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A CONTINUUM MODEL FOR STREAMFLOW SYNTHESIS 

1.        INTRODUCTION 

Streamflow evolves as a continuum, and is normally comprised of three 

components:   (1) surface runoff, (2) interflow, and (3) baseflow. These 

components occur concurrently, although their relative magnitudes vary with time.  If 

we consider a sudden burst of rainfall, then surface runoff predominates during the 

rising part of the streamflow hydrograph, interflow predominates during the early part 

of its recession, and baseflow predominates during the delayed part of its recession. 

The mechanisms and, therefore, the governing equations, of these components are 

different but are influenced by dynamic interactions prevailing between them. 

Although streamflow synthesis has long been a subject of scientific inquiry, 

treatment of streamflow as a continuum taking into account dynamic interactions 

amongst its components has not yet been fully developed.  Most of the approaches 

of streamflow synthesis are based on the concepts embodied in Horton's infiltration 

theory of runoff (Horton, 1933). According to this theory, rainfall is absorbed for 

intensities not exceeding infiltration capacity, while for excess rainfall there is a 

constant rate of absorption as long as the infiltration capacity is unchanged. Thus, 

infiltration divides rainfall into two parts.  One part travels over the surface giving rise 

to surface runoff, and the other part infiltrates into the ground resulting in 

replenishment of soil moisture and recharge of groundwater, and eventually in 

interflow and baseflow. 



The three components of streamflow have been treated at various levels of 

mathematical sophistication but in virtual isolation with one another.  Surface flow 

has been studied for over half a century (Woolhiser, 1982), and as a result, it is 

understood reasonably well (Hall, 1982). Likewise, baseflow contribution to 

streamflow has been studied for nearly 30 years and it too is understood reasonably 

well (Hall, 1982).  The same, of course, cannot be said about interflow.  This is not 

even well defined and is least understood.  Also, least understood are the dynamic 

interactions prevailing amongst these components. 

Although considerable progress has been made in mathematical and 

numerical treatment of the boundary value problems dealing with flows over 

impervious beds, the understanding of surface flows over porous beds which 

dynamically interact with subsurface flow is quite limited.  The importance of this 

interaction has been pointed out in the past in the context of border irrigation 

(Parlange, 1973), and in the study of flood waves in ephemeral streams (Smith, 

1972).  These studies, however, are not based upon a coupled set of equations 

pertaining to surface and subsurface flow; rather the attenuation in surface flows is 

included by considering certain infiltration rate with time lag. The dynamic diffusion 

due to infiltration, therefore, remains unaccounted for. 

Freeze (1972) was probably the first to develop a comprehensive quantitative 

treatment of hillslope hydrology considering explicit interactions between near- 

surface groundwater flow, surface runoff and rainfall intensity patterns.  Rather 

limited work has since been done along the lines of Freeze.  Some notable 



examples are the conceptual model of Beven and Kirby (1979), the model of Hillel 

and Hornberger (1979), and the finite element model of Beven (1977). 

The most recent work representing a major step forward in developing an 

analytical treatment of interdependent surface and subsurface hydrologic processes 

is by Smith and Hebbert (1983).  In their model, the hillslope was considered to 

consist of two soil layers with the lower soil capable of restricting vertical flow at the 

interface creating a perched aquifer and subsurface stormflow.  Unsaturated vertical 

flow was routed by a kinematic wave method and linked with an analytical infiltration 

model. Thus, this model attempted to integrate most of the major hydrologic 

response mechanisms presently identified as contributing to the hydrology of a 

simple hillslope.  Other hillslope hydrological models (Cundy, et al., 1985; Stagnitti, 

et al., 1986)  and surface irrigation models (Walker and Humpherys, 1983; Stagnitti, 

et al., 1986) and surface irrigation models (Walkerand Humpherys, 1983; Ram, et 

al., 1983) have also been developed.  However, none of these models developed a 

method to compute infiltration rate dynamically, although it is one of the major 

factors affecting runoff (or advance front) and surface water profile.  Most of the 

models utilized empirical formulae such as Kostiakov's or Green and Ampt's, etc. 

Therefore, the prevailing dynamic process between surface and subsurface flows 

remained unaccounted for. 

Toward the goal of eventually accomplishing a continuum model for 

streamflow synthesis, three related areas were investigated: (1) subsurface 

unsaturated flow, (2) flood wave propagation, and (3) comparative assessment of 



different dynamic wave representations of shallow water wave theory.  In particular, 

we focused on  (a) comparative evaluation of the kinematic-wave, diffusion-wave, 

and dynamic-wave representations of the shallow water wave theory ubiquitously 

applied to modeling surface runoff, (b) development of a systems- based model for 

infiltration, and (c) modeling movement of soil moisture. 

2.  SURFACE RUNOFF MODELING 

The surface runoff hydrology was investigated along three lines: (a) 

development of a theory of errors for comparative assessment of three shallow 

water-wave representations: (i) kinematic-wave, (ii) diffusion-wave, and (iii) dynamic- 

wave; (b) development of discrete linear models for watershed runoff; and (c) 

physically-based Muskingum methods of channel-flow routing. A short discussion of 

each is in order. 

2.1      Theory of Errors 

A wide range of problems involving free-surface flows can be modeled using 

the shallow water-wave (SWW) theory. The SWW theory is described by the St. 

Venant equations or their approximations.  The three most popular representations 

of the SWW theory are the kinematic-wave (KW), diffusion-wave (DW), and the 

dynamic-wave (DYW) approximations. 



One of the fundamental questions to be addressed in physically-based 

modeling of watershed runoff is one of determining the appropriate approximation of 

the shallow water-wave (SWW) theory. Of the different approximations of the SWW 

theory, the two most popular approximations are the kinematic-wave (KW) theory 

and the diffusion-wave (DW) theory.  How accurate are these approximations? 

Which approximation should be used and under what conditions? What is the 

spatial or temporal distribution of error of a given approximation? What is the 

criterion to choose between these approximations? The past studies have dealt with 

development of criteria for judging the adequacy of these approximations.  However, 

these criteria are point values and do not relate to errors resulting from use of these 

approximations.  Consequently, the error in space and/or time is not known. 

The larger goal of this study was to develop a theory of errors for quantitative 

evaluation of the adequacy of these approximations, and, in turn, of the shallow- 

water-wave theory.  However, because the SWW theory consists of a system of 

nonlinear partial differential equations of hyperbolic type, derivation of error 

equations is unattainable at this stage. Therefore, some realistic simplifications 

were made. The first was the simplification of flows being time-independent. 

Steady state flows are ubiquitous in nature, and much of the early hydraulics was 

based on this assumption. 

Because spatially distributed data are seldom available, it was assumed that 

the full form of the SWW theory or the dynamic-wave representation was the true 

representation or model, and was capable of mimicking the behavior of the real 



world, prototype system, and the kinematic-wave and diffusion-wave approximations 

were reasonable approximations, but were germane to conceptual error. The 

adequacy of these approximations is well documented in hydraulic literature. 

However, what is not known is the actual error and its distribution in time and/or 

space, as well as its relationship to flow characteristics, system properties and initial 

and boundary conditions. 

The theory of errors can serve as an objective criterion for judging the 

adequacy of the KW and DW approximations by comparison with the DYW 

approximation.  For time-independent flows, the theory yields error as a function of 

space involving infiltration, and boundary conditions. The error differential equation 

is ordinary in place of partial, and is more amenable to numerical solution.  Even 

with this simplification, analytical solutions are not possible but the numerical 

solutions are much simpler and easy to graph. 

Different criteria have been developed to evaluate the adequacy of the KW 

and DW theories, but no explicit relations either in time or in space between these 

criteria and the errors resulting from these approximations have yet been derived. 

Furthermore, when synthesizing streamflow, it is not clear if the kinematic-wave and 

the diffusion-wave approximations are valid, on one hand, for the entire hydrograph 

or for a portion thereof, and on the other hand, for the entire channel reach or for a 

portion thereof. To put differently, all of these criteria take on fixed point-values for 

a given rainfall-runoff event.  This study, under simplified conditions, derived error 

equations for the kinematic-wave and diffusion-wave approximations for space- 



independent as well as for time-independent flows. These equations provided a 

continuous description of error in the streamflow hydrograph. 

With these considerations in mind, errors of kinematic-wave and diffusion 

wave approximations were derived for steady-state channel flows subject to finite 

flow at the upstream end.  The diffusion-wave approximation was in excellent 

agreement with the dynamic wave representation for a range of the values of the 

Froude number and the kinematic-wave number. The kinematic-wave approximation 

was also in good agreement with the dynamic wave representation, but for a limited 

range of the values of the Froude number and the kinematic-wave number.  On the 

other hand, the approximate diffusion-wave analogy, although  leading to analytical 

solutions, was not accurate and should not be employed. 

Under two different initial conditions and two boundary conditions, solutions of 

the kinematic-wave and diffusion-wave equations were derived under the 

simplification that the flow was temporally independent. Thereafter, error equations 

for the KW and DW theories were derived.  It was found that the DW theory was 

quite accurate and for Froude number (Fo) less than 2 and the kinematic wave 

number (K) greater than 10, the DW theory would be an accurate  representation of 

the SWW theory.  Under the condition where there was no downstream control, the 

KW theory was an accurate representation for K > 30,  K F0
2 > 5 .  The KW theory 

does not accommodate a downstream control and hence, as expected,  did not 

accurately represent the SWW theory for the entire channel under any of the two 

boundary conditions.  Details of this work are contained in Singh, Aravamuthan and 

Joseph (1994). 



For space-independent flows, a dimensionless parameter was defined, 

reflecting the effect of initial depth of flow, channel-bed slope, lateral inflow, 

acceleration due to gravity, and channel roughness.  For time-independent flows, the 

dimensionless parameter was the product of the kinematic-wave number and the 

square of the Froude number.  By comparing the kinematic-wave and diffusion wave 

solutions with the dynamic-wave solution, error equations were derived in terms of 

the aforementioned dimensionless parameters. The error equations for space- 

independent flows turned out to have the form of the Riccati equation. The work is 

described in Singh, Aravamuthan and Joseph (1993). 

2.2     Watershed Runoff 

Discrete linear models were developed for estimating runoff and sediment 

discharge hydrographs from agricultural watersheds. A regression equation was 

also established relating runoff rate and sediment discharge. Tested on five small 

basins, the results were in good agreement with observations.  For the discrete 

linear transfer runoff model, the values of the integral square error (ISE) were 

generally less than 1% for all calibration events, and around 10% with the average 

value of 9.36% for all verification events.  For the discrete linear transfer sediment 

model, the calibration coefficient of determination R for all five basins was more 

than 97%, and the verification R was more than 91% with an average of 94.3%. 

Details of this work are described in Wang et al. (1991). 

10 



2.3.     Physically - Based Muskingum Method 

Flow routing in channels was investigated using the kinematic wave theory as well 

as the Muskingum method.  For the latter method parameters were derived from the 

St. Venant equations.  Preliminary testing showed that this method of parameter 

estimation made the Muskingum method more accurate than any of the 

conventional methods. The kinematic wave method was investigated for perennial 

as well as ephemeral streams. This method can be extended to include flood wave 

propagation due to dam rupture. This work is more fully described in Wang and 

Singh (1992). 

3.        SUBSURFACE FLOW 

Modeling of flow of water in the unsaturated zone is far from complete, 

especially at the field scale. Two lines of inquiry were, therefore, launched.  First, a 

systems approach was developed to model infiltration and soil moisture, which holds 

promise for unifying different infiltration models reported in the literature.  This 

approach can also relate parameters of one infiltration to another.  The second type 

of approach pertained to application of the kinematic wave theory. This approach 

has the advantage of coupling plant root extraction and evapotranspiration with soil 

water dynamics. 

3.1      Infiltration Modeling 

A general infiltration model was derived using systems approach.  The 

models of Horton, Kostiakov, Overton, Green and Ampt, and Philip are some of the 

11 



example models which are shown as special cases of the general model. An 

equivalence between the Green-Ampt model and the Philip two-term model was 

shown. The general model also provides a solution for the Holtan model expressing 

infiltration as a function of time. This solution of the Holtan model does not appear 

to have been reported in the literature. A first-order analysis was performed to 

quantify the uncertainty involved with the generalized model. The general infiltration 

model contains five parameters. Two of the parameters are physically based and 

can therefore be estimated from the knowledge of soil properties, antecedent soil 

moisture conditions, and infiltration measurements. The remaining three parameters 

can be determined using the least squares method. The model was verified using 

ten observed infiltration data sets.  Agreement between observed and computed 

infiltration was quite good. This work is more fully described in Singh and Yu 

(1990). 

3.2      Movement of Soil Moisture 

The unsaturated subsurface flow serves as a link between surface runoff and 

groundwater runoff, and, therefore, occupies the central position in the streamflow 

continuum. The unsaturated flow region is the upper soil matrix which also is the 

principal source of interflow.  For surface flow, infiltration is the major sink, and for 

groundwater flow, soil moisture percolation is the principal source or recharge. 

Much of the mathematical treatment of unsaturated flow, reported to date, is based 

on the Fokker-Planck equation or Richards equation.  Both these equations are of 

the diffusion type, and do not lend themselves to analytical solutions, except for 

overly simplified cases. 

12 



If one ignores the effect of diffusion and models soil moisture movement 

using the kinematics wave theory, then, under certain simplifying but realistic 

conditions, it is possible to derive analytical solutions. This premise was pursued in 

this project. Currently available one-dimensional kinematic-wave models assume 

absence of sink terms.  In other words, once the water gets infiltrated, it is either 

retained by the soil or moves downward to recharge the groundwater.  This 

assumption is not tenable, especially in agricultural or forest watersheds.  In this 

project, an effort was made to include a sink term in modeling of soil moisture. This 

sink term may represent removal of soil moisture by vegetation through the process 

of evapotraspiration. 

Recognizing the difficulties of modeling unsaturated flow using the Richards 

equation, a novel approach was developed in this project. This approach was 

based on the kinematic wave theory in which a unique relation is hypothesized 

between the flux and the flow concentration or the hydraulic head. 

The fundamental assumption underlying this theory is that the moisture 

movement is gravity-dominated and the hydraulic conductivity-soil moisture 

relationship is single-valued, i.e., it does not experience any hysteretic effects. 

Although these assumptions are not strictly valid, they do provide a reasonably 

accurate approximation.  Another advantage of the theory is its simplicity and that it 

allows analytical solutions under simplified conditions.  Under more complex 

conditions, numerical solutions are easily derived. 

13 



This unique relation, when coupled with the continuity equation expressing 

the conservation of mass, gives rise to a first order, nonlinear hyperbolic equation. 

Under simplified initial and boundary conditions, analytical solutions of this 

kinematic-wave equation are tractable.  Following this tract, the soil moisture 

movement was modeled with the use of the kinematic-wave theory.  However, 

attention is to be focused on certain aspects of the kinematic-wave modeling that 

are not apparent at the first glance. First, because the time history of the moisture 

front distinguishing between wet and dry soil is unknown, the kinematic-wave 

formulation of soil moisture movement results in a free-boundary problem.  Second, 

natural watersheds have vegetation either seasonally or throughout the year. 

Inclusion of vegetation in modeling of soil-moisture movement gives rise to an 

additional free boundary, further complicating the model. 

With these considerations in mind, a kinematic-wave model was developed 

for simulating the movement of soil moisture in unsaturated soils with plants. The 

model involved three free boundaries. Analytical solutions were derived when the 

plant-root extraction of moisture was at a constant rate, and the upstream boundary 

condition was time independent. If these assumptions are waived, then numerical 

solution is the only resort. 

With the use of this theory, a comprehensive analytical treatment has been 

developed for soil moisture movement with plant-root extraction. The treatment 

involves free boundaries and to our knowledge this has not been dealt with in the 

literature so far.  This work is described in Singh and Joseph (1994). 

14 
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Abstract. A kinematic-wave model is developed for simu- 
lating the movement of soil moisture in unsaturated soils 
with plants. The model involves three free boundaries. 
Analytical solutions are derived when the plant roots are 
assumed to extract moisture at a constant rate and the 
upstream boundary condition is independent of time. 
Numerical solutions are the only resort when the mois- 
ture extraction and the upstream boundary condition 
both depend on time. 

Much of the mathematical treatment of flow in unsatu- 
rated porous media has dealt with capillary-induced flow 
(Smith 1983). However, there exists a multitude of cases 
where gravity dominates vertical movement of soil mois- 
ture. Some examples include: drainage following infiltra- 
tion, the water percolation deeper into the soil, the verti- 
cal movement of moisture in relatively porous soils when 
rainfall or surface fluxes are typically of the order of, or 
less than, the soil-saturated hydraulic-conductivity, to 
name but a few. For treatment in such cases, the 
kinematic-wave theory is simple yet reasonably accurate. 

Although Sisson et al. (1980) applied the kinematic- 
wave theory to internal drainage. Smith (1983) was prob- 
ably the first to apply the theory to develop a complete 
kinematic-wave model for soil moisture movement. 
Charbeneau (1984) extended Smith's work to solute 
transport, and Charbeneau et al. (1989) to multiple solute 
transport. In a series of papers, Germann and coworkers 
(Germann 1985; Germann and Beven 1985. 1986: Ger- 
man et al. 1987) extended the application of the theory to 
infiltration and drainage into and from soil macropores. 
as well as to microbial transport. Yamada and Kobayashi 
(1988) discussed the kinematic wave characteristics of 
vertical infiltration and soil moisture, with the aid of field 
observations on tracers. They concluded that the vertical 
infiltration of soil moisture had the characteristics of 
kinematic waves. 

In this study, a kinematic-wave model is formulated 
for soil-moisture movement with plant-root extraction. 
Analytical solutions are derived under the condition that 
the moisture extraction by plants and the surface flux are 
both constant in time. This condition is severe, but leads 
to intriguing and useful results. For more realistic con- 
ditions numerical solutions are the only resort, these 
together with field verification, will be reported in the 
near future. 

Kinematic-wave model 

Formulation 

For vertical unsaturated flow with plant-root extraction 
and with the neglect of the flow of air, the governing 
equations are the law of conservation of mass and a flux 
law. The one-dimensional conservation of mass equation 
or the continuity equation can be expressed as 

30     dq 
T + IT = _ e(~- T) "> of      cz 

where 9 is the volumetric moisture content (dimension- 
less, volume of water volume of soil), q is the vertical flux 
of soil moisture (L/T). e(z. x) is the rate of soil moisture 
loss due to plant-root extraction at time Ml T). z is the 
depth (L) measured downward from the ground surface. 
T is the time (T) that water has stayed at location 
T = r — w[z). w(r) is the time history of the moisture ad- 
vance front, and r is time (T). At a fixed T. e[x) is essen- 
tially the rate of plant-root extraction of soil moisture on 
a unit depth basis defined as 

r(r.i) 
= e(z. x) (2) 

Correspondence to: V. P  Singh 

where n is the soil porosity, and r(r) is the soil-moisture 
extraction rate per unit depth at time Ml T). It may. 
however, be reasonable to assume e(r. r) = e(x). This as- 
sumption implies spatially uniform extraction, that may 
be true if the plant roots are uniformly developed in the 
soil. 
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The flux law for a kinematic-wave model can be ex- 
pressed as 

q(0) = K(0) (3) 

where K(0) is the unsaturated hydraulic conductivity 
(LIT) as a function of the soil-moisture content. A vari- 
ety of expressions have been proposed for K(8) (Hsu and 
Liu 1990). Of all the expressions, the best-known perhaps 
is the Brooks-Corey relation (Brooks and Corey 1964) 
which can be written as 

K(9) = KS (4) 

where Ks is the saturated hydraulic conductivity (L/T), 
90 is the residual value of 9 below which water cannot be 
extracted (or moved) by capillary forces, 0, is the saturat- 
ed water content = porosity = n, and a is a parameter 
typically between 3 and 4, and is related to the pore-size 
distribution index. 

In Eq. (1), T is unknown and a relation is needed 
whereby T can be determined. With such a relation, the 
formulation of the kinematic-wave model will be com- 
plete. To that end. when water is applied to the soil at its 
surface, it infiltrates into the soil and advances vertically 
downward, increasing the moisture content. If the soil is 
initially dry. the advance front, also called the shock 
front, will define the interface between moist and dry 
parts of the soil matrix. Let r = s{t) or t = w(z) be the 
time history of that advancing front; this time history 
gives the space-time coordinates of the shock front. The 
front is a free boundary and has to be determined along 
with the solution. An equation for z = s(t) or r = w{z), 
therefore, has to be formulated. This can be accom- 
plished by observing that 

u(«) = u(:,i) = 
q(6)      K(8) 

where T is the duration for which moisture is applied at 
the upstream boundary. Note that #(0) =/(0) = 90. 

Equations (1) and (3) can be combined to produce 

60     dK(6) 30 
—- + ————- = -e(z,T). 
3r        dd     02 

For notational simplicity, let 

dK(0)     30/6*     6r 
M(9) = - 

d9 60/3z      3f 

(10) 

(11) 

which is referred to as the mobility of water in soil by 
Irmay (1956); this is analogous to celerity, commonly 
used in open channel flows. 

Solution 

Equation (10) is satisfied in the domain bounded by the 
positive t axis and the curve t = w(z) or z = s(r). Solution 
of Eqs. (10) and (6) can be derived by using the method of 
characteristics. Accordingly, one can choose a as the 
parameter on the r-axis and t as the parameter along 
the characteristics. The characteristics originate from the 
t-axis on the segment 0 < t < T. The solution domain can 
be divided into two subdomains Dl and D2, with the 
characteristics z(t, T) serving as the dividing line (called 
the bounding characteristic), as shown in Fig. 1. The 
characteristic curves z(r, c), 0(r, a) passing through the 
points (0, a, g(a)) in the (z, t, 9) space, satisfy 

(5) 

d6(u a) 
dt 

dz{t, a) 
dt 

= -<T(T),    9(a,e) = g(a), 

= M(t,o),    z(a,a) = Q. 

(12) 

(13) 

where u(9) is the average velocity with which 9 moves. 
Thus, the free-boundary equation is obtained by replac- 
ing z by sir) or r by w(r) in u{z, t) as 

(6) 
ds(t) 

dt 
, , ,   v     K(0(sU),t)) 

= ",S(fU)=    fl(,(r).i)    '   S(0) 

or 
dw(z) 

dz 
w(0) = 0 .      (7) 

Equation (6) is valid for 9(z, t) > 0. Equations (6) and (7) 
require the advance front to move with the speed immedi- 
ately behind the front. 

The kinematic-wave model formulation consists of a 
partial differential Eq. (1), an algebraic Eq. (3), and an 
ordinary differential Eq. (6) or (7) with two unknowns 
9\z. r I and sir) or n(r). In order to derive solutions of these 
equations, the following can be assumed: 

(8) O(.-.O) =/(;).    .->0, 

0(0.0 = 0(0.    0<f<T (9) 

P-(z..t.) 

= 0n f > T 
Fig. 1. Characteristic solution domain for unsaturated flow with 
plant-root extraction 



;(r, a-) is the position at time t of the soil-moisture content 
0 which was at z = 0 and at t = <r; 0(r, a) is the soil-mois- 
ture content at time r. The plant-root extraction rate de- 
pends upon the nature of vegetation and availability of 
soil moisture. If e(i) is constant, which is not entirely 
unreasonable, especially whefl the soil-moisture is not 
limiting plant root extraction, then e(x) = e. 

Depending upon the nature of the function g(t), three 
cases can be distinguished: (1) g (r) = constant, (2) dg(t)/dt 
<0. and (3) dg(t)/dt>0. To describe the variation of soil 
moisture in time at a fixed z or in space at a fixed t, one 
may determine ö0/ör and ö0/3r. 

Solution for domain Dl 

This domain  is  bounded  by 0 < f < T, z(t, T), and 
z = s(t). Solution of Eq.(12) is 

9(u9) = g(a)-(t-c)e. (14) 

Substitution of Eq. (14) in Eq. (13), and then integration 
yields 

--(t.ff) = ]M(g(a)-(t-o)e)dt. 
a 

With the use of Eq. (4), 

M(0) = - 
'-0O\°-' 

(0,-0o) Vos-00, 

Substitution of Eq. (14) in Eq. (16) yields 

M(0,<7) = 
aK. 

(fl, - e6) 
'g(o)-(t-6)e- 

e. - en 

9o-|— 

(15) 

(16) 

(17) 

With the use of Eq. (17), Eq. (15) leads to 

= (f, a) = — e 
gM-o0 g(a)-(t-a)e-\ 

(18) 

Equations (14) and (18) constitute the characteristic solu- 
tion for domain D,. By eliminating a between these equa- 
tions, 0 can be expressed as a function of z and r. To do 
that, zit.a) must be. for fixed r, either an increasing func- 
tion of a or a decreasing function of a. Differentiating 
Eq. (18) with respect to a yields 

:.U,o) = 
5;(f.g) 

da e(6,-60) 

a)-e0\-     erl'""" 

or 

-%lr.ff) 
aK, 

{6,-t 
\g[o)[{g{o)-eof-

x-(e{t,o)-60f-') 

-e(6(t.a)-90 (20) 

It is seen from Eq. (20) or (19) that g[a) = dglda < 0 is a 
sufficient   condition   for   zAi. a) < 0.   The   condition 
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g'(o)<0 includes the case of principal interest to us, 
namely, g(a) = constant. 

Case 1. g(t) = constant: If g{a) = 0„, then Eq. (18) be- 
comes 

z(t,a) = 
K. 

'0J 

(t-a)e-e0 
(21) 

By coupling Eqs. (41) and (21), 9 can be expressed as a 
function of; and f as 

8(z) = 9o + (0,-8o) 
Jo _ 

ez 
(22 a) 

It is seen that in domain D1, 6 is a function of z and does 
not depend on t. The soil moisture profile is nonuniform 
but steady-state. In Eq. (22a), there are two terms within 
braces. The second term is due to water uptake and the 
first term is due to the boundary flux. If e = 0, then 
9(z) = 8„. The nonuniformity of soil moisture is a direct 
consequence of the plant-root extraction. If e were zero, 
then 6 would be independent of 2. Thus, the alteration of 
the soil moisture profile is caused by plant roots. Of 
course, the degree of alteration depends on the value of e. 
On a short-time scale, the value of e is relatively small in 
field. Equation (22a) can be written with use of Eq. (4) as 

e(z) = 60+(9s-60) 
K(9J 

K. 
1- 

ez 
(22 b) 

In many practical cases, e z/K (0J is much less than 1. and 
attenuation of the ö-profile, as a result, will be small. 
When Eq. (22 a) is inserted into Eq. (4), the soil-moisture 
flux, with the aid of Eq. (3), is obtained: 

K(9) = q(z) = Ks 
A-00 
0,-1 0 j 

ez 
(23) 

Similarly, the average velocity of the soil-moisture move- 
ment is obtained by substituting Eq. (22) in Eq. (5), 

ui-\ —                            l 
"0„ 
.0, 

-0ol 
-0o 

a 

T} 
0o +(0,-0 -{ 

[8.- 0o n 

0o J 
'     ez)" 

(24) 

Similarly, substitution of Eq. (22) in Eq. (16) yields the 
mobility of water: 

M(0) = - 
aK, 

25) 
(0,-0o>  lK-0oJ      K, 

The behavior of the soil moisture in this case can be fully 
described. From Eq. (22) at a fixed z. z >0. 

S0 
a 

= 0 

and at any r. 0< t < T, 

60 

er a K, (0, - 0O) 
u A."«» 

. "iii ~«i' 

(26) 

(27) 
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Equation (27) shows that at any depth within Dt, 0 re- 
mains constant in time and at any time it decreases with 
increasing z from the ground surface. The gradient of 0 
increases with increasing z. This corresponds to the case 
of a wetting event. 

Case 2. dg(t)/dt < 0: In this case, 30/3z and 30/Sr are ob- 
tained from Eqs. (14) and (18) by noting that 

30 _ ee/So-   _ 
or     cz/da '    or 

50     30/gff 
6r/6<7 

To that end, with g'= g'(a) = dg(a)/da, 

30 

da 
= g + e, 

(28) 

(29) 

3- K,        c f r ff - »o 1 a-I 

3<T e   (Ö,-flo)  I Lö.-öOJ 

- ej    K 

3f     .     9' , — =1+-^1- 
aa e 

9 - op 

L 0,-00. 

9 

to- n/j 

-if        (g' + e) (30) 

9-PQ 

L.X^-00 

ez (i -a)/a 

Therefore, by dividing Eq. (29) by Eq. (30), 

50 _ e(g'+e)(0, - 0B) 

(31) 

(32) 

aK, 9-1 
g - (g + <?) o.-ej    JCJ      j 

It should be noted that in this characteristic method of 
solution, r was chosen as the parameter along character- 
istics. Therefore, in Eq. (18), z is the dependent variable, 
and a is the independent variable. In order to obtain 
30/3r. one can choose r as the dependent variable and z as 
the parameter along characteristics. The procedure, how- 
ever, remains the same in both cases. Employment off as 
the dependent variable results in 

30 e* 
j- = g'ig - 0or ' [(g - B0f - — (0,- 0O)T -•>'•   (32a) 
ca rit 

and 

EL =,_£(g_ 0 r i[(ff _ej-£(e,-Son'1 -•"■. 
(32 b) 

By dividing Eq. (32a) by Eq. (32 b), 

.(33) 
.fl       eg(g-90)°- ' [{g-0or - j^(0,-0o)T ~"" 

cr   e -gig-e0r-1 [(g-o0f-y. (0,-00)1" -••■■• 
's 

The variation of 0 with z for a fixed r can be analyzed 
from Eq. (32). If e < g'(a) then 30'cz > 0: that means that 
0 increases with increasing z. On the other hand, if 
e = g'(a). then 0 is independent of z. This is also the case 
whenz> Ks/e{(g-60) (05-0o)]°. If e > g(a) then Ode- 
creases with z but can also have a complex variation. At 
a fixed z. the variation of a can be analyzed with the aid 

of Eq. (33). If g'(ff) = 0. then 0 is independent of r. If 
g'(<r)<0, then 0 decreases with time. If e = g'(a), then 0 is 
a decreasing function. At z = KJ((g-0o)/(03-0o))%?, 
then 

30 

3r 
= 0     and (34) 

(35) 
30 _e(g' + e) (8,-00Y 

3z     aK,g'(g-d0r
1' 

Equation (34) shows that 0 becomes independent of r 
whereas Eq. (35) shows that as a function of z, 0 decreases 
with z. 

Case i. dg(t)/dt > 0: This can be analyzed from Eqs. (32) 
to (35). However, Eq. (20) reveals that when g'(a) > 0, 
z„(t, a) > 0 and this case may entail shock formation. In 
that case, the analytical treatment becomes un wieldly and 
is not discussed in this paper. 

Determination of advance front (free boundary 
of domain Dx) 

In order to determine the shock front r = w(z), it is conve- 
nient to express it in terms of the parameter a introduced 
above. If one considers the characteristic curve z(r, a) in 
the (z, r) plane, then it will intersect the free boundary at 
the point denoted by (Q(O), n(o)) as shown in Fig. 1. 
Therefore, z = ${o), t — n(a) is the parametric representa- 
tion of the free boundary in terms of the parameter a. For 
the case g(t) = 0„ = constant, and e(x) = e = constant, 
determination of the free boundary is relatively simple. 
From Eq. (22), with r replaced by n(a), 

z(n(a),a) = Z(a) (36) 

^ K, VfB. - 0Q 

e   LU-0o 
0u-(n{a)-o)e-{ 

0.-0O m 
From Eqs. (6), (14) and (4), and noting that 0 does not fall 
below 0O, 

dsit) 
dt 

{'(g) 

7» 

K(6(iia),n{a))) 

(fl.-flo)L 

0(£(<TW(<T)) 

-(n{o)- a)e ■ 
O.-t 

(37) 

Equations (36) and (37) can be solved for iia) and r\{a). To 
that end. Eq. (36) can be differentiated to yield 

;'(*> = 
aK, 

(0, - e0) 
0,-(nio)-o)< 

<»/'<ff) 

On eliminating i'(cr) between Eqs. (24) and (25). 

a 

a — 1 

which gives 

7(0) = 0 

a- 1 

- 1). 

(38) 

(39) 

(40) 
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Similarly, eliminating n'(a) between Eqs. (37) and (38) 
leads to 

?(e) =' 
K. 

(e,-e0) (fl-i) 

which gives 

(41) 

?(<T) = - 
K, 

ea 

B,-BJ     (8,-60)(a-\) 
(42) 

Equations (40) and (42) constitute the parametric repre- 
sentation of the free boundary. By eliminating a between 
Eqs. (46) and (42), and noting that c, corresponds to z and 
n to t. In terms of q, 

e 

5°. 
e 

e. - oc 

e 

'(e- 
-e0\ 

LU -e0) 

et 

et 

a(6s-60) 

a(9s - 60) 01J 
(44) 

where q0= q{9u). Equation (43) or (44) expresses the ad- 
vance front. It is seen from Eq. (43) that the coordinates 
of the point to which the free boundary can extend is 
given by 

*o>.   *-M^Y. (45) t = 
a-(o, 
e ,-flr 

To complete the solution for domain D[, the intersec- 
tion of the bounding characteristic z(r, T) and the free 
boundary z = s(t) is to be determined. Let that point be 
P = (z*. t»). This point can be determined explicitly by 
equating Eq. (21) with a = T, t = r» and z =.z» to Eq. (43) 
with z = z„ and f = r,; that results in 

t. = • 
a-1 

K_ 

e 

(46) 

eT '(A. ~ Op) 

L(es-ö0)   (fl-i)(0,-0o)J 
(47) 

For the case when g(r) is not constant, we use the same 
parametric representation as before. Therefore, analogous 
to Eq. (36), 

^°)=   mK'a v {[gW-flol'-[g(g>-Ong)-g)g-flo]'} e{o, — u0) 
(48) 

and analogous to Eq. (37). 

;'(<x) K 

t]'\a)     l6,-0oY 
[g[a)-(r](a)-a)e-e0]" (49) 

Differentiating Eq. (48) and then substituting the differen- 
tial in Eq. (49) yield 

da 

g'W[g(o)-00]a 

ela-1)  [gia)-(r,{a)-a)e-e0]' 

a 

e[a-\) 
(g'(a) + e).    »;(0) = 0. (50) 

Equation (50) cannot, in general, be solved in terms of 
simple forms of g(r), an analytical solution for rj{o) is 
tractable. With substitution of this solution in Eq. (48), 
?(CT) is obtained. If, however, g'(a) = 0, Eq. (50) reduces to 
Eq. (39). 

Another method to determine the advance front 

The velocity of the front can be expressed as 

<f-™«-*%zf* (51) 

Representing 8^ by 80 and Ö, by 9. and taking advantage 
of Eqs. (22) and (23), Eq. (46) can be written for the case 
#(r) = constant, as 

(43)       ds(t)       K! 

dt 8.-8, 
_ p-y- U/o (q-ez) 

which, when integrated, leads to 

Ala 

-W-4-i 
e      e 

te 

fl(e,-ö0). 

(52) 

(53) 

which is the same as Eq. (44). 

Solution for domain £>, 

Domain D2 is bounded by T < t, z = z(f, T). z = 5(f) be- 
yond the point p = (z„, r«). In this case, 0(0, t) = 80 for 
t > T; 0O< 0„. Let g(t, e) be a continuous function of t 
coinciding with g(t) on 0< t < T, g(t, e) = 80ont > T + z. 
as shown in Fig. 2. Then, it is seen from Eqs. (14) and (18) 
that the characteristics z = z(r, a, £), T < a < T + c. cover 
the region above z = z(r, D completely. 

z(f, a, e) = — 
e 

8(t, a. E) + (r - a) e - 80 

8U.a,E)-80 

e, - o0 
(54a) 

Fig 2.  Function ■/(;. .:) 
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By letting e -> 0 and a-*T, one obtains 

+ e(t-T)-t 

e iB,-e0) 
(54 b) 

This equation expresses the soil-moisture 6 as a function 
of : and f in domain D:; 8 varies from 6U to 0O. The 
reduction in 6 is caused by the plant-root extraction, and 
hence the water uptake is the dominant factor for varia- 
tion of water content. This can be easily shown for a 
special case when a is an integer. To that end, Eq. (54 b) 
can be written as 

= (B, t) ■■ 
e 

0-OQ 
6.-6, 

e(t-T) 
+ 1 - 1 (55a) 

With use of the bionomial theorem, this can be written as 

K. / 0 - 0„ V {°zJ fa\ (e(t - T)Y~'l 
--(0, t) = 

= K. 

mi 
a (a- 1 

I 

e-e0 
(55 b) 

(et 
U-T) 
e-e0 

It is seen that each term in the series is affected by the 
plant-root extraction e raised to the power {a — i— 1). 
Assume that only the first term of the series is most signif- 
icant. Then. 

--(0, r) = Ks 

t- T 

6-6n 
(55c) 

K, r/0,-0oV (0, -e(i-T)-e0\--l 
e- LU-öJ [ 6>-0o        )\ 

Thu.«  the reduction in 6 is primarily caused by water 
uptake. 

The characteristics in domain D2 are given by 

(56) 

where Ö, is the initial soil-moisture 60<Oi<6u, that is 
carried out by the i-th characteristic. 

Determination of free boundaries for domain D2 

Domain D2 has two free boundaries FB2 and FB3 as 
shown in Fig. 3. Along FB3 that starts at r = T and x = 0, 
9{z. t) = 00: thus, this is the locus defined by 8Q. This is the 
time history of the drying front as it advances from x = 0. 
From Eq. (14). we have 

t)g = g\a) _(r -a)e.    T<a<T+e. (57) 

Thus, from Eq. (18). we obtain 

zU.a.c) 
e 

it — o)e 

6. - 0n 

(58) 

Letting £ -• 0. a -> T. we get the free boundary FB3 

=m = K, elf- T\ 

0. - 0n 

(59) 

Between r = 0and Eq. (59). ö|;.M = fl0. 

Fig. 3. Characteristic solution  domain  for the case g'(t) = 0, 
osi<r 

FB1, z-s(t)or 
t-w(z) 

Fig. 4.   Characteristic   solution   domain   for   the   case   when 
e = constant > 0. —e < g (t) < 0. 0 < ; < T 

It is seen from Eq. (56) that the maximum distance that 
the characteristics will travel is given by 

K.fB, 

0. 
(60) 

which is the same as given by Eq. (45). This shows that 
FB2 (the locus 6{z. t) = 0O) is a vertical wall with lower 
end given by Eq. (45) and the upper end by Eq. (56) and 

f = T+-(fl.-«0). 
e 

(61) 

In the case when yit) is not constant, we get the paramet- 
ric representation of FB2: 

e 

g{c)-0o 

0. - 0n 
(62) 
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gia)-e0 Since g'{a) < 0, we have for FB2. — e < g'(o) < 0 — dz dt 
< 0, and g'{a) < -e — dz di > 0. Under the condition hsz - ° +        e 

— e < g'ia) < 0.0 < a < T. the front wall of water recedes 
Thus {dz dt < 0) when its moisture content is 0O. In this case, 

the appearance of FB2 is as shown in Fig. 4. If g'{a) = 0. 
dz     r'(<7) aK,g{ IT) igiff) - 00f                            it^As      o < a < T. the front wall of water is stationary [dz dt = 0). 
d/       i'(a) (0,-6 oN e + g'(a)) as shown in Fig. 3. when it has moisture content 0O. 
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DRAINAGE PERIOD - 6 H, e - 0.2/DAY 
BROOK AND COREY RELATION 
FIXED DEPTH- 10, 20, 30 CM 

Fig. 7. Moisture flux as a 
function of time for fixed 
values of depth 

Fig. 8. Moisture flux as a 
function of depth for fixed 
values of time 

DEPTH. CM 

Total moisture content 

The total moisture content W varies within the region, 
and can be determined by integrating the moisture profile 
from r = 0 to a particular depth ; = L. Let L < :*. Refer- 
ring to Fig. 1. at f = 0. the initial total moisture content 
M; = 0oL. For 0 < f < T. say. r = r,, when gU) = con- 
stant. 

W=0-,+ (UL-:.) (65) 

where :, is the point of intersection of t = t, and z = s{t). 
For t > t*. 

Wit.L) = ]0(x.t)d: (66) 

where 9{z. t) is prescribed by Eq. (55). An explicit solution 
of this integral is. however, not tractable. 
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An example of application 

A wetting event with moisture applied at the ground sur- 
face was considered, with K(9) given by Eq. (4). The soil 
was Glendale clay loam, investigated by Sisson et al. 
(1980), with the following properties: 9S = 0.52, 8Q = 
0.246, K, = 1 m/day, and a = 4.25. The moisture was 
applied at the rate of 2 cm/h for 6 hours. These values 
were used by Charbeneau (1984). The plant-root extrac- 
tion e(t) was considered constant but values of e = 0.1, 
0.2, 0.3, 0.4. and 0.5/day were considered. It should be 
emphasized that these values were used to illustrate the 
procedure presented in the paper. If n = 0.52, then 
e = 0.1/day would correspond to r(t) = 0.052/day. For 
one meter of soil column, this would translate into 
5.2 mm of plant-root extraction for a day. Likewise, 
e = 0.5/day would yield r{t) - 0.25/day or 25 mm/day. 
This rate is clearly high but the objective here was to 
intentionally show the modulation of soil moisture profile 
by the plant-root extraction. 

The kinematic wave model was applied to compute 
9{z, t), q(z,t), and u{z,t). Then 0(f), u[t) and q(t) were 
obtained at selected values of z. Likewise, d(z) and q(z) 
were computed at selected values of t. For a sample case 
of e = 0.2/day, computations are illustrated. Figure 5 
shows 6(t) at z = 10, 20, and 30 cm, and Fig. 6 shows 0(r) 
at r = 2, 7 and 10 h. The moisture profile has realistic 
appearance. The moisture flux is plotted as a function of 
f in Fig. 7, and as a function of z in Fig. 8. The average 
velocity is plotted as a function of r in Fig. 9, and as 
function of z in Fig. 10. Both q and u appear to be realistic 
in their variation. The effect of increasing e was to com- 
press domain D2. In other words, after the moisture flux 
was ended at the ground surface, the moisture profile 
returned to its initial state more quickly where the mois- 
ture extraction rate was higher. For higher e, the charac- 
teristics in domain Dl were more curved. 

Conclusions 

The kinematic wave model for soil moisture movement 
has been formulated, and its solution domain involves 
three free boundaries. Analytical solutions are tractable 
for the case when the upstream boundary condition is 
independent of time. For a time-dependent boundary 

condition, numerical solutions are the only resort. In this 
model, the advancing front of water or wetting front is 
necessarily an advancing shock wave. It is plausible to 
assume that the moisture content at the wetting front is 
90. Since the kinematic wave theory cannot account for 
this assumption, the diffusion wave model has to be em- 
ployed in that case. 
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Abstract Time-independent (or steady-state) cases of 
channel flow were treated and errors of the kinematic-wave 
and diffusion-wave approximations derived for finite flow 
at the upstream end. The diffusion-wave approximation 
was found to be in excellent agreement with the dynamic 
wave representation, with error magnitudes of 0.2% for 
values of KFQ>7.5, where Kis the kinematic-wave num- 
ber and F0 is the Froude number. Even for small values of 
KFQ (e.g., KFQ =0.75), the errors were typically in the 
range of 1.3 to 3.7%. The approximate analytical diffusion- 
wave solution performed poorly with error magnitudes 
greater than 30% even for large values of KFQ . The kine- 
matic-wave approximation was also found to be in good 
agreement with the dynamic-wave representation with er- 
rors of about 1.2% for KFQ =7.5 and varying from 15 to 
44% for AT^ 0.75. 

In overland flows, the steady state is attained at the outlet 
for constant rainfall after the depth of flow reaches the equi- 
librium. The same is true for flow in a channel subject to 
constant lateral inflow. For a channel receiving a constant 
inflow of long duration at the upstream boundary, the flow 
at the downstream end would reach the equilibrium and 
this frequently occurs in border and furrow irrigation. De- 
spite occurrences of steady state or time-independent 
flows, they have not received much attention in hydrology 
(Morris 1978). The steady-state solution aids in under- 
standing the nature of the water-surface profile. It may help 
determine the condition for use of zero depth in place of 
zero influx at the upstream boundary. When the rainfall du- 
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ration is much greater than the time of equilibrium, the 
steady-state water surface profiles are very useful. 

Mathematical treatment of steady-state flows is based 
on the shallow water-wave (SWW) theory or its simplifi- 
cations, including the fcinematic-wave (KW) or the Jiffu- 
sion-wave (DW) approximation, in conjunction with ap- 
propriate boundary conditions. A comprehensive discus- 
sion of steady-state flows using the rfiffusion-wave (DW) 
approximation was presented by Govindaraju et al. (1988) 
including both numerical and analytical results for flux- 
type boundary conditions. The upstream boundary condi- 
tion was one of zero inflow. Both the zero depth-gradient 
and the critical-depth downstream boundary conditions 
were investigated. For steep slopes, the upstream bound- 
ary condition of zero depth was found to be justifiable. It 
was shown that the critical-depth condition at the down- 
stream boundary was a stringent condition which might 
give rise to problems for certain ranges of parameter val- 
ues when seeking a numerical solution. Furthermore, Go- 
vindaraju et al. (1988) employed an analytical approxima- 
tion in the form of a cubic approximation of the DW model 
for the zero depth-gradient downstream boundary condi- 
tion. The cubic approximation was found to be accurate 
when FQ K was sufficiently small, with F0 being the Froude 
number and K the kinematic wave number. 

Parlange et al. (1989) improved the approximation of 
Govindaraju et al. (1988) by using a Taylor series approx- 
imation, and showed that the improved approximation and 
&^ earlier approximation would provide the upper and 
lower bounds of the numerical solution. Most studies deal- 
ing with evaluating the adequacy of the kinematic-wave 
(KW) or diffusion-wave (DW) approximation have dealt 
with space-time dependent flows. Criteria for judging the 
adequacy of these approximations have been derived as 
point values either in terms of K or KFQ for given flov sit- 
uations, but they do not relate to errors in time and/or space. 
Moreover, an explicit treatment of steady-state flows has 
not been included in these studies. 

Pearson (1989) examined the criteria for using the KW 
approximation to the St. Venant (SV) equations for shal- 
low water flow. For steady-state one-dimensional flow 
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over a plane he showed that for the condition of zero flow 
at the upstream boundary, the assumed steady-state up- 
stream depth is generally nonzero, but is implicitly as- 
sumed to be zero in the kinematic-wave approximation. By 
plotting contours of dimensionless steady-state upstream 
depth over a 2-parameter plane (F0, KFQ) he obtained a 
new criterion as AT>3 + 5/F0

2 for kinematic-wave model- 
ing. 

Parlange et al. (1990) were probably the first to under- 
take an investigation of errors in the KW and DW approx- 
imations by comparing their predictions with the numeri- 
cal solution of the St. Venant (S V) equations under steady 
state conditions. It was shown that the two approximations 
could have significant errors even for critical flow and 
fairly large values of the kinematic wave number. When 
the KW approximation was inaccurate, the improvement 
by the DW approximation was only modest. Parlange et 
al. (1990) then proposed a more accurate approximation 
when the kinematic wave number was large. They sug- 
gested splitting the solution of the SV equations in two re- 
gions, one near the downstream end of the plane and the 
other covering most of the plane. 

However, no explicit relations as a function of space 
between these criteria and the errors resulting from the KW 
or DW approximation have been derived as yet. Also, these 
criteria did not include the effect of infiltration although 
this is vital for surface irrigation. As a result, the actual 
error of these approximations as a function of space is 
usually not known. Furthermore, it is not evident in hydro- 
logic modeling if the KW and DW approximations are valid 
for the entire length of the channel or a portion thereof, or 
for infiltrating channels. 

The objective of this study was to derive, under simpli- 
fied conditions, these errors as a function of space for the 
KW and DW approximations for time-independent flows 
in infiltrating channels. 

Shallow water-wave (SWW) theory 
for time-independent flows 

Governing equations 

The SWW theory for time-independent flows can be de- 
scribed by the St. Venant (SV) equations. For a time-inde- 
pendent flow in an infiltrating channel of length L, these 
equations can be written in one-dimensional form on a unit 
width basis as: 

Continuity equation, 

cfr U'h) = -f (1) 

and momentum equation, 

-£[±u-+gh\ = g(So-Sf) 

where h is depth of flow (L), u is local mean velocity 
(L/T), f is uniform infiltration rate (L/T), g is accelera- 

tion due to gravity (L/T2), x is space coordinate in the di- 
rection of flow (L), 50 is bed slope, and Sfis frictional slope. 
Note Q = uhis discharge (L3/(TL)) per unit width, and Eq. 
(2) neglects the effect of momentum exchange between 
longitudinal flow and infiltration. This amounts to assum- 
ing that infiltration occurs in the vertical direction only. Sf 
can be approximated as 

.2 

Sf = ßMr (3) 

where ß (T2/L) is some resistance parameter. If the Chezy 
relation is used then ß=g/C2, where C is Chezy's resis- 
tance parameter. 

Equations (1) and (2) are the governing equations for 
the dynamic wave (DYW) representation for time-indepen- 
dent flows. The KW approximation is based on Eq. (1) and 
Eq. (2) with the left side deleted, 

g(S0-Sf)   or   50 = 5^ (4) 

which can be expressed as Eq. (3). The DW approxima- 
tion uses Eq. (1) and Eq. (2) with the convective acceler- 
ation term deleted, 

d/j _ c     c (5) 

It is useful to express the SV equations in dimension- 
less form. To that end, the following normalizing quan- 
tities are defined: Q0 = discharge per unit width (L2/T) of 
the channel at the upstream boundary; H0 = normal depth 
(L) of flow corresponding to Q0 at the upstream boundary; 
U0 = normal velocity (L/T) for öo(f öo/^o)L;co=normal- 
izing distance (L) computed as Q0/f, where/ is the aver- 
age rate ofjnfiltration during the period of irrigation 
obtained asf=j*f(w) dw/T, f(t) = infiltration rate (L/T), 
T= duration of irrigation, TQ = normalizing time (7") com- 
puted as TQ = H0lf, and F0 = normalizing Froude number 
= U0/(gH0r

5. It should be noted that the quantities quali- 
fied as "normal" correspond to the normal flow, whereas 
those qualified as "normalizing" are employed to nondi- 
mensionalize the flow variables. With the use of the above 
normalizing quantities, the following dimensionless quan- 
tities can be defined: 

*,*.=  * 
*o Ho'U*~U0 

= Q_ = uh_ f_       _ F _    u* 
^     Öo     Öo'7*     /'   *     F0     (h,)0-5' 

Recall that the Froude number F is 

F = Froude number = 

(2)      K 

(ghf5 

and the kinematic wave number K is 

SQL 

FQ HO 

(6) 

(7) 

(8) 

(9) 

With the introduction of the above normalizing quan- 
tities. Eq. (1) becomes 
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and Eq. (2) becomes 

- + ■ 
1 d\ 

dr. 
= £ l 

.2 A 

"*; 

(10) 

(11) 

Note that 

Sn = 
E + l (19) 

Equations (10) and (11) are the governing equations for 
the DYW representation for time-independent flows. The 
KW approximation is based on Eq. (10) and Eq. (11) with 
the left side deleted, 

K 
.2\ 

1- = 0   or   u:=K (12) 
* J 

This is actually the formal limit of Eq. (11) when 1/KFQ 

-» 0. The DW approximation uses Eq. (10) and Eq. (11) 
with the convective-acceleration term deleted, 

( 
= K 1-- 

,2\ 

* J 

(13) 

This can be deduced from Eq. (11) by letting F0
2 —> 0 for 

fixed ATF0
2. 

Boundary conditions 

The boundary condition can be specified at the upstream 
boundary as follows: 

A(0) = Ao,      K(0) = «0,      Q(0) = Q0. 

In dimensionless terms, 

h*(0) = h0*,      H*(0) = HO*,      Q*(0) = Qo«. (15) 

Equation (18) was used to define the error. The differen- 
tial equation for error can, however, be defined without ex- 
plicitly knowing SD so long as SK is known, as seen from 
Eq. (19). 

For the above-specified boundary condition, twelve 
cases involving F0 = 0.1, 0.5, 1.0; and K=3, 5, 10 and 30, 
were considered for computing errors. The KW, DW and 
DYW solutions were computed in terms of depth, veloc- 
ity, and discharge for all of these cases. 

Hydrodynamic solutions 

Kinematic-wave solution 

Equation (10), subject to the upstream boundary condition 
given by Eq. (15), has the solution: 

«*A, = ß*=-/*^ + fl.    a = A0*«o* = Öo*=l (20) 

where a is the dimensionless discharge at the upstream 
boundary which equals one. With introduction of Eq. (12), 

«* = (a-/«,*J,/3 = (l-/.*J,/3 (21) 

which is the KW solution. When expressed in terms of di- 
mensionless depth, it becomes 

Definition of error 

The relative error E can be defined by 

p _ SK ~Sp 
C*  — c 

where SK is the dimensionless solution from KW or DW 
approximation and SD is the dimensionless solution from 
DYW representation. The solution can be either in terms 
of depth (/z„), velocity (u*), or discharge (ß*). Thus, 

(14)    />* = («-/***)2/3 = (l-/**,)2/3. (22) 

Equations (21) and (22) show that the flow will advance 
as far as X* = a/f* = l//*, and clearly depends on the up- 
stream condition and the rate of infiltration. 

The KW solution (depth, velocity, and discharge) was 
computed for all 12 different cases involving values of the 
Froude number (Fo=0.1, 0.5, and 1.0), kinematic wave 
number (K=3, 5, 10, and 30), lateral inflow ^=0, infil- 
tration rate/^0.5, and dimensionless upstream discharge 
(a= 1.0). The solution in terms of flow depth for a sample 
case (F0 = 0.5) is shown in Fig. 1. The KW solution is not 
dependent on K or F0. The depth decreases with the lon- 
gitudinal distance. This is due to the fact that the total in- 
filtration increases from upstream to downstream. 

(16) 

E=
UK

~
UD

, £ = .hx-hp   E=QKJ-QD (17) 
hD     ' QD 

where the subscripts K and D correspond to the KW (or 
DW) and DYW solutions, respectively. 

The differential equation for error can be obtained by 
differentiating Eq. (16) with respect to x* as 

d£ ={E + \) dSK    (E + l)2 dSD 

dx- 5A-     dv*        SK      dx„ 

Diffusion-wave solution 

Equation (10), subject to the condition in Eq. (15), has the 
solution given by Eq. (20). Substitution for h* from Eq. 
(20) into Eq. (13) yields 

_d_ 
dx„ 

0-/*■** 1 = KF0
2 1 — 

u* 

(a-/*** 
(23) 

(18) Differentiation and simplification of Eq. (23) produce the 
DW equation in terms of u*. 
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Kinematic wd.ve   approximation : Froude 
Upstream   boundary   condition   :   Constant   discharge   =   1 

Lateral   irvfloiu  q =   0.00      Infiltration F  =    0.50 

©-©  K =      3.00      A-A  K =      5.00 

lumber   =   0. 50 

+-+  K =       10.00     XHX  K =      30.00 

1.X 

Dimensionless  distance   X 

Fig. 1 Dimensionless flow depth by the kinematic-wave approxi- 
mation as a function of dimensionless distance when the upstream 
discharge is 1.0, Froude number=0.5. and # is variable 

du>_KF0-u>-KF0-u*(l-f.x,)-f,u„(l-f.xJ 
dx. (I-/,**)2 

(24) 
Its analytical solution is not tractable. 

The DW approximation can also be expressed in terms 
of /u as 

Ac. ■ = KF<( 1- (1-/»*«) 
hi 

2\ 

(25) 

Equation (25) shows that the depth gradient becomes zero 
when 

N2/3 
** = (!-/.-f*rJ (26) 

which is the  KW solution  given  by Eq. (22).  When 
/* x*= 1, the depth gradient equals 

dk 
-r*- = KBi (27) 

An attempt was made to integrate Eq. (25) by prescrib- 
ing the boundary condition at the upstream end, but this 
resulted in a solution which was not realistic. This can be 
attributed to the highly nonlinear nature of Eq. (25) and the 
presence of subcritical flow. A viable solution can be 

obtained by prescribing a downstream boundary condi- 
tion and marching the solution from downstream to up- 
stream. 

A solution could not be obtained for the downstream 
depth /z* = 0.0. A very small but finite depth ^ = 0.04 was 
prescribed at the downstream end. By employing this pro- 
cedure, the diffusion wave solution (dimensionless head, 
velocity and discharge) was computed for all 12 cases' 
involving various values of F0 and K. For a sample case 
(Fo = 0.5), the solution in terms of dimensionless depth is 
shown in Fig. 2. As can be seen from the figure for a con- 
stant downstream depth of h^ = 0.04, the upstream depth 
varied from 0.85 for K= 3 to 0.98 for K= 30. The depth de- 
creased from upstream to downstream due to infiltration. 
The infiltration depth was zero at the upstream end and in- 
creased to 0.5 at the downstream end. 

Approximate diffusion-wave solution 

An approximate analytical solution of Eq. (25) can be ob- 
tained following Parlange et al. (1989). To that end Eq. 
(25) can be written as 

£h2^£--ti=a-f*x*)2 
(28) 

where E=\IKFQ. 

Using the transformation z* = 1 -/* je*, Eq. (28) can be 
written as 
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Di-ffusion   uuaue   approximation   :    Froude   number   =   0.50 
Upstream boundary condition : Constant discharge = 1 

Lateral in-flow q = 0.00  Infiltration F = 0.50 

O-O  K =      3.00      A-A  K =      5.00       +-+  K =       10.00     X*  K =      30.00 

Tl.OO       0.10       0.20       0.30        0.110       0.50        0.60        0.70        0.8O       0.90        1.00        L. 10        1.20        1.30        1.110        1.50        1.60        1.70        1.B0        1.90        2.00 

Dimensionless distance X 

Fig. 2 Dimensionless flow depth by the diffusion-wave approxima- 
tion as a function of dimensionless distance when the upstream dis- 
charge is 1.0, Froude number=0.5, and AT is variable 

This is a linear differential equation and has an analytical 
solution. Let y = h\. Equation (33) can be written as 

+ - 3y i     2 3 z* 

dz* 
f*ehl^ + hl=zl (29) 

dy_ 

Its analytical solution is 

= 0. (34) 

Taking a Taylor-series approximation for h* near z# = 0 

h*=h*o+-^z*+mT (30) 

where HOT represents higher order terms, and h^0 = h^ (0). 
From Eq. (29) atz^=0, dh*/dx*=-l/(f*e). Equation (30) 
now becomes 

c (/* £K0 - z*f + f2 e2 A*2
0 +3zi 

~ 3 /„. £ /J^Q Z^ = 1% 

where c is the constant of integration. Its value can be found 
by using the condition h*=h#0 at z*=0 

c = —  

K - "*o    f g 

/*3£3A*0 

(35) 

(31) Substituting Eq. (35) into Eq. (34) yields the solution 

This is a good approximation of Eq. (29) near z* = 0 but 
clearly a poor approximation when z* approaches 1. Equa- 
tion (29) can be written as 

(K0-f*2£2) 
fie3h0 

2 „2 j,2 
(/*e^o~z*) +/*£ ^o+3z* (36) 

(32) 
e/A dhj      3__2 

3     dz*      *    Z*' 
Substitution of Eq. (31) in Eq. (32) to replace the linear 
term yields 

-1,3 3 Jif £ «*Q Z* — «* . 

The value of h„,0 is found by substituting h* = h!m at zm = 1. 
Carrying out the above substitution and some algebraic ma- 
nipulation yields 

• + - 
3 hi 3zl dhj 

dz* ' (/*£/z*0-z*)    (/*eÄ*0-z*) 
= 0. (33) 

/* £3 h$0 - 3 f2 e2 hl0 + 3 /„ e hl0 (37) 
r3„3 2   r.2 H-ht*tiei-l)hmo+tiei=0. 
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Di-f-fusion   wave   approximation   :    Froude   number 
Upstream boundary condition : Constant discharge = 1 

Analytical solution 

Lateral irvflou q = 0.00  Infiltration F = 0.50 

©-© K =  10.00 A^ K =  30.00 

0.50 

Dimensionless distance X 

Fig. 3 Dimensionless flow depth by approximate analytical diffu- 
sion-wave solution as a function of dimensionless distance when the 
upstream discharge is 1.0, Froude number=0.5, and K= 10, 30 

For a given value of hu the above equation must be 
solved to obtain the value of /^0. 

This is an explicit solution, for all quantities on the right 
hand side are known. It was found that Eq. (37) yielded 
positive real roots only for large values of KF$. The solu- 
tion in terms of dimensionless depth for two values of K 
(K= 10 and 30) is shown in Fig. 3. 

Dynamic-wave solution 

Equation (10), subject to Eq. (15), has the solution given 
by Eq. (20). Substitution for A„ from Eq. (15) in Eq. (11) 
leads to 

dbt. 
1-/*■** = K 1 — ul 

l~f*x* 
(38) 

dK _ KF0
2 hj-KF0

2(l-f*xJ2 + FQ
2 h« L(l- Lx,) 

At, «-#(!-/,* J2 
(40) 

It is seen from Eq. (30) that the depth gradient becomes in- 
finite when 

A* = [^0 0-/.*•)] 
12/3 

(41) 
and is given by Eq. (27) when a=f#x*=l. 

The procedure outlined in section 2 was used to inte- 
grate Eq. (40) to get the value of A* for different values of 
x* for all 12 different cases. For a sample case (F0 = 0.5), 
the solution in terms of the dimensionless depth is shown 
in Fig. 4. As can be seen from the figure, for a constant 
downstream depth of h* = 0.04, the upstream depth varied 
from 0.88 for K= 3 to 0.98 for K= 30. The depth decreased 
from upstream to downstream due to infiltration which was 
zero at the upstream end and increased to 0.5 at the down- 
stream end. 

Carrying out the required differentiation and simplifying    Determination of error 
lead to 

d«, _ KF0
2 U

2
 (1 - /. x,) - KFJ ul +/, «. (1 -fmXj 

*** o-/**jrtf«.3-(i-/«,*j] 

Similarly, in terms of /z*, Eq. (11) becomes 

Error in KW approximation 

(39) E^uation (18) is the error differential equation with S spec- 
ified by the flow depth. For the KW approximation, h^ is 
explicitly given by Eq. (22), and hD by the solution of Eq. 
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Dynamic uuQ^e approximation  :  Fnoude number = 0.50 
Upstream boundary condition : Constant discharge = 1 

Lateral irvfloui q = 0.00  Infiltration F = 0.50 

©-©  K =      3.00      &-&  K =      5.00       +-+  K =       10.00     >0<   K =      30.00 

Dimensionless   distance   X 

Fig. 4 Dimensionless flow depth by the dynamic-wave approxima- 
tion as a function of dimensionless distance when the upstream dis- 
charge is 1.0, Froude number=0.5, and K is variable 

(40). Substituting for hD and hK in Eq. (18) leads to the fol- 
lowing error differential equation: 

d£ =(g+l) 
d**        hK 

(42) 

To that end, dhK/dx^ is obtained by differentiating Eq. 
(22): 

d^ 
dx* ^(l-/,**)-'/3 (43) 

and dhD/dx^ is given by Eq. (40). Substituting Eqs. (22), 
(40), and (43) into Eq. (42) yields the following differen- 
tial equation for error in the KW solution: 

dE (E + l) 

(1-/***) 
2/3 

-2/* 
3Ü-/***) 1/3 

(E + l)2 

(1 -/*■**) 
2/3 

r.2j,3 KFihh-KFjil-f.x^+Fjhof.il-f^x,) 
h3D-F0

2(l-f,x,)2 (44) 

dE _ 
dx* 

-2/*(£ + 

3^/2 

(£ + D2 

hK 

1) 

-KF0
2(E + l)3+f,F0

2h-K
U2 

l-F0
2(E + lf 

(45) 

where AA:=(1 -/„, **)2/3. Equation (45) specifies error in the 
KW solution as a function of distance. 

An explicit solution for error in the KW approximation 
is not tractable. However, a numerical solution is relatively 
simple. The longitudinal variation of error in depth for the 
case F0 = 0.5 is shown in Fig. 5. An analysis of the error 
profile shows that the KW approximation is an excellent 
approximation for large values of KFQ(KFQ>7.5). The 
error profile is almost flat for KFQ =7.5 with error mag- 
nitudes of 1.2%. The error profile is almost flat for 
KFQ=1.5 with error magnitudes of 1.2%. The error varied 
from 1.5% to 44% for KF<?=0.75. This indicates that the 
KW approximation is a poor approximation for small val- 
ues of KFQ . It is also observed that the error becomes very 
large at the downstream end. This is due to the fact that the 
KW approximation require that the depth be zero at the 
downstream end, whereas a small but finite depth is re- 
quired for the DYW approximation. 

Error in DW approximation 

Note that hD is expressed in terms of hK through Eq. (19). 
Upon simplifying Eq. (44), 

The error differential equation for DW approximation can 
be obtained by substituting Eqs. (25) and (40) in Eq. (42). 
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Error in kinematic wave approximation : 
Upstream boundary condition : Constant discharge - 1 

Lateral in-flou q = 0.00  Infiltration F = 0.50 

O-O  K =      3.00       ^^  K =      5.00       H—h   K =       10.00 
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Error in diffusion wave approximation : 
Upstream boundary condition : Constant discharge = 1 

Lateral in-floiu q = 0.00  Infiltration F = 0.50 

©-©   K =      3.00       A-A  K =      5.00       -H+   K =      10.00 

Froude   number   =   0.50 

X-X   K =      30.00 

Dimensionless  distance   X 

Fig. 7 Error in the flow depth by the analytical diffusion-wave so- 
lution as a function of dimensionless distance when the upstream dis- 
charge is 1.0, Froude number=0.5, and AT is variable 

With these substitutions we obtain 

d£ 
dx* 

(£ + 1) KF0
2h3

K-KF0
2(l-f*x*)2 

hi 
(E + lf 

KFihl-KF0
2(l-f^xJ2 + FJhDf^l-f,x,) 

h3
D-Fo(l-f*x,)2 (46) 

shows that the DW approximation is an excellent approx- 
imation for large values of KF0

2 (KF0
2 > 7.5). The error pro- 

file is almost flat for KFQ = 7.5 with error magnitudes of 
0.8%. The error varied from 1.42% to 6.0% for KF0

2 = 0.75. 
As can be seen from the figure, the error magnitude be- 
comes large (=23%) near the downstream end of the chan- 
nel (1.99<^<2.0). This indicates that the DW approxi- 
mation is valid over a large range of KF0

2 and in most of 
the channel reach. 

On simplifying, 

d£ 'KF0
2h3

K-KF0
2(f*x,)2~ 

d** [                hit                 \ 
(E+D- (E + lf KF0

2hl + F0
2hKf,(l-f,x*)(E+l)2-KF0

2(l-f,x* )2(£+D3 

The longitudinal variation of error in depth for the case 
Fo=0.5 is shown in Fig. 6. An analysis of the error profile 

Fig. 5 Error in the flow depth by the kinematic-wave approxima- 
tion as a function of dimensionless distance when the upstream dis- 
charge is 1.0, Froude number=0.5, and Kis variable 

Fig. 6 Error in the flow depth by the diffusion-wave approximation 
as a function of dimensionless distance when the upstream discharge 
is 1.0, Froude number=0.5, and K is variable 

hl-F0
2(l-f, X(E+iy 

(47) 

Error in approximate DW solution 

Equation (18) is the error differential equation with S spec- 
ified by the flow depth. For the approximate analytical so- 
lution, hK is given by Eq. (36). Substitution for hD and hK 

in Eq. (18) gives the differential equation for error. 
To that end, dhK/dxil! is obtained by differentiating Eq. 

(36): 
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d/n /. fAi-f.x.)2 

dr.     h.[f.eK0 + f.x.-l)    h2Af.eh.0 + f.x.-\) 
(48) 

and dhD/dx* is given by Eq. (39). 
Substituting Eqs. (36), (40), and (48) into Eq. (42) yields the following differential equation for error in the approx- 

imate analytical solution. 

d£ =[E +1) 
dr.        hi 

f.hK-f.{\-f.x.)2 

f.eh.0 + f.x.-l) 
(E + lf 

hk 

KFjhJ
K-KF0

z(l-f.x.)l(E + iy+Fjf.hK(l-f.x.){E + ir 

[h3
K-Ft(\-f.x.)2(E + \)3] 

■  (49) 

where hK is given by Eq. (36). The longitudinal variation 
of error is shown in Fig. 7. The magnitude of error varied 
from about 6.4% at the upstream end to greater than 30% 
at the downstream end. This shows that the approximate 
analytical diffusion-wave solution is not suitable. 

Conclusions 

The following conclusions can be drawn from this study: 
(1) When the upstream condition of finite discharge and 
depth is known, the governing differential equation can- 
not be integrated directly from upstream to downstream. 
An iterative procedure must be followed by which the 
downstream depth, K and F0 are varied until the upstream 
depth agrees with the given condition. (2) For upstream 
boundary conditions of finite discharge and depth, the KW 
approximation was in excellent agreement with the DYW 
representation for large values of KFQ. The error profiles 
were flat [almost a constant value of error (=1.2%)] for 
KFQ = 7.5 and curved downwards for smaller values of KFQ 
with errors varying between 18% and 44% for KFQ=0.75. 
The KW approximation is a good approximation for large 
values of KFQ, but a poor approximation for small values 
of KFQ. (3) For upstream boundary conditions of finite 
discharge and depth, the DW approximation was in excel- 
lent agreement with the DYW representation for large val- 
ues of KFQ in the region 0.0<x*< 1.98. The error profiles 
were flat [almost a constant value of error (=0.8%)] for 
KF£ = 1.5 and =1.4% for KF$ = 0.15. The DW approxima- 
tion was found to be a good approximation for the range 
of values of KFQ considered (0.75 <KF0

2<7.5) and in the 
region O.Q<x*<\.9%. (4) The approximate analytical so- 
lution performed poorly for larger values of KF0

2 and a vi- 

able solution could not be obtained for small values of 

Abbreviations: C=Chezy's resistance parameter (L°'5/T);/=rate of 
infiltration (L/T);f = average rate of infiltration (L/T); F=Froude 
number; F0=normalizing Froude number; F, = Froude number in di- 
mensionless domain; g=acceleration due to gravity (L/T2); /z = flow 
depth (L); /i,=dimensionless flow depth; H0=normal depth of flow 
(L); A"=kinematic wave number; L=length of the channel (L); Q- 
discharge per unit width (L3/(TL)); Q0 = normal discharge (L l(TL)); 
Q, = dimensional discharge; 5f=frictional slope; S0=bed slope: 
r=duration of irrigation (T); T0=normalizing time (7"); M = flow ve- 
locity (L/T); U0=normal velocity (L/T); «*=dimensionless veloc- 
ity; x=distance measured from the upstream boundary (L); x0=nor- 
malizing distance (L);;c=dimensionless distance: /J=resistance pa- 
rameter (T2/L). 

Acknowledgements This study was supported in part by funds pro- 
vided by the Army Research Office, Department of the Army, under 
the project "A Continuum Model for Streamflow Synthesis," Grant 
No. DAAL03-89-G-0116. 

References 

Govindaraju RS, Jones SE. Kavvas ML (1988) On the diffusion wave 
model for overland flow. 2. Steady state analysis. Water Res Res 
24:745-754 

Morris M (1978) The effect of the small-slope approximation and 
lower boundary condition on the solutions of the Saint Venant 
equations. J Hydrol 40:31 -47 

Parlange JY, Hogarth W, Sander G, Rose C, Haverkamp R, Surin A, 
Brutsaert W (1990) Asymptotic expansion for steady-state over- 
land flow. Water Res Res 26:579-583 

Parlange JY, Hogarth W, Sander G, Surin A, Haverkamp R (1989) 
Comment on "On the diffusion wave model for overland flow." 
2. Steady state analysis. In: Govindaraju RS, Jones SE, Kavvas 
ML (1988) Water Res Res 25:1923-1924 

Pearson CP (1989) One-dimensional flow over a plane: criteria for 
kinematic wave modeling. J Hydrol 111: 39-48 



Environmental Management, Geo-Water& Engineering Aspects, Chowdhury& Sivakumar(eds) 
© 1993 Balkema, Rotterdam. ISBN 90 54100990 

Accuracy of hydrodynamic models of flood-discharge determinations 

V E Singh & V Aravamuthan 
Department of Civil Engineering, Louisiana State University, Baton Rouge, La., USA 

E.S.Joseph 
Department of Civil Engineering, Southern University, Baton Rouge, La., USA 

ABSTRACT:  Hydrodynamic models employed for computing flood discharges are based on 
the shallow water-wave theory that is described by the St. Venant (SV) equations. 
These models are derived from either the kinematic-wave (KW) approximation, the 
diffusion-wave (DW) approximation or the dynamic-wave (DYW) representation of the 
SW equations.  In the studies reported to date, different types of criteria have 
been established to evaluate the adequacy of the KW and DW approximations, but no 
explicit relations either in time or in space between these criteria and the errors 
resulting from these approximations have been derived yet.  Furthermore, when doing 
hydrologic modeling, it is not evident if the KW and DW approximations are valid on 
one hand for the entire hydrograph or a portion thereof, and on the other hand for 
the entire channel length or a portion thereof.  In other words, most of these 
criteria take on fixed point-values for a given rainfall-runoff event.  This paper 
attempts to derive, under simplified conditions, error equations for the KW and DW 
approximations for space-independent as well as for time-independent flows, which 
provide a continuous description of error in the flow-discharge hydrograph.  For 
space-independent flows, a dimensionless parameter y is defined which reflects the 
effect of initial depth of flow, channel-bed slope, lateral inflow, and channel 
roughness.  For time-independent flows, the dimensionless parameter is the product 
of the kinematic wave number and the square of the Froude number.  The kinematic 
wave, diffusion wave and dynamic wave solutions are parameterized through these 
parameters.  By comparing the kinematic wave and diffusion wave solutions with the 
dynamic wave solution, equations are derived in terms of these parameters for the 
error in the kinematic wave and diffusion wave approximations. 

1  INTRODUCTION 

Physically-based models of overland 
flow, channel flow, surface irrigation, 
and many other phenomena involving 
unsteady, free surface open channel 
flows are based on the shallow water 
wave (SWW) theory.  These models are 
based either on the kinematic wave (KW) 
approximation (Lighthill and Whitham, 
1955), diffusion wave approximation 
(DW), or dynamic wave (DYW) representa- 
tion.  Lighthill and Whitham (1955) 
showed that at the Froude numbers less 
than one (appropriate to flood waves) 
the dynamic waves are rapidly atten- 
uated and the kinematic waves become 
dominant.  Using a dimensionless form 
of the St. Venant (SV) equations, 
Woolhiser and Liggett (1967) obtained 
what is now referred to as the kinema- 
tic wave number, K, as a criterion for 
evaluating the adequacy of the KW 
approximation.  For K greater than 20, 
the KW approximation was considered to 
be an accurate representation of the SV 

equations in modeling of overland flow. 
However, no relation between K and the 
error in the KW approximation was sug- 
gested.  Morris and Woolhiser (1980) 
modified the above criterion with an 
explicit inclusion of Froude number, 
FQ, and showed, based on numerical 
experimentation, that FQ K > 5 was a 
better indicator of the adequacy of the 
KW approximation.  A relation between 
this criterion and the error resulting 
from the KW approximation was not 
derived, however. 

Using a linear perturbation analy- 
sis. Ponce and Simons (1977) derived 
properties of the KW and DW approxima- 
tions as well as DYW representations in 
modeling of open channel flows.  They 
derived a spectrum showing the regions 
of the validity of the KW and DW 
approximations.  Menendez and Norscini 
(1982) extended the work of Ponce and 
Simons by including the phase lag 
between the depth and velocity of flow. 
Their results were, however, similar to 
those of Ponce and Simons (1977).  In 
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another but similar study, Ponce, et 
al. (1978), based on propagation char- 
acteristics of sinusoidal perturbation, 
derived criteria to evaluate the ade- 
quacy of the KW and DW approximations. 
Daluz Viera (1983) compared solutions 
of the SV equations with those of the 
KW and DW approximations for a range of 
Fg and K, and defined the regions of 
validity of these approximations in the 
K-FQ space. 

Fread (1985) developed criteria for 
defining the range of application of 
the KW and DW approximations.  These 
were based on an analysis of the magni- 
tude of the normalized errors in the 
momentum equation due to omission of 
certain terms.  In a comprehensive 
study, Ferrick (1985) defined a group 
of dimensionless scaling parameters to 
establish the spectrum of river waves, 
with continuous transitions between 
wave types and subtypes.  With the aid 
of these parameters he was able to 
discern when the KW and DW approxima- 
tions would be valid. 

In most of these studies, different 
types of criteria have clearly been 
established to evaluate the adequacy of 
the KW and/or DW approximations, but no 
explicit relations either in time or 
space between these criteria and the 
errors resulting from these approxima- 
tions have been derived yet.  Further- 
more, when doing hydrologic modeling it 
is not evident if the KW and DW approx- 
imations are valid for the entire flood 
hydrograph or a portion thereof.  In 
other words, most of these criteria 
take on fixed point values for a given 
event.  The objective of this study is 
to derive, under simplified conditions, 
error equations for the KW and DW 
approximations for space-independent as 
well as time-independent flows, which 
specify errors as a function of time. 

rainfall intensity (L/T), f is uniform 
infiltration rate (L/T), g is accelera- 
tion due to gravity, x is space coordi- 
nate in the direction of flow (L), t is 
time (T), Sg is bed slope, and Sf is 
frictional slope.  Note Q = uh is dis- 
charge (L3/TL) per unit width.  Sf can 
be approximated as 

Sf-P# 
(3) 

where ß is some resistance parameter. 
If the Chezy relation is used for 
representing the friction then ß - 
g/C2, where C is Chezy's resistance 
parameter. 

The DYW representation employs the 
full form of equations (1) and (2) . 
The KW approximation is based on equa- 
tion (1) and equation (2) with the left 
side omitted, 

«<s0 - Sf> ¥■-> (4) 

The DW approximation uses equation (1) 
and equation (2) with local and convec- 
tive acceleration deleted, 

gg=g(S 
qu 

0 " V " ~ (5) 

Analytical solutions of the SV 
equations or their variants in the KW 
and DW approximations are tractable 
only for simple cases.  To that end, 
both space-independent and time- 
independent cases are considered in 
this study.  In the first case, the 
water surface is flat. 

3  SPACE-INDEPENDENT FLOWS 

3.1  Governing Equations 

2  SHALLOW WATER-WAVE (SWW) THEORY 
For space-independent (or uniform) 
flows, equation (1) takes the form 

The SWW theory can be described by some 
form of the SV equations.  For flow 
over an infiltrating plane subject to 
uniform rainfall, these equations can 
be written in one-dimensional form on a 
unit width* basis as 

continuity equation, 

& + fe (Uh) = q " f 

momentum equation, 

^+|_(Iu2+gh, = ,g(Sc 

(1) 

qu v -- 
(2) 

where h is the depth of flow (L), u is 
local mean velocity (L/T), q is uniform 

and equation (2) becomes 

du = g(S  - S ) -2Ü 
dt  yv 0   f   h 

(6) 

(7) 

Equations (6) and (7) are the governing 
equations for the DYW representation 
for spatially uniform flows.  The KW 
approximation is based on equation (6) 
and equation (7) with the left side 
dropped, 

g(sQ - sf) 
qu 

= 0 (8) 

The DW approximation uses equation (6) 
as well as equation (8).  Therefore, 
for spatially uniform flows, the KW 
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approximation is identical to the DW 
approximation.  Equation (8) can also 
be approximated by neglecting the 
momentum exchange between lateral 
inflow and longitudinal channel flow as 

(9) 

a- (uh) 
dx 

and equation (2) becomes 

(14) 

4? {iu2 + gh) 9(So "V -!T<15) 

which can be expressed as equation (3). 
Similarly, equation (7) can be written 
as 

£ - *<so - v (10) 

Depending upon the presence or 
absence of f, equation (6) can also be 
simplified.  If f = 0, then 

dh = 
dt 

(11) 

3.2  Types of Scenarios 

Depending upon the presence of lateral 
inflow and infiltration, four different 
scenarios can be considered:  (1) f = 
0, q = qg = constant; this includes the 
case q = 0.  (2) q = qg = constant, and 
f = fg = constant; and this includes 
the case q = f = 0.  (3) q - f = 0, q = 
qg = constant; this includes the case 
q = f = 0.  (4) q = 0, f = fg = con- 
stant; this includes the case f = 0. 
It may be noted that the scenario with 
q = 0 in equation (11) or (q - f) =0 
in equation (6) applies to the 
recession hydrograph.  The same applies 
if (q - f) < 0. 

Equations (14) and (15) are the govern- 
ing equations for the DYW representa- 
tion for time-independent flows.  The 
KW approximation is based on equation 
(14) and equation (15), with the left 
side deleted, leading to equation (8). 
The DW approximation uses equation (14) 
and equation (15) with convective 
acceleration deleted, 

gd! = *<so 
qu v -- (16) 

Equations (15) and (16) can also be 
approximated by neglecting the momen- 
tum-exchange between lateral inflow and 
longitudinal channel flow respectively 
as 

d 
dx 

(iu2 + gh) g(sQ - V 
and 

dh 
dx 

so"Sf 

(17) 

(18) 

Depending upon the presence of f, equa- 
tion (14) can also be simplified.  If 
f - 0, then 

d(uh) 
dx 

(19) 

3.3  Initial Conditions 

Two types of initial conditions (t = 0) 
can be assumed: , 

(1) h(0) = h0, u(0) = Ug,      (12) 

(2) u(0) = 0, h(0) = 0        (13) 

3.4  Scenarios for Determination of 
Error 

4.2  Types of Scenarios 

Depending upon the presence of lateral 
inflow and infiltration, four different 
scenarios can be considered as in the 
preceding section.  It may be noted 
that the scenario with q = 0 in equa- 
tion (19) or q - f = 0 in equation (14) 
applies to the case of losing flow. 
This same would apply if q - f < 0. 

Error equations have been derived by 
Singh (1992a, 1992b) for the KW and DW 
approximations under the above-men- 
tioned conditions for four different 
scenarios.  Treated together, eighteen 
cases result and are summarized in 
Table 1. 

4 . 3 Boundary Conditions 

Two types of conditions at the upstream 
boundary (x = 0) can be assumed: 

(1)   h(0) = h0, u(0) = Ug, 

(2) u(0) = 0, h(0) hr 

(20) 

(21) 

4  TIME-INDEPENDENT FLOWS 

4.1  Governing Equations 

For time-independent flow, equation (1) 
takes the form 

Depending upon the type of flow, the 
boundary conditions may have to be 
specified at the upstream boundary as 
well as the downstream boundary or at 
the upstream boundary alone. 

The upstream boundary condition, 
given by equation (21), influences both 
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the supercritical and subcritical flow 
outside zone A of the characteristic 
solution domain.  The downstream boun- 
dary condition (x - L) can be of two 
types: 

(1)   Critical flow downstream 
boundary condition: 

u(L) - [gh(L)]°-5 
(22) 

where L is the channel length.  This 
occurs when the channel ends at the 
steep bank of a river.  For supercri- 
tical slow 

u(L) > [h(L)g]0-5 (23) 

(2)   Zero-depth gradient downstream 
boundary condition: 

dh(L) 
dx (24) 

6.1 Kinematic Wave and Diffusion Wave 
Solution 

Equation (11), subject to equation 
(12), has the solution: 

h = h0 + ^ (27) 

From the kinematic wave approximation, 

u = (|ä)0.5 h0.5 (28) 

It is convenient to define a dimension- 
less time T as 

T - &- - h0 * q0t h ± n    T > 1 (29) 

Equation (14) can be expressed in 
dimensionless form as 

h^ - £- , x 

4.4 Scenarios for Determination of 
Error 

Error equations have been derived by 
Singh and Aravamuthan (1992a, 1992b 
1992c) for the KW and DW approximations 
under the above-mentioned conditions 
for four different scenarios. Taken 
together, these will give rise to 21 
cases that are summarized in Table 2. 

Equation (34) can be expressed in 
dimensionless form as 

v = a. = T0.5 U Ä0-5    (30) 

The kinematic wave (KW) or diffusion 
wave (DW) solution is given by equa- 
tions (33) and (34).  The velocity 
increases parabolically with T. 

5  DEFINITION OF ERROR 

The relative error E is defined as 

(25) 

6.2 Dynamic Wave Solution 

Equation (11) has the solution given by 
equation (27).  Equation (2) can be 
expressed in dimensionless terms as 

where SK is the solution from the KW or 
DW approximation, and SD is the solu- 
tion from the DYW representation.  The 
solution can be either in terms of 
depth (h), velocity (u), or discharge 
(Q), i.e., S {u,h,Q}.  Subscripts K and 
D correspond to the KW (or DW) and DYW 
solutions, respectively.  The differen- 
tial equation of E can be obtained by 
differentiating equation (25) as 

dE „ (E+l) ££K _ (E+l)2 <*SD 
dx dx dx (26) 

The differential equation for error 
can, however, be defined without expli- 
citly knowing SD, so long as Sv is 
explicitly known. * 

ERROR EQUATIONS FOR SPACE- 
INDEPENDENT FLOWS 

We consider the case where f 0, and 

4<3  ßSphp 

(31) 

Equation (31) is a special case of 
the Riccati equation.  When T = 1, 
v = 1, and dv/dT - 0.  With these 
initial conditions in hand, equation 
(31) was solved by using the 4th order 
Runge-Kutta method.  For a fixed y, v 
increases with increasing T, and for a 
fixed X, it increases with y.  However, 
for y a 1.5, v is not very sensitive to 
Y- 

6. 3 Error in KW and DW Approximations 

By making use of equations (30) and 
(31) in equation (26), one obtains the 
error differential equation: 

of = Cn<T> + C, <Y,T) E 0V"'   '1 

+ C2(y,T) E2 (32a) 
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E(l) 0, T ä 1 

where 

(32b)    7  ERROR EQUATIONS FOR TIME-INDEPENDENT 
FLOWS:  NON-ZERO VELOCITY AT THE 
UPSTREAM BOUNDARY 

co (T) 
s 1 

2T 

cl <Y» T) 
= 1 

2T 
(1 

r (Y» t) 
9 

r 
L2 -0.5 

2 r t 0.5, 

(33) 

(34) 

(35) 

Equation (32) is a Riccati equation and 
has to be solved numerically; it also 
holds for error in discharge.  The 
distribution of error with T is shown in 
Figure 1.  The distribution is highly 
skewed, with a sharp rise and gradual 
decline over an extended range of T. 
For a fixed X, the error increases with 
decreasing y. 

7.1 Kinematic Wave Solution 

Equation (1) takes the form 

d(uh) , 
dx " qo 

wh ich has the solution 

uh = a + q0x 

(36) 

(37) 

where a is constant of integration. 
The KW approximation is given by 
equation (28).  If 

H = (fi_,l/3 w 2/3 (38) 

0.3HH 

0. J3 

0.28- 

0.23 

0.18- 

0.13- 

0.08- 

0.03 

v = 0-5 

- y=1.0 

._ y=1.5 

_ y=2.0 

y=2J 

y = 3.0 

y=3.5 

Y = 4.0 

Figure 1.  Error in the KW or DW approximation as a function of dimensionless 
time for space-independent flows. 
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then 

h 
h = (q0x + a)2/3 
H    u0h0 

(39) 

7.2 Diffusion Wave Solution 

Equation (1) has the solution given by 
equation (37).  Equation (2) reduces to 

dh 
dx 

= S, >£ (40) 

With the upstream boundary condition 
given by equation (20), equation (40) 
can be written in terms of h as 

dh 
dx " Sn - ß 

(q0x+a) 
(41) 

7.3 Dynamic Wave Solution 

Equation (1) has the solution given by 
equation (44).  Equation (2) reduces to 

|- (I u2 + gh) - gSQ - gß g£    (42) 

which can be expressed in terms of h as 

1 dh 
dx gh3 - (qQx+a)

2 
[gs0h3 

qo(c*ox+a)h ~ ß<qox+a>2] (43) 

7.4  Errors of KW and DW Approximations 

The DW approximation gave good results 
for the entire channel reach with error 
less than 1%.  The errpr decreased with 
increasing values of KFg,. as shown in 
Figure 2.  The KW approximation gave 
adequate results (error < 10%1 in the 
region (0.1 < x < 1.0) for Fg2 values 
greater than 30, as shown in Figure 3. 

9  ERROR EQUATIONS FOR TIME-INDEPENDENT 
FLOWS:  CRITICAL FLOW-DEPTH DOWN- 
STREAM BOUNDARY CONDITION 

The error equations for the critical 
depth downstream boundary condition 
were obtained following the procedure 
of Section 7.  For the DW and KW 
approximations, the errors obtained 
were almost of the same magnitude as of 
those obtained using the zero depth 
gradient downstream condition in the 
region 0.1 < x < 1.0. 

10 CONCLUSIONS 

For space-independent flows, the kine- 
matic-wave and diffusion-wave approxi- 
mations are sufficiently accurate when 
the dimensionless parameter y ä 3. 
This parameter reflects the effect of 
initial flow depth, bed slope, lateral 
inflow, and channel roughness.  The 
error of these approximations declines 
exponentially when the dimensionless 
time exceeds 5.  The dimensionless time 
is obtained with the use of initial 
depth. 

For time-independent flows with a 
constant depth upstream boundary con- 

.0, dition and with parameters (f - 0. 
a = 0.0, H = 1.03, Fg - 1.0), the DW 
approximation was quite accurate, with 
errors in depths of less than 1%.  The 
errors decreased with an increase in 
the value of KFg2.  The KW approxima- 
tion was accurate with errors of less 
than 10% in the region (0.1 < x < 1.0) 
and for KFQ2 values greater than 30. 
For smaller values of KF 0 the KW 
approximation was not adequate. 
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8  ERROR EQUATIONS FOR TIME-INDEPENDENT 
FLOWS:  ZERO DEPTH-GRADIENT DOWN- 
STREAM »BOUNDARY 

Following the procedure of Section 7, 
error equations were derived for the 
case of the zero-depth gradient down- 
stream boundary condition.  The DW 
approximations gave adequate results in 
the region (0.1 < x < 1.0) and for KFg2 

values greater than 30.  For larger 
values of KFg2, the errors were less 
than 1% in the region (0.1 < x < 1.0) 
and increased to about 21% at the 
upstream end of the channel.  The KW 
approximation gave reasonable results 
(errors < 10.1) for KFg2 greater than 
30 and in the region 0.1 < x < 1.0. 
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ABSTRACT 

Wang. G.-T.. and Singh. V.P.. 1992. Muskingum method with variable parameters for flood routing in 
channels. J. Hydrol., 134: 57-76. 

Three versions of the Muskingum method with variable parameters for flood routing in open channels 
were derived. The reach travel time was obtained from simplification of the St. Venant equations. The three 
versions were applied to three example data sets and the results obtained were found to be more accurate 
than those of the conventional Muskingum method with parameters obtained by trial and error or 
optimization. 

INTRODUCTION 

Since its development around 1934 by McCarthy (1938), the Muskingum 
method for routing flood waves in rivers and channels has been a subject of 
many investigations (Singh, 1988). The method represents a river reach as a 
linear time-invariant system with its inflow /, outflow Q, and storage \\\ 
related as 

iv = K[XI+(l-X)Q] (1) 

in which K and X are parameters. 
The Muskingum method, based on eqn. (1) and the water balance equation, 

can be expressed as 

Q(i+l) = <:,/(/+l) + C;/(0 + C3ö(/),    / = 1,2,... (2) 

where 

' Visiting Scholar. Department of Civil Engineering. Louisiana State University. Baton Rouge. 
LA 70803. USA. 
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=     O.SAt-XK 
1 0.5At + (l-X)K K) 

=     0.5M + XK 
2 0.5At + (\-X)K () 

r        -Q-5Ar+(l-Al^ 
3 0.5At + (l-X)K Pj 

where Ar is the time interval (/,+ , -/,) or [(/+1)-(/)], Q{i+ 1) is the outflow 
at the end of the time interval, /(/'+1) is the inflow at the end of the time 
interval, Q(i) is the outflow at the beginning of the time interval, and /(/) is 
the inflow at the beginning of the time interval. 

In the conventional Muskingum method, the parameters K and X are 
considered constant and are determined by calibration using measured inflow 
and outflow hydrographs. This assumption makes the parameters dependent 
on the inflow-outflow values used to evaluate them (Dooge, 1973). As a result, 
the parameter values change from one set of inflow-outflow hydrograph data 
to another. A more physically realistic approach is to consider the parameters 
A'and X to vary in time and space according to the flow variability (Miller and 
Cunge, 1975). Weinmann and Laurenson (1979) reviewed approximate flood 
routing methods, with focus on the Muskingum diffusion method. They 
proposed an inequality for use in routing calculations if negative outflows 
were to be ignored. 

Cunge (1969) derived eqn. (2) using a finite difference approximation of the 
St. Venant equations with the inertia term neglected, and expressed A" and X 
in terms of physical river characteristics 

A.Y       AxA 
K
 = T=JQ <« 

H('-5fe) 
where A.v is the reach length (space interval), c is the flood wave celerity, q = 
Q/B is the unit width discharge, Q is the discharge, B is the top width. S0 is 
the channel bed slope, and ß is an exponent. 

Koussis (1976. 1978, 1980, 1983) considered the macro form of the 
continuity equation with no lateral inflow or lateral outflow. By carrying out 
the discretization in space only, retaining continuous functions for the time 
derivatives, using a weighting scheme for the time derivative, and assuming 
linear variation of flow over the time interval Al. he derived a more general 
form of the Muskingum method wherein the parameters were discharge- 
dependent. Koussis was thus able to account for the nonlinear nature of the 
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flood wave propagation through an explicit consideration of the unsteady- 
flow loop-shaped storage-discharge relationship. Koussis (1976) was among 
the first to propose a criterion for space interval or grid size to be used in the 
Muskingum flood routing. However, he assumed X to be constant on the 
grounds that computations were relatively insensitive to this parameter. 

In the development of its HEC-1 computer program, the Hydrologie 
Engineering Center (1982) took X = 0.3 and estimated K from the mean 
velocity. In order to make the routed and observed hydrographs comparable, 
Zfwas adjusted as necessary. Ponce (1979) considered a simplified form of the 
Muskingum method by taking X = 0 and K/At = 1, where Ar is the time 
interval. Ponce and Yevjevich (1978) allowed the parameters K and A'to vary 
in space and time and computed them for each computational cell using 
three-point and four-point numerical methods. Ponce and Theurer (1982) 
calculated the Muskingum parameters based on channel and grid character- 
istics. Based on numerical experimentation, they found an upper limit to the 
space step if accuracy was to be preserved. 

In this study, the reach travel time K and the weighting factor X were 
derived from a simplified form of the St. Venant equations. K was a function 
of storage, discharge and other hydraulic characteristics, that is, K = wj 
^ßQii2m^\){\+*)^ ancj % was aiso a function of discharge and other hydraulic 
characteristics. The methods of parameter estimation employed here are 
different from the existing methods. Three versions of the Muskingum method 
with variable parameters are suggested, in which the parameters were 
determined either by using a direct search method for inflow-outflow data, or 
by using physical characteristics of the river reach. These versions were tested 
using three data sets and were also compared with the conventional 
Muskingum method. 

THEORETICAL BASIS FOR VARIABLE PARAMETERS 

Unsteady flow in open channels can be represented by the St. Venant 
equations of continuity 

— +^ = 0 (8) 
ct     ex 

and momentum 

cZ       1 cV    VeV      V2 

-— = -^7+-— +7^B (9) ex      g ct     g ex     C R 

where A is the cross-sectional area of flow, Kis the average velocity of the flow 
cross-section. Q is the discharge. Q = A V, Z is the water level, g is the 
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gravitational acceleration, R is the hydraulic radius, and C is the Chezy's 
coefficient. For many flow situations, the inertia and acceleration terms can 
be considered much smaller than friction slope (Henderson, 1967), and can, 
therefore, be neglected. Equation (9) then reduces to 

dZ        V2 

~Tx=eR ^ 
or 

V=CJ(RS) (11) 

where S is the water surface slope. 

Average reach travel time 

For shallow wide rectangular channels, R^h, and eqn. (11) becomes 

V = CMS) = C^fihS) (12) 

A = PR^Ph 

where P is the wetted perimeter of the flow cross section, and can be approxi- 
mated for wide concave channels as 

P = air (13) 

where a is constant, and m is exponent with values between 1.2 and 2.0. 
Therefore 

A = ahmA xh = ahm (14) 

Multiplying both sides of eqn. (14) by the reach length. L, and taking the 
average values of A and h over L as Ä and /7, 

H- = LÄ = La{ii)m (15) 

By substituting eqn. (12) into eqn. (15) and eliminating /7, the following is 
obtained: 

w = La 
V2 KaV2"1+i 

(C2S)'" (16) c-s 
According to hydraulics of open channel flow (Henderson. 1967) 

Q = PR^'QSv+S,)12 (17a) 

V = CR*(S()+SAy
2 (17b) 

where S0 is the bottom slope of the river. SA = S-S0 and a is an exponent, 
a = 0.5 for the Chezy formula, a = 2/3 for the Manninc formula. 
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By substituting eqn. (17b) into eqn. (17a) and eliminating R, the following 
is obtained: 

y _   p-a/(l+3t) £-1/(1+*)/'£   _|_£   \l/[2(\+X)]QII(\+X) 

By substituting eqn. (18) into eqn. (16) and simplifying, 

Ka    „,_.,, Ka 

(18) 

w = 
(C2S)n 

/2m + I 

(CS)mL 

n2m+l 
p-i/(l+3)£-l/(l+a)/£   _|_£   \[(\I2{\+X)]QX/(\+X) 

Ka —    /~i\-2mx):{\ + x)f o      i    O   V 
omp«<2/n-t-l)/<l+a) WOtJA^ 

,(2m + I )/[2( I + s)J /T*(2m + I)/(1 + «) (19a) 

Let 

A  = 
fl£«l-2m5t)/<l+a)/£     ,   £   \(2m+l),[2(l + a)] 

cm ml 2m + l)/(l +i) 

Then eqn. (19a) reduces to 

w = ßlKQ*<2m+m[+I) 

w 
K = 

ßiQ 
a(2m+ I) (I -t-3) 

(19b) 

(20) 

When [a(2m+l)]/(l+a) =  1.0, eqn. (20) reduces to eqn. (6) presented by 
Ponce (1979). 

Dimensionless weighting coefficient X 

For the Muskingum method, ^can be represented (Kalinin and Milyukov, 
1957) as 

x- l--L 
2     2L 

where / is the characteristic length which can be expressed as 

/ = 
QufcH\      Q0 

Sa \cQ0 

£(H-H0) 

.     cQ{) 

(2i: 

(22) 

where //„ is the bottom elevation. H is the water level, and QQ is the steady- 
flow discharge. 

For steady flow, the relationship between the water level and the discharge 
is 

//-//„ = /, = b{)Ql (23) 

where /; is the water depth. b{] is the constant, and ß is an exponent. Taking 
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the derivative of eqn. (23) 

^^ = 4r[b*Q&\ = hßQr (24) 

and substituting into eqn. (22) yield 

Q0d(H-H)      QohRnß-<      b0ß   ß 

Substitution of eqn. (25) into eqn. (21) yields 

X=2-2L=°-5-^LS; (26) 

The  relationship  between   steady-flow  discharge   Q0   and   unsteady-flow 
discharge Q can be expressed (Henderson, 1967) as 

e=ö»(i+ir 
In general, S0$>SA, therefore, Q~Q0, and eqn. (26) becomes 

X = 0.5 -^-Q" = 0.5 - a, Qß (27a) 
—Loo 

When L = A.v, /? = b0Q
ß, and ^/c = /?/?, eqn. (27a) becomes 

x-Kl-ch;) (27b) 

Equation (27b) is the same as that presented by Ponce (1979) and Koussis 
(1976). 

MUSKINGUM METHOD WITH VARIABLE PARAMETERS 

Consider an (/'+ l)th period. Let /(/+ 1) be the inflow. Q(i+ 1) the outflow. 
w(i+ 1) the storage, and K(i+ 1) the corresponding travel time for that period. 
Equation (20) can be rewritten as 

/W'+l) 
[QU+DT 

In the same way, for the z'th period 

KQUW 

By dividing eqn. (28) by eqn. (29), the following is obtained: 

*('+ 1) = r^.-    ,MU* n,i .„ (28) 

M0 r/^i/ •\1n:m+l)|l+3) (-") 
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K(i+\) W(i+\) Q(i)     -W2*+l)/(l+«) w(i+\) 0(0 
K(i) MO  Lß(«+i)J »K0  Lfi(i+i)J (30) 

where y  =   [a(2m+ l)]/(l+a). From the kinematic-wave approximation 
(Ponce, 1979), 

Q = Mfc 

Then 

g(f+D 
2(0 

M(/+l) 
L   M(0   J 

'Lyj(l+l)1fe 

.   LA(i)   . 
'w(/+l)1ft 

By substituting eqn. (31) into eqn. (30) 

K(i+l)      w(i+l) w(/) 

w(0   _ 

M;(/+ J\-ll-W2"i+Dft/(l+«)] 

- »K0 

(31) 

(32) 
■3(2m+l)ft/(l+u) 

/:(/) w(o Lw(/+i)_ 
Three interesting cases result from eqn. (32): 

(1) When a = 0.5, m = 1.5, ß2 = 0.75, [a(2/n+l)j82]/[l+a] = 1.0, eqn 
(32) simplifies to 

K(i+\) 
K(i) 

= 1.0 (33) 

Equation (33) expresses that the travel time K is independent of storage. In 
other words, w(i+ 1) = K[X(i+ l)/(/+ 1) + [1 -X(i+ l)]Q(i+ 1)]. 

(2) When   [a(2m+l)/?2]/[l+a]<1.0,   for   example,   a = 0.5,   m = 1.3, 
ß2 = 0.75, 

ß2a(2m+l) 
1 +a 

A:Q+I) 
K(i) 

= 0.9 

wp'+l)"1010 

w(/)   . 
(34) 

According to eqn. (34), the travel time K is directly proportional to storage w. 
In practice, when the channel cross-section approximates a rectangular shape 
and the channel roughness increases with the increase in water level, the 
average velocity of reach travel decreases with the increase in the water level, 
and the travel time K increases with the increase in storage. 

(3) When   [0,a(2m+ 1)]/(1 +a)> 1.0,   for   instance,   a = 0.6,   m = 1.6, 
ß2 = 0.75, 

/?,a(2m+l) 

1+a 

K{i) 

1.18 

'>f(/+1) 
.   w(/) 

"1-0.18 

(35) 
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Equation (35) shows that travel time AT is inversely proportional to storage w. 
In practice, when the cross-section approximates a triangular or parabolic 
shape, channel roughness decreases with the increase of the water level. 

From eqn. (27a), the following formula can be obtained: 

*('+!) = 0.5-^[2(/+l)F (27c) 

On subtracting eqn. (27d) from eqn. (27c) 

X(i+ 1) = X(i) + M.{[Q(i)H'-[Q(i + 1)]'} (lit) 

It is. thus, seen that the relationship between the travel time and storage 
depends on the hydraulic characteristics of the channel. 

Three versions of the Muskingum method with variable parameters are 
now developed. 

Version 1: dependence of travel time on storage 

Equation (32) can be rewritten as 

K(i+l) = K(i) 
U.(/+1)1IW-"/MI+,)] ru-(/+i) 

L n.(/) j - *(,)h^rj (32a) 

where •/, - 1.0- [a(2/w + 1 )#,]/( 1 + oc). Taking the finite difference approxima- 
tion of eqn. (8). the water balance equation can be obtained as 

..    ..      /(/+!) + /(/).      Q(i+l) + Q(i)A u-(/+l) =  -_ A/-^ i_ML!A/ + u.(/) (36) 

When inflow /(/+!), w{i) and Q(i) are given. Q(i+\) can be calculated as 
follows: 

(1) Assume a value of QlU(i+ 1). 
(2) Calculate «•(/+ 1) from eqn. (36) using Q0)(i+\). 
(3) Calculate X(i+l) from eqn. (27e) using Q{l)(i+\). 
(4) Substitute the values of K(i+\) and X(i+\) into eqns. (2)-(5) to 

calculate the Q(i+ 1). 
(5) Compare Q(i+\) with Q\i+\). If the difference between Q(i+l) and 

£?'"(/+1) is less than a pre-assigned error, then Q(i+\) is accepted If 
(?(/'+1)>0"'(/+1). then 
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Otherwise 

^(/+.) = g'"(/+i)-g'"(;+l)
2-^

+1) 

(6) Substitute Qa){i+\) for g(,)(i+l), return to step (2) and continue to 
iterate, until an acceptable value of Q(i+ 1) is obtained. 

Version 2: Dependence of travel time on discharge and storage 

Ponce (1979) and Koussis (1976) proposed the Muskingum method with 
variable parameters. The travel time can be expressed as 

Ax Ax AAx 
K = T= W&iÄ - W <6a) 

With Ax = L, eqn. (6a) becomes 

AAx =AL =»L 

ßQ       ßQ      ßQ } 

When [a(2m+ 1)]/(1 + a) = 1.0, eqn. (20) reduces to eqn. (6b). Therefore, eqn. 
(6b) is a special case of eqn. (20). The following procedure can be used to 
obtain the routed outflow: 

(1) Assume a value of Q0)(i+\). 
(2) Calculate u'(/+l) from eqn. (36). 
(3) Estimate K(i+ 1) from eqn. (30) using Q0)(i+ 1) and w(i+ 1). 

The rest of the steps are the same as for the first method described above. 

Version 3: dependence of travel time on discharge and storage 

Equation (30) can be rewritten as 

X/+1) 
K(i+\) = K(i) ^ ; (30) 

L H'(/)   JL0(/+i)J 

The procedure for calculating Q(i+ 1) is similar to that in the first case. First. 
QlU(i+\) is assumed. Then u'(/+l) is calculated from eqn. (36), K{i+\) is 
estimated from eqn. (30) and so on. 

VALIDATION OF VARIABLE PARAMETER VERSIONS 

Inflow-outflow data 

The three versions of the Muskingum method with variable parameters 
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TABLE 1 

Parameters of the three version: for three data sets 

Version Parameters Data set 

I II III 

1 K(\) 8.64 33.19 26.93 
ATI) 0.13 0.285 0.285 
7i 0.4 -0.06 -0.37 
»l 0.001 0.0014 0.0005 
ß 0.5 0.5 0.5 
w(l) 1260 450000 450000 

2 K(l) 16.15 23.74 18.97 
ATI) 0.05 0.275 0.275 
/ 1.0 1.0 1.0 
*i 0.001 0.0014 0.0005 
0 0.5 0.5 0.5 
u-(l) 1260 450000 450000 

3 AT(1) 10.88 26.15 22.51 
A(l) 0.05 0.275 0.275 
/ 0.0 1.15 1.47 
*i 0.001 0.0014 0.0005 
/? 0.5 0.5 0.5 
»'(1) 1260 450000 450000 

were applied to three actual sets of inflow-outflow data (Table 1). The first 
data set was taken from Wu et al. (1985), and was utilized for evaluating the 
optimal value of .v using a statistical /-test approach. The second data set was 
taken from Wang et al. (1987) and the third data set from Yang (1988). Both 
the second and third data sets were provided by the Yangtze River Planning 
Office in China. The Yangtze River is known for its rampaging floods which 
have caused damage of catastrophic proportions throughout history. The 
river reach under consideration is between Wan Xian, Sichuan Province, at 
the upstream end and Yichang, Hubei Province, at the downstream end. The 
three data sets are shown in Tables 2. 3 and 4, respectively. 

Determination of parameters 

The three versions of the Muskingum method, discussed above, are based 
on the nonlinear storage equation, which involves five common parameters: 
u(l), K(l), X(l). a, and ß. In addition, the first version also includes an 
exponent ■/,  = 1.0-[a(2/w+!)/?,]/(1 + a):  and  the third  version  includes 
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TABLE 2 

Muskingum method with variable parameters for data of Wu et al. (1985) 

Recorded Routed 

Time Inflow Outflow Kit) w(t) w'it) ß(0 Qit) Qit) 
(h) (cfs) (cfs) (cfsh"1) (cfsh"1) (cfs) 

TS 
(cfs) 
W 

(cfs) 
TE 

0 56 70 — 1260.0 _ _ _ _ 

6 66 66 11.15 1221.9 723.1 64.7 66.6 65.6 
12 250 102 12.81 1728.0 1335.0 82.6 74.0 48.0 
18 550 185 16.82 3418.2 3430.5 154.0 135.0 68.9 
24 595 265 20.48 5587.5 6303.4 267.9 251.0 183.1 
30 420 335 22.12 6773.0 7963.5 351.9 338.4 301.4 
36 295 370 22.10 6759.9 7930.8 367.5 355.6 342.6 
42 210 368 21.26 6136.9 6995.0 345.4 335.4 339.0 
48 147 310 19.99 5261.7 5690.4 303.6 298.3 313.3 
54 100 245 18.50 4334.2 4327.6 252.6 254.7 276.9 
60 74 200 16.98 3498.8 3128.4 199.9 211.0 235.8 
66 60 165 15.63 2841.1 2212.5 153.4 172.8 197.3 
72 51 132 14.52 2363.7 1573.4 116.8 141.4 164.4 
78 46 100 13.67 2035.2 1150.0 89.7 116.3 136.9 

TS: for the results obtained from this study; SM = 2730.4, At = 6 h. 
W: for the results obtained from Wu et al. (1985); SM = 5525.6 where X = 0.1, K = 20.9 h, 

At = 6h. 
TE: for the results obtained by graphical procedure of trial and error; SM = 31 566.0 where 
X = 0.2. K = 26.7 h. A? = 6h. 

y = [a(2m+ 1)]/(1 +a). If the hydraulic characteristics of the channel reach 
are known, then the exponent y, or y can be estimated from a, ß2 and m; 
a, = ib0ß)/(2LS0) and ß can be determined from the stage-discharge curve of 
steady flow of the channel. The initial storage of reach w(l) can be determined 
from the initial inflow, outflow and the length or the corresponding travel time 
of the reach. Therefore, the parameters to be determined in the three versions 
are similar to those in the conventional Muskingum method, that is, K(l) and 
A^l). If the hydraulic characteristics of the channel reach are unknown, then 
y,, ß or y are to be estimated from observed inflow and outflow hydrographs. 
Since the parameters to be estimated are only a few, the direct search method 
was used to obtain their optimum values by minimizing the sum of the squares 
of differences between observed and computed outflows. 

The direct search methods require evaluation of only the objective function 
and do not use the partial derivatives of the function in finding the minimum. 
These methods are most suitable for simple problems involving a relatively 
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TABLE 3 

Muskingum method wil h variable parameters for data of Wang et al. (1987) 

Recorded Routed 

Time Inflow Outflow X{t) K(t) w(t) w'(t) Q(» Q(t) Qit) 
(mV) (mV) (h) (mVrr ') (mVrr ') (mV) (mV) (mV) 

(103) (103) sv W TE 

7.27 17900.0 17900.0 0.24 23.74 454.8 424.1 17900.0 17900.0 17900.0 
28 18200.0 18000.0 0.239 26.13 609.0 567.9 18000.0 18000.0 17994.8 
29 25700.0 18100.0 0.233 29.17 879.37 812.9 18952.0 19287.0 20494.9 
30 36500.0 23700.0 0.205 30.11 1008.3 919.4 24878.6 25079.0 27198.5 
31 38700.0 32700.0 0.172 27.39 993.7 904.6 33264.8 32521.0 33773.4 
8.1 35700.0 36300.0 0.161 26.17 899.7 818.9 36388.4 35641.0 35939.4 
2 30500.0 35400.0 0.168 26.29 841.6 764.8 34493.7 34486.0 34144.6 
3 28400.0 31800.0 0.182 27.28 962.86 874.8 31000.1 31358.0 31177.1 
4 35300.0 30200.0 0.184 29.31 1080.8 979.5 30037.6 30510.0 31602.4 
5 39100.0 35100.0 0.168 28.87 1125.3 1018.1 34007.9 33989.0 35140.7 
6 39200.0 38300.0 0.157 28.05 1130.76 1022.96 37299.5 36963.0 37675.0 
7 38300.0 38400.0 0.154 28.00 1111.44 1005.5 38089.6 37911.0 38354.5 
8 36800.0 37000.0 0.156 28.17 1096.7 992.07 37665.4 37580.0 37846.0 
9 36000.0 36300.0 0.159 28.59 1337.2 1209.7 3667.8 36644.0 36932.0 
10 48300.0 38800.0 0.153 30.10 1770.3 1589.2 38135.7 38117.0 40230.3 
11 65400.0 47900.0 0.123 29.39 1993.3 1767.4 47886.9 47205.0 50735.8 
12 67700.0 58400.0 0.0896 27.39 1888.4 1672.4 59521.0 58890.0 60732.1 
13 56800.0 61000.0 0.0811 26.65 1692.9 1497.5 61968.9 62204.0 61691.6 
14 47500.0 56300.0 0.097 27.34 1457.5 1284.5 56045.3 56789.0 55660.2 
15 37800.0 47800.0 0.122 28.48 1227.6 1075.4 47986.7 48646.0 47436.3 
16 29600.0 38900.0 0.150 29.86 1043.4 907.4 39616.0 39918.0 38753.4 
17 23900.0 31500.0 0.179 31.68 964.5 834.4 32001.7 32098.0 31165.9 
18 23200.0 26000.0 0.199 33.91 1147.5 992.2 26696.6 26612.0 26351.8 
19 33100.0 24500.0 0.204 38.50 1491.4 1281.3 25116.7 25954.0 27488.5 
20 45200.0 30300.0 0.181 39.81 1736.98 1472.2 30262.5 32445.0 34859.9 
21 49500.0 39500.0 0.150 36.89 1715.7 1448.5 39070.6 40979.0 42755.0 
22 42900.0 43800.0 0.134 34.56 1583.9 1337.0 43938.8 44802.0 44932.6 
23 36300.0 41200.0 0.141 34.50 1514.8 1276.5 42119.8 42027.0 41561.8 
24 35300.0 38600.0 0.154 35.78 1551.2 1306.7 38396.8 37883.0 37919.7 
25 38200.0 36100.0 0.159 37.25 1518.7 1279.3 36668.1 36463.0 37180.3 
26 31300.0 34900.0 0.165 36.95 1313.4 1104.6 35466.7 34946.0 34713.9 
28 27500.0 31800.0 0.176 37.72 1219.0 1023.3 32443.9 31724.0 31354.9 
29 25000.0 28700.0 0.189 38.88 1183.0 991.64 29237.9 28419.0 28128.0 

SV: the results obtained from the special version yield SM = 15 507 000.0. At = 24 h. 
W: the results obtained by Wu et al. (1985), SM = 26 211 660.0. X = 0.17. K = 30.9 h. 

TE: the results obtained by graphical method of trial and error yield SM = 88 740000 0 
X = 0.0. K = 26.0 h. 
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TABLE 4 

Muskingum method with variable pararameters for data of Yang et al. (1988) 

Recorded Routed 

Time Inflow Outflow TV O TE 

K{t) 0(0 

7.2 21300.0 22200.0 22.67 22000.0 22000.0 22200.0 
0.14 27900.0 22800.0 27.78 21646.9 22680.0 22962.0 
3.2 38800.0 23400.0 24.90 23671.4 26700.0 27693.0 

14 47300.0 30100.0 20.63 30680.3 33900.0 35305.0 
4.2 52000.0 39900.0 18.03 39825.3 41170.0 42678.0 
14 53800.0 46800.0 16.84 47049.2 46760.0 48057.0 
5.2 52700.0 50900.0 16.64 50858.6 50080.0 50953.0 

14 48900.0 51100.0 17.05 51191.6 50830.0 51179.0 
6.2 43400.0 49200.0 18.10 48930.6 49110.0 48906.0 
14 37800.0 44800.0 19.36 44751.8 45300.0 44871.0 
7.2 32000.0 39900.0 20.86 40127.3 40890.0 39951.0 

14 26900.0 34900.0 22.77 35298.6 35790.0 34688.0 
8.2 23400.0 30600.0 24.64 30638.4 30920.0 29817.0 

14 21400.0 26700.0 26.21 26923.2 26980.0 25970.0 
9.2 19600.0 23700.0 27.67 24168.4 23950.0 23159.0 
14 18600.0 21800.0 28.02 22000.0 21670.0 21046.0 
10.2 17200.0 20100.0 28.69 20675.4 19960.0 19459.0 
14 16400.0 18900.0 29.64 19288.2 18490.0 18087.0 
11.2 16400.0 17800.0 30.40 18101.2 17460.0 17175.0 
14 17000.0 17300.0 17434.0 17020.0 16870.0 

TV: the results from this version, SM = 3 004 235.0, At = 12h. 
O: the results obtained from the method of optimizing X value yield SM = 31 225 100.0. 

X = 0.123, K = 20.92 h. A; = 12 h. 
TE: the results obtained by graphical method of trial and error yield SM = 58 656232.0, 
X = 0.10, K = 18 h. 

small number of parameters. All the direct search methods are iterative in 
nature and hence they require an initial point Yt to start the iterative 
procedure, and differ from one another only in the method of generating the 
new point F,+ l (from Yt) and in testing the point Y,+ l for optimality. In this 
study, the simplex method was used to optimize the parameters. The basic 
idea of this method is to compare the values of the objective function at the 
n + 1 vertices of a general simplex and move this simplex gradually towards 
the optimum point during the iterative process. The movement of the simplex 
is achieved by using three operations known as reflection, contraction and 
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expansion. A complete discussion of the simplex method can be found in 
Himmelblau (1972). 

According to the general principle of determining the parameters 
mentioned above, the three versions of the Muskingum method were applied 
to the three data sets. The initial storage w(\) was estimated from the initial 
inflow, outflow and the reach length or the average travel time of the reach. 
The rating curve for the steady flow was used to determine b0, ß and 
a, = (b0ß)/(2LS0). Then the direct search method was used to optimize K(l), 
X(l), 71 or y. For the second (special) version, y = 1.0, only K(\) and X(\) 
needed to be optimized. The parameters of the three versions for three data 
sets are listed in Table 1 which shows that the initial storage w(\) is the same 
in the three versions developed. The values of A^l), estimated using a direct 
search method, are the same except for the first version. 

Flow routing 

Each version with the parameters obtained above, as well as the graphical 
trial and error method, were applied to all three data sets. For purposes of 
comparison of the methods, the sum (SM) of the squares of the deviations (d) 
between observed and computed outflows, SM = Zd2, was utilized. 

Application of version 1 
The results of flow routing by the first version are shown only for the first 

example data set to save space. Table 2 includes recorded inflow and outflow, 
as well as routed outflow obtained from the first version and the graphical 
method. Also included are the results of Wu et al. (1985). The results of 
calculations show that for At = 6h, SM — 2730.4 for this version, 
SM = 5523.6 for the method of Wu et al. (1985) with X = 0.1 and 
K = 20.9 h and SM = 31 566.0 by the graphical method with X = 0.2 and 
K = 26.7 h. Clearly for this data set the first version of the Muskingum 
method was the best of the three methods. 

Application of version 2 (special case) 
The results of flow routing by the special version are shown only for the 

second example data set. Table 3 includes inflow and outflow, as well as the 
routed outflow, X{\) and K{\) obtained from the special version and the 
graphical method. Also included are the results obtained from the method of 
Wu et al. (1985). The computed results show that for At = 24 h. 
SM = 15 507 000.0 for this version, SM = 26 211 660.0 for the method of 
Wu et al. (1985) with X = 0.170 and A" = 30.9 h and SM = 88 740000.0 by 
the graphical method with X = 0.0, K = 26.0 h. For this data set. the special 
version of the Muskingum method was the best of the three methods. 
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TABLE 5 

71 

Comparison of the results obtained from the three versions developed with those of the 
conventional trial-and-error method 

Event Routed outflow &) 

First version Second version 
(special) 

Third version Conventional 
trial-and-error 
method 

1 2730.4 4714.8 3866.0 31566.0 
8.7% 14.9% 12.2% 100% 

2 17101110.0 15507000.0 13811000.0 88740000.0 
19.25% 17.5% 15.56% 100% 

3 8484371.0 9119755.0 3004235.0 58656232.0 
14.46% 15.55% 5.12% 100% 

Application of version 3 
The results of calculation for the third version are shown only for third data 

set of Yang (1988). The routed results are given in Table 4. The flow was also 
routed using the method of optimizing X as well as the graphical method. 
SM = 3 004 235.0 for this version, SM = 31 225 100.0 for the method by Yang 
(1988) with X =0.123, K = 20.92 h and SM = 58656232.0 by the graphical 
method with X = 0A,K= 18h, At = 12 h. Clearly, for this data set, the third 
version of the Muskingum method was the most accurate of the three methods. 

Discussion of the results 

The three versions of the Muskingum method with variable parameters 
were compared with the graphical method for the three data sets. The method 
presented by Ponce (1979) and Koussis (1976) is regarded as a special case of 
the method developed in this study. The results of this version were also 
compared with the other two versions, and are summarized in Table 5 which 
shows that the methods developed in this study are more accurate than the 
conventional trial and error method. For the third event, the squared error 
obtained from the third version was only 5.12% ofthat of the conventional 
trial and error method. Even for the worst of the three versions for three 
events, the error was 19.25% of that of the conventional trial and error 
method. Table 5 also shows a comparison of the results from the special 
version (second) presented by Ponce (1979) and Koussis (1976) with those 
from the other two versions. For the first data set. the first version gave the 
best result; for the second and third data sets, the third version produced the 
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best results. Only for the second data set was the result from the second 
version better than the first version. 

It is well known that the routing accuracy of the conventional Muskingum 
method depends on the relationship between the storage w(i) and 
ß'(0 [ß'(0 = <W(0 + (1 -x)Q(i)]. If an optimum method is used to obtain the 
value X which makes the relationship between the storage w(i) and Q'(i) a 
straight line, then the routing result is the best that can be achieved by the 
conventional method; this is possible only under the condition that 
[a(2m+l)ß2]/(l+a) = 1.0. 

In general, [a(2m+ l)/?2]/(l +a) is not equal to 1.0, so that it is impossible 
to optimize the value of X to make the relation between w(i) and Q'(i) a 
straight line. In some channel reaches, the relation w(i) and Q'(i) is a curve 
in which case the reach travel time K is not constant. 

The parameters K and X vary with time in this study. It is possible to make 
the relationship between the storage calculated from the water balance 
equation and that calculated from the storage equation w'(i+l) = 
K(i+ \){X(i+ 1)/(/+ 1) + [1 ~X(i+ l)]Q(i+ 1)} plot as a straight line. 

Figure 1 shows the relation between w and w' for the first flood event, 
where the ordinate is 

and the abscissa is w'(i+1) = K(i+ \){X(i+ l)I(i+ 1) + [1 -X(i+ \)]Q(i+ 1)} 
where 

rw(i+l) I040 

L  w(0   J 
It can be seen that the data points from the first version are quite close to a 
straight line. The results from the conventional Muskingum method are also 
shown in Fig. 1, where the loop is formed by the data points. 

Figure 2 shows the relation between w and w' for the second flood event 
of Changjiang River (Yangtze), where the abscissa is 

w'(/+l) = K(i+\){X(i+l)I(i+l) + [\-X(i+\)]Q(i+l)} 

where 

*(/+!) = K(i) Q{i) 
L0(/+D. 

-11.15 

It can be seen that the data points almost lie on the straight line (if all the 
points lie exactly on a straight line, then the computed outflows will be just 
the same as the observed outflows). The relation of u' with iv' calculated from 
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Fig. 1. Relationship between channel storage and w  = F(K,X,1,Q) for event I. 

the conventional Muskingum method is also shown in Fig. 2, where a loop is 
formed by the points. 

Figure 3   shows the third flood event of Changjiang River, where the 
abscissa is w\i+\) = K(i+l){X(i+l)I(i+l) + [\-X(i+l)]Q(i+\)} where 

K(i+\) = K(i) 
w(/+l) 0(0 -11.47 

1   H'(l)   JLß(/+i)J 
It can be seen that the data points almost lie on the curve. The results from 
graphical trial and error methods are also shown in Fig. 3, where the shape 
of the curves formed by the data points calculated from the two methods are 
similar, in which case the reach travel time is not constant; therefore, the discharge 
of outflows estimated from this study are more accurate than the conventional 
Muskingum method in which the reach travel time is considered constant. 

SUMMARY AND CONCLUSIONS 

In this study, three versions of the Muskingum method with variable 
parameters were derived by simplifying the St. Venant equations for unsteady 
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Fig. 2. Relationship between channel storage and vr = F(K.X,I,Q) for event 2. 

flow. These versions are simple to apply, and it is relatively easy to determine 
the parameters using a direct-search method. The following conclusions are 
drawn from this study. 

(1) The relationship between the reach travel time and storage depends on 
the hydraulic characteristics of the channel reach. If [a(2m+ l)/?2]/(l +a)< 1.0. 
then the relation between the travel time and storage is in direct proportion; 
if [cc(2m+ 1 )/?2]/( 1 +«)> 1.0, then it is in inverse proportion; if [a(2m+ \)ß2]/ 
(1+a) = 1.0, a special case of this relation does not exist. These relations 
between storage and travel time are identified by routing observed floods. 

.(2) The Muskingum method with variable parameters can overcome the 
drawback of the conventional graphical trial and error loop method or of 
optimum methods, which are inadequate to represent the storage hysteresis. 

(3) The three versions of the Muskingum method are several times more 
accurate than the conventional trial and error method. 

(4) The reach travel time which depends on the storage, channel charac- 
teristics and discharge is obtained from the simplification of the St. Venant 
equations, when the exponent of discharge [cc(2m+ \)ß2]/(\ +a) = 1.0, eqn. 
(20) reduces to eqn. (6) presented by Ponce (1979) and Koussis (1976), which 
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Fig. 3. Relationship between channel storage and w = F(K,X,I,Q) for event 3. 

is regarded as a special case of the method developed. The results show that 
the special version is several times more accurate than the conventional trial 
and error method, but less accurate than the other two versions. 
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ABSTRACT 

Wang. G.-T.. Singh, V.P. and Yu. F.X., 1992. A rainfall-runoff model for small watersheds. J. Hydrol.. 
138: 97-117. 

A rainfall-runoff model was developed by combining the excess-rainfall process and the runoff- 
concentration process. The excess rainfall was modeled by using the two-parameter Green-Ampt infiltra- 
tion approach. A six-parameter linear-discrete model was used to model the runoff hydrograph. The 
infiltration parameters were estimated by using the simplex method, and the runoff parameters by least 
squares. The model was calibrated on ten watersheds and verified on seven. The model-simulated runoff 
hydrographs were in close agreement with observed runoff hydrographs. 

INTRODUCTION 

For the purposes of modeling, the rainfall-runoff process is divided into the 
excess-rainfall process and the runoff-concentration process. The former 
focuses on estimating the infiltration process, and the latter on calculating the 
outlet hydrograph from excess rainfall using a mathematical model. 

In 1911, Green and Ampt developed an infiltration equation, with the 
horizontal wetting front separating the wetted and dry parts of the soil during 
soil-water movement. Many infiltration formulae have since been proposed 
(see Singh (1989) for a recent review). The Green-Ampt (GA) equation, 
however.'has lately been receiving a great deal of attention. Mein and Larson 
(1973) and Swartzendruber (1974) developed modified versions of the GA 
equation for determining the ponding time and modeled infiltration during a 
steady rain. Chu (1978) extended their analysis to unsteady rainfall events. He 
used two time parameters (the ponding time and the pseudotime) to modify 
the GA equation, to describe infiltration during an unsteady rain. 

After excess rainfall is calculated, the runoff hydrograph can then be 

Correspondence to: G.-T. Wang. Department of Civil Engineering. Louisiana State University. 
Baton Rouge. LA 70803-6405. USA. 
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estimated using a suitable runoff model. In 1957, Nash reported a two- 
parameter linear model with N reservoirs in series. The Nash model has been 
extensively used in applied hydrology. Most runoff models are continuous- 
time models (Singh, 1988), although discrete-time models have also been 
developed. O'Connor (1982) used the transfer function approach to derive 
discretely coincident forms of several linear, time-invariant models. Wang and 
Yu (1986) suggested a more general linear discrete model from which some of 
the existing models can be derived as special cases. These models attempt to 
establish a relationship between excess-rainfall, calculated using an infil- 
tration formula, and the resulting direct runoff hydrogaph. 

Mays and Taur (1982) used a nonlinear programming formulation to 
determine simultaneously the coordinates and the period of excess rainfall. 
Wang and Yu (1990), and Wang et al. (1992) modeled the rainfall-runoff 
process by considering losses. In these models, the number of interval losses 
computed was equal to the number of periods of rainfall intervals used. In 
practical applications, however, it is difficult to use these models for predicting 
the runoff hydrograph, because the number of rainfall excess intervals of one 
event may not be exactly equal to that for another. Therefore, the computed 
interval losses cannot be used for predicting another event. 

In this study, an effort was made to combine the excess-rainfall process and 
the runoff-concentration process into a unified process. The computation of 
excess rainfall during an unsteady rain has been given by Chu (1978). With the 
use of measured rainfall hyetographs and runoff hydrographs. optimal values 
of infiltration and runoff model parameters were simultaneously estimated. 

RAINFALL-RUNOFF PROCESS DURING UNSTEADY RAIN 

Determination of excess rainfall 

For many rainfall events, there is an initial period during which all of the 
rainfall infiltrates into the soil. During this period, the capacity of the soil to 
absorb water decreases until it becomes less than the rainfall intensity. At this 
point, the ground surface becomes ponded with water. As rainfall continues, 
the surface pondage exceeds the surface retention capacity and the runoff 
begins. Under ponded conditions, the infiltration process is independent of 
the time distribution of rainfall. For an unsteady rainfall event, there may be 
several periods during which the rainfall intensity exceeds the current infil- 
tration rate and ponding may appear and disappear. 

The GA equation describes the infiltration process under a ponded surface, 
and can be written (Mein and Larson. 1973) as 

37 " "   ' "T (i 
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where/p is the infiltration capacity (mmmin-1), K is the average hydraulic 
conductivity of the wetted zone (mm min "'), S (mm) and M are the difference 
of the average capillary potential and the difference of the average soil 
moisture before and after wetting, respectively, expressed as volume fraction 
of soil (volume/volume), and F is the cumulative infiltration (mm). 

If we let /p be the time at which surface ponding starts from a stage without 
surface ponding, F0 be the cumulative infiltration at / = tp, and Fp be the 
cumulative infiltration under ponding, integration of (1) from / = tp to / and 
from F = .F0 to Fp, and rearrangement, yield. 

^p        ,n (> + A.) - A + in (l+I*-)   =   *<' - 'P> (2) 
SM " ln I1 + SM        SM + [n V + SM) SM [Z) 

In practice, the duration of a rainfall event is divided into many short periods 
in such a way that within each period, the rainfall intensity is essentially 
constant. For such a case, 

/(,)   =   P(0 - F(/„_|)   =   j  =   constant        « = 0, 1, 2, . . . (3) 

where i{t) is the rainfall intensity, t„ — /„_, is the nth time interval (short), 
P(t„) is the cumulative rainfall in millimeters at the end of the «th time 
interval, and P(/n_i) is the cumulative rainfall in millimeters at the beginning 
of the nth time interval. 

The variable cumulative rainfall P(t) within a short period can be written 
as 

P{t)   =   />(/„_,) +   | i(0 d/   =   />(*„_,) + (/ - /„_,)/ (4) 

Combining (2), (3) and (4), and letting / = tp, we obtain the ponding time for 
this special case: 

fit)   =   i(0 < fP (5) 

f   =   0 (6) 
d/ 

Assuming that the evaporation during a rain period is negligible, the infil- 
tration process during an unsteady rain can now be separated into two stages. 
In the first stage, there is no surface ponding for the period from /„_, to /„. In 
this period, the infiltration rate and cumulative rainfall excess /?(/) satisfy 

R(t)   =   /?(/„_,).        /„_, ^ / ^ tn (7) 
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The cumulative infiltration can be obtained by the mass-balance principle as 

F(t)   =   P{t) - R{tn_x) (8) 

In the second stage, there is surface ponding for the period from /„_, to tn. In 
this period, the infiltration rate is given by (1), and the cumulative rainfall 
excess R{t) can be expressed using the mass-balance principles: 

R{t)   =   P(t) - Fp- D,       tn_{ ^ t ^ Tn (9) 

where D is the surface retention capacity. Let us define a time constant /s called 
pseudotime 

F0      SM,   / F0\ 

Fu       ,   (,        F»\ „t - tn + t, p 

SM -O^)-*1^ 
Surface ponding occurs when rainfall intensity equals the infiltration 

capacity, which is defined as the rate of infiltration that reaches its maximum 
capacity for a given type of soil and moisture condition, so that 

'('p)   = fp (12) 
with use of (12), (1) becomes 

KSM 

Application of (8) at the time of ponding to (13) yields 

n,     x n,  ^ KSM 

*''> - R{,) - K^K<     ' > K <l4> 
Equation (14) is an implicit expression for determining the ponding time / 

After tp is determined, the pseudotime ts can then be calculated by (1). 
where 

F0   =   P(tp) -,/?(/'),        tn_, < t   < t„ (15) 

For a constant rainfall intensity, we can write 

P(t„) - />(/„_,) 
i(n   =       =   I   =   constant (16) 

The ponding time can be obtained simply by combining (4) and (14) and 
letting t' = r„_, and / = /p: 

KSM 
JZTK~ 

P(/"-|} + R{l"->} 

'p   =    7  + '„-. (17) 
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Discrete linear model 

The discrete excess rainfall-runoff model is applied to calculate the 
hydrograph of a watershed from the excess rainfall estimated as above. The 
model can be written as 

Q(t)   =   axQ{t - 1) + a2Q(t - 2) + . . . + apQ(t - p) 

+ b0i(t) + VO - i) + ■ • • + M' - <?) (18) 

where Q(() and I(t) are the direct runoff and excess rainfall at time /, respect- 
ively, and as and bs are the time-invariant parameters. A complete discussion 
of the discrete linear model has been given by Wang and Yu (1986) and Wang 
et al. (1992). 

DETERMINATION OF MODEL PARAMETERS 

The rainfall-runoff process model includes two groups of parameters. In 
one group are soil infiltration process parameters K, S and M. Parameters S 
and M always appear together; thus, the product SM can be treated as one 
parameter which represents the antecedent soil moisture condition. This 
reduces to two the number of parameters for the soil infiltration process. The 
number of parameters for excess rainfall-runoff process depends on the order 
of the model. In general, six parameters of excess rainfall-runoff process 
model suffice to calculate the hydrograph. Therefore, for the rainfall-runoff 
process model, eight parameters are to be estimated from measured rainfall 
hyetographs and runoff hydrographs. 

In this paper, a direct search method was used to estimate the infiltration 
parameters (A and SM). The excess rainfall hyetograph was then calculated, 
and the excess rainfall-runoff model parameters were determined by 
minimizing the sum of squares of differences between the observed and 
calculated discharges. The parameter estimation method can be described in 
the following steps: 

(1) A rainfall hyetograph is divided into several periods during which the 
rainfall intensity is constant and the value of retention capacity D is selected. 

(2) Starting from the first period, the rainfall intensity /(/)) is compared 
with A. If /(/) is less than A', then excess rainfall R(t) = 0 and the cumulative 
infiltration F(t) = P{t). If /(/) is greater than A, then the surface condition 
indicator can be estimated as 

KSM ,im 
Cu   =   P(i) - RU - 1) - wzrR (19) 

If Cu is less than zero, excess rainfall R(t) = 0, and F(/) = P(t). If Cu is greater 
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than zero, then the ponding time can be calculated from (17), and the 
cumulative rainfall prior to ponding time can be computed as 

- P(Tn_t) + *(/„_,) 

 -r  +   T„_t 

K 

'P   = 

I - K 

P(tp)   =   P(t - 1) + [tp 

and we shift the time as 

P(tp) - R(t - 1) 
f.   = K -[ 

(/ - l)A/]/(0 

P(tp) - R(t - D" 1 + 
SM 

SM 
K 

The time on the shifted time-scale is 
T  =   / tp  +   >s 

and Fp can be calculated as 

SM SM, 
KT 
SM 

(20) 

(21) 

(22) 

(23) 

(24) 

This formula is implicit in Fp, so the Newton-Raphson iteration can be used 
to estimate F_. The cumulative excess rainfall is calculated as 

R(t)   =   P(t) - F(t) - D (25) 

The excess rainfall is calculated for the next period, and so on. 
(3) After the excess rainfall is estimated, the least-squares method can be 

used to determine the parameters of the excess rainfall-runoff model as 

ß   =   [a.a.a^b.b.Y   =   [AJA]-]ATE (26) 
where 

0 0 0 /(i) 0 0 

0(1) 0 0 1(2) /(I) 0 

2(2) 0(1) 0 /(3) 1(2) AD 
0(3) 0(2) ß(i) 7(4) 1(3) K2) 

I(k) I(k - 1) I(k - 2) 

0 0 0 

(27) 

.   Q(m - 1) Q(m - 2) Q(m 

[Q(\)Q(2)QO) . . . Q(m)]7 

- 3) 

(28) 
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(4) We then calculate 

m 

F  =   1 (Q; - ß,)2 (29) 

where (?, is the computed discharge at the /th time. 
(5) According to the value of F, the values of A'and SM are determined for 

the next iteration based on the principle of the simplex method. We then 
return to step (2). The details of computation steps are shown in the flow chart 
(Fig. 1). 

Although there are eight parameters in the rainfall-runoff model, only two 
parameters, representing the infiltation process, are determined by iteration, 
and for this purpose it is convenient to use the simplex method. A detailed 
discussion of this method has been given by Himmelblau (1972). 

ESTIMATION  OF  PARAMETERS  OF  EXCESS   RAINFALL-RUNOFF  PROCESS 
FROM MULTIPLE EVENTS 

If data are available on several excess rainfall-runoff events, the average 
values of the model parameters can be estimated by using the least-squares 
method throughout. We assume that the first excess-rainfall hyetograph is 

/,,/:, /,. ■• • /„, (30) 

and the corresponding runoff hydrograph is 

Ö1IÖ2.Ö3I   •   •      <2„l   •   •   •   ß,„l (31) 

The second excess-rainfall hyetograph is 

I\2^Jr. hi • • ■ /„2 (32) 

and corresponding runoff hydrograph is 

<2,:Ö::Ö::Ö42 • • • Qm2 (33) 

According to the least-squares method, the average model parameters are as 
follows: 

}   =   [äiä1äyEQ6i6zY   =   [BTB]  lBJY (34) 

where 
'A, 

BJB   -   [A]Al] 
A2 

Y 

=   A] A, + A]A2 (35) 

BTY   =   [A] A]]      |     =   AjY, + A]YZ (36) 
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read data Dt (period),D=(rettention capacity) 
I(j)=Intensity, j=number of period  

Initial guess parameters K, SM 
X(T)=(K,SM)T       

-jfc 

3=1 

P(J)=P(J-l)+I(j)*Dt| 

j=j+l 

Cu=(p(j)-R(j-l))-K*MS/(I(j)-K)| 

V" *   D=D+1 

tp=(K*SM/(I(j)-K)-P(j-l)+R(j-l))/I(j)+(j-l)*Dt 

P(tp)=P(j-l) + (tp-(j-l)*Dt)*I(j) 

E=(P(tp)-R(j-l))/SM-In(l+(P(tp)-R(j-l))/SM 

t,=E*SM/K 

> ■ 

T=j*Dt+t,-t„ 

P(J)=P(J-l)+I(j)*Dt 

Fip. 1. Flou chart. 
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-YH ■ 

No 

E,=K*T/SM 

Dl=P(t£) 

D,= 1. 0/SM-   1.0/SM)/(1.0+Di/SM) 

D3=D,/SM-In (1.0+Di/SM)-El 

F=DrD3/D: 

+\JhzIz 

C0=P(j)-F(j)-R(j-l) 

F(j)=P(j)-P(J~l) 

R(J)=P(J)-F(J)-D| R(j)=R(j-l) 

Ep(j)°R(j)-R(j-l) 

j=j + l 

i < LIZ 

B=(a,,a2,a3<b0,b1,b2) = [AA']-'A'E| 

F— ^(QobKrved'Qmodcl) ' 

I 
Simplex method 

compute new estimates Xk+I 

output 

Stop 
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Ay       = 

0 0 0 /.. 0 0 

ÖM 0 0 /:, /,, 0 

02. ß.. 0 hi A. />. 

03. ß2. ßl. /4, /3. /2« 

All       Ai-I.l       Ai-2.1 

ö/n-l.l       Qm-2.l       Qm-3. 

A,   = 

0 0 0 

fi.2 0 0 

Ö22 ß.2 0 

Ö32 Ö22 ßl2 

'12 

'22 

'32 

'42 

0 

0 

/,2 

/22 

0 

0 

0 

Qn-\,2       Qn-2.2       Qn-2.2       Ai2      4-1.2      4-2.2 

ßm-..2      ßm-2.2      ßm-3.2        0 0 0 

y\ = [ß.,ß2,ß3. ••■ß»i]T 

^2     =     [QKQKQH  ■   ■   -  QMIY 

APPLICATION 

(37) 

(38) 

(39) 

(40) 

The proposed model was applied to simulate the runoff hydrograph on ten 
watersheds, seven of which are located in the loess plateau and Sichan 
Province in China, and three in Texas, USA, respectively. The rainfall-runoff 
events were divided into two groups. One group was utilized to calibrate 
the model and- estimate its parameters, and the other was used for model 
verification. 

Model calibration 

The model chosen for simulating the excess rainfall-runoff process has 
auto-regressive order three and moving average order three. Ten rainfall- 
runoff events over ten watersheds were used to estimate the infiltration 
parameters. In the estimation of parameters by the simplex method, the water 



A RAINFALL-RUNOFF MODEL FOR SMALL WATERSHEDS 107 

c 
u > 
o 
c 

_o 

ea u 
JD 

< 

Ü 

O 
E 

S= 
o 

u 
u 
X 
u 

u 
E 
ea 
u 
ca 
0. 

c 

o   —* 
«   E 

C 

Z 

00 

0O   fN   fN fN fN   00 
m T* v©        r-Tj-oJoo— — M oo * N /i - m oo 
Or-^-fSOt~00  —  moOiOfivO^t^NOir; 

- -   © 0 ° — Ofsm — — © w — vo © © — m  ©  <">  fl 
o ö d © 

a -o   a -o   e ■© 

o o o o o o o I    I o o o o 

i~t      en     <—i      r-j 
a -o   c -o   a-cs   a -a   o -c 

vO 
.oo * .. r- ..    . 

IN n (N oo - M ifl 
* o - oo (N n n 
- © © - d ~" 

I    I I ©   I 

fN   fN 
© 

t—   fN 
© 

© © © 

^   \D       .      . ........ Ov 
vo m m T+     ..    -       — r~ r~ fN vo 

O O m * m     ,oo NO O n 
0^»003\Tf**   —   'TO 

O©r^0Co
-_;QoO 

I   I   t   1   I 
2 °, d © © I/I © — P 

©odd 

a* JS" a* -ö" a -o  a -<5" a -o  a ■©   a -o 

m 
.    . •t ........ »N 

„ Ov   Ov   ©       .h-   m   N   VO   O 
n-0\OTfNO00>0O 

OO — Y~P~OCT^| 
(N©©-'—" ©do© I 

..    .    .                          m .. oo 
n Tf (N — r-~ vo     , in m oo 
tNmooovfNfNoor- TT — 
— ©T©r-mfN© — © 
—■   ©   ©   ©   —'ONO-■   © 

a -o   e -c   a -o   a ■© 

l— 
o 

in r- 
m in © in © in r— © 

5 TT TT 
SO Ov ro 

in 

fN 
in 

VO fN 
in 

1) o 

£ 2 
vO 
© 

VO 
© 

vO 
© 

vO 
© 

VO 
© 

Ov 
© 

fN © 
© 

vo 
© 

(£ .£ •* © o © © © © © © © © 

v© 
vO 
Ov 

v© 
vO 
Ov 

\o 
VO 
ov 

VO 
vO 
Ov 

vO 
© 
r— 
OV 

r- 
Ov 

r- 
OO 
vO 
Ov 

00 
i 

oo ri 00 
1 

00 oo 
i 

r- r- 
i ■ 

in 

in 00 
fN 

r- in oo 
fN fN fN 

Ov vO Ov 

_ © © 
vO 
fN © Ov 

Ov fN 
fN 

OO 
© 

vC Ov 
■<i- 

•<r 
fN 

f> —" ■* 00 r<-l 

o 
<u 

3 
C 

Ja! 
O 

3 .2 

c 
3 

N 

X GO 

c 

00 

c 
ra 
3 

— u 

£   £ 
o 
j= 
on O 



108 G.-T. WANG ET AL. 

700H 

600- 

500 

400 

£  300- 

200- 

100- 

.i^N 

10 20        30 40 
—r 

SO 
I 

CO 
I 

70 
—r 

BO 
T T T T T 

90 100 no    no    no    HO    i so 

T (HINITES) 

• « * SIMULATED HYDROGRAPH 
+ -I- + OBSERVED HYDROGRAPH 

Fig. 2. Comparison of observed runoff hydrograph with that calculated from a new approach for the 
calibration of the Dujia event (15-8-1966). 

balance condition had to be satisfied. Accordingly, the volume of the runoff 
calculated from the hydrograph was equal to that of the excess rainfall 
calculated from the hyetograph. The values of the parameters obtained for the 
watersheds are shown in Table 1. A comparison of observed and calculated 
hydrographs for three representative sample calibration events, ranging from 
the worst calibration to the best calibration, is shown in Figs. 2-4. For further 
evaluation of the calibration performance of the model, the goodness of fit of 
a computed hydrograph to an observed hydrograph was determined by means 
of the following four criteria. 

(a) Relative squared error (RSE) 

I [QAO - Qit)f 
RSE i= i 

I Q2U) 
/= i 

where QL(t) is the computed discharge at time /. Q(t) is the observed discharge 
at time / and m is the number of discharge ordinates (RSE represents the 



A RAINFALL-RUNOFF MODEL FOR SMALL WATERSHEDS 109 

T (VINITES) 

« • « SIMULATED HYDROGRAPH 
+ + + OBSERVED HYDROGRAPH 

Fig. 3. Comparison of observed runoff hydrograph with that calculated from a new approach for the 
calibration of the Xizhun event (28-8-1966). 

overall shape of the hydrograph, and if RSE = 0, the computed hydrograph 
will coincide with the observed hydrograph); 

(b) Relative error in estimated peak (£p) 

£P   = 
igp ~ gP 

(c) Time of peak discharge; 
(d) Time base of the hydrograph. 

Table 2 gives values of these four criteria for all calibration events. The table 
shows that the RSE generally was less than 0.01; for only one event it exceeded 
0.02. The maximum value of RSE was 0.1166, and the minimum was only 
0.00157. The difference between observed and computed peak discharge was 
very small. The average value of £p was 0.0239; the maximum value of £p was 
0.0645 and the minimum was only 0.003. The time of peak discharge 
calculated from the model and that from the observed data were the same for 
all but two calibration events. The computed time base was the same as the 
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T  (MINITES) 

+ + + SIMULATED HYDROGRAPH 
« « . OBSERVED HYDROGRAPH 

Fig. 4. Comparison of observed runoff hydrograph with that calculated from a new approach for the 
calibration of the Little event (19-7-1979). 

TABLE 3 

Calibration for parameters of the excess rainfall-runoff model by using multiple least-squares 
method 

Name of Area of Parameters of excess-runoff model 
basin basin (km") 

C\ a:                 a-, bn A. />: I 

Dujia 96.1 1.292 -0.416       -0.00771 0.0353 -0.0518 0.1164 0.968 
Xizhun 49.0 0.501 0.1017     -0.0978 0.1024 0.145 0.140 0.982 
Shejia 4.26 0.615 -0.178           0.0525 0.183 0.365 -0.0537 0.994 
Shanchuan 21.0 0.755 -0.253           0.161 0.0245 0.226 0.0176 1.005 
Wuansun 3.9 1.074 -0.546           0.266 0.108 -0.207 0.266 0.962 
Fuxiq 1.39 1.318 -0.495           0.0552 0.0373 -0.00831 0.0569 0.964 
Shoal 18.2 0.222 - 0.00623       0.0999 0.394 0.250 0.0942 0.962 
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T  (VINITES) 

« « • SIMULATED HYDROGRAPH 
+ + + OBSERVED HYDROGRAPH 

Fig. 5. Comparison of observed runoff hydrograph with thai calculated from a new approach for the 
verification of the Xizhun event (15-8-1966). 

observed value for each calibration event. Therefore, the overall features of 
hydrograph calculated from the model were very similar to those observed. 

When the excess rainfall events were calculated, two or more than two 
corresponding runoff events in the same basin were utilized to estimate the 
average parameters of the excess rainfall-runoff model by using the multiple 
least-squares method as discussed above. The values of the parameters so 
obtained are shown in Table 3. 

Model verification 

With the values of the infiltration parameters obtained by calibration for 
each watershed, the excess rainfall hyetograph was computed for each event. 
The runoff hydrograph was then computed for each excess-rainfall 
hyetograph. using the runoff model parameters obtained for multiple events 
during calibration. To test the model, seven rainfall-runoff events were used. 
The RSE was computed for the computed hydrograph of each event. The 
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Fig. 6. Comparison of observed runoff hydrograph with that calculated from a new approach for the 
verification of the Shejia event (14-7-1966). 

results of computations are shown in Table 4, and for three representative 
sample events in Figs. 5-7. The values of RSE generally were less than 0.11, 
with the average being 0.0671. The maximum value of RSE was 0.1355, and 
the minimum was only 0.0147. The average relative error of the estimated 
peaks (£p) was 0.145. The maximum value of Ep was 0.336, and the minimum 
was 0.0023, and the peak occurred at almost the correct time for all the 
verification events. The time base of hydrograph calculated from the model 
was the same as the observed value for each verification event. 

The accuracy of the model depends on the spatial distribution of rainfall 
and other factors. If the rainfall was distributed uniformly in space, the model 
parameters estimated using the least-squares method will approximate the 
true values. For one event, the rainfall center may be located in the lower 
reaches, and for the other event it may be located in the upper reaches. If the 



A RAINFALL-RUNOFF MODEL FOR SMALL WATERSHEDS 115 

T  (UINITES] 

* * « SIMULATED HYDROGRAPH 
+ + + OBSERVED HYDROGRAPH 

Fig. 7. Comparison of observed runoff hydrograph with that calculated from a new approach for the 
verification of the Shanchua event (15-8-1966). 

parameters estimated from the one event are used to predict the runoff 
hydrograph of the other event, the prediction values would have some errors. 
Therefore, multiple excess rainfall-runoff events were applied to estimate the 
average values of the model parameters which were then used to predict the 
runoff hydrograph of other events. In this case, the results would be better 
than the parameters based on a single event. Let us consider, for example, the 
Xizhun watershed. The runoff hydrograph of 15 August 1966. was calculated 
by using two groups of parameters. In one group, the parameters were 
estimated from a single event shown in Table 1 and in the other group are the 
average parameters Table 2. RSE = 0.1482 and Ep = 0.31 for a single 
event, and RSE = 0.0147 and £p = 0.0023 for the average parameters. 
Therefore, the results showed that the parameters based on multiple events 
were better than those based on single events. 
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SUMMARY AND CONCLUSIONS 

The model developed in this study combines the excess-rainfall process and 
the runoff-concentration process. Parameters of these processes were simul- 
taneously estimated by minimizing the sum of squared differences between 
observed and computed discharges, subject to the constraint of maintaining 
the water balance. The model has the following advantages: 

(1) With the assumed initial values of K and SM, the excess rainfall 
hyetograph can be estimated for any event and the least-squares method can 
then be used to determine the parameters of the excess rainfall-runoff process 
from the observed hydrograph. The sum of squared differences between 
observed and computed hydrographs can be utilized to determine the values 
of K and SM for the next iteration. Thus, parameter estimation is simple and 
easy. 

(2) Kdepends on the soil properties and can be taken as constant for a fixed 
watershed. SM depends on the capillary potential and the antecedent soil 
moisture; however, SM can be estimated, based on laboratory or field 
observations. 

(3) There exists an enormous volume of data on rainfall-runoff events for 
watersheds in various countries. These data can be analyzed to estimate AT and 
SM, and to establish a relationship between SM and antecedent soil moisture. 
The prediction of excess rainfall can be carried out when AT and SM are given. 

(4) Figures 2-4 and 5-7 show that observed and estimated runoff 
hydrographs are in good agreement for calibration as well as verification 
events. The model can be adapted for real-time flow forecasting. 
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ABSTRACT 

Wang. G.-T.. Singh. V.P.. Guo. C. and Huang. K.X.. 199!. Discrete linear models for runoff and sediment 
discharge from the Loess Plateau of China. J. Hydrol.. 127: 153-171. 

Discrete linear models were developed for estimating runoff and sediment discharge hydrographs from 
the Loess Plateau of China. A regression equation was also established relating runoff rate and sediment 
discharge. Tested on five small basins, the results were in good agreement with observations. For the 
discrete linear transfer runoff model, the values of the integral square error were generally less than 1% for 
all calibration events, and around 10% with an average value of 9.36% for all verification events. For the 
discrete linear transfer sediment model, the calibration coefficient of determination R: for all five basins was 
more than 97%. and the verification R: was more than 91% with an average of 94.3%. 

INTRODUCTION 

The upper and middle reaches of the Yellow River in China flow through 
a wide plateau with an area of about 580000km:; it is covered with loess and 
red loess. The Loess Plateau is located in a transition zone with monsoons in 
the southeast and an arid climate in the northwest. It borders the Qinghai- 
Tibet Plateau on the east and is bounded by Mongolia-Xin Plateau on the 
north. In the winter, the region is controlled by high pressure systems in 
Mongolia, when the Arctic cold air mass moves in, causing strong breezes and 
falling temperatures. In the summer, subtropical Pacific air masses with much 
more moisture reach the region and cause rainfall. Owing to differing distance 
from the ocean, the east to west variation of precipitation is large. The 
distribution of precipitation in time is also extremely nonuniform. For 
example, the precipitation in July. August and September is about 70% of the 
annual total. The precipitation for one event is generally about 10% of the 

* Visiting Scholar. Department of Civil Engineering. Louisiana State University. Baton Rouge. 

LA 70803. U.S.A. 
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annual total but as much as 43% has been recorded. The maximum precipi- 
tation of 53.1mm recorded for 5 min in China is from this region. The 
potential evaporation is about 2500 mm year-1. The ground water is more 
than 100 m below ground level. Therefore, the soil stratum seldom develops 
saturated conditions. 

Owing to the particular physiographic characteristics of the Loess Plateau, 
the distinguishing features of runoff from rainfall are as follows. 

(1) Rivers, with drainage areas of less than 500 km2, are nearly dry valleys. 
In the summer, when the rainstorms occur, the resulting runoff hydrographs 
are characterized by short durations and high flood peaks. Generally, there is 
little basefiow to be separated from the hydrographs. Therefore, discrete 
linear transfer function models can be suitable for simulating the hydrographs 
from this region. 

(2) The sediment yield for the basins is caused by storm rainfall and runoff. 
Therefore, the relationship between sediment and runoff discharge is very 
strong. The regression equation and discrete linear transfer models are proposed 
for simulating the relation of sediment discharge to the runoff hydrograph. 

A large amount of sediment is eroded from the Loess Plateau and enters the 
Yellow River. Evaluation of this yield is therefore important in the design of 
soil conservation and pollution control practices, as well as in the design and 
management of dams, canals and other hydraulic structures. A number of 
studies have been carried out to investigate soil and water conservation 
aspects of the Loess Plateau (Gong and Jiang, 1977). Yin and Chen (1989) 
analyzed over 4000 observations on 58 small watersheds with basin area from 
0.193 to 329km2. The data, covering the period 1954-1982, included 21 
variables. They related erosion intensity to a composite index of basin surface 
characteristics (Yin and Chen, 1989). 

This paper develops a linear discrete model to simulate runoff and sediment 
discharge from the Loess Plateau, taking into account its physiographic 
characteristics. 

DISCRETE LINEAR TRANSFER FUNCTION MODELS FOR SMALL BASINS IN THE 
LOESS PLATEAU 

The discrete, linear rainfall-runoff model given by Wang and Yu (1986) can 
be expressed as 

0(0   =   a,0(/ -/) + ... + apQ{t - p) + b0I(t) + bj(t - 1) 

+  . . .  + bqI(t - q) (1) 

where Q(t) is direct runoff discharge at time /, Q(t - 1) is direct runoff 
discharge at time (t - i), i = 1.2 p. /(/) is excess rainfall at time /. 
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/(/ — j),_/ = \,2, . . . , g, is excess rainfall at time (/ — j), and a, and b} are 
coefficients. 

In the model used in this study, the excess rainfall (effective rainfall) is 
expressed as the difference between rainfall P(t) and losses L(t) over the same 
time period, that is 

/(/)   =   P{t) - L(t) for/ = 1,2, .. .,s 

Inserting eqn. (2) in eqn. (1) yields 

0(1)   =   b0[P(l) - 1(1)] 

0(2)   =   fl,<2(D + b0[P(2) - 1(2)] + £,[/>(l) " W)] 

Q(s)   =   a, 0(5 - 1) + ... + apQ(s - p) + b0[P(s) - L(s)] 

+ ... + b,[P{s - q) - L(s - q)] 

(2) 

Q(m) a\Q(m - 1) + . . . + a.Q(t - p) 

(3) 

For discrete linear models represented by eqn. (1), the parameters can easily 
be determined from effective rainfall and discharge data by ordinary least- 
squares, correlation analysis, linear programming or other methods. 
However, for the discrete linear models given by eqn. (3), both the model 
parameters a,. a2. ■ . . ,ap,b0 bq and the time-variant losses L(t), which 
are not known beforehand, must be estimated simultaneously. In this study, 
the parameter estimation problem is formulated as a nonlinear minimization 
problem as follows. 

Let the residuals between Q\t) and estimated Q(t) discharge rates be 
represented by e, as 

Q'U) - Q(t) for / = 1,2 m (4) 

substitution of eqn.  (3) into eqn. (4) yields the following equation for 
residuals: 

ex    =   />„[/>( 1) - 1(1)] - 0(1) 

e2   =   a,Q{\) + b0[P(2) - 1(2)] + 6,[/>(!) - L(l)] 0(2) 
y (5) 

<-',„   =   axQ{m -  1) + a2Q(m - 2) + . . . + a Q(m - p) - Q(m)   ^ 
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For convenience, let the unknown a, b and L(s) values in eqn. (5) be the 
components of a column vector X 

X [a,, a2, . . . , ap, b0, bx, . . . , bq, 1(1), L(2), . . . , L(s)]J (6) 

whereT denotes the transpose. The residuals e,, e2,. . .-,emineqn. (5) are then 
a function of X. The optimal estimate of X can be obtained by solving the 
unconstrained nonlinear minimization problem with the following objective 
function: 

F(X)   =   X ej(X)   =   ET(X)E(X) 
7 = 1 

(7) 

where E(X) = [e{(X), e2(X\ . . . , em(X)]T. Taking the first derivative of 
eqn. (7) with respect to X yields 

dF 
d~x 

where 

d* 
[ET(X)E(X)]   =   2d£

J!*
) E(X)   =   2ATE 

dX (8) 

A(X) 

cet(X)    oe,(X) 
ca] oa2 

ce2(X)    ce2(X) 
ca. oa-, 

de,(X) 

dL(s) 

ce2(X) 
cL{s) 

ceJX)    ceJX) ceJX) 
ca, oa^ cL(s) 

Taking the second derivative of eqn. (7) with respect to X yields 

dX- dX2 dX 

Neglecting the second-order term gives 

d2F 
dX: =   2ATA (9) 

Substituting eqns. (8) and (9) into the Newton-Raphson iterative formula yields 

dF(X) 

(10) A ■(A'- 11 =   A""'1 - 
dX 

d2F(X] 
dX2 

=   X IA I 
(AJA)-]ATE 
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When eqn. (10) is solved iteratively, two problems may arise. First, the matrix 
{A1 A) is sometimes ill-conditioned and it is difficult to find the inverse. 
Second, if the direction of search and the gradient of the vector X are 
approximately orthogonal, the iterative speed is very slow. In order to 
overcome these problems, Marquardt (1963) suggested a revised iterative 
method which changes eqn. (10) to the following form: 

XiK+\)   =   X(K) _ [ArA +  Wjy\AtE (11) 

where / is a unit matrix and W is constant. When W = 0, eqn. (11) reduces 
to eqn. (10). With W sufficiently large, Wl can overwhelm A1A and the 
minimization approaches a steepest descent search. Therefore, the Marquardt 
method can be seen to be a combination of the Gauss-Newton iterative 

j method and steepest descent. This method forces the Hessian matrix to be 
positive definite at each stage of minimization and ensures that the estimate 
of its inverse is also positive definite. The algorithm using the Marquardt 
method is described by Bard (1970). 

RUNOFF AND SEDIMENT DISCHARGE FROM SMALL BASINS OF THE LOESS 
PLATEAU 

The sediment yield from the Loess Plateau basins is caused by storm 
rainfall and runoff. The greater the rainfall intensity, the more the runoff; and 
the sediment transporting capacity increases with runoff discharge. The 
influence of runoff discharge on sediment discharge is more evident than that 
of rainfall and its intensity. Two methods were used to study the relationship 
between runoff discharge and sediment discharge. 

Regression method 

Gong and Jiang (1977) plotted on log-log paper the relation between 
observations in time of runoff discharge and the corresponding sediment 
discharge for four basins of the Loess Plateau. They concluded that for 
discharges more than 10m3s~', the relation between runoff discharge and 
sediment discharge was very close to a straight line, but was erratic for 
discharges less than 10m3s"'. The runoff discharge and sediment discharge 
data from six small basins were analyzed in this study. For each basin, the 
regression equation was derived from the runoff sediment discharge data of 
more than two events. The results are given in Table 1. 

Table 1 shows that the exponent of each regression equation approximates 
1.0. with the average exponent index for the six basins (of area from 0.18 to 
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187.0 km2) being 0.089. The regression coefficient ranges from 0.335 to 0.557. 
The exponents and coefficients do not depend on the basin area because 
sediment discharge depends mainly on storm rainfall and runoff. The flow 
velocities in dry valleys are high, with the maximum velocity being 5.0- 
6.0ms_l. The travel time for the basin is relatively short and runoff with 
sediment reaches the outlet quickly. Field investigations showed that there 
was little sediment deposited in the dry valley during the flood period. 

For use on a particular basin, the runoff discharge, from which sediment 
discharge rates would be calculated using the regression equation, can be 
estimated by applying the discrete linear model to the rainfall data. 

Discrete linear model for sediment discharge 

Caroni et al. (1984) applied two simple stochastic models to sediment yield 
data from an experimental basin in the U.S.A. Wang and Yu (1986) proposed 
a more general linear discrete transfer function model of the type introduced 
by Box and Jenkins (1976) expressed as 

Q(t)   =   axQ(t - 1) + . . . + qpQ{t - p) + bQI(t) + . . . +bqI(t - q) 

(la) 

This type of model is proposed for estimating sediment discharge from small 
basins of the Loess Plateau in China. This model is superior to regression 
equations which cannot account for the time-series nature of rainfall, runoff 
and sediment discharge processes. When eqn. (1) is applied to sediment 
discharge rates of small basins, Q(t) is replaced by G(t), and /(/) by Q(t), 

G(t)   =   C,G(/ - 1) + . . . + CpG0 - p) + W,Q0) + ... + WqQ(t - q) 

(12) 

where C^ C2 Cp and W0, Wx Wq are parameters. The model 
parameters can be estimated from observed runoff and sediment discharge 
data using ordinary least-squares. Let ee0) be the difference between observed 
sediment discharge and sediment discharge computed from eqn. (12) using the 
observed runoff discharge as input 

ef0)   =   GO) - [C,G(/ - 1) + . . . + CpG(t - p) + . . . +  W0Q(t) 

+ ... +  W£(t - q)} (]3) 



160 G.T. WANG ET AL. 

The objective function for estimating the parameters C and W values can be 
expressed as 

F  =   I e\{t)   =   I 
1=1 L / = i 

G{t) - £ Cflit- i) - t Wß{t -j) 
7=0 i = l 

(14) 

The necessary conditions for eqn. (14) to have an optimal solution for C and 
W values are 

81 
i = i 

-12 

dF_ 

cC, 

for / = 1, 2, 3, . . . , P 

G(/) - I C,G{t - r) - I  Wfß(r - j) 
 Z=o : i = i 

dC 

m m      P 

I G(t)G(t - k)   =   II CA' - i)G(t - k) 
i=i 1=1 i=i 

letting 

m      q 

+ 11 1VjQ(t - j)G(t - A') 
;=1 >=o 

' GG (k - i)   =    I G(t - i)G(t - k) 
t= i 

cWj 
-     V 1U1 J   ~ -   V. I, -■ 

which yields 

rQc(- /)   = c, rGQ( -I + 1) + 

+ + w 
1 rQQ(0) 

(15) 

(16) 

rQC(k -j)   =   I ß(/ -y)G(/ - A:) 
/= i 

Equation (15) reduces to 

rGG(k)   =   C,rGG(k - 1) + . . . + CPrGC(fl) + W0rQG(k) 

+ • • • +  WqrQG{k - q) 

In the same manner, let 

cF „,„.„,. 
•, q 

+ CPrGQ{P - I) +  W0rQQ(l) 

(17) 

The model parameter can be estimated from a subset of eqns. (16) and (17) 
which relate the model parameters to the correlation functions calculated 
from observed runoff and sediment discharge rate series. The number of 
eqns. (16) and (17) is equal to the number of model parameters. 



RUNOFF AND SEDIMENT DISCHARGE FROM THE LOESS PLATEAU 161 

Setting k = 1, 2, . . . , P and / = 0, 1, 2, . . . , q in eqns. (15) and (16), 
respectively, yields the following equations: 

rGG(l)   =   C,rGC(0) + . . . + CPrGG(P - 1) + W0rQC(l) 

+ ■■■+ WqrQG{\ - q) 

rGG(2)   =   C,rcc(l) + . . . + CPrGG(P - 2) + W0rQG(2) 

+ ■■■ + WqrQG{2 - q) 

(18) 

rGG{P)   =   C,rGG(P - 1) + . . . + Q,rcc(0) + W0rQG(P) 

+ ... +  WqrQG{P - q) 

and 

rGQ(0)   =   C,rCß(l) + . . . + CPrGQ{P) +  W0rQQ(0) 

+ ... +  WqrQQ(q) 

rGQ(-\)   =   C,rOQ(0) + ... + CPrGQ(P - 1) +  W0rQQ{\) 

+ ■■■ +  WqrQQ(q - 1) 

rGQ(-q)   =   C,rco(l  - q) + . . . + CPrGQ{P - q) +  W0rQQ(q) 

+ ... +  WqrQQ(0) 

There are (p + q + 1) parameters in the same number of linear algebraic 
equations. The solution of eqn. (18) in matrix form is 

B   =   A~D 

where 5 = [C,, C, . . . , CP, W0, Wit . . . , Wqf 

rGG(0) . . .   rGG(P - 1)   rQG(\)    . . .   rQG{\ - q) 

rGC{\) ■ ■ ■   rGG(P - 2)   rQG{2)    . . .   rQG{2 - q) 

(19) 

A = 
rGG(P) 

rGQi\) 

rGQ(0) 

■ ■ ■   rGG(V) rQG(P)   . . .   rQG(P - q) 

■ ■ ■   rGQ{P) rQQ(0)    . . .   rQQ(q) 

■ ■ ■   rGQ(P - 1)   rQQ(\)    . . .   rQQ(q - 1) 

rCQ(\  - q)    ...    rGQ(P - q)    rQQ(q)    . . .    rQQ(0) 

D   =    [rGG(\)rGG(2)...rGG{P)rGQ{0)...rGQ{-q)Y 
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APPLICATION OF MODELS 

The two discrete linear models were applied to rainfall-runoff and sediment 
discharge data. One model was used to estimate the runoff hydrograph from 
observed rainfall, and the other was used to calculate sediment discharge from 
computed runoff. 

Rainfall-runoff-sediment data 

The data used in this study were collected from the hydrologic yearbook for 
an experimental basin designated as Chobagou basin, in Zizhou county, 
ShaanXi, on the Loess Plateau of China. The basin area is 187.0 km2. There 
are six subbasins with areas ranging from 0.017 to 96.1 km2. The location of 
these subbasins is shown in Fig. 1. Rainfall at 28 gauges within the basin, and 
runoff and sediment concentration at their outlets are recorded in data files at 
unequal time intervals. A 5 min interval was chosen for all the subbasins 
except Twanshan and Twanshan (No. 9) (lmin interval) in order to get a 
sufficiently detailed resolution of data. The location of gauging stations for 
rainfall and runoff discharge is also shown in Fig. 1. The mean areal rainfall 
was estimated as the arithmetic mean of the station records in the neighbor- 
hood of the centroid of the subbasin. 

m   Twanshan (No.9) 

L-j Screamflov gaging stations 

Rainfall gaging stations 

Kilometers 

Fig. 1. Location of rainfall and streamfiow gauging stations. 1. Xihuang: 2. Dujiago; ?. Shanchuan: 4. 
Shejia: 5. Twanshan. 
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Thirteen rainfall-runoff-sediment events were selected to assess the 
adequacy of the discrete linear models for simulating runoff and sediment 
hydrographs. The data were divided into two sets: a calibration set, and a 
prediction set. The data in the calibration set consisted of eight events which 
were used for parameter estimation. The data in the prediction set consisted 
of five events which were used for model verification. 

Calibration of runoff Hydrograph model 

The model chosen has autoregressive order three and moving average order 
three. Eight rainfall-runoff events over five basins were used to estimate the 
model parameters and losses. There were thus five model parameters and 
losses L{\), L(2), . . . , L(s), to be determined in the model. The number of 
interval losses depends on that of rainfall intervals. For minimizing the residual 
sum of squares of differences between observed and estimated discharges, 
Marquardt's (1963) iterative algorithm for computing nonlinear least-squares 
solutions was used. The algorithm needs some starting values for the parameters 
and criteria for convergence. The goodness of fit of the computed hydrograph to 
the observed hydrograph was estimated by means of the following three criteria: 

(1) Integral square error (ISE) 

Jt [QV) - Q(0f 
ISE   = ,  x  100% 

I Q(t) 
/= i 

(2) Relative error in estimated peak (EP) 

EP   =   ^ ~ ^ x  100% 

(3) Time of peak discharge. 
Table 2 gives the three criteria for all calibration runs. 
Table 2 shows good agreement between observed and simulated hydro- 

graphs for all calibration events. The values of ISE generally are less than 
1.0%; for only two events did ISE exceed 5.0%. The maximum value of ISE 
is 6.3%. and the minimum is only 0.03%. The differences between observed 
and computed peak discharges are very small and the times of peak discharge 
were also well reproduced for all calibration events. The model parameters for 
the five small basins are given in Table 3. 

Verification of runoff hydrograph model 

The values of the parameters from calibration events for each basin were 
applied to calculate runoff hydrographs using the excess rainfall, which was 
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TABLE 2 

Comparison of computed and observed hydrographs for calibration events of the Loess Plateau 
region 

Basin Area 
(km2) 

Event Peak discharge 
(mV) 

Observed    Computed 

EP 

(%) 

Peak time ISE 

Observed Computed 
. (%) 

Dujiago 

Xizhuang 

96.1 

49 

668028 
660815 

419 
606 

423 
607.3 

0.9 
0.3 

19:25 
19:05 

19:25 
19:05 

5.63 
0.65 

660717 280 280 0.0 18:35 18:35 1.90 

Shanchuan 21 
660627 
660717 

16.0 
40.8 

15.9 
40.8 

0.4 
0.0 

15:05 
18:45 

15:05 
18:45 

6.30 
0.63 

Shejia 
Twanshan 

4.26 
0.18 

660828 
660815 
660717 

109.7 
44.1 

2.08 

109.8 
44.1 

2.07 

0.09 
0.0 
0.3 

19:20 
19:25 
18:39 

19:20 
19:25 
18:39 

0.80 
0.03 
0.48 

estimated from the rainfall and loss processes obtained from calibration 
events. In order to assess the accuracy of the discrete linear model, five 
rainfall-runoff events were used. The results are given in Table 4. 

Table 4 shows the results of applying the discrete linear hydrograph 
model for all verification events. The values of ISE generally are around 
10% with the average being 9.36%. The maximum value of ISE is 12.9%, and 
the minimum is only 4.4%. The average relative error in estimated peak (EP) 
is 18.92%. The maximum value of EP is 33.4%, and the minimum is only 
3.3%, and the peak occurred at almost the correct time for all the verification 
events. 

TABLE 

Calibration results for runoff hydrograph model 

Basin Area 
(knr) 

Parameters 

a,               a °y 6o A. *: 

Dujiago 96.1 1.121 -0.252 -0.028 0.223 -0.510 0.447 
Xizhuang 49.0 0.3674 0.0962 0.1622 0.0294 0.1608 0.1589 
Shanchuan 21.0 1.0387 -0.4346 0.1574 0.0062 -0.0341 0.2636 
Shejia 4.26 0.6127 -0.3316 , 0.0637 0.0004 0.4822 0.1696 
Twanshan 0.18 1.341 -0.642 0.076 0.282 -0.091 0.02? 
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TABLE 4 

Verification results for runoff hydrograph 

Area     Event      Peak disch 

model 

Basin arge EP Peak time ISE 

(km-) (mJs  ') 

Observed Computed 

(%) 
Observed Computed 

(%) 

Dujiago 96.1 660815 621.2 641.7 3.3 19:30 19:30 7.0 
Xizhuang 49.0 660828 446.6 297.4 33.4 19:00 19:00 10.7 
Shanchuan 21.0 660815 354.8 274.7 22.6 19:20 19:15 12.9 
Shejia 4.26 660717 33.1 38.7 16.9 18:45 18:40 11.8 
Twanshan 0.18 660815 6.97 5.69 18.4 19:17 19:16 4.4 

Calibration of sediment discharge models 

The equations for the regression of sediment discharge on runoff discharge 
are given in Table 1, which can be used for estimating sediment discharge from 
computed runoff discharge. 

For application of the discrete linear model, sediment discharge data from 
five small basins were utilized for estimation of parameters. The model chosen 
has autoregression and moving averages each of order two. That is 

G(t)   =   C,G(t - 1) + C2G(t - 2) + W0Q(t) + W,Q(t - 1) (20) 

The parameters of eqn. (20) were estimated from one event for each basin by 
least-squares. The residual square error (RSE) was used to compute the 
proportion of variance explained by the coefficient of determination 

R2 {RSE/SS- 

where 5, is the output standard error of estimate. Five events were selected for 
the calibration for five tested basins. The model parameters and calibration 
coefficient of determination R2 for the five basins are given in Table 5. as are 
the results of calibration. The good agreement expressed by high values of the 
coefficient of determination R2 is compatible with a low range of residuals. 

Prediction of sediment discharge 

The values of the parameters from the calibration events for each basin 
were applied to calculate sediment discharge using the estimated runoff 
discharge. For the regression equation, the coefficient and exponent were 
determined from the data of more than two events. In order to assess the 
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TABLE 5 

The calibration results for sediment discharge rates 

Basin Area 
(km:) 

Event Parameter R2 

c, C2 ^0 W\ 

Dujiago 96.1 660828 0.433 -0.0703 0.275 0.01224 0.9971 

Xizhuang 49.0 660717 -0.175 0.1596 0.2893 0.0632 0.9715 

Shanchuan 21.0 660828 -0.676 0.0717 0.2156 0.4250 0.9975 

Shejia 4.26 660815 0.4908 -0.079 0.3287 -0.1421 0.9925 

Twanshan 0.18 660717 0.5705 -0.1333 0.3805 -0.1518 0.981 

accuracy of the two models, five rainfall-runoff-sediment discharge events 
were used. The results are given in Table 6. 

Table 6 shows that for verification events, both models gave good results. 
For the discrete linear function model, the value of R2 is more than 91.0% 
with an average value of 94.26%. The maximum is 96.4%, and the minimum 
is 91.0%. For regression equations, the agreement expressed by high values of 
the coefficient of determination" is comparable with that of discrete linear 
transfer model. 

TABLE 6 

Verification results for sediment discharge rates 

Basin Area 
(km2) 

Event Peak sediment discharge 
(mV) 

EP R: 

DLFM RE DLFM RE 
Observed Computed 

DLFM    RE 

Dujiago 
Xizhuang 
Shanchuan 
Shejia 
Twanshan 

96.1 
49.0 
21.0 
4.26 
0.18 

660815 
660828 
660815 
660717 
660815 

280.0 
145.0 
136.8 

12.6 
3.1 

262.7 
96.5 

108.3 
13.1 
2.35 

261.5 
122.2 
97.7 
13.0 

1.97 

6.2 
33.4 
20.8 
4.0 

24.2 

6.6 
15.7 
28.6 

3.2 
36.5 

96.4 
96.4 
91.1 
91.0 
96.4 

95.4 
98.2 
93.4 
91.0 
93.6 

DISCUSSION OF RESULTS 

Discrete linear transfer function models for runoff discharge were used to 
. . ./> and 1(1), 1(2)  estimate the parameters a,, a:, . . . , aP, b0, 6,, . 

L(s). and these parameters were used to calibrate the model. The calibration 
results are in excellent agreement with observations. Strictly speaking, these 
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parameters cannot directly be used for another rainfall-runoff event for the 
following reasons. 

(1) The number of rainfall periods in the events used for calibration is not 
equal to those of the events used for verification. 

(2) The infiltration intensity is related to the rainfall intensity on the Loess 
Plateau based on the analysis of the data from observed storm runoff in small 
basins and artificial rainfall tests in the field (Liu and Wang, 1980). The loss 
of rainfall is mainly related to rainfall intensity (a) and soil flow properties. 
The average loss rate n can be plotted against the average intensity (a) as 

H   =   R-ä 

where R is the coefficient of loss related to the kind of soil or soil flow 
properties, and r is the index of loss. 

(3) The condition of rainfall-runoff events for calibration is not the same 
as that of rainfall-runoff events for verification. 

(4) The soil moisture of rainfall-runoff events for calibration is not the 
same as that of rainfall-runoff events for verification. 

Therefore, this method in practice cannot directly be used for prediction of 
runoff discharge. However, the method can be applied to analyze the loss 
process from the hydrograph for calibration events, which can then be used 
to estimate the loss process for verification events based on the rainfall 
intensity and soil moisture, and excess rainfall can be calculated from the 
rainfall and loss process. In this way, the model parameters from the cali- 
bration event can be utilized to calculate the runoff hydrograph using the 
excess rainfall for the verification event. 

The rainfall-runoff-sediment relationship is time-dependent. Consequently, 
the model parameters for a particular event will differ from the average 
parameter values. In order to overcome this drawback, simultaneous esti- 
mation of model parameters for more than two isolated events was performed 
to achieve better parameter values. 

With a sufficient number of calibration events, the dependency of the 
models as well as parameter values on hydrological. meteorological, veg- 
etational or other characteristics of the basin can be investigated. 

SUMMARY AND CONCLUSIONS 

A discrete linear model was employed for simulating runoff and sediment 
hydrograph for five small basins in the Loess Plateau of China. The model 
parameters were estimated using a nonlinear least-squares method in con- 
junction with Marquardt's (1963) iterative algorithm from the calibration 
events. The results showed good agreement between observed and estimated 
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Hours 

Fig. 2. Comparison of observed runoff and sediment discharge hydrographs with those calculated from 
discrete linear models for a calibration event on 17 July, 1966, in Shanchuan basin. 
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Fig. 3. Comparison of observed runoff and sediment discharge hydrographs with those calculated from 
discrete linear models for the verification event of 15 August. 1966 in Dujiago basin. 
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Fig. 4. Comparison of observed runoff and sediment discharge hydrographs with those calculated from 
discrete linear models for the verification event of 15 August, 1966 in Twanshan basin. 

hydrographs for the five tested basins. The values of ISE generally were less 
than 1.0%. The coefficient and exponent of the regression equation were 
determined using the data from more than two events, and the parameters of 
the discrete linear model for sediment were estimated using ordinary least- 
squares in the calibration events. The calibration coefficient of determination 
R2 for five small basins was more than 97%. Figure 2 shows the relationship 
between observed and estimated runoff and sediment discharge for a sample 
event. The agreement between computed and observed values lends credence 
to the models. 

The results from the verification events were not as good as those from the 
calibration events, but the prediction accuracy of the discrete linear models 
both for runoff and sediment discharge was satisfactory. 

For the discrete linear transfer model of the runoff hydrograph, the values 
of ISE were around 10% with the average value being 9.36%. For the 
sediment models, both discrete linear model and regression equation gave 
good results; the value of R2 for both were more than 91.0%. The regression 
equation, with the average value of R2 being 94.32%. was a little better than 
the discrete linear model, where the average value of R2 was 94.26%. However. 
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for relative error of peak sediment discharge, the discrete linear model gave 
better results; the average value of EP was 17.72% compared with 18.12% for 
the regression equation. 

Figures 3 and 4 show the relationship between observed and estimated 
runoff and sediment for sample events selected from verification. The good 
agreement between observed and predicted runoff and sediment discharge so 
obtained support the adaptability of these models to real-time forecasting 
schemes in the Loess Plateau in China. 
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APPENDIX: NOTATION 

a,, a-, a p- 

bn.b, bq 

c,.c c />• 

parameters for model (1) 

parameters for model (12) 
H;, H', wq 
e\. e: e,„        the difference between the observed and estimated 

runoff discharges 
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e (t) the difference between the observed and estimated 
sediment discharge rates 

G(t) observed sediment discharge rate 
G'{t) estimated sediment discharge rate 
/(/) excess rainfall intensity (m3s_I) 
L(s) the losses of rainfall 
m the number of runoff discharge periods 
P, q the order of models (1), (3) and (12) 
P(t) rainfall intensity (m3s_l) 
QP observed peak discharge 
Q'P modeled peak discharge 
Q(t) observed runoff discharge (m3 s~') 
Q'(t) estimated runoff discharge (m3s_l) 
5 the number of non-zero rainfall periods 
Sv estimated standard error of the sediment discharge 

rates 



DERIVATION OF INFILTRATION EQUATION USING 
SYSTEMS APPROACH 

By V. P. Singh,' Member, ASCE, and F. X. Yir 

ABSTRACT: A general infiltration model is derived using a systems approach. The 
models of Horton. Kostiakov. Overton. Green and Ampt. and Philip are some of 
the example models that are shown as special cases of the general model. An 
equivalence between the Green-Ampt model and the Philip two-term model is shown. 
The general model also provides a solution for the Holtan model expressing in- 
filtration as a function of time. This solution of the Holtan model has not been 
reported in the literature. A first-order analysis is performed to quantify the un- 
certainty involved with the generalized model. The general infiltration model con- 
tains five parameters. Two of the parameters are physically based and can therefore 
be estimated from the knowledge of soil properties, antecedent soil moisture con- 
ditions, and infiltration measurements: the remaining three can be determined using 
the least squares method. The model is verified using ten observed infiltration data 
sets. Agreement between observed and computed infiltration is quite good. 

INTRODUCTION 

A multitude of infiltration models used in applied hydrology and soil sci- 
ence exists. Some of these models are theoretically based (Dooge 1973: Philip 
1957. 1969: Green and Ampt 1911), while others are empirical (Kostiakov 
1932: Horton 1938: Holtan 1961; Overton 1964). Some of the empirical 
models are quite popular and frequently used in various water resources ap- 
plications. The reason for their popularity is that they are simple and yield 
satisfactory results in some cases. Since the empirical models are more or 
less based on experimental observations, they represent the overall infiltra- 
tion process. 

The infiltration process can be represented by a systems approach, which 
uses an absorber or a network of absorbers. Infiltration constitutes input to 
the absorber. An absorber can be defined by a relation between its moisture 
content and the rate of infiltration to it. In this study, a general definition 
of the absorber is suggested, and a general infiltration model is derived by 
coupling this general relation with the spatially lumped form of continuity 
equation to be satisfied by the absorber. The various well-known infiltration 
models, such as the models of Horton (1938). Kostiakov (1932T. Overton 
(1964), Holtan (1961), Green and Ampt (1911). and Philip (1957) can be 
shown as special cases of this general model. Therefore, the systems ap- 
proach presents a unified framework for all of these models and shows that 
these models result from different definitions of the absorber. As a conse- 
quence, connections between some of these models as well as their param- 
eters can be established. This may help estimate model parameters. In par- 
ticular. an equivalence between the Green-Ampt model and the Philip two- 
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term model can be derived. This approach also leads to an explicit solution 
of the Holtan model, which does not appear to have been reported in the 
literature. 

The objective of this study is to use the systems approach to derive a 
generalized infiltration model, show the various infiltration equations re- 
ported in the literature as special cases of the generalized model, show con- 
nections among some of these infiltration models, and derive an explicit 
solution of the Holtan model. The study also presents a first-order analysis 
of uncertainty and develops a simple procedure for estimating model param- 
eters. Field data are finally used to verify the proposed infiltration model. 

GOVERNING EQUATIONS 

We consider a column of soil matrix with unit area of vertical infiltration 
as shown in Fig. 1. The initial storage space available in the soil column is 
denoted as S„. If the soil is initially dry. then S» equals effective porosity 
multiplied by the total volume of the column. At time t = 0, a thin layer 
of water starts to cover the upper surface of the column. At any time i the 
infiltration rate is denoted as /(/), seepage rate as /,(/), and the potential 
water storage space as S(t). The spatially lumped continuity equation for the 
soil column can be written in integral form as 

S(t) = S0 -I f(t)dt + 
Jo Jo 

fsU)dt (1) 

The differential form of continuity equation can be obtained by differen- 
tiating Eq. 1 with respect to t as 

dSit) 

dt 
= fsU) -fit) (2) 

fCt) 

FIG. 1.   Systems Representation of Soil Column by Absorber with Varying Ver- 
tical Infiltration and Seepage Rate 
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The amount of water stored in the soil column from t = 0 to any time 
t is 

W(t) = S0 - SU) =       [/(r) - fs(t))dt (3) 
Jo 

IffAO = 0 in Eq. 2 (Dooge 1973), then 

dW 

-I=m ^4) 

Eq. 2 contains three unknowns: S,f, and/,. To solve this equation, two 
relationships among the variables, S(t),f(t), and/(r), are required. By anal- 
ogy to rainfall-runoff modeling (Kulandaiswamy 1964), a possible general 
relationship among these variables may be expressed as 

M d"f d"f 
SU) = 2 «.</./,.') — + bn(J.f„t) -£,       M > 0 (5) 

»«o at dt 

where an and b„ = coefficients, which may be functions of time /. infiltration 
rate/(0, and seepage rate/(r); and M = some integer. 

It is not clear what the form of the third relationship should be. Of course, 
one can arbitrarily choose some relationship, linear or nonlinear, to represent 
the relation among the three variables and then determine their coefficients 
by experimental data. However, the resulting model (Eqs. 2. 5. and a third 
relationship) may be too general and too complicated to be of any practical 
value. Thus, it may be preferable to examine the existing infiltration models 
and then find an underlying relationship among the potential storage, infil- 
tration, and seepage variables. 

ANALYSIS OF SOME INFILTRATION MODELS 

Overton (1964) has shown that several infiltration models are based on a 
relationship between infiltration rate (or excess infiltration rate) and the vol- 
ume of either actual or potential infiltration (or excess infiltration). For ex- 
ample, a form of the Green and Ampt model (1911) can be derived bv as- 
suming that 

a dF(t)       a 
m-^*f- " —'^+l ,61 

where F = volume of infiltration = J'o fU)dr. fr = the ultimate infiltration 
rate: and a = constant of proportionality. Integration of Eq. 6 yields a Green 
and Ampt type model: 

1 
F - - In ( 1 '-)} I a )\ (7) 

Similarly, the Kostiakov. Philip two-term. Horton. and Overton models can 
be derived. Table 1 summarizes these models and the postulates on which 
they are based. In the approach followed by Overton (1964). no consider- 
ation is given to the continuity Eqs.  1 and 2. 
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TABLE 1.   Summary of Some Infiltration Models Derived by Postulating Rela- 
tionship Between Rate of Infiltration and Volume of Infiltration 

Ultimate 
(constant) 

rate of 
infiltration. Analogous 

Assumed relation / Resulting equation to 
(1) (2) (3) (4) 

fit) = a/[F(l)\ 0 F = \2ai or/ = \ 37" '"'" Kostiakov 

a = constant of proportionality model 

/('I -i f. / = (1//)(F - <<;//> In |l  - [F/ui/f.))\) Green-Ampt 

= a/[FU)\ a = constant or proportionality model 

/(') " / f. F = f,l * \ 2ar or/ = /  + Vu/2 /"' " Philip two- 

= a/[Flt) -f,i] term 
model 

./'(') " / / f - f. * I.A, -/ ) exp i-u/l Honon 

=./;, - / F = ft + ((/, -/)/a|[l - expt-u/l] model 

- aiF(t) - /./] (i = parameter. /„ = initial infiltration rate 

/•<> ~ f. / / = /.- sec-((;,  - I) Xa}\\ Overton 

= a[J\l - F(t)\: /,  = (l/\ at,) tan "'[F, (u//)',:] 
f, = ultimate volume of infiltration 

model 

These models plus some others can be derived using the systems approach 
of Eqs. 2 and 5. According to this approach, the potential storage 5(f) and 
the seepage rate/5(r) are postulated for each model. The relationships ex- 
pressing these postulates are then substituted into Eq. 2 to obtain the cor- 
responding infiltration model. 

A summary of eight popular infiltration models is given in Table 2. These 
models are presented in two ways: (1) The usually reported form in literature 
(column 6); and (2) the form derived by systems approach (column 5). The 
potential storage function Sir) and seepage rate function fs(t) for each model 
arc also given in Table 2: a. b. A. Sp. Wn, and n are constants:/ and K 
denote steady-state infiltration rate: h is the depth of ponded water on the 
soil surface (a constant); 8, is volumetric water content in transmission zone: 
and S, is an effective matrix suction head at the wetting front. 

It may be pertinent to comment briefly on the Zhao model, which is com- 
monly used in China. Zhao (1981) hypothesized the infiltration system to 
be comprised of an absorber and a regulator. The absorber was assumed to 
be inversely proportional to the amount of water stored in a finite soil col- 
umn, and the regulator to be directly proportional to the same amount of 
water. This hypothesis leads to the Zhao model as shown in Table 2. 

From column 2 of Table 2. it is seen that, except for Zhao's model (1981). 
/,(?) is either equal to zero (the Kostiakov model) or equai to the steady- 
state infiltration rate. If we compare these models with a typical infiltration 
curve shown in Fig. 2. then/5(f) actually represents the steady-state (low 
rate, which is either equal to a constant or zero. From this point of view. 
Zhao's model may not be appropriate because the steady-state infiltration 
rate may not. in general, be proportional to the amount of water stored in 
the soil column. Therefore, a generalized relationship sought between fit) 
and Sit) should not conform to this model. As seen from Fig. 2. the quantity 
I/'" ~ f<it)\ actually represents the nonsteady infiltration rate, and this func- 
tion, according to column 3 of Table 2. is either directly proportional to the 
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fCt) 

FIG. 2.   Typical Infiltration Curve 

potential storage Sit) (Horton 1938: Overton 1964: Holtan 1961) or inversely 
proportional to the amount of water stored in the soil column. Wit) - [S„ 
- 5(f)] (Philip 1957; Kostiakov 1932: Green-Ampt 1911). 

GENERALIZED INFILTRATION MODEL 

Based on this analysis, we might propose a generalized infiltration model 
of the following form of which all seven of these popular models are special 
cases: 

fit) -f,it) 
a\S(t)]" (8) 

where a. m. and n = positive real constants. According to Eq. 8. fit) —► x 

at t = 0. and/(f) —/5(f) at t = *. The general form off,(i) may be proposed 
as 

/,<rt-/, <9) 

where ft = a constant. Eqs. 2. 8. and 9 constitute the generalized infiltration 
model. 

Substituting Eq. 8 into Eq. 2 yields 

dS(t)       -a[S(i)]" (10) 

dt        [So -Sit))" 

Eq. 8 can be expressed with the use of Eq. 9 as 
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fU)=fc   + 
a[S(t)]m 

[So - S(t)]" 

Integrating Eq. 10 

"" is, - s(nr Jtv  dS(t) = -at 
[SU)]m 

(11) 

(12) 

If n is an integer, then Eq. 12 becomes 

[     2 (-M")sö"[SU)]J-mdS(t) = -at (13a) 

or 

2 {-\)>\\si-> S'-"dS = -a; (136) 
./=<> V/ Jso 

For m # 0, n # 0. and ;; # m (/? and /n are integers). Eqs. 13a and b can 
be integrated as 

{[S(t)y-m^ -sJ
n—'} 

I*m— 1 

+ (-1)" 

2 (-iv "«"'■ W/ j - m + 1 

m-1 
c«- 
•Jll In 

SO) 
= -at. 

If /n is not an integer, the solution of Eqs. 13a and b is 

^ W y - wi + 1 y=i 

-ar 

(14) 

(15) 

The generalized infiltration model is given in parametric form by Eqs. 14 
and 11 or by Eqs. 15 and 11 for n being an integer. For the cases 0 £ n 
< 2 and 0 < m ^ 2. solutions of Eqs. 11 and 12 leading to some special 
cases of the generalized model are shown in Table 3. If m = 0 and n > 0, 
then the generalized infiltration model reduces to the Kostiakov model: and 
when n = 0 and m > 0. the generalized model becomes the Holtan model, 
as shown in Table 2. If n is not an integer and m ^ 0. then Eq. 12 may 
not have a general analytical solution. If the five parameters, a. m. n. 5n. 
and/ are known, then the infiltration rate can be calculated numerically by 
using Eqs. 11 and 12 and 5 as a parameter (0 s S ^ 5n). A simple least- 
squares procedure is presented in Appendix I to determine the five param- 
eters using observed data. 

Eq. 12 can also be solved in terms of the beta functions. Define r = Sit)/ 
5„ and S„dr = dS(t). Therefore. Eq.  12 can be expressed as 

(16(7) ,, (1   - r) r    dr =  -at 

or 

Sn ( 1   - r)"r""dr - r  '"( 1   - r)"dr at (\bb) 
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TABLE 3.   Some Solutions as Special Cases of Generalized Model 
m 
(1) 

0 
0 
0 
0 

n 
(2) 

0 
1 
2 

n > 0 
n # 2 

0 

Sin* 
(3) 

5„ - A/ 

S0 ~ \2at 
5„ - <3ai)'n 

S„ - [in + l)ar]' 

S„e'M 

fit) 
(4) 

m > 

I       In (5/So) - (5/5„) =  1  -<«,/$„) 
^      In (5/5„) - 2(5/5,,) - (l/2)(5/5„): 

I     = -[(3/2) + (ar/S,i)] 
[(l/5„) f at]" 

In (S/Sn) + (5„/5) =  I  - a, 
<*/£,) - (S„/S) - 2 In (5/5„) 

= -iat/S») 
[s!r" - (i - mi«,]1 "-"" 

JIf an equal sign appears in an expression, that 

fr + a 
f, + (a/2)u:r'r- 
f, + (a/9)'nri,f 

f + {[(/i +  D/a'■'],}' -" 

/ -i- S,tie~'" 

f + {laS(t)]/lS„ - S(,)}} 
f + {aS(0/[S„ - SU)\:\ 

f.  * [Vü/(!/5„ ■>■ at)]- 

/+ {f(l  - at\Sitf]/[S„ - Sin]} 
f,  + {[a/5:(/)]/[(5„ - 5):]} 

/ - a\S!,~" - (1  - mto/f"1-" 

equation is independent of this headine. 

or 

(I  - r)"-~ r-'clr-       /"-'(i -,,-'</,. = at <16c) 

where m* = — m -f-  I- and »    — .. a.  i   -n. l. ana „* - „ + \   Thls can be expressed as 

S"~'"" |ß(w*./,„) - 5r(w*./i*)] = «/•  
(I6flr) 

terms'«f/r^ 7 *" C?^'^ beta fUnCti°n- which can also be expressed in terms ot the gamma function as 

ß(w*./j*) = 
r(wÄ)r(/t*) 

T(/wÄ - /i*) (17) 

and £,(•.•) = the incomplete beta function, which can be expressed as 

*'<"*>-{ ■^'N-.r)*-'*:        «>0.    6>0.    ,£,0.1) (18<l, 

Är(«:Z» = 
r"(l - 

'-2 BUi -  \:j ■>- i) 
r1' 18/;) 

II 

,=o Bin - b: j -r 1 

Considerable simplification occurs if ,„ = „ in Eqs. 1 1 and 12. IW Eq 
• Mt) can be expressed as an explicit function off(r) as 

5„ 

Sin = 
/"> -./,' 19) 
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TABLE 4.   Special Cases of the Generalized Model 

Parameters in Eq. 8 

m 

(1) 

0 
0 
0 

>0 
±1 

n 
(2) 

>-l 
>-l 

0 
0 
0 

f.- 
(3) 

f, 
0 

/ 
/ 
/ 
/ 

Resulting model 
(4) 

Philip two-term or Green-Ampt model 
Kostiakov model 
Modified Kostiakov model 
Horton model 
Overton model 
Holtan model 

Special Cases 

Seven of the eight cited models are special cases of the generalized model. 
Some of these special cases can be inferred from Table 2. For claritv. these 
and other special cases are shown in Table 4. The Zhao model (1981) is not 
one ot the special cases for the reasons cited earlier. 

For m = 0. n > 0. Eq.  12 becomes 

S(t) = S„ - [(» -r Ik/;]""'-"    

Using Eqs. 8 and 9. Eq. 20 leads to 

"<" * I) 

(20) 

-j - n 11 n - 

(21) 

Eq. 21  is the modified Kostiakov model. If/ = 0. Eq. 21 reduces to the 
Kostiakov model. 

Similarly, for m = 0. /; = I. the generalized model reduces to the Philip 
two-term model (Philip 1957) or the Green-Ampt model (Green and Ampt 
1911). and also to the Kirkham-Feng model (1949) for horizontal How. It 
will be shown in the ensuing discussion that the Green-Ampt model is equiv- 
alent to the Philip two-term model. If n = 0. m = 1. the aeneraiized model 
becomes the Horton model (1938). and for n = 0. m = 2. the resulting 
model is the Overton model (1964). 

For m > 1. n = 0. and m * 2. Eq.  12 has the solution 

SU) = IS,1,"" -r (m - liar]1"1-"  

Therefore. Eq. 8 becomes 

(22) 

/(') = / - aS-it) ,23) 

Substituting Eq. 22 in Eq. 23 yields 

fit) = /. - a\Slrm - (1  - m)ar\"""-"" ,24, 

Eq. 24. the general solution for the Holtan model (1961). does not appear 
to have been reported before. 

Some of the infiltration models listed in column 5 of Table 2 mav not 
look exactly like their usually reported form shown in column 6 of the same 
table. These forms of infiltration models arc actuallv equivalent. For ex- 
ample, the Horton model i 1938) in the current form is 
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/(/)=/.+- e-"a (25) 
a 

If we let/(0) = /0. Eq. 25 yields 

So 
-=/o-/ (26) 
a 

Substitution of Eq. 26 into Eq. 25 produces exactly the same form of the 
Horton model. 

fU) = /. + (/o " /,)e"'/u (27) 

Some of the models in Table 2 do not have general analytical solutions (Hol- 
tan model) or do not have explicit analytical solutions for/(r) (Green-Ampt 
model) as reported in literature. However, simpler and explicit solutions of 
fit) can be obtained using the systems approach for all of the eight models. 

Equivalence Between Green-Ampt and Philip Two-Term Models 
The Green-Ampt and the Philip two-term models have the same form of 

solution in column 5 of Table 2. Since h, 0,, and 5, are all constants in the 
Green-Ampt model, if K = f and a = K%,(h + S,). the Green-Ampt and 
the Philip two-term models are equivalent. From Table 2. these two models 
have the same expression for S(t): 

SU) = S„ - Vlat  (28) 

Substituting Eq. 28 into Eq. 2. and solving with/, =/ = K. we have 

/(f) =/ - arl/:. a =  yl° (29) 

which is the Philip two-term infiltration model. 
On the other hand. Eq. 28 can be expressed in the form of the Green- 

Ampt model. We rewrite Eq. 28 as 

[S„ - SU)]2 = lat (30) 

Eq. 30 can also be expressed as 

Wdw =       adw (31) 
Ai 

or 

|5„ - SU)]</[S„ - S(t)} = adt    (32) 

Rearranging Eq. 32 yields 

d\Sn ~ SU)] a 
  =      (33) 

dr S„ - SU) 

Substituting Eq. 33 into Eq. 2. replacing/ by A' and solving, we obtain 

fU) = A'  i34) 
S„ - Si!) 
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Notice that S0 - S(t) = W(t) = L%,, where L is the depth of the transmission 
zone, and 0, is volumetric moisture content. Eq 34 can then be written with 
a = KQ,(h + Sr) as 

fit) = K 1 + 
e,(/i + 5r) 

w 
= K 

L + h + S, 
(35) 

which is the Green-Ampt model. 
From this proof, we see that the hydraulic conductivity K defined by Green 

and Ampt (1911) has the same value as the steady-state infiltration rate in 
the Philip two-term model (Philip 1957). The coefficient a in the Philip two- 
term model is proportional to the sum of the hydraulic head h and the cap- 
illary suction head 5, . Again, the solutions by systems approach are of sim- 
pler form than those derived using some of the other methods. 

SPECIAL CASE OF GENERAL MODEL 

It may be useful to examine a special case of the general model. For the 
case n = 1, m = 1. the generalized model (Eq. 11) becomes 

/('>=/ + 
aS(t) 

So - S(t) 

and S(t) is determined by integration of Eq. 12: 

So 
t = ± <■ In (* 

s0       \s 
1 

(36) 

(37) 

Eqs. 36 and 37 can be considered as a parametric model of/(/) with S as 
the characteristic parameter. This model is actually a combination of the 
Horton model and the Green-Ampt model (or the Philip two-term model). 
When S(t) is removed from the numerator of the second term on the right- 
hand side of Eq. 36. this equation becomes the Philip two-term model: and 
when the term 5„ - S(t) is removed from the denominator. Eq. 36 becomes 
the Horton model. 

The parametric model of Eqs. 36 and 37 can also be expressed in implicit 
form with / as a function of f(t). From Eq. 36 

SU) = 
WO-/J 
a + /(f) - /,- 

Substitution of Eq. 38 in Eq. 37 leads to 

So]    fU)-ft 

a  [a ■>-fit) - f 
- In 

M -/<') -/. 
-  1 

(38) 

(39) 

This model consists of only three parameters: / . S„. and a. It is not only a 
simple infiltration model, but also includes consideration of the soil-water 
content and movement. 

Following the concept embodied in this infiltration model, it may be pos- 
sible to combine existing simple models to denve from the general model 
new infiltration models with three or less parameters. The parameters/ and 
5,, of the new models can usually be obtained from parameters evaluated for 
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TABLE 5.   Relationship among Parameters in Derived and Reported Forms of 
Infiltration Models 

Parameters in Parameters in 
Model reported form current form Relationship 

(1) (2) (3) (4) 
Honon /«. S„ S„ = «(/, - / ) 
Horton /r /r / =/ 
Honon a a a = a 
Overton f. f< f.  =/ 
Overton a a a = a 
Overton Sn 5„ Oll    —   J(i 

Philip A / f.=A 
Philip Sn a a = (5;)/2 
Kostiakov K n n = A/(\   - A) 
Kostiakov A a a = AK' ' 
Modified Kostiakov f. / /  =/ 
Modified Kostiakov K n n = A/{\   -A) 
Modified Kostiakov A a u = AK' * 
Zhao a a a = a 
Zhao b b b = b 
Zhao w0 — — 

other models as shown in Table 5 or estimated directly from observed data. 
The proportionality factor a may be directly determined from observed data 
using the method of least squares or moments. 

FIRST-ORDER ANALYSIS OF UNCERTAINTY 

Eq. 8 is the fundamental equation of the generalized infiltration model 
proposed here. There may, however, be uncertainties involved with this 
equation that must be recognized. Besides the uncertainty of the equation 
itself, there can be two other sources of error in/due to spatial and temporal 
variability. First, the measurement of S may be inaccurate. Second, the pa- 
rameters./ . So, a. m. and n may be subject to errors. The first-order analysis 
of uncertainty can be employed to quantify the expected variability arising 
from uncertainty in 5 and/or a./r. 50, m. and n. To illustrate the procedure, 
let us represent Eq. 8 as 

/= giS.a.f,,Sn,m.n). (40) 

where g = some function. It is implied in Eq. 40 that/and 5 depend on /. 
If the true values of S. a. /.. Sn.m. and ;/ differ from their corresponding 
nominal (average) values. S. d. / . 50. m. and n. where 

/ = giS.d.f, .So.m./l) (41) 

then the effect of this discrepancy on / can be evaluated by expanding the 
function g( ■ ) around the point defined by S = S. a = a. f, - / . S„ = S,,. 
m = m. n = n. 

For purposes of simplicity, let .r, = S. .v: = a. .v, = / . .v, = S,,. .v« = m. 
and .v„ = n. Then the Taylor series expansion of Eq. 40 yields 
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or." 

/ = g(S.a./.,5„./n.n) + X     ( —        U- ~ ■*. 

a2s ;22 
-   .=1   7=1 d.Xid.Kj/ __ 

(.v, - .v,)(.v, - Xj) + higher-order terms (42) 

where [(dg/dx,).} = the first-order partial derivative of the function g with 
respect to x, evaluated at the point of expansion (.f|,.t:..v-u.f4,.f5,.f6): and (d:g/ 
dx,dx,)~ = the second-order partial derivative of g with respect to x. and .v, 
evaluated at the point of expansion. 

If the second- and higher-order terms are neglected, the resulting first- 
order expression for the error in / is 

/-/ = £ = 2 (-1 <*-*> |Tf \dx,/ 
(43) 

The variance of this error is 

S; = £[(/-/):] (44«) 

or 

*MZ — |   (.v, - X, ) 
<lv. 

(446) 

where E = the expectation operator. For simplicity, it is assumed that the 
variables x, are independent. 

SJ = 2 ? U £  \*, 
A* (45«) 

or 

*■ (S) *-■(=)*-Is) «-(S)> 
2|fiW2|fi 
d//l rfH 

(456) 

where 52, = the variance of .v,. From Eq. 8. the partial derivatives löe/ru, 
= df/dx.) arc 

öf      arnS" anS 

riS     (So - S)"     (5„ - SY"' 

^ -       5'" 
ba      (5„ — 5)" 

*f_ 

öS,, (S„ - 5)"' 

(46« i 

[46/7 1 

146c-1 

146 J) 
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= (/-/,) log S ä. 
dm 

T= -</-/■) log (So-S) 
dn 

(46e) 

(46/) 

where log denotes the natural logarithm. 
By substituting the values of these partial derivatives in Eqs. 45a and b, 

the error in / can be computed. If the error in / is computed due to error in 
only one variable, say 5, then 

Sr2 = var (/) = [fs)S
2s = 

amS"~l 

(So - S)n 
1 

nS 

m(50 - S). 
s (47) 

The value of Sj = the standard error of estimate off. If error in/is calculated 
due to error in a only, then 

var(/)-S?-|^)S- 
L(So - sr 

If only f is to be considered, then 

dg s>" \lrJ* - * 
If the variable under consideration is S0, then 

r2 S-1 = I — 1 S"  = 
vdSo/j-, 

anST 
3 So (So - sr'. 

If the variable under consideration is m. then 

(48) 

(49) 

(50) 

S2 = 
dm 

s; = [(/-/,) logsys-m  (5i) 

If the variable under consideration is n. then 

dg 
Si =    —   5; = [-(/ - f) log (So - S)]2Sl 

\dn/A  ' 
(52) 

The total variance of infiltration rate can also be expressed as a function 
of the coefficients of variation of S. a. f. S0, m. and n as 

,       [ amS"-[ 

var(/) = S; =      
I (So - sr 

«5 

}- 
5" o- i   i 

wi(5(, - S). .(So - S)\ 
J„ 

+ S/ + 
-a/iSm 

Si0+ [(/-/.-) log S]:Si 
.(5o- 5)"". 

+ l-(/ -fc) log (So - S)]2 S;  (53) 

The variance of infiltration rate can also be expressed as a function of the 
coefficients of variation CV of S. a,f. S0. m. and /; as 

var(/) =f-CV2(f) = 
aS" 

<s> - sr. 
m 1  - 

nS 

miSo — S) 
CV: - CV- 
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F!.; 3. Standard Error of Estimate of fit) as Function of Relative Deviations in 
Parameter: A = 0.1. .V = 1, M = 2, S = 0.3, S0 = 0.6,/ = 0.001; 1 = Deviation in 
Variable 5 Only; 2 = Deviation in Parameter A Only; 3 = Variation in Parameter 
FC Only; 4 = Deviation in Parameter 5„ Only; 5 = Deviation in Parameter M Only; 
and 6 = Deviation in Parameter .v Only 

-r (nSS-CVi - (,„ log SrCV,; - [„ log (J0 - S))2CV; I - /;C^ (54) 

It is seen from Eq. 53 that the vanance of f(t) not onlv depends on the 
variance of each parameter but also on the values of the parameters them- 
selves. An-illustrative example is shown in Fig. 3 for ä = 0.1. n = \. rh 
- 2, 5 = 0.3 m. j„ = 0.6 m. and/r = 0.001 m/h. These values represent 
normal cases. Fig. 3 shows that the standard error of estimate of/(o is verv 
sensitive to the relative deviations in parameters S. m. 50. a. and n and is 
relatively insensitive to the relative deviation in parameter/.. This conclu- 
sion, however, is based on the mean values used and mav c'hanee with the 
changes in the mean values. 

VERIFICATION OF MODEL 

The generalized model has five parameters:/ (steady-state infiltration rate). 
5„ (initial storage space), a (a proportionality factor), and m and n (two 
exponents). Table 5 presents the relationships between the parameters of the 
infiltration models derived by the systems approach listed in column 5 of 
Table 2 and those reported in literature for all six explicit and analytical 
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FIG. 4. Calibration of Infiltration Model: Soil Type: Alapaha Loamy Sand 10 = 
01011D; and Soil Type: Cowarts Loamy Sand ID = 17032D (* = Observed Data 
Set 1; - = Observed Data Set 2; and = Calculated Value) 

infiltration models listed in column 6. Once the parameters of the usual form 
of a listed model are recognized, the corresponding parameters for the model 
derived by the systems approach can be easily found. 

If infiltration observations are available for a soil, then the five model 
parameters can be estimated for that soil using an iterative procedure. How- 
ever, this procedure is usually complicated and does not take into account 
the physical import of the parameters. A simplified procedure was therefore 
employed in this study. The procedure is based on the premise that/ and 
5n can be initially determined from the knowledge of soil properties, ante- 
cedent soil moisture conditions, and infiltration measurements. This premise 
is not unduly restrictive, for both / and 50 are physical quantities. On one 
hand. /. is the ultimate infiltration rate and can be determined experimen- 
tally. In practice./, should satisfy 

0 </ < min l/uU,)]   (55) 

where ft)(r,) = the /th observed infiltration rate: and 5„ = the effective po- 
tential storage. Experimentally, it is equal to the soil column times the ef- 
fective porosity. From Eq. 11. if the soil column is saturated 5 = 0. then 
infiltration rate will equal / . Aw = 0. 5 = 5„. then /(0) —» x. This is 
consistent with the Horton model. In practice. 5„ can be selected by con- 
sidering a practical soil depth and an average soil porosity, since only the 
top soil zone may significantly affect the dynamic infiltration process (Fok 
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FIG. 5. Calibration of Infiltration Model: Soil Type: Stilson Loamy Sand ID = 10101D 
'[* = Observed; - = Calculated; A = 0.00093; B = 1.28: V = 0.353; 5„ = 27.43 
(cm); and FC = 3.048 (cm/h)] 

and Chiang 1984). Normally, this top soil zone is less than 2 m. If average 
soil porosity is 0.3. then S„ should satisfy 

0 s S„ < 0.6   (56) 

Overton (1964) assumed 5„ = 0.2743 m (soil depth = 36 in.), while Holtan 
(1961) chose 5,, = 0.0457 m (soil depth = 6 in.). On the other hand, it may 
be difficult to estimate accurately the actual values of these two parameters 
in a watershed due to spatial and temporal variabilities. However, once / 
and S„ are reasonably chosen following Eqs. 55 and 56. then the other three 
parameters a. m. and n can be estimated using the least-squares method. 
Hence, a good fit to field data can be achieved. An explicit least-squares 
solution for estimation of these parameters is given in Appendix 1. 

Ten observed infiltration data sets from Raw Is et al. (1976) were used to 
test the goodness of the generalized infiltration model given in this paper. 
The generalized model usually gave a better fit than other special models 
for each data set. The computational procedure is given in Appendix 1. For 
three sample data sets, observed and computed infiltration curves arc given 
in Figs. 4 and 5. respectively, for different types of soil. 
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Because the five parameters can be determined directly from Appendix I, 
no iteration or trial-and-error method is involved. However, optimal sets of 
parameters may not always be unique, and more than one set of optimal 
parameters may lead to an equally good fit to observed data. From physical 
considerations, it may, therefore, be preferable to choose 0.25 m s S0 :£ 
0.45 m, and/c as slightly smaller than the smallest observed infiltration rate 
value. Then parameters a, m, and n are determined by Appendix I. If the 
computed value of a is too small (a < 10~5 in cm-h units), one can change 
fc slightly in the range given by Eq. 56. Normally, one or two trials will 
produce a reasonable set of optimal parameters. In the three data sets shown 
in Figs. 4 and 5, 50 was fixed at 27.43 cm where the soil depth considered 
is 91.44 cm and soil porosity is 30%. In the range given in Appendix I, fc 

was selected so that a was in the range from 10"2 to 10"4. All computations 
showed that the five parameters were easily determined, and hence produced 
a good infiltration model. 

CONCLUDING REMARKS 

This study utilizes systems approach to derive a generalized infiltration 
model. Seven popular infiltration models are shown to be special cases of 
this generalized model. This model has five parameters: steady-state infil- 
tration rate/.; initial storage space available 50; a proportionality factor a; 
and two exponents m and n. It may be useful to combine two or three pop- 
ular infiltration models into one, according to the generalized model, and 
yield a three-parameter model as illustrated by Eqs. 36 and 37. For 10 ob- 
served data sets, the procedure for parameter estimation was quick and ef- 
ficient. The model reproduced infiltration rates for these data sets reasonably 
well. 
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APPENDIX I.   LEAST-SQUARES ESTIMATION OF MODEL PARAMETERS 

It is assumed that the model parameters fc and 50 are obtained from soil 
properties and antecedent conditions. The parameters estimated are a. m. 
and n. To that end. the least-squares objective function is constructed in log 
space as 

V 

55 = 2 {log l/o„s«') - /J - log [/„„(I) - /J}: (57) 
i= i 

where/obv(f) = observed infiltration rate at the /th time:/cum(0 = computed 
infiltration rate at the /th time: 55 = the error: and N = the number of 
observations or times. It is recognized that the sum of squares of log values 
is minimized, not the sum of the infiltration rates themselves. As a result, 
the estimate of a. n. and m may be somewhat biased. Minimization based 
on the log values was preferred for two reasons. First, it leads to an ana- 
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lytical solution. Second, experimental verification of the model showed that 
the model fit the field data reasonably well. Minimization based on arith- 
metic values of infiltration rates leads to equations that are not explicit in 
terms of a, n, and m, and hence an iterative solution, although not very 
difficult to accomplish with a computer, is required. 

Eq. 57 can be written as 

«'S (* [/»,»-/,]-. eg {^f})' (58) 

where S(i) = the /th value of S(t). For simplicity of notations, the suffix / 
is dropped from now on, keeping in mind that/ob5 and S both are functions 
of time and vary from one observation to the other. Eq. 58 is written as 

SS = 1 [log (/ob5 - fc) - log a - m log S + n log (S0 - S)]2 
(59) 

The parameters a. m, and /: are obtained so as to produce the minimum 
value of SS. To that end, SS is partially differentiated with respect to each 
parameter separately, and each partial derivative is equated to zero. This 
yields 

dSS 1 
— = 0 = — [2 log (/„„, -fc) - N log a - ml log S 
da a 

+ nl log (S0 - S)] (60) 

or 

N log a + ml log S - nl log (S0 - S) = 2 log (/ob5 - fc) (61a) 

dSS 
— = 0 = -I log (/übs - fc) log 5 + log al log S + ml (log S): 

dm 

— nl log (S0 - S) log S (6lb) 

or 

log al log S + ml (log S)2 - «2 log (S0 - S) log S 

= 1 log (/obs - fc) log S (62a) 

dSS 
— = 0 = 2 log (/obs - fc) log (S0 - S) - log a2 log (S0 - S) 
an 

- m2 log (S0 - S) log S + nl [log (S0 - S)]2  

or 

log al log (So - S) + ml log (S0 - S) log S 

- /J2 [log (So - S)]2 = 2 log (/obs - fc) log (So - S) 

(62Z>) 

(63) 

Eqs. 61-63 are solved simultaneously by Kramer's rule to obtain the pa- 
rameters a. m, and n. In matrix form, these equations can be written as 

N 2 logS -Zlog(So-S)     Ipog^T 
1 log S 1 (log S): -2 log (S0 - S) log S        m 

Zlog(S0-S)    S [log (S0-S)] logS       -2 [log (So - S)]: n 
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Z log (/«*,.-/<.) 
2 1og(/obs-/c)log5 

2log(/obs -/f)log(50 - S) 
(64) 

For notational convenience and writing, let A = 2 log S, B = 2 (log S):, 
C = 2 log (S0 - S), D = 2 [log (S0 - S)] log S, G = 2 [log (S0 - S)]2. 
// = 2 log (/obs - fc), I = 2 log (/obs - /f) log S; and J = 2 log (/ubs - 
/.) log (S0 - S). Eq. 64 can be rewritten using these notations as 

N A -C" "log a ~H~ 
A B -D m = / 
C D -G n J 

(65) 

Then 

1 
log a = — 

H A -C~ 
I B -D 
J D -G 

(66) 

where D, = the determinant of the coefficient matrix expressed as 

~N 
D, = A 

C 

A -c 
B -D 
D -G 

(67a) 

£>, = N(D- - BG) - A(CD - AG) - 

Hence 

H(D2 - BG) - AUD - IG) 

C(AD - CB) (676) 

loe a = 
CUD - JB) 

N H -c~ 
A I -D 
C J -G 

n = 
NAH 
ABI 
C    F    J 

De 

NUD - IG) - HiCD - AG) - CiAJ - CD 

D, 

N(BJ - DI) - A(AJ - CD ^ H(AD - CB) 

De 

(68) 

(69) 

(70) 

Eqs. 68-70 explicitly yield optimal estimates of a. m. and n. 
For a given set of infiltration data, i.e., [r,,/obs(/')], / = 1. 2 N. one 

can determine the five parameters as follows. 

Step 1 
Assume initial values / = 0. 5(0) = Sn,/(0) =/obb(l). 

Step 2 
Based on the physical meaning of parameters S0 and/ and observed data, 

choose /. in the range 

0 ==/ < min l/l)bs(/)], / = 1.2 N (71) 

where /,bs(/)  = the observed infiltration rate.  For most types of soils the 
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infiltration rate may be significantly affected only by the top soil zone (say. 
soil depth less than 2 m). If soil porosity is 30%. then S0 may be chosen in 
the range 

0 < So < 0.6 m (72) 

Step 3 
From Eq. 2 or Eq. 1. one can calculate S(r) as 

5,+ l = 5, + {j; - 0.51 f^U + 1) +/o(i)]}(U, - t,) 

5, =5(0) = 5„.        / = 1.2 N (73) 

Step 4 
Compute parameters a, m. and n by Eqs. 68. 69. and 70. respectively. 

Step 5 
Once all five parameters are determined, the values of infiltration rate can 

be generated by the model for a given set of values of S,. 0 < S, < 5„. Thus 

aS'" 
f'=J>--^zjf <™ 
and 

(S,., - 5,) 
t>~\ = ', + ~ ,        / = 1. 2 ;V  (75) 

/ -o.5(,/;., -/)   
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APPENDIX III.   NOTATION 

The following symbols are used in this paper: 

a = proportional factor of infiltration model; 
F = cumulative infiltrated water depth (cm, L); 
/ = infiltration rate (cm/h, L/T); 
fc = steady-state infiltration rate (cm/h, L/T); 
/, = seepage rate (cm/h, L/T); 
h = ponding water depth (cm, L); 
K = hydraulic conductivity in transmission zone (cm/h, L/T); 
L = soil depth (cm, L); 
m = exponent (dimensionless); 
n = exponent (dimensionless); 
5 = potential storage (cm or cm3, L or L3); 

Sc = capillary suction head (cm, L); 
S0 = initial soil space available (cm or cm3, L or L3); 

t = time (min. T); 
W = cumulative infiltrated water depth (cm. L); and 
0, = volumetric soil water content (cm3/cm3, L3/L3). 
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