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INTRODUCTION 

Neural networks - a general description 

NNs have been so-named because they mimic, in some respects, the structure and function of 
neurons in the brain. A NN consists of layers of nodes (analogous to neurons) linked by inter- 
connections (axons/dendrites), together with rules that specify how the output of each node is 
determined by input values from all nodes at the level below. A layered architecture of neurons 
in the brain can be used to provide progressively more abstract representation of input stimuli as 
the information is filtered through successive layers; NNs attempt to reproduce this effect, 
although most networks are limited in practice to three or four layers in total. 

The lowest level of nodes in a NN is used to represent the input values, and the node or nodes 
in the highest level provide output from the NN. Since each node receives input from all nodes 
at the level below, generally combined as a weighted sum, the number of interconnections (and 
thus the number of weights) can be very large. Determining values for these weights a priori 
in order to obtained desired outputs for given inputs is clearly impractical for all but the most 
trivial networks. Useful NNs are made possible by the application of a learning algorithm that 
iteratively modifies the weights to minimize an "error function". The error function summarizes 
the differences between the actual output of the NN and the desired (or "true") output (Rumelhart, 
1986). 

The role of prognostic grouping and outcome prediction in clinical medicine 

Establishing the prognosis for a patient may assist that patient in making choices about 
treatment and/or lifestyle changes. For breast cancer, determining the prognosis of a patient has 
become an essential first step to determining treatment: patients with a poor prognosis (at high 
risk of relapse or recurrence and/or with substantial residual disease) will generally be placed on 
the most intensive treatments while those with a good prognosis may be spared the acute toxicity 
and risks of long term effects associated with aggressive treatment. 

The traditional methods used to identify prognostic variables are logistic regression for categorical 
outcomes, such as death/non-response/remission, or Cox regression (Cox, 1972) for survival-type 
outcomes. These multivariate methods generally combine the explanatory variables in a single 
linear expression; more complex relationships between the explanatory and outcome variables can 
be modelled using stratification and interaction terms but incorporation of such terms tend to be 
limited. However, a complex "prognostic syndrome" that involves several variables in a non- 
linear fashion would almost certainly escape attention in a traditional Cox regression analysis. 

In recent years, the largely clinical data that have been used to separate prognostic groups have 
come to be supplemented to an increasing degree by laboratory data. New analytic methods can 
provide information on such things as specific mutations, gene amplification, gross chromosomal 
abnormalities such as translocations, deletions, ploidy changes etc., presence or absence or cell 
surface markers including antigens and receptor proteins, and immunological parameters.  Not 



unexpectedly, many of these biological characteristics correlate with outcome, but all too 
commonly new factors are reported without analysis of the extent to which they provide 
independent prognostic information, nor any guidance as to their use in conjunction with other 
factors in clinical decision making. 

Use of neural networks to predict time to relapse in breast cancer 

NNs have been used successfully to predict categorical clinical outcomes but there is no 
established method for dealing with potentially censored output values. 

Ravdin et al (1992) published the first report of the use of NNs for clinical prediction with a 
survival-type outcome. This analysis attempted to relate six prognostic factors (tumor hormone 
status, DNA index, S-phase determination, tumor size, number of axillary nodes involved, and 
patient age) to time to relapse for women with node-positive breast cancer. A rather complex 
ad hoc method was used to adapt conventional NN programs to handle the censored data: (1) 
Selected input variables were log transformed, and normalized to lie within -1 to 1, (2) The 
database was split into a training set, evaluation set and validation set, (3) Time intervals (from 
the Kaplan-Meier curve) that corresponded to estimated rates of 0.90, 0.80, ... 0.10 were 
determined, (3) Each patient-record was split into m; patient-time records (for patient i), where 
the time from study entry to time of analysis (the maximum follow-up) was T; years and ni; of 
the time intervals come before Tj5 (4) The NN was constructed with one output node (dead/alive) 
and a time variable (1, 2, up to T;) as an input value. Patients that died before T; were 
represented as dead in all patient-time records for intervals after their time of death, (5) To 
correct for bias due to non-uniform follow-up, the number of patient-time records corresponding 
to each interval was adjusted (by random elimination of records) to ensure that the ratio of 
records with "alive" status to those with "dead" status matched the observed Kaplan-Meier rates 
for the study group, (6) The output prediction was interpreted as a measure of relapse risk, and 
used to create risk subsets, (7) NN and Cox regression were compared in their ability to define 
groups with different Kaplan-Meier disease-free curves in an independent validation dataset, (8). 

This approach was effective in defining prognostic groups: generally, the NN defined high and 
low risk subsets as efficiently as Cox regression and in some respects performed better. For 
instance, although having ten or more positive nodes was identified as a poor prognostic factor 
(32% relapse rate at 3 years), the NN placed only 54% of such patients in the high risk fertile; 
40% were in the mid fertile and 6% were assigned to the lowest tertile. When the actual 
outcomes of the women with 10+ nodes were compared to all other women, within each 
predicted-risk tertile, relapse rates were very similar, indicating that the NN had correctly 
identified subgroups of apparent high risk (according to conventional methods) that belonged in 
lower risk groups. 

Aims of this project 

The aims stated in the original application were: 

1.        To develop a program designed to apply neural network methods to the analysis of 
clinical data.  Development will involve two stages: 



a. Software development of a neural network (NN) program, based on established 
methods. 

b. Extension of the NN program to handle censored data. 

2. To integrate this program with existing software, in order to: 

a. Provide the neural network program access to a wide range of database 
management/data transformation functions. 

b. Provide a single package that will perform traditional analyses of clinical data (e.g. 
Cox regression) and neural network modelling. 

3. To evaluate alternative methods for identification of prognostic factors. The methods will 
be Cox regression (including recursive partitioning), censored linear regression, and four 
different neural network methods. 

The projected timeline was that 1 and 2 would be completed within the first year, and that we 
would concentrate on aim 3 in year 2. 

BODY 

The following report details the progress made towards completion of aims 1 and 2 above. 

Development of a general NN program 

The neural network program has been developed as a procedure (PROC NEURAL) within the 
statistical package Epilog Plus, in order to benefit from the broad range of data management 
features of this program and to facilitate comaprisons with more conventional methods (Buckley, 
1993). PROC NEURAL has been developed to have the basic features (not specifically related 
to analysis of survival-type data): 

Basic structure: Feed-forward neural network, with up to four layers, up to 50 input nodes and 
50 output nodes. Logistic transfer function. Dynamic changes to network structure through 
switching on or off of nodes. 

Training: Back-propagation of errors (calculated as sum of square of prediction error). Logicon 
Projection offered as an option for weight initialization (see below). Weight updating following 
each record, or batched (e.g. after each 'run' through the training dataset). User-specifiable 
learning coefficient and momentum term, with the option to change these learning parameters 
after a preset number of runs - repeated such adjustments are allowed. 

Epilog commands: Initial set-up determined by Epilog-style commands (see Appendix 3). 
Training pauses after a preset number of runs, or when the user 'breaks'. At this point, the 
commands can be modified, using the Epilog Plus command editor - if the changes do not alter 
the network structure, training continues from the previous point, otherwise the weights are re- 
initialized. 

Training display.   A graphical interface has been developed for PROC NEURAL, and during 

7 



training the user can view the following (Fig 2): 
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Figure 2.  The training display of PROC NEURAL 

An upper data panel that shows such things as the current learning parameters values, 
the run number, the distance the weight matrix has moved on the last two updates, and 
the root mean square (RMS) prediction error (for both the training dataset and a test 
dataset if it is available). 

Plots that show (1) RMS error by run number (for training and test data separately) and 
percent of predictions that are within a user-specified tolerance value of the true value 
(also for training and test datasets), by run number; a scatter plot of predicted vs. actual 
value for a specified output node; a table of predicted vs. actual, based on the scatterplot 
and user-specified cutpoints; a histogram of the NN weights, which is useful for 
monitoring training progress. 

A schematic of the network. Each node is shown, and for a selected training record, the 
values (and variable names) for each input and output node (for this record) are shown. 
The magnitude of the output from each node is indicated by a 'thermometer' that fills 
from 0% to 100% of the node interior. The record selected to be shown in this way can 
be fixed, or may change every time the display is refreshed. The display can be refreshed 
after every n runs (user specifiable). Selected interconnections between nodes are shown: 
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only those with a weight (or optionally, a weight times node value) that exceed a 
threshold are shown, with negative and positive connections distinguished by color. 

Network analysis. When training halts, the user may continue using modified Epilog commands 
(see above), or may use 

single key-strokes to 
change model parameters 
before continuing. Other 
key-strokes are provided to 
allow the user to explore 
the current network and 
examine its properties. 
Options available include 
(1) Examining the effect on 
network   performance   of 
removing a selected node, (2) Display, on the network schematic, of all weights into and out of 
a selected node (Fig 3), (3) Display on the schematic of the inputs to a selected node (weight 
times outputs from previous level), (4) Distribution of outputs from a node for all cases in the 
training dataset, (5) Indication on the schematic of which input to a selected node made the 
largest contribution - expressed as the percent of training records for which each input was most 
influential, and (6) Indication on the schematic of the average contribution from each input to that 
node. 
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Figure 3. Network analysis: examining all weights in and out of a selected node. 

Other features. The network periodically writes the weights to a disk file. This can be at set 
intervals (number of runs), or when the RMS error on the test dataset begins to increase 
(suggesting that the network is beginning to overfit the training dataset). The weights can 
subsequently be read back, to pick up training or other activities involving the network from any 
point at which a weight 'dump' occurred. 

A single key-stroke requests that the network's predicted outputs be written into the database. 
These predictions are men available to all other Epilog procedures, for example to determine 
means, medians, distributions, and to graphically display using PROC GRAPH. 

At any time the test and training dataset can be interchanged. This allows the user to examine 
network function with respect to test data as well as training data. 

Extensions to the NN program to handle censored data 

We proposed to develop the algorithms necessary for incorporation of several censored-data 
methods into the NN program.  Progress in this direction is as follows: 

Undefined node method. 

The simplest approach is to represent the outcome as a series of indicator variables corresponding 
to periods of follow-up. The interval in which a death occurred is represented by a 1, and all 
other intervals (output nodes) take value 0. Intervals after a censoring event are considered to 
have an undefined value.   In practice this means that this node does not contribute to the 



prediction error - essentially, it has no influence in the error that is used (through back- 
propagation) to adjust the weights. This method represents a relatively straight-forward 
modification to a 'standard' NN, and has been implemented. 

Buckley-James method. 

The Buckley-James (expected value) method required more extensive changes to the NN code 
in order to implement. In this method, NN predictions are compared to the actual values on each 
run and the differences (residuals) used to calculate a Kaplan-Meier-type curve. Based on the 
residual distribution (as reflected in the Kaplan-Meier curve) it is possible to estimate the 
expected survival for any person who was censored. The Buckley-James approach, as it was 
described for linear regression (Buckley and James, 1979) and as it is generalized to the NN 
setting, is to determine the expected survival for all censored individuals (based on the current 
weight matrix), and to substitute the expected value for the censored value when determining and 
back-propagating the error.  This method has been incorporated within PROC NEURAL. 

Modified error function. 

This approach involves a change to the error function so that the error calculated for censored 
observations penalizes under-prediction much more severely that over-prediction. This seems 
reasonable, since predictions less than the observed time are clearly in error; those above the 
observed time may or may not be. The error for uncensored observations remains equal to the 
squared difference between actual and predicted survival. We proposed in the Phase I application 
to use the function: 

E; = a exp{ß(Oj - P;)} 

where Ej,Oj and P; are the error, observed (actual), and predicted values for output node i, 
respectively, and a and ß are parameters that influence the relative balance between censored and 
uncensored error terms and the rate at which the error term increases as the actual time exceeds 
the prediction (Katz S, 1993). The back-propagation algorithm for this error function differs only 
marginally from that used for a sum-of-squares error function: a term equal to the derivative of 
the error function with respect to a output (which is simply the difference between the actual and 
predicted output values for the sum-of-squares error function) is replaced by the equivalent 
derivative for the above function. This extension has been added to PROC NEURAL as an 
option. 

Method of Ravdin 

This method does not require any specific programming, since it was developed to use existing 
NN software. However, the incorporation of our NN software within a more general purpose 
software package will make the Ravdin method much simpler to apply. 

Other additions relevant to this project 

PROC COX and PROC CENREG 

10 



As part of the strategy of providing a powerful suite of routines, in one package, that could be 
used for clinical prediction using censored data, we have modified PROC COX (Cox regression) 
and PROC CENREG (censored linear regression) to generate predictions on a case-by-case basis 
and to write these back into the database. 

PROC PARTITION 

We proposed to compare NNs to the method of recursive partitiioning, and to this end have 
developed a recursive partitioning procedure (PROC PARTITION). PROC PARTITION is 
designed for censored data outcomes, and has the following features: (1) It allows up to 200 
prognostic variables, which may be of continuous, binary or nominal type, (2) At each 
partitioning stage, the variable that provides the 'best' division of an existing partition is used to 
create a new partition, (3) The criterion for deciding on the best division may be based on ratios 
of observed to expected events, on degree of separation of the survival curves, or on the logrank 
statistic (p-value), (4) Partitioning ceases when this criterion (for the best division) does not 
exceed a prespecified threshold value, (5) For nominal variables the program tests all possible 
combinations of categories when searching for the best division, (6) For continuous variables, the 
program tests all possible cutpoints when searching for the best division, (6) Once partitioning 
is complete, the program will (optionally) examine all pairwise combinations of partitions to 
determine if any are sufficiently similar (based on O/E, separation or logrank statistic) to combine 
("pruning"), (7) After two partitions are combined, all pairs are again examined, until no further 
combinations are possible.  This PROC has been written and is currently undergoing testing. 

Learning methods (parameter estimation) 

Training a NN is simply an iterative method for estimating the model parameters (i.e. 
interconnection weights). The most common method - and the one we proposed to implement - 
is 'back-propagation' which is essentially a gradient descent approach. In practice, because of 
the large number of weights used in many NNs, convergence to an error minimum can be slow. 
Furthermore, this minimum may be a local rather than a global minimum. While we still feel 
that the back-propagation approach is extremely useful, the problems of long training time and 
local minima have led us to evaluate some alternative strategies for training of NNs. 

Logicon projection. 

This is an algorithm developed by scientists at Logicon Inc, Los Angeles (Wilensky G and 
Manukian N, 1992). It requires that the user specify a 'prototype' individual to correspond with 
each hidden node. A method of N-dimensional projection is used to calculate initial weights into 
these hidden nodes so that that node fires maximally for the prototype individual. Starting the 
NN with such weights, instead of randomly assigned one, can reduce training time by one to two 
orders of magnitude. Even if no care is taken to select appropriate prototypes, and they are drawn 
at random from the training database, training times can be substantially reduced. 

We have implemented the Logicon Projection algorithm within PROC NEURAL. 

Genetic algorithms. 
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A radically different approach to weight optimization may be used to try to avoid getting caught 
in a local minimum. With the so-called 'genetic algorithm' the weights are represented 
conceptually as genes on a chromosome. Instead of a single NN, a whole 'population' of 
networks with the same structure are created. The performance of each is evaluated, and the best 
(smallest error) are selected for 'mating', while the worst are removed (die). The weight- 
chromosome for each offspring is derived from the parent chromosomes through a process 
analogous to meiotic recombination with or without point mutations. Through many generations, 
with only the fittest being allowed to pass on their weight-chromosomes to new individuals, 
network performance improves. As a result of the discontinuous nature of the recombination 
process the weight matrix makes jumps in the parameter space that potentially avoid the trap of 
a local minimum and hopefully allows for exploration of the entire space for a global minimum 
(Narayanan and Lucas, 1993). 

Our evaluation of genetic algorithms indicate that their implementation within PROC NEURAL 
is entirely feasible. 

Applying the NN to simulated data. 

The most useful database for initial evaluation of network performance is one in which the 
relationship between the input and output variables in known. For this reason we have relied 
heavily on data generated by PROC DIST of Epilog Plus. While it is not possible to present 
results from all such simulated databases, a single example is presented in detail below. 

The database included 1000 training records and 1000 testing records with four binary input 
covariates (A, B, C and D), with the probability of a 1 being 0.05, 0.10, 0.25 and 0.50 
respectively. Cases were assigned to a Low, Intermediate or High risk group, based on their 
covariate values; survival time was randomly generated from a negative exponential distribution, 
with hazards of 0.005, 0.01 and 0.02 respectively for the three risk groups. The relationship of 
covariate values to risk group was designed to provide a test of the NN's ability to detect 
complex interactions between covariates. Specifically those with A=l, or (C=l and D=l) or (B=l 
and C=l) were assigned to the High risk group; those with C=l or (B=l and D=l) were assigned 
to the Low group, while the remainder were Intermediate risk. The censor time was drawn from 
a uniform(0,365) distribution. 

This database has been particularly valuable as a testing ground for NN under development. For 
example, a NN was created with a single hidden layer of three nodes, trained using the Buckley- 
James method and used to make predictions of outcome on the 1000 training and 1000 test cases. 
We used scatterplots and Cox goodness of fit to assess performance. Scatterplots were possible 
since the 'true' (uncensored) time was known for each case. 
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Cox regression was used to fit the four covariates (A - D), the NN prediction (P), a model with 
A,B,C,D and P, to determine whether P contained useful prognostic information not provided by 
the covariates (as main effects) - see Table 2. Note, these evaluations were based on the test 
group only. 

Table 2. Cox regression goodness-of-fit chi-squares 

1 

Model 

A,B,C,D 

Chi-square 

44.00 

D.O.F 

4 

p-value 

O.0001 

2 P 90.86 1 O.0001 

3 A,B,C,D, plus P 
  vs. Model 1 

106.54 
62.54 

5 
1 

<0.0001 
O.0001 

4 A,B,C,D and all two-way interactions 105.96 10 O.0001 

5 A,B,C,D and all two-way interactions, plus P 
   vs. Model 4 

118.68 
12.72 

11 
1 

O.0001 
<0.0001 

6 Risk groups (Low, Intermediate, High) 111.54 2 O.0001 

7 Risk groups, plus P 
   vs. Model 6 

111.84 
0.30 

4 
1 

O.0001 
N.S. 

From these results we conclude that the NN prediction was able to substantially improve the Cox 
regression model fit when added to the four covariates, and even improved on a Cox model that 
included all two-way covariate interactions. As expected, it did not improve on a model in which 
the 'true' risk group assignments were represented. It is of interest that the NN prediction did 
improve on the risk-group model within the training dataset, illustrating the potential for NN 
models to over-fit the training data and underscoring the need for a separate testing dataset. 

Since the 4 covariate variables can take only 16 possible combination of values, it is possible to 
examine the NN prediction for all input combinations. In addition we calculated the median of 
the fitted Cox distribution for models with A-D, and A-D, plus P. Comparison of predicted vs. 
median actual (uncensored) data are shown in Table 3. 

Since most (84%) of the cases have one of four input patterns (0000,0001,0010 or 0011), it might 
be expected that the NN would train preferentially to fit these combinations, perhaps at the 
expense of the less frequently encountered combinations. In the above table, the predictions are 
compared to the actual mean values, with the exception of the NN prediction which is compared 
to both the mean and median. In theory, the NN should be predicting the mean, but it can be 
seen that its prediction was an underestimate in 9 instances and an overestimate in 5. More 
importantly, for the four most common patterns it underestimated by 12, 24 and 73 days, and was 
1 day over in the remaining pattern. The reason for this tendency to underestimate is not clear, 
but is the subject of current research. Comparison of the NN prediction to the median indicated 
that the prediction tended to exceed the median. 
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The weighted absolute difference was calculated as a measure of the overall accuracy, allowing 
for the different frequency of covariate combinations. Based on this measure, the NN prediction 
was less useful than the Cox median value (based on A-D), but the Cox median based on A-D 
plus the NN prediction (P) was far superior to both. 

Table 3. Comparison of predictive ability 1 For all possible combinations of input variables 

Group Cases Actual values Difference (Predicted - Actual) 

ABCD Risk P N Mean Median NNvs. NNvs. "::?§Q*;:: 
:::"'TÄ:-liiS 

Cox 
7t> Ä TY\ 

0000 Int 0.32 290 99 68 -12 + 19 +6 + 1 

0001 Int 0.32 350 114 76 -24 + 14 -7 -3 

0010 Low 0.11 102 196 116 -73 +7 -41 +4 

0011 High 0.11 100 64 51 + 1 + 14 + 19 -2 

0100 Int 0.04 35 108 97 -19 -8 -8 -23 

0101 Low 0.04 49 183 132 -59 -8 -53 +5 

0110 High 0.01 11 36 14 + 16 +38 +76 +28 

0111 Int 0.01 10 114 67 -66 -19 + 13 -28 

1000 High 0.016 14 46 16 +2 +32 + 16 + 16 

1001 High 0.016 23 42 17 +3 +28 + 10 + 15 

1010 High 0.006 4 51 41 + 10 +20 -9 + 1 

1011 High 0.006 5 40 44 -9 -13 -17 -22 

1100 High 0.002 2 26 9 -20 -3 +29 +6 

1101 High 0.002 4 62 31 0 +31 +3 + 16 

1110 High 0.001 1 29 29 -29 -29 + 10 -15 

mi High 0.001 0 - - - - - - 

Weighted absolute difference (days) 23.8 14.1 14.6 
   " 

Breast cancer dataset 

In preparation for year 2, which will involve analysis of data on breast cancer patients to 
comapre methods and establish a prognostic coding scheme, we have been collaborating with 
investigators at the NSABP data center. Initially this was with Dr Redmond, and after she 
stepped down as principal ststistician, with John Bryant. Dr. Van Tornout visited the NSABP 
data center to discuss the project in detail and learn as much as possible about the datasets that 
they have available. Subsequently we were fortunate that Dr. Bryant was able stop in Los 
Angeles en route to a meeting in San Diego, and we were able to follow up on the earlier 
meeting.  As a result of those meetings it was decided that data from the B15 protocol would 
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be most appropriate for use on this project, at least initially. We expect to have a copy of the 
relevent data before year 2 begins. 

CONCLUSIONS 

The software-development phase of this project has gone smoothly. The tools needed to carry 
out a comprehensive comparison of methods for predicting time-to-relapse (specially NN 
methods) are either in place or will be very shortly. Thus we feel this project is right on 
schedule, and expect to complete the overall goals within the 2 year framework. 
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