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EXECUTIVE SUMMARY

The objective of the Phase | SBIR research effort was to develop the technical base
required for the design of shape-memory alloy (SMA or SMM) energy dissipation
devices for building structures. Although much of the information presented in this
report has direct application to other civil, mechanical, and aerospace structures, only
applications relevant to the retrofit of existing buildings and the construction of new
buildings in regions of low, moderate, and high seismic risk are considered here.

The research effort was composed of four main tasks: characterization of the basic
materials behavior for the design of prototype SMA energy dissipators; development of
conceptual designs for SMA structural damping devices; detailed analysis of the
seismic response of a pre-selected non-ductile concrete building with and without
SMM energy dissipators under moderate earthquake shaking, and parametric
analyses of a reduced-order model of the pre-selected building upgraded with SMM
energy dissipators possessing different hysteretic characteristics from that used for the
detailed analysis. ‘

Active and semi-active contro! strategies using SMA alloys were not reviewed in detall
in this report because the results of this Phase | research effort are intended to partly
form the basis of retrofitting strategies for the DOD's large inventory of seismically
hazardous buildings in the near future. A detailed evaluation of active control using
shape-memory alloys will be conducted as part of the Phase I research effort.

The Phase | research program has established the technical basis for the
development, design and construction of passive energy dissipation devices for the
earthquake-resistant design and construction/retrofit of building structures. The
mechanical characteristics of different shape-memory alloys were thoroughly
investigated in a detailed testing program. SMAs can be configured to provide a
shape-memory effect (SME) or a superelastic effect (SEE); energy dissipation devices
based on both SME and SEE were shown to be technically viable. Passive energy
dissipation devices incorporating shape-memory alloys, in particular NiTi alloys,
possess many desirable structural characteristics that include:

1. hysteretic (rate-independent) damping

2. variety of hysteretic characteristics

3 highly reliable energy dissipation based on a precisely repeatable solid
state phase transformation

4. very high energy dissipation per unit mass and per unit volume of SMA
material

5. negligible creep over the range of operating temperatures encountered in
nearly all civil engineering applications '

6. temperature independence of the hysteretic response




7. excellent low- and high-cycle fatigue properties
8. excellent corrosion resistance

Characteristics 6, 7, and 8 are unavailable with most other rate-independent
supplemental damping systems currently in the marketplace.

Several prototype SMA energy dissipators were designed as part of the Phase |
research effort. One energy dissipator was fabricated towards the end of the Phase |
research program. Although preliminary testing of the device has been undertaken
already, the results are currently unavailable. Detailed testing of this device is
proposed as part of the Phase |l SBIR research program.

Detailed analysis of one non-ductile reinforced concrete building in Washington State
(typical of many in the DOD inventory) found the building to be vulnerable to collapse
in the event of moderate or severe earthquake shaking. This assessment was based
on the nonlinear time-history analysis of the building using three recorded earthquake
ground motions consistent with moderate earthquake shaking at the building site. Two
upgrade schemes developed for the building, based on the use of SMA energy
dissipators installed in TS brace elements, were found to effectively mitigate the
seismic hazard for the moderate level of earthquake shaking considered appropriate
for the Fort Lewis site. The most cost-effective upgrade scheme for this particular
building involved the addition of 6, 4, and 2 energy dissipators in each frame of the
wing of the building considered, in the first, second, and third stories of the building,
respectively. The use of 12 - 22 kip dissipators per building frame reduced the
displacements in the building to a level whereby the frame suffered no damage when
subjected to three moderate earthquake ground motions.

As noted above, SMA energy dissipators can be configured to provide a variety of
force-deformation profiles. Two of these profiles (rectangular flag and triangular flag)
were programmed in the MATLAB environment and exported to a newly-developed
nonlinear program, INADEL. The results of these analyses demonstrated the
attributes of these hysteretic shapes, namely substantial reductions in the response of
the existing building. A large number of plausible hysteretic shapes make it possible
to optimize the design of a supplemental damping system; such an optimization is
impossible with most energy dissipation systems. Further development of the
MATLAB:INADEL environment is planned for the Phase Il research effort.

In summary, the materials characterization and device development reported in this
report clearly demonstrate the technical viability of SMAs as passive energy
dissipation devices for earthquake-resistant design applications in the building industry.
The advantages of SMA-based energy dissipators over other hysteretic systems are
outlined above. The vulnerability of one building typical of many in the DOD inventory
was mitigated through the addition of SMA energy dissipators, thereby demonstrating
some of the attributes of SMA passive energy dissipation technology.
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1.0 INTRODUCTION

1.1 Background

Over the past 20 years, rigorous dynamic performance specifications in the
aerospace, mechanical, chemical, electrical, automotive, military, and nuclear
engineering industries have necessitated the design and development of passive,
semi-active, and active control systems. In almost every case, the principal objective
associated with the implementation of the control devices to reduce dynamic response
to an acceptable level.

For example, aerospace systems such as the NASA space shuttle and the USAF
fighter and bomber fleet both take advantage of passive energy dissipation technology
to reduce the high-g (impact) forces imposed on certain aircraft components.
Similarly, the US Army has long used passive energy dissipators to mitigate recoil
effects in rifles, machine-guns, and artillery pieces and to reduce vibration effects in
armored vehicles, battle tanks, and so on. The US Navy's surface and submarine
fleets likewise make extensive use of passive energy dissipators to protect lifeline
systems and isolate on-board launch platforms.

Suppression of machine-induced vibration in mechanical components, wind-induced
vibration in building and lifeline structures, and road surface-induced vibration in
automotive vehicles is now routine practice. In essential public facilities such as
nuclear power plants, vibration isolation devices in the form of passive energy
dissipators, also known as passive/supplemental dampers or snubbers, have been
used to mitigate the effects of a variety of dynamic loads that include thermal shock,
impact loads, and seismic excitation. A wide variety of rate-dependent (viscous) and’
rate-independent (friction-slip and steel-yielding among others) energy dissipators have
been implemented for this purpose.

The use of energy dissipation devices for civil building applications, either new
construction or retrofit of existing construction, is extremely limited in comparison with
the other engineering disciplines. This is due in part to technology that is unfamiliar
(and therefore uninviting) to structural engineers.

Structural and mechanical engineers have several techniques for reducing dynamic
response in structural and mechanical components. These include passive, active,
and semi-active control. This research focuses on an energy dissipation technology
based on exploiting the unique properties of shape-memory materials (SMMs). SMMs
are a family of materials displaying a characteristic thermoelastic phase transformation
which is the basis of two mechanical hystereses: shape-memory (SME) and
superelasticity (SEE). Passive energy dissipators, also known as passive or
supplemental dampers, use either SME or SEE characteristics. Both provide an
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energy dissipation mechanism with attractive properties for structural damping
applications that include:

hysteretic (rate-independent) damping

a variety of hysteretic characteristics

highly reliable energy dissipation based on a precisely repeatable solid
state phase transformation

very high energy dissipation per unit mass and per unit volume of SMA
material

negligible creep over the range of operating temperatures encountered in
nearly all civil engineering applications

a wide range of design operating temperatures

excellent low-cycle and high-cycle fatigue properties

excellent corrosion resistance.

1.2 Objective

The objective of this Phase | Small Business Innovative Research (SBIR) project was
to develop the technical base required for the design of prototype energy dissipation/
damping devices for building structures.

1.3 Approach

The following steps were taken to achieve the stated objectives:

Task 1.

Task 2.

Task 3.

Task 4.

Characterization of basic material behavior in sufficient detail to provide a
basis for the design of prototype energy dissipators.

Development of a basic set of conceptual designs for structural damping
devices and the characterization of their mechanical behavior.

Detailed analysis of the seismic response of a pre-selected non-ductile
concrete building, with and without SMM energy dissipators, under
moderate earthquake shaking, to demonstrate the attributes of hysteretic
damping. ~

Parametric analyses of a reduced-order model of the pre-selected
building (Task 3) upgraded with SMM energy dissipators possessing
different hystereses.




1.4 Scope

The scope of the Phase | SBIR effort was focused on developing a sound
technological base for the design of structural damping devices using the
nickel-titanium (NiTi) family of shape-memory alloys (SMAs). Because NiTi alloys
currently dominate the SMM marketplace for damping applications, this restriction on
alloy-selection does not compromise the objective outlined earlier, nor the wide-
ranging applicability of the results presented in this report. Although much of the
information presented in this report has direct application to other civil, mechanical,
and aerospace structures and components, the focus of this study was structural
control by passive means. Although active control is the subject of much current
theoretical research both in the United States, Europe, and Japan, active control
technology lags well behind that of passive control. As the results of this Phase |
research effort are intended to form, in part, the basis of retrofitting strategies for the
DOD's large inventory of seismically hazardous buildings, the scope of this study was
limited to passive control of structural response. A detailed evaluation of active control
using shape-memory alloys will be conducted as part of the Phase Hl research effort.

In addition to passive damping applications, SMMs have other important applications
for the control of dynamic structural response, including semi-active and active control
of environmental and impact loads. These applications of SMMs are not directly
addressed in this study.

1.5 Report Organization

The Phase | SBIR report is composed of seven chapters, a detailed bibliography on
energy dissipation for building structures, and five appendices.

Chapter 2 provides an introduction to the seismic response of building structures, the
mechanisms by which seismic energy is dissipated in conventional buildings, the
advantages of supplemental damping devices, and the passive and active means by
which these devices can be implemented.

The characterization of the mechanical behavior of NiTi SMMs (Task 1) is presented
in Chapter 3.

Conceptual structural damping device designs (Task 2) are discussed in Chapter 4.

Chapter 5 presents the results of a detailed analysis of a non-ductile reinforced
concrete building typical of many buildings in the DOD inventory (Task 3). The building
analyzed for this study was selected by USACERL and is sited in Fort Lewis,
Washington. The building was constructed in 1956 using then-current seismic design
procedures. The analyses presented in this report include eigen analysis, static load-
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to-collapse and nonlinear time history analysis of the existing building, and two
upgrading schemes that make use of SMM energy dissipators. The analysis results
presented in Chapter 5 are based on the use of rectangular hysteresis.

In Chapter 6, a reduced-order model of the building analyzed in Chapter 5, upgraded
with SMM energy dissipators exhibiting hysteresis shapes markedly different than
those assumed in Chapter 5, is analyzed (Task 4). This effort was undertaken to
demonstrate the differences in response that can be achieved with different SMM
energy dissipators.

The research work conducted for the Phase | SBIR is summarized in Chapter 7.
Conclusions drawn from the research results and recommendations for future
research and development efforts are also presented in this chapter.

Appendix A.1 contains materials test data in tabular and graphical formats. Appendix
A.2 includes a photocopy of the design calculations performed in this study. Appendix
A.3 includes a copy of the Structural Engineers Association of Northern California’s
(draft) Seismic Design Requirements for Passive Energy Dissipation Systems.




2.0 SEISMIC ENERGY DISSIPATION SYSTEMS

2.1 Seismic Response of Building Structures

The design of a conventional building structure, that is, a building neither seismically
isolated nor incorporating energy dissipation devices, is routinely based on seismic
forces calculated using an elastic response spectrum divided by a response
modification factor, denoted as R,, in the Uniform Building Code [57], that typically
ranges between 8 and 12. The rationale, although flawed, behind the reduction
factors embodied in the UBC is that lateral force-resisting systems exhibit both stable
nonlinear behavior (ductility) and a lateral strength in excess of that for which it was
designed.

Nonlinear behavior in conventional structural systems is generally associated with
structural damage. For example, energy dissipation in a reinforced concrete ductile
moment-resisting frame is provided by the formation of plastic hinges in the beams
adjacent to the columns. The formation of plastic hinges in confined reinforced
concrete beams is accompanied by spalling of the concrete cover and degradation of
the strength and stiffness of the plastic hinge zone. In most instances, this damage
should be repairable, but the repair may necessitate closure of the building for an
extended period. In a worst case scenario, assuming that collapse is prevented, the
lateral force resisting system may be so badly damaged that the building must be
demolished.

One major problem with conventional buildings is that the gravity and lateral load-
resisting systems share many common members, that is, if the lateral load-resisting
system is damaged during an earthquake, so is the gravity load-resisting system.
Significant damage to the gravity system in a building will generally result in its
evacuation and the relocation of the occupants. The nonconstruction-related costs of
the repair of an earthquake-damaged building may be appreciably higher than the
construction costs. Protection of a building's gravity load-resisting system through the
use of supplemental damping devices would appear to be cost-effective in many
cases.

2.2 Energy Dissipation Using Supplemental Damping Devices

The use of supplemental damping elements to dissipate the earthquake-induced
energy in a building is attractive for the following reasons:

. the distribution of energy dissipation in the building can be controlied by
constraining it to occur in the supplemental dampers




. damage to the building can be limited to elements (supplemental
dampers) that can be simply replaced after an earthquake

. the replacement of the supplemental dampers, should it be necessary,
will not affect the gravity load-resisting system.

The use of supplemental dampers affords the designer with an opportunity to
essentially uncouple the gravity and lateral load-resisting systems in a building.

2.3 Overview of Passive Energy Dissipation Systems
2.3.1 Friction Systems

A variety of friction devices have been proposed for structural energy dissipation. All
of the friction systems except one (the Fluor-Danie! EDR) generate rectangular
hysteresis loops characteristic of Coulomb friction (Figure 2.1). Typically these
devices have very good performance characteristics, and their behavior is not
significantly affected by load amplitude, frequency, or the number of applied foad
cycles. The devices differ in their mechanical complexity and in the materials used for
the sliding surfaces.

Friction dampers made by Sumitomo Metal Industries, Ltd. (Figure 2.2), have been
used in two buildings in Japan [3], and a friction device manufactured by Pali
Dynamics, Ltd., has been used in one retrofit and two new buildings in Canada
[100,101,146). The Pall device (Figure 2.3) is intended to be mounted in X-bracing.
Several earthquake simulator studies of multi-story steel frames incorporating Pali
devices have been performed [1,34], and a design methodology has been developed
for triction-damped structures [35]. The design of the Sumitomo devices for the two
building applications was with the primary objective of reducing the response of the
structures to ground-bome vibrations and small-to-moderate earthquakes. Response
control under large earthquake shaking was not a primary design consideration. The
Sumitomo device is an evolution of a friction damper used for railway cars. The
frictional resistance is generated by copper alloy pads with graphite plug inserts sliding
against the inner surface of the steel barrel of the device.

Fluor Daniel, Inc., has developed and tested a unique type of friction device called the
Energy Dissipating Restraint (EDR) [113). The EDR has self-centering capabilities,
and the slip load is proportional to the displacement. Several hysteresis behaviors are
possible (Figure 2.4). The friction surfaces in this device are bronze wedges sliding
on a steel barrel. A detailed description of the EDR and its behavior is provided
elsewhere in these proceedings [95].

Simpler devices with Coulomb behavior include those which use a brake pad material

.




on a steel friction interface [42, 142]. Other friction schemes that involve no special
devices, but rather allow sliip in bolted connections, have aiso been developed
[38,115]. A promising refinement of the slotted botted .concept has recently been
made using a brass on steel friction couple [46]. Earthquake simulator tests of a
three-story steel building model with these siotted bolted connection (SBC) energy
dissipators have recently been completed. '

Issues of importance with friction devices are long-term reliability and maintenance;
the potential for introduction of higher frequencies as the devices undergo stick-slip
behavior; and possible permanent offsets after an earthquake. The maintenance and
protection from deterioration of a device in which the sliding surfaces are required to
slip at a specific load during an earthquake, even after decades of nonuse, are
essential.

2.3.2 Metallic Systems

These energy dissipation systems take advantage of the hysteretic behavior of metals
deformed into their post-elastic range. A wide variety of different types of devices have
been developed that utilize flexural, shear, or extensional deformation modes into the
plastic range. A particularly desirable feature of these systems is their stable behavior,
long-term reliability, and generally good resistance to environmental and temperature
factors.

Yieldi;lg Steel Systems

The ability of mild steel to sustain many cycles of stable yielding behavior has led to
the development of a wide variety of devices which utilize this behavior to dissipate
seismic energy [69,126]. Many of these devices use mild steel plates with triangular
or hourglass shapes [130,140] so that the yielding is spread almost uniformly
throughout the material. The result is a device which is able to sustain repeated
inelastic deformations in a stable manner, avoiding concentrations of yielding and
premature failure.

One such device that uses X-shaped steel plates is the Bechtel Added Damping and
Stiffness (ADAS) device. ADAS elements are an evolution of an earlier use of
X-plates as damping supports for piping systems [132]. Extensive experimental
studies have investigated the behavior of individual ADAS elements and structural
systems incorporating ADAS elements [13,149). The tests showed stable hysteretic
performance (Figure 2.5). ADAS devices have been installed in a two-story, non-
ductile reinforced-concrete building in San Francisco as part of a seismic retrofit [32],
and in two buildings in Mexico City. The principal characteristics that affect the
behavior of an ADAS device are its elastic stiffness, yield strength, and yield
displacement. ADAS devices are usually mounted as par of a bracing system, which
must be substantially stiffer than the surrounding structure. The introduction of such a




heavy bracing system into a structure may be prohibitive.

Triangular-plate energy dissipators were originally developed and used as the damping
elements in several base isolation applications {16]. The triangular plate concept has
been extended to building dampers in the form of the tnangular ADAS, or T-ADAS,
element [138]. Component tests of T-ADAS elements and pseudodynamic tests of a
two-story steel frame have shown very good results (Figure 2.6). . The T-ADAS device
embodies a number of desirable features; no rotational restraint is required at the top
of the brace connection assemblage and there is no potential for instability of the
triangular plate due to excessive axial load in the device.

An energy dissipator for cross-braced structures, which uses mild steel round bars or
flat plates as the energy absorbing element, has been developed [142]. This concept
has been applied to several industrial warehouses in New Zealand. A number of
variations on the steel cross-bracing dissipator concept have been developed in ltaly
[22]. In Naples, ltaly, a 29-story steel suspension building with floors “*hung” from the
central tower utilizes tapered steel devices as dissipators between the core and the
suspended floors.

A six-story government building in Wanganui, New Zealand, uses steel-tube
energy-absorbing devices in precast concrete cross-braced panels [85]. The devices
were designed to yield axially at a given force level. Recent studies have
experimentally and analytically investigated a number of different cladding connection
concepts [28].

Several types of mild steel energy dissipators have been developed in Japan [65,73].
So-called honeycomb dampers have been incorporated in 15-story and 29-story
buildings in Tokyo. Honeycomb dampers are X-plates (either single plates or multiple
plates connected side by side) that are loaded in the plane of the X. (This is
orthogonal to the ioading direction for triangular or ADAS X-plates). Kajima
Corporation has also developed two types of omni-directional steel dampers calied
"Bell" dampers and "Tsudumi” dampers {73]. The Bell damper is a single-tapered
steel tube, and the Tsudumi damper is a double-tapered tube intended to deform in
the same manner as an ADAS X-plate but in multiple directions. Bell dampers have
been used as part of an atrium roof system connecting a 5-story and a 9-story
building. Tsudumi dampers have been used in a massive 1600-ft long ski-slope
structure to permit differential movement between four dissimilar parts of the structure

under seismic loading while dissipating energy. Both of these applications are located
in the Tokyo area.

Another type of joint damper for application between two buiidings has been
developed [119]. This device is a short lead tube that is loaded to deform in shear
(Figure 2.7). Experimental investigations and an analytical study have been
undertaken.




Particular issues of importance with metallic devices are the appropriate post-yieid
deformation range, such that a sufficient number of cycles of deformation can be
sustained without premature fatigue, and the stability of the hysteretic behavior under
repeated post-elastic deformations.

Lead Extrusion Devices (LEDs)

The extrusion of lead was identified as an effective mechanism for energy dissipation
in the 1970s [113]. LED hysteretic behavior is very similar to that of many friction
devices, being essentially rectangular (Figure 2.8). LEDs have been applied to a
number of structures both for damping in seismic isolation systems and as energy
dissipators in mutlti-story buildings. In Wellington, New Zealand, a 10-story,
cross-braced, concrete police station is base isolated with sleeved-pile flexible
elements and LED damping elements [21]. Several seismically isolated bridges in
New Zealand also utilize LEDs [126]. In Japan, LEDs have been incorporated in
17-story and 8-story steel frame buildings [96]. The devices are connected between
precast concrete wall panels and the surrounding structural frame.

LEDs have a number of particularly desirable features: their load-deformation
relationship is stable and repeatable, being largely unaffected by the number of
loading cycles; they are insensitive to environmental factors; and tests have
demonstrated insignificant aging effects [114] (Figure 2.8).

Shape Memory Alloys (SMAs)

Shape memory alloys have the ability to "yield" repeatedly without sustaining any
permanent deformation. This is because the matenal undergoes a reversible phase
transformation as it deforms rather than intergranular dislocation, which is typical of.
steel. Thus, the applied load induces a crystal phase transformation, which is reversed
when the load is removed (Figure 2.8). This provides the potential for the development
of simple devices which are self-centering and which perform repeatedly for a large
number of cycles.

Several earthquake simulator studies of structures with SMA energy dissipators have
been carried out. At the Earthquake Engineering Research Center of the University of
California [4], a 3-story steel mode! was tested with Nitinol tension devices as part of a
cross-bracing system, and at the National Center for Earthquake Engineering
Research [153], a 5-story steel model was tested with copper-zinc-aluminum SMA
devices. In this second study, devices with torsion, bending, and axial deformation
modes were investigated. Typical hysteresis loops from these tests are shown in
Figure 2.10. Results showed that the SMA dissipators were effective in reducing the
seismic responses of the models.

Shape memory devices must be designed such that the device deformations do not




occur beyond the elastic limit strain (into the plastic range), resulting in permanent
yield in the material. The elastic limit strain varies by SMA, but is typically on the order
of 5%. Some members of the SMA family also exhibit excellent fatigue resistance.
Nitinol has outstanding corrosion resistance, superior even to that of stainless steels
and other corrosion-resistant alloys.

2.3.3 Viscous and Viscoelastic Systems

Viscoelastic materials have been in use in structural engineering for vibration control
for more than 20 years. Mahmoodi described the characteristics of a double-layer,
constrained-layer, viscoelastic (VE) shear damper in 1969 [80]. Viscoelastic
copolymers developed by 3M Company have been used in a number of structural
applications. Double-layer shear dampers using a 3M material were used in the
110-story, twin towers of the World Trade Center in New York City, where a total of
10,000 dampers were installed in each tower to damp wind-induced dynamic response
[81]. VE damping systems have since been adopted in several other tall buildings for
the same purpose [68,83].

The extension of VE shear dampers to the seismic domain has occurred more
recently. Wind vibration control applications have typically provided buildings with only
about 2% of critical damping. The level of damping required for a feasible seismic
energy dissipation system is significantly higher than this; in experimental studies,
damping ratios on the order of 10 to 20% have been targeted. To obtain a feasible
design for a VE damper system, a number of factors that affect material properties
must be taken into account. The stiffness and damping properties of VE polymers are
influenced by the level of shear deformation in the material, temperature, and
frequency of loading. Practical materials have been fully characterized for a wide
range of these factors. Several earthquake simulator studies of large-scale, steel
frame models with VE dampers have been conducted [3,77]. In each study, the VE
dampers were found to significantly improve the response of the test models, reducing
drifts and story shears (compared to those of the models without VE dampers). More
recently, tests of VE dampers applied to a 1/3-scale, non-ductile reinforced-concrete
model have been performed, and a full-sized steel frame has been constructed in
China as a test structure for VE dampers. One study subjected a VE-damped mode!
to earthquake shaking under different levels of ambient temperature [77], and several
experiments have monitored the internal temperature in the VE layers of a shear
damper during earthquake shaking. Observed transient temperature increases have
not been very significant (typically less than 10° F). A number of analytical studies
have also been undertaken, and an effective modal design method developed [19].

Several companies in Japan have developed damping systems based on different VE
materials. Shimizu Corporation has developed a bitumen rubber compound (BRC) VE
damper which has been used in a one 24-story steel building of a twin-tower complex.
Both buildings are instrumented to provide seismic response data for comparison
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between VE-damped and undamped responses [159]. Bridgestone Corporation has
developed a visco-plastic rubber shear damper, which has been shake table tested in
a 5-story steel frame model [40].

A viscous-damping (VD) wall system has been developed by Oiles and Sumitomo
Construction (Figure 2.11). Earthquake simulator tests of a full-scale, 4-story stee!
frame with and without VD walls showed very large response reductions - up to 60%
to 75% - with the walls [7]. A 4-story, reinforced-concrete test building with VD walls
was constructed in Tsukuba, Japan, in 1987. It has since been monitored for
earthquake response; observed accelerations are 25% to 70% lower than those of the
building without VD walls [7]. A VD wall system in a 15-story building now under
construction in Shizuoka City, Japan, will provide 20% to 32% damping to the building,
and achieve response reductions of the order of 75% to 80% [87]. Another type of
wall damping system has been developed and tested by Kumagai-Gumi Corporation.
It is a super-plastic and silicone rubber VE shear damper that is included at the top
connection between a wall panel and the surrounding frame [145). Earthquake
simulator tests of a 1/2-scale, 3-story steel frame showed significant response
reductions in the VE damped model; as large as 50% in story accelerations and 60%
in story displacements.

Fluid viscous dampers, which for many years have been used in the military and
aerospace fields, are beginning to emerge in structural engineering. These dampers
possess linear viscous behavior, are relatively insensitive to temperature changes, and
can be very compact in size considering their force capacity and stroke. Experimental
and analytical studies of building and bridge structures incorporating fluid viscous
dampers (Figure 2.12) made by Taylor Devices, Inc., have recently been performed
[24]. Very large response reductions were achieved by using these devices. In a pure
viscous damper, the damping force is out-of-phase with the displacement. This can be
a particularly desirable attribute for passive damping applications to buildings. If
dampers are included in the structure in such a way that there is a column axial force
component to the damper force (i.e., with a diagonal brace), then the out-of-phase
peak damper force means that the peak-induced column moments are less than if the
peak damper force occurred at peak displacement. o

2.4 Design Provisions for Energy Dissipation Systems

The interest of the engineering profession in passive energy dissipation has resulted in
the development of tentative requirements for the design and implementation of
passive energy dissipation (PED) devices in the USA.

The Tentative Seismic Design Requirements for Passive Energy Dissipation Systems

[124] (hereafter known as the document) was prepared by the Energy Dissipation
Working Group (EDWG) of the Base Isolation Subcommittee of the Seismology
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Committee of the Structural Engineers Association of Northern California. it was the
intent to supplement the Uniform Building Code (UBC) [57] with additional design
requirements developed specifically for buildings incorporating discrete passive energy
dissipation devices. The format and nomenclature in the document is consistent with
that in the UBC to facilitate formal integration into the UBC in the event that the
requirements are adopted.

The general philosophy of the document is to confine the inelastic activity in a
structure primarily to the energy dissipators and for the gravity load-resisting system to
remain elastic for the design-basis earthquake. Since the dissipators do not form part
of the gravity load-resisting system, they are replaceable after an earthquake. As
such, this type of innovative structural system is fundamentally different from a
conventional seismic lateral load-resisting system.

The document provides general design requirements applicable to a wide range of
possible systems. In remaining general, the document relies on the testing of system
hardware to confirm the engineering parameters used in the design and to verify the
overall adequacy of the EDUs and EDS. In general, acceptable systems will:

. remain stable for required design displacements,

. provide non-decreasing resistance with increasing displacement (for rate-
independent systems),

. not degrade under repeated cyclic load at the design displacement, and

. have quantifiable engineering parameters (e.g., force-deflection and
energy-dissipation characteristics).

There are two types of energy-dissipation devices recognized in the document: rate-
dependent and rate-independent devices. Guidelines for the design of tuned mass or
liquid dampers are not provided in the document. The only rate-dependent devices
explicitly recognized in the document are viscous and viscoelastic PED devices. The
rate-independent PED devices implicitly recognized in document are: friction-slip, steel
yielding, and shape-memory devices.

A hierarchial nomenclature is used in the document. Passive energy dissipation
devices are known as energy dissipation units (EDUs). EDUs form an integral part of
an energy dissipation assembly (EDA); the EDA is a one-bay, one-story assembly
composed of the EDUs and the elements that provide lateral and vertical stability to
the EDUs. An illustration of the relationship between an EDU and an EDA is
presented in Figure 2.13. The energy dissipation system (EDS) is the three-
dimensional collection of all of the EDAs.
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The document prescribes the use of dynamic analysis procedures to determine
maximum responses. Dynamic analysis procedures include both response spectrum
analysis and linear and nonlinear time history analysis. Linear procedures can be
used for the earthquake-resistant design of structures incorporating viscous or
viscoelastic energy dissipators. Nonlinear time history analysis is mandatory for non-
compliant rate-dependent EDSs and for all rate-independent EDSs.

The seismic demands are described by the spectral demands of the design-basis
earthquake (DBE). These spectral demands correspond to a level of ground motion
that has a 10% probability of being exceeded in a 50-year time period. For building
designs not using a site-specific hazard analysis, the design-basis spectra are defined
by the ground motion spectra specified by the UBC for dynamic analysis of
conventional buildings. The seismic design actions and deformations in the EDS are
based on the DBE analysis.

The UBC places a lower bound on the design actions and deformations computed
using dynamic analysis. Similarly, minimum base shear coefficients at the ultimate
(strength) level are specified for EDSs. The minimum base shear coefficient is
calculated as ZC/R,, using the method specified in the UBC, and scaled to the ultimate
(strength) level via a material-dependent conversion factor, for comparison with the
results of the dynamic analysis. The minimum base shear coefficient is dependent on
the type of lateral load-resisting system: for EDSs with no supplemental moment frame
(non-dual system), the minimum base shear coefficient is computed using an R,, of 10;
for dual system EDSs, the minimum base shear coefficient is computed using an R,, of
12.

The document will be supplemented with a commentary in the near future and then
issued as a "Green-Book" that will supplement the Structural Engineers Association of
California's "Tentative Lateral Force Requirements" [133]. A copy of the draft
document (as of April 15, 1993) is presented in Appendix A.3.

2.5 Active Control of Building Response

The active control of building response involves modification or control of the building's
motion by the implementation of a control system. In general, the control system is
powered by an external source, although Inaudi has proposed extracting the elastic
strain energy from the structure to power the active control system.

Soong [128] listed a number of factors that have arisen in recent years that highlight
the need to develop structural systems ". . . with some degree of adaptability or
responsiveness. . ." as follows:

. increased building flexibility resulting from the construction of taller, more
flexible structures :
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. increased reliability requirements for critical structures (off-shore
platforms, defense-related installations, nuclear power plants) and
essential facilities (hospitals, 311 centers, emergency operation centers,
etc.)

. enhanced performance requirements for important civil engineering
structures such as off-shore oil and gas platforms and buildings that
house sensitive national security-related equipment or expensive
irreplaceable computational or industrial hardware

. improved utilization of materials, especially for applications to lightweight
structures such as space-based platforms.

Active control of building response under external dynamic excitations was first
proposed more than 30 years ago. Soong [128] notes that Freyssinet first proposed
to use pre-stressing cables to stabilize the dynamic response of tall structures in 1960.
The world-renown structural engineer, Lev Zetlin, independently devised a strategy for
the design of tall buildings that incorporated cables attached to both the structural
frame and hydraulic actuators, and a closed-loop control system that controlled the
response of the actuators based on the response of sensors or transducers mounted
at the top of the building. '

In 1972, Yao [158] published a paper on structural control intended to "...stimulate
interest among structural engineers in the application of control theory to the design of
civil engineering structures...." Yao and Soong both schematically depicted, in block
diagram form, the general structure of most active control systems; the block diagram
form [127] is reproduced in Figure 2.14. (The block diagram presented in Figure 2.14
is that of an open-closed loop control system.) The control system presented in this
figure is composed of the following three components:

1. Externally or internally powered actuators to impose the controt forces

2. Data acquisition and analysis computational hardware to process the
transducer output and compute the appropriate control forces (based on
pre-determined control algorithms and an a-priori knowledge of the
dynamic characteristics of the building)

3. Transducers measfm’ng structural response (closed-loop control) or
external excitation (open-loop control) or both (open-closed loop control)

Numerous control algorithms have been developed for the active control of buildings

subjected to random dynamic excitation. Soong [128] provides detailed information on
this subject.
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The principles of active control have been demonstrated in the laboratory [55,128] and
in the field. Soong et al. have tested an active tendon system (similar in principal to
that proposed by Zetlin) in scale models of single-, three-, and six-story buildings on
an earthquake simulator at the State University of New York at Buffalo. The
responses of the actively controlled structures were appreciably less than those of the
“uncontrolled” structures, indicating that relatively simple control systems can
effectively reduce the seismic response of structures.

Experimental studies of model structures incorporating tuned active mass dampers
(AMDs) have been conducted by Takenaka Corporation and Kajima Corporation [74]
in Japan. These studies have shown that AMDs can be effective in reducing
seismically-induced building motion. A full-scals AMD system has been instalied in
the top story of the 11-story Kyobashi Seiwa building in Tokyo. This AMD system,
developed by Kajima Corporation, is a pendulum-type dual mass system capable of
mitigating torsional and lateral building response.

Researchers at the Kajima Kobori Research Complex [75,76] have developed, tested,
and implemented an active control system that reduces a building’s response by
actively controlling its lateral stiffness. A three-story, one-span, two-frame steel
structure with active braces was tested on an earthquake simulator. The primary resuilt
of this testing program was that the acceleration response of the controlled system
(with the active braces) was significantly less than that of the uncontrolled system. In
1890, the active variable stiffness (AVS) system was implemented in the earthquake
simulator control building at Kajima Corporation's Institute of Construction Technology
in Tokyo. At the time of writing, this buiiding had not yet been subjected to either
moderate or severe earthquake shaking.
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Figure 2.3 Pall Friction Device [146]
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3.0 SMM MATERIALS CHARACTERIZATION

3.1 Objectives

The two objectives of the shape-memory alloy materials characterization program
were:

1. to validate the use of SMMs as an energy dissipation mechanism for
structural damping devices by constructing a descriptive knowledge base
of the material characteristics relevant to damping applications, including
hysteretic behavior, thermal sensitivity, and durability-related attributes,

2. to construct a catalog of material propenty data for a specific alloy in
sufficient detail to facilitate the design of prototype damping devices.

3.2 Approach and Methods
3.2.1 General
The approach to accomplishing the objective outlined above was the following:

1. to analyze all commercially-available shape-memory alloys to select the
best candidate alloy,

2. to compile a database on the candidate alloy from the literature and our
extensive in-house data base,

3. to design and conduct a materials testing program consistent with the
program objectives,

4. to present the results of the testing prografn and provide an annotated
bibliography on relevant materials propenries, a compilation of materials
tests results, and a summary of results and conclusions.

3.2.2 Detailed Methods

The bibliography was constructed through a conventional literature search
supplemented by extensive informal consulting with experts in the field. The focus
was confined to material directly relevant to the damping application of SMMs. The
material testing program was conducted in a conventional test machine equipped with
a thermally controlled environment with a temperature range of 0° C to 80° C.
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TEST MATERIAL DIAMETER LOOPS FREQUENCY TEMP.
(in) " (Hz) (°C)
1A F4904-2-2 0.015 14 0.2 22
1B F4903-2B 0.009 22 0.2 22
1C F00642-1B 0.162 14 0.2 22
1D F2234-2-2A 0.014 19 0.2 22
2A F4904-2-2 0.015 14 0.3 22
2B F4904-2-2 0.015 14 0.3 23
2C F4904-2-2 0.015 14 1.0 23
2D F4904-2-2 0.015 14 3.0 23
2E F4904-2-2 0.015 14 10.0 23
2F F4903-1B 0.035 5 3.0 23°
2G F4903-1B 0.035 5 3.0 23
3A F4904-2-2 0.015 14 0.2 40
3B F4804-2-2 0.015 14 0.2 60
3C F4904-2-2 0.015 14 0.2 80
3D F4904-2-2 0.015 14 0.2 0
4A F00642-1B 0.016 18 0.2 22°
4B F00642-1B 0.016 18 0.1 23
4C F4903-1B 0.035 6 0.1 23
5A F4903-2B 0.008 15 0.2 23
6A F4504-2-2 0.015 14¢ 0.2 23
6B F4904-2-2 0.015 14° 0.2 22°
6C F4904-2B 0.0091 16° 0.2 23
6D F4904-2B 0.0091 16° 0.2 23

a. Sample came loose during testing
c. 6 of 14 loops slack 10 2% strain
e. 8 of 16 loops slack to 4% strain

b. Servo gain too low
d. 7 of 14 wires slack 10 4% strain

Table 3.1 Details of the Testing Program

The testing program was developed to investigate strain rate, temperature, and
thermomechanical processing dependence for NiTi alloys over the relevant strain
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range for this alloy. Table 3.1 summarizes the parameters considered in the test
program. Test samples consisted of multiple loops of NiTi wires tested in tension.
Testing was limited to tension because devices can be constructed using tension
loops alone. Testing was restricted to superelastic materials on the basis that purely
martensitic (SME) behaviors of NiTi are sufficiently well discussed in the literature.
Two additional tests of-specific configurations of tension loops were also conducted.

In the first, a NiTi sample was pre-strained to approximately 4% and then cycled
between 2% and 6% strain. The result is the hysteresis loop shown in Figure 3.1. The
second test used successively engaged loops of NiTi to create piece-wise linear
hysteresis as shown in Figures 3.2 (Test 6C) and 3.3 (Test 6D).

3.2.3 Phase Il Results
3.2.3.1 SMM Descriptive Summary

Shape-Memory Alloys (SMAs or SMMs) are a class of alloys that display a
characteristic thermoelastic martensitic phase transformation above a Transformation
Temperature Range (TTR), which is specific to each alloy (Figure 3.4). As these
alloys are cooled through their TTR, they transform from the higher temperature
austenite phase to the lower temperature martensite phase. Over a dozen alloy
families have been shown to exhibit this transformation, and each of these families
has many specific compositions, each of which possesses unique mechanical and
transformation properties. Most of the alloys have a long-range ordered atomic
structure, and some are clearly intermetallic compounds with extremely narrow
compositional ranges. For the purposes of this study, there are five primary alloy
systems of significant interest. These are the Nickel-Titanium family (often called
Nitinol); two copper-based systems, CuZnAl and CuAINi; FeMnSi alloys; and some
special stainless steel compositions.

In each of the SMAs, the austenitic form is a relatively simple cubic lattice at the
molecular level. |f deformed, the austenitic alloy strains by standard dislocation
mechanisms in a permanent manner. In the martensitic state, however, the material
assumes a more complex crystal structure, such as monoclinic or orthorhombic, and
tends to exist in alternate twin bands of opposite crystal tilt if cooled under zero stress.

There are two primary features of SMAs of interest, irrespective of alloy type. The first
of these is called the Shape Memory Effect (SME), which occurs if the alloy is strained
in shear at a temperature below its TTR. As long as the shear strain is less than a
critical strain for the particular alloy, the strain can be accommodated in the alloy by a
twin re-orientation process: no dislocation motion or permanent damage occurs at the
atomic level. Upon heating the strained structure, each of the twinned elements
reverts to the original austenitic crystal structure, and any imposed strain is lost: the
material reverts to its pre-strained shape and the shape memory effect is observed.
The reversion of the martensite to the austenite is a first-order phase change with a
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strong driving force. For this reason, the shape recovery occurs with a large
mechanical force, and only a restraining force large enough to create permanent
deformation in the austenitic parent will hinder shape recovery.

The second feature of the SMAs is called the Superelastic Effect (SEE). This effect is
observed when a strain is imposed on an SMA material at a temperature slightly
above its TTR. The alloy system can relieve the stress imposed on it by transforming
to the thermally unstable martensite and allowing that martensite to strain as it is
formed, thus creating a stress-induced martensite. Since this martensite is not
thermally stable, as soon as the stress is lowered below the stress level required to
create the martensitic form, the material may revert to the austenite and thus eliminate
the strain in the stress-induced martensite. The stress at which the martensite
undergoes a phase change to austenite is termed the reversion stress.

Both of the above features of SMAs are illustrated schematically in Figures 3.5 and
3.6, which show typical stress strain curves for a NiTi alloy. In Figure 3.5, the alloy
was tested at a temperature slightly below that at which it changes to martensite upon
cooling. The force-deformation response takes the form of a low flow stress, a long
horizontal yield plateau, followed by a significant increase in stiffness. Merely heating
the material through its TTR will remove all accumulated strain and return the material
to its original form. This is the classical shape memory effect. Figure 3.6 shows the
curve for an alloy tested at a temperature slightly above its TTR, where the alloy
exhibits the superelastic effect. The same plateau is seen as in Figure 3.5, but at a
much higher stress. Reduction of the stress at the end of the plateau results in a
lower stress at which the material will lose the imposed strain. Different families of
SMAs show widely different levels of shape memory strain, have different ultimate
ductilities, and show very different responses to cyclic deformation. The candidate
alloy systems mentioned above are of interest for reasons of cost, fabricability, or
optimum mechanical properties. This Phase | study focuses exclusively on the NiTi
family of alloys because of their superior mechanical properties.

Each of the alloy systems noted above will be assessed in the Phase |I program.
Within each system, several specific compositions will be investigated if the alloy
system is promising. The copper-based alloys will be investigated in Phase Il because
they are potentially less expensive than NiTi; can be fabricated differently than NiTi;
and, in specialized forms, have shown larger SEE strains than NiTi. The FeMnSi and
stainless steel alloys are potentially more economical than the other SMMs. Although
the cyclic properties of their thermoelastic martensite is comparatively poor, they will
be examined in the Phase Il program to determine in what type of damping application
they might prove to be useful.
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3.2.3.2 Annotated bibliography

To provide USACERL and structural engineers in general with information regarding
NiTi material properties relevant to damping device design, an annotated bibliography

was organized by major properties and processes. Each annotation refers to the best
source of information on that topic.

1. Material Science of Shape-Memory and Superelasticity [28,4, 60]

An overview of basic material science of materials displaying a thermoelastic
martensitic phase transformation, including their crystallography and
thermodynamics.

2. R-phase transitions [88]

Some SMMs display a distinct phase transformation referred to as an R-phase
transition, which is also thermoelastic and produces both a shape-memory and
a superelastic effect.

3. General Mechanical Properties and Physical Metallurgy [58]

A compilation of data on NiTi and its physical metallurgy, including thermal and
electrical conductivity, density, specific heats, hardness, effects of alloying
corrosion resistance, and machinability.

4. Creep and Stress Relaxation [107]

There are no specific references on the creep behavior of NiTi. At temperatures
below 300° C, no stress relaxation occurred in NiTi samples subjected to high
imposed stresses.

5. Temperature Effects on Superelasticity in SMMs [28]

The formation of martensite is a thermoelastic process, meaning that a
decrease in temperature is equivalent to an increase in stress. The variation in
stress required to induce martensite as a function of temperature is given by a
Clausius-Clapeyron equation. The engineering implication of this is that at
higher temperatures, higher stresses are required to induce martensite
formation: superelastic materials stiffen with an increase in temperature (Figure
3.7). However, as a first-order approximation, the energy dissipation
characteristics for superelastic alloys remains constant. Loading and reversion
stresses vary in the same manner with temperature.
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6. Parametric Models of SMM Behavior [43, 79]

Parametric models of the constitutive behavior of SMMs are important both for
development of finite element modeling capability as well as for engineering
design.

7. Temperature Control Related Properties (58]

Temperature control of SMMs can be easily accomplished through resistive
heating; properties related to temperature control (electrical resistivity, thermal
conductivity, specific heat) are all available for NiTi [58] and from commercial
materials suppliers.

8. Engineering Applications [153]

Information and an extensive bibliography on general applications of SMMs is
given [29]. There is very little written on the subject of structurai damping with
either SME or the SEE [153].

9. Thermomechanical Processing [31,52]

Properties of NiTi can be significantly enhanced and altered through appropriate
thermomechanical processing.

3.2.8.3 Materials Testing Results

As stated above, the objective of the testing program was to experimentally verify the
important characteristics of the superelastic hysteresis of NiTi in tension. As
summarized in Table 3.1, the test program consisted of more than 20 tests that
evaluated the effects of temperature, strain-rate or frequency, and thermomechanical
processing. Tests 6A, 6B, 6C, and 6D demonstrated the response of a device
composed of successively engaging NiTi loops to provide successive stages of
softening and hardening. The results of the materials testing program are discussed
below in terms of the implications to the design of structural dampers.

1. Hysteretic Energy Dissipation

The results of Test 4C (Figure 3.8) demonstrate the high level of energy
dissipation available with superelastic hysteresis: more than 2500 in-lb/cubic
inch in its elastic range at strains less than 10%.

2. Hardening at Large Strains

Another useful characteristic of superelastic NiTi is that it hardens after its

28




conversion to stress-induced martensite. For the NiTi sample in Test 4C, this
effect occurred at approximately 9.5% strain. In Test 4C, strains of up to 10%
were recovered; the residual strain of 2% was a result of the preconditioning
work treatment of the alloy.

3. Thermomechanical Processing

The influence of thermomechanical processing on the hysteretic response of a
NiTi alloy can be seen by comparing the results of Test 2A (Figure 3.9) and
Test 4C (Figure 3.8). The process for producing the sample for Test 2A was
designed to increase the yield, or load stress level, of the alloy. Tests 2A and
4C were conducted at approximately the same temperature. Although the area
of the hysteresis loops is similar for both tests, the loading and reversion
stresses clearly are influenced by the thermomechanical processes used to
produce the alloy.

4. Temperature Effects

Figure 3.7 illustrates the effects of temperature on superelastic hysteresis: an
increase in temperature above the superelastic temperature range (A - M, as
shown in Figure 3.4) produces an increase in both the yield and reversion
stresses as well as a reduction in the area of the hysteresis loop. It should be
noted that the increase in the yield stress can be useful both for active control
purposes and as a complementary effect to viscoelastic behavior in passive
composite damping devices and that the total energy dissipated per cycle over
a significant range of temperatures remains large.

5. Use of Prestressed Superelastic Material

One option for the construction of NiTi structural damping devices is to use
superelastic components prestressed to operate about the midpoint of their
hysteresis. The results of Test 5A presented in (Figure 3.1) show the
rhomboidal hysteretic response that results from cycling a prestressed
superelastic NiTi alloy in both directions about a midpoint strain of
approximately 4%.

6. Progressive Engagement

Test 6A (Figure 3.10) demonstrates the response of a damping device
composed of progressively engaged or staged NiTi superelastic elements. The
test sample consisted of two groups of NiTi wire loops: the first group of wires
was fully engaged over the entire strain range; the second group of wires
engaged at 2% strain in the first group of wires. The resulting hysteresis is the
sum of the hystereses of the two wire groups; the mechanism of staged
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engagement provides a useful means of controliing the force-deformation
hysteresis of a passive damping device.
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4.0 SMA DEVICE DEVELOPMENT

4.1 Objectives and Scope

The objective of this component of the Phase | program is the characterization of both
passive and active SMA vibration control device technoiogy. The scope of the device
technology considered herein is limited to devices incorporating commercially available
SMA materials. Despite their considerable potential for active control applications,
structural damping devices based on the R-phase transition behavior of SMAs are not
discussed further.

4.2 Approach and Method

Device types, both passive and active, are generally characterized by force-
deformation response (hysteretic shape) and stability of the hysteresis loops. This
information is presented in the following section. The development of passive SMA
structural dampers is presented in Section 4.4, and basic actuation mechanisms for
active devices are briefly described in Section 4.5. A prototype device constructed to
demonstrate both passive and active damping control is described in Section 4.6.
Although configured as a passive damper, this device can be configured to provide
active control through electrical actuation of the NiTi.

4.3 Hysteretic Shapes

Shape-memory effect (SME) and superelastic effect (SEE) hystereses can be used for
the design of linkage, joint, constrained layer, and mass damping devices to obtain a
variety of hystereses. Figure 4.1 shows several of the force-deformation responses
(hystereses) that can be achieved with SMA devices exploiting different kinematic
mechanisms. :

For example, the rectangular hysteresis shown schematically in Figure 4.1c is
produced by exploiting pre-stressed superelastic SMM. Figure 4.2 illustrates the
loading cycle of a simple spring element displaying rectangular hysteresis. Upward
motion of the crossbar (C) in Figure 4.2 is assisted by spring A as shown in the
schematic stress/strain diagram. Concurrently, this motion is resisted by spring B.
Downward motion is entirely symmetric with the role of the two springs reversed.
Thus, the effect of these two prestressed superelastic elements working in opposition
to one another is to provide a constant resisting force which is the difference in their
respective loading and reversion force levels. Operationally, this schematic device
provides a constant resistance force damping element with approximately zero (static)
stiffness.
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Figure 4.3 provides a schematic representation of a mechanism which produces the
triangular flag hysteresis shown in Figure 4.1b. Figure 4.3a shows a prestressed wire
W spanning between fixed supports. The displacement of the wire from its initial
position at A to B is resisted at a stress S, that is, the stress at which the phase
transformation is induced. Upon reversal of the motion, the wire assists the motion at
a stress Sr, the stress at which reversion to parent phase occurs. Thus the device
applies both a constant resisting and a constant assisting force over the full range of
motion. The triangular force-deformation response shown in Figure 4.3c is the
hysteresis that results from the deformation of this device.

The bowtie hysteresis (Figure 4.1b) can be achieved as the sum of two triangular
hystereses, that is, through the use of two devices.

The force and deformation capacities for all of the hysteretic shapes shown in Figure
4.1 are essentially unlimited. Higher force levels can be achieved by the addition of
more SMA material. Large deformation can be accommodated in relatively compact
SMA devices due to the large strain range of the transformation plateau over which
stress remains approximately constant.

4.4 Passive Device Technology
4.4.1 General

A suite of passive damping devices spanning all major device categories including
truss link, joint, constrained layer, mass damping, and shear link types have been
developed. Schematic designs for two device types, all based on simple NiTi wire or
tubular components, are presented below:

1. Truss Link Device (TLD)
2. Truss Joint Device (TJD)

Each of these devices can display several types of force-deflection hysteresis,
depending on the phase state of the NiTi alloy: including the rectangular flag and
rectangular hysteresis (Figure 4.1c). For the purposes of this discussion, the devices
are assumed to be configured to produce the pure rectangular force-deformation
response. On the basis of the material testing results presented both in Chapter 3 for
NiTi wire, and in the literature for other SMAs, the stability and fatigue characteristics
of these devices should be excellent.

4.4.2 Truss Link Device (TLD)

Figure 4.4 shows a longitudinal section of a truss link device. The device is comprised
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of a tubular element sliding within another tubular element. The other tube is slotted
to permit the insertion of a pin fixed to the inner tube and sliding in the slot. NiTi wire
loop elements connect this sliding pin to two pins fixed in the outer tube as shown.

For the SMA TLD, there is a constant axial resistance in the device in both extension
and compression. This results in the pure rectangular hysteresis. The device can be
designed to protect against excessive deflection by exploiting the material stiffening
which occurs in NiTi at strains in excess of 10%. At strains exceeding 10%, the NiTi
device will stitfen and recover excess strain elastically.

4.4.3 Truss Joint Device (TJD)

Figure 4.5 shows a section view of a schematic truss joint damping element. This
device is composed of a simple bolted connection: the bott is surrounded by two NiTi
annular rings or washers. For this device, the mode of action provides a rectangular
flag-shaped force-deformation hysteresis in any direction. This action is the result of
the unprestressed superelastic element resisting initially in an elastic manner. At levels
of force sufficient to stress-induce martensitic yield, the device will yield and dissipate
energy as it cycles through the superelastic hysteresis.

4.5 Active Device Technology

The material characteristics of SMAs offer a variety of means by which to actively
control structural response to dynamic excitation including:

1. direct actuation based on the shape-memory effect,
2. modulation of friction based on the shape-memory effect, and
3. modulation of stiffness through control of the yield plateau of a

superelastic alloy by manipulating the temperature of the SMA.
Schematic models illustrating each of these approaches are presented below.

4.5.1 Direct Actuation

Schematic models for a variety of SME-actuated devices providing added stiffness
and/or supplemental damping were outlined above. However, for civil engineering
applications, the most promising device types are those described in Sections 4.5.2
and 4.5.3. Although the problem of heat transfer, both in and out of the alloy, can be
mitigated using parallel SMA elements and counter-acting elements, it is preferable to
use SMAs to modulate other damping and stiffening mechanisms (as will be
described).
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Figure 4.6 illustrates schematically a direct actuation device developed and tested by
the research team. This device produces linear motion by peristaltic action. A piston
(P) is driven along a tube by the constriction of the tube created by heating, in the
proper sequence, rings of SME material. As a ring on one side of the tapered piston
is heated above its TTR, it contracts, thus driving the piston along the tube. The force
from the driving ring is sufficient to both move the opposing load and deform (and thus

reset) the SME rings in its path. This device can provide both supplemental damping
and added stiffness.

4.5.2 Modulation of Friction

Figure 4.7 illustrates schematically a device which uses the shape-memory effect to
provide a high-force actuator with very good dynamic response (on the order of 0.1
second). In this device, a four-bar mechanism is actuated by opposing pairs of SME
wires. Actuation of the horizontal wires, that is, heating the wires through their TTR,
provides work along the venrtical axis. Correspondingly, actuation of the vertical wires
provides work along the horizontal axis. The force provided by a wire set must be
sufficient to both overcome the applied load and to reset the opposing wires.

To achieve reasonable response times requires the use of multiple wires and a

switching mechanism, which switches the electrical power used to resistively heat the
wires.

Response time can also be minimized by using this device to modulate a friction
damper. This approach uses very small amounts of SMA material and thus permits
acceptable heating and, more importantly, cooling times. By modulating the normal
force of a conventional friction device, this approach can provide a fast stiffness and
damping control capability.

4.5.3 Stiffness Control Through Temperature Modulation of SEE

in Chapter 2, a distinction was made between the shape-memory effect and the
superelastic effect. Both effects are in fact based on the same phase transformation
and represent two related stress/strain/temperature behaviors in a complete phase
space.

Below an SMA's transformation temperature range (TTR), the system is fully
martensitic and only the shape-memory effect is observed. Above the TTR, the
superelastic effects are possible because sufficient stress can be applied to overcome
the thermomechanically stable form of the alloy, that is, to stress-induce martensite.
The stress required to induce martensite increases with increasing temperature. The
stress increase over the TTR is given by a Clausius-Clopeyron relationship. The
temperature sensitivity of the SEE alloy is moderate, and full superelastic behavior can
be obtained over a useful temperature range for several SMAs. For passive damping
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devices, this means that consistent damping levels are possible over a wide
temperature range. ‘

For active control, temperature dependence of NiTi yields many potential applications
because it is possible to control the yield force of a structural component containing an
SEE element by controlling the temperature of the NiTi. Increasing the temperature of
the NiTi will increase its relative stiffness. Such a device would provide constant
damping and variable stiffness. The demonstration device developed for the Phase |
research effort can be controlled actively to provide variable axial stiffness (a concept
already implemented by Kajima Corporation in Tokyo, Japan). This device will be
tested as part of the Phase | program.

4.6 Construction of a Passive/Active SMA Device

Figure 4.8 is a photograph of the device configured with NiTi wire to act as a passive
energy dissipator. With the SMA wires configured as shown, the device acts as a
passive damper providing bowtie hysteresis (Figure 4.1b). The behavior of the device
has been confirmed by simple test procedures; comprehensive testing of. this device
will form pant of the Phase Il research effort.
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5.0 ENERGY DISSIPATION DEVICES FOR SEISMIC RETROFIT

5.1 Objectives of the Case Study

in order to demonstrate that upgrading non-ductile concrete frames with hysteretic
energy dissipators is viable, a sample building was selected by USACERL from the
U.S. Army's inventory of pre-1970 concrete frame buildings. The building chosen is
sited in Fort Lewis, Washington, and is representative of many of the older buildings
owned and maintained by the U.S. Army.

It is not the objective of this case study to develop seismic retrofit details for the
building, but rather to demonstrate that the use of passive, active, or semi-active
shape-memory alloy (SMA) energy dissipators results in significant improvements in
the seismic response of buildings and structures considered inadequate by current
seismic standards [UBC, 1991]. As such, limited attention is paid to the cyclic
response of the non-ductile elements at the local level. Rather, attention is focussed

-on global improvements in structural response that can be

achieved with hysteretic energy dissipators.

5.2 Earthquake Ground Motion Description

The seismic response of the sample building (hereafter known as the building) was
evaluated using nonlinear time-history analysis and recorded earthquake acceleration
records.

The nonlinear computer program used for the analysis work was DRAIN-2DX. A
description of DRAIN-2DX is provided in the following section.

Three recorded acceleration time-history records were used to study the response of
the building:

Caleta de Campos

The Caleta de Campos records were recovered following the September 19, 1985,
Michoacan subduction zone earthquake in Mexico. The recording site was
approximately 21 km (13 miles) from the epicenter of the M_ 8.1 event. Two
orthogonal components of horizontal acceleration were recorded: 000 and 090. The
000 component had peak maximum and minimum accelerations of +0.141g and -
0.130g, respectively. The 090 component had peak maximum and minimum
accelerations of +0.140g and -0.100g, respectively. The 000 component was chosen
for the analysis of the building. The 5% damped acceleration response spectrum of
this component is presented in Figure 5.01; the corresponding Fourier spectrum is
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presented in Figure 5.02.

Joshua Tree Fire Station

The Joshua Tree Fire Station is situated on the backward azimuth, 9 km (6 miles)
from the epicenter of the' M, 7.6 Landers earthquake of June 28, 1992. The faulting
mechanism for the Landers event was predominately strike-slip. Two orthogonal
components of horizontal acceleration were recorded: 090 and 360. The 090
component had peak maximum and minimum accelerations of +0.273g and -0.176g,
respectively. The 360 component had peak maximum and minimum accelerations of
+0.284g and -0.255g, respectively. The 360 component was chosen for the analysis of
the building. The 5% damped acceleration response spectrum of this component is

presented in Figure 5.03; the corresponding Fourier spectrum is presented in Figure
5.04.

Desert Hot Springs

The Desert Hot Springs earthquake records were recovered after the M_ 5.9 Paim
Springs earthquake of July 8, 1986. The recording station was situated 12 km (8
miles) from the epicenter. Two orthogonal components of horizontal acceleration were
recorded: 000 and 090. The 000 component had peak maximum and minimum
accelerations of +0.300g and -0.288g, respectively. The 090 component had peak
maximum and minimum accelerations of +0.269g and -0.247g, respectively. The 000
component was chosen for the analysis of the building. The 5% damped acceleration
response spectrum of this component is presented in Figure 5.05; the corresponding
Fourier spectrum is presented in Figure 5.06.

These three earthquake records are representative of moderate earthquake shaking
resulting from two different source mechanisms. Although these two mechanisms may
not be representative of intra-plate events on, for instance, the New Madrid fault, the
absence of such U.S. records prevented the inclusion of an intra-plate ground motion
in the suite of time-histories used for the analysis of the building.

5.3 Nonlinear Analysis Using DRAIN-2DX

The computer program DRAIN-2DX [Prakash, 1992] was developed for the nonlinear
analysis of buildings and other two-dimensional structures. It consists of a main
program that controls the analysis and manages data and data transfer, and a series
of subroutines for the different element types.

The element types currently available in DRAIN-2DX are: truss bar: beam-column;

zero-length connection; gap; and rectangular panel. The rectangular panel element is
an elastic element; the other four are nonlinear elements.
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A stiffness-degrading mode!, for example the Takeda model, is more suitable to the
modeling of non-ductile concrete than the beam-column element. However, a stiffness
-degrading model! has not yet been implemented in DRAIN-2DX. As noted in Section
5.5, the beam-column (Type 2) element was used for the analysis of the existing
building frame.

DRAIN-2DX can be used to undertake nonlinear static and dynamic analysis. Possible
forms of dynamic excitation include in-phase ground acceleration, out-of-phase
support displacement excitation, nodal dynamic loading, and nodal velocity loading (to
simulate impulse loading). Modal analysis and response spectrum analysis can also
be undertaken with DRAIN-2DX. For this study, the following analysis options were
used: static gravity analysis, modal analysis, static load-to-collapse analysis, and
nonlinear time-history analysis.

5.4 Building Description

The sample building, a three-story, non-ductile concrete structure with a partial

_ basement, was designed in 1956. The building's footprint is similar to the letter H, with
a gross floor area of approximately 51,400 sq. ft. The H-shape is articulated into three
separate buildings (wings) by two 2"-wide expansion joints.

The gravity load-resisting system in the building is typically composed of 7-inch
reinforced concrete flat plates with shearheads, 18-inch-deep perimeter beams, and
reinforced concrete columns.

Wind and seismic lateral loads are resisted by reinforced concrete, structural walls,
and reinforced concrete, non-ductile, moment frames.

The structure was designed in accordance with the Pacific Coast Uniform Building
Code and the ACI Building Code. The design live, wind, and seismic ioads specified
by the engineers of record, Miller & Ahlson of Seattie, Washington, were: :

. live loads: 40psf to 60psf typical; 100pst for stairs
. wind loads: 20psf on the projected area
. seismic loads: Seismic Zone 3 (1956)

The typical column and beam rebar ratios are approximately 1% and 1.25%,
respectively, and are substantially less than normal practice in the 1980s and 1990s.
Shear reinforcement is typically #3 ties @ 12 inches on center in both the columns
and the beams. Shear reinforcement is not provided in the beam-column joints.
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5.5 Seismic Deficiencies of the Existing Building

The detailing of the concrete elements in the building is consistent with normative
engineering practice in the 1950s but is inadequate by current standards. The seismic
deficiencies in the existing building include:

. no beam-column joint reinforcement

. minimal or non-existent splices in column and beam reinforcement

. insufficient beam and slab rebar anchorage in perimeter columns and
beams

In a moderate or severe seismic event, these shortcomings will prevent the formation
of ductile plastic hinges in the beams and may result in the bottom rebar in the beams
pulling out of the beam-column joint as a result of bond failure: buckling of the beam
rebar adjacent to the column face due to insufficient lateral restraint; shear fracture of
the beam-column joint; or the partial collapse of the building.

5.6 Dynamic Analysis of the Existing Building

In order to satisfy the objectives stated in Section 5.1, the building analysis was
simplified by modeling the mechanical characteristics of one line of framing in one
wing of the building. A plan sketch of this wing is presented in Figure 5.07. For the
wing that was modeled in this study, there are two different orthogonal lateral load-
resisting systems: structural walls (Grids A and L) and non-ductile concrete frames
(Grids 1 and 3).

A two-dimensional model of the moment frame on Grid 1 was developed for analysis |
using DRAIN-2DX. The frame geometry and nodal layout are presented in Figure
5.08.

Beam-columns (DRAIN-2DX Type 2 element) were used to model the beams and
columns in the building. The post-yield behavior of the Type 2 element assumes stable
ductile response. As such, the Type 2 element does not accurately capture the post-
yield behavior of the frame. However, since reliable constitutive models for non-ductile
response have not been implemented into DRAIN-2DX, the Type 2 elements were
used in this study to model the cyclic response of the existing framing.

Using the information provided in the architectural and mechanical drawings, an
accurate estimate of the tributary reactive weight to the frame on Grid 1 was prepared.
After lumping the mass at the building nodes at each level, an eigen analysis was
performed to compute the modal characteristics of the frame. The modal periods and
the effective modal mass, as a fraction of the total mass, are listed in Table 5.1 below.
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PERIOD (sec.) EFFECTIVE MASS

1 1.85 96.0%
2 0.39 3.5%
3 ‘ 0.18 0.5%

Table 5.1 Modal Periods and Etfective Modal Masses

The corresponding mode shapes are presented in Table 5.2.

MODE LVL 1 LVL 2 LVL 3
1 0.60 0.86 1.00
2 -0.89 -0.29 1.00
3 -0.72 1.00 -0.50

Table 5.2 Mode Shapes

5.7 Strength of the Existing Building

In order to estimate the strength of the building, a series of static ioad-to-collapse
analyses were undertaken. Collapse analyses using the upper bound kinematic
method predicted:

Triangular Force Distribution: Vmax < 84 kips (=0.074W)

Rectangular Force Distribution: V,,, < 98 kips (=0.087W),

where W is the reactive weight associated with the moment frame on Grid 1 (=1129
kips). These results assume that material behavior is rigid-perfectly plastic, hinge
rotation capacity is unlimited, and that gravity load effects can be ignored: none of
these assumptions are valid for non-ductile structures.

DRAIN-2DX was used to compute the strength of the frame by means of a series of
static load-to-collapse analyses. Gravity load effects were included in these analyses.

In order to estimate the deformation capacity of the existing concrete frame, the
ultimate rotation capacities of the beam and column cross-sections were calculated
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using a method developed by Corley. On the basis of an ultimate concrete strain of
0.004 and a plastic hinge length of 12 inches, the ultimate rotation capacities of both
the beams and columns were calculated to be 0.01 radian. The ultimate lateral
strength of the frame was assumed to be equal to the lateral resistance at which the
plastic hinge rotation at one or more cross-sections exceeded 0.01 radians. The
results from the DRAIN-2DX analyses can be summarized as follows:

Triangular Force Distribution: Vimax < 68 kips (=0.060W)
Rectangular Force Distribution: Vmax < 68 kips (=0.060W)

The collapse loads for both lateral load distributions are identical as a result of the
frame forming a soft first story under both the triangular and rectangular ioad patterns.

The base shear force versus first-floor and roof displacement relationships for the
triangular and rectangular force profiles are presented in Figures 5.09 through 5.12,
respectively. The collapse load of 68 kips is an upper bound on the true strength of
the existing frame. This is because the formation of ductile plastic hinges is precluded
by the lack of continuous longitudinal reinforcement in the joint, the lack of
confinement in the plastic hinge zones, and the lack of shear reinforcement in the
beam-column joint.

The true cyclic lateral strength of the existing building is probably on the order of
0.030W to 0.050W. For comparison purposes, the nominal strength of the moment
frame is assumed to be 55 kips (0.05W).

5.8 Nonlinear Time History Analysis of the Building

The existing building was analyzed using the three acceleration records described in
Section 5.2: Caleta de Campos 000 component; Joshua Tree Fire Station 090
component; and Desert Hot Springs 000 component. The results of these analyses
follow: B

Caleta de Campos:

The maximum base shear force, first-floor displacement, and roof displacement were
79 kips, 2.1 inches, and 2.4 inches, respectively. These responses correspond to a
base shear coefficient of 0.070W, a first interstory drift index of 1.8%, and a roof drift
index (measured as the roof displacement divided by the building height) of 0.7%,
respectively. The base shear force, first-floor displacement, and roof displacement
time histories are shown in Figures 5.13, 5.14, and 5.153, respectively.

The maximum base shear force of 0.070W exceeds the nominal strength of the frame
(assumed to equal 0.05W) by 40%, and the maximum interstory drift exceeds the
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nominal deformation capacity of the frame by over 100%.

Joshua Tree Fire Station s

The maximum base shear force, first-floor displacement, and roof displacement were
97 kips, 5.0 inches, and 6.0 inches, respectively. These responses correspond to a
base shear coefficient of 0.086W, a first interstory drift index of 4.2%, and a roof drift
index of 1.67%, respectively. The base shear force, first-fioor displacement, and roof
displacement time histories are shown in Figures 5.16, 5.17, and 5.18, respectively.

The maximum base shear force of 0.086W exceeds the nominal strength of the frame
by 72%, and the maximum interstory drift exceeds the nominal deformation capacity of
the frame by in excess of 400%. Total collapse of this building could result from a
ground motion similar to the Joshua Tree record.

Desert Hot Springs

The maximum base shear force, first-floor displacement, and roof displacement were
72 kips, 1.0 inches, and 1.3 inches, respectively. These responses correspond to a
base shear coefficient of 0.063W, a first interstory dritt index of 0.83%, and a roof drift
index of 0.36%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.18, 5.20, and 5.21, respectively.

The maximum base shear force of 0.063W exceeds the nominal strength of the frame
by 26%.

5.9 Discussion of the Timé—History Analysis Results

The results of the nonlinear analysis of the existing building have clearly demonstrated
that the building is at significant risk in the event of moderate or severe earthquake
shaking.

The critical earthquake ground motion for this building is the Joshua Tree record. The
acceleration pulse at the 10-second mark in the earthquake record forms a soft first
story in the building. in excess of 80% of the total roof drift must be accommodated in
the first story of the building. This places excessive demands on the rotation capacity
of the columns in the first story. Collapse of the existing building, either partial or total,
is likely given the level of the deformation demand on the non-ductile columns. '

The strength of the building is substantially less than that required by current codes for
buildings in regions of moderate or severe seismic risk. The limited lateral strength of
the building coupled with the non-ductile detailing of the critical regions clearly indicate
that the existing building needs to be upgraded in order to provide life-safety

protection to the occupants. The design and analysis of two such upgrade schemes
are presented in Sections 5.12 and 5.13.
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5.10 Extraction of Lumped Mass and Stiffness Properties

Only a limited number of hysteretic shapes are available with the elements currently
implemented in DRAIN-2DX. In order to gain a better understanding of the options
afforded to the designer by SMA energy dissipators, a MATLAB characterization of a
reduced-order mode! of the existing building is analyzed in the following chapter. The
stiffness and mass characteristics of this three degrees-of-freedom, lumped-mass
mode! were computed using the DRAIN-2DX model of the existing building.

The stiffness and mass characteristics of the reduced-order model are presented in
Table 5.3 below.

STORY LATERAL WEIGHT
NUMBER STIFFNESS (kips)
(Kips/inch)
1 78 397
2 100 397
3 80 335

Table 5.3 Stiffness and Mass Properties of the Reduced-Order Model

A comparison between the dynamic characteristics of the complete and reduced-order
systems in terms of the first three modal periods is presented in Table 5.4. For the
purposes of this study, the correlation between the dynamic properties of the complete
and reduced-order mathematical models is adequate.

PERIOD (secs)
MODE 1 MODE 2 MODE 3
COMPLETE 1.55 0.39 0.18
REDUCED-ORDER 1.48 0.54 0.37

Table 5.4 Comparison of Dynamic Characteristics
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5.11 Retrofit of Existing Building with SMA Dampers

In Section 5.9, the need to upgrade the existing building was clearly demonstrated by
the results of the nonlinear time history analysis of the building using earthquake
ground motion records consistent with moderate earthquake shaking.

There are many issues to be considered for the upgrade of an existing building. These
include:
1. the need to protect the existing frame by reducing the lateral
displacements such that the plastic hinge formation, bar pull-out, and
joint shear failure in the existing frame are precluded,

2. the consequences of increasing the axial force demands in the existing
columns,

3. the ease by which the upgrade scheme, including any foundation work,
can be implemented,

4. the impact of the upgrade scheme on the aesthetic appeal of the building
and on the existing mechanical, electrical, and plumbing services, and

5. the cost-effectiveness of the upgrade scheme.

Of these five issues (and noting that other constraints may apply), only the first will be
explicitly addressed in the following sections. A complete retrofit of the building is
beyond the scope of this study. The Phase I study will address both the first and
second items listed above.

Two preliminary upgrade schemes were developed for the existing building. In the
following sections, these two upgrade schemes are denoted as UG1 and UG2. In both
instances, the two principal objectives of the retrofit design were to reduce the
interstory displacements to below 0.75 inch for all three earthquake records
(corresponding to a column rotation of approximately 0.006 radians) and to dissipate
most of the energy absorbed in the frame in the shape-memory alloy (SMA)
dissipators. The rationale used to design the energy dissipators (or supplemental
dampers) for both UG1 and UG2 is outlined in the following two sections.

5.12 Design and Analysis of Upgrade Scheme UG1

The mass distribution over the height of the building is presented in Table 5.3. The
relative distribution of lateral stitfness can also be ascertained from Table 5.3.

The relative stiffnesses of the first, second, and third stories in the existing building is
in the ratio 1.00:1.25:1.03; the cumulative reactive weight distribution is 1.00:0.65:0.30.
The relative strengths of the first, second, and third stories, as determined from static
load-to-collapse analysis of the existing building, are approximately 1.00:1.83:1.47
(68:125:100).
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The preliminary design of Scheme UG1 SMA energy dissipators augmented the
strength of the lower two levels of the existing frame in order to approximately
replicate the existing cumulative weight distribution noted above. The disposition of
energy dissipation devices is presented in Figure 5.22. The SMA energy dissipators
are supported by TS4x4x1/2 braces. For these analyses, the SMA dissipators are
assumed to have rectangular (rigid-plastic) hysteresis with a yield force of 22.5 kips
per damper. The TS4x4 braces were selected so as to ensure that:

1. at an interstory drift of 0.5%, less than 10% of the total brace/dissipator
axial displacement was in the brace itself, and
2. the buckling strength of the brace was at least 1.5 times the yield force

in the SMA dissipator.

The UG1 upgrade scheme included 12, 6, and 4 SMA dissipators in the first, second,
and third stories, respectively. The addition of these dissipators resulted in story
strengths of approximately 310 kips, 220 kips, and 150 kips in the first, second, and
third stories, respectively, or story strength ratios of 1.00:0.70:0.48.

Static load-to-collapse analyses using DRAIN-2DX were performed on the UGH
upgrade of the existing building. The results of these analyses, for both triangular and
rectangular load distributions, are presented in Figures 5.23 through 5.26.

The UG1 upgrade scheme was analyzed using the three acceleration records used to
analyze the existing building in Section 5.8. The results of these analyses follow:

Caleta de Campos:

The maximum base shear force, first-floor displacement, and roof displacement were
250 kips, 0.07 inch, and 0.20 inch, respectively. These responses correspond to a
base shear coefficient of 0.22W, a first interstory drift index of 0.06%, and a roof drift
index of 0.06%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.27, 5.28, and 5.29, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.30, 5.31, and 5.32, respectively.

Joshua Tree Fire Station

The maximum base shear force, first-floor displacement, and roof displacement were
290 kips, 0.18 inch, and 0.37 inch, respectively. These responses correspond to a
base shear coefficient of 0.26W, a first interstory drift index of 0.15%, and a roof drift
index of 0.10%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.33, 5.34, and 5.35, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.36, 5.37, and 5.38, respectively.
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Desert Hot Springs

The maximum base shear force, first-floor displacement; and roof displacement were
270 kips, 0.17 inch, and 0.4 inch, respectively. These responses correspond to a base
shear coefficient of 0.24W, a first interstory drift index of 0.14%, and a roof drift index
of 0.11%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.39, 5.40, and 5.41, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.42, 5.43, and 5.44, respectively.

The results of the nonlinear analyses, both static load-to-collapse and time-history, of
the UG1 upgrade scheme building have clearly demonstrated that the addition of the
SMA energy dissipators has substantially improved the seismic response of the
building. This was accomplished by increasing the lateral stiffness of the frame
(thereby reducing the lateral displacements in the building to below the threshold level
associated with damage to the existing frame) and by adding energy dissipation
capacity to the building at extremely low levels of interstory drift. This improvement is
evinced in the displacement time-history results and in the strength-versus-deformation
relationships.

The response of the upgraded building to the Joshua Tree earthquake record is
markedly different from that of the existing building: the maximum interstory drifts were
reduced by a factor exceeding 35. Furthermore, the upgraded frame did not form a
soft first story, and the upper levels of the building contributed to the energy
dissipation mechanism. Although less dramatic, similar results were obtained for the
Caleta de Campos and Desert Hot Springs earthquake records.

The increase in building stiffness through the addition of bracing elements generally
results in an increase in the axial forces in the columns attached to the braces. The
brace configuration was chosen to minimize such an increase. The maximum increase
in axial force in any column can be calculated on the basis of the vertical component
ot the yield force in the brace, which in this case is 10.3 kips. Such an axial force
represents less than 2% of the compression capacity (P,) of the columns and 10% of
the tensile capacity of the columns (T,). Accordingly, the issue of modified axial forces
in the columns in the existing frame for the UG1 upgrade is not discussed further.

Given that the interstory deformation capacity of the existing frame is on the order of
0.75 inch or greater, and noting that the maximum interstory drift with the UG1
upgrade was less than 0.2 inch, another upgrade scheme (UG2) incorporating fewer
SMA energy dissipators was developed. The UG2 upgrade scheme is described
below.
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.13 Design and Analysis of Upgrade Scheme UG2

The preliminary design of the Scheme UG2 SMA energy dissipators made use of the
results of the UG1 analyses described above. The number of the SMA dissipators for
Scheme UG2 in the first, second, and third stories of the building are 6, 4, and 2
respectively, compared with 12, 6, and 4 in Scheme UG1. The layout of the UG2 SMA
energy dissipation devices is presented in Figure 5.45. The UG2 SMA energy
dissipators are supported by TS4x4x1/2 braces for the reasons cited above for
Scheme UG1. For Scheme UGT, the SMA dissipators were assumed to have
rectangular (rigid-plastic) hysteresis with a yield force of 22.5 Kips per damper. The
addition of these dissipators resulted in story strengths of approximately 200 kips, 150
kips, and 100 kips in the first, second, and third stories respectively, or story strength
ratios of 1.00:0.75:0.50.

Static load-to-collapse analyses using DRAIN-2DX were performed on the UG2
upgrade ot the existing building. The results of these analyses for both triangular and
rectangular load distributions are presented in Figures 5.46 through 5.49.

The UG2 upgrade scheme was analyzed using the three acceleration records used to
analyze both the existing building and the UG1 upgrade scheme. The results of these
analyses follow:

Caleta de Campos:

The maximum base shear force, first-floor displacement, and roof displacement were
180 kips, 0.25 inch, and 0.41 inch, respectively. These responses correspond to a _
base shear coefficient of 0.16W, a first interstory drift index of 0.21%, and a roof drift
index of 0.11%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.50, 5.51, and 5.52, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.53, 5.54, and 5.55, respectively.

Joshua Tree Fire Station

The maximum base shear force, first-fioor displacement, and roof displacement were
225 kips, 0.75 inch, and 1.25 inches, respectively. These responses correspond to a
base shear coefficient of 0.20W, a first interstory drift index of 0.63%, and a roof drift
index of 0.35%, respectively. The base shear force, first-floor displacement, and roof
displacement time histories are shown in Figures 5.56, 5.57, and 5.58, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.59, 5.60, and 5.61, respectively.

Desert Hot Springs
The maximum base shear force, first-floor displacement, and roof displacement were
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200 kips, 0.32 inch, and 0.55 inch, respectively. These responses correspond to a
base shear coefficient of 0.18W, a first interstory drift index of 0.26%, and a roof drift
index of 0.15%, respectively. The base shear force, first-floor displacement, and roof
displacement time histeries are shown in Figures 5.62, 5.63, and 5.64, respectively.
The strength-versus-interstory displacement relationships for the first, second, and
third stories are presented in Figures 5.65, 5.66, and 5.67, respectively.

The results of the nonlinear analyses, both static load-to-collapse and time-history, of
the UG2 upgrade scheme building have clearly demonstrated that the addition of the
SMA energy dissipators has substantially improved the seismic response of the
existing building.

The maximum displacement response of the UG2 upgraded building to the Joshua
Tree earthquake record borders on the predetermined deformation limit of 0.75 inch.
The maximum displacement responses for the other two earthquake records are
significantly smaller than the 0.75-inch limit.

The maximum increase in axial force in any column in the frame can be calculated on
the basis of the vertical component of the yield force in the brace, which in this case is
10.3 kips. For the brace layout shown in Figure 5.45, the maximum change in axial
force in any column resulting from the addition of the SMA dissipators is 20.6 kips, or
less than 4% of the compression capacity (P,) of the columns and 20% of the tensile
capacity of the columns (T,). Accordingly, the issue of modified axial forces in the
columns in the existing frame for the UG2 upgrade is not discussed further.

5.14 Summary and Conclusions of the DRAIN Analyses

The nonlinear analyses of the existing building numerically exposed the seismic
deficiencies promulgated in Section 5.5. Given that this building is typical of many of
the buildings in the DOD inventory, substantial reconstruction costs to the Federal
Government in the event of a moderate or severe earthquake could be substantial.

Two upgrade schemes, UG1 and UG2, incorporating SMA energy dissipators were
developed for the building studied in this chapter. Both upgrade schemes reduced the
response of the existing building below the assumed damage threshold, measured in
this chapter as an interstory displacement of 0.75 inch.

Given that both schemes satisfied the design criteria, UG2 is preferred to UG1 solely

on the basis of construction cost: the cost of the supplemental dampers (braces, SMA
dissipators, and connections) for Scheme UG2 is less than 55% of that for UGH.
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EB: Static Load To Collapse - Triangular Distribution
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Figure 5.9 EB: Collapse Analysis Results - Triangular Load Distribution

EB: Static Load To Collapse - Triangular Distribution
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Figure 5.10 EB: Collapée Analysis Results - Triangular Load Distribution
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EB: Static Load To Collapse - Rectangular Distribution
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Figure 5.11 EB: Collapse Analysis Results - Rectangular Load Distribution

EB: Static Load To Collapse - Rectangular Distribution
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Figure 5.12 EB: Collapse Analysis Results - Rectangular Load Distribution
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EB: Caleta de Campos - Base Shear Response
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Figure 5.13 EB: Caleta de Campos - Base Shear Response

EB: Caleta de Campos - First Floor Displacement Response
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Figure 5.14 EB: Caleta de Campos - First Floor Displacement Response
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EB. Caleta de Campos - Roof Displacement Response
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Figure 5.15 EB: Caleta de Campos - Roof Displacement Response

EB: Joshua Tree Station - Base Shear Response
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_Figure 5.16 EB: Joshua Tree Station - Base Shear Response
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EB: Joshua Tree Station - First Floor Displacement Response

| sl 0

Displacement (inches)

Time (seconds)
Figure 5.17 EB: Joshua Tree Station - First Floor Displacement Response

EB: Joshua Tree Station - Roof Displacement Response
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Figure 5.18 EB: Joshua Tree Station - Roof Displacement Response
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EB: Desert Hot Springs - Base Shear Response
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Figure 5.19 EB: Desert Hot Springs - Base Shear Response

EB: Desert Hot Springs - First Floor Displacement Response
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Figure 5.20 EB: Desert Hot Springs - First Floor Displacement Response
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EB: Desert Hot Springs - Roof Displacement Response
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Figure 5.21 EB: Desert Hot Springs - Roof Displacement Response
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UG1L: Static Load To Collapse - Triangular Dismibution
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Figure 5.23 UG1: Collapse Analysis Results - Triangular Load Distribution
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Figure 5.24 UG1: Collapse Analysis Results - Triangular Load Distribution
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UGI: Static Load To Collapse - Rectangular Dismibution
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Figure 5.25 UG1: Collapse Analysis Results - Rectangular Load Distribution
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Figure 5.26 UG1: Collapse Analysis Results - Rectangular Load Distribution
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UG1: Caleta de Campos - Base Shear Response
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Figure 5.27 UGH1: Caleta de Campos - Base Shear Response

UG1: Caleta de Campos - First Floor Displacement Response
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Figure 5.28 UG1: Caleta de Campos - First Floor Displacement Response
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UG1: Caleta de Campos - Roof Displacement Response
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Figure 5.2 UGH1: Caleta de Campos - Roof Displacement Response

UG1: Caleta de Campos - First Story Hysteresis
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Figure 5.30 UGH1: Caleta de Campos - First Story Hysteresis
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UGHI: Caleta de Campos - Second Story Hysteresis
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Figure 5.31 UG1: Caleta de Campos - Second Story Hysteresis
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Figure 5.32 UG1: Caleta de Campos - Third Story-Hysteresis
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UG1: Joshua Tree Station - Base Shear Response
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Figure 5.33 UG1: Joshua Tree Station - Base Shear Response

UGI: Joshua Tree Station - First Floor Displacement Response
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Figure 5.34 UG1: Joshua Tree Station - First Floor Displacement Response
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UGI: Joshua Tree Station - Roof Displacement Response

: o "l'“”"l - "Jf Il[ ﬁu i |
Dol T ; | i
£ if HHI l|h|||ll n uxul' h’ it

ww HIIIJ" Ml i vh”,'” il v W

Time (seconds)
Figure 5.35 UG1: Joshua Tree Station - Roof Displacement Response

UG1: Joshua Tree Station - First Story Hysteresis
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Figure 5.36 UG1: Joshua Tree Station - First Story Hysteresis
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UG1: Joshua Tree Station - Second Story Hysteresis
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Figure 5.37 UG1: Joshua Tree Station - Second Story Hysteresis

UGI: Joshua Tree Station - Third Story Hysteresis
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Figure 5.38 UG1: Joshua Tree Station - Third Story Hysteresis

80




UG!: Desert Hot Springs - Base Shear Response
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Figure 5.39 UG1: Desert Hot Springs - Base Shear Response

UG1: Desert Hot Springs - First Floor Displacement Response
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Figure 5.40 UGHT: Desert Hot Springs - First Floor Displacement Response
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G1: Desert Hot Springs - Roof Displacement Response
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Figure 5.41 UG1: Desert Hot Springs - Roof Displacement Response
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Figure 5.42 UG1: Desert Hot Springs - First Story Hysteresis
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UGI: Desert Hot Springs - Second Story Hysteresis
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Figure 5.43 UG1: Desert Hot Springs - Second Story Hysteresis
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Figure 5.44 UG1: Desert Hot Springs - Third Story Hysteresis
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UG2: Static Load To Collapse - Triangular Distribution
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Figure 5.46 UG2: Collapse Analysis Results - Triangular Load Distribution
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Figure 5.47 UG2: Collapse Analysis Results - Triangular Load Distribution
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UG2: Stauc Load To Collapse - Rectangular Distribution
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Figure 5.48 UG2: Collapse Analysis Results - Rectangular Load Distribution
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Figure 5.49 UGZ2: Collapse Analysis Results - Rectangular Load Distribution
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UG2: Caleta de Campos - Base Shear Response
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Figure 5.50 UG2: Caleta de Campos - Base Shear Response

UG2: Caleta de Campos - First Floor Displacement Response
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Figure 5.51 UG2: Caleta de Campos - First Floor Displacement Response
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UG2: Caleta de Campos - Roof Displacement Response
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Figure 5.52 UG2: Caleta de Campos - Roof Displacement Response

UG2: Caleta de Campos - First Story Hysteresis

200
1

150~

]OOf

50-

Story Shear (kips)

0.2 0.3 0.4

04 -0.3

Interstory Displacement (inches)

Figure 5.53 UG2: Caleta de Campos - First Story Hysteresis

98




UG2: Caleta de Campos - Second Story Hvsteresis

Story Shear (kips)
o

Interstory Displacement (inches)

Figure 5.54 UG2: Caleta de Campos - Second Story Hysteresis
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- Figure 5.55 UG2: Caleta de Campos - Third Story Hysteresis
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Figure 5.56 UG2: Joshua Tree Station - Base Shear Response
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Figure 5.57 UG2: Joshua Tree Station - First Floor Displ. Response
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UG2: Joshua Tree Station - Roof Displacement Response
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Figure 5.58 UG2: Joshua Tree Station - Roof Displacement Response
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Figure 5.59 UG2: Joshua Tree Station - First Story Hysteresis
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UG2: Joshua Tree Station - Second Story Hysteresis
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Figure 5.60 UG2: Joshua Tree Station - Second Story Hysteresis
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Figure 5.61 UG2: Joshua Tree Station - Third Story Hysteresis
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UG2: Desent Hot Springs - Base Shear Response
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Figure 5.62 UG2: Desert Hot Springs - Base Shear Response
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Figure 5.63 UG2: Desert Hot Springs - First Floor Displ. Response
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UGE: Desert Hot Springs - Roof Displacement Response
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Figure 5.64 UG2: Desert Hot Springs - Roof Displacement Response
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Figure 5.65 UG2: Desert Hot Springs - First Story Hysteresis
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Figure 5.66 UG2: Desert Hot Springs - Second Story Hysteresis
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Figure 5.67 UG2: Desert Hot Springs - Third Story Hysteresis
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6.0 MODELING SMA HYSTERESIS

6.1 Introduction

One limitation to the analysis of buildings incorporating SMA energy dissipators with
DRAIN-2DX is the inability of DRAIN-2DX to model the triangular flag, rectangular flag,
and bowtie hystereses illustrated in Figure 4.1. The intent of the research results
presented in this chapter is to demonstrate that substantial reductions in the seismic
response of buildings can be achieved with two of the three hystereses noted above:
rectangular flag and triangular flag.

As part of the Phase | research effort, the rectangular and triangular flag hystereses
were developed in the MATLAB environment and exported to a recently completed but
as yet unpublished nonlinear computer program INADEL developed by inaudi. The
currently compiled version of INADEL can only accommodate lumped-mass stick-
models of buildings. For this reason, the condensed mass and stiffness properties of
the frame analyzed in Chapter 5 were extracted in Section 5.10.

The stick-mode! of the existing building is described in Figure 6.1 and consists of a
lumped-mass mode! with three degrees of freedom. The strength-deformation
relationship of each story is modeled by an elasto-plastic element. The floor masses
are M, = 1.03 kip s%in, M, = 1.03 kip s%in, and M, = 0.87 kip s% in. The story
stifinesses are 78 kip/in, 100 kip/in, and 80 kip/in; the story strengths are 67.5 Kips,
120 kips, and 100 kips in the first, second, and third stories, respectively.

The response of this shear building to the Desert Hot Springs earthquake was v
computed using INADEL and compared with the results obtained using DRAIN-2DX in
order to test the accuracy of INADEL. Figure 6.2 compares the first-story lateral
displacement obtained using both programs using an integration step of 0.005s. It is
apparent from the figure that comparable results are obtained using the two programs.
In the following sections, the analysis of the seismic response of the structure with
energy dissipating devices that can't be modeled in DRAIN-2DX is undertaken using
INADEL.

6.2 Modeling SMA Hysteresis

Two force-deformation relations achievable with SMAs were studied. The firstis a
simplified model of the behavior of SMA material in tension while the second is a
linear-friction mode! achievable using prestressed SMA wires loaded in the direction
perpendicular to the wires. Figures 6.3 and 6.4 show the force-deformation relations
used in the analyses. In the first force-deformation relation, denoted 'N' for Nitinol, the
parameters are the initial stiffness KO, the force in the loading phase transformation
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F1, and the force in the unloading phase transformation F2. In the second force-
deformation relation, named 'T’ for triangle, the parameters are the loading stiffness
K1, the unloading stiffness K2, and the stiffness of the transition between loading and
unloading, K3. Clearly, while the first model dissipated energy proportionally to the
first power of the deformation amplitude, the second model dissipated energy
proportionally to the square of the deformation amplitude.

6.3 MATLAB Modeling of SMA Hysteresis

The two force-deformation relationships ('N' and 'T’) were programmed in the MATLAB
environment as elements for INADEL. The element subroutines compute the force in
the mechanical device as a function of the deformation history for a given set of
element parameters (KO, F1, and F2 or K1, K2, and K3). A third element, an
elastoplastic element, was available in INADEL and was used to model the
mechanical characteristics of the reduced-order model of the building.

Two earthquake signals were used for the analyses: Desert Hot Springs and Caleta de
Campos. The integration step was 0.005s for all the analyses.

Eight configurations of the energy dissipating devices were selected, and the

responses of the mathematical model with and without the energy dissipating devices
(EDDs) were computed. The configurations were named N1, N2, N3, N4, T1, T2, T3,
and T4. The parameters of these configurations are described in the following tables.

NAME FLOOR KO F1 F2
(kip/in) (kips) (kips)

N1 1 2000 600 300
2 1333 400 200

3 400 200 100

N2 1 6000 600 300
2 4000 400 200

3 2000 200 100

N3 1 3000 900 450
2 2000 600 300

3 600 300 150

N4 1 9000 900 450
2 6000 600 300

3 3000 300 150

Table 6.1 Configurations N1, N2, N3 and N4
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NAME FLOOR K1 K2 K3
(kips/in) (Kips/in) " (Kips/in)

T1 1 500 250 2000
2 500 250 2000

3 250 125 1250

T2 1 500 50 2000
2 500 50 2000

3 250 25 1250

T3 1 750 375 3000
2 750 375 3000

3 375 185 1850

T4 1 1000 - 100 4000
2 1000 100 4000

3 500 50 2500

Table 6.2 Configurations T1, T2, T3, and T4

6.4 Discussion of the Time History Analysis Results

The response of the model with and without energy dissipating devices was computed
using INADEL. The maximum interstory drifts and maximum forces in the SMA
energy dissipating devices obtained from the analyses are shown in the following

tables for the Desert Hot Springs and Caleta de Campos earthquake records.

Interstory Drift (inches)
FLOOR No N1 N2 N3 N4 T1 T2 T3 T4
EDD
1 3.15" | 1.51" | 0.45" | 0.76" | 0.45" | 1.46" | 1.43" | 0.87" 0.75"
2 1.27" 1 1.09" | 0.53" | 1.04" | 0.56" | 1.03" | 0.97" | 0.72" 0.58"
3 1.16" | 1.59" | 1.32" | 1.67" | 1.77" | 1.03" | 0.99" | 0.77" | 0.67"

Table 6.3 Desert Hot Springs: Interstory Drifts
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Maximum Axial Force (kips)

FLOOR N1 N2 N3 N4 T1 T2 T3 T4
1 600k | 600k 900k 900k 732k 714k 653k 753k
2 400k | 400k 600k 600k 517k 487k 543k 580k
3 200k | 200k 300k 300k 257k 249k 288k 339k

Table 6.4 Desert Hot Springs: Maximum Force In EDDs
Interstory Drift (inches)

FLOOR No EDD N1 N2 T1 T2
1 2.63" 0.57" 0.29" 1.23" 1.00"
2 0.88" 0.78" 0.46" 0.77" 0.67"
3 1.06" 1.158" 0.68" 0.76" 0.71"

Table 6.5 Caleta de Campos: Interstory Drifts
Maximum Axial Force (kips)
FLOOR N1 N2 T T2

1 600k 600k 617k 501k

2 400k 400k 385k 337k

3 200k 200k 191K 177k

Table 6.6 Caleta de Campos: Maximum Forces in EDDs

From the results presented in Tables 6.3 through 6.6, it is apparent that significant
improvements in the performance of the building can be achieved through the use of
SMA energy dissipators. The interstory drifts can be substantially reduced by the
increased stiffness and energy dissipation capability provided by the hysteretic SMA
energy dissipators. Note that the distribution and characteristics of the energy
dissipating devices used in configurations N1 to N4 and T1 to T4 were not optimized.

A comparison of the first interstory drift time history response for the building with and
without energy dissipating devices is presented in Figures 6.5 for Configurations N1
and N2 and in Figure 6.6 for Configurations T1 and T2. The Desert Hot Springs
earthquake record was used for this response comparison. Figure 6.7 shows the
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force-deformation response of the first story of the building to the Desert Hot Springs
earthquake record; no EDDs were included in the building for this analysis. Figures
6.8 and 6.9 illustrate the force-deformation response of the first-story building frame
(dashed lines), and the force-deformation response in the EDD in the first story for
Configurations N1 and T1 (solid lines), respectively.

The N1 and T1 energy dissipator configurations significantly improve the seismic
response of the existing building (denoted EB in the figure titles) by reducing the
displacements in the frame to a level that eliminates significant nonlinear response in
the existing non-ductile concrete frame.

6.5 Summary and Conclusions

A-preliminary study of the response of a non-ductile concrete frame upgraded with
hysteretic energy dissipation devices has been undertaken.

Using a reduced-order model for the existing building and simple hysteretic models for
the SMA energy dissipation devices, the seismic performance of the building with and
without energy dissipators was computed and compared.

Although the selected configurations and parameters for the energy dissipators were
not optimized, significant improvements in the response of the non-ductile frame were
obtained using both the SMA alloy in tension (Configuration 'N') and a linear-friction
SMA resistance scheme (Configuration 'T").

The results of this study using INADEL are essentially the same as those found from
the DRAIN-2DX analysis presented in Chapter 5. INADEL offers modeling capabilities
that do not currently exist in DRAIN-2DX. All four hystereses depicted in Figure 4.1
can be modeled with INADEL. Currently, of the four hystereses presented in Figure
4.1, only the rectangular hysteresis can be modeled in DRAIN 2DX.

The analytical work proposed for Phase 1l will involve the development of an SMA

element for DRAIN-2DX whereby all of the hystereses presented in Figure 4.1 can be
modeled in this commonly available nonlinear analysis program.
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Figure 6.3 Configuration N Hysteresis
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7.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary of the Research Effort

The objective of the Phase | SBIR research effort was to develop the technical base
required for the design of shape-memory alloy (SMA or SMM) energy dissipation
devices for building structures. Although much of the information presented in this
report has direct application to other civil, mechanical, and aerospace structures, only
applications relevant to the retrofit of existing buildings and the construction of new
buildings in regions of low, moderate, and high seismic risk are considered in this
report.

The research effort was composed of four main tasks as described below:

Task 1. Characterization of the basic materials behavior in sufficient detail to
provide a basis for the design of prototype energy dissipators.

Task 2. Development of a number of conceptual designs for structural damping
devices and the characterization of their mechanical behavior.

Task 3. Detailed analysis of the seismic response of a pre-selected non-ductile
concrete building, with and without SMM energy dissipators, under
moderate earthquake shaking, to demonstrate the attributes of hysteretic
damping.

Task 4. Parametric analyses of a reduced-order model of the pre-selected
building (Task 3) upgraded with SMM energy dissipators possessing
different hysteretic characteristics from those used in Task 3.

In addition to passive damping applications, SMMs have other important applications
to the control of dynamic structural response, including semi-active and active control
strategies. Active and semi-active control strategies using SMA alloys were not
reviewed in detail in this report because the results of this Phase | research effort are
intended to partly form the basis of retrofitting strategies for the DOD’s large inventory
of seismically hazardous buildings in the near future. A detailed evaluation of active
control using shape-memory alloys will be conducted as part of the Phase Il research
effon.

An introduction to the seismic response of building structures, the mechanisms by
which seismic energy is dissipated in conventional buildings, the advantages of
supplemental damping devices, and the means by which these devices can be
implemented (passive and active) are addressed in Chapter 2 of this report.

The characteristics of the mechanical behavior of NiTi SMMs (Task 1) was presented
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in Chapter 3. A detailed testing program (Table 3.1) was developed to thoroughly
investigate those mechanical characteristics of SMMs that could influence the design
of both passive and active SMA energy dissipators. The two main features of SMAs,
the shape-memory effect (SME) and the superelastic effect (SEE) were investigated in
detail. The force-deformation characteristics of both the SME and SEE NiT! alloys as
a function of temperature, thermomechanical processing, and alloy-prestress were
investigated and described in this chapter. An annotated bibliography making
reference to: material science; R-phase transitions; metallurgy, creep, and stress
relaxation; temperature effects on superelasticity; SMM parametric models;
temperature-related phenomena; thermomechanical processing; and engineering
applications is also provided in Chapter 3.

Two conceptual designs of passive damping devices (Task 2) are described in
Chapter 4: a truss link device and a truss joint device. Neither device was constructed
as part of the Phase | research effort. SMA active control devices are described in
Section 4.5. Details of such devices, based on direct actuation of the shape-memory
effect; friction modulation; and stiffness modulation, are presented in this section. The
design and construction of an SMA energy dissipator that can provide both passive
and active control is described in Section 4.6. The response characteristics and
operational feasibility of this device have been verified by simple test procedures.
Comprehensive testing of this device using both active and passive control strategies
will be performed as part of the Phase Il research effort.

The results of a detailed analysis of a non-ductile reinforced concrete building, typical
of many buildings in the DOD inventory, are presented in Chapter 5. The building
analyzed in this study was selected by USACERL and is sited in Fort Lewis,
Washington State. The building was constructed in 1956 using then-current seismic .
design procedures. The existing building was analyzed using the nonlinear static load-
to-collapse and time-history analysis options in DRAIN-2DX. These analyses
demonstrated that the existing building is a seismic hazard in the event of moderate or
severe earthquake shaking. Two upgrade schemes were developed, based on the
use of NiTi SMA energy dissipators (UG1 and UG2), to both increase the lateral
stiffness of the building and to provide significant energy dissipation capacity at
interstory drift levels low enough to protect the existing non-ductile frame. Only
rectangular SMA hysteresis was assumed for the DRAIN-2DX analyses. Upgrade
schemes UG1 and UG2 were analyzed using static load-to-collapse procedures and
three recorded ground motion time histories. The results of these analyses are
presented in Sections 5.12 and 5.13.

One attractive feature of SMAs is the option afforded to the structural designer in
terms of hysteretic shape. Two hysteretic shapes, depicted by triangular and
rectangular flags in Figure 4.1, both different from the rectangular shape used in
Chapter 5, were implemented in INADEL for the nonlinear time-history analysis of a
reduced-order model of the building. The resuits of these analyses are presented in
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Chapter 6.

7.2 Conclusions of the Phase | Research Program

The Phase | research program has established the technical basis for the
development, design, and construction of passive energy dissipation devices for the
earthquake-resistant design and construction/retrofit of building structures. The
mechanical characteristics of different shape-memory alloys were thoroughly
investigated in a detailed testing program. SMAs can be configured to provide a
shape-memory effect (SME) or a superelastic effect (SEE); energy dissipation devices
based on both SME and SEE were shown to be technically viable.

Passive energy dissipation devices incorporating shape-memory alloys, in particular
NiTi alloys, have a number of mechanical characteristics that are unavailable with
other rate-independent supplemental damping systems currently in the marketplace,
namely:

1. Environmental durability
2. Temperature independence of the hysteretic response
3. Excellent low- and high-cycle fatigue characteristics

In addition, SMA energy dissipators can be configured to provide a variety of
hysteretic shapes, each of which might be optimal under certain circumstances.

Several prototype SMA energy dissipators were designed as part of the Phase |
research effort. One energy dissipator was fabricated towards the end of the Phase |
research program. Although preliminary testing of the device has been undertaken
already, the results are currently unavailable. Detailed testing of this device is
proposed as part of the Phase Il SBIR research program.

Detailed analysis of one non-ductile reinforced concrete building (typical of many in the
DOD inventory) in Washington State found the building to be vulnerable to collapse in
the event of moderate or severe earthquake shaking. This assessment was based on
the nonlinear time-history analysis of the building using three recorded earthquake
ground motions consistent with moderate earthquake shaking at the building site. Two
upgrade schemes developed for the building, based on the use of SMA energy
dissipators installed in TS brace elements, were found to effectively mitigate the
seismic hazard for the moderate level of earthquake shaking considered appropriate
for the Fort Lewis site. The most cost-effective upgrade scheme for this particular
building involved the addition of 6, 4, and 2 energy dissipators in each frame of the
wing of the building considered, in the first, second, and third stories of the building,
respectively. The use of 12 - 22 kip dissipators per building frame reduced the
displacements in the building to a level whereby the existing frame suffered no
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damage when subjected to three moderate earthquake ground motions.

As noted above, SMA energy dissipators can be configured to provide a variety of
force-deformation profiles (see Figure 4.1). Two of these profiles (rectangular flag and
triangular flag) were programmed in the MATLAB environment and exported to a
newly-developed nonlinear program, INADEL. The results of these analyses
demonstrated the attributes of these hysteretic shapes, namely substantial reductions
in the response of the existing building. A large number of plausible hysteretic shapes
make it possible to optimize the design of a supplemental damping system; such an
optimization is impossible with most energy dissipation systems. Further development
of the MATLAB:INADEL environment is planned for the Phase |l research effort.

In summary, the materials characterization and device development reported in
Chapters 2 and 3 of this report clearly demonstrate the technical viability of SMAs as
passive energy dissipation devices for earthquake-resistant design applications in the
building industry. The advantages of SMA-based energy dissipators over other
hysteretic systems are outlined above. The vuinerability of one building typical of
many in the DOD inventory was mitigated through the addition of SMA energy
dissipators, clearly demonstrating the potential uses of passive energy dissipation
technology.

7.3 Recommendations for Future Research

The next step in a co-ordinated, problem-focused research program involves the
following work:

1. Additional development and testing of SMMs including copper- and iron-
based shape-memory alloys as well as optimization of the NiTi family of
alloys including CuNiTi.

2. Development of mathematical tools for the general nonlinear analysis of
structural elements incorporating arbitrary hysteresis (see Figure 4.1)
for inclusion into commercially available nonlinear packages such as
DRAIN-2DX.

3. Schematic development of candidate SMA energy dissipators based on
both shape-memory and superelastic hystereses.

4, Selection of a limited number of candidate dissipator designs.

5. Construction and testing of reduced-scale models of the candidate SMA
energy dissipators selected in 4.

6. Rigorous 3-D analysis of a representative sample of the seismicaily-
vulnerable buildings in the DOD inventory.

7. Evaluation of different SMA energy dissipator retrofit strategies for the

buildings analyzed in 2.
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Verification of the retrofit strategy to be achieved by the construction of a
reduced-scale model of one of the DOD building types deemed
hazardous by the E-SORB research team (in consultation with USACERL
researchers) and the earthquake simulator testing of the building with
and without SMA energy dissipators (as developed in Chapter 5).
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A.1 Materials Test Data
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TEST MATERIAL DIAMETER LOOPS FREQUENCY TEMP.
(in) (Hz) (C)
1A F4904-2-2 0.015 14 0.2 22
1B F4903-28 0.009 22 0.2 22
1C F00642-1B 0.162 14 0.2 22
1D F2234-2-2A 0.014 19 0.2 22
2A F4904-2-2 0.015 14 0.3 22
2B F4904-2-2 0.015 14 0.3 23
2C F4904-2-2 0.015 14 1.0 23
2D F4904-2-2 0.015 14 3.0 23
2E F4904-2-2 0.015 14 10.0 23
2F F4903-1B 0.035 5 3.0 23°
2G F4903-1B 0.035 5 3.0 23
3A F4904-2-2 0.015 14 0.2 40
3B F4904-2-2 0.015 14 0.2 60
3C F4904-2-2 0.015 14 0.2 80
3D F4904-2-2 0.015 14 0.2 0
4A F00642-1B 0.016 18 0.2 22°
4B F00642-1B 0.016 18 0.1 23
4C F4903-1B 0.035 6 0.1 23
5A F4903-2B 0.009 15 0.2 23
6A F4904-2-2 0.015 14° 0.2 23
68 F4904-2-2 0.015 14° 0.2 22°
6C F4904-2B 0.0091 16° 0.2 23
6D F4904-2B 0.0091 16° 0.2 23

a. Sample came loose during testing
c. 6 of 14 loops slack to 2% strain
e. 8 of 16 loops slack to 4% strain

b. Servo gain too low

d. 7 of 14 wires slack to 4% strain

Details of the Testing Program
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Displacement [in]
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. Load [Ib]
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A.2 Design Calculations
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A.3 Code Requirements for Energy Dissipation Devices
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