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Abstract 

This dissertation develops a new wavelet design technique that produces a wavelet that matches a desired 

signal in the least squares sense. The Wavelet Transform has become very popular in signal and image 

processing over the last 6 years because it is a linear transform with an infinite number of possible basis 

functions that provides localization in both time (space) and frequency (spatial frequency). 

The Wavelet Transform is very similar to the matched filter problem, where the wavelet acts as a zero 

mean matched filter. In pattern recognition applications where the output of the Wavelet Transform is 

to be maximized, it is necessary to use wavelets that are specifically matched to the signal of interest. 

Most current wavelet design techniques, however, do not design the wavelet directly, but rather, build a 

composite wavelet from a library of previously designed wavelets, modify the bases in an existing mul- 

tiresolution analysis or design a multiresolution analysis that is generated by a scaling function which 

has a specific corresponding wavelet. In this dissertation, an algorithm for finding both symmetric and 

asymmetric matched wavelets is developed. It will be shown that under certain conditions, the matched 

wavelets generate an orthonormal basis of the Hilbert space containing all finite energy signals. The 

matched orthonormal wavelets give rise to a pair of Quadrature Mirror Filters (QMF) that can be used 

in the fast Discrete Wavelet Transform. It will also be shown that as the conditions are relaxed, the 

algorithm produces dyadic wavelets which when used in the Wavelet Transform provides significant re- 

dundancy in the transform domain. 

Finally, this dissertation develops a shift, scale and rotation invariant technique for detecting an 

object in an image using the Wavelet Radon Transform (WRT) and matched wavelets. The detection 

algorithm consists of two levels. The first level detects the location, rotation and scale of the object, 

while the second level detects the fine details in the object. Each step of the wavelet matching algorithm 

and the object detection algorithm is demonstrated with specific examples. 
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Chapter 1 

Introduction 

For many years, the primary linear mathematical analysis tool used to transform signal information was 

the Fourier Transform. However, the end of the 1980's saw the development of an alternative mathe- 

matical framework, called the wavelet transform, with applications in signal and image analysis [30]. 

While much of the theory associated with it is not new and can be described in a Hilbert space setting, 

it did provide a consolidated framework for a number of previously diverse disciplines, like multireso- 

lution analysis used in computer vision, subband coding developed for speech and image compression, 

and orthonormal basis expansions developed in applied mathematics [30]. 

The Fourier Transform of a signal, f(x), given by 

/oo 
f{x)e~^xdx, (1.1) 

-oo 

is a projection operation onto the basis formed by dilating the complex exponential, eix. The Wavelet 

Transform, given by 

/oo i     /x — b\ 
f{x)\a\   2^,f —_ Ux, (1.2) 

is a projection operation onto the basis formed by dilating and shifting a "mother" wavelet, ip(x), which 

is zero mean and decays very rapidly in x. These properties of the wavelet provide an advantage over 

Fourier analysis because the Wavelet Transform can achieve localization in both time and frequency or 

in the case of images, space and spatial frequency [10]. That is to say that the Wavelet Transform can 

provide information about the frequency content of a particular group of pixels. Another advantage of 



wavelet analysis over Fourier analysis is the flexibility in the transform operator used for decomposition 

or signal representation. Fourier methods are locked into bases that are based on the complex exponential 

kernel, elx. Wavelet transforms can have many different operators. They may or may not be orthogonal, 

and they may or may not form bases. Even in the case of orthonormal bases, there are still infinitely many 

wavelets that satisfy the appropriate conditions. Because of this flexibility, it is possible, and wise, to 

choose or design a wavelet that is matched to the application. 

Many wavelet design techiques have been developed since the early theoretical work of the wavelet 

pioneers. However, most of the techniques do not directly match a wavelet to a signal of interest. Many 

build adaptive wavelets from existing wavelets and their effectiveness is dependent on the effectiveness 

of the existing wavelets used. Others impose requirements on the wavelets to ensure some degree of 

smoothness or differentiability, which guarantees the wavelet to exhibit certain properties, but does not 

guarantee anything with regards to its shape. 

Using adaptive wavelets for image pattern recognition is very attractive because of the scale (or 

zoom) insensitivity of the wavelet transform. For instance, if a wavelet can be constructed that matches 

a pattern of interest in an image, then the peak of the wavelet transform (or lack thereof) will indicate 

whether the pattern is present (or not) and due to the localization properties of the wavelet, where the 

pattern is located. Applying the Continous Wavelet Transform (CWT) to the image would be too data 

intensive because of the redundancy contained in the CWT. The 2-D Discrete Wavelet transform is much 

faster because it processes the projection coefficients only. However, it is not shift or rotation invariant, 

making its application to pattern recognition of limited use. 

These two problems, wavelet matching and application to pattern recognition are addressed in this 

dissertation. First, a wavelet design algorithm is developed that takes any 1-D signal as input and finds 

the wavelet that comes closest to it in the least squares sense. The algorithm assumes that the wavelet 

is bandlimited. The bandlimit conditions can be set such that the resultant wavelet is an orthonormal 

basis of the function space Z,2(K), or they can be relaxed or widened, so that the algorithm generates 

a "dyadic" wavelet. Second, a target detection and identification algorithm is developed based on the 

Radon Transform, and the Continuous Wavelet Transform using matched wavelets. The target detec- 



tion algorithm is shift, scale and rotation invariant. The Radon Transform is used to reduce the data 

burden on the CWT and to provide some degree of rotation invariance. Using matched wavelets in the 

CWT provides scale and shift invariance as well as optimal amplitude detection. The matched wavelet 

algorithm in conjunction with the target detection algorithm provide a thorough framework from which 

more detailed target classification algorithms could be developed. 

This dissertation provides an in-depth review of wavelet theory, first in Chapter 2 with a short review 

of Hubert spaces and a comparison between Fourier and Wavelet analysis. Chapter 3 provides an histor- 

ical chronology of the development of wavelet theory from the Continuous Wavelet Transform of Morlet 

and Grossman to multiresolution analyses and the Discrete Wavelet Transform of Mallat. Several current 

wavelet design techniques are presented in Chapter 4 as motivation for the matching algorithm devel- 

oped in Chapter 5. Chapter 6 gives several examples of the wavelet matching algorithm to demonstrate 

its performance and to assist anyone trying to implement the algorithm themselves. After a summary 

of the Radon Transform and image reconstruction using backprojection, Chapter 7 provides the step by 

step development of the target detection and identification algorithm taking advantage of the matched 

wavelet algorithm of Chapter 5. Chapter 8 provides a summary of the research results contained in this 

dissertation, and the Appendix contains proofs to many of the theorems. 



Chapter 2 

Background 

This chapter contains brief background material that will be helpful in understanding the development 

of wavelet analysis. The first section contains definitions of terms used throughout the dissertation, and 

an introduction to Hubert spaces, the projection theorem and its application to signal representations 

in Hilbert spaces. The Fourier series is shown to be a direct application of the projection theorem on 

the Hilbert space of all periodic, finite energy signals. The limitations of Fourier analysis on real world 

signals are indentified followed by the introduction of the Short Time Fourier Transform (STFT). The 

last section introduces wavelet analysis as a recent solution to the limitations of Fourier analysis and the 

STFT. More detailed development of wavelet theory will be provided in Chapter 3. 

2.1   Hilbert Spaces 

The Hilbert space is a complete, linear vector space with a norm || • || and an inner product (•, •) defined 

[22]. There are two Hilbert spaces used in wavelet analysis, L2(JR), and, 12{Z), where *R is the set of 

all real numbers and ZU is the set of all integers. 

Definition 1 The Hilbert space L2(K) consists of complex-valued, measurable functions, x(t), on the 

real line, SR, where 
/oo 

\x(t)\2dt < oo (2.1) 
-00 



and the integral is the Lebesque integral. The norm ofx G L2(K) is defined as 

Nl=(/jx(*)|2dt)5. (2.2) 

The inner product ofx,y£ L2(3?) is defined as 

/oo   
x(t)y(t)dt (2.3) 

-00 

where y{t) is the complex conjugate ofy(t). 

Definition 2 The  Hilbert space  l2(Z)   consists  of all  complex  valued sequences  of scalars 

x = {■■■ ,V-l,Vo,Vi, ■■■} for which 
00 

£   h\2 < oo (2.4) 
i=—oo 

for all i G Z, the integer number line. The norm ofx is defined as 

N = (  £   hA 2 • (2.5) 
\i=—oo j 

The inner product ofx = {..., r/_!, %, m,...} and y = {..., i/_x, i^, uu...} is defined as 

00 

E  W- (2.6) 
i=—oo 

A set of vectors in a Hilbert space, xt G H, is said to be orthonormal if xt L Xj for i ^ ;' for all x{ e H 

and if each vector has unit norm, that is, 

\Xi, Xj) — < 
1   for i = j 

(2.7) 
0   for i ^ j 

The projection theorem is a fundamental theorem used in vector space analysis and is used to formulate 

the mathematics of both Fourier and wavelet decompositions for functions in Hilbert spaces. 

Theorem 1 Projection Theorem Let H be a Hilbert space and M a closed subspace of H. Corre- 

sponding to any vector x G H, there is a unique vector m0 G M such that \\x - m0|| < ||x - m\\ for 

all m G M. Furthermore, a necessary and sufficient condition that m0 G M be the unique minimizing 

vector is that x - m0 be orthogonal to M [22]. 



The Projection Theorem states that if we want to construct a vector m0 G M, a subspace of H, then we 

can do so uniquely. Furthermore, the vector that best approximates x will be the one that minimizes the 

norm of the error vector, ||a: —m0||, and the error vector, x-m0, will be orthogonal to the approximation 

subspace, M (Figure 2.1) [22]. 

Suppose we want to construct an approximation of a: e H from a set of vectors?/ = {yi,y2,... ,yn} e 

M, where M is a closed subspace of H and y is a basis of M. Then, the approximation, or projection 

Figure 2.1: Orthonormal projection 

of x onto M is a linear combination of y^ 

(PM£) = X] aiVi (2.8) 
i=i 

where PM is the projection operator onto the subspace M [22]. From the Projection Theorem, the best 

approximation of x will be the one that minimizes \\x - PMx\\ and x - PMx will be orthogonal to all 

elements of y, that is, 

(x - PMx, yt) = 0. (2.9) 



Substituting (2.8) into (2.9) gives 
n 

(x-Y,ajyj'yi) = °- (2-I0> 
3=1 

Since the Hilbert space is linear and the inner product is a linear operator, (2.10) can be rewritten as 

n 

(x,yi) = J2a3(y3iyi)- (2-H) 
3=1 

If y € M is an orthonormal basis of M, then (yuyj) = 0 for i ^ j and ||j/j|| = 1. Equation (2.11) 

reduces to 

(x,yi) = ati (2.12) 

making (2.8) 
n 

(PMx) = ^(x,yi)yj. (2.13) 
i=l 

Equation (2.13) gives the expression for the projection of the vector x onto an orthonormal basis y of 

M [22]. 

2.2    Fourier Analysis 

Signal and image analysis has long benefited from Fourier analysis, where the set of functions, e
i2lxkxlT, 

forms an orthonormal basis of L2(0, T), the Hilbert space consisting of all square integrable functions 

defined on the interval [0,T]. All periodic functions, with period T, also reside in L2(0,T), since they 

can be completely described by one period on the interval [0,T]. Since L2(0,T) is a Hilbert space, it 

has an inner product and a norm [10] defined as 

if,9) = jij   f(x)gJx)dx (2.14) 

i 

11/11 = </>/>= (r/ l/(*)l2<fc)    ■ (2-15) 

Since e*27rfcx/r is an orthonormal basis of L2(0,T), f(x) e L2(0,T) can be represented using (2.13) 

and (2.12), 
oo 

: 27rfcz 
/(x) =   5Z   cke

{ rx (2.16) 
fc= —00 



Ck = (f(x),el  T  ) = - I    f(x)e-l—dx. (2.17) 

The function, /, is decomposed into the sum of infinitely many mutually orthogonal components, 

gk(x) = cke
l2lxkxlT, where orthogonality means: 

(9n,9m)=0,   for all m ^ n. (2.18) 

That (2.18) holds is a consequence of the fact that: 

wk(x)=ei2^T       k = {...,-1,0,1,...} (2.19) 

is an orthonormal basis of L2(0, T) [10]. It is important to note further that the orthonormal basis, wk, 

is formed by dilating (known as integral dilation) a single function, ei2nx. Chui [10] emphasizes the 

significance of these facts in the introduction to his book: 

Let us summarize this remarkable fact by saying that every 2ir-periodic square integrable 

function is generated by a "superposition " of integral dilations of the basic function w(x) = 

eix. 

Chui develops his section on Fourier analysis assuming a period of 2ir, thereby giving rise to his mention 

of 27T-periodic functions and the basic function eix. 

The decomposition in (2.16) and (2.17) is known as the Fourier series expansion of /(a;)[17]. The 

basis, el2lxkx/T, is a complex exponential with fundamental frequency, £0 = 1/T. Integer multiples of 

the fundamental frequency are called harmonics. So, a periodic function of period T, can be perfectly 

represented by the sum of a complex exponential at a fundamental frequency and its harmonics. The 

weights of these complex exponential components, ck, constitute the frequency spectrum off. It is often 

called the line spectrum because it is discrete. 

Square integrable, non-periodic, functions whose domain is the real number line, % constitute the 

Hilbert space, -L2(K), with its inner product and norm defined as: 

/oo   
f{x)g{x)dx (2.20) 

-oo 

f 
J — t 

\f(x)\2dx (2.21) 



The Fourier series of f(x) G L2(K) does not exist since / is non-periodic and its domain is the entire 

real line, 5R. The frequency spectrum of / can still be determined by taking its inner product with the 

function, e
l2n^x, where f is the continuous frequency variable[17]. Letting w = 27r£ gives 

/oo 
f(x)e-^dx. (2.22) 

-oo 

F(w) is the Fourier Transform of f(x) and is at least piecewise continuous[17]. The Fourier Transform 

can be interpreted in a manner similar to the Fourier series. A non-periodic, square integrable function, 

f(x) £ L2($ft) can be represented by the integral sum of complex exponentials with weights given by 

the frequency spectrum, F(LJ), 

f(x) = ^J^F(u)e^dcj. (2.23) 

The Fourier Series and Fourier Transform are powerful tools for determining the frequency content 

of discrete and continuous signals. However, in order to study the spectral behavior of analog signals 

from its Fourier Transform, full knowledge of the signal in the time or space domain must be obtained[l 0]. 

In addition, if a signal is altered in a small neighborhood of some time instant, then the entire spectrum 

is affected. If a signal of some frequency exists for a finite period of time, the Fourier Transform does 

not give visibility into where in time the signal occurred. Being able to determine where in time a sig- 

nal of some frequency occurs is called time localization. Being able to determine the frequency content 

of a signal at a particular frequency is called frequency localization. The Fourier Transform provides 

excellent frequency localization, but poor time localization [10]. 

In order to obtain localization in both time and frequency, an additional parameter must be added. 

Gabor [16] was the first to adapt Fourier analysis to include a modulation window, g(x) [30]. Gabor's 

Short-Time Fourier Transform (STFT) [30], S(r, w), is given as 

/oo   
f(x)g{x - T)e-iuJdx. (2.24) 

-00 

The signal is weighted by a finite duration window, g(x), prior to taking the Fourier Transform (Figure 

2.2). The additional parameter, r, is the translation parameter of the window and it provides the addi- 

tional dimension needed to obtain localization in both time and frequency. If a frequency pulse or burst 



S(T,CO; 

f(x)g(x-x) 

Figure 2.2: Short-Time Fourier Transform 
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is present in the signal for a finite duration, it will show up in S{T, UJ) at values of r corresponding to 

the location of the frequency pulse. The function, S{T, U), provides a two dimensional map of time and 

frequency (Figure 2.3) [30]. By fixing frequency at some value, u0, S(T, W0) gives a 1-D function indi- 

At 

n 

Aco 

Figure 2.3: Time-frequency map - Short Time Fourier Transform 

eating where in time u0 existed. Alternatively, by fixing r = r0, S{T0, U) gives the Fourier Transform 

for that time slice of /. The resolution in both time and frequency depend on the window function g(t). 

Time and frequency resolutions are traded off according to the uncertainty principle [10, 30] 

Time-bandwidth product = At Aw > - 

where At and Au are the rms measures of time width and bandwidth given by 

A* 
{fSoix-EjgmgWfdx} 

IMI 

Aw 
_{fZ0(u-E(G))\G(u;)\2duJ} 

\\G\\ 
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(2.25) 

(2.26) 

(2.27) 



(7(0;) is the Fourier Transform of g(x) and the operator, E(-) is given as 

E(f) = 
S--Xlf,[fiX. (2.28, 

For this reason, a gaussian window is often used since it satisfies the equality of (2.25) [30]. However, 

modulating the signal with a gaussian window correlates the Fourier coefficients and therefore destroys 

orthonormality. Furthermore, the window function, g(x), with its corresponding frequency spectrum, 

G{UJ), sets both the time and frequency resolutions for the entire time-frequency plane. This is a disad- 

vantage for analyzing signals with both high and low frequencies [10]. In order to properly represent a 

signal of some fundamental frequency, the window must contain one or more periods of that signal. Low 

frequency signals, therefore, require long time windows, which corresponds to high resolution in the fre- 

quency domain. High frequency signals require a small time window in order to capture one or more 

periods. The small time window corresponds to low resolution in the frequency domain. The STFT's 

window widths are fixed in both time and frequency, as illustrated in Figure 2.3, and therefore, cannot 

effectively analyze signals containing both high and low frequencies [10]. 

The obvious solution to Gabor's Short-Time Fourier Transform is an orthonormal basis of L2(K) 

that provides both time and frequency localization for signals with high and low frequencies. Wavelet 

analysis provides just such a solution. 

2.3   Wavelet Analysis 

The "basic wavelet" or "mother wavelet" is a function, ip{x) e L2(3J), whose Fourier transform, *(u;), 

satisfies the admissibility condition [10, 12, 14, 23, 27]: 

l*HI2 

Since ^{x) e L2(K), then 

CV = / |   |    du < oo. (2.29) 
■/-oo       M 

/oo 

U{x)fdx<K> (2.30) 
-00 
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must be true, which means that ip(x) must have, effectively, finite support. Assuming *(CJ) is continu- 

ous, (2.29) and (2.30) imply 

tf(0) = 0,        ^ /     1>(x)dx = 0. (2.31) 
J—oo 

This is the reason that ip is called a "wavelet" [10]. In order for ip to have an average of 0 (2.31), it must 

be wave-like in nature. In order for it to be in L2(R), it must be effectively finite or of short duration as 

in (2.30), hence the term "small wave" or "wavelet." Equation (2.31) also indicates that ip(x) has the 

characteristics of a bandpass filter. 

If we let 

ipa,b = \a\   2^( ), (2.32) 
u 

then the continuous wavelet transform (CWT) [10, 12, 30] is defined as 

l    f°° T — h 
Wf(a,b) = (f,^a,b) = \a\-2 /     f(x)1>(?—l)dx (2.33) 

where f(x) e £2(R), a; b e R, and a / 0. The parameters, a and b, are the scale and shift parameters, 

respectively, and they provide localization in both the time and frequency domains. The parameter b 

centers the wavelet at t = b and a scales the wavelet function, ip, on the x-axis. The CWT is analogous 

to the Fourier Transform where frequency has been replaced by scale, since a gives insight into the fre- 

quency content of a passband, not a single frequency. The bandwidth of the passband changes with a 

[10, 30] such that 

Aw 
 = K. (2.34) 

This characteristic is common in communication theory and is called "constant Q" (Figure 2.4) [10, 30]. 

Now, the windowing function is effectively the support of the wavelet, i/>, which changes with a. It is 

not fixed as in the case of the STFT, and can therefore provide both time and frequency localization of 

a signal containing both high and low frequencies. 
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Aa 

-   Ab. 

Figure 2.4: Time-scale map - Wavelet Transform 
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Chapter 3 

Wavelet Theory Development 

In this chapter, the history of the development of wavelet theory will be presented from the original work 

of Morlet and Grossman through the algorithm development of Stephane Mallat. The development of 

wavelet theory was motivated by the need to analyze a finite energy signal with a single, finite energy 

function, called a wavelet, dilated and shifted by real parameters. It was shown that the condition on the 

analyzing function was simple and easily met. As the constraints on the dilation and shift parameters 

tightened, for instance, confinement to *Z, the conditions on the analyzing function also increased. It 

was shown by Meyer that if the dilation parameter values were constrained to be powers of 2 and the 

shift parameter values to be integer multiples of powers of 2, then a wavelet could be found such that 

its shifts and dilates formed an orthonormal basis of L2(5ft). This chapter goes through in chronological 

order the development of each "class" of wavelet and the conditions associated with each, culminating 

with orthonormal bases and multiresolution analyses. 

3.1    Continuous Wavelet Transform 

J. Morlet, a French geophysicist, first proposed the use of "wavelets of constant shape" for analyzing 

seismic data. His reference to constant shape was intended to contrast these new functions with the 

Short Time Fourier Transform (STFT), which are not of constant shape [14]. A. Grossman, a French 

theoretical physicist, showed that Morlet's function, dilated and shifted by real parameters, generated 
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a square integrable representation of functions in L2(lk) and this representation was referred to as the 

wavelet transform [14, 30]. The wavelet transform is defined as follows: 

Definition 3 (Continuous Wavelet Transform) [10] Ifiß e L2(3?) satisfies the "admissibility" con- 

dition: , 

ci> = / .   ■    du, < oo, (3.1) 
J—oo       |w| 

where ^(w) is the Fourier transform qfip, then ip is called a "basic wavelet". Relative to every basic 

wavelet tp, the continuous wavelet transform (CWT) on L2(Ht) is defined by 

Wf(a,b)    =   </,W>) 

for f eL2 (3?), anda,b€$l with a / 0. 

The wavelet operator, 

^a,b{x) = H_3^ (^—j , (33) 

is a dilated and shifted version of a single function, ip(x), sometimes referred to as the mother wavelet, 

and it maps a one dimensional signal into a two dimensional analysis domain, that is, scale, a, and shift, 

b. This mapping provides visibility into the frequency content of a signal through the scale parameter, 

a, and time localization through the shift parameter, b, a significant advantage over standard Fourier 

analysis. Figure 3.1 shows the effect of the dilation and shift parameters, a and b on the wavelet operator. 

The wavelet shown, used by Morlet andGrossman, is a cosine function modulated by a gaussian window. 

Notice that as a increases, the wavelet gets wider and shorter in height and when a decreases, the wavelet 

gets thinner and taller. This effect provides a zoom-in, zoom-out capability in the frequency domain. 

The bandwidth of the wavelet for small a is large and the bandwidth for large a is small. Of course, 

changes in b shift the wavelet up and down the z-axis giving full two dimensional latitude in both time 

and frequency. The admissibility condition (3.1) on ip implies 

*(0)=0 <£» /     i{,(x)dx = 0. 
J—oo 

(3.4) 

16 



a=2 
b=-2 

a=0.5 
b=1 

a=0.25 
b=3 

Figure 3.1: The Gabor or Morlet wavelet 

Therefore, V has an average value of 0, acts like a highpass or bandpass filter and hence must oscillate. 

The fact that ip e L2(U) means that ij; has finite energy and therefore must fall off fairly rapidly. These 

two features are what motivated Morlet and Grossman to refer to these functions as "wavelets" or short 

waves. 

The admissibility condition (3.1) was not specifically derived with these features in mind. Rather, 

the admissibility condition is necessary for the inverse transform to exist and for the inverse wavelet 

operator itself to be a shifted and dilated version of a mother wavelet, referred to as the dual of ip. 

Theorem 2 (Inverse Wavelet TVansform) [10] Let ip be a basic wavelet which defines a CWT, Wf. 

Then 

dadb !      ,oo    yoo dadb 

W; J-ooJ-oo a1 (3.5) 

D 

Kaiser [19] provides a very understandable derivation of both the Inverse Wavelet Transform and the 

admissibility condition that is worth including here, since it will be used later to determine the conditions 
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for dyadic wavelets and frames. Using Parseval's theorem, (3.2) can be rewritten as 

Wf(a,b) = </,^,6> = (F,*afi) (3.6) 

where F(£) is the Fourier Transform of f(x) and tf 0)6(f) is the Fourier Transform of ipa,b{x), given as 

Va,b(0 = \a\>e-i2^(aO (3.7) 

where $(£) is the Fourier Transform of ip(x). Expanding the inner product of (3.6) gives 

fOO  :  

Wf{a,b)    =    /     F(Z)\a\2*(aZ)e-a*&dt 
J—oo -oo 

(•00 

=    W5 /     i^)*«)el27r^ (3.8) 
J—OO 

The right side of (3.8) is the Inverse Fourier Transform of F(£)tf(a£), so taking the Fourier Transform 

of both sides with respect to b gives 

/oo   

Wf(a,b)e-^bdb = \a\2F(0*(at) (3.9) 
-OO 

Kaiser uses some clever manipulation to isolate F(() in (3.9). He multiplies both sides by \a\ 2 *«) 

and integrates with respect to a where the measure of integration is da/\a\2. 

r  T Wf(a,b)\aMat)e-**tb¥§   =    f° F(fl|¥(afl|2£ 
J-00J-00 \a\2 y-oo    vs"      s/l  |0| 

l*K)l2n -00 \a\ 

=   F(OZ(t) (3.10) 

where 

/°° fin 

l*K)l2n- (3.11) 
-00 \a\ 

Choosing da/\a\2 as the measure associated with the integral in (3.10) guarantees that the admissibility 

condition is a constant and therefore guarantees that the dual can be represented as a shifted and dilated 

version of a mother wavelet [19]. Now F(£) in (3.10) can be solved if and only if 0 < A < Z~l{€) < 

B < 00, 

nO = Z-\Q f°° r Wf(a,b)\a\^(aOe-i2^b^. (3.12) 
Jo    J—oo \a\z 



Substituting u = a£ in (3.11) gives the admissibility condition, which is a constant and therefore bounded, 

Z(£) = CV= /°°i*M£du; (3.13) 

Substituting Z(£) = C^ in (3.12) and taking the Inverse Fourier Transform of both sides with respect 

to £ gives 

'x — b\ dadb !    ,oo   /■«> i    fx-b\dac 

t-'V J-ooJ-oo \   a   J   \a\z 

which is the form of the Inverse Wavelet Transform given in Theorem 2. 

(3.14) 

Figure 3.2 shows an example of a continuous wavelet transform. The signal being analyzed is a tran- 

sient sinusoid with exponentially decaying amplitude. The analyzing wavelet is Morlet's wavelet from 

Figure 3.1. The horizontal axis is shift, b, and the vertical axis is scale, a with a increasing downward. 

Figure 3.2: Continuous Wavelet Transform of a transient signal 

The transient signal has an average value of 0, so for large values of a, the CWT vanishes since a very 

wide wavelet tends to average over the transient signal. The CWT also vanishes for very small values of 

a since the signal appears constant over a very short interval. There is a value of a, however, that coin- 

cides very nicely with the oscillation of the transient signal, thereby producing a very large response in 

the CWT, which can be seen in Figure 3.2. The time localization feature of the CWT, provided through 
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the shift parameter, b, gives the approximate location of the transient signal. 

The continuous wavelet transform, characterized by a, b e 0?, where a ^ 0, is rather simple to use 

and requires very few restrictions on the analyzing wavelet. However, it contains a lot of redundancy and 

is computationally intensive. Notice in Figure 3.2 the high degree of correlation in the CWT. This cor- 

relation is due to the redundancy and can be removed by less redundant representations. The following 

sections will show the development of different classes of wavelets with lesser degrees of redundancy 

as a and b are further constrained. While these constraints add conditions on the wavelets, they lead to 

the generation of bases, new design techniques, and fast algorithms for the wavelet transform. 

3.2   Dyadic Wavelets 

In order to reduce the computational burden of the CWT, let the scale parameter take on values of a = V 

where j € Z and b € 3?. The wavelet transform becomes 

Wf(2i,b)    =    (f^j,) 

=    /     f{x) 2   2i/>{2->x-b2->)dx (3.15) 
J — 00 

This class of wavelets is known as "dyadic" wavelets and are defined as follows: 

Definition 4 (Dyadic Wavelets) 110] A function $ e L2(K) is called a dyadic wavelet if there exist 

two positive constants A and B, with 0 < A < B < oo, such that 

A<   J2   K2~V)|   ^B- (3.16) 
i=-oo 

Condition (3.16) is known as the stability condition and again is driven by the necessity for an inverse 

transform. Since (3.15) has the same form as the CWT, but with a = 2i>, then (3.11) must still hold 

where a = 2K Substituting Aa = 2^+1 - V = V for da gives da/a = 1. Summing over j gives 

Z(£) = £|*(2V)|2 (3.17) 
jez 

As before, Z(£) must be bounded, which leads to the stability condition 

|2 
0<4< £|tf (#'£)|   <5<oo. (3.18) 

jez 
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Notice this time that Z(£) must not necessarily be a constant. However, since it is bounded, the Inverse 

Wavelet Transform can be found by substituting a = 2j and Aa = 2j into (3.12) and summing over j 

instead of integrating over a, 

F^   =    E H Z^^W^^^i^Oe-^^- 

=    £ f° 2-iWf(V,b)2i*(n)e-i2*tb% (3.19) 
jeZJ-oo V 

where tt(f) = tf (£)/Z(£) and Z(£) is given in (3.17). Taking the Inverse Fourier Transform of both 

sides of (3.19) gives the expression for the Inverse Wavelet Transform using dyadic wavelets, 

/(*) = E r 2-'W,6)2-^ (^±) db (3.20) 

where ^(z) is the Inverse Fourier Transform of #(£) and is the dual wavelet to t/;(x). 

3.3    Frames 

The next step in reducing the computational burden of the CWT is to sample the shift parameter, letting 

bjik = k2jb0, where b0 is a constant known as the sampling rate [10]. Now the wavelet operator is given 

as 

^b0;j,k{x) = 2~^{2-jx - kb0) (3.21) 

and the wavelet transform given by 

Wf(aj,bjJe) = (f,^.^) (3.22) 

The condition on the wavelet also tightens beyond the stability condition, namely, 

^ll/H2<   E  K/^o;;,*>|2<5||/||2 (3.23) 
jfcz- 

where || • ||2 is the L2(K) norm and 0 < A < B < oo. This condition is identical to that for a frame of 

L2 (3?), meaning that in order for ^ to be a wavelet with the stated conditions on a and b, it must generate 

a frame of L2(3?) [10]. 
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Definition 5 (Frames of L2(U)) [10] A function ij> e L2(SR) is said to generate a frame {V'bou.fc} of 

L2{<&) with sampling rate b0 > 0 if (3.23) holds for some positive constants A and B, which are called 

frame bounds. IfA-B, then the frame is called a tight frame. 

Before giving the expression for the inverse transform, let T be a linear operator on L2(*R), defined by 

Tf =   Yl (f^b0;j,k)i>b0;j,k (3.24) 
j,kez 

where / e L2(JR). Then the dual of ^k is given by ^ = T~^bo.j:k and the inverse wavelet 

transform by 

/(*)=   E(/'^o;^K°fc (3.25) 
jfcz 

If A = B = 1, then ^6oy- fc is an orthonormal basis of L2(§?). If A = B ^ 1, then the frame is called 

a tight frame, which acts like an orthonormal basis, but may not even be linearly independent [12]. The 

intent of discretizing both the scale and shift parameters is to reduce the redundancy of the wavelet trans- 

form. Frames provide an intermediate step between the continuous wavelet transform, which contains 

the maximum amount of redundancy, and wavelet orthonormal bases, which generate decompositions 

with no redundancy. The ratio of the frame bounds, B/A, acts like a redundancy indicator. For instance, 

in speech processing, B/A is very large indicating a lot of redundancy in the wavelet transform and in 

fact approximates the continuous wavelet transform [12]. At the other extreme, applications like image 

compression, requiring no redundancy, constrain the wavelets so that they generate a tight frame, that 

is, B/A = 1. 

A. Grossman with the help of Y. Meyer first realized the importance of the frame concept with re- 

gards to wavelet analysis. Meyer showed how the wavelet frame construction was the same as that of 

the Weyl-Heisenberg coherent states. However, for the W-H coherent states, if a basis, g, was required 

(no redundancy) as opposed to a frame, then either xg{x) or uG(u) was not square integrable (not in 

L2(5R))[12]. Meyer set out to show that Grossman's wavelet frames were subject to the same limitation, 

but instead discovered a bandlimited, orthonormal wavelet basis such that x^{x) and w$(w) were both 

m L (SR) [13]. This discovery led many of the wavelet pioneers toward developing the mathematics for 

orthonormal wavelet bases. 
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3.4    Orthonormal Wavelets 

Y. Meyer showed that for a = 2? and b = kV (assume b0 = 1), there exists a family of functions, 

tyjjk = 2-J/2rp(2-Jx - k)} that form an orthonormal basis of L2(5R). Chui and Mallat define an or- 

thonormal wavelet basis as follows. 

Definition 6 (Orthonormal Wavelet Bases) [10, 23, 27] A function ^ € L2(5R) is called an orthonor- 

mal wavelet if the family {ipjjk}, is an orthonormal basis o/L2(SR), that is, 

fe,*,m)=^,c4,m                                                                 (3.26) 

where 

Sj,k = < 
1   forj = k 

(3.27) 
k 0   j ^ * 

and every f € L2(!ft) can be written as 

00          oo 

/(*)=   E    E  <VklH{2jx-k)                                      (3.28) 
j=—oo k=—oo 

Equation (3.26) indicates that the family of wavelets, ^)fc is orthogonal in two dimensions. Integer 

translates of the wavelet at a given scale are orthogonal to one another (6ktm) as are wavelets at two 

different scales (öjß. At a given scale, j, (^k, if>jtm) = 6k,m and ^k forms an orthonormal basis of 

Wj, a subspace of L2(sft). Because of orthogonality across scales, Wj _L Wt for all j / Z. Therefore, 

applying (2.13) to the projection of / onto Wj gives 

00 

9J(x) = (Q{f,f)(x)=   Y,  d&H&x-k)                                  (3.29) 
k= — 00 

whereas) e Wj and 
/•oo 

< = (/,rl>j,k) = /     f{x)22ip{2ix - k)dx                                  (3.30) 

öj, is the projection operator with respect to the basis ip. Substituting (3.29) into (3.28) gives 

oo 

/(*) =   E «#/)(*)                                                 (3.31) 
j=-co 
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which says that / can be decomposed into an infinite sum of its projections onto orthogonal subspaces, 

Wj [10]. Furthermore, L2(3J) can be expressed as the direct sum of orthogonal subspaces Wj 

L2(M) = ...+W-1+W0+W1 + ... (3.32) 

Because the wavelet has the characteristic of a bandpass filter (3.4), the projection operator, QL, is 

effectively projecting or filtering out the detail or high frequency content of / at scale j, and (3.31) shows 

that / consists of the infinite sum of these detail functions, (QJ/)(x) [10,12, 23,27]. Furthermore, the 

detail functions (Qj/) (a:), contained in Wj, are orthogonal to one another since Wj 1 Wt for all j ^ /. 

3.5    Multiresolution Analysis 

A major breakthrough in the understanding of orthonormal wavelet bases came when Y. Meyer and S. 

Mallat imposed the concept of multiresolution analysis on wavelet decompositions [14]. Mallat had 

been working with the Laplacian pyramid algorithm developed by Burt and Adelson [6] and recognized 

that the sequence of functions generated by an orthonormal wavelet were in essence "detail" functions 

that representated the information lost in going from one scale to a lower scale [13]. He and Y. Meyer 

developed the mathematics for what came to be known as a multiresolution analysis. 

Let Vj be defined as a subspace of L2(!R) where 

Vj = ... +Wj-3+Wj-2+Wj-x (3.33) 

Then, the direct sum decomposition of L2(K) in (3.32) can be rewritten [10, 23] as 

L2(SR) = Vj+Wj+Wj+xi-... (3.34) 

From (3.33), it is clear that 

Vj+l = Vj+Wj (3.35) 

and Vj forms a nested sequence of subspaces of L2(3?), that is, 

• • • vj-i C Vj C Vj+i... (3.36) 
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Let <j)jjk be a set of functions that spans the subspace Vj [10], where 

<f>i,k = 22(f,(2jx - k) (3.37) 

Then, any function in Vj can be represented by a linear combination of <pjik. 

oo 

P{x) =   Y,  <&*<!>{$x-k) (3.38) 
k= —oo 

Assume 0^ forms an orthonormal basis of Vj, then 

((pj,k,<ßj,m) = Sk,m (3.39) 

and, 

A = Uj{x)Aj,k) (3.40) 

This assumption is not as bold as it may seem. The Fourier transform of (3.39), called the Poisson sum- 

mation, is a 2ir periodic function given by 

oo 

J2   \$(u> + 2nk)\2 = l (3.41) 
fc=—oo 

where $(w) is the Fourier transform of </>(x). Let 0(x) be a function such that ^ spans Vj, then ^±(x) 

can be found such that it satisfies (3.39) by way of the following orthogonalizing "trick" and taking the 

inverse Fourier transform [10]: 

*±M = — r (3.42) 
(£2°=-ool*(w + 27r*)|2)i 

where 0 < A < \ ZT=-oo l*(w + 2nk)\2 < B < oo for all u. Because a non-orthogonal function 

that spans Vj can be orthogonalized using (3.42), it is safe to assume that <t>jik is orthonormal in the first 

place. 

Now, if p is a function in the subspace Vj, then by (3.35) it can be represented by the sum of its 

projections on Wj-\ and V^_i [10, 12] 

fj(x) = vjrHnix) + Qi-'iPHx) (3.43) 
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Since Q$,-1(/) represents the detail of p at scale j - 1, then Vjfl{f) must represent p with those 

details removed, that is, a lower resolution approximation of p at scale j -1 [10, 12, 23]. Subsequent 

projections onto complement subspaces, V and W, produce the decomposition map shown in Figure 3.3. 

Vj contains lower and lower resolution approximations of p as j -» -co. The nested sequence of 

V„=L2(5R) 

V; 

/V 
Vj, w,, 

•j-2 Wj.2 

'j-3 Wj.3 

Figure 3.3: Multiresolution Decomposition of L2(3J) 

subspaces is called a multiresolution analysis and satisfies the following conditions: 

Definition 7 Multiresolution Analysis/70, 12, 23, 24, 27] 

The sequence of subspaces, Vpform a multiresolution analysis if the following conditions are satisfied: 

1. ... C V-! C V0 C Fi...; 

2. doSL2(ujGZ^)=,L2(K); 

3- fW^ = {0}; 

4. Vj+1 = Vj+Wj, j e Z; and 
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5. f(x) € Vj O f(2x) € Fi+1, j € Z 

Items 7.1 and 7.2 state that a multiresolution analysis is a nested sequence of subspaces whose union 

spans L2(5R). Item 7.3 states that there is no portion of L2(*R) that is common to all subspaces Vj, except 

the all zero function, {0}. Item 7.4 states that a subspace, Vj consists of the sum of the subspace V,_i 

and its complement Wj-V Finally, Item 7.5 states that if a function, /, resides in the subspace at scale 

j, then / dilated by 2 resides in the subspace at scale j + 1, which can be seen easily in (3.43) by letting 

x' = 2x. 

An orthonormal multiresolution analysis (MRA) [10, 12, 23, 24, 27] further requires that the two 

complementary subspaces, Vj and Wj be orthogonal complements, Vj ± Wj, which leads to the fol- 

lowing condition on their bases 

(<Pj,k,ipj,i) = 0 (3.44) 

Let p+1 be some function that can be completely represented by the orthonormal basis of Vj+1, that 

is, f3+1{x) e Vj+i. From (3.43), p+1 can be decomposed into a detail function and low resolution 

approximation at scale j [10, 12, 23], that is, 

/i+V)   =   ^(/J'+1)(s) + Ci(/'+1)(*) (3.45) 

=   f3(x)+gi{x) (3.46) 

where p and gf> reside in orthogonal subspaces, Vj and Wj. In a MRA, p{x) can be decomposed again 

into orthogonal subspaces, Vj-i and Wj_i, 

P(x)    =   Vi-\P)(x) + Qi-\p){x) (3.47) 

=   P~l{x)+9j~l{x) (3.48) 

Substituting (3.48) into (3.46) gives a two level decomposition of fj+1(x) 

P+1(x) = fj-1(x)+g3-1(x)+g3(x) (3.49) 

The JV-level decomposition of fJ(x) is given as 

fj+1(x) = P+1-N(x) + £y'-*+1(x) (3.50) 
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If, l,m 

7J-1 

|H 

X-Vj-,.„ 

rj-l 

Figure 3.4: N-level Multiresolution Decomposition 

and is shown in Figure 3.4. It is helpful to visualize what a multiresolution decomposition looks like 

by looking at an example. Let the wavelet be Daubechies' D4 wavelet, a known orthonormal wavelet, 

shown in Figure 3.5 with its corresponding scaling function. Daubechies' technique for deriving these 

r 

Figure 3.5: Daubechies' D4 Wavelet and Scaling Function 

wavelets will be discussed in more detail in Chapter 4. Figure 3.6 shows the multiresolution decomposi- 

tion of a transient signal using the D4 wavelet and corresponding scaling function. The functions on the 

left are the successive low resolution approximations of the transient signal at each scale. The functions 

on the right are the detail functions found by projecting the signal onto the orthonormal wavelet basis 
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Figure 3.6: Multiresolution Decomposition Example using the D4 wavelet 
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for that scale. The basis is constructed by integer shifts of the wavelet dilated by IK Notice the effect 

of projection. As the signal is projected into lower and lower scales, both the approximation and detail 

functions begin to look like the scaling function and wavelet, respectively, which is expected since each 

is a linear combination of the basis functions of each subspace, V and W. This effect is one reason why 

one might desire a wavelet basis that "looks" like the signal being analyzed. The original signal in Fig- 

ure 3.6 is completely represented by the detail functions and the last low resolution approximation and 

can be reconstructed simply by summation. 

As mentioned previously, the constraints on the wavelet increase in complexity as one moves from 

the integral wavelet transform to orthonormal bases. It is important to understand those constraints, since 

they will be used extensively in the wavelet design algorithm presented in Chapter 5. 

3.5.1    Properties of </> and ip 

As shown previously, in an orthonormal multiresolution, {Vj}, 4>j,k is an orthonormal basis of the sub- 

space Vj, and ipjtk is an orthonormal basis of the subspace Wj, where Vj 1 Wj. Furthermore, the family 

of functions {ipjtk; -co < j < oo} is an orthonormal basis of L2(5R). These conditions lead to the fol- 

lowing relationships between 4>jjk and tpj^ [10] 

(<f>j,ki<Pj,l) = h,i (3.51) 

fc,^v)=0 (3.52) 

(1>j,k, il>i,m) = Sj,i ■ 8k,m (3.53) 

as given previously in (3.39) (3.44) and (3.26). Furthermore, since tp(x) is a wavelet, then by (3.4) 

/■oo -r 

/     tp{x)dx = 0        <^>        *(0) = 0 (3.54) 
J —oo 

By (3.35) it is clear that since ^jtk and ^ are bases of Vj e Vj+X and Wj e Vj+i, respectively, 

they both reside in V^+1 and can therefore be represented by a linear combination of the basis of Vj+\ 

[10,12, 23, 31]. For j = 0, ^0)o = (/>{x) G Vi can be represented using (3.38) as: 

oo 

<f>(x)=   J2  ck22<f>(2x-k) (3.55) 
fc= —00 
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Since tp(x) also resides in Vi, (3.38) gives the generating equation for the wavelet 

oo 

ip(x)=   ]T   bk22<f>(2x-k). (3.56) 
k=—oo 

The 21/2 term in both of the above equations can be included in the coefficients giving 

oo 

4(x) =   J2 Pk<t>{1x - k) (3.57) 
k=—oo 

and 
00 

^{x)=   ]T   qk(ß{2x-k) * (3.58) 
fc= —00 

Equation (3.57) is a recursive equation called the two scale relation for </>, and pk and qk are called the 

generating sequences for <j> and ip, respectively [10]. Taking the Fourier Transform of (3.57) and (3.58) 

gives the relationship between $(u;), *(w), P(w), and Q(u;). 

•M = !"(?)• (|) (3-59) 

Assume ^(x), called the scaling function [10, 12, 23, 24, 27], generates the multiresolution analysis, 

{Vj}, and is normalized [31] such that 

/•oo T 

/     0(ar)da; = 1 <^> $(0) = 1 (3.61) 
J—00 

Since <j>{x + n) and ^(z + n) form orthonormal bases of Vo and W0, respectively, and are orthogonal 

to one another, then the following must be true 

/oo 

\(t>{x)\2 dx = 1 (3.62) 
-oo 

/oo 
\ip{x)\2 dx = 1 (3.63) 

-oo 
/oo 

<ß{x)<t>(x + n)dx = 5(n) (3.64) 
-00 

/oo 

tp{x)ip(x + n)dx = 6(n) (3.65) 
-oo 

/oo 

<f>(x)ip{x + n)dx = 0 (3.66) 
-00 
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Taking the Fourier Transform of (3.64) gives the Poisson Summation on $(w) [23, 24] 

TU™ <f>{x)(f>{x + n)dx)    =   F(6(n)) 

r([<l>(x)*<j>(x)]'   f;   ö(x + nU    =   1 
\ n=—oo / 

oo 

|$(w)|2*   £   6{u + 2irn)    =    1 
n=—oo 

00 

£   |$(u; + 27m)|2   =    1 (3.67) 
n=—oo 

where "*" is the correlation operator and "*" is the convolution operator. Likewise, taking the Fourier 

Transform of (3.65) gives the Poisson Summation on $(w). 

oo 

£   |¥(w + 27rn)|2 = l (3.68) 
n=—oo 

Substituting (3.57) and (3.58) into (3.4) and (3.61)-(3.66) produces several conditions onpk and qk [10, 

12] 
oo 

£ Pk = 2        ^        P(0) = 2 (3.69) 
k=—oo 

oo 
,^ 

£   <7fc = 0        ^ Q(0)=0 (3.70) 
k=—oo 

E  P* = 2 (3.71) 
fc=—oo 

E   9fc = 2 (3.72) 
fc= —00 

fc=—oo 

00 

E P*Pk-2n = 2<5(n) (3.73) 
=—oo 

oo 

E  QkQk-in = 2<J(n) (3.74) 
fe= —00 

oo 

E   Pfc%-2n = 0. (3.75) 
fc=—oo 

Two additional conditions on P(u) and Q(u) are stated here without proof or explanation. The details 

are provided in Section 3.6. 

I^M|2 + IQM|2 = 4 (3.76) 
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P(U)P(Lü + TT) + Q(üJ)Q(U> + TT) = 0 (3.77) 

Conditions (3.76) and (3.77) allow for perfect reconstruction of the decomposition of /. 

It is important to note that the scaling function, <j)(x), generates the multiresolution analysis, {Vj} 

and the wavelet, i>(x), generates the multiresolution decomposition, {gi (x)}. Before the MRA was for- 

mulated by Meyer and Mallat, there was no standard technique for finding orthonormal wavelet bases. 

Through the scaling function, however, several design techniques were developed and they will be dis- 

cussed in Chapter 4. Furthermore, because the scaling function is the MRA generator, the conditions for 

an orthonormal MRA rest on the scaling function as will be shown in Chapter 5. 

3.6   Discrete Wavelet Transform 

The purpose for moving from the continuous wavelet transform (CWT) to frames and ultimately to or- 

thonormal bases was to remove the redundancy in the wavelet transform. Multiresolution analyses sum- 

marized in Section 3.5 provide the framework for finding orthonormal bases of L2 (K), but are still based 

on continuous functions. That is, the orthogonal multiresolution decomposition given in (3.50) starts 

with a continuous function and decomposes it into a series of detail functions and a final low resolution 

residual. However, each detail and low resolution function can be uniquely defined by its correspond- 

ing projection coefficients, c?k and d{ at some scale j, as shown in (3.29), (3.38) and Figure 3.4. In some 

digital signal and image processing applications, like compression, one would like to deal with the co- 

efficients only and never have to produce the continuous detail or low resolution functions. Mallat [24] 

used his MRA construction to develop a fast algorithm for finding the multiresolution decomposition of 

a signal. In Figure 3.4, let fi+1 = /, then 

4T1     =     <^j/,^-l,m> 
oo 

k=—oo 
oo 

=      £   4<^,fc.^--i,m> (3.78) 
fc=—oo 
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and likewise, 
00 

dml =    J2   4fe>^-l,m> (3.79) 
fc=—oo 

Through a change in variables and some algebra it can be shown [10, 12, 23] that 

to> <j>j-i,m) = 2~2 /     <p(-x)<j>(x - (k - 2m))dx (3.80) 
J—oo        ^ 

Notice that the inner product of two scaling functions from adjacent scales is not a function of their scales 

at all! The scale parameter, j, does not appear in the right side of (3.80). Similarly, 

{(ßj,k,i>j-i,m) = 2-5 /     i>{-x)4>{x -{k- 2m))dx (3.81) 

Let 
/OO 1 

<t){-x)<j){x - n)dx (3.82) 
-oo       ^ 

and 

then (3.78) and (3.79) become 

and 

/OO J 

^(-x)^(x - n)dx (3.83) 
-00 ^ 

4n1=    Y,   4hk-2m (3.84) 
fc = — 00 

dm_1 =    X]    49k-2m (3.85) 
fc=—00 

where the remaining 2"1/2 term is included in c?k- Equations (3.84) and (3.85) show that the projection 

coefficients for the low resolution and detail functions can be obtained by filtering and downsampling 

the low resolution projection coefficients from the previous scale. Furthermore, the digital filters used 

are the same regardless of which scale is being decomposed. Equations (3.84) and (3.85) are known as 

the Discrete Wavelet Transform. [10, 12, 23, 30] The multiresolution decomposition shown in Figure 

3.4 can be represented by a sequence of Discrete Wavelet Transforms (Figure 3.7) [23]. Substituting 

(3.57) and (3.58) into (3.82) and (3.83), respectively, gives 

1 
2' K = 7:Pn (3.86) 
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Figure 3.7: Discrete Wavelet Transform 

9n — nln- (3.87) 

So, except for a constant scale factor, the digital filters, hn and gn, used to implement the Discrete Wavelet 

Transform are precisely the generating sequences for <j>(x) and ij>{x), respectively [12]. Given this rela- 

tionship and the fact that for digital signals, one would like to deal with only the projection coefficients 

and the digital filters, as in (3.84) and (3.85), the conditions on p and q in (3.59), (3.60), (3.69), (3.70), 

and (3.71)-(3.77) can be translated directly to conditions on h and g. 

oo 

4>{x) = 2   £   hkcj>(2x-k) 
k=—oo 

oo 

ij>(x) = 2  £ gk<t*(2x-k) 
k=—oo 

fc=—oo 

oo 

E  9k = 0 
fc=—oo 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 
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£   hl = 2 (3-94) 
= — 00 

OO * 

E  ^1 = 2 (3.95) 

£   ^^-2n = r£(n) (3.96) 

fc=-oo 

oo 

fc=—oo 

00 

53  9k9k-2n = 26(n) (3.97) 
fc=—oo 

£   Ä*0*-2n = 0 • (3.98) 
k=—oo 

|^M|2 + |GH|2 = 1 (3.99) 

H(UJ)H(U + IT) + G(u})G{u + n) = 0 (3.100) 

From (3.92) and (3.93) it can be shown that hk and gk are low pass and high pass filters, respectively 

[10, 12, 23, 30]. From (3.84) and (3.85), cfc1 is found by passing c£ through a low pass filter and dfc1 

by passing c? through a high pass filter, which is consistent since <4_1 represents a low resolution ap- 

proximation of the original sequence and d^1 represents the details (or high frequency content) of the 

original signal. 

Since (3.90) is recursive, (3.90) and (3.91) can be rewritten [10, 12, 23, 24] as 

OO ,        v 

*M=G(i)n^(?) (3-102) 

Continuing with Daubechies' D4 wavelet as an example, Figure 3.8 shows the same multiresolution 

decomposition as Figure 3.6 but in terms of the projection coefficients, c£ and d{, only. Notice that as the 

decomposition proceeds to more levels, the number of coefficients decreases due to the downsampling 

in (3.84) and (3.85). 

In applications like image compression or image enhancement, it is necessary to reconstruct the orig- 

inal coefficients from the decomposition coefficients. Equations (3.99) and (3.100) are the conditions on 

H and G that guarantee perfect reconstruction, and they can be derived by forming the reconstruction 
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37 



expression for cj[ in Figure 3.4 [12]. Vj f is the projection of/ onto Vj, where / = P+1 in Figure 3.4, 

and c£ are the projection coefficients of Vjf e Vj, 

4 = (pjf,<t>j,k). 

Substituting (3.43) into (3.103) where p = Vj f gives 

4  =   (Pj-lf + Qj-lf,4>j,k) 

(3.103) 

°° OO 

=        E    4r1<0j-l,m,^-,fc>+    £    dimX(^j-l,m,<t>j,k) 
m=—oo 

00 

-        X^    4nlhk-2m+    Ys    d3
m
lgk_2m 

m=-oo m=—oo 
(3.104) 

So, reconstruction is accomplished by upsampling the two sets of coefficients, c^_1 and d?~x and in- 

terpolating with the same filters, hm and gm, respectively. A single stage decomposition/reconstruction 

cycle is shown in Figure 3.9 [23]. Figure 3.10 shows the signal spectrum at each stage of the decom- 

Figure 3.9: Decomposition/Reconstruction cycle with QMF filters 

position/reconstruction process. Let the Fourier Transforms of the sequences in Figure 3.9 be given by 

Hi) = &{u) 
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—   Nyquist 

Figure 3.10: DWT Decomposition/Reconstruction - Effects on the Signal Spectrum, a) Original Signal; b) Spec- 

trum of H and G; c) Spectrum of C^1 and D^1; d) Spectrum of Cj~x and D^1; e) Spectrum of C^1 and 

X?-7'-1; f) Spectrum of Cj and £>i; g) Spectrum of Cj 
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In order to have perfect reconstruction, C3
(LO) must equal C3(u). An expression for C(u) is ob- 

tained by working backwards through Figure 3.9. 

C3\cu) = C*-\u)H(u>) + i)i-l{u)G{u) (3.105) 

Upsampling c3~l and d3'1 to obtain c^1 and d{~1 is done by placing zeroes between each sample, 

causing a simple dilation of the respective frequency spectra (Figures 3.10d and 3.10e), that is, 

DJ-1(u)=&-1(2u>) (3.106) 

Downsampling cjT1 and d{~x to obtain c?~x and dfc1 is not as straightforward, because it causes alias- 

ing (Figures 3.10c and 3.10d) [35]. The filtered spectra, C^
1
{UJ) and D^l{uj) are 27r-periodic and 

oversampled (Figure 3.10c). However, since H(u) and G(u) are not ideal filters (Figure 3.10b), the 

oversampling of C3'1^) and D3'1^) is less than 2, and therefore, downsampling by 2 causes alias- 

ing [35]. The expression for C3'1 (w) and D3'1 (u) in terms of C3'1 (w) and D3~l (w) must include the 

aliasing terms 

D*-\u,) = D3^ (|) +#-i (| + 7r) (3.107) 

Finally, CP-1^) and Xtf-1^) are filtered versions of the input spectrum, C3(u) 

C3-1(u) = C3(u)H{u) 

Dj-1(w) = C3(u)G&) (3.108) 

The complex conjugates of the filter spectra in (3.108) are due to the digital filters being index-reversed, 

h-k and g_k. Substituting from (3.108) back to (3.105) gives 

C(u)   =    [H{U)H{U) + G(w)GM] Cj{u>) + 

[H(U)H(U + IT) + G(U)G{UJ + TT)1 C"'(ü; + TT) (3.109) 
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The two conditions for perfect reconstruction emerge from (3.109) [12, 35] 

|#(u;)|2 + |G(u;)|2 = l (3.110) 

H(u)H(u + ir) + G{u)G(u + ir) = 0 (3.111) 

The formulation of these filter requirements for perfect reconstruction is well known in the field of sub- 

band coding [35]. 

If the relationship between H(u) and G(w) were constrained such that 

G(u) = e-uH(u + K) (3.112) 

then the second condition (3.100) is always satisfied [12, 35] and (3.99) becomes 

\H(UJ)\
2
 + \H(UJ + -K)\

2
 = 1 (3.113) 

These filters are called "quadrature mirror filters (QMF)" and the structure of Figure 3.9 is known as a 

2-band QMF [35]. Taking the inverse Fourier Transform of (3.112) gives the relationship between h and 

9 

9k = (-l)k+1h1-.k (3.114) 

Substituting (3.86) and (3.87) into (3.114) gives the relationship between the generating sequences that 

guarantees perfect reconstruction in a multiresolution analysis 

qk = (-i)k+1Pi-k (3.115) 

Assumepk, a generating sequence for </>(x), exists such that (3.69) and (3.73) are satisfied. Then, clearly, 

conditions (3.92) and (3.96) on hk will also be satisfied. These conditions imply that <f>jtk is an orthonor- 

mal basis of Vj and that / <j>(x)dx = 1. Assuming the relationship between hk and gk in (3.114), it can 

be shown by substitution of (3.114) that every condition (3.90)-(3.100) is satisfied and <f>(x) generates 

an orthonormal multiresolution analysis! The two-scale relation for ip{x) becomes 

00 

#*)=   E {-l)k+lPi-k^x-k) (3.116) 
k=—oo 
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3.7   2-Dimensional DWT 

A 2-dimensional multiresolution analysis (MRA) is defined as a sequence of subspaces, {F2}, which 

satisfies the conditions in Definition 7, but defined on the Hubert space Z,2(SR2) [12]. Assume 

<l>j,kAx>v) = y<t>(2jx - k,2iy - I) is an orthonormal basis of Vf c L2(di2), where </>(x,y) is 

the 2-dimensional scaling function that generates the orthonormal MRA, {V,2}. Meyer showed that if 

4>j,k,i(x> V)is separable, then Vf is the tensor product of two identical subspaces of L2(Sft) [12] 

where Vj C L2(3?). The 2-dimensional, separable scaling function becomes 

<f>(x, y) = (j)(x) ■ </>(y) (3.117) 

where <j)(x) and ip(y) generate identical orthonormal multiresolution analyses, {Vj}, of L2(3?) and (j)j,k{x) 

and<My) form orthonormal bases of Vj C L2(SR). Just as in the 1 -dimensional case, a signal, f'+l{x,y), 

at scale j + 1 can be represented by the sum of its projections into orthogonal subspaces at scale j. 

Given separability, fj+l(x, y) is projected in x onto Vj and Wj and then in y onto Vj and Wj. Since 

Vj+i = Vi+i ® ^'+i' and vj+i = Vj+Wj, then the 2-dimensional, separable projection produces 4 

subspaces [12]. 

vf+1  = vj+1®vj+1 

=   (Vj+Wj)® (Vj+Wj) 

=   Vj ® Vj+Vj ® Wj+Wj ® Vj+Wj ® Wj 

where the first subspace is Vf and contains the low resolution approximation, fJ(x, y), and the remain- 

ing three subspaces are wavelet subspaces that contain some version of the details projected from 

fJ+l(x,y). The 2-dimensional bases for each of these subspaces is given as follows [12]: 
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The multiresolution decomposition of a 2-dimensional signal is shown in Figure 3.11. From Figure 3.11, 

fj+'(x,y) (x,y) 

• • • 

g3J"(x,y) 

Figure 3.11: 2-D Multiresolution Decomposition 

=     CPJf,4)j-l,m{x)'Pj-ln(y)} 
00 oo 

=   ( S   S cfc,j^,*(a;)^v(y).^-i,m(a;)^-i)n(y)> 
l=—oo k=—oo 

OO 00 

=    Yl   £ c*,jfe(a:)^-,«(j/)>^--i,m(a;)^-i,n(y)> 
i= — OO fe=—00 
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00 00 

=     E    E  ci,;(^,fc(2;)>^-i,m(^))(^y(y),^_i,„(2/)) 
l=—oo k=—oo 

00 00 

Likewise, 

l=—oo k=—oo 

l=—oo k= —oo 

oo        oo 
rf2^n =    5Z      X]   ^k,l9k-2mhl- 

2n 

2n 

ddm,n 

l=—oo fc=—oo 

00 oo 
:    Z^      2_/   °i,l9k-2m9l-2n 

l=—oo k=—oo 

(3.118) 

(3.119) 

(3.120) 

(3.121) 

Equations (3.118)-(3.121) constitute the 2-dimensional Discrete Wavelet Transform [12, 23]. The low 

resolution approximation of the original sequence is found by low pass filtering in both the row and 

column dimensions. dl3'^ is found by low pass filtering the rows and high pass filtering the columns, 

d2ml °y high pass filtering the rows and low pass filtering the columns, and d3^ by high pass filtering 

both the rows and columns. Figure 3.12 shows an original 256x256 image and its 4-level multiresolution 

decomposition computed with the 2-D DWT based on Daubechies' DA wavelet. 

Figure 3.12: Multiresolution Decomposition of Lena Using Daubechies' D4 Wavelet 
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3.8   Limitations to the MRA and DWT 

3.8.1   MRAs 

While the MRA construction developed by Mallat and Meyer [24] provides both time and frequency lo- 

calization of signals containing both high and low frequencies, something the Short Time Fourier Trans- 

form (STFT) was unable to do, it does not do a good job of representing all functions in L2(3?) [25]. 

Signals with narrowband, high frequency components are not well represented because of the constant 

Q feature of the passbands. When the scale parameter, j in 2^27p(2jx - k), increases by 1, the scale 

doubles as does the bandwidth. The constant Q restriction does not provide independent control over 

center frequency of a passband and its bandwidth. Mallat and Zheng make provisions for independent 

control by including a phase modulation term to their time-frequency atom [25]. Wickerhauser gener- 

alized Mallat's MRA when they developed the wavelet packet paradigm [36]. In an MRA, a signal is 

projected into two orthogonal subspaces, Vj and Wj. Subsequent decomposition is done on fi(x) G Vj. 

Wickerhauser removed this constraint and allowed the detail signal, gj(x) € Wj to be decomposed if it 

had the dominant energy. The resultant decomposition tree, an example of which is given in Figure 3.13, 

can take on 0(2^ - 1) different configurations where iV is the number of levels of the decomposition. 

Mallat's MRA is only one of those configurations. 

For many naturally occuring signals, however, the bandwidth of a signal component is a function of 

its center frequency. For example, a radar transmitter can transmit a signal with a bandwidth on the order 

of 10% of its center frequency, in which case, the Q of the transmitter would be 0.10. Before applying 

wavelets to an application, it is important to determine which class of wavelet is appropriate. 

3.8.2   DWT 

The discrete wavelet transform implements Mallat's multiresolution with digital filters. The decompo- 

sition equations for the low resolution and detail projection coefficients, c?k and d\ are given as 

00 

4=     E    <Jmlhm-2k (3.122) 
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Figure 3.13: Example Wavelet Packet Decomposition 
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4=    E   <4+1Sm-2fc (3.123) 
m=—oo 

where h and g are low and high pass filters, respectively. Notice, however, that neither (3.122) nor 

(3.123) are shift invariant. Let the input sequence be shifted by n G Z, then (3.122) becomes 

oo 

Cfc     =        2-f    cm-nhm-2k 
m=—oo 

oo 

=       E   ^     ht-2{k-n/2) 
£=-00 

^   4-n (3-124) 

and likewise for (3.123). The fact that the DWT is shift variant makes it very difficult to use in applica- 

tions like object detection and pattern recognition because the output of the decomposition is dependent 

on the input sequence [23]. 

3.8.3    2-D DWT 

The same limitations on the DWT apply to the 2-D DWT. The multiresolution decomposition coeffi- 

cients of an image are dependent on the input image, making repeatability for a given class of images 

impossible. Furthermore, the implementation of the 2-D DWT developed in Section 3.7 assumes sepa- 

rable 2-D wavelets and scaling functions. This assumption greatly simplifies the 2-D DWT, but results 

in an algorithm that is very sensitive to image rotation. This limitation makes the 2-D DWT even less 

attractive for pattern recognition or object detection. 
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Chapter 4 

Wavelet Design Techniques 

The development of wavelet multiresolution analyses provides the necessary framework for designing 

whole new classes of wavelets. Ingrid Daubechies provided remarkable insight into wavelet design 

when she published her technique for finding orthonormal wavelet bases with compact support [12]. 

Others used the mathematical construct provided by an MRA to define scaling functions and their corre- 

sponding wavelets that were optimum in some sense. Splines were used to achieve maximum smooth- 

ness, projections were used to find wavelets that were somewhat matched to the signal of interest. In 

each of these cases, however, the design emphasis is on the scaling function, <f>{x) or its generating se- 

quence, hk, which is to be expected since the MRA is generated by the scaling function. In this chapter, 

6 different design techniques will be reviewed in order to provide motivation for the new wavelet design 

technique presented in Chapter 5. 

4.1    Compactly Supported Wavelets 

In 1987, Ingrid Daubechies, inspired by Mallat's Discrete Wavelet Transform algorithm, succeeded in 

constructing orthonormal wavelet bases with compact support in the space domain [14]. Her technique 

takes advantage of the orthonormality constraints put on the digital quadrature mirror filter (QMF), hk, 

which is also the generating sequence for the scaling function, <j>{x), of an MRA. It is easy to see from 

(5.17) and (5.18) that a finite generating sequence gives rise to a compactly supported scaling function 
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and wavelet. Assuming hk is finite in length, M = 27V -1, its Fourier Transform becomes a polynomial 

in e-*"*, 
2JV-1 

H{u) =  £ hke-™k. (4.1) 
fe=0 

Daubechies added constraints on H(u>) that would guarantee some degree of smoothness in the result, 

namely that H{u) should have iV zeros at u = ir, giving H(u) the following form, 

H(CJ)=(-^—\    W(u). (4.2) 

Since H(u) is a polynomial of degree 2N-1, Daubechies is essentially dedicating iV degrees of freedom 

in H{OJ) toward guaranteeing smoothness. The remaining task is to find polynomials of the form (4.2) 

that satisfy the orthonormality condition (3.113). The set of all such polynomials can be found using 

some rather sophisticated theorems of algebra. Kaiser [19], however, follows a shortcut showing that 

the solution for N = 1, which is the Haar system, actually generates solutions for all N > 2. For 

N = l,hk = {1/2,1/2} giving 

H(u) = —-— = el 2 cos(o;/2) (4.3) 

\ _ gJw 
H(u + TT) = ——— = ieJ2 sin(w/2). (4.4) 

For A^ > 2, let 

C{u) = cos(w/2)     and     S(u) = sin(o;/2). (4.5) 

Raising C2 + S2 = 1 to the power 2iV - 1 gives 

1 = 2^ {2N- l\   AN_2_2ks2k (46) 

where (^) = M\/k\(M - A;)! are the binomial coefficients. Kaiser shows that if the polynomial, 

UN{C), consists of the first iV terms of (4.6) and H(u) can be found such that |#(u;)|2 = UN{C), 

then \H(u + n)\2 is automatically the last N terms of (4.6), thereby satisfying the orthonormality con- 

dition in (3.113) [19]. From (4.6), U can be factored as follows, 

l + el 

U = \H{LO)\
2
 = C2"WN(S) 
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where 

JV-l 

WN(S)   =   Y, 
fe=0 

N-l 

N   ^\c2N~2~2ks2k 

= £ i2N, Ma-s2)*-1-^2* 
k=0 k 

(4.8) 

(4.9) 

The expression in (4.7) has exactly the form of the squared magnitude of (4.2). So all that is left is 

finding a polynomial, W(u), such that |W(w)|2 = WN(S{u)), which can be done through algebraic 

manipulation. 

An example for N — 2 will show the complete process, 

l-fce2fc W2(5)   = ZQU-S2)1-^2 

= (l-52) + 352 

= 1 + 252 

= 1 + 2 

=   2 

eiu _ e-iu 

(e™ + e~iw) . 

Since W2{S) = \W{u)\2 and W{u) is a polynomial in eiw of order 2, then 

2--(e- + e- =    \a + beiw\2 

=   {a2 + b2) + ab{eiu} + e 

which gives a = ±(1 + ^3) and 6 = ±(1 - y/3). Expanding (4.2) gives 

/l + giwN 
#M  = (a + 6ela;) 

=    - (a + (2a + 6)eiu; + (a + 26)ei2w + bei3u) 

so the 4 coefficients for the QMF filter of Daubechies' D4 system are given by 

h0 a 1 + V3 

hi 2a+ b 1 3 + ^ 

h2 a + 2b 8 
3-^ 

. h'3 . 
b l-\/3 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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Once the filter coefficients, hk, are found, <f>(x) can be found recursively using (5.17) and ip(x) can be 

found directly using (5.18) where gk = (-l)fc+1/i1_A:. 

This technique is very clever and was considered landmark in the development of orthonormal wavelet 

bases. However, as can be seen from this entire process, the design is focused on the low pass filter, hk. 
> 

Nowhere in this technique are the requirements on the wavelet addressed. After finding the generating 

sequence, hk, the scaling function and wavelet are found using (5.17) and (5.18). The wavelet is driven 

entirely by hk, and subsequently, 4>{x). 

4.2   Wavelets for Signal Representation 

Tewfik, Sinha, and Jorgensen [34] developed a technique for finding an orthonormal wavelet with com- 

pact support that provides the "best" signal representation of a specified signal over a finite number of 

scales. In an orthonormal multiresolution analysis (MRA), a signal, f(x) £ L2(K) can be represented 

by an infinite sum of detail functions, gi(x), given in (3.28) and (3.29), where the projection operator is 

the inner product with the orthonormal wavelet basis, 2^2ip(2jx - k). Truncating the infinite sum to N 

scales, say scale jtoj + l-N gives the following approximation of f(x), 

f(x) = f*\x) = £y+1-'(x) + fi+l-"(x). (4.18) 

However, since Vj+i = Wj+Wj-i+... +Wj-N+1+Vj_N+1, (4.18) is equivalent to f(x) being rep- 

resented by the orthonormal basis of Vj+l, namely 2Ü+1)/20(2J+1a! - jfc), where (f>{x) is the scaling 

function. So, (4.18) can be rewritten as 

f(x)=   Y,  ak2^<f>(V+lx-k) (4.19) 
k=—oo 

which in the frequency domain is given as 

F{u) = 2~2 A{2-ju)${2-jLj) (4.20) 

where A{u) is the Fourier transform of ak and therefore 2TT periodic. The L2 error norm between the 

signal and its approximation is given in the frequency domain as 

F(u)-2-2A{2-jw)${2-iu)   =   2$F{2?u) - A{u)$(u (4.21) 
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Tewfik, et. al., assuming compactly supported wavelets, parameterize the generating sequence, hk, us- 

ing Daubechies' polynomial factoring "trick" and develop an upper bound to the error in (4.21) where 

the bound is in terms of hk only. Once the upper bound is given, they use constrained optimization tech- 

niques to solve for the finite length hk that minimizes the upper error bound on the signal representation. 

Once again, as in Daubechies' technique, the design emphasis is on hk, the generating sequence of the 

scaling function. No design criteria are put on the wavelet, whatsoever. This comes about because as 

shown in (4.19), a finite wavelet decomposition can be recast as a projection of the signal into the next 

higher approximation subspace, Vj+1, and the only contributor to the approximation accuracy is the scal- 

ing function. 

Gopinath, Odegard and Burrus [18] expanded the work of Tewfik, et. al., by assuming bandlimited 

wavelets. This additional condition simplified the upper bound of the error norm (4.21) giving way to a 

much simpler numerical solution. However, Gopinath, et. al., likewise acknowledge the importance of 

the scaling function in their approach when they state "the approximation at resolution J depends only 

on the scaling function, and not on the corresponding wavelets"[18]. 

4.3   Entropy-Based Best Basis Selection 

Coifman and Wickerhauser [11] developed a technique for finding the "best" basis for a given signal 

using orthonormal wavelets. They create a library of known orthonormal wavelet bases, B. The best 

basis is that family of wavelets from B that minimizes the entropy of the discrete decomposition. Qiven 

a vector, fk, the TV-level discrete decomposition consists of TV detail vectors, g3
k, for j - 1,2,... TV. 

The entropy of the decomposition is defined as [11] 

e = -X>i2m||5i
2. (4.22) 

3 

However, because the search of all possible orthonormal bases in a complete library is too computation- 

ally intensive, Coifman and Wickerhauser restrict the library to only rapidly computable orthonormal 

bases, like the local trigonometric basis and the Haar basis[ll]. The basis calculated is only "best" in 

the context of their previously designed library. 
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4.4   Matching Pursuit with Time-Frequency Dictionaries 

Mallat and Zheng [25] and Chen and Donoho [9] identified a need to generalize the orthonormal wavelet 

decomposition work of Mallat [23]. Mallat and Zheng point out that a single wavelet basis is not flex- 

ible enough to represent a complicated non-stationary signal, primarily those with narrow band high- 

frequency support [25]. They say that it is much like a person trying to communicate with a very lim- 

ited vocabulary. When the need for a word arises that is not in the vocabulary, many other words are 

needed to compensate for the lack of the right word. They go on to say that it is difficult to detect a pat- 

tern from its projection coefficients because the information is spread out over the whole basis. Each of 

these limitations will be specifically addressed in the design approach of Chapter 5. 

In order to increase the flexibility in signal representation, Mallat, et. al., construct a dictionary of 

time-frequency atoms of the form, 

9^{X) = Tag fcr)eiix (4-23) 

where \\g\\ = 1, / g(x)dx / 0 and p(0) + 0. Notice that (4.23) looks very much like the wavelet ex- 

pression given by Morlet and Grossman, except that it includes a phase modulation term. This term can 

be used to translate the frequency spectrum of g7(x) up and down the frequency axis, thereby allowing 

a narrowband spectrum to reside at high frequencies. 

Mallat and Zheng show that the dictionary consisting of the time-frequency atoms of (4.23) is com- 

plete, that is, that the closed linear span of the dictionary vectors is L2(5?). The objective is to find the 

best representation of a signal using the vectors in the dictionary. Given a signal, / e L2(!R), its first 

order representation is given by 

f = (f,9yo)9j0+Rf (4.24) 

where gl0 is the time frequency atom such that | (/, gl0) |2 is a maximum. The first term of (4.24) repre- 

sents the orthogonal projection of / onto the space spanned by gl0. Therefore, (f,gyo)g10 ± Rf and 

2    =    IK/,57o)ff7ol|2 + l|Ä/||2 

=    l(/^7o)|2 + l|Ä/l|2 (4.25) 
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since \\gl0 || = 1. Now the process can be repeated for Rf, 

Rf = (Rf, 9-n )9JI + Rlf (4.26) 

where the energy decomposition of / is now 

\\ft = \U,!h>)? + \(f,*n)? + \\Rlf\?. (4.27) 

Each decomposition of the residual is done by finding the time-frequency atom, #7 that maximizes the 

energy of the projection coefficients, thereby assuring rapid convergence. In applications like pattern 

recognition, signal reconstruction and enhancement, the atoms chosen and their corresponding projec- 

tion coefficients can be used to characterize or represent the signal /. 

However, the representation is only as good as the collection of atoms in its dictionary. Each #7 must 

either be designed or discovered before ever proceeding with the adaptive algorithm. Furthermore, the 

algorithm will do best if the atoms in the dictionary look like the signal under analysis or its components. 

4.5   Multiresolution Analysis-type Wavelets 

Abry and Aldroubi [2] developed an algorithm for designing wavelets for semi-orthogonal multiresolu- 

tion analyses. In a semi-orthongonal MRA, the wavelet vector spaces, Wj, are orthogonal to one another, 

but tpj^k does not form an orthonormal basis of Wj, that is, 

(1>j,k, ll>l,m) = &W ■ Pk,m (4.28) 

where ^- k = 2>Pi/>(2?x - k) and Pkttn / 6k>m. Just as a non-orthogonal scaling function can be 

orthogonalized using (3.42), Abry and Aldroubi showed that an orthogonal scaling function can be de- 

orthogonalized by an admissible discrete sequence, such that the result generates the same MRA as the 

original scaling function. 

Let <j>±(x) be an orthonormal scaling function that generates the MRA, {Vj}. Let 

00 

^(x) =   J2  ak<i>±{x - k) (4.29) 
fc=-oo 
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be a linear combination of the orthonormal basis of V0. Then, <j>(x) generates the same MRA, {Vj}, 

which can be easily shown in the frequency domain [2]. The Fourier transform of (4.29) gives 

$(w) = J4(W)$L(W). (4.30) 

Notice that from (3.42), \A(u)\ must by necessity be the square root of the Poisson summation of $(w), 

that is, 

I^MI= (  £   m^ + 2nk)\A    . (4.31) 
\A;=—oo I 

Since </>_L (X) generates an MRA, it must satisfy its 2-scale relation, (3.88), which in the frequency domain 

is given by 

*LM=ff(|)$L(|). (4.32) 

Substituting (4.30) into (4.32) gives 

where H(u) is 2TT periodic and 0 < A < A(u>) < B < oo is the admissibility condition on the 

sequence, ak [2]. Since (j>(x) satisfies its 2-scale relation, it too generates the same MRA as <f>±{x). The 

new 2-scale relation is given as 
00 

4>{x)=   Y   hfox-k) (4.34) 
k=—oo 

where hk is the inverse Fourier transform of H(u) in (4.33). 

The same approach can be applied to the wavelet basis of Wj. Let ip±(x - k) be the orthonormal 

basis of W0 and let a new wavelet be constructed in W0 by a linear combination of ip± (x - k), then, 

00 

$(x)=   Y,  MM(Z-ä) (4.35) 
fc= —oo 

given in the frequency domain as 

$(w) = B(u)V±(u). (4.36) 
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Since ip±(x) satisfies its 2-scale relation (3.89) given in the frequency domain by 

*±M = G (^ $± (^ , (4.37) 

then substituting (4.36) into (4.37) gives [2] 

*(u;)  = B(W)G (!) *L (i) 

where G(w) = B(u)G(w/2) is the Fourier transform of the new generating sequence, gk. The new 

2-scale relation for tp(x) is therefore given as 

oo 

#c) =   53  9k<f>±(2x - k) (4.39) 
fc= —OO 

where ip(x) is expressed as a linear combination of the orthonormal basis of Vi. However, ip(x) can also 

be expressed as a linear combination of any basis of V\. Substituting for $±{u) in (4.38) using (4.30) 

gives 

*M  -  ^(|) 

-*'(!)*(!)■ 

The new 2-scale relation for tp(x) in terms of 0(x) is given as 

oo 

#»0 =   5]  9kk^-k) (4.41) 
&= —oo 

where g{ is the inverse Fourier transform of Gl(u) = B(2U)G{U)/A(LJ) [2]. 

While ^ and ^ are not orthonormal, the new generating sequences, h and g, can still be used for 

synthesis in the DWT algorithm of Chapter 3. However, the analysis filters, h and g, must be found 

from the duals of <j>(x) and tp{x), respectively. The Fourier transforms of the duals, 0 and ^ are given 

as 

$M = r^  (4 42) 

*M = ^  (4 43) 
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so that 

{<f>j,k,<f>j,m) = ök,m (4.44) 

{^j,k,^j,m) =Sk,m- (4.45) 

Notice that (4.42) and (4.43) have the same form as (4.30) and (4.36) where 

B{u) = SU.I»l + W (4'47) 

The analysis filters, h and 5, can now be found using the same technique as described above. 

In order to use the relationships given above to design matching wavelets, one must be able to find 

the appropriate discrete sequence, bk. Abry and Aldroubi find bk by projecting the desired signal, f(x) 

into Wo- The resulting approximation is given as 

00 

f(x) =   Yl   b^x - k) (4.48) 
k——00 

where the discrete sequence, bk are simply the projection coefficients. One drawback to this algorithm 

for finding matched wavelets, is that the MRA and therefore <p± and ip± must already exist. Furthermore, 

the quality of the match will depend on how much the desired signal "looks" like the wavelet basis in 

the first place. There is still a need to match an orthonormal wavelet directly to a desired signal, with no 

presuppositions on its shape. 

4.6   Biorthogonal Wavelets: The Lifting Scheme 

Sweldens [32] developed a scheme for characterizing all biorthogonal filter sets that are derivable from 

any existing biorthogonal filter set. A biorthogonal scaling function, <f>(x), generates an MRA {Vj} and 

has as its associated wavelet, ip(x). The dual scaling function, j>(x) generates a different MRA, {Vj}, 

and has as its associated wavelet, ^(x) such that, 

(4>j,k, il>j,i) = (<f>j,k,^) = 0 (4.49) 
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(<f>j,k, <t>j,e) = {-4>j,k, i>j,e) = h,t- (4.50) 

Each of the functions, <ß, iß, <f>, and iß satisfy their own 2-scale relation of the form (3.88) and (3.89) 

where the respective generating sequences, h, g, h, and g, are related by the following expressions, 

G(v) = e-uH(u + *) (4.51) 

G(u) = e-wH(u + TT) (4.52) 

where H(u), G(u), H{u), and G{LJ) are the Fourier transforms of hk, gk, hk, and gk, respectively. 

Furthermore, in order to guarantee perfect reconstruction, 

H(u)H(u) + H(u + ir)H{u + ir) = l. (4.53) 

Sweldens proves that for a fixed <f> and its associated h, if there are two finite dual filters, h and h°, 

both biorthogonal to h, then the two dual filters are related by the following frequency domain expres- 

sion: 

H(u) = HU
(Lü) + e~luJH{uj + TT)S(2üü) (4.54) 

where S(u) is a trigonometric polynomial [32]. Sweldens goes on to prove the converse, that if one of 

the dual filters is biorthogonal to h and they are related by (4.54), then the other is biorthogonal to h as 

well. 

Therefore, (4.54) can be used to design new biorthogonal filters from existing ones where the degrees 

of freedom in the design reside in the trigonometric polynomial, S(u). The design technique given in the 

following theorem is called the "Lifting Scheme" because it lifts the properties of one pair of biorthog- 

onal filters in order to find another [32]. 

Theorem 3 (Lifting Scheme) [32] Take an initial set of biorthogonal filters {h, h°,g°,g}. Then a new 

set of biorthogonal filters {h, h, g, g) can be found by 

H{u) = #» + G(w)5(2w) (4.55) 

G(u) = GV) - H(u)S(2u). (4.56) 
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The proof of this theorem can be checked quite easily. Since {h, hP,g°, g} are a biorthogonal set of 

niters, they must satisfy (4.51), (4.52) and (4.53). Substituting for h° and g° in (4.52) and (4.53) using 

(4.55) and (4.56) gives expressions for {h, h,g,g} that satisfy (4.51)-(4.53). 

Theorem 3 can be applied to a wavelet by substituting (4.55) and (4.56) into the 2-scale relations for 

the wavelet in the frequency domain, 

•<»> = "(!)*(!) 

G.(| SMHft) *ll 

=   G° (!)*(!)" S(w)*M (4.57) 

which in the space domain is given as 

00 00 

#r) = 2  £  gUfa - k) -   £   sk<f>(x-k). (4.58) 
fc=-oo fc=-00 

This expression for ip(x) can be used to find the optimal sk with respect to the error between ip(x) and 

a desired signal, f(x). Once again, however, one must have a pre-defined biorthogonal filter set before 

proceeding with the adaptive design. Furthermore, for a set of biorthogonal filters, the family of filters 

that can be "lifted" is not complete, so the choice of biorthogonal filters from which one starts is very 

important. 
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Chapter 5 

Matching a Wavelet to a Signal 

Using the mathematical construct of the orthonormal multiresolution analysis (MRA), an algorithm for 

finding a wavelet matched to a desired signal will be developed. The technique performs the matching 

in the frequency domain on the magnitude and phase independently of one another. This technique is 

different from the techniques outlined in Chapter 4 because it presumes nothing about an existing MRA, 

or existing wavelets. Instead, it assumes the wavelets to be bandlimited, and uses the conditions on an 

orthonormal MRA and the desired signal itself to find the "closest" orthonormal wavelet. However, once 

the algorithm is developed for the orthonormal MRA case, it will be shown that the bandlimit conditions 

can be relaxed so that the matched wavelet no longer generates an orthonormal MRA, but rather a frame, 

thereby providing much more flexibility in its application. 

5.1   Motivation: Signal Detection 

Wavelet transforms applied to multiresolution analyses of signals produce outputs similar in theory to 

those of matched filters[33]. In order to maximize the output of the matched filter bank, it is necessary 

to design a wavelet that "matches" the signal of interest. This approach can be justified by applying 

matched filter theory to the wavelet decomposition equations. The projection equation for the detail 

functions, given in (3.30), is an inner product integral and can be rewritten in the frequency domain by 
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way of Parseval's Identity:[10] 

4 = (f{x)^jlk) = (F(u),*jik{2?u;)) (5.1) 

where Vjtk(2ju) = 2* e~i2Jc"fc#(2J'ü;), is the Fourier transform of ipj,k(x). The energy of d{ at a par- 

ticular scale, jo, and translation, fc0, is given by its squared magnitude 

|4°|2 = \(F{U), ^O)fco(2^))|2. (5.2) 

Applying Schwarz' inequality to the right side of (5.2) gives 

\(F(u)^jo,ko(2^))\2 < {F(u),F(u))(9joM(2?°u),9joM(2>°u)) (5.3) 

where the equality holds for 

F(u) = K*joM{2?0u). (5.4) 

Therefore, |4°|2 is maximized when/(x) = Kif>j0,ko. Rewriting (5.4) in terms of amplitude and phase 

gives 

\F{u)\ei8F^ = K2$ U> (2jou) I e«"(M2*M-2*>w*o) (5 5) 

where 6F(u) and 09(u) are the phase of F(u) and ${u), respectively. If f(x) matches exactly with 

an orthonormal wavelet, then dk = 6kjko • 6jj0 and the decomposition produces only 1 coefficient at 

(jo, &o)[33]. As the match moves away from being perfect, the decomposition begins to distribute the 

energy about (jo, k0) which according to (5.2) and (5.3) is still the maximum. Given the condition for 

a maximum projection coefficient at (j0, k0) in (5.5), the problem at hand is to develop a method for 

matching the complex spectrum of the wavelet to that of the desired signal while maintaining the condi- 

tions for an orthonormal MRA. However, because the conditions for orthonormality are on the spectrum 

amplitude (Poisson summation) only, the algorithm matches the spectrum amplitudes and group delays 

independently. While this approach is not ideal from an optimization standpoint, it will be shown that it 

still leads to good matching wavelets. 

A difficulty in matching the wavelet spectrum directly to that of the desired signal is that the condi- 

tions on an orthonormal MRA are not if and only if conditions. For instance, if cßjtk is orthonormal and 
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generates an MRA, then ipjjk is also orthonormal. The converse is not true[13][24]. Therefore, in devel- 

oping the matching algorithm it is necessary to propagate the conditions for an orthonormal MRA from 

the 2-scale sequence and scaling function to the wavelet, match the wavelet to the desired signal under 

those conditions, and then calculate the scaling function and 2-scale sequence always guaranteeing that 

the conditions for an orthonormal MRA are satisfied. 

5.2    Orthonormal MRAs 

The detailed development of orthonormal wavelet bases and multiresolution analyses (MRAs) in Chap- 

ter 3 will be summarized here for convenience. Recall that in an orthonormal MRA, a signal, f(x) € 

V-i, is decomposed into a series of detail functions, {gj{x)} j = {0,1,..., J}, and a residual low 

resolution approximation, fj(x), such that 

j 

f(x) = Y^gj(x)+fj(x). (5.6) 
j=o 

The decomposition is done by projecting P~l{x) onto two orthogonal subspaces, Vj and Wj, where 

Vj-i = Vj+Wj and (+) is the direct sum operator. The projection produces ft(x) £ Vj, a low res- 

olution approximation of f(x), and gj(x) e Wj, the detail lost in going from fj~l(x) to fi{x). The 

orthonormal bases of Wj and Vj are given by ^k = 2-^2iP(2^x - k) and <f>jtk = 2^l24>{2^x - k), 

respectively; ip(x) is the mother wavelet and </>(x) is the scaling function where 

/ ip(x)dx = 0 4=> *(0) = 0 (5.7) 

/ (j)(x)dx = 1 <^=> $(0) = 1 (5.8) 

and $(w) and *(w) are the Fourier Transform of <p(x) and ij){x), respectively. The projection equations 

are given as 
oo 

9i(x)=   Yl  42~h(2-jx-k) (5.9) 
k=—oo 

dk = (f3-l(x)^j,k) (5.10) 
oo 

/j(^)=   E   42"^(2"J*-fc) (5.11) 
fc= —00 
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4 = (fj-i(x),<t>j,k) (5.12) 

where d{ and c£ are the projection coefficients and (•, •) is the I? inner product. The nested sequence 

of subspaces, {Vj}, constitutes the multiresolution analysis. 

In order for the MRA to be orthonormal: 1) i/;jjk and cj>jtk must be orthonormal bases of Wj and Vj, 

respectively; 2) Wj 1 Wk, for; / k; and 3) Wj _L Vj, which leads to the following conditions on V 

and 0 [10] [20]: 

{<t>j,k,(f>j,m) = Sk,m (5.13) 

(<ßj,k,1pj,m}=0 (5.14) 

(V^fc» ^,m) = <fy,< • **,«»■ (5.15) 

The Fourier transform of (5.13) gives the Poisson summation, which is 1 for all w when the integer trans- 

lates of (f>(x) are orthonormal, 
00 

Y,   |$(o; + 27rm)|2 = l. (5.16) 
m=—oo 

Since <p(x) eV0c V_i and ip(x) G WQ C V-i, they can be represented as a linear combination of the 

basis of V-\\ 
oo 

<ß(x) = 2   Yl   hk<f>{2x-k) (5.17) 
k=—oo 

oo 

^0*0 = 2   5^  gk<p{2x-k) (5.18) 
fe= —00 

given in the frequency domain by 

*M="g)*(f) (5.19) 

*M = G (!) * (^ . (5.20) 

For orthonormal MRAs, the sequences hk and ^ in (5.17) and (5.18) are quadrature mirror niters (QMF) 

and have the following properties [23] [35]: 

|#M|2 + |G(a,)|2 = l (5.21) 

H(LJ)H(LJ + TT) + G{w)G(u + TT) = 0 (5.22) 

where H(u) and G(u) are the Fourier transforms of hk and gk, respectively, and are therefore both 2n- 

periodic. 
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5.3    Matching a Wavelet to a Signal 

5.3.1    Finding the scaling function from a wavelet 

Before developing the algorithm for finding the matched wavelet, a means of deriving the scaling func- 

tion from the mother wavelet must be derived [7, 8]. Finding the wavelet from the scaling function is 

simple using (5.18), however, it is not invertible. In order to derive an expression for |$| in terms of |*|, 

the following conditions are required [20]: 

gk = (-l)%-fc 

*(0) = 1 

(5.23) 

(5.24) 

(5.25) 

(5.26) </>{x) = 2   J2   hk<p(2x-k). 
k=—oo 

Condition (5.23) simply guarantees (5.22) to be satisfied always. Conditions (5.24)-(5.26) are required 

for (p(x) to generate an orthonormal MRA, thereby satisfying equations (5.13)-(5.22)[20]. 

Substituting (5.19) and (5.20) into (5.21) gives a relationship between |$(w)| and *(w)| in the con- 

text of an MRA [13]: 

$(u;)|2 = |#(2u;)|2 + |$(2w)f (5.27) 

Since the matching algorithm is performed on sampled data (in the frequency domain), there is a need to 

develop an equation for finding the sampled scaling function spectrum from the sampled wavelet spec- 

trum. 

Theorem 4 (Finding |$(fc)| from |tf (fc)|) In an orthonormal MRA, let $(nAw) and #(nAw) be the 

sampled scaling function and wavelet spectra, respectively, with sample spacing Au = 7r/2£. Any sam- 

ple of \$\ at u = mr/2e can be expressed by the following recursive equation: 

1 2* 
$ 

7rn 
2p^ + * 

7T71 
for nf 0 

which leads to the following closed form solution 

$ 
■nn 

p=0 *(f) for n^O. 

(5.28) 

(5.29) 
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Furthermore, (5.28) implies 

|tf(47rfc)|=0       forallkeZ. (5.30) 

|$(27T7l)| = < (5.32) 

Proof. Substituting u = im in (5.27) gives 

|$(7rn)|2 = |$(27rn)|2 + |*(27m)|2. (5.31) 

However, since £ |*(w + 27rn)|2 = 1 for orthonormal MRAs, and $(0) = 1, and tf (0) = 0 then 

1   for n = 0 

0   forn^O 

and (5.31) can be rewritten as 

1 for n = 0 
|$(7rn)| = < 

( |*(27rn)|   forn/0 

So, at integer multiples of n, |$| can be computed directly from values of |*|. Furthermore, (5.32) and 

(5.33) imply |tf (47rn)| = 0. Substituting for a; = nn/2 in (5.27) gives 

(5.33) 

$ 
wn 

= |$(7rn)|2 + |*(7rn)|2       forn/0. (5.34) 

At integer multiples of n/2, | $ | can be computed from values of | * | and the previously calculated values 

of |$|. Repeated substitutions leads to the following closed form solution: 

1 2* = E 
p=0 

tf 
27rn 
2P 

forn^O. (5.35) 

If |tf (fcAw<p)| has a sample spacing of Aw* = 2TT/2
M

, then by (5.29), |$(JfeAuty)| has a minimum 

sample spacing of Aw* = 2?r/2M+1 and t can take on values of 

= {0,1,...,M}. (5.36) 

D 

Interestingly, as £ ->• oo, equation (5.29) approaches Daubechies' result for continuous u [13], 

00 

l*M|2 = E l*(2p+1^)|2       for a; # 0. (5.37) 
p=0 

However, the beauty of (5.29) over (5.37) is that the discrete form yields an exact result for a discrete 

spectrum with a finite number of recursive steps. 
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5.3.2    Properties of the wavelet spectrum amplitude 

The next step is to derive constraints on |*| that are necessary and sufficient to guarantee <f>jtk is an 

orthonormal basis of Vj[7, 8]. 

Theorem 5 (Guaranteeing Orthonormality) The following condition on | *(w) | is both necessary and 

sufficient to guarantee that {<f>jtk, </>jtm) = <^m, where <j>jjk is derived from |$(w)|: 

£   £|*((2"+W27rm))|   =1. (5.38) _ jM> [(21,-riu + 2nm)) * 
m=-oo n=0 

Proof See Appendix A. 

While (5.29) and (5.38) provide a method for deriving an orthonormal function, <j>{x), from a given 

wavelet, there is no guarantee that <f>{x) generates an MRA[13][24]. The only condition remaining to be 

incorporated is the 2-scale relation in (5.26) [8]. In order for </>(x) to generate an MRA, it must satisfy 

its 2-scale relation [12][13][24], which given in the frequency domain is 

*M =*(!)* (|) • (5.39) 

Repeated substitution of this recursive equation gives 

•<»> = *(5)*(l) *(!)■•• 

where H{u) is the Fourier transform of the discrete signal, hk, and is therefore, 27r-periodic. Equation 

(5.40) indicates that there must be a certain structure in <f> in order for it to be a scaling function. In- 

corporating the infinite product into the conditions developed thus far would be very difficult. A simple 

way to guarantee that (5.40) is satisfied is to assume $(w) is bandlimited [8]. However, one is not free 

to choose any bandlimits. 

Theorem 6 (Bandlimited $) In a multiresolution analysis, the spectrum of a bandlimited scaling func- 

tion, ${UJ), has maximum support given by 

M < y- (5.41) 
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Proof. See Appendix B. 

From (5.20), it is clear that a bandlimited scaling function that generates an orthonormal MRA gives rise 

to a bandlimited wavelet. 

Corollary 7 (Bandlimited *) In an orthonormal MRA with a bandlimited scaling function, the corre- 

sponding orthonormal wavelet has a maximum bandlimit of 

y < M < y- (5.42) 

Proof. See Appendix C. 

It is interesting to note that the bandlimits derived above are identical to those of Meyer's wavelet[26]. 

However, what has been derived here are the maximum bandlimits for not only Meyer's wavelet but any 

bandlimited, orthonormal wavelet. 

In order to complete the groundwork for the spectrum amplitude matching algorithm, a set of equa- 

tions for sampled spectra, similar to Theorem 5 and Corollary 7 is needed. 

Theorem 8 (Guaranteeing an Orthonormal MRA) LetY{k) = \$(kAoj)\2, k € Z, where Au = 

2TT/2
M

. The necessary and sufficient condition on Y to guarantee that |$(n)|, found in Theorem 4, 

generates an orthonormal MRA is given as follows,: 

E   Ey^ + 2Wm)Ul (5.43) 
m=-oop=0       \ / 

-iM-1 2M-73< ~(n + 2^m) <2M+2/3       £={0,1,...,M}. (5.44) 

Proof. See Appendix D. 

Because the wavelets being designed are assumed to be real, the magnitude of the wavelet spectrum 

is even, |*(w)| = |#(-w)|, and only the spectra for positive frequency indices, k, in the passband need 

be matched. The conditions in Theorem 8 for k > 0 generate a set of L linear equality constraints in 

y(fc)oftheform 
L 

J2<*ikY(k) = l       forfe = {r2M/3l,...,L2M+73j} (5.45) 
i=l 
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where a^ € {0,1,2}. Condition (5.45) can be expressed in vector notation as 

AY = 1 (5.46) 

where A is a L x 2M matrix given by 

A = {aii€{0,l,2};i = l,...,L;j = l,...,2M} (5.47) 

and 1 is a L x 1 vector given by 

1T = {1    1    ...     1}. (5.48) 

5.3.3   Matching Spectrum Amplitudes 

By virtue of the limits given in (5.42), the desired signal must be dilated in such a way that the energy 

in this passband is a maximum. This dilated spectrum, F(u), is the starting point for the matching al- 

gorithm. 

Theorem 9 (Matched Wavelet Amplitude) Let W and Y be vectors containing the samples of 

\F(kAuj)\2 and |*(A;Aa;)|2, respectively, in the passband: 

W = {\F(kAu;)\2; k = |2M/3J ,..., |_2M+2/3j } (5.49) 

Y = {\V(kAu)\2;k= [2M/3~|,...,[2M+2/3J} (5.50) 

where F(u) is the spectrum of the dilated signal being matched and *(w) is the matched wavelet spec- 

trum. If the error to be minimized is given by 

(IW-Yf(lW-Y) 
E~ T^W  (5,51) 

then the optimal wavelet power spectrum is given by the following expression 

Y = -W + AT(AAT)-1(l-iAW) (5.52) 

where 

_ lr(AAT)~1AW 
a~    ir(AAr)-ii (5-53) 
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and (AAT) is full rank. The match error is given by 

(l-iAWf(AAy(l-|AW) 

The resultant wavelet is orthonormal, and the scaling function it generates by way of (5.29) generates 

an orthonormal MRA. 

Proof. See Appendix E. 

Notice that the error, E, in (5.54) has the form of a Mahalonobis distance, where (WrW/o2)AAT acts 

like a covariance matrix [28]. This implies that the solution is "closest" to the desired signal spectrum 

where the distance measure is given in (5.51). The error in the match is a function of the deviation, or 

distance, of AW from 1. If AW is already 1, then the Poisson summation of F(u) is 1, f(x) is an 

orthonormal wavelet and (f>(x), calculated in (5.29), generates an orthonormal MRA. As F(UJ) moves 

away from being orthonormal, AW moves away from 1 and the error of the match increases. However, 

the resultant wavelet is still the closest [minimum distance as defined by (5.51)] orthonormal wavelet to 

/(*)■ 

Note: This amplitude matching algorithm produces a sampled wavelet that in the discrete domain 

satisfies all the properties of an orthonormal wavelet. While the Poisson summation for the resultant 

scaling function and wavelet are shown to be 1 at the samples ofu, there can be nothing said about the 

values of the Poisson summation between the discrete samples. Therefore, the resultant wavelet spec- 

trum from Theorem 9 is a discrete approximation to a continuous orthonormal wavelet 

The first half of the problem posed by (5.5) has been solved, that of finding the optimal wavelet 

spectrum amplitude with respect to the input spectrum. The next two sections develop the algorithm for 

matching the wavelet phase to that of the desired signal. 

5.3.4   Properties of the wavelet spectrum phase 

It would be convenient to simply set the phase of # to the phase of the desired signal spectrum, F, 

thereby cancelling the complex exponentials in (5.5). However, just as in the previous section where 

it was shown that \I> has specific constraints on its amplitude, here it will be shown that $ has specific 
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constraints on the structure of its phase as well [8]. By repeated substitutions of the equations in (5.19) 

and (5.20) and the Fourier Transform of (5.23), G(w) = e^H(u + rr), one gets the following infinite 

products [10][12][23], 
oo ,        . 

*M = II * (£) (5.55) 
m=l       VZ    ' 

•M-«^f^Jfi*(£) (5.56, 
where #(u;) is 27r-periodic. Taking the phase of both sides gives 

ö*M=E^(^j (5.57) 
m=l VZ    / 

^ = -|-^(l+') + E^(^) (5-58) 

where 0*. 0*, and 0# are the phases of $, *, and tf, respectively, and 6H (u) is 27r-periodic. The deriva- 

tives of (5.57) and (5.58) give the negative of their group delays. 

00 . 

A.M = £ 2-A (£) (5.59) 

A.M = -| - |A (I + ,) + £ 2-A (^) (5.60) 

where A*(w) = d9*{u)/du and A* = d6v(u)/dü>, and A(w) - deH(u)/du is 27r-periodic. Equation 

(5.60) can be simplified further by letting T9(u) = A* + 1/2 so that 

r.M = -|A(| + .) + f 2-A(^). (5.61) 

The wavelet's group delay, r*(w), will be matched to the group delay of the desired signal, TF(u). 

Before proceeding, it is important to note some of the properties of the group delays of *, * and H. 

Theorem 10 (Properties of A», A* and A) Let K^) = de*(u)/du; and A»(w) = dß9(u,)/du>, 

where 0*{u,)and8v(u) are the phase functions of$(üj)and*(u;), respectively. Let X(u) = d8H{u)/duj 

where 0H(u) is the ^-periodic phase ofH(u). Then A*(W), A*(u,) andX(u) have the following prop- 

erties: 

A*(w) = A*(-w) (5.62) 
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Af,(w)=A*(-w) (5.63) 

A(w) = A(-w) (5.64) 

/oo 1      /'7r _ _ 
A$(u;)dü; = — /    A(w)rfcj = A    w/zere Ael (5.65) 

/•oo i 

/     A*(w)dw = -- (5.66) 
J—oo £ 

and therefore, 
/oo 

r*(u;)dw = 0. (5.67) 
-00 

Proof. See Appendix F. 

The mean group delay of a signal provides information about the translation properities ofthat signal. 

For instance, the mean group delay of H, X, can take on values of X = ±m for m 6 Z, since hk can only 

shift in unit increments. Likewise, <j)(x) can only shift by unit increments, since its mean group delay is 

also A. However, ip(x) is fixed on the z-axis since its mean group delay is a constant and independent 

of A, that is, shifts in hk. These same shifting relationships between <f>(x) and ip{x) can be derived from 

(5.17) and (5.18). 

Matching the group delay of a desired signal to the group delay of a wavelet given in (5.61) cannot 

be done in the same manner as the amplitude matching since there are additional periodicity constraints 

on X(UJ). Furthermore, there is still the problem of finding the phase of $ from the phase of *. To solve 

both problems, one period of A(w) is modeled as a polynomial of order R [8]. Because X(u) is an even 

function (Theorem 10), the polynomial has only even exponents 

Ä/2 

^r(w) = £cro;2rn(^) (5.68) 

where cr are the coefficients of the polynomial and U(u) is the "rect" function defined as 

n(w) = < 

Now express X(co) as 

1    -i <UJ< i 
(5.69) 

0   elsewhere. 

A(w)    =     ]T   Ar(o;-27rA:) 
k=—oo 
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oo     R/2 _    , 

=      £   E^-2nkrU(^^). (5.70) 
fc=-oor=0 

Like the amplitude matching algorithm, the phase matching algorithm is developed for discrete samples 

of the spectrum. Let Aw = 2ir/T, and N be the number of samples in F(nAu). Equation (5.70) can 

be rewritten in discrete form as 

A(n) = £cr    £   {n-kTriiC-^) (5.71) 
r=0      k=-P/2 

where P = iV/T is the number of periods over N points and -JV/2 < n < AT/2. The discrete form for 

A(n) can now be written in vector notation as 

A = Be (5.72) 

where A is a iV x 1 vector, B is a N x (R/2 + 1) matrix and c is a (R/2 + 1) x 1 vector. The elements 

of B are given as 

k=-P/2 

Substituting (5.72) into (5.59)-(5.61) gives a matrix equation for A$, A*, r*, 

(5.73) 

and 

where 

and 

A$ = D$c (5.74) 

ALJ 
A* = ——+ D,j,c (5.75) 

I* = D*c (5.76) 

D* = £ 2-mBx (5.77) 
m=l 

i oo 

D* = --B^r + £ 2—B^ (5.78) 
2    *1r      ^■ -     ~5* 

m=2 

and the elements of B s+r and B _a_ are given in (5.73) where n = (<? + T)/2 and n = g/2m, respec- 

tively. 
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5.3.5    Matching Spectrum Phase 

In this section, the expression for Ty will be derived such that it is closest to the desired signal's group 

delay, I>, in a least squares sense and yet has the structure of (5.76) and (5.78). Let 7 be the unweighted 

error to be minimized, 
N/2-1 

7 =    £   (rF(n)-r^(n))2. (5.79) 
71=-N/2 

Since the wavelet phase need only match that of the desired signal in the passband, weight the error 

function by a normalized weighting function. Let ft (n) = Y(n)/Y,Y(n), where Y(n) are the elements 

of Y derived in Theorem 9. The weighted error function becomes 

jv/2-1 

7n   =      £    [ft(n)(rF(n)-r*(n))]2 

n=-N/2 

N/2-1 

=    £ 
n=-N/2 

Ä/2 

ft(n)(r>(n) -J2°rdn,r) 
r=0 

(5.80) 

where {dn,r} are the elements of Dq, in (5.78). Rewriting (5.80) in vector notation gives 

7 = (f F - D*c)r(f F - Dvpc) (5.81) 

where the elements of f F are the non-zero values of {ft(n)I>(n)} and the elements of D# are the 

corresponding non-zero values of {ft(n)d„,r}. The vector, c, which minimizes 7 is found by setting 

Vc7 = 0, giving 

c = (DIB^DITF (5.82) 

where D^D* is full rank. It follows that the group delay of the wavelet can be found by substituting 

(5.82) into (5.76), 

T* = Dvpc. (5.83) 

Since c in (5.82) gives the best estimate of c, it can be substituted into (5.72), (5.75) and (5.74) to cal- 

culate the best estimates of A, Ay and A$, 

A = Be (5.84) 

A* = (Dvpc - D^c) - -y (5.85) 
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A$ = D$c - D$c (5.86) 

where D*c and D$c are the means of D*c and D$c, respectively. The means in (5.85) and (5.86) are 

subtracted so that A* and A$ have the properties of Theorem 10. Both A* and A$ can be summed to 

obtain the discrete phases of $ and \& that when combined with the magnitudes from Theorem 9 give 

the full estimate of $(nAw) and $(nAw) which satisfy all conditions for an orthonormal MRA. The 

QMF filters, h and g, corresponding to the matched wavelet and its scaling function can be found using 

(5.19) and (5.20) and the inverse Fourier Transform. A flow chart of the complete algorithm, including 

both the amplitude and phase matching algorithms, is given in Figure 5.1. 

5.4   Generating Matched Wavelet Frames 

The wavelet design algorithm of Section 5.3 is based on the conditions for an orthonormal MRA and 

as a result, finds wavelets such that their associated scaling functions generate an orthonormal MRA. 

The condition in Section 5.3 that guarantees an MRA is the bandlimit condition on $(w) given in Theo- 

rem 6, which leads to the the bandlimit conditions on $(w) of Corollary 7. It is important to note that the 

matching algorithm given in Sections 5.3.3-5.3.5 does not depend on the specific bandlimits, but only 

the fact that they exist (that ip(x) is bandlimited). 

This section shows that if the bandlimits of the wavelet spectrum are expanded beyond that of Corol- 

lary 7 and if b € *R, then the matching algorithm generates a dyadic wavelet. It will also be shown that if 

b = nb0, that is, sampled with sample spacing 60, then the resultant wavelet generates a frame of L2(!R) 

and there is redundancy in the decomposition of the desired signal using the matched wavelet. 

Theorem 11 (Matched Dyadic Wavelet) Let F{LJ) be the spectrum of an input signal. Let %{<jj) be 

the spectrum ofa bandlimited wavelet such that $(UJ) / 0 for 2tra < \u\ < 2nß and a < 1/3, 

ß > 4/3. Furthermore, let W and Y be vectors containing the samples of\F{kAu)\2 and |*(/CACJ)|
2
, 

respectively, in the passband: 

W = {\F(kAu;)\2; k = \2Ma] ,..., [2Mß\ } (5.87) 

Y = {MkAu)\2; k=\2M
a],...,[2Mß\} . (5.88) 
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Desired Signal 

f(x)=*F(co) 

Calculate 

Calculate FVn) 

= FD(n)/IFD(n)l 
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Weight D^&TF by Y 

= DVFF 

Calculate c 

Calculate 

r^Dyc-Dyc-Aco/l 

r9=D,pC-D9c 

Set Parameters 

Aco, Ax, N 

Sample F(co) 

=F(nAco/a) 

Extract W=IF(kA(0)|2 
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a= 

Calculate 
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T
)-'1 

Match Amplitudes 
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a 
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10(^)12= 2Y(M 
2i        P=o 2P 

Calculate 

ev(n)=rv(n)+rv(n-l) 
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V(x)=3-i[V(n)] 

(p(x)=3-'[*(n)] 
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*(n)=|0(n)|e M"' 

Figure 5.1: Algorithm Flow Chart 
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Then the power spectrum of the optimal matched wavelet is calculated using the algorithm in (5.51) 

(5.54) of Theorem 9. Furthermore, the resultant wavelet, given by, 

V(kAu) = y/Y(kjeie^kA^ 

where 0F(u) is the phase ofF(uj), is a dyadic wavelet satisfying the stability condition, 

°° 2 
oo 

(5.89) 

(5.90) 
3=-oo 

and A = B = 1. 

Proof 

(5-91) 

While $(u) does not satisfy the bandlimits of Theorem 7, it does satisfy (5.37) given in discrete form 

in (5.35), where $(w) is the Fourier Transform of some function, cj){x) (no longer a scaling function), 

and as specified, $(0) = 1. Substituting CJ = £/2* in (5.37) gives 

*(!)f = EK^-'Of 
oo 

=   £ K*0I ■ 
j=i-e 

Taking the limit of both sides as £ ->• oo gives 

^KDf =  t |*(n)f 
j=-oo 

|$(0)|2   = 

1 = 

which satisfies the stability condition, 

oo 

0<A<   J2   |* (2^)1   ^B<°° 
j=-oo 

where./! = B = l.D 

It is worth noting that while the matched wavelet derived with Theorem 11 does not have an associated 

scaling function and is not associated with an MRA, it still must satisfy its Poisson summation. There- 

fore, integer translates of the matched dyadic wavelets are orthonormal. The violation of the MRA con- 

struct is due to the dyadic wavelets being non-orthonormal with wavelets on a different scale, that is, 

(V>j,fc, ll>l,m) = Pj,i ■ k,m (5.94) 

(5.92) 

(5.93) 
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where pjj£ ^ Sjtl. 

The algorithm in this theorem is identical to that of Theorem 9 with two exceptions: 1) the bandlim- 

its on *(w) exceed those required by Theorem 7; and 2) the phase of the resultant wavelet is simply 

the phase of the desired signal. When the bandlimits are constrained to those given in Theorem 7, the 

resultant wavelet from the amplitude matching algorithm is an orthonormal wavelet whose associated 

scaling function generates an orthonormal MRA. If the bandlimits exceed those of Theorem 7, then the 

matched wavelet satisfies the stability condition (5.90) and is therefore a dyadic wavelet. Because the 

resultant wavelet has no associated scaling function, it does not have to exhibit the phase structure re- 

quired of wavelets in an orthonormal MRA and can therefore, be any function. In order to maximize the 

matched filter output, the phase of the wavelet is set to that of the desired signal. 

Decomposition/reconstruction of a signal using a dyadic wavelet requires the shift paramter, b, to 

be continuous. In practice, b is discrete. Kaiser [19] (Theorem 6.1) proves that bandlimited wavelets, 

critically sampled in b generate frames of L2(5R). 

Theorem 12 (Bandlimited Wavelets and Frames) Letip{x) be a real valued, bandlimited wavelet and 

*(£) be its Fourier Transform. Then the family of wavelets, 

ipb0,j,n = 2~l2^{2~jx-nb0) .(5.95) 

is a frame ofL2 (3?) where b0 is the sample rate parameter that satisfies the Nyquist criteria. The wavelet 

transform is given by 

Wf(2>,n2?bo)   =   </,Vw> 

f°° -i 
=    /     f(x)2  2^,(2 Jx-nbo)dx. (5.96) 

J — OO 

The Inverse Wavelet Transform is given by 

f(x) = b0 £ J2 Wf{2?,n2ibo)2-ii$ {2^x - nb0) ■     (5.97) 
3     n 

where ip(x) is the dual ofip(x) and its Fourier Transform is given by 

*^ 
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and 

0<A<J2\y (2^) |2 < B < 00. (5.99) 

Proof 

Let vHx) be a real-valued, bandlimited wavelet, then it must satisfy (3.6)-(3.9). Because #(£) has finite 

support in £, the right side of (3.9), where a = 2j, can be represented by its Fourier series expansion, 

2i^¥l)F(0 = Vb0 E cn(j)e-i2^jbo (5 100) 
n 

where 

/oo ■  
F(£)22tf(2^y2^n2J6°^ 

-co 

=   WX^'.n^'fco) (5.101) 

which can be shown by letting a = 2? and b = n2^>b0 in (3.8). Substituting (5.101) into (5.100) gives 

2*tt(2J£)F(£) = 2^o E Wf(2i,n2ib0)e-
i27rSn2Jb°. (5.102) 

n 

Multiplying both sides by 2_J/2#(2J£) and summing over; gives 

E I* (2je)|2F(0 = 60 EE W7(2J',n2»'6o)22* (2^) e-^
n2,'fco. (5.103) 

3 3    « 

Again, let Y(£) = £ • |*(2^)|2 where 0 < A < Y(£) < B < 00, then 

^(0    =   &oEE Wf(2^n2^b0)22Y-1(O^ ftt) e"^"2^0 

j    n 

=   &oEElf/(2i.'l2iM2^(n)e-i2^t». (5.104) 

Taking the inverse Fourier Transform of (5.104) gives the expression for the inverse Wavelet Transform 

with discrete scale and shift, 

/Or) = 60 EE Wf(2i,n2ib0)2-H (2~'x - nb0) (5.105) 
3    n 

where 

D 
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Chapter 6 

Examples 

In this chapter, several examples are given that demonstrate the performance of both the orthonormal 

and dyadic wavelet matching algorithms. 

6.1    Orthonormal Wavelets 

The performance of both the magnitude and phase matching algorithms will be demonstrated with sev- 

eral examples. In each of the following examples, N = 512, and Aw = 27r/16 so that M = 4. In 

each of the figures shown, the input signal is a dotted line and the matched signal is a solid line. With 

M = 4, the non-zero frequency indices in (5.45) are k = {6,7,..., 21}. The equality constraints in 

(5.43) and (5.44) of Theorem 8 generate L = 11 equations and 16 unknowns represented by the A ma- 

trix in Figure 6.1. Recall that (5.43) was derived by constructing |$(fcAw)|2 from the sum of repeated 

dilations \ty(kAu)\2then replicating that sum every 27r and summing giving the Poisson summation for 

$, which should be 1 everywhere. This process is illustrated in Figure 6.2, taking into account the ban- 

dlimits of (5.44) and solving for |$(fcAw/2)|2 instead of |$(fcAw)|2. Dilating |#(A;Au>/2)|2 gives back 

\^(kAu))\2 which is the first row of Figure 6.2. Dilating again produces the second row and so on. The 

pattern exhibited in the first 5 rows of Figure 6.2 exist for negative frequency indices as well. Now, 

replicating that structure by A-K (since we have just constructed |$(fcAo;/2)|2) is done by shifting and 

centering it about k = 32, since Aw = n/8, which produces the structure to the lower right of Figure 6.2. 
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0001000000001000 

0000100000000010 

0000010000000001 

0000001000000010 

0000000100000100 

0000000010001000 

0000000001010000 

0000000000200000 

Figure 6.1: Constraint Matrix - A for 2TT/3 < w < 8ir/3 

These values were the negative frequency values of the original structure. The positive frequency values 

reside on the opposite side of k - 32. Replicating any further in either the positive or negative direction 

would not produce any additional overlap. Therefore, the complete, unique set of 11 independent equa- 

tions (enclosed in the dotted box in Figure 6.2) can now be obtained from columns k = 6,..., 16, by 

adding columnwise and remembering that the sum for any column must be 1. The coefficients of these 

11 equations, 16 unknowns are represented in the condition matrix A. 

6.1.1    Meyer's Wavelet 

Meyer's wavelet is a bandlimited wavelet that forms an orthonormal basis of L2(U). If it is used as the 

desired signal, the matching algorithm should produce Meyer's wavelet exactly. Since the wavelet is real 

and symmetric, there is no need to match the phase. Meyer's wavelet, shown in Figure 6.3, is defined 

in the frequency domain as [10, 13]: 

|*mM| = < 

2TT u < 4F or U > 2* 8TT 

¥ < M < f sin ft, (t1-!) 

, cos ft, (2£L - l)    f <H< 

(6.1) 

M. 
3 
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6 8 10 

+ + + 

8 12 16 20 

+ 

16 

fö 7 8 9 10 11 12 13 14 15 16,17 18 19 20 21 
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20 16 12 8 
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16 

11111     1111     111    111     lllll    11       111111111 

Figure 6.2: Construction of the constraint matrix A 
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where 

0 7<0 

v(l) = {  7   0 < 7 < 1   • (6.2) 

1 7> 1 

The matched wavelet spectrum in the passband is shown in Figure 6.4. The scaling parameter, a, and 

Figure 6.3: Meyer's wavelet 

the match error were found to be 1 and 0, respectively, since AW = 1 in (5.53). The scaling function 

associated with Meyer's wavelet, calculated using (5.35) is shown in Figure 6.5. 
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Figure 6.4: Amplitude Match in the passband - Meyer 

Figure 6.5: Meyer's scaling function 
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6.1.2   Gabor's Wavelet 

Gabor's or Morlet's wavelet is also real and symmetric, but does not generate an orthonormal basis of 

L2(!R). Gabor's wavelet is a modulated gaussian given by [13]: 

/G(X) = Ke(«) COS(WQX) (6.3) 

and in the frequency domain as 

*(w) = Ka \e-«("-"o? + e-*{u+m? (6.4) 

The parameters, K, a, and u0 were chosen so that ||^G(Z)|| = 1 and *G(W) was centered in the pass- 

band of the matching algorithm. Figure 6.6 shows the Gabor wavelet and Figure 6.7 shows its frequency 

spectrum along with its Poisson summation.  The Gabor wavelet is clearly not orthonormal. Figure 6.8 

Figure 6.6: Gabor's wavelet 

shows the results of the amplitude match in the passband. The scaling parameter, a = 0.9552 and the 

match error was 0.0179. The resultant wavelet and scaling function spectra with their Poisson summa- 

tions are shown in Figures 6.9 and 6.10, respectively. They are both orthonormal. The matched wavelet 

and the desired signal are shown in Figure 6.11 and the corresponding scaling function in Figure 6.12. 
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Figure 6.7: Gabor's spectrum and poisson summation 

Figure 6.8: Amplitude match in the passband - Gabor's wavelet 
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Figure 6.9: Matched wavelet spectrum and'poisson summation - Gabor 

Figure 6.10: Scaling function spectrum and poisson summation - Gabor 
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Figure 6.11: Matched wavelet vs Gabor's wavelet 

Figure 6.12: Scaling function - Gabor 
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6.1.3    Daubechies' D4 wavelet 

Daubechies' D4 wavelet and scaling function are shown in Figure 6.13. Let the desired signal be the D4 

V(x) 

A 
■ 

I 

V 

Figure 6.13: Daubechies' D4 Wavelet and Scaling Function 

W{n) = < (6.5) 

wavelet, given by fD(x). The desired signal power spectrum, {W(n)\n = -256,..., 255}, is given as 

\FD{nAu))\2   for|n| = {6,7,...,21} 

0 for|n|^{6,7,...,21} 

where FD (w) is the Fourier Transform of fD (x). The truncated spectrum is shown in Figure 6.14 along 

with its Poisson summation. Notice that the Poisson summation is no longer 1 everywhere, due to trun- 

cation. Y(k) is found using (5.52) and (5.53) where a = 0.9124 and W = {W{k)\k = 6,7,..., 21}. 

The results of the match in the passband are shown in Figure 6.15. The full matched wavelet spectrum is 

constructed by reflecting Y(k) onto the negative axis, and taking its square root. The matched wavelet 

spectrum and its Poisson summation are shown in Figure 6.16. The wavelet is clearly orthonormal. The 

scaling function magnitude spectrum is calculated using (5.28) and is shown in Figure 6.17 along with 

its Poisson summation. The scaling function is orthonormal as well. Because we have chosen the ban- 

dlimits of Theorem 7, we are guaranteed that the resultant scaling function generates an orthonormal 

MRA. If we were to stop here, we would have a symmetric wavelet that comes closest to fD(x) and its 



Figure 6.14: Truncated Spectrum and Poisson Summation - D4 

Figure 6.15: Amplitude Match in the passband - D4 
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Figure 6.16: Matched Wavelet Spectrum and Poisson Sum. - D4 

Figure 6.17: Scaling Function Spectrum and Poisson Sum. - D4 
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associated scaling function. The asymmetry in the D4 wavelet is caused by the structure in its phase. 

The first step in finding the matched phase is to find the group delay of the desired signal, AF, which is 

done using the following process: 

1. CalculateFe
D{nAu) = FD{nAu))/\FD{nAuj)\. 

2. Interpolate across samples of F^(UALJ) where \FD(nAw)| = 0. 

3. Ap = \AlFf)(nAu)\ where A1 is the first difference operator. 

Note: This procedure eliminates the need to unwrap 2ir phase jumps caused by the tan'1 operator. 

However, this procedure also generates a group delay that could have come from one of four phases, 

Op, -Op, Op + 7T, and -Op + n. The matched wavelet is calcluated for each of these possible phases 

and then the one closest to the desired signal is chosen. 

Next, the matrix D^ from (5.78) is calculated. In these examples, N = 512 and R = 16, mak- 

ing D* a 512 x 9 matrix. The polynomial coefficient vector, c, is calculated using (5.82) where D* 

and tp are weighted by the normalized matched spectrum, Y, calculated above. Figure 6.18 shows 

AF and A$. They match very closely since AF is the group delay of a known orthonormal wavelet 

Figure 6.18: Matched Wavelet Group Delay vs desired - D4 

and therefore must have the proper structure. The group delay of the scaling function, shown in Fig- 
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k h(k) k h(k) k h(k) 

-8 -0.0082 -2 -0.0055 3 -0.0407 

-7 0.0256 -1 0.3515 4 0.0338 

-6 -0.0085 0 0.5554 5 -0.0202 

-5 -0.0173 1 0.2281 6 -0.0037 

-4 0.0298 2 -0.0957 7 0.0253 

-3 -0.0322 

Table 6.1: h{k) for ip matched to fD 

ure 6.19 with the group delay of the D4 scaling function, is calculated using (5.77) and (5.86). The 

Figure 6.19: Scaling Function Group Delays: Derived vs Truth - D4 

matched wavelet and scaling function phase is found by integrating (or summing) Avp(n) and A$(n). 

The matched wavelet and its associated scaling function, shown in Figure 6.20, are each found by tak- 

ing the inverse Fourier Transform of their complex spectra. The inner product of fD with its matched 

wavelet, tp, gives {... 0.0082 - 0.0202 0.9963 0.0292 0.0072 ...}. The resultant QMF filters, h 

and g, are shown in Figure 6.21 and the middle 16 values of h are given in Table 6.1. 
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Figure 6.20: Matched Wavelet and Scaling Function vs desired - D4 

o.«) ^j-jm^aüL ^JUk^^Lan1Mr^,i0ji1^a^oniililL fln.nin,aTrji 

Figure 6.21: QMF filters g(k) and h(k) - D4 
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6.1.4    Transient signal 

The next example is a transient sinusoid given by the following equation 

fr(x) = xeax COS(2TT f0x)u(x) (6.6) 

where u(x) is the unit-step function. The transient signal in this example was constructed by setting a = 

2.0 and /0 = 0.8, and dilating it such that its spectrum, FT{u), had maximum energy in the passband, 

271-/3 < \u\ < 8n/3. Figure 6.22 shows the transient signal and Figure 6.23, its spectrum amplitude and 

Poisson summation.  The transient signal is clearly non-orthonormal. Following the same sequence of 

Figure 6.22: Transient Signal 

steps described above for the D4 wavelet, the asymmetric wavelet that best matches fT{x) is derived. 

Figure 6.24 shows the result of matching the wavelet in the positive passband, where a = 1.0348. The 

full matched wavelet and scaling function spectra along with their Poisson summations are shown in 

Figures 6.25 and 6.26. The group delays of the desired signal, AF, and the matched wavelet, A*, 

are shown in Figure 6.27. Since fT(x) is not a wavelet, its phase shouldn't have the required structure. 

However, notice that the matched wavelet group delay does have the required structure and matches the 

desired group delay very well in the passband. The matched wavelet and its associated scaling function 

are shown in Figures 6.28 and 6.29. The inner product of fT with its matched wavelet, ij) gives {...   - 
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Figure 6.23: Desired Signal Spectrum and Poisson Sum - transient 

Figure 6.24: Amplitude Match in the passband - transient 
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Figure 6.25: Matched Wavelet Spectrum and Poisson Sum - transient 

Figure 6.26: Scaling Function Spectrum and Poisson Sum - transient 
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Figure 6.27: Matched Wavelet Group Delay vs desired - transient 

Figure 6.28: Matched Wavelet vs desired signal - transient 
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Figure 6.29: Scaling Function - transient 

0.0062 -0.0015 0.9834 -0.0412 -0.0935 ...}. Eventhough fr is not bandlimited, its correlation 

with the matched wavelet still produces a value very near 1.0, with very little spread in translation. The 

resultant QMF filters, h and g, are shown in Figure 6.30 and the middle 16 values of the QMF filter, h, 

are given in Table 6.2. 
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Figure 6.30: QMF filters g(k) and h(k) - transient 

k h(k) k h(k) k h(k) 

-8 0.0087 -2 0.1152 3 0.0100 

-7 -0.0032 -1 0.4931 4 0.0326 

-6 -0.0078 0 0.4653 5 -0.0114 

-5 0.0284 1 0.0901 6 -0.0006 

-4 -0.0281 2 -0.0774 7 0.0078 

-3 -0.1088 

Table 6.2: h(k) for ip matched to fT 
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6.2   Dyadic Wavelets 

This section gives some examples of optimally matched dyadic wavelets using the algorithm in Theo- 

rem 11. For each example, TV = 512 and Aw = 2TT/16 so that M = 4 as in the previous section. The 

bandlimits will be^O < \u\ < 4?r which gives a constraint matrix, A, that is a 16 x 32 matrix shown in 

Figure 6.31. The frequency indices in (5.45) are k = {1,2,..., 32}. 
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Figure 6.31: Constraint Matrix - A for 0 < w < 47r 

6.2.1    Gabor's Wavelet 

Gabor's wavelet, fG(x), defined by (6.3), is dilated so that a maximum amount of its energy in the 

frequency domain is contained in the expanded passband represented by the constraint matrix, A (Fig- 

ure 6.31). The result of the amplitude match is shown in Figure 6.32. Notice that there were samples that 

were driven to 0 by the inequality constraint, Y(k) > 0. As the passband increases, the spectrum of the 

desired signal becomes closer to 0, and there is a higher chance that the optimal solution would drive 

the sample to be negative. The inequality constraint is invoked to set that value to 0, thereby making 

the solution sub-optimal. Because fG(x) is real and symmetric, there is no phase to apply to ip(x). The 

resultant dyadic wavelet is shown in Figure 6.33 along with fG(x). The excessive ringing at the edges 
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Figure 6.32: Amplitude Match in the extended passband - Gabor 
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Figure 6.33: Matched Dyadic Wavelet vs Gabor's wavelet 
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is due to the spikes in the spectrum match caused by the inequality constraints. Figure 6.34 shows the 

amplitude spectrum of the matched dyadic wavelet along with its Poisson summation. The algorithm of 

1.00 

0.80 . . 

0.60 

0.40 

0.20 

Figure 6.34: Matched Dyadic wavelet spectrum and poisson summation - Gabor 

Theorem 11, like Theorem 9 guarantees the Poisson summation of the resultant wavelet to be 1. This 

implies that integer translates of the matched dyadic wavelet is orthonormal! 

6.2.2   Daubechies' Wavelet 

Daubechies' wavelet, shown in Figure 6.13, is the last example for the dyadic matching algorithm. The 

algorithm should perform better than in Section 6.1 because the extended bandlimits should produce less 

truncation. Figure 6.35 shows the result of the amplitude match in the passband and Figure 6.36 shows 

the wavelet spectrum and Poisson summation, which is 1 everywhere, as expected. Figure 6.37 shows 

the resultant matched dyadic wavelet along with Daubechies' D4 wavelet. 
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Figure 6.36: Matched Dyadic wavelet spectrum and poisson summation - D4 
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Figure 6.37: Matched Dyadic Wavelet vs D4 wavelet 
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Chapter 7 

Applications to Image Object Detection 

In this chapter, the matched wavelet algorithm is used to detect and identify an object in an image. The 

approach does not use the 2-D Discrete Wavelet Transform because of its shift variance and lack of ro- 

tation sensitivity (see Chapter 3.8). Instead, the 2-dimensional object is transformed into a series of 1- 

dimensional vectors using the sampled Radon Transform [ 15]. The matched wavelets for each of the 1 -D 

vectors is calculated and used to detect the object, and determine the aspect ratio, scale, and angle of ro- 

tation. Further application of the matched wavelet algorithm on the object details provides additional 

feature vectors that can be used for more detailed identification. 

This chapter is divided into four sections, the first two provide background on the Radon Transform 

and image reconstruction using backprojection and the projection slice theorem. Section 7.3 contains 

an introduction to the Wavelet Radon Transform and Section 7.4 develops the detection algorithm and 

gives results. 

7.1    The Radon Transform 

The Radon Transform was developed by its namesake, Johann Radon, in his 1917 paper entitled "On 

the determination of functions from their integrals along certain manifolds" [29]. The Radon Transform 

allows one to represent a 2-dimensional function, f(x, y), by an infinite series of 1-dimensional projec- 
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tions that cover the x-y plane. The standard form of the Radon Transform is as follows: 

Qe{p) =nf= I f{x,y)da (7.1) 

where q is the Radon Transform of /, 11 is the Radon Transform operator, and L is the line defined by 

p = x cos 9 + y sin 9 (7.2) 

for p € *ft and 0 < 9 < n. As shown in Figure 7.1 the Radon Transform is formed by rotating the 

coordinate axis through some continuous angle, 9, and integrating along the new vertical axis (cr-axis). 

The resultant transform is a function of both the new horizontal axis, p, and the angle of rotation, 9. 

Using the coordinate transformation equations for a rotated coordinate frame gives the following form 

Object's Support 

qe(p) 

Figure 7.1: Projection geometry for tomographic processing 

of the Radon Transform, 

Qe (p)=fcf= / /(/9COS0-CTsin6>,psin0 + CTCOS0)G?(7. (7.3) 

Figure 7.2 shows an image of a 2-D rectangle function and its Radon Transform. Notice that at 0°, the 

Radon Transform is a "rect" function whose width is equal to the width of the rectangular object. Like- 
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wise, at 90°, the Radon Transform is a "rect" function whose width is the same as the height of the rect- 

angular object. The Radon Transform is taken for 0 < 9 < TT because the projections for n < 6 < 2n 

Figure 7.2: Radon Transform of a rectangle image 

contain redundant information. The symmetry relationship between projections taken from an angle 

0 < 9 < 7T and an angle rotated an additional n radians is given as 

qe+n{p) = qe{-p)- (7.4) 

This relationship can be seen graphically in Figure 7.1. A projection taken 180° from the angle shown 

will produce a projection that is simply flipped along its horizontal axis. 

When 9 is sampled with sample spacing A0, the resultant transform is referred to as the Sampled 

Radon Transform [15]. The Radon Transform in Figure 7.2 is actually a Sampled Radon Transform 

because it was constructed with A9 = 1°. 
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7.2   Image Reconstruction and Backprojection 

Although the basic formulas for inversion of the Radon Transform were worked out as early as 1917 

[29], very little if any effort was devoted to implementing the inversion in a practical situation prior to 

the pioneer work in radio astronomy by Bracewell [4] [ 15]. The practical problem with the inversion for- 

mulas derived by Radon is that they require f{x,y) to be a continuous function and the Radon Transform 

to be constructed from all lines in the x-y plane [15]. 

7.2.1    Reconstruction by direct Fourier Methods 

Bracewell [4] derived the relationship between the 2-D Fourier Transform of f(x, y) and the 1-D Fourier 

Transform of qe(p) with respect to p. The relationship is given as 

Fg (77, C)    =   Fg (u;x cos e + ojy sin 9,0) 

=   F(r]cos9 - (sm9,r]s'm9 + Ccos9) 
/oo 

qe(P)e-i2^dp (7.5) 
-00 

where rj and ( are the spatial frequency variables as shown in Figure 7.3, and Fg is F rotated through 

9. The result, later referred to as the Projection Slice Theorem, states that the 1-D Fourier Transform 

of the Radon Transform for a fixed 9 is equal to a slice through the 2-D Fourier Transform of f(x, y) 

at an angle 9 (Figure 7.3) [15]. Using the Projection Slice Theorem, one could approximate F{ux, uy) 

given enough projections by forming a superposition of the Fourier Transform of each projection in the 

Sampled Radon Transform [5], given as 

F(ux,Uy)   =1 £**o?) (7.6) 

where Fg. (??) is the Fourier Transform of the projection taken at 9 = 0, and 1 is an interpolation oper- 

ator that resamples the data onto a cartesian grid. However, in practice, there is a finite number of pro- 

jections and the sample spacing in the frequency domain is nonuniform, which causes spatially variant 

errors after interpolation. Several standard techniques have been developed to alleviate the non-uniform 
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,<p 

qe(p) 

F.T. 

Qe(ri) 

Figure 7.3: Projection Slice Theorem 

sampling problem. Bracewell and others, however, developed a space domain solution, called backpro- 

jection, that works around the non-uniform sample grid in the Fourier domain. 

7.2.2   Reconstruction by backprojection 

Instead of constructing F as in (7.6) and then taking the inverse Fourier Transform, one could take the 

inverse Fourier Transform of Fe. (77,0) first, and sum the results, given as 

qe{x cos0+ y sin 0)d6. (7.7) 

The inverse Fourier Transform of a slice in the frequency domain at angle, 9, is a 2-D "ridge" whose cross 

section through the angle 0 is f9(p) and whose values are constant perpendicular to its cross section [5], 

as shown in Figure 7.4. The inverse Fourier Transform of a slice is referred to as a backprojection, since 

it is a 1-D function smeared, or replicated back along its perpendicular axis. The superposition of all 

backprojections forms a layergram and gives a coarse approximation of the original function, f{x, y). 

However, the impulse response of the layergram is not a delta function. In fact, its transfer function 

converges to H(rj, 0) = l/v (polar notation) as A0 -> 0. Therefore, before taking the inverse Fourier 

Transform of the slice, it is necessary to multiply it by the ramp function, r(rj) = \v\, where -r)N < 
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Figure 7.4: Backprojection of ^(p) 

f] < VN and T]N is the Nyquist frequency. The complete modified or filtered backprojection algorithm 

for image reconstruction is shown in Figure 7.5. The algorithm developed over the next two sections 

builds off of and modifies the backprojection algorithm presented above. 

7.3   The Wavelet Radon Transform 

Let Figure 7.6 represent a typical collection geometry for the projection analysis described above. A 2-D 

image, / (x, y), is represented by 8 projections, denoted as q^p), taken at equal angle intervals, where the 

angle at which the projection is taken is 0t = (i - 1)A0, where A0 = ?r/8 and i = 1,2,..., 8. Taking 

the continuous wavelet transform (CWT) of each projection gives the Wavelet Radon Transform. Since 

in practice, the input signals are discrete signals, the CWT is approximated using matrix multiplication. 

Appendix G gives the specific implementation of the CWT on sampled data. Each projection can now be 

analyzed by way of its wavelet transform for object detection and identification. For example, assume 

a 512 x 512 image consists of a uniform background and a rectangular object of width 10 and height 30 

as shown in Figure 7.7. Figure 7.8 shows its 8 projections. The projections have different frequency 

content (some are wider, some are narrower), which can be determined by way of its Wavelet Radon 
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Figure 7.5: Image Reconstruction using the Backprojection Algorithm 

Figure 7.6: Geometry for the Wavelet Radon Transform 
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Figure 7.7: Image of a rectangular object 

Transform, shown in Figure 7.9. Let the wavelet transform of qt{p) be denoted as W*(a, 6), where a 

and b are the scale and shift parameters, respectively. In Figure 7.9, W*{a, b) is displayed at the top 

while W*(a, b) is at the bottom, and for each wavelet transform, scale increases downward. Notice that 

the peak in W*(a, b) occurs at very small scale and as i increases, the peak moves to larger scales until 

it resides at the maximum scale at i = 5 which corresponds to 90°. The trajectory of the peak contains 

information about the aspect ratio of the object and will be used in the next section as a feature vector 

for identifying objects in an image. 

The obvious skew in the CWTs in Figure 7.9 is due to the eiuJ/2 phase term that is required of an 

orthonormal wavelet (see Section 5.3.4). The phase term causes the wavelet to be centered about x = 

1/2 and as the wavelet is dilated, the location of its center shifts, which causes the skew in the wavelet 

tranform. 

Notice also in Figure 7.9 that at very small scales, the wavelet evokes a response from the edges of 

the rectangle functions in the projections. This is especially noticeable in projections 3-7. The response 
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Figure 7.8: Projections of rectangle image at 8 equally spaced angular intervals 
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Figure 7.9: Wavelet Radon Transform of rectangle image using the D4 wavelet 
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from each edge (which is high frequency content or small scale) moves toward the center as the scale 

increases until the two intersect at the peak of the wavelet transform. At this scale, the wavelet is matched 

to the scale of the entire object, not just the edges. Because the peak of the wavelet transform is important 

in analyzing the object, it is necessary that the peak be maximized, which can be done with the matched 

wavelet algorithm of Chapter 5. 

7.4   Matched Wavelets and Object Detection 

The Wavelet Radon Transform is a useful tool for analyzing objects in an image where rotation, scale, 

and position are unknown. As shown in Section 5.1, the wavelet transform is much like a matched filter 

and therefore, the response in the Wavelet Radon Transform is maximized when the wavelets match the 

projections under analysis. For that reason, the wavelet matching algorithm of Chapter 5 will be used to 

find the optimal wavelets for each projection of the image object. 

Because the optimal wavelets are bandlimited, they can match only one segment of a signal's fre- 

quency spectrum at any given time. The matching algorithm uses the maximum energy criterion for 

choosing which segment to match. This limitation is resolved by making multiple passes over the pro- 

jections. After each pass, a residual detail signal is created by taking the difference between the original 

projection and the detected signals. A second pass is executed with the residual detail signals as input. 

7.4.1    IVaining on a Known Object 

Given an input image containing a known object, it is necessary to train the detection algorithm on 

that given object. Figure 7.10 shows the training procedure. This training procedure provides a set of 

matched wavelets for two passes and a maximum scale vector that provides aspect ratio, location, and 

rotation information. Once these functions and parameter values are obtained, they can be used as truth 

data to detect and identify an unknown object. The following paragraphs provide the step by step pro- 

cedure for training the algorithm on a specific object. 
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Figure 7.10: Training Procedure for Object Detection 
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Training step 1 

The first step creates 8 1-D signals, qf{p) for i = {1,2,..., 8}, using the Sampled Radon Transform 

where A6 = n/8. The superscript on qf (p) indicates that these projections are the original projections 

that are input to the first pass of the detection algorithm. The training image is shown in Figure 7.11. It 
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Figure 7.11: Training image of fighter aircraft 

consists of a fighter aircraft against a uniform background. Its 8 projections are shown in Figure 7.12. 

Training step 2 

Each projection is input to the matched wavelet algorithm of Chapter 5 which creates a set of 8 matched 

wavelets, ^(p), where the superscript refers to pass 0. The first step of the matching algorithm dilates 

the signal such that there is a maximum amount of energy in the wavelet passband. Because the first pass 

will primarily find the low pass energy, the wavelet matching algorithm is set such that the passband is 

narrow, 27r/3 < \u\ < 87r/3, which are the bandlimits for orthonormal wavelets. Because the matched 

wavelets from pass 0 will be used to determine the rotation of the object, it is necessary that they be 

symmetric in order to handle the symmetry relationship given in (7.4). For this reason, the phase match- 

ing algorithm will not be used in order to guarantee symmetric matched wavelets. The resultant matched 
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Figure 7.12: Projections of fighter aircraft taken at 8 equally spaced angles 
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wavelets are shown in Figure 7.13 along with the dilated projections. Notice that although each matched 

Figure 7.13: Dilated projections and their associated matched wavelets - pass 0 

wavelet has zero mean, the matching algorithm found wavelets that behave like low pass filters, since 

only the main lobe of the wavelet overlays the projection. Furthermore, the matched wavelets for each 

projection are identical, since each is trying to detect the low frequency content. Therefore, the main 

lobe of each matched wavelet provides information about the position of each projection and hence, the 

object. A mask function, rrii(p), for each projection is created by truncating the matched wavelet out- 

side its main lobe and setting all non-zero values to 1. This mask function will be used later to filter out 

spurious data not coincident with the object. 
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Training step 3 

The next step is to take the Wavelet Radon Transform, shown in Figure 7.14, using the matched wavelets 

as the transform operators. As in Figure 7.9, the CWT of the projection at 0° is at the top and the scale 

Figure 7.14: Wavelet Radon Transform of jet aircraft projections - pass 0 

parameter, a, increases downward for each CWT. The horizontal axis is the shift parameter, b. 

Training step 4 

Information regarding the aspect ratio of the object can be extracted from the maximum scale vector, 

which consists of the scales at which the peak occurs in each CWT in the Wavelet Radon Transform, 

that is, 

am0x = {ainaxlWtia^b) > Wl
q(a,b),i €{1,2,...,8},    V(o,b) G 5R} (7.8) 
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ämni — (7.9) 

where W*(a, b) is the Wavelet Transform of projection qi{p). Because of the nature of the Wavelet 

Radon Transform, amax is scale and shift invariant and rotation invariant to 8 levels. The maximum 

scale vector, amox, for the fighter aircraft is 

"" 28 

32 

39 

42 

43 

41 

37 

31 

Notice that the scale moves from low to high and back to low again. That is because the aircraft is longer 

than it is wide. Projection 0 (0°) represents the width of the aircraft and projection 5 (90°) represents 

the length. Because the width is smaller than the length, the match in the CWT represented by the peak 

will occur at lower a. 

At this point, the benefits of using matched wavelets over standard, pre-designed wavelets can be 

demonstrated. The peak values from the Wavelet Radon Transform (WRT) found in Training step 3 

were compared to those obtained from the WRT of the same projections, but using Meyer's wavelet. 

Figure 7.15 shows that the matched wavelets consistently produce higher peaks in the CWTs of each 

projection. 

Training step 5 

Now that the first level of training is complete, a set of residual detail signals can be constructed from 

the results of pass 0. The wavelet operator associated with the peak of the CWT in pass 0 is used as truth 

for the information detected in the first pass. Assume the peak in W*(a, b) occurs at (am, bm). Then the 

estimate of the projection information matched in pass 0 is given as 

$(p) = Wi(am,bm)a^$'p    K rrii{p) (7.10) 
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□ Matched Wavelet 

Projection angle 

Figure 7.15: Peak values from the WRT - matched wavelets vs Meyer's wavelet 

where rrii(p) is the mask function calculated in Step 2 above. The residual detail signals are given as 

«J(P) = «?(P)-#(P). (7.11) 

Figure 7.16 shows each projection, qi(p), and its estimate, q] (p). 

Training step 6 

The new set of residual projection details, qf(p) are input to the wavelet matching algorithm from which 

a second set of matched wavelets is derived, ip} (p). In this pass, however, the bandlimits in the matching 

algorithm are set to 0 < \u>\ < in and the phase of the wavelet is set to the phase of its corresponding 

projection. The matching algorithm will therefore, generate asymmetric, dyadic wavelets, which is ap- 

propriate since the residual projection detail signals should now contain predominantly high frequency 

content. Figure 7.17 shows the matched wavelets (solid line) and their corresponding projections, dilated 

for maximum energy (dashed line). 
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Figure 7.16: Projections and their estimate - pass 0 
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Figure 7.17: Dilated projections and their associated matched wavelets - pass 1 
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Training step 7-8 

Steps 3 and 5 are repeated to obtain g? (p) and qf (p), which are the projection estimate of pass 2 (Fig- 

ure 7.1 8) and the new projections for pass 3 (if needed). Figure 7.18 shows the projection detail signals 

from pass 1 (solid line) and the estimates of the signal matched (dashed line). The data generated in this 

135° 

22.5° 

67.5° 

112.5° 

157.5° 

Figure 7.18: Projections and their estimate - pass 1 

section can now be applied to an unknown object in order to determine if that object is the fighter aircraft 

used for training. 

7.4.2   Object Detection 

The algorithm for detecting and identifying an object developed in this section is a modification of the 

backprojection image reconstruction algorithm described in Section 7.2.2, and the Wavelet Radon Trans- 

form developed in Section 7.3. Figure 7.19 shows the algorithm developed in this section. Notice its sim- 
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Figure 7.19: Object Detection Algorithm 
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ilarity to the backprojection image reconstruction algorithm shown in Figure 7.5. The key difference is 

that the |?7| filter is replaced by matched wavelet detection. The following paragraphs will explain each 

of the steps in the object detection algorithm using as an example image, the same image ( Figure 7.11) 

used for training. 

Detection step 1 

The first step constructs 8 projections from the object image. Since the test image is the same as that 

used in training, the projections will obviously be the same (Figure 7.12). 

Detection step 2 

Step 2 calculates the CWT, W*(a, b), of the projections using the matched wavelets for pass 0 found 

during training. Again, since the example image in this case is identical to the training image, the CWT 

will be that of Figure 7.14. 

Detection step 3 

The peak scale vector, defined in (7.9), is derived from the CWT and will be used to determine whether 

the object is the same as the training object, and if so, its rotation and scale. Let ä be the peak scale 

vector corresponding to the CWT found in this step. If the test object is a rotated and scaled version of 

the training object, then ä will be a rotated and scaled version of a. So, in order to determine rotation, 

ä is circularly correlated with a found in Training Step 4, and then normalized by the maximum of the 

result, that is, 

ä*a 
s = F  (7.12) 

sup [a • aj 

where s = {a(t)|0 < s{i) < 1,    * = {1,2,..., 8}} The angle of rotation will correspond to the 

location of the 1 (maximum value) in the circular correlation. For the example test object, ä = a = 

{28,32,39,42,43,41,37,31}. The normalized circular correlation, shown in Figure 7.20, indicates that 

the proposed angle of rotation is 0°, as it should be. The angle is considered a proposed angle because 

it has not yet been determined that the object in question is in fact the training object. 
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135.0 157.5 

Figure 7.20: Normalized Circular Correlation, s - 0° 

Once the proposed angle of rotation is determined, ä can be circularly reordered to align with a. In 

other words, if the proposed rotation were 22.5°, then ä2 would correspond to a\, ö3 to a2 and so on, 

finishing with äi corresponding to a8, due to the symmetry of the Radon Transform. The reordered ä, 

call it ä, can be used to find the proposed scale of the test object and a decision criteria for detection. If 

the test object is a scaled and rotated version of the training object, ä, having been corrected for rotation, 

will be a scaled version of a and the scale factor across i will be a constant in the ideal case. Let 7 be 

defined as 

7 = Hhi = äi/oi,    2 = {1,2,... ,8}} (7.13) 

and let 

1   8 

M=gE7i (7.14) 
i=l 

and 

CT=UE(7i-M)2| (7.15) 

be the mean and standard deviation of 7. If a is below some threshold, then the test object is detected, 

that is, it is the same as the training object, and \i is the scale factor of the test object to the training object. 
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Detection step 4 

Once the test object is determined to be the training object, the remainder of the algorithm can provide 

additional information. Assume the peak of W*(a, b) occurs at (a^, bl
m). The estimate of the projec- 

tion information, ${p), calculated using (7.10), where rrii(p) is the mask function described in Training 

step 5, is the detected information. The residual details signals, q\{p), given by (7.11) represent the de- 

tails remaining in the image after pass 0. Each of these sets of projections are backprojected creating 

a detected image, fd(x, y), and a residual detail image, fx(x, y). Figure 7.21a shows the detected im- 

age /d(x, y) overlayed on the test image. Notice that the detected image reflects the position, aspect 

ratio, rotation, and scale of the target. Figure 7.21b shows the resultant detail image after the first pass. 

Both backprojected images were thresholded at 70% of their maximum to eliminate the noise inherent 

to backprojection. 

Detection step 5 

Before repeating steps 3-4 for qj(p), the matched wavelets, ip}(p), calculated in Training step 6 have 

to be adjusted for rotation. First, they have to be reordered in the same way that ä was reordered so 

that they will align with the test projections. Second, some of the matched wavelets must be flipped 

along their horizontal axis. The training projections were collected at 0 < 9 < -IT. If the test object is 

rotated an angle, <p, relative to the training image, then it is as though the test projections were collected 

at tp < 9 < IT + ip. Because qo+ir(p) = qe{—p), the test projections collected for 9 > n are p- 

reversed. Therefore, their corresponding matched wavelet must be p-reversed so that they will match 

their corresponding projections in the CWT. This procedure was not necessary in the first pass because 

the matched wavelets were symmetric. 

Once the matched wavelets for the second pass are adjusted, Detection steps 3-4 are repeated with 

q}{p) as input. The backprojection results are shown in Figure 7.2lc and d. The results in Figure 7.21 

represent a template for a human observer to use to further identify a test object. 
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Figure 7.21: Results of backprojected detection and detail signals - 0° 
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7.4.3   Detection Results for an Unknown Object 

To test all the functions developed in the previous section, a test image, shown in Figure 7.22, was con- 

structed by rotating, scaling, shifting and adding noise to the fighter aircraft shown in Figure 7.11. The 

Figure 7.22: Test image for detection 

angle of rotation is 112.5°, and the scale factor is 1.5. The aircraft was translated 15 pixels up and 30 pix- 

els to the right of center and 23dB of uniform white noise was added making the calculated SNR= 2. ldB. 

Figure 7.23 shows the test projections and their detected estimate found from Detection steps 2-4. The 

Wavelet Radon Transform from pass 0 is shown in Figure 7.24. The same characteristic sinusoidal path 

seen in the Radon Transform of a shifted point is evident in the WRT of the translated object. 
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Figure 7.23: Projections and their estimate - test image, pass 0 
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Figure 7.24: Wavelet Radon Transform of Test image projections - pass 0 
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The maximum scale vector for the test image is given as 

64 

64 
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48 

41 

54 

60 

The results of circularly correlating ä with a in (7.9) is shown in Figure 7.25. The peak corresponds to 

a = (7.16) 

0-0 22.5 45.0 67.5 90.0 112.5 135.0 157.5 

Figure 7.25: Normalized Circular Correlation, s - Test image 

134 



(7.17) 

9 = 112.5°, as expected. The vector, 7, is calculated using (7.13) to be 

1.464 

1.688 

1.538 

1.524 

1.488 

1.463 

1.514 

1.548 

The mean,// = 1.529, and standard deviation, a = 0.0671, of 7 give the scale factor and goodness of fit 

of the test object to the training object. The mean is close to the actual scale factor of 1.5 and a is very 

small indicating that the object is in fact the fighter aircraft used for training. 

The results of backprojecting both the detected signals, qf(p), and the detail signals, q\ (p) are shown 

in Figure 7.26a and b. Notice that Figure 7.26b looks very much like Figure 7.21b. The estimated details 

survived scaling, rotation, translation and noise. These details can be used as additional templates to a 

human observer to verify the automatic detection results or for further more detailed classfication. 

The WRT of q\ (p) using the matched wavelets for pass 1 is shown in Figure 7.27. The projection de- 

tails and their detected estimates are shown in Figure 7.28. The backprojected results of detection in pass 

1 and the new details are shown in Figure 7.26 c and d. The results of pass 1 are shown in Figures 7.28, 

7.27, and 7.26c and d. 
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Figure 7.26: Results of backprojected detection and detail signals - Test image 
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Figure 7.27: Wavelet Radon Transform of Test image projections - pass 1 
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Figure 7.28: Test image projections and their estimate - pass 1 

138 



Chapter 8 

Summary 

The research results presented in this dissertation show by proof and example that it is possible to design 

bandlimited wavelets that optimally match a signal of interest in the least squares sense. The algorithm 

developed can be constrained such that the resultant wavelets either form an orthonormal basis of L2 (3?) 

or are dyadic wavelets that satisfy the stability condition. The development of the wavelet matching 

algorithm provides insight into the characteristics of both the amplitude and phase of an orthonormal 

wavelet spectrum. The wavelet matching algorithm is superior to existing wavelet design techniques 

in that it places the design emphasis on the shape of the wavelet and the RMS error with respect to the 

signal of interest. The target detection and identification algorithm was developed to be shift, scale and 

rotation invariant with optimal detection capability by combining the Radon Transform, backprojection 

and the Continuous Wavelet Transform with matched wavelets. It was demonstrated to work well with 

a target against a benign background embedded in white noise. The residual projection details were 

shown to survive rotation, shift, scale and noise. The second level of residual projections, however, did 

not survive, which was due to their small amplitudes relative to the projections from the first pass. The 

matched wavelets increased the detection performance as expected since they were specifically designed 

to match the projections under analysis. As the targets and backgrounds become more complicated, this 

optimal performance should prove beneficial in detecting targets in clutter. 
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8.1 Future Research 

The next logical development step for the wavelet matching algorithm is to extend it to bi-orthogonal 

wavelets, that is, wavelets that reside in a multiresolution analysis (MRA) context whose duals reside 

in a dual MRA. The QMF constraints exploited in the development of the matching algorithm in this 

dissertation become much more complicated for bi-orthogonal wavelets. This added complication will 

need to be overcome before the algorithm can be extended to bi-orthogonal wavelets. 

The target detection and identification algorithm can be improved to include targets in clutter. Sur- 

rounding clutter will add significant unwanted energy to the projections. It may be necessary to take 

windowed Radon Transforms to eliminate the unwanted energy from other parts of the scene. The iden- 

tification capability based on aspect ratio can be improved to full classification capability by applying 

pattern classification techniques to the residual detail signals from the first pass. Also, increasing the 

number of projections, while increasing the computational burden, may increase the algorithm's perfor- 

mance significantly. 

8.2 Conclusion 

Wavelet theory and its applications are exciting and growing fields. The zoom in, zoom out capability 

of the wavelet transform and the ability to build matched wavelets makes their application to image pro- 

cessing even more significant. The engineering community is still on the threshold of developing solid, 

useful applications of wavelets in signal processing that truly take advantage of all that wavelets have to 

offer. Like many other engineers and scientists, much of the research conducted in support of this dis- 

sertation was focused on developing an in-depth understanding of wavelets and their characteristics. It 

seems clear that once the engineering community has the same depth of understanding of wavelet theory 

as they do for Fourier theory, they will develop new applications that are ideally suited to wavelets and 

the advantages they hold. 
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Appendices 

Appendix A: Proof- Guaranteeing Orthonormality 

Substituting UJ = rj + 2irm in (5.37) gives 

|$(r? + 27rm)|2 = < 
1 for 7] + 2itm = 0 

2 
_ ££°=0 I* (2n+1(*7 + 27rm)) \z   for rj + 2nm ± 0 

Summing both sides of (A-l) over m gives 

]T   |$(?; + 27rm)|2 = < 

(A-l) 

(A-2) 
1 V) + 2-nm = 0 

[ EmEn|*(2n+1(^/ + 27rm))|2    r, + 2nm + 0 

The left side of (A-2) is the Poisson summation, which by (5.16) must is 1 everywhere when 4>j,k is an 

orthonormal basis of Vj. Therefore, because of the equality in (5.37), «^ is an orthonormal basis of Vj 

if and only if 
oo        oo „ 

£   X:|*(2n+1(^7 + 27rm))|   = 1. (A-3) 
n 

D 

m=—oon=0 

Appendix B: Proof-Bandlimited $ 

The Fourier transform of the scaling function's 2-scale relation is given as 

•M-H (!)•(!). 
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(B-l) 



From this expression, it is clear that the maximum bandwidth of $(w) is equal to the maximum band- 

width of one period of H(u)/2). Let the maximum half-bandwidth of $(u>) be given as air then the 

maximum half-bandwidth of one period of H(u) is also cm. The maximum half-bandwidth of $(w/2) 

is 2cm. In order for (B-l) to be satisfied for bandlimited scaling functions, $(u;/2) must not extend into 

the second period of H(u>/2), which implies 

2om   <   4ir 

4 

an 

a   <    3- (B-2) 

The maximum scaling function bandwidth is therefore |w| < 47r/3. 

D 

Appendix C: Proof-Bandlimited ^ 

Let uZax and wmox be the uPPer frequency bounds of bandlimited * and $, respectively. From (5.37) 

|$(w)|2 = |*(2w)|2 + |#(4u;)|2 + ---        foru ^ 0. (C-l) 

Clearly, the upper frequency bound of $(w) is due to *(2w) only. Therefore, 

umax — lujmax ~ "Ö"" (C~2) 

If 4>{x - A;) is orthonormal, its Poisson summation must be 1 everywhere, 

oo 

Y,   |$(w + 27rm)|2 = l (C-3) 
m=—oo 

which for bandlimited scaling functions (Theorem 6) implies 

|*(w)| = 1       for =& < |w| < f. (C-4) 

Let the lower frequency bound of tf be given as w*in, so that the bandlimits of tf (w) is w*in < |w| < 

87T/3. Let $i(o;) be the portion of $ between 7r/3 and 2TT/3. From (C-l) and (C-2) 

|$lH|2 = |*(2a;)|2 + |*(4a;)|2==l        forf<|a;|<f. (C-5) 
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Let $2 M be the portion of $ between 7r/6 and 7r/3 and \I>2 M the portion of * between 7r/3 and 2TT/3, 

then 

|$2(w)|2 = |*(2w)|2 + |*(4w)|2 + |#(8w)|2 = 1 

= |*2(2ü;)|
2
 + |$I(2U;)|

2
                 =1        forf<M<§. (C-6) 

= |#2(2u;)|2 + l                              =1 

So, 

|*2M|2 = 0       forf <|w|< f. (C-7) 

We can generalize this approach by letting $j(u>) be the portion of $ between 27r/3 • 2J and 4TT/3 • 7? 

and Vj(bj) be the portion of * between 47r/3 • 2j and 87r/3 • 2j, for j = {2,3,..., oo}, then 

l*iMI2 = ELo l*(2fe+1o;)|2 = 1       for fa < M < J^. (C-8) 

However, for any value of j, tyj-i(u) has already been shown to be 0, so that 

£|¥(2*+1
W)|2    =    |*i(2w)|2 + X;|*B(2'"-"+1a;)|2 + l*i(2*-M|2 

k=0                                                                n=2 

=   |%(2w)|2 + l. (C-9) 

Substituting back into (C-8) gives 

|*»|2 = |*i(2a;)|2 + 1 = 1       for ^ < |w| < &. (C-10) 

Therefore, 

^■(2W) = 0       for & < H < ^ (C-ll) 

and 

*iM = 0       for&<M<j&. (C-12) 

Combining all #,(w) for {j = 2,3,..., oo} gives 

|*H|2 = 0       forO<M<^. (C-13) 

Therefore, w*in = 27r/3 and the bandlimits on * for bandlimited $ in an orthonormal MRA is 

2TT               8TT 

3   - '   ' -   3 
(C-14) 

D 
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Appendix D: Proof-Guaranteeing an Orthonormal MRA 

Let |\I/(ä;ACJ)| be a sampled wavelet spectrum in an orthonormal MRA with sample spacing Aw* = 

27r/2M. According to Theorem 4, we can calculate the scaling function spectrum at any value, 

|$(fc7r/2')|, using (5.29), where £ = {0,1,..., M}. Let Aw = TT/2
£
 in (5.29), then 

|$(nAw)|2 = £ 
p=0 

* 12W"M 
2P       / 

Substituting nAw = nAu) + 2-K-m and summing over m gives 

'2m 

(D-l) 

00 oo f 

£   |<I>(nAw + 27rm)|2 =    £   £ 
x=—oo m=—oop=0 

* 
2P (nAw + 2nm) (D-2) 

The left side of (D-2) is the Poisson summation sampled at Aw and is therefore equal to 1. Substituting 

back in for Aw gives 
00 I 

= 1. 
m=—oop=0 ' 

Let Y(k) = |\I>(fcAw*)|2 where Aw* = 2ir/2M, then the constraint on Y becomes 

E   Eva.  » + *«m)=l 
m=—oop=0       \ / 

fore = {0,l,...,M}. 

Rewriting (5.42) in Corollary 7 for sampled wavelet spectra gives 

2TT 8TT 
y < |fcAw| < y. 

Dividing through by Aw = 27r/2M gives the index constraint on k. 

oM oM+2 

Substituting the index of Y in (D-4) gives the bandlimit constraint on the samples of Y. 

iM 
< 

2M 

2P 
(n + 2£+1m) < 

2M+2 

(D-3) 

(D-4) 

(D-5) 

(D-6) 

(D-7) 

(D-8) 

D 
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Appendix E: Proof-Matched Wavelet Amplitude 

The problem of finding the optimal Y given the error 

„     (W-Y)T(W-Y) 
E = —  fF-l^ 

WrW 

and the equality constraints 

AY = 1 (E-2) 

can be solved easily using Lagrangian multipliers. The Lagrangian is given as 

^iff-Y;:-T|
t^-i). 

The error function, E, is minimized by setting VyL = 0, V\L = 0 and solving for Y [21]. 

VYL = ^ß^ (W - Y) + ArA = 0. (E-4) 

Setting V\L = 0, we get back our equality constraints. 

AY = 1. (E-5) 

Multiplying (E-4) by A and substituting (E-5) gives a solution for A. 

2 
WTW 

(AW - AY) + AA7 A   =   0 

2    :(AW-1) + AATA   =   0 

Substituting (E-6) back into (E-4) gives the solution for Y. 

WTW 
2     (AA^-^l-AW)   =   A. (E-6) 

Y = W + AT(AAT)"1(1-AW) (E-7) 

and substituting (E-7) into (E-l) gives the error in the match, 

E   =    -(Ar(AAT)~1(l - AW))T(-1)(AT(AAT)~1(1 - AW)) 
WrW 

(1 - AW)r(AAr)-TAAr(AAT)-1(l - AW) 
WTW 

(1 - AW)T(AAT)~1(1 - AW) 
wrw 

145 

(E-8) 



Because Y is a power spectrum, we must add the inequality constraints 

Y(k) > 0       for all k. (E-9) 

Note: If an element ofY is negative, then we must add an equality constraint forcing that element to 0. 

This is done by appending aOtol and adding a row to the bottom of A containing all 0 's and a 1 in the 

column corresponding to the negative element. 

Notice in (E-7) and (E-8) that Y and E are very much dependent on the amplitude of W. Since the 

matched wavelet must match the desired signal up to a scale factor, K, as shown in (5.4), we can scale 

W so that E is minimized. Let the scale factor be 1/a so that the desired signal spectrum is W/a. The 

error function becomes 

E{a) = ^ a ^ ^L_^ a >_ (E.10) 

and the solution for Y becomes 

Y = -W + AT(AAT)-1(1--AW). (E-ll) 
a a 

Setting dE(a)/da = 0 gives 

d (1 - ^AW)r(AAr)-1(l - ^AW) 
da 4WrW 

0 
, WJ w a* 

d (cl - AW)r(AAr)-1(ol - AW) 
da WTW ~   ° 

1      r(al-AW)T(AAT)-1l + lT(AAT)-1(al-AW)]    =   0 
WTW 

lT(AAT)_1(al-AW)]    =   0. (E-12) 
WTW 

Solving for a in (E-12) gives the expression for the scale factor that will minimize the error function E, 

_ 1T(AAT)-'AW 
a~    lT(A\T)-n   ■ (E"13) 

Because, the conditions on $ from Theorem 8 are satisfied through the constraints of the optimization 

equations, the scaling function spectrum calculated by way of (5.29) generates an orthonormal MRA. 
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Appendix F: Proof-Properties of A$, A$, and A 

The proofs for (5.62), (5.63) and (5.64) are trivial. Since <p{x), ip{x), and hk are all real quantities, their 

Fourier Transforms are Hermitian[3], that is, their magnitude is even and their phase is odd. Therefore, 

0$, 0^, and 6H are odd functions. Since the derivative of an odd function is an even function if follows 

that A$(cc>), A$(u;), and A(o>) are all even functions. In order to prove (5.65) and (5.66), let \Q(UJ) = 

A(u;) — A, where 
-      1    [n 

A = — /    \(u))du! 
2ir J-TT 

so that 

l   r 
— /    \(u)0du = 0 

The average value of A$(w) is given by 

/oo roo    °° / 
A*(ü/)dw   =    /      £2~mA 

-oo J-°°m=l V 2
m e/w 

/oo   _°° 

-°°m=l 

U M^)+A dw 

?-£/->(£H- m=l 
oo 

=   A^2"m 

m=l 

=   A. 

Similarly for A* (UJ 

/oo 
h\$,{ijj)duj 

-oo 

(F-l) 

(F-2) 

(F-3) 

m=2 

1 _ 1 
2 ~ 2 A + A £ 2_m 

m=2 
1       1T      1T 

-2"2A+2A 

1 
(F-4) 
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Appendix G: Continuous Wavelet Transform Implementation 

The continuous wavelet transform is given by the following expression, 

Wf(a,b) = J^ma-h (^^j dx. (G-l) 

The wavelets used in this dissertation are discrete functions, ip(k) = i)i{kAx), calculated using the 

matching algorithm of Chapter 5. Implementing the CWT with discrete quantities is done with sum- 

mation rather than integration and the result is actually only an approximation to the CWT. The approx- 

imation to (G-l) is given by 

„. ,       .        v^     r,, *   x , fkAx — nAb\ 
Wf(m,n)=    £    /(fcAx)^ [     ^Aa     j (G-2) 

where N is the number of points in f{kAx) and ip(kAx). In order to simplify (G-2), assume Ab = Ax, 

which provides the finest translation steps possible, since the shift parameter cannot step any smaller than 

Ax. Rewriting (G-2) and dropping the Ax's gives 

Wf(m,n)=    £    /(*),&(") (G-3) 
k=-N/2 \mAaJ 

which can be written in matrix notation as 

Wf(m) = fT*m
r (G-4) 

where Wj (m) is row m of the approximate CWT and has length, N, f is a N x 1 vector consisting of the 

samples of the input signal, f(x), and *m is a iV x TV matrix where each row consists of the sampled 

wavelet, dilated to scale mAa and shifted by n, that is, ip(k - n)/mAa. 

All approximate CWTs in this dissertation will be calculated for 64 discrete scales. Furthermore, as 

in Chapters 6 and 7, N = 512, Ax = 1/32, and Aw = TT/8. Let ^(k) be the discrete wavelets calculated 

by the matching algorithm of Chapter 5 with the parameters given above. Because Ax = 1/32, ip{k) can 

be decimated up to 5 times giving v/32V'(32A;), where now Ax = 1. In this implementation, however, 

ip(k) is decimated only 4 times since a fifth decimation produces a function with only one non-zero value. 

So, if \/X6V>(16&) is used to calculate the first row of the CWT which would represent the smallest scale, 
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then y/8i[>(8k) will be used to calculate the second row, y/4ip(4k) the fourth row, V2ip(2k) the eighth 

row and ip(k) the sixteenth row. Upsampling and interpolating ip(k) gives ip{k/2), which will be used 

to calculate the 32nd row of the CWT and upsampling and interpolating again gives ip{k/4), which will 

be used to calculate row 64 of the CWT. There are now discrete wavelets that will calculate the CWT at 

rows V for j = 0,1,..., 6. The wavelets that will be used to calculate the other, non-dyadic rows, are 

found by interpolating the wavelets at the dyadic rows. For instance, to find the wavelet corresponding 

to the 23rd row of the CWT, the wavelet corresponding to row 16 is upsampled by a factor of 23/16, 

which is done by upsampling and interpolating by a factor of 23/1 and taking every 16th sample. Now 

that the wavelets corresponding to every scale in the output CWT has been calculated, they can be used 

in (G-4) to find the approximate CWT. 

149 



Bibliography 

[1] P. Abry and A. Aldroubi. "Designing multiresolution analysis-type wavelets and their fast algo- 

rithms". Preprint. 

[2] A. Aldroubi and M. Unser. "Families of multiresolution and wavelet spaces with optimal proper- 

ties". Numerical Functional Analysis and Optimization, 14(5-6):417^46, 1993. 

[3] R. N. Bracewell. The Fourier Transform and Its Applications, pages 14-16. McGraw-Hill Book 

Co., 1986. 

[4] R. N. Bracewell. "Strip integration in radio astronomy". Australian Journal of Physics, 9:198-217, 

1956. 

[5] R. N. Bracewell. Two-dimensional imaging, chapter 6. Prentice Hall, Englewood Cliffs, NJ, 1995. 

[6] P. J. Burt and E. H. Adelson. "The Laplacian pyramid as a compact image code". IEEE Transac- 

tions in Communications, COM-31:532-540, April 1983. 

[7] J. O. Chapa and M. R. Raghuveer. "Constructing MRAs from desired wavelet functions". In Pro- 

ceedings on Asilomar Conference on Signals, Systems and Computers, pages 1109-1113, IEEE, 

October 1994. 

[8] J. O. Chapa and M. R. Raghuveer. "Optimal matched wavelet construction and its application to 

image pattern recognition". In Wavelet Applications II, pages 518-529, SPIE, April 1995. 

[9] S. Chen and D. Donoho. "Basis pursuit". In Proceedings on IEEE 28th Annual Asilomar Confer- 

ence on Signals, Systems and Computers, November 1994. 

150 



[10] C. K. Chui. An Introduction to Wavelets, chapter 1-3,5,7. Volume 1 of Wavelet Analysis and Its 

Application, Academic Press, Inc., 1992. 

[11] R. Coifman and M. Wickerhauser. "Entropy-based algorithms for best basis selection". IEEE 

Transactions on Information Theory, 38(2):713—718, March 1992. 

[12] I. Daubechies. "Orthonormal bases of compactly supported wavelets". Communications on Pure 

and Applied Mathematics, 41:909-996, 1988. 

[13] I. Daubechies. Ten Lectures on Wavelets, chapter 3-5. Society for Industrial and Applied Mathe- 

matics, 1992. 

[14] I. Daubechies. "The wavelet transform, time-frequency localization and signal analysis". IEEE 

Transactions on Information Theory, 36(5):961-1005, September 1990. 

[15] S. R. Deans. The Radon Transform and Some of Its Applications, chapter 2,5,6. John Wiley and 

Sons, New York, NY, 1983. 

[16] D. Gabor. "Theory of communication". Journal of the IEE, 93, 1946. 

[17] J. D. Gaskill. Linear Systems, Fourier Transforms, and Optics, chapter 4. John Wiley and Sons, 

1978. 

[18] R. A. Gopinath, J. E. Odegard, and C. S. Burrus. "Optimal wavelet representation of signals and 

wavelet sampling theorem". IEEE Transactions on Circuits and Systems-II: Analog and Digital 

Signal Processing, 41(4):262-277, April 1994. 

[19] G. Kaiser. A Friendly Guide to Wavelets, chapter 3,5,8. Birkhäuser, Boston, Massachusetts, 1994. 

[20] W. M. Lawton. "Necessary and sufficient conditions for constructing orthonormal wavelet bases". 

Journal of Mathematical Physics, 32(1), January 1991. 

[21] D. G. Luenberger. Introduction to Linear and Nonlinear Programming, pages 224-227. Addison- 

Wesley, 1973. 

151 



[22] D. G. Luenberger.   Optimization By Vector Space Methods, chapter 2,3.  John Wiley and Sons, 

1969. 

[23] S. G. Mallat. "A theory for multiresolution signal decompositions: the wavelet representation". 

IEEE Transactions on Pattern Analysis and Machine Intelligence, ll(7):674-693, July 1989. 

[24] S. G. Mallat. "Multiresolution approximations and wavelet orthonormal bases of L2(3?)". Trans- 

actions of the American Mathematical Society, 315(1):69—87, September 1989. 

[25] S. G. Mallat and Z. Zhang. "Matching pursuit with time-frequency dictionaries". IEEE Transac- 

tions in Signal Processing, 47(12), 1993. 

[26] Y. Meyer. "Principe d'incertitude, bases hilbertiennes et algebres d'operateurs". Seminaire Bour- 

baki, 662, 1985-1986. 

[27] Y. Meyer. Wavelets and Operators, chapter 2,3. Addison-Wesley, Cambridge University Press, 

1992. 

[28] Y. Pao. Adaptive Pattern Recognition and Neural Networks, pages 7-9, 43. Addison-Wesley, 

Reading, Massachusetts, 1989. 

[29] J. Radon. "Über diebestimmung von funktionen durch ihre integralwerte längs gewisser man- 

nigfaltigkeiten". Berichte Sächsische Akademie der Wissenschaften. Leipzig, Math. - Phys. Kl, 

69:262-267, 1917. 

[30] O. Rioul and M. Vetterli. "Wavelets and signal processing". IEEE SP Magazine, 8(4): 14, October 

1991. 

[31] G. Strang. "Wavelets and dilation equations: a brief introduction". Society for Industrial and 

Applied Mathematics, 31(4):614-627, December 1989. 

[32] W. Sweldens. "The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets". 

Industrial Mathematics Initiative Research Report 1994:07, University of South Carolina, 1994. 

152 



[33] H. Szu, Y. Sheng, and J. Chen. "Wavelet transform as a bank of matched filters". Applied Optics, 

31(17):3267-3277, June 1992. 

[34] A. H. Tewfik, D. Sinha, and P. Jorgensen. "On the optimal choice of a wavelet for signal represen- 

tation". IEEE Transactions on Information Theory, 38(2):747-765, March 1992. 

[35] P. P. Vaidyanathan. "Multirate digital filters, filter banks, polyphase networks', and applications: a 

tutorial". Proceedings of the IEEE, 78(l):56-93, January 1990. 

[36] M. V. Wickerhauser. Acoustic signal processing with wavelet packets. In C. K. Chui, editor, 

Wavelets: A Tutorial In Theory and Applications, pages 679-700, Academic Press, Cambridge, 

MA, 1992. 

153 


