow past rectangular 
cylinders. Nakagawa (1989) investigated the wakes of triangular prisms using a Mach- 

Zehnder interferometer for flow visualization and observed two distinct regimes 
depending on the orientation of the prism. Several extensive reviews (e.g. Morkovin, 
1964; Oertel, 1990; Coutanceau and Defaye, 1991; Sarpkaya, 1992) have surveyed the 
research work on flow separation over bluff bodies, specifically circular and rectangular 
cylinders. 

Compared to the experimental work, numerical studies have been primarily 
concentrated on two-dimensional simulations of the flow past a normal flat plate. 

Kuwahara (1973) applied the vortex-element method and has found the drag coefficient 

to vary from 2.0 to 4.0. Subsequently, Sarpkaya (1975) simulated the flow past a plate at 
an angle of attack of 80° and calculated a drag coefficient of 2.4 as well as a Strouhal 
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number of 0.154. Kiya and Arie (1980) made use of the discrete-vortex method to 

simulate the unsteady flow. The mean drag coefficient was over-estimated by a factor of 
20% to 40% over the value measured by Fage and Johansen (1927) and the base pressure 

at the rear face of the plate was found to be 26% in error. The convection velocity of the 

vortices was observed to increase in the streamwise direction from OAUc to OJSUco. As 
the profiles of the time-mean velocity and the rms fluctuations did not agree with the 
experiments, a vortex aging scheme was devised with an optimum circulation decay 
parameter, A, of 0.8. This improved the predictions of the model, in particular one plate 

height downstream of the plate. The profiles of the time-mean velocities and the 
Reynolds shear stress agreed well with the experiments in the far-wake region. 

Castro and Jones (1987) performed two-dimensional steady-state numerical 
simulations for 100 <Re £800 using finite-difference and finite-element (FE) techniques. 
Several upwinding methods including the hybrid-difference (HYDS), vector-differencing 
(VDS), and higher-order differencing (HODS) (based on the QUICK procedure) schemes 
have been investigated to determine their effects on the solution field. Non-uniform grid 
distributions with resolutions of 40x40,60x40 and 70x40 were used in this study. The 

HYDS method was observed to have high numerical diffusion errors leading to poor 
predictions; while the HODS and FE methods resulted in better predictions. However, as 
a result of the steady-state assumption, the wake lengths were overpredicted significantly 
(e.g. 63 plate heights forte = 800). Chein and Chung (1988) investigated numerically 
the flow past flat plates at angles of attack of 60° and 90° using the vortex-blob method 
(Chorin, 1973) and the vortex aging scheme proposed by Kiya and Arie (1980). The 
Strouhal numbers were calculated to be 0.17 and 0.14 for a = 60° and 90°, respectively, 

and the corresponding drag coefficients were determined to be 2.0 and 2.8. Further, the 
time-mean profiles and turbulent statistics were found to agree well with the numerical 
results of Kiya and Arie (1980) and the experimental data of Bradbury (1976). 

Raghavan et al. (1990) performed two-dimensional simulations using ARC2D, a 
computer program based on an Eulerian finite-difference method for solving the Navier- 
Stokes equations. Although the computed Strouhal number of 0.14 agreed well with the 

experiments, the time-mean drag coefficient was calculated to be 2.8,40% higher than 

the experimental value. Ingham et al. (1990) investigated experimentally and 
numerically the flow past a row of flat plates. The experiments were carried out in a tow 
tank with water and ethylene glycol and the flow was visualized by muminating the flow 
seeded with polyester spheres.   The numerical procedure was based on a vorticity- 
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streamfuction formulation, and the simulations were performed for 0 £Re <500 and a 

solidity ratio of 50%. The calculations were in excellent agreement with the experiments 

for Re <25. The wake length, I, was found to correlate with the Reynolds number 

through the relation, L - 021 Re. Further, the drag coefficient was predicted fairly well 
in the Reynolds number range. 

Chua et al. (1990) applied the vortex blob/panel method to simulate the transient 
startup of the flow past non-oscülating and oscillating plates.   The numerical study 
complemented their experimental work discussed earlier.   The Reynolds number, 
estimated from the modeled boundary layer at separation, was lxlO4. The calculated 
drag coefficient and Strouhal number were 3.6 and 0.11, respectively. Iisoski (1993) 
further improved the numerical model of Chua et al. (1990).   These numerical 
simulations resulted in a time-mean drag coefficient of 32 and a Strouhal number of 
0.121.   Numerical flow visualizations were further used to characterize the unsteady 
shedding cycle. Recently, Joshi (1993) performed two and three-dimensional simulations 
using a second-order accurate finite-volume (Harlow-Welch) time-splitting scheme. The 
Reynolds number was varied from 40 to 103 for the two-dimensional simulations. The 
time-mean drag coefficient was found to increase with Reynolds number from 2.4 to 
4.65. The effects of base mass injection on the wake instability were also investigated. It 
was observed that above a certain injection velocity the vortex shedding mechanism was 
inhibited. Three-dimensional large-eddy simulations were performed for Re of 60 and 
1000.  The flow was observed to remain two-dimensional at Re = 60 and the three- 
dimensional perturbations did not grow temporally. However, the velocity field became 
three-dimensional at Re = 1000 and the drag coefficient was seen to decrease 
significantly to a mean value of 2.4.  The main contributions of this study have been 
summarized in Joshi et al. (1994). Further, two- and three-dimensional calculations of 
the heat transfer from the plate with a uniform surface temperature were carried out. 
Recently, Tamaddon-Jahromi et al. (1994) performed two-dimensional simulation using 

the Taylor-Galerkin/pressure-correction time-stepping scheme for Re of 126,250 and 
500. The initial transient startup process was seen to agree well with the experiments of 

Taneda and Honji (1971).   The temporal flow development was described through 
instantaneous streamlines. The values of the Strouhal number were computed as 0.173, 
0.165 and 0.115 for Re = 126,250 and 500, respectively. 

To summarize, although extensive measurements and simulations are available in 
the literature, their objectives have been limited to the properties of the time-mean flow 
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field. The values of the drag coefficient and the Strouhal number are seen to vary 

significantly among the various studies. While the experiments have been in the 

turbulent regime, the simulations were performed with the assumption of two- 

dimensional flow and have been limited to the low-Re regime. Further, the effects of the 
spanwise variations have not be quantified in the experiments as well as in the 
computations. Detailed descriptions of the three-dimensional flow field have not been 
attempted so far, even after a considerable period of research in this area of separated 
flows. Characterizing the inherent structures in the wake of a flat plate represents one of 
the objectives of the current research effort 
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3.        NUMERICAL PROCEDURE FOR TWO-DIMENSIONAL SIMULATIONS 

The governing equations and the numerical method used in the current research 
effort for 2-D simulations are discussed in this chapter. The numerical procedure 

extended for 3-D simulations is presented in Chapter 4. Section 3.1 outlines the 

governing equations and the fractional-step method. Section 3.2 presents the 

discretization of the spatial derivatives. Section 3.3 describes three principal 

formulations of the pressure-Poisson equation on collocated grids and analyzes the 

satisfaction of the compatibility and integrability conditions for these formulations. 
Details of the direct solver algorithm for the pressure-Poisson equation are reported in 
Section 3.4. The stability requirements of the current scheme are discussed in Section 
3.5. Section 3.6 describes the Capacitance Matrix Technique for the pressure-Poisson 
equation. The validation of the current numerical scheme is presented in Section 3.7 for 
several model problems including the vortex-decay problem, the driven-cavity problem, 
and the Kovasznay flow. Section 3.8 evaluates appropriate boundary conditions for 
simulating flows in unbounded domains. 

3.1      Governing Equations and the Fractional-Step Method 

The current numerical procedure solves the nonconservative form of the two- 
dimensional time-dependent Navier-Stokes equations governing the motion of an 
incompressible fluid. The non-dimensionalized mass and momentum equations, written 
in tensor form, are: 

F-u=0 (3.1.1) 

-Z+(u.V)u = -VP + -Lv2u (3.L2) 

The equations are non-dimensionalized by appropriate length (/) and velocity (U) scales. 
The Reynolds number is defined as Re = I U/v. In the above equations, u = {u,v}is the 

instantaneous velocity field, p represents the instantaneous pressure, and t is the non- 
dimensional time. 

The governing equations are discretized in time using a second-order accurate, 
time-splitting procedure. In the current solution algorithm, the convective and diffusive 
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terms are discretized using a fully-explicit second-order time-accurate Adams-Bashforth 

scheme. Application of the temporal discretization to the momentum equations gives : 

un+I-un 

At -i(**Bi")i(*"*E^(*r     (3.1-3) 

where H=-(u. V)uandL= V u are the advection and diffusion terms, respectively. 

Equations (3.1.1) and (3.1.3) are solved in a decoupled manner with the 
fractional-step method (Chorin, 1967, 1968; Temam, 1979; Goda, 1979; Kim and Moin, 

1985). In the first step, an intermediate velocity field, u, is calculated from the 

momentum equations without the contribution of the pressure gradient. The governing 
equations of the intermediate velocity field are written as : 

u-un 

In the next step, the intermediate velocity field is corrected to satisfy the continuity 
equation by solving for the pressure field at time (n+1). The velocity field at the (n+1) 
time step, un+ , should satisfy the continuity equation: 

y-un+1=o (3.L5) 

Subtracting Equation (3.1.3) from Equation (3.1.4) results: 

n+1     ~ . 
U        -U (XJ y.n+1 

~~^~=<VP) (3-1.6) 

Applying the divergence operator to Equation (3.1.6) and using the continuity equation, 
Equation (3.1.5), the Poisson equation for the pressure field is derived to be: 

V.(Vp^)^{v.ü) (3.X.7) 

After solving Equation (3.1.7), the divergence-free velocity at the (n+1) time step is 
determined from Equation (3.1.6). The explicit representation of the viscous terms 
results in a stringent restriction on the time-step size at low Reynolds number, however, 
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the viscous stability restriction is eased at high Reynolds numbers.  This outlines the 
overall numerical procedure. 

3.2      Spatial Discretization Scheme 

The spatial derivatives in Equations (3.1.4-3.1.7) are discretized with a high-oider 
accurate collocated finite-difference stencil. In the collocated-grid arrangement, all 
variables (i.e., velocities and pressure) are located at the same physical location in 

contrast to the staggered arrangement where velocities are centered with pressure 
locations (Figure 3.2.1). The discretized variable on a cell (ij) is denoted by fa. Nx and 

Ny denote the number of grid nodes in the x andy directions, respectively; Ax and Ay are 
the corresponding grid sizes. 

The convective terms, H, are discretized using a fifth-order upwind-biased 

difference scheme (Rai and Moin, 1991). As an illustrative example, the tenn(u^) 

the x-momentum equation is evaluated as follows: 
•ifw>0 

in 

•ifK<0 
du 

(- 6 Ui+2j + 60 Uj+jj- + 40 utj 

-120 Ui.ij + 30 Ui.2j - 4 Ui.3J (3.2.la) 

( 4 ui+3,j - 30 ui+2,j + 120 m+ij 

- 40 utj - 60 Ui.ltj + 6 Ui.2,j) (3.2. lb) 

Fourth-order accuracy is maintained for the near-boundary grid points by using 

unsymmetric finite-difference formulations (Collatz, 1960). The near-boundary 
formulations of the streamwise derivatives are given by: 

(df\ 1 
UFj2fj = 72Ä1('3 ta-J -10 *2.J + 18 *3.j -6 **.i +<t>5,j) (3.2.2) 

~%), ,= im {fo-i -* &.;'+ 8 fo.j ~*5.j) (3.2.3) 
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(; 

d<f>\ l 
&)Nx.2,j = 12&.(4Nx<j S 4>Nx-3.j +8 fox-l.j -4Nx.ß (3.2.4) 

C MNx.ltj 
= 12ÄC (3 fa*.J +1° tax-l.j - 18 4>Nx-2,j 

+6<f>Nx-3,j-<l>Nx~4,j) (32.5) 

In the above equations, <f> denotes either the streamwise velocity («) or the transverse 
velocity (v). 

The diffusive terms, L, are evaluated using a fourth-order accurate central 

difference scheme. For example, the term f^-j lis discretized as : 

(c?u) 1 
~Z?       = HA? ( ~Ui-2J + 16 "i-W-30 uiJ + 16 uM.j - Ui+2.j)       (3.2.6) 

v      Ji.j 

The near-boundary second-order derivatives (i.e., i = 2 andNx-1) are expanded using a 
fourth-order unsymmetric finite-difference stencil: 

f*V 
U2 

2.j 
.= I2ÄX1 (n *w ~20 te-J+6 fc'J+4 fo'J' ted <3-2-7> 

rafy \ 1 
at2 J • = ^24x2 (U tox-J ~20 fox-*'! +6 fa* -2J 

+4<l>Nx-3J-<l>Nx-4,j) (3.2.8) 

The convective and diffusive terms in the transverse (y) direction are formulated 
in a similar manner. These formulations calculate the intermediate velocity field, u, to 
fourth-order accuracy. 

n+] 
The pressure gradient, (Vp)    , is expanded using a fourth-order central finite- 

difference scheme. The streamwise pressure derivative, $, is evaluated as: 
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\ß\j = 72ÄC (pi'2>J' SPi-tJ + 8PM.J -Pi+2,j) (3.2.9) 

for interior nodes (i = 3 to Nx-2), and the near-boundary derivatives are formulated as: 

(ß)2J 
= 7m (-3Pl.j-10p2,j + 18p3j -6p4j +P5j) (3.2.10) 

$)Nx.1,r 1ZE <
3

PNX,J + 
10

PNX-IJ-
18

PNX.2J 
+
 
6
PNX-3J-PNX<J> (3.2.H) 

The equations presented in this section are applied for uniform grids.   Appendix A 

presents the formulation of the high-order finite-difference stencils on non-uniform grids. 

3 J      Formulation of the Pressure-Poisson Equation 

High-order accurate finite-difference schemes have been successfully applied to 
perform direct numerical simulations of unsteady incompressible fluid flows (Rai and 
Moin, 1991; Clarksean and McMurtry, 1990; Najjar and Vanka, 1993). Both staggered 
and non-staggered (i.e., collocated) grid arrangements have been used to discretize the 
governing equations. In the collocated-grid arrangement, all dependent variables (i.e., 
velocities and pressure) are located at the same physical location in contrast to the 
staggered arrangement where velocities are centered between the pressure locations. In 
general, the collocated arrangement of velocities and pressure has reduced the amount of 
interpolation when compared with discretization on staggered meshes. Further, the 

collocated arrangement is more convenient for the use of high-order discretizations as 
well as general curvilinear coordinate systems. Several second-order accurate collocated 
schemes have been reported in the literature, for example, Chorin (1967), Strikwerda 
(1984), Abdallah (1987a,b), Biringen and Cook (1988), Sotiropoulos and Abdallah 
(1991), and Armfield (1991). These schemes have successfully calculated several model 
flows with good accuracy. 

A major issue in numerical schemes employing a collocated arrangement is the 
satisfaction of the divergence-fiee condition for the velocity field. For example, Armfield 

(1991) discusses the loss in the ellipticity of the pressure-Poisson equation giving rise to a 

checkerboard pressure split in collocated schemes applied to the SIMPLE algorithm 
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(Patankar, 1980). Biringen and Cook (1988) solve the unsteady pressure-Poisson 
equation and suggest a perturbation to the right-hand side of the pressure equation in 
order to satisfy the compatibility condition. Abdallah (1987a,b) and Sotiropoulos and 

Abdallah (1991) discuss the inability of the collocated schemes to satisfy the divergence- 

free condition of the velocity field without a loss in ellipticity of the pressure equation. 
Sotiropoulos and Abdallah (1991) analyze two different formulations of the pressure 

equation and conclude that not obtaining a divergence-free velocity field is more tolerable 
than an oscillatory pressure field. 

In this section, we describe various formulations for discretizing the pressure- 
Poisson equation (Equation 3.1.7) on collocated grids. We will also study the 
implications of the high-order evaluation of the operators on satisfying the divergence- 
free condition. The formulations vary in the accuracy of the stencil as well as in the 
manner of representing the operators. Three main representations of the operators are 
considered. These schemes are referred to as the Inconsistent Finite-Difference Method 
(IFDM), Consistent Finite-Difference Method (CFDM), and Consistent Finite-Volume 
Method (CFVM). The satisfaction of the compatibility and integrability conditions has 
also been investigated for the various schemes. The validation of these formulations is 
given in Sections 3.7.1 and 3.7.2. 

33.1   Inconsistent Finite-Difference Method 

In this method, the divergence (V.) and gradient (V) operators are combined into a 
Laplacian operator (V2) and the pressure-Poisson equation (Equation 3.1.7) is written as: 

The operators V2p and (V.u) are then discretized individually on the collocated grid 
points with fourth-order accurate stencils. As the discrete divergence (V.) and gradient 
(V) operators do not commute with the discrete Laplacian operator (V2), the method is 
labeled as inconsistent (see Appendix B). 

The Laplacian operator is formulated with a fourth-order accurate stencil : 
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2 1 
(V P)iJ  = l2Ä£(-Pi-2'J+ 16Pi-lJ-30pi,j + 16pi+1j.pi+2j) 

+ 72V (~PiJ'2 + 16PiJ'1 ~30pi'j + 16pi'J+1 -Pi'J+ti       (3.3.1.2) 

The discrete divergence operator of the velocity field ( V.Z ), denoted by DiJt is evaluated 
with a fourth-order accurate scheme: 

Di'j = l2Äx fc-l-J"8 "i-l.J + 8 "i+l.j ■ "i+2j) 

+ l2Äy (vi>J-2'8 *i.j-l + 8 hj+l - hj+2) (3.3.1.3) 

Adjacent to the boundaries, second-order accurate stencils are used. Neumann conditions 
are imposed on the pressure field along the boundaries of the computational domain and 
are discretized with a third-order one-sided finite-difference scheme (Fornberg, 1988): 

(iP-\    _ 1 / 11 o        3 1 
[dx)j~ Ax'" TP1'J +3P2'J'2P3-J +3P4j (3.3.1.4) 

This relation is then used to evaluate the boundary pressure (p2 j, say) in terms of the 

boundary gradient and the interior nodal values. Finally, the pressure gradient in the 
update procedure (Equation 3.1.6) is formulated with fourth-order central difference 
stencils. At the final step of the solution procedure, the collocated velocities are not 
divergence-free due to the inconsistency in applying the Laplace operator instead of the 
divergence of the gradient operator. Details are given in Appendix B. 

3.3.2   Consistent Finite-Difference Method 

In this method, the same discrete operator is used for the divergence on the two 
sides of Equation (3.1.7). This method is consistent in the formulation of the operators 
and will be referred to as the Consistent Finite-Difference Method (CFDM). 

Both second and fourth-order formulations are considered. The second-order 
formulations of the divergence and gradient operators are: 

°ij = m <SMj - hij >+ 2AJ Gi.j+l - Vi,j-i> (3.3.2.1) 
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(&)     -2Äi(Pi+l.j~Pi-l.j) (3.3.2.2) 

(dp\     _   1 
[dy]     -2Äj(Pi,j+rPi,j-i) (3.3.2.3) 

In the fourth-order representation, the following relations are applied: 

Di>J = Ute* Si-2J -8 Kl.j +8 ui+1J -ui+2 j ) 

+ mt(hj-2 -8 \j-i +* hj+i -hj+2> (3.3.2.4) 

( Ä )     = im (Pi-2,j -8Pi-l,j +8 Pi+i.j -Pi+2j) (3.3.2.5) 
v    yi,j 

{%).  .  =H^(Pi.j-2-8Pi.j.l+8Pi,j+rPij+2) (3.3.2.6) 

The second-order (Equation 3.3.2.1) or fourth-order (Equation 3.3.2.4) discrete 
divergence operator is in turn applied on dpldx and dpi dy to derive the pressure-Poisson 
equation. As an illustrative example, the second-order formulation for the divergence and 
gradient operators results in the following pressure equation : 

1 i 
4Ax2 lPi+2J '2 PiJ + pi-2,j > +   ^2 (Pi.j+2 ~2 Pi,j+ Pi,j-2> = 

1      .- 
2AxAt(Ui+1'rU"J)+^<hj+rhj-l) (3.3.2.7) 

Equation (3.3.2.7) will give rise to a checkerboard split in the pressure. Other discrete 
operators (Equations 3.3.2.1-3.3.2.6) can also be derived through various combinations of 
the divergence and gradient stencils (see Appendix B for detail). 

Adjacent to the boundaries, second-order stencils (Equations (3.3.2.1-3.3.2.3)) for 
the divergence and gradient operators are used. Finally, the pressure gradient in the 
update procedure (Equation (3.1.6)) is consistent with the formulation implemented in 
deriving the pressure-Poisson equation. At the final step of the solution procedure, the 
collocated velocities are divergence-free. 
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3.33   Consistent Finite-Volume Method 

In this method, the continuity equation is written in terms of the velocities at half 
points surrounding the grid nodes (or cell fluxes) using a finite-volume formulation (sec 

Figure 3.2.1). Hence, the approach is referred to as the Consistent Finite-Volume 
Method. This method requires that the cell fluxes, c, be related to the collocated velocity, 
u, and then corrected to give : 

Fc"+7=° (3.3.3.1) 

The pressure-Poisson equation is written as: 

Z?F* (3.3.3.2) V.(Vp+l)= 1-V.c 

The velocities at the grid nodes are no longer required to satisfy the divergence-free 
condition. The velocities at half points, c, are computed from the collocated velocity 
field, u, using either a second-order interpolation function: 

(cxh-ia.j = 2 (ui-l.j + W.j) (3.3.3.3a) 

(Cyk,j-l/2 = 2 (hj-l + Vi.j) (3.3.3.3b) 

or a fourth-order interpolation function : 

(c*>i-l/2J = l6(- Ui-2J + 9 "i-l.j + 9 i.j - W+l.j) (3.3.3.3c) 

(cykj+l/2 = l6(~ Vi-J-2 + 9 ViJ-1 + 9 hj - Vi,j+l) (3.3.3.3d) 

The divergence operator is formulated in terms of these cell face velocities as : 

Di'J = Wc(^i+l/2J-^x)i.mj)^^-c(^y)iJ+1/2 -Ccy\H!2)    (3.3.3.4) 

for second-order accuracy and as : 

DU= 24^c^i.3f2,j-27rcx)i.mj + 27(cx)i+1/2J -fot+3aj) 
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1 
+ 24Äy~c 

(Vyhj-3/2-27Gy)ij.m + 27<cyh,j+1/2-<cy)ij+3K)  ^^) 

for fourth-order accuracy. In Equations (3.3.3.4-3.3.3.5), Axc and Ayc represent the cell 

sizes in the x and y directions, respectively. Equation (3.3.3.4) corresponds to the second- 
order finite-volume formulation of Harlow and Welch (1965) for the staggered mesh 
arrangement (see also Kim and Moin (1985)). The pressure gradient is similarly 
discretized at the cell faces by a second-order stencil: 

(«) ,«     ~ ^(Pi-J"P^J) (3.3.3.6a) 

dy~\ = 4y~ (pi.j' Pi,j-1> (3.3.3.6b) 
-     %j-l/2 

or by a fourth-order stencil 

(ä) " 24to < -Pi-2,j +27Pi-l,j -27Pij +Pi+1j) (3.3.3.7a) 

(*) .m   = 24%< -Pi.j-2 +27Pi,j-l -27pUj +piJ+1) (3.3.3.7b) 

The second-order (Equation 3.3.3.4) or fourth-order (Equation 3.3.3.5) discrete 
divergence operator is then applied on the pressure gradient to derive the pressure- 
Poisson equation. Similar to the Consistent Finite-Difference Method, other discrete 
pressure equations can be derived through various combinations of the discrete operators 
and are summarized in Appendix B. Near the boundaries, a lower-order accurate 
formulation is again applied. It is to be noted that no ad hoc boundary pressure condition 
is required for this formulation (Kim and Moin, 1985). 

The cell fluxes at the (n+1) time step are corrected with the pressure gradient as 
follows: 

(c*+%mj = fe)W/2.y - * (§). _1Qj (3.3.3.8a) 

k"+ h.j-112 = (cy\j-i/2-*($). .m (3.3.3.8b) 
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In Equations (3.3.3.8a-b), the discrete pressure gradients are consistent with the 
formulation of the pressure-Poisson equation. The collocated velocities are also updated 
with the collocated pressure gradients using central finite-difference schemes (see Section 

3.3.2). Since the pressure-Poisson equation is derived by satisfying the continuity 
equation (Equation (3.3.3.1)) on the cell velocities instead of the collocated velocity, the 
cell face values satisfy the divergence-free condition, but the velocities at the grid nodes 
are not divergence-free. 

3.3.4   Satisfaction of Compatibility and Integrability Conditions 

The solution of the Poisson equation for pressure with all Neumann boundary 
conditions requires that the compatibility condition be satisfied. Integrating Equation 
(3.1.7) over the computational domain results in the compatibility condition: 

Q Q 

(3.3.4.1) 

where ßis the computational domain and dA is a differential area. Applying Green's 
theorem, the integrability conditions are given by: 

and 

jjV.(Vp)dA=   &.ndS 
n da 

ii^h-y- 

(3.3.4.2) 

dS 
J a 

(3.3.4.3) 

where <?# represents the boundary of the computational domain, dS is a differential 

length, and n is the unit vector normal to the boundary. In this section, we will analyze 

the satisfaction of these conditions in the context of the formulations discussed in 
Sections 3.3.1-3.3.3. 

The discrete form of the compatibility condition, Equation (3.3.4.1), is written: 

29 



ZI{V.(Vpj).. AxAy = j;ZZDijAxAy {33AA) 

Further, the discrete integrability conditions are: 

ff( V'M»)ij * Ay = Z$)B As (3.3.4.5) 

and 

i j B 

where B represents the boundary of the computational domain, As corresponds to the grid 

size along the boundary, j£+7is the boundary normal velocity andf^] is the boundary 

normal pressure gradient 

The second-order finite-volume discretization of Harlow and Welch (1965) 
satisfies the compatibility and integrability conditions (Miyakoda, 1962; Briley, 1974; 

Roache, 1976; Peyret and Taylor, 1983; Armfield, 1991). Amongst the procedures 
considered in this study, the Inconsistent Finite-Difference Method (IFDM) violates both 
the compatibility (Equation 3.3.4.4) and the integrability conditions (Equations 3.3.4.5- 
6). Briley (1974), and Biringen and Cook (1988) suggest the addition of a perturbation 
such that the compatibility condition is satisfied. The modified discretized pressure- 
Poisson equation is written as : 

V^j-B-IDU -(*)y/ (3.3.4.7) 

Nx-1 Ny-1 
where (fc)    =__ £   £    D.. (3348) 

However, even with the perturbation, the first integrabüity condition (Equation (3.3.4.5)) 
is not satisfied due to the inconsistency in applying the Laplacian instead of the 
divergence of the gradient operator. Further, the second integrabüity condition (Equation 
(3.3.4.6)) is violated since the stencil size decreases near the boundary. As a result, the 
final velocity field is not divergence-free. 
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The Consistent Finite Difference Method satisfies the compatibility condition, but 
violates the integrability conditions. The compatibility condition holds since the 

pressure-Poisson equation is derived with a consistent formulation. The violation of the 

integrability condition can be proved by summing the discrete equations over the 

computational domain. As an illustrative example, the sum of the fourth-order discrete 
divergence operator (or the RHS of Equation (3.1.7)) is : 

Ny-l    , 

~% 12Ax(-5ul.j    ■7u2.ruS.l*u4.i 

Nx-1 

+ 5 V i%    +7\Ny-l + \Ny-2   \Ny-3> ^^) 

The sum of the discrete pressure gradients (or the LHS of Equation (3.1.7)) is 

Ny-lNx-l 

Ny-l 

+ 7$l     +(il     -fll     > 
NI V^Mx-l.j       \mlix-2,j    V*JlM.; 

Clearly, the interior intermediate collocated velocities (M and v) and the interior pressure 

gradients {dpldx and dpldy) do not cancel out in the summation, thus violating relations 
(3.3.4.5) and (3.3.4.6). Hence, the collocated velocities are locally divergence-free but 
the global balance over the computational domain is not satisfied. 
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The Consistent Finite-Volume Method with the second-order discretization of the 

divergence operator and any order of accuracy of the gradient operator satisfies Equations 

(3.3.4.4), (3.3.4.5) and (3.3.4.6). However, a fourth-order (or higher) representation of 

the divergence operator in the CFVM will violate the integrability condition as seen by 

summing the discrete equations over the computational domain. The sum of the 

divergence of the discrete fluxes is: 

Ny-l 

= f=2^' ^\j + 24 ^5l2.j - h fe^TB. j + h ('*>9/2,j 

+ (C*+%x.j -24^Nx-3/2.j +24 ^Nx-5!2,j 'h^Nx-Jaj ) 

Nx-J 

+ *2^c( -^+1\ 1 + T4 (?A 5/2 -14 (?A 7/2 + 21 (?y\ 9a 

+ (Cy+%Ny-24&y\Ny-3/2+24 ^A tfj-5/2" 27 ^A tfj-7/2 ^     C3-3-4^) 

The sum of the discrete pressure gradients (or the LHS of Equation 3.1.5) is 

d 
Ny-l Nx-1 

E L d 

j=2  i=2 
Ny-l 

=z 
s mm 

•(D   +2(ii   -ri)   > V    JNx-3l2,j      \™JNx-5/2.j  X*)NX-7I2,J 

Nx-1 

,=2     yc  \yy)isi2   \yy)im   \<y)i9l2 

■(I)     +2fll     -(I) \uy)i,Ny-3l2       \ryJi,Ny-5/2    Wi, Ny-712 
) (3.3.4.12) 

The interior cell fluxes (cx and cy) and the interior pressure gradients {dpldx and dpldy) 

do not cancel out in the summation, thus violating relations (3.3.4.5) and (3.3.4.6). 

Hence, the cell fluxes are locally divergence-free but the global balance over the 
computational domain is not satisfied. 
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As a result of the analysis, the following conclusions hold: 

(i) the Inconsistent Finite-Difference Method violates the compatibility and integrability 
conditions, 

(ü) the Consistent Finite-Difference Method will not satisfy the integrability conditions, 
and 

(iii) the Consistent Finite-Volume Method will not satisfy the integrability conditions for 
a high-order formulation of the divergence operator. 

The divergence-free condition is satisfied locally at the collocated grid nodes for CFDM 
or at the cell faces for CFVM The integrated divergence over the computational domain 
for CFDM and CFVM with a high-order discretization of the (V.) operator results in 

artificial mass sinks and sources due to the violation of the integrability conditions. It 
does not seem possible to satisfy the divergence-free condition as well as the discrete 
mass balance inside the computational domain at the nodes of the collocated grid. It may 
be noted that CFDM and CFVM will satisfy the integrability conditions for 
computational domains with periodic boundary conditions. Therefore, although a scheme 
may satisfy the divergence-free condition locally, it is not implied that global mass 
balance is achieved. Only a second-order finite-volume discretization for the divergence 
operator will satisfy all of the desired criteria. 

3.4      Direct Solver Algorithm for the Pressure-Poisson Equation 

The discretized pressure-Poisson equation is solved directly using an efficient 
procedure based on the matrix diagonalization technique (Haidvogel and Zang, 1979; 
Canuto et al., 1988). The linear system of equations is obtained and can be written in 
matrix form as follows (Ku et al., 1987; Madabhushi et al., 1993): 

DiVxP + PDny   =/ (341) 

where P        is the pressure matrix of size (Nx-2) x (Ny-2). 

DF2x   is the reduced finite-difference second derivative matrix in the jc-direction 
of dimension (Nx-2) x(Nx-2). 

Df2y   is the reduced finite-difference second derivative matrix in the y-direction 
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of dimension (Ny-2) x (Ny-2). 

Df2y   is the transpose of Dp2y • 

/        is the modified right hand side matrix of size (Nx-2)x(Ny-2). 

The modified matrix includes the contributions from the boundary values. 

Appendix C presents the finite-difference second derivative matrices whose coefficients 

are determined using CFVM. In the next step of the algorithm, DF2x and Dp2y are 
decomposed into their respective eigenvalue (Xx I and Xy I) and eigenvector (Ex and Ey) 
matrices as follows: 

DF2X =EX**IEX' (3.4.2a) 

T 

Dp2y   =EyXyIEy (3.4.2b) 

The matrix decomposition is performed using the EISPACK library routines, SGECO 
and SGEDI. Substituting Equations (3.4.2a-b) into Equation (3.4.1) results in: 

EX XJCIEX   P + P Ey XylEy   =f (3.43) 

Equation (3.4.3) is then pre-multiplied by Ex and post-multiplied by Ey. This yields to 
the following expression: 

UP' + P'XyI=f (3.4.4) 

where P' = E'x PEyandf'= E'x fEy. Equation (3.4.4) is an algebraic relation and 
P'ij is calculated from: 

F'i'"^j
f'» (3A5) 

Finally, the pressure matrix, P, is obtained from: 

P = ExP'Ey (346) 

For incompressible flows, the pressure field has an arbitrary level; hence, the 
formulation of the reduced matrix method is numerically singular. This effect is reflected 
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in the presence of two null eigenvalues (one for each x and y direction). To overcome the 

mathematical singularity, the denominator in Equation (3.4.5), (—-— V is replaced by 

an arbitrary value (say, 1) when the denominator is zero. In the present computations, the 

threshold value below which the magnitude of the eigenvalue is considered to be 'zero* is 
set to 1.0x10-". 

The above algorithm involves four matrix-matrix multiplications and solution of 
{(Nx-2) x (Ny-2)) algebraic equations. The overall operation count is 0(A!x2 xNy + Nxx 

Ny2). Although the algorithm consists of a flexible solver for the high-order discrete 
Poisson and Helmholtz equations on non-uniform rectilinear grids, its basic limitation is 
that the coefficients of the discretization operator matrices, DJVX and Djvy, can vary only 
in their respective discretization directions. Thus, for computational domains with 
interior obstacles, the solution algorithm of the pressure-Poisson equation is modified and 
will be presented in Section 3.6. 

3.5      Stability Analysis of the Numerical Scheme 

The explicit evaluation of the convective and diffusive terms controls the 
numerical stability and dictates the time-step size in terms of the appropriate Courant- 

Friederich-Lewy (CFL) numbers (Anderson et al., 1984). To determine these restrictions, 
a von Neumann stability analysis has been performed on two model equations, the one- 
dimensional unsteady diffusion equation and the linear Burgers equation. Based on this 
analysis, the following stability criteria are derived: 

H=   v* max[± + ±]<3-6 16 (3.5.1a) 

r2=   At   m«[^+ ^]*f (35lh) 

It should be noted that the stability requirements for second-order central 
difference stencils are n <: 114 and r2 < 1/2 (Anderson et al., 1984). The stability 

analysis for the Navier-Stokes' equations requires a more elaborate study and has not 
been attempted. The values of the diffusive and convective CFL numbers in Equation 

(3.5.1) will provide guidelines on the time-step size limitations for the Navier-Stokes 
equations. 

35 



3.6      Capacitance Matrix Technique 

Appendix D describes in detail the modifications of the spatial derivatives for 
interior obstacles. This section presents the modifications of the solution algorithm for 

the pressure-Poisson equation. The presence of irregular regions in the computational 

domain such as obstacles and baffles renders the pressure-Poisson equation non- 
separable. The Capacitance Matrix Technique (Buzbee et aL, 1971; Schumann, 1980) 
has been incorporated to overcome this difficulty. Briefly described, the objective is to 
solve the non-separable Poisson equation, called the i4-problem, satisfying: 

A p=f (3.6.1) 

where A is a sparse banded matrix describing the original problem whose non-zero 
coefficients are computed and stored. A 'separable' ^-problem is constructed from the A- 

problem, and can be solved using the eigenvalue decomposition algorithm. The B- 
problem does not satisfy Equation (3.6.2.11) but solves: 

*•*'* (3.6.2) 

The matrix B has the same coefficients as the matrix A except at the M locations adjacent 
to the baffle(s). 

The Capacitance Matrix Technique (CMT) is an algorithm that solves Equation 
(3.6.2) using a direct solver while concurrently satisfying Equation (3.6.1). To attain this 
objective, a capacitance matrix, denoted by C, is first constructed by solving (once for the 

entire problem) M number of ^-problems with sequential unit perturbations to the right 
hand sides of the equations. The residuals at the M positions in the corresponding A- 

problem are computed and become the column elements of C. The algorithm to calculate 
the C matrix is symbolically summarized as follows: 

doj=l,M 
Si=l 

doi=l,M (%(- ,x 

end do 
8=0 

end do 

36 



C is a matrix of size MxM. The final stage of the algorithm consists in computing the 

inverse of the capacitance matrix (C*7). These calculations are performed at the pre- 

processing stage of the simulation; further, for a prescribed grid configuration, C'1 will be 

stored for subsequent use in the time-stepping procedure. During the time integration 
procedure, the following solution steps are executed: 

(i) Solve first the ^-problem with the original source term using the direct solver 
algorithm : 

DF2xPl+Pl.D^2y   =/ (364a) 

(ii) Compute the residuals (RA) on the ^-problem: 

*A = APlf (3.6.4b) 

(iii) Perturb the source term: 
f=f-C-*R* (3.6.4c) 

(iv) Solve again the ^-problem with the perturbed source term,/*: 

J>F2x   P2 + P2-I>F2y   =/ (3.6.4d) 

Steps (i) and (iv) are solved using the algorithm described in Section 3.4. At the end of 
Step (iv), the pressure field, P2, is also the solution field of the original A -problem 

(Equation 3.6.1) (see Appendix E for proof). The overall operation count of the solution 
algorithm with the Capacitance Matrix Technique is 0(2Nx2xNy +2 NxxNy2), i.e. twice 
as large as the original algorithm discussed in Section 3.4. 

3.7      Validation of the Numerical Scheme 

A computer code has been developed based on the numerical procedure discussed 
in the previous sections. The pressure formulation methods described in Section 3.3 are 

evaluated for two 2-D model problems, the vortex-decay and the driven-cavity, and the 
results are discussed in Sections 3.7.1 and 3.7.2. Table 3.7.1 summarizes seven schemes 

considered for the discretization of the pressure-Poisson equation. A detailed description 

of the stencils is presented in Appendix B. We will study the effect of these formulations 
on the accuracy of the numerical procedure. Section 3.7.3 presents the results for the 
Kovasznay flow. 
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The error norms are used to evaluate the formal accuracy of the numerical 
discretization for the test problems and are defined as follows: 

Li-norm: 

Ny-lNx-l 

Z E H-fl 
L1 _ & '=2 

*>     (Nx-2)(Ny-2) (3.7.1) 

fNy-lNx-1 412 

L2-norm:    L   =^ 
j=2  i=2 

0 (Nx-2)(Ny-2) (3.7.2) 

Loo-norm:    L    = max l<f> - 0*/ (3.7.3) 

where <t> represents the discretized variable and <f is its corresponding analytical value. 
The order of error reduction, X^ between two grid levels, Nxj and Nx2, is defined as : 

A^ = 

im (3.7.4) 

i - 1,2 or oo, fLM represents one of the error norms on grid Nx1 andTl/ \ is where / = 

of the error norms on grid Nx~. 

one 

3.7.1   Vortex-Decay Problem 

The code was initially validated for several simple test problems including the 
scalar convection and scalar diffusion equations, and the linear and non-linear Burger's 

equations. The error reduction for the numerical scheme is found to be fifth order. In 
this section, we will study the effects of the pressure formulations in Table 3.7.1 on the 

numerical solution of the two-dimensional vortex-decay problem. The observed L1 and 

L error norms as well as the order of error reduction (A) are discussed below for the 
various field variables. 
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The analytical solution of the two-dimensional vortex-decay problem is (Taylor 
1923): 

u*(x,y,t) = -cos(x) sin(y) erm (3.7.1.1a) 

v*(x,y,t)= sin(x) cos(y) erm (3.7.1.1b) 

P*(x,y,t) = - ^ (cos(2x) + cos (2y)) er<* (3.7.1.1c) 

where o~= 2/Re. 

The computational domain extends from 0 to n in the JC and y directions. The 

boundary conditions for the velocities are set according to Equations (3.7.1.1a) and 
(3.7.1.1b). Neumann boundary conditions are imposed for the pressure field. Numerical 
simulations are performed for Reynolds numbers of 7,100, and 7000. The time step, At, 
is set to 2 Jxl fr5 so as to rrnmmize the temporal discretization errors. 

Figure 3.7.1.1 presents the L~ error norm at Re = 7 as computed by the various 

methods described in Section 3.3. These errors are determined at t = 035 at which time 
the vortex decays to half of its original strength. Also shown are the results of Le and 

Moin (1991) for the second-order time-split finite-volume method. Results obtained with 
IFDM are fifth-order accurate (A„ = 5.77) between the first two grid sizes (77x77 and 
33x33); however, ^ drops to 0.76 for grid sizes of 33x33 and 65x65. At this refinement, 

the local divergence errors are significant and mask the accuracy of the convection and 

diffusion operators. The overall error reduction is calculated to be 2.6. In the Consistent 
Finite Difference Methods (CFDM1-3), the error is seen to decrease with the fourth 
power of grid size. The solution obtained with the Consistent Finite-Volume Method is 
second-order accurate for CFVM1 and CFVM2 and third-order for CFVM3.  It was 

observed that the solution of the velocity field is sensitive to the near-boundary pressure 
gradient stencil. A second-order discretization of the near-boundary pressure gradient in 

CFVM3 resulted in an overall second-order accuracy of the velocity. Consequently, a 
fourth-order discretization is also implemented at the boundaries.   The maximum 
divergences of the calculated velocity field at t = 035 obtained from the various 
formulations are summarized in Figure 3.7.1.2. As expected, for the CFVM procedure, 
the cell fluxes are divergence free but the cell-centered velocity field is not 

Subsequently, simulations are performed using CFVM2 for Re between 7 and 
701  The grid resolution is 65x65 nodes, and the time-step size, At, is lO"4. The 
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calculations are undertaken for 5000 time steps (r = 05). Figure 3.7.1.3 presents the 
error norms of the streamwise velocity and pressure. It is observed that the error norms 

remain bounded with increasing Reynolds numbers. This behavior is a characteristic of 
the vortex decay problem since the convective terms balance the pressure gradient while 
the diffusive terms balance the temporal derivative.   Hence, at high Reynolds numbers, 

the accuracy of the scheme will be mainly dictated by the discretization of the pressure' 
gradient term Table 3.7.1.2 summarizes the orders of reduction, ^ and Ap, based on the 

average errors at Re = 7,100 and 1000 as computed by the various schemes. It is seen 
that the error reductions decrease with increasing Re for most of the schemes. This aspect 

quantifies the deterioration in accuracy seen in Figure 3.7.1.3. For the vortex-decay 
problem, the Consistent Finite Difference Method is seen to result in the highest order of 
error reduction. 

3.7 2   Driven-Cavity Flow 

The results for the shear-driven flow in a square cavity with a unit velocity (« = 
1) applied on the top boundary are presented in this section. The velocity field is started 
with zero initial conditions. The computational domain extends from 0 to 1 in the x and y 

directions. The simulations are performed on grid sizes of 77x77,33x33 and 65x65 for 
Reynolds numbers of 700,400 and 7000. The solutions obtained with a 65x65 grid are 
discussed and compared with the numerical results of Ghia et al. (1982) and Vanka 
(1986). The different formulations for the pressure-Poisson equation, summarized in 
Table 3.7.1, are considered in order to evaluate their relative accuracy in predicting the 
flow in the driven-cavity problem. 

Figure 3.7.2.1 presents the «-velocity profile along the vertical centerline of the 
cavity at Re = 100 as computed by the different pressure formulations. Also shown are 
the numerical results of Ghia et al. (1982) on a 129x129 grid. The results obtained with 

CFDM and CFVM are seen to collapse on a single curve; however, the «-velocity 
calculated by IFDM has a higher value than that of Ghia et al. (1982) and the other 
formulations of the current study. The minimum ^-velocity (umin) along the vertical 
centerline of the cavity (x = 0 J), the minimum and maximum y-velocity (Vmin and Vmar) 
along the horizontal centerline of the cavity (y = 0J), and the ininimum stream-function 
(Vran) at the center of the primary vortex, are summarized in Table 3.7.2.1 for Re = 100 

on a mesh resolution of 65x65 nodes. Also shown are the results obtained by Ghia et al. 

(1982) on a 729x729 grid and Vanka (1986) on a 327x527 grid. It is observed that the 
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Solutions obtained with CFDMl-3 and CFVM2-3 match the results from the calculations 

of Vanka (1986). The results obtained by the seven schemes are presented in Table 
3.7.2.2 for Re = 400. It can be seen that the values predicted by CFVM3 compare more 
satisfactorily with the results obtained by Gbia et al. (1982) while those predicted by 
IFDM have significant errors. 

Figure 3.7.2.2 presents the a-velocity profile along the vertical centerline of the 
cavity at Re = 1000 as computed by the different pressure formulations. Also shown are 
the numerical results of Ghia et al. (1982). It is seen that the «-velocities computed with 
CFDM and CFVM compare satisfactorily with the solution obtained by Gbia et al. 
(1982), but the solution given by IFDM has significant error. Table 3.7.2.3 summarizes 
Umin (along x = 05), vmin (along y = 0 5), Vmax (along y = OS), and y>W„ for Re = 1000 

obtained by the various pressure formulations and the numerical results from Ghia et al. 
(1982) on a 129x129 grid and Vanka (1986) on a 321x321 grid. The values obtained 
with CFVM3 compare more satisfactorily with the data of Ghia et al. (1982) and Vanka 

(1986) than CFDM3. Further, the calculations performed with IFDM have significant 
differences; for example, umin is over-predicted by 30%. The solutions obtained with 
CFVM2 are also in close agreement with the results of Ghia et al. (1982) but the 
differences are larger than those obtained with CFVM3. 

Subsequently, the satisfaction of the global divergence-free condition is evaluated 
for the various schemes and is used as a measure of the overall accuracy of the numerical 
formulations. The integrated mass (along the y-direction, say) is defined as : 

Nyl 

ml = Z  p+lAy (3J21) 
J~*• 

where <p represents either the collocated velocity (u) or the cell fluxes (Cx). The variation 

of m\x along the ^-direction is presented in Figure 3.7.2.3 for the Consistent Finite 

Volume Methods. For CFVM1 and CFVM2, the global divergence-free condition is 
satisfied to machine accuracy (order of 10-15) by the cell face fluxes. However, since 

CFVM3 does not satisfy the integrability conditions as discussed in Section 3.3.4, it 
generates artificial mass sources (and sinks) within the computational domain giving rise 
to errors in the global divergence. It is observed that the global divergence of the cell 
face fluxes is of the order of approximately 10-3. Figure 3.7.2.4 displays the distribution 
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y 
of mu along constant x-lines for the various pressure formulations. The magnitudes of 

these global divergence deficiencies are observed to be of the order of 10-3 for IFDM, 

CFDM1, CFDM2, and CFDM3. These errors arise from the violation of the integrability 
conditions (Equations 3.3.4.5-6). It is also seen from Figure 3.7.2.4 that the collocated 
velocity field obtained with CFVM3 has global divergence errors of the same order of 
magnitude as the cell fluxes (-70-*). The behavior of the global divergence for CFVM1 

and CFVM2 is high (-W*) near the boundaries, but then drops sharply to lO* for 

CFVM1 and 10* for CFVM2 in the interior of the computational domain. In addition to 
these errors in global balance, the Consistent Finite Difference Methods (CFDM1-3) also 
display an oscillatory pressure field. Figure 3.7.2.5 shows the pressure distribution for 
CFDM1-3 along the horizontal centerline (y = OJ). Severe checkerboard splitting is 
observed in the pressure variation. 

To summarize, several different formulations for representing the pressure- 
Poisson equation have been examined in numerical schemes employing a collocated 
arrangement of the velocities and the pressure. The methods consider discretizations of 
the divergence and gradient operators with different orders of accuracy using finite- 
difference and finite-volume concepts; their formulations have been discussed in Section 
3.3. These representations have been evaluated by computing the decay of a vortex and 

the steady flow in a driven cavity.  It is seen that the Inconsistent Finite-Difference 
Method leads to significant errors. The Consistent Finite-Difference Approach obtains a 
divergence-free velocity field but the pressure field is seen to be oscillatory and global 

divergence is not satisfied. In the Consistent Finite-Volume methods, the divergence-tree 
condition is satisfied by the cell face fluxes and the resulting pressure field is smooth. 
However, if the divergence operator is discretized with fourth-order (or higher) accuracy, 
the cell face fluxes do not satisfy the global divergence-free condition.    The' 
characteristics of the various pressure formulations discussed in the current study are 

summarized in Table 3.7.2.4.   Based on these observations, we conclude that the 

Consistent Finite-Volume Approach with second-order discretization of the divergence 
operator and fourth-order discretization of the pressure gradient provides the best 

compromise between accuracy and satisfaction of the compatibility and integrability 
criteria and should be the preferred approach when used in conjunction with collocated 
grids and high-order differencing of the momentum equations. 
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3.73   Kovasznay Flow 

As a final test problem, the laminar flow behind a two-dimensional grid, known as 
the Kovasznay flow, is investigated. The exact solution derived by Kovasznay (1948) is 
a function of the Reynolds number of the form: 

u*(x,y) = l-e**cos(27ty) (3.7.31a) 
v*(x>y)=^e*x"n(2ny) (3J31b) 

P*(x,y) = j(i-e2Z*) (3731c) 

whereA = f-^ + ^J/2. 

The boundary conditions are based on the above relations, and the initial flow 
field is set to zero. The computational domain extends from -05 to 2.0 in the ^-direction 
and from -0.5 to U in the y-direction. The pressure formulation is based on CFVM2. 
Figure 3.7.3.1 shows the time-mean streamlines forte = 40. Two recirculation regions 
are formed near the inlet whereas the streamlines become parallel farther downstream 
Figure 3.7.3.2a presents the distribution of the error norms in the computed «-velocity 
field for several grid sizes. The error reductions, ^, are calculated to be 2.6,3.8 and 2.4 

for Lu, Lu, and L~ , respectively. Figure 3.7.3.2b shows the distribution of the error 

norms in the calculated pressure field for several grid sizes. The error reductions, ^, are 

calculated to be 2.6,3.6 and 2.1 for J^I*. andiT, respectively. It is observed that the 

error reductions presented for the Kovasznay flow are higher than for the vortex-decay 
problem. 

3.8      Evaluation of Outlet Boundary Conditions for Flows 
in Unbounded Domains 

Prescribing the appropriate outlet boundary conditions for flows in open domains 
has been an area of intensive research (Lowery and Reynolds, 1986; Pauley et al., 1990; 

Poinsot and Lele, 1992). Although our aim is not to resolve conclusively this' issue', 
several outlet boundary conditions are tested to evaluate their applicabffity in two types of 
flow configurations, the separated and the separated-reattaching flows. In separated 

flows, propagating structures are dominant, while, for separated-reattaching flows, 
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propagating structures with boundary layer development are of importance. The 

appropriate outlet boundary condition should result in minimal numerical distortion of 
these structures. The boundary conditions tested are as follows: 

(3.8.1a) 

(3.8.1b) 

(3.8.1c) 

1F+Uc(j£y° (3.8.1d) 

^+U<^yh^) (3.8.1c) 

where Uc is a representative convection velocity, and the index k = 1,2 represents the x 

(streamwise) and y (cross-stream) directions, respectively. 

These boundary conditions are tested for a converting vortex superimposed on a 
uniform flow (Poinsot and Lele, 1992). The computational domain extends in the 
streamwise (x) direction from -1 to 7 and in the cross-stream (y) direction from -2 to 2. 
A uniform grid of 41x81 nodes is used resulting in mesh sizes, Ax and Ay, of 0.05. The 
time-step size, At, is set to be 25x10-3. The initial conditions of the velocity field are 

based on the streamfunction for an incompressible viscous vortex in cylindrical 
coordinates: 

dw 
u = u0+-5y (3.8.2a) 

V-"3T (3.8.2b) 

where ¥=Cexp^^\ (382c) 

In Equation (3.8.2), uo represents the uniform inlet velocity, and Rc and C are the radius 
and strength of the vortex, respectively. The mean flow has a uniform value, uo = 1, at a 
Reynolds of 10000. The vortex is initially located in the center of the domain (x = y = 0) 
and defined by: 
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C = -0.0005; Rc = 0.15 (3 8 3) 

Uniform velocity (u = uo = 7, v = 0) is imposed at the inlet (x = -7), and freestream 

conditions (u = 7, v = 0) are specified at v = ±2. The ouüet boundary condition (x = 7) 
is based on one of the expressions given by Equations (3.8.1a-e). The convective 
velocity, Uc, in Equations (3.8.1d-e) is set to u0 (= 7). Null pressure gradients are 

imposed along the edges of the computational domain. The simulations are performed 
for three non-dimensional time units, corresponding to 72000 time-steps. 

The streamwise velocity difference is defined mß^} and the spanwise 

voracity, Ofe, is computed from : 

,. _dv   du 
^ _3T^ (3.8.4) 

Figure 3.8.1a shows contours of the streamwise velocity difference and the spanwise 
voracity for the initial field (r = 0). The dashed lines represent negative values. The 

maximum velocity difference induced initially by the vortex is 2.02x10-* with the 
corresponding maximum spanwise vorticity of 42xl0-2. The vortex has a counter- 
clockwise rotation with a central core of negative vorticity surrounded by a ring of 
positive vorticity.   Figures 3.8.1b-d present the results obtained with a zero normal 
boundary gradient of the velocity field (Equation 3.8.1a) for three time instances. At t = 

1, the vortex leaves the computational domain as seen in Figure 3.8.1b. The values of the 
maximum velocity difference and spanwise vorticity are 7.9x70'3 and 3.2xl0'2, 
respectively. At r = 2 (Figure 3.8.1c), a new elongated structure is present near the center 
of the computational domain.   This structure is formed as a result of the numerical 
reflection generated by the ouüet boundary condition. The maximum vorticity magnitude 

is computed to be 1x10-3. Mt = 3 corresponding to 2 time units after the initial vortex 
left the computational domain (Figure 3.8.1d), the numerical vortex has convected back 
towards the edge of the computational domain. The maximum vorticity at this instant is 
calculated to be 85x10-*. Figures 3.8.2, 3.8.3, and 3.8.4 present contours of the velocity 
difference and the spanwise vorticity for the remaining boundary conditions, Equations 
(3.8.lb-d). The time sequences in the figures are for t = 7,2 and 3.  The results obtained 

with Equation (3.8.1e) are similar to those obtained with Equation (3.8.1d) (see Figure 
3.8.4). For the boundary condition corresponding to Equation (3.8.1c), the converting 
vortex exiting the computational domain is observed to be subjected to high numerical 
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distortion (Figure 3.8.3a). Although numerical reflection is present for all of the 

computed vorticity fields, the magnitudes differ significantly between the various 

boundary conditions. Based on these time sequences, it is seen that boundary condition 
(3.8.Id) (as well as (3.8. le)) has the lowest numerical reflection from the boundary, and, 
therefore, results in minimal distortion of the vorticity field. 

Figures 3.8.5 and 3.8.6 summarize the temporal variations of the maximum 
velocity difference and spanwise vorticity for the various outlet boundary conditions 

tested. It is seen that boundary conditions (3.8.1d) and (3.8.1e) result in the lowest values 
while the values obtained by Equation (3.8.1a) are two orders of magnitude larger than 
the remaining ones. Thus, of these, boundary conditions (3.8.1d and 3.8.1e) allow the 
convecting vortex to leave the computational domain with minimal distortion and result 
in the lowest numerical reflection (see also Lowery and Reynolds, 1986; Pauley et al 
1990). 
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4.        NUMERICAL PROCEDURE FOR THREE-DIMENSIONAL SIMULATIONS 

This chapter extends the two-dimensional numerical procedure presented in 
Chapter 3 to a three-dimensional formulation. A Fourier-spectral representation is used 
in conjunction with the high-order finite-difference method. Section 4.1 outlines the 

mixed Fourier-spectraVflnite-difference scheme. The algorithm of the pressure-Poisson 
solver is presented in Section 4.2. The stability requirements of the numerical scheme are 
reported in Section 4.3. Section 4.4 presents the validation of the numerical scheme. 

4.1      Fourier-Spectral Representation 

The time-dependent Navier-Stokes equations governing the motion of an 
incompressible fluid (Equations 3.1.1-3.1.2) are considered with spanwise variation. 
Since the simulations are performed for homogenous boundary conditions in the z- 
direction, the instantaneous flow field is assumed to be periodic in the spanwise direction. 

Hence, the Fourier-spectral scheme is an appropriate representation of the flow variables 
in the spanwise (z) direction. The finite Fourier series expansion of a field variable, 0, is 
written as: 

Nzl2-1 

k2=-Nz/2 
«x, y. *m, 0 =    X fa y. kz, t) eik*m  ; m = 0 , Nz-1 (4.1.1) 

where Nz is the number of Fourier:modes and k2 is the Fourier wavenumber. The Fourier 
coefficients, (f>, are complex with <p = $r+ i ft and i = *f7. 

In the current numerical procedure, the simulations are performed in physical 
space and Fourier transforms are applied to evaluate the spanwise derivatives with 
spectral accuracy. The following procedure outlines the steps undertaken to compute the 

velocity and pressure fields. For the first step of the time-splitting scheme, the 
convective and viscous derivatives in the spanwise direction are evaluated using the fifth 

and fourth-order formulations as described in Section 3.2. A Fourier-spectral 
representation will be considered in the future. In the second step, the pressure field is 

decomposed into its Fourier modes and computed in spectral space. Hence, the 
divergence of the intermediate velocity is evaluated with Fourier representation. As a 
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result, the Fourier coefficients of w are computed from Equation (4.1.1) and the gradient 
in the z-direction, div/dz, is evaluated as follows : 

Nzl2-l 

d%   ik,zm 

k2- -Nzl2 

A 
dw   _ * 
^~  ~lkzW (4.1.2b) 

In the update procedure, the Fourier modes of the z-velocity at the"<»+/) time step are 
then determined from: 

A A        A 

wn+] = w-ikzp
n+1At (413) 

Finally, the divergence-free z-velocity is determined from its Fourier coefficients through 
an inverse Fourier transform: 

Nz/2-J 

JLtv 
kz=-Nz/2 

" n+1 = , 2»n+1 eik*z>* ;m = 0, N2-l (4.L4) 

Efficient Conventional Discrete Fourier Transforms (CDFT) or Fast Fourier Transforms 

(EFT) (Temperton, 1983) are used to transform from physical space to spectral space and 

vice-versa. The formulation of the pressure-Poisson equation is presented in the section 
to follow. 

4.2      Spectral Formulation of the Pressure-Poisson Equation 

For the three-dimensional simulations, the pressure field, p, is decomposed into its 
complex Fourier modes, pk, in the z-direction as follows: 

A 1 Nz-* 
P(x,y,k2,t) =m Ipft,y,zm,t) eik*™ {A1V) 
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where kz is the Fourier wavenumber ( kz = -^,..., ^ .7) and / = VT. Taking the 

Fourier transforms of Equation (3.1.7), the Fourier coefficients of the pressure field will 
satisfy the following equation: 

(4.2.2) 

Equation (4.2.2) is discretized in the x and ^-directions based on the Consistent Finite 

Volume Method (CFVM2). The Fourier modes of divergence of the intermediate 
velocity are given by: 

(£<)=f+f+# (4.2.3, 
where 

A AW 

Bx  -N2Z^[-ät)e      m (4.2.4a) 
m=0 
N2-l 

I =iiffy*z" z—Koyj (4-2-4b) 
m=0 

A 
dw  _.,   * 
dz   -lk*w (4.2.4c) 

Hence, Equation (4.2.2) results in ((Nx-2)x(Ny-2)x(Nz)) number of linear equations. The 

direct solver described in Section 3.4 can be easily extended to solve for the Fourier 

coefficients in Equation (4.2.2). The three-dimensional discretized pressure-Poisson 
equation is written symbolically as : 

DF2x .P+P.DF2ykUP=f (4.2.5) 

A 

where P        is the complex Fourier coefficient matrix of the pressure 
of size ((Nx-2)x(Ny-2)xNz). P = Pr + iP. 

Df2x   is the reduced finite-difference second derivative matrix in the x-direction 
of dimension ((Nx-2)x(Nx-2)xNz). 

DF2y   is the reduced finite-difference second derivative matrix in the y-direction 
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of dimension ((Ny-2)x(Ny-2)xNz). 
T 

Dp2y   is the transpose of Dp? 

f        is the complex Fourier coefficient matrix for the discretized divergence 
operator of the intermediate velocity of size ((Nx-2)x(Ny-2)xNz\ 

f=fr + ifi 

Appendix C presents the finite-difference second-derivative matrices whose coefficients 

are determined using CFVM2. Decomposing DF2x and DF2y into their respective 
eigenvalue (A* I and Xy I) and eigenvector (Ex and Ey) matrices (see Section 3.4) and 
substituting into Equation (4.2.2) results in: 

EXXX1EX     P   +   P  EyXyIEyI-k2
zIP=f (4.2.6) 

Equation (4.2.6) is then pre-multiphed by E'J and post-multiplied by Ey. This yields the 
following expression: 

**IP' + P'lyI-kllP'=f' (427) 

where P = Ex P Ey and / = Ex f Ey. Equation (4.2.7) is an algebraic relation and 
Pijjt is calculated from: 

The Fourier coefficients of the pressure matrix, P, are then obtained from: 

A       _    A/   _-] 

(4.2.9) P = EXP E 

Equations (4.2.7)-(4.2.9) are solved for the real and imaginary parts of the Fourier 

coefficients. It is to be noted that, since the pressure field is a real variable, only 
(Nz/2+1) modes need to be computed and the remaining modes are their complex 
conjugates. Finally, the pressure field is determined from its Fourier coefficients through 
an inverse Fourier transform: 
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Nzl2-1 

p(x, y, z, t) =    YMX, y, kz> t) eik*z»> ; m = 0 , Nz-1 (42.10) 

The formulation of the reduced matrix method is singular for the zeroth 
wavenumber (kz = 0). This arises from the arbitrariness of the level of the pressure field 
in incompressible flow and is translated by zero eigenvalues (one for each x andy 

direction). To overcome the mathematical singularity, the denominator 

tw^J 
at k2 = 0 is replaced by an arbitrary value (say, 7) when the denominator is zero. In the 
present computations, the threshold value below which the magnitude of the eigenvalue is 

considered to be "zero1 is set to LOxW». In addition, for the Fourier representation, 
spurious modes for pressure are present for the highest wavenumber (k2 = -Nz/2), and 
hence its contribution is removed by setting its corresponding Fourier coefficient, p(x, y, 
-Nz/2, t), to zero (Balachandar and Madabhushi, 1992). 

In the presence of obstacles and baffles inside the computational domain, the 
direct solver is used in conjunction with the Capacitance Matrix Technique (Buzbee et 
aL, 1971; Schumann, 1980). Details of the CMT method are discussed in Section 3.6 for 

the two-dimensional simulations.   The spectral representation of the pressure field 
decouples the discretized linear equations in the z-direction for every Fourier 
wavenumber. As a result, the size of the capacitance matrix, C, will be reduced from a 
size of {Mx(Nzl2+ljf to (MxMx(Nz/2+l)) where M is the number of nodes to be 

modified adjacent to the baffle.   The capacitance matrix is constructed for the three- 
dimensional problem in a procedure similar to that described in Equation (3.6.3). The 
inverse of the capacitance matrix, C "7, of size (MxMx(Nzl2+l)), is computed at the 

initial stage of the simulation. For a prescribed grid configuration, C"' is stored for 
subsequent use in the time-stepping procedure.   At every time step, the algorithm 
described in Section 3.6 is applied for every Fourier mode (see Equations 3.6.5a-d). 

4.3      Numerical Stability 

Since the viscous terms are treated explicitly through the Adams-Bashforth 
second-order accurate formulation, the time step size is restricted by the diffusive 
stability criterion at low Reynolds numbers. The implicit Crank-Nicolson scheme can be 
applied in the future to override such a limitation. However, for relatively high Reynolds 

51 



numbers (say above 700), the stability criterion based on the diffusive terms will not 

dictate the time-step size. Based on the von Neumann analysis, the stability criteria for 
the three-dimensional calculations are given by: 

■ vA"«[i+5r+5iH (4.3.1) 

n.*~{%.%.%\i} (4.3.2) 

where Az is the grid size in the z-direction. 

4.4      Validation of the Numerical Scheme 

To test the present three-dimensional scheme for a problem with two non-periodic 
directions and one periodic direction, simulations of fully-developed laminar flow 
through a square duct are undertaken. The computational domain extends from -1 to 1 in 
the x and y-directions and from 0 to 2n in the z-direction. No-slip boundary conditions 

are applied along the edges of the computational domain in the x and y-directions and 
periodic conditions are imposed in the z-direction. The simulations are conducted for a 
grid size of 33x33x16 attfe = 10 and 30. The Reynolds number is based on the friction 
velocity and the duct half-width. The solutions obtained are compared with the 
numerical results of Madabhushi (1992) performed using Chebyshev collocation 
procedure in the x and y-directions and Fourier spectral representation in the z-direction 
(see Madabhushi et al. (1993)). 

Figure 4.4.1 presents the w-velocity distribution along y = 0 in the x-direction for 
a fully-developed laminar flow through a square duct at Re = 10 and 30. Also shown are 
the numerical results of Madabhushi (1992), based on Method 3 of Madabhushi et al. 

(1993), obtained on a 16x16x16 grid. The results are seen to be in excellent agreement 
with the fully-spectral procedure. A divergence-free 3-D perturbation is then 
superimposed on the fully-developed laminar flow and has a form similar to that used by 
Kim and Moin (1980) given by : 

u'(x,y,z) = -e[l + cos(nx)] sin(ny) sin(z) (4.4. la) 
v'(x,y,z) = -e sin(Kx) [1 + cos(ny)] sin(z) (4.4.1b) 
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w'(x,y,z) = 2m sin(nx) sin(ny) cos(z) (4 4 lc) 

where e is the amplitude of the perturbation. Calculations are performed for the decay of 

a 3-D perturbation at Re = 10 with e = 0.05. The temporal developments of the zeroth, 

first and second Fourier modes of the streamwise and spanwise velocities, ukz and w^ for 

kz = 0,1 and 2, are presented in Figure 4.4.2 at x = y = -05625. Also plotted are the 
results obtained by Madabhushi (1992) at x = y = -05557. It is seen that the results 
obtained with the current formulation agree well with the results obtained with the 
spectral method. The maximum divergences of the velocity field in the interior and along 
the boundary of the computational domain are displayed in Figure 4.4.3 for one time unit 
It is observed that the errors in the divergence of the velocity generated in the interior of 
the computational domain are one order of magnitude lower than the errors of the 
boundary divergence generated by the spectral code; while the divergence of the velocity 
field near the boundaries are one order of magnitude higher.   Simulations are also 
performed at Re = 30 with e = 030. Figures 4.4.4 a and b present the temporal evolution 

of the zeroth, first and second Fourier modes of the streamwise and spanwise velocities, 

" *,and wkz for ** = 0,1 and 2 at x = y = -05625. Comparison with the results obtained 

by Madabhushi (1992) shows satisfactory agreement To summarize, the current mixed 
high-order finite-difference Fourier-spectral method is seen to result in accurate 
predictions. Subsequently, the study of spatially and temporally evolving flows will be 
undertaken based on the developed numerical procedure described in Chapters 3 and 4. 

53 



5.       DESCRIPTION OF THE DATA-PARALLEL ALGORITHM 

This chapter presents the implementation of the two and three-dimensional 
numerical algorithms discussed in Chapters 3 and 4 on the massively parallel processing 
(MPP) computer, the Connection Machine Model 5 (CM-5). Section 5.1 outlines the 

CM-5 architecture. In Section 5.2, the two-dimensional data-parallel algorithm is 
described along with the performance and representative timings. Section 5.3 presents 

the three-dimensional data-parallel algorithm with its corresponding representative 
timings and performance. 

5.1      Details of the CM-5 Architecture 

The Connection Machine Model 5 (CM-5) is a massively parallel processing 
platform with a 'Universal Architecture' supporting both SIMD (Single-Instruction, 
Multiple-Data) and MIMD (Multiple-Instruction, Multiple-Data) computing models. It 
can consist of hundreds or thousands of computational processing nodes, one or more 
control processors and Input/Output (I/O) units. All these components are integrated into 
a system by two internal communications networks, the Control Network and the Data 
Network (Thinking Machines Corp., 1992a). A system including a control processor, a 
subset of computational processing nodes and a dedicated portion of the communication 
network is called a 'partition'. Timesharing, batch mode and multi-user environments are 
supported on individual partitions. Each partition can be viewed as a stand-alone parallel 
supercomputer. 

The control processor element is like a standard high-performance workstation 
computer. It consists of a SPARC (RISC-based) microprocessor with its hierarchical 
memory and VO devices such as local disk and Ethernet connection. It also includes a 
CM-5 Network Interface providing access to the Control Network and the Data Network. 
It acts as a partition manager executing system administration tasks and serial user tasks. 
An enhanced UMX-based operating system, CMOST, is executed on each control 
processor and manages the CM-5 parallel-processing resources. 

The processing node consists of a SPARC microprocessor, a memory subsystem 
and a CM-5 Network Interface. The microprocessor has a clock speed of 32 MHz and is- 
capable of 22 MIPS and 5 MFLOPS. These components are connected to a 64-bit bus 
system.  AU logical connections to the rest of the system pass through the Network 
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Interface. The memory subsystem consists of a memory controller, four DRAM memory 
banks of 8 MBytes each, and 64 KBytes of cache memory.  The memory banks are 

connected by a 72-bit path (64 data bits plus 8 ECC bits) to the memory controller which, 

in turn, is attached to the node bus.  The Network Interface connects the processing 
elements to the rest of the system through the Control Network and the Data Network. 
Optionally, the processing nodes can be configured with the Data-path floating point 
system, referred to as DASH or Vector Units (VU).   These vector units are high- 

performance arithmetic accelerators. Four vector units replace the memory controller. 
The vector-unit clock rate is 16 MHz. Each vector unit has 32 MFLOPS peak 64-bit 

floating-point performance and a peak memory bandwidth of 128 MBytes/sec, and 
performs all the functions of a memory controller. Attached to each vector unit is'an 8 

MByte memory bank.   Together, the vector units provide 512 MBytes/sec memory 
bandwidth and 128 MFLOPS peak 64-bit floating-point performance. 

Each vector unit is a memory controller and a computational engine controlled by 
a memory-mapped control register interface. Vector units cannot fetch their own 
instructions; they merely execute instructions issued by the RISC microprocessor. The 
vector unit processes both scalar and vector instructions. A scalar-mode instruction is 
handled as if it were a vector-mode instruction of length 1. Thus, scalar-mode 
instructions always operate on single registers; while vector-mode instructions operate on 
a sequence of registers. The vector unit module includes an adder, a multiplier, a 
memory load/store, an indirect register addressing, an indirect memory addressing, and a 

population count. The vector-unit instruction can specify at least one arithmetic 
operation and an independent memory operation. 

Communication topologies on the CM-5 are integrated through two internal 
networks, the Control Network and the Data Network. The Control Network supports 
communication patterns that may involve all the processors in cooperative operations 
such as broadcasting and reduction, as well as system management operations such as 
error signaling. Further, global synchronized communication is managed through the 

Control Network. The Data Network supports point-to-point data communication with a 
fat-tree topology. Similar to the 2-D mesh and hypercube topologies, the fat-tree 
structure can be divided into smaller pieces of the same topology. Hence, each group of 
processors has its own dedicated portion of the network. Traffic among the processors in 
one partition does not compete for bandwidth with traffic within another partition 
However, unlike the 2-D mesh and the hypercube topologies, traffic between two 
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partitions does not interfere with traffic internal to a third partition. The CM-5 Data 

Network is a 4-way fat tree where each node has four children. Scalability, 

partitionability, non-interference and redundancy constitute its main properties. The fat 
tree topology of the Data Network guarantees a communication speed of 5 

MBytes/second per node regardless of destination, and can sustain a delivery rate of 10 
MBytes/second within a group of 16 processors and 20 MBytes/second within a group of 
4 processors. The topology of the Control Network is also a binary 'skinny tree' and 
guarantees a ininimum bandwidth of 5 MBytes/sec, regardless of destination. 

The I/O device is connected to the CM-5 system through the Data Network. Each 
I/O interface requires a control processor to act as its file server and supervise all I/O 

operations. The Scalable Disk Array (SDA), a high-performance expandable RAID-3 
disk storage system, is a file system environment supporting parallel I/O on the CM-5. 
The basic Disk Storage Node consists of an I/O control processor (IOCP), a Network 
Interface, a large disk buffer, four advanced SCSI controllers, and eight 35-inch hard 
disk drives. This I/O subsystem provides 92 GBytes of storage, a peak bandwidth of 
over 17 MBytes/sec and 25 MIPS of processing power. All disks in the SDA act together 
in conjunction with the operating system to transfer data simultaneously. 

The CM-5 at the National Center for Supercomputing Applications (NCSA), 
University of Illinois, Urbana-Champaign, currently consists of 512 processing nodes 
with vector units. This platform provides 64 GFLOPS peak performance for 64-bit 
floating-point operations and has 16 GBytes of total available memory. It is configured in 
five partitions of 32,32,64,128 and 256 processing nodes, and the 572-processor CM-5 
can also be accessed. The SDA configuration consists of 12 Disk Storage Nodes that 
provide 100 GBytes of storage at I/O bandwidths of up to 132 MBytes/sec sustained rate. 

5.2      Data-Parallel Algorithm For Two-Dimensional Simulations 

This section presents the implementation of the data-parallel algorithm to perform 
two-dimensional simulations. Section 5.2.1 discusses the performance of basic 'kernels' 
and communication functionalities. The portability of the high-order finite-difference 
procedure into a data-parallel structure is summarized in Section 5.2.2 and representative 
timings are provided in Section 5.2.3. The prograniming environment is based on 

CMFORTRAN, a Thinking Machine parallel version of FORTRAN 90, and the data- 

56 



parallel algorithm consists of a modular structure that emphasizes ease of portability to 
various massively parallel processing platforms. 

5.2.1   Performance of Basic Linear Algebra and Communication Routines 

The performances of the CM-5 hardware and system software for basic 
communication functionalities and model linear algebra routines are first evaluated. 
These speeds will provide an estimate of feasible target values on the CM-5 platform. 
Starting with elemental addition, multiplication and triad operations of matrices, the 

speeds of matrix-vector multiplications, matrix-matrix multiplications performed by the 
CMSSL library routines are determined. The operating system (OS) is CSMOST V7.2 

prefinal and the code is compiled with CMF2.1 and linked to the CM Scientific 
Subroutine Library, CMSSL 3.1. 

The Connection Machine Scientific Subroutine Library (CMSSL) is a set of 
numerical routines supporting computational applications while exploiting the massive 
parallelism of the Connection Machine system The CMSSL provides data-parallel 
implementation of numerical routines such as matrix operations, linear equation solvers, 
eigensystem analysis, Fourier Transform, and statistical analysis among others. The 

library also includes optimized communication functions such as polyshift, all-to-all 
broadcast and reduction, gather and scatter, and partitioning. For example, matrix-vector 
multiplication (MxV), and matrix-matrix (MxM) multiplication use the CMSSL routines, 
gen_matrix_vector_mult and gen_matrix_mult, respectively. 

All axes of the arrays have a NEWS (North-East-West-South) layout 
configuration. Such mapping is found to be optimal for two-dimensional arrays. AU 
floating-point operations are performedon 64-bit (double precision) words. Table 5.2.1.1 
presents the performance of the basic kernels on a 256-processor partition for different 
array sizes without using the vector units, referred to as the scalar mode. Table 5.2.1.2 

summarizes corresponding speeds with the vector units activated, referred to as the vector 
mode. It is seen that in the scalar mode, the basic kernels have a moderate performance 
profile of several hundred MFLOPS. However, in the vector mode, performances greater 
than 10 GFLOPS are feasible for large matrix sizes. Most explicit computations 
encountered in Computational Fluid Dynamics (CFD) embed triad operations (see 
Section 3.2), while matrix-matrix multiplications will be invoked in the pressure-Poisson 
solver (see Section 3.4). Figures 5.2.1.1 and 5.2.1.2 present the performance of a triad 
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Operation (A+B*Q and a matrix-matrix multiplication {MxM) on various CM-5 partition 

sizes in scalar mode. It is observed that the performance rate increases up to 1.8 

MFLOPSInode for a triad operation and 2.5 MFLOPSInode for a matrix-matrix 
multiplication, then drops off to reach a plateau. Figures 5.2.1.3 and 5.2.1.4 show the 

performance rates (in MFLOPS per processing node) for the triad and matrix-matrix 
operations, respectively, in vector mode. The triad operation has a peak performance rate 
of approximately 22 MFLOPSInode; while the optimized CMSSL routine for matrix- 
matrix multiplication can sustain rates of up to 70 MFLOPSInode. 

Several communication functionalities are provided through CMFORTRAN as 
well as through CMSSL routines to access an element of an array along a specific axis. 
The command CSHIFT(ARRAYJ)IMJSHIFT) performs a circular shift of the elements of 
ARRAY; while the command EOSHIFT(ARRAYJ)IM\SHIFI.BOUNDARY) is appropriate 
when a boundary value {BOUNDARY) is to be imposed. BOUNDARY could be either 

specified as a scalar value or as an array. The rates of these communication 
functionalities have been evaluated under the following conditions: 

B = CSHIFT(A,1,-1) (5 2 j la) 

B = CSHIFT(AZ-l) (52AAh) 

B = EOSHIFT(A,l,-l,ß) (5.2.1.1c) 

B = EOSHIFT(A,l,-lßXM) (5.2.1.1d) 

where A and B are two-dimensional arrays with NEWS layout, ß is a scalar variable and 

BXM is a one-dimensional array containing the boundary values. Figure 5.2.1.5 
illustrates the CPU run times of the functionalities given by Equations (5.2.1. la-d). The 
CSHIFT commands along DIM = 1 and DIM = 2 have similar CPU times; hence, there is 
no preferential direction in computing these functionalities. It is also observed that the 
ratio of CPU run time for performing EOSHIFT over CSHIFT is 15 when BOUNDARY 

is set as a scalar and can be as high as 8 J when BOUNDARY is chosen as an array. This 
may be resulting from the specific array layout used by the CM-5 and its communication 
network. Instead of using EOSHIFT commands, shifts with specified boundary values on 
array elements can also be implemented by performing a CSHIFT command and then 
imposing the correct boundary conditions in a separate statement, as follows: 

uw = CSHIFT(u,l,-l) (5.2.1.2a) 
uw(l,:) = u(l,:) (5212h) 
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For the current high-order accurate finite-difference procedure, up to 6 array shifts 
along each array axis are needed to compute the stencil. The fifth-order upwind-biased 
scheme requires 5 shifts in each direction. It is possible to perform multiple array shifts 
referred to as 'polyshifts' via the CMSSL routine, PSHIFT; however, currently, the 
PSHIFT routine has not been fully optimized for the CM-5. Thus, multiple VSHIFTs 

with imposed boundary conditions (Equations 5.2.1.2a-b) are implemented in 
deteniiining the components of the high-order stencil. 

5.22   Implementation 

The performances of the basic ■kernels' and communication functionalities 
discussed in the previous section provide general guidelines regarding programming in 
the data-parallel environment on the CM-5. The key issues in developing computational 
tools based on data-parallel structure are to maintain ioad balance and maximum 
communication efficiency (Olsson and Johnsson, 1990). It is important to subdivide the 
numerical algorithm into separate components and recognize the basic kernels needed. 
For the current time-splitting scheme, the code consists of three major separate structures: 

(i) calculating the intermediate velocity field (Equation 3.1.3), 
(ii) solving the pressure-Poisson equation (Equation 3.1.5), 
(iii) updating the intermediate velocity field (Equation 3.1.4). 

For the two-dimensional simulations, all field arrays («, v,p) have the layout of 
their axes in the NEWS (North-East-West-South) configuration. As mentioned earlier, 
such mapping is found to be optimal for two-dimensional arrays. Communication steps 
have been separated from computations and reduced to a minimum. In step (i) of the 

fractional-step procedure (Equation 3.1.3), the convection and diffusion terms are 
formulated in terms of finite-difference stencils (see Section 3.2). For the current high- 
order accurate finite-difference procedure, up to 6 array shifts along each array axis are 
needed to compute the stencil. Communication comprises a major part of this step of the 
numerical algorithm. In order to optimize inter-processor communication, all 
communications steps (CSHIFT) are performed before undertaking the computations. 
However, this requires storage of additional temporary arrays within each processor. 

Once the neighbor values are communicated and stored, the calculations involve 
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multiplications of the coefficients by their neighbor values. For example, the first-order 
^-component derivative at point q, ^, is expressed as : 

(Wl = tupwndp *fcpim3 + (1 - upwndp) *fcnim3)J * uim3 

+ fupwndp *fcpim2 + (1 - upwndp) *fcnim2)] * uim2 
+[upwndp *fcpiml + (1 - upwndp) * fcniml)] * uiml 

+[upwndp *fcpi     + (1-upwndp)* fcniml)] *ui 
+[upwndp *fcpipl + (1 - upwndp) *fcnipl)] * uipl 
+[upwndp *fcpip2 + (1 - upwndp) *fcnip2)] * uip2 

+[upwndp *fcpip3 + (1 - upwndp) *fcnip3)] * uip3 (52.2.la) 

uiml = cshift(ui,-l); uim2 = cshift(uiml,-l); uim3 = cshift(uim2,-l)    (52.2.1b) 
uipl = cshiftfuij) ; uip2 = cshift(uipl,l); uip2 = cshift(uip2,l) (5.2.2.1c) 
upwndp = 1 far uiZO (52.2.U) 

fcpi and/cm represent the coefficients in the finite-difference stencil of ui for positive and 
negative upwinding values, respectively (see Equations 3.2.1-5). The remaining 
coefficients are defined in a similar manner. The boundary conditions are applied as 

given in Equation (5.2.1.2b). The second-order x-component derivative,^, at point q, 

is computed from : 

\bCf(&u,dx2)  =fdim2 * uim2+fdiml* uiml +fdi * ui 
q 

+fdipl*uipl+fdip2*uip2 (5.2.2.2) 

where ui is the velocity at point q, uim2, uiml, uipl, uip2 are the velocities at the west- 

west, west, east and east-east locations computed as shown in Equations (52.2.2b-c), and 
fdi, fdinü, fdiml.fdipl, and fdip2 are their corresponding coefficients in the finite- 
difference stencil whose values are given in Equation (32.6-8). 

In general, these coefficients may vary over the computational domain and, 
therefore, are stored as arrays. However, for constant viscosity and uniform grid, they do 
not vary with spatial location, except near the boundaries. Scalar values for these 
coefficients may then be used, thus leading to an additional computational step in the 
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programming algorithm to account for the boundaiy stencüs.   The finite-difference 
stencils in step (iii) arc computed in a similar manner to step (i). 

The pressure-Poisson solver (step (ii)) is the most computationally intensive 
algorithm in the fractional-step procedure. The direct solver consists primarily of 
products of matrices (see Section 3.4) which are performed through the efficient CMSSL 
routine, gen_matrix_mult. The eigenvalues (Xx and X,), and their corresponding 

eigenvector matrices, (Ex and Ey), as well as their inverses (Ex and Ey*) are calculated a- 

priori using EISPACK routines. The CMSSL matrix-matrix multiplication can attain a 
speed of 13 GFLOPS on a 256-processor partition for 4096x4096 matrices, as seen in 
Section 5.2.1. In CFD calculations, typically the grid nodes in any direction may be less 

than 1024, so the peak speed observed may not be realized in practice. However, 
increases in speed may be possible through future improvements in the compiler and by 
programming in lower level languages. 

The overall operation count of step (i) is 0(Nx xNy). The operation count of the 
direct solver (step (ii)) is O^xiVy + Ny>xNx). In simulations with internal obstacles, 
the Capacitance Matrix Technique requires the pressure equation to be solved twice, thus 
doubling the operation count The update procedure (step (iii)) has an operation count of 
0(NxxNy). 

5.23   Timings and Performance 

Two-dimensional calculations have been carried out for different grid sizes in 
order to evaluate the scaling of the machine as well as the performance of the algorithm 
for finer mesh sizes.   Table 5.2.3.1 shows the timings and computational speeds in 

GFLOPS for the momentum equations (Equation 3.1.4), the pressure solver (Equation 
3.1.7) and the update procedure (Equation 3.1.6) for various two-dimensional grids on a 

572-processor partition.   The floating-point operations are performed with 64-bit 
precision. It is observed that the pressure solver requires 90% of the total CPU run-time 

compared to the computations of the intermediate velocity and the update procedure. 
Also presented is the CPU run time ratio of the CRAY-YMP code over the CM-5 code 

The simulations on the CRAY-YMP are run on a single processor under UNICOS 6 0 

with a peak performance of 300 MFLOPS. It can be seen that for grid sizes smaller than 
64x64, the CM-5 is slower than the CRAY Y-MP by up to a factor of 3. However, for a 
2048x2048 grid, a speedup factor of 37 over the CRAY Y-MP can be obtained. The 
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representative timings in Table 5.2.3.1 have been obtained from two-dimensional 

simulations of the driven-cavity problem; hence, they do not account for the additional 

time incurred by the Capacitance Matrix Technique (Section 3.6). However, the CPU run 

times for two-dimensional simulations with obstacles could be estimated by multiplying 
the values of the third column in Table 52.3.1 by a factor of 2. 

Figure 5.2.3.1 shows the increase of the performance per processing node with 

grid size for different CM-5 partition sizes. It can be seen that for a given problem size, 

the best performance per node is obtained always by the 52-processor partition attaining 

34 MFLOPS per processing element for 1024x1024 grid. For 2048x2048 grid, the peak 

performance of 41 MFLOPS per node is achieved on the /2«-processor partition. There 

are two factors contributing to such behavior: first, the communication costs are relatively 

small; and second, the vectors lengths are large. It is expected that the processor 

performance will reach a peak at some grid size. However, before such a limit is reached, 

the memory required per node by the current computer program exceeded that available 

in the current machine. Nevertheless, Figure 5.2.3.1 illustrates an important characteristic 

of the CM-5 that both the vector length as well as the computing-communication ratio 
play important roles in achieving maxinnirn performance. 

The parallel efficiency of the algorithm is evaluated by computing the speed-up 
factor. The speed-up factor, aa, is defined as the ratio of the algorithm performance on a 

partition of size p over the algorithm performance for a reference partition of size/?r, and 
is given by: 

(MFLOPS)p 
Ta = (MFLOPS)pr (5.2-3.1) Ga = 

The theoretical speed-up factor, 07, is the processor ratioW. Figure 5.2.3.2 presents 

the speed-up factors against processor ratio for various grid sizes with the 6V-processor 

partition taken as reference. Also shown is the theoretical limit. At low processor ratio 

Vp~r ~ 2\ °a is close to the theoretical limit of 2 for fine mesh sizes. However, as the 

number of processors is increased, the processor utilization efficiency decreases because 
of the increased communication and the loss in vectorization efficiency. For example, aa 

is 4.6 at processor ratio of 8 for a 1024x1024 grid. Hence, the theoretical limit can be 

attained by considering a large grid size on a small partition size; however, the memory 
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requirements become the limiting factor. Therefore, the optimum parallel efficiency 

depends on the grid size and the number of processors and is achieved by imnimizing 

communication and increasing the performance of the vector units within the limits of the 
available memory. 

5.3      Data-Parallel Algorithm For Three-Dimensional Simulations 

This section describes the data-parallel algorithm implemented to perform three- 
dimensional simulations. Section 5.3.1 presents the performance of basic •kernels' and 
communication functionalities. The portability of the numerical algorithm described in 
Chapter 4 into a data-parallel environment is summarized in Section 5.3.2 and 
representative timings are provided in Section 5.3.3. 

5.3.1   Performance of Basic Linear Algebra and Communication Routines 

The performance of the CM-5 hardware and system software for basic 
communication functionalities and model linear algebra routines are further evaluated for 
the three-dimensional data-parallel algorithms.  These speeds provide an estimate of 
target values that are feasible on the machine.   Starting with elemental   addition, 
multiplication and triad operations of matrices, the speeds of matrix-vector 
multiplications, and matrix-matrix multiplications performed by the CMSSL library 
routines are determined. Figures 5.3.1.1 and 5.3.1.2 present the performance of a triad 
operation (A+B*C) and a matrix-matrix multiplication (MxM)  for different three- 

dimensional array sizes on various CM-5 partition sizes in vector mode. The axes of the 
three-dimensional arrays have a (NEWS) layout configuration. It is seen that the triad 
operation has a peak performance of 6 GFLOPS, and the performance rate of the matrix- 
matrix operation increases to 2.6   GFLOPS.    These values correspond to 22 

MFLOPSInode for a triad operation and 9.8 MFLOPSInode for a matrix-matrix 
multiplication. 

Compared to the (NEWS) configuration, a more detailed array layout is available 
through compile directives and is referred to as (BLOCKIPROCS) layout As an 
illustration, the (BLOCKIPROCS) layout of a two-dimensional array, A , of size MxN is 
described as follows: 

A(:BLOCK=s:PROCS=m,:BLOCK=q:PROCS=n) (5.3.1.1) 
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In Equation (5.3.1.1), (:BLOCK=s) and (:BLOCK=q) represent the subgrid length; whüe 

(:PROCS=m) and (:PROCS=n) are the number of processors desired for each axis such 

that (sxm) = M and (qxn) = N (Thinking Machines, 1992b). The ■processors' (m) and (n) 

are a subset of the CM-5 vector units where (mxn) is the number of vector units available 

on the partition. For example, a 256-processor CM-5 partition has 256x4 (1024 ) vector 

units. To clarify this concept for three-dimensional arrays, an array, A(32,128,64), can 
have its axes laid out on a 256-processor CM-5 partition as follows: 

A(:BLOCK=32:PROCS=l,:BLOCK=8J'ROCS=16,£LOCK=l:PROCS=64) {53.12) 

For such a mapping, the first axis is totally local to the vector unit, the 128 elements of 

the second axis are subdivided equally between 16 vector units while the third axis is laid 

across 64 vector units, one element in each. It is to be noted that the (.PROCS) entries 
and their product of every array axis should be a value of power of 2 between p and 4p 

where p is the partition size. This layout directive allows a greater flexibility in array 
management as compared to the (NEWS) mapping. 

Several axis layouts of a three-dimensional array, A, of size NxxNyxNz are 
considered to evaluate the basic kernels : 

A(:NEWS,:NEWS,:NEWS) /5 3 j 3. 

A(:BLOCK=Nx:PROCS=l,:BLOCK=Ny:PROCS=l.£LOCK=l:PROCS=Nz) (5.3.1.3b) 

A(:BWCK=Nxß:PROCS=2,:BLOCK=Ny:PROCS=l.:BLOCK=2:PROCS=Nz/2) (5.3.1.3c) 

A(:BWCK=Nxa:PROCS=2,:BLOCK=Ny/2:PROCS=2,JtLOCK=4:PROCS=Nz/4) (5.3.1.3d) 

A(:BLOCK=Nx/4:PROCS^.:BWCK=Ny/4:PROCS^,JlLOCK=16:PROCS=Nz/16) (5.3.1.3e) 

The (NEWS) layout in Equation (5.3.1.3a) is solely controlled by the compiler. For the 

(BLOCKIPROCS) layout in Equation (5.3.1.3b), two-dimensional arrays of size (NxxNy) 

are local to each vector unit The arrays local to the vector units have sizes of (Nx/2 x 

Ny), (Nx/2 x Ny/2), and (Nx/4 x Ny/4) corresponding to the layouts in Equation 

(5.3.1.3c), (5.3.1.3d) and (5.3.1.3e), respectively. For this test, the third dimension, Nz, is 

dictated by the partition size, and is set to be the number of vector units on the specified 
partition. 
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In what follows, the computations are undertaken on the 32-processor partition; 
hence Nz is 128. Figure 5.3.1.3 illustrates the performance of a triad operation (A+B*Q 

with (NxxNy) values.   The performance increases rapidly to reach a plateau of 

22MFLOPSInode. The curve shown in Figure 5.3.1.3 is representative of the different 
array layouts in Equations (5.3.1.3a-e); thus, the triad operation has a performance rate 
nearly independent of the array layout Figure 5.3.1.4 presents the performance of the 

matrix-matrix multiplication routine for the various array layouts (Equations (5.3.1.3a- 
e)). It is seen that near-peak performance of 775 MFLOPSInode is obtained with the 
layout given in Equation (5.3.1.3b) since the computations are local to the vector units. 
The performance rate drops significantly to 42 MFLOPSInode for the layout given in 
Equation (5.3.1.3c) since across-processor communication is initiated, and the 
performance deteriorates further for the remaining layout configurations. The (NEWS) 

layout (Equation 5.3.1.3a) shows a performance rate of 75 MFLOPSInode similar to 
Equation (5.3.1.3c). Therefore, although the (NEWS) layout was found to be optimal for 

two-dimensional arrays, the (BLOCKIPROCS) layout provides greater flexibility in array 
management and leads to higher performance rate of matrix-matrix multiplications for 
three-dimensional arrays. 

To evaluate the effect of a varying third dimension, the axes have a 
(BLOCKIPROCS) layout configuration of the form: 

M:BLOCK=Nxlr:PROCS=r,:BLOCK=Nyls:PROCS=s,£LOCK=l:PROCS=Nz) (5.3.1.4) 

such that the product (Nz xrxs) is equal to the number of vector units of the partition. 
Figure 5.3.1.5 presents the performance of a triad operation (A+B*C) with a peak 

performance of 22 MFLOPSInode. The performance rate of the matrix-matrix 
multiplication operation for varying Nz on a 52-processor partition is illustrated in Figure 
5.3.1.6. It is seen that the performance improves rapidly with Nz as the operations 
become local to the vector units and reaches a peak value of 772 MFLOPSInode for Nz = 
128 and 256. 

5.3.2   Implementation 

Based on the experiences with the performance of the basic kernels, the data- 
parallel implementation of the three-dimensional numerical algorithm becomes more 
elaborate than the two-dimensional algorithm presented in Section 5.2.2.  The arrays 
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pertaining to the computations of the intennediate velocity field and the update procedure 
(see steps (i) and (iii) in Section 5.2.2) have an axis layout of the (NEWS) mapping. The 

stencil computation in the x and y directions are carried out in a similar procedure as 
described in Equations (5.2.1.5a-b), (5.22.1) and (5.2.2.2). 

For the computations performed in the pressure solver (step (ii)), detailed layout 
for the array axes is specified using the compiler directive (BLOCK/PROCS) discussed in 
Section 5.3.1. Two distinct array layout configurations are implemented in the solution 

procedure of the pressure-Poisson equation. In devising the three-dimensional data- 
parallel algorithm, the strategy was focused on minimizing the 

communication/computation ratio. To this end, the computations pertaining to the 
deterrmnation of the Fourier coefficients are done with the ^-direction across the vector 
units, while the computations relating to the matrix multiplications are done with the z- 

direction across the vector units. The various steps of the three-dimensional data-parallel 
algorithm for the pressure-Poisson solver are summarized as follows: 

(a) The right-hand side of the pressure equation represented by array/ with (NEWS) 

layout is first copied to an intermediate array f_yänprc. The first axis of f_yzinprc is 
distributed across the vector units while the second and third axes are local to the vector 
units as follows: 

U^prc(:BWCK=l:PROCS=Nx,:BWCK=Nylr:PROCS^£WCK=Nzls:PROCS^   (5.3.2.1) 

such that the product (Nxxrxs) is equal to the number of vector units of the partition. 

(b) The Fourier coefficients of f_jzinprcj_jzinprc, are computed using a Conventional 
Discrete Fourier Transform (CDFT) as follows : 

f-ydnprc=f_jzinprc.DFn (5.3.2.2a) 

ne    _J_   "***« -Nz _     Nz  .   n UFn ~Nze ;~T^kzSy -1:0 <m ZNz-l (5.3.2.2b) 

The computation in Equation (5.3.2.2a) is performed using CMSSL matrix-matrix 
multiplications; alternatively, a Fast Fourier Transform (FFT) algorithm may also be 
incorporated. 
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(c) The airay f_yänprc is copied into the array f_xyinprc which has the following 
layout: 

fjVinprc(£LOCK^Nx/r:PROCS^r,:BLOCK=Ny/SJ'ROCS^l£LOCK=l:PROCS^N2)   (5.3.2.3) 

such that the product (r xs xN2 ) is equal to the number of vector units of the partition. 

(d) Equation (4.2.6) is solved simultaneously for each wavenumber.   All arrays in 
Equation (4.2.6) have layout similar to Equation (5.3.2.3). 

(e) The array p_xyinprc (Equation 5.3.2.3) is copied into the array p_ydnprc (Equation 
5.3.2.1) where/; are the Fourier coefficients of/» and the solutions of Equation (4.2.6). 

(f) An inverse CDFT is then performed to extract the physical pressure field, p_yänprc, 
from its Fourier coefficients, p_yanprc. 

A 

p _yzmprc =p_yanprc .DFrix (5.3.2.3a) 

DFriz =e   z m .—£kz ^~ -1; 0 £m ZNz-1 (5.3.2.3b) 

(g) Finally, p_yzinprc  is copied to p where p has the (NEWS) layout 

Steps (a), (c), (e) and (g) represent communication patterns and steps (b), (d), and (f) are 
in-processor operations. 

This data-parallel algorithm efficiently uses the machine resources with the 
current operating system and the library routines. The operation count of the calculations 
pertaining to the intermediate velocity is 0(Nx xNy xNz). The operation count of the 

direct solver is OQijfixNy xNz +Nx xNy*xNz,-Nx xNy xNz2). The update procedure 
has an operation count of 0(Nx xNyx Nz2). 

533   Timings and Performance 

The three-dimensional data-parallel algorithm presented in Section 5 3 2 is 
programmed in CM FORTRAN. Calculations are carried out on mesh sizes varying from 
643 t0 2563 for different partition sizes. The performance statistics of the momentum 
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equations (Equation 3.1.4), the pressure-Poisson solver (Equation 3.1.7) and the update 
procedure (Equation 3.1.6) are summarized in Table 5.3.3.1 for the 5/2-processor 
partition. A peak performance of 103 GFLOPS is obtained for the pressure solver step 
on a 2S63 grid; this results in an overall performance of the algorithm of 9.4 GFLOPS. 

The CPU requirements of the pressure-Poisson solver, compared to the other steps of the 
algorithm, account for most of the GPU run-time; thus, the data-parallel algorithm, 
discussed in Section 5.3.2, is devised to efficiently make use of optimized functionalities 
and library routines. The representative CPU timings in Table 5.3.3.1 have been obtained 
from three-dimensional simulations of the driven cavity problem; hence, they do not 
account for the additional time incurred by the Capacitance Matrix Technique (Section 
3.6.2).  However, the CPU run-times with the CMT algorithm could be estimated by 
multiplying the values of the third column in Table 5.3.3.1 by two. 

Figure 5.3.3.1 shows the performance rate (per processing node) with grid size for 
different CM-5 partition sizes.  It can be seen that for a given problem size, the best 
performance per node is obtained always by the «-processor partition, attaining 16 
MFLOPSInode for the 1283 grid.   Further, the computational speed per processor 
decreases from 16 MFLOPSInode on a «-processor partition to 9 MFLOPSInode on a 
J/2-processor partition for 1283 grid points. The main factors contributing to this trend 
are the communication cost and the vector length.   Due to memory limitations, 
calculations with grids finer than 128* could not be performed on the «-processor 
partition. A peak performance of 18 MFLOPSInode is achieved for 256s grid points on a 
5/2-processor partition. Observations similar to the performance of the two-dimensional 
algorithm illustrate that both the vector length and the computation-communication ratio 
play important roles in achieving the maximum performance. 

To evaluate the parallel efficiency of the algorithm, the speed-up factor, aa, 

(Equation 5.2.3.1) is presented in Figure 5.3.3.2 against processor ratio for various grid 
sizes with the «-processor partition taken as reference. Also shown in Figure 5.3.3.2 is 
aa for 256x256x64 grid with a /25-processor partition as reference. At low processor 

rati° \P~r = 2\ °a is close to *** t11601«00»1 limit of 2 at fine meshes. For a processor 

ratio of 8, aa is 4.8 for 128x128x64 grid points. Thus, as the number of processors is 

increased, the processor utilization efficiency decreases because of the increased 
communication and the loss in vectorization efficiency. Further, the loss of performance 
of the 1283 grid over the 128x128x64 grid may be attributed to the high cost in 
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communication incurred by transposing the matrix axes. Therefore, the optimum parallel 

efficiency depends on the optimum grid size for a given partition size. 

This concludes the description of the data-parallel algorithms to perform two and 

three-dimensional simulations of unsteady flows. In the following sections, the results 

obtained from simulations of separated-reattaching and separated flows will be presented. 
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6.       TWO-DIMENSIONAL SIMULATIONS 

This chapter describes two-dimensional direct numerical simulations of separated 
and separated-reattaching flows. Section 6.1 discusses results from calculations performed 
for the separated-reattaching flow over a noimal flat plate with a downstream attached 
splitter plate. Results from numerical simulations of the separated flow past a normal flat 
plate are presented in Section 6.2. 

6.1     Calculations of Separated-Reattaching Flow Past a Normal Flat Plate 
with an Attached Downstream Splitter Plate 

The present study is concerned with the flow past a normal flat plate with an 
attached downstream splitter plate as shown in Figure 6.1.1. For this geometrical 
configuration, the flow separates from a fixed edge and subsequently reattaches on a 
downstream surface. A steady elongated separation bubble is formed in the region 
bounding the vertical plate and the horizontal surface. At low Reynolds numbers, the shear 
layer separation is steady for steady upstream conditions. As the Reynolds number is 
increased, the separated shear layer becomes unstable and begins to shed vortices. The 
formation, evolution and propagation of these unsteady vortical structures are interesting 
fluid dynamic phenomena and, to our knowledge, few studies have documented their 
characteristics in the low Reynolds number regime. 

This section is organized as follows. Section 6.1.1 discusses the computational 
details of the simulations. The boundary conditions imposed along the edges of the 

computational domain are summarized in Section 6.1.2. Section 6.1.3 presents the results 

obtained in the steady regime. The unsteady regime characteristics are discussed in Section 
6.1.4. 

6.1.1 Computational Details 

The governing equations are non-dimensionalized by the fence height, hF, and the 
free-stream velocity, U„ The Reynolds number is defined asRe = hF UJv. Calculations 

are made for several Reynolds numbers, Re = 25,50, 75,100,150,250,375 and 500. 

The computational domain extends in the streamwise (x) direction from 10hF upstream to 
45hF downstream of the normal plate and in the cross-stream (y) direction from 0 to 20hF. 

The grid size for these simulations is 513x257 nodes. However, for Re - 100 and 750, 
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the computational domain is extended in the strcamwise direction to x = 93 and the grid size 
in the ^-direction is increased to 1025 nodes in order to accommodate the large separation 
length. For Reynolds numbers up to 150, a uniform grid is used in both directions. For 

Re 2 250, a smoothly varying non-uniform grid spacing is used to better resolve the flow 
features adjacent to the plate. Figures 6.1.1.1a and b present the grid spacings in the x and 

y directions, respectively. The minimum grid size in the x-direction is 0.025 adjacent to the 
plate and the maxima are 0.65 upstream of the plate and 038 downstream of the plate. In 

the y-direction, the minimum and maximum grid sizes are 0.025 and 0.34. The 

distributions of the metrics in the x-direction, f g J and [^-| ], and in the y-direction, (££) 

and l«?]*arc iUustrated " FiSonx 6.1.1.2a and b, respectively. A smooth variation of 

these derivatives is maintained in the computational domain. 

The time step size, At, is set to 23xl0'3 which maintains the convective and 
diffusive Courant-Friedrichs-Lewy (CFL) numbers under their respective limits (see 
Section 3.5).  The simulations are started either from a uniform flow field or from a 

solution previously obtained at a different Reynolds number.  The computations are 
performed on a 256~-processor CM-5 partition, and require approximately 53 /tt per time 

step per grid node. Approximately 90% of the total CPU time is spent for the solution of 
the pressure Poisson equation.   Numerical simulations are performed for Reynolds 
numbers of 25,50, 75,100,150,250,375 and 500.  A steady separation regime is 
observed for Re up to 150 while the flow is observed to be unsteady for Re 2 250. 

Computations in the steady regime are continued until the temporal variations of the 
velocity and pressure signals reach a plateau. The calculation for Re = 250 is performed 
for 895 non-dimensional time units and the time-mean values are obtained by averaging for 
770 time units. For Re = 375 and 500, the simulations are carried out for 375 and 425 

non-dimensional time units, respectively.   Time signals of pressure and strcamwise 

velocity at specific locations in the computational domain are also stored every tenth time 

step. These data are used for calculating the autocorrelations and space-time correlations. 

6.1.2 Boundary Conditions 

Since the splitter plate eliminates the downstream interaction between the top and 
bottom edges of the plate, the equations are solved only in the upper half of the domain. 
Additionally, the following boundary conditions are applied: 
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(i) At the inlet (left boundaiy) of the computational domain, a uniform unit streamwise 

velocity, u = tf«, = 1, and a zero cross-stream velocity are specified. The normal pressure 
gradient (dp/dx) is set to zero. 

(ü) The bottom boundary upstream of the normal plate is considered to be a symmetry line. 

Thus the normal derivatives of u andp are prescribed to be zero and are represented with 
third-order one-sided differences. Further, the normal velocity (v) at the symmetry line is 

set to zero. Downstream of the plate, both velocities and the pressure gradient are 
prescribed to be zero. 

(iii) At the top boundary, free-stream conditions (a = 7, p = v = 0) are imposed. 

(iv) At the outlet, the outiet boundary conditions discussed in Section 3.8 (Equations 

3.8. la-e) are tested to determine their relative influences on the computed flow field. The 
effect of the outiet boundary condition is investigated for the present flow configuration at 
Re = 250. A convective velocity (Uc) of 0.75 is chosen a-priori from the experiments of 
flow over a blunt plate (Kiya and Sasaki, 1983a). This is subsequently found to agree well 
with the value inferred from the current calculations. It is observed that in this flow, 
boundary conditions (3.8.1a) and (3.8.1b) make the calculation unstable. Figure 6.1.2.1 
shows the spanwise vorticity, mz, contours at one time instant for the remaining three 

boundary conditions. Of these, boundary conditions (3.8. Id) allows the propagating 
structures to leave the computational domain with minimal distortion (see also Lowery and 
Reynolds, 1986; Pauley et al., 1990). Therefore, condition (3.8.1d) is used in all of the 
subsequent calculations reported in Sections 6.1.3 and 6.1.4. 

6.1.3 Steady Regime 

The present flow field is observed to be steady up to a Reynolds number of 150, 
characterized by a steady separation bubble downstream of the normal plate. For this 
regime, the simulations are carried in time to reach the asymptotic steady solution. The 
temporal evolution of the pressure is monitored at several locations. Figure 6.1.3.1 shows 
the signal at one such location (x = 1525 andy = 15) for five Reynolds numbers. The 

integration time required to attain a steady value is seen to increase with the Reynolds 

number. For Re = 150, the transient solution displays some features of unsteady vortex 
shedding, but eventually the flow becomes steady after further integration. The streamlines 
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for three representative Reynolds numbers (Re = 50,100 and 150) are illustrated in Figure 
6.1.3.2. It is seen that both the streamwise length and the transverse width of the bubble 

increase with Reynolds number. This trend is consistent with observations in two other 

separated flows, such as the flow over a blunt plate (Lane and Loehrke, 1980) and flow 

over a backward-facing step (Armaly et al., 1983). However, for the same Reynolds 

number, the separation bubble in the present configuration is considerably larger than that 
in the above two flows. 

A representative quantity characterizing the separation bubble is the reattachment 
length, XR, defined as the distance between the point of separation and the furthest 
downstream location on the reattaching wall where the skin friction coefficient becomes 
zero.  Experimental observations (Smits, 1982; Castro and Haque, 1988; Jaroch and 
Fernholz, 1989) show that the reattachment length is significantly influenced by parameters 

such as the freestream Reynolds number, the upstream turbulence intensity, the model 
aspect ratio and the wind-tunnel blockage. However, to our knowledge, no experiments 
have been conducted in the low Reynolds number range, i.e. Re < 1000. Castro et al. 
(1981) performed numerical simulations in the steady laminar regime (10 ZRe £100) 

using finite-difference and finite-element techniques. Figure 6.1.3.3 presents the measured 
and calculated reattachment lengths at different freestream Reynolds numbers. In the 
steady regime, the reattachment length is seen to grow monotonically from 105 to 40 for 
25 <Re <150. However, Castro et al. (1981) predict a linear growth from 3.8 to 24.4 for 
10 <Re <100.  These large differences between the current predictions and those of 

Castro et al. (1981) may be attributed to the inadequate grid refinement in the simulations of 
the latter. 

The mean surface pressure coefficient (C ) and wall skin friction factor (C ) are 

defined as: 

Ps -P„ 
(6.1.3.1) 

(6.1.3.2) 

(6.1.3.3) 
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The streamwise distributions of C and Care shown in Figures 6.1.3.4 and 6.1.3.5 

respectively. It is seen that with increasing Reynolds number, the location of the minimum 

skin friction moves closer to the «attachment point (fiom 022 XR at Re = 25 to 0.85 XR 

for Re = 150)^ The maximum surface pressure coefficient increases from -0.40 to -036. 
Further, the C, curve upstream of reattachment becomes flatter at higher Re. The pressure 

recovery, initiated before the reattachment point, becomes steeper with increase in the 
Reynolds number. This is a consequence of the fact that the center of the bubble moves 
closer to the reattachment point (Figure 6.1.3.2). Figure 6.1.3.6 shows the distribution of 
the pressure coefficient on the front and rear faces of the normal plate for Re =100 and 

compared with numerical results obtained by Castro et al. (1981). On the downstream face 
of the normal plate, the predictions of Castro et al. (1981) are a factor of 2 larger than the 
present simulations as a result of inadequate mesh refinement in the near-plate region. The 
time-mean drag coefficient on the normal plate, C , is defined as: 

hF  
\(Pu-Pd)dy 

CD=       1        2 (6.1.3.4) 
2~P u~ 

where pu and pd are the mean pressure on the upstream and downstream faces of the 

normal plate, respectively. Figure 6.1.3.7 presents the computed time-mean drag 

coefficient at different freestream Reynolds numbers. The drag coefficient is seen to drop 
monotonically from 2.10 to 1.74 in the steady regime (Re <150). 

6.1.4 Unsteady Regime 

6.1.4.1   Time-Mean Flow Variables 

For Reynolds numbers larger than 150, the shear layer becomes unsteady and 
begins to break down into coherent large scale vortices. At Re = 200, the flow is seen to 
be unsteady, but the shedding of the vortices is erratic and slow. At Re = 250, a clear 
shedding of the vortices from the shear layer is established. The variation of time-mean 
reattachment length, xR, with Reynolds number in the unsteady regimels presented in 
Figure 6.1.3.3. The time-mean reattachment lengths are 12.6 and 6.9 for Re = 250 and 
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500, respectively. The onset of unsteadiness is observed to result in a substantial decrease 

of the time-mean length of the recirculation bubble (from 40 to 12.6 at Re = 150 and 250, 

respectively). As the Reynolds number increases into the unsteady regime, the separated 
shear layer begins to entrain the freestream flow initiating the formation and growth of 
vortical structures. As these structures impinge on the sputter plate, the time-mean 
reattachment length sharply decreases. This trend is consistent with the experiments on a 
backward-facing step flow (Armaly et al., 1983). With increasing Reynolds number (Re = 

500), the instability of the separated shear layer is initiated closer to the normal plate 
causing a further decrease in the time-mean reattachment length. 

Figure 6.1.4.1.1 shows the time-averaged streamlines for Re = 250,375 and500. 
It can be seen that the mean reattachment length is considerably smaller (as compared to that 
at/te = 150 (see Figure 6.1.3.2c)).   Another unique aspect of the time-mean flow 
characteristics in the unsteady regime is the appearance of a secondary separation bubble 

embedded within the primary bubble. This second separation bubble, which is not present 
at low Reynolds numbers, is a consequence of the counter-clockwise motion induced by 
the clockwise rotating primary vortices shed from the edge of the shear layer.  The 
calculated length of this secondary separation bubble decreases from 4.6 (036xR) to 13 
(0.19xR) for Re = 250 and 500, respectively. A second separation bubble of length 23 
(0.13xR) was also observed in the oil-film flow visualizations of Ruderich and Fernholz 
(1986) atÄe = 1.4x10*. Figure 6.1.4.1.2 presents the locus of zero streamfunction (y) in 

the unsteady regime. Also shown are the data at higher Re obtained by Ruderich and 
Fernholz (1986) and Castro and Haque (1987). The shape of the time-averaged separation 
bubble at Re = 250 agrees closely with the experimental measurements with a height of 2 3 
and is seen to shrink to a value of 1.9 for Re = 375 and 500. In contrast, in the steady 
flow regime, the bubble height is seen to increase with Reynolds number from 1.6 to 3.0 
for Re of 50 and 750, respectively. 

The calculated profiles of time-averaged streamwise velocities for Re = 250 and 500 
at several non-dimensional streamwise distances (XIXR) are compared with the experimental 

data of Ruderich and Fernholz (1986) and Castro and Haque (1987) in Figure 6.1.4.1.3 
and with the measurements of Jaroch and Fernholz (1989) in Figure 6.1.4.1.4. As a result 
of the separation bubble, the freestream is accelerated, reaching a maximum velocity of 

lAUoo. Inside the separation bubble, the maximum negative velocity is observed to be as 
high as -0.4ÜCO. Downstream of the time mean reattachment point, the flow begins to 
recover to a boundary-layer like profile, but is not completely recovered by the end of the 
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current flow domain. The simulations are seen to agree well qualitatively with all three data 
sets. However, there are considerable differences between the three experimental data sets 
themselves. It is not certain if these differences are due to the effects of freestream 

turbulence, wind tunnel blockage or other experimental conditions. The presents 
calculations are seen to agree most closely with the data of Ruderich and Fernholz (1986). 

The streamwise distributions of the skin-friction coefficient, ~C in the unsteady 

regime are shown in Figure 6.1.4.1.5. The positive skin-friction coefficient immediately 
behind the plate represents the region of positive near-wall streamwise velocity arising fiom 
the counter-clockwise rotating secondary bubble (Figure 6.1.4.1.1). The location at which 
the skin friction first becomes negative, referred to as the reseparation point (Ruderich and 
Fernholz, 1986), decreases with increasing Reynolds number. The slight wiggles in the 
Cf profile, downstream of the reattachment point at Re = 375 and 500, are a consequence 

of the small sample size. The minimum in the skin-friction factor is located at 0.62xR, 
0.70xR and 0.75xR far Re = 250,375 and 500, respectively, compared with 0.6xR 

measured in the experiments of Ruderich and Fernholz (1986), Castro and Haque (1987), 
and Jaroch and Fernholz (1989). The calculated values of C. in the low-Re range are a 

factor of 10 higher than the values measured at higher Reynolds numbers. 

Roshko and Lau (1965) have defined a modified surface pressure coefficient as: 

C*"   1  - Tn (6.1.4.1.1) 

Figure 6.1.4.1.6 shows the streamwise distribution of Cft compared with the experimental 

data of Roshko and Lau (1965), Ruderich and Fernholz (1986), Castro and Haque (1987), 
and Jaroch and Fernholz (1989). In the first half of the separation bubble (xlxR < OJ), the 
entrainment of the near-wall fluid by the vortices causes the formation of a strong suction 
zone as indicated by the minimum in the profile. Downstream of the reattachment point, 1 

< xlxR < 125, the flow recovers some of this pressure loss. CR reaches a maximum 

around the reattachment point, before leveling off further downstream With increasing 

Reynolds number, the pressure recovery is initiated at a faster rate for x/xR < 05 and levels 

off at a larger value downstream of the reattachment point It is also observed that the 
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minimum of CR is located closer to the «separation point. The present numerical 

simulations are able to capture the correct trend, but some quantitative differences are 

observed. The current maximum Cft values of 0.42 atRe = 250 and 0.47 for Re = 500 are 

higher than the measured ones of 0.4. This stronger recovery of pressure may be due to 

the lower Reynolds number in the simulations or due to the neglect of spanwise variations. 

Jaroch and Graham (1988) also have predicted a higher maximum Cft value of 057 using a 

two-dimensional discrete vortex method. 

Figure 6.1.4.1.7 presents the distributions of the time-mean pressure coefficient on 
the front and rear faces of the normal plate in the unsteady regime. These distributions are 
compared with measurements of Arie and Rouse (1956). Also shown are the data of Fage 
and Johansen (1927) for the case of a normal plate without the splitter plate. The presence 
of the splitter plate leads to a lower pressure drop on the downstream face of the fence since 
the vortices shed from the opposite edges of the plate are not allowed to interact The 
present computations predict a constant pressure coefficient on the downstream face of 
-1.0 and -1.2 at Re = 250 and 500, respectively. This compares with a value of -0.57 
measured by Arie and Rouse (1956) and -136 measured by Fage and Johansen (1927). 
The calculated time-mean drag coefficient in the unsteady regime is presented in Figure 
6.1.3.7. Itisseenthat   CD has a value of 7.72 at Re = 250 and levels off at 1.90 for Re = 

375 and 500. Arie and Rouse (1956) measured a time-mean drag coefficient of 138 for Re 
= 7X103-33X104; while Fage and Johansen (1927) obtained a value of 1.84 for a normal 

plate for Re = Uxl(fi. Similar over-predictions of the drag coefficient are also observed 
for the two-dimensional simulations of separated flows that will be presented in Section 6.2 
(see also Joshi et al., 1994). 

Two other representative quantities that characterize the present flow are the velocity 

difference, AÜ, and the vorticity thickness, S^ AÜ is the difference between the maximum 

velocity on the high speed side of the shear layer, iw and the minimum velocity on the 

low speed side, ümin. Upstream of the reattachment point (x/xR < 1), MW„ reaches 

-0.46ÜCO in the reverse-flow region and w increases over tf«,by up to 40% (see Figures 

6.1.4.1.3-4). The streamwise variation of Aü obtained from the calculations and the 

experiments is plotted in Figure 6.1.4.1.8. The calculated distribution correctly displays 
the trends of the experiments and agrees better with the data of Ruderich and Fernholz 
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(1986).  The growth of the separated shear layer may be described by the vorticity 
thickness, 8», as defined by Brown and Roshko (1974): 

<j Aü 
°»—' - (6.1.4.1.2) 

(dü/dy) max 

The profile of the vorticity thickness, 5*. normalized by xR, is shown in Figure 6.1.4.1.9. 

The vorticity thickness initially grows almost linearly from separation up to 0.4xR and then 

the growth rate slows down until reattachment (XIXR = /). The growth rate is again rapid 

after reattachment until XIXR = 1J. These trends are consistent with the experimental 
results of Ruderich and Fernholz (1986), Castro and Haque (1987) and Jaroch and 

Fernholz (1989). Owing to the current complex flow characteristics, the growth rate is not 
expected to vary linearly as in the case of an unforced planar mixing layer. 

The time-mean center of the separated shear layer (yc) is defined, by analogy with 
the mixing layer, as the transverse location at which the time-mean streamwise velocity has 

a value of (Q.67M + ümin). yc remains at a constant height of 2.3 as shown in Figure 

6.1.4.1.10. The loci of zero (« = 0) and maximum streamwise (Umax) velocities are 
presented in Figures 6.1.4.1.11 and 6.1.4.1.12, respectively, and are found to be in good 

agreement with the experimental measurements. Figure 6.1.4.1.13 shows the direction of 
the time-mean flow field as the ratio of the transverse and streamwise velocities along the r\ 

= 0andyr=0 lines for Re = 250. 7] is defined as (yc-y)/8„. Up tox/x* = 0.7, the flow 

follows the same path along these two lines; however, downstream of 0.7XR, the flow 
angles along these two lines become different. After the reattachment point (X/XR > 1J), 
the flow tries to realign itself parallel to the sputter surface. The present calculations follow 
closely the measured values of Castro and Haque (1987) up to OJXR but deviate somewhat 

afterwards. It is to be noted that the present flow is not characterized by a single flow 
direction, as in the case of a planar mixing layer.   Similar characteristics have been 
observed for Re = 375 and 500. 

6.1.4.2   Description of the Large-Scale Structures 

The temporal evolution of the large-scale structures shed from the separated shear .- 
layer is of considerable importance in understanding the characteristics of the current flow. 
Figures 6.1.4.2.1a and b present an instantaneous snapshot of the flow field through 
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contours of streamfunction, yr, and spanwise voracity, öfe, for Re = 250. A vortex is seen 

developing at the edge of the shear layer by entraining fluid from the uniform stream while 

several others are converting downstream of the «attachment point The passage of a 

vortex at any given streamwise location is associated with corresponding changes in the 

surface pressure and the skin friction factor. Figure 6.1.4.2.1c shows the distributions of 
the surface pressure coefficient, CPs, and skin-friction factor, Cf, at one instant (r = 375) 

corresponding to Figure 6.1.4.2.1b. As the vortex passes a given streamwise location, it 

entrains the near-wall fluid, thus causing a low pressure at the surface.  The negative 

velocity at the wall associated with the clockwise rotating vortex causes a sharp drop in the 

skin friction. It is observed that the negative peaks in the surface pressure coincide with the 

centers of the vortices but always lead the valleys in the skin-friction. This indicates that 

the vortex is tilted and elongated such that the largest negative velocity is not vertically 

below the vortex center.  The positive surface pressure coefficients correspond to the 
regions between two vortices. In the separation region (x = 5), the positive CPs generates a 

vertical velocity which tears vortex A from the shear layer. The size and orientation of 

these converting vortices can be calculated graphically by using the instantaneous 

streamlines. Table 6.1.4.2.1 summarizes the inclination of the eddy with the horizontal 
line (a), the location of the minimum negative Y<yci/hF), and the ratio of the major to 

minor axes {Q=bla) (see Figure 6.1.4.2.1a for definitions). These values averaged over 

several time frames agree satisfactorily with the experimental data of Kiya and Sasaki 
(1983a) for the flow over a blunt plate. 

^v. 

The temporal development of the surface fluctuating pressure,/? '„ atx/XR = 0.8 is 

illustrated in Figure 6.1.4.2.2 over a selected time interval. The valleys in the signal reflect 

the passage of a vortex above the probe location and are observed to occur pseudo 

periodically. Two distinct modes of the vortex interactions (referred to as modes I and E) 

in the «attachment region could be identified in Figure 6.1.4.2.2. Mode I of the vortex 

dynamics is predominant during the first 200 time units (one occurrence of mode H is 

observed at t = 875). With further integration in time, these two vortex dynamics modes 

are seen to occur in an alternate sequence. To describe these modes, the spanwise vorticity 
fields are stored at every fifth time unit, and contours plots are visualized. 

Figure 6.1.4.2.3 presents a set of instantaneous plots of the contours of negative 
spanwise-vorticity at several timelfemes for shedding mode I at Re = 250. One 

representative vortex interaction cycle spans the time period of t = 375 to 395 (Figures 

6.1.4.2.1b and 6.1.4.2.3a-d). As the separated shear layer becomes unstable, a vortex B 
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grows at the edge of the shear layer by entraining fluid from the uniform stream while 

vortex A, shed during an earlier time sequence, is convecting in the downstream direction. 

A complex sequence of vortex mergings (Figures 6.1.4.2.3a-c) occurs before the vortex 

detaches from the shear layer and rolls up into an independent structure (Figure 6.1.42.3d) 

and is converted by the local flow. The path of the center of vortex A is shown in Figure 

6.1.4.2.4 over the interval of 375 and 425 time units. The core is defined as the location in 
the vortex with minimum negative spanwise voracity, a^. Vortex A initially rises away 

from the wall moving from y of 1.9 to 2.65, propagates along a horizontal path between x 

= 20 and 30, and then descends to y of 2.15 before exiting the computational domain. 

Evidently, the path of the shed vortex follows closely the center of the shear layer shown in 
Figure 6.1.4.1.10. 

Figure 6.1.4.2.5 presents the contours of negative spanwise voracity at five time 

instances from t = 740 to t = 760. At t = 740 (Figure 6.1.4.2.5a), we see that there are two 

vortices {A and B) joined at the edges and attached to the shear layer. Based on the vortex 

interaction of mode I, it was expected that vortex A will subsequently detach from B and 

vortex B will detach from the shear layer thus forming two independent vortices. 

However, as time progresses, vortex B first grows in size and vortex A becomes elongated 

(Figure 6.1.4.2.5b); while a smaller vortex (O begins to develop at the edge of the shear 

layer. At this time, the three vortices are joined together. With further progress in time, 

vortices C and B grow in size, but vortex A does not detach from B. Instead, vortex B 

engulfs vortex A and forms an irregular blob of fluid. At t = 750, vortices B and A are 

indistinguishable and C has grown to a larger size. At t = 755, vortices A, B and C are all 

combined into a single vortex, which is finally shed at t = 760 (Figures 6.1.4.2.5d-e). As 

a result of this new sequence of vortex interactions time period for the shedding cycle is 

considerably increased. A similar phenomenon was reported in the experiments of Cherry 

et al. (1984) who refer to this vortex interaction mode as •necking' of the shear layer. 

The two distinct vortex dynamics modes observed at Re = 250 are not captured at 

Reynolds numbers of 375 and 500. Instead, the shedding process has characteristics 

similar to mode I of Re = 250. The temporal development of the fluctuating streamwise 

velocity, «', atx =12 J andy = 1 for Re = 375 and 500 is presented in Figure 6.1.4.2.6a-b 

over a selected time interval. The valleys in the signal reflect the passage of a vortex 

through the probe location and are observed to occur periodically for Re = 375 and pseudo- 

periodically for Re = 500. One distinct mode of the vortex shedding downstream of the 

«attachment region is identified in Figure 6.1.4.2.6a; however, the frequency of the time 
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Signal for Re = 500 is observed to change up to 300 time units after which it becomes 
constant 

Figure 6.1.42.7 illustrates a time sequence of negative fife-contours for Re = 375 in 

the interval of 315.6 and 3312 time units.  Two vortices have undergone a merging 

process in Figure 6.1.4.2.7a and then are shed as a single structure from the «attachment 
point in Figure 6.1.4.2.7b. A vortex is developing at the edge of the separated shear layer 

in Figure 6.1.4.2.7b-C, merges with another developing vortex in Figure 6.1.4.2.7d and 
sheds as a coherent structure at t = 3312 as seen in Figure 6.1.4.2.7c This process is 
similar to that observed at Re = 250 (see Figures 6.1.4.2.3c-d). Similar observations of 
the shedding mechanism are made at Re = 500 and a time sequence of negative Ofc-contours 

in the interval of 175 and 190 time units is presented in Figure 6.1.4.2.8. Two vortices are 
undergoing a merging process in Figure 6.1.4.2.8a and then are shed as a single structure 
from the reattachment point in Figure 6.1.4.2.8b. This shedding mechanism is similar to 
that observed at Re = 250 (see Figures 6.1.4.2.3c-d) and Re = 375 (see Figures 
6.1.4.2.7d-e). The shear layer emanating from the edge of the normal plate at Re = 375 

and 500 does not extend further downstream as for Re =250; thus, the entrainment 

mechanism is initiated at a closer distance to the normal plate.  Further, the vortical 
structures at Re = 375 and 500 have higher spanwise vorticity in their cores than at Re = 
250 and are comparatively more distorted by the freestream flow.   The streamwise 

distribution of the instantaneous minimum spanwise vorticity (at an arbitrary time frame) is 
presented in Figure 6.1.4.2.9 and shows larger negative values for Re = 500 than for Re = 
250, and the core location of the vortical structure can be identified from the valleys. 

Figure 6.1.4.2.10 presents the time trace of the drag coefficient for the Reynolds 
numbers in the unsteady regime. At Re = 250, the instantaneous drag coefficient shows a 
wide spectrum of frequencies; while, a distinctive pattern in the signal of the drag 
coefficient is established for Re = 375 and 500 after an initial transient as shown in Figure 
6.1.4.2.10b and c. 

6.1.4.3   Shedding Frequency, Convective Velocities, and Linear 
Stability Analysis 

Autocorrelations of pressure and velocity signals at selected locations are calculated 
to derive the dominant frequencies of the large-scale structures. The auto-correlation 
coefficient for a fluctuating variable q>' is defined as: 
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q>(tpc)<p'(t+Atj) 
A<p (At) = =====  (6.1.4.3.1) 

<p2(x) 

Figure 6.1.4.3.1 presents the autocorrelation coefficient of the fluctuating pressure, Ap', at 

x = 125 and y = 2 for Reynolds numbers in the unsteady regime. The dominant peak in 
Ap' occurs first at At = 25 for Re = 250 and At = 7525 for /te = 375 and 500. Thus, the 

dominant Strouhal number, St] (St = fUJH, H = 2hF), of the large-scale vortical 
structures shedding from the reattachment point is measured as 0.08 for mode I of Re = 
250 and 0.75 for Re = 375 and 500. These values compare with 0.72 obtained by Kiya 
and Sasaki (1983a) at Re = 2.6x10*, 0.14 determined by Cherry et al. (1984) at Re = 
32x10* and 0.77 calculated by Tafti and Vanka (1991a) for the blunt plate flow at Re - 
IxlO3. Figure 6.1.4.3.2 shows Ap' near the edge of the separated shear layer (x = 1 and y 
= 2) for Re = 250 and 500. It is seen that the first dominant peak in Ap' occurs at At = 6.6 

and 7.6 fox Re = 250 and 500, respectively.  Hence, another representative Strouhal 
number, St2, based on the shear layer shedding frequency is calculated as 030 and 026. 

This means that each vortex shed from the reattachment point is formed from the 
coalescence of several vortices (three for Re = 250 and two for Re = 375 and 500) inside 

the separation bubble. This corroborates the sequence of vortex interactions presented in 
Figures 6.1.4.2.5, 6.1.4.2.7, and 6.1.4.2.8. Figure 6.1.4.3.3 shows the power spectrum 
of the drag coefficient for Re = 375 and 500. A distinct frequency centered at Stj of 0.13 
is captured with its superharmonics. 

The integral timescale evaluated from the autocorrelation coefficient is defined as: 

t 

4=h' (T)dr (6.1.4.3.2) 

r is the location where A<p'(x) first crosses the axis (t = ~ if there is no crossing). 

Figures 6.1.4.3.4 and 6.1.4.3.5 present the streamwise development of the integral 

timescales, A and A   (scaled by UJxR), at the surface of the splitter plate and the center 

of the shear layer for Re = 375. Also shown are the results obtained by Castro and Haque 
(1987) and Jaroch and Femholz (1989). It is observed that the integral timescales reach a 
peak halfway from the reattachment point (XIXR = 05) then drop before leveling off further 
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downstream. This increase in A, and A, can be contributed to the coalescence of several 
r 

vortical structures at XIXR £ 1 as shown in Figure 6.1.4.2.7. Compared with the 
experiments, the calculated integral timescales are over-estimated by at least a factor of 2 in 
the separation region {XIXR £1) and agree more satisfactorily after the reattachment line. 

This may be attributed to differences in Reynolds numbers between the experiments and the 
simulations as well as the two-dimensionality assumption of the current calculations. 

Space-time correlations have been used to estimate the convective velocities of the 
large-scale structures at three locations downstream of the reattachment point The space- 
time correlation coefficient is defined as: 

c - ,A   „ ,      V'to) <P(x+Ax,t+At) 
S<p (Ax,At) = ==_ (6.1.4.3.3) 

-y <p'2(x)    <p'2(x+Ax) 

Figure 6.1.4.3.6 presents the space-time correlation coefficient of the fluctuating surface 
pressure between various streamwise locations for Re = 375. The time period (Atp) at 
which the first peak in the space-time correlation coefficient occurs represents the time for a 
large-scale vortical structure to convect from one location to the other. The streamwise 

9' 
convective velocity, Uc, is defined as : 

9' 
Uc _Ax   xR 
UOO'XR AtpUoo (6.1.4.3.4) 

Figure 6.1.4.3.7 shows the distribution of the convective velocities (lfc ) of the fluctuating 
pressure (p') at the surface (y = 0) and the center of the shear layer (y = yc). These results 
calculated for Re = 375 are typical of the unsteady regime. The convective velocity is seen 
to rapidly increase up to the reattachment point after which it becomes constant The low 

convective velocity between 0.2XR and 0.5XR is a consequence of the coalescence of 
several vortices in this region as shown in Figure 6.1.4.3.7. The phase velocity varies 
between 0.5 and 0.8 of the freestream velocity which is in fair agreement with the 
experimental values (Kiya and Sasaki, 1983a; Cherry et al., 1984) and the numerical 

simulations of Tafti and Vanka (1991b). The streamwise variations of the convective 
Cf 

velocity based on the fluctuating skin-friction coefficient (Uc ) and die streamwise velocity 
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u 

(Uc) are summarized in Figure 6.1.4.3.8. Trends similar to Figure 6.1.4.3.7 are captured. 

The average distance between two shed vortices downstream of «attachment, XJI, defined 

Xdl     ifclUoo 
HR

=
   St! (6.1.4.3.5) 

is calculated as 0.6 and 0.9 for Re = 250 and 500, respectively. This agrees with the range 

of 0.7-0.8 measured by Kiya and Sasaki (1983a). The cross-stream phase velocity can 
also be evaluated by calculating the space-time correlations between two streamwise points 
separated in the y-direction. The distance of transverse separation is estimated from the 

time sequence of the spanwise vorticity contours. Two cross-stream convective velocities, 
p' P' 

VC] and VC2, corresponding to the upward and downward motions of the propagating 
vortex, are computed as 0.04Ueo and -0.07U* These values corroborate with the path of 
the propagating vortex shown in Figure 6.1.4.2.4. 

Linear stability theory has been successfully applied in the study of unforced free 
shear layer flows (Michalke, 1964; Monkewitz and Huerre, 1982). Monkewitz and Huerre 
(1982) define a non-dimensional frequency, a)*: 

♦ _ S^ 2nf 
Tj <» =TW (6.1.4.3.6) 

where 8» is the vorticity thickness (Equation 6.1.4.1.2),/is the shedding frequency, and 

U = 2 ( "max + ümin) is the average velocity across the shear layer. Their analysis has 

shown that the most amplified frequency, (Onax, is approximately 0.21. To assess the 
consistency of the current shedding mechanism with the stability analysis, the values of of 

at the separation point (XIXR ~0.0) and the edge of the shear layer (X/XR = 0.125) are 
calculated and summarized in Table 6.1.4.3.1. of is approximately 0.06 at the separation 

point and varies between 0.21 and 022 KXIXR = 0.125 for the three Reynolds numbers. 

Therefore, the current simulations are consistent with the inviscid instability theory. 
Further, the unsteady separation occurs at the location in the shear layer corresponding with 

the most amplified mode. Similar results were presented by Pauley et al. (1990) for a 
boundary layer subject to a transverse pressure gradient 
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6.2 Calculations of Separated Flow Past a Normal Flat Plate 

In this section, results from two-dimensional simulations of the flow past a normal 

flat plate (Figure 6.2.1) are presented. For this configuration, the flow separates from the 

two fixed edges and forms a wake downstream of the plate. At low Reynolds numbers, 
the flow is steady for steady upstream conditions. However, above a critical Reynolds 
number, the shear layers become unstable resulting in the initiation of Karman vortices. 
These vortices grow by entraining fluid from the free stream and are shed from the shear 

layers in an alternate pattern. The present study is concerned with the understanding of the 
dynamics of these unsteady vortical structures at low Reynolds numbers. Section 6.2.1 
provides the computational details. Section 6.2.2 presents the time-mean results. Sections 
6.2.3 and 6.2.4 discuss some important aspects of the vortex dynamics. 

6.2.1       Computational Details 

For this configuration, the governing equations are non-dimensionalized by the 
plate height, hp, and the free-stream velocity, Uoo. Calculations are made for Reynolds 
numbers (Re = hp UJv) in the range of SO to 1000. The following boundary conditions 

are applied along the edges of the computational domain: 

(i) At the inlet of the computational domain a uniform streamwise velocity (Uoo) of unity, 
and zero cross-stream velocity (v) are specified. Further, the normal pressure gradient is 
set to zero. 

(ii) At the top and bottom boundaries, freestream conditions (u = l,p = v = 0) are 
imposed. 

(iii) At the outlet of the computational domain, the convective boundary condition (Equation 

6.1.1d)witha convective velocity (Uc) of 0.8 is applied. The normal pressure gradient is 
set to zero. 

A systematic study of the influences of grid resolution and size of the computational 
domain upstream and downstream of the plate was performed. Table 6.2.1.1 presents the 
various grids and the domain sizes considered. Grids A to C use a uniform distribution 
whereas grids D and E use non-uniform grid spacings. Figure 6.2.1.1 shows the 
distributions of the grid spacings in the JC and y-directions. For all of these grids, the time- 
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step size, At, is set to 25x10-3 which maintains the convective and diffusive Courant- 

Friedrichs-Lewy (CFL) numbers under their respective limits (see Section 3.5). Figure 
6.2.1.2 shows the variation of the drag coefficient, Co, defined as 

hP 

\(Pu - Pd) dy 
CD=       ]—r2 (6.2.1.1) 

2PU~ 

for the various grids considered to Re = 100. pu andpd are the instantaneous pressures on 

the upstream and downstream faces of the normal plate, respectively. It can be seen that 
the results have become grid independent at mesh spacings corresponding to grids D and E. 
For low mesh resolution of 129x129 nodes (grid A), the drag signature has humps in the 
peaks. However, with increasing grid resolution, these humps disappear and also the drag 
decreases in magnitude. The average drag coefficient decreases from 3.7 (for grid A) to 
2.9 (for grid E). Results obtained for grids D and E are nearly identical. The effect of grid 
resolution at Re = 250 is shown in Figure 6.2.1.3 for grids B and D. Again humps in the 
drag coefficient are seen when a coarser mesh is used. It is to be noted that grid B gave a 
smoother variation at Re = 700, thus indicating the effect of Reynolds number on the 
necessary grid resolution. 

To examine the influence of the distance of the upstream boundary from the plate, 
calculations are performed for upstream distances (xu) varying from 25 to 15. In the y- 

direction, the domain size was -8 to 8 as in grid D. A 513x257 grid size was used for 
these calculations. The grid distributions in the ^-direction for the various upstream 
distances considered are presented in Figure 6.2.1.4. Figure 6.2.1.5 shows the variation 
of the drag coefficient from these calculations. It is seen that Q> has a maximum value of 
3.8 for an upstream distance of 25, decreasing to 3 for an upstream distance of 15. 

Further, the results for upstream distances of 10 and 75 are nearly indistinguishable. 
Simulations are also performed for several downstream distances (xd) between 70 and 25. 

The influence of the downstream distance on the drag coefficient is seen to be insignificant 
(Figure 6.2.1.6). 

As a result of the above study, the subsequent calculations are performed for a 
computational domain which extends in the streamwise direction from -70 to 25 and in the 
cross-stream direction from -8 to 8 with a grid resolution of 513x257 nodes (grid F). A 
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smoothly varying non-uniform grid spacing is used to better resolve the flow features 

adjacent to the plate. Figure 6.2.1.7 shows the spacings in the x and y directions for this 

grid. For this grid, the rninimum and maximum grid sizes in the x-direction are 0.02 and 
0.68. In the y-direction, the minimum and maximum grid sizes are 0.02 and 034 . The 
distributions of the metrics in the x-direction, V(d$,dx) and \f(#^,Äc2), and in the y- 

direction, ^ and ^j, are illustrated in Figures 6.2.1.8a-b. A smooth variation of these 

derivatives is ensured 

Numerical simulations are carried out for Re of 80,100,150,200,500 and 1000. 
However, the results from the calculations for Reynolds numbers of 100,500, and 1000 

will be discussed in detail The simulations are started either from a uniform flow field or 
from a solution previously obtained at a lower Reynolds number. The computations are 
performed on a 256-processor CM-5 partition, and required approximately 53 \is per time 

step per grid node. Approximately 90% of the total CPU time is spent for the solution of 
the pressure-Poisson equation. The calculations for Re = 100 and 500 are performed for 
150 non-dimensional time units and the time-mean values are obtained by averaging for 

125 time units. For Re = 7000, the simulations are carried out for 250 non-dimensional 
time units and temporal averaging is performed for 225 time units. Time signals of 
pressure and streamwise velocity at specific locations in the computational domain are also 
stored every one-tenth time unit for calculating the power spectra and the space-time 
correlations. 

6.2.2       Time-Mean Flow Variables 

The current flow field is observed to be steady up to a Reynolds number of 
approximately 40, characterized by a steady wake (Hudson and Dennis, 1985; Joshi, 
1993). For Reynolds numbers above 40, the shear layer becomes unstable resulting in the 
initiation of Karman vortices. These vortices are shed periodically from the upper and 
lower shear layers with a characteristic frequency. In this section, the time-averaged 

characteristics of this unsteady flow are presented. The unsteady flow characteristics are 
discussed in Sections 6.2.3 and 6.2.4. 

Figure 6.2.2.1 shows the time-mean streamlines far Re = 100,500 and 1000. The 
time-averaged flow field is characterized by an elongated wake whose length is seen to 

increase with Reynolds number. The wake-closure length, xwc (defined as the distance 
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between the point of separation and the furthest downstream location on the centerline 
where the time-averaged streamwise velocity becomes zero), is calculated to be 13 at Re = 
100, increasing to 14.0 and 14.6 at Re = 500 and 1000, respectively. These values may be 

compared with the results of Castro and Jones (1987) who performed steady two- 
dimensional simulations in the Reynolds number range of 100 to 800. Their calculations 
show a wake length of 7uRe = 100, increasing to 63 at Re = 800. Since Castro and 
Jones (1987) solved the steady state equations and not the unsteady equations, they were 

unable to capture the effects of flow unsteadiness. The unsteady vortex street increases the 
momentum transfer, lowering the 'effective' Reynolds number (Karniadakis and 
Triantafyllou, 1989) and changing the time mean wake characteristics. To our knowledge, 

there are no experiments of this flow in the low Reynolds number regime. However, 
experimental data are available at much higher Reynolds numbers (Bradbury and Moss 
(1975) at a Reynolds number of 2.6x10*, Leder (1991) at Re = 2.8X104).  At these 
Reynolds numbers, the measured wake lengths were 1.92 and 2.5, respectively. 
Comparisons with these data are inappropriate because at these high Reynolds numbers the 
flow is highly three-dimensional and turbulent Figure 6.2.2.2 presents the profiles of the 
time-mean streamwise velocity along the centerline (y = 0) for the three Reynolds numbers 

calculated in this study. It is observed that for Re of 500 and 1000 the streamwise velocity 
maintains a plateau at -02V„ for 10 plate heights before the wake closes. Time-averaged 
values have also been computed for the Reynolds stresses, u*2  and ~v^ at Reynolds 

number of 1000. It is observed that the magnitudes of these Reynolds stresses are much 
greater than those measured in the experiments of Bradbury and Moss (1975) and Kiya and 
Matsumura (1988). As will be shown in section 7.2, the values from the two-dimensional 
calculations are also much larger than those predicted by a three-dimensional simulation. 
This is due to the larger coherence of the spanwise vortices resulting from the two- 
dimensional assumption. 

The profiles of the time-averaged wake-defect velocity, defined as 1-ü, at 
streamwise distances of 1,2,4,8 and 16, are presented in Figures 6.2.2.3a-c for the three 

Reynolds numbers. Some intriguing characteristics are noticed in these plots. At Reynolds 
numbers of 500 and 1000, the center-line velocity stays constant for a significant distance 
and then suddenly increases to a value near 0.40, much above the corresponding value for 
Re = 100. At x = 16, all three simulations indicate that a self-similar state has not yet been 
attained. The maximum streamwise velocity outside the wake (y<-2 andy >2) is seen to 
be 20% larger than the freestream velocity, U* Figure 6.2.2.4 show the loci of yos9U 
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(y(ü = 0.99Uco)). The width of the wake, b, defined as the distance separating yo.99u„ 

across the centerline, is seen to grow very slowly after x = 4, almost independent of the 

Reynolds number. This contrasts with a V* growth rate observed for fully-developed 
wakes (Schlichting, 1975). 

Figures 6,2.2.5a-c show the contours of time-mean spanwise vorticity (W ] which 

also indicate the position of the time-mean shear layer. The regions of high ~mz that 

originate at the plate spread in the streamwise direction as narrow bands. The time-mean 
center of the separated shear layer (yc) (see Section 6.1.4.1 for definition), shown in 
Figure 6.2.2.6, remains at a constant height of 1.6hp, 12hp and LOhp for Re = 100,500 

and 1000, respectively. This corroborates with the öT2-contours presented in Figure 
6.2.2.5. The streamwise variation of the vorticity thickness, 8» (see Equation 6.1.4.1.2), 

is shown in Figure 6.2.2.7. Below the centerline, the vorticity thickness is assigned a 
negative value for plotting purposes. The vorticity thickness grows almost linearly from 
separation up to y = 2, tapering off downstream. The profile of ^ has a similar trend as 
the loci of yo.99Uoo and yc. 

Figure 6.2.2.8 presents the distributions of the time-mean pressure coefficient on 
the upstream and downstream faces of the normal plate for the three Reynolds numbers. 
Also shown are the measurements of Fage and Johansen (1927) at Re = 15x10s. The 

present computations predict a constant pressure coefficient on the downstream face with 
values of -2.1 at Re = 100 and -3.1 at Re = 1000. These compare with a value of -136 

measured by Fage and Johansen (1927). The variation of the time-mean drag coefficient 
with the free-stream Reynolds number is displayed in Figure 6.2.2.9 and compared with 

the two-dimensional simulations of Joshi (1993) and the tow-tank measurements of Iisoski 

(1993) at Re = 1000 and 5000. The measurements of Fage and Johansen (1927) and 
Lisoski (1993) indicate a value of CD equal to 1.84 and 2.11, respectively. The two- 

dimensional simulations overpredict the mean drag by a factor of up to 2. The value of 
3.71 obtained in the current study for Re = 7000 compares with 4.65 computed by Joshi 
(1993), 3.6 by Chua et al. (1990) and 326 by Lisoski (1993). The latter two studies were 
carried out using the discrete-vortex method. 
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6.2.3      Description of the Large-Scale Structures 

The temporal evolution of the large-scale Kaiman vortical structures shed from the 
separated shear layer is of considerable importance in understanding the unsteady 

characteristics of the current flow.  Figures 6.2.3.1a and b present a snapshot of the 
instantaneous flow field through contours of spanwise vorticity, fife, and stream-function, 
yr, for Re = 100 at an instant in time (t = 90). This figure illustrates the development and 

spatial organization of the Karman vortices shed from the two shear layers. The negative 
(positive) spanwise vorticity corresponds to clockwise (counter-clockwise) rotation of the 
vortices.   The propagating vortices are observed to be circular with a radius of 

approximately 3 hp up to ten plate heights then stretch into elliptical shapes farther 
downstream.   The stream function (Figure 6.2.3.1b) has a wavy distribution with a 
wavelength of approximately four plate heights.  The pressure field shown in Figure 
6.2.3.1c, consists of alternate regions of positive and negative values with their magnitudes 
dissipating with increasing distance from the plate. Regions of low (or negative) pressure 
correspond to the vortex cores and positive pressures correspond to the irrotational fluid in 
between the vortices. 

Figure 6.2.3.2 presents the loci of the cores of the propagating vortices at the same 
time instant (r = 90).   The vortex core is defined as the position with the maximum 
magnitude of the spanwise vorticity, lofel. The lines connecting the vortex cores correspond 

to a typical path followed by the Karman vortices. The vortex cores are initially located 
closer to the centerline. Subsequently, they diverge away and propagate approximately aty 
= ±1J. The path of the shed vortical structures is observed to closely follow the center of 
the time mean shear layer (yc) shown in Figure 6.2.2.6. Also shown in Figure 6.2.3.2 are 
the values of the spanwise vorticity at the cores and the total vortex circulation, T, (r = 

)<oz dA).   As a result of viscous diffusion, the vortex strength (as described by the 

magnitude of to2) is seen to decrease in the streamwise direction. However, the total 
circulation, T, remains fairly constant The average streamwise spacing of the cores for 

vortices of identical rotation is seen to be approximately four plate heights, while the 

average cross-stream distance separating vortices of opposite rotation is three plate heights. 

Figure 6.2.3.3a shows the time trace of the streamwise velocity in the near wake 
region (x = 2 , y = 1) over a selected time interval. The velocity is seen to vary between 

0.4 and 13 of the free-stream velocity. The u-v phase portrait at the same point (x = 2 y = 
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1), is presented in Figure 6.2.3.3b and shows a limit cycle with a distinct harmonic. 

Figure 6.2.3.4 presents the time trace of the streamwise velocity and the u-v phase portrait 
at a location in the far wake (x = 20, y = 2). The phase portrait displays an initial chaotic 

behavior; however, a limit cycle is eventually attained. This is consistent with the 
observations of Kamiadakis and Triantafyllou (1989) in the numerical study of the wake 
of a circular cylinder at the same Reynolds number. Figure 6.2.3.5 presents a set of 
instantaneous plots of the spanwise vorticity corresponding to a representative vortex 
shedding cycle at Re =100. The time period of the shedding cycle in Figure 6.2.3.5 spans 

from t = 91 to 97. The initiation, growth, detachment and final propagation of the vortices 
are clearly characterized in these snapshots. Through extensive graphical visualization, it is 
seen that the vortex cores follow closely the path shown in Figure 6.2.3.2. 

Figure 6.2.3.6 illustrates the instantaneous (oz and y at t = 120 for Re = 500. 

Compared to Re = 100, the magnitude of the spanwise vorticity is larger at Re = 500. 
Further, as a result of lower viscous diffusion, it is seen that the vortices are more 
cylindrical and also maintain their shape while they propagate downstream.   The 
wavelength of the vortex street is approximately four plate heights in the near wake region 
but increases to 6.3 in the far wake. Figure 6.2.3.7 presents the position and vorticity 
magnitude of the vortex cores at this time instant The total circulation, J", remains constant 

at a value of 6.6. Further, because of the low diffusion, the vortices are seen to dissipate at 
a slower rate compared to Re = 100. The path of the propagating vortices at Re = 500 is 
seen to differ substantially from that of Re = 100. At Re = 100, the vortices are seen to 
propagate parallel to the centerline; however, interestingly, at Re = 500, the vortices are 

seen to converge towards the centerline (Figure 6.2.3.7) before exiting the computational 
domain at y = iö_5. The cross-stream spacing of the vortex cores is 2.4 in the region 5 < 
x<15 decreasing to 0.9 for x > 20. A sequence of the G^-contours corresponding to a 

representative shedding cycle at Re = 500 is shown in Figure 6.2.3.8 and illustrates the 
above-mentioned convergence of the vortices towards the centerline. 

The u-v phase portraits at (x = 2, y = 1) and (x = 20, y = 2) are shown in Figure 
6.2.3.9 and reveal a limit cycle in the near-wake region but a chaotic behavior in the far- 
wake region. This chaotic behavior is caused by complex vortex interactions that are a 
result of the high Reynolds number. Figure 6.2.3.10 shows the time trace of the 
streamwise velocity at x = 16 and y = 0 over a selected time interval. The time trace 
reveals a dominant high frequency mode corresponding to the Karman vortices, 
superimposed on a low frequency oscillation. The valleys of the low frequency oscillation 
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(region I) are seen to be associated with the vortex propagation described in Figure 

6.2.3.8.  However, at the peaks of the low frequency osculation (region II), complex 
vortex interactions are observed. Figure 6.2.3.11 presents a sequence of c^ snapshots 

corresponding to a representative cycle of region n during the time span of 82 5 to 97. At t 
= 825 (Figure 6.2.3.11a), vortices A-E are identified at various locations in the 
computational domain. Vortices A, C and E have a clockwise rotation; while vortices B 
and D have a counter-clockwise rotation. Based on the mechanism observed in region I 
(Figure 6.2.3.8), it was expected that these vortices will convect without further 
interaction. However, it is observed that, vortex A has crossed the centerline and its core 
is located closer to B than for a typical shedding cycle of region I. As a result, the 
convection of vortex B is slowed down. At t = 855 (Figure 6.2.3.11b), B has an upward 
motion to preserve its momentum and enters the upper-half region of the computational 
domain, thus interacting with vortex C. Being of opposite spanwise vorticity, B can not 
merge with C instead, vortex B deforms C as shown in Figure 6.2.3.1 lc. As a result, the 
motion of vortices B and C is hindered but vortices D and E continue to move towards the 
interaction zone. At t = 91 (Figure 6.2.3.1 Id), B and D interact in a manner similar to that 
described between B and C at t = 885. At the same time, E propagates towards D. As 
time progresses to t = 94 (Figure 6.2.3.1 le), the pairing of C and E is initiated resulting in 

an irregular blob of fluid and vortex D is further deformed and reduced in size. At the end 
of the interaction cycle, vortex D is displaced from its normal path exiting the computational 
domain with its core located at y = -3. This far-wake vortex interaction process is also 
seen to occur around t = 45 and around t = 140 (see Figure 6.2.3.10). However, at these 
time spans, the vortices that pair have a counter-clockwise rotation.  Figure 6.2.3.12 
presents a snapshot of u^-contours at t = 150 illustrating the mode of pairing in the lower 

half of the computational domain. It is to be noted that this pairing process is not seen 
distinctly in the results of the three-dimensional simulation and is, therefore, a result of the 
highly coherent vortices predicted by the two-dimensional assumption. 

Figure 6.2.3.13 presents contours of c^ and yrat t = 230 for Re = 1000. Small- 
scale vortical structures with positive Gfe are seen merging with the vortex developing from 

the upper shear layer. This mechanism in the near-plate region is only present at Re = 1000 

(refer to 6.2.3.1a and 6.2.3.6a for Re = 100 and 500, respectively). The vortex street has 
a wavelength also of approximately four plate heights as seen in Figure 6.2.3.13b. Figure 
6.2.3.14 presents the loci of the core of the propagating vortices. At Re = 1000, the exit 
vorticity is approximately 50% of that observed in the near-plate region. This value 

compares with 18% and 27% for Reynolds numbers of 100 and 500, respectively. The 
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total circulation, T, remains constant at 6.6. The path of the propagating vortices is seen to 

be similar to that at Re = 500. Figures 6.2.3.15 and 6.2.3.16 show the time traces of 
velocities and the u-v phase portraits in the near wake and far wake regions. In the near- 

wake region, a limit cycle with a small irregularity is seen. The far wake shows a behavior 

similar to that observed at Re = 500 characterized by a low frequency oscillation 
superimposed on the regular vortex shedding frequency. However, we observe that the 
sequence of vortex interactions shown for Re = 500 does not occur at Re - 1000. Figure 

6.2.3.17 shows snapshots of spanwise voracity for three time instances near the peak of 
the low frequency oscillation. It can be seen that at Re = 7000, the vortices in the upper 
half of the domain do not pair but penetrate into the lower half and convect out of the 

domain. This difference is the effect of lower viscosity and consequent lower diffusion 
between adjacent vortices. 

6.2.4 Drag Signature, Shedding Frequency, Convective Velocity 
and Linear Stability Analysis 

The temporal development of the instantaneous and time-mean drag coefficients is 
plotted in Figure 6.2.4.1 for the three Reynolds numbers. A distinct frequency with its 
superhamonics is observed for Re = 700 and 500; while a wide spectrum of frequencies is 
seen at Re = 7000. The root-mean-square fluctuation of C/> is computed to be 0.740 and 
0238 at Re = 700 and 7000, respectively. These compare with measured values of 0.279 
and 0.133 at Re = 7000 and 5000, respectively, and a calculated value of 0.57 for a 
circulation decay parameter, A = 7, and 020 for A = 0.86 using the discrete-vortex method 
(Lisoski, 1993). 

Figure 6.2.4.2 presents the power spectra for the time traces of streamwise velocity 
in the near-wake (x = 2, y = 7) at the three Reynolds numbers. At Re = 1000 a broad 

spectrum of frequencies is observed. The primary Strouhal numbers are calculated to be 
0.166,0.137 and 0.752 for Re = 700,500, and 7000, respectively. The value at Re of 

7000 compares with the measured values of 0.755 for Re = 4x10s-104 (Roshko, 1954a) 
and 0.148 for Re = 3xl&-9xl(ß (Lisoski, 1993) and the computed one of 0.727 for A = 7 
and 0.161 for A = 0.86 (Lisoski, 1993). At low Reynolds numbers, comparisons can be 

made with data for a circular cylinder. The empirical formula suggested by Roshko 
(1954c) for a circular cylinder given by: 

St = 0212 (1 • 212/Re) , 50<Re<150 (6.2.4.1) 
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results in a primaiy Strouhal number of 0.167 at Re = 100. Our computed value differs by 
0.6% from the above empirical value for a circular cylinder. 

The streamwise distribution of the convective velocities (lfc ) at y = 0 J and 1 is 

shown in Figure 6.2.4.3. The convective velocity is seen to rapidly increase up to four 

plate heights after which it becomes constant. The average distance between two 

propagating vortices, XJI, (Equation 6.1.4.3.5) is calculated as 42. This agrees with the 
value determined from the visualizations discussed in Section 6.2.3. 

In addition to the above aspects, the non-dimensional frequencies, ©*, (Equation 

6.1.4.3.6) have been computed at two locations in the shear layer from the expression 

given by the linear stability analysis (Monkewitz and Huerre, 1982). The non-dimensional 

frequencies calculated at the separation point {xlhP -0.0) and at the edge of the shear layer 
(x/hp - 025) are given in Table 62.4.1 for the three Reynolds numbers. a>* is seen to 

vary between 0.023-0.034 at the separation point and between 0212 and 0222 atx/hP = 
025 . The value of ©* calculated at the edge of the shear layer corresponds to the most 

amplified mode and is consistent with the inviscid instability theory^ 
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7.       THREE-DIMENSIONAL SIMULATION OF SEPARATED 
FLOW PAST A NORMAL FLAT PLATE 

This chapter presents results obtained from a three-dimensional direct numerical 
simulation of the separated flow past a normal flat plate. Section 7.1 provides the 

computational details. The time-mean flow quantities are discussed in Section 7.2. Section 
7.3 and 7.4 present the temporal and spatial characteristics of the unsteady three- 
dimensional flow. 

7.1     Computational Details 

As in the case of the two-dimensional simulation, the governing equations are non- 
dimensionalized by the plate height, hp, and the freestream velocity, Uco. The 
computational domain extends in the streamwise (x) direction from -5 to 20 and in the 
cross-stream (y) direction from -8 to 8. A spanwise width of 2JC is used and is considered 

to adequately resolve the important spanwise variations. The finite-difference grid 
contained 256X256 nodes in the x and y directions and 32 nodes in the spanwise direction. 
A grid with smoothly varying non-uniform spacing is used in the x and y-directions 
(Figure 7.1.1). This grid distribution was found to accurately resolve the two-dimensional 
flow at a Reynolds number of 7000. In the spanwise direction, a uniform grid spacing (Az 
= TC/16) is used. 

The following boundary conditions are applied along the edges of the computational 
domain: 

(i) At the inlet of the computational domain (x = -5), a uniform freestream streamwise 
velocity, u = U*, = 1, and zero cross-stream and spanwise velocities are specified. The 
normal pressure gradient (dpldx) is set to zero. 

(ii) At the top and bottom boundaries (y = ±8), freestream conditions (u = l,p = v = w = 
0) are imposed. 

(iii) At the outlet (x = 20), the convective boundary condition (Equation 3.8. Id) is applied 
with a convective velocity (Uc) of 0.8 for the three velocity components. A zero normal 
gradient is specified for the pressure. 
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(iv) Periodic boundary conditions are imposed in the spanwise direction. 

The non-dimensional time-step size, At, is set to 2.0xl0-3 which maintained the 

convective and diffusive Courant-Friedrichs-Lewy (CFL) numbers under their respective 

limits. The initial flow field was obtained by interpolating a three-dimensional solution 

field calculated by Joshi et al. (1994). The computations are performed on a 725-processor 
CM-5 partition, and require approximately 5.7 fis per time step per grid node. Calculations 

are conducted at a Reynolds number of 7000 and the numerical simulations are performed 

for 60 non-dimensional time units corresponding to approximately 10 shedding cycles. 

The time-mean flow field and the turbulent stresses are obtained by averaging for 35 and 26 

time units, respectively.   A temporal and spanwise averaging procedure has been 

performed, resulting in a sample size of 5.6x10s and 4.16x10s for the time-mean field and 

the turbulent stresses, respectively. Because of limited computer resources, it was not 

possible to obtain a large enough statistical sample for these quantities. However, the 

present simulation still provides valuable information on the spatial and temporal evolution 

of this three-dimensional flow and its underlying coherent structures. 

7.2     Time-Mean Flow Characteristics 

Figure 7.2.1a shows the contours of the time and span averaged streamlines (ijr). 

The time averaged length of the wake is seen to be three plate heights compared with a 

value of 14.6 obtained from the two-dimensional simulation (Figure 6.2.2.1c). The 

measured values for the wake length are 1.9 for Re = 2.6x10* (Bradbury and Moss, 1975) 

and 2 5 for Re = 2.8x10* (Leder, 1991). The differences between the result of the three- 

dimensional calculation and the experimental values may be attributed to the effect of the 

Reynolds number as well as to the limited integration time. Further integration of the 

present simulation may clarify this issue. The LES calculation of Joshi et aL (1994) with a 

much longer integration time predicted a value of 2.3 at a Reynolds number of 1000. 

Figure 7.2.1b shows the time and span averaged äz field. This distribution also differs 

considerably from that calculated by the two-dimensional simulation. The elongated 

trailing edges seen in the two-dimensional simulation (Figure 6.2.2.5c) are not present in 
the three-dimensional result 

Figure 7.2.2 compares the profile of the time-mean streamwise velocity along the 

centerline (y = 0) with the measurements of Bradbury and Moss (1975) and the LES results 
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of Joshi et al. (1994). In the wake region, the minimum streamwise velocity has a value of 

-0.44ÜCO. This compares with -0.46XJoo measured by Bradbury and Moss (1975) and 

-0.42 Uco calculated by Joshi et al. (1994). The calculated flow field shows a low-velocity 

reverse flow region extending up to x = 0.8. This low-velocity reverse flow region is not 

seen in the experiments. We are not sure if this an effect of the short integration time of the 

current simulation. As a result of the low-velocity reverse region, the location of the 

minimum velocity is predicted to be at x = 1.87 compared with x = 1.0 measured by 

Bradbury and Moss (1975). The peak reverse velocities in this separated flow are 

approximately 40% higher than the corresponding ones for wall-bounded separated- 

reattaching flows. For example, the experiments of Castro and Haque (1987) and Jaroch 

and Fernholz (1989) have respectively measured minimum streamwise velocities of 
-0321)r» and -033U«, upstream of the reattachment point (XR). 

Figure 7.2.3 compares the streamwise velocity at eight plate heights with 

measurements of Kiya and Matsumura (1988). Also shown are results from the 

corresponding two-dimensional simulation. The velocity profile obtained from the three- 

dimensional simulation agrees favorably with the measurements. The calculated minimum 

streamwise velocity, 0.67V„o, compares well with measured value of 0.69Uoo. Further, the 

time-mean flow calculated at x = 8 is fairly one-dimensional with magnitudes of v" and HT 

as 0.03Uco and 0.02Voo, respectively. These values agree satisfactorily with the 

measurements of Kiya and Matsumura (1988). However, significant errors are seen in the 

results obtained by the two-dimensional calculation. The two-dimensional simulation 

predicts a negative streamwise velocity of -0.12Uoo at this location. 

Contours of the three normal stresses components, u'2 , v'2 and w'2 , are 

presented in Figures 7.2.4a-c. These stresses represent the contributions of both the 

coherent and incoherent components of the fluctuating signals. The maximum streamwise 

normal stress has a value of 0.26Voo and is located at x = 2 in the lower and upper 

separated shear layers; while v'2waxand w'^have values of 0.48ul and 0.15VI, 

respectively, and are located on the symmetry line at x = 3. The Reynolds turbulent shear 
stress, u 'v', field downstream of the plate, shown in Figure 7.2.5, is symmetrical about 

the centerline. The maximum magnitude of the shear stress is 0.14ul> located at x = 3 

inside the separated shear layer. The profiles of the root-mean square (rms) values are 

plotted along the centerline (y = 0) in Figure 7.2.6. Also shown are the measurements of 

Bradbury and Moss (1975). Although the distributions do not match exactly those of 
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Bradbury and Moss (1975), the values of the maximum stresses are in fair agreement 
Figures 7.2.7a-d present the profiles of «2 , v'2 ,  w'2 , and "«V at* = 8 along with 

the measurements of Kiya and Matsumura (1988) at Re = 23x10* and the calculations of 

Joshi (1993).   The maximum normal streamwise stress is predicted to be 0.068uZ 

compared to 0.054ul (Joshi, 1993) and 0.034ul (Kiya and Matsumura, 1988).  The 

maximum normal cross-stream stress is computed to be 0.146 compared to 0.15 (Joshi, 

1993) and 0.047 (Kiya and Matsumura, 1988). ( w^W is calculated to be 0.042ul by 

the present simulation, 0.029ul by Joshi (1993) and 0.02iul by Kiya and Matsumura 

(1988).  ( u 'v' )max has a value of 0.016ul compared to 0.0121/1 calculated by Joshi 

(1993) and 0.007U*, measured by Kiya and Matsumura (1988). The values predicted by 

the two-dimensional simulation are one order of magnitude higher than the measurements. 

For example, the maximum normal streamwise and cross-stream stresses have values of 
0.64ul and 0.90ui, respectively. 

Figure 7.2.8 displays the streamwise variation of the time-mean pressure 

coefficient, C^, along the centerline (y = 0). Also presented are the LES results of Joshi et 

al. (1994). It is observed that the pressure coefficient distribution is similar to that of the 

streamwise velocity shown in Figure 7.2.2. The current simulations are seen to predict a 

higher near-plate pressure coefficient of -12 compared to -1.8 by Joshi et al. (1994). 

Further, the recovery rate of the pressure coefficient is calculated to be faster than that from 

the LES results.   Figure 7.2.9 presents the distributions of the time-mean pressure 

coefficient on the front and rear faces of the normal plate.   Also shown are the 

measurements of Fage and Johansen (1927) at Re = UxlO5 as well as the numerical 

calculations of Chua et al. (1990), Lisoski (1993), Joshi et al. (1994) and the predictions of 

the current two-dimensional simulations. The pressure coefficient on the rear face of the 

plate is predicted to be -1.39 and compares with a value of -136 measured by Fage and 

Johansen (1927). The present two-dimensional simulations as well as the results of the 

discrete-vortex method of Chua et al. (1990) and Lisoski (1993) are observed to predict a 

lower pressure coefficient at the rear side of the plate, thus, over-estimating the drag 

coefficient.   Table 7.2.1 summarizes the time-mean drag coefficient compiled from 

previous experiments and numerical simulations. The current three-dimensional simulation 

results in a CE of 2.16 which agrees well with the experimental values of 1.84,2.10 and 

2.11 by Fage and Johansen (1927), Arie and Rouse (1956), and Lisoski (1993), 

respectively. Contours of p* downstream of the flat plate, shown in Figure 7.2.10, are 
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seen to have a distribution similar to the distribution of u'v'.   The peak value of 

p 4 (0.15) is located in the shear layer atx = 1.7. 

7.3    Instantaneous Flow Characteristics 

Figure 7.3.1a shows a snapshot of the instantaneous velocity field in the x-y plane 
at z = n and Figure 7.3.1b shows a snapshot in the x-z plane at y = 0. The flow field, 

presented in Figure 7.3.1a, is observed to have characteristics similar to the two- 
dimensional flow. A vortex is seen developing at the edge of the shear layer with its core 
located at x = 2 while several shed large-scales structures arc convecting downstream. 
Figure 7.3.1b illustrates the spanwise variation of the instantaneous flow. The three- 
dimensional nature of the flow is further depicted in the particle trajectories shown in 
Figure 7.3.2. These particle trajectories are derived for a velocity field frozen in time and 
hence are the same as the instantaneous streamlines. Particles released at the top of the 
plate (atx = Oandy = 05) are seen to be entrained by the spanwise roller originating from 
the upper shear layer as shown in Figure 7.3.2a whereas particles released upstream near 
the center of the plate (r = -05, y = 0) are drawn to the bottom half and are entrained by 
the vortex under development as shown in Figure 7.3.2b. The particle trajectories are seen 
to be very complex and three-dimensional. 

Contours of the spanwise velocity component in the y = 0 and* = 2 planes are 
presented in Figures 7.3.3a and b, respectively, at one time instant (t = 45). The spanwise 

velocity field is observed to be organized as concentrated zones of positive and negative 
values with maximum magnitudes as high as the freestream velocity. The spanwise 
velocity is the largest in the near wake region and decreases with distance away from the 

plate. Figure 7.3.4 shows spanwise variations of the streamwise and spanwise velocities 
for different locations in the computational domain. Upstream of the plate (x = -05, y - 

0), the flow is two-dimensional with a nearly zero spanwise velocity. In the near-wake 
region (x = 2,y = 05), significant spanwise variations of u and large values of w, 

characterizing the three-dimensional structure of the flow are observed. These variations 
become small at x = 8 and at x = 16 (Figures 7.3.4c-d). The magnitude of the spanwise 
velocity decreases from 0.8 at x = 2 to 0.4 at x = 16. 

The instantaneous three-dimensional flow field is averaged along the spanwise (z) 
direction to construct a smooth two-dimensional projection.   Figure 7.3.5a presents 
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contours of the instantaneous spanwise-avcraged stream function, <y/>z, at t -45 in a 

stationary frame of reference. A vortex street with a wavelength of 5-6 plate heights is 

clearly seen. To better illustrate the wake street, the streamlines in a frame of reference 

moving at a convective velocity of 0.6U^ are plotted in Figure 7.3.5b. The structures 

emanating from both sides of the separated shear layer arc more evident in this figure. 
Contours of the instantaneous spanwise-averaged voracity field, <a»z, are illustrated in 

Figure 7.3.6. In the near-wake region, the roll up of the shear layer into Karman vortices 

is seen to contain several small scale structures which amalgama*» and form a coherent 

structure. These Karman vortices are very strong and organized at four plate heights. 

However, by eight plate heights, they lose their coherence and become weaker. At a 

distance of twelve plate heights, the vortices are dissipated and fragmented into smaller 

structures. The vorticity distribution in the near wake somewhat resembles that of the two- 

dimensional simulation. However, significant differences exist farther from the plate. 

The three-dimensional instantaneous fife field can also be visualized through two- 

dimensional (x-y) sections at various spanwise positions. Figures 7.3.7a-h present 
contours of a^ for 8 spanwise planes (z = 0, TC/4, Kl2,3id4, z, 5JC/4, 3JCI2, 7X/4). It is 

seen that in each spanwise plane there is a significant number of small scale structures 

superimposed on the larger vortices. The large-scale structures shedding from the shear 

layer are formed from the amalgamation of these fine-scale structures. Instantaneously, the 
structure of the flow is significantly different for the various planes presented. When the 

spanwise distributions are averaged, the small scale variations are mitigated and the large- 

scale structures are more clearly seen. Figure 7.3.8 presents snapshots of the 
instantaneous Gfe-contours (at z = x) for a representative vortex shedding cycle between t = 

42 and t = 48. The temporal evolution, propagation and breakdown of the vortices can be 

seen in these snapshots. Several small-scale structures are seen to interact throughout the 
shedding cycle. 

The temporal developments of the instantaneous streamwise and spanwise velocity 
components in the near-wake region (x = 2,y = OJ, z = 0) and at a point further 
downstream (x = 8, y = 0 J, z = nl2) are presented in Figure 7.3.9a and b for a selected 

time interval. The time traces are dominated by high-frequency components superimposed 

on a low-frequency motion. In contrast to the results of the two-dimensional simulation, 

no limit cycle is observed in the three-dimensional results. The primary Strouhal number is 

calculated to be 0.156 at the near-wake point. This compares with a value of 0.149 

measured at Re = 3xKß-9xl(ß in a tow-tank experiment and 0.121 obtained from a 
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numerical simulation by Lisoski (1993). This also compares well with results of Joshi 

(1993) who determined a primary shedding Strouhal number of 0.16. Figure 7.3.10 

presents the time variation of the instantaneous drag coefficient Also shown are the results 

obtained from the two-dimensional simulations.   The breakdown of the flow in the 
spanwise direction is seen to significantly reduce the magnitude of the drag coefficient 

(from 3.7 to 2.16). The drag calculated from the three-dimensional simulation does not 
vary much in time while the two-dimensional result shows a much larger temporal 
variation. A low frequency modulation similar to the previous observation of Joshi (1993) 
is also captured by our simulation.   Such a low frequency variation  has also been 
previously reported in other geometries: Eaton and Johnston (1981) for the flow over a 
backward-facing step and Tafti and Vanka (1991b) for the flow over a blunt plate. It is 
conjectured that a low-frequency flapping of the separated shear layer is caused by the 
enlargement and reduction of the time-mean wake closure region. Joshi (1993) found the 

time scale of this mechanism to be approximately 50 time units. Our simulation was carried 
for only sixty time units and hence we are unable to precisely determine this time period. 
Further time integration will be required to study more thoroughly this phenomenon. 

7.4     Eduction of Coherent Structures 

Coherent structures have been observed in several previous experimental and 
numerical studies of mixing layers (Brown and Roshko, 1974; Jiminez et aL, 1985; Bernal 
and Roshko, 1986; Miyauchi et aL, 1991; Bell and Mehta, 1992; Rogers and Moser, 1992, 

Leep et aL, 1993), and wake flows (Hussain and Hayakawa, 1987; Hayakawa and 
Hussain, 1989; Karniadakis and Triantafyllou, 1992). At low Reynolds number, the 

unsteady flow is dominated by large, predominantly two-dimensional spanwise vortex 
structures, commonly referred to as rollers. With increasing Reynolds number, the flow 
becomes unstable to three-dimensional perturbations, resulting in the formation of 
streamwise vortices, or rib vortices (following Hussain, 1983). These structures have 
been observed to enhance the turbulence production and scalar mixing. This section 
investigates the formation and evolution of such three-dimensional coherent structures in 
the case of the wake of a normal flat plate. 

Figure 7.4.1 presents contour surfaces of the 3-D spanwise vorticity. These 
surfaces correspond to a vorticity magnitude of 25 at a time instant t = 45. Distinct 
spanwise rollers can be identified at several locations downstream of the flat plate. It is to 

be observed that when the flow separates from the edges of the plate, the developing 
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spanwise roller is essentially two-dimensional. However, after separating from ti.e shear 

layer, the roller becomes distorted, and subsequently breaks into smaller structures. The 

rollers are easily identifiable up to x = 8 after which only fragments of the rollers are seen. 

Sections of this vorticity field in (x-y) planes have been shown earlier in Figure 7.3.7. 

Figure 7.4.2 presents contours of spanwise vorticity at three sections in the (x-z) plane (at 

y = -05,0,05). These sections pass through the rollers originating from the upper and 

lower shear layers. Arrows in Figures 7.4.2a-c highlight the positions of the spanwise 
rollers. Aty = 0 (Figure 7.4.2.b), two rollers with clockwise rotation (negative fife) and 

one with counter-clockwise rotation (positive tt)x) are observed. At y = 05 (Figure 

7.4.2.C), the regions of negative vorticity correspond to the top two rollers while only a 

small section of the bottom roller is captured. This indicates that the bottom roller does not 

penetrate fully up to the upper edge of the plate. Aty =-05 (Figure 7.4.2.a), for this time 

instant, only the bottom roller is captured as the top roller is not completely formed. The 

distortions of the spanwise rollers in the near wake region are clearly seen. However, after 

x = 7,  only 'blobs' of concentrated vorticity with no clearly identifiable structure are 
observed. 

The distortions of the spanwise rollers are accompanied with the generation of 

streamwise and cross-stream vorticities, as in the case of the mixing layers and shear layers 

(Jiminez et al., 1985; Bernal and Roshko, 1986; Lasheras et al., 1986; Bell and Mehta, 

1992, Ashurst and Meiburg, 1988; Miyauchi et al., 1991; Rogers and Moser, 1992). 

Figure 7.4.3 shows the surfaces of streamwise vorticity with values of ±2.0. The 'rib'- 

like structures are also observed here; however, because of the interactions between the top 

and bottom shear layers, the formation of these ribs is not as clear as observed in mixing 

layers.   At the separation point, the shear layer is distorted, resulting in regions of 

concentrated streamwise vorticity. When the spanwise roller is shed from the shear layer, 

the streamwise vorticity becomes organized into elongated structures that attach themselves 

to the rollers. The region where the ribs are attached to the rollers has been previously 

termed as the 'braid region'. Two individual rib structures above and below the symmetry 

plane have been isolated and are shown in Figure 7.4.4. It is observed that the rib in the 

upper half of the domain (y £ 0) extends from the bottom of the roller at x = 2 to the top of 

the roller at x = 55, while the rib forming in the lower half of the domain (y<0) connects 

the top of the roller at x = 3 5 to the bottom of the roller at x = 7. This topology is similar 

to that conjectured by Hussain and Hayakawa (1987) for the turbulent wake of a circular 

cylinder. Figure 7.4.5 shows cross sections of the streamwise vorticity field for several 
spanwise planes (z = 0, iü4, and nl2). It can be seen that near the separation point, there 
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are several small scale structures of streamwise voracity which then amalgamate into 

elongated structures. Figure 7.4.6 displays contour surfaces of the cross-stream voracity 
field, fife., for a magnitude of 2. The evolutions of these surfaces are similar to that of the 

streamwise vorticity structures discussed in Figure 7.4.3. 

The enstrophy field, Q, and the magnitude of the strain rate tensor, D, defined as: 

-222 
ß = fife + fife + fife (7.4.3) 

D = sijSji (7.4.4) 

c      / fduj     dui\ 
5y = 2"[^+ &j) (7.4.5) 

are also calculated and are shown in Figures 7.4.7a and b. In the braid region, the primary 

contribution to the enstrophy is from the streamwise and cross-stream voracities, while the 
roller regions have their contribution from the spanwise vorticity. 

To further understand the spatial development of the coherent structures, several 
representative planes are defined (following Rogers and Moser, 1992): 

(i) the core plane (CP) is the (y-z) plane through the core of the spanwise roller, 

(ii) the mid-braid plane (MBP) is the (y-z) plane midway between two spanwise rollers of 
same direction of rotation, 

(iii) the rib plane (RP) corresponds to the (x-y) plane through the rib structure, and 

(iv) the between-rib plane (BRP) corresponds to the (x-y) plane between two rib structures. 

Contours of fife in the core plane (CP) at x = 2, the mid-braid plane (MBP) at x = 3.6 and 

the second core plane (CP) at x = J J are shown in Figure 7.4.8a-c and the corresponding 
fife-contours are presented in Figure 7.4.9a-c. The spanwise rollers are identified in the CP 

while fife is nearly nonexistent in the MBP. The fife-field is dominated by small scale 

structures in the first CP (Figure 7.4.9a) and then organizes into large-scale structures at 

the MBP and the second CP (Figures 7.4.9 b and c). Further, these rib vortices appear in 
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pairs of alternating rotational directions at the MBP and the second CP, but are distributed 

in an irregular pattern in the spanwise direction. Figures 7.4.10a-d present the spanwise 

and streamwise vorticity fields in the rib plane (RP) and between the rib planes (BRP). 

The presence of cusp regions (concentrated regions of fife) in the roller can be seen in 

Figures 7.4.8c and 7.4.10c identified by arrows. These cusp regions are similar to those 

observed in numerical studies of the mixing layer by Miyauchi et aL (1991) and Rogers and 

Moser (1992) who conjectured that the streamwise ribs connect to the spanwise rollers 

through these cusp regions. Due to the complex organization of these structures, a clear 

conclusion as to the mechanism of connection between the ribs and rollers could not be 
made from the present results. 

Finally, these coherent structures are observed to change their size and strength in 

time as the simulation progressed. No periodic or quasi-periodic pattern was observed. 

Figure 7.4.11 shows the streamwise vorticity field at t = 55, ten time units later than the 

results presented earlier. Instead of several thin elongated structures, the flow has now 

organized into a few thick 'cigar shaped' structures. We also observe that around this time 

period the drag coefficient is on the increase from its low value of the low frequency 

variation. Thus, the topology of the coherent structures is intricately related to the 

momentum transfer occurring in the wake region. Further time integration and more 

sophisticated processing techniques are required to clearly describe the evolution of these 

structures. Also, a lower Reynolds number is necessary in order to obtain a better spatial 
organization of the flow. 
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8.        CONCLUSIONS AND RECOMMENDATIONS 

8.1      Conclusions 

A high-order finite-difference formulation on collocated grids has been developed 

to perform time-dependent fluid flow simulations in rectangular geometries.   The 

numerical procedure is based on a fifth-order upwind-biased scheme for the convective 

terms and a fourth-order accurate stencil for the diffusive terms. A direct solver based on 

eigenvalue decomposition has been developed for the pressure-Poisson equation. Several 

representations of the Laplace operator with different orders of accuracy have been 

examined. The finite-difference and finite-volume concepts have been considered in the 

discretizations of the divergence and gradient operators. Issues pertaining to satisfying 

the divergence-free condition of the velocity field are studied in detail and validated for 

several test problems. It is observed that an error reduction of 4 or higher is not always 

possible due to the low-order formulation of the stencil adjacent to the boundaries. A 

mixed Fourier-spectral/fmite-difference formulation is used in the three-dimensional 

algorithm. The Capacitance Matrix Technique is applied to solve the pressure-Poisson 
equation in the presence of obstacles in the computational domain. 

Further, a data-parallel algorithm has been implemented on the massively parallel 
processing computer, CM-5. The performance of the algorithm has been evaluated on 

various grid sizes in model flow problems and for different partition sizes on the CM-5. 

Several basic linear algebra routines are also tested to determine the peak performances 

feasible on the machine. The performance is observed to not only depend on the 

communication/computing ratio but also on the optimum use of the vector registers. The 

peak performance attained by the current data-parallel algorithm is approximately 

40MFLOPS per node on a 725-processor partition. A maxim^ni speed of 145GFLOPS 

is reached for a problem with 2048x2048 mesh points using a 572-processor partition. It 

is anticipated that future improvements in the compiler may provide even higher 
performance rates. 

Having established an accurate numerical procedure and an efficient parallel 

algorithm, unsteady two-dimensional numerical simulations have been carried out Two 

basic yet fundamental geometrical configurations have been investigated: the separated- 

reattaching flow past a normal flat plate with an attached downstream splitter plate and 

the separated flow past a flat plate held normal to a uniform stream. The characteristics 
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of the separated-reattaching flow are studied in the steady and unsteady regimes. The 

Reynolds number is varied between 25 and 500. Steady separation of the shear layer is 

predicted for a Reynolds number up to 750. The reattachment length is found to increase 

monotonically up to 40hf.  Unsteady separation characterized by vortex formation, 

coalescence and shedding was observed at a Reynolds number greater than 250. The 

onset of unsteady separation results in a sudden drop in the time-mean reattachment 

length.   Time-mean properties of the unsteady regime (such as the surface pressure 

coefficient, the velocity difference, the voracity thickness, and the shear layer center) 

have been calculated and compared with the experimental data available at higher 

Reynolds numbers. The large-scale structures are observed to have specific signatures on 

the surface pressure and the skin-friction factor.    The shedding mechanism is 

characterized by two major modes at Re = 250 and a single mode at Re = 375 and 500. 

Mode n for Re = 250 is observed to be closely related to the necking phenomenon in the 

experiments of Cherry et al. (1984). The shedding frequencies and the phase velocities 

predicted by the current simulations in the low Reynolds numbers range are calculated to 

be nearly the same as those measured in the experiments at higher Reynolds numbers. 

The instability of the separated shear layer is also found to be consistent with the inviscid 
theory. 

For the study of the separated flow past a flat plate held normal to a uniform 

freestream, two-dimensional unsteady simulations have been performed for Reynolds 

numbers varying from 100 to 1000. The time-mean wake length is seen to increase from 

13 for Re = 100 to 14.6 for Re = 1000. The time-mean flow quantities are observed to 

be over-estimated compared to the experiments. The time-mean drag coefficients are 

also over-predicted by a factor of up to 2. This is attributed to the high coherence of the 

vortices predicted by the two-dimensional simulations. The unsteady characteristics of 

the separated flow are also discussed. limit cycles with a distinct frequency are captured 

for Reynolds numbers below 1000. Interaction regions I and II have been identified in 

the far wake for Re = 500 and 1000 and are observed to occur pseudo-periodically. The 

signatures of the drag coefficient are seen to differ significantly between Re of 100 and 

1000. The calculated shedding frequencies and streamwise convective velocity are seen 

to agree satisfactorily with the experiments. Further, linear stability analysis shows that 

the shedding of Kaiman vortices occurs at the location in the separated shear layer 
corresponding to the most amplified mode. 
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Finally, large-scale computations of the three-dimensional separated flow past a 

normal flat plate have been carried out. The direct numerical simulation shows that the 

flow at Re = 1000 is inherently three-dimensional. The time-mean velocities and 

Reynolds stresses are found to agree well with the experiments conducted at higher 

Reynolds numbers. The flow is seen to break down into small-scale structures and the 

spanwise development of these structures has been studied. Visualization techniques 

have been applied to capture the spanwise development of the instantaneous flow field. 

Streamwise ribs and spanwise rollers are identified in the near wake. The presence of 

these coherent structures corroborates the experimental observations and numerical 
calculations for mixing layers and wakes of circular cylinders. 

Striking differences are seen between the results from the two-dimensional 

simulations and those from the three-dimensional calculations. Since the flow is found to 

be inherently three-dimensional for a Reynolds of 1000, the results obtained from the 

two-dimensional simulations are significantly in error when compared with the 

measurements and the three-dimensional simulation. Within the two-dimensional 

assumption, the large-scale structures maintain their coherence and are not permitted to 

break in the spanwise direction. The results from the two-dimensional simulations should 

be compared more appropriately with a two-dimensional experiment such as soap-films 

(Gharib, 1993). However, since fluid dynamics processes in Nature are inherently three- 

dimensional, two-dimensional flow simulations for all their computational and 

conceptual convenience are part of 'a comfortable dream world* (Morkovin, 1964). 

8.2      Recommendations for Future Research 

Although the present study has attempted to analyze in depth some fundamental 

aspects concerning separated and separated-reattaching flows, the study is far from being 

complete and represents the initial stages of continuing research to understand wake-flow 

instabilities. Several issues to be addressed in the future have emerged from this study. 

Concerning the numerical algorithm, the current computations have been 

restricted by the time step size to maintain numerical stability. As a result, only a few 

shedding cycles have been simulated due to limited computational resources. It is to be 

noted that the present three-dimensional study required approximately 170 CPU hours on 

the CM-5. However, a large ensemble size is required for the results to become 

statistically reliable. These statistical quantities, including normal and shear stresses, are 
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of importance in turbulence modeling. Thus, to simulate a larger number of shedding 

modes without extensive computational requirements, the limitation on the time-step size 

should be eased. An implicit formulation for the discretization of the convective and 

diffusive terms should be considered and iterative methods to solve the non-linear terms 

should be investigated. Further, three-dimensional simulations at higher Reynolds 

numbers (say above JO4) could be attempted to gain insight into the flow characteristics 

in a practical range of Reynolds number. However, as the computational requirements to 

perform DNS become overwhelming with increasing Reynolds numbers, large-eddy 

simulations will provide a more promising approach to tackle these high-Re flows. 

Filtering procedures and selection of appropriate sub-grid scale models, amongst a 

myriad of proposed ones, are some of the issues concerning turbulence modeling in 
separated flows. 

Concerning the fluid dynamics issues, a major difficulty that was faced during the 

research was the lack of appropriate processing tools to probe the three-dimensional flow 

field. At each time step, the present DNS generates 8AX106 values representing the 

velocity and pressure fields. Interrogating such large datasets is an overwhelming task. 

More inquisitive diagnostic methods such as proper-orthogonal decomposition (POD) 

and stochastic estimation (SE) can be applied to gain insight into the inherent coherent 

structures. However, their applicability, as well as the extent of information to be gained, 

is not yet known. Further, enhanced graphical interfaces, such as holographic images and 
virtual reality, will also help the interrogation procedure. 

In addition to the issues studied in this thesis, wake control mechanisms such as 

base mass injection, splitter plates, and immersion of bodies in the near wake, can also be 

simulated with the present computational algorithm. Effects of freestream oscillation, 

freestream turbulence, flow compressibility, and transverse and spanwise shear are other 

areas that need further research. Three-dimensional calculations in the transition regime 

(for Reynolds numbers between 150 and 250) may provide clearer insight into the 

formation and organization of the coherent structures in wake flows. 
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Table 2.1.1   Experimental investigations of separated-reattaching flows 

Investigator 
Arie & Rouse 

(1956) 
Roshko & Lau 

(1965) 

Smits 
(1982) 

Kiya & Sasaki 
(1983,1985) 
Cherry et al. 

(1984) 
Ruderich & 

Fernholz 
(1986) 

Configuration 
Flat Plate w/ 
Splitter Plate 

Model B 

Model C 

Method 
Pitot 

Cylinders 

Flat Plate w/ 
Splitter Plate 
Blunt Base 

Blunt Base 

Preston 
Tubes 

Re 
7x103- 
3.5X104 

Pitot Tube 

Castro & Haque 
(1987) 

Castro & Haque 
(1988) 

Jaroch& 
Fernholz 

(1989) 
Govinda Ram & 

Arakeri 
(1990) 

McCluskey et al. 
(1991) 

Hancock & 

Flat Plate w/ 
Splitter Plate 

Flat Plate w/ 
Splitter Plate 
Flat Plate w/ 
Splitter Plate 
Flat Plate w/ 
Splitter Plate 

Split Film 
X-wire 

Hotwire 

Hot and 
Pulsed Wires 

5.3x103 

1.4x103 
4.2x104- 
2.9x105 

Tu(%) ß(%) 
"10" 

2.9x10* 

3.2X104 

1.4x10* 

9x103 

"03" 

W 

"TF" 

5 
TTlO" 

W/h 

Pulsed Wire 

Pulsed Wire 

Castro 
(1993) 

Flat Plate at 
various angles 
Splitter Plate 
Flat Plate w/ 
Sputter Plate 
Flat Plate w/ 
Splitter Plate 

Pulsed Wire 

Pressure 
Tappings 

l.lxlO4 

l.lxlO4 

1.4x10* 

IToT 

0.66 
0.25 

TT75* 

IT 

40 
T£3T 

"To" 

~5T 

10 
6.5 

Pressure 
Tappings 

Pulsed Wire 

5.7x103- 
1.3x10* 

1.6x103 

1.8x103 

TJ 

TOT 

"Ö3B" 

63" 

T7T 

"2T 

19 

T9- 

1ST 

1.4 

19" 

"30=67 

174 

TIT 

Tu : Turbulence Intensity; ß: Blockage Ratio;W: spanwise width 

XR : «attachment length; h : height of plate above splitter plate or height of blunt plate. 

XR/h , 
"16T1 

"~2T1 

33.6 
T£3T 

~53T 

T7T 

22.6 
19.2 

"253" 

^9 

26T 
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Table 3.7.1    Summary of different formulations used in the present study 
(Entries represent order of accuracy of stencil). 

Scheme (Vp) 1            (V.) Flux Interpolation 
IFDM 4 4t 

 1^:  

CFDM1 2 2 — 

CFDM2 4 2 _ 

CFDM3 4 4 — 

GFVMl 2 2 2 
CFVM2 4 2 4 
CFVM3 4 4 4 

t Laplace operator (V*p) is used instead of Divergence of Gradient operator ( V. (Vp)) 

Table 3.7.1.2    Error reduction for decay of a vortex at / = 0.1. 

(Grids = 17x17,33x33,65x65) 

Re = 1 1            Re 
= 100 Re = 1000      | 

Scheme K ». K a» hx K      I 
IFDM 2.09 1.82 !     3.74 3.59 1.99 3.13 

CFDM1 3.73 2.12 1     3.84 2.14 1.77 2.14 
CFDM2 3.55 3.52 1     3.73 3.84 1.56 3.84 
CFDM3 3.87 3.02 3.75 4.02 3.74 4.05 
CFVM1 1.92 2.61 1.78 2.32 1.77 2.25     I 
CFVM2 1.92 2.12 1.78 1.96 1.78 1.97     | 
CFVM3  1 3.02     1 2.09 2.89 2.20 2.88 2.15     1 
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Table 3.7.2.1    Results for driven-cavity flow stRe = 100 on a 65x65 uniform mesh. 

IFDM OFDM! 0FDM2 CFDM3~ CFVMi G>VM2 CFVM3 Ghia 
(1982) 

Vanka 
(1986) 

Umin -0.186 -0.212 -0.212 -0.213 -0.210 -0.211 -0.214 -0.211 -0.213 
,vmin -0.223 -0.248 -0.251 -0.252 -0.248 -0.248 -0.252 -0.245 
..Ymw 0.161 0.176 0.178 0.178 0.175  | 0.176 0.178 0.175 
Vmin -0.091 1 -0.102 -0.103 -0.103 -0.102 | -0.102 -0.103 -0.103 -0.103 

Table 3.7.2.2    Results for driven-cavity flow at Re = 400 on a 65x65 uniform mesh. 

IFDM CFDM1 CFDM2 0FDM3 CFVM1 CFVM2 CFVM3 Ghia 
(1982) 

Vanka 
(1986) 

-umin -0.304 -0.317 -0.318 -0.319 -0.310 -0.313 -0.322 -0.327 -0.327 
Vmin -0.417 -0.434 -0.435 -0.437 -0.419 -0.421 -0.442 -0.450 

..Vmaa 0.276 0.290 0.290 0.292 0.280 0.282 0.296 0.302 
Vmin -0.108 -0.110 -0.110 -0.111 -0.107 -0.108 -0.112 -0.114 -0.114 

Table 3.7.2.3     Results for driven-cavity flow at Re = 1000 on a 65x65 uniform mesh. 

IFDM CFDM1 0FDM2 ÜFDM3 CFVM1 CFVM2 CFVM3 Ghia 
(1982) 

Vanka 
(1986) 

Umin -0.266 -0.355 -0.355 -0.357 -0.342 -0.350 -0.364 -0.383 -0.387 
vmin -0.366 -0.474 -0.474 -0.476 -0.455 -0.464 -0.488 -0.516 
Vmax 0.251 0.340 0.341 0.343 0.326 0.335 0.351 0.371 
Vmin -0.085 -0.109 -0.109 -0.110 -0.105 -0.107 | -0.112 -0.118 -0.117 
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Approach 

CFDM 

CFVM1, 
CFVM2 

CFVM3 

Table 3.7.2.4    Characteristics of pressure formulations. 

Characteristics 

IFDM       • Local divergence of velocity field is not achieved. 
• Global divergence is not satisfied. 
• Perturbation parameter required for solution of Poisson equation. 

• Local divergence is satisfied. 
• Global divergence is not achieved. 
• Pressure field is oscillatory. 

• Local divergence is satisfied for cell fluxes. 
• Global divergence is satisfied. 
• Collocated velocity is not divergence-free. 

• Local divergence is satisfied for cell fluxes. 
• Global divergence is not satisfied. 
• Collocated velocity does not satisfy the divergence-free condition. 
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Table 5.2.1.1    Performance in GFLOPS of basic linear algebra routines for two- 
dimensional arrays on 256-processor CM-5 partition in scalar mode. 

642 1282 2562 5122 10242 20482 

A+B 0.082 0.15 0.24 0.29 0.15 0.098 
A*B 0.082 0.15 0.24 0.28 0.14 0.096 
A/B 0.068 0.091 0.12 0.13 0.091 0.069 

A+B*C 0.16 0.25 0.39 0.44 0.17 0.13 
C + aB 0.16 0.27 0.39 0.48 0.26 0.18 
(A,B) 0.048 0.13 0.29 0.41 0.23 0.17 
MxVt 0.0015 0.0059 0.027 0.095 0.26 0.49 

MxMtt 0.077 0.26 0.49 0.64     | 0.65 0.31 

'' CMSSL Routine: gen_matrix_mult 

Table 5.2.1.2    Performance in GFLOPS of basic linear algebra routines for two- 
dimensional arrays on 256-processor CM-5 partition in vector mode. 

642 1282 2562 5122 10242 20482 40962 81922 163842 
A+B 0.11 0.61 1.73 3.01 3.50 3.50 3.40 3.41 3.42 
A*B 0.11 0.61 1.73 2.95 3.50 3.50 3.40 3.41 3.42 
A/B 0.10 0.50 1.15 1.58 1.70 1.70 1.66 1.68 1.69 

A+B*C 0.21 1.17 3.12 5.14 5.20 5.60 5.63 5.65 5.66 
C + aB 0.21 1.06 3.28 5.89 4.19 7.00 6.33 6.83 6.85 
(A3) 0.053 0.21 0.77 2.22 3.89 4.90 5.10 5.15 5.17 
MxVt 8xl(H 0.02 0.07 0.18 0.70 1.70 3.36 5.97 8.73 

MxMtt 0.070 0.35 1.18 2.70 5.20 8.60 13.11 15.84 19.57 
t CMSSL F Loutine:ge •n_matrix_ vector_mul t 
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Table 5.2.3.1    CPU timings and performance in GFLOPS of the two-dimensional 
algorithm on 512-processor CM-5 partition in vector mode. 

Grid 

Momentum 
(Eq. 3.1.4) 

CPU sec/At 
[GFLOPS] 

Poisson Solver 
(Eq. 3.1.7) 

CPU sec/At 
[GFLOPS1 

Update 
(Eq. 3.1.6) 

CPU sec/At 
[GFLOPS1 

CRAY-YMP timf. 
CM-5 time 

64x64 4.61x10-3 
[0.210] 

3.52x10-2 
[0.062] 

5.48x10-3 
[0.024] 

0.3 

128x128 5.59x10-3 
[0.706] 

5.97x10-2 
[0.286] 

6.41x10-3 
[0.0841 

1.1 

256x256 8.14x10-3 
[1.9281 

1.03x10-1 
[1.314] 

9.40x10-3 
[0.2061 

4.6 

512x512 1.32x10-2 
[4.727] 

2.95x10-1 
[3.650] 

1.60x10-2 
[0.5531 

11.5 

1024x1024 3.12x10-2 
[8.0111 

1.09 
[7.898] 

3.86x10-2 
[0.9201 

19.6t 

2048x2048 9.77x10-2 
[10.226] 

4.71 
[14.6061 

1.21x10-1 
[1.1731 

36.8t 

T Estimated CPU time on CRAY-YMP. 
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Table 5.3.3.1    CPU timings and performance in GFLOPS of the three-dimensional 
algorithm on 512-processor CM-5 partition in vector mode. 

Grid 

Momentum 
(Eq. 3.1.4) 

CPU sec/At 
[GFLOPS1 

Poisson Solver 
(Eq. 3.1.7) 

CPU sec/At 
[GFLOPS1 

Update 
(Eq. 3.1.6) 

CPU sec/At 
[GFLOPS1 

64x64x64 1.55x10-1 
[1.1551 

3.19x10-1 
[1.7081 

6.57X10-2 

n.1911 
128x128x64 3.12x10-1 

n.2491 
9.37x10-1 

[3.4711 
1.51x10-1 
[2.0711 

128x128x128 4.02x10-1 
[3.5501 

1.82 
[4.7541 

3.60x10-1 
[3.1941 

256x256x64 7.00x10-1 
[4.0701 

3.32 
[6.5061 

4.08x10-1 
[3.0031 

256x256x128 1.28 
[4.4511 

6.147 
[8.425] 

9.44x10-1 
[4.8711 

256x256x256 1.94 
[5.8741 

13.41 
[10.2871 

1.69 
ri0.5251 
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Table 6.1.4.2.1  Characteristics of the shed vortices aiRe = 250. 

Ma Q 

Re = 250 (Present Calculations) 1.6 35° 0.78 

Re = 26000 (Kiya and Sasaki, 1983a) 1.8 45° 0.70 

Table 6.1.4.3.1   Modified non-dimensional frequency, <0* (Equation 6.1.4.3.6) for the 

separated-reattaching flow. 

Re = 250        Re = 375        Re = 500 

Separation Point (X/XR=0.002)              0.064              0.059 0.060 

Edge of Shear Layer (X/XR = 0.125) 0.221 0.214 0.213 
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Table 6.2.1.1  Summary of grid resolution and computational domain. 

Grid 

B 

NxxNy 

129x129 

257x257 

513x513 

257x257 

513x513 
513x257 

[xu,xd]t 
[-5.8,19.81 

[-5.8,19.81 

[-5.8,19.81 
[-5.5,20] 

[-5.5,201 
[-10,251 

frbJdtt 
[-6.4,6.4] 

[-6.4,6.41 

[-6.4,6.4] 

[-8.0,8.0] 

www 
[-8.0,8.0] 

Distribution 

Uniform 

Uniform 
Uniform 

* xu and xd are the upstream and downstream distances, respectively. 
tt yb and yt are the bottom and top widths, respectively. 

Non-Uniform 

Non-Uniform 
Non-Uniform 

Table 6.2.4.1   Modified non-dimensional frequency, <o*. for the separated flow. 

Re = 100        Re = 500       Re=1000 

Separation Point (x =0.01) 

Edge of Shear Layer (x = 0.25) 

0.034 

0.216 

0.023 

0.212 

0.025 

0.222 
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Table 7.2.1   Summary of drag coefficient compiled from experiments and numerical 
simulations for the flow past a normal flat plate. 

Investigator 
Fage & Johansen 

(1927) 
koshko (W54) 

Method 
Wind tunnel 

Arie & Rouse 
(1956) 

Castro (1971) 
Bearman& 

Trueman 
(1972) 

Kuwahara (1973T 

Wind Tunnel 
Wind Tunnel 

Wind Tunnel 
Wind Tunnel 

Courchesne & 
Laneville 

(1979) 
Kiya&Arie(l9gOT 
Sarpkaya & Kline 

(1982) 

Discrete Vortex 
Wind Tunnel 

Discrete Vortex 
Wind Tunnel 

Spalart et al. (1983) 

Igarashi (1986) 

butta(lj83) 
Chein & Chung 

(1988) 

Discrete Vortex 

Wind Tunnel 

Vortex Element 
Discrete Vortex 

Raghavan et al. 
(1990) 

Knisely (1990) 

Chua et al. (1990) 

Lisoski (1993) 

Joshi (1993) 

ARC2D 

Wind Tunnel 

Tow Tank 

Discrete-Vortex 
Tow Tank 

Discrete Vortex 

Present 

2-D Simulations 

3-D Simulations 

2-D Simulations 

3-D Simulations 

"RT 
1.5x105 

4X103-104 

7X103-3.5X104 

2.5X104-7X104 

2xl04-7xl04 

2xl04-105 

2.1X104 

107 

l.lxlOM^xlO4 

"OT 

720-8.1x104 

5x103 

"1ÖT- 
5x103 

40-103 

103 

102-103 

103 

T8T 

T7l  
TIü 1 
T8T 
TUT 

"2U3F 

2.0-3.5 
TT 

3.5 

IT 

3.6 
TTT 
2.19 

3.47 

141-4.65 

2.4 

2.85-3.70 

2.16 
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Figure 3.2.1    Schematic of collocated grid arrangement, 
(o) collocated variables 
(x) cell-face variables 
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Figure 3.7.1.1 Distribution of L°° norm with grid size at t = 0.35 for the vortex-decay 
problem (Re = 1). 

(a) CFVM2 (X = 1.83), (b) CFVM1 (X = 1.82), (c) CFDM3 (X = 3.69), 
(d) CFVM3 (X = 2.88), (e) IFDM (X = 2.61), (f) CFDM2 (X = 4.51) 
(g) CFDM1 (X = 4.37), (•) Le & Moin (1991) (X = 2.53). 
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Figure 3.7.1.2 Maximum divergence in the collocated velocities for the vortex-decay 
problem (Re = 1) as calculated by the various methods. 
(a) CFVM1, (b) CFVM2, (c) CFVM3, (d) IFDM, (e) CFDM1-3. 
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Figure 3.7.1.3 Distribution of the error norms with the Reynolds number for the 
vortex-decay problem using CFVM2. 
Grid size = 65x65, At = 1(H, t = 0.5. 
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Figure 3.7.2.1       Velocity profile along the vertical centerline (x = 0.5) 
for the driven-cavity problem at Re = 100. Grid size = 65x65. 
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Figure 3.7.2.2 Velocity profile along the vertical centerline (x = 0.5) 
for the driven-cavity problem at Re = 1000. Grid size = 65x65. 
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Figure 3.7.2.3       Integrated mass based on the cell fluxes for the driven-cavity problem 
at Re = 1000. Grid size = 65x65. 
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Figure 3.7.2.4 Integrated mass based on the collocated velocities for the driven-cavity 
problem at Re = 1000. Grid size = 65x65. 
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Figure 3.7.2.5 Profile of the pressure along horizontal centerline (y = 0.5) for the 
driven-cavity problem at Re = 1000. 
(a) overall distribution, (b) close-up view. Grid size = 65x65. 
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Figure 3.7.3.1 Streamlines for the Kovasznay flow at Re -40. 
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Figurc 3.7.3.2      Distribution of the error norms based on (a) the streamwise velocity 
and (b) the pressure with grid resolution for the Kovasznay flow 
at Re = 40. 
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Figure 3.8.1 Velocity difference and spanwise vorticity for a convecting 
vortex using boundary condition (3.8.1a) 
(a)t = 0,(b)t=l. 
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Figure 3.8.1(contimied) (c) t = 2, (d) t = 3. 
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Figure 3.8.2 Velocity difference and spanwise voracity for a convecting 
vortex using boundary condition (3.8.1b) 
(a)t=l,(b)t = 2,(c)t*3. 
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Figure 3.8.3 Velocity difference and spanwise vorticity for a converting 
vortex using boundary condition (3.8.1c) 
(a)t=l,(b)t = 2,(c)t = 3. 
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Figure 3.8.4 Velocity difference and spanwise vorticity for a converting 
vortex using boundary condition (3.8.1d) 
(a)t=l,(b)t = 2,(c)t = 3. 
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Figure 3.8.5 Time variation of the maximum streamwise velocity difference, 
[(u-uo/uolmax, for a converting vortex. Comparison of various outlet 
boundary conditions. 

IO"1 „ 
Outlet Boundary Conditions: 

 Equation (3.8.1a) 
 Equation (3.8.1b) 
- - - Equation (3.8.1c) 
 Equation (3.8.1d) 
 Equation (3-8-le) 

->.   r   \ 

05 1 15 2 
Nondimensional time 

■  •■■■■• I 
25 

Figure 3.8.6 Time variation of the maximum spanwise voracity, (a>z)max> for a 
convecting vortex. Comparison of various outlet boundary conditions. 
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Figure 4.4.1 Distribution of the spanwisc velocity component in the x-direction 
at y = 0 for the fully-developed laminar flow through a square duct at 
Re = 10and30. 
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Figure 4.4.2 Temporal evolution of (a) u^ and (b) wfa at x * y = -0.5625 for the 
decay of a 3-D perturbation in a laminar flow through a square duct 
at Re = 10 and e = 0.05. 
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of a 3-D perturbation in a laminar square duct at Re = 10 and e = 0.05. 
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Figure 4.4.4 Temporal evolution of (a) u^ and (b) wfe at x = y = -0.5625 for the 
decay of a 3-D perturbation in a laminar flow through a square duct 
at Re = 30 and e = 0.3. 
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Figure 5.2.1.1       Performance of a triad operation, A = A + B*C, in scalar mode 
for various CM-5 partitions. 
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Figure 5.2.1.2 Performance of the matrix-matrix multiplication using CMSSL 
routine, gen_matrix_mult, in scalar mode for various CM-5 partitions. 
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Figure 5.2.1.3       Performance of a triad operation, A = A + B*C, in vector mode 
for various CM-5 partitions. 
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Figure 5.2.1.4      Performance of the matrix-matrix multiplication using CMSSL 
routine, gen_matrix_mult, in vector mode for various CM-5 partitions. 
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Figure 5.2.1.5       CPU run times for the communication functionalities on 
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Figure 5.3.1.3      Performance of triad operation, A = A + B*C, for three-dimensional 
arrays with Nz = 128 on a 32-processor partition. 
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Figure 5.3.1.4 Performance of matrix-matrix multiplication using CMSSL routine, 
gen_matrix_mult, for various layouts of the three-dimensional arrays 
on a 32-processor partition (Nz = 128). 
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Figure 6.1.2.1 Contours of spanwisc voracity, a>z, near the outlet boundary for 
(a) Equation (3.8.1c), (b) Equation (3.8.1d), (c) Equation (3.8.1e) 
(tOzmin. G>zmax» A©z) = (-2.05, -0.05,0.2) 
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Figure 6.1.3.5 Streamwise distribution of the skin-friction factor, C, 
in the steady regime. 
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Figure 6.1.4.1.1    Time-mean streamlines in the unsteady regime, 
(a) Re = 250, (b) Re = 375, (c) Re = 500. 

158 



r-j-r-i-i-r 

■Re-250 
■Re-375 

5.00 

4.00 

3.00   - 

2.00 

1.00 

0.00 '  

i i i l i i i "' ■ ■ i ■ ■ ■ ■ ■ 

 Re-500 
■     Ruderich 
o     Came &Haque (198 
■     Riidcrich&Feniholz(1986) 

"         17) 
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unsteady regime. 
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Figure 6.1.4.1.3(continued) (c) X/XR = 0.93, (d) X/XR = 1.25. 
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Figure 6.1.4.1.5    Streamwise distribution of the time-mean skin-friction factor, Cf, 
in the unsteady regime. 
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Figure 6.1.4.1.9    Streamwise distribution of the vorticity thickness, SW/XR. 
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Figure 6.1.4.1.10 Variation of the shear layer center, yc, with X/XR. 
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Figure 6.1.4.1.11 Loci of zero streamwise velocity for Reynolds numbers in the 
unsteady regime. 
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Figure 6.1.4.2.2    Time signal of the fluctuating surface pressure, p's, at X/XR = 0.8 
for Re = 250. Modes I and II are identified at selected time intervals. 
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Figure 6.1.4.2.3    Time development of the spanwise vorticity for vortex shedding 
mode I at Re = 250. 
(a)t = 380,(b)t = 385. 
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Figure 6.1 A2.3(continued) (c) t = 390, (d) t = 395. 
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Figure 6.1.4.2.4    Path of propagating vortex A (refer to Figure 6.1.4.2.3). 
Core location is shown at intervals of five time units. 
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Figure 6.1.4.2.5    Time evolution of the spanwise vorticity for vortex shedding 
mode II at Re = 250. 
(a) t = 740, (b) t = 745, (c) t = 750, (d) t = 755, (e) t = 760. 
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Figure 6.1.4.2.6    Time signal of the fluctuating streamwise velocity, u*. at x = 12 5 
y = lfor(a)Re = 375,(b)R?=500. ' 
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Figure 6.1.4.2.7    Representative time frames of the spanwise vorticity at Re = 375. 
(a) t = 315.6, (b) t = 318.8, (c) t =325. 
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Figure 6.1.4.2.7(continued)        (d) t = 328.1, (e) t = 331.2. 
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Figure 6.1.4.2.8    Representative time frames of the spanwise vorticity at Re = 500. 
(a) t = 175, (b) t = 177.5, (c) t = 180. 
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Figure 6.1.4.2.8(continued) (d) t = 185, (e) t = 190. 

179 



'5 
1 

2.0 _ 

0.0  - 

-2.0 

-4.0 

-6.0 

-8.0 

Figure 6.1.4.2.9    Streamwise distribution of the mininniiri instantaneous coz 
in the unsteady regime (arbitrary time unit). 
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Figure 6.1.4.2.10 Temporal evolution of the drag coefficient for 
(a) Re = 250, (b) Re = 375. 
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Figure 6.1.4.2.10 (continued)      (c) Re = 500. 
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Figure 6.1.4.3.1    Autocorrelation coefficient of the fluctuating pressure, Ap', at 
x = 12.5, y = 2 for Reynolds numbers in the unsteady regime. 
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Figure 6.1.4.32    Autocorrelation coefficient of the fluctuating pressure, An' at 
x = 1, y = 2 for Re = 250 and 500. 
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Figure 6.1.4.3.3    Power spectrum of the drag coefficient at Re = 375 and 500. 
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Figure 6.1.4.3.4    Development of the integral timescale A1. U«/XR for x/xR. 
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Figure 6.1.4.3.5    Development of the integral timescale A*. IWXR for X/XR. 

185 



x/n^.39, Ax/b^- 038 
x/*,-0.76. Ax/jfe« 0.82 

- x/*R-1.38,Ax/jfc-0.38 

25 

Figure 6.1.4.3.6    Space-time correlation coefficient of the fluctuating surface pressure 
Sp's,forRe = 375. 
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Figure 6.1.4.3.7    Streamwise variation of the convective velocity based on the 
fluctuating pressure at the surface and at the center of the shear 
layer for Re = 375. 
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Figure 6.1.4.3.8    Streamwise variation of the convective velocity based on 
the fluctuating skin-friction coefficient and the fluctuating 
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Figure 6.2.1.3 Temporal variation of the drag coefficient for grids B and D 
at Re = 250. 
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Figure 6.2.1.6      Temporal variation of the drag coefficient for various downstream 
distances, Xd, at Re = 100. Grid Resolution = 513x257, xu = -10. 
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Figure 6.2.3.1 Instantaneous snapshot of the unsteady flow for Re = 100. 
(a) Spanwise Vorticity. 
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Figure 6.2.3.2 Location of the vortex cores for Re = 100 corresponding to 
Figure 6.2.3.1. Values in brackets represent [OhX], the spanwise 
voracity in the core and the total vortex circulation. 

203 



20 40 60 80 100 120 140 
Non-dimensional Time 

(a) 

(b) 

Figure 6.2.3.3      (a) Time trace of the streamwise velocity component and (b) u-v 
phase portrait for Re = 100 in the near-wake region (x = 2, y = 1). 
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Figure 6.2.3.4      (a) Time trace of the streamwise velocity component and (b) u-v 
phase portrait for Re = 100 in the far-wake region (x = 20, y = 2). 
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Figure 6.2.3.6 Instantaneous snapshot of the unsteady flow at t = 120 
for Re = 500. 
(a) Spanwise Voracity. 

Dashed Lines : (CDzmin. afemax» AcOz) = (-6.5,-0.5,0.1) 
Solid Lines: (cOanin, Ozmax. AG>Z) = (0.5,6.5,0.1) 

(b) Streamlines. (\|fmin, Vmax, Ay) = (-1.5,1.5,0.1) 
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Figure 6.2.3.7      Location of the vortex cores for Re = 500 corresponding to 
Figure 6.2.3.6. Value in brackets represents [(aj, the spanwise 
voracity in the core. T = 6.6. 
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Figure 6.2.3.10     Time trace of the streamwise velocity component at a far-wake 
point (x « 16, y = 0) for Re = 500. 
Far-wake vortex interaction regions I and II are identified. 
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Figure 6.2.3.11     Spanwise vorticity contours for a representative far-wake 
vortex interaction region II at Re = 500. 
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Figure 6.2.3.1 l(continued)    (d) t = 91, (e) t = 94, (f) t = 97. 
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Figure 6.2.3.12     Spanwise voracity contours for Re = 500 at t = 150. The 
pairing process in the lower half of the computational 
domain is shown. 
Dashed Lines: (eOzmin. G>zmax> Acöz) = (-6.5,-0.5,0.1) 
Solid Lines: ((Dzmin. Ozmax. AcOz) = (0.5,6.5,0.1) 
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Figure 6.2.3.13    Instantaneous snapshot of the unsteady flow at t = 230 
for Re = 1000. 
(a) Spanwise Voracity. 
Dashed Lines: ((Dzmin. «Ozmax. Aa>z) = (-8.5,-0.5,0.1) 
Solid Lines : ((Dänin, G>zmax» ACöZ) = (0.5,8.5,0.1) 
(b) Streamlines. (Vmin, Vmax, Ay) = (-1.5,1.5,0.1) 
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Figure 6.2.3.14    Location of the vortex cores for Re = 1000 corresponding to 
Figure 6.2.3.13. Value in brackets represents the spanwise 
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Figure 6.2.3.15    Time traces of the strcamwise velocity for Re = 1000 
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Far-wake interaction regions I and n are identified. 
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Figure 6.2.3.16     u-v phase portraits for Re = 1000 in (a) the near wake 
(x = 2, y = 1), and (b) the far wake (x = 20, y = 2). 
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Figure 6.2.3.17     Spanwise vorticity contours for a representative far-wake 
vortex interaction region II at Re = 1000. 
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Figure 6.2.3.17(continued) (d) t = 115.5, (e) t = 117, (f) t = 118.5. 

221 



AS 

4.0  - 

35 

">—r -i—r 

-Re-100 
Re-500 

■i ■• ■• :i " ;: •   •  ■ ■■  ■ ,  » ■: ■■ ■• ;• •■ •• •■ •• •' ■: 

;■ i : i i - y;.':: 'i' < •: :• •; j ••:; s:: s \' * 

•• 5: : J? ; > » ' • ' * ' > J ! ; f M 

20 40 60 80 

Non-dimensional Time 

(a) 

100 120 

4.5 r-—r 

2.0 I i i i i ■ ■ t i ■ ■ ■ i ■ . ■ i ■ ■ ■ i . .  

0   20  40  60  80  100  120  140  160  180  200 

Nondimensional Time 
(b) 

Figure 6.2.4.1      Temporal variation of the drag coefficient for 
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Figure 6.2.4.2(continued)      (c) Re = 1000. 
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Figure 6.2.4.3      Streamwise variation of the convective velocity at y = 0 5 and 1 
for Re =100. 
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Figure 7.1.1    Grid Distribution in (a) the x-direction, and (b) the y-direction. 
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Figure 7.2.1 Contours of the time and span-averaged (a) streamlines, and (b) G&Z. 

227 



Figure 7.2.2 Streamwise variation of the u -velocity component along 
the centerline. 

Figure 7.2.3 Profiles of the time-mean streamwise velocity component at x = 8. 
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Figure 7.2.4 Distributions of the normal stresses: (a) u'2,(b) v'2,(c) w^ 
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Hgure 7.2.5 Distribution of the Reynolds shear stress, uV 
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Figure 7.2.6       Streamwise variation of the rms stresses along the centerline. 
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Figure 7.2.7 Profiles of (a) the streamwise stresses, u'2 , 

(b) the cross-stream stress, v*2 at x = 8. 
( ) Current Simulation, ( ) Joshi et al. (1994), 
(o) Kiya and Matsumura (1988). 
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Figure 7.2.8 Streamwise variation of the time-mean pressure coefficient, Cp , 
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Figure 7.2.9 Distribution of the time-mean surface pressure coefficient, 
Cp , on the front and rear sides of the flat plate. 
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Figure 7.3.1    Velocity vectors in (a) z = n and (b) y = 0 planes for t = 45. 
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(a) 

(b) 

Figure 7.3.2    Particles trajectories at t = 45. 
(a) Injection line (x = 0, y = 0.5) 
(b) Injection Line (x= -0.5, y = 0) 
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Figure 7.3.3    Contours of spanwise velocity fort = 45 
in (a) y = 0, and (b) x = 2 planes. 
Dashed Lines (wmin.Wmax. Aw) = (-1.0,-0.1,0.1) 
Solid Lines (wmin,Wmax, Aw) = (0.1,1.0,0.1) 
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Figure 7.3.4 Spanwise variation of the instantaneous streamwise and spanwise 
velocity components. 
(a) upstream of the plate ( x = -0.5, y = 0) 
(b) in the near wake (x = 2, y = 0.5). 

239 



1.20 

0.00 

-0.20 

-0.40 

0.60   - 

u.w       0.40   - 

0.20 

0.00 

-0.20 

-0.40 

_L 
0.5 1 

-J 1 L -i 1 _l_ 

05 1 
x/ti 

w 

-i i L 

15 

w 

15 

Figure 7.3.4(continued) (c)atpoint(x = 8,y = 0.5) 
(d) in the far wake (x = 16, y = 0.5). 
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Figure 7.3.5    Contours of span-averaged streamlines, <\|/>z, at t = 45. 
(a) stationary frame of reference. 

Contour Levels (Vmin.Vmax. A\|f) = (-2.0,2.0,0.2) 
(b) frame of reference moving at a convective velocity of 0.6Ü«, 

Contour Levels (YmimYmax, Ay) = (-1.0,1.0,0.1) 
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Figure 7.3.6    Contours of span-averaged spanwise vorticity, «0z>z.at * = 45. 
Solid Lines : ((th^, ow,) = (0.4,40) 
Dashed Lines : ((Damn. Oznux) = (-40.0, -0.4) 
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Figure 7.3.7    Contours of instantaneous spanwise voracity, ©z, at t = 45. 

(a)z = 0,(b)z=4,(c)z = 2 

Solid Lines: (©zmin, cozm«) = (0.4,40) 
Dashed Lines: (o^än, dhm^d = (-40, -0.4) 
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(d)z-3«M 

Figure 7.3.7(continued)        (d) z = -j-, (e) z = n, (f) z=-j-. 
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Figure 7.3.7(continued) (g) z = -j-, (h) z = -j- 
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Figure 7.3.8    Contours of spanwise voracity for a representative shedding cycle: 
(a) t = 42, (b) t = 44, (c) t = 46, (d) t = 48. 
Solid Lines: (©an*,,, ©an«) = (0.4,40) 

Dashed Lines : (©zmin. ©an«) = (-40. -0.4) 
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Figure 7.3.9 Time trace of the instantaneous streamwise and spanwise velocity 
components, (a) in the near-wake region (x = 2, y = 0.5, z = 0) 
and (b) at point x = 8,y = 0andz = Jt/2. 
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Figure 7.3.10       Time trace of the instantaneous drag coefficient at Re = 1000 
predicted by (a) 2-D and (b) 3-D simulations. 
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Figure 7.4.1    Surface of three-dimensional spanwise vorticity at t = 45. 
Surface Levels : Red = -2, Cyan = +2. 
Tic increments along x and z directions = 1. 
Tic increments along y -direction = 0.5. 
Origin of axis at (0,-3,0). Flat Plate is shown as black shaded surface. 
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I    3 

Figure 7.4.2    Contours of spanwise vorticity at t = 45 in x-z planes : 
(a)y = -0.5,(b)y = 0. 
Solid Lines : (©anim <ozm«, Aa> z) = (0.5,7.5,0.5) 
Dashed Lines : ((Ozmm, «özmax» A© z) = (-7.5, -0.5,0.5). 
Arrows indicate spanwise rollers. 
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Figure 7.4.2(continued) (c) y = +0.5. 
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Figure 7.4.3    Surface of three-dimensional streamwise vorticity at t = 45. 
Surface Levels : Magenta = -2, Cyan = +2. 
Tic increments along x and z directions = 1. 
Tic increments along y -direction = 0.5. 
Origin at (0,-3,0) 
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Figure 7.4.4    Close-up view of the streamwise ribs. 
Surface Level: Magenta = -2. 
Tic increments along x and z directions = 1. 
Tic increments along y -direction = 0.5. 
Origin at (0,-3,0) 
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(»)x-0 

Figure 7.4.S    Spanwise variation of the streamwise vorticity for t = 45. 

(a)z = 0,(b)z=J,(c)z=|. 
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Figure 7.4.6 Surface of three-dimensional cross-stream vorticity, ©y, at t = 45. 
Surface Levels : Green = -2, Yellow = +2. 
Tic increments along x and z directions = 1. 
Tic increments along y -direction = 0.5. 
Origin at (0,-3,0) 
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Figure 7.4.7 Surface of three-dimensional (a) strain rate magnitude, D, 
and (b) enstrophy, Q, at t = 45 
Surface Levels : Red = 5, Cyan = 10. 
Tic increments along x and z directions = 1. 
Tic increments along y -direction = 0.5. 
Origin at (0,-3,0) 
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Figure 7.4.10 Contours of (a) ©z, (b) co* in the rib plane (RP) at z = TT- 

(©inün. öHm«. A© j) = (-7.5, -0.5,0.5); i = x or z 
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Figure 7.4.10(continued) Contours of (c) Ofe, (d) COX in the between-rib plane (BRP) 

atz = ^ 

(«Oimin. tOim«» Aö> i) = (-7.5, -0.5,0.5); i = x or z 
Arrow indicates cusp region. 
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Figure 7.4.11 Contours of streamwise vorticity at t = 55. 
Surface Level: Magenta = -2, Cyan = +2. 
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APPENDIX A 

Spatial Discretization on Rectilinear Non-Uniform Grids 

The high-order accurate formulations discussed in Section 3.2 have been 
presented for uniform grids. For rectilinear non-uniform grids, the stencils can be 
modified with either Lagrange multipliers (Fomberg, 1988; Rai and Moin, 1991) or 

metrics formulation. In the present study, the metrics formulation is chosen since it is 

easier to code and can be extended to general curvilinear grids. Section A.l outlines the 
modifications to the convective and diffusive derivatives in the momentum equations to 
accommodate for rectilinear non-uniform grids. Section AJ2 presents the modification to 
the stencils of the pressure-Poisson equation. 

A.1 Momentum Equations 

In the metrics formulation, the grid in the physical space $x-y) is mapped on to 
the computational space (f-r/) with constant grid spacing (Af=l, Ar]=l). The stencils of 
the finite-difference method are formulated in the computational space (%-f]). The first- 
order derivatives of a variable <p (such as the velocity components) are expressed as: 

dip   d$ d<p 
5F-5F^ (A.1.1) 

^ = ^ (A.1.2) 

where -^ and ■£- are the first-order metrics derivatives given by: 

*     1 
3F = 5[ (A.l.3) 

dt)     1 
^ = 5 (A.1.4) 

an 
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The derivatives— and J* can be computed either analyticaUy or approximated using 

finite-difference stencils.   Currently, a fourth-order central approach is applied to 
compute the metrics: 

rdX\ 1 
r^l = J^0ci-2-8xi.i+8xi+1-xi+2) ;i = 3,Nx-2 (A.1.5a) 
rdX\        1 
fö)/ = YÄI(" **'* + XM) ;i = 2andNx-1 (A.1.5Ö) 

(^)=l^j<yJ-2'8yJ-1+8yJ+1-yJ+2) ;J = 3'Ny-2 (A-1.6a) 

^) = J^j(" y» + yj+ti >'J = 2andNy.l (A.1.6b) 

The first-order derivatives — and ^ are evaluated with fourth-order accurate finite- 

difference steneüs (see Equations (3.2.1-3.2.5)). This formulation is implemented in the 
stencil computations of the convection and the velocity divergence terms. 

The diffusion terms, —j and —j, are formulated on non-uniform grids in the 

following manner: 

aJ=tfjfX$)tf CA.1.7) 

(A.1.8) 

The second-order derivatives, -r-| and -3-j, are evaluated as follows: 

A2 "A^ <*•>*> 

(D 
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is .Mi 
#-&? (A1-9b) 

where 

0        1 
i\ =]J2? (""r/"2 + 16Xi'] "30Xi +16xi+1 ~Xi+2) '"' = 3'Nx'2     (A-l-lOa) 

p- (a:/./ - 2 xi+ x,+i) ; i = 2 andNx-1 (A.1.10b) (—)= — 

llhfllTÄr?^*2 + 16yH '30yJ+16yj+1 -yj*2) ;j = 3,Ny-2    (A.l.lla) 

hi1 = ~J toj-1 -2yj+ yj+l) >J = 2 andNy-1 (A.l.llb) 

The second-order derivatives —| and —j are evaluated with fourth and second-order 

accurate finite-difference stencils for the interior nodes and the nodes adjacent to the 
boundaries, respectively (see Equations (3.2.6-3.2.8)). 

This summarizes the modifications of the finite-difference stencils for the 
momentum equations on non-uniform rectilinear grids. The metrics are computed at the 
pre-timestepping stage, stored and used subsequently during the time integration 
procedure. 

A.2 Pressure-Poisson Equation 

This section presents the modifications to CFVM (see Section 3.3.3) for non- 

uniform grids. The intermediate cell fluxes, c; are computed from the collocated velocity 
field,«, using fourth-order accurate Lagrange multipliers (Fornberg, 1988). The pressure 
gradients at the cell faces are formulated as: 
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(I)       =[f)      (!)       =^-(|) (*il) V    JMI2    K     JMI2\äH+ll2      (<*_)       \%}+l/2 

#. i+i/2 

(fy+m'[Wlia$i\mm(i£\     S)+i/2 (A2'2) 

The first-order metrics derivatives are evaluated with fourth-order accurate central 
difference schemes: 

~di\      = 24ÄE(Xi'2'27Xi'1 + 2?Xi"Xi+l) ;* = 4'Nx'3 (A2-3) 

i^+m
=^^2-27yj-1 + 27y^y^ ;j=4>Nr3 <A-2-4> 

The near-boundary derivatives are formulated with second-order stencils: 

*La= S(X'" ^'''=5 ^^ (A*2-5) 

I ^7    = 7^ ^ ■ y-ri;j=3 and Ny-2 (A.2.6) 

The pressure gradients in the computational space, ^ and &-, are evaluated using the 

formulations discussed earlier in Section 3.3.3. The modification of the stencils in the 
presence of baffles and obstacles is an extension to the formulation described in 
Appendix D. 
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APPENDIX B 

Formulation Of Pressure Discretization Schemes 

Seven schemes considered in this study for the discretization of the pressure- 
Poisson equation are summarized in Table 3.7.1. This appendix describes in detail the 
formulations of these schemes. 

B.1 Inconsistent Finite-Difference Method 

The IFDM is based on a fourth-order central finite-difference scheme of the 
Laplacian and divergence operators for the interior nodal values and a second-order 
central finite-difference stencil for the near-boundary values. The discretized pressure- 
Poisson equation for IFDM is given by: 

ij 

+ 72V (~Pi,i~2 + 16PiJ"1 ~30piJ + 16pi*+l -PiJ+2)        (B.l.la) 

D*j       = TTE. (Ui'2J "* U*-1J + 8 UMJ -ui+2j) 
+ ~12Äy ^>2 "* VW + 8 VU+1 -viJ+2) (B. 1. lb) 

for/ = 4 toNx-3andj = 3 toNy-3,and 

(jtfl.^AfitPW'tP'J + PMjy (B.1.2a) 

[Sc\       =-^(-Ui.lj+uMJ) (B.1.2b) 

(#Q    = Äfi(PW2PV + PiJ+l) (B.1.2C) 

(ed    s7zty<-ViJ'l + vv+l)- (B.1.2d) 

for / = 2j, Nx-2, Nx-1 and / = 2,3, Ny-2, Ny -1. 

Third-order one-sided finite-difference schemes are applied to compute the boundary 
pressure gradients (Fornberg, 1988): 
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fdp\ 1 , 11 .        3 1      , 
■\Jx)ij = AT' T^"+5^* 7^" +1^ 

\&)Hzj-A*{ 6 PNxj-3pNx-lj + 2PNx.2jlPNx.3j> 

fdp\ 1      U 3 1      , 
[Jjy = Ay*' JW +<*/>42 -JPU +JPI.^ 

\ß)uiy -^(TP^y '
3Pim + 2* -IP,, i/fy-2     3Fi,Ny.3 ) 

(B.1.3a) 

(B.1.3b) 

(B.1.3c) 

(B.1.3d) 

Extracting the boundary pressures from Equations (B.1.3a-d) and substituting in 

Equations (B.1.2a) and (B.1.2c), the second-order derivatives for the near-boundary 
nodes (i=2 and Nx-1, j = 2 and Afy-7) are derived as : 

(all. = TiÄ? t'3 M (Tju -2p2J+P3J+P4J J <B-L4a) 

r^ 
{&)„= 17&[-3Ay $)u -2P*+Pu+Pi.<] (B.1.4c) 

r&\ (^■^^vvV (B-1-4b) 

This summarizes the stencils used for IFDM and their near-boundary modifications. To 

prove the inconsistency in applying the Laplacian operator instead of the divergence of 

the gradient operator, we consider a fourth-order discretization of the gradient operator 

and a second-order formulation of the divegence operator resulting in the following 
stencil : 
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( V- (VP)).   = 24Ä?('Pi-3j+*Pi-2j + Pi.lj-16pij+pi+lj 

+ 8pi+2j-Pi+3j) 
+ 24& ( ~PiJ-3 +8P'J-2 + PiJ-1 • 16Pij + PiJ+1 

+ 8pij+2,-Pij+3 ) (B.1.5) 

Subtracting Equation (B.1.5) from Equation (B.l.la) results in the following 
inconsistency parameter, &,: 

'(*)   = W   -(*(*)) 
V ij ij 

( s \ 1_. J_ 5 5 2 
K V >.. ~ Ax2 ' 24 Pi'3J" 12 Pi'2J + 8 P'-tJ ' 3 PiJ 

'«/ 
±ir> 5 1 
+ 8 Pi+lj - J2 Pi+2j + 24PMj) 

+ -L,±.„        5 5 2 
Ay2* 24 Pü-3' l2PiJ-2 + 8 Pi^ ' JPU 

^5 5 1 
+ gPiJ+1 - J2 Pij+2. + 24 Pij+3) (B.1.6) 

Such inconsistency in the discretization yields to the violation to the compatibility 
condition as discussed in Section 3.3.4. 

B.2 Consistent Finite-Difference Methods 

In CFDM1, the divergence and gradients operators are discretized using a second- 
order central finite-difference resulting in the following pressure-Poisson equation: 

1 1 
4Ax2(Pi+2J-2Pij + Pi.2j)+4-^(Pij+2-2Pij + Pij.2) = 

1      ,~ - 1      r 
2AtAx (Ui+1J" ""<>)+ 2ÄÄy ^>7 " yW} ®2- *> 

for j = 4to Nx-2 and/ = 4 to Ny-2. 

The near-boundary derivatives are determined from: 

(s(*))_ . = 7Äx2(P4J'P2J) (B.2.2a) 

280 



\E)2j    2* ('U1 J + U3J) (B2.2b) 

(s(§|   . = 4A?<MJ -2P3j + Plj) 

1    rl8       31 2 6 A    fdp\    i 
= 4Ä?177P2J17P3J+17P4J+P5J -77** {&JijJ (B2-2c) 

(B.2.2d) e&]    =2^(-S2j+U4j) 
^    J3j 

{^$))NX.2J= 4&<PN*4j'2PH*2J +P
NxJ> 

= 7h[PNX-4j+flPNX-3J -77V2J +71*   $\xjJ    (B-2^) 

WNX-2J =2*(~ UNx-lj + *Nx.3j } 

\E[*))N*.1J = 4Ä?(PNx-lj  'PNx-3j} 

(Bu\ 1    ,   ~ n+l , 

(B.2.2f) 

(B.2.2g) 

(B.2.2h) 

It is to be noted that the relations given by Equations (B.1.3a) and (B.1.3b) are applied in 
deriving Equations (B.2.2c) and (B.2.2e). Similar expressions are determined for the 
near-boundary values in they-direction. 

In CFDM2, the divergence operator is discretized using a second-order central 
finite-dirTerence stencil and the gradient operator is formulated with a fourth-order central 
finite -difference scheme resulting in the following pressure-Poisson equation : 

Jfif [-Pi-3J +8pi.2j +Pi-lj -16PiJ + pMJ +8pi+2J - pMj] 

+ 24&[~Pi<'-3 + 8piJ-2 +A>' ■ 16Pij + PiJ+l + 8Pij+2 -Pij+J = 

^ &Mj - Kij )+ J^y Gij+i - V,; (B.2.3) 

for i = 6 to Nx-5 andy = 6 to Afy-5. 
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Due to the stencil size, a second-order accurate scheme for the pressure gradient is 
applied adjacent to the boundaries. The discretized divergences are similar to those in 
Equations (B.2.2); while the near-boundary pressure derivatives are determined from: 

fa(7&\. = jh<-P2J+P<J ) (B.2.4a) 

1    rll      31        2 6 A    fdp\    7 
= J^l UP2J-JJP3J+TJP4J+P5J -JJAC IßjjjJ (B^.4b) 

(X(ä)) . = 5J£2<6P2J + P3j-14P4j+8p6J -P7J) (B.2.4c) 

(s(s)^ . = 2Üb2<6P3J + P4J-14P5j+8P7j -P8j) (B.2.4d) 

mi (•P„-,:+8P„-,r14P„ 'x*4j     24 Ax21   yNx-7j      PNx-6j~     PNx-4j 
+ p        +6p       ) 

*Nx-3j      yNx-2j 

$$)\x.3J= ^('PNx-6j+8P
Nx-5j-14p

Nx-3j 
+ p       +6p       ) yNx-2j      yNx-lj 

(B.2.4e) 

(B.2.4f) 

" 4h^Nx^hPNx.3j-TlPNx.2^li^ $)NxJ] (B-2-4g) 

feMk/J " 4Ax2(PNx.lJ -pNx-3j} (B.2.4h) 

Equations (B.2.4b) and (B.2.4g) are derived using the relations given by Equations 
(B.1.3a) and (B.1.3b). Similar expressions are applied for the y-component of the 
derivatives. 
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CFDM3 is assembled with a fourth-order formulation of the divergence and 
gradient operators yielding the following pressure-Poisson equation : 

jj^[p„j -16p„j+64puj+16puj-130pMJ 

1 
+16PMJ +<*Pi+2j ■ MpM4 + Pi+4J] 

+  l44Ä?tpiJ-t -16Pij-3 + 64Pij-2 +J*JVi '130 pQ 

i + l6Pij+l + <*piJ+2 -16piJ+3 +p.J+4] 

1 
+ T2ty ( viJ-2 "* vij-l +8 vU+l '*W> (B-2-5) 

for / = 6 to NJC-5 and/ = 6 to iV>5. 

Due to the stencil size, a second-order accurate scheme is applied adjacent to the 
boundaries. The near-boundary derivatives are evaluated from: 

\S)   .= 22E ('ul j + U3J> (B.2.6b) 

(x(lrj)   . = l44Ä?(48pi>> +8p2J -113P3j +8p4j 

+ 64p5J -16p6j + p7j) 

1      r952       1675        184 
" 144^c2ilTP2j-jrP3J+-TrP4j 

+ 64p5j-16p6J + p7j   -^-Ax  ^2jJ    (B.2.6c) 

(3u\ 1 «+/     ~ ~     ~ 
(CEJ, ." 12S(ulj -8u2j+8»4j-»5j) (B.2.6d) 

(x (*)),. s Mh^l-tPlJ + ^PZJ +14P3J -H3P4, 

+8 P5j + 64 p6j  -16 P7j + P8j ] 
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" i44Ax2L11 P2J +irp3' -^rp4J+8P5j 

+ 64p6J -16p7J + p8j+jjAx {¥)..] (B.2.6e) 

(s(s))5| 
= ~m^[-14P2j + 64P3j +14p4j -129p5j 

+1&P6J + 64 p7j -16p8j + P9j ] 
'5j 

(B.2.6f) 

$$}N*4J 
= m^l-14 V.,, + «JW,, + "/\,_,, -«9Ä Afc-/,/ AMJ Nx-3j Nx*4j 

+16PNX-5J+64PMJ -16P
NX.7J + PMJ J       <*!%> 

f4-f^Tl i      r^Q 20* 7255 
Nx-3j 

+8P„ ,+64P„ , '16p       +p       +TTAC f¥\      1 Nx-4j yNx-5j       yNx-6j   yNx-7j    U       \dX)NxjJ 

(B.2.6h) 

Nx-3j 
(*{&b *     f952., 1675n ,184 
\*\*))N*24~H4A#l U PNx-lj1Tp

Nx.2j+lTpt 

+ 64P„ ,   -16P        +P -WAX(¥)      1 (B26i) yNx4j       yNx-5j    ^Nx-6j     U °* \d*)NxjJ   K  'ZM) 

(B.2.6J) 5F >Nx-2j    ^2AX(
SNx^j-8liNx.3j+8'i^J 12AX < mtMj- ° »Nx-3.i "r° UNx-l, -"Nx)) (: 

fewXx-lj = 4^(PNx-lj  "V/ 
(o£f I 1     ,    ~ n+7 

(B.2.6k) 

(B.2.61) 

Equations (B.2.6c), (B.2.4c), (B.2.4g) and (B.2.4h) are derived using the relations given 

by Equations (B.1.3) and (B.1.3b). Similar expressions are invoked for the y-component 

of the derivatives. It is observed that second-order finite-difference matrices Dp2x and 

DF2y based on the CFDM2 and CFDM3 formulations have complex eigenvalues and 

eigenvectors which increased the work load during the computation stage of the pressure 

field. Further, due to the stencil formulation of these schemes, the pressure field will 
have high oscillations (or cheker-board splitting). 

284 



B 3 Consistent Finite-Volume Methods 

CFVM1 consists of a second-order finite-volume discretization of the divergence 
and gradients operators resulting in the following pressure-Poisson equation: 

~Ä£Äc<Pi-ij-2Pij +Pi+ij)+Ä^(Pij-r2Pij +Pij+i) 
= ^^(^Ma-Gx>Ul2)+ -^((cj)j+m-(cy)j.ia) (B.3.1) 

for i = 3 to Nx-2 and/ = 3 to Ny-2 . 

Adjacent to the boundaries, the following relations are imposed 

(S(1FJ| . = A^(P3j-P2j) (B.3.2a) 

\3cx\ /    ,   , n+1 
\%L.    = ATc

(~(c*    )1J
+(cx)2+l/2j) (B.3.2D) 

d 

l^k-lj =~k(- ^Nx-3,2j + <C?+1*NX J > <B-3.2d) 

It is seen that no 'ad-hoc' boundary conditions are required for the pressure.  Similar 
expressions can written for the ^-component of the operators. 

In CFVM2, the divergence operator is discretized using a second-order finite- 
volume stencil and the gradient operator is formulated with a fourth-order central finite 
-volume scheme resulting in the following pressure-Poisson equation: 

24AxcAx t'Pi-2j +28Pi-lj -54Pij +28Pi+lj -Pi+2jJ 

+ 24AycAy t 'Pij-2 +28Pij-l -54Pij +28Pij+i -Pij+J 
= ATC 

( (cx)M/2 - (cx)i-m )+Ayc( (cy)j+l/2 - (cy)j-ii2 ) (B.3.3) 

for i = 4 to Nx-3 andy = 4 to Ny-3. 
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Due to the stencil size limitation, a second-order accurate scheme is applied adjacent to 
the boundaries. The near-boundary derivatives arc evaluated from: 

(^(*J   . = Ä£ta(P3J-P2j) (B.3.4a) 

("5cj  .   =Ärc
(-<c*+ >ij +(cxh+l/2j) (B.3.4b) 

(s(&JJ   . = 24^^(25P2J-51P3j + 27p4j -p5j) (B.3.4c) 

(^ W)NX-2J = ükäc <-PMJ 
+2?

PNX.3J 

-51PNX.2J + 25PNX.1J
) WW 

{^$))NX.1J 
= d&(PNx.2J  -Pnnj> (B-3-^) 

l^U = ~k (' ^NxMj + <c?+1>Nx j > (B-3.40 

Similarly to CFVM1, no ad hoc pressure boundary conditions are needed for this 
formulation. 

CFVM3 is constructed with a fourth-order finite-volume discretization of the 
divergence and gradients operators giving the following pressure-Poisson equation : 

576AxcAxtPi-3j -XPuj*7**Pi-ir1460Pij 
+ 783PMj -54Pi+2j +Pi+3j] 

+ 576AycAy[PiJ-3 -54Pij-2 +783Pij-i -^60PiJ 

+ 783piJ+1 -54piJ+2+pij+3] 

=    2l^l^^i-^J-27(cx)i.ll2j + 27(cx)Mi2j-(cx)i+3l2j] 
+   24ATc t Gy)ij-3f2 - 27 (cy)ij.m + 27 (cy)ij+m - (cy)ij+3f2]        (B.3.5) 

for 1 = 5 to Nx-4 and/ = 5 toNy-4. 
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Due to stencil size, a lower-order accurate discretization is formulated near the boundary 

(ä(§)) ,.= ?£E<P3J-P2J) 

n+1 

'2J 
)lj+<e*>2+lßj> 

(B.3.6a) 

(S(ä))   . = 24Ä^(25P2j-Slp3j + 27p4j -p5j) (B.3.6c) 

("S?J     "Stf'G'b+Mj + G'k+iaj* CB3.&0 

(s (*)),, = S76LcAx<-51P*J+7aoP3J -1459P4j 

+ 783 ps j -54p6j + p7j) 
'4j 

(B.3.6e) 

(5ffi)Mrf^55Ba^^ÄWV + Ä'W,<f 
+7W|V 

-1459px7       +780p        -51p       ) 

fa $7)NX-2J ~ 2*k& <-PNx^j +27PNx.3J 
51 p        +25p      ) yNx-2j        yNx-lf 

\&\?*J)NX-1J     AxcAx(p
Nx.2j 'PNX-IJ* 

JNX-IJ " **c ' " lt"to*3ßj + <C"    }Nx j > G& 

(B.3.6f) 

(B.3.6g) 

(B.3.6h) 

(B.3.6i) 

As a result of the finite-volume approach, no pressure boundary conditions are 
required. This summarizes the relations used to validate the various formulations. 
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APPENDIX C 

Second-Order Finite-Difference Matrices 

This appendix presents the structures of the second-order finite-difference 
matrices, Dp2x and Djvy, used in the direct solver algorithm for the pressure-Poisson 
equation (see Section 3.4). Their coefficients are assembled for CFVM2 (see Appendix 

B). As a reminder, CFVM2 is based on a second-order formulation of the divergence 
operator and a fourth-order evaluation of the gradient operator. Dp2x and D^y have the 
following structures: 

DF2x  = 
1 

AxcAx X 

-1          1 
25        -51 
24        24 

27 
24 

-1 
24 0 

-1        28 
24        24 

-54 
24 

28 
24 

-1 
24 

0 

±       28        -54      28        -1 
24        24 24       24        24 

-1 
24 

28 
24 

-54 
24 

28 
24 

-1 
24 

0 
-1 
24 

27 
24 

-51 
24 

25 
24 

0 

0 24 

0 1 -1 

for i = 2 through Nx-1. /Q^\ 
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Df2y  = AycAy 

-1 
25 
24 
± 
24 

1 
-JL 
24 
28 
24 ± 
24 

27_ 
24 
-J4 
24 
28 
24 

± 
24 
28 
24 
-5± 
24 

0 ± 
24 
28 
24 24 

0 

0 
2l 
24 

28 
24 ± 
24 

24 
27 
24 

0 

28 
24 
-IL 
24 

24 
21 
24 

forj= 2 through Ny-1. (C2) 
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APPENDIX D 
Modifications of the Spatial Derivatives 

for Interior Obstacles 

To simulate interior obstacles inside the computational domain, the numerical 
discretization of spatial derivatives discussed in Sections 3.2 and 3.4 will require 

modifications in the vicinity of the obstacles. Obstacle shapes range from rectangular, 
square, ellipse, to circular geometries. Of these shapes, the baffle is a rectangular-shaped 
obstacle with an infinitesimal thickness. In the current finite-difference approach, the 
baffles are located midway between two grid points as shown in Figure D.I. The grid 

nodes upstream and downstream of the baffle are denoted by ibaf and ibaf+1, 

respectively, and the grid node on the baffle is referred to as ibtrf+1/2; the baffle extends 
in height from jbf to jbl. the M locations adjacent to the baffle(s). For a single baffle in 
the computational domain, these locations are ib<tf-l, ib<tf, ibqf+1 and ibqf+2 in the x- 
direction and extend from jbf to jbl in they-direction (see Appendix D for definitions). M 
is calculated as: 

M = 4x(jbl-jbf+l) (D.D 

The modifications to the stencils of the spatial derivatives discussed in Sections 
3.2 and 3.3 are presented in this Appendix. The convective terms in the baffle vicinity 
are modified with fourth and fifth-order accurate discretizations depending on the size of 
the stencil available. The streamwise first-order derivatives on the upstream side of the 
baffle are written as: 

{frjibqf = At"\35 ^"+"2 ■ 6 to*"*' *W +7ÖI*1"*-2 '21 ^wA   G3-2) 

• J tobaf-2 + -fi <kbqf.3) (D.3) 

(&\      -2-(128A s.     lo A 
\%)ibqf-2 " Ac 1945 ™*frU2 -uWxf+T toxf-1 
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5 tobcf-2 ' 21 ^b¥-3-jÖ8^ibqf-41 ; if ttütf-2 < 0       (D.4) 108     -   ; 

fecJtttf-2 = l2ÖÄ{(-6 kW*60 tobqf-1 +4<> Übaf-2 

-120tobaf-3 +30 bbcf^^faxf.s) ;rfuib^.2>0 (D.5) 

The streamwise first-order derivatives on the downstream side of the baffle are evaluated 
from the following relations: 

(df\ _J_{32Jk 1 
KdcJUxtf+l ~ Ax [' 35 Wxtf+M + 6 ™tf+7 + ^bqf+2 

- JQ <hlxtf+3 + 21 toba+4) (D.6) 

feW+2 = Zx (lOl foxf+M - foxtf+1 + 6 foxrf+2 

+ J <hb<tf+3 • -ft tobaf+A (D.7) 

l3c J ibqf+3 = 72ÖÄC (6 'kW*1 -60 ^+2 -40 <tHbaf+3 

+U0fybqf+4-30tobqf+5-4toixf+6) ;if«i&if+3<0   (D.8) 

\dx)ibqf+3 ~ Ax ['945 ™tf+M + 72 <lHbtf+1' T ^+2 

+ Jbbtf+3 + 2jfaxtf+4 + jQgfyxtf+S 1 ;ifMifc^+3 <0    (D.9) 

The diffusive terms in the baffle vicinity (i=ibtf-l, ilxtf, ibtf+1, ibtf+2) are discretized 
by a second-order unsymmetric stencil scheme as follows: 

Ä2 I      = JÄ# K16 tobqf+1/2 '25 bbaf+10 foaf.j - ^_2) (D.ll) 
^     Abtf 
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{^1 -5Ä^(7Ö^+i^"25^+i+70^+2-to»#+j)      (D-12) 

(ä^j        =^(tf^+^-2^Kf+2 + <tHbqf^3) (D.13) 

In Equations (D.2-D.1.13), I represents cither the ^-component velocity (u) or the y- 
component velocity (v), and foqf+1/2 is set to zero. 

For non-uniform grids, the x-componems of the diffusion term, & in the near- 
er 

baffle region {i=ibqf-l, iktf, ibtf+1, Oxrf+2) are modified with second-order accurate 

stencils as follows: 

(ii)   = (is\   (tax*- ***\ 

f^f] = (*f| f* kbaf+in +3 OHM*! + fe^N 

^ tobaf+m -25 fax**! +10 bbaf+2 - 4Hhaf^\ 

ibtf+l\ 5A? 
(D.16) 
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The streamwisc pressure gradients in the baffle vicinity are modified with a 
second-order scheme: 

\ß)lKrf-l=2Äx('Pib*-2+Pibqf) (D.18) 

{T^ = 2(ß)w+iß
+mtoiW-Pü><tf-l) (D.1.14) 

[ßpaf+1 =2\ß)baf+1,2+m(pib<>f+2 -Pibqf+l) (D.19) 

(&)bqf+2 = 22E (-Ptof+1 +Pibaf+3) (D.20) 

These modifications are incorporated in the computation of the intermediate 
velocity and the update procedure. 

The modification to the pressure-Poisson equation in the presence of baffles will 
be presented for the Consistent Finite-Volume Method (see Section 3.3.3). The x- 
components of the cell face velocity, cx, are evaluated in the near-baffle vicinity from 

\cx)ibaf-m = 2 (uUxtf-l + ujbctf) (D.22) 

] (D-23) 
f (Uibtf+l + Ufotf+2) (D.24) 

The x-component pressure gradients in the near-baffle region are formulated by: 
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The term \§Jis evaluated with a second-order finite-volume approache near the baffle 

resulting: 

V  m   Jibqf-1 Axc 

Axc 

At 
' 24 AKCAK {~Pibqr'3 + 27pa>*-2 - 51 pjbaf.j + 25Pibqr)   (D.28) 

= '(%)jitf.m   _At_,n 
Axc AxcAx (PÜ**-Pibaf-1) (D.29) 

V   W   Jibqf+1 AXC 

= ilxhha£±2a_    At    , 
Axc AXcAx<Pib¥+2~Pib*+l) VW 

- V cx)ibaf+,Sf2- ( Cz)a*f+*(? 
Axc 

At 
' 24 AxcAx (25pibrf+1 -51 Pibqf+2+ 27pibqf+3 - p^^)    (DJJ) 

Since a unit perturbation is applied as a source term to determine the elements of the 
capacitance matrix, such source term along with all Neumann boundary conditions (or in 
the abscence of pressure boundary conditions for CFVM) represents an ill-posed problem 
leading to a constant residual for the ^-problem. Thus, the Neumann boundary 
conditions are modified on at least one of the boundaries of the computational domain 
with Dmchlet boundary conditions. This will alleviate the ill-posedness of the problem. 
For example, the y-component derivative of the cell face velocity is modified at Nv-1 as 
follows: y 
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'*C\   (*"*>»-(»"n*^ 
(ft'"' )v.-(cT)y,uffl        /i^.\ 

" \ (7-^(P^2-2PNy.1+pNy)     (D.32) 

where pNy is specified (say zero). This formulation will lead to a violation of the 

divergence condition for the near-boundary velocities; however, it is expected not to 

influence the velocity field inside the computational domain. This may be satisfied when 

the computational domain edges are located far from the wake region, for instance. 
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Baffle 

jbf 

jbl 

ibaf-1 ibaf ibaf+1 ibaf+2 

Figure D. 1   Schematic of baffle position in collocated mesh 
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APPENDIX E 

Capacitance Matrix Technique 

In this appendix, we describe the Capacitance Matrix Technique algorithm 
following Schumann (1980). Further, we will prove that the solution P2 to the B-problem 
in Equation (3.6.4d) is also the solution to the yi-problem in Equation (3.6.1). 

ConsideralinearsystemA^rwhereAismatrixofsizeXiVAAO. The matrix^ 
has a structure such that the linear system can not be solved using direct elliptic solvers. 
However, a non-singular matrix B of size (AW) can be constructed 'similar1 to matrix A 

for which direct elliptic methods exist B being 'similar' to A means that both matrices are 
equal except for a few rows (M«N). Taking M as the first rows, we can write A and B 
symbolically as: 

A = 
A 

;B = 
3 

\ ^ 
N-lt 

(E.1) 

where Aj and Bj are (MxN) matrices and A2 is a ((N-M)xN) matrix. Similarly, the source 
vector, r, is split as follows : 

r = 
S-M 

(E.2) 

The capacitance matrix, C, of size {MxM) is precomputed from: 

c=AB-1Q;Q=-r 
N-M 

(E.3) 

where / is a (MxM) unit matrix.   As described in Equation (3.6.2.14), C can be 
determined by solving A/5-problems and C'l is calculated from library routines. 
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The following steps are applied to solve the A-problem: 

1) first solve a B-problem: 
Bs = r (E.4) 

2) compute the residual vector q resulting from the first M rows of the A-problem: 
q = A1s-rl (R5) 

3) perturb the corresponding first M components of r with C1: 
r = r-QClq (E.6) 

4) solve the B-problem again with the perturbed source term: 
Bs = r (E.7) 

The result vector s obtained by solving Equation (E.7) is also the solution to the A- 
problem. For proof, we first note that the lower part of Equation (E.7) certainly satisfies 
the lower part of the A-problem, namely, A2 s = n, (see Equations E.1 and E.2). 
Therefore, it remains to show that the upper part of Equation (E.7) satisfies Aj s = rj. 
This proof proceeds as follows: 

A1s (EJ) A.B-1? (£^) AlB-lr-\BTxQCAq 

(E3) A,B-lr-q (EJ) AiB-lr-Ai"s+rl 

(£4) AiB~1r-A1B-lr+r1 = r1 (E.8) 

Therefore, the result obtained by solving Equation (E.7) satisfies the linear system for the 
A-problem. 
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