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ABSTRACT 

Large-eddy simulation (LES) output was used to study the terms of the resolved scale 

turbulent kinetic energy budget (TKE). The computation produces a three-dimensional, 

time dependent simulation of the airflow above and within a plant canopy where the 

lowest third of the domain was occupied by a drag layer and heat sources that represented 

a forest. Shear and buoyant production of TKE computed from the simulated resolved 

scale flow fields were principal sources in the upper canopy; the destruction of TKE due 

to canopy drag effects and the transfer to subgrid scales (dissipation) occurred primarily in 

the upper half of the forest where the foliage density was large; and turbulent transport 

showed a loss at the canopy top and a gain within the canopy. These general features 

have been found in various plant canopies in field experiments, higher-order closure 

models, and wind tunnel studies, but in all such studies, there is a lack of information 

concerning the pressure transport term. 

Previous studies, both experimental and numerical, typically incorporated pressure 

effects into a residual term due to the difficulty in directly measuring turbulent pressure 

fluctuations and/or the lack of understanding on how to parameterize such terms. In the 

present LES study, the pressure was calculated directly; thus, the pressure transport term 

could also be calculated. Above the canopy, pressure transport appeared to balance 

approximately one-third of the turbulent transport, while near the canopy top and below 

pressure transport was the same sign as turbulent transport showing a sink near the 

canopy top and a source below. The transport terms accounted for over half of the TKE 

sink at the canopy top, and in the lowest two-thirds of the canopy the transport terms 

1U 



were the dominant source terms in the budget. Moreover, the pressure transport was the 

largest source of turbulent kinetic energy in the lowest levels of the canopy. These results 

indicate that pressure transport is important in the plant canopy turbulent kinetic energy 

budget, especially in the lowest portion of the stand. 
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1.   Introduction 

Turbulent kinetic energy budgets are used to study the relative importance of different 

physical processes that govern turbulent motions. The presence of a plant canopy in a 

boundary layer provides unique challenges for measurements, modeling, and 

understanding of the physical processes. Most notably, the plant canopy imposes an 

aerodynamic drag on the flow and creates turbulent motions in the wakes of the plant 

elements. This latter process is an additional source of turbulent kinetic energy, called 

wake production (Wilson and Shaw, 1977; Raupach and Shaw, 1982; Raupach et al., 

1986), but consideration must be given to the scale of motion generated in such wakes. In 

addition, the canopy may act as a heat source or sink, or both depending on the 

temperature difference between the layers of the canopy and the surrounding air at each 

level. 

Lesnik (1974) provides an early picture of the plant canopy turbulent kinetic energy 

budget. Data from a twenty year old pine forest were analyzed under different stability 

conditions. In all three stability cases presented, the shear production was a large source 

at the canopy top where the wind shear gradient was the largest; the dissipation was a 

large loss in the upper canopy, while the turbulent transport showed a significant loss at 

the top of the canopy and a gain within the canopy. The buoyancy was small in 

comparison with the other terms and was not shown. The unique feature of the budget 

presented by Lesnik was the role of the turbulent transport term, where the large gain in 

the lower canopy levels represents an import of turbulent energy from the primary 

production region in the upper canopy levels. 



Analyses of recent field experiments (Shi et ah, 1987; Leclerc et ah, 1990; Meyers and 

Baldocchi, 1991) support these results. Meyers and Baldocchi (1991) presented TKE 

budgets for a deciduous forest under neutral stability conditions. In the TKE budget the 

measured profiles of shear production and turbulent transport, and the dissipation, found 

as a residual, were in qualitative agreement with Lesnik (1974). Meyers and Baldocchi 

(1991) found that wake production slightly exceeds shear production at all levels within 

the canopy except near the canopy top. 

The effects of atmospheric stability on the TKE budget were investigated in Shi et ah 

(1987) and Leclerc et ah (1990) using data from a deciduous forest collected during the 

Camp Borden experiment (Shaw et ah, 1988). The most dramatic changes were observed 

for stable conditions (h/L>025) which were not simulated in the present LES study. In 

general, their measurements showed that normalized shear production and dissipation, 

found as a residual, increase with the onset of stability, and that buoyancy was a gain 

under unstable stratification and a loss in stable conditions. However, their measurements 

showed relatively little variation in the budget terms over the range of stability represented 

in the present study. 

Leclerc et ah (1990) also presented the TKE budget in an alternative manner where 

the turbulent kinetic energy was split into two different scales, turbulent shear kinetic 

energy (SKE) and turbulent wake kinetic energy (WKE), following Shaw and Seginer 

(1985). This mathematical split was based on the constraint that total TKE was 

conserved. In presenting the budgets in this manner, the canopy now acts as a loss of 

kinetic energy on the "large" shear producing scales, and a gain in the "small" wake scales. 

This process represents the action of the drag elements to suppress turbulent motions as 



well as the mean flow and, at the same time, to create small scale motions in the wake of 

plant elements. Profiles showed that the canopy drag was the primary destruction term in 

the SKE budget while shear production was the primary source in the upper canopy. The 

turbulent transport was a loss near the canopy top and a gain within the canopy. Most 

importantly, the residual term represented viscous dissipation, pressure transport and 

accumulated errors. Under unstable conditions, the residual was a gain within the canopy 

and a loss at the canopy top and above. Thus, pressure transport may be a source of SKE 

in the canopy and a loss above. 

These field experiments contribute to our understanding of turbulent flow within a 

canopy; however, the effects of turbulent pressure fluctuations are still largely uncertain. 

Zhuang and Amiro (1994) provided stronger evidence as to the roles of the pressure 

perturbations in plant canopy flow. They evaluated the TKE budget during coherent 

motions in a deciduous forest using data collected during the Camp Borden experiment. 

The pressure perturbations were not measured due to the inherent difficulty in measuring 

static pressure perturbations; rather, they were calculated by taking the divergence of the 

momentum equation to form a Poisson equation for the perturbation pressure. The 

pressure derived in this manner neglects the contributions from the lateral derivatives due 

to the lack of measurements. Zhuang and Amiro cite several studies that support the 

contention that for coherent motions lateral effects are small in comparison to motions in 

the x-z plane, and that pressure perturbations derived from the two dimensional field 

should account for most of the pressure effects in the budgets. In addition, the TKE 

budget presented was for an ensemble average of two dimensional coherent structures, as 



a result the budget contained both longitudinal and vertical pressure transport terms. 

Budget profiles showed that the vertical pressure transport was a loss at the canopy top 

and a gain within the canopy, and longitudinal pressure transport was always a loss. 

Although the pressure perturbations have been difficult to ascertain within a plant canopy, 

several studies have measured surface pressure fluctuations. 

Maitani and Seo (1985) measured surface pressure fluctuations in a wheat canopy and 

vertical velocity fluctuations within and above the canopy. They assumed that the 

pressure fluctuations in the canopy could be approximated by the surface pressure. 

Vertical plots of the measured pressure-velocity covariance and an integration of the 

pressure-velocity cospectrum over the analyzed frequencies were, in general, negative 

indicating that the pressure driven flux of TKE was downward. Their measurements 

showed that the pressure transport term in the TKE budget was not negligibly small. 

Shaw et at (1990) and Shaw and Zhang (1992) used measured surface pressure 

fluctuations and velocity fluctuations measured during coherent motions in a forest to 

determine the role of pressure fluctuations in canopy turbulence. Shaw et at (1990) 

compared surface pressure measurements to pressure fluctuations calculated through a 

Poisson equation to demonstrate that pressure fluctuations at the surface were primarily 

created by velocity perturbations in the high shear region near the top of the forest. Shaw 

and Zhang (1992) found that longitudinal velocities measured in the trunk space are 

strongly correlated with surface pressure, and that peak correlations occurred with near- 

zero time lag. Shaw and Zhang stated that this was strong evidence, but not proof, that 

turbulence at low levels in the forest is driven by pressure fluctuations. Pressure induced 



motions in the lower canopy would account for a significant pressure transport term in the 

TKE budget. 

An alternative to field experiments has been the use of closure models to investigate 

canopy budgets (Wilson and Shaw, 1977; Meyers and Paw U, 1986; Meyers and Paw U, 

1987; Meyers and Baldocchi, 1991). Although these models give qualitative agreement 

with the profiles of shear production, wake production, destruction effects, and turbulent 

transport, pressure effects were either assumed negligible or parameterized. As a result, 

no conclusions can be drawn regarding the role of pressure perturbations in the budgets. 

Wilson (1988) presented a higher order closure model using a different formulation. 

The turbulent kinetic energy budget was split into two different wavebands in a manner 

that was similar to the discussion in Shaw and Seginer (1985). The computed profiles 

where in qualitative agreement with Shaw and Seginer. As with other studies, the pressure 

transport term was assumed negligible, and no conclusions were made on the role of 

pressure fluctuations in the SKE budget. Wilson did find that the calculated level of wake 

kinetic energy had no feedback on the levels of shear kinetic energy, mean velocity, or 

Reynolds stress; therefore, he proposed that it was not necessary to include wake kinetic 

energy in his closure model. 

Others have turned to wind tunnel studies to investigate the airflow within and above a 

plant canopy. Most notable are the studies of Raupach et al. (1986) and Brunet et al. 

(1994) for airflow in an artificial wheat canopy. Budgets were presented that are in 

qualitative agreement with field experiments and mathematical models. Moreover, both 

studies offer insight to the possible role of the turbulent pressure perturbations within and 

above a plant canopy.   In the TKE budget, Raupach et al. (1986) found significant 



differences between two calculations of the dissipation. They suggested that the 

difference may be due to the vertical pressure transport indicating that pressure transport 

was a source above the canopy in approximate balance with turbulent transport, and that 

pressure and turbulent transport were both sources of TKE within the canopy. The study 

of Brunet et al. (1994) also suggested that pressure transport was a source above the 

canopy. However, their residual analysis indicated that pressure transport was a loss 

within the canopy which contradicts the earlier results of Raupach et al. (1986). Brunet et 

al. (1994) cautioned that their analysis cannot be taken as proof, and due to the 

contradictions with Raupach et al. (1986) stated that "there is clearly an urgent need for 

high-quality measurements of fluctuating pressure in the context of plant canopy flows." 

LES may have a partial answer to this call for measurements. For example, Moeng 

(1984) suggested that large-eddy simulations (LES) may be a way of obtaining "data" to 

study and understand the physical processes within the turbulent planetary boundary layer. 

The LES described in Moeng (1984) and later modified in Moeng and Wyngaard (1988) 

has been used for several planetary boundary layer flows (Moeng and Sullivan, 1994). 

The model has been tested for consistency against three LES codes written for the 

convective atmospheric boundary layer (Nieuwstadt et al, 1993), in which the models 

were run for the same case and compared favorably. However, in the TKE budget for the 

simulated case, the pressure transport term was small and the scatter between models 

prevented any firm conclusions, but it was noted that some of the scatter was probably 

caused by an insufficient averaging period. Favorable results were obtained in Moeng and 

Wyngaard (1989) where they compared their simulated TKE budget to budget terms from 

a tank experiment (Deardorff and Willis, 1985) and aircraft observations (Lenschow et al, 



1980). Thus, LES proves to be a valid technique to study turbulent flows within the 

atmospheric boundary layer, and it is possible that LES may be adapted to plant canopy 

airflows. 

Shaw and Schumann (1992) were the first to employ the LES technique to the plant 

canopy environment. Simulated mean velocity profiles, vertical profiles of Reynolds 

stress, turbulent kinetic energy, and velocity skewness qualitatively matched observations. 

Recently, Kanda and Hino (1994) used LES to explore coherent motions within and above 

a plant canopy; however, the simulation was for the developing stage of turbulence and 

not fully developed turbulent flow. 

In this present study, the LES of Moeng (1984) and Moeng and Wyngaard (1988), as 

modified by Patton et al. (1994) to include a plant canopy, was used to generate model 

data. The motivation was to use the three dimensional output of velocity, temperature, 

subgrid scale kinetic energy, and pressure calculated through a Poisson equation to 

calculate all terms in the resolved scale turbulent kinetic energy budget with particular 

emphasis on determining the role of the pressure perturbations in the budget. Several 

simulations were run with different canopy specifications. Comparisons were made 

between simulations and with field experiments, closure models, and wind tunnel results. 



2.   Methods 

2.1 Equations 

LES explicitly calculates the large, or resolved, scales of a turbulent flow while the 

small scales, the subgrid scales, are parameterized. The assumption is made that the 

resolved scales contain most of the energy and are fairly insensitive to the effects of the 

subgrid scale parameterizations. The resolved scale is mathematically defined by applying 

a grid volume average or filter process to the variables of the governing equations 

(Leonard, 1974). In the current model the resolved scale was defined using a wave-cut off 

filter in the horizontal and a grid volume average in the vertical (Moeng and Wyngaard, 

1988). The derivation of the resolved scale equations was presented in Moeng (1984); 

however, some details will be presented here for completeness, and new terms will be 

introduced to represent the presence of the plant canopy. Specifically, a form drag term 

and a canopy heat source are added to the resolved scale momentum and energy 

equations, respectively. With the Boussinesq approximations, the resolved scale 

conservation equations of mass, momentum, and energy for plant canopy flow are 

dx 

du. (du.    du ^ 

dt 
J- = -u 

^dx.    dx. j 
+±^.mL.Lmt^?iL+R     (2) 

0O     '
3    dx.    p dx.    ,l    dx.      ' 

£5 = HI.Ü_£!t+s (3) 
dt        J dx.     dx. v ' 

where the overbar represents the filtering process. When filtering the advection terms, it is 

necessary to partition the flow variables into a resolved scale part and a subgrid scale part; 



such as, w, = Hi + u'i, and, as a result, additional terms arise in the resolved scale 

equations (Leonard, 1974; Moeng, 1984). This is similar to additional terms arising when 

forming the traditional Reynolds decomposition. 

In the momentum equation the additional terms appear as the subgrid scale stress 

tensor that is written as 

r„ =*,-*** «V3 (4) 

where 

Rij=u'iWj (5) 

In equation (4) the normal components have been subtracted from the stress tensor, and 

an equal and opposite term is added to the pressure term which has the form of 

n»    R      w.ü. 

p      3        2 

where p" is the pressure deviation from the horizontal mean (represented by the double 

prime) since the mean pressure field has been separated from the resolved scale pressure in 

equation (2). The third term on the right hand side of equation (6) is the kinetic energy 

component of the advection term. The substitution of (6) into the resolved scale 

momentum equation gives (see Appendix A for more details on the derivations) 

!du,     du} du. 
—'- = -ü. 
dt        ' , dx.     dx. . \    j i/ 

dxXpJ    p dx.    ,l    dx, 

dx\ 2 J    0.     ,3    3dx. 
(7) 
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where e'^R^/2 is the subgrid scale (SGS) kinetic energy, and the variables in the 

conservation equations have the following meaning: Ut is the velocity component in the 

xt direction, 0 is the potential temperature, I/O, is the volumetric expansion coefficient, 

and g is the gravitational acceleration. The density is given as p, while (p) is the 

horizontal mean pressure. r,y is the SGS shear stress, and TQJ is the SGS heat flux. The 

canopy effects of form drag and heat source are represented as Ft and S, respectively. 

The resolved scale conservation equations can be solved with a knowledge of the SGS 

kinetic energy, the SGS fluxes, and the canopy effects. 

The subgrid scale kinetic energy was solved using a budget equation following the 

formulation in Deardorff (1980). The equation has the form 

ße< de'     du.      q     du'.ie'+ p'/p ) e' 
^- = -U—-u'.u'.—'- + -8-w'0' 4 Ul^l.s-2- (8) 
dt        J dx.      ' ' dx.    6 dx. r 

J 1 o ' 

where the terms on the right hand side represent: advection of SGS kinetic energy by the 

resolved scale velocity, shear production due to the action of SGS Reynolds stress on the 

resolved scale velocity gradient, SGS buoyancy production, SGS transport effects, and 

dissipation.    Closure assumptions are necessary to solve equation (8).    Specifically, 

downgradient diffusion was assumed for the SGS momentum IR.. =U'M'.\  and heat 

IT   = w'0') fluxes, and for the transport terms. Kolmogorov's hypothesis was used for 

the dissipation rate. It is believed that the resolved scale motions are insensitive to these 

parameterizations. The last term in (8) represents an enhanced dissipation rate due to the 

presence of the plant canopy modeled after Shaw and Schumann (1992).   The term was 
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chosen to represent the removal of SGS kinetic energy by the action of canopy drag, and 

was based on the assumption that eddies created in the wakes of the plant elements are 

much smaller than the scale of the SGS eddies; therefore, the wake eddies dissipate rapidly 

making no contribution to turbulent kinetic energy. 

Next, the SGS fluxes in the resolved scale equations were parameterized assuming that 

the fluxes can be represented by the resolved scale strain rates in the following manner 

r.. = -Ku ij M 

''du.     dü^ 
-*- + —'- 

ydx.     dx. i 
\    j 1/ 

(9) 

j 

where the SGS eddy diffusivities, KM and KH, were assumed functions of the subgrid 

scale kinetic energy and a dissipation length.  Further details of the subgrid scale energy 

budget and the subgrid scale fluxes are found in Moeng (1984). 

Finally, canopy effects, form drag and heating source, must be parameterized. The 

form drag of the momentum equation is not simply a body force that is added to the 

equation, rather the term represents the combination of viscous drag and a discontinuity in 

pressure across drag elements within the grid volume, and it is analogous to the form drag 

presented in Wilson and Shaw (1977) and Raupach and Shaw (1982). The form drag term 

was parameterized in a conventional manner as a product of a drag coefficient, cross- 

sectional body area, and the square of the time dependent velocity. The drag force in the 

Xj direction is 

F=-C<jö(z)Vüi (11) 
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where V is the scalar wind speed; Cd is a drag coefficient assumed constant and equal to 

0.15 according to measurements in a deciduous forest (Shaw et al, 1988); and a(z) 

represents the plant area density that varies in the vertical. 

Since no attempt was made to simulate the thermal energy budget of the canopy, the 

canopy heat source term, represented by S, was constant in time and modeled after Shaw 

and Schumann (1992). The magnitude of the canopy heat source was fixed at the canopy 

top using a specified canopy top heat flux, and the source decays exponentially as a 

function of an extinction coefficient and the downward cumulative leaf area index. This 

describes the canopy as being the greatest source of heat in the upper levels where the 

solar radiation load is the greatest, and as a weaker source of heat in the lower canopy 

where solar radiation is attenuated. 

2.2      Numerical model 

The governing equations were integrated in time using the second-order Adams- 

Bashforth scheme with the horizontal derivatives evaluated using a pseudospectral method 

(Fox and Orszag, 1973), and the vertical derivatives evaluated using second-order 

centered finite differences. The boundary conditions for the conservation equations were 

periodic in the horizontal; the upper boundary was specified as a frictionless rigid lid with 

zero mass, momentum, heat, and SGS kinetic energy flux; and the bottom boundary 

employed the no-slip condition. The time step for the simulations was equal to 0.1 

seconds and the grid spacing of 2 meters was equidistant in all directions. There were 96 

x 96 horizontal grids and 31 vertical grids (representing a domain size of 192m x 192m x 

60m) with the lowest one-third of the domain (10 grid points) occupied by a 20m tall 
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forest. The forest was defined as a vertical distribution of leaf area density. Figure 1 gives 

the two profiles used in this study. The profiles are defined as a sparse canopy, leaf area 

index (LAI) equal to 2, and a dense canopy with LAI = 5. The leaf area index is the 

vertical integration of the leaf area density from the surface to the canopy top. 

The conservation equations were solved on a non-staggered horizontal grid and a 

staggered vertical grid. The vertical velocity, w, the subgrid scale kinetic energy, e', and 

the leaf area density are defined at the surface and on equally spaced grids above (w 

level). The streamwise velocity, ü, the lateral velocity, v, potential temperature, 6, and 

the dynamic pressure, P*, are defined at a half grid point above the surface and the 

intermediate levels above (w level). The budget terms were calculated at the w level 

resulting in the budget terms being offset from the location of the leaf area density. 

The LES was run for several different cases where the simulated flow was forced by 

treating the horizontal mean pressure gradient as an external forcing. The pressure 

gradient was adjusted at each time step to ensure a constant mass flux across the upwind 

y-z plane where the mass flux was determined by defining a constant mean wind speed, 

U, at the upwind boundary. The mean wind speed was varied between simulations in 

order to study the environmental influences on the budget. The canopy density and the 

strength of the heat sources were also varied between simulations to determine canopy 

influences. As mentioned previously, two canopy densities were used in this study. In 

addition, the canopy heating source was represented as either a high sensible heat 

exchange or a low sensible heat exchange by specifying two different canopy top heat 

fluxes, ß, =0.125 and 0.005 mKs~l.  Table 1 summarizes environmental and canopy 
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forcing used in the simulations. The simulations are ordered in terms of a stability 

parameter h/L (Shaw et al, 1988; Leclerc et al, 1990) where h is the height of the 

canopy and L is the Monin-Obukov length evaluated at the canopy top. 

After the flow reached equilibrium for a simulation, data sets were saved at a specified 

time interval (2505 or 500s). A data set contains the three dimensional output of the 

resolved scale velocity (U,v,w), the resolved scale potential temperature (0), the SGS 

kinetic energy (e' ), and the dynamic pressure (P*). However, to form the budgets it 

was convenient to recalculate the pressure perturbation field using a Poisson equation of 

the form 

' dül    0U,\    {daft    207 ^'-„- 
dxidxi \ p)    dxt      

} 
K0Xj    0xtJ 2   0xt      3 dx{ 

(12) 

dip) o0 dtH 
dx    "    9     a    dx.      ' 

where the Poisson equation was obtained by taking the divergence of the resolved scale 

momentum equation.   At this point all terms of the resolved scale TKE budget can be 

calculated. 

2.3 The TKE budget equation 

The derivation of the resolved scale TKE budget was similar to the traditional free 

atmosphere averaging procedures (Stull, 1988). Briefly, a horizontal mean momentum 

equation was derived by decomposing the flow variables in the resolved scale momentum 

equation (7) into a horizontal mean and a horizontal deviation. The horizontal mean 

momentum equation was obtained by taking the horizontal average of the decomposed 
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equation (see Appendix B). A horizontal perturbation momentum equation was then 

formed by subtracting the horizontal mean momentum equation from the resolved scale 

momentum equation (Appendix C). The canopy drag term was included in this analysis 

resulting in drag also reducing perturbation momentum. Thus, a TKE budget derived 

from the perturbation momentum equation also contains a term that acts to remove 

resolved scale TKE. 

Wilson and Shaw (1977) specifically caution against such a formulation. They stated 

that adding a body force to represent canopy drag would satisfy the momentum equation, 

but such a term would not adequately describe other canopy effects (wake production) 

since drag would reduce turbulence as well as mean momentum from the flow. Instead, 

proper consideration of horizontal averaging and spatial differentiation could describe the 

canopy effects in the momentum equation and the TKE budget. The canopy effects would 

appear as a form drag term in the momentum equation, and the wake production process 

would naturally arise due to mathematical manipulation of the terms in the TKE budget 

(Wilson and Shaw, 1977; Raupach and Shaw, 1982; Raupach etal, 1986). 

In the present study, the above is not a concern since the numerical simulation 

specifically separates large and small-scale motions, and motions created in wakes behind 

canopy elements are assumed to reside in unresolved subgrid scales. Through the 

momentum equation, the canopy drag term acts to suppress resolved scale motions, and 

this influence is automatically carried through to resolved scale turbulent kinetic energy. 

The filter process defines the larger scales of the flow and sets a lower limit on the size of 

the resolvable eddies.   Consequently, it was assumed that the wake production process 
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should occur on the subgrid scales, and a "wake destruction" process should occur on the 

resolved scales. 

This assumption is similar to the ideas presented in Shaw and Seginer (1985). Shaw 

and Seginer stated that the total TKE could be viewed to consist of two components, the 

kinetic energy of the shear generated eddies and the kinetic energy of the eddies 

characteristic of the wakes of the canopy elements. This separation was based on the 

characteristic length scales of the eddies. The shear scale eddies had a length scale about 

one order of magnitude larger than the height above ground, and the wake eddies 

occurred on the scale of the plant elements. Shaw and Seginer state that there can be two 

orders of magnitude difference between the scales. This separation resulted in the canopy 

having opposing effects on the budgets, where the canopy acted as a sink for shear kinetic 

energy and a source for wake kinetic energy. In the present study, the resolved scales are 

analogous to the shear scale and the wake motions occur on the subgrid scales. However, 

as stated above, the assumption is made that wake production does not contribute 

significantly to the subgrid scales because wake scales are small and rapidly dissipate to 

heat. 

The resolved scale TKE budget written in mixed notation for steady state, horizontally 

homogeneous conditions is 
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where (E") = (U('U('/2) is the horizontal averaged resolved scale turbulent kinetic energy 

(see Appendix D for more details on the derivation of the TKE budget). The angled 

brackets represent the horizontal average and the double prime represents the deviation 

therefrom. The perturbation momentum is defined as «,"= «,- -(«))•   Ps is the mean shear 

production representing a conversion of mean flow kinetic energy to the resolved scale 

turbulent kinetic energy. This term is usually a source and is due to the interaction of the 

mean velocity gradients with the turbulent velocity field.    Pb acts as either a buoyant 

production or destruction depending on the sign of the vertical heat flux. The heat flux is 

positive for unstable conditions representing a conversion of potential energy to TKE; and 

is a sink for TKE under stable conditions.    Tt is the resolved scale turbulent transport, 

and Tp represents the vertical transport of resolved scale kinetic energy by the pressure 

fluctuations. D^ is the parameterized influence of canopy drag. This term represents the 

rate of work performed by the velocity perturbations against the drag forces, and is 

identical to the canopy drag term in Shaw and Seginer (1985).    Dsgs represents the 

combined effects of subgrid scale diffusion of resolved scale TKE (first two terms) and the 
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transfer of resolved scale TKE to the subgrid scales (last term).    The subgrid scale 

diffusion effects were separated from Dsgs and added to the resolved scale turbulent 

transport (Tt), but, in general, their contribution was small.  To avoid confusion with the 

resolved scale turbulent transport (Tt), the sum of resolved scale turbulent transport and 

subgrid scale diffusion is referred to as turbulent transport {TT). The transfer of resolved 

scale TKE to the subgrid represents a conversion of energy to the dissipation scales 

(Moeng, 1984; Mason, 1994). In this study, this is referred to as subgrid scale dissipation. 

The budgets presented here are different from typical budget equations for the canopy 

layer (Wilson and Shaw, 1977; Raupach and Shaw, 1982; Raupach etal., 1986). First, as 

noted above, there is no wake production term based on the belief that this process cannot 

be resolved in the current LES. This assumption is based on the fact that the grid 

resolution is two meters in the horizontal and vertical; thus, only eddies of wavelength 

greater than four meters can be resolved. Eddies of this size are significantly larger than 

the size of the eddies expected of the wake production process that occur on the scales of 

the plant elements (1-50 cm). Secondly, there are no dispersive fluxes (Raupach and 

Shaw, 1982; Raupach et al., 1986). The dispersive fluxes represent spatial correlations 

between time averaged quantities; for example, at the edge of a tree stand a consistent 

downdraft may occur on the time average. This downdraft may be correlated with 

turbulent motions upwind of the edge, and the net effect would be a significant dispersive 

flux in the TKE budget. Dispersive fluxes are absent from the equations because the 

budgets are for only a spatial average, as opposed to performing a spatial or volume 

average in conjunction with a time average; however, an ensemble average of each term 
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was formed by averaging the terms over the number of available data sets within each 

simulation. 
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3. Results and Discussion 

3.1 TKE budget profile 

The normalized budget for the near neutral simulation (S5) is given in Figure 2. The 

overall features of the budget are in agreement with previous studies. Above the canopy 

there is an approximate local balance between the shear production and the rate of transfer 

of energy to the subgrid scales (dissipation). However, at the top of the domain shear 

production approaches zero due to the specification of a rigid upper boundary with no 

fluxes across the boundary. The subgrid scale dissipation remains an expected loss 

throughout the domain resulting in a local imbalance between production and dissipation. 

The imbalance is compensated for by turbulent transport that is unable to export kinetic 

energy through the upper lid. In previous experimental studies, turbulent transport was a 

maximum loss at the canopy top and remained a loss above the canopy decreasing in 

magnitude away from the top of the canopy. The positive values of turbulent transport 

above the canopy in this case appear to be an artifact of the boundary conditions. 

Above z/h»l.3 the pressure transport is roughly opposite the turbulent transport, 

and, in regions where the terms are not negligibly small, the magnitude of pressure 

transport is approximately 30% of the turbulent transport. The relative percentage of 

pressure transport to turbulent transport varies somewhat between simulations. This 

feature cannot be considered conclusive proof that pressure transport opposes turbulent 

transport above the canopy because of the possible boundary influences; however, the 

equilibrium between production and dissipation with a balance between the transport 

terms was inferred in the canopy wind tunnel study of Raupach et al. (1986). 
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There is considerable evidence that this balance occurs within the unstable atmospheric 

surface layer; for example, McBean and Elliott (1975) measured turbulent velocity 

components, temperature, and pressure at one height in the surface layer. The vertical 

profiles of the TKE budget terms were then inferred from Monin-Obukhov similarity using 

the measured data. Their results showed that the pressure transport was approximately 

equal to and opposite the turbulent transport. Brost et al. (1982) summarized several 

studies of the surface layer and the convective boundary layer that showed the pressure 

transport opposing turbulent transport. In the reported studies, pressure transport was 

determined as a residual and the percentage of pressure to turbulent transport varied from 

50% in Lenschow et al. (1980) to 100% in Wyngaard and Cote (1971), Rayment and 

Chaughey (1977), and Chaughey and Wyngaard (1979). 

McBean and Elliott (1975) proposed a simple model for the observed pressure 

transport profile based on measurements that showed the covariance (w"p"), using the 

current notation, and its vertical divergence were negative. These results indicated that 

the pressure and vertical velocity perturbations were of opposite sign and that the pressure 

transport was a source of turbulent energy in the lower levels. McBean and Elliott 

postulated that a local increase in perturbation pressure occurred below the maximum 

downward motion for a downward moving eddy in contact with the boundary, and the 

reverse occurred for an upward moving eddy that was in contact with the boundary. Both 

motions result in a negative covariance, and in order to have a negative vertical 

divergence, the covariance must become increasingly negative with height. McBean and 

Elliott do not comment on why this should occur; however, Wilczak and Businger (1984) 
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found that (w"p") was increasingly negative with height using tower measured data for a 

series of temperature ramp structures. 

Wilczak and Businger (1984) hypothesized that the pressure field retrieved from the 

momentum equations during the ramp structures should account for the pressure 

covariance term in the turbulent kinetic energy budget, and that the covariance became 

more negative with height was due to observed phase differences between pressure and 

vertical velocity associated with the measured inclined ramp structures. As a result, 

budget equations showed that pressure transport was a source of turbulent kinetic energy 

in approximate balance with turbulent transport. At this point it cannot be stated that 

ramp structures are responsible for the observed pressure patterns in the studies other than 

Wilczak and Businger (1984). Nevertheless, pressure transport appears to balance a 

percentage of the turbulent transport in the atmospheric surface layer and in the wind 

tunnel study of Raupach et al. (1986). It also appears that such a feature may occur above 

the simulated canopy presented here. 

This result has been found in several numerical studies of the atmospheric boundary 

layer (e.g. Deardorff, 1980; Mason, 1989; Moeng and Wyngaard, 1989). Deardorff 

(1980) simulated the stratus capped convective mixed layer and found that pressure 

transport offset one-third to one-half turbulent transport except near the cloud base where 

the two terms were both sources of turbulent kinetic energy. Similar profiles were found 

in the convective boundary layer simulations of Moeng and Wyngaard (1989) and Mason 

(1989) where pressure transport roughly opposed turbulent transport throughout the 

boundary layer except just below the inversion base. 
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The approximate local equilibrium observed above the canopy, does not exist near the 

canopy top and below. In the upper canopy levels, shear production is the dominant 

source of turbulent energy due to the simulated large mean wind gradients. At the canopy 

top shear production is balanced by the destruction effects (canopy drag effects and SGS 

dissipation) and the transport processes. In fact, just above the canopy (z/h=1.05) 

turbulent transport and pressure transport account for over 50% of the TKE loss. Table 2 

gives a summary of the ratios between the transport terms at the top of the canopy to the 

combined peak production. In all simulations, the transport terms account for a significant 

portion of the TKE loss. 

Balance within the canopy occurs primarily between the loss due to the canopy drag 

effects and the gain due to shear production, turbulent transport, and pressure transport. 

However, shear production decreases quite rapidly becoming negligible below z/h=0.65; 

thus, turbulent transport and pressure transport serve as the primary TKE sources in 

roughly the lowest two-thirds of the canopy. Moreover, pressure transport is the primary 

source below z/h»05 accounting for over 70% of the TKE source in the lowest third of 

the canopy. The significance of this effect is difficult to visualize when the transport 

terms are plotted on the scale of the largest budget terms; therefore, in order to better 

discern the effects of the budget terms, the individual terms have been plotted separately in 

the following section. 

3.2 TKE budget terms 

Shear production is the primary TKE production process in all simulations. Figures 3 a 

and 3b show normalized shear production profiles for the simulations with leaf area index 
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of 2 and 5, respectively. The plot labels in the lower left of each figure are ordered in 

terms of increasingly negative values of the stability parameter h/L; thus, in Figure 3 a 

case SI is the least unstable, while case S4 is for the most unstable simulation. For ease of 

comparison the simulations with h/L>-0.2 will be referred to as the near neutral 

simulations, and when   h/L<-02 the simulations will be referred to as the unstable 

simulations. 

The general features of the normalized shear production for the sparse canopy (LAI = 

2) show a peak in production at z/h=0.95 and a fairly rapid decrease in the canopy 

(Figure 3a). The near neutral cases show some, albeit small, scatter among the 

simulations, and below z/Ä«0.80 the profiles collapse to a similar profile. Moreover, the 

profiles for simulations SI and S3 are in very good agreement (approximately 5%) 

throughout the domain. These simulations were for the same low canopy top heat flux, 

and the mean wind speed was varied from 2 ms'1 in SI to Ims'* in S3. Clearly these 

two profiles scale well when normalized in the conventional manner by hjw* .  A slightly 

larger difference is noted when comparing simulations SI and S3 with simulation S2 

(approximately 15%). In the latter case, the canopy top heat flux was large and the mean 

wind speed was increased to 4 ms~x. Although the simulated profiles are within 10% 

agreement, the profiles suggest that the peak production is smaller for the high wind speed 

case which is physically unrealistic. Dimensional plots (not shown) reveal the expected 

order where the shear production rate is largest for the high wind speed case and 

decreases as a function of decreasing mean wind speed. The difference here may be due 

to the number of data sets analyzed. Time series traces of the canopy top friction velocity 
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showed considerable variability (Patton, personal communication), and, as a result, the 

number of data sets may not be sufficient to account for these variations. Small changes in 

friction velocity will have significant effect on profiles since the friction velocity is cubed 

when normalizing. 

The largest differences in normalized production are observed between the near 

neutral simulations and the unstable simulation (S4). The unstable case had a high canopy 

top heat flux with a specified low mean wind speed. Normalized shear production is 

reduced by approximately 40%. Leclerc et al. (1990) found similar results where 

normalized shear production increased with the onset of stability. Based on the these 

results, one may conclude that shear production is smaller for the unstable case; however, 

this may not be true for all physical situations. For example, consider simulations S3 and 

S4 where both simulations had a specified low mean wind speed (1 ms~l), and the only 

difference between simulations was the canopy top heating. In dimensional form (not 

shown) the shear production was larger for the unstable simulation (S4). This is a 

consequence of the enhanced vertical motions due to the larger canopy heating. 

Although, the enhanced vertical motions will reduce the mean wind gradient, the vertical 

motions will also increase the flux of momentum within the canopy layer, and it appears 

that this increase in momentum flux is responsible for the larger shear production 

(dimensional form) observed in the unstable simulation. Added proof that the momentum 

flux has increased is seen by comparing the canopy top friction velocities (Table 1) where 

the friction velocity for S4 is approximately 40% larger than simulation S3. 
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The nondimensional profiles reveal the relative importance of shear production for a 

given simulation, and the small scatter between near neutral simulations indicates that 

similar physical processes account for turbulent kinetic energy production. For example, a 

comparison of peak shear production (for both normalized and dimensional form) to total 

peak TKE production reveals that shear accounts for over 98% of the total TKE 

production in the near neutral simulations, while in the unstable case shear production only 

accounts for approximately 75% of the total peak production. 

The normalized shear production profiles for the dense canopy (LAI = 5) cases show 

features similar to the sparse canopy.  Normalized peak production occurs at z/h=0.95 

(Figure 3b), and the near neutral profiles show some scatter collapsing to a single profile 

near z/7i«0.85. In addition, the normalized peak production is reduced by approximately 

30% for the unstable case, and, for both simulated canopies, the profiles are not ordered 

strictly by the stability parameter, h/L. Although the profiles for both leaf area densities 

are similar, there are several notable differences due to the change in canopy density. 

Normalized shear production is larger for the dense canopy, and, due to the 

aforementioned variations in friction velocity, a comparison was made with dimensional 

plots (not shown). The dimensional plots showed that the shear production rate was 

larger when only considering a change in canopy density. For example, the peak 

dimensional production for simulation S7 (dense canopy) was approximately 50% larger 

than simulation S3 (sparse canopy), and both production rates (in dimensional form) were 

much smaller than the other cases because the canopy heating and the mean wind speed 

were small. Further effects on shear production due to the change in canopy density can 
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be seen when comparing the near neutral simulations, where the normalized peak 

production value for the sparse canopy is approximately 6.5 while in the dense canopy the 

peak is about 8.5 representing a 30% increase. A similar increase is noted for the unstable 

simulations. These results indicate that the mean wind gradient is larger for the dense 

canopy. This is expected since the dense canopy will extract more momentum due to a 

greater canopy drag resulting in a larger difference between the canopy top and free- 

stream wind speed; however, the changes here may be influenced by the specification of a 

constant mass flux across the upwind edge of the model domain. For a given mean wind 

speed, a constant mass flux across the domain requires a stronger flow above the dense 

canopy since the dense canopy will reduce the airflow within the canopy layer, and the 

result being a larger mean wind gradient. 

The normalized shear production profile in the dense canopy also shows a much more 

rapid decrease within the canopy. The dense canopy shear production becomes negligible, 

less than 10% of the canopy top peak, at a slightly higher level (z/h «0.65) than in the 

sparse canopy (z/h*055). Meyers and Baldocchi (1991) also found that normalized 

shear production decreased rapidly inside a deciduous forest with a leaf area index of 5. 

Their measurements showed production to be negligible below z//i«0.75. The difference 

is likely due to the canopy architecture because the foliage was concentrated more in the 

upper levels of the forest reported in Meyers and Baldocchi (1991). 

Figure 4 presents the profiles for normalized buoyant production where the profiles 

are, as expected, ordered in terms of the stability parameter. In general buoyancy is a 

negligible source when compared to shear production except in the unstable simulations 
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S4 and S8. Specifically, in the simulated unstable cases the peak buoyant production 

accounts for approximately 25% of the total peak production, and less than 2% of the 

total peak production for the near neutral simulations. The budget profiles presented in 

Leclerc etal. (1990) showed similar results where the normalized buoyant production was 

significant in their unstable case, and normalized buoyant production was negligible for 

their neutral measurements. The common features for both simulated canopies show that 

buoyant production is a maximum at z/hc «1.05, and is a source at all levels except for 

cases S8, S6, and S2 where buoyancy is a sink below z/h»0A5. In the latter two cases 

the magnitude of the normalized sink is on the order of 10'3. 

The maximum buoyant production just above the canopy indicates that the vertical 

heat flux was large and positive at this level. This result is a direct consequence of the 

specified canopy heating profile. In the simulations, the canopy heating was largest at the 

top of the canopy and the heating exponentially decayed with decreasing height. 

Physically this represents solar radiation heating the leaves in the upper canopy which in 

turn heats the surrounding air given that no transpiration occurs. The decay into the 

canopy represents the strong attenuation of solar radiation resulting in the canopy acting 

as a weaker heat source. 

The reversal of buoyancy from a production process to a destruction process occurs in 

the simulations that have a specified high canopy heat source (except case S4), and is only 

significant in case S8. Buoyant destruction occurs under thermally stable conditions when 

the vertical heat flux becomes negative. A stable layer develops within the simulated 

forest due to the specification of an elevated heat source resulting in the air in the upper 
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canopy to be the warmest with cooler air temperature below. Such a stable layer has been 

found to be typical of the daytime temperature profile within a canopy (Kaimal and 

Finnigan, 1994); however, the observed canopy heat flux is generally positive representing 

a countergradient flux of heat. The simulated downward heat flux may be an inadvertent 

consequence of the boundary conditions. The surface temperature was specified using a 

similarity relationship and the temperature at the lowest ü level (a half grid point from the 

surface), while the upper boundary did not allow a flux of heat across the boundary. As a 

result heat was continually added to the system and thermal equilibrium was never 

reached. The continual source of heat in the upper canopy could result in the simulated 

downward heat flux; however, the simulated profiles are not unrealistic since the 

simulations are on the order of 10's of minutes and thermal equilibrium may not be 

reached on this time scale for certain atmospheric conditions. 

The effect of the mean wind shear on buoyant production is seen by comparing 

simulation S4 to simulation S2 in the sparse canopy and by comparing simulation S8 to 

simulation S6 for the dense canopy. In these simulations the canopy top heat flux was 

large (0.125 mKs'1), and the mean wind speed was equal to Ims'1 in simulation S4 

(S8) with the mean wind increased to 4 m s'1 in simulation S2 (S6). The canopy heat 

source is large, yet for the high wind case normalized buoyant production is small. 

Conversely, buoyant production was large when the canopy heating was large and mean 

wind small. These results may seem contradictory because for a given leaf area index and 

canopy heating rate one would expect that the rate of buoyant production in simulation S4 

(S8) to equal buoyant production for simulation S2 (S6).   In dimensional form (not 
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shown) the production rates are approximately equal, and, as with normalized shear 

production, the profiles in Figure 4 show the relative importance of normalized buoyant 

production to total production within each simulation. 

The production processes are normally balanced by the destruction effects in the TKE 

budget. In the resolved scale TKE budget there are two destruction mechanisms, the SGS 

dissipation and plant canopy drag effects. The SGS dissipation represents the normal 

inertial cascade whereby large eddies are broken down into successively smaller eddies 

that are ultimately acted upon by viscosity. On the other hand, the canopy drag effects 

represent the direct removal of turbulent energy due to the interaction of resolved scale 

turbulence with the plant canopy. This process results in a short circuit of the normal 

eddy cascade (Shaw and Seginer, 1985). 

Figure 5a presents the normalized SGS dissipation for the sparse canopy simulations. 

The dissipation is large at the canopy top and decreases within the canopy. As with shear 

production, the dissipation is not strictly ordered by the stability parameter. The near 

neutral simulations show little scatter between profiles, and normalized dissipation is 

approximately 50% larger than for the unstable case at the canopy top. In all cases the 

SGS dissipation is negligible (less than 10% of canopy top value) below z/h « 0.60. 

The results for the dense canopy simulations are given in Figure 5b. The profiles are 

similar to the sparse canopy with the dissipation in the near neutral simulations 

approximately 50% larger than the dissipation in the unstable simulation at z = h. One 

notable difference is that there is less consistency between the near neutral simulations 

where SGS dissipation is the largest for the high wind speed simulation (S6). In addition, 
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the dissipation attenuates more rapidly in the dense canopy, and is essentially zero below 

zjh « 055. This is consistent with Shaw and Seginer (1985) who found the dissipation to 

be negligible within a dense corn canopy (LAI« 4.0), while dissipation accounted for one- 

third of the loss in a sparse artificial wind tunnel canopy (LAI« 05). 

Shaw and Seginer (1985) also found that the action of plant canopy drag was the 

primary destruction process within their dense canopy. Similar results are found here 

(Figure 6). The general features show that the peak destruction occurs at Z//J«0.85 for 

all simulations, and destruction occurs primarily in the upper half of the canopy. Noted 

differences due to the canopy densities are larger peak destruction in the dense canopy 

simulations (Figure 6b), and the magnitude decreasing slightly more rapidly within the 

forest. 

The primary differences occur between the near neutral simulations and the unstable 

simulations. The near neutral simulations show remarkable agreement throughout the 

canopy with a difference between profiles of less than 5%. The unstable simulations show 

greater destruction throughout most of the canopy. Leclerc et al. (1990) found that 

canopy drag was small in the lower portion of the forest, and approached zero with 

increasing stability in the lower half of the forest. 

The transport terms of the resolved scale TKE budget can neither create nor destroy 

energy; rather, the transport mechanisms simply redistribute energy from one region to 

another. The general features of turbulent and pressure transport have already been 

presented in Figure 2. Here the details between simulations are presented, and the focus 

will be on the physical implications of the profiles near the canopy top and below. 
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The simulated turbulent transport profiles (Figure 7) show a loss at the canopy top and 

a gain within the canopy. The peak loss for all simulations occurs at z/h = l.05, and the 

average loss is roughly 35% of the combined peak production at z/h=0.95. Raupach et 

al. (1986) found that turbulent transport loss was approximately one-third of the 

combined production for the same level, z*h. The difference here is that the simulated 

turbulent transport profiles show a larger gradient in the upper canopy than the wind 

tunnel plots. This is probably due to the difference in canopy structure, where in the wind 

tunnel the leaf area density was constant with height in contrast to the structure in this 

study. The magnitude of the peak loss is very similar for both simulated canopies showing 

an average loss of-2.5 for the sparse canopy and -3.0 for the dense canopy; however, 

there appears to be no consistent ordering of the transport terms by the stability 

parameter. 

In the canopy layer the profiles are roughly ordered in terms of the stability parameter. 

The sparse canopy simulations (Figure 7a) show little variability between profiles for the 

least unstable simulations (SI and S2), and the normalized peak input of energy is largest 

for these simulations. Furthermore, the peak normalized turbulent transport source 

decreases for increasing instability. Clearly the peak source is ordered by h/L . In the 

lower half of the canopy, the near neutral simulations approach a similar value while 

turbulent transport is larger for the unstable simulation. The larger source corresponds to 

a larger gradient of the TKE flux. Leclerc et al. (1990) found that the flux of TKE 

increased for thermally unstable conditions, and normalized budget profiles showed a 
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larger turbulent transport source at the lowest measurement level in the forest for unstable 

conditions. 

The dense canopy simulations (Figure 7b) show similar features. The peak source is 

ordered by the stability parameter. The near neutral simulations collapse to a single 

profile, and turbulent transport is slightly enhanced in the lower canopy for the unstable 

simulation; however, there are several differences in the turbulent transport profiles due to 

the change in canopy density. The turbulent transport peak is, on average, larger and 

occurs at a higher level in the dense canopy. The dense canopy profiles attenuate more 

rapidly with decreasing height, becoming negligible in the lowest one-third of the canopy. 

These features are consistent with increased normalized shear production for these 

simulations resulting in greater transport in the upper canopy, and the inability of vertical 

motions to penetrate into the dense canopy. 

The turbulent transport terms plotted in Figures 7a and 7b contain two components. 

The first component is the resolved scale turbulent transport (Tt), and the second is the 

subgrid scale diffusion of resolved scale TKE. Figure 8 gives the components of the 

turbulent transport for simulation S4, where TT represents the sum of resolved scale 

turbulent transport and subgrid scale diffusion. In addition, the subgrid scale diffusion is 

spilt between normal and shear components represented as Sn (= -f dü'ie'y/dx^) and Ss 

[=-d ü"x"..jdx\, respectively. The resolved scale turbulent transport, Tt, is the largest 

component with subgrid scale diffusion generally less than 15% of the total (77). Near 

the surface the normal component of subgrid scale diffusion is essentially zero, the shear 

component becomes negative, while the resolved scale turbulent transport is small and 
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positive. All simulations show these features where the negative values of turbulent 

transport are solely due to the shear components of subgrid scale diffusion, and the 

negative values are probably due to the subgrid scale parameterizations; however, further 

investigation is needed. 

An encouraging aspect of the turbulent transport profiles simulated here is that the 

results are well supported by other studies. Field experiments for a pine forest (Lesnik, 

1974) and from deciduous forests (Shi et al, 1987; Leclerc et al, 1990; Meyers and 

Baldocchi, 1991) all show this feature. This general profile has also been found in wind 

tunnel studies (Raupach et al, 1986; Brunet et al, 1994) and in higher order closure 

models (Wilson and Shaw, 1977; Meyers and Paw U, 1986, 1987; Meyers and Baldocchi, 

1991). On the other hand, the second transport mechanism, pressure transport, is not as 

strongly supported in the literature. 

The simulated effects of pressure transport (Figure 9) exhibit similar features as 

turbulent transport. Pressure transport is a loss between 0.%<z/h<l3 and a gain below 

z/h&0&; thus, for plant canopy turbulence, pressure transport also serves to transfer 

energy away from the primary production region, the upper canopy. Another similarity 

between transport profiles is that the peak loss at the canopy top and peak gain in the 

canopy are larger and occur at a higher level for the dense canopy simulations. The 

pressure transport profiles are not ordered by h/L in the upper canopy, but, below 

z/hnQ.6 (sparse canopy) or z/Ä«0.8 (dense canopy), the most unstable cases show 

substantially greater values of pressure transport. 
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A significant difference between transport turbulent and pressure transport is that 

pressure transport does not attenuate as rapidly with decreasing depth into the canopy. In 

addition, pressure transports for the near neutral simulations in both canopies collapse to a 

similar profile below z/h» 0.6. In the lower canopy the primary balance of the resolved 

scale TKE budget is between the loss due to canopy drag effects and the gain due to 

turbulent and pressure transport with pressure transport accounting for most of the kinetic 

energy gain. Table 3 lists the average ratio of resolved scale turbulent transport to 

pressure transport from the level where pressure transport first exceeds turbulent 

transport. Pressure transport accounts for approximately 60% of the transport in the 

lowest third of the sparse canopy, and for approximately 70% of the transport in the lower 

half of the dense canopy. This result supports the belief that pressure transport is not 

negligible in the TKE budget and that pressure transport is a source of TKE in the canopy 

(e. g. Maitani and Seo, 1985; Shaw and Zhang, 1992; Raupach et al, 1986; Leclerc et al, 

1990); however, this result contradicts the results of Brunet et al. (1994) where pressure 

transport was estimated to be a loss within the canopy. 

Brunet et al. (1994) calculated the profiles of shear production and turbulent transport 

from measured wind tunnel data for an artificial wheat canopy. The dissipation was found 

using the measured u spectra, and a wake production term was calculated using the 

formulation presented in Raupach et al. (1986). Pressure transport was believed to be the 

dominant term in the residual. The residual showed a gain just above the canopy and a 

significant loss within the canopy indicating a severely unbalanced budget. Brunet et al. 

proposed that a "wake dissipation" term should be included in their original budget based 
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on the assumption that their measurements could not resolve the wake production 

process. The wake dissipation term was equal and opposite to the wake production and it 

was added to the viscous dissipation, but their wake dissipation term only accounted for 

the dissipation of "wake turbulence" by the mean wind and not for the turbulent energy 

destroyed by canopy drag. The new dissipation rate {dissipation = viscous + wake 

dissipation) gave results very similar to Raupach et al. (1986). However, the new residual 

still showed pressure transport as a TKE sink within the canopy, and this new residual was 

almost identical to the semi-empirical relationships of Zeman and Lumley (1976) and 

Deardorff (1973). Brunet et al. (1994) noted that this consistency cannot be taken as 

proof "since the closure assumptions are mostly empirical"; however, no explanation was 

given as to the observed agreement. 

The agreement between the surface layer pressure transport parameterization and the 

new residual may not be valid for the plant canopy because the semi-empirical 

relationships were derived for a smooth, constant flux boundary layer. Both conditions 

are violated in the plant canopy; however, a possible test of the of the semi-empirical 

relationships would be to calculate the Deardorff (1973) parameterization with the LES 

data. 

Finally, the residual term (Figure 10) in the resolved scale TKE budget represents any 

numerical errors, or an insufficient number of data sets used to form the ensemble average 

of the budget terms. The residual is largest at the canopy top where the other terms of the 

budget are large, but on average the maximum residual is less than 2% of the of the shear 

production for the corresponding level in the upper canopy.    This small residual is 
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encouraging and indicates that numerical errors are negligible, and that the number of data 

sets averaged are sufficient to determine the terms of the resolved scale TKE budget. In 

addition, the assumptions of steady state and horizontal homogeneity have been satisfied, 

and it appears that not including a wake production term in the SGS kinetic energy 

equation has had little effect on the resolved scales. A possible reason for this is that 

eddies produced due to the wake production process dissipate rapidly (Raupach and 

Shaw, 1982; Wilson, 1988). 
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4.   Summary and Conclusions 

LES output has been used to calculate all terms of the resolved scale TKE budget for 

airflow within and above a forest canopy. The TKE budget contains the traditional terms 

that represent shear and buoyant production, turbulent transport, and pressure transport; 

however, differences arise because the budget is for the resolved scales of a LES. These 

scales are mathematically defined using a numerical filter process that separates the 

resolved scales of motions from the subgrid scale motions. A formulation in this manner 

sets a lower limit on the size of the resolvable eddies. As a consequence, the wake 

production term which is commonly found in a plant canopy budget does not appear in the 

resolved scale budget presented here; rather, the budget contains a term that represents a 

direct extraction of turbulent energy by the action of plant canopy drag. In addition, the 

traditional viscous dissipation effects are represented as a transfer of energy from the 

resolved scales to the subgrid scales by a parameterized shear stress term. 

Several simulations were run using different environmental forcing and plant canopy 

specifications. The environmental forcing was specified through a mean pressure gradient 

that was adjusted during a simulation to ensure that a specified mass flux was maintained 

across the upwind boundary. The plant canopy was defined as either a sparse canopy 

(LAI = 2) or a dense canopy (LAI = 5), and the effects of canopy heating on the 

surrounding air were specified using a canopy top heat flux. A canopy heating rate profile 

was calculated from this heat flux to represent a high or a low solar radiation load on the 

forest.   The thermal stability of a simulation was defined by a stability parameter of the 
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form h/L, where h is the canopy top and L is the Monin-Obukhov length; however, 

there was not always a clear order of the budget terms by the stability parameter. 

The effect of canopy density changes were seen in all profiles. The simulated profiles 

showed that the normalized peak value of a budget term was larger in the dense canopy 

simulations. For example, normalized shear production for the dense canopy simulations 

were approximately 30% larger than the sparse canopy simulations. This feature was also 

observed in the normalized profiles of buoyant production, canopy drag effects, 

dissipation, and the transport terms. In addition, the dense canopy simulations showed 

that the magnitude of the budget terms attenuated much more rapidly within the canopy. 

This indicated that turbulent motions are suppressed in the lower portions of a dense 

forest when compared to a more open forest. 

The most significant aspect of this study was that the three dimensional pressure 

perturbation field was numerically calculated; thus, allowing the calculation of the pressure 

transport term at all levels in the domain, and the effects of pressure transport could now 

be compared to the other budget terms for the first time. The general features of the 

budget showed, that above the canopy, there was an approximate balance between 

production and subgrid scale transfer (dissipation), and there were indications that 

turbulent and pressure transport roughly opposed each other with pressure transport 

balancing approximately 30% of turbulent transport; however, there was considerable 

variation between simulations. This approximate balance did not exist near the canopy top 

and below. At the canopy top, production was balanced by plant canopy drag effects, the 

energy transfer to the subgrid scales (dissipation), and by both transport mechanisms, 
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where turbulent and pressure transport counteracted over half of the production in the 

simulations. In the lowest two-thirds of the canopy, production and subgrid scale transfer 

became negligible, and the primary balance was between the loss due to canopy drag 

effects and the gain due to transport. Further, pressure transport was the dominant source 

in the lowest levels of the forest. In fact, pressure transport accounted for approximately 

60% of the TKE source in the sparse canopy and roughly 70% of the source in the dense 

canopy. 
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TABLE 1. Plant canopy variables and forcing for simulations. 

Simulation      LAI Q* U h/L u. Data 
(ms^K)    (ms'1) (ms"1) Sets 

SI 2.0 0.005 2.0 -0.024 0.388 15 
S2 2.0 0.125 4.0 -0.074 0.767 13 
S3 2.0 0.005 1.0 -0.185 0.196 15 
S4 2.0 0.125 1.0 -1.398 0.281 12 

S5 5.0 0.005 2.0 -0.017 0.424 12 
S6 5.0 0.125 4.0 -0.064 0.801 12 
S7 5.0 0.005 1.0 -0.153 0.209 06 
S8 5.0 0.125 1.0 -1.252 0.302 08 

Q* = canopy top heat flux; U = mean wind speed; h = canopy height; 
L = canopy top Monin-Obukov length; u* = canopy top horizontal mean friction velocity 
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TABLE 2. Ratio of turbulent transport (TT.  ) and pressure transport (T  . ) pmin' 

peak loss at the canopy top to the combined shear and buoyant peak 
production (P + Pb). 

Simulation      TTJ{PS + Pb) Tpmin/(PS +1%) 

SI 0.39 0.13 
S2 0.32 0.15 
S3 0.43 0.11 
S4 0.42 0.12 

S5 0.38 0.13 
S6 0.35 0.13 
S7 0.37 0.14 
S8 0.40 0.17 
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TABLE 3. Average ratio of resolved scale turbulent transport (Tt) to pressure 
transport (T ). The average is calculated over the region from the 

surface to the level (z/h) where pressure transport first becomes 
larger than resolved scale turbulent transport. 

Simulation z/h Tt/Tp 

SI 0.35 0.42 
S2 0.35 0.45 
S3 0.35 0.29 
S4 0.45 0.43 

S5 0.55 0.27 
S6 0.55 0.30 
S7 0.65 0.30 
S8 0.65 0.25 
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Figure 1. Vertical distribution of leaf area density (m"1). Integration gives leaf area 
index (LAI) of 2 and 5. 
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Figure 2.   Normalized resolved scale TKE budget for simulation S5, h/L = -0.017. Plot 
labels refer to budget terms in equation (13), and R represents the residual. 
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Figure 3a. Normalized shear production (Ps) for a sparse canopy LAI = 2. Plot labels 
are ordered in terms of increasingly negative h/L; S1 (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4 (-1398). 
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Figure 3b. Normalized shear production (Ps) for a dense canopy LAI = 5. Plot labels 
are ordered in terms of increasingly negative h/L; S5( h/L = -0.017), 
S6(-0.064), S7(-0.153), S8( -1.252). 
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Buoyant Production 

o 

Figure 4a. Normalized buoyant production (Pb) for a sparse canopy LAI = 2. Plot labels 
are ordered in terms of increasingly negative h/L; SI (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4 (-1398). 
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Figure 4b. Normalized buoyant production (Pb) for a dense canopy LAI = 5. Plot labels 

are ordered in terms of increasingly negative h/L; S5(h/L = -0.017), 
S6(-0.064), S7(-0.153), S8(-1.252). 
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Figure 5a. Normalized SGS dissipation (Dsgs) for a sparse canopy LAI = 2. Plot labels 

are ordered in terms of increasingly negative h/L; S1 (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4 (-1398). 
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Figure 5b. Normalized SGS dissipation (Dsgs) for a dense canopy LAI = 5. Plot labels 

are ordered in terms of increasingly negative h/L; S5(h/L = -0.017), 
S6(-0.064), S7(-0.153), S8(-1.252). 
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Figure 6a. Normalized canopy drag effects (Dcd) for a sparse canopy LAI = 2. Plot 
labels are ordered in terms of increasingly negative h/L; S1 (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4 (-1398). 
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Figure 6b. Normalized canopy drag effects (Dcd) for a dense canopy LAI = 5. Plot 
labels are ordered in terms of increasingly negative h/L; S5(h/L = -0.017), 
S6(-0.064), S7(-0.153), S8(-L252). 
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Figure 7a. Normalized turbulent transport (7T) for a sparse canopy LAI = 2. Plot labels 
are ordered in terms of increasingly negative h/L; SI (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4 (-1398). 
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Figure 7b. Normalized turbulent transport (7T) for a dense canopy LAI = 5. Plot labels 
are ordered in terms of increasingly negative h/L; S5(h/L = -0.017), 
S6(-0.064), S7(-0.153), S8(-L252). 
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Figure 8.   Normalized components of the turbulent transport term (TT) for simulation 
S4.   Tt is the resolved scale component.  Sn and 5, represent the normal and shear 
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Figure 9a. Normalized pressure transport (Tp) for a sparse canopy LAI = 2. Plot labels 

are ordered in terms of increasingly negative h/L; S1 (h/L = -0.024), 
S2 (-0.074), S3 (-0.185), S4(-1398). 
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Figure 9b. Normalized pressure transport (Tp) for a dense canopy LAI = 5. Plot labels 

are ordered in terms of increasingly negative h/L; S5( h/L = -0.017 ), 
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Figure 10a.  Normalized residual (R) for a sparse canopy LAI = 2. Plot labels are 
ordered in terms of increasingly negative h/L; S1 (h/L = -0.024 ), 
S2(-0.074), S3 (-0.185), S4(-L398). 
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Figure 10b.     Normalized residual (R) for a dense canopy LAI = 5. Plot labels are 
ordered in terms of increasingly negative h/L; S5(h/L = -0.017 ), S6( -0.064), 

S7( -0.153), S8(-1.252). 
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Appendix A 

Derivation of the resolved scale momentum equation 

The resolved scale momentum equation was derived from the Navier-Stokes equation 

for an incompressible, Boussinesq fluid. In tensor notation the momentum equation is 

du        du.u.     1 Sn      Q d2u 
—'- = U--±£P_ + l-0S-+v '— (Al) 
dt dx.      p dx.     0o dx.dx. 

In LES the resolved scale part of the flow is numerically defined by applying a filter 

function to the governing equations. Filtering the Navier-Stokes equation gives 

du        du.u.     \ dn      Q - d2u 

dt dx.      pdx.     0o     
,3      dx.dx, 

where the overbar represents the filter process. The velocity components in the advection 

term must be partitioned into a resolved scale part and a subgrid scale part, u.=ü~.+ u[, 

to avoid writing an equation for u.u. (Leonard, 1974).  In addition, the presence of the 

plant canopy complicates the filtering process. The horizontal pressure differentiation and 

the Laplacian should not commute with the filtering due to discontinuities across the plant 

elements according to arguments concerning horizontal averaging and differentiation 

presented in Wilson and Shaw (1977) and Raupach and Shaw (1982). Therefore, the 

pressure was also partitioned into a resolved scale part and a subgrid scale part, and 

performing the substitution gives 
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du.u. 

dx. 
J 

\ > j       ' J       ' j) 

dx. 
J 

1 dp 
pdx. 

du. 
I      

dt 
1 dp' 
pdx. 

J. 
d2W.           d2u'. 

(A3) 

6„     a      dx.dx.      dx.dx. 
ii J    J 

where the second term on the right hand side represents the energy transfer between the 

resolved and the subgrid scales. The fourth and seventh terms represent form and viscous 

drag across the plant elements, respectively (Wilson and Shaw, 1977; Raupach and Shaw, 

1982). Both effects were parameterized as one term, and for ease of presentation the 

viscous drag term will not be carried through in the derivation. In addition, the effects of 

molecular diffusion are negligible on the resolved scale and are not retained. 

The filtering process is different from the traditional statistical averaging for turbulent 

flow. In general, 

J'*Q  and   f*f (A4) 

However, the inequalities in (A4) could be equated depending on the chosen filter 

(Reynolds, 1990). The filter used in the LES here was chosen such that the equalities 

hold; thus, (A3) becomes 

du        du.u.     du'.u'.     \ du      Q - 1 dn' 

dt dx.       dx.      p dx.     do p dx. j j r , ° r- , 

Next, the advection term in current LES were written in rotational form to give 



du. 
—'- = -ü. 
dt        ' 

du.     du \ 

\dx.     dx,, dx. 
J  1 

\  2 j 0.    '3 

1  d r p", K\   i *W  dxH   \dp' 
pdx.\ p      3 J    p dx.      dx.     p dx. 

where 
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(A6) 

8.. 
T.. = R. - Rtt -S- 

ij      ij      ** 3 
(A7) 

R.. = u'.u'. 
v »  J 

(A8) 

Equation (A7) represents the subgrid scale shear stresses, where the normal components 

were subtracted, and an equal and opposite term was added to the resolved scale pressure 

(A6). In addition, the horizontal mean pressure (angled brackets) gradient was separated 

from the resolved scale pressure and treated as an external forcing. As a result of the 

separation, the pressure in the fourth term on the right hand side represents the deviation 

from the horizontal mean indicated by the double primes. The resolved scale momentum 

equation that was used to form the turbulent kinetic energy budget is 

du. 
—'- = -ü. 
dt        ' 

> du.     du 

Kdx.    dx. i 3 dx.    $e     '3 dx \  * j 

(A9) 

1   d fp")     1 *{P)    drij     1 dp' 
pdx.\ p)    p dx.      dx.     p dx. 

where e' = U'M'./I is the subgrid scale kinetic energy. 

Finally, two parameterizations were used in (A9).  The subgrid scale shear stress was 

represented in terms of the resolved scale strain rate of the form 
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f   n- 

T.. = -KM 

77 "\ du.      du. 
-!- + 

dx.     dx. 
(A10) 

iJ 

where the diffusion coefficient was represented as a function of the subgrid scale kinetic 

energy and a dissipation length (Moeng, 1984). 

The canopy drag effects were parameterized as 

p dx. 
(All) 

where Cd is the isotropic drag coefficient; a{z) is the leaf area density; and V is the vector 

magnitude wind. 
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Appendix B 

Derivation of the horizontal mean momentum equation 

The horizontal mean momentum equation was derived from the resolved scale 

momentum equation (A9) in the following manner: first the flow variables were portioned 

into a horizontal mean and a deviation therefrom; such as,   «,=(«,) + «"; and a 

horizontal average was then performed to give the horizontal mean momentum equation. 

A term by term derivation follows: 

The left hand side of (A9) is 

/*g,\ (*(*y*r\_l*b)\j**r\ '(gyw.'fo)   (m) 
\dtl    \     dt       /   \ dt I   \dt  I      dt        dt dt 

where the time differentiation and horizontal average commute provided the plant parts 

are not waving (Raupach and Shaw, 1982), (w.") = 0 by definition. On the right hand side 

of (A9) the expansion of the rotational part of the advection term is 

f <■>- 

-u, 
dui    düj)\_ 

\dxj    dxj =- (toH1 <?««,)+»/•)    0({Sj)+Bjj 
dxj 

'r-V\ 

dX; 

dXj      dxf 

dXj dxt 

~ w dXi dx 
-(Uj 

{dXj    dxj 

(B2) 
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(B3) 

The averaging process and horizontal differentiation commute in this case because the 

first-order spatial differentiation and horizontal averaging commute (Raupach and Shaw, 

1982). As a result, the second and third term are zero on the horizontal average. 

Partitioning the kinetic energy part of the advection term gives 

\   2   dxt  I     \2 dxk 

k2     dxt     I  \   dx{    I   \2   dxt   I 

2     <?*,        \2   dx{   I 

where the second term drops out on the horizontal average. The buoyancy term is 

£*-)-(£(<*H')«»)=£<sfc. <B4> 

The plant canopy effects, form drag, are parameterized in the model in the following 

manner 

-^ = -Cda{z)Wi (B5) 
pox. 

i 

and this is symbolically partitioned as 

liPL\=IIJJeL + Li^l   \.IJ.4Ü) (B6) 

The SGS kinetic energy gradient is partitioned in a similar manner, and it equals 
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'Ide' 
\3 0x. 

(B7) 

Finally partitioning the SGS shear stresses and performing the horizontal average gives 

d 'dr..  v_ 

dx. dx.{  K" 

rdü.     dü.^ 

v dx.     dx. 

d+>4^*rt 
( ~/- -\\ 
£M+£fe) 
dx.       dx. 

(du"   du") 
—'- + —'- 

xdx.     dx. 

dx.       dx. 

(du"   dü'^ 
-*- + ■ 

, dx.     dx. . 
(B8) 

The eddy difiEusivity is a function of the SGS kinetic energy; thus, the horizontal averaging 

and differentiation should commute. Therefore, the second and third terms will equal 

zero, and the result is 

*M-     d 

dx. /      dx. 
J I J 

-K) (*b)*{'N 

dx. 
j 

-*; 

dx.       dx. 

(du"   düfü 
(B9) 

Kdx.     dx. 



Finally, combining terms gives the resolved scale horizontal mean momentum 

dt        \ jl   dx.       dx.        2      dx.        \ J[dx dt 
T 

v dx. 

du"   du" 
 > J_ 

. dx.     dx. . \ J IS 

a \ / <3      /?v    'i    \pdx. a ex. 0, dx 
in IV 

dx. 
j 

-<*„> 
- \> 

H",), *{'J) 
dx.       dx. 

r — ' 
dx. 

VI 

-
K

: 

in 

'2de'] 

i 3 dx. 

~vn~ 

(du"   dü'*\ 
l- + 

y dx.     dx. j \ J lS 

vni 
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(BIO) 

where the terms represent 

Term I: local time rate of change of horizontal mean momentum 

Term II: advection of horizontal mean momentum by the mean wind 

Term III: Reynolds stress terms 

Term IV: buoyancy 

Term V: mean pressure gradient 

Term VI: form drag on the mean wind due to plant canopy-airflow interaction 

Term VII: SGS normal stresses 

Term VIII: parameterized SGS shear stresses 
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Appendix C 

Derivation of the horizontal deviation momentum equation 

The horizontal deviation momentum equation was derived in the conventional manner 

where the horizontal mean momentum equation (BIO) was subtracted from the resolved 

scale momentum equation (A9). The flow variables in the resolved scale momentum 

equation were first partitioned into a horizontal mean and a deviation therefrom of the 

form: 

dt        dt       \ J'   dx.        dx.        \ J'{ 

J 
>fo) *k) 

'du-  snf 
 i l_ 

j ,dXi       dXiJ 

(dar   düf 
 I . 

,dx.     dx. j V        j iJ 

1 *(*M 
dx. 

dx.       2   dx.      0o \\ I       l ,3    p dx.      dx. 

1 dp'\      1 dp' 
ypdx.      \pdx.) 

dx. 

dx. 
i 

-<*„> 

'2de' 
3 dx. 

i 

V 

,—.\    f 2de i\ 

3dx. 

>fo). 4,) 
dx.       dx. 

J 
dx. \K4dx.+dx. 

~KM 

-\YI *b),'(»,) 
, dx dx. dx. 

j 

~K'M 

(du"    dü,7\ 

v dx.     dx. 
(Cl) 

and subtract the horizontal mean momentum equation giving 
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dü?= _(p{W   d*!\    rr „(*&)_ *M _J*K_??£ 
dXj    dxt j 

-Uj 
dXj dX; 

d(uj)u;'   i duj'uj'^ g-nSn    I dp"   Udp' 

p dxt    \p dxt. dx, 2   dx, 0o 
'i3 

{dXj    dxJ 

(idT 

dXj 

dx, 

<*M) 

f du?  düf\ 

\dxi    dxJ 

^.fiS-V'"*1 

dXj -&H 
£&)+£M 

.3 dxi 

V 

dx. dxt 

^dxj    dxu 

+ « 
(du?  düf\   \\düjüf\   I d 

\dxj    dxt \2   dx, ,dx, 

f -,- 

-KM 
du!'   du? 
dxj    dxJ 

(C2) 

The advection terms can be simplified using the product rule, and equation (C2) can be 

written as 

du"      i   \dü"       dlü.)        (du"   du;)     \dü"ü" 

dj 
T 

HO -u.—=—=--»: 
dx.      '  dx.       ' \ dx,     dx, )    2   dx, 

f dü?u~'^ 

dx. 
in IV 

(-. a-s-s. -lai.ife: 
e. 

VI 

p dx.    ypdx.) 
~vn 

3    dx. 
vni a 

ifcl 
dx. 

i tdx. 
j 

-K 
''du"   dü'S 
—'- + —'- 

ydx.     dx.j 

(C3) 

where the SGS stresses are defined as 
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>('.) _ 
dx. 

j 
dx. 

J 
-K) 

'du"   dü,r\ 
- + 

dx. ■*"u 

, dx.     dx. t 

(du"   0ü?\ 

dx. 
\-K" '*{*,), g(nM 

dx. 
J 

dx. 
' J 

\dx.   dx.) 

The terms of (C3) represent 

Term I: local time rate of change of deviation velocity component 

Term II: advection of the deviation velocity by the mean wind 

Term III: mean shear term 

Term IV: advection of the deviation velocity by deviation velocity 

Term V: Reynolds stress term 

Term VI: buoyancy 

Term VII: deviation pressure gradient 

Term VIII: plant canopy drag effects 

Term IX: SGS normal stresses 

Term X:     parameterized SGS shear stress 



72 

Appendix D 

Derivation of the resolved scale turbulent kinetic energy equation 

The resolved scale TKE equation for canopy flow was derived by multiplying the 

horizontal deviation momentum equation (C3) by a horizontal deviation velocity 

component, w,", and then performing a horizontal average. The result is: 

<?("X/2) 
dt \' >i dx    ex'   ' ,3 

-(u;wi 
, du."   düf 

; {dx.    dx. j 

d ü "w "/2 

dx. 
1 dü'.'p'A 

ü" rrm'\ LM4 lg^('.) 
P dx%. 

1 3    dx. dx. 

(Dl) 

For steady, horizontally homogeneous conditions with negligible mean subsidence, the 

TKE budget becomes 

dt x ' dz     9 
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dz \P    dz 
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D 

cd 

2dü»{e>)     finfc,)      , y*q 
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J 

D 
sgs 
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where E" = ü."ü."/2 is the resolved scale turbulent kinetic energy, and the terms represent 

the following: P is the mean shear production; Pb is the buoyant production; T is the 

turbulent transport; Tp is the pressure transport; D^ is the parameterized influence of 

plant canopy drag; and D    represents the combined effects of subgrid scale diffusion of 

resolved scale TKE (first two terms) and the transfer of resolved scale TKE to the subgrid 

scales (last term). 
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