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Abstract 
First, a method for determining the optimal size for a single pipe segment in a 
district heating system is developed. The method is general enough to allow for 
any set of economic or physical parameter values. In addition, any form of load 
management, i.e., temperature or flow modulation, or both, can be 
accommodated by the integral form of the coefficients in the cost equation. An 
example is presented thatshows a 17% savings in life cycle costs over a design 
based on a common rule of thumb. Next the heat consumer and his effects on 
the piping system are studied. A new model is developed for the consumer's heat 
exchanger that uses the geometric mean temperature difference as an 
approximation for the logarithmic mean temperature difference. The new 
consumer model is integrated into the previous single pipe model and, for a 
sample case, its effect is determined. For systems having multiple pipes and 
consumers, the constraints are first developed and then the general solution 
strategy. The method makes use of the solution to the unconstrained problem 
as a starting point for the constrained solution. Monotonicity analysis is then 
used to prove activity of some of the constraints, and thus simplify the problem. 
Finally, the branch-and-bound technique is shown to be suitable for finding a 
design with discrete values for all the pipe diameters. A simple example is 
provided. In addition, a method is also demonstrated for further refinement of 
the pipe network to eliminate excessive throttling losses in the consumer's 
control valves. The method developed here should be feasible for designing the 
piping networks for district heating systems of moderate size, and its major 
advantage is its flexibility. 

Cover: Results from three return 
temperature models. 

Forconversion of SI units to non-SI units of measurement consult ASTM Standard 
E380-93a, Standard Practice for Use of the International System of Units, 
published by the American Society for Testing and Materials, 1916 Race St., 
Philadelphia, Pa. 19103. 
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Optimal Design of Piping Systems for 
District Heating 

GARY PHETTEPLACE 

CHAPTER 1: INTRODUCTION 

District heating is the practice of heating multiple buildings from a single heating 
plant. Heat is conveyed to the buildings by means of hot water or steam. District 
heating systems offer enormous potential for energy conservation, in addition to the 
advantages of fuel flexibility and reduced environmental impact. For these reasons 
district heating has been used extensively in Europe with favorable results. For 
example, in Denmark district heating serves 42% of the demand for space and hot 
tap water heating (NRC 1985). 

In the United States district heating is much less widespread, accounting for 
about 4% of the space and hot tap water heating (NRC 1985). A few cities have 
systems, as well as a number of college campuses and other large institutions. With 
approximately 6000 miles (10,000 km) of district heating piping in place (Segan and 
Chen 1984), the Department of Defense is the single largest user of the technology 
within the United States. A major barrier to more widespread use of district heating 
in the United States is the high capital cost of the piping required to convey the heat 
to the buildings. The piping system is most often the major cost of district heating. 
However, the lack of development of district heating in the United States is often 
attributed to "institutional barriers." Such barriers, where they truly exist, would be 
significantly weakened if not removed should the economics become more favor- 
able. 

CURRENT DESIGN PRACTICE 

Because the hot water or steam piping networks represent such a major portion 
of the capital costs, they also represent an opportunity for significant cost savings by 
optimal design. Despite this, in practice little effort is expended either here or in 
Europe to ensure that proposed designs reduce costs as much as possible. Currently, 
most designs are based on previous experience and often may be far from optimal. 
Rules of thumb are commonly used, as are design guides developed for other 
purposes, such as for plumbing within buildings. 

To achieve an optimal design with minimum life cycle costs, all major costs 
associated with constructing and operating the system must be considered. Capital 
costs for piping and installation vary widely and must be determined for each case. 
Operating costs strongly depend on the nature of the load and the load management 
strategy adopted. For these reasons, it is impossible to develop guidance that can be 
applied universally to obtain designs that are sufficiently close to the lowest life 
cycle cost. 

As with most areas in the practice of engineering, computer-aided design 
methods are becoming more widespread in district heating system design. The use 
of such methods allows the rapid evaluation of many alternate designs, a formidable 
task if carried out without such methods. A number of computer-aided design 
methods are available for thermal piping networks (Reisman 1985, Rasmussen and 



Lund, undated, Cowiconsult 1985, Hart and Ponsness 1992). Most of the computer- 
aided design methods that have been developed are proprietary and thus any 
optimization that they profess to make is not open to inspection or modification. An 
optimal design model that is open to inspection and modification is therefore 
needed. The objective of this work is the development of such a model. 

OPTIMIZATION IN DISTRICT HEATING SYSTEM DESIGN 

Determination of pipe sizes is one of the major decisions that the designer of a 
district heating system faces. Other critical decisions that must be made are heat 
source, distribution media, distribution temperatures and load management strat- 
egy. Many of these factors have been addressed by previous studies. The emphasis 
of this work will be on determining pipe size. 

Currently, pipe sizes are usually determined on the basis of simple criteria, such 
as maximum pressure loss or maximum flow velocity. A number of investigators 
have addressed the issue of pipe size determination, trying to improve on these 
simple criteria. Aamot and Phetteplace (1976) presented a method that relies on 
establishing the ratio between the heat losses and the pumping cost and then finds 
the lowest cost pipe diameter by minimizing the sum of capital, heat loss and 
pumping costs. Their work only addressed a single pipe segment and did not 
include the effect of varying load over the yearly cycle. Szepe and Calm (1979) 
presented a model for single pipe segments that neglected heat losses and time 
varying loads, but used geometric programming theory to achieve additional 
insight into their simplified problem. In later work, Phetteplace (1981) included the 
effect of annual load variations, but only single pipe segments were addressed. 
Frederiksen (1982) provided a detailed analysis of the heat generating station and 
the consumer's systems, but simplified the transmission network to a single supply 

and return pipe. 
A number of investigators have addressed multiple pipe networks. Of course, a 

great deal of work has been done for water distribution systems where the problem 
is much simpler owing to the lack of heat losses and load variation with temperature 
as well as mass flow rate. Marconcini and Neri (1979) described a model that 
calculates the flow rate, pressure and temperature in networks of steam pipes. They 
discussed the effect that pipe diameter has on operation, but did not offer any 
methodology for selecting diameter values. 

Stoner (1974) discussed models that are capable of modeling either steam or water 
networks. Although the models do not determine optimum diameters, he gave a 
procedure for achieving an optimal design by sensitivity analysis, but did not dis- 
cuss how this process would be accomplished for networks of more than one pipe. 

Zinger et al. (1976) described a computer program for calculating flows and 
pressure levels in branched networks of hot water pipes. Their program accounts for 
pressure drops in the consumers' equipment and throttling devices placed in the 
network. Diameters are assumed to be known and they did not discuss how to 
determine them. 

Morofsky and Verma (1979) developed a feasibility analysis and costing tool for 
district energy systems, not intended for detailed design. They found the appropri- 
ate pipe sizes by finding those that absorbed all of the available pressure difference. 
They started the search for pipe size at the smallest available discrete pipe diameter 
and then calculated pressure losses. If the pressure losses were more than the 
available pressure difference, they increased the pipe size to the next discrete size 
and repeated the calculation. They proceeded in this fashion until they reached a 
discrete pipe diameter that did not result in pressure losses greater than the available 
pressure difference. 



McDonald and Bloomster (1977) discussed a model for laying out and sizing the 
piping network for a city heated with geothermal water. Pipe diameter is deter- 
mined using a "simple search" of feasible pipe sizes by minimizing the sum of the 
annual capital cost, heat loss cost and pumping cost. They provided no information 
on how to handle network constraints or consider annual load variations. 

Böhm (1986) noted that, in the case of consumers directly connected to the 
network, the "classical" approach of determining the optimal diameter by finding 
the minimum of the sum of the capital, heat loss and pumping costs results in 
pressures that are too high at the heating plant. He suggested the use of Munser's 
(1980) method, which proportions the total available pressure loss in a network 
using the equation 

APi/    = Ll  (1-1) 
/AP0    VTC />i/3 

i=\     \ /mi) 

where APj = pressure loss in pipe number 1 (N/m2) 
AP0 = total pressure loss in the pipe network (N/m2) 

Lj = length of pipe number 1 (m) 
Lj = length of pipe i (m) 

m\ = mass flow rate in pipe number l(kg/s) 
mx - mass flow rate in pipe i (kg/s) 

n = total number of pipes 
i = pipe index. 

Equation 1-1 is intended for use on "linear networks" that do not have branches. 
Koskelainen (1980) developed a method that is able to solve for optimal diameters 

in a branched network. His method consists of successively assuming that the 
objective function and constraints locally are linear and repeatedly solving the 
problem with a linear programming algorithm. He gives an example where his 
"optimal" network has a cost that is 16.4% less than one sized using a head loss 
design rule. 

In this work we develop a rational design method that yields the optimal pipe 
sizes for an application based on case-specific parameter values. This method allows 
for the inclusion of all major costs and can account for such factors as escalation of 
energy prices, seasonal energy costs, increases in heat losses over system life, 
variation in seasonal heat demand, load management strategy, the effect of the heat 
consumer, etc. Each of the major constraints on the design of a realistic district 
heating network is derived and considered. This method is felt to be practical for 
sizing much of the piping of a district heating system. 

We begin our study in Chapter 2 by first finding a suitable method for deter- 
mining the optimal size for a single pipe, independent of any others. In developing 
this method, we endeavor to keep the formulation as simple as possible, yet 
complete and accurate enough for design calculations. We make use of geometric 
programming theory to identify a lower bounding problem that can be used to guide 
us to our solution. At the end of Chapter 2 is an example that shows a 17% saving 
in life cycle cost. 

In Chapter 3 we study the heat consumer and the effect he has on the piping 
system. We develop a new model for the consumer's heat exchanger, which uses the 
geometric mean temperature difference as an approximation for the logarithmic 
mean temperature difference, thus allowing for an explicit expression for return 
temperature. We integrate this consumer model with our single pipe model of 
Chapter 2 and show what effect the consumer has on the system. 

In Chapter 4 we develop the constraints for systems with multiple pipes and 



consumers. Both absolute and differential pressure constraints are derived and 
where possible strategies are given to allow for constraint satisfaction at all points 
implicitly without considering every point in the system. 

After a brief review of general methods for constrained nonlinear optimization 
techniques at the beginning of Chapter 5, our general solution strategy is developed 
for systems with multiple pipes and consumers. The method makes use of the 
solution to the problem, unconfined by the network constraint requirements. 
Monotonicity analysis is used to prove activity of some of the constraints and thus 
simplify the problem somewhat. The result is used as a starting point for two 
methods proposed to find a solution to the constrained problem with continuous 
values for some of the pipe diameters. Finally, the branch-and-bound technique is 
used to find a design with discrete values for all the pipe diameters. 

In Chapter 6 we work a simple example with only four consumers and seven pipe 
segments. The example illustrates the use of our method and also shows how the 
branch-and-bound technique can be used to quickly eliminate candidate designs. 

In Chapter 7 is a summary of our results and offers some conclusions and 
suggestions for further study. 

Because of the inordinate number of variables and parameters involved in the 
analysis that follows, in choosing symbols for them, an attempt has been made to 
make their meaning as intuitive as possible. Where accepted symbols exist they have 
been used to the maximum extent possible. Where it has been mathematically 
convenient to represent quantities that may have no particular physical significance 
by a symbol, subscripted A's have been used for sums, products and quotients and 
J's have been used for integrals. 



CHAPTER 2: OPTIMAL PIPE DIAMETER FOR A 
SINGLE PIPE SEGMENT 

To find the optimal diameter for a single pair of supply and return pipes, we need 
to consider the costs involved and minimize their sum with respect to the pipe 
diameter. The cost minimization is done for the life cycle of the system using a net 
present value approach. Some types of heat distribution systems may have a salvage 
value, while others will, in fact, have a disposal cost associated with the end of their 
useful lifetime. Since these will in general be mild functions of the pipe diameter, 
they will not significantly affect the optimal pipe diameter and thus will not be 
treated here. With these limitations in mind, our objective function, the total life 
cycle cost, becomes 

min. Ct = Chl + Cpe + Cpp + Cm&r (2-1) 

where Ct = total system owning and operating cost ($) 
Chl = cost of heat losses ($) 
C    = cost of pumping energy ($) 
C    = capital costs of pipes and pumps ($) 

Cm&r = cost of maintenance and repair ($). 

Now let's look at each of the costs in eq 2-1 in detail, starting with the cost of heat 
losses. 

COST OF HEAT LOSS 

The basic form of the heat loss cost is 

CW=PVIhJyrChQhlcU (2-2) 

where Ch = cost of heat ($/Wh) 
PVFh = present value factor for heat (dimensionless) 

Qh] = rate of heat loss (W) 
t = time of year (hr [0 < t < 8760]). 

In the most general case, the cost of heat Ch can be a function of time because of 
seasonal usage rates. The rate of heat loss Qhl will also be a function of time over the 
yearly cycle. In fact, deterioration of the thermal insulation will result in increasing 
heat losses as the system ages. This can not be incorporated directly into the 
formulation as given above, but could be allowed for by using an appropriate 
escalation factor in the present value factor for heat costs PVFh. 

The only variable defined above that is dependent on our decision variable, the 
pipe diameter d, is the heat loss rate itself Qhl. For a single buried pipe, the 
relationship is 

ßhl = ^p-Tg)/R0 (2-3) 

where T  = pipe outer surface temperature (°C) 
T = soil temperature (°C) 
R0 = overall resistance to heat transfer (W/m °C) 

L = pipe length (m). 

The dependence on d is from the overall thermal resistance RQ. This resistance is 



found by adding the resistance attributable to the soil to that resulting from the pipe 
insulation (Phetteplace and Meyer 1990). After simplification the following result is 
obtained 

R0 = ln[(D0/d)(4Hp/D0)^]/2fci (2-4) 

where y - k{/ks (dimensionless) 
fcj = insulation thermal conductivity (W/m °C) 
k = soil thermal conductivity (W/m °C) 

D0 = outer diameter of insulation (m) 
H  = burial depth to pipe centerline (m). 

In this form it becomes easy to see how each factor affects this parameter. The 
(4H /D y factor represents the contribution of the soil to the overall thermal 
resistance. If y« 1, that is, if the soil conductivity is much greater than the insulation 
thermal conductivity, then this factor will be close to unity and the overall thermal 
resistance reduces to the thermal resistance of the insulation alone. 

To obtain a simpler form for the cost of heat loss, we make the following 
assumptions: 

1. That the soil temperature at the pipe depth varies sinusoidally over the yearly 
cycle about a mean temperature. 

2. That the cost of heat is constant over the yearly cycle. This does not limit us to 
fixed heat cost over the life of the system, since escalation factors may be used. 

3. That the outer surface temperature of the carrier pipe is equal to the tem- 
perature of the carrier medium. 

The result of these assumptions is the following form for the cost of heat loss 

Chl = I1/ln(A10/d) (2-5) 

where Ix = PVFh L 4nk{ (J Ch Tavg d* - At Ch Tm) ($) 

A10 = Do(4H/Do)T(m) 
Tavg = (Ts+ Tr)/2 (°C) 

Tm = mean soil temperature (CC) 
Tr = return temperature (°C) 
Ts = supply temperature (°C) 
At = number of hours per year (8760). 

COST OF PUMPING 

Now let's consider the pumping costs. A cost is associated with the electrical 
energy input to drive the pumps. The portion of this energy that results in frictional 
heating of the fluid in the pipes is recovered as heat. In general the value of the heat 
recovered will, of course, be less than the value of the electrical energy input to drive 
the pumps. It can be significant, however, and therefore it has been included here. 
Thus, we have the following for the pumping cost 

Cpe = PVFe I CePPa dt - PVFh } ChPP{ dt (2-6) 
yr yr 

where PVF = present value factor for electrical energy (dimensionless) 
Ce = cost of electricity ($/Wh) 

PP  = actual pumping power required, including pump and pump driver 
inefficiencies (W) 



PPf = frictional pumping power, exclusive of pump and pump driver 
inefficiencies (W). 

The first integral term represents the total cost of electrical energy input to drive 
the pumps. The second integral term is the value of heat recovered in frictional 
heating of the fluid. The actual pumping power and the fluid frictional portion are 
related as follows 

PPa = PPf/TipTlpm (2-7) 

where r\   = pump efficiency (dimensionless) 
t|     = efficiency of the motor driving the pump (dimensionless). 

The pumping power of a closed system with return lines will not be affected by 
elevation differences within a network and therefore they need not be considered 
here. Elevation differences will, however, become a factor in determining the 
absolute pressure level within a network. A constraint will arise owing to absolute 
pressure limitations of the piping. This will be addressed later. 

Now we assume that the product of the pump and motor efficiency can be 
expressed as a function of the fraction of maximum volumetric flow. A similar 
approach was used by Phetteplace (1981) based on data from Gartman (1970). This 
gives an expression of the form 

Vpm = An("l/PHPd/?"d) (2-8) 

where A   = empirical coefficient (dimensionless) 
m = mass flow rate (kg/s) 

md = maximum (design) mass flow rate (kg/s) 
p = fluid density (kg/m3) 

pd = fluid density at design conditions (kg/m3). 

The frictional pumping in the supply or return line is given by 

PP{ = 2 (2/n)2fL p-2 rh3 d~5 (2-9) 

where/is a friction factor (dimensionless). 
Using the above expression for both the supply and return pipes, we substitute 

the results, along with our earlier result for PPa, and our expression for PP(, into our 
original expression for the pumping energy cost and simplify to obtain 

-pe Cnp = d~5An j 

y 

,2 

rCepthd   _ PVFkc 
A 

Anmpd       PVFe    
h Asthjdt (2-10) 

where Au = (4/TI)
2
 PVFe L (m) 

Ag = (ps
2 +pr

2j/2 (s and r subscripts denote supply and return conditions 
respectively) (m6/kg2). 

Now we would like to find a simple function to approximate the friction factor/ 
over a range of interest. A simple power function relationship would be desirable to 
keep the number of terms to a minimum and thus not complicate the above 
expression further. The form of such a function is suggested by the dimensionless 
groups of the Moody diagram (Jeppson 1976). A method of finding an approximat- 



ing function by converting to logarithmic variables and using a least-squares curve 
fit was developed (Appendix A) to fit an equation of the form 

f=a(e/d)bRec (2"n) 

where a, b and c = coefficients determined by curve fitting (dimensionless) 
e = absolute roughness of the piping (m) 

Re = Reynolds number for the pipe flow (dimensionless). 

As an example, the following coefficients are obtained over the parameter range 

given 

a = 0.119 
b = 0.152 
c = -0.0568 

for 

50 < T < 130 
0.5 < v < 4.5 
0.050 < d < 0.770 

where T = water temperature (°C) 
v = flow velocity (m/s). 

When compared to the Colebrook and White equation (Jeppson 1976), the 
maximum error of this approximation is 6.9%, with the average error over the range 
given being only 1.1%. If more accuracy is required, a much better result could be 
obtained by narrowing the parameter ranges. Some examples of results for other 
parameter sets are given in Appendix A. The coefficients will be carried for the 
general case in the derivations following to allow for values obtained with other 
parameter sets. 

By expressing the Reynolds number as a function of the quantities previously 
used in the formulation, our equation for the friction factor becomes 

/ = a (4/ \LK)
C
 eb d<b^ mc (2"12) 

where \i is dynamic viscosity (Pa s). 
Now if we substitute this result into our expression for the cost of pumping 

energy and simplify, we obtain 

CVe = ¥-{5+b+C) (2"13) 

where 

3+CAJCI m
5+b+c\ 

uJr[\mpd     PVFe     ) v 

A7 = [(p-^-% + (p-V)r]/2 (m6+c sc/kg2+c) 

An = a (4/TT)
2+C

 eb PVFe L (mb+l). 



COST OF PIPES AND PUMPS 

Now we need to find expressions for the capital cost of the pipes and pumps. In 
general, for the entire system the pump capital costs will be assumed to be of the 
following form 

Cpumps = AlnP + M «d /pd) APd (2-14) 

where  Ax = empirical constant ($/pump) 
A2 = empirical constant ($/W) 
n   = number of pumps 

APd = total pressure drop (supply and return) at design flow rate (N/m2). 

The total pressure drop at maximum flow conditions is given by 

APd = a eb (4/jt)2+c A6 md 2+c L rf-(5+b+c) (2-15) 

where A6 = [(p-1 0"% s+ (p-i yr%J/2 (m3+c sc/kg1+c). 

So, our pump cost becomes 

Sumps = A1np + A5 d-VW (2-16) 

where A5 = A2a eb(4/it)2+c A7A md
3+c L ($ m5+b+c) 

A7d = A7 evaluated at the design condition (m6+c sc/kg2+c). 

For the capital cost of the supply and return piping, including installation, we 
assume the following form 

Cpipes = (A3+A4rf)L (2-17) 

where A3 = empirical constant ($/m) 
A4 = empirical constant ($/m2). 

COST OF MAINTENANCE AND REPAIR 

The cost of maintenance and repair is assumed to be of the following form 

Cm&r = ^fm&rAn&rCpp (2-18) 

where Am&r = annual maintenance and repair rate as a fraction of initial capital cost 
(dimensionless) 

P^f m&r = Present value factor for maintenance and repair costs (dimension- 
less). 

TOTAL COST 

With each of the component costs defined, our expression for the objective 
function, the total cost Ct, becomes 



d = ypn (Aw/d)] + I3d-<5+b+c) + A9 d (2-19) 

where C{ = Ct- [(1+ PVTm&rAm&r)(A1np+ A3L)] 

j3 = j2 + (1+PyFm&rAm&r)A5 

A9 = (l+PVFm&rAm&r)A4L. 

Minimizing Q with respect to d is, of course, equivalent to minimizing the 
original total cost function Ct. Therefore, we can work with Q for convenience. If 
we neglect the first term, which represents the cost of heat losses, we have a 
geometric programming problem (Papalambros and Wilde 1988) with zero degrees 
of difficulty. Without specifying the parameter values, we see from inspection that 
the weights of the two remaining terms will be 

w x = 1/(6 + b + c) and w2 = (5 + b + c)/(6 + b + c). 

With heat losses neglected, at the optimum pipe diameter the variable costs 
associated with pumping are 1/(6 + b + c) of the total variable costs. The variable 
costs attributable to pipe capital and maintenance costs are the remaining portion. 
Here, the variable costs represent that portion which is a function of our decision 
variable, the pipe diameter. Also note that the pumping costs include the variable 
portion of the capital cost of the pumps and the maintenance associated with that 
portion, as well as the pumping energy costs. 

Considering a more specific case, if the values of parameters b and c found in the 
example given for eq 2-11 (b = 0.152, c = -0.0568) are used, we find the following 
values for the weights 

wx = 16.4% 
w2 = 83.6%. 

These results vary very little over the range of values found for b and c in 
Appendix A. Thus, when heat losses are neglected, we find this very simple solution 
is applicable in most cases. 

Once values for the remaining parameters are known, the pipe diameter is found 
by using the equations given above and the two terms of the objective function 
remaining. The resulting expression is 

d = [(5 + b + c)(I3/A9)]tt/W^. (2-20) 

It should be noted that this solution obtained using geometric programming theory 
also could have been easily obtained using classical differential methods, as used 
later. The advantage of the geometric programming method is that it ensures that a 
global rather than a local minimum has been found. Differential methods only ensure 
a local extremum and require the evaluation of second order terms to determine the 
nature of the extremum, i.e., maximum or minimum. 

To arrive at this simple expression for the pipe diameter, we have neglected the 
heat losses. Because the cost of heat losses will always be greater than zero, we have 
constructed a lower bounding problem for our original problem by neglecting this 

cost, i.e. 

I3 d-(5+b+c) +A9d< I^MAw/d)] +13 <H5+6+c> + A9 d. 

The cost of any design that includes heat losses can never be less than the same 
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design excluding the cost of heat losses. And, since we have found the optimum 
design (lowest cost) neglecting heat losses, we now know that no design can achieve 
a lower cost when heat losses are included. This simple result can be very useful. It 
may be possible to find a design, not necessarily known to be optimal, whose cost 
including heat losses is acceptably close to that of the optimal design for the lower 
bounding problem. 

The solution to the complete problem including heat losses is slightly more 
complicated, but is easily obtained. To find the extremum of the total variable cost 
function C{, we simply take its partial derivative with respect to d and set the result 
to zero. Before proceeding to do so, however, we must take note of the value of Aw 

in the heat loss term being a function of the pipe diameter. This results from the outer 
diameter of the pipe being a function of pipe diameter and insulation thickness. The 
appropriate insulation thickness is determined by a separate optimization proce- 
dure that would consider the insulation and jacket material costs and the cost of heat 
loss. As a result of this separate "sub-optimization," the insulation thickness 
becomes a function of the pipe diameter. 

For a given set of operating conditions and economic data, the optimal insulation 
thickness can be found as a function of the pipe diameter. Here, for the sake of 
simplicity, we will assume that the insulation thickness is fixed. We then find an 
expression for A10 as follows 

Aw = (d + 2Axf-y(4Hp)V (2-21) 

where Ax; is the insulation thickness (m). In turn we approximate this expression by 
one of the following form 

Aw = (d^-y + (2A*j)Hf) (4Hp)Y. (2-22) 

For a typical set of parameter values 

fcj = 0.030 W/m °C 

ks = 1.3 W/m °C 

Ax; = 0.050 m. 

This approximation is within 2% for values of d from 0.025 to 1.0 m. Using this 
approximation for A1Q, we obtain the following equation for Ct' 

C't = [yin((4Hp)Y (d~y + (lAx^'<H))] + IjtfM+0 + Agd. (2-23) 

If we take the partial derivative of C[ and set the result to zero, we have 

o = yd []n{(mp)y(d-y+ (lAx^-yd-^li-ia-^/ii+iiAx^yd TM>) 

-(5 + b + c)I3d<6+b+c)+A9. (2-24) 

This equation can not be solved explicitly for d. A solution can be obtained by 
using a root-finder technique. An initial estimate needed for the solution can be 
found by using the value of d obtained from the solution to the lower bounding 
problem, which neglects heat losses. The cost associated with this optimal design 
that neglects heat losses also provides us with a global lower bound on the actual 
cost. In the next section, we consider the solution to a representative case. 
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A SIMPLE EXAMPLE 

To illustrate the application of the method developed in the previous section, an 
example using realistic parameter values is presented in this section. In addition, the 
results obtained are compared to those obtained by using a common rule of thumb. 
Before we can proceed with the calculation of the parameters, we need to define the 
economic and technical assumptions upon which our solution is based. 

Economic assumptions 
The assumptions concerning economic conditions of an application are the most 

controversial in an analysis of this type. Here, we will endeavor to select conditions 
that are felt to be representative of the majority of applications rather than any 
specific application. The analysis is quite sensitive to these economic assumptions, 
so the reader is cautioned that specific information must be obtained before 
applying these results. This can not be overemphasized. 

The most significant cost to be considered is the capital cost of the piping system. 
This cost is also highly variable, depending on the piping system used and, above 
all, the site conditions. Our pipe cost equation is from Phetteplace (1981) and has 
been adjusted for inflation from 1980 to 1988 using factors from R.S. Means Co. 
(1987). The following expression results 

C  = 218 L + 2180 Ld. (2'25) 

The capital costs of pumps is also taken from Phetteplace (1981), with cost ad- 
justments made as indicated above to arrive at 

Cpumps = 1060 np + °'242 APd ™ d/Pd- (2"26) 

The present value factors (PVT's) are assumed to be equal for electrical cost, heat 
cost, and maintenance and repair costs. As noted earlier, these PVFs could be 
modified to allow for escalation of energy, labor or material costs and could even be 
modified to allow for increasing heat loss over the life of the system. For simplicity, 
however, such modifications are not made here. We assume an interest rate of 10% 
per annum and a system lifetime of 25 years in calculating the PVFs using the 
following expression (CRC Press 1987) 

PVF = [1 - (1+iH/i = [1 - (1.10)-25]/0.10 = 9.08. (2-27) 

We assume that both heat and electricity costs are constant over the year, 
although the formulation allows for varying rates over the yearly cycle. Again, these 
costs are highly variable, dependent mainly on the sources of the energy and the 
values given are not for a specific application, although it is felt that they are 
representative. The assumed costs are 

Ce = 7.0 x 10"5 $/Wh ($0.07/kWh) 

Ch = 3.4 x 10-5 $/Wh ($10/106Btu). 

The rate of maintenance and repair on the system is also taken from Phetteplace 
(1981) as 2% of the capital cost per year. This factor is assumed to apply to both the 
piping system and the pumps. Again, note that maintenance and repair increasing 
with component age could be easily accounted for using escalation factors to adjust 
PVFm&r' although this is not done here. 

12 



Technical assumptions 
The major technical assumptions that we make are related to the heat load 

characteristics and the method by which the heat load is met. In district heating 
systems, the amount of heat supplied can be varied to accommodate varying 
demand by adjusting either the supply temperature or flow rate. However, certain 
constraints imposed by consumer equipment and minimum temperature re- 
quirements must be observed. In larger systems, both the supply temperature and 
flow rate are varied over the course of the year. In small systems, which must adopt 
simpler control strategies, often only the flow rate is varied. For the sake of 
simplicity, we assume the latter here and assume that the supply and return 
temperatures remain fixed over the yearly cycle. This is never actually the case, but 
for system design, it is felt that this is an appropriate simplifying assumption for a 
first analysis. Ideally, for example, the supply temperature, return temperature and 
flow rate at the consumer would be determined by the heat transfer characteristics 
of his heat exchanger under the prevailing load. A model that simulates the 
consumer's heat exchanger is developed in Chapter 3, but here it is not considered. 

The actual heat load in district heating systems has several major components. A 
detailed treatment of the heat load would be difficult and is not warranted for design 
purposes. For an excellent treatment of the actual heat loads in operating district 
heating systems, see Werner (1984). The assumption we make here for design 
purposes, that the heat load can be approximated as sinusoidal, is supported by the 
data presented by Werner (1984) as well as by the data of Phetteplace et al. (1981). 
We assume here that the heat load varies sinusoidally from a minimum of 15% of its 
maximum value to its maximum value. The assumed minimum load of 15% would 
result primarily from hot tap water use and heat losses from the pipelines. Thus, 
with our assumption of constant supply and return temperatures, the mass flow rate 
as a function of time is 

11 rhd = 0.575 + [0.425 cos(27tt/8760)]. (2-28) 

The ratio of the mass flow rate to its maximum value as determined by eq 2-28 is 
shown in Figure 1. With this simple function for the load curve, it is easy to determine 
the shape of what is normally referred to as the "load duration curve." Since eq 2- 

rti/m 

2190 4380 
t(hr) 

Figure 1. Assumed annual load curve. 

6570 8760 
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Figure 2. Load duration curve. 

28 is an even function about its midpoint of 8760/2=4380 hours, the number of hours 
for which the load will exceed any given level is simply twice the number of hours 
from the time of maximum load (t = 0) until the time that load would have occurred. 
This yields an equation of the same form as eq 2-28, except that the period of the 
function is now twice as long, i.e., 

rh/md = [0.425 cos(27tf/17,520) + 0.575]. (2-29) 

The form of the resulting load duration curve is shown as Figure 2. This result is 
similar to the shape of empirical load curves determined by other investigators, such 
as Werner (1984), except that it over-predicts the number of hours at which high 
loads occur. Since this will result in a conservative design, this is a suitable 
approximation for design purposes. The equivalent full load utilization time is 
another factor used to evaluate the load in district heating systems. The equivalent 
full load utilization time is the amount of time at which the load would have to be 
at its maximum value to result in the total heat supplied being equal to that supplied 
over the actual yearly cycle. This tune can be easily found by integrating eq 2-28 over 

the yearly cycle 

8760 
fu=   J (0.425 cos(2nt/8760)   +  0.575) At 

o 

(2-30) 

where t is the equivalent full load utilization time (hr). Carrying out this integration 
yields a\alue of tu = 5037 hours. This value is near the upper end of the range of 
measured values reported by Böhm (1988) for a number of Danish district heating 

systems. 
A number of other technical parameters need to have values assigned to them for 

us to proceed with this sample calculation. The following values selected are felt to 
be well within the range of what could reasonably be expected in an actual design: 

A   = 0.90 (dimensionless) 
Tm = 6.4°C 

h = 0.030 W/m °C 
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= 1.3 W/m °C 
= 1.0m 
= 0.050 m 

8 = 5 x 10~5 m 
a 
b 
c 

= 0.119 (dimensionless) 
= 0.152 (dimensionless) 
= -0.0568 (dimensionless) 
= 120°C 

Tr = 60°C. 

Application 
For the application, we consider a main portion of a distribution system that 

would serve a large number of consumers. We assume a maximum heating load, 
including pipeline heat losses, of 25 MW. At the temperature difference specified 
above, this would require a "design" or maximum flow of md = 100 kg/s. We also 
assume that the length of the pipeline is 1000 m. Note, however, that the length used 
will not affect the diameter determined, as the length could be factored out of each 
of the variable terms in the objective function eq 2-23, and the calculation would then 
be done on a unit length basis. To arrive at a realistic total cost, which includes the 
cost fixed with respect to d, the calculations here are for the system length specified 
above. We also assume that only one pump is associated with the system. 

Solution 
For the problem described above, we arrive at the following values for the 

parameters in the objective function: 

Y = 0.0231 (dimensionless) 
A9 = $2.58 x 106/m 
Ix = $8.56 x 104 

/3 = 44.1 $ m5-095 

Ax = $1060/pump 
A3 = $2.18 x 105. 

The calculation of the above parameters is straightforward with the exception of 
I3. The integral in the J3 parameter was evaluated numerically by a FORTRAN 
program adapted from Ferziger (1981), which uses Romberg integration. The 
program is included in Appendix B. 

Before solving eq 2-24 to determine the optimum diameter, we first find an 
approximate solution using eq 2-20, which neglects the heat losses. From eq 2-20 we 
solve for the diameter directly, obtaining d = 0.216 m. Using this value of d as an 
initial estimate, we can proceed to solve eq 2-24. We know that the solution to eq 2- 
24, which includes heat losses, will be a smaller diameter than the solution to eq 2- 
20, which does not include heat losses, since heat losses are an increasing function 
of the diameter. Various "root finder" methods can be used to find the solution to 
eq 2-24. Guided by the value obtained above, a simple trial-and-error method was 
used here, which yielded a solution to three significant digits with several function 
evaluations. The optimal diameter d was found to be 0.208 m. The total cost for this 
design is Cf = $1.11 x 106. In the following section, this result will be compared to one 
obtained using a common design rule of thumb. 

Comparison with a design based on a rule of thumb 
Ideally, an analysis similar to the one above would be used to size all major district 

heating pipes. In reality, however, most systems are designed on the basis of rules 
of thumb that have evolved from practice. Although such rules of thumb may prove 
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Table 1. Pressure drops and costs for discrete pipe sizes 
under maximum flow conditions (pipe data from Marks 
1978). 

Nominal iside diameter 
schedule 40 &d 

(in.) (m) (Pa/m) 
c, 

(in.) (in.Xm) (Pa/m) ($xW) 
pipe size scneauie tu ar^ *~f 

_ 8.187 0.208 340 1.111 

8 7.981 0.203 384 1.112 

10 10.020 0.255 120 1.178 

12 11.938 0.303 50 1.305 

adequate in some cases, they lack the flexibility to account for varying conditions, 
most notably economic. Because these rules of thumb are based on designs proven 
only to be functional, they cannot profess to yield least life cycle cost designs. To see 
how the results of the above example would compare with a rule of thumb based 
design, we consider a very common design rule of thumb used in Europe for systems 
in this temperature range: that the pressure loss in the piping not exceed 100 Pa/m. 
For this example, standard schedule 40 pipe sizes are used. 

To apply the above rule of thumb, we simply calculate the pressure loss that 
would result at maximum flow conditions using increasing pipe size until we find 
a size that satisfies the rule. This calculation is done using eq 2-15 given earlier. The 
results are shown in Table 1. We see from Table 1 that a 12-in. (300-mm) pipe would 
be necessary to satisfy the rule of thumb. The pressure loss for the 10-in. (250-mm) 
pipe exceeds the 100-Pa/m level by over 20% and therefore would probably be 
considered unacceptable. 

Now we need to determine what discrete pipe diameter would be recommended 
by the procedure outlined in the previous section. The optimal nondiscrete diameter 
was found to be 0.208 m or 8.187 in. We see from Table 1 that this lies between the 
inside diameters of the 8- and 10-in. (200- and 250-mm) nominal pipe sizes. 

To determine which to use, we simply calculate the cost of each alternative using 
eq2-19. These results are also included in Table 1. We see from these figures that the 
total life cycle cost of the 8-in. pipe is about 6% less than the 10-in. pipe and thus the 
8-in. pipe should be selected. We also note that the life cycle cost of the 8-in. pipe is 
only 0.1% greater than that of an optimal 8.187-in. inside diameter pipe, if such a pipe 
were available. 

If we compare the cost of the 8-in. pipe, which our method recommends, to the 
12-in. pipe required by the maximum pressure drop rule of thumb, we find that the 
life cycle cost of the rule based design is 17% greater. This great saving in life cycle 
cost is also accompanied by an even greater 30% reduction in capital costs (sum of 
eq 2-16 and 2-17). As the financing of a new district heating system is often a barrier 
to implementation, such large reductions in capital costs could make a system 
feasible where it might not be otherwise. 

We have arrived at an optimal pipe size that promises to save 17% in life cycle cost 
over a rule of thumb based design. This result is consistent with the results of others 
(Böhm 1986, Koskelainen 1980) who have compared optimized designs with rule of 
thumb based designs. In determining this pipe size, we have not considered any 
constraints on the selection, other than it be a commercially available size. Of course, 
in reality, other constraints exist. Before this method could be used to design an 
entire system, the constraints that arise from interconnection of the pipes need to be 
considered. Constraints also arise because of the consumer's equipment and mini- 
mum temperature requirements. Other constraints are associated with the limita- 
tions of the piping system and the plant that supplies the heat. These constraints will 
be considered in the following chapters. 
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CHAPTER 3: THE CONSUMER'S HEAT LOAD 

In the design and subsequent operation of a district heating system, the charac- 
teristics of the load can be very significant. The load will not only dictate the 
combination of supply temperature and mass flow rate necessary for its satisfaction, 
but the heat exchanger equipment used at the consumer will also determine the 
return temperature of the water. Lowering return temperature is desirable because 
it results in larger temperature differences and thus lower mass flow rates, pumping 
energy expenditure, and possibly smaller pipes. The importance of this issue is 
evidenced by many district heating utilities in Europe having taken significant 
actions to achieve large temperature differences. Thus, it is essential that our design 
methodology for the distribution piping system account for the characteristics of the 
consumer's load and the constraints that result. 

The primary type of heat load for most district heating systems is space heating. 
In some cases industrial process loads can also be significant. In most cases where 
buildings rely on a district heating system for space heat, they also use the system 
to heat hot water. Here we will develop simple models for space heating loads only. 

SIMPLE MODEL FOR THE CONSUMER'S SPACE HEATING EQUIPMENT 

As noted above, in addition to the maximum magnitude of the load placed on the 
district heating system by the consumer, several other characteristics of the load are 
important. The way in which the load varies is of primary importance. This was 
discussed in Chapter 1 and will be addressed in more detail later. The other major 
way in which the load affects heat distribution systems is through the response of 
the consumer's heat exchanger to changes in supply temperature. To address this 
issue, we need a model for the consumer's heat exchanger equipment. We will 
develop such a model in this section. 

In district heating systems using hot water, the water-to-air heat exchangers of the 
consumers can either be directly connected to the network or indirectly coupled by 
a heat exchanger. Each type of connection has its advantages and limitations. For the 
sake of simplicity, we will assume that the buildings are directly connected in this 
work. To address indirect systems, it would be necessary to either develop alternate 
models or attempt to modify the model for a direct system developed below. 

The normal radiator common on many residential and light commercial hydronic 
heating systems can be classified as a cross flow heat exchanger with one of the fluids 
mixed (water) and the other fluid (air) unmixed, as described by Kays and London 
(1964). Although the term "radiator" is commonly used for these heat exchangers, 
they function via both convective and radiative heat transfer within the temperature 
ranges normally encountered in practice. A schematic representation of this cross 
flow heat exchanger is shown in Figure 3. 

Because the water is considered to be ideally mixed, its temperature is assumed 
to be uniform in the direction of air flow at any point along the heat exchanger. As 
the water moves through the heat exchanger, it varies from the supply temperature 
Ts at the water inlet to the return temperature Tf at the outlet. The incoming air 
temperature Ta is assumed to be constant along the length of the heat exchanger. 
However, the outgoing air temperature Tao will vary along the length of the radiator 
owing to the decline in water temperature. 

Although it would be possible to describe the performance of a radiator using 
traditional approaches, such as those described by Kays and London (1964), simpler 
equations have been proposed. These are based on experimental results for such 
heat exchangers, an example being the equation given by Böhm (1988) 
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Figure 3. Schematic of a hydronic heating system radiator. 

R2/% = [(Tml)l/(Tml)o]Ml [(Tml)2/ «l]"2 ^ 

where q = heat output from the radiator (W) 
Tml = logarithmic mean temperature difference (°C) 

nv n2 = empirically determined coefficients (dimensionless). 

and the subscripts denote the following operating conditions 

0 = "design" condition for the radiators, usually the maximum load condition 
at maximum supply temperature 

1 = condition of actual supply temperature with the flow rate as determined 
under the design condition 

2 = any actual operating condition. 

Equation 3-1 uses the logarithmic mean temperature difference Tml and exper- 
imentally determined constants to predict heat exchanger performance. The log- 
arithmic mean temperature difference is defined as 

T -T 1S       'it T        (rs-ra)-(rr-ra)  
Vl    ln(Ts-Ta)-ln(Tr-Ta)    ln[(Ts-Ta)/(Tr-Ta)] 

(3-2) 

One problem that results from using the logarithmic mean temperature differ- 
ence is that an explicit expression for either the supply temperature Ts, or the return 
temperature Tr, cannot be obtained from the expression for the logarithmic mean 
temperature. This limits the extent of closed form analysis and ultimately, when 
calculations are required, it forces solution by iterative numerical methods. As a 
solution to these problems, the use of the arithmetic mean as an approximation for 
the logarithmic mean was proposed by Soumerai (1987). The arithmetic mean 
temperature difference for this case is defined as 

rma=[(Ts-Ta) + (Tr- ■Ta)]/2 = ■(T8 + Tt- -2TJ/2. (3-3) 

The arithmetic mean temperature difference has the advantage that it can be used 
to find a very simple explicit expression for either the supply temperature Tg or the 
return temperature Tr given the value of the arithmetic mean temperature differ- 
ence. The disadvantage of using the arithmetic mean temperature difference as an 
approximation for the logarithmic mean temperature difference is the error induced 
by this approximation. As Soumerai (1987) points out, within certain ranges of the 
temperatures involved, the resultant errors are usually acceptable, given the other 
uncertainties in heat transfer engineering. Soumerai (1987) recommends the use of 
the arithmetic mean as an approximation for the logarithmic mean in cases where 
the approach factor AT is equal to or greater than 0.5. The approach factor for this 
type of heat exchanger is given by 
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AF = (Tr-Ta)/(Ts-Ta). (3-4) 

In the case where the above criterion for the approach factor is met, the error of 
approximation is always less than 4%. The arithmetic mean always overestimates 
the logarithmic mean and thus any estimates of the heat transfer based on the 
arithmetic mean will overestimate the actual heat transfer that will be achieved. This 
could result in undersized heat exchangers, assuming that no other margin of safety 
is included, which is of course seldom the case. 

As an alternative approximation to the logarithmic mean temperature difference, 
the use of the geometric mean temperature difference is proposed. The geometric 
mean temperature difference for this type of heat exchanger is defined as 

Tmg = Vs ~ Ta)1/2 CTr" Ta)V1 = (Ti + TsTr - TaTs - TaTr)i/2. (3-5) 

The geometric mean temperature difference, like the arithmetic mean tempera- 
ture difference, has the advantage that an explicit expression for the supply or return 
temperature can be obtained from it. The geometric mean temperature difference, 
however, is a much better approximation of the logarithmic mean temperature 
difference than is the arithmetic mean temperature difference, as will be shown 
below. 

To simplify the analysis, we introduce the following expressions 

ATsa = Ts-Ta (3-6) 

ATra=Tr-Ta (3-7) 

AF = ATra/ATsa (3-8) 

where ATsa = greatest temperature difference between fluids (°C) 
ATra = smallest temperature difference between fluids (°C) 

AF = approach factor for the heat exchanger (dimensionless). 

Two limiting cases of heat transfer set the range of values possible for the 
approach factor AF. The first case is the case where no heat transfer takes place in the 
heat exchanger. In this case the temperature of the water flowing through the 
radiator will not decrease, and thus the supply and return water temperatures will 
be equal and the approach factor becomes unity. The other limiting case occurs when 
the maximum amount of heat transfer occurs in the heat exchanger, in which case 
the return temperature equals the air temperature and approach factor becomes 
zero. Thus, we have the following range of values for the approach factor AF 

0 < AF < 1. (3-9) 

Now we can examine the errors that can result from each of the approximations 
presented above over the entire range of possible approach factors. First, we define 
the relative error of each of the approximations 

^ = (Tma/Tml)-l (3-10) 

eg = (Tmg/Tml)-1 (3-11) 

where ea is a relative approximation error for the arithmetic mean temperature 
difference (dimensionless) and e is a relative approximation error for the geometric 
mean temperature difference (dimensionless). Then, by combining eq 3-2,3-3,3-6, 
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3-7, 3-8 and 3-10, we can arrive at the following expression for the relative error of 
the arithmetic mean temperature difference ea in terms of the approach factor AF 

ea = {[(AF + 1) \n(AF)]/[2(AF - 1)] } - 1. (3-12) 

Similarly, we combine eq 3-2,3-5,3-6,3-7,3-8 and 3-11 to arrive at an expression for 
the relative error of the geometric mean temperature difference eg in terms of the 
approach factor AF 

% = {[(AF)1'2 ln(AF)]/[AF - 1]} - 1. (3-13) 

Now we can study the approximation errors for the arithmetic and geometric 
mean temperature differences over the range of possible approach factors by 
examining eq 3-12 and 3-13 respectively. It is immediately obvious that the error 
from the arithmetic mean temperature difference approximation ea becomes infinite 
as AF approaches zero. However, it is not clear what the error from the geometric 
mean temperature difference approximation becomes as AF approaches zero. To 
determine what value e approaches as AF approaches zero, we use l'Hopital's rule. 
It states that 

limit {f(x) I g(x)) = limit (f'(x) I g'(x)) 

where fix) andg(x) are some functions of x that both approach either zero or infinity 
when x approaches the value X. To apply this to the error expression for the 
geometric mean temperature difference, we let 

x = AF 
f(x)=f(AF) = ]n(AF) 
g(x) = g(AF) = (AF-1)/AF1'2 = AF1'2 - AF ~1'2 

zg=f(AF)/g(AF)-l. 

Taking the first derivatives of f(AF) and g(AF), we have 

fUF) = l/AF 
g'(AF) = 0.5 AF "1/2 + 0.5 AF ~3/2 . 

Now we can determine the value that eg approaches as AF -> 0 from 

limit   k+l)=  limit    (f(AF)/g(AF)) =  limit     (f'(AF)/g'(AF)) = 
AF^>0 AF^O AF-^0 

limit     (AF1/2/[0.5(AF + l)]) = 0 
AF-^0 

Thus, we find that the error from approximating the logarithmic mean temperature 
difference with the geometric mean temperature difference eg reaches -100% as the 
approach factor AF goes to zero. Although this is a very high relative error, it is still 
much better than that of the arithmetic mean temperature difference approximation, 
which becomes infinite at the same condition. Of course, in reality this limiting case, 
where heat transfer is at its maximum value and the approach factor becomes zero, 
is never achieved. As we will now show, the errors attributable to using the 
geometric and arithmetic mean temperature difference approximations for the 
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logarithmic mean temperature difference are always less than the values for an 
approach factor of zero. 

The other limiting value for the approach factor is unity. In this case no heat 
transfer occurs. First, let's examine what happens to the error from the arithmetic 
mean approximation ea. We must again use l'Hopital's rule, proceeding as before 

f(AF) = (AF-l)ln(AF) 
g(AF) = 2(AF-1) 

f(AF) = l + ]n(AF) + l/AF 
g'(AF) = 2. 

In the limit as AF approaches unity, we have 

limit (eg+l)= limit   (f(AF)/g(AF)) = limit   (f'(AF)/g'(AF)) = 
AF-+1 AF-+1 AF^l 

limit  ((l + ln(AF) + l/^F)/2) = l 
AF->1 

So, we see that the error induced by using the arithmetic mean temperature 
difference as an approximation for the logarithmic mean temperature difference 
approaches zero as AF approaches unity. Now let's look at what happens to the error 
for the geometric mean temperature difference as AF approaches unity. Again we 
see that l'Hopital's rule is needed and we proceed as follows 

f(AF) = AF1/2]n(AF) 
g(AF) = AF-l 
f'(AF) = AF -1/2 [(ln(AF)/2) + 1] 
g'(AF) = 1 . 

In the limit as AF approaches unity we have 

limit   (eg+l)= limit   (f(AF)/g(AF)) = limit   (f'(AF)/g'(AF)) = 
AF^l AF->1 AF->1 

limit  (AF-1/2[(ln(AF))/2) + ll) = 1 . 
AF -»1 x ; 

Thus, we find that the error for the geometric mean temperature difference 
approximation to the logarithmic mean temperature difference also approaches 
zero as AF approaches unity. The errors resulting from using the arithmetic and 
geometric mean temperature differences as approximations for the logarithmic 
mean temperature difference are shown in Figure 4. Some numerical values for these 
errors are also given in Table 2. 

Several important observations can be made by studying Table 2. First, we note 
that the error from approximating the logarithmic mean temperature difference 
with the arithmetic mean temperature difference is always positive. Since the heat 
transfer is proportional to the logarithmic mean temperature raised to some positive 
power, using the arithmetic mean temperature difference as an approximation will 
always over-predict the actual heat transfer. Also note that, as we have shown 
analytically, the arithmetic mean temperature difference approaches infinity as the 
AF goes to zero and approaches zero as AF goes to unity. For the geometric mean 
temperature difference, the error resulting from using it as an approximation for the 
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Figure 4. Errors from approximating the logarithmic mean temperature differ- 
ence with arithmetic and geometric mean temperature differences. 

logarithmic mean temperature difference is always negative. Thus, the predicted 
heat transfer using this approximation would always be conservative; i.e., it would 
under-predict the actual heat transfer. We also note from Table 2 that, as we had 
shown analytically, the error resulting from the use of the geometric mean approxi- 
mation approaches 100% in magnitude as AF goes to zero and approaches zero as 

AF approaches unity. 
The ratio of the error from using the arithmetic mean and geometric mean 

approximations is also given in Table 2. Because the error from the arithmetic mean 
approximation becomes infinite and the error from the geometric mean approxima- 
tion approaches -100% as the approach factor AF goes to zero, their ratio approaches 
zero at that point. Thus, the geometric mean approximation is infinitely better than 
the arithmetic mean approximation at that point. Since neither approximation is 
acceptable near that point, this observation is of little use. However, it is of mterest 
to note that the ratio of errors approaches 1 /2 as AF approaches unity. Although this 

Table 2. Errors from approximating the logarithmic mean 
temperature difference. 

Approach Arithmetic Geometric Ratio of 

factor mean error mean error errors 

AF ea(%) eg(%) Ve» 

0.0 + oo -100.0 -0.00 

0.0001 361.0 -90.8 -0.25 

0.001 246.0 -78.1 -0.32 

0.01 135.0 -53.4 -0.40 

0.1 40.7 -19.1 -0.47 

0.2 20.7 -10.0 -0.48 

0.3 11.8 -5.79 -0.49 

0.4 6.90 -3.41 - 0.495 

0.5 3.97 -1.97 -0.497 

0.6 2.17 -1.08 - 0.498 

0.7 1.058 - 0.528 - 0.4992 

0.8 0.415 - 0.207 -0.4997 

0.9 0.0925 - 0.0462 - 0.4999 

1.0 0.0 0.0 -»-0.500... 
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is seemingly apparent from Table 2, we can prove this analytically by using 
l'Hopital's rule. In this case it becomes necessary to take successive derivatives up 
to the third derivatives in order to arrive at an expression that is not indeterminate. 
This is an acceptable application of l'Hopital's rule, however. The analysis is 
presented briefly below. 

eg _     AF1/2ln(AF)-AF + l 
ea     [(AF + T)\n(AF)/2]-AF + l 

Let 

ee =f(AF) = AFl/2]n(AF) -AF + 1 

ea = g(AF) = [(AF + 1) ln(AF)/2] -AF + 1 

/ XAF) = [AF1/2ln(AF)/2] + AF -1'2 -1 

g'(AF) = ln(AF)/2 + 1/2AF-1/2 . 

In the limit as AF —> 1, we see that both/ '(AF) and g \AF) approach zero; thus, we still 
have an indeterminate expression. Applying l'Hopital's rule to that expression 

/ "(AF) = - [AF -3/2ln(AF)]/4 

g"(AF) = (AF~1-AF-2)/2. 

Again, we see that both/ "(AF) and g"(AF) approach zero as AF approaches unity 
and we are left with another indeterminate expression. Once again we take deriva- 
tives so that we can apply l'Hopital's rule 

/ '"(AF) = [(3AF -5/2ln(AF))/8] - AF ~5/2/4 

£"TAFJ = AF-3-AF-2/2 

limit (£g+ea) = limit (/'"(/lF)/g'"(AF)) = (-l/4)/(l/2) = -l/2 
AF -»1 AF -> 1 

And we now have our desired result. 
The significance of this result is that we now know that the error from using the 

geometric mean temperature difference as an approximation to the logarithmic 
mean temperature difference is always 50% or less of the error that would result 
from using the arithmetic mean temperature difference. For applications where the 
use of the logarithmic mean temperature difference is undesirable, use of the geo- 
metric mean temperature difference will result in errors of less than 5% for values 
of AF greater than 0.33. As Soumerai (1987) points out, given the other uncertainties 
in heat exchanger design calculations, errors of this magnitude are certainly accept- 
able. Most heat exchanger designs will have approach factors greater than 0.33 and 
thus our findings here should be applicable in the majority of cases. 

Now that we have this approximation for the logarithmic mean temperature 
difference, we can construct a simple model for the consumer's heat exchanger using 
it. Equation 3-1 will be used to construct our model. For our model two possible cases 
exist, dependent on the values of the empirical parameters n^ and n2- Here, we will 
only address the simpler case where n1 = n2. This is the result that occurs for "high 
radiators" according to Böhm (1988), in which case nl = n2 = 1.3. In that case eq 3-1 
becomes 

r /        i"1 

<?2/'?0=[(Tml)2/(r„,i)0J (3-15) 
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Our model of the consumer's heat exchanger should accept as input the supply 
temperature to the radiators and the heat load q2. The values of the operating 
parameters at the design "0" condition will also be needed. The output from the 
model will be the return temperature. We would like this model to be as accurate as 
possible while being in a simple form, thus allowing ease in both analytical and 
numerical procedures involving it. As stated earlier, it is not possible to obtain an 
explicit model if the log mean temperature difference is used. Thus, we will proceed 
using our geometric mean approximation for the log mean temperature difference. 
Making this substitution, we have 

q2/% = M2/M0 
(3-16) 

Note that the log mean temperature difference at the design 0 condition is also being 
approximated with the geometric mean temperature difference. Since all of the 
temperatures are known at the design condition, we could have evaluated the log 
mean temperature difference and used the result here and still achieved an explicit 
result. However, to ensure that no error occurs in the resultant model at the design 
condition, we have used the geometric mean approximation. This will also reduce 
the errors at the "off-design" (2) condition. The same procedure has been adopted 
for the model using the arithmetic mean temperature difference. 

To obtain our model for the return temperature as a function of the load and 
supply temperature, we simply solve eq 3-16 for the return temperature at the 2 
condition (actual load). The result is 

(Tr)2=T,+ 
1 o 2/nj 

(Ts-Ta)i\TmRf0(c,2/q0) (3-17) 

We can also obtain a model for the return temperature using the arithmetic mean 
approximation to the log mean temperature difference. It is 

(Tr)2=2{Ta+[(Tma)0((?2/i7o)
1/"1]}-(rs)2- (3-18) 

To evaluate the performance of our models that use approximations to the log mean 
temperature difference, we need a model that uses the log mean temperature 
difference. As noted earlier, this model will be implicit and thus will require solution 
by an iterative numerical method of some type. The model can be arranged in several 
forms for numerical solution, one being 

(Tr)2=Ta+  (Ts-Ta)2/exp (<72/<?(>) (Ts-Tr)2/(Tml)0 
(3-19) 

A number of iterative methods can be used to solve this implicit equation for the 
return temperature (Tr)2. Most iterative methods are very sensitive to the quality of 
the initial estimate. Here, we are fortunate to have the geometric mean temperature 
difference approximation that can be used to obtain the initial estimate. Figure 5 
below shows some of the results for the three models developed. In addition more 
detail as well as numerical values are given in Table 3. It is clear from Figure 5 that 
the model using the arithmetic mean temperature difference is unacceptable for 
most values of the load ratio q/q0, while the model using the geometric mean 
temperature difference is acceptable over the entire range of values given for q/qQ. 
The results for the model using the log mean temperature difference were obtained 
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figure 5. Results for the return temperature models. Top family is for Ts = 
80°C; middle family is for Ts = 90°C; bottom family is for Ts = 100°C. 

by using the geometric mean approximation as an initial estimate, then proceeding 
with a simple "iterative improvement" method where the previous estimate of (Tr)2 

was substituted into the right-hand side of eq 3-19, which yielded the next estimate. 
This procedure is repeated until successive estimates of (Tr)2 varied by no more than 
the prescribed tolerance. 

For each of the consumer models, we can easily develop an expression to calculate 
the flow rate for any given load condition by starting with the heat balance for the 
radiator. We assume that the mass of the radiator is negligible so that with the 
gradual temperature changes typical of these systems, conditions are very close to 
steady state. Treating the radiator as a control volume, we have 

q= mcp(Ts-Tr) (3-20) 

where c  is the specific heat of water at constant pressure (kj/kg °C). 
Thus, our mass flow rate relative to the mass flow rate at the design condition is 

given by 

m/md = (q/qd)(T3-TT)d/(Ts-TT)2. (3-21) 

Notice that we have used the d subscript to denote the design condition for the 
piping system rather than the 0 subscript used to denote the design condition for the 
consumer's radiators. If both the network piping and the consumer's radiators are 
designed for the same maximum load condition, then it would not be necessary to 
distinguish between these two conditions. However, in most cases this will not be 
the case. For the piping network, little or no over-design is desirable in order to keep 
costs at a minimum. In fact, diversity of demand between consumers will allow the 
network to be designed for a total maximum demand of less than the sum of the 
individual demands, as will be discussed later. The consumer's radiators, on the 
other hand, will always be somewhat oversized. In addition to the normal conser- 
vatism in design, quick recovery from night setback and other off periods also favors 
significant over-design. Relative mass flow rates calculated using eq 3-21 for each of 
the consumer models are given in Table 3. The results in Table 3 assume the same 
design condition for the piping network and the consumer's radiators. Some 
examples with differing design conditions will be given later. 
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Table 3. Return temperatures and flow rates calculated with the consumer models for n1 = n2= 1.3. 

Heat GMTD AMTD LMTD 

Supply 
temp. 
(°C) 

loss 
ratio 

rtn. 
temp. 

rtn. 
temp. 

rtn. 
temp. GMTD AMTD LMTD GMTD AMTD LMTD GMTD AMTD 

GMTD 
m/md 

AMTD 
m/md 

(q/q0) (°C) (°C) (°C) AT AT AT error error m/mrf m/md m/md error error 

100 i 63.75 60.00 62.75 0.55 0.50 0.53 -0.0160 0.0438 0.5369 0.5517 0.5000 -0.0277 0.0687 

100 0.9 57.20 50.66 55.56 0.47 0.38 0.44 -0.0295 0.0883 0.4051 0.4206 0.3648 -0.0383 0.0994 

100 0.8 51.04 41.07 48.73 0.39 0.26 0.36 -0.0473 0.1572 0.3121 0.3268 0.2715 -0.0471 0.1300 

100 0.7 45.27 31.21 42.31 0.32 0.14 0.28 -0.0700 0.2625 0.2427 0.2558 0.2035 -0.0541 0.1614 

100 0.6 39.94 21.01 36.39 0.25 0.01 0.20 -0.0974 0.4227 0.1887 0.1998 0.1519 -0.0590 0.1948 

100 0.5 35.06 10.41 31.09 0.19 -0.12 0.14 -0.1277 0.6653 0.1451 0.1540 0.1116 -0.0611 0.2309 

100 0.4 30.68 -0.70 26.57 0.13 -0.26 0.08 -0.1550 1.0263 0.1089 0.1154 0.0794 -0.0594 0.2708 

100 0.3 26.86 -12.47 23.04 0.09 -0.41 0.04 -0.1657 1.5411 0.0780 0.0820 0.0533 -0.0522 0.3158 

100 0.2 23.68 -25.21 20.81 0.05 -0.57 0.01 -0.1379 2.2113 0.0505 0.0524 0.0319 -0.0376 0.3675 

100 0.1 21.27 -39.58 20.03 0.02 -0.74 0.00 -0.0618 2.9763 0.0250 0.0254 0.0143 -0.0157 0.4271 

95 1 66.67 65.00 66.20 0.62 0.60 0.62 -0.0071 0.0181 0.6944 0.7059 0.6667 -0.0165 0.0400 

95 0.9 59.68 55.66 58.62 0.53 0.48 0.51 -0.0181 0.0505 0.4948 0.5097 0.4575 -0.0301 0.0753 

95 0.8 53.11 46.07 51.38 0.44 0.35 0.42 -0.0335 0.1034 0.3668 0.3819 0.3270 -0.0411 0.1086 

95 0.7 46.96 36.21 44.55 0.36 0.22 0.33 -0.0540 0.1874 0.2775 0.2914 0.2381 -0.0500 0.1420 

95 0.6 41.27 26.01 38.22 0.28 0.08 0.24 -0.0798 0.3195 0.2113 0.2233 0.1739 -0.0567 0.1770 

95 0.5 36.07 15.41 32.49 0.21 -0.06 0.17 -fl.1099 0.5258 0.1600 0.1697 0.1256 -0.0606 0.2147 

95 0.4 31.40 4.30 27.55 0.15 -0.21 0.10 -0.1397 0.8438 0.1186 0.1258 0.0882 -0.0605 0.2563 

95 0.3 27.32 -7.47 23.62 0.10 -0.37 0.05 -0.1569 1.3163 0.0841 0.0887 0.0586 -0.0547 0.3034 

95 0.2 23.92 -20.21 21.03 0.05 -0.54 0.01 -0.1378 1.9610 0.0541 0.0563 0.0347 -0.0408 0.3579 

95 0.1 21.35 -34.58 20.05 0.02 -0.73 0.00 -0.0651 2.7253 0.0267 0.0272 0.0154 -0.0177 0.4216 

90 1 70.00 70.00 70.00 0.71 0.71 0.71 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

90 0.9 62.52 60.66 62.00 0.61 0.58 0.60 -0.0084 0.0216 0.6429 0.6550 0.6135 -0.0188 0.0457 

90 0.8 55.47 51.07 54.33 0.51 0.44 0.49 -0.0210 0.0600 0.4486 0.4634 0.4110 -0.0330 0.0837 

90 0.7 48.88 41.21 47.06 0.41 0.30 0.39 -0.0388 0.1243 0.3260 0.3405 0.2869 -0.0444 0.1199 

90 0.6 42.79 31.01 40.27 0.33 0.16 0.29 -0.0625 0.2300 0.2413 0.2542 0.2034 -0.0533 0.1570 

90 0.5 37.21 20.41 34.09 0.25 0.01 0.20 -0.0917 0.4013 0.1789 0.1894 0.1437 -0.0592 0.1966 

90 
90 

0.4 32.21 9.30 28.68 0.17 -0.15 0.12 -0.1231 0.6756 0.1305 0.1384 0.0991 -0.0611 0.2401 

0.3 27.84 -2.47 24.30 0.11 -0.32 0.06 -0.1460 1.1017 0.0913 0.0965 0.0649 -0.0571 0.2895 

90 0.2 24.20 -15.21 21.30 0.06 -0.50 0.02 -0.1363 1.7139 0.0582 0.0608 0.0380 -0.0441 0.3470 

90 0.1 21.45 -29.58 20.07 0.02 -0.71 0.00 -0.0686 2.4741 0.0286 0.0292 0.0167 -0.0201 0.4152 

85 1 73.85 75.00 74.17 0.83 0.85 0.83 0.0044 -0.0112 1.8471 1.7931 2.0000 0.0292 -0.0828 

85 0.9 65.79 65.66 65.75 0.70 0.70 0.70 -0.0006 0.0014 0.9351 0.9370 0.9306 -0.0020 0.0048 

85 0.8 58.20 56.07 57.61 0.59 0.55 0.58 -0.0102 0.0268 0.5843 0.5970 0.5531 -0.0218 0.0533 

85 0.7 51.11 46.21 49.86 0.48 0.40 0.46 -0.0249 0.0734 0.3985 0.4131 0.3609 -0.0366 0.0943 

85 0.6 44.54 36.01 42.59 0.38 0.25 0.35 -0.0458 0.1545 0.2829 0.2966 0.2449 -0.0482 0.1343 

85 0.5 38.54 25.41 35.91 0.29 0.08 0.24 -0.0733 0.2924 0.2037 0.2152 0.1678 -0.0566 0.1762 

85 0.4 33.15 14.30 29.99 0.20 -0.09 0.15 -0.1053 0.5231 0.1454 0.1543 0.1132 -0.0609 0.2219 

85 
85 

0.3 28.45 2.53 25.11 0.13 -0.27 0.08 -0.1331 0.8992 0.1002 0.1061 0.0728 -0.0591 0.2737 

0.2 24.53 -10.21 21.65 0.07 -0.46 0.03 -0.1331 1.4715 0.0631 0.0661 0.0420 -0.0476 0.3346 

85 0.1 21.56 -24.58 20.11 0.02 -0.69 0.00 -0.0722 2.2228 0.0308 0.0315 0.0183 -0.0229 0.4078 

80 1 78.33 80.00 78.49 0.97 1.00 0.97 0.0020 -0.0192 13.2420 12.0000 oo 0.0938 OO 

80 
80 

0.9 69.60 70.66 69.90 0.83 0.84 0.83 0.0043 -0.0108 1.7827 1.7315 1.9268 0.0287 -0.0809 

0.8 61.38 61.07 61.29 0.69 0.68 0.69 -0.0015 0.0036 0.8553 0.8594 0.8454 -0.0048 0.0116 

80 0.7 53.70 51.21 53.02 0.56 0.52 0.55 -0.0127 0.0343 0.5190 0.5323 0.4862 -0.0256 0.0631 

80 0.6 46.58 41.01 45.22 0.44 0.35 0.42 -0.0302 0.0931 0.3450 0.3591 0.3078 -0.0409 0.1079 

80 0.5 40.08 30.41 37.99 0.33 0.17 0.30 -0.0551 0.1996 0.2380 0.2505 0.2016 -0.0524 0.1529 

80 0.4 34.25 19.30 31.52 0.24 -0.01 0.19 -0.0866 0.3876 0.1650 0.1748 0.1318 -0.0596 0.2012 

80 0.3 29.15 7.53 26.07 0.15 -0.21 0.10 -0.1181 0.7112 0.1113 0.1180 0.0828 -0.0606 0.2559 

80 
80 

0.2 24.90 -5.21 22.08 0.08 -0.42 0.03 -0.1277 1.2357 0.0691 0.0726 0.0469 -0.0512 0.3203 

0.1 21.69 -19.58 20.16 0.03 -0.66 0.00 -0.0757 1.9714 0.0334 0.0343 0.0201 -0.0262 0.3991 

Averages -0.0700 0.6902 0.0360 0.1899 

Table Nomenclature: LMTD = loe mean temperature difference (°C); GMTD = geometric mean temperature difference (°C); 

AMTD = arithmetic mean temperature difference (°C); ml mi = ratio of mass flow rate to design condition mass now rate. 

Assum ed cond itions: at "0" condition T„ = 90°C, T, = 70°C; for all calculations Ta= 20°C, n,= n2 = 1.3. 

Tolerance for iterative calculation of Tr with LMTD model was < 0.01°C. 
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As expected, the results for the normalized mass flow rates in Table 3, which use 
the geometric mean approximation for the log mean temperature difference, are 
much better than those obtained using the arithmetic mean approximation. Clearly, 
the errors induced by the arithmetic mean approximation are unacceptable for any 
load-supply temperature condition that deviated significantly from the design 
condition for the radiators. Over the range of supply temperatures and heat loads 
given in the Table 3, the average error in the return temperature obtained using the 
geometric mean approximation is only 7% compared to 69% for the results obtained 
using the arithmetic mean approximation. Also, note that the errors in approxima- 
tion of the mass flow rate average only 3.6% for the model using the geometric mean 
approximation, while the average error for the model using the arithmetic mean 
approximation is about 19%. 

In addition, it should be noted that the model based on the arithmetic mean 
approximation in a number of instances at lower loads results in physically im- 
possible return temperatures, i.e., ones lower than the room air temperature of 20°C. 
Note that at lower loads (lower q/qQ values), the errors of approximation tend to be 
larger. This is predicted by our error analysis carried out earlier, since the approach 
factor is lower in these cases. Also note that, like our basic geometric mean 
approximation, our model based on it is conservative and under-predicts the heat 
transfer on the average. An exception sometimes occurs at supply temperatures 
lower than the design condition of 90°C. Since our model for the radiator predicts 
the return temperature based on the return temperature at the design 0 condition, 
the error in approximation of the return temperature at the design condition has an 
effect on the error in our model at conditions other than the design condition. At 
lower supply temperatures and high loads, for example Ts = 85°C and q/q0 = 1.0, the 
approach factor is 0.83 for the geometric mean approximation and is thus higher 
than the approach factor of 0.71 encountered at the design condition. Because the 
error in the geometric mean approximation decreases with increasing approach 
factor, our model for the prediction of the return temperature actually under- 
predicts it slightly at that point. This under-prediction is not, however, a cause for 
concern, since it is so slight and in addition it exists at a load-temperature condition 
that would not normally be encountered because it would require mass flow rates 
greater than the design condition. 

DESIGN OF A SINGLE PIPE SEGMENT WITH A CONSUMER MODEL 

In Chapter 2 we developed a methodology to determine the optimal pipe 
diameter for a single pipe segment. In the example given, it was assumed that both 
the supply temperature and return temperature were constant over the entire yearly 
cycle. This is of course not the case, and now that we have a simple model for the 
consumer's space heating substation, we can examine what the effect is of coupling 
this model with our design methodology. 

First, let's consider what the effect is of assuming a constant supply temperature, 
as we had done earlier, but rather than assuming a constant return temperature as 
well, let this be determined by our consumer model. The varying return temperature 
will affect the heat losses by altering the A1 parameter (eq 2-5) to some degree; this 
will be addressed later. The primary effect, however, will be on the mass flow rate. 
The heat load will be assumed to vary sinusoidally, as before, except now the 
variation in the mass flow rate will not be sinusoidal itself, but will be determined 
by the load and the return temperature from the consumer model. The relationship 
between the mass flow rate, load, design supply-return temperatures and the actual 
supply-return temperatures was given by eq 3-21. If we substitute our expression 
for the return temperature as determined using the geometric mean approximation 
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(eq 3-17) into eq 3-21, we have 

m I m d = (q/qd) (Ts - Tr)d/ {Tg - Ta 
\-i 

Fs-T*)    Fm<rmi/%) 
2/m 

(3-22) 

Notice that we have used both q/qd and q/qQ in this expression. In both cases q 
represents the actual load on the system. The quantity q0 represents the maximum 
load for which the consumers' radiators were designed, while the quantity qd 

represents the maximum load for which the piping network was designed. These 
two "design" loads will in most cases not be equal, as discussed earlier. They will, 
however, be related by some "over-design factor," which will be a constant 

(q/qd) = A13 (q/q0) (3-23) 

where A13 is the over-design factor for the consumer's radiators (dimensionless). 
In the example of Chapter 2, we assumed a sinusoidal form for the variation of the 

load over the yearly cycle. In general terms this can be written as 

q/qd = Au + [Al5 cos(2nt/8760)] (3-24) 

where A14 is the midpoint of the load curve (dimensionless) and A15 is the amplitude 
of the load curve (dimensionless). The midpoint of the load curve Au is simply the 
average of the maximum and minimum loads. The amplitude of the load curve A15 

is the maximum load minus the minimum load divided by two. 
Now if we combine eq 3-22-3-24, we have the following expression for the 

normalized mass flow rate over the yearly cycle 

m/md 

(Ts-TT)d(Au+Al5 coa(2nt/8760)) 

Ts-Ta- (Ts - Ta )"
a (Tmg )l ([Au + A15 cos(2Kt / 8760)] / A 

2/M] 

13 

(3-25) 

If we select the same values for A14 and A15 as we used in the Chapter 2 example 
(0.575 and 0.425 respectively), we can compare the resulting mass flow rate function 
of eq 3-25 to the mass flow rate function without the consumer model (eq 2-28). We 

m/m (j 
w/Consumer Model 

_L J_ 
2,000 4,000 

Time (hr) 
6,000 8,000 

Figure 6. Mass flow rate function with and without consumer 
models,Tr = 60°C. 
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Figure 7. Mass flow rate function with and without consumer 
models,T=55°C. 

have done so in Figure 6. Notice, for the case where the consumer model has been 
included, that the maximum value of the normalized mass flow rate is less than 
unity. This results from an inconsistency in the design conditions chosen for the 
original problem of Chapter 2 and the consumer's radiator model. Our model for the 
consumer's radiators assumes design temperatures of 90 and 70°C for the supply 
and return respectively. With the supply temperature of 120°C, the radiator model 
will predict a return temperature of 55°C, rather than the value of 60°C we assumed 
earlier. In the case where the return temperature is assumed rather than determined 
by a consumer model, the choice of 60°C is entirely appropriate, as are the normal 
design temperatures of 90 and 70°C for supply and return radiator temperatures 
respectively. Normal design practice would be to assign these temperatures inde- 
pendently. Thus, the lower flow rate that results when we include the effect of the 
consumer model illustrates one of the inaccuracies encountered when normal 
design practice is followed. If we make the design return temperature for the piping 
network equal to that which results from the consumer's radiator model, i.e., 55°C, 
it results in the normalized mass flow rates shown in Figure 7. From Figure 7 it is 
clear that the effect of including the consumer model on the mass flow rate is still 
significant once the load condition drops slightly from its maximum value. Aver- 
aged over all load conditions, the normalized mass flow rate is 20% less for the case 
that includes the consumer model. 

To determine what effect this change in normalized mass flow rate will have on 
our optimal pipe diameter determined in the example of Chapter 2, we need to 
recompute I3, which is the only parameter affected by the changes in the mass flow 
rate. We have modified the computer program used in Chapter 2 to calculate I3 by 
including eq 3-25 in place of the original normalized mass flow rate as given by eq 
2-29. The modified program is included in Appendix B as Program I2-C-GMT. All 
constants were assumed to have the same values as before, with A13 taken as unity. 
This results in the value of the I3 parameter decreasing by 15% from 44.1 to 37.5 ($ 
m5095) because of the effect of the consumer model. 

Now we need to determine what other parameters in the solution of the Chapter 
2 example would be affected by our consumer model. The only additional effect will 
be on the 71 parameter. Since this parameter arises out of heat loss considerations, the 
varying return temperature caused by the consumer model will change it some- 
what. In the example of Chapter 2, since the supply and return temperature were 



both constant over the yearly cycle, the integration needed to find lx (see eq 2-5) is 
unnecessary. With the varying return temperature produced by our consumer 
model, however, we will need to carry out this integration. Assuming that the cost 
of heat Ch is constant, our new equation for lx becomes 

h =A 16 
({Ts+Ta) 

2 

\ 
T 1m 

ij     \2    8760r \       l 

At+      ms°     J    (Au+A15cos(2nt/8760)]/A13j        dt 
2(^5 - Ta)   0 

(3-26) 

where A16 = PVFh L Ch Ank{ ($/[°C hr]). 
Because the cosine function is raised to a non-integer power, it is not possible to 

carry out the integration in eq 3-26 analytically. Once again we have used the 
Romberg method of numerical integration to evaluate the integral. The calculation 
of I2 was done using the FORTRAN program I1EQ3-26, which is included in 
Appendix B. Using the parameter values assumed earlier in this section, we obtain 
L = $7.33 x 104. Thus, we find that including the consumer model reduces the value 
of the Ix parameter by 14.4% from 8.56 x 104 to 7.33 x 104. 

Now that we have new values for the parameters that are affected by the 
consumer model, we can recompute the optimal diameter for the sample application 
given in Chapter 2. We proceed as before, i.e., before solving eq 2-24 to determine the 
optimum diameter, we first find an approximate solution using eq 2-20, which 
neglects the heat losses. From eq 2-20 we solve for the diameter directly, obtaining 
d = 0.210 m. Using this value of d as an initial estimate, we can proceed to solve eq 
2-24. We know that the solution to eq 2-24, which includes heat losses, will be a 
smaller diameter than the solution to eq 2-20, which does not include heat losses, 
since heat losses are an increasing function of the diameter. Guided by the value 
obtained above, a simple trial-and-error method was once again used here. This 
method yielded a solution to three significant digits with only four function 
evaluations. The optimal diameter d was found to be 0.203 m. The total cost for this 
design is found to be Ct = $1,064 x 106 using eq 2-19. By coincidence, the optimal 
diameter we have found also is one of the standard discrete diameter pipes 
available; thus, it is not necessary for us to compute total costs for other discrete 
diameters as before. 

The addition of the consumer model has changed the optimal diameter from 
0.208 to 0.203 m, a decrease of only 2.5%. The optimal discrete diameter remains 
unchanged. While in this particular case, the inclusion of the consumer model had 
no net effect on the choice of optimal discrete diameter, this obviously will not 

always be the case. 
The cost predicted for any pipe diameter is also changed slightly by the addition 

of the consumer. The total cost with and without the consumer model is given in 

Table 4. Pressure drops and costs for discrete pipe sizes under maximum flow 
conditions with and without the consumer model (pipe data from Marks 1978). 

Nominal Inside diameter Ct,w/o Ct with 

pipe size schedule 40 A?ä consumer model consumer model 

(in.) (in.) (m) (Pa/m) ($xl06) ($xl06) 

8.187 0.208 340 1.111 1.065 

8 7.981 0.203 384 1.112 1.064 

10 10.020 0.255 120 1.178 1.140 

12 11.938 0.303 50 1.305 1.267 
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Table 4 for each optimal diameter and the discrete diameters found when using the 
rule of thumb based design method. Pressure drops at maximum flow conditions 
are also given in Table 4. Note that these are unchanged from those in Table 1, since 
the maximum flow condition remains the same. Thus, the rule of thumb based 
design would remain the same and a 12-in. nominal diameter pipe would be 
required. The cost saving of the optimal discrete design increases slightly once the 
consumer model is added. Now the rule of thumb based design is 19% more costly 
than the optimal discrete design. Also, note that the total life cycle costs are reduced 
in all cases when the consumer model is added. Since it is important to have accurate 
cost predictions when comparing district heating to alternatives, these seemingly 
minor changes in total life cycle cost can be significant. For instance, the total life 
cycle cost of our optimal discrete diameter design decreases 4% with the addition of 
the consumer model. This is a very significant cost reduction. In our example 1-km- 
long pipe segment with a design capacity of 25 MW, this refinement in predicted life 
cycle cost amounts to $48,000. Note that since our optimal discrete diameter is 
unchanged by the addition of the consumer model, the capital cost of this design is 
unchanged as well. Thus, the optimal discrete design still represents a 30% reduc- 
tion in capital costs from the rule of thumb based design. 

HEAT CONSUMER CONSTRAINTS 

Before leaving the topic of the consumers, let's consider the constraints that they 
place on the design. The consumers of heat place two very basic requirements on the 
heat supply system: 

1. That the delivered temperature of the heat be high enough to meet their 
requirements. 

2. That their heat demand be met at all times. 
The first requirement will simply result in the following inequality constraint 

Ts,i^Tsmin,i (3-27) 

where Tsi is the supply temperature at the heat consumer i (°C) and Tsmin; is the 
minimum supply temperature required by heat consumer i (°C). 

Satisfaction of the second requirement will result in an equality constraint that 
must be obeyed at each heat consumer. This constraint will be based on the model 
developed in the previous section. The load placed on the system by the consumer 
will be known, expressed as a fraction of the load under the design condition, i.e., 
q/q0. The supply temperature will also be known. The model for the consumer heat 
exchanger then becomes our constraint on the return temperature. Equation 3-17 is 
modified slightly by removing the 2 subscript, the unsubscripted values now 
representing the actual operating condition 

T =T (Ts-Ta)-\TmR)2
0(q/qQ)

Vth (3-28) 

There is also an additional equality constraint on the mass flow rate that results 
from eq 3-21 

m/md = (q/qd)(Ts - Tr )d/(Ts - Tt). (3-29) 

In the next chapter, we will examine how these and other constraints interact 
when multiple consumer designs are considered. 
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CHAPTER 4: CONSTRAINTS ON SYSTEMS WITH 
MULTIPLE CONSUMERS AND PIPES 

All district heating systems, with the exception of pure transmission systems, will 
have multiple consumers and pipes. If each pipe were independent of the others, it 
would be possible to apply the procedure developed earlier to each pipe and create 
a complete design in that way. Of course each pipe segment does not operate 
independently of the others and the system can thus not be designed completely in 
that way for all but the most trivial cases. Many constraints are imposed on the 
design by the physical process involved in the network, the consumer's require- 
ments and physical limitations of the piping. As we shall see, many of these 
constraints will be inactive at the optimum system design and thus they can be 
relaxed. Our task is then to formulate these constraints into mathematical expres- 
sions, and then identify those that must be active and use this information to develop 
a solution methodology. All of this must be done with the minimum amount of 
computational effort so as not to render the method intractable for large networks, 
which often have hundreds or thousands of piping segments. 

SYSTEM CONSTRAINTS 

Constraints on the design of a heat distribution system originate from limitations 
imposed in several distinct areas. Before we begin to formulate constraints into a 
form suitable for inclusion in our problem, let's consider where and why these 
constraints arise. The source of constraints can be grouped into three basic catego- 
ries: 

1. Physical limitations of the piping systems. 
2. Fluid dynamic and thermodynamic considerations for the network, con- 

sumers, and heat source. 
3. Requirements dictated by the consumer's equipment or processes. 
In some instances considerations from each of these categories are coupled 

together into a single constraint or set of constraints. Thus, as we formulate the 
constraints below, we will address considerations from each of the categories above 
and their interaction. 

DIFFERENTIAL PRESSURE CONSTRAINTS 

A very important set of constraints on the system arises from requirements for the 
pressure difference between supply and return. At the consumer this differential 
pressure must maintain a minimum level to ensure adequate flow through the 
consumer's heat exchanger. This pressure differential is consumed in both the heat 
exchangers and control valves. In the heat exchanger, the pressure losses are caused 
by fluid dynamic friction. In the control valve, the pressure losses are introduced by 
a throttling process used to control the flow rate through the heat exchanger and 
thus control its output. In the supply piping between the heat source and the 
consumer, pressure losses occur due to friction. Similarly, in the return line from the 
consumer back to the heat source, pressure losses also occur. There is then, in effect, 
a requirement at each point in the piping network for a given differential between 
supply and return pressure necessary to overcome downstream losses, including 
those in the return system. Ultimately, at the heating plant pumps must be used to 
provide the total differential pressure needed downstream of that point. In theory 
it's possible that pumps can be placed anywhere in the system or even dispersed 
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throughout. In practice this is not done very frequently, owing to the practical 
considerations of monitoring, controlling and maintaining the pumps as well as 
availability of power for them. Here, we will assume that all pumps are located at 
one central heating plant, although some very interesting optimal design questions 
arise if this limitation is removed, as we will see later. 

We can write the constraint that arises from all of these differential pressure re- 
quirements easily by summing the pressure drops and increases around the system. 
Since the entire district heating system, consisting of the heating plant, the piping 
system and the consumer, forms an essentially closed loop, the pressure losses and 
increases around this loop must sum to zero. Thus, we have the following result 

APhp =  l(APs+APr) + APcv+A^e (4-2) 
pipes 

where APh   = pressure increase across the pump (N/m2) 
APg = pressure drop in the supply piping (N/m2) 
APr = pressure drop in the return piping (N/m2) 

AP    = pressure drop in the consumer control valves (N/m2) 
APhe = pressure drop in the consumer heat exchangers (N/m2). 

Each consumer will have at least one segment of the piping system that is not 
shared with any other consumers. In addition, all consumers will have their own 
control valve and heat exchanger. Thus, we will have one of these equations for each 
consumer, each one representing a constraint on the design. Therefore, the summation 
in eq 4-2 must be conducted over only the pipes that serve the consumer in question. 

The pressure losses given above will vary with the flow rate in the system. In 
many cases, flow rates in district heating networks are modulated over the course 
of the year as a means of meeting varying loads. Flow can be modulated either by 
using variable speed pumps or using what is called a "shunt" at the heating plant. 
The shunt simply diverts a fraction of the flow from the pump back to its inlet. The 
pressure increase across the pump is reduced as is the flow rate into the network. 
Regardless of how it is done, if flow modulation is used, we must ensure that the 
constraint of eq 4-2 is not only satisfied for each consumer, but in addition we must 
also determine that this will be the case for all load (i.e., flow) conditions encoun- 
tered. However, we will show later, after some other necessary constraints have 
been introduced, that satisfying this set of constraints for only one load condition 
will be sufficient, if we assume that all consumers have loads that vary in the same 
manner. This is a reasonable assumption as long as the primary loads are space and 
hot water heating, as is the case for most hot water based systems. Steam systems, 
which are not addressed by this work, often have much larger fractions of industrial 
and absorption air conditioning loads; thus, this assumption might not be reason- 
able for them. 

In addition to the above equality constraint (eq 4-2), we have both equality and 
inequality constraints on each of the quantities appearing within that constraint. At 
this point we will formulate each of these additional constraints. 

At the heating plant, the pressure increase by the pump must be related to the 
pumping power attributable to the consumer in question. This results in the 
following expression 

APhp=PPf/ip/mi (4-3) 

where the i subscript is the consumer index. The combined pressure loss of the 
supply and return piping is simply given by 

APs + APr =APs&r =m>l(4/K)2+cA6/]rhf+cL]d-(5+b+c) (4-4) 
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where the; subscript is the pipe segment index and APs&r is the combined pressure 
loss of supply and return (N/m2). 

The control valve will have varying amounts of pressure drop across it, de- 
pending on the consumer's load. The minimum pressure drop for any given flow 
rate condition will occur when the control valve is completely open and the flow rate 
through the consumer's heat exchanger is at its maximum value—what we have 
called the design condition. Thus, we have the following simple constraint for each 
control valve in the system 

AP    • > AP      ■ (A-S\ cv,i cvm,i V* J) 

where APcvm is the minimum pressure drop in the control valve (N/m2). 
And finally, for the heat exchanger the pressure drop will be related to the flow 

rate in a manner very similar to that for the pipes as given by eq 4-4 above. First, let's 
assume the following simple form 

^Phe,i=AheAmf (4-6) 

where Ahe relates the fluid properties and physical properties of the heat exchanger 
to the pressure drop and flow rate (kg1_ß/m s2_P) and ß is an exponent yielding the 
appropriate mass flow rate dependency for the heat exchanger (dimensionless). 

In most cases Ahe and ß would probably be empirically determined coefficients 
and would depend on the type of heat exchanger and its specific design. The basic 
form of Ahe would probably be dictated by the heat exchanger geometry. For 
example, if a straight section of pipe formed the hydraulic passageway for the heat 
exchanger, the form of A he based on our previous analysis for pressure loss in pipes 
would be 

Ahe,sp =(«/2)(4/7t)
2+cE^ep^^Lherf1;(

5+fe+c) (4-7) 

where the sp subscript denotes straight pipe heat exchanger and the he subscripts 
denote conditions within the heat exchanger or physical parameters of the heat 
exchanger. 

Equation 4-7 assumes the same form of approximation for the friction factor as 
was derived for flow in the district heating pipes earlier in Chapter 2. Using this 
approximation for the friction factor also determines ß from eq 4-6 to be 

ßsp = 2 + c. (4-8) 

We can now substitute the results for the pressure losses around the district 
heating system loop (eq 4-3,4-4 and 4-6) into our original pressure loss constraint (eq 
4-2) to obtain the following constraint 

PPuP/riii = I («ef(4/K)2+cAg#j mf+cLj df+b+cA + APcv/l + Ahe{rhf+c (4-9) 
; ' 

Again, in eq 4-9 the summation over the; pipes only includes those pipes that serve 
consumer i. 

MAXIMUM ABSOLUTE PRESSURE CONSTRAINTS 

Several constraints on the absolute pressure of the water within the system must 
be considered. First, we consider the upper limit on pressure that results from the 
absolute pressure limits of the piping. This limit will be established by the prevailing 

35 



piping code. In the case where all points in the distribution system are at or above 
the level of the heating plant, the maximum absolute pressure will occur in the 
supply pipe at the heating plant. In the general case, however, this will not always 
be true and it will be necessary to determine that this constraint is not violated at any 
point within the system. However, several heuristics will allow us to forgo compu- 
tation of the absolute pressure level at many of the points. At any point in the supply 
side of the system the absolute pressure is given by 

Ps=3.P,s-XAPs,j-PsSz (4"10) 

;' 

where Ps = absolute pressure in supply pipe at point in question (N/m2) 
Ph     = absolute pressure in supply pipe at heating plant (N/m2) 
A?'- = pressure loss in supply pipe; (N/m2) 

z = elevation at point in question relative to heating plant (m). 

Again, we have assumed that no intermediate pumping is employed and that the 
summation over; includes only those pipe segments between the heating plant and 
the point in question along the supply line. If Pmax is the maximum absolute pressure 
for the piping system being used (N/m2), our constraint arising from it is then 

Pmax^s-XAfy-PsSZ C4"11) 
/ 

where Pmax is the maximum absolute pressure for the piping system being used 

(N/m2)maX 

We can easily eliminate the need to verify that the upper limit on absolute 
pressure is not exceeded for the return side of the system. First, we assume that the 
supply and return line are at the same elevation at any given point, certainly a 
reasonable assumption. Since there will always be a finite pressure drop across the 
consumer's heat exchanger and control valve, the absolute pressure in the return 
line will always be less than that in the supply line at any point, with the difference 
being the smallest at the consumer. Thus, we need not verify that the maximum 
absolute pressure constraint (eq 4-11) is satisfied for the return system. 

We can also easily show that eq 4-11 only needs to be satisfied at certain points 
along the supply line. For pipelines that are laid at a constant slope between junction 
points, the hydrostatic component of the pressure gradient along the pipe will be 
constant as well. This gradient is given by the following equation 

(dP/dx)h = -pg(dz/dx) (4-12) 

where (dP/dx)h = hydrostatic pressure gradient (N/m3) 
(dz/dx) = partial derivative of the elevation of the pipe with respect to 

its position (dimensionless) 
x = position along the pipe in the direction of flow with x = 0 

being defined as the inlet end to the pipe segment in question 
(m). 

Using our approximation for the friction factor previously determined (eq 2-12), 
we can find the pressure gradient attributable to frictional losses in the flowing fluid 
from the following equation 

(dP / dx)d = (a 12)(4 / TT)
2+C

 ebp-V-c'«2+cd-(5+b+c) (4"13) 
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where (dP/dx)d is the hydrodynamic pressure gradient (N/m3). 
The pressure at any point along a segment of the piping system is simply the 

pressure at the inlet to the pipe segment plus the sum of the hydrostatic and 
hydrodynamic gradients multiplied by the distance 

Px = Pl + [(dP/dx)h + dP/dx)d]x (4-14) 

where Px is the pressure at point x (N/m2) and Pj is the pressure at the inlet to the 
pipe segment (x = 0) (N/m2). 

Since (dP/dx)h and (dP/dx)d are both independent of x, we only need to know 
if their sum is positive or negative to determine if the pressure will be higher or lower 
than the inlet pressure at the outlet of the pipe segment. We can also easily show by 
using monotonicity analysis (Papalambros and Wilde 1988) that the maximum 
pressure must occur at either the inlet or the outlet of the pipe section and cannot 
occur at an intermediate point. To do so we convert the maximization problem to its 
equivalent minimization problem 

min. Px = -{Pj + [(dP/dx)h + (dP/dx)d]x) (4-15) 

subject to 

Si = -^° £i(*-) (4-16) 

g2 = -x-L<0 g2(x+). (4-17) 

The conventions for constraints and the labeling of monotonicity are from 
Papalambros and Wilde (1988). If the sum of the gradients is positive, the objective 
function is monotonically decreasing in x and must therefore be bounded from 
above. Constraint^ is the only constraint that bounds the objective from above, so 
it must be critical and thus x = L. If the opposite is true, the sum of the gradients is 
negative, the objective will be monotonically increasing in x and must therefore be 
bounded below. Constraint g1 is the only constraint that bounds the objective from 
below, so it must be critical and x = 0. If the sum of the gradients is zero, the pressure 
will be the same at all points along the pipe segment. Thus, we have shown that the 
maximum pressure must always be at one end of the pipe segment and it will only 
be necessary for us to ensure that our absolute pressure constraint (eq 4-11) is 
satisfied at these points. Remember that in arriving at this result, we assumed that 
the pipe segment had a constant slope between end points. If in reality this is not the 
case, the pipe segment in question can be broken up into two or more equivalent pipe 
segments for applying this constraint. 

The number of points at which the maximum absolute pressure constraint must 
be checked for satisfaction may possibly be reduced even further if we proceed as 
follows. 

1. Starting at the heating plant, we proceed along the supply line checking only 
the "junction" points as discussed earlier. 

2. For any point that is at the same elevation or higher than the upstream point 
previously identified as having the maximum pressure, we need not compute the 
pressure. 

3. When a point is identified that does not meet the above criteria, we proceed by 
first computing the sum of the hydrostatic and hydrodynamic gradients. If this 
quantity is negative, we do not need to compute the pressure. 

4. If the sum of the gradients is positive, we will need to compute the pressure at 
this point. To compute the pressure, we first find the elevation difference and 
resulting hydrostatic pressure difference between the point in question and the 
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previously identified point of highest pressure. We then must calculate the pressure 
losses attributable to the hydrodynamic gradients in each of the pipe segments be- 
tween the previously identified point of highest pressure and the point in question. 

5. If we maintain a running total of pressure losses computed as we complete the 
above step, we can stop the calculation procedure as soon as this total pressure loss 
exceeds the hydrostatic pressure difference computed above. Otherwise, we must 
continue the calculation, in which case we will have identified a new maximum 
pressure location. 

6. Steps 2 through 5 are repeated until we reach the end of the piping network. At 
branching points we will need to proceed out each branch following the procedure 
as outlined. 

MINIMUM ABSOLUTE PRESSURE CONSTRAINTS 

Minimum allowable pressure constraints arise from three distinct considera- 

tions. 
1. Net Positive Suction Head (NPSH) requirements of the pump. 
2. Minimum pressure over atmospheric necessary to preclude the infusion of air 

into the system. 
3. Pressure necessary to prevent flashing of the liquid. 
The constraint resulting from minimum NPSH requirements necessary to pre- 

clude pump cavitation only needs to be satisfied at the inlet to the pump. This 
pressure requirement will be a function of the saturation pressure and hence the 
temperature of the liquid at that point. The NPSH requirement is usually specified 
by the manufacturer of the pump. Thus, this constraint is simply 

P      > p (4-18) 1 hp,r ~ l NPSH 

where Ph r is the pressure in the return line at the inlet to pump (N/m2) and PNPSH 
is the minimum allowable pressure at the pump inlet from NPSH requirements 

(N/m2). 
The amount of pressure over atmospheric necessary to prevent infusion of air into 

the system will be another area where engineering judgment will be required. This 
will be an issue primarily in portions of the system that are operating at tempera- 
tures below 100°C, since the saturation pressure constraint (eq4-20) will dominate 
it at higher temperatures, given equal safety margins. If, as we assumed earlier, no 
intermediate pumping is being used, then the minimum pressure level will be at the 
inlet to the pump for a system that is at or below the level of the heating plant at all 
points. For other systems, we must check for dominance of this constraint or the 
saturation pressure constraint derived below, and then constraint satisfaction must 
be verified at all points within the system. At the heating plant, this constraint can 
be written as 

Pu    >P +P (4-19) hp,r       a        asa 

where Pa is atmospheric pressure (=105 N/m2) and Pasa is the minimum safety 
margin above atmospheric pressure (N/m2). 

The second constraint on minimum allowable absolute pressure results from the 
requirement that the fluid must be maintained above its saturation pressure some 
finite amount to preclude flashing to the vapor phase. The amount of excess pressure 
above the saturation pressure of the fluid is a matter of engineering judgment. 
Because localized areas of pressure lower than the "bulk" pressure of the fluid may 
occur because of hydrodynamic effects, a safety margin above the saturation 
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pressure is prudent. The resulting constraint is 

Px^Px,sat + Psaf (4-20) 

where Px sat is the saturation pressure of the liquid at point x within the pipe segment 
(N/m2) and Psaf is the minimum allowable safety margin on saturation pressure 
requirements (N/m2). 

The saturation pressure is a function of the fluid temperature, which will vary 
between supply and return portions of the system, as well as within each portion. 
Thus, it will be necessary to verify the satisfaction of this constraint at all points 
within the system. Again, some simple rules will allow us to forgo the calculation at 
many points, as with the maximum absolute pressure constraint described earlier. 
As noted earlier, in some cases when the temperature is below 100°C, the air infusion 
constraint above (eq 4-19) will dominate. The concept of constraint dominance is 
illustrated later in Chapter 5. 

The pressure level at any point in the supply side can be calculated with eq 4-10. 
For the return side, the absolute pressure is given by 

?r = PhP,s ~ I APs,j - ps gz ~ APcv,; - AP^i -1 APr/j (4-21) 
/ i 

where Pr • is the pressure loss in the servicing return line ;'. The;' subscript on the 
return line summation indicates only those return pipes servicing consumer i 
between consumer i and the point in question. 

The evaluation of pressures in the return pipes using this expression requires 
some care and forethought to avoid errors and redundant calculations. Errors can 
result if the summations include pipes other than the appropriate ones, which will 
be different in the case of supply and return. Equation 4-20, as written, could be 
evaluated for each consumer at all locations in the piping system. However, all that 
is required is to find the pressure at each location once for any consumer served 
through that point. The evaluation of the equation for all remaining consumers 
served through that point would yield the same result and thus is not required. Some 
simple rules will allow us to reduce the number of locations where calculation of the 
pressure will be necessary. For example, consider the case where the entire system 
is at or below the elevation of the heating plant. In this case, the minimum pressure 
in the return line would be at the heating plant. In the supply line, however, the 
lowest pressure could be at any location, dependent on the relative magnitude of the 
hydrodynamic gradient from friction and the hydrostatic gradient from elevation 
differences. If the entire system was at the elevation of the heating plant, then the 
lowest pressure in the return line would be at the consumer, who is, in a hydraulic 
sense, the most distant from the heating plant. 

It is important to note that in the case of this absolute pressure constraint, 
the supply and return piping must be considered separately, since the temperature, 
and thus saturation pressure, will usually be quite different in each. Strictly 
speaking, it would be necessary to determine the actual temperature at each 
location in the system and compare the saturation pressure requirement with 
the other applicable low pressure constraints to determine which one is dominant 
there. 

Once the pressure has been calculated at the locations where the minimum 
pressure constraint could be active, these pressures would be compared to the 
minimum allowed pressure for that location determined from the dominant con- 
straint of the applicable ones given above. Thus, our minimum pressure constraint 
for the supply pipe becomes 

Vs - 2 APS/j - Ps gz > PX/Sat + Psaf. (4-22) 
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For the return pipe our minimum pressure constraint is 

P^     - X APS/j - Ps gz - APheA - APCV/i - X APr;j > Px,saf + Psaf• (4-23) 

And at the inlet to the pump located at the heating plant, we have two constraints 

V^NPSH (4'24) 

Now we have identified all of the constraints on the multiple consumer-multiple 
pipe solution and derived mathematical expressions for each one. In the next 
chapter, we will examine a method of finding an optimal solution that satisfies all 
of the constraints. 
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CHAPTER 5: OPTIMAL DESIGN OF SYSTEMS WITH 
MULTIPLE PIPES AND CONSUMERS 

As noted in the Chapter 4, all district heating networks, with the exception of pure 
transmission systems, will have multiple consumers and pipes. If each pipe were 
independent of the others, it would be possible to apply the procedure developed 
earlier in Chapters 2 and 3 to each pipe independently and develop a complete 
design in that way. Unfortunately, as the constraints introduced in Chapter 4 show, 
each pipe segment does not operate independently of the others. Thus, the system 
can not be designed completely in that way for all but the most trivial cases. 

However, the "optimal independent design," as we will call it, is very useful, even 
though we can not guarantee that it would be feasible, for we can use it to form a 
lower bound on any other designs that we might propose. We know that it is not 
possible for us to achieve a lower cost design for any one of the pipe segments than 
the one we have determined independently. Thus, it follows that we also are assured 
that no design for the entire system of pipe segments can be lower in cost than the 
sum of the costs for the optimal independent designs. While this may appear to be 
of little significance to the designer who is subject to system constraints, it's actually 
a very useful result. It will serve two very important functions for us. First, it will give 
us a lower bound on total system cost to which we can compare other designs to see 
if they are sufficiently close to render additional effort at achieving better designs 
impractical or unnecessary. The second function of this "optimal independent 
design" will be as a starting point for a solution strategy that will move towards an 
optimal solution that satisfies all the system constraints. Both of these attributes of 
the optimal independent design will be exploited in this chapter. 

Our objective here will be to develop methodologies that will help us find the 
optimal discrete pipe diameters for systems with multiple pipes and consumers, 
while minimizing the computational effort necessary, such that large networks 
often encountered in practice may be treated with an acceptable degree of effort. 
Because of excessive computational effort, many of the methods that have been 
previously applied to problems of this type are felt to be unsuitable. Several of the 
more common approaches are discussed very briefly below. 

SOME POSSIBLE APPROACHES 

The classical approach to a constrained optimization problem like this one is to 
include all the constraints in the problem solution and find a solution that satisfies 
all the constraints. Here, we have many constraints that would need to be included. 
For our problem from eq 4-2 and 4-5, we would have two constraints for every 
consumer. Equations 4-11 and 4-22 would result in two constraints for every node 
in the supply pipe. Equation 4-23 gives us one constraint for each node in the return 
pipe, and at the heating plant there are two additional constraints (eq 4-24 and 4-25). 
If, for example, we considered a moderate sized system, with 100 consumers and 125 
nodal points, we would have 577 constraints. Several of the more common methods 
for handling such problems are discussed below. 

The method of linear programming (Wilde and Beightler 1967) is very efficient at 
solving optimization problems with large numbers of constraints. However, as the 
name of the method implies, the objective and constraints must be linear. Here, we 
have a highly nonlinear problem because of the pressure losses being proportional 
to the pipe diameters raised to approximately the negative five power. Methods 
have been devised (Reklaitis et al. 1983) to use linear programming algorithms on 
nonlinear problems by making linear approximations about a point using a Taylor 
series expansion about that point. The computational effort involved in the use of 
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such methods can be considerable for problems with many variables and con- 
straints, as is the case here. Additionally, if an "optimum" is found by such a method, 
there is no guarantee that it is a global optimum. 

Methods have also been developed for general nonlinear problems. Perhaps the 
method most commonly referred to is Lagrange's method of undetermined multi- 
pliers (Wilde and Beightler 1967). This method requires that the solution to a set of 
nonlinear equations be found. The number of unknowns is equal to the number of 
variables (pipe diameters and consumer control valve pressure losses) plus the 
number of constraints. In our case this would result in very large systems of 
nonlinear equations for all but the most trivial problems. The solution of large 
systems of nonlinear equations can be a very difficult task, usually done by adapting 
methods for the solution of linear equations. For this reason, Lagrange's method is 
felt to be impractical for this problem. 

The Generalized Reduced Gradient (GRG) method is a popular one used for 
nonlinear constrained problems (Reklaitis et al. 1983). It is based on extending 
methods used for linear problems to nonlinear problems. The basic concept of the 
GRG method is to follow along the direction of a constraint subset while seeking 
improvement in the objective function. By requiring some subset of the constraints 
to be satisfied, the number of degrees of freedom of the problem can be effectively 
reduced. When inequality constraints are present in the problem, as is the case here, 
either an active set strategy must be adopted or slack variables must be introduced 
for each constraint. Gill et al. (1981) indicate that GRG methods can encounter 
difficulties when highly nonlinear constraints are involved, as is the case here. 
Because methods developed for linear problems are being used for nonlinear 
problems, it is necessary to iterate at each step to achieve a feasible design. The 
Newton-Rapson method is used for this iteration and it becomes the main compu- 
tation burden of the GRG method (Arora 1989). Other quasi-Newton methods have 
been proposed, but they can cause other problems with this method (Arora 1989). 
Vanderplaats (1984) indicates that convergence of the Newton-Rapson method may 
be a problem when using the GRG method for highly nonlinear problems. 

Another class of methods for general nonlinear constrained problems is the 
penalty function methods (Rao 1984). These methods reduce the constrained 
problem to an unconstrained problem that can then be solved using any of the 
various methods suitable for such problems. With many variables, as we have here, 
the multidimensional optimization problem that results can be quite time consum- 
ing to solve. In addition, it's usually necessary to solve the problem repeatedly for 
different values of the penalty parameter until some convergence criterion has been 
met. A feasible starting point is required as is an initial value for the penalty 
parameter and the multiplication factor that is used to adjust the penalty parameter. 

In this problem the diameters of the pipe segments must take on discrete values 
in the final solution, while other variables such as the consumer control valve 
pressure losses are continuous. Such a problem, which has both discrete and 
continuous variables, can be formulated as what's called a "mixed integer" problem 
(Reklaitis et al. 1983). The methods described above can not be applied directly to 
integer or mixed integer problems. They must be used in combination with another 
technique, most notably the "branch-and-bound" approach, to find the solution for 
the discrete variables. The branch-and-bound approach will be discussed later. 

In search of a simpler and more efficient method than those described above, we 
will proceed by starting with our optimal independent (unconstrained) design and 
identifying methods to move from this design to one that satisfies all the constraints. 
We will attempt to conduct this process of modifying the solution so that it satisfies 
the constraints in a manner that will keep us as close as possible to the true globally 
optimal design. 
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PIPE AND PIPE JUNCTION LABELING SCHEME 

Before proceeding further with the development of our solution technique, we 
first need to develop a methodology for identifying consumers, pipe junctions and 
pipe segments. We would like this system to be as simple and intuitive as possible, 
yet sufficiently general so as to be easily extendible to much larger networks. A 
method that meets these requirements is a simple identification number for each 
"node." A node can be any one of the following items within the pipe network. 

1. A source node where a net inflow of heat occurs, i.e., the heating plant. 
2. A sink node where a net outflow of heat occurs, i.e., a consumer. 
3. A pipe junction node where no net inflow or outflow of heat occurs. 
Note that there are at least a couple of special cases of the pipe junction node that 

might be of interest: a storage node where heat could be stored for release at later 
times, and a "junction" node with only two pipe segments connected. The latter 
could be simply a transition in pipe size or an intermediate pumping station for 
instance. These special cases would be of interest for advanced system optimization 
studies but are beyond the scope here. 

The number of a node does not necessarily need to be assigned in any particular 
fashion. They could be assigned sequentially from the plant or some consumer, or 
in no particular sequence at all. In fact, alphanumeric characters could be used for 
identification. The point is that the assigned identification characters have no 
significance relative to one another, other than being unique to the node in question. 

With an identification system established for our nodes, we need to establish the 
identity of the pipes connecting these. The simple convention we will adopt is to use 
the node numbers on either end of the pipe segment to identify the pipe segment that 
connects them. For example, the pressure loss in the pipe segment between nodes 
1 and 2 would be written as AP12. We will establish the convention of letting the first 
node number in the pair be the upstream node in the supply line, with the second 
node being the downstream node, again in the supply line. For the return line of the 
same pipe segment, the convention will be established by the supply line, i.e., the 
first node number in the pair will be the downstream node in the return line and the 
second node will be the upstream node. Note that a system segment, as we have 
currently defined it, can not have any intermediate nodes within it. 

Now we are ready to begin the development of our solution method. As always, 
we start by determining our objective function. 

SYSTEM OBJECTIVE FUNCTION 

The objective function for an entire system of pipes will include the sum of the 
individual objective functions for each pipe segment. We must also include the cost 
of pumping energy dissipated at the consumer and the capital cost of the pumps 
needed to generate this pumping energy. At first it might seem unnecessary to 
include costs associated with the consumer in our objective function when in fact 
there are no decisions to be made about the consumer's equipment. However, 
constraints that the consumer places on the system will require that these costs be 
included in order to achieve an optimal design that does not violate these con- 
straints. 

Additional costs would also need to be included if we were to expand the 
objective of our design. For example, if we wished to determine an optimal 
operational strategy for the system, as well as a design, it would be necessary to 
include some additional costs in the objective function. These would be the costs of 
generating the heat ultimately supplied to the consumer. Another example of an 
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expanded objective would be if we also wanted to determine the optimal size for the 
consumer's heat exchanger equipment, which would require including these costs 
in the objective as well. Here, however, we will not address these additional issues. 
With these limitations in scope our objective function becomes 

min. Cst = Cfixed + £(Chl + Cpev + Cpv I +  Cpvc + 
i (5-1) 

-£s_ xJ(APCV/i+APhe/i)(mi/Pr)dt 
"HpTlpm    i yr 

where Cst = total system cost ($) 
cfixed = fixed cost of &Ves and PumPs' and the maintenance ^ repair on 

this portion of their costs ($) 
C    = diameter variable cost of pipes and the maintenance and repair on 

that portion of pipe cost ($) 
C     = diameter variable cost of pumps and pumping energy attributable 

P6V    to piping pressure losses, and the maintenance and repair on that 
portion of pump costs ($) 

C     = variable cost of pumps attributable to the pressure losses at the con- 

sumer ($). 

Notice that the density used in the last term of this equation is the taken at the 
return condition. This is done because the pumps are usually located on the return 
side of the system at the heating plant. The cost of pumps, which was previously 
lumped with the piping cost, has been broken out as a separate cost since the number 
of pumps will be discrete for the system. 

In general, the mass flow rate for any consumer m; and the pressure losses at the 
consumer (APCV + APhe); will be functions of time. Previously, we assumed that the 
mass flow rateover the yearly cycle was given by eq 3-25. Since the pressure loss in 
the consumer's heat exchanger APhe 1 is a function of mass flow rate, as given by eq 
4-6, it will also be a function of time.'As we will show later, the pressure loss in the 
consumer's control valve APCV; will be used to "balance" the network. Hence, it will 
become a function of time in most all cases as well. We will have some choices as to 
the best way to balance the network using the consumer's control valve, as will also 
be shown later. 

In eq 5-1 we have separated the cost of the pumps into the fixed costs, that portion 
which does not depend on pump capacity, and the variable costs, which are 
attributable to either pressure losses at the consumer or in the piping network. We 
have also separated the fixed portion of the pipe cost as well from that portion that 
depends on pipe diameter. Effectively, this does not change our objective function 
as far as terms that contain the pipe diameters are concerned, since the fixed costs 
of the pipes and pumps are not considered in determining the optimum pipe 
diameter, as can be seen from eq 2-19. For a multiple pipe system, these fixed costs 

are 

Cfixed   =   (l + PVFmScIAmScI){Alnp+ A31L). (5"2) 

The variable cost of pumps attributable to pressure losses at the consumer C 
will be determined by the pressure losses and flow rate at the design condition. It is 
this condition for which the pressure difference between the supply and return at the 
heating plant, as well as the mass flow rate, are greatest. Thus, the pumps must be 
sized for this condition. This portion of the pump cost will be given by 

Cpvc = A2(1+PWWW)  l[(APcv,i+^he,i)(«i/Pr)]   ' (5_3) 
r i d 
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SOLUTION STRATEGY 

Now we are ready to formulate our solution strategy. Inspecting the objective 
function, eq 5-1, we see that the costs have been grouped with respect to their source. 
All of the costs that are dependent on our decision variables, the pipe diameters, 
have been included in the first summation over;', the pipe segment index. The 
summations in the third and fourth terms are those that arise from the pumping 
energy expended at the consumer. The decision variables in the terms of these 
summations are the APCV i values. 

We notice immediately from the form of the objective that it is a separable 
function with regards to the pipe diameter for each of the system segments ;'. A 
separable function is a function of more than one variable that may be written as a 
combination of functions, one independent function for each variable. Thus, from 
examining the objective function, it appears that we can consider each pipe diameter 
function independent of the other pipe diameters and find its optimum. We will 
proceed as if this is the case, although later we will see that the constraints will not 
allow the diameters to be considered completely independent of one another in all 
cases. 

We begin by inspecting the objective function for monotonicity, since this will 
help us simplify the solution as much as possible. Looking first at the terms in the 
summation over the pipe segment index;', we look at each term in the summation 
separately 

Chi,j = Vin<'V<<) for) 
S^i'V for) 
V^'J^

4
"

1 for) 
The monotonicities with respect to d- of each term are given and we see that we 

have both increasing and decreasing terms, so we are unable to use monotonicity 
analysis on these at the outset. This is consistent with our findings in Chapter 2, 
where we first neglected the Chl term and then used geometric programming theory 
to find a solution to the lower bounding problem thus formed. This result was used 
as a starting point for a simple search to find the solution to the problem without 
neglecting Chl. Since the objective function is separable for each of the d- values, we 
will proceed with the same methodology and find the "optimal independent" 
values for each d- in the same way. 

The other remaining decisions variables in the objective are the APCV i variables, 
of which there is one for each consumer. The APCV i variables appear in both of the 
last two terms of the objective function once eq 5-3 has been substituted for C 

M (l + Wfrnfer An&r) X [K^ + A^le/i)(«i /pr)l (AP+ t) 
i d 

-£s- X J(APW/i + Al^mi/pJcU (APc
+

V/i). 
Tlp^pm    i yr 

Both of these terms are monotonically increasing in each APCV; and thus the objective 
is monotonically increasing in each APCV j. The First Monotonicity Principle, MP1 
(see Papalambros and Wilde 1988), therefore tells us that each APCV; must be 
bounded below by at least one active constraint. We will examine the issue of 
determining the constraint activity for these decision variables. 
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Constraint activity for consumer control valve pressure losses 
We have two possible constraints for each APC CV,1 

hi = A^p- l(APs+APr) +APcv+APhe 
= 0 (AP£:) (4-2) 

8l = ^c,m,i-^cV^0 (APc-V/i). (4-5) 

The inequality constraint gx is monotonically decreasing in APCV/i so it bounds APcvi 

in the proper sense. The equality constraint \ could also be "directed" (see 
Papalambros and Wilde [1988] for procedure for directing equality constraints) such 
that it would bound APCV {in the proper sense. At this point it is not clear which of 
these two constraints would bound each of the APcvi variables in the proper sense. 
In fact it's entirely possible that the active constraint may vary depending on the 
particular consumer in question. If no other decision variables appeared in these two 
constraints, they would form a conditionally critical set for each APCV { (see 
Papalambros and Wilde [1988] for definition of conditional criticality). 

However, we see that pressure increase across the pump at the heating plant APhp 

has not yet been fixed. APh is monotonically increasing in constraint hy thus, it 
becomes a monotonic nonob] ective variable in our problem. The Second Monotonic- 
ity Principle, MP2 (Papalambros and Wilde 1988) tells us that either APhp is 
irrelevant and can be deleted from the problem together with all the constraints in 
which it appears, or it is relevant and bounded by two active constraints, one 
bounding it from above and one bounding it from below. If for just one consumer 
i the constraint \ is critical for APCV ■, then APhp becomes relevant. A critical 
constraint is an active constraint whose deletion would cause the problem to become 
unbounded. This active constraint would have the following monotonicities when 
directed to bound APcvi in the proper sense 

/Jl = APhp 
I(APS + APr). + AP^ + APhe    =< 0 (APCV/i,APh

+
p) . 

W 

If one constraint is critical for more than one variable in the problem, it is said to 
be "multiply critical" (Papalambros and Wilde 1988) and this would be the case for 
hx above. Papalambros and Wilde (1988) warn that multiply critical constraints 
should be eliminated from the problem whenever possible. Here, we have that 
option since we can combine the \ constraints for any two consumers and eliminate 
APh from the problem. Before we do so, let's consider briefly what is physically 
happening in our problem. 

First, we note that the pressure increase required across the pump at the heating 
plant APh appears in eq 4-2 for each consumer. Since, physically, we know that APhp 

can only assume one value, it must be the greatest value that results from consider- 
ation of all the consumers. For the remaining consumers, APCV ■ must be greater than 
the minimum value APcym;. The consumer who requires the greatest APh will be 
called the "critical" consumer. Notice that the equality constraint of eq 4-2 can be 
satisfied for the remaining consumers by letting APCV ■ > APcvmA as allowed by eq 4- 
5. This is, in fact, how it is done in practice in most cases; the ultimate balancing of 
the pipe network flows is done by the consumer's control valves. For the case of the 
critical consumer, eq 4-5 will be satisfied as a strict equality, i.e., APcvi > APcvm;. 
While these arguments of constraint activity would appear to be completely 
intuitive, since we would not want to supply any more pumping energy than 
necessary, they can also be shown analytically as follows. 
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The pressure difference across the pump at the heating plant APh must be equal 
in all of the constraints of eq 4-2 at any instance in time, so we can write this constraint 
set in the form 

I(APs + APr)+APcv+APhe     -  S(APS +APr)+APcv +APhe    =0 (5-4) 

where i *■ k. 
If we have n consumers, there will be (n -1) such equality constraints containing 

APCV j that apparently could be "directed" such that they would bound APCV; from 
below as required. However, these constraints are not all independent. Since we 
started with n independent equations and then eliminated APh , we will have at 
most (n - 1) independent equations remaining. Below, we will show that these 
(n - 1) independent equations may bound at most (n - 1) of the APcvi objective 
variables in the proper sense. The arguments made will be for an instant in time but 
must hold for any time during the yearly cycle. 

We begin by examining the APCV; term for the consumer arbitrarily chosen to be 
consumer "1." Now, APCV<1 for consumer 1 can be bounded from below as required 
by any one of the (n - 1) constraints in which it appears with another consumer. 
Suppose we let the constraint with consumer "2" bound APCV1. Now we have 
(n - 2) constraints remaining that can bound APCV 2 in the proper sense, since the 
equality constraint with consumer 1 has been directed such that it would bound 
APCV 2 in the improper sense 

Similarly, let AP 2 be bounded by properly directing its equality constraint with 
consumer "3." Now, at first it would appear that APCV 3 could be bounded by (n - 2) 
constraints as well, since we have only directed the constraint involving APCV 2 in the 
improper sense and any one of the remaining (n - 2) constraints can be directed as 
needed. However, since we directed the constraint between APCV1 and APCV 2 such 
that it bounded APCV^ below, we are not free to direct the constraint between APCV1 
and APCV 3 as needed; in fact, it must be directed in the opposite sense of that 
required, that is, if 

; 

and 

l(APs+APr).+APcv+APhe    -   l(APs + APr).+APcv+APhe     ^< 0 (AP-#1/AP^2) 

I(AP8 + APr). + APCV + A^e    -   S(APS + APr). +APcv+APhe\   s <   0 (AP~,2, AP&,3 

then 

S(APs+APr).+APcv+APhe    -   X(APs+APr).+APcv+APhe     =<   OJAP-^AP^)- 

Thus, APcv3 has only (n - 3)  {(AP"^, AP^/4),(AP^3»AP^s),-^^'AP^,n)} 

constraints that could be directed to bound it in the proper sense. 
If we continue to follow this line of reasoning, we find that when we reach 
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consumer i = n, we have no constraints remaining that can be directed in the proper 
sense to bound the APCV n term in the objective. Note that because the assignment of 
the numerical value for'the consumer index i is arbitrary, its assignment will have 
no impact on what we have shown here and that this result would hold for any set 
of consumer indices. 

Since we have n variables APCV; in the objective, one for each of the n consumers, 
and the objective is monotonically increasing in each of these variables, we must 
have n constraints bounding the APCV {from below. Above we have shown that at 
most (n - 1) of these constraints could result from eq 4-2. The only remaining 
constraints on the APCV j are the set formed by eq 4-5. Let's assume for the moment 
that all consumers have the same minimum pressure differential requirement for 
their control valves, i.e., that APcvm; is the same for all i. Now we see that it must be 
the consumer with the minimum value of APCV; whose constraint from eq 4-5 is 
active. This is true since a consumer with any greater value would cause at least one 
of the other constraints from the set of eq 4-5 to be violated, i.e., if consumer i has the 
minimum control value pressure loss 

APCv,k>APcv,i forall**i. 

And if for all:' and k the minimum allowable control valve pressure losses are equal 

AP      ■ = AP      i. LU cvm,i      *-" cvm,k 

Now, if the constraint for consumer i is active 

AP   ■> AP cv,i = *-" cvm,i 

then the constraint for consumer k can not be active 

APCv,k>APcvm,k- 

We have already shown that (n - 1) of the constraints from the set of eq 4-2 
are active and can thus be treated as equalities. These (n - 1) constraints 
force the pressure loss summations to be equal for all n values of the consumer's 
index i 

E(APS + APr) +APcv+APhe\=    X(APS + APr) + APW + APhe for all i * k. 

This means that we identify the consumer whose value of APCV; is at its mini- 
mum allowed AP i by finding the consumer with the maximum value for the 
quantity 

^(APs + APj.+AP^i+APhe    . 

Once the pipe sizes are known, this quantity is easily calculated. This consumer who 
has the minimum value of APCV; is our so called "critical" consumer. 

It follows then that there are only two cases where more than one of the 
constraints from the set of eq 4-5 may be active: 

1. In the case where the APcvm/i values are identical for all consumers, if the 
maximum value of 
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l(APs + APr).+APhe 

is identical for more than one consumer. 
2. If the consumers have different values of APcvm ; such that the maximum value 

of the quantity 

l(APs+APr).+APhe    +APcvm,i 

is identical for more than one consumer. 
Under either of these two conditions, the corresponding constraints from the eq 

4-5 set for the consumers with identical values as described above will be active. 
However, under neither condition will more than one be critical, since the deletion 
of any additional constraints from the problem will not make the objective un- 
bounded. This is true because the constraints from the set of eq 4-2 directed as 
described earlier will bound the APCV {of all the consumers but one in the proper sense. 

What is not immediately apparent is why all (n -1) of the constraints from the set 
of eq 4-2 must be critical for some APCV {objective variable. To illustrate why this is 
so, consider the case where for an arbitrary consumer k when we let APCV k be 
bounded below by the constraint from the set of eq 4-5, thus AP„,. = AP ,. Now 
suppose that 

' Jk     u 
l(APs+APr) +APhe     =   l(APs+APr).+APt he I 

and that A?cvm k > APcvm;, where consumer i is the consumer with the minimum 
value of APcvi. The constraint from the set of eq 4-2 that states that 

Z(APS + APr). + AP^ + APhe    -   S(APS + APr). + APCV + A^e = 0 

would be violated. Notice that this constraint has not been directed and shown to be 
active, yet it still must not be violated by any feasible solution. Thus, this is not a 
feasible solution and we see that only one of the constraints from the set of eq 4-5 may 
be critical, since (n -1) of the critical constraints must come from the set of eq 4-2. 

Thus, our general result is that we must have (n -1) of the constraints from the set 
of eq 4-2 active and critical for (n -1) of the APCV ■ values. Thus, we have (n -1) critical 
constraints of the form 

S(APS + APr) + AP^k + APhe/k    -   S(APS + APr) + APW/i + APhe/i U <   0 
V Jk    1/ ] Ji (5-5) 

Where the consumer index i does not equal the consumer index k and the monoto- 
nicities are 

(AP-#i/AP+/k) 

we also have one critical constraint on the remaining APCV; not bounded below by 
one of the (n -1) constraints of eq 5-5 of the form 
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APc^u-APc^ 0 (AP-,i). (5-6) 

The assessment of which consumer will be the "critical" consumer having his APCV^ 
bounded below by eq 5-6 was found above to be determined by finding the 
consumer who has the maximum value of the sum of the non-control-valve pressure 
losses APncv j and the minimum control valve pressure loss APcvm;. The non-control- 
valve pressure losses APncv { are given by 

APnw,i=  X^s + APrJj+AiÜ ^ 

where the non-control-valve pressure losses (N/m2) are easily computed once the 
pipe sizes are determined using the procedure discussed below. 

Initial pipe size determination 
As noted earlier, our objective function is separable in each pipe diameter. The 

pipe diameter function for each pipe segment/ is increasing in some terms while 
decreasing in others. Thus, we should be able to find a minimum cost for each 
diameter by proceeding exactly as we did in Chapter 2 if we at first ignore the 
constraints. Therefore, we first find the optimal "independent" discrete diameters 
using the methods developed in Chapter 2. 

System constraint satisfaction 
Once our pipe sizes are determined, we need to ensure that the constraints are 

satisfied and, if not, determine a methodology for achieving this. Below is listed the 
various constraints that were developed in Chapters 3 and 4, categorized by the 
portion of the system in which they originate. 

At each consumer 

APhp = S(AP8 + APr) + APCV + APhe (4-2) 
/ 

AP   • > AP      ■. (4-5) m cv,i - m cvm,i 

In the supply pipe 

Pmax^s-XAP^j-PsgZ (4-11) 
/ 

Php/S -1 APS/j - Ps gz > Px,sat + Psaf • (4-22) 
;' 

In the return pipe 

APhp/S -1 APs,j - ps gz - APhe/i - AP^i -I APr/j > PX/Sat + Psaf • (4-23) 

In the return pipe at the heating plant 

Pu     >P +P    ■ (4-25) L hp,r — l a T i asa v ' 

All of these constraints deal with pressure levels at various points within the 
system. Note that in eq 4-2 we have expressed the total piping pressure loss as its 
supply and return components because it will be necessary to compute these 
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independently for the constraints given by eq 4-11,4-22 and 4-23. Since verification 
of satisfaction for all of these constraints requires either directly or indirectly the 
calculation of the pressure losses in the supply and return pipes, we begin by doing 
so for each of the pipe segments. The pressure loss in either the supply or return line 
is calculated by modifying eq 2-15 slightly so that it applies to each pipe indepen- 
dently. The results are 

(APd/S) =f«/2efc(4/7r)2+c(p-V-c)d  ml^Ld-^b^\ (5-8) 

(APd/r)j=(«/2efc(4/n)2+c(p-V-c)dr^
+cW-(5+fc+c)).- (5-9) 

Once the piping pressure losses are known, we can calculate the non-control- 
valve pressure losses APncv; for each consumer using eq 5-7 and sum this with the 
minimum control valve pressure loss APcvm; to find the consumer with the highest 
value of this sum, our critical consumer. The sum of the pressure losses for this will 
become our pressure increase across the pump at the heating plant APh , as given by 
eq 4-2. For this consumer the constraint of eq 4-5 will be active, as shown earlier. 
Using the value of AP. calculated for the critical consumer, we can then calculate 
the control valve pressure losses for all of the other consumers using eq 4-2. 

With the piping and consumer pressure losses known, we can calculate the abso- 
lute pressure level at all nodes in the pipe network with either a maximum absolute 
pressure assigned to the supply pipe at the heating plant, or a minimum absolute 
pressure assigned to the return pipe at the heating plant. If we set the minimum 
pressure level in the return pipe at the heating plant, we can use the constraints of 
eq 4-23,4-24 and 4-25 to guide our choice. Note that when eq 4-23 is evaluated at the 
heating plant, the entire left-hand side of the equation reduces to the value APh r. 
Dependent on the particular parameter values for the problem at hand, one of these 
constraints will "dominate" (see Papalambros and Wilde [1988] for concept of 
constraint dominance). The cases for constraint dominance are simply as follows. If 

Pa + Pasa ^ -PNPSH ^ -Px,sat + PSa( 

eq 4-23 dominates. If 

Pa + Pasa * Px,sat + Psa( ^ PNPSU 

eq 4-24 dominates. If 

^x,sat + ^saf ^ %PSH * Pa + ^asa 

eq 4-25 dominates. 
Alternately, as noted above, we can also assign the maximum absolute pressure 

in the supply pipe at the heating plant and use that value to find the other absolute 
pressures in the network. The logical choice for the maximum absolute pressure 
value in the supply pipe at the heating plant would be the maximum absolute 
pressure allowable for the piping system being used Pmax- In most cases the 
maximum absolute pressure in the system will occur at the heating plant in the 
supply pipe; thus, this is a logical choice. It is possible that this will not be the case, 
however. Using eq 4-15 we have shown earlier that the maximum pressure must be 
at a nodal point location. In the discussion after eq 4-15, we also developed a 
procedure that can be used to minimize the number of nodes at which the absolute 
pressure must be calculated. If this procedure is used, we can quickly determine if 
the heating plant will be the location of the maximum absolute pressure. 
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Distance from Plant 

Figure 8. Hypothetical pressure distribution under high and low flow 
conditions and absolute pressure constraints. 

All the calculations made to check for absolute pressure constraint satisfaction 
should use the maximum (design) mass flow rate. This will assure that constraint 
satisfaction will be possible at all flow rate conditions. Since the pressure losses in 
the piping and the consumer's heat exchanger will be greatest under this load 
condition, the difference between supply and return pressure at the heating plant 
will also be greatest under this load condition. Thus, under this condition the least 
flexibility exists to adjust the supply or return pressure at the plant without violating 
either the maximum pressure constraint in the supply, eq 4-11, or one of the 
minimum return line pressure constraints at the plant, eq 4-24 and 4-25. If the 
various maximum and minimum pressure constraints are satisfied for all points in 
the network at the higher flow rate condition, it will always be possible to satisfy 
them at the lower flow rates. This is easily shown graphically by considering the 
pressures in the system along the piping route out to a consumer and back, as shown 
for a hypothetical consumer in Figure 8. 

In Figure 8 the horizontal lines are the constraints on the absolute pressures that 
must be satisfied at all points along the route to the consumer. The solid lines that 
have both positive and negative slopes are the supply and return pressures under 
maximum load conditions. The magnitude and the sign of the slope of these lines are 
determined by the sum of the hydrodynamic and hydrostatic pressure gradients as 
given by eq4-14. The dotted lines that behave in a similar fashion are the supply and 
return pressures under some mass flow condition that is lower than the maximum. 
In the extreme case where there is no flow, the pressure losses in the piping and 
consumer equipment all vanish and the absolute pressure level is identical in the 
supply and return lines for any point along the route. Also notice that we have 
shown the pressure drop at the consumer as being lower at the reduced flow 
condition. This results from lower pressure losses in the consumer's heat exchanger 
at the reduced flow rate (see eq4-6) as well as lower losses in the consumer's control 
valve. If the network were ideally balanced and this consumer were the critical 
consumer, his control valve would be completely open at all levels of load (i.e., flow 
rate) and the pressure losses would always be the minimum possible. 

By studying Figure 8, we can see that if we are able to "fit" the supply and return 
absolute pressure lines within the constraints at the maximum flow condition, then 
we can always do so for any lower flow condition simply by adjusting the absolute 
pressure of either the supply or return at the heating plant. This results from the 
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hydrodynamic losses in the piping always being lower for the lower flow rates and 
thus the total pressure increase necessary at the plant is reduced. 

A simplified objective function 
If all the constraints are shown to be satisfied, then we have found the optimal 

solution to the multiple-consumer-multiple-pipe problem and we need not do any 
further calculations. If, however, we find that constraints have been violated, we 
need to refine our design. The first reaction of the designer when faced with this 
result should be to closely examine the nature of the constraint that has been 
violated. Often these constraints are "soft" and may be changed if the optimum 
design indicates so. For example, in this problem one such constraint would be the 
maximum allowed pressure. The designer has the option of using a higher pressure 
class of piping if he or she feels it is warranted. This, of course, will most likely add 
to the cost and, if this additional cost is significant, the designer may choose to 
evaluate the design subject to the original constraint and the revised constraint, as 
well to determine which one yields the lowest cost when the additional cost of the 
higher pressure class piping is included. 

Now that we have shown activity for some of the constraints, let's consider the 
problem again with a reduced objective and determine if solution is possible. Thus, 
in our reduced objective, we are only interested in the terms in the objective function 
that relate to variable piping costs, since we have shown that constraint activity 
determines the values of the other decision variables. Thus, our problem can be 
restated as 

min. Cpt = l(chl + Cpev + Cpv). (5-10) 

where Cpt is the total diameter variable pipe costs for the system ($). 
The constraints to which this solution is subject are that the absolute pressure 

levels not be exceeded. The activity of the constraints of eq 4-2 and 4-5 fixes the 
pressure increase at the heating plant and therefore the pumping power for the 
system. Thus, at this point we no longer need to include the pumping power 
consumed in the piping in our reduced objective function, eq 5-10. If we remove the 
pumping power from eq 5-10, it becomes a monotonically increasing function of 
pipe diameter. Thus, for the problem to be bounded, we must have monotonically 
decreasing constraints on the pipe diameters. The sum of eq 5-8 and 5-9 forms one 
such equality constraint for each pipe diameter that can be directed to bound it 
properly. This constraint is 

ae\i/n)2+c((p-1 ^c)d s -^p-1 ^Tc)d J^+c Ld-(5+b+cA -(APS + APr). =<0    (5-11) 

with the monotonicities being (dj~,AP~i,APf:\ ■ 

Notice that the constraints in the set of eq 5-5 will bound APS ■ and AP • in the 
opposite sense to this constraint, so these nonobjective variables are bounded above 
and below as required by MP2. 

Thus, our problem is now to use these active constraints to solve for the diameters. 
We will have one constraint from eq 5-11 for each pipe segment in the system. In 
addition, we have already shown that we have (n -1) active constraints from eq 4- 
2, where n is the total number of consumers. We have one additional active 
constraint from eq4-5 for the critical consumer. However, at this point we are unsure 
as to which consumer is the critical consumer; thus, we must include all n of the 
constraints from the set of eq 4-2. In addition, we would still need to include all of 
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the constraints from the sets of eq 4-11,4-22 and 4-23, since at this point we have no 
way of knowing which of these constraints will be active. For each of these latter sets 
of constraints, we have one member for each node in the system. We can use the 
constraint of either eq 4-23,4-24 or 4-25 coupled with the fact that APhp must be the 
difference between Ph and Phpr to eliminate Php s from eq4-ll, 4-22 and 4-23. Once 
the parameter values for the problem are known, trie choice of which equation to use 
will be determined by the dominance argument given earlier. Thus, if we have nn 
nodes in the system and n consumers, our result would be 3nn + In simultaneous 
equations. 

To introduce the inequality constraints of eq 4-5,4-11,4-22 and 4-23 directly into 
a set of simultaneous equations, we would need to introduce a "slack" variable for 
each inequality constraint. The slack variable allows us to convert the inequality 
constraint to an equality constraint. For example, eq 4-5 would be converted into an 
equality constraint of the form 

P   . = P      ■ + P (5-12) 
cv,i        cvm,i        cvs,i 

where AP • is equal to the slack variable for consumer control valve pressure losses 
(N/m2). CVSA 

Equation 5-12 would introduce n slack variables into the problem. It could, 
however, be used immediately to eliminate the APCV { unknowns in eq 4-2, thus 
reducing both the number of unknowns and equations by n to 3nn + n. 

The constraints of eq 4-11 and 4-22 would each introduce nn slack variables as 
well. The constraint of eq 4-23 would introduce one less slack variable than these 
constraints, since there will be no slack variable at the heating plant where the 
pressure level is determined by the constraint dominance arguments discussed 
earlier. Thus, eq 4-23 will result in (nn -1) additional slack variables. 

In addition to the slack variables, we would still have the diameters of our pipe 
segments as unknowns as well. The number of pipe segments will always be one less 
than the number of nodes. This result is easily shown if we consider the process of 
building the network from one node to the next. The first two nodes introduced into 
the system will require one pipe. Any subsequent nodes introduced will require one 
pipe for each node, since one node will already be an existing connected node. The 
only case where this would not be true is if we had a looped network, rather than the 
pure branched networks to which we will limit our discussion. We have one 
additional unknown APh that appears in all of the constraints of eq 4-2. So, then our 
total number of unknowns would be (n + Ann -1). 

With (n + 4nn -1) unknowns and only (n + 3nn) equations, we have no unique 
solution. Recall, however, that (nn - 1) of the unknowns are the pipe diameters, 
which must take on discrete values. If the pipe diameters were to be considered as 
continuous, we would have an infinite number of solutions. It's actually fortunate 
that they are discrete because this limits the number of possible solutions. The 
number of possibilities can still be quite large for a system of any significant size. For 
example, if we were to consider only 3 possible pipe sizes for each pipe segment we 
would have 3(nn -1) possible solutions. For our system discussed earlier with 125 
nodes (124 pipe segments), we would have 3124 = 1.46 x 1059, a combinatorial 
problem of staggering proportions by any measure. 

Notice that by applying monotonicity analysis to this problem we were able 
reduce it to one of solving for the variables using the constraint set, which has been 
reduced somewhat. The constraint set is linear in all the variables except the pipe 
diameters and the pipe diameters only appear in one set of constraints. We could 
make the problem linear by making the transformation for pipe diameters of 

l =d-{5+b+c). 

54 



We would then substitute this into the constraints of eq 4-2 and solve the resulting 
problem linearly in the A-, values. However, we would still have a significant task in 
the solution of the system of equations. For this reason we will abandon the 
possibility of achieving a solution by this approach. 

Constraint resolution by pipe size refinement 
We have an infeasible solution from the unconstrained problem. For each of the 

consumers whose absolute pressure distribution of Figure 8 exceeds the constraints, 
we need to reduce the piping pressure losses by increasing pipe diameters enough 
to allow for constraint satisfaction. Since the system constraints all deal with 
pressure levels in the network, we need to find a strategy to resolve these constraint 
violations. Let's attempt to find a solution by starting with our optimal independent 
design and identifying methods to move from this design to one that satisfies all the 
constraints. We will attempt to conduct this process of modifying the solution so that 
it satisfies the constraints in a manner that will keep us as close as possible to the true 
globally optimal design. We have the distinct advantage of knowing that our opti- 
mal independent design will form an absolute lower bound on system cost. At any 
point we can compare the cost of our feasible design to the cost of the optimal inde- 
pendent design and determine if further attempts at improvement are warranted. 

Examining Figure 8, we see that to bring excessive pressure differences within the 
bounds of the constraints, we will need to reduce the slope of the pressure vs. 
distance lines. The slope of these lines is the pressure loss per unit length of pipe. 
Equations 5-8 and 5-9 tell us that if we are to reduce the slope we must do so by 
increasing the pipe size. We would like to identify a method of determining which 
pipe sizes to increase and by how much to satisfy constraints with minimum cost 
increase. 

At first it might seem that the best procedure would be to start by increasing pipe 
sizes at the consumer's end of the system, where the sizes are smallest and the pipes 
tend to be shorter. In the smaller pipe sizes, the incremental increases in diameters 
are in general less than for the larger pipe sizes. Thus, we could make smaller moves 
away from the lower bounding cost. Starting at the consumer appears to be the most 
logical way to proceed if the critical consumer is the only consumer who has 
exceeded the absolute pressure constraint. In the more general case, however, more 
than one consumer will have violated the absolute pressure constraints; thus, we 
will examine that case first. 

If more than one consumer has violated the absolute pressure constraints, we 
could achieve constraint satisfaction by increasing pipe sizes that serve each 
consumer individually until all the constraints are satisfied. Alternately, we could 
increase pipe diameters in pipes that serve all of the consumers with violated 
constraints. Because the pipe sizes are discontinuous (discrete) and the incremental 
differences between adjacent diameters are nonuniform, it's not possible for us to 
predict a priori which diameters would be the best candidates for increasing. Thus, 
we need to identify a method that will guide our search for a feasible and acceptable 
solution expediently. In deciding when to stop our search, we always have the 
benefit of knowing our lower bounding cost. 

If we refer back to Figure 8, we see that satisfaction of the absolute pressure 
constraints relies on keeping the pressure in the supply and return lines within the 
bounds prescribed by the maximum absolute pressure constraint and the two 
minimum absolute pressure constraints. We can adjust pressures at the plant to 
achieve a state that satisfies all the constraints, as long as the maximum pressure 
difference within the system does not exceed the absolute pressure constraints 
discussed above. Since the critical consumer previously identified will be the 
consumer who requires the largest pressure differential within the system, we will 
examine this consumer's requirements first and attempt to resolve the constraint 
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1. For the set of consumers whose constraints are violated, find the pipe segments that they all share 
in common. Identify those pipe segment within this group that are shared with no other consumers. 
In the event that there are no pipe segments shared with no other consumers, choose those pipe 

segments shared with the minimum number of other consumers. 

2. Increase the pipe segment diameters within this set enough so that the consumer whose constraint 

from eq 4-2 was closest to satisfaction in the original solution now has his constraint satisfied. The 

first pipe segment to have its diameter increased should be the one that this consumer shares with 

the largest number of other consumers within the set of consumers with violated constraints. 

3. Now remove this consumer whose constraint is satisfied from the set and find the new set of 
common pipe segments for the remaining set of consumers with violated constraints, again including 

the minimum number of other consumers in this set. 

4. Again increase the pipe segment diameters within the remaining set enough so that the consumer 
whose constraint was closest to satisfaction in the new set now has his constraint satisfied. The choice 
of the pipe segment diameter to increase first is done in the same way as in step 2 above. 

5. Repeat the above steps until all consumers have their constraints satisfied. 

Figure 9. Method A. 

violations that result. In the process we will consider the other consumers whose 
constraints have also been violated. 

Starting from an infeasible point, which is at the lowest possible cost for any 
design, we want to move in the direction that will satisfy all of the constraints that 
are violated by this solution. Since the critical consumer is the consumer whose 
constraint has been violated by the greatest amount, we will have to travel the 
"furthest" from our infeasible point to the boundary of his constraint. Thus, it would 
seem tempting to try to resolve this constraint first and then look and see what other 
violated constraints remain. However, it's possible that we can plot a course that will 
take us straight to a point that will resolve all constraints rather than handling them 
one at a time. To do so we might consider the algorithm given in Figure 9. 

Note that the last consumer to have his constraint satisfied is the consumer who 
was identified as the critical consumer in the original solution. Now, however, all of 
the consumers whose pressure constraints were violated in the original solution are 
"critical" consumers as well, having pressure levels just meeting the constraints, 
within the tolerance achievable with the discrete pipe diameters available. 

As an alternate to the above methodology, we could proceed by adjusting 
diameters of the critical consumer first, but only enough to bring his piping pressure 
loss to the level of the next highest consumer, i.e., using the method in Figure 10. 

Since in many cases consumers will share more than one pipe segment, we still 
may be left with a number of alternatives that must be evaluated at each of the steps 
above. If in each case we choose the alternative that produces the minimum amount 
of increase in cost over the previous design, we should be able to move to an ultimate 
solution that satisfies all the constraints while reducing the cost as much as practical. 
Because we may be faced with many possible alternatives when a number of pipe 
segments are shared by two or more consumers, we may decide to stop the process 
after finding an alternative whose cost is within some reasonable tolerance of the 
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1. Proceed by first finding the set of servicing pipe segments unique to the critical consumer; this will 
be his final service pipe only. Increase the diameter of that pipe segment until it reduces his pressure 
loss to the same level as the consumer with the next highest pressure losses. 

2. Now identify the pipe segments that these two consumers alone share and increase those pipe 
diameters enough to reduce their pressure losses to the level of the next highest consumer. Note that 
it may be that there are no shared pipe segments for these two consumers alone. In that event proceed 
to the next step directly. 

3. Again look for pipe segments shared by the three consumers with the highest pressure losses and 
increase the diameters of those pipe segments enough to bring the pressure losses of these three 
consumers to the level of the consumer with the fourth highest pressure loss. Once again, in the event 
that no shared pipe segments exist, proceed directly to the next step. 

4. Repeat this procedure until no consumers remain with pressure losses exceeding the constraints. 

Figure 10. Method B. 

lowest cost up to that point in the process. 
To address the instances where more than one alternative is available at a 

particular step in either of the processes outlined in Figures 9 and 10, we would like 
a strategy that minimizes cost. Let's investigate the effect of pipe diameter to see if 
it would be to our advantage to choose smaller or large pipes as candidates for the 
diameter increase. 

First, we note that the capital cost C • is a linearly increasing function of pipe 
diameter. Thus, an incremental increase in pipe diameter would have the same effect 
regardless of the absolute value of the pipe diameter. 

The cost of heat loss Chl = is a somewhat complicated function of the pipe diameter. 
It also includes an approximation introduced in Chapter 2. Within the range of 
validity of the approximation (0.025 m < d < 1.0 m), we can see how the heat loss cost 
behaves by examining its slope as shown in Figure 11. 

The slope of the heat loss cost as plotted below in Figure 11 is essentially the first 
term of eq 2-24 with the values of the parameters taken from the example of Chapter 
3. From Figure 11 we see that the slope of the heat loss curve is always positive within 
our range of interest. This tells us that whenever we increase the pipe diameter we 
will increase heat losses, as we would expect. We also see that the slope is a 
decreasing function of the diameter, except for pipe diameters over about 0.75 m, 
where it becomes a slightly increasing function. For the portion of the range where 
the slope is decreasing, we know that an incremental change in pipe diameter will 
result in less increase in heat loss for larger diameters than for smaller ones. 

The pressure loss as a function of pipe diameter is given by the sum of eq 5-8 and 
5-9, which is our former eq 4-4 

APs&r = (a eb (4/TC)
2+C

 A6 rh d
2+c L d -(5+h+c))j. (4-4) 

If we take the partial derivative of this pressure loss with respect to diameter, we 
have 

dAPs&cr/dd = -{5 + b + c) (a zb (4/TI)
2+C

 A6md
2+C L d -(6+b+ch 
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Figure 11. Slope of the heat loss cost term as a function of pipe diameter. 

This result is plotted in Figure 12, where we have arbitrarily set the aggregate of all 
the coefficients of d equal to -1. We see that the slope is everywhere negative and that 
it is increasingly negative for decreasing values of the pipe diameter. This tells us 
that an incremental increase in the pipe diameter will have a greater effect on 
reducing the pressure loss at smaller pipe diameters than at larger ones. Thus, if we 
have a choice of several possible pipe segments whose diameters we can increase, 
we can achieve a larger pressure loss reduction for a given increase in pipe size by 
choosing the pipe segment with the smallest diameter. 

Unfortunately, our results tell us we should favor the smaller diameters from a 
pressure losses reduction standpoint, but from the standpoint of heat loss costs, 
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Figure 12. Slope of the pressure loss as a function of pipe diameter. 
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larger diameters would be better. Thus, it is unclear from this analysis whether we 
should try to choose smaller or larger pipes for increased diameters to satisfy 
constraints. We do know that incremental increases in the discrete sizes of pipes will 
be smaller in general for the smaller pipes. However, this does not necessarily mean 
that we will be able to get closer to just satisfying the constraint in all cases by 
increasing the diameter of the smaller pipes. Fortunately, the branch-and-bound 
method mentioned earlier will provide us with a general solution strategy despite 
our inability to better characterize the nature of the path to the solution. 

Branch-and-bound method 
The objective of the branch-and-bound method is to use what is known about 

designs already explored to reduce the number of remaining ones that must be 
examined in detail. An additional caveat is that we would like to do so without 
dismissing any designs superior to the best feasible ones identified. According to 
Reklaitis et al. (1983), the branch-and-bound algorithm is the most widely used 
method for mixed integer problems and is the basis for most commercial computer 
codes for solving such problems. The essence of the branch-and-bound method is 
that it breaks the problem down into branches, each of which corresponds to some 
particular choice of a single discrete decision variable. 

The first step in the method is to compute the optimal solution to the problem with 
all the variables assumed to be continuous. This becomes our global lower bound. 
The branching usually starts by choosing what is felt to be the most fruitful branch 
(variable) to explore; some criteria are given in Reklaitis et al. (1983). A discrete value 
for the variable of this branch is chosen; this will be one of the discrete values 
bracketing the optimum continuous value. The lower bounding cost for this branch 
is found by finding the optimum continuous values of the remaining decision 
variables with the branching variable fixed at its discrete value. At this point we can 
explore the discrete designs within this branch by branching on the other variables 
or we can go directly to the next branch. If we continue to explore this branch and 
we find a discrete design sufficiently close to our lower bounding continuous 
design, we can stop searching and accept this design. Otherwise, we move on to the 
next branch. If we decide to search this branch further, we do so by comparing costs 
obtained for designs within the branch by making permutations of the other 
decision variables in turn to their bracketing discrete values. 

This process continues until a feasible design with discrete values for all those 
variables requiring such values is found. This is our first candidate design and its 
cost becomes our upper bounding cost. Through the remainder of the process all 
solutions will be compared in cost to this one until another feasible discrete design 
with a lower cost is found. Any designs with higher cost will immediately be 
rejected, and if continuous variables are still included in these designs for variables 
that must ultimately take on discrete values, then all other designs within that 
branch will be rejected as well. This can be done since we know that restricting any 
of the continuous variables to discrete values will only increase the cost. The process 
of rejecting these other designs for which the cost is never computed is called 
"implicit fathoming," as opposed to "explicit fathoming" where the cost is com- 
puted and the design is rejected because its cost exceeds our upper bounding cost. 
Any remaining feasible discrete designs are also compared to the lower bounding 
cost for the branch found with continuous values of the non-branching variables. If 
any are sufficiently close to this lower bound, the search of the branch is concluded 
and the design found is accepted as an adequate design representative of what can 
be expected within the branch. 

The next branch to be explored will use the other bracketing value of the first 
branching variable. Its lower bounding continuous cost design is compared to our 
current upper bounding cost from the best design of the previous branch. If the 
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lower bounding cost of this branch is less, then we continue the search of this branch, 
proceeding as we did in the first branch, with one exception. We now have an upper 
bounding cost and if at any point we find a design, either fully discrete of not, higher 
in cost than our upper bounding design, we fathom this node and implicitly fathom 
any branches of this design. However, as long as improvement appears possible, the 
branch is searched until a discrete design acceptably close to the lower bounding 
cost is found or all alternatives are exhausted. If a discrete design with a lower cost 
than the lowest cost discrete design of the previous branch is found, it becomes the 
new upper bound on cost. If this cost is sufficiently close to the continuous lower 
bounding cost, then the search is concluded. Otherwise, another variable is chosen 
to branch on. When exploring alternatives within any main branch, the same basic 
branch-and-bound approach is applied within the "sub-branch." Below we will 
show how the branch-and-bound method is applied to our problem. 

Solution by the branch-and-bound method 
Before we can apply the branch-and-bound method as described above, we must 

first have a feasible solution point from which to start. To find such a solution, we 
use one of the methods described earlier in the section entitled Constraint Resolution 
by Pipe Size Refinement. For example, if we use the method A step 2 (Fig. 9), we 
calculate the continuous pipe size necessary to reduce the pressure loss to the next 
level as described there. This is done by combining eq 4-2 and 4-4 to obtain 

dU = 

A%i- 

r \ 
1 (APs+APr) +APcv + APhe 

H. 
\2+c 2+c 
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(5-13) 

In this case the pipe segment mdexj1 is the pipe segment whose diameter we have 
chosen to increase and the consumer index i is for the consumer with the second 
highest pressure loss at the heating plant as determined by eq 4-2. We continue to 
use method A, which essentially repeats steps 1 and 2 until all the constraints that 
were previously violated are now satisfied. When we have finished, we can check 
our application of the method by taking the pipe segments that were in the sets of 
those constraints previously violated and decreasing them to the next lowest pipe 
diameter one at a time. If our application of method A was correct, each pipe 
diameter that is decreased should result in the violation of at least one constraint. 

At the conclusion of the use of method A, we will have a number of pipe segments 
whose diameters are continuous as a result of the refinement process used by the 
method. To obtain discrete diameter values for these pipe segments, we use the 
branch-and-bound method as described above. Note that the unconstrained discrete 
solution, what we have called our "optimal independent design," will form a greater 
lower bound than the unconstrained continuous solution. It may not, however, form 
a greater lower bound than the constrained continuous solution, which we have 
chosen not to attempt to find owing to the computational effort involved, as 
discussed earlier. What we have found using method A is a feasible solution whose 
cost is greater than the unconstrained discrete solution. The solution we have must 
also be higher in cost than the constrained continuous solution, since the deletion of 
the requirement of discrete sizes for those pipe segments that already have discrete 
sizes would allow us to find a feasible solution at some lower cost. We can not be 
certain, however, that the solution of method A is lower in cost than the constrained 
discrete solution that we seek. For this reason, when we use the cost found in method 
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A as our lower bounding cost, we can not be certain that this is the greatest lower 
bound. If the application of the branch-and-bound method finds feasible solutions 
with costs lower than our solution found by method A, then we must from that point 
on use the unconstrained discrete solution as the greatest lower bound. 

Note that, similar to method A (Fig. 9), method B (Fig. 10) would also provide a 
number of pipe segments whose diameters are continuous as a result of the 
refinement process used. Thus, we would proceed in the same manner with the 
branch-and-bound method regardless of which of the two methods had been used 
for the pipe size refinement process. 

The application of the branch-and-bound method to our feasible solution of 
method A or B is straightforward and proceeds as described earlier. Many of the 
branches will have infeasible designs, since we know decreasing any of the continu- 
ous pipe diameters will result in the violation of at least one constraint, unless other 
pipe diameters have also been increased. Thus, any branch that only decreases pipe 
diameters in any one of the combinations in which they appear in the previously 
violated constraints will be infeasible and need not be explored. 

Consider a hypothetical case where we have four pipe segments with continuous 
diameters after the application of either method A or B. If we limit ourselves to only 
the two discrete pipe sizes that bracket the continuous values found, we will have 
24 = 16 possible discrete solutions. A "tree" diagram of the problem is shown in 
Figure 13. The symbols within each "node" of the tree represent the particular case 
being evaluated. The "0" symbol indicates the continuous pipe size as found by 
either method A or B. A "+" symbol indicates the next larger discrete pipe size and 
a "-" symbol indicates the next smaller discrete pipe size. The sequence of the 
symbols represents the order of the four pipe segments under investigation. As 
noted above, any possibilities that only decrease the size of one or more pipe 
segments are immediately known to be infeasible. These nodes have been shown 
with dotted outlines in Figure 13. 

Applying the branch-and-bound method, we would proceed initially by choos- 
ing the first pipe segment to branch on. Starting at the top of Figure 13, we branch 
on the first pipe segment by computing the value of the objective function with the 
branching diameter, rounded both up and down to the adjacent discrete diameter 
values. However, we notice that one of the options, the (- 000) case, is infeasible. 
Thus, there is no use in computing the value of the objective at that point since it's 
of no use as a lower bound on the constrained problem. In this case we then proceed 
further down this branch in search of a feasible case. Suppose that we find that the 
(- + + 0) is the first feasible case in this branch. We then branch on the last pipe 
segment by examining the cases (-+ + +) and (- + +-). Assume that we find both of 
these to be feasible, but the (- + + -) case is lower in cost. This is our first completely 
discrete and feasible design. It now becomes our upper bounding cost. If this cost is 
sufficiently close to our current lower bounding cost of the (0000) case, then we can 

v'-'; 

Figure 13. Hypothetical branch-and-bound problem. 
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accept this solution and terminate the search. Let's assume, however, that this is not 
the case. 

Thus, we now need to start the process of "backtracking" and examining the 
delayed cases that we passed over. We begin by examining the case (- + - 0). Since 
we found that the (- + 00) case was infeasible, then we immediately know that the 
(_ + _ o) case must be infeasible as well, since it only decreases diameters from an 
infeasible case. Consequently, the (-+—) case must be infeasible as well for the same 
reason. The (- + -+) case might be feasible and let's assume that we find this to be 
true. Assume that the cost of this completely discrete design is less than the cost of 
the (- + + -) design and thus it becomes our new upper bound on cost. Again, we 
would compare the cost of this upper bound with the lower bounding cost of the 
(0000) design and decide if further searching is warranted. Let's assume that we are 
still not satisfied with the gap between the upper and lower bounding costs, so we 
decide to continue our search. 

Backtracking further, we explore the alternatives (— 0 +), (- - + +), (— + -) and 
( +). Assume that we find these to all be infeasible. We then return back to the 
other side of the first branch explored, the alternatives in the (+ 000) branch. Assume 
that we find that both the (+ + 00) and the (+ - 00) cases are feasible, but the (+ - 00) 
case has a lower cost. Thus, we defer any further exploration of the (+ + 00) branch. 
We continue in the (+ - 00) branch by exploring the (+ - + 0) case and the (+ — 0) case. 
Suppose that both cases are feasible, but the (+ — 0) case has a lower cost. Thus, we 
continue by checking the cost and feasibility of the (+--+) and the (+ ) cases. 
Assume that the (+ ) case is infeasible, but the (+ — +) case is not only feasible 
but lower in cost than our former upper bounding cost of the (-+-+) design. Assume 
that this cost is indistinguishable from the lower bounding cost of the (0000) case, 
and thus we accept the (+ - - +) design and terminate the search. 

As illustrated here, one of the techniques used by the branch-and-bound method 
is to continuously move the upper and lower bounding costs closer together until 
the remaining possible improvement (i.e., reduction in cost) does not justify further 
effort. At this point, the search can be stopped regardless of how many alternatives 
have actually been explored. This process is accomplished by moving the upper 
bound down as low as possible, i.e., finding the "least upper bound." The least upper 
bounding cost is always the lowest cost feasible discrete design found up to that 
point in the process. The difference between the lower and upper bounding costs is 
also refined by finding the "greatest lower bound." The lower bounding cost is 
initially determined by the continuous feasible design found by either method A or 
B. As we proceed with the branching process, we will find lower bounding costs 
within that branch for designs that have some, but not all, of their diameters at 
discrete values. These greater lower bounding costs allow us to refine the difference 
between the upper and lower bounding costs for that branch only. They also, 
however, may tell us that further exploration of the branch is unwarranted if they 
exceed our current upper bounding cost. 

Once we have reached a solution by the method described above, there is an 
additional area where we can seek further cost reductions. Note first that those 
consumers who did not have their constraint of eq 4-2 violated will have pressure 
losses in their control valves greater than the minimum allowed values. We then 
observe that if these excessive pressure losses were absorbed by decreasing the sizes 
of the pipes servicing only these consumers, our constraints would still be satisfied, 
but the cost of the piping network would be reduced by use of the smaller pipe sizes. 
This possibility is explored in the next chapter. 

The procedure we have developed in this chapter to solve for the pipe diameters 
in a general multiple-pipe-multiple-consumer system may be used with any 
number of pipes and consumers. In the next chapter we will illustrate the use of the 
method presented here on a simple example. 
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CHAPTER 6: A SIMPLE MULTIPLE-PIPE-MULTIPLE- 
CONSUMER EXAMPLE 

To demonstrate our solution strategy, it's illustrative to use an example. The 
example should be as simple as possible, but must at the same time include the 
salient features of a realistic system. Thus, our simplistic system must include as a 
minimum: 

1. A heat generating plant. 
2. At least one heat consumer. 
3. A section of pipe feeding only other sections of pipe but no consumers. 
4. A pipe junction feeding at least two consumers with unequal hydraulic 
characteristics. 
5. A pipe junction feeding only one consumer. 
With these requirements in mind we will examine the system shown in Figure 14. 
First, we define the physical parameters for the network. For each of the nodes, 

we assign an arbitrary elevation and, in the case of the consumers, an arbitrary 
maximum heat demand expressed as maximum flow mass rate at the design 
condition. The maximum demands assigned to the consumers are representative of 
multiple residential consumers or large commercial loads. The assigned values are 
given in Table 5. 

We will also need to assign lengths to the pipe segments between the nodes. In 
Table 6 some arbitrary pipe segment lengths have been assigned. In addition, in 
Table 6 the flows in each pipe segment and the elevation change for that segment 
have been determined based on the data in Table 5. 

Note that the maximum flow in each pipe segment has been assumed to be the 
sum of all consumer flows downstream (again, in the supply line sense) from it. 
Although this must be true at any instance during the operation of the system 
because of simple conservation of mass principles, for design it may not be the most 
appropriate assumption. Since the demand for heat by each consumer will most 
likely not be completely coincident in time, the maximum aggregate demand of the 
consumers will always be somewhat less than the total of all consumers' maximum 
demands. This concept, called "demand diversity" is recognized by the district 
heating industry and is sometimes accommodated to some extent in design calcu- 
lations. If it's not included directly in the design, it has the effect of providing an 
additional safety factor. While at this point we will make no effort to include the 
effect of demand diversity in our solution methodology, it is important to make note 
of it, since it's here that it would be introduced. 
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Figure 14. Simple multiple-pipe-multiple-consumer system. 
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Table 5. Assigned values for nodes of example in Figure 14. 

Node Elevation Maximum demand 

number Node type im) (kg/s) 

1 heat consumer 40 10 

2 heat consumer 30 10 

3 heat consumer 20 10 

4 heat consumer 10 10 

5 
6 
7 
8 

pipe junction 
pipe junction 
pipe junction 
heating plant 

0 
0 
0 
0 40 

Now we proceed to find the optimal pipe diameters for our example system of 
Figure 14. As we found in the last chapter, a convenient starting point is what we will 
call the "optimal independent design." This is the design that we would arrive at if 
we use the procedure developed in Chapters 2 and 3 for each pipe segment as if it 
were independent of the others and its design were unconstrained by the system 
constraints identified in Chapter 4. We will make use of all of the assumptions for 
parameter values and operating strategy that we used in the examples of Chapters 
2 and 3. For clarity these are repeated below: 

An&r = 2%/yr 
An = 0.90 (dimensionless) 
Ax = $1060/pump 
A2 = $0.242/W 
A3= $218 
A4 = $2180/m 

A13 = 1.0 (dimensionless) 
A14 = 0.575 (dimensionless) 
A15 = 0.425 (dimensionless) 
Tm = 6.4°C 

fcj = 0.030 W/m °C 
ks = 1.3 W/m °C 

H  =1.0m 
Xj = 0.050 m 

Table 6. Assigned values for the 
pipe segments in the example of 
Figure 14. 

Elevation Maximum 

Pipe Length change flow 

segment (m) (m) (kg/s) 

6,1 100 40 10 

7,2 25 30 10 

7,3 50 20 10 

5,4 100 10 10 

6,7 50 0 20 

5,6 100 0 30 
8,5 200 0 40 
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e = 5 x 10-5 m 
a = 0.119 (dimensionless) 
b = 0.152 (dimensionless) 
c = -0.0568 (dimensionless) 

Ts = 120°C 
Tr = determined by consumer model (eq 3-18) (°C) 
Ce = $7.0 x 10~5/Wh 
Ch - $3.4 x r5/Wh 

PVFe = PVFh = PVFm&cr = 9.08 (dimensionless) 
Load control by flow modulation with consumer model (eq 3-25). 

There are a number of additional parameters that were introduced in developing 
the multiconsumer constraints for which we have not yet assigned any typical 
values. They are: 

APcvm,i = 5 x 104 N/m2 (for all consumers, i = 1,4) 
APhe'i = 1.0 x 105 N/m2 (for all consumers, i = 1,4) 
Pmax = 1.0 x 106 N/m2 

Psaf = 1.0 x 105 N/m2 

PNPSH = 2-° x lo5 N/m2 

Pa = 1.0 x 105 N/m2 

Pasa = 0.5 x 105 N/m2. 

Before we can find the optimal independent diameters for the pipe segments, we 
need to calculate the remaining parameters that are determined by the assumptions 
above. Because the optimal pipe diameter for a single pipe segment is independent 
of the pipe length and elevation (see eq 2-23), the optimal independent diameter will 
be the same for pipe segments (6,1), (7,2), (7,3) and (5,4). Thus, we construct Table 
7 with the parameter values needed and the resulting optimal independent diam- 
eters. In each case, we have proceeded as before by solving the Lower Bounding 
Problem (LBP) (eq 2-20), which neglects heat losses first and, subsequently, using 
that as a starting point for finding the solution to the complete problem including 
heat losses (eq 2-24). Also, as earlier, FORTRAN programs I1EQ3-26 and I2-C-GMT 
were used to compute Ix and I3 respectively. 

The optimal diameters found above do not necessarily correspond to actual 
discrete pipe diameters available, so before we check this solution to see if it satisfies 
the constraint set, we first need to determine what the optimal discrete diameters 
would be. Table 8 contains pipe size data for standard metric pipe sizes in the range 
needed for our example. 

To find the optimal discrete diameters, we proceed as before in the example of 
Chapter 2 by simply examining the total cost of the discrete pipe diameters that 

Table 7. Parameter values and optimal independent diameters for ex- 
ample of Figure 14. 

Pipe Ij/L yL d by LBP d fey «7 (2-24) 
segment ($/m) ($ m4095) (m) (m) 

(6,1), (7,2), 73.3 4.276 x IQ"5 0.0691 0.0666 
(7,3), (5,4) 

(6,7) 73.3 3.289 x ICH 0.0966 0.0932 
(5,6) 73.3 1.085 x IO-3 0.1175 0.1134 
(8,5) 73.3 2.529 x IQ"3 0.1350 0.1304 
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Table 8. Standard metric steel pipe sizes 
(data from DFF 1985). 

Nominal Outer Wall Inner 

diameter diameter thickness diameter 

(mm) (mm) (mm) (mm) 

50 60.3 2.9 54.5 

65 76.1 2.9 70.3 

80 88.9 3.2 82.5 

100 114.3 3.6 107.1 

125 139.7 3.6 132.5 

bound the optimal diameters we have found. The bounding diameter that has the 
lowest total cost will become our optimal discrete diameter. Obviously, it is only 
necessary for us to compute the portion of the total cost that is dependent on pipe 
diameter in making this decision. Table 9 gives the cost data for the bounding 
discrete diameter for each of the pipe segments of our example. The costs are 
calculated on a unit length basis using eq 2-23 divided through by L, the pipe length. 
The portions of the total variable cost ascribable to each of the major component costs 
are also given in Table 9. The parameter values of Ix/L and I3/L used for each pipe 
segment are the same as those given in Table 7. 

Now we need to consider the constraints on our multiconsumer system as 
derived earlier in Chapters 3 and 4. These are summarized in Chapter 5 in the System 
Constraint Satisfaction subsection. All of these constraints deal with pressure levels 
at various points within the system. Since verification of satisfaction for these 
constraints requires calculation of the pressure losses in the supply and return line, 
we begin by doing so for each of the pipe segments. The pressure losses in the supply 
or return pipes are calculated with eq 5-8 and 5-9 using the optimal discrete 
diameters we have determined independently. The results are given in Table 10. 

Satisfaction of the constraint of eq 4-2 at each of the consumers requires that we 

Table 9. Discrete bounding diameters and variable costs for the example (optimal non- 
discrete diameters shown in boldface, optimal discrete diameters shown in italic). 

Variable costs ($/m) 
Discrete cost 
premium (%) 

Pipe 
segment 

d 
(m) Heat loss Capital Pumping Total 

(6,1), (7,2), 
(7,3), (5,4) 

0.0545 
0.0666 
0.0703 

64.76 
72.90 
75.34 

140.61 
171.83 
181.37 

117.31 
4223 
32.06 

322.68 
286.96 
288.78 

12.44 

0.63 

(6,7) 
0.0825 
0.0932 
0.1071 

83.24 
90.02 
98.65 

212.85 
240.46 
276.32 

109.11 
58.62 
28.87 

405.20 
389.09 
403.84 

4.14 

3.79 

(5,6) 
0.1071 
0.1134 
0.1325 

98.65 
102.51 
114.03 

276.32 
292.57 
341.85 

95.21 
71.16 
32.19 

470.18 
466.24 
488.07 

0.85 

4.68 

(8,5) 
0.1071 
0.1304 
0.2325 

98.65 
112.77 
114.03 

276.32 
336.43 
341.85 

222.03 
81.44 
75.07 

597.00 
530.64 
530.95 

12.51 

0.05S 
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Table 10. Pressure losses for the pipe segments in the example. 

Pipe Discrete Length Elevation Flow rate Pds Prfr 
segment diam. (m) (m) diff. (m) (kg/s) (N/tn2) (N/m2) 

6,1 0.0703 100 40 10 91,585 91,652 
7,2 0.0703 25 30 10 22,896 22,913 
7,3 0.0703 50 20 10 45,793 45,826 
5,4 0.0703 100 10 10 91,585 91,652 
6,7 0.1071 50 0 20 20,615 20,630 
5,6 0.1071 100 0 30 90,655 90,721 
8,5 0.1325 200 0 40 107,219 107,297 

sum the pressure losses in the portions of the piping system servicing each con- 
sumer. Recall that earlier we assigned values for the minimum pressure drop in the 
consumer's control valve and the pressure drop in the consumer's heat exchanger, 
APcvm; and APhe;, respectively, as follows: 

APcvmi = 5xl04N/m2 

APheU = 1.0xl05N/m2 
(for all consumers, i = 1,4) 
(for all consumers, i = 1,4). 

We will also assume initially that for each consumer APCV; = APcvm;. The process of 
calculating the APhp for each of the consumers is summarized in fable 11. 

The pressure increase required across the pump at the heating plant APh that we 
have calculated is different for each consumer. As shown in Chapter 5, since AP, 
can only assume one value, it must be the greatest value that results from consider^ 
ation of all the consumers, and for the other consumers APCV; will be greater than 
A^cvnu-The consumer who requires the greatest APhp is called the critical consumer. 

Referring to Table 11, we see that consumer 1 is our critical consumer and thus 
A^CTa = ^cvnU- This nas been determined for the maximum load condition, but will 
hold for all load conditions since we have assumed that all consumers have loads 
varying in the same manner over the yearly cycle. For the other consumers, eq 4-2 
will require that APcvi > APcvm ■. By using the APh calculated for consumer 1, our 
critical consumer, we find the following values for the APCV; of the other consumers 
at the maximum load condition: 

APCV 2 =146,183 N/m2 

APCV 3 = 100,374 N/m2 

APCV^4 = 231,376 N/m2. 

Notice that the control valve pressure drops for all these consumers are high 
compared to the minimum value of 5 x 104 N/m2. This situation sometimes makes 
it difficult for the control valve to function properly. It also represents a wasteful 

Table 11. Heating plant pressure increase required by eq 4-2 for each consumer. 

Consumer 
index, i 

Servicing 
pipes, j 

1 (6,1), (5,6), (8,5) 
2 (7,2), (6,7), (5,6), (8,5) 
3 (7,3), (6,7), (5,6), (8,5) 
4 (5,4), (8,5) 

j 
(N/m2) 

289,459 
241,385 
264,281 
198,804 

j 
(N/m2) 

289,670 
241,561 
264,474 
198,949 

P      + P 
cvm,t       lie.i 
(N/m2) 

150,000 
150,000 
150,000 
150,000 

APi 
(N/m2) 

729,129 
632,946 
678,755 
547,753 
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practice, since pumping energy, inherently more expensive than heat energy, is 
being converted into frictional heating of the fluid. As noted at the close of the last 
chapter, there is an alternative to these high control valve pressure losses: reduce the 
pipe sizes further such that the pressure differential at the consumer's control valve 
is reduced. Such a practice was proposed by DFF (1985), where they suggest 
reducing the size of the "service pipes," those ultimately connecting the consumer 
to the network. It may also be possible to reduce some of the pipes sizes within the 
network as well. For our example problem, we see that we have limited options. 
Consumer 1 is our critical consumer, so we cannot reduce any of the pipe sizes 
servicing this customer; this rules out the pipe segments (6,1), (5,6) and (8,5). The 
remaining pipe segments are (7,3), (6,7), (5,4) and (7,2). Thus, we investigate the 
possibility of reducing the size of these pipes. 

First, let's look at pipe segment (5,4). This is the only pipe segment serving 
consumer 4; thus, this is the only option for reducing the pressure loss in this 
consumer's control valve. What we would like to do is find the minimum pipe size 
that will not violate the constraint of eq 4-2 for consumer 4. Effectively, what has 
happened here is that we have removed the pumping power term from the objective 
function so it now becomes monotonically increasing in d(5/4). We need to find the 
constraint that will bound d(5/4) below. While not immediately obvious, eq 4-2 forms 
such a constraint on d(5 4) when directed as follows 

h = S(APS + APr) + APCV + APhe - APhp = <   0        (AP+(5/4),AP+(5/4)). 

From eq 4-4, we see that APS (5 4) and APr (5 4) are related to d{5 4) by 

/z2 = {[(p-V-€)d/s 
+ (P_1^)d,r] 

[(a/2) eb (4/7t)2« mfc L d~^b+%A)} - (APS)(5,4) - (APr)(5/4) -< 0 

with the monotonicities being h2 =U"5 ,4)'^7(5,4)'^7(5,4)) • 

So, we see that d{5 4) is bounded below by h2 and that the non-objective variables 
AP (54) and APr(54)'are bounded below by this constraint and above by \, as 
required by the second monotonicity principle (see Papalambros and Wilde 1988). 
Now we can use constraints \ and h2 to find the optimal value of d(5 4). To do so we 
treat \ as a strict equality and solve for (Ps)(5 4) + (Pt\5Ay We then substitute the 
result into h2, again treating it as a strict equality, and solve for d(5 4). The result is 

d(5A) = °-0614 (m) • 

The discrete diameters that bracket this value are 0.0545 and 0.0703 m. The lower 
bracketing discrete diameter will cause constraint \ to be violated since a decrease 
in d{5 4) will increase £ (APS + APr).. The optimal discrete diameter determined previ- 

ously was 0.0703 m; thus, we are unable to improve on this result. 
Let's look at the remaining pipe segments (7,3), (6,7) and (7,2). These pipe 

segments serve both consumers 2 and 3. Consumer 2 is served by pipe segments (6,7) 
and (7,2) and consumer 3 is served by pipe segments (7,3) and (6,7). Both consumers 
are served by pipe segment (6,7); thus, any decisions we make about this pipe 
segment must be checked to ensure that both consumer constraints (eq 4-2) are 
obeyed. Also, notice that if we decrease one of the pipe sizes and this violates 
constraint hv we may be able to increase the other pipe size in the pair serving that 
consumer such that the total costs for the pipes and heat losses are reduced but 
constraint \ is still satisfied. It is also possible that a pipe size could be reduced or 
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Table 12. Pipe size combinations for the example. 

Pipe segment 
Combination 

number (6,7) (7,2) (7,3) 

1 0* 0 0 
2 0 0 + 
3 0 0 - 
4 0 + 0 
5 0 + + 
6 0 + - 
7 0 - 0 
8 0 - + 
9 0 - - 

10 + 0 0 
11 + 0 + 
12 + 0 - 
13 + + 0 
14 + + + 
15 + + - 
16 + - 0 
17 + - + 
18 + - - 
19 - 0 0 
20 - 0 + 
21 - 0 - 
22 - + 0 
23 - + + 
24 - + - 
25 - - 0 
26 - - + 
27 - - - 

*0 = pipe size unchanged; + = pipe size increased; - = pipe size 
decreased. 

increased by more than one discrete size. We will ignore this possibility for the 
moment and return to it later, since it would result in many more combinations to 
be checked, most of which would violate hr 

If we first look at all the possible combinations of increasing or decreasing the 
three pipe sizes without regard to the constraints, we have 33 = 27 independent 
possibilities; they are enumerated in Table 12. Combination number 1 is our design 
as it now stands, the "do nothing" option. A number of these combinations are 
known not to yield improvement in our design, however, and may be immediately 
dismissed without further evaluation. 

Specifically, any combination that increases any pipe sizes while decreasing none 
will only result in additional pipe capital and heat loss costs and thus will be worse 
than our design as is. Thus, the combinations 2, 4, 5, 10, 11, 13 and 14 can be 
dismissed. 

In addition, we know that any combination that increases the diameter of either 
the final pipe servicing consumer 2 [(7,2)] or consumer 3 [(7,3)], while decreasing the 
other and leaving pipe segment (6,7) unchanged, would be more costly than doing 
the same yet not increasing the diameter of the one pipe; thus, we eliminate 
combinations 6 and 8. As we proceed to explore the various combinations remain- 
ing, we will discover that many other possible combinations will immediately be 
shown to be infeasible by the infeasibility of related combinations. 

In Table 13 we have listed the remaining combinations. Table 13 also gives the 
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Table 13. Constraint satisfaction and costs for the remaining combinations. Our original design (combina- 
tion no. 1) is shown in bold, and the other feasible designs are shown in italic. 

Cost 

Comb. no. d(6 7) "(7,2) 
d(7,3) (V2 (V3 Variable premium 

and type (m) (m) (m) (N/m2) (N/m2) costs ($) (%) 

1 (0,0,0) 0.1071 0.0703 0.0703 -96,183 -50,374 38,002 0 

3 (0,0,-) 0.1071 0.0703 0.0545 -96,183 193,207 35,435 -6.76 

7(0,-0) 0.1071 0.0545 0.0703 25,607 -50,374 36,718 -3.38 

9(0,-,-) 0.1071 0.0545 0.0545 25,607 193,207 34,151 -10.13 

12(+,0,-) 0.1325 0.0703 0.0545 -123,482 165,908 39,480 3.89 

15(+,+,-) 0.1325 0.0825 0.0545 -149,022 165,908 40,464 6.48 

16(+,-,0) 0.1325 0.0545 0.0703 -1,692 -77,673 40,764 7.27 

17(+,-,+) 0.1325 0.0545 0.0825 -1,692 -128,753 42,732 12.45 

18(+,-,-) 0.1325 0.0545 0.0545 -1,692 165,908 38,196 0.51 

19(-,0,0) 0.0825 0.0703 0.0703 18,468 64,278 34,058 -10.38 

20(-,0,+) 0.0825 0.0703 0.0825 18,468 13,198 36,027 -5.20 

21 (-0,-) 0.0825 0.0703 0.0545 18,468 307,859 31,491 -17.13 

22(-,+,0) 0.0825 0.0825 0.0703 -7,071 64,278 35,042 -7.79 

23(-,+,+) 0.0825 0.0825 0.0825 -7,071 13,198 37,011 -2.61 

24(-,+,-) 0.0825 0.0825 0.0545 -7,071 307,859 32,475 -14.54 

25(-,-,0) 0.0825 0.0545 0.0703 140,259 64,278 32,774 -13.76 

26(-,-,+) 0.0825 0.0545 0.0825 140,259 13,198 34,743 -8.58 

27(-,-,-) 0.0825 0.0545 0.0545 140,259 307,859 30,207 -20.51 

status of the two consumer constraints that must be satisfied and the total of the 
variable portions of the capital costs and heat loss costs for each combination. We see 
by examining the constraint satisfaction that only two combinations are feasible, i.e., 
they satisfy the \ constraint for both consumers 2 and 3. However, when we 
calculate the cost of these feasible combinations, we find that both cost more than our 
original design. Thus, we are left with the result that none of the alternatives 
investigated so far are better than our original design. There are some additional 
designs that we have not investigated, however. Recall that earlier we dismissed the 
possible designs that would increase or decrease pipe sizes by more than one 
discrete size from the original design. Depending on how many pipe sizes we are 
willing to deviate from our original design, there are many alternate designs. Of 
course, there is no guarantee that these designs will be feasible, let alone lower in cost 
than the original design. To explore these designs without resorting to "exhaustive 
enumeration," i.e., calculating the constraint satisfaction and cost of each, we can use 
the branch-and-bound technique described in detail in Chapter 5. Below we apply 
this technique to our example problem. In the process of doing so, we will not only 
explore additional designs not considered yet, but we will show how the technique 
would have allowed us to dismiss some of the alternatives in Table 13 without 
computing the constraint satisfaction or total variable cost. 

As noted in the previous chapter, the objective of the branch-and-bound tech- 
nique is to use what is known about designs already explored to reduce the number 
of remaining ones that must be examined in detail. In addition, we would like to do 
so without dismissing any designs superior to the best feasible ones identified. We 
have effectively already used the technique above to dismiss nine of the possible 
combinations of Table 12. In that case, we used the fact that the variable portions of 
the heat losses and capital pipe costs were monotonically increasing in pipe 
diameter. This allowed us to dismiss cases that only increased pipe size. 

After our initial elimination of nine combinations, as discussed above, we see that 
half of our remaining combinations involve the case where d(6 7) is reduced; thus, we 
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will explore that "branch" first. With d,6 7j assigned a discrete diameter one size 
lower than our original design, we can use the constraint h-^ for consumers 2 and 3 
to find the lower bounding continuous values for d,7 2\ and d,7 3y We obtain 

d{72) = 0.0778 
d{7'3) = 0.0892. 

Thus, any combinations with discrete pipe diameters less than these need not be 
considered, since they would violate the hl constraint. This rules out combinations 
19, 20, 21, 25, 26 and 27 because these would violate the hl constraint for both 
consumers. Also, we see that combinations 22, 23 and 24 would all violate the /x1 

constraint for consumer 3, so they are infeasible as well. Thus, we have eliminated 
all the combinations in this branch as originally proposed. As noted earlier, there are 
combinations that deviate by more than one pipe size from our original design that 
were not considered. Before exploring any of these, we compute the cost of the 
design above with continuous diameters to see if it is an improvement on our 
original design. When doing so we find that the variable cost portion of the heat loss 
and pipe capital costs is slightly less than our original design: a 0.77% reduction. At 
this point we could decide not to further explore this branch, since it offers such a 
small potential for improvement; however, we will continue since it illustrates the 
method to be used. From combinations 22,23 and 24, we know that if we increase 
the pipe size of d,73\ to the next discrete pipe size greater than 0.0892, the hx 

constraint for consumer 3 will be satisfied as well. Thus, we propose the discrete 
design 

d = 0.0825 
d ' = 0.0825 
d{7?) = 0.1071. 

We know that this design is feasible, so now we need to compute its cost to see if 
it's an improvement over our original design. When the variable portion of the heat 
loss and pipe capital cost is computed, we see that it's 7.77% greater than the original 
design. Thus, we dismiss this design as well as any other feasible designs in this 
branch, since all other feasible designs would need to have larger discrete diameters 
and would thus be more costly yet. 

We have two other major branches yet to explore: one where d,6 ™ remains the 
same as in the original design and one where it is increased one discrete pipe size. 
The latter branch has four combinations remaining, one more than the other branch, 
so we will explore it first. We proceed as before by using the hx constraint for 
consumers 2 and 3 to find the lower bounding values for the continuous diameters 
of d,7 2) and d,7 3y obtaining 

d{72) = 0.0544 
rf(7'3) = 0.0624. 

As before, we also compute the total variable cost portion of the heat losses and pipe 
capital costs for this design. We find that this cost is 3.88% greater than our original 
design. Thus, we need not look at any discrete designs in this branch, since all will 
require larger discrete diameters than those continuous diameters found above and 
thus they will be more costly. Note that the two feasible combinations 16 and 17 in 
this branch identified in Table 13 do in fact have costs in excess of 3.88% above the 
original design. 

Now we explore the remaining branch, where d,6 m is the same discrete pipe size 
as found in our original design. As before, we compute the minimum continuous 

71 



diameters using the \ constraint for consumers 2 and 3 to find the lower bounding 
values for the continuous diameters of d^2) and d^^, obtaining 

rf(72) = 0.0564 
d(7|3) = 0.0646. 

We know that this design must have a lower cost than the original since it has the 
same pipe size for segment (6,7) and smaller pipe sizes for the other two pipe 
segments. However, we go ahead and compute this cost saving to see if it justifies 
exploring this branch further. We find that the saving is a significant 5.40%. We have 
three combinations (3, 7 and 9) from Table 13 that have not been previously 
eliminated from this branch. We see, however, that each of these will violate at least 
one of the \ constraints, since at least one of the pipe sizes is smaller than the 
continuous minimums found above. Thus, we can dismiss all of these combinations. 
In addition, we can dismiss any other designs in this branch as well, since they would 
have pipe sizes greater than those of our original and would thus be more costly. 
Note that our original design is actually in this branch, using the first discrete pipe 
sizes greater than those found above for d^2) and d^^. 

By using the branch-and-bound technique, we have eliminated all of the com- 
binations of Table 13 and have only computed the cost four times. In addition, we 
have computed diameters using the \ constraint six times. These computations 
compare favorably with those required for total "exhaustive enumeration" of the 
possibilities (27 cost and 54 constraint calculations) and favorably to the computa- 
tions of Table 13, which eliminated nine possibilities based on monotonicity consid- 
erations. We have also shown that no other discrete designs in the branches 
explored, i.e., even those deviating by more than one discrete pipe size, could be both 
feasible and less costly that the original discrete design. What remains to be shown 
is that other branches that allow rf(6 7) to deviate by more than one discrete pipe size 
are either infeasible or not cost effective, or both. 

To explore the branches where d(6 7) is more than one discrete diameter away from 
our original design, we once again look to the constraint h} for consumers 2 and 3. 
We notice that there is a limit on how much we can decrease either d^^ or d,7^ and 
still find values of d(67) that will satisfy the constraints. Physically, what has 
occurred is that we have decreased the pipe sizes of d(7 2) or rf(7 3) to the point where 
all of the pressure loss available between the pipe junction node 6 and either 
consumer 2 or 3 is being absorbed in the pipe segment (7,2) or (7,3). To utilize this 
condition, we first ignore the pressure loss of pipe segment (6,7) and calculate the 
minimum continuous values for d„2) and d(7 3) that will satisfy \ for consumers 2 
and 3 respectively. We then find the next largest discrete diameters in each case, 
since any actual design would be bounded by these. The results are 

d,7 2) = 0.0536 (continuous); 0.0545 (discrete) 
d '   = 0.0614 (continuous); 0.0703 (discrete). 

Now, with these discrete diameters, we calculate the minimum continuous value 
of d,6 7) that would satisfy the constraint h-y for both consumers 2 and 3. This value 
is determined to be 0.1296. The minimum discrete value of d(6 7) is then 0.1325. We 
see that these discrete diameters are identical to those of combination 16 in Table 13. 
It was shown earlier that for this combination the cost exceeded our original design. 
Thus, any larger discrete diameters would also exceed the cost of our original 
design. Since this result is for the minimum possible discrete diameters for pipe 
segments (7,2) and (7,3), regardless of the size of pipe segment (6,7), no lower cost 
alternatives can exist since their diameters for pipe segments (7,2) and (7,3) would 
be greater and thus the designs more costly. 
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Now the remaining branches yet to be explored are those with discrete pipe sizes 
for pipe segment (6,7) more than one size below our original design. To explore these 
branches, we neglect the pressure losses of the pipe segments (7,2) and (7,3) and then 
calculate the minimum value of d,6 ~ that will satisfy constraint hx for both consum- 
ers 2 and 3. We find that the minimum continuous diameter of d,6 ™ is 0.0800. The 
next largest discrete diameter is d,6 7-> = 0.0825 and we see that this branch has already 
been searched. Thus, there are no other feasible branches with discrete values of d, 
less than that of our original design. We have now exhausted all the alternatives an 
have found our original discrete design to be the optimal discrete design. 

We still have several constraints remaining that must be checked for satisfaction. 
The remaining constraints are eq 4-11,4-22,4-23,4-24 and 4-25. These constraints all 
deal with the absolute pressure level in the piping. Before we can compute the 
absolute pressure at any point, we must first assign an absolute pressure in the 
supply pipe at the heating plant. Since we suspect that this will be the place of highest 
pressure in the network, we let the absolute pressure at that point be equal to the 
maximum allowed, i.e. 

(6,7) 
d 

hp,s = Pmax=1 X 10    N/m"* 

We start with eq 4-11, which is a constraint on the maximum pressure in the 
supply pipe. The right-hand side of eq 4-11 equals the pressure level in the supply 
pipe. As we have shown earlier in this chapter (see eq 4-15), the maximum pressure 
must occur at a pipe node and not at an intermediate point. In Table 14, we have 
calculated the pressure in the supply pipe at each of the nodes. We see that the 
constraint of eq 4-11 is satisfied, since the pressure level does not exceed the 
maximum allowed at any point in the supply piping. 

Equation 4-22 requires that the pressure at each point in the supply pipe (the left- 
hand side of the equation) exceed the sum of the saturation pressure Psat and a 
safety margin Pgaf. For the supply pipe temperature of 120°C, the saturation pressure 
is 1.985 x 105 N/m2 (Reynolds and Perkins 1977). Thus, the sum of these two 
becomes 2.985 x 105 N/m2. We see by examining Table 14 that this constraint is also 
satisfied at all nodes. 

We have a similar constraint for the return pipe, eq 4-23. The left-hand side of this 
equation equals the pressure in the return pipe, which has also been computed and 
is given in Table 14. The temperature and thus the saturation pressure in the return 
pipe are different from those in the supply pipe, of course. The return temperature 
will vary with load as per our consumer model, eq 3-25. The maximum temperature 
will occur at the design condition of maximum load, as can be seen from Figure 5, 
and its value is 55°C as determined in Chapter 3 for our supply temperature of 120°C 
and our assumptions regarding the radiator design conditions. The saturation 
pressure will be greatest at the highest temperature, so if our constraint is satisfied 

Table 14. Pressure levels in the piping network. 

Node &, Ps 
AVr Pr P -P 

number (N/m2) (N/m2) (N/m2) (N/m2) (N/m2) 

1 659,272 340,728 150,000 190,728 150,000 
2 518,744 481,256 246,183 235,073 246,183 
3 449,187 550,813 200,374 350,439 200,374 
4 291,257 708,743 231,376 477,367 231,376 
5 107,219 892,781 -385,267 394,554 498,228 
6 197,874 802,126 -294,546 485,275 316,852 
7 218,488 781,512 -273,916 505,905 275,607 
8 — 1,000,000 — 287,256 712,744 
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at this condition, it will be satisfied at the lower temperature conditions. 
For a return temperature of 55°C, the saturation pressure is 1.576 x 104 N/m2 

(Reynolds and Perkins 1977). The sum of this and our safety margin is 1.157 x 
105 N/m2. By examining the return pressures in Table 14, we see the constraint of 
eq 4-23 is satisfied at all points in the return piping. 

Now we look at the two constraints on the pressure in the return line at the heating 
plant, eq 4-24 and 4-25. We see that, for the parameter values chosen, eq 4-24 will 
dominate. Equation 4-24 requires that the pressure in the return line at the heating 
plant be greater than 2.0 x 105 N/m2. The pressure in the return line at node number 
8, which is our heating plant node, is given as 287,256 N/m2 in Table 14, so we see 
this constraint is satisfied as well. Thus, our design has satisfied all the constraints 
specified. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

SUMMARY 

In Chapter 2 we found a suitable method for determining the optimal size for a 
single pipe, independent of any others. This method was developed to be as simple 
as possible yet complete and accurate enough for design calculations. The method 
is general enough to allow for any set of economic or physical parameter values. In 
addition, any form of load management, i.e., temperature or flow modulation, or 
both, can be accommodated by the integral form of the coefficients in the cost 
equation. A new approximation was developed for the friction factor. The form of 
this expression was a simple power function of the Reynolds number and the 
relative pipe roughness. This form allowed us to easily incorporate it into the head 
loss equation without additional complication or rendering the result implicit. We 
made use of geometric programming theory to identify a lower bounding problem 
that can be used to provide us with a very good first estimate of our solution and a 
global lower bound on cost. At the end of Chapter 2, an example is presented that 
shows a 17% saving in life cycle cost over a design based on a common rule of thumb. 

In Chapter 3 we looked at the heat consumers and the effect that they have on the 
piping system. We developed a new model for the consumer's heat exchanger that 
uses the geometric mean temperature difference as an approximation for the 
logarithmic mean temperature difference. This allowed us to develop an explicit 
expression for return temperature, a result not possible when using the logarithmic 
mean temperature difference. We conducted a complete error analysis on the 
geometric mean approximation and our new consumer model based on it. This 
analysis confirmed that the resulting error from this model was acceptable for 
design purposes and much less than the error resulting from using the arithmetic 
mean temperature difference as an approximation of the logarithmic mean tempera- 
ture difference, as has been suggested by others. We integrated our new consumer 
model into our single pipe model of Chapter 2 and for a sample case determined 
what effect the addition of the consumer has on the integral coefficients of the cost 
equation. At the end of Chapter 3, we reworked the example of Chapter 2, including 
the effects of the new consumer model. 

In Chapter 4 we developed the constraints for systems with multiple pipes and 
consumers. Both absolute and differential pressure constraints were derived. By 
using the monotonicity of the hydrodynamic and hydrostatic pressure gradients, 
we were able to easily show that the maximum pressure within a pipe segment must 
occur at one of the end points. We then developed a strategy to allow for constraint 
satisfaction at all points implicitly without considering every point in the system. 

In Chapter 5 we briefly reviewed general methods for constrained nonlinear 
optimization. For various reasons these alternatives are all abandoned in favor of the 
approach taken. Subsequently, our general solution strategy is developed for 
systems with multiple pipes and consumers. The method makes use of the solution 
to the problem, unconstrained by the network constraint requirements, as a starting 
point for the constrained solution. Monotonicity analysis was then used to prove 
activity of some of the constraints and thus simplify the problem. In addition, the 
concept of constraint dominance is used to reduce the number of constraints that 
must be considered. Before proceeding with the problem solution, a brief graphical 
analysis verified that we only needed to provide for constraint satisfaction at the 
maximum load condition to ensure satisfaction at all other load conditions. The 
resulting reduced problem was then used as a starting point for two methods 
proposed to find a solution to the constrained problem with continuous values for 
some of the pipe diameters. Finally, the branch-and-bound technique is explained 
and then shown to be suitable for finding a design with discrete values for all the 
pipe diameters. 
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In Chapter 6 we worked a simple example with only four consumers and seven 
pipe segments. The example illustrated the use of our method and also showed how 
the branch-and-bound technique can be used to quickly eliminate candidate de- 
signs. A method is also demonstrated for further refinement of the pipe network to 
eliminate excessive throttling losses in the consumer's control valves. 

CONCLUSIONS 

The method developed here should be feasible for designing the piping networks 
for district heating systems of moderate size, and in particular the systems used on 
military facilities or college campuses, which tend to be smaller and less complex 
than those of large cities. For very large systems, the branch-and-bound method 
used for finding the discrete diameters may become cumbersome and 
computationally too expensive. However, this remains to be shown and it may be 
that, with the commercially available software and the enormous power of today's 
computers, this perceived problem is quite manageable. 

The major advantage of the method developed here is its flexibility to accommo- 
date any set of economic and physical parameters and operating strategy. In 
addition, the approximations, where used, are much more suitable than some made 
in the past: for instance, linearization of the equations, neglecting heat losses, and 
oversimplification of the effect of varying load. It is felt that a significant contribu- 
tion has been made by the derivation of mathematical expressions for all of the major 
constraints. Perhaps the most significant contribution of this work has been the 
analysis of constraint activity and the development of a method to exploit that 
knowledge to arrive at a solution. In addition, we have shown what bounds can be 
put on the solution such that the designer can be reasonably assured of whether or 
not further significant cost reduction is possible. This not only gives the designer 
some comfort in knowing what possible improvement remains, but it also avoids 
excessive calculations that often result when no such knowledge is available. 

Another possible use of the methodology developed here is for studies of the 
relative merits of various operating strategies and what effect they have on the 
design of the system. The general form of the cost coefficients can be useful for such 
studies and can not only be used to develop designs based on the methods presented 
here, but they may also be used to evaluate the effect of economic or physical 
parameter changes, including operating strategy changes, on existing designs. 

With many systems already in use in Europe, the issue of optimal design is of 
lesser importance there. Currently, however, the interest in optimal operation of 
district heating systems is significant in Europe, as evidenced by several recent 
conferences devoted almost entirely to this topic alone (Nordic Council of Ministers 
1989, 1994). Most of the efforts seem to be centered on real-time simulations of 
operation and subsequent forecasting of short-term operating strategy. It seems that 
a method such as the one developed here would be useful for studies at a higher level 
to determine optimal overall operating strategies for the yearly load cycle. 

RECOMMENDATIONS 

It is recommended that the methodology developed here be field tested on the 
design of a moderately sized system, such as would be found on a military base or 
college campus. The design should be compared with a completely independent 
design, as would be achieved by methods normally used by the district heating 
design profession. 

Under the assumption that the results of the field test were positive, it is 
recommended that the method be coded for computer execution to the maximum 
extent possible. The resulting CAD program could then be incorporated into one or 
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more of the currently available CAD systems explicitly created for district heating 
system design and feasibility studies. If the economic benefits are as great as 
indicated by the examples worked here, the incentive for doing so is significant. 

Perhaps the most troubling aspect of using optimal design methods for sizing 
district heating piping systems is the level of pressure losses resulting. These 
pressure losses are rather high when compared to those encountered in operating 
systems and designs based on other methods. This result is apparent when we 
examine the pressure losses given in Table 1 for both the method presented here and 
a common rule of thumb based design. This result has also been observed by others 
(Böhm 1986, Koskelainen 1980). It seems that current design practice and the 
systems that result are ill-suited to the application of optimal design techniques. 

Several possible solutions to this conflict exist. The first is simply to increase the 
maximum pressure capability of the piping system used. The logic of this approach 
can be seen in European practice where small district heating systems use piping 
rated for only 6-bar (600-kPa) maximum pressure and often the connections to the 
consumers are direct, i.e., without heat exchangers. For larger systems, piping rated 
for 15-bar (1500-kPa) or greater maximum pressure is often used and heat exchang- 
ers are used to isolate the consumers' equipment from the high system pressures. 
The designer should always find the unconstrained optimum pressure level for the 
network first before making a decision of which pressure class of piping to use. It's 
quite possible that pressures higher than those used in current practice may be 
justified in some instances. 

The advent of friction reducing additives (Nordic Council of Ministers 1991), 
which are currently being field tested, offers some relief for the problem of excessive 
system pressures. Such additives promise to reduce friction and thus pressure losses 
by 50% or more. Such a change in something always assumed to be a basic given in 
design renders much of what has been learned to date about district heating system 
design, optimal or otherwise, nearly worthless. The ability of the method developed 
here to rapidly reevaluate either existing or proposed designs clearly illustrates the 
value and necessity of such a design tool. For instance, one possibility is that some 
of the frictional reducing additives will be relatively short lived when compared to 
the life of the district heating system, or even the annual operating cycle. However, 
since the maximum flow rate and thus maximum pressure drop are only encoun- 
tered over a short period of the yearly cycle, it may be that such friction reducing 
additives can be very effective. The method developed here would allow for rapid 
evaluation of any possibility to see if they are worthy of further study or consider- 
ation for field testing. 
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APPENDIX A: APPROXIMATION OF THE FRICTION FACTOR 

For incompressible flow in circular conduits (pipes), the head losses can be 
calculated using the Darcy-Weisbach equation 

h{=fLv2/2gd (A-l) 

where/= friction factor (dimensionless) 
L = pipe length (m) 
v = flow velocity (m/s) 
g = acceleration of gravity (9.8 m/s2) 
d = inside diameter of the pipe (m). 

Numerous other expressions have been proposed for calculating frictional head 
losses. The Darcy-Weisbach equation is, however, the most fundamentally ap- 
pealing as it can be derived analytically while the other relationships are empirical 
in nature (Jeppson 1976). For laminar flow it is possible to show that the friction 
factor/is a function of the Reynolds number alone. Unfortunately, the flow in heat 
distribution piping is seldom laminar. For turbulent flow the friction factor has been 
determined empirically to be a function of the Reynolds number and the relative 
roughness of the pipe. A number of correlations have been proposed for the friction 
factor. Those correlations that give the best agreement with the experimental data 
are implicit in the friction factor. This renders them impractical for analyses such as 
this one. For this analysis, and other applications, it would be desirable to have a 
simple expression that would provide sufficient accuracy over limited ranges of 
interest. To keep the expression as simple as possible, while allowing it to be an 
accurate approximation, a method is developed here that yields a one-term power 
function. 

To approximate friction factor information in the form of implicit equations or 
empirical data, we can develop our approximation using the least-squares method. 
First, we assume a desired form for our expression for the friction factor 

f = aRRbRec (A-2) 

where / = predicted friction factor (dimensionless) 
a, b, and c = coefficients determined by the least-squares method (dimensionless) 

RR = e/d = relative roughness of the pipe (dimensionless) 
e = absolute roughness of the piping (m) 

Re = Reynolds number for the pipe flow (dimensionless). 

If we assume that for any set of values f or RR and Re we have an observed friction 
factor/, we would like to minimize the sum of the squares between the/ 's predicted 
by our equation and all the observed/ 's within the range of interest 

n(/-/f (A-3) 

The summation is taken over all the observations available within the range of 
interest for the parameters RR and Re. In the event that we are trying to approximate 
an implicit empirical expression, we would choose incremental values of RR and Re 
over the range of interest and use these to calculate a corresponding/value. This 
approach will be illustrated later in this appendix. To accomplish the minimization, 
we first convert to a linear form by making the following substitutions 

Y = In/ (A-4) 
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Y = In / = In (a RRbRec) = ]na + b]nRR + c]nRe 

= ß0+ ßxX1+ ß2X2 
(A-5) 

where ß0 = In a 

X1 = h\RR 
X2 = In Re. 

Now we can restate the problem in a linear form 

? 2 

minZfa-Yi)   =i(Yi-ßo-ßA/i-ß2X2/i) ■ 
i=lv ;      1=1 

(A-6) 

The summation index i has now been added. The summation occurs over the total 
number of observations n. To find the minimum for this expression with respect to 
the parameters ß0, ßx and ß2, we take the partial derivative of the expression with 
respect to each of the parameters and set the result to zero in each case 

a/aßo = i(Yi-ßo-ßA/i-ß2X2/i) = o 
i=i 

a/3ßi = ix1/i(Yi-ß0-ß1x1/i-ß2x2#i) = o 
1=1 

a/3ß2 = zx2/i(yi-ßo-ßiX1/i-ß2x2/i) = o. 
i=i 

(A-7) 

(A-8) 

(A-9) 

We now have three linear equations in the three unknown parameters by rear- 
ranging as follows 

ßn + ßl  ZXu+ß2ZX2/i=Z Yi 
i=l i=l i=l 

ßo ZX^ + ßiX (xu)2+ß2ZX2/ixu=z YiX1#i 
1 = 1 1 = 1 1 = 1 !=1 

ßo  ZX2i + ßaZ (XwX2/i)+ß2Z(X2/i)
2= Z YiX2;i. 

i=i i=i i=i i'=i 

These equations can be written in matrix form as 

AnA12Ai3 

A21A22i423 

^3l^32^33 

where   An = n 

A]2 = ^21 = Z XJJ 
i'=i 
n 

^13 = -^31 = X X2/i 
i'=l 

^22 = Z (X^i)2 

i'=l 

ßo Q 

ßl = c2 
ß2 c3 

(A-10) 

(A-ll) 

(A-12) 

(A-13) 
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Table Al. Constants for the friction factor equation. 

Water Flow Pipe Reynolds 
temp. velocity diameter number Max. Avg. 
(°C) (m/s) (m) xl0~6 

error error 
min/max min/max min/max min/max a b c (%) (%) 

50/130 0.5/3.3 0.05/0.77 0.04/11 0.123 0.146 -0.0626 6.2 1.0 
50/130 0.5/4.5 0.05/0.77 0.04/15 0.119 0.152 -0.0568 6.9 1.1 
70/150 0.3/6.3 0.03/0.93 0.02/29 0.129 0.156 --O.0589 10.8 2.0 
50/90 0.5/2.9 0.05/0.41 0.04/3.7 0.140 0.141 -0.0762 4.1 0.8 
90/130 0.5/2.9 0.10/0.46 0.16/5.9 0.116 0.150 -0.0563 2.5 0.6 
50/90 0.5/2.9 0.10/0.46 0.09/4.1 0.128 0.132 -0.0751 3.4 0.7 
50/90 0.5/3.7 0.10/0.46 0.09/5.3 0.125 0.137 -0.0698 3.9 0.8 
90/130 0.5/3.7 0.10/0.46 0.16/7.5 0.113 0.154 -0.0520 2.8 0.6 

^23 - ^32 - 2 X2/i XX/i 
i=l 

n 2 

^33 = £ (^2,i) 
i=l 

Q = i Yi 
i'=l 

i=\ 

c3 = iviX2/i. 
i=\ 

This system of linear equations can be solved by forward elimination and 
subsequent back solution. The resulting expressions for the parameters are 

{Ca-MaiMn)}- 

ß2=. 

[C2-{CiA21/An)} 
[A32-(A12A31/An)) 

[A-22 ~ (^12/^llj] 

(%-(^Mn)}- (^32 -(^12^3l/^ll)) 

(A22 -(A12 /An)) 

{C2-{ClA21/An)}-{[A23-(A13A21/An)p2]\ 

{A22-(Ah/An)} 

ß0={C1-[A12ß1]-[A13ß2]}/A11. 

(A14) 

(A15) 

(A16) 

A FORTRAN program FFCONST was written to evaluate the A's and C's in the 
above expressions and then solve eq A14, A15 and A16 to find the parameters ß0, ßx 

and ß2/Ihe parameters in our original expression, eq A2, for the predicted friction 
factor / can then be found. For this program, the "observed" friction factor/is found 
using the Colebrook-White equation (Jeppson 1976) 

/= [1.14 - 0.869 ln(RR + 9.35/Re Jf)]' (A-17) 

The Colebrook-White equation is implicit in the friction factor/and thus it cannot 
be solved directly. A number of methods can be used to solve implicit equations such 
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as this one. The Newton-Raphson method has been used in SUBROUTINE CWFF. 
This method uses knowledge of the first derivative of the function to find the 
solution. A description of the method can be found in nearly any reference on 
numerical methods, such as Forsythe et al. (1977). 

To use the Newton-Raphson method to solve the implicit Colebrook-White 
equation, an initial estimate of the /value is needed. An explicit equation for the 
friction factor / can be used for this. The explicit equation does not need to be 
extremely accurate to yield a suitable first estimate. The equation given by Wood 
(1966) is a good explicit relationship for turbulent flow and can be used. Wood's 
equation is 

"/ MJ     1.62RR0134V 
(88RR0M)/ ~ f = 0.094 RR0225 + 0.53 RR + Re (A-18) 

To calculate the friction factor using either eq Al 7 or A18 requires that we know 
the Reynolds number Re and the relative roughness RR. To calculate these param- 
eters, we need to specify the fluid density and dynamic viscosity as well as the pipe 
diameter and absolute roughness and the flow velocity. The fluid properties are a 
function of the temperature of the fluid and to a lesser extent its pressure as well. 
Here, we will assume that the fluid is at its saturation pressure for the temperature 
specified. Two FORTRAN subroutines were written to determine the fluid proper- 
ties. The first, SUBROUTINE SATLN, calculates the saturation pressure for water 
given the temperature. The second, SUBROUTINE WTRTBL, calculates the density 
and dynamic viscosity given the temperature and pressure. The main program 
FFCONST and each of the subroutines mentioned above are included in Appendix 
B. 

Using the program FFCONST, a number of the constants a, b and c were 
determined for several sets of parameters. Table Al summarizes the results. In each 
of the examples of Table Al the absolute roughness of the pipe was taken as 4.6 x 
10-5 m. 
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APPENDIX B: COMPUTER PROGRAM LISTINGS 

Program FFCONST 
PROGRAM FFCONST 
DIMENSION VI(10),DI(10),FI(10,10,10),FFCALC(10,10,10), 
*ERROR( 10,10,10),RNI( 10,10,10),T( 10) 

100 FORMAT(15X,3E12.5) 
200FORMAT(////,15X,4E15.6,///,15X,4E15.6) 
300 FORMAT(////,20X,3F18.6,/////) 
400 FORMAT(2X,1F10.0,1F10.2, 1F10.3,1E15.4,3F10.4) 
500 FORMAT(2X,4E12.4) 
600 FORMAT(////,15X,3F18.6) 

R=.046E-3 
ESUM=0. 
A1=0. 
A2=0. 
A3=0. 
A4=0. 
A5=0. 
A6=0. 
A7=0. 
A8=0. 
A9=0. 
A10=0. 
Al 1=0. 
A12=0. 
Al 3=0. 
A14=0. 
A15=0. 
Al 6=0. 
EMAX=0. 
EMIN=1. 
JV=9 
ID=9 
DELTAD=.025 
DL=.025 
VL=.25 
VDELTA=.75 
VI(1)=VL 
KT=9 
TDELTA=10. 
TL=70. 
T(1)=TL 
N=JV*ID*KT 
D0 4K=1,KT 
CALL SATLN(T(K),P) 
CALL WTRTBL(T(K),P,RHO,XH,DV) 

*    PRINT 500,T(K),P,RHO,DV 
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DO 3 J=1,JV 
DI(1)=DL 
D0 2I=1,ID 
RR=R/DI(I) 
RNI(I,J,K)=DI(I)*VI(J)*RHO/DV 
RN=RNI(I,J,K) 
F=.094*(RR**.225)+(.53*RR)+(88.*(RR**.44))/(RN**(1.62*(RR** 
*.134))) 
FI(I,J,K)=F 
Al=Al+LOG(F) 
A2=A2+LOG(RR) 
A3=A3+LOG(RN) 
A4=A4+LOG(F)*LOG(RR) 
A5=A5+((LOG(RR))*(LOG(RR))) 
A6=A6+LOG(RN)*LOG(RR) 
A7=A7+LOG(RN)*LOG(F) 
A8=A8+((LOG(RN))**2.) 

* PRINT 100,RNI(J),DI(I),FI(I,J) 
DI(I+1)=DI(I)+(DELTAD*I) 

2 CONTINUE 
VI(J+1)=VI(J)+VDELTA 

3 CONTINUE 
T(K+1)=T(K)+TDELTA 

4 CONTINUE 
A9=A6-(A2*A3/N) 
A10=A5-(A2*A2/N) 
A11=A6-(A2*A3/N) 
A12=A4-(A1*A2/N) 
A13=A8-(A3*A3/N) 
A14=A7-(A1*A3/N) 
A15=A13-(A11*A9/A10) 
A16=A14-(A12*A9/A10) 
C=A16/A15 
B=A12/A10-C*A11/A10 
ALN=A1/N-C* A3/N-B * A2/N 
A=EXP(ALN) 

* PRINT 200,A1,A2,A3,A4,A5,A6,A7,A8 

PRINT 300,A,B,C 
RN=RNL 
D0 7K=1,KT 
D0 6J=1,JV 
D=DL 
DO 5 1=1,ID 
RN=RNI(IJ,K) 
FFCALC(I,J,K)=A*((R/D)**B)*(RN**C) 
ERROR(I,J,K)=(FFCALC(I,J,K)-FI(I,J,K))/FI(I,J,K) 

* PRINT 400,T(K),VI(J),D,RN,FI(I,J,K),FFCALC(I,J,K),ERROR(I,J,K) 
D=D+(DELTAD*I) 
EABS=ABS(ERROR(I,J,K)) 
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ESUM=ESUM+EABS 
EMAX=MAX(EMAX,EABS) 
EMIN=MIN(EMIN,EABS) 

5 CONTINUE 
6 CONTINUE 
7 CONTINUE 

EAVG=ESUM/N 
PRINT 600,EMIN,EMAX,EAVG 
STOP 
END 

Subroutine WTRTBL(T,P,RHO,XH,DV) 
SUBROUTINE WTRTBL(T,P,RHO,XH,DV) 

* THIS SUBROUTINE CALCULATES THE THERMODYNAMIC AND 
* TRANSPORT PROPERTIES OF WATER GIVEN THE TEMPERATURE AND 
* PRESSURE CONDITIONS. 
* INPUT VALUES ARE T(C) AND P(BARS). THE OUTPUTS ARE DENSITY 
* RHO (KG/M3), THE ENTHALPY XH(KJ/KG), AND THE DYNAMIC 
* VISCOSITY DV IN KG/M-SEC. THE EQUATIONS FOR THE VISCOSITY ARE 
* NOT VALID FOR TEMPERATURES GREATER THAN 300 C. 

T=T+273.16 
* CALL SATLN(T,P) 

DATARIl,B0,Bl,B2,B3,B4,B5,B6,B7,B8,B9,Ul,Wl/22129.,-37444.8692, 
*466453.368,-2666876.77,9030271.53,-19769400.2,28949239.9, 
*-28309932.7,17808942.6,-6534676.01,1065198.53,.58620689, 
*.41666667/ 
DATA G,H,RK,RL,RM,RN,F1,G1 ,H1,RK1,RL1,RM1,RN1,Q1,R1,Z1/ 
*.417,1.139706E-4,9.949927E-5,7.241165E-5,.7676621,1.052358E-11, 
*3.7E8,3.122199E8,199985.,1.72,1.362926E16,1.500705,.6537154, 

*62.5,13.10268,1.5108E-5/ 
DATA A2,A3,A4,A5/.3828209486,.2162830218,.1498693949,.4711880117/ 

PI =221.287 
Tl=647.3 
T=T/T1 
P=P/P1 
U=Fl-(Gl*T*T)-(Hl*(T**(-6.))) 
W=U+SORT((RKl *U*U)+(RL1 *(P-(RM1 *T)))) 
V1=(G/(W**(1 ./3.4)))-H+(RK*T) 
V2=((ABS(RN1-T))**2.)*(RL+(((ABS(RN1-T))**8.)*RM)) 
V3=(RN*(R1+(R1*P)+(P*P)))/(Z1+(T**11.)) 
RHO=l./(Vl+V2-V3) 
H0=B0+(B1*T)+(B2*T*T)+(B3*T**3.)+(B4*T**4.)+(B5*T**5.)+ 
*(B6*T**6.)+(B7*T**7.)+(B8*T**8.)+(B9*T**9.) 
Yl=RLl*RMl/2. 
Q=2.*G/RL1 
V=(-2.*G1*T*T)+(6.*H1/(T**6.)) 
H1=((U1 * W)-(W1*((3.4*U)-V)))*W 
H1=Q/(W**(1./3.4))*(H1+(Y1*T)-(.72*V*U)) 
H2=(((RN1-T)*((RL*(RN1+T))+(RM*((ABS(RN1-T))**8.)*(RN1+(9.*T))))) 
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*-H)*P 
H3=(RN*(Z1+(12.*(T**11.))))/((Z1+(T**11.))**2.) 
H3=H3*(Ql+(((Rl/2.)+(P/3.))*P))*P 
XH=HO+(RI 1 *(H 1+H2-H3)) 
TC=(T*T1)-273.16 
CALL SATLN(TCPS) 
PS=PS/P1 
DV=.02414+(10.**(A2/(T-A3)))*(1.+((P-PS)*A4*(T-A5))) 

T=T*T1 
P=P*P1 
DV=DV*l.E-3 
T=T-273.16 
RETURN 
END 

Subroutine SATLN(T,P) 
SUBROUTINE SATLN(T,P) 

* THIS SUBROUTINE CALCULATES THE SATURATION PRESSURE FOR A 
* GIVEN WATER TEMPERATURE. THE WATER TEMPERATURE IS IN C 

AND 
* THE SATURATION PRESSURE IS RETURNED IN BARS. 

DATARK,A,B;C,D)E,F/2.937E5,5.426651,-2005.1,1.3869E-4,1.1965E-11, 

*_.0044,-.0057148/ 
T=T+273.16 
T2=T+.01 
Y=647.26-T 
X=(T2*T2)-RK 
T=T/647.3 
A1=A+(B/T2)+(C*XAT2*(10.**(D*X*X)-1.))+(E*(10.**(F*(Y**1.25)))) 
P=(1.01325*(10.**Al))+((T-.422)*(.577-T)*EXP(-12.+(T**4.))* 

*9.80665E-3) 
T=T*647.3 
T=T-273.16 
RETURN 
END 

Subroutine ROMBRG(FUN,A,B,C,ERR,RES) 
SUBROUTINE ROMBRG(FUN,A,B,C,ERR,RES) 

C    THIS SUBROUTINE COMPUTES INTEGRALS OF A USER SUPPLIED 
C    FUNCTION USING ROMBERG' S METHOD. THIS SUBROUTINE IS FROM 
C    "NUMERICAL METHODS FOR ENGINEERING APPLICATION'J.H. 
C    FERZIGER, JOHN WILEY AND SONS, 1981. THE ARGUMENT ARE: 
C    FUN = THE FUNCTION TO BE INTEGRATED 
C    A = LOWER LIMIT 
C    B = UPPER LIMIT 
C    C = ARRAY OF FUNCTION DEFINITION PARAMETERS IF REQUIRED 
C    ERR = THE DESIRED ACCURACY 
C    RES = THE RESULTING VALUE FOR THE INTEGRAL 



EXTERNAL FUN 
C    Z IS THE ARRAY OF APPROXIMATIONS 

DIMENSION Z(10,10) 
C    INITIALIZE AND COMPUTE THE FIRST APPROXIMATION. 

1=1 
DEL=B-A 
Z(l, 1)=.5*DEL*(FUN(A,C)+FUN(B,C)) 

C    THE MAIN LOOP. THE FIRST PART COMPUTES THE INTEGRAL USING A 
C    2J+1 POINT TRAPEZOID RULE. THE METHODS MAKES MAXIMAL USE 
C    OF THE VALUES ALREADY COMPUTED. 

10J=2**(I-1) 
DEL=DEL/2. 
1=1+1 
Z(I,1)=.5*Z(I-I,1) 
DO 1 K=l J 
X=A+(2.*K-1)*DEL 
Z(1,1 )=Z(1,1 )+DEL*FUN(X,C) 

1 CONTINUE 
C    NOW WE DO THE RICHARDSION EXTRAPOLATION 

DO 2 K=2,I 
Z(I,K)=(4.**(K-1)*Z(I,K-1)-Z(I-1,K-1))/(4.**(K-1)-1.) 

2 CONTINUE 
C    ERROR CONTROL 

DIFF=ABS(Z(I,I)-Z(I,I-1)) 
PRINT 108, DIFF,Z(I,I) 

108 FORMAT(5X,2E15.5) 
IF(DIFF.LT.ERR) GO TO 20 

C    THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS 10. 
IF(I.LT.10)GOTO10 
PRINT 100 

100 FORMATC MORE THAN 10 ITERATIONS REQUIRED, CHECK 
PARAMETERS.') 
STOP 
20   RES=Z(I,I) 

RETURN 
END 

Function FUN(T,Z) 
FUNCTION FUN(T,Z) 

C    THIS FUNCTION CONTAINS THE INTEGRAND OF THE 12 PARAMETER. 
A=0.135 
B=0.161 
C=-0.0555 
PVFE=9.077 
PVFH=9.077 
EPS=5.E-5 
PL=1000. 
FRD=100. 
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CE=7.E-5 
CH=3.4E-5 
AEDA=0.9 
TSD=120. 
TRD=60. 
CALL WTRTBL(TRD,PRD,RHORD,RHD,RMUD) 
CALL WTRTBL(TSD,PSD,RHOSD,SHD,SMUD) 
RH0D=(RH0SD+RH0RD)/2. 
TS=120. 
TA=20. 
A12=A*PVFE*PL*(EPS**B)*(1.273240**(2+C)) 
QF=(0.425*COS(6.283*T/8760.))+0.575 
CALLCLMTD(TS,TA,QF,FRF,TR,TRG,FRFG) 

FT=FRF 
C    CALCULATE QUANITIES WHICH MAY BE A FUNCTIONS OF TIME. 

CALL WTRTBL(TS,PS,RHOS,SH,SMU) 
CALL WTRTBL(TR,PR,RHOR,RH,RMU) 
A7=(((l./(SMU**C))/(RHOS*RHOS))+((l./(RMU**C))/(RHOR*RHOR)))/2. 

RHOA=(RHOS+RHOR)/2. 
FUN=A7*((((CE*RHOA)/(AEDA*RHOD))*(FT**(2+C)))-((PVFH^VFE) 

&*CH*(FT**(3+C)))) 
FUN=FUN*A12*(FRD**(3+C)) 
PRINT 102, T,FT,FUN 

102 FORMAT(5X,3E 15.4) 
RETURN 
END 

Program 12 
PROGRAM 12 
EXTERNAL FUN 
CALLROMBRG(FUN,0.,4380.,0.,1.E-7,PI2) 
PRINT 101.PI2+2. 

101 FORMAT(10X,F15.5) 
STOP 
END 

Program I2-C-GMT 
PROGRAM I2-C-GMT 

SUBROUTINE ROMBRG(FUN,A,B,C,ERR,RES) 
C    THIS SUBROUTINE COMPUTES INTEGRALS OF A USER SUPPLIED 

FUNCTION 
C    USING ROMBERG'S METHOD. THIS SUBROUTINE IS FROM 
"NUMERICAL 
C    METHODS FOR ENGINEERING APPLICATION", J.H. FERZIGER, JOHN 

WILEY 
C    AND SONS, 1981. THE ARGUMENTS ARE: 
C    FUN = THE FUNCTION TO BE INTEGRATED 
C    A = LOWER LPMIT 
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C B= UPPER LIMIT 
C C = ARRAY OF FUNCTION DEFINITION PARAMETERS IF REQUIRED 
C ERR = THE DESIRED ACCURACY 
C RES = THE RESULTING VALUE FOR THE INTEGRAL 

EXTERNAL FUN 
C    Z IS THE ARRAY OF APPROXIMATIONS 

DIMENSION Z(10,10) 
C    INITIALIZE AND COMPUTE THE FIRST APPROXIMATION. 

1=1 
DEL=B-A 
Z(1,1)=.5*DEL*(FUN(A,C)+FUN(B,C)) 

C    THE MAIN LOOP. THE FIRST PART COMPUTES THE INTEGRAL USING A 
C    2J+1 POINT TRAPEZOID RULE. THE METHODS MAKES MAXIMAL USE 
OF THE 
C    VALUES ALREADY COMPUTED. 

10J=2**(I-1) 
DEL=DEL/2. 
1=1+1 
Z(I,1)=.5*Z(I-1,1) 
DO 1 K=1,J 
X=A+(2.*K-1)*DEL 
Z(I,1)=Z(I,1)+DEL*FUN(X,C) 

1 CONTINUE 
C    NOW WE DO THE RICHARDSION EXTRAPOLATION 

DO 2 K=2,I 
Z(I,K)=(4.**(K-1)*Z(I,K-1)-Z(I-1,K-1))/(4.**(K-1)-1.) 

2 CONTINUE 
C    ERROR CONTROL 

DIFF=ABS(Z(I,I)-Z(I,I-1)) 
PRINT 108, DIFF,Z(I,I) 

108 FORMAT(5X,2E15.5) 
IF(DIFFLT.ERR) GO TO 20 

C    THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS 10. 
IF(I.LT.10)GOTO10 
PRINT 100 

100 FORMATC MORE THAN 10 ITERATIONS REQUIRED, CHECK 
PARAMETERS.') 

STOP 
20 RES=Z(I,I) 

RETURN 
END 

Function FUN(T,C) 
FUNCTION FUN(T,C) 

C    THIS FUNCTION CONTAINS THE INTEGRAND OF THE 12 PARAMETER. 
C    It has been modified to include the effect of the consumers model 
C    using the GMTD model. See EQ. 3.25 for explanation of symbols 
C    used in flow rate equation. 
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TSD=120. 
TRD=55. 
TA=20. 
TS=120. 
TGMTD=59.1608 
RN1=1.3 
A13=1.0 
PL=1000. 
DMF=4. 
TF=(0.425*COS(6.283*T/8760.))+0.575 
TOP=(TSD-TRD)*TF 
BOTTOM=TS-TA-((l/(TS-TA))*(TGMTD*TGMTD)*((TF/A13)**(2/RNl))) 

A=TOP/BOTTOM 
C "A" is the normalized mass flow rate, m/md. 

FUN=(2.043E-8*DMF*((DMF*A)**1.9432))-(8.924E-9*((A*DMF)**2.9432)) 

FUN=FUN*PL/1000 
PRINT 102, T,A,FUN 

102 FORMAT(5X,3E15.4) 
RETURN 
END 

Program 12 
PROGRAM 12 
EXTERNAL FUN 
CALLROMBRG(FUN,0.,4380.,0.,1.E-9,PI2) 

PRINT 101,PI2*2. 
101 FORMAT(10X,E15.5) 

STOP 
END 

Program I1EQ3-26 
PROGRAM I1EQ3-26 

FUNCTION FUN1(T,Z) 
C    THIS FUNCTION CONTAINS THE INTEGRAND OF THE II PARAMETER. 
C    It uses equation 3.26 which was derived using the GMTD appx. 
C    Modified from "IlFT.for" on 1/12/94. 

RN1=1.3 
A14=0.575 
Al 5=0.425 
A13=1.0 
FUN1=(((A15*COS(6.283*T/8760.))+A14)/A13)**(2/RN1) 

PRINT 102, T,FUN1 
102 FORMAT(5X,2E 15.4) 

RETURN 
END 
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Program II 
PROGRAM II 
EXTERNAL FUN1 

CALLROMBRG(FUN1,0.,4380.,0.,1.E-7,PI1) 
PVFH=9.077 
PL=1000. 
CH=3.4E-5 
TS=120. 
TM=6.4 
TA=20. 
TCINS=0.030 
AT=8760 
TGMTD=59.1608 
A16=PVFH*PL*12.56637*TCINS*CH 
RIl=A16*(((PIl*2.)*(TGMTD*2/(2*(TS-TA))))+((((TS+TA)/2)-TM)*AT)) 
PRINT 101,RI1 

101 FORMAT(10X,E15.7) 
STOP 
END 
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