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Summary 

Hamilton's principle was applied to derive a class of numerical algorithms for 
systems of ordinary differential equations when the equations are derivable from a 
Lagrangian. This is an important extension into the time domain of an earlier use of 
Hamilton's principle to derive algorithms for the spatial operators in Maxwell's 
equations. In that work, given a set of expansion functions for spatial dependences, 
the Vlasov-Maxwell equations were replaced by a system of ordinary differential 
equations in time; but the question of solving the ordinary differential equations 
was not addressed. Advantageous properties of the new time-advance algorithms 
were identified analytically and by numerical comparison with other methods, such 
as Runge-Kutta and symplectic algorithms. This approach to time advance can be 
extended to include partial differential equations and the Vlasov-Maxwell 
equations. Application has been made to derive a second-order accurate algorithm 
for the linear wave equation; the dispersive properties of the algorithm are superior 
to those of the usual second-order accurate explicit or implicit algorithms. 
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Introduction 

In the description of plasmas and other systems, differential and integro- 
differential equations frequently arise which are derivable from a Lagrangian. 
Examples are the equations of motion of a charged particle in a time-dependent 
electromagnetic field; the Maxwell equations; the Vlasov-Maxwell system of 
equations for a collisionless plasma; and wave equations, including a large class of 
nonlinear wave equations. Other examples are various models of competition or 
conflict, such as the time-dependent Lotka-Volterra equations that describe a 
predator-prey system and also find application in areas such as mode coupling in 
plasma physics [1]. Thus, development of algorithms that provide reliable 
numerical solution of Lagrangian systems of equations is of considerable practical 
importance. In addition to requirements of accuracy, numerical stability, and speed, 
there is the need to capture the important qualitative features of the solutions, for 
example, the phase-space topology of solutions of particle equations of motion. In a 
many-body problem, there is the need to determine average quantities accurately, 
even though most details may be unimportant. For example, in the one- 
dimensional Vlasov-Poisson system, a quantity of particular interest is the energy of 
the electric field, which is an average quantity determined by the detailed motion of 
the many plasma particles. Usually, numerical algorithms are based directly on 
approximations of the governing equations. However, in the case of Lagrangian 
systems of equations (or their Hamiltonian equivalents), Hamilton's variational 
principle can be used as the basis for deriving numerical algorithms. This has the 
potential advantage that the numerical solutions are then based on a global 
principle that uniquely determines the evolution of the system. It is in contrast to 
attempting to mimic or preserve some particular properties of the system such as, 
for example, conservation of the Hamiltonian for an autonomous system, or 
preservation of the symplectic nature of the mapping from initial data to final data. 

Hamilton's principle was introduced for deriving approximation schemes for 
the Vlasov-Maxwell system in 1968 [2]. Stated briefly, given a set of expansion 
functions for representing the spatial dependence of the electromagnetic potentials, 
and given a set of expansion functions for representing the dependence of the 
particle variables on the phase-space of their initial conditions, a system of ordinary 
differential equations in time was derived whose solution determines an 
approximation to the solution of the exact Vlasov-Maxwell system. Specialization to 
a collection of point particles gave particle-in-cell simulation schemes. For example, 
with the Vlasov-Poisson system in two cartesian spatial dimensions, if the 
expansion functions for the scalar potential are linear splines ("tent functions"), 
then this application of Hamilton's principle leads directly to the standard particle- 
in-cell (PIC) scheme with "area weighting." 

It is well known that time-advance algorithms are very relevant to accurate 
plasma simulation. Indeed, Lewis, Barnes and Melendez [3] raised the question of 
whether a new type of time-advance algorithm could fundamentally improve the 



quality of plasma simulations. The original application of Hamilton's principle to 
plasma simulation did not address this question; no time-advance algorithms were 
derived. Nevertheless, there was some belief that practical value would accrue to 
having time-advance algorithms based on Hamilton's principle. For example, 
problems with numerical stability might be avoided, or it might be possible to 
reduce the effects of so-called numerical collisions. Godfrey derived an algorithm to 
which he referred in an unpublished conference proceedings [4]. Although he found 
the algorithm advantageous regarding accuracy and stability, he also found it too 
elaborate and costly for practical use. In a later unpublished conference proceedings 
[5], he referred to a practicable approximate implementation of the algorithm that 
was sufficiently accurate for a two-dimensional PIC plasma simulation code called 
CCUBE. Details of the algorithms were not presented in these proceedings and the 
work appears not to have been pursued to examine the merits and disadvantages of 
time-advance algorithms based on Hamilton's principle. Eastwood has described a 
"virtual-particle" space-time algorithm for electromagnetic plasma simulation [6] 
whose derivation relies on Hamilton's principle. However, his derivation of the 
time-advance algorithm is inadequate because the conditions that render 
Hamilton's principle equivalent to specifying a particular solution of Hamilton's 
equations are not addressed. 

Under this grant (AFOSR Grant No. F49620-92-J-0395), an initial attempt has 
been made to determine the properties of time-advance algorithms based on 
Hamilton's principle and to examine their merits and disadvantages in comparison 
to other approaches. The scope of the activity was limited to ordinary differential 
equations. 

The Idea 

The spirit of an initial-value problem is that of extrapolation: Initial data are 
to be projected to a later time according to the action of governing equations. 
However, the spirit of Hamilton's priniciple is that of interpolation: The solution 
between an initial time and a final time is to be determined from data at both the 
initial and the final times according to the action of governing equations. The key to 
applying Hamilton's principle to derive time-advance algorithms is realizing how 
to bring the extrapolatory nature of the problem into consonance with the 
interpolatory nature of the principle. There are two steps in using Hamilton's 
principle to derive a time-advance algorithm. First, a class of functions with 
undetermined parameters is chosen for approximating the solution of the equations 
over a specific time interval. For example, the approximating functions could be 
expansions in basis functions that are polynomials in time. This step, in one form or 
another, is part of any derivation of a time-advance algorithm. Second, Hamilton's 
principle is applied exactly within the class of approximating functions to obtain the 
conditions that the parameters must satisfy. Those conditions involve the 
unknown value of the solution at the final time. However, the value of the 
solution at the final time can be expressed in terms of the initial data and the 
undetermined   parameters.   Therefore,   the   conditions   on   the   undetermined 



parameters can be expressed completely in terms of the initial data. For a given class 
of functions used to represent approximate solutions, Hamilton's principle specifies 
a unique algorithm. 

Using Hamilton's principle in a restricted function space (the space of 
approximating functions) is different than approximating the Lagrange or Hamilton 
equations of motion directly. If the function space were not restricted, then using 
Hamilton's principle would be equivalent to solving the exact equations of motion. 
However, if the function space be restricted to a set of approximating functions (for 
example, polynomials in time of some degree), then one may expect the 
approximation achieved with Hamilton's principle to be different than that 
obtained by applying some particular approximate method to the equations of 
motion directly. In fact, the algorithms based on Hamilton's principle are equivalent 
to a Galerkin approximation of the differential equations. Hamilton's principle 
determines a particular weight function for the Galerkin method and constrains the 
function space in which Galerkin's method is applied. The issue of which 
algorithms are best is complex, and it can only be resolved by detailed numerical and 
analytical comparison and contrast of various methods with one another. 

Achievements 

The following progress toward developing and understanding algorithms 
based on Hamilton's principle for systems of ordinary differential equations has 
been achieved: 

• A general formulation has been developed for initial-value problems. 
Extensions of the formulation can be made to a wider class of problems (e.g., initial- 
boundary-value problems). 

• Algorithms for general Lagrangians have been defined in terms of 
polynomial approximating functions. 

• The behavior of the algorithms for small values of the timestep has been 
determined. It has been shown that the algorithms have a unique solution in the 
limit of zero timestep. As a result, they can be implemented in a numerically stable 
manner and they can be made explicit to any order in the timestep. 

• If Hamilton's principle can be the starting point for deriving algorithms 
that are optimal in a useful sense, then the algorithms should have analogs of every 
general property of exact Hamiltonian and Lagrangian systems. The relation 
dH    dH       dL  .        VJ  c       „ TT     .,      . 
~l~ = ~rr = —^7 1S valid for all Hamiltonian and Lagrangian systems. For that 
At       ot at 

relation, an analog has indeed been demonstrated for computational algorithms 
based on Hamilton's principle when the approximating functions for the 
coordinates and momenta are polynomials in time. 



• Analytical and numerical comparisons of algorithms based on Hamilton's 
principle have been carried out with some other algorithms. Among the algorithms 
used for comparison were symplectic algorithms. Symplectic algorithms mirror 
Hamilton's equations in that the mapping of generalized coordinates and their 
conjugate momenta from one time to a timestep later is canonical, as is the case for 
the exact solution of Hamilton's equations. That is an appealing property, although 
the question of whether it is the best property to strive for is open. After all, the 
main objective is to approximate a particular solution of the equations; achieving an 
approximation that represents a canonical mapping as precisely as possible may or 
may not be valuable in the context of a particular problem. It might have been 
supposed that algorithms based on Hamilton's principle would also be symplectic; 
that is generally not the case. The comparisons of symplectic algorithms with 
algorithms based on Hamilton's principle indicated that the properties of the two 
kinds of algorithms are similar, but that the algorithms based on Hamilton's 
principle often approximate exact solutions better. 

• Computer code using Mathematica and C has been written to enable 
systematic numerical comparisons of algorithms based on Hamilton's principle 
with some other algorithms. 

In addition to the work on systems of ordinary differential equations, 
Hamilton's priniciple was used to derive a second-order accurate algorithm for the 
linear wave equation. It was determined that the dispersive properties of the 
algorithm are superior to those of the usual second-order accurate explicit or 
implicit algorithms. The stability restriction of the timestep is approximately the 
same as with the usual algorithms. 
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