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It is apparent that a substantial portion of the air/sea fluxes of heat, moisture, and 
momentum is accomplished via intermittent processes (Khalsa and Greenhut 1985), processes that 
are poorly understood at the present time. Recently, Mahrt (1989) has demonstrated that 
coherent structures in the marine boundary layer (MBL) are responsible for this flux-carrying 
intermittency. These coherent structure types include such secondary circulations as two- 
dimensional rolls (cloud streets), three-dimensional convective cells (thermals), and shear-driven 
eddies (billows) (Brown 1980). These features occur in different atmospheric boundary layer 
thermal stratification and shear regimes; some are forced primarily by thermal, and others by 
dynamic, mechanisms. 

Our ultimate goal is to determine the mechanisms underlying the intermittency in air/sea 
fluxes produced by these coherent structure types. As summarized below, we are using a variety 
of complementary statistical/mathematical approaches to objectively identify the spatial and 
temporal characteristics of these structures. Our data sources include both the high resolution 
output produced by the Perm State version of Moeng's Large-Eddy Simulation (LES) code (e.g. 
Schumann and Moeng 1991) and observations from the MBL ARI experiments performed in 
1994 at Riso National Laboratory in Denmark. 

Scientific Objectives 

Our most immediate scientific objectives are to develop and make operational the 
algorithms needed to perform the requisite statistical/mathematical analyses of the MBL datasets. 
To identify the vertical structure of the coherent structures, we have chosen obliquely rotated 
Principal Component Analysis (PCA; Richman 1986). To capture the contribution of each 
coherent structure type to intermittency, we have chosen the well-known chaos measure of the 
correlation dimension (Grassberger and Procaccia 1983; Wells et al, 1994), the recently 
proposed line-length algorithm of Higuchi (1988), and the capacity dimension (Henderson and 



Wells, 1988). Our initial studies of both idealized and archived datasets have revealed that we 
must properly tailor the PCA and chaos measure algorithms to best capture the coherent structure 
types within the MBL. In the past year, we have thus concentrated on both techniques 
development and data analysis of LES output and MBL observations. 

Approach 

Principal component analysis has been shown to be capable of distinguishing and 
quantitatively describing multivariate structures within the atmosphere (e.g., Richman 1986; 
Preisendorfer 1988; White 1989; Alexander et al. 1993). Using both standard and newly 
developed PCA algorithms, we are studying several LES datasets to see which principal 
components (coherent structure types) are largely independent of the large-scale forcing and 
which vary sensitively with it (Rinker et al, 1995). The velocity and buoyancy profiles of these 
components, together with their regime dependence, are being used to quantify the physical 
processes responsible for forming the different types of coherent structures. These results will 
then be used to identify, for each forcing regime, the primary physical processes and coherent 
structure types that are associated with intermittency. 

In order to fully quantify the intermittency of coherent structure types, it is necessary to 
investigate their temporal behavior as well. In recent years, paradigms of complicated temporal 
behavior have been proposed as the basis for classifying the types of response that may occur in 
turbulent flows such as those found in the MBL (Henderson and Wells 1988). Nonperiodic, 
temporal variation is chaotic if the details of a particular time series can not be simulated beyond a 
few cycles with virtually identical initial conditions, a situation typical of most atmospheric flows. 
Analyses using such chaos measures as the correlation dimension and the Higuchi (1988) 
multiscale algorithm are currently being performed on columns of LES data to simulate MBL 
measurements at a fixed location (Winstead et al, 1995). Both unfiltered LES datasets and 
coherent structure datasets formed by projecting the unfiltered dataset onto the dominant PCA 
vertical modes are being considered. By comparing the chaos measures given by these datasets, 
we will identify the contributions of different types of coherent structures to the intermittency of 
the MBL. The residual datasets (i.e., the signal not captured by the principal components 
corresponding to the various coherent structure types) will be tested against the hypothesis of 
random data, in order to assess the effectiveness of the PCAs in capturing the resolvable 
structures of the flows. The regime dependency of these contributions will be examined using 
multiple LES datasets. 

We are also applying these chaos measures to observations of the boundary layer, such as 
those already completed prior to this ARI (Fosmire et al, 1995) and those being conducted by 
other MBL ARI investigators in the 1994 ARI experiments (RASEX) conducted over Danish 
waters. By performing similar analyses to both modeled and observed cases, we can develop an 
objective basis for determining whether similar mechanisms underlie actual and simulated 
intermittency. 



Tasks Completed 

The originally proposed correlation dimension algorithm of Grassberger and Procaccia 
(1983) is subject to large uncertainties owing to the requirement of estimating slopes from a 
graph. Recently we have extended the alternative correlation dimension algorithm of Takens 
(1985), and submitted to PhysicaDa revised draft (Wells et al, 1994) of our initial report (Wells 
et. al, 1993). Our extended algorithm in principle produces an infinite number of estimates of the 
correlation dimension; as a consequence, the robustness of the estimates from an MBL time series 
can be assessed. We have tested our new algorithm extensively using ad hoc cases to determine 
the sensitivity of the results to noise or undersampling and to a phenomenon known as lacunarity 
(Theiler 1988). Application of this algorithm to a several-week boundary layer time series has 
been summarized in Fosmire et al. (1995). Finally, graduate student Laura Suciu has begun work 
on extending in a similar way the capacity dimension algorithm of Henderson and Wells (1988). 

The multiscale algorithm proposed by Higuchi (1988) was coded and tested by Harry 
Henderson, both on time series of known properties and on several archived datasets. The results 
indicated that there were benefits to be obtained from the approach that went beyond those 
discussed in the original paper (Henderson and Thomson 1994). The algorithm has been applied 
to LES time series by AASERT student Nathaniel Winstead, and preliminary discussion of the 
coherent structure identified in this preliminary analysis is given in Winstead et al. (1995). 

Three graduate students (AASERT students Don Rinker, Joe Rohrbach and Todd Sikora) 
under the guidance of George Young have become familiar with the obliquely rotated PCA 
algorithm through extensive testing using a wide range of datasets. Application of this algorithm 
to snapshots of LES data is being performed by Don Rinker, with preliminary results reported in 
Rinker et al. (1995). Finally, George Young during the initial months of his sabbatical at Ris0 
National Laboratory in Roskilde, Denmark has extended the standard PCA algorithms described 
in Richman (1986) by considering alternative rotation techniques; these techniques are able to 
capture a coherent structure type that might require combination of several principal components. 

Results/Conclusions 

Our investigations using idealized chaotic cases have demonstrated that we can identify 
the signatures of noise contamination or undersampling and lacunarity in the results by calculating 
a large number of independent estimates of the correlation dimension with our new method (Wells 
et al, 1994). As a result, we can determine which estimate of the dimension is the most likely to 
best approximate the correlation dimension. This algorithm, which has proved to be quite 
successful when applied to the Henon (1976) and Lorenz (1963) attractors, is now ready to be 
applied to MBL datasets. For example, Fosmire et al. (1995) has demonstrated that more robust 
correlation dimension estimates are produced when the time series for horizontal kinetic energy is 
used rather than a series for an individual wind component; in the sense of Lorenz (1991), the 
horizontal kinetic energy seems to be more closely coupled to the underlying dynamics than is any 
one of the wind components. 



The multiscale Higuchi algorithm has been checked for accuracy, and it was determined 
that three-digit accuracy for the dimension was obtainable using relatively small datasets of length 
typical for the MBL (Henderson and Thomson 1994). It was also found that the approach was a 
sensitive indicator of imposed periodic signals, and that it was able to detect such signals even 
when the signal-to-noise ratio was as low as 1 to 1000. Analysis of aircraft-measured and LES 
data sets revealed similar results over the range of validity of the data. The most significant result 
is that the multiscale information from the algorithm offers an alternative method to the 
measurement of power spectra, and so provides a method to verify the detection and separation of 
coherent structures from a noisy signal via the PCA approach. 

The application of the PCA algorithm to idealized data tests has shown that the method is 
able to distinguish multiple coherent structure types under several realistic conditions. These tests 
provide proof that PCA can yield valid results without having an a priori conceptual model, as 
required of previous (conditional sampling) methods. Preliminary analysis of multivariate profiles 
from LES data sets reveals that mixed-layer convection can be separated from gravity waves of 
the free atmosphere (Rinker et al. 1995). Further work is needed to document the ability of PCA 
to identify the structures produced by LES. 

Impact for Science 

The observational and modeling studies currently underway will lead to improved 
understanding of the flux intermittency commonly observed in the MBL. This will help advance 
our overall understanding of processes that affect the state of the sea surface. 

Relationships to Other Programs or Projects 

Our work using LES data is made possible through our close collaboration with our 
colleague John Wyngaard, who is also supported by the MBL ARI. The work being performed 
by us on this ARI project is closely related to our work being performed on our HI-RES project 
to determine the stress variability at the sea surface caused by the boundary layer coherent 
structure types of two-dimensional rolls and three-dimensional cells. As this stress variability is 
produced by intermittent vertical momentum transports by these coherent structures, better 
understanding of the sea surface stress patterns requires a better understanding of the actual 
momentum transports by these structures. Finally, the development of the improved correlation 
dimension algorithm of Wells et al. (1994) for estimating the correlation dimension was begun 
under our HI-RES project and then completed under our MBL project. 

Transitions Accomplished or Expected 

Improved understanding of air/sea flux intermittency will lead to improved means for 
interpreting sea surface roughness patterns on SAR imagery. This improvement will become 
possible as we obtain an improved understanding in this ARI project of the vertical momentum 
transports by the various coherent structure types. 
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