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MODULATION BY MEANS OF TIME-VARYING LINEAR FILTERING 

Time-varying linear filtering is a very general technique that can generate a broad class of spread 
spectrum signals (as well as other forms of modulation*). As a spread spectrum technique, it admits 
a broader class of waveforms than are commonly used today, which may provide performance bene- 
fits in several areas of application. 

Time-varying filter (TVF) spread spectrum modulators can spread in time as well as in fre- 
quency, thereby providing broad protection against errors. They can generate smooth signals taking 
on a continuum of values, which may facilitate hiding transmissions within background noise. They 
can generate strictly band-limited signals without impairing reception. These properties should pro- 
vide benefits in antijam/low probability of intercept (AJ/LPI) and civilian code division multiple- 
access (CDMA) mobile radio applications. Time-varying filters may also be used as modems in situ- 
ations where bandwidth spreading is not needed. 

From a theoretical point of view, time-varying linear filtering provides a coherent framework for 
understanding spread spectrum. 

: Amplitude modulation has been described as a form of time-varying filtering (Ericson, 1981). 



DESCRIPTION OF TIME-VARYING FILTER SPREAD SPECTRUM 
A time-varying filter (TVF) is a filter whose impulse response changes with time. A general lin- 

ear time-varying filter in continuous time may be expressed in the form 

h(t - f, f) x(t') dt' =        f(t, 0 x(t') df (1) 
oo J-oo 

where x(t') is the input (data) signal and y(t) is the output (spread) waveform. Thus, TVF spread 
spectrum admits continuous-valued responses that can be overlapped in time. 

To be suitable for spread spectrum modulation, the impulse response of a TVF must vary at a rate 
orders of magnitude greater than the input signal bandwidth. If the system operates in continuous 
time, the variation must be rapid in two respects: 

A. At each time instant t', the TVF has impulse response h(x, t'), which governs the effect of the 
input signal at that time instant on the output signal over all time. Each such instantaneous 
impulse response, h(x, t') with t' held fixed, should be a rapidly fluctuating function of the dif- 
ference time variable % = t -1', where t is the output time variable. 

B. The TVF's instantaneous impulse response, h(x, t'), should change rapidly when input time 
variable t' is varied with T held fixed, for at least some values of the difference time 
variable x. 

Both forms of rapid variation are necessary (although not sufficient) when dealing with continu- 
ous-time inputs; without either one, the rapid variation introduced by the other will be smeared out, 
and little if any spreading will be effected. 

More customarily, the input will be a discrete-time sequence, either binary values or Nyquist 
samples of a continuous-time waveform. We write t' = m i and t = n T, where % and T are sampling 
intervals for the input and output time domains respectively (t = LT, where L is the spreading ratio). 
The TVF becomes 

oo 

y(n) =      X     k(n>m) x(m> (2) 
m = -co 

Equations (1) and (2) represent time-varying filters in terms of the time-domain Green's func- 
tions f(t, t') and k(n, m), each a mapping from every point in time to every other point in time. 

A TVF can also be represented in terms of a frequency-domain Green's function, a mapping 
from every frequency to every other frequency (Gardner, 1988). For a discrete-time system, 

Y(f) =     2T K(f, f)X(f)df (3) 

2T 

(For a continuous-time system, the limits on the integral would be - °° to + °°.) 

When the restriction is made to time-invariant filters, these equations take on familiar forms: 
equations (1) and (2) become convolutions, and equation (3) becomes a multiplication. 

I y(t) = h(t - f) x(t') dt's Y(f) = H(f) X(f) (4a> b) 



for continuous time, and 

CO 

y(n) -     X    h(n " m) x<m) ' Y® = H(f) X(f) <5a' b) 
m = -o= 

for discrete time. The capability to shift energy among different frequencies enables a time-varying 
filter to produce spectral spreading, whereas a time-invariant filter cannot. 

These time-varying filter models describe the complex envelope of an RF spread spectrum wave- 
form, i.e., in-phase and quadrature components at baseband. The complex envelope is y(t) in the 
case of continuous time, or a smoothed version of y(n) in the case of discrete time. This assumes 
upconversion to RF prior to transmission and downconversion upon reception. 



RELATIONSHIP TO DIRECT SEQUENCE AND FREQUENCY-HOPPED 
SPREAD SPECTRUM 

Direct Sequence (DS) spread spectrum is a special case of time-varying filtering. The DS time- 
varying filter consists of multiplying the data waveform by a binary (or multiphase) continuous-time 
waveform. Alternatively, it may be viewed as convolving an input sequence of discrete-time sam- 
ples with a time-varying filter whose instantaneous impulse responses are short, as shown in Fig- 
ure 1. This method is described by the formulas 

Y(f) = F(f) * X(f) (6a, b) y(t) = f(t) x(t) , 

which arise as a special case of equation (1) with 

h(t - f, t') = f(t, f) = f(t) 5(t - f) (7) 

where f(t) is the conventional Direct Sequence spreading code. There is no spreading in time; the 
responses to successive data samples cannot be overlapped. 

Coherent frequency hopping is also a special case of time-varying filtering. Each hop in fre- 
quency by Af appears in the TVF as a multiplication by a complex frequency shift of the form 
exp (j 2% Af (t - to)). 
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Figure 1. Direct sequence spread spectrum as a special case of time-varying filtering. 



TRANSVERSAL FILTER ARCHITECTURE 

A time-varying filter can be modeled in discrete time for implementation with digital hardware 
using a transversal filter as shown in Figure 2, assuming the input data sequence is provided in the 
form of either binary values or analog-valued Nyquist samples of a continuous-time waveform. This 
data sequence is prepared for the TVF by interspersing the provided data samples with zeros to 
create a sequence whose rate is faster by the spreading ratio. This higher-rate sequence is presented 
to the transversal filter, whose analog weights may be time-varying or fixed. The transversal filter's 
output, a sequence of samples, would be smoothed to continuous-time form. An example of time- 
varying filtering of binary data is illustrated in Figure 3. 

If we are given a continuous-time input signal, we may, alternatively, sample it at the sample rate 
of the final spread waveform; then we must carefully make sure that our time-varying filter satisfies 
condition (B),* so that the rapid variation inherent in condition (A) does not become smeared out by 
the slowly varying oVersampled input. We envision sampling the input signal at the slower (Nyquist) 
rate, not only because it reduces the computational burden, but also because it may be viewed as pre- 
filtering the oversampled version with a time-varying filter that establishes condition (B) by setting 
L-l out of every L samples to zero, where L is the bandwidth spreading ratio. Then, the transversal 
filter weights are easily chosen to satisfy condition (A). They would typically be taken from a 
pseudorandom number generator, and can be time-varying or even fixed, because condition (B) has 
already been established by the ersatz prefiltering. 

Likewise, interspersing binary input data with zeros not only matches data rates but also esta- 
blishes condition (B). 
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Figure 2. Shift register implementation of time-varying filter as modulator. 

* Refer to Description of Time-Varying Filter Spread Spectrum. 
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Figure 3. Example of time-varying filtering. 



FREQUENCY ANALYSIS/SYNTHESIS ARCHITECTURE 

Equation (3) suggests a frequency domain architecture; however, the integral over all time is 
impractical. A practical analogue would involve breaking up the signal into blocks and performing 
three operations in sequence on each block: frequency analysis using an FFT; a linear transforma- 
tion which may be different or the same from block to block; and finally, synthesis using an inverse 
FFT to form a time-domain signal (see Figure 4). These techniques are similar to those described in 
Crochiere and Rabiner (1983) for multirate digital signal processing. The initial FFT, which operates 
on only a small number of points, may be omitted, i.e., subsumed into the linear transformation. 

In general, the linear transformation on the frequency components may be any Green's function 
transformation from every component in the input segment to every component in the output seg- 
ment, and it may be as complicated as the transformation one might use in a time domain approach. 
The added work of the Fourier transforms would then seem to make the Fourier domain approach 
more costly. However, we may be able to perform a simple transformation in the frequency domain 
(for example, a permutation) and still achieve useful spreading (just as Direct Sequence is a simple 
transformation in the time domain). (Permutation of frequency components and other orthogonal or 
unitary transformations have been used for voice scrambling [Wyner, May 1979 and July 1979; 
Sakurai, Koga, & Muratani, 1984; and Ishii & Kakashita, 1990].) 

One way this implementation is lacking in generality is that it does not provide for overlapping 
among blocks; rather than propose modifications, we look at another architecture which is more flex- 
ible: one based on unitary transformations. 
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Figure 4. Short-time frequency analysis/synthesis implementation of time-varying 
filter as modulator. 



UNITARY TRANSFORMATION ARCHITECTURE 

A time-varying filter can be built out of many 2x2 elementary linear transformations. The form 
of these elementary transformations is shown in the inset in Figure 5. Each transformation takes two 
complex inputs and maps them into two complex outputs by means of four complex multiplicative 
factors, i.e., an arbitrary linear mapping from each of its inputs to each of its outputs. (When ele- 
ments are cascaded, the number of multiplications can be greatly reduced by rearrangement.) With 
on the order of N(N-l)/2 of these 2x2 transformations, an arbitrary mapping from N inputs to N 
outputs can be constructed. For spread spectrum applications, each of these building blocks could be 
controlled by a pseudorandom generator. 

If we admit arbitrary elementary transformations as building blocks, we face the problem that 
individual elements of the data sequence may face degenerate or nearly degenerate transformations, 
so that some of the input data samples may be represented only weakly or not at all in the output. 
Simply stated, portions of the signal can get lost in the maze of connections between input and out- 
put. 

If we restrict the elementary transformations to be unitary, we can implement a TVF in a distrib- 
uted fashion without risk of losing the signal. The energy-preserving nature of the transformations 
ensures that every input sample is represented in the output with equal weight and therefore cannot 
get lost. A mathematical description of a 2 x 2 unitary transformation (a complex Givens rotation) is 
given in Appendix A. 

Unitary transformations can also simplify the problem of demodulation because if they are suit- 
ably arranged (as described in the next section), optimal matched filter detection in additive white 
Gaussian noise may be performed merely by inverting the transformations. 

Note that Direct Sequence modulation using a binary or pure phase waveform is a unitary trans- 
formation in continuous time. 

One complication of discrete-time transformational architectures (elementary transformation 
architectures, as well as frequency analysis/synthesis techniques) is that they tend to produce criti- 
cally sampled representations of their output signals; hence, accurately smoothing the output samples 
to a continuous-time signal may not be simple. 

11 
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Figure 5. Time-varying filter composed of overlapped transformations (hard to invert). 
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DEMODULATION 

The optimal way to demodulate TVF spread spectrum is by matched filtering. Consider general 
TVF modulators modeled in discrete time. At the time of each input data sample, the modulating 
TVF has a different impulse response. To demodulate, one should matched filter to each of these 
instantaneous impulse responses, properly timed. Note that these responses are in general overlap- 
ping, and it may be necessary to remove intersymbol interference (ISI) by some other method (such 
as a decision technique for binary data). 

This demodulation procedure is equivalent to a particular time-varying filter, which we call the 
matched time-varying filter. If the modulator is a unitary transformation, and the noise, plus other 
interference, is modeled as additive white Gaussian noise (AWGN), then the matched TVF is simply 
the inverse of the modulating TVF, and there is no ISI. This is an important benefit of unitary trans- 
formations. It is one of the reasons binary or pure-phase Direct Sequence, a unitary transformation 
whose inverse is just its complex conjugate, has been so successful. 

We are thus led to consider under what conditions the modulating TVF is easy to invert. This 
brings up the issue of FIR vs. IIR (finite vs. infinite impulse response). 

A TVF can be IIR and have an inverse which is IIR. Also, a FIR TVF can have an IIR inverse; 
an example, built from elementary transformations, is shown in Figure 5. Because of the way the 
elementary transformations in this TVF overlap (which may be described as convolutional), the 
inverse most likely would be difficult to implement. (Although we could easily design a structure 
with enough degrees of freedom to implement the inverse to a good approximation, computing 
what the coefficients should be would be difficult, since they would in general be time-varying 
and would not correspond one-to-one with the forward coefficients.) 

In fact, a FIR time-varying filter can be constructed whose inverse is FIR (unlike the case 
for time-invariant filters, where a nontrivial FIR filter must have an IIR inverse). One way to 
construct such a FIR TVF is to build it out of elementary unitary transformations organized in a non- 
overlapping manner at each level, as shown in Figure 6. Its inverse will be FIR and will have the 
same architecture, with the order of the transformations reversed; the coefficients will be in one-to- 
one correspondence with the coefficients of the forward filter, greatly facilitating implementation. 

13 
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Figure 6. Time-varying filter composed of elementary unitary transformations, 
non-overlapping at each level. 
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ANALOGY TO ERROR-CORRECTING CODING 
AND INTERLEAVING 

TVF spread spectrum encompasses spreading in time as well as in frequency. Spreading in time 
introduces a form of protection from errors similar to error-correcting coding and interleaving. This 
benefit can be realized if we try to recover a transmitted message when a short interval of the trans- 
mission has been corrupted by interference. For Direct Sequence transmissions, the interference 
affects all data sent during that interval, and that data will generally be lost if the interference is 
strong. For TVF transmissions (even if the interference is strong), if the interval is short relative to 
the extent of spreading in time, one may ignore the received signal during that interval (i.e., treat it as 
an erasure) and have an excellent chance of reconstructing the signal. (A simple alternative to zero- 
ing out reception during corrupted intervals is to apply amplitude limiting at all times.) If the signal 
is binary or discrete-valued, then squaring up the detected signal to the nearest admissible ampli- 
tude—a procedure analogous to finding the nearest codeword—may be sufficient to reproduce the 
message with no errors. If the signal is analog, the output of the demodulator may be a good approx- 
imation. 

15 



SYNCHRONIZATION 

As for any spread spectrum receiver, synchronization is necessary; this requirement is as much a 
property of time-varying filters as it is of spread spectrum. Both Time ("Code") and Frequency 
("Carrier") synchronization must be acquired. 

An important consideration in devising a method for acquiring synchronization is to avoid hav- 
ing to perform a two-dimensional search over a large number of time and frequency offsets. Syn- 
chronization can be achieved more quickly if the search space is one-dimensional. 

For Direct Sequence spread spectrum reception, a one-dimensional search just in the time vari- 
able is sufficient because the despreading TVF commutes with a frequency shift. Regardless of 
whether any frequency shift has occurred after modulation in the transmitter, code synchronization 
can be acquired first by attempting to despread with the DS code at various candidate timings and 
looking for a narrowing of the spectrum. Carrier sync (shifting that spectrum to take out any fre- 
quency shift) can be acquired afterwards. 

For a general TVF spread spectrum system, the TVF modulator and demodulator do not com- 
mute with a frequency shift. In general, this would imply the need for a two-dimensional search to 
acquire sync since if one of the variables is off target, there may be no indication of closeness to 
sync. Whether the search in the frequency dimension needs to be extensive or minimal would 
depend on the amount of phase uncertainty over the time extent of the TVF's instantaneous impulse 
response. (One may truncate the impulse response of the despreading TVF to reduce that uncer- 
tainty.) 

If the spreading TVF is a transversal filter with fixed weights, acquiring synchronization should 
be simpler because the time uncertainty is as short as the separation between data samples. (The fre- 
quency uncertainty would be no greater or less than otherwise.) This form of TVF may be particu- 
larly suitable for civilian CDMA applications because it provides some of the advantages of more 
general TVFs (in terms of potential for control of bandwidth utilization, and in terms of robustness to 
errors due to spreading in time) while keeping the hardware requirements and synchronization bur- 
den to a minimum. 

Analogously, any of the three TVF models can be made easier to synchronize by restricting the 
coefficients to periodic rather than pseudorandom variation. 

17 



IMPLEMENTATION 

One way to implement a general TVF would be with discrete-time digital methods on parallel 
microprocessor hardware. Because of the difficulty of performing the calculations in real time, 
operation at useful spread spectrum bandwidths may have to wait for a new, faster generation of 
microprocessor hardware. 

The discrete-time nature of the samples leads to a problem of fractional time shifts: If the sam- 
pling instants at the receiver do not exactly match the sampling instants at the transmitter, then some 
method of shifting is necessary. It may be done either electronically (prior to discrete-time sampling 
and digitization) or mathematically (by interpolating between samples). Note that under a fractional 
time shift, a FIR filter would become IIR because an optimal interpolation would utilize the sine 
function. Integration of the interpolation with the TVF would be desirable; however, computation of 
the composite filter may be quite complicated. 

19 



APPLICATIONS 

When transmitting in a jamming or noisy environment, the capability of a TVF modulator to 
spread the effect of each data sample in time may diminish the need for additional coding as a sup- 
plement to spread spectrum. (Spreading the effect of each data sample in this way provides error 
protection similarly to error-correcting coding and interleaving.) 

Time-varying filters may be useful for generating near-Gaussian noise-like spread spectrum sig- 
nals which are hard to intercept. Two factors contribute to this: the potential of the filters' impulse 
responses to assume values from a continuum; and the capability of the filters to have very long 
impulse responses, so that the effects of many data bits overlap at each point in time. 

TVF spread spectrum may also be useful in civilian code division multiple-access applications, 
particularly if bandwidth constraints are important, because it provides more control than DS to 
assure that transmissions fit into bandwidth constraints. (Smoothing samples generated in discrete 
time constrains the output to the Nyquist bandwidth without impairing reception.) To simplify hard- 
ware and synchronization requirements, the form of TVF modulator may be used that consists of a 
transversal filter with fixed weights. 

Conversely, TVF techniques may be used to optimally demodulate DS signals that were filtered 
to satisfy bandwidth constraints. 

Choosing good multiple-access codes is likely to be easier for TVF spread spectrum than for DS 
because for a given bandwidth spreading ratio, overlapping the responses allows the codes to be 
longer. The longer codes are likely to cause less statistical fluctuation in the near-orthogonality 
conditions governing separation between channels. (Interference between channels can never be 
eliminated entirely, since exact orthogonality of all channels for all time shifts is theoretically impos- 
sible.) 

A TVF with a bandwidth spreading ratio too small for spread spectrum may nevertheless be use- 
ful as a modem if it provides a degree of protection from errors through spreading in time. 

21 
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APPENDIX A 

2X2 UNITARY TRANSFORMATION 
(MATHEMATICAL DESCRIPTION) 

.t. Any complex 2x2 unitary transformation can be expressed by a matrix Q where Q Q = 1 
(T denotes complex conjugate transpose). This condition implies that the matrix may be expressed in 
the form 

Q = 
eJ« cos 6      - eJß sin 6 

e-W sin 6 e-J5 cos 9 

where a-ß-y+5 = 0 modulo 2K. 

A-1 
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