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Abstract 

We study a time series of 20 years of daily sea surface temperatures (SSTs) measured off the 

California coast. The SSTs exhibit quite complicated features, such as effects on many different 

time scales, nonlinear effects, and long-range dependence. We use a modified MARS algorithm 

to obtain univariate adaptive spline threshold autoregressive (ASTAR) models for the SSTs and 

discuss practical modeling issues, such as handling of cycles and long-range dependence. We 

approximate a nonlinear long memory model by allowing very long autoregressive terms in the 

ASTAR model. This large order ASTAR model is better predictively and descriptively than any 

other univariate model explored. Use of other concurrent predictor time series, in particular, 

categorical predictor variables such as wind direction, to extend the threshold autoregressive 

model for the SSTs to semi-multivariate adaptive spline threshold autoregressive (SMASTAR) 

models for the SSTs is also discussed. It is shown that SMASTAR modeling, with an added 

categorical time-of-year predictor, can also be used to model nonlinear structure in the data 

which is changing with time-of-year. Models for the SSTs are evaluated using out-of-sample 

forecast RMSEs, residual diagnostics, model skeletons, and sample functions of simulated series. 

Computational issues, such as choice of parameters in the MARS algorithm, in particular the 

span parameter, are discussed in an appendix. 
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1    Introduction and Data Description 

Physical systems, such as Sea Surface temperatures (SSTs), cloud cover, wind velocities, wind 

speeds, and water salinity exhibit very complex and interconnected behaviors which are almost 

impossible to capture using standard linear time series models. In this paper, we analyze features 

of a very long series of daily SSTs using both linear models and nonlinear adaptive spline thresh- 

old autoregressive (ASTAR) models obtained using a modified Multivariate Adaptive Regression 

Splines (MARS) algorithm (Friedman, 1991a, 1991b, 1993). We also investigate models for the 

SSTs which incorporate shorter, covariate series of wind velocities and wind directions, as well as 

models which include a covariate categorical time series whose levels represent different times of 

the year. Section 2 gives a brief description of the use of MARS with time series. The remainder 

of this Introductory section discusses some physical features of the SST data in more detail. 

Figure 1 shows the logarithm of the SSTs at Granite Canyon, on the coast of California ap- 

proximately 30km south of Monterey, over the period March 1, 1971 to November 9, 1993. SSTs 

over the period March 1, 1971 to Feb. 28, 1991 are used for model estimation, while part of the 

additional data up to November 9, 1993 (620 days) is used for validation of the predictive ability 

of the derived models. The logarithm of the data is used to stabilize the variance of the SSTs (see 

Section 3). 

The series of logged SSTs shown in Figure 1 exhibits cycles on several different time scales. 

A clear drop in temperatures is seen every spring, corresponding to the coastal upwelling. (The 

drop does not occur at precisely the same time every year). The cyclic time-of-year effect is the 

dominant feature in the data; note, however, that the temperatures do not increase in the summer 

and decrease in the winter. Following the spring transition, the log temperatures remain low and 

rise after the summer. It is well known (Hidaka, 1954; see also Breaker and Lewis, 1988) that this 

effect is predominantly due to the wind direction. 

In addition to time-of-year effects, however, there is a longer cyclic effect of the periodic warming 

due to the El Nino phenomenon. This phenomenon is reflected in the higher temperatures seen in 

Figure 1 in 1972, 1976, 1983, and 1987, and has a quasi-period of about four to five years. An 18.6 

year cycle in the SSTs has also been investigated (Royer, 1991). 

A least-squares fit of a sinusoid with period of one year to the first 20 years of the data is shown 

in Figure 1. It is clearly not a complete fit of the yearly cycle (additional harmonics could be used), 

however it approximates the majority of the yearly effect. The futility of trying to capture these 

cyclic effects completely with a deterministic term can be seen from the top plot of Figure 1: the 

later data (March 1, 1991 and beyond) shows a massive and broad El Nino warming in progress. 
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Figure 1: The top plot shows the logarithm of the raw sea surface temperatures from March 1, 1971 to 

November 9, 1993. Only the data up to Feb. 28, 1991 is used for model estimation; a fitted sinusoid with a 

one year period is also shown for this period. The data beyond February 28, 1991 shows an extraordinarily 

broad and high El Nino effect which extended well into 1995. The lower plot shows the residuals from fitting 

a one year sinusoidal cycle to the data. 

Therefore fitting a year cycle to the entire series would produce a sinusoid having a higher level 

than the sinusoid fitted using only the first 20 years of data, giving a fit to the data in the earlier 

years even worse than the fit shown in the top plot of Figure 1. In fact, a global linear trend 

term could be incorporated into the model, but this statistical artifice is clearly not acceptable to 

oceanographers as either a descriptive or predictive device. One knows that there may be a very 

long term cycle in the data, but continued warming at a rate predicted by a straight line fit would 

be unlikely. In Section 3.1, we discuss methods of handling the regular, yearly cyclic effects in the 

data when using MARS. Informally, the device of transforming the data to stabilize its variance and 

then subtracting an additive mean implies that the remaining data is stationary. This assumption 

will be examined in more detail in Section 4. 

The top panel of Figure 2 gives another view of the logarithm of the data, showing more clearly 

the massive temperature drop in the spring, particularly following the El Nino warming in 1972. 

The bottom panel shows commonly used displays of the series, as either a smoothed series, or as 

a monthly average. This latter (low-pass filtered) series is the series which is usually studied by 

oceanographers. 

Nonlinearities in the SSTs show up in several other ways. One is that, when a linear model is fit 
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Figure 2: The top plot again shows the logarithm of raw sea surface temperature using connected lines. 

The temperature drop in the spring is more clearly seen than in Figure 1. The bottom panel shows the 

monthly average of the series and the series smoothed using a 60-point moving average filter. 

to the time series (Section 3.2), the residuals are uncorrelated but the squares of the residuals are 

still correlated (Granger and Anderson, 1978). Also, fitted ASTAR models (Section 3.3) clearly 

show the existence of thresholds, on either side of which the behavior of the series is different. 

Additionally, the data appears to have long-term dependence (showing up as very long cycles of 

different lengths), as can be seen in the behavior of spectra of the time series near zero frequency. 

Figure 3 shows a plot of the log periodogram of the first 20 years of logged SSTs (depicted as circles) 

vs. the log of the frequency at a set of initial Fourier frequencies. The clear downward slope of 

the log periodogram is characteristic of long-range dependent processes (Mandelbrot and Van Ness, 

1968). The logs of averaged adjacent periodogram ordinates (shown as x's) may be used to obtain 

a more robust straight line fit to this initial part of the spectral density, since logged periodogram 

ordinates are distributed as log exponential random variables, which are strongly negatively skewed. 

The component of the spectrum at a period of one year is omitted from the straight line fit. 

We analyze the amount of long-range dependence in the SSTs and attempt to model it using 

both a linear long memory model and an approximating nonlinear ASTAR model with lags of up 

to 5 years. The different models obtained using lags of up to 5 years are evaluated in Section 3.4 on 

the basis of out-of-sample forecast root-mean-squared-errors (RMSEs) at different steps, residual 

diagnostics, model skeletons, and stability of simulated series. Note that there is no guarantee that 
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Figure 3: Plot of the logarithm of the periodogram of 20 years of logged SSTs at Granite Canyon vs. the 

logarithm of an initial set of Fourier frequencies. The circles depict logarithms of each periodogram ordinate. 

The x's are logarithms of averages of adjacent periodogram points. The latter, omitting the periodogram 

ordinate corresponding to the one year frequency, are used in the straight line regression for the slope of the 

log spectrum near zero frequency. 

the models fitted to the data will be stable. This aspect of MARS modeling is briefly discussed in 

Section 3.4.3. 

A much more subtle cyclic effect in the SSTs is an approximately 47 day oscillation (Breaker 

and Lewis, 1988). Previous attempts to elucidate the nature of this oscillation by, for example, 

complex demodulation, have proved fruitless. However it is believed that this oscillation may be 

related to the effect of the wind on SSTs. Wind speed and wind directions are two of the most 

important meteorological variables affecting SSTss and reliable observations of this data are more 

available today than in the past. For Granite Canyon, wind speed and direction data were available 

from January 1, 1985 to March 31, 1991. Wind speeds, which are continuous valued variables, can 

be incorporated into a Semi-multivariate ASTAR (SMASTAR) model in a fairly straightforward 

manner (Lewis and Stevens, 1992). However, wind direction, which is a circular variable, is better 

treated as a categorical variable. Wind direction at Granite Canyon is measured in positive degrees 

from 0 to 360 and reported as the direction in which the wind is blowing. We have coded the wind 

direction (WD) as a categorical variable using the following categories: 
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Figure 4: The effect of wind direction on the SSTs at Granite Canyon. Note that there are only five years 

and 90 days of data involved, from January 1, 1985, to March 31, 1991. 

• l=East:   0° < WD < 45° or 315° < WD < 360°, 

• 2=North:   45° < WD < 135°, 

• 3=West:   135° < WD < 225°, 

• 4=South:   225° < WD < 315°. 

Days in which no wind or only light airs were reported received a code of 5. (This data collection 

was not automated and the data was spotty and has been filled in parts. Collection started on 

January 1, 1985, and lasted for five years and ninety days.) 

The effect of wind direction on SSTs is clearly shown in Figure 4. Using the 5 years and 90 

days of data, the figure depicts the range of temperatures reported for each wind category when 

temperature lags wind direction by 1, 6, 11, or 16 days. Figure 4 shows clearly that the SSTs 

depend on the direction in which the wind is blowing; they tend to be lower when the wind blows 

from the Northwest (Categories 2 and 3), and this dependence is strongest at lag 1. It is clearly 

necessary to bring in this aspect of the physical situation for a complete model of the SSTs. In 

fact, oceanographers agree that the spring transition is driven by the shift in the wind direction to 

the Northwest in the spring. Thus a good descriptive model should show this nonlinear effect on 

SSTs. 



In Section 4, we describe this type of extended analysis of the data using a SMASTAR model 

having wind speed as a covariate time series. We also use wind direction as a categorical valued 

covariate time series to obtain a CASTAR model — a semi-multivariate model in which the covariate 

time series may be categorical. The resulting CASTAR analysis shows that the oscillation seen by 

Breaker and Lewis (1988) is only present - as a 49-day autoregressive component - when the wind 

blows from the Northwest. In fact, the resulting CASTAR model for the SSTs at Grand Canyon 

given in Section 4.1 is very satisfying in that it gives an explicit model of the interaction of the 

three time series which is in accordance with behavior known to oceanographers. 

Previous attempts at modeling the SSTs using MARS have been reported in Stevens (1991), 

Lewis, Ray, and Stevens (1993), and Lewis and Ray (1993). The analysis presented in this paper 

differs from earlier work in several ways. First, we investigate the ability of MARS to model seasonal 

effects. We find that explicitly subtracting a fitted sinusoidal cycle from the data before using 

MARS gives the best predictive models. Second, we incorporate lagged values of up to 5 years in the 

ASTAR models in an attempt to capture long-range dependent behavior. The ASTAR models of 

Lewis and Ray (1993) included only lags up to 365 and 50 days, respectively. It was clear from the 

ASTAR analysis that lags out to 365 days were not sufficient to account for long-range dependence 

or the El Nino warming. (In the CASTAR model given in Section 4.1, where wind speed and wind 

direction were introduced into the model, the 50 day model was retained because the data was not 

extensive enough to support the extension of the dependence to five years.) Third, we illustrate 

the inclusion of a covariate categorical time series whose levels represent different times of the year 

into the model to describe a cyclic nonstationary in the SSTs; the resulting models are such that 

the entire nonlinear structure of the SSTs, as opposed to only its mean value, changes with the 

time of year. They are related to the periodic autoregressive models used in hydrology (see, e.g., 

McLeod, 1994) but are more general. In fact, they are periodic autoregressive threshold models. 

Section 5 summarizes our findings and gives directions for future research. Computational issues 

related to the MARS algorithm for time series, such as choice of model span and number of 

interactions to allow, are discussed in an Appendix. 

2    Using MARS for Time Series Modeling 

Threshold models (models with partition points) are a class of nonlinear models that emerge nat- 

urally as a result of changing physical behavior. Within the domain of the predictor variables, 

different model forms are necessary to capture changing relationships among the predictor and 

response variables. Tong (1983, 1990) provides one threshold modeling methodology for this behav- 

ior, Threshold Autoregression (TAR), which identifies piecewise linear pieces of nonlinear functions 



over disjoint subregions of the domain D of the time series {xT}, i.e., the identification of linear 

autoregressive models within each disjoint subregion of the domain. 

As a simple example, take the first order (lag one) case with one fixed threshold, xc, which has 

been studied by Petrucelli and Woolford (1984): 

Xt = n + p1{Xt-1-xc)+ + p2(xc-Xt-1)
+ ~ (1) 

Here the + indicates that the term is zero unless the quantity in the parentheses is positive.  If 

px = p2 we have an ordinary first order linear autoregressive process. 

TAR modeling methodology has tremendous power and flexibility for modeling of many times 

series. However, unless Tong's TAR methodology is constrained to be continuous, it creates dis- 

joint subregion autoregressive models that are discontinuous at subregion boundaries. Nor is its 

implementation systematic. 

By letting the predictor variables for the rth value in a time series {xT} be a;T_i, xr-2, ■ • •, %T-p, 

and combining these predictor variables into a linear additive function, one gets the well known 

linear AR(p) time series models. Analogously, using the Multivariate Adaptive Regression Splines 

(MARS) methodology, a recent method for nonlinear regression modeling due to Friedman (1991), 

to model the effect of xT-i, xT-2, ■ ■ ■ ,xT-p, one can still obtain autoregressive models. However, 

these models, called Adaptive Spline Threshold Autoregressive (ASTAR) models (Lewis and 

Stevens, 1991) can be nonlinear models in the sense that the lagged predictor variables can 

have threshold terms, in the form of truncated spline functions (Friedman, 1991a) and can 

also interact with the nonlinear terms of other lagged predictor variables. With MARS, by 

letting the predictor variables be lagged values of a time series, one overcomes the limitations of 

Tong's approach and admits a more general class of continuous nonlinear threshold models than 

permitted in TAR models. 

Numerous simulation studies have been conducted to evaluate the ability of the ASTAR method- 

ology to identify and evaluate simple linear and nonlinear times series models (Stevens, 1991; 

Lewis and Stevens, 1991). The use of various model selection criteria has also been examined 

(Stevens, 1991). The Schwarz-Rissanen criterion (SC), a time series model selection criterion based 

on stochastic complexity analysis, was found by Stevens (1991) and Lewis and Stevens (1991) to be 

appropriate when using MARS in a time series setting. In particular, it gives far more parsimonious 

models than are obtained with the Generalized Cross Validation criterion used by Friedman (Lewis 

and Ray, 1993). We use the SC criterion to select all models investigated in this paper. 

To provide a framework for both the univariate (ASTAR) and the semi-multivariate time series 

models (SMASTAR) discussed in the following Sections, suppose that for r  =  1,2, ...,JV, {3^-} 



and {ZT} denote the input time series and {XT} the output time series for a time series system 

we wish to model. Following Lewis, Ray and Stevens (1993) and using the notation || of Tong, 

Thanoon and Gudmundsson (1985) to separate the predictor variables of each different time series, 

we can describe XT with the semi-multivariate time series regression model 

Xt = /(l \\Xt.1,Xt-2,...1Xt-dl \\Yt,Yt^,...,Yt_d2 HZt.Zt-!,...,^) + eT, (2) 

where 1 denotes a model constant and the maximum lags d\, di, and dz are not necessarily equiva- 

lent. Also, Yt and Zt, the current values of the predictive time series, may or may not be included in 

(2), depending on the time series system. An example of this general form is given by Equation 1, 

which has only Xt-\ as input and only one threshold. 

The form of the function /(.) in Equation 2 is determined by the data, and the nature of the 

inputs as specified by the user. Thus the input to the MAR program (say, Zt-\) may be specified 

to be 

1. an ordinal variable with no restrictions, so that it may have thresholds and interactions with 

other variables; 

2. the same as above, but with no interactions, i.e., additive; 

3. an ordinal variable, with no thresholds (linear) and no interactions; 

4. a categorical variable, with no restrictions, or a categorical variable, with no interactions with 

other variables. 

Categorical data input is new to the latest version of MARS (MARS 3.6A), and will be discussed 

in Section 4 in relation to CASTAR models. 

3      Modeling SSTs using ASTAR and ARFIMA models 

It is well known that the SSTs exhibit high, positive-valued autocorrelations at lags between one 

and, approximately, forty, and that the autocorrelation function does not seem to be modeled by 

the usual linear ARMA(p,q) models (Breaker, Lewis and Orav, 1988). In this section, we focus on 

modeling possible long-term dependence, in conjunction with yearly periodic effects, using linear 

ARFIMA models and nonlinear MARS-based ASTAR models. 

3.1    Handling Cyclic Effects using MARS 

In examining the daily SST data, the variance of the average monthly temperature over the years 

was found to increase as the mean of the average monthly temperature increased. To stabilize this 

9 



variance, we take the natural logarithm of the data and work with the logged values throughout 

the analysis. Note, however, that transformations must be used with care, partly because they 

make the results less interpretable by users, but also because in nonlinear time series they induce 

complications. 

The dominant effect in the SSTs is the one-year cycle, thus it is appropriate to consider how 

to handle it before proceeding. Note that it is truly a fixed effect, unlike the cycle in the Wolfer 

sunspot data, which was analyzed using MARS in Lewis and Stevens (1991). That it is a true cycle 

can be shown by computing the amplitude of the yearly spectral component for the first year, the 

next two years, the next three years, etc.. A regression analysis shows that the amplitude increases 

linearly in n, the number of days. 

We consider here three ways to handle this cyclic effect. 

1. Use the general form of the univariate ASTAR model in Equation 1 with an extensive range 

of lagged X't_jS allowed to come into the model, with thresholds and interactions between 

lagged values. This general nonlinear model can generate cyclic processes; in Lewis and 

Stevens (1991) this procedure gave an excellent model for the Wolfer sunspot series, with 

the threshold autoregressive model having a limit cycle. Of course even a linear, first order 

autoregressive equation with parameter close to one will generate long 'cycles', but the cycles 

will vary in length. 

2. An alternative is to subtract from Xt a fitted sinusoidal function and proceed as above. Thus 

let 

St = p + a cos(27rt/365) + ß sin(27rt/365) (3) 

and let 

X't = Xt- St. (4) 

MARS is then used to model the transformed process, X[. Although it is shown below 

that this gives possibly the best predictive model for the Granite Canyon SSTs, it is 

awkward and restrictive as an explanatory model. To see this, consider Equation 1 in the 

variable X[ and transform it back to the variable exp(Xt). The threshold on exp(Xt) will 

be cyclic! Moreover, in practical terms, this implies that the nonlinearity — the multiplier 

P2 changing to pi — occurs when the variable gets higher than a "time of year level" rather 

than when the variable reaches an absolute level. 

10 



3. One could also use both lagged values of the SSTs and the one-year cosine and sine terms 

as covariate time series in Equation 2. This is a more general model than the first. However 

when this was investigated for the SSTs, the sine and cosine terms seldom came into the final 

model, even with 20 years of data, and the resulting predictions were extremely poor. 

In fact, MARS seems very poor at detecting a fixed cyclic effect with a long period. As a simple 

test, we generated series from a first-order Gaussian autoregressive process with an added sinusoid 

and used MARS with a sinusoidal covariate and one lagged predictor to obtain strictly linear models 

for the series. Other MARS parameters were set commensurate with those used to model the 

Granite Canyon data. In 50 replications, the resulting MARS model only once included a sinusoid, 

however the estimates of p were better than those obtained by the usual device of fitting a cycle 

by least squares, subtracting the cycle, and estimating p from the residuals. 

Consequently, for all the univariate MARS models discussed in the following sections, a yearly 

cycle was removed from the logged data prior to modeling and predicting, as in Equations 3 and 4. 

As noted above, this may not be the best procedure from an explanatory or descriptive viewpoint, 

but it does give the best predictors, as we discuss in Section 3.4.1. 

This same variance stabilizing and cyclic detrending was applied to the long memory fractionally 

integrated ARMA models - ARFIMA - discussed in the next subsection. Since they are linear 

models, the detrending does not give rise to the problems which occur in nonlinear models. 

3.2    Handling Long Memory using ARFIMA models 

The existence of long-term dependence in physical systems in the form of very long cycles and 

apparently shifting mean levels has been the subject of much study in the last 20 years (e.g. McLeod 

and Hipel, 1978; Hosking, 1984; Haslett and Raftery, 1989). By long-term dependence, we mean 

that the dependence between observations k time periods apart decays at rate k~a, 0 < a < 1. 

Equivalently, the spectrum of the process at (low) frequency a is proportional to w~a and thus 

is unbounded at zero frequency. Figure 3 shows that the Granite Canyon SSTs have a sample 

spectrum which appears to behave like that of a long-memory process. A similar behavior has been 

seen in 60 years of daily SSTs recorded at Pacific Grove, as well as other set of SSTs (Mendelson, 

1990 and personal communication). 

Several authors have proposed linear long-term time series models which describe the slowly 

decaying structure of such series (Mandelbrot and Van Ness, 1968; Hosking, 1981; Jonas, 1983). 

A commonly used linear model for describing long-term dependence is the fractionally integrated 

ARMA (ARFIMA) model of Granger and Joyeux (1980) and Hosking (1981), a generalization of 

Box-Jenkins ARIMA models in which the degree of integration, d, is allowed to take fractional 
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values. The fractional integration operation (1-B)d is defined via the binomial expansion (1-B)d = 

££o {d)(~&)*■> wnere B denotes the backwards differencing operator. If d > 0 the resulting time 

series has long memory. 

We use a linear ARFIMA model to describe the low frequency components of the 20 years of daily 

SSTs at Granite Canyon, after first removing the one year cycle. Note that removing the cycles 

does not change the characteristics of the residual data (Yajima, 1988). Because of the length of 

the data, we analyze it using a two-step procedure. The long-memory parameter, d, is estimated 

first, using the periodogram spectral regression method of Geweke and Porter-Hudak (1983) with 

number of regressors equal to m = [y/n\ = 85. There has been some criticism of the method, 

which has trouble distinguishing between long memory and large autoregressive or moving-average 

components in small samples (Agiakloglou, Davis, and Wohar, 1993). However, given the length 

of our series, the method is justified. For the 20 years of Granite Canyon SSTs, we obtain an 

estimated d of 0.37, with standard error equal to 0.076. This is consistent with the slope of the 

spectral density for the SSTs shown in Figure 3. 

This estimate of d is used to approximately fractionally "difference" the SST data using the 

infinite autoregressive representation of the fractional differencing operator, truncated at lag 500. 

The sample autocorrelation and partial autocorrelation function of the fractionally differenced data 

indicated that it contained short memory ARMA components. The differenced data appears to 

have the structure of an AR(1) process, with estimated coefficient equal to .606 (standard error of 

0.009). Thus there is relatively strong correlation between SSTs from one day to the next, as well 

as a significant amount of long-range dependence in the temperatures. The result of this procedure 

is an ARFIMA(l,d,0) model for the logged and detrended SSTs. 

The ACF of the residuals from the fitted ARFIMA(l,rf,0) model (Fig 5, top), show little corre- 

lation. However, given the nonlinear nature of the data already discussed, it seems highly unlikely 

that the linear ARFIMA model adequately describes the data. Examining the ACF for the squared 

residuals, as suggested by Granger and Anderson (1978), shows (Fig 5, bottom) that the squared 

residuals retain some correlation. This is an indication of nonlinearity in the data not captured by 

the fitted ARFIMA(l,d,0) model. 

3.3    Handling Long Memory using MARS 

Threshold autoregressive models such as those generated by MARS can exhibit wide ranging modes 

of behavior. Lewis and Stevens (1991) fitted an ASTAR model to the Wolfer sunspot numbers which 

was found to have a limit cycle. As for long memory, it has been conjectured (Tong; discussion of 
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Figure 5: The top panel shows the autocorrelation function for the residuals from the fitted ARFIMA(l,d,0) 

process and the Granite Canyon SSTs. The bottom panel is the autocorrelation function for the squared 

residuals. There is clearly autocorrelation remaining in the squared residuals. The dotted lines indicate 

upper and lower bounds on the estimated ACF assuming the residuals are white noise. 

Haslett and Raftery, 1989, and personal communication) that even a first order TAR model may 

exhibit this behavior, although no proof has yet been derived. 

An invertible long memory ARFIMA(p, d, q) process has an infinite autoregressive representation. 

Thus it is reasonable to try and approximate long-term effects using an autoregressive model with 

many lags. For a linear fractional noise process (an ARFIMA(0, d, 0) process), Ray (1993) finds 

that an approximating AR(p) model performs well, in terms of forecast error variance, when used 

to forecast values of the fractional process at long lead times. Thus for nonlinear ASTAR models, 

we attempt to incorporate long-term dependence by allowing the number of lagged predictor values 

of the series to be very large. In Lewis and Ray (1993) lags out to 365 days were used, but the 

models could not capture, in particular, the El Nino effect. In this paper, we apply MARS to model 

20 years of the Granite Canyon data, (with one-year cycle removed) using all lagged SSTs up to 

lag 100, and every fifth lag thereafter up to lag 1925, representing lags up to approximately 5 years 

and 3 months. (Using all lags to 1925 is computationally infeasible; the limited grid here represents 

a ten fold increase over the computation times in Lewis and Ray (1993)). 

We allowed the SPAN parameter, which basically acts as a smoothness parameter, and the 

13 



maximum number of interactions, which determines the complexity of the model, to vary in order 

to investigate the effect these parameters have on the final model.   A more detailed discussion 

of the effect of these parameters is given in the Appendix.   We present the results for models 

having SPAN 1 with no allowable interactions between terms, and for models allowing up to three 

interactions (MI=3). Models having SPAN 25 and SPAN 50 with MI=3 allowable interactions are 

also discussed. 
Following Equations 3 and 4, let the residual process be 

Xt = ln(5t) - 2.467 - 0.10 sin(27rt/365) - .05 cos(27rt/365), (5) 

where 5* is the SST at day t. Using SPAN=1 and no allowable interactions (MI=1) when applying 

the MARS algorithm to Xt, the resultant model has the following form: 

Nonlinear Long Memory Model for 20 Years of SSTs at Granite Canyon 

SPAN 1; no interactions allowed (MI=1) 

-0.088    +0.994(Xt_i + 0.116)+ - 0.838(-0.116 - Xt-{)+ 

Xt = { -0.131(Xt_2 + 0.340)+ + 0.035(Xt_s + 0.172)+ (6) 
+0.035(Xt_i7 + 0.340)+ 

Given that the minimum value of Xt over the 20 years is -0.340, we see that lags 2 and 17 

always enter the model (no interior threshold). The threshold in the lag one term in the model also 

indicates that SST is strongly correlated with the previous day's SST, with temperature increasing 

(coefficient +0.994) if the temperature the previous day was more than -0.116 and decreasing 

(coefficient -0.838) if it was less than -0.116. The model does not contain terms with lags greater 

than 17, as would be expected for a long range dependent process. This suggests that the long 

memory behaviour may only be observed in conjunction with other variables, i.e., interactively. 

When 3 interaction levels are allowed (MI=3), however, the resulting model for Xt has the fol- 

lowing form: 

Nonlinear Long Memory Model for 20 Years of SSTs at Granite Canyon 

SPAN 1; order 3 interactions allowed (ML=3) 
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x*= < (7) 

-0.078   +1.005(Xf_i + 0.116)+ - 0.816(-0.116 - Xt-i)+ 
-0.120(Xt_2 + 0.340)+ 

+6.689(Xt_2 + 0.340)+(Xf_i4i5 + 0.282)+ 

+0.332(Zt-2 + 0.340)+(0.351 - Xt_3)+(Xt_8 + 0.172)+ 
-0.924(Xt_2 + 0.340)+(0.045 - Xt_17)+(Xt_67 + 0.158)+ 
-40.594(Xt_2 + 0.340)+(Xt_17 - 0.045)+(-0.221 - Xt-U25)+ 
-672.872(Zt_2 + 0.340)+(Xi_435 - 0.071)+(-0.282 - Xt_14i5)+ 

We see that the first order terms are very similar to those of the previous model; however, lags 8 

and 17, as well as higher order terms, enter the model interactively. The existence of long lag terms 

(up to 1425, or slightly less than four years) in the model reinforces the postulation of long-range 

dependence in SSTs. Terms with lags of 8 and 17 probably reflect the fact that the average time 

between storm fronts in the vicinity of Granite Canyon in the winter is about 8 days. The last 

three-way interaction, having coefficient -672.872, causes this model to be unstable (see Section 

3.4.3) 

With SPAN=25, the resulting model for Xt has the following form: 

Nonlinear Long Memory Model for 20 Years of SSTs at Granite Canyon 

SPAN 25; order 3 interactions allowed (MI=3) 

-0.073   +1.017(Xt_1 + 0.116)+ - 0.856(-0.116 - Xt-i)+ 
-0.115(Xf_2 + 0.340)+ 

-20.607(Xt_i + 0.116)+(Xt_u + 0.050)+(-0.202 - Xf_i635)+ 
Xt={ -68.653(Xt_1 + 0.116)+(Xt_33-0.197)+(0.095-Xt_37)+ (8) 

-4.917(Xt_! + 0.116)+((0.095 - Xt_37)+*t-i22 - 0.055)+ 
-34.884(Xt_! + 0.116)+(Zt_85o + 0.340)+(-0.222 - Xt_1395)+ 
+14.159(Xt_2 + 0.340)+(Xt_8 + 0.172)+(Xt_1395 + 0.213)+ 
-0.989(Xt_2 + 0.340)+(-0.045 - Xt_17)+(Xf_67 + 0.158)+ 

Again, the first order terms are very similar to those of the previous models, however, this model 

contains no interactions of level 2. The model resulting from setting SPAN=50 was very similar to 

the above model, but contained only 3 terms of interaction level 3. Two of the 3 interaction level 

3 terms were identical to terms 6 and 9 of the above model. Thus it appears that using SPAN=50 

results in a "smoother" model. Also there are no three-way interactions with very large coefficients, 

as in the previous model, and the model can be shown (empirically) to be stable. 

At this time, we do not know of a TAR model that is also truly long-range dependent, as opposed 

to an approximating model. Other types of nonlinear models having long-range dependence, such as 
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fractionally integrated models with ARCH errors or random solutions to the Burgers' equation, have 

been discussed by Robinson (1991), Rosenblatt (1987) and Taqqu (1987). In the next section, we 

compare the fitted ARFIMA model, as well as other linear models for the SSTs, with approximating 

long-range dependent ASTAR models. 

3.4    Comparison of Nonlinear and Linear Models 

In addition to the linear ARFIMA model, we fit linear time series models to the SSTs using standard 

ARMA modeling techniques. Using the SC criterion and the APL2 AGSS package, an AR(8) 

model was selected for the logged and detrended SSTs from AR(p) models of order p = l, 20. This 

fitting can also be done using MARS, with entering terms restricted to be linear and having no 

interactions. Using MARS (with SC criterion), a linear model containing lags 1, 2, 8, and 17 was 

selected. In the following sections, we compare the estimated MARS linear and nonlinear models 

on the basis of their forecasts, residuals, and model skeletons. 

3.4.1    Out-of-sample Forecasts 

Predicted SSTs are used as input to large-scale weather models, so the predictive capability of the 

models is extremely important. Figure 6 shows the Root Mean Square Errors (RMSE) of predicted 

fc-step ahead forecasts up to 600 days ahead, beginning 3/1/91, for the linear and nonlinear models 

discussed above. For comparison, we also include the RMSE obtained if the last observed value in 

the time series is used for prediction. The RMSEs were obtained using a moving forecast origin, 

forecasting fc-steps ahead, and taking the square root of the average squared difference between 

forecast and actual value. We see that the RMSEs do not increase monotonically in k, which is 

another indication of the nonlinearity of the data (Casdagli, 1992). In fact, accuracy of nonlinear 

forecasts is extremely dependent on the region over which the forecasts are made. We extend our 

forecasts out to 600 days in order to include more than one year in the forecast region. 

We see that all models are competitive for small forecast steps. This is not suprising, given the 

very high correlation between adjacent SSTs. However, the situation is different at larger forecast 

steps. The MARS model with SPAN=1 and MI=3 levels of interaction appears to be the best 

predictive ASTAR model. The SPAN 25 and SPAN 50 models are competitive at steps > 200. 

The linear MARS model performs better than the linear ARFIMA model at all lags. This may be 

because the ARFIMA(1, d, 0) model is not flexible enough in terms of its correlation structure. A 

more complicated ARMA part of the ARFIMA model may be needed to adequately capture the 

short-range dependence in SSTs. The AR(8) model appears to be just as good as the ARFIMA 

model at steps > 200. 

16 



RMSE  OF K-STEP FORECASTS FOR  GRANITE CANYON SSTs 

Period beginning 3/1/91 

CO 
53 

600 

Figure 6: The Root Mean Square Errors (RMSE) of fc-step ahead forecasts for the Granite Canyon SSTs. 

The forecast period begins on March 1, 1991, and extends for 600 days. To differentiate the forecasts of 

different models, examine lag 300. The topmost solid curve is the forecast using the SSTs at the end of the 

observation period, i.e. the last observed value. The next lightly solid curve is the ARFIMA(l,d,0) forecast, 

with the AR(8) forecast curve immediately below (depicted as dot-dot). The next (dot-dash) curve is the 

forecast for the Threshold MARS (SPAN 1) model, with the 'dash-dash' curve for the Linear MARS (SPAN 

1) forecast below that. Continuing downward, the next group of curves includes the Interactive MARS 

forecasts for different spans. The SPAN 25 and SPAN 50 are almost indistinguishable here (almost solid 

line) while the SPAN 1 case (dot-dot space) is lower than these two. Finally, a solid forecast curve (obtained 

using methods of Section 4) is shown. 

The solid curve having the lowest forecast errors in the range of 50 to 400 steps-ahead is a model 

which uses a categorical series to indicate time-of-year effects. This model will be discussed in 

Section 4. 

3.4.2    Residual Diagnostics 

In Figure 8 we show, in the top panel, the autocorrelation function for the residuals from the 

fitted threshold MARS model with SPAN 1 to the twenty years of Granite Canyon SSTs. The 

dotted lines indicate upper and lower bounds on the estimated ACF assuming the residuals are 

white noise. Clearly the (linear) residuals are uncorrelated, however, this does not mean that they 

are necessarily independent. In fact, the bottom panel shows the autocorrelation function for the 
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Figure 7:  This is an expansion of Figure 6, showing the RMSE of forecasts up to 60 steps ahead more 

distinctly. 

squared residuals, and they are clearly not uncorrelated. 

The autocorrelation functions of Figure 8 are similar to those of Figure 5 for the fitted 

ARFIMA(l,d,0) process, and both suggest the kind of pattern seen in ARCH processes (see, Tong, 

1991, p. 115), i.e processes having variance which changes conditionally as a function of lagged 

values of the squared process. However, before investigating an ARCH model for the SSTs, it is 

necessary to examine some of the assumptions made in the analysis of the SST data. 

Specifically, we have assumed that the dominant year cycle manifests itself both in the mean 

value and the standard deviation of the process. No fitted ASTAR model showed a limit cycle of 

365 days, and therefore the cyclic effect on the mean value was taken out (approximately) with an 

additive sinusoidal component for the logarithm of the data, the logarithm being an (approximate) 

variance stabilizing transform. 

However the whole structure of the process might be changing with time of year, and since the 

data is so extensive, this can be examined. (Note that in a threshold model the structure changes 

with the level of the process; no cyclic time thresholds have been postulated.) Figure 9 shows the 

mean, the standard deviation, and the Lag 1 Serial Correlation for each of the 365 days in the 

year. The plots are formed by averaging across the twenty years of logged data and then smoothing 

a small amount along the time axis.   The mean value of the raw logged data (upper panel) is, 
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Figure 8: The top panel shows the autocorrelation function for the residuals from the fitted threshold MARS 

model with SPAN 1 and the Granite Canyon SSTs. The bottom panel is the autocorrelation function for 

the squared residuals. 

as we know, time-of-year dependent. The standard deviation is considerably more time-of-year 

independent than without the log transform, but the rather high lag one serial correlation changes 

with time-of-year and not always in the same way that the mean is changing. Given the multiplier 

1.005 of the Xt-i in Equation 8 when Xt-i > —0.116, the size of p\ is not surprising. However it 

does not remain high whenever Xt-\ is high. We are, of course, neglecting interactive terms in the 

equation. 

To cope with this clear nonstationarity in the data, a categorical time of year MARS model 

(CASTAR) is considered in Section 4. 

3.4.3    Model Skeletons and Simulated Periodograms 

It is possible for nonlinear models to generate processes having limit cycles, or chaotic structure. 

To check for limit cycles in the SSTs, we generated model skeletons (Tong, 1990, p. 96) using the 

nonlinear MARS models. The behavior of the sample path of the skeleton is dependent on starting 

values. No limit cycles were found in any of the models. 

We also looked at the log periodogram versus log frequency for series generated from the nonlinear 

models, i.e.   from Equations such as (8) driven by simulated white noise, to see if the models 
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Figure 9: By averaging across the twenty years of SSTs and smoothing along the time axis, one can obtain 

a rough picture of the stability of the structure of the SSTswith time-of-year. The graphs show that the 

mean and standard deviationof the process are fairly constant over time, but that the first serial correlation 

coefficient is definitely changing with the time-of-year. 

adequately captured the long-range dependence behavior of the series. This is a very difficult thing 

to do in any precise way via simulation; all we can conclude by examining a few very long simulated 

time series is that the simulated series appear to behave like long-range dependent processes. 

The simulation study did yield other interesting results, however, which show how tricky an 

empirical investigation of this sort can be. In simulating values using the SPAN 1 model, we found 

that the estimated model was unstable. One can see the cause of this in Equation 7. The multiplier 

-672.872 of the three-way interaction on the last line is so large that it ultimately builds up an 

unstable oscillation with period 435, 1415 or 2 days. The interaction is clearly quite complex. One 

can say then that the models with small SPAN (little smoothing) are ultimately unstable, but are 

generally the best long term predictors. The difference in predictive power, however, as can be seen 

from Figure 6, is not great. 

4    SMASTAR and CASTAR Models 

A recent implementation of the MARS algorithm (Friedman, 1991) allows for categorical predictor 

variables as input to MARS. Adapting this implementation to time series implies that if one had n 
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categorical predictor variables and each was constrained in the MARS algorithm to enter linearly 

and without interactions, then each value of each of the categorical predictor variables would 

contribute a possibly different additive constant to the model for xt at time t. If only interactions 

among the categorical variables were allowed, then more complex patterns of dependence of xt, in 

the sense of the additive model constant, can occur. If interactions between categorical and ordinal 

variables are allowed, then a different autoregressive threshold model in the ordinal variables is 

obtained for each different combination of the categorical variables. 

We use this added facility of MARS now to obtain semimultivariate models of SSTs, i.e., the 

SSTs may be functions of previous values of the SSTs, or of the present or past wind directions or 

speeds. We also aply it to handling the modeling of the cyclic nonstationarity found in the SSTs. 

4.1      Modeling SSTs using Wind Speeds and Directions 

We use the categorical variable implementation of MARS to allow lagged wind directions (WDt) 

as predictors of logged SST (Xt) at Granite Canyon over the five year period 1/1/86 to 12/31/90, 

using 10 lags of wind direction, 10 lags of the logarithm of (1 + wind speed), namely WS't, and 50 

lags of logged SSTs. The SPAN parameter in the MARS model is set equal to 25. The resulting 

CASTAR model, which follows, makes explicit the relationship seen in Figure 4 between the wind 

direction and the SSTs. 

Model for 5 Years of logged SSTs using 

using Wind Direction and Log of (1 + Wind Speed) 

' 2.192   +0.878(Xt_i - 2.13)+ 

+1.616(2.22 - Xt-zi)+ 

Xt={ 

+0.013(WS't_1 - 1.10)+/(WA-i € {1,2}) 
-0.035(W5i_! - 1.10)+7(WA-i € {2,3}) 

-.499(ATt_i - 2.13)+(2.75 - Xt_7)+(2.68 - Xt-n)+ 

-0.584(2.27 - Xt„34)+(WS't_x - 1.10)+J(WA-i € {2,3}) 
-0.517(Xt_49 - 2.510)+(WS't_1 - 3.00)+J(WDt-i e {2,3}) 
+4.665(2.51 - Xt_49)+(2.26 - Xt-2*)+I(WDt-i € {2,3}) 

(9) 

From the model we see that: 

1. The logged SSTs, Xt, range in value from 2.13 to 2.87 over this five year period and the first, 

second, and fifth fines in Equation 9 give terms in the model which are purely functions of 
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lagged SSTs. The first term — a lag one autoregressive term — is always present since the 

threshold of 2.13 is the minimum value of the SSTsseries. The first order term on the second 

line of the equation involves lag 34 and only adds to Xt when X34 is less than 2.22, which is 

rare, given that the minimum value of the SSTss is 2.13. The three-way interaction in fine 

five occurs infrequently. However the lags 1, 7 and 17 are familiar from models derived earlier 

in the paper. 

2. The change in Xt when the wind blows from the Northwest that is explicit in lines 3 and 4 

of the equation for the model agrees with the relationship seen in Figure 4. Splitting the two 

terms into three by separating out directions 1,2 and 3, we see that direction 1 cause a slight 

increase in the overall level (+0.013), a decrease (0.013 - 0.035= - 0.022) for wind speed from 

direction 2, and a decrease (-0.035) for direction 3. 

3. Another interesting feature model for the log of the wind speed is shown in the last two 

terms, both of which involve the term Xt-49. Only one of these terms is present at a time, 

depending on whether Xt-49 is greater than or less than 2.51 and whether the wind direction 

is in category 2 or 3. When Xt-49 is larger than 2.51 and the windspeed is greater than 3.00 

knots, we have a coupling between Xt and Xt-49. This is the oscillation which, in Section 1, 

we noted was observed by Breaker and Lewis (1988) for several sets of SSTs, including the 

one at Granite Canyon. Attempts to elucidate that oscillation using linear methods such as 

complex demodulation were fruitless. However the last two terms of the model show that the 

"oscillation" is present only when the wind direction is from the Northwest {WDt-i € {2,3}), 

and increases as lag one wind speed increases. This relationship between wind speeds 49 days 

apart is very nonlinear. 

4. Another feature of this CASTAR model is that the log(l +wind speed) thresholds which, we 

emphasize, are selected automatically by the MARS algorithm, have a clear meteorological 

interpretation. A transformed wind speed threshold of 1.10 knots translates into 1.031 m/sec, 

below which it is well known that wind speeds have little effect on SSTs. In the CASTAR 

model, the terms on fines 3, 4, and 6 of the equation only enter the model if wind speeds are 

above this threshold. Looking at term 7, a transformed wind speed greater than 3.00 knots, 

which translates into 9.82 m/sec, acts to lower SSTs when the wind is blowing from the NW 

and the logged temperature 49 days ago was grater than 2.510. 

Note that in deriving Equation 9 we did not subtract a time of year cycle from either the transformed 

wind speeds or the transformed SSTs. This is because, as remarked before, subtracting the cycle 
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from the data destroys the relationship of the thresholds to the physical measurements. This may 

be better to do if one were making forecasts from the model. But the model as it stands is superb 

as a descriptive tool. In addition, since the lag one correlation in the data is so high, little will be 

gained for accuracy of prediction by going to the semimultivariate model. 

4.2    Modeling Cyclic Nonstationary in the SSTs using Seasonal Categorical 

Variables 

The residual plots in Section 3 (Figure 5 and Figure 8) indicated that the ARFIMA and ASTAR 

models do not provide a complete fit to the SST data in that the square of the residuals is not an 

uncorrelated sequence. We postulated that this result could be explained by the fact that the one 

year cycle manifested itself in the SSTs not only in the first-order characteristics of the time series, 

i. e. the mean, but also in the whole probabilistic structure of the process. In particular, Figure 9 

showed a yearly variation in the lag one serial correlation of the process. 

Using a categorical covariate process which tags the SSTs with time-of-year information, we can 

extend the ASTAR and SMASTAR modeling to encompass this type of cyclic non-stationarity. 

Specifically, let C{t) have value 1,2,3,4,5, or 6 depending on whether t corresponds to the first 

two months of the year, the second two months of the year, etc.. Since the SST series begins on 

March 1, 1971, the covariate sequence in the input to MARS starts with 61 2's for March/April, 

continues with 61 3's for May/June, etc.. The coding for six contiguous time periods in the year 

is quite arbitrary, and is chosen in hopes of capturing the main nonstationary effects. The MARS 

algorithm is applied allowing 365 lags for this covariate time series. As before, the main predictor 

series is the logged SST data with first yearly harmonic removed and lags up to 1925 allowed in 

order to model long-range dependent behavior. The SPAN parameter was taken to be 5 to avoid 

instability, and the maximum number of interactions allowed was MI=3. The resulting CASTAR 

model follows: 

Model for 20 Years of log SST data 

with year harmonic removed 

using a Time-of-year categorical variable 
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Figure 10: The top panel shows the autocorrelation function for the residuals from the fitted threshold 

MARS model with SPAN 5 and a categorical time-of-year series covariate, to the Granite Canyon SSTs. 

The bottom panel is the autocorrelation function for the squared residuals. 

.0731   -0.859(-0.116 - Xt_a)+ 
+1.006(Zt_i + 0.116)+ 
-0.107(Xt-2 + 0.340)+ 

-0.221(Xt_2 + 0.340)+(0.045 - Xt_17)+ 

-.576(AVi + 0.116)+(Xt_650 + 0.013)+(Ct_234 € {2,6}) 
-8.197(Xt-i + 0.116)+(Xf_1250 - 0.199)+(Ct_234 e {2,6}) 
-117.251(Xt_2 + 0.340)+(-0.172 - Xt_8)+(Xt_605 - 0.128)+ 
-40.193(Xt_2 + 0.340)+(Xt_i7 - 0.045)+(-0.222 - Xt-1425)+ 

Xt= I (10) 

One sees that different equations for Xt are obtained depending on whether t — 234, the lag of the 

categorical covariate sequence C* as it appears in lines 5 and 6 of the equation, is in the March/April 

or November/December time periods, or is in the remainder of the year. This is equivalent to t 

being between March 12 and May 11 or between July 9 and September 7. In this case, we see 

from line 5 of the equation that Xt is decreased by an additional 0.576 if Xt-\ is greater than 

-0.116 and Xt-^o is greater than -0.013. Also, from line 6 of the equation, Xt is decreased by an 

additional 8.197 if Xt-i is greater than -0.116 and -Xt_i250 *s greater than 0.199. Thus there is 

selective time-of-year dependence in the model for the data. 

In Figure 6 the forecast characteristics of this model are given by the solid curve lying below all 
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the other curves for k in the range 100 to 300. Thus there is some gain, using the model given 

in Equation 10, in predictive capability in this range, although Figure 7 shows that none of the 

models outpredicts the others for k less than about 60. The squared residuals for this Xt process 

generated with a categorical seasonal covariate process are depicted in Figure 10, and show slightly- 

less nonzero correlation at low lags than do the squared residuals whose autocorrelation function 

is shown in Figure 8. They are, however, undoubtedly a long way from being an uncorrelated 

sequence. A further refinement which might improve this is discussed in the next section. 

5    Discussion and Directions for Future Research 

We have demonstrated how the MARS algorithm can be used to obtain ASTAR, SMSTAR, and 

CASTAR models for a set of SSTs having complex nonlinear and cyclic effects. The ASTAR 

models are able to model the nonlinear effects in the data and approximate long-range dependence 

characteristics. Although none of the skeletons produced from the ASTAR models for SSTs indicate 

a limit cycle, as was found for the sunspot data (Lewis and Stevens, 1991), the number of cycles 

present (20) may be too small to induce this behavior. We believe that a model containing this 

kind of internal cycle would be better than one in which a one-year harmonic must be subtracted 

from the data for adequate fitting. However, using this artifice, the ASTAR models perform better 

at predicting at long forecast horizons than the linear AR or ARFIMA models. 

In terms of descriptive aspects, the SMASTAR model including wind direction is clearly inter- 

pretable from an oceanographic standpoint. However, the SMASTAR models suffer from a difficulty 

in that predictions for more than one step ahead are difficult. For example in Equation (9), if one 

wanted to predict the sea surface temperature two steps ahead, one needs to have a prediction for 

the one step ahead wind speed. One answer (Lewis and Ray, 1993) is to derive a semi-multivariate 

model for the wind velocities, as well as for the SSTs, using MARS. In order to have a complete 

bivariate model, however, one needs to postulate or empirically derive a simple model for the two 

resultant error sequences. Alternatively, an extension of MARS to the multivariate case, analogous 

to multivariate linear regression modeling, could be entertained for nonlinear multivariate time 

series modeling. This is an area for future research. 

Finally in Section 4.2 we showed that a CASTAR model can be used to take into account yearly 

nonstationarity in the SSTs data. Again we note that the choice of the six-valued categorical 

covariate term in the model given at Equation 10 is quite arbitrary - we could just as easily have 

used a twelve-valued covariate to capture effects which are changing in the order of a month. What 

we are trying to do here is to come up, in the simplest case, with a periodically stationary model 
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Y _ / Xt    t{mod365) <tc ,    . 
Xt ~ \ X?   t{mod365) > tc 

l    > 

where tc is a (time) threshold. Such a two level model might be plausible in the case of the SSTs, 

given the abrupt change in SSTs temperature each year with the wind-driven spring temperature 

transition. 
In the spirit of MARS, one might want to estimate the transition point from the data itself, and 

more generally explore different degrees of differentiation (numbers of time thresholds) via the data. 

One way to do this is to have Ct take on 365 values, one for each day, and use only the lag one 

realization of this covariate process in the MARS run. However, this is not doable in the present 

MARS algorithm because the maximum number of values a categorical variable may have is 28. 

Additional research into the properties of such models and the estimation and identification of 

parameters is needed.   Of course this model is just a generalization of the periodically staionary 

models of Gladyev (1961); see McLeod (1994) for details.   In fact preliminary runs on monthly 

data such as that given in McLeod (1994) with MARS are very promising. 

Appendix: Choice of Parameters in the MARS Algorithm 

When choosing the form of the input of ordinal predictors, the choice should generally be no 

restrictions. This is because it is extremely difficult to outguess the very non-linear forms which 

can be generated by the MARS algorithm. The price of course, for the generality, is computing 

time, since the MARS algorithm uses an exhaustive search and is thus computer intensive. For 

example, the fits to the SSTs in Lewis and Ray (1993) used lagged SSTs of lags up to 365, but they 

found that this was not enough to capture the long-range dependence or the El Nino effect. Thus 

in this paper we used much longer lags. However, computing times increase approximately tenfold. 

There are a number of other parameters which affect the performance of MARS. One is the 

SPAN, which is a smoothing parameter. The default value of 1 will generally result in "overfitting" 

the fine details of the process and will often give unstable results. Using values near 50 may result 

in too much smoothing, however. For example, the original work on modeling sunspot data using 

with MARS (Lewis and Stevens, 1991) used SPAN=50. Setting SPAN=5 produces limit cycle 

models having root-mean-squared prediction error approximately 50% smaller than that obtained 

using the SPAN=50 model. An initial value of 5 is therefore recommended. 

It is seldom wise to choose MI, the maximum interaction level, to be greater than 3, i.e., up to 

3-variable interactions allowed, as one then gets unstable and uninterpretable models, as well as ex- 
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cessive computing times. (MI=1 means additive modeling, or equivalently, main effects only). And 

as remarked above, the Schwarz-Rissanen criterion has been found to produce more interpretable 

and more parsimonious models than the GCV for time series. A stark example of this is given for 

the Granite Canyon SSTs in Lewis and Ray (1993). There may be further refinements possible 

with other goodness of fit criteria. 

The modified MARS3.6 FORTRAN program may be obtained from the authors. Note that the 

MARS3.6 program is a subroutine called from a user supplied driver program; we distribute the 

MARSDRV FORTRAN program for this. Its input is a regression matrix derived from the input 

time series by subroutine MARSBLD. Thus if one wants to regress a time series on 20 lagged 

variables, the matrix has columns which are different, but highly similar pieces of the time series. 

This is clearly wasteful, particularly since the size of the data matrix is the biggest limitation on 

the use of MARS for large time series. We hope to rewrite MARS to obviate this problem, but it 

is a large undertaking. 

The runs given in this paper were run on an Amdahl 5995 Model 700 mainframe running under 

the MVS/ESA and VM/XA operating systems. Typical runs took four hours of CPU time and 500 

megabytes of memory and 250 megabytes of temporary storage. 

The SST data and related series may be obtained from the authors upon request. 
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