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A BINGHAM FLOW MODEL TO PREDICT THE VIBRATIONAL 

DAMPING CHARACTERISTICS OF AN ELECTRORHEOLOGICAL 

FLUID-FILLED ANNULUS 

Chapter 1: Introduction 

The electrorheological (ER) phenomenon was first identified by Winslow (1949,1989) during 

his research in 1940 on photoelectric switches. The early designs for these photoelectric switches 

were electrodes separated by a dielectric composed of starch suspended in oil. The transmission 

of force was observed when an electric potential was applied to the moving switch. The 

development of the ER phenomenon remained dormant until mid-1980. The resurgence of this 

technology was due mainly to applications in the field of robotics. 

ER fluids are two phase systems containing micron sized particles suspended in a high 

dielectric carrier fluid. When the ER fluid is subjected to an electric field, the particles polarize 

and develop a network of three dimensional chains. This phenomenon is illustrated in Figures 1.1 

through 1.3. The distribution of the particles within the ER fluid is shown in Figure 1.1 to be 

random in the absence of an electric field. Once a voltage potential, V, is applied to the electrodes 

as depicted in Figure 1.2, a complex three dimensional particle structure is formed. The cohesive 

strength of this developed particle structure is dependent on the magnitude of the applied 

potential. This strength resists the destruction of the particle structure by any applied force to the 

system. 

I+-+-+-+-+-+-+- 

©    @©      © 
©        ©      Q    © 

©      © © 
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Figure 1.1. ER System Without 
Applied Potential. 

Figure 1.2. ER System Activated 
by Voltage Potential, V 
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The application of a shear stress, as shown in Figure 1.3, produces a deformation of the particle 

structure. If the magnitude of the applied shear stress is greater than the cohesive strength of the 

particle structure, then the ER fluid will yield in the form of fluid flow. The cohesive strength of 

this type of fluid is a rheological property termed the yield shear stress. An ER fluid will develop 

an electric-field dependent yield stress, when activated by an electric field. In the activated state, 

the ER fluid will resist an applied shear stress, providing the applied load does not exceed the 

developed yield stress. The time of activation for most ER fluids typically on the order of 

milliseconds. 

Shear Stress 
x 

Figure 1.3. Electrically Activated ER Fluid System 
Resisting an Applied Shear Stress, % 

In order to exploit the ER phenomenon in an engineering application, an understanding of the 

constitutive properties of the fluid is required. The material behavior of an ER fluid is dependent 

(Klass & Martinek (1967), Jordan & Shaw (1989), Wong & Shaw (1989), Block & Kelly (1988), 

Brooks et al. (1986), and Tao et al. (1989)) on the applied electric field, the dielectric properties of 

the carrier fluid, the dielectric properties of the particles, the particle size, the concentration of 

particles, temperature, water content, and frequency. However, it has been shown through 

experimental investigations (Marshall et al. (1989), Gast & Zukoski (1989), Klingenberg (1990)) 

and numerical investigation (Wang et al. (1989)) that the constitutive behavior of ER fluids can be 

modeled accurately as a Bingham fluid. The Bingham fluid constitutive model represents the 

cohesive strength of the particle structure as the yield shear stress property of the fluid. The 

Bingham material model applied to an ER fluid depends on the applied electric field, the 

developed yield stress, and the plastic (Bingham) viscosity. A plot of the shear stress versus the 
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shear strain rate produced from a viscosity measurement experiment would produce a flow curve 

distinctive to a Bingham fluid. A flow curve for a Bingham fluid is schematically shown in Figure 

1.4. The intercept with the y-axis defines the yield shear stress and the slope of the curve produces 

the absolute viscosity of the fluid. 

Shear 
Stress 
(x,Pa) 

Bingham Fluid 

Newtonian Fluid 

Shear Strain Rate (1/s) 

Figure 1.4. Flow Curve Comparing a Bingham Fluid to a Newtonian Fluid 

The application of ER fluids has been cited by many authors, such as the plunger dashpot 

damper of Stanway et al. (1987), the ER fluid composite beams of Coulter et al. (1989), the 

plunger damper, ER disk clutch, and diaphragm engine mount of Duclos (1988), the 

electroviscous plunger damper of Stevens et al. (1984), and the ER box-beam of Margolis & 

Vahdati (1989), as an effective means for vibration isolation and control. In these vibration 

isolation applications, the predominant method of the vibration energy dissipation is the 

interaction between a plunger mechanism and the ER fluid. The fluid properties are actively 

altered by the magnitude of the applied electric field; thus, the response of the structure is altered 

and controlled. 

The research discussed in this dissertation theoretically and experimentally investigates the 

dissipation of vibrational energy through the relative shearing within the ER fluid itself. This 

work develops a new relationship between the damping characteristics of an ER fluid and the flow 

characteristics of this fluid due to the axial excitation of the flexible structure containing the fluid. 

The dissipation of energy in a flexible cylinder containing an ER fluid subjected to longitudinal 

vibration is treated in this dissertation. The energy loss is accomplished through shear dissipation 
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within the ER fluid. The establishment of the yield surfaces within the ER fluid is developed by 

the spatial variation of the applied electric field. Since the magnitude of the yield stress is 

dependent on the magnitude of the applied electric field, a spatial variation in the developed yield 

stress will result. 

The mechanics of the ER fluid response to a sinusoidal excitation is modeled herein as a 

creeping flow. The energy dissipation of the viscous forces in the ER fluid is then evaluated to 

approximate the damping characteristics of an ER device. Inherent to this fluid model of the ER 

fluid is the solution of the steady state electric field, the constitutive relationships of the ER fluid 

to the resulting electric field and the developed strain rate due to the applied boundary excitation. 

The predictions of this model have been compared to the experimental results and are found to be 

within five percent of the experiment. 

The chapters used to develop the dissertation are titled, Attenuation Experiment, Electric Field 

Solution, ER Fluid Constitutive Relationships, non-Newtonian Fluid Dynamics, 

Electrorheological Fluid Damping Properties, Conclusions and Future Work, and Appendices. 

The Attenuation Experiment chapter discusses the transmissibility experiments conducted to 

measure the damping effect, as a function of electric field, of an ER fluid in a flexible hose. The 

Electric Field Solution chapter provides the closed form solution of the applied electric field. The 

Constitutive Relationships chapter relates the pertinent ER fluid properties to the applied electric 

field and the boundary excitation. The non-Newtonian Fluid Dynamics chapter develops the 

governing equations of the creeping flow of the ER fluid within the test module. The 

Electrorheological Fluid Damping Properties chapter, compares the fluid dynamics model 

predictions of damping to the measured damping characteristics of the ER device. The final 

chapter, Conclusions and Future Work, discusses the results of the creeping-motion Bingham fluid 

model as a means of predicting damping and provides suggestions for future applied research. 

The future research covers the development of an algorithm to specify an ER parameter envelop 

to direct the development of future ER fluids. The Appendices listed at the end of the dissertation 

include clarification to the chapters. Appendix A contains a source listing of the single degree of 

freedom model developed in Chapter 2. Appendix B contains a discussion on Jacobian elliptic 

functions, the details to the evaluation of the electric field magnitude and the source listings of the 

electric field solutions. Appendix C contains a source listing of the fluid model which solves the 

axial and radial fluid velocity components of Chapter 5. Appendix D contains the source list of the 

damping evaluation from Chapter 6. Appendix E contains the transfer function data from the 
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attenuation experiments of Chapter 2. Appendix F presents an example problem were the ER 

damper length is specified based on the attenuation measured in the experiments of Chapter 2. 

Chapter 2: Attenuation Experiment 

Introduction 

The application of ER fluids as an effective means for vibration isolation and control has been 

cited by many authors, such as Stanway et al. (1987), Coulter et al. (1992,1989), Duclos (1988), 

Stevens et al. (1984), and by Margolis & Vahdati (1989). ER fluids have been used in clutches, 

viscous dampers, valves, and active engine mounts. When used as a vibration isolation device, the 

predominant method of the vibrational energy dissipation is through the interaction between a 

plunger mechanism and the ER fluid. 

The application of the ER fluid discussed in this dissertation relies on the exploitation of 

the electric field dependent yield shear stress and spatial variation of the electric field to attenuate 

the longitudinal vibration in the elastomer wall of a hose filled with ER fluid. Hereinafter, this 

hose configuration will be referred to as "the ER test module." This damping mechanism is 

illustrated conceptually in Figure 2.1, in which the ER test module is represented in cylindrical 

coordinates whose z-axis is coincident with the longitudinal center line of the hose. The electric 

field is created by a set of circular discs that are alternately charged with a voltage potential. This 

electric field device is contained within an elastomer cylinder. This is shown in Figures 2.2 and 

2.3. Figure 2.2 is a photograph of the ER test module components and Figure 2.3 is a schematic 

illustration showing the assembled ER test module. As the cylindrical radial coordinate, r, 

increases, the electric field strength decreases. As the electric field decreases, the magnitude of the 

yield shear stress of the ER fluid decreases. Shown in Figure 2.1 are four idealized discrete 

regions within which the electric field strength, and therefore the yield shear stress, are constant. 

Vibrational energy transmitted from the hosewall into the ER fluid dissipates at the interfaces 

between these regions. It is the use of these interfaces within the ER fluid for energy dissipation 

that separates this device from those of other researchers. The mechanism dissipating the 

vibrational energy is the transfer of kinetic energy into thermal energy by friction forces between 

the layers. 
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r0   rl 

Electric 
Field 
Strength   c 
(V/mm)    ^0 

Ei 

E2 

E3 

r0       Ti    r2        r3 
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Flexible Hose 
Strain Rate (1/sec) 

Figure 2.1. Development of Yield Surfaces Within ER Fluid 
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Figure 2.2. Photograph of the ER Test Module Components Showing the Flexible 
Hose, Electric Field Device, the High Voltage Power Supply and 
a Discharge Staff 
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Experimental Configuration 

In order to quantify the damping contribution of these yield surfaces in the attenuation of 

longitudinal vibrations in a flexible cylinder, an ER test module was developed. The ER test 

module consisted of a polyester-based elastomer hose approximately 125.7 cm in length with an 

inner diameter of 7.5 cm. The internal components of the ER test module consisted of the ER fluid 

and a 110.5-cm-long electric field device centered in the hose both longitudinally and radially. 

This device contained 170 electrodes, each made of a single copper disk and separated with nylon 

washers from each other. The electric field device was centered in the hose with four nylon 

spacers. The electrodes and the nylon washers were placed onto a quarter inch diameter nylon 

rod. This rod was connected to the forward end cap of the hose. The electric potential was applied 

to the alternately grounded electrodes by an Acopian high voltage supply (model PO30HP2). The 

field was contained within a 5-mm gap between the electrodes. The diameter of the electrodes was 

3.175 cm, providing a gap of 2.1625 cm between the inner wall of the flexible cylinder and the 

outer edge of the electrodes. It is this annulus (Figure 2.3) of electrically activated ER fluid that 

dissipates the vibrational energy in the flexible cylinder. 

7.5 cm 
0.5 cm 

Figure 2.3. Internal View of ER Test Module 

The objective of the experiment was to determine the attenuation effect, as a function of 

electric field and vibrational frequency, that an ER fluid has on the longitudinal vibration in a 

flexible structure. The ER fluid used in the experiments was a mixture of food grade corn starch 

and medicinal grade, paraffin based mineral oil. The water content of the corn starch was 

approximately two percent. This ER fluid was prepared in the following manner: 
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(1) The mineral oil was filtered to remove foreign particles (40 mesh filter). 

(2) The starch was hand packed into a one cup measure. 

(3) The starch was sifted into the mineral oil (50% by volume). 

(4) The starch was blended into the mineral oil with an electric mixer (132 ml quantities, 

total of 8 liters). 

(5) The ER fluid was de-gassed in a vacuum chamber until evidence of air 

entrapment ceased, typically about 20 minutes. 

The experimental apparatus consisted of the ER test module attached to an electrohydraulic 

shaker (Zonic model 1215-10-T-ZSP86) and tensioned to a force of approximately 445 N. A point 

mass was added to provide a large mass dominated end impedance so that wave mechanics do not 

propagate into the tensioned rope. The instrumentation included a force transducer (PCB 233A) 

and accelerometer (PCB 348A) at each end of the ER test module as shown in Figure 2.4. 

Tension 

Point 
Mass 

fa 

Acopian 
High Voltage 

a, ar~ 
v_ ER Test Module 

HP 3562A 
Analyzer 

Figure 2.4. Experimental Configuration 

T 
ff 

sa lf 
Zonic 
Shaker 

Transducers 
ff- forward force 
aj- forward accel 
fa - aft force 
aa - aft accel. 

The experiments were conducted by exciting the ER test module in the axial direction (z-axis) 

with a swept sine (1 - 300 Hz) input. The data (average of three samples) were recorded in the 

form of frequency response functions (HP 3562A Dynamic Signal Analyzer). The use of a 

frequency response function is preferred since the results can be applied to predict the response of 

the structure to other excitation functions. The recorded frequency response functions included 
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the ratios of the aft acceleration to the forward acceleration, the forward force to the forward 

acceleration and the forward force to the aft acceleration. The data used to determine the damping 

contribution of the ER fluid was the frequency response function of the acceleration ratio 

(transmissibility). The experiments were conducted at electric field strengths of 0.0,0.4,0.8,1.2, 

and 1.6 kV/mm dc. These data sets were generated when the fluid was 1-day-old. The 

experiments were conducted twice at each electric field strength value. The repeatability at each 

value of the electric field was within ±0.2dB. 

The transmissibility data acquired are shown in Figures 2.5 through 2.8.   These figures 

represent the frequency response functions calculated from the ratio of the aft acceleration to the 

forward acceleration. The abscissa is frequency in the units of cycles/second (Hz). The ordinate is 

the magnitude of the acceleration ratio (transmissibility which is dimensionless) expressed in 

decibels (dB). Figures 2.5,2.6, and 2.7 show the damping contribution of the ER fluid at 0.4,0.8, 

and 1.2 kV/mm respectively. These plots show that the damping effect of the ER fluid produces a 

reduction in the magnitude of the resonant peak, and a slight increase in resonant frequency. The 

resonant frequency is shifted in Figures 2.5 through 2.7, from 11.0 Hz for the zero electric field 

case to 11.5 Hz at 0.4 kV/mm, 11.6 Hz at 0.8kV/mm and 11.7 Hz at 1.2kV/mm. At an electric 

field of 1.6 kV/mm, as shown in Figure 2.8, the magnitude of the resonant peak as well as the 

resonant frequency decreased due to the ER fluid effect. The resonant frequency has been reduced 

to 9.8 Hz. From the comparison of this data to Figures 2.5 to 2.7, there appears to be a change in 

the damping mechanism when the electric field was increased between 1.2kV/mm to 1.6kV/mm. 

This will be discussed in terms of the system model in the next section. 
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Figure 2.5. Magnitude of Transfer Function Versus Frequency for 0.0 & 0.4 kV/mm 

The phase measurements show that these transmissibility experiments can be analyzed as a 

linear, single degree of freedom system (mass-spring-damper). This assumption is valid for the 

frequency range of interest (1-30 Hz) because the phase angle has only one crossing at 7t/2 radians 

(Figure 2.9). 
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Figure 2.6. Magnitude of Transfer Function Versus Frequency for 0.0 & 0.8 kV/mm 
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Figure 2.7. Magnitude of Transfer Function Versus Frequency for 0.0 & 1.2 kV/mm 

11 



TR 11,023 

20.0 

ITF{aa/af} 
(dB) 

10.0-1 

-10.0 

-20.0- 

-30.0 

-40.0 
10.0 

Frequency (Hz) 
100.0 300.0 

Figure 2.8. Magnitude of Transfer Function Versus Frequency for 0.0 & 1.6 kV/mm 
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Figure 2.9. Measured Phase Angle for 1.6 kV/mm State Fluid 
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System Model 

Since the measured phase angle data represents a single degree of freedom system, an 

ordinary differential equation, which describes the dynamics of a system containing a 

harmonically excited base, can be derived from Figure 2.10. The solution of this differential 

equation will result in expressions for the dynamic viscous damping and the dynamic stiffness of 

the system. These expressions can be used to quantify the damping effect of the ER fluid on the 

longitudinal vibration in the ER test module. 

m 1 x(t) i mx 

m 

iy(0 
c(x-y)      k(x-y) 

Figure 2.10. Single Degree of Freedom Model With Harmonically Excited Base 

The dynamic free-body-diagram shown in Figure 2.10 contains the resulting forces generated by a 

harmonic excitation of the base. The summation of forces in the vertical direction (upward 

positive) yields the ordinary differential equation, 

mx + cx + kx = ky + cy, (2-1) 

where m is the mass of the ER test module plus the point mass, c is the dynamic viscous damping 

coefficient, k is the dynamic stiffness of the ER test module, x(t) is the longitudinal displacement 

of the aft position of the ER test module, y(t) is the longitudinal displacement of the forward 

position of the ER test module, and the dot represents the first and second derivative of 

displacement with respect to time, t. If the harmonic excitation of the forward position is 

represented as y (t) = YQe
l    and the response of the aft position is represented as 

x (t) = XQe    , then the resulting model transfer function between the excitation and the 

response, from equation (2-1), is found to be 
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^o k + icüs 
= 2—r-, (2-2) 70      K-mGr + icco 

where X0 is the static displacement of the aft position, Y0 is the static displacement of the forward 

position, co is the circular frequency, and i is the imaginary index (J-l). 

Because the response of the aft position and the excitation of the forward position have the 

same steady state form of em, the model transfer function containing the ratio of displacements, 

T = T' (2"3) 

will be the same as the ratio of accelerations. This allows the measured transfer function (TF{aJ 

aj) consisting of the aft acceleration to the forward acceleration to be used in the definition of the 

dynamic viscous damping coefficient, cfcoj, and the dynamic stiffness, k((o). The development of 

the stiffness and viscous damping properties of the ER test module were achieved by inverting the 

model transfer function in equation (2-2) and multiplying by the complex conjugate of the new 

denominator, (k - z'cco), producing the following: 

^o      k2 -km(£>2 + c2co2       cmco3 

i =  —-, (2-4) 
X0 k2 + C2(£>2 k2 + C2(02 „«a, 

TF{ — } 
af 

where TF{aa/aß is the measured transfer function data consisting of the ratio of the aft 

acceleration, aa, divided by the forward acceleration, fly. The solution of the dynamic viscous 

damping coefficient and the dynamic stiffness in terms of the measured transfer function was 

accomplished by setting the imaginary and real components of the model transfer function equal 

to the respective components of the measured transfer function data, 

T   f      i   a a,] cmco3 

Im TF    {-}    = _ — (2-5) 
L af A     k +c to2 

and 

Re TF l{^}    =   , (2-6) 
af J /r + <r co2 

where Im[] is the imaginary component and Re[] is the real component of the measured transfer 

function. By solving both equation (2-5) and equation (2-6) for k2 + c2co2, and combining to 
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produce an expression for the dynamic viscous damping coefficient in terms of frequency and the 

dynamic stiffness, 

c(co) = -- 

Im 1    aa 

a V  J 

Re 
a. 

TF~l{ — } 
a* 

(2-7) 

Substituting equation (2-7) into equation (2-5) (or equation (2-6)) produces an expression for the 

dynamic stiffness as a function of frequency, 

mco2 Re 

*(©) =- 

1     aa 

"f J 
-1 

Re 
a. 

rrl{—} 
a '/  J 

-1    +   Im 
1     aa 

af 

n\2' 
(2-8) 

The dynamic damping ratio can be evaluated by dividing equation (2-7) by the critical damping 

coefficient, cc. At a damping level equal to the critical damping coefficient, the system returns to 

the equilibrium state in a minimum amount of time and without oscillation. By definition, the 

critical damping coefficient can be expressed as 

cr = 2mco , c n' (2-9) 

where con is the natural frequency of the system. The natural frequency of the system is defined by 

co   = n 

fc(CO) 

m 
(2-10) 

The dynamic damping ratio, ^ (co), has the following form: 

Im 

S(co) = 
CO 

a. 
TF-l{-?} 

af 

2.m fRe m 
a. 

Trl{ — } 
a lf J 

-1    +   Im 
dL 

-i\2* 

TF_1{ — } 
a lf J 

(2-11) 
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The final qualitative measure of the frequency dependent damping characteristics of the 

ER test module is the amplitude ratio, A/?(co). The amplitude ratio, which is dimensionless, 

provides a measure of the displacement decay as a function of the damping applied to the system. 

For a single degree of freedom system which has a harmonically excited base, the amplitude ratio 

is found to be the following: 

AR (a) 
l-(co/(ü0)2[l-4^2] 

O-(w/a>0)2)2+(2£(a>/a>0))2_ 

2|(co/co0): 

(l-(co/co0)2)2+(2^(co/a)0))2 
(2-12) 

where the resonant frequency, co0, used was for the zero volt case and the damping ratio, \, is 

dependent on frequency as described by equation (2-11). 

The FORTRAN programs developed to numerically evaluate equations (2-7), (2-11), and 

(2-12) are found in Appendix A. 

Results 

Interpretation of the dynamic stiffness (equation (2-8)) and the dynamic damping ratio 

(equation (2-11)) results allows identification of stiffness and damping mechanisms within the ER 

test module with a constant electric field. The effect of the electric field is illustrated by 

normalizing the dynamic stiffness and the dynamic damping ratio by their respective zero state 

values. The plot of the normalized dynamic stiffness as a function of frequency, Figure 2.11, for 

various values of the electric field is represented by frequency plotted along the abscissa in units 

of cycles/second (Hz) and the relative decrease/increase in stiffness plotted along the ordinate. A 

slight increase in the dynamic stiffness of the ER test module is observed for electric field 

strengths between 0.4 and 1.2 kV/mm. As a result of this increase, the resonant frequency of the 

activated structure also slightly increased. The natural frequency corresponds to the minimum 

value of stiffness in Figure 2.11 at a given electric field. The increase of the resonant frequency at 

electric field values up to 1.2 kV/mm is similar to the results of Coulter et al. (1989). 

When the electric field is increased from 1.2 kV/mm to 1.6 kV/mm, however, the dynamic 

stiffness of the system is reduced below that of the zero state. This reduction accounts for the 

decrease in the resonant frequency mentioned earlier in the discussion of Figure 2.8. Such a 

transition in stiffness indicates that the damping mechanism within the ER test module has shifted 
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from hysteretic (0.0 to 1.2 kV/mm) to viscous (1.6 kV/mm) (Nashif et al. (1985)). 

An applied electric field increases the dynamic damping ratio of the ER test module. This is 

shown, in Figure 2.12, by the plot of the normalized dynamic damping ratio as a function of 

frequency for various values of the electric field, represented by frequency plotted along the 

abscissa in units of cycles/second (Hz) and the relative increase in damping plotted along the 

ordinate. The damping ratios for the intermediate range of the electric fields (0.4 -1.2 kV/mm) are 

nearly identical. When the electric field is increased to 1.6 kV/mm, the damping ratio increases by 

a factor of 1.75 over the zero state. At frequencies greater than 17.5 Hz, the damping 

characteristics of the 1.2kV/mm state is approaching that of the 1.6kV/mm case. The resulting 

yield shear stress produced at 1.2 kV/mm is not sufficient to maintain the yield surfaces near 

resonance, therefore, the damping performance is typical of the lower electric field strengths. As 

the frequency increases past the point of resonance, the magnitude of the generated forces are 

less, thus, the yield surfaces produced are able to dissipate the higher frequency (> 17.5 Hz) 

vibrational energy in a mode similar to the 1.6kV/mm case. 

The amplitude ratio can be calculated from the results of the dynamic stiffness and dynamic 

damping ratio. It is a convenient measure of the reduction of the vibrational energy in the system, 

arid is plotted in Figure 2.13, where the abscissa represents the ratio of frequency to the zero state 

natural frequency of the ER test module and the ordinate represents the amplitude ratio 

(nondimensional). Figure 2.13 also clearly demonstrates how resonant frequency varies as a 

function of electric field strength. The reduction in the magnitude of vibrational amplitude for the 

1.6-kV/mm state compared with the magnitude of the zero state represents an attenuation of 4.0 

dB for the corn starch/mineral oil fluid. The amplitude ratio shows a reduction in the transmitted 

vibration for values of the frequency ratio less than or equal to Jl due to the viscous damping; 

however, at values of the frequency ratio greater than Jl, the viscous damping contributes to the 

transmission of the vibration. This effect is characteristic of classical viscous damping devices. 

The overall damping effect that the ER fluid has on the longitudinal vibration can also be 

expressed in the time domain. Figure 2.14 shows the rate of decay of the oscillation in the flexible 

cylinder. This figure compares the zero state to the 1.6-kV/mm state. The damped period of the 

oscillation is related to the logarithmic decrement. These results show a fourfold increase in the 

logarithmic decrement when the fluid is activated by the electric field. The calculated logarithmic 

decrement for the 1.6-kV/mm data is approximately equal to that of a 6-month-old automobile 

shock absorber (Steidel, (1979), p. 185). 
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The transition of the damping mechanism within the ER test module as the electric field is 

increased from 1.2 to 1.6 kV/mm can be explained by the increase in the yield shear stress of the 

ER fluid. The damping characteristics shown at the electric fields of 0.0, 0.4, 0.8, and 1.2 kV/mm 

indicate a hysteretic type mode. This is evidenced by the reduction of the transmissibility as the 

electric field increased with no decrease in the center frequency. The mode of damping produced 

at the electric field strength of 1.6kV/mm is typical of a viscous damper, since the center 

frequency and magnitude decreased. The transition of the damping mechanisms occurred as the 

electric field increased from 1.2kV/mm to 1.6kV/mm developing a fluid region which resisted the 

shear imposed by the boundary excitation. 

The dissipation of the vibrational energy is accomplished through the resulting shear forces 

within the ER fluid. The establishment of yield surfaces within the ER fluid is attained by the 

spatial variation of the applied electric field. Since the magnitude of the yield stress is dependent 

on the magnitude of the applied electric field, a spatial variation in the developed yield stress will 

result. The mathematical understanding of the dissipation mechanisms within the ER fluid will 

provide an accurate model that would allow theoretical experiments to be conducted on 

configurations impossible to regulate through experimentation. Modeling the shear interfaces 

within the ER test module (see Chapter 5) will allow specification of the rheological properties 

that would be necessary to provide a specified amount of damping. The mathematical knowledge 

of these loss mechanisms in terms of the fluid dynamics of the ER test module is discussed in the 

following chapters. 
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Figure 2.11. Normalized Stiffness as a Function of Frequency at Various Electric Fields 
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Figure 2.12. Normalized Damping as a Function Frequency at Various Electric Fields 
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Figure 2.13. Amplitude Ratio as a Function of Frequency at Various Electric Fields 
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Figure 2.14. Time Decay of Oscillation for ER System at 0.0 kV/mm and 1.6 kV/mm 
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Summary 

The application of an ER fluid to attenuate the longitudinal vibrations in a flexible cylinder is 

modeled with a second order transfer function and validated with an experiment. Based on the 

system model and the data from the transmissibility experiments, the electric field dependence of 

the ER fluid damping mechanisms was illustrated. The application of an electric field produced an 

increase in the resonant frequency as well as a reduction in the amplitude of the oscillation. The 

analysis of these experiments using the system model illustrated a transition in the damping 

mechanism of the ER fluid. This transition produced a reduction in both magnitude and resonant 

frequency when the electric field was increased to 1.6 kV/mm. This transition to the 1.6 kV/mm 

electric field developed a fluid region which was able to resist the shear imposed by the boundary 

excitation. The fluid state at 1.6 kV/mm produced a significant increase in the damping ratio and 

the logarithmic decrement compared to the other electric field values. The data sets for the zero 

state and the 1.6 kV/mm are found in Appendix E. 

Chapter 3: Electric Field Solution 

Introduction 

The experimental results in Chapter 2 showed that the damping characteristics of the ER fluid 

changed dramatically when the applied electric field transitioned from 1.2 kV/mm to 1.6kV/mm. 

In order to model the fluid damping mechanisms of the system, the electric field producing the 

Theological changes in the system must be analyzed. The solution to the applied electric field was 

accomplished using closed form conformal transformation techniques. This method was used 

instead of numerical simulation in order to reduce the computational time required. The resulting 

solution utilizes Jacobian elliptical functions and integrals which were evaluated numerically. 

Electric Field Problem Statement 

An electrostatic field was used to activate the electrorheological fluid inside the test module. 

The governing equations used to describe the electrostatic field, containing no space charges, are 

as follows (Schwab (1988)): 

V2<D (r, z) = 0 (3-1) 
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E(r,z) = -VO(r,z) (3-2) 

where O is the voltage potential scalar function, E is the resulting electric field vector, V2 is the 

Laplacian operator in cylindrical coordinates, and V is the gradient operator in cylindrical 

coordinates. The solution of Laplace's equation provides a voltage potential function (O) and 

the resulting electric field (E) can be found from the negative gradient of this voltage potential 

function. In this application, the electric field between the electrodes and the fringe field around 

the electrodes is of interest. The fringe field will influence the properties of the electrorheological 

fluid as the electric field decays from the center of the electrorheological test module to the inner 

wall of the module. Based on the magnitude of the electric field within the electrorheological test 

module, the rheological properties of the fluid, as a function of the radial and longitudinal 

directions, are calculated. The rheological properties of importance are the pre-yield shear stress, 

x0, and the post-yield viscosity, \i. The relationship between the rheological properties of the fluid 

and the applied electric field will be discussed in the next chapter. 

The electrostatic problem is defined as an array of electrodes parallel to each other and 

perpendicular to the longitudinal axis of the test module (Figure 3.1). 

r / -"^— Electrode 
Test Module 

* 
•       •        •        •         •         • a 

•       •        •        •        •         • 
z 

2d 

Figure 3.1. Electric Field Device 

The electrodes are circular disks of radius a separated by a distance of 2d. The gap between the 

electrodes is measured between the inner faces of neighboring disks. The thickness of the 

electrodes has been neglected. The configuration of the electric device in the electrorheological 
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module consists of 170 electrodes each having a diameter (2a) of 31.75 millimeters (mm) and a 

spacing (2d) of 5 mm. The voltage potential, OQ, on the electrodes is assumed uniform across the 

face of the disk. This model simulates the electric field device from Chapter 2. 

Closed form solutions of electrostatic problems have been accomplished in Cartesian 

coordinates by Mitchell (1894) for a two plate condenser problem, Love (1924) for a two plate 

electrode problem, Binns & Lawernson (1963) for the fringe field between two parallel plate 

electrodes, and Lawden (1989) for the parallel plate capacitor problem, as well as others. Solution 

technique utilized in the literature for the parallel plate electrodes has been by conformal 

transformation (complex potential functions) of Laplace's partial differential equation. The 

analytical solution to the parallel circular disk problem is presented in Moon & Spencer (1953), 

and involves the use of conformal transformations based on elliptic functions. 

Conformal Transformation 

The conformal transformation, based on elliptic functions, proposed by Moon & Spencer 

(1951,1953), was used to determine the electrostatic field and the decrease in the magnitude of 

the electric field strength as the radial distance increases. 

If a conformal transformation exists for a regular function, the equipotential and flux curves 

can be plotted to produce a field map. A function is classified as a regular function provided that 

all of the derivatives exist, are continuous and satisfy the Cauchy-Riemann equations. The regular 

function considered in this transformation consists of a complex variable y = r + iz as a function 

of another complex variable w = u + iv. This requires the conformal transformation to have the 

form 

y(r,z) = r + iz=>w(u,v) = (p(u,v) +iy(u,v), (3-3) 

where (p represents the potential function, \j/ represents the flux function, and u,v are the 

independent variables of the transformed w space. The flux crossing a line between two points or 

the potential difference between two points is not altered by the transformation. Thus, 

conservation of flux and potential is maintained through the transformation. For the given 

problem, the transformation provided in Moon and Spencer (1988) gives the field solution in the 

form of equation (3-3) as 
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y(r,z) = r- iz =» —3 (w + iK') + id, (3-4) 

where d is one-half the electrode separation, 3 is the Jacobian Zeta function, K and K' are the 

complete elliptic integrals of the first kind. In terms of the physical problem, the complete elliptic 

integral of the first kind, K, represents the voltage potential applied to the electrodes. The 

expressions defining the Jacobian Zeta function, the Jacobian elliptic functions and the elliptic 

integrals can be found in Appendix B. These doubly periodic, meromorphic functions are plotted 

in Figure 3.2. Expressed in the form of equations (3-3) and (3-4), w is the complex variable 

containing a real component u and an imaginary component v. When substituting w = u + iv into 

equation (3-4), the potential and flux functions from the transformation equation [Equation J6C, 

page 85, of Moon & Spencer (1988)] were obtained as 

2Kd(a,.s , m(sn(u)cn(u)dn(u)sn(v')2) 

l-dn(u)2sn(v')' 
(p(w,v) = —13 00 + :—r^-Tö—TTTö I (3'5) 

2Kd 
K 

KV      dn(u)2sn(y')cn(V)dn(y') 
y(M,v) =—- Z(v')+——-     v;    /   '     \^9

V (3-6) 
2KK' l-dn(u)2sn(v'y 

where (p represents the potential function, \|/ represents the flux function, V = v + K', sn(), cn(), 

and dn() are the Jacobian elliptic functions evaluated at the argument u with modulus m and the 

argument v' with modulus m . At the modulus value of 0.5, the modulus is equal to the 

complementary modulus (m = rrC) and the elliptic integrals K,K',E and E' are also equal to 

their respective complementary value. This analysis was completed with a modulus value of 0.5, 

although m can range from zero to one. The choice of a modulus value of 0.5 was made to 

simplify the evaluation of the elliptic integrals and Jacobian functions. 
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-1.0-- 

Electric Field Calculation 

cn(u) 

Figure 3.2. Jacobian Elliptic Functions 

The solution transformation is of the form y = f(w), which allows the direct calculation of 

the electric field. The field calculation is made by setting u and v to values between zero and K. 

The algorithms used to evaluate the Jacobian elliptic functions were power series approximations 

found in Abramowitz & Stegun (1970). The Jacobian Zeta function was evaluated using 

(Abramowitz & Stegun (1970)) 

3(«) = ju
0dn(t)2dt-u 

K' (3-7) 

The elliptic integrals were numerically calculated using a twelve point Gaussian integration 

scheme. The evaluation of the Jacobian elliptic functions, the Jacobian Zeta function and the 

elliptic integrals were made by the FORTRAN programs listed in Appendix B. The accuracy of 

these routines is of the order of six places, and was evaluated by comparison to tabulated values in 

Milne-Thomson (1932). 

The geometric value of the electrode radius is defined by the following expression 

''electrode 
IKd 

%       max' (3-8) 
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This relationship is dependent on the values of the complete elliptic integral of the first kind and 

the maximum value of the Jacobian Zeta function at the given modulus of one-half. The electrode 

dimension was calculated from equation (3-8) as 0.4334 mm. Since the problem is linear and 

homogeneous, the solution can be scaled in the radial direction to approximate the given 

geometry of the specific problem. The resulting scale factor for the radial direction was found 

from the ratio of the actual electrode radius (15.875 mm) to the transformation defined electrode 

radius (0.4334 mm) to be sf = 36.63. 

The transformation, as given by equation (3-5) and equation (3-6), models the electric field 

between two isolated electrodes. The resulting electric field map for two isolated electrodes is 

illustrated in Figure 3.3. The solution of the electric field for an array of electrodes (Figure 3.1) 

will be accomplished by using this solution and the existing symmetry planes. The symmetry of 

the electric field produced by the electrode array allows certain regions of the field to be rotated 

about the vertical electrode axis to build the electric field of the 170 electrode array. The 

symmetry planes, shown in Figure 3.3, consist of a vertical plane where the potential function is 

zero (<p = 0) and a second vertical plane where the flux function is zero (y = 0). By mirror imaging 

the electric field in the region between the symmetry planes, the complete electric field for the full 

electrode array can be developed. In addition to the symmetry, the potential curves are concentric 

symmetric ellipses centered about the electrode locations. This condition is not valid for the two 

end electrodes. The electric field map for the end electrodes is also represented by the isolated 

electrode pair solution. The region of the field utilized from the isolated pair solution for the two 

end electrodes in the full array is shown in Figure 3.3 where the dots depict the potential and flux 

lines of the electric field. The potential lines have a characteristic shape of an ellipse, while the 

flux lines are perpendicular to the potential lines. The electric field contour lines have the same 

mapping as the flux lines. 
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Figure 3.3. Electric Field Solution for Isolated Electrode Pair 

Due to the large size of the electric field device, an electric field plot for the complete 170 

electrode array would be too dense to graphically resolve the detail of the field.   The above 

solution technique for resolving the electric field generated by an array of parallel electrodes can 

be illustrated by considering the electrode array shown in Figure 3.4.   The electric field of the 

three electrode array will be developed based on the solution of the isolated pair (Figure 3.3). The 

boundary conditions for the three electrode example consist of a voltage potential O0, positive in 

value, on electrodes A and C. The voltage potential applied to electrode B has a value of - O0. 

B 

Figure 3.4. Three Electrode Example 

The electric field surrounding the center electrode, B, is influenced by the electrodes on either 

side (A and C); therefore, the electric field would not be of the form illustrated in Figure 3.3. The 

28 



TR 11,023 

potential curves will be concentric, symmetrical ellipses centered about the vertical axis of 

electrode B; the potential curves in Figure 3.3 are asymmetric with respect to the vertical axis of 

the electrodes. This symmetry is due to the influence of the surrounding electrodes (A and B). The 

internal electrode region of the transformation solution (Figure 3.3) was used to resolve the 

electric field between the three electrodes.   By reflecting this portion of the solution about the 

electrode axis, the solution to the electric field of the middle electrode, B, was obtained. The outer 

field solution for the two end electrodes (A and C) was accomplished by using the end electrode 

region of the electric field map (Figure 3.3). The electric field solution for any number of 

intermediate electrode cells can be obtained by duplicating the results of the middle electrode, B. 

The resulting electric field produced by the three electrode array is shown in Figure 3.5. This 

electric field is consistent with that presented in Maxwell (1892, Figure XL), for an array of 

parallel, rectangular plate electrodes. The potential curves are symmetric about the middle 

electrode and the potential curves about the two end electrodes exhibit an asymmetry with respect 

to the vertical axis. The electric field plots shown in Figure 3.3 and Figure 3.5 were generated by 

encoding the conformal transformation solution in FORTRAN. This program, called EFIELD, is 

included in Appendix B. 

The final solution for the electric field of the full electrode array would consist of three 

hundred and thirty-six repetitions of the internal electric field solution bounded by the end electric 

field solution. The three hundred and thirty-six repetitions of the internal electric field solution is 

due to the domain of the internal solution. The internal solution domain is from an electrode to the 

midpoint distance between the electrode pair (Figure 3-3). Therefore, for each electrode pair the 

internal solution must be repeated twice to complete the distance between them. The rheological 

properties of the electrorheological fluid depend on the magnitude of the electric field strength as 

a function of the longitudinal direction (z-axis) and the radial direction (r-axis). Once the voltage 

potential function is known, the electric field strength can be calculated from equation (3-2). The 

decay of the electric field strength as a function of the radial direction and the characteristics of 

the electric field strength as a function of the longitudinal direction is determined by the closed 

form conformal transformation solution discussed in this section. The formulation of the 

magnitude of the electric field strength is developed in the following section. The result that was 

applied to the constitutive relationship of the electrorheological fluid was a spatial description of 

the electric field strength of the one hundred seventy electrode array. 
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Figure 3.5. Electric Field Map Resulting from the Three Electrode Example. 
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Electric Field Strength Calculation 

The magnitude of the electric field evaluated by the conformal transformation discussed in 

section 3.3 was developed from equation (3-2) and the Cauchy-Riemann relationships (equation 

(3-9)) for potential functions. The Cauchy-Riemann conditions require the flux and potential 

functions to have the following relationships: 

8cp _ ch|/ 
dr     dz 

9<p      d\|/ 
(3-9) 

It has been shown (Binns & Lawrenson, (1963)) that the derivative of the conformal 

transformation, applying the Cauchy-Riemann conditions, yields the electric field strength as a 

function of the radial and longitudinal directions. The magnitude of this expression can be 

evaluated at discrete spatial locations in the electric field to calculate the electric field strength. 

The magnitude of the electric field strength can be expressed as 

\E\ = dw 
dy 

(3-10) 

for an electrostatic field containing no space charges. The form of differentiation in equation (3- 

10) matches the reciprocal of the transformation given in equation (3-4). The differentiation of 

equation (3-4) produces the following expression (details in Appendix B): 

$- = -2K* 
dw % 

cn(w) 
_sn(w)J   ' K 

(3-11) 

By substituting the independent variables for the complex potential function w, the real and 

imaginary parts of the expression can be separated so that the magnitude of the electric field 

strength can be evaluated from expression (3-11). The substitution of w = u + iv reveals the real 

and imaginary components of equation (3-11) to be 

dw 
-2K* 

0A-S2    E 
-i 

E0 + SA 
(3-12) 
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0 = (cn (v) sn (u) dn (v))2 - (sn (v) cn (u) dn (u) (cn (v))2)2 

A = (cn (v))4 (cn (u))2+ (sn (u) sn (v) dn (u) dn (v) cn (v))2 

E = 2(cn (v)) 3cn (u) sn (u) sn (v) dn (u) dn (v) 

Q= (0)2+(E)2 

(3-13) 

From equations (3-12) and (3-13), the strength of the electric field at a discrete point (u,v) within 

the field can be calculated by equation (3-14). 

\E\ = dw 
dz 

= ~-2K*~ 
7I_ 

2 0A-H2     E 
U      +K 

■0E + AS ■=•-,2 -0.5 

(3-14) 

The evaluation of the electric field strength as a function of radial and longitudinal direction, 

for the one hundred seventy electrode array was accomplished using equation (3-14). The electric 

field strength was calculated as the radial dimension was increased from the radius of the 

electrode to 600 mm at a longitudinal position fixed between two electrodes. The maximum 

magnitude of the electric field was found at the midpoint between the electrode separation. The 

magnitude of the electric field decreased as the longitudinal location approached that of the 

electrode. At the vertical plane of the electrodes, the magnitude of the electric field becomes zero. 

The decay of the electric field is shown in Figure 3.6 for a potential of ±1854 volts applied to the 

electrodes. Figure 3.6 depicts the electric field between an electrode pair. The solution for the 

electric field strengths used in the Attenuation Experiment (Chapter 2) will be scaled from this 

solution. The conformal transformation solution sets the potential applied to the electrodes equal 

to the elliptic integral of the first kind, K (K = 1.854 at m = 0.5). Equation (3-14) was numerically 

evaluated using the FORTRAN program EMAG found in Appendix B. 
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Figure 3.6. Decay of Electric Field Strength Between 
Electrode Pair 

The magnitude of the electric field at any location within the field can be calculated from 

equation (3-5), equation (3-6) and equation (3-14) to evaluate the pertinent rheological properties 

of the electrorheological fluid within the test module. Since the electric field is a steady state, 

direct current application, the magnitude of the field cannot change. This allows a table of the 

magnitude of the electric field, at specific locations in the field, to be constructed. The local values 

of the electric field can be utilized to determine the appropriate rheological parameters governing 

the fluid flow at that specific location. The steady nature of the electric field allows the field 

magnitudes to be calculated only once for each applied voltage considered. 

Summary 

The application of the ER phenomenon requires an understanding of the electric field 

necessary to activate the fluid. The closed form solution to the electric field between an array of 

circular electrodes is developed to resolve the spatial decay of the field in terms of Jacobian 

elliptic functions. A conformal transformation solution technique is used to develop a potential 

function and a flux function. The magnitude of the electric field is evaluated from these elliptic 
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function based expressions. The expression derived in this chapter for the magnitude of the 

electric field, as a function of radial and axial locations, is used to determine the rheological 

parameters of the corn starch and mineral oil ER fluid used in the attenuation experiments. 

Chapter 4: ER Fluid Constitutive Relationships 

Introduction 

In order to exploit the ER phenomenon in an engineering application, an understanding of the 

constitutive properties of the working fluid is required. The material behavior of an ER fluid has 

been found to depend on the applied electric field, the dielectric properties of the carrier fluid, the 

dielectric properties of the particles, the particle size, the concentration of particles, temperature, 

water content, and frequency. Klass & Martinek (1967) discuss the dependence of the yield shear 

stress on the square of the electric field magnitude. They also discuss the effect of ER particle 

volumetric concentration, and the dielectric properties of the particles on the apparent viscosity. 

Jordan & Shaw (1989) provide a direct link between the particle structure development and the 

rheological changes of the ER fluid as a function of the electric field. Wong & Shaw (1989) 

discuss the role of water content in the ER fluid as the mechanism dictating the particle structure. 

This is investigated in terms of the electric field strength, moisture content, and dynamic 

oscillatory shear. Block & Kelly (1988) discuss the relationship of Bingham behavior to particle 

concentration. They find that the optimum yield shear stress is achieved at volumetric 

concentrations between 0.1 and 0.4. They also report that the particle size is not a critical 

parameter. Brooks et al. (1986) discuss the effect on the yield shear stress of the electric field 

strength, volume fraction, and water content of the particles. Bonnecaze & Brady (1992) 

determine the Bingham yield shear stress from a microstructural model. Tao et al. (1989) 

formulates the Helmholtz free energy expression of an ER fluid system. This free energy 

expression is used to determine a critical electric field at which a phase transition occurs in the 

fluid. It has been shown through experimental methods that the effect of volumetric concentration 

and temperature (Marshall et al. (1989)), the effect of the electric field strength on the particle 

structure (Gast & Zukoski (1989)), and the Bingham parameter dependence on the electric field, 

particle size, and concentration (Klingenberg (1990)) alter the Bingham parameters. Additionally, 

numerical methods illustrate the use of the quadratic electric field strength relationship to the 

yield shear stress of the fluid (Wang (1989)). The conclusion of these researchers is that the 
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constitutive behavior of ER fluids can be modeled accurately as a Bingham fluid. The Bingham 

material model applied to an ER fluid depends on the applied electric field, the developed yield 

shear stress, and the plastic viscosity. 

Before the damping mechanisms along the ER fluid yield surfaces can be modeled for the 

present investigation, the Bingham fluid properties have to be denned for the com starch and 

mineral oil ER fluid described in Chapter 2. The measured properties of that fluid consisted of the 

electric field dependent yield shear stress and the fluid viscosity. 

Classification of non-Newtonian Fluids 

The behavior of ER fluids has been classified as a non-Newtonian fluid, because the Bingham 

fluid model has the capability to resist an applied shear stress. The general behavior of non- 

Newtonian fluids can be categorized into three groups: time dependent fluids, visco-elastic fluids, 

and time independent fluids. The time dependent fluids are characterized by the dependence of the 

shear strain rate on the magnitude and duration of the applied shear stress. In addition, the time 

history of the shear stress application may also influence the shear strain rate. There are two types 

of time dependent fluids, Thixotropic and Rheopectic. The thixotropic fluid features a reduced 

shear stress with time at a constant rate of shear strain. The internal component structure of the 

thixotropic fluid breaks down progressively with time. The rheopectic fluid exhibits the opposite 

characteristics in that the shear stress increases with time at a constant rate of shear strain. In this 

case, the internal component structure of the rheopectic fluid builds with a low rate of shear strain. 

In both types of fluids, the processes are reversible and illustrate a hysteric profile. These 

characteristics are shown conceptually in Figure 4.1. Examples of thixotropic fluids are margarine 

and printing ink, and examples of rheopectic fluids are clay suspensions and gypsum suspensions. 

Shear' 
Stress 

Thixotropic Shear 
Stress 

Rheopectic 

Rheopectic 

Thixotropic 

Shear Strain Rate 
Figure 4.1. Flow Curves for Time Dependent Fluids 

Time 
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The second classification of a non-Newtonian fluid is the visco-elastic fluids. The visco-elastic 

fluids show partial recovery when the deforming shear stress is removed. These materials exhibit 

the properties of fluids and solids such that the material may be viscous and retain a certain elastic 

shape. The effects of elastic recovery are only influential when the flow occurs through irregular 

shapes, as in flow through orifices and valves. The common examples of the visco-elastic fluids 

are pine pitch, napalm jelly and certain polymer melts such as nylon. The constitutive 

relationships governing visco-elastic materials are typically expressed as mechanical analogies 

such as the Voigt body and the Maxwell body (Wilkinson, (I960)). These relationships model the 

Theological parameters as springs and dash-pot dampers. The spring represents the Hookean 

elasticity properties while the dash-pot represent the Newtonian viscosity of the material. 

The final classification of non-Newtonian fluids is the time independent fluid. Time 

independent fluids have the characteristic that at any location in the fluid, the rate of shear strain is 

only dependent on the shear stress at that location. The time independent fluids can be further 

subdivided into pseudoplastic fluids, dilatant fluids, and Bingham plastic fluids. Figure 4.2 

represents the characteristics of the flow curves typical of these fluid classifications. 

Shear 
Stress 

Ideal Bingham 

Shear Strain Rate 

Figure 4.2. Time Independent Non-Newtonian Fluid Flow Curves 

The pseudoplastic fluids are also referred to as shear thinning fluids. The characteristic of the 

pseudoplastic fluid is the viscosity decreases as the strain rate increases. The fluids that exhibit 

this behavior are typically suspensions consisting of asymmetric particles. The reduction in 

viscosity of pseudoplastic fluids as strain rate increases is due to the alignment of the particles in 
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the fluid. Examples of shear thinning fluids include greases, soap, and paper pulp. 

The second category of time independent fluids are dilatant or shear thickening fluids. These 

fluids are characterized by an increase in viscosity as the rate of shear strain increases. Dilatant 

fluids usually have a high solid content. The increase in the fluid viscosity is due to the liquid 

acting as a lubricant for the particle motion at low rates of shear strain. As the shear strain rate 

increases, the initial dense packing of the particles disperse causing the particle volume to 

increase, thus, decreasing the available volume to the lubricating liquid. A result of the reduction 

in the lubrication of the particle motion is an increase in the required shear stress. Examples of 

shear thickening fluids are quicksand and wet beach sand. 

The final category of the time independent fluids are the Bingham plastic fluids. The 

representative feature of these fluids is the ability to resist a static shear stress. This static shear 

stress, or yield shear stress, is shown in Figure 4.2 as TQ. The behavior of fluids possessing a yield 

shear stress is explained by the presence of a three dimensional, internal structure. The cohesive 

forces containing the internal structure have the ability to resist an applied shear stress. This yield 

shear stress phenomenon can be illustrated by Figures 4.3 and 4.4. Figure 4.3 shows a portion of 

the electrode assembly used in Chapter 2 without an electric field applied. When the electrodes 

are lowered into the ER fluid and raised out of the ER fluid bath, the fluid does not remain in 

between the electrodes. Figure 4.4 shows the electrode assembly with an applied electric field 

(3kV/mm) containing ER fluid after the electrodes are lowered and raised from the ER fluid bath. 

The resistance to the gravity force by the ER fluid is due to the yield shear stress developed by the 

applied electric field. At shear stress values below the yield value, the fluid behaves as a solid. 

When the applied shear stress exceeds the yield value, the internal structure collapses, allowing 

the fluid to flow with a viscosity similar to that of a Newtonian fluid. The recovery of the internal 

structure when the applied shear stress is reduced to a value less than the yield stress is 

instantaneous. For the ER fluid used in the attenuation experiments (Chapter 2), the recovery time 

was on the order of a millisecond. 

The flow curve for a Bingham plastic fluid can have a pseudoplastic, dilatant, or an ideal 

structure (Figure 4.5). The current literature has shown the ideal Bingham plastic model to be 

sufficient in describing the stress-strain rate relationship of ER fluids. The additional requirement 

for an ER fluid is the electric field dependence of the yield shear stress. This requirement, as well 

as the Bingham plastic properties, will be developed in Section 4.3. 
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Figure 4.3. Electrodes Without Voltage Potential and ER Fluid 

Figure 4.4. Electrodes With Voltage Potential and Contained ER Fluid 
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Figure 4.5. Flow Curves for Typical Yield Shear Stress Fluids 
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Bingham Properties of Corn Starch and Mineral Oil ER Fluid 

The representation of an engineering fluid, such as the corn starch and mineral oil ER fluid 

used in the Attenuation Experiments (Chapter 2), by the ideal Bingham constitutive relationship 

requires the behavior of the fluid to be approximated. The constitutive relationship used to predict 

the behavior of the ER fluid utilizes the expression as found for a Bingham fluid in Bird et al. 

(1960): 

(4-1) 

A = 0        1(J0T)<T* 

where T represents the stress tensor in the fluid, A represents the rate of deformation tensor in the 

fluid, T0 represents the yield shear stress, p. represents the viscosity of the fluid, j 0 x is the 

double dot product of the stress tensor, which represents the momentum flux, and A 0 A is the 

double dot product of the rate of deformation tensor. The application of equation (4-1) and the 

definition of the double dot products will be discussed in greater detail in Chapter 5. The 

remaining parameters to define for the ER fluid are the viscosity and the yield shear stress. The 

ER fluid properties were measured by Maciejewski & Tryon (1992) of the Materials Laboratory at 

the Naval Undersea Warfare Center for the corn starch and mineral oil ER fluid used in the 

Attenuation Experiments (Chapter 2). The density of this ER fluid was measured as 995 kg/m . 

The measurement of the electric field dependence of the yield shear stress and the post-yield 

characteristics of the fluid was accomplished utilizing the dynamic ER test apparatus 

(Maciejewski Patent No. 5,177,997) attached to an Instron analyzer. The measurement apparatus 

involved a concentric cylinder configuration where the inner cylinder was oscillated in the 

longitudinal direction. The sample of ER fluid is contained within the annulus between the inner 

and outer cylinders. The oscillating inner cylinder is attached to the dc high voltage power supply; 

whereas, the outer cylinder is electrically grounded. The data collected included the shear stress 

on the inner cylinder as a function of the speed of the inner plunger at various voltage potential 

values. 

The collected data for the com starch and mineral oil ER fluid was then incorporated into the 

Bingham relationship of equation (4-1). The resulting flow curve representing the Bingham 
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parameters for the ER fluid used is shown in Figure 4.6. This figure is a plot of the shear stress, in 

pascals, on the ordinate versus the shear strain rate on the abscissa in units of 1/seconds. It can be 

seen that the ER fluid is non-Newtonian at the zero state. The yield shear stress is shown to be a 

strong function of the electric field; whereas, the viscosity is not a strong function of the electric 

field. The zero state viscosity is approximately 931 Pa-sec and the energized viscosities are 

approximately 1340 Pa-sec. This variation between the energized and zero state viscosities have 

been shown by Brooks (1989) for a thirty-five percent volume fraction commercial fluid. 
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Figure 4.6. Flow Curve of Corn Starch and Mineral Oil ER Fluid 

The dependence of the yield shear stress on the applied electric field has been shown by 

Brooks (1989) to be a parabolic relationship. This relationship has the form of 

x0(E) = ß£2 + x0(0), (4-2) 

where %Q (£) is the electric field dependent yield shear stress in units of pascals, E is the 

magnitude of the applied electric field in units of kV/mm, ß is the proportionality constant based 

on the ER fluid composition, and x0 (0) is the zero state yield shear stress of the fluid. Since the 

electric fields used in the Attenuation Experiments (Chapter 2) ranged from zero to 1.6kV/mm, 
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the fit of the measured data to equation (4-2) included only the zero to 2.02kV/mm data sets. The 

result of this fit is illustrated in Figure 4.7. 

The evaluation of the yield shear stress in the ER fluid will depend on the electric field as 

defined by equation (4-2). The electric field has been shown, in Chapter 3, to vary spatially; 

therefore, the yield shear stress will also be dependent on the spatial location within the fluid. The 

remaining Bingham parameter required for the corn starch and mineral oil ER fluid is the fluid 

viscosity. This can be evaluated from the flow curve in Figure 4.6. The Bingham parameters for 

the com starch and mineral oil used in the Attenuation Experiments (Chapter 2) are listed in Table 

4.1. 
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Figure 4.7. Electric Field Dependence of Yield Shear Stress 
for Corn Starch and Mineral Oil ER Fluid 
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Bingham Parameters for the Corn Starch and Mineral Oil ER Fluid 

Absolute viscosity, (zero state ) (J.:   931.0 Pa-sec 

(energized) \i: 1340.0 Pa-sec 

Mass Density, p: 995 kg/m3 

Zero state yield shear stress, i0(0): 505 Pa 

Material proportionality constant, ß: 200.0 (N/m2)/(kV/mm)' 

Table 4.1. Bingham Parameters for Corn Starch and Mineral Oil ER Fluid 

The application of equations (4-1), and (4-2), together with the evaluated Bingham parameters 

in Table 4.1, provide the constitutive relationship for the ER fluid used in the Attenuation 

Experiments. The use of the Bingham model to relate the shear stress to the ER fluid velocity 

gradients will be utilized in the next chapter, Chapter 5, to model the non-Newtonian fluid 

dynamics within the ER test module. 

Summary 

The behavior of the ER fluid is determined to be non-Newtonian since the fluid exhibits a 

yield shear stress phenomenon. The chapter discusses the three categories of non-Newtonian 

fluids and finds that ER fluids can be approximated as time independent. The ideal Bingham 

plastic constitutive relationship is used to predict the behavior of the ER fluid. This relationship 

describes the dependence of the fluid stress tensor on the rate of deformation tensor with two 

rheological parameters. The rheological parameters described in the ideal Bingham constitutive 

relationship are the absolute viscosity and the static yield shear stress. 

Since the static yield shear stress of an ER fluid is dependent on the electric field, a 

relationship between the applied electric field and the static yield shear stress is developed for the 

corn starch and mineral oil fluid used. The flow curve for the corn starch and mineral oil ER fluid 

is provided based on experimentation and the developed relationship between the electric field 

and the yield shear stress. 

The ideal Bingham parameters for the corn starch and mineral oil ER fluid are presented 
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which include the absolute viscosity, density, zero state yield shear stress, and a material 

proportionality constant. This material proportionality constant is used to evaluate the static yield 

shear stress of the ER fluid at any applied electric field. 

Chapter 5: Bingham Fluid Dynamics 

Introduction 

The damping capacity of the ER test module is characterized by the amount of energy 

dissipated in the flexible cylinder. Energy dissipation in the test module depends mainly on the 

generation of a shear flow field within the ER fluid by the interaction of the fluid with the structure 

of the module. This chapter treats the modeling of that flow field. The solution of Bingham fluid 

applications has been discussed in the following references. Lipscome & Denn (1984) 

investigated the flow of Bingham fluids through complex geometries such as the pressure driven 

flow of a Bingham fluid between diverging plates. The formulation of their analysis was for one- 

dimensional, fully developed flows. Edwards et al. (1972) and Duggins (1972) present solutions 

to the unsteady flow of Bingham fluids in pipes. These solutions are one-dimensional in nature. 

Atkin et al. (1991) presents solutions to one-dimensional, fully developed flows including 

Poiseuille and Couette applications. Walton & Bittleston (1991) discuss the flow of a Bingham 

fluid in an eccentric annulus. The axisymmetric motion of the ER fluid in the ER test module is 

three dimensional, quasi-static in nature. The equations governing this type of motion are 

developed in the following sections using the Cauchy formulation for the equations of motion as 

the starting point. 

Bingham Equations of Fluid Motion 

The geometry of the ER test module, shown in Figure 5.1, is approximated in an 

axisymmetric, cylindrical coordinate system. Circumferential velocity components, if any, will be 

assumed constant. Hence the continuity equation (5-1) and the Cauchy equations in the radial, 

axial, and circumferential directions ((5-2), (5-3), and (5-4)), in the absence of body forces, have 

the following form: 

5i+^(P")+l(P")=0 <M) 
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Dv _ _dP 
'Dt "     Tr rdrK    rr>      r     dz    ri> (5-2) 

Du = _dP   r 
7&<"«)+&V (5-3) 

dP = o (5-4) 

where v is the radial component of velocity (m/s),«is the axial component of velocity (m/s), p is 

the mass density of the fluid (kg/m3), P is the pressure (N/m2), xrr is the normal stress in the radial 

direction (N/m ), tzz is the normal stress in the axial direction (N/m2), x00 is the normal stress in 

the circumferential direction (N/m2), r is the radial coordinate (m), z is the axial coordinate (m), 

DIDt is the substantial derivative, and t is time in seconds. The continuity equation can be 

simplified further by applying the restriction of incompressibility. Therefore, equation (5-1) 
becomes: 

-f-(rv) +5- = 0. 
rdr dz (5-5) 

r,v 

Flexible Hose 

•       • 

•       • z, u 

Figure 5.1. ER Test Module Geometry 
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In order to relate the applied boundary conditions imposed onto the ER fluid by the flexible 

cylinder, the momentum equations will be expressed in terms of the velocity components. The 

relationship between the stress tensor, x, and the rate of deformation tensor, A, for a Bingham 

plastic fluid (Bird et al. (I960)) is found to be: 

X = - H + 
-A0A 

A        ^(J0J)>T2 (5-6) 

where x0 is the yield stress of the ER fluid at the particular electric field value (N/m2), \i is the 

viscosity of the ER fluid (Pa-sec), x 0 x is the double-dot product of the stress tensor to itself, and 

A 0 A is the double-dot product of the rate of deformation tensor to itself. The double-dot product 

of the symmetric stress tensor and the double-dot product of the rate of deformation tensor are 

defined in equation (5-7) as follows: 

A»A = 2(2r(£)2
+(X)2+Ä

2" 
_ or r oz 

~dv   Bui2 

_dz   drl } 
(5-7) 

101 = x?+ x2 + x1+ 2x2 
-     - rr       öD        zz rz 

When the momentum flux (^ (x 0 x)) is less than the yield stress of the fluid squared, the rate of 

deformation tensor is equal to zero. The characteristic feature of flows satisfying the requirement 

that the rate of deformation tensor becomes zero, is the existence of a plug flow region. A plug 

flow region has a spatial velocity profile which is flat in the non-yielded region of the fluid in a 

pipe flow application. The plug flow region is supported by the through flow of the fluid, which 

carries the undeformed or unyielded fluid downstream. Since the ER fluid is confined in the ER 

test module, the existence of a plug flow region is not possible. The absence of through flow 

properties in the ER test module will produce no fluid motion when the ER fluid is not yielded. 

The application of the Bingham fluid constitutive relationship, equation (5-6), to the components 

of the stress tensor and the substitution of these individual stress components into the Cauchy 

equation in the radial direction (equation (5-2)) and the Cauchy equation in the axial direction, 
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equation (5-3), produces the equations of motion in terms of the velocity components. The 

momentum equation in the radial direction, after substituting the expressions for the stress 

components and the continuity equation, becomes: 

D\ dP     .       V p_=-_+ai + _) Idv    dv    A     v 

Y2 
?dv3Y   5Y.ÖV   du 

L drdr    dzKd~z    dr> 
(5-8) 

In a similar analysis, the Bingham stress components are substituted into the momentum equation 

in the axial direction to produce: 

Du dP     .      V 
p~bl = ~Tz + ^ + Y) 

Jdr    dr2    dz2\    ^2ldzdz+dr{dz + dr). 
(5-9) 

The variable T is defined as, 

T = IJäöä (5-10) 

The set of equations including equation (5-5), equation (5-8), equation (5-9), and (5-10), 

describe the motion of an incompressible, axisymmetric, Bingham plastic fluid. In the limit when 

the yield shear stress goes to zero, these equations revert to the Newtonian Navier-Stokes 

formulation. The unknowns in the resulting equations are the pressure field and the velocity 

components in the radial and axial directions. The pressure variable can be removed from the 

momentum equations by taking the partial derivative of the momentum equation in the radial 

direction (equation (5-8)) with respect to the axial direction and subtracting the partial derivative 

of the axial momentum equation (equation (5-9)) with respect to the radial direction. The overall 

order of differentiation is increased in the resulting equation, however, the number of unknowns is 
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a. 
dz 

d_ 
dr 

D\ 
>Di. 

_d_ 
dz 

Du 
PD7. 

dr 

dz 
,    Toxfiav a2v a2v   ^ 

y2{^drdr    dzKdzdr)} 

x 
dr 

o, 13M . d2u . aV1 

T   ^r9r   3r2    dz2)_ 

Y2^ 3zaz+3rlaz   3r;j 

(5-11) 

The developed non-Newtonian momentum equation is simplified further by using the 

assumptions of creeping motion and the effects of geometry (other than axisymmetry) of the ER 

test module. These simplifications are developed in the next section. 

Creeping Motion of an ER Fluid 

The existence of creeping motion is governed by the Reynolds number characterizing the flow 

application. For the creeping motion approximation to be valid, the Reynolds number must be 

considered very small (Schlichting (1979), White (1974)). Therefore, at a Reynolds number much 

less than unity, the viscous effects are much greater than the inertia effects. The applicability of 

the creeping motion assumption to the ER fluid is tested by computing a reduced Reynolds 

number of the form described in Schlichting (1979). This reduced Reynolds number characterizes 

two dimensional problems in which the height of the fluid is very small compared to the length. In 

the ER test module, the height of the ER fluid between the electrodes and the flexible cylinder is 

0.021625 m. The length of ER fluid in the test module is 1.257 m. Based on the reduced Reynolds 

number of Schlichting (1979), the maximum value for the Reynolds number is calculated as 

follows: 

Re = 
pLU 

H 
max (h^' 0.002 «1.0 (5-12) 
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where p is the ER fluid mass density (994.76 kg/m3), L is the length (1.257 m), [/„^ is the 

maximum velocity the ER fluid experiences (4.0 m/s), h is the thickness of the ER fluid (0.026125 

m), and \i is the viscosity of the zero state ER fluid (931 Pa-sec). It can be seen from the result of 

equation (5-12), that the Reynolds number is within the valid range for the creeping motion 

approximation to be applied to the ER fluid in the test module. 

The creeping motion simplification applied to equation (5-11) is obtained by neglecting the 

squares of the velocity components and the product of the velocity gradients. This produces a 

reduced expression for the combined momentum equation in the form: 

3zL "p3d 

a_ 
dr 

+ (H+y) 
\d\    ( d\     (3

3v     I3v^ 

du~\ + ^U Idu    du    du 
(5-13) 

The assumption of creeping motion applied to the flow of the ER fluid also approximates the 

motion as quasi-static. In a real fluid, the inertia of the fluid continues the motion for a period of 

time after the excitation has stopped. When fluid motion is approximated as a creeping motion, 

the fluid description does not have a mechanism for supporting this residual motion. The 

dependence on time for a viscous creeping flow enters the problem through the boundary 

conditions. At any instance of time, the variation of the velocity components depend on position 

only. Therefore, the combined momentum expression shown in equation (5-13) will become: 

I32v 
rdrdz 

+ d\ a3v 
dr2dz+dz3 

1^1 
rldz 

d_ 
dr 

\du + d\ 
rdr    dr2 

^2 ■ o u 

a?. 
(5-14) 

The resulting momentum expression (equation (5-14)) provides a creep flow description of the 

velocity components in terms of only the spatial coordinates of the problem. The velocity 

components in the flow field are not dependent on the rheological properties of the fluid. The 

absolute viscosity, mass density, and yield shear stress of the ER fluid will influence the 

dissipation of the viscous energy but will not influence the boundary conditions in terms of the 
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fluid velocity. This is a characteristic of the creeping motion class of problems. A solution to 

equation (5-14) can be developed using a stream function that satisfies the continuity equation (5- 

5); however, the stream function transforms the boundary value problem from a Dirichlet problem 

to a Neumann problem formulation. This occurs from the assignment of the stream function, 

¥(r,z), as according to equation (5-15). 

rdz 

,3* (5"15) 

rdr 

The substitution of equation (5-15) into equation (5-14) results in the biharmonic equation (5-16) 

in cylindrical coordinates for axisymmetric geometry which is the traditional formulation of creep 

flow problems. 

V4T (r, z) = 0. (5-16) 

This is the normal formulation of creep flow problems (Langlois (1964)). However, because the 

order of differentiation is reduced in equation (5-14) (compared to equation (5-16)), and the 

computational treatment for Dirichlet boundary conditions is more straightforward than for the 

Neumann problem, the solution for the velocity field within the ER test module was accomplished 

using equation (5-14) directly rather than equation (5-16). 

The momentum expression represented by equation (5-14) is simplified by applying one last 

approximation. This relies on the wide range of the spatial coordinates of the problem. The 

thickness of the annular section in which the ER fluid is contained is two orders of magnitude 

smaller than the length. The axial velocity component will be predominantly influenced in the 

direction of motion by the flexible cylinder. Since the excitation of the ER test module is one- 

dimensional, the axial component of velocity of the ER fluid will depend on only the axial 

direction, u=u(z). Applying this approximation to equation (5-14) produces the governing 

equation for the radial velocity component which is dependent on the radial and axial directions. 

The axial component of velocity vanishes from the right side of equation (5-14) when the 

derivative with respect to the radial direction is applied. 
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A<^_ + ^_ + ^     l*o (5-17) 
rdrdz    dr2dz    3z3    r2dz 

The governing equations developed to describe the confined, creeping motion of the 

incompressible ER fluid within the axisymmetric ER test module consist of equation (5-5) and 

equation (5-17). The axial motion of the flexible cylinder and the boundary conditions influencing 

the ER test module are developed in the following section. 

ER Test Module Boundary Conditions 

The axial velocity in the ER test module is expressed from the thin shell equations governing 

the axial motion of a harmonically excited cylinder containing a fluid. The basic equation of 

motion for the structure is found in Jones (1975) and Junger & Feit (1986) to be: 

Pm-^> = Ec^y + 3- (5-18) 
dt2 dz2      a dz 

where ü (z, t) is the axial displacement of the flexible cylinder (m), w (z, t) is the radial 

displacement of the flexible cylinder (m), Ec is the complex axial elastic modulus of the flexible 

cylinder (N/m2), v is the Poisson ratio of the flexible cylinder (unitless), a is the radius of the 

flexible cylinder (m), z is the axial spatial location (m), t is time (s), and pm is the mass density of 

the flexible cylinder (kg/m3). As discussed in Chapter 2, during the experiment the ER test 

module was excited by a longitudinal shaker. This boundary condition was modeled as a 

harmonic excitation in the axial direction by equation (5-19) 

ö0(0,0 = U0e
im (5-19) 

where UQ, is the amplitude of the displacement at the forward boundary (m), i is the square root 

of -1, and CO is the frequency (rad/s). The second boundary condition needed to solve for the axial 

displacement in equation (5-18) was obtained by a force balance at the aft end of the ER test 

module (Figure 2.4) (z = L). This condition is derived by applying Newton's second law to the 

end of the ER test module. 

AsEc^-u (L, t) = -m-^-u (L, t) (5-20) 
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The longitudinal force at the end of the shell is balanced by the inertia of the added point mass. 

The undefined variables in equation (5-20) are the cross-sectional area, As (m ), and the mass of 

the added point mass, m (kg). This investigation is unique from other researchers because the 

problem formulation does not assume an infinite flexible hose and includes a mass loading 

boundary condition. 

An approximate solution to equation (5-18), using boundary conditions (5-19) and (5-20), can 

be developed for the axial displacement of the ER test module. This solution is based on the one- 

dimensional nature of the axial excitation and the assumption that the time and spatial modes of 

the problem decouple. Since a harmonic forcing function is used, the non-conforming, 

approximate solution for the flexible cylinder displacements can be written as 

u(z,t) = U(z)eicot, (5-21) 

where Ü (z) is the axial displacement of the flexible cylinder. The dynamic coupling of the radial 

displacement into equation (5-18), for axial excitation, has been shown by Hull (1994) to be 

negligible. Therefore, given the form of the steady state solution in equation (5-21), the 

longitudinal displacement equation (5-18) becomes: 

,2fT 

^+k2U=0 (5-22) 
dz2 

with 

k = (ü/JE/P (5-23) 

where k is the extensional wavenumber (rad/m). The general solution to equation (5-22) becomes, 

^- = Meikz + Ne-ikz. (5-24) 
^0 

The solution to the constants M and N, in equation (5-24), are obtained by using the boundary 

conditions expressed in equation (5-19) and equation (5-20). The resulting expressions for the 
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constants in equation (5-24) are 

[$+\]e-ikL 

[ß-l]e'*L+[ß+l]e- 
M =   m    -JkL,  ra,„„-i*L (5-25) 

and 

[ß-l]e,'*L 

[ß-l]7^7[ß+l]e- 
N =   ^    ~J*Lt  rni11.-,-tt (5"26> 

with 

„        iAsEck 

ß = -4-. (5-27) 
mor 

The axial displacement of the flexible cylinder is approximated by equations (5-24) through 

(5-27). The excitation of the ER test module was measured in the attenuation experiments as 

transfer functions consisting of ratios between the aft acceleration and the forward acceleration. A 

more convenient form for the axial displacement of the ER test model would be to normalize 

equation (5-24) by the forward displacement, ß0. Since the equations of motion for the ER fluid 

are represented in the velocity components, the normalized version of the displacement equation 

(equation (5-21)) should be differentiated with respect to time to obtain 

iW - a (A) - ^L£ _ &<z> 
3'Kßö'" ,«,&„ «*-" "&7 <5"28) 

where w (z) is the normalized axial velocity component of the fluid and the shell. 

The axial velocity of the forward and aft ends of the ER test module were determined from the 

experimentally measured transfer functions. The transfer functions recorded were in the form of 

accelerations; however, through an analysis similar to that employed to produce equation (5-28) 

from equation (5-21), the forward and aft velocities were obtained from the experimental transfer 

functions. It can be seen from equation (5-29) that the experimentally measured transfer function 

consisting of accelerations is equivalent to the ratio of the aft velocity to the forward velocity. 

This occurs since the excitation of the structure is a harmonic function. 
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TF{ —}  = TF 
ÄK*     ) 

a * 
V ] 3/     »<*W\ 

M„ 
= TF{ — } (5-29) 

The resulting boundary conditions of the ER test module, in terms of the velocity components are 

shown in Figure 5.2. 

0 

5(0) = 1 

v(r,0) = 0 

r = a~ 

r = r„ 

v (a, z) = vw (a, z) 

ER Fluid Annulus 

V(A>Z)    =  0 

Center-line ER Test Module 

z = L 
a. 

Ü(L) =TR{-^} 
af 

v(r,L) = 0 

Figure 5.2. Boundary Conditions on the ER Test Module 

The velocity at the wall (r = A) in the radial direction is defined by balancing the stresses in 

the circumferential and longitudinal directions between the shell and the ER fluid. The expression 

relating the longitudinal stress of the thin, axisymmetric shell to the axial and circumferential 

displacements is (Jones 1975): 

.     .       „ du.      _ w 
x..     (z,t) = Ec7r + vEc- 

ZZ 
(5-30) 

where u(z,t) is the axial displacement of the shell (m), and w (z, t) is the radial displacement of 

the shell (m). For the quasi-static, harmonic motion considered in this problem, the displacements 

in equation (5-30) can be represented as velocities by integrating the respective velocity 

component over time. Therefore, the longitudinal stress equation for the shell in terms of the axial 

and radial velocities is 

• JCO3Z aim 
(5-31) 
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The longitudinal stress representing the Bingham fluid at the wall of the shell is obtained by 

%,_..(z>0  = '■fluid 
\i + 

Y 
0 — 

L dz. 
(5-32) 

In order to maintain continuity at the interface of the shell and the fluid, the stress in the shell must 

equal the stress in the fluid. This equality of the longitudinal stresses produces 

H +  h v£   
i(odz        cai(ü 

-i-i 
(5-33) 

The analysis can be repeated in the circumferential direction to obtain an expression for the 

radial velocity component at the wall of the shell. The relationship between the hoop stress and 

the circumferential displacement for an axisymmetric thin shell (Jones (1975)) is 

w 
kee (z,r) = E-+vE, 

a 
du 

(5-34) 

The hoop stress in terms of the velocity components is 

lee (z,t) = 
Ec^w  |  V

Ecdu 
am      ico dz' (5-35) 

The hoop stress in the Bingham fluid is expressed as 

xee     (z'f)  = fluid 

2v. 

L  a  J 
(5-36) 

At the interface of the shell and the fluid, the hoop stress must be the same to preserve continuity 

across the interface. When equation (5-35) is equated to equation (5-36), a result similar to 

equation (5-33) is derived 
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\i + 
a 

2v~ 

Ecww    vEcdu 
am      i(ü dz 

(5-37) 

The final development of the non-dimensional radial velocity at the wall in terms of the non- 

dimensional axial velocity is accomplished by equating equation (5-33) to equation (5-37) to 

produce 

v   = a w .3zJ' 
(5-38) 

where the over-bar denotes normalized velocity. 

The application of the boundary conditions illustrated in Figure 5.2 to the equations of fluid 

motion derived in section 5.3 will provide the description of the radial velocity field inside the ER 

test module. Based on the full velocity field and the stresses in the ER fluid constrained by the test 

module, the amount of viscous dissipation within the ER fluid can be calculated. The solution of 

the radial velocity field is accomplished using finite difference techniques which are developed in 

the following section. 

Numerical Solution of Radial Velocity Field 

The evaluation of the radial velocity component is done by using central, forward, and 

backward difference schemes to approximate the differential equations (5-5) and (5-17) 

developed in Section 5.3. The selection of the type of difference equation used depends on where 

in the calculation domain the evaluation is being made. This is illustrated in Figure 5.3. The 

approximation of the third partial derivative of v with respect to z in equation (5-17) at the axial 

location; = 2 must be accomplished using a forward difference scheme. If this term is 

approximated using a central difference equation, a velocity value outside the computational 

domain is required. In a similar manner, the approximation of this term at they = n -1 axial 

location requires a backward difference formulation. 
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i = m 

j=l 

V
W  =  Vw(Z) 

0 o 
v = 0 

Not to Scale 

v = 0 

j=n-2 j=n-l j=n 

□ Forward 
Difference 

Central |jj Backward 
Difference Difference 

Figure 5.3. Finite Difference Mesh Layout for ER Fluid Annular Region 
for Approximating the Third Derivative Term of Equation (5-39) 

The difference formulations used to represent the derivatives in equation (5-17) are second 

order accurate and can be found in numerous references (Anderson et al. (1984), Ames (1977)). 

The combination of equations (5-5) and (5-17) is used to produce 

3v     j a^v     2 3v = \_d\ 

dr2dz    dz3    r2dz      'dz2 (5-39) 

where the axial velocity is dependent on only the axial location. The discretization of equation (5- 

39) will depend on a central difference formulation for all terms except the third derivative with 

respect to the axial location, which is approximated as shown in Figure 5.3. The solution of the 

radial velocity component becomes a system of algebraic equations representing equation (5-39) 

and the boundary equations of Section 5.4 (at z=0; w(0) = 1, v(r,0) = 0; at z=L; ~ü(L)=TF{aa/aß, 

v(rX)=0; at r=a; \(a,z)=vw(z); at r=re; v(re,z)=0). These equations are combined into the 

following banded matrix form: 
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[A] {V}  =   {F} , (5-40) 

where [X] is the coefficient matrix representing spatial terms from the difference equations, {v} 

is the unknown radial velocity vector, and {F} is the forcing vector. The discretization of 

equation (5-39) produces a hexadiagonal matrix in the central difference region of the 

computational domain. The solution to the radial velocities is obtained by inverting the coefficient 

matrix and multiplying to produce 

{v} = [A]
_1

 {F} . (5-41) 

The number of grid points used in the axial and radial directions was determined by increasing the 

grid density until the difference between solutions was negligible. The computational size used to 

evaluate the radial velocity components was forty grid points in the axial direction (n = 40) and 

ten grid points in the radial direction (m=10). 

This resulted in a [400 x 400] coefficient matrix, a {400 x 1} radial velocity vector and a {400 x 

1} forcing vector in the form of equation (5-41). 

The FORTRAN program, RVEL, was written to assemble the coefficient matrix, invert the 

coefficient matrix, multiply the inverted coefficient matrix by the complex forcing vector to 

obtain the complex radial components of velocity in the ER fluid. A program listing is given in 

Appendix C. The calculated velocity distributions are shown in the Figures 5.4 to 5.11 for the zero 

and 1.6 kV/mm cases. 

The axial velocity as a function of frequency is illustrated in Figure 5.4, for the 0.0 kV/mm 

case, and Figure 5.5, for the 1.6 kV/mm case. The ordinate is the normalized axial velocity and 

the abscissa represents the normalized axial position along the ER test module (Figure 2.4). From 

Chapter 2 we recall that the resonant frequency was 11.0 Hz for the 0.0 kV/mm case and 9.8 Hz 

for the 1.6 kV/mm case. 

The variation of the normalized fluid axial velocity, u(z), for frequencies below the resonant 

frequency can be seen in Figure 5.4 to be significantly different from that for frequencies above 

resonance. Curves for frequencies above resonance exhibit a characteristic decrease in wave 

speed due to damping, while curves for frequencies below resonance do not have that shape. For 

the hypothetical case of a structure without damping, the axial velocity curve would intersect the 
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abscissa. The intersection with the abscissa would represent a null in the response of the structure. 

All four curves in Figure 5.5 are for frequencies at or above the 9.8 Hz resonant frequency. 

All, therefore, exhibit the characteristic decrease in the normalized fluid axial velocity from 

damping. 

The radial velocity as a function of frequency and spatial coordinates is shown in Figures 5.6 

through 5.11. The Figures 5.6 and 5.7 illustrate the dependence of the radial velocity on the axial 

direction for selected frequencies at a normalized radius of 0.223 in the ER fluid. The axial 

dependence is negligible for the radial velocity within the ER fluid. This substantiates the 

assumption that the dynamic coupling of the radial displacement in equation (5-18) is negligible. 

The comparison of Figures 5.6 and 5.7 shows that the radial velocity is reduced approximately 

seventy-five percent when the electric field of 1.6 kV/mm is applied. The frequency dependence 

of the electrically energized fluid is not as strong as that of the zero state fluid. This can be 

attributed to effects on the system's boundary conditions resulting from the changes in fluid 

Theological properties caused by the electric field. Figures 5.8 and 5.9 are plots of the radial 

velocity at the wall of the flexible cylinder. These figures exhibit characteristics similar to those 

shown in Figures 5.6 and 5.7. 

The radial velocity as a function of frequency and the normalized radial position is shown in 

Figures 5.10 and 5.11. In both figures, the non-dimensional radial velocity is plotted on the 

ordinate and the non-dimensional radial position is shown on the abscissa at a normalized axial 

position of 0.05 from the forward end of the ER test module. The zero volt results are shown in 

Figure 5.10 and the 1.6 kV/mm electric field results are shown in Figure 5.11. The comparison of 

Figures 5.10 and 5.11 shows that the radial velocity at the wall is reduced approximately sixty- 

eight percent when the electric field of 1.6 kV/mm is applied. The frequency dependence of the 

electrically energized fluid is shown again to be not as strong as the zero state fluid. 

Summary 

The governing equations of motion for the ER fluid contained in the ER test module are 

developed using the Cauchy Equations as the starting point. The Cauchy equations are formulated 

for an axisymmetric application without body forces. The constitutive relationship for an ideal 

Bingham fluid is substituted into these momentum equations to produce a set of nonlinear, non- 

Newtonian momentum equations. The resulting set of equations are simplified by assuming a 

creeping fluid motion. Inherent in the creeping motion assumption is that the fluid motion is 
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quasi-static in nature. The momentum equation in the radial direction and the momentum 

equation in the axial direction are combined through the second derivative of the pressure with 

respect to the radial and axial directions. This reduced equation is simplified further by an 

assumption based on the wide range of the spatial coordinates and the manner of excitation of the 

structure. This assumption is that the axial velocity will depend on only the axial direction. The 

radial component of velocity is a function of the radial and axial coordinate directions. 

The analytical solution to the axial velocity is developed from the response of a thin shell 

containing a fluid subjected to an axial, harmonic excitation. Based on this solution, the balance of 

the stresses between the shell and the fluid, and the measured end response of the structure, the 

radial velocity component is solved using finite difference representation of the resulting 

equation. The finite difference approximation to the remaining equation produces a system of 

algebraic equations. These equations are solved using simple matrix operations. 

The effect of the electric field on the velocity components dynamics are illustrated and the 

dependence of the velocity on frequency is shown to be stronger for the zero state fluid than the 

energized cases. The solution of the axial component and the radial component is used to compute 

the dissipation of energy by the viscous forces in the following chapter. 
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Figure 5.4. Non-Dimensional Axial Velocity Variation With Respect to 
Axial Position at Various Frequencies for 0.0 kV/mm 
Electric Field Application. 
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Figure 5.5. Non-Dimensional Axial Velocity Variation With Respect to 
Axial Position at Various Frequencies for 1.6 kV/mm 
Electric Field Application. 
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Figure 5.6. Non-Dimensional Radial Velocity Variation With Respect to Axial 
Position at Non-Dimensional Radius 0.223 for 0.0 kV/mm Electric 
Field Application. 
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Figure 5.7. Non-Dimensional Radial Velocity Variation With Respect to Axial 
Position at Non-Dimensional Radius 0.223 for 1.6 kV/mm Electric 
Field Application. 
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Figure 5.8. Non-Dimensional Radial Velocity Variation With Respect to Axial 
Position at the Wall for 0.0 kV/mm Electric Field Application. 
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Figure 5.9. Non-Dimensional Radial Velocity Variation With Respect to Axial 
Position at the Wall for 1.6 kV/mm Electric Field Application. 
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Figure 5.10. Non-Dimensional Radial Velocity Variation With Respect to Radial 
Position at 0.05 Non-Dimensional Axial Location for 0.0 kV/mm 
Electric Field Application. 
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Figure 5.11. Non-Dimensional Radial Velocity Variation With Respect to Radial 
Position at 0.05 Non-Dimensional Axial Location for 1.6 kV/mm 
Electric Field Application. 
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Chapter 6: Electrorheological Fluid Damping Properties 

Introduction 

The motion of the ER fluid inside the ER test module has been shown to be governed by a 

Bingham, creep flow approximation. A function approximating the dissipation of the viscous 

energy was developed based on this fluid description and shown to revert to the Newtonian fluid 

description in the limit of the Bingham yield stress becoming zero. The expression for the 

damping property of the ER fluid is developed in the following sections. The damping capacity of 

the ER fluid is then compared to the results of the measurements discussed in Chapter 2. 

Bingham Dissipation Function 

The damping characteristics of the ER fluid inside the ER test module are quantified through 

the evaluation of the energy dissipation of the viscous forces. The dissipation function for a 

viscous fluid is found (Bird (1957)) to be 

Ev = -    I    [xOVV\dVolume (6-1) 
Volume 

where Ev is the local rate of dissipation of energy integrated over the volume of the fluid (Pa/sec), 

and V V is the gradient of the velocity vector. The double-dot product between the symmetric 

stress tensor, x, and the dyadic product of the velocity vector, VV, is evaluated in cylindrical 

coordinates as 

[xOVV]  = -[nY2 + x0Y]. (6-2) 

In the limit as the yield stress, TQ, goes to zero, the Newtonian expression for the dissipation 

function is obtained. The integration of equation (6-2) over the volume of the annular ER fluid 

region quantifies the amount of energy dissipated (i.e. converted kinetic energy to heat) in the ER 

fluid. This evaluation is compared to the total strain energy in the flexible cylinder in order to 

estimate the damping property of the ER fluid in terms of the electric field and frequency. 
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Damping Capacity of the ER Fluid 

The damping capacity of the ER fluid can be defined as the ratio of the energy dissipated to 

the total strain energy in the structure. The dissipation of the viscous energy was evaluated by 

equation (6-1) in Section 6.2. The damping ratio calculation based on the amount of dissipated 

energy to the total strain energy is expressed as (Nashif et al. (1985)) 

J    (£v) dVolume 
^ =  _volume  (6_3) 

4TI   J    (SE) dVolume 
volume 

where Ev is the dissipated viscous energy defined by equation (6-1), and SE is the total strain 

energy in the structure. The damping ratio evaluated in equation (6-3) is equivalent to the 

expression developed in Chapter 2, equation (2-11). 

Strain Energy in the Flexible Cylinder 

The calculation of the strain energy in the flexible cylinder approximated as a thin shell has 

the form from Jones (1975) 

SE = \    \    (Teeeee + Tzzezz + TrzYrz)^o/"me <6'4) 
Volume 

where ee0 is the circumferential strain, £   is the longitudinal strain and yrz is the shear strain in 

the flexible shell. The determination of the strains in terms of the shell velocities are accomplished 

in a manner similar to Chapter 5. The resulting strains expressed in terms of the shell velocity 

components are 

eee = 4- (6-5) 00      ai(0 

1 du (ei c, e   = — — (6-6) zz     ladz 
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and 

y'z      iadz' (6-7) 

The equation for the shear stress in terms of the velocity components of the flexible cylinder is 

expressed as 

Gcfc 
%rz     Irndz (6-8) 

where Gc is the complex shear modulus of the flexible shell material. The circumferential and 

longitudinal stresses are evaluated from equations (5-36) and (5-31) respectively. The substitution 

of the stress and strain components into the strain energy equation produces 

SE/Volume = — 
4% ;2co 

v2      wdu      du 2 

a
2       a dz      dz 

+ 
/2co 

9v 2" 
(6-9) 

for the flexible shell on a per volume basis. 

Total Strain Energy and Total Viscous Dissipation Calculation 

The damping ratio expressed, on a per volume basis, is 

^/Volume = 
CO[HT

2
 + T0Y] 

V VVW/y du   2 

-2+2—^+ Ä 
a

2       a dz      dz 
+ G. 

dv 2~ 
_ dz    . 

(6-10) 

Equation (6-10) shows that the damping ratio per volume has a direct functional dependence on 

the circular frequency, co. This dependence is characteristic of the viscous damping phenomenon. 

The dissipation of the viscous energy in the ER fluid and the total strain energy in the elastomer 

shell must be evaluated for the entire structure as opposed to a per volume basis. The volumetric 

integral for the thin elastomer shell strain energy becomes 
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L5 

SE = 2njj 
00 

47C rcöLfl 
V      vvdu     du2' 

Z      adz    Kdz} 
/2co 

3v 2_l 

rdrdz, (6-11) 

where 8 is the thickness of the flexible shell in meters. The radial velocity component at the wall 

of the shell can be expressed in terms of the axial velocity by equation (5-38). Therefore, the 

strain energy of the flexible shell can be analytically evaluated in the form 

SE = 
2/2co 

Er8
2(l+v) fl£ [ 1 _ e2ikL] + ^ [e-2ikL -1] + 2k2MNL 

L 2/ 2i 
+ 

,      (6-12) 

2/2co 

G,52fl 2r I.3./2 A:3iV2 

*J£! [e2'^ - 1] + ^f- [ 1 - e'2ikL] + 2^4MiVL 

where the constants M and N are given from Chapter 5. 

The integration of the viscous dissipation cannot be accomplished analytically. The evaluation 

of the dissipated energy in the ER fluid is obtained from the numerical integration of 

La 

J    EvdVolume = 2njj [\iT2 + x0Y] rdrdz. (6-13) 
Volume Or 

The modified Trapezoidal Rule was used to evaluate the total energy dissipated in the ER fluid. 

This integration technique should be accurate, since a fine grid resolution was used in the axial 

and radial directions. 

The calculation of the damping coefficient, as described in equation (6-3), was made by 

evaluating equation (6-13) and dividing by equation (6-12). The comparison of the damping ratio 

for the various electric fields between the attenuation experiments and the fluid model is discussed 

in the next section. 
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Damping Ratio Comparison at Resonance 

The application of damping to alter the dynamics of a structure is most effective near the 

resonant frequency of that structure. The dynamic components of the structure influence the 

response in a specific manner. The predominate influence of mass on the response of a structure 

occurs at frequencies above the system natural frequency. The predominate influence of stiffness 

on the response of a structure occurs at frequencies below the system natural frequency. The 

application of viscous damping will decrease the resonant frequency and lower the magnitude of 

the response. This is shown schematically in Figure 6.1. Figure 6.1 illustrates the regions of a 

typical system response and where the dynamic parameters impact the response. The magnitude 

of the transfer function measuring the structural response is plotted on the ordinate and the 

abscissa represents frequency. The values/; and/2 are the half power point frequencies. These are 

the frequency values when the magnitude is equal to the magnitude at resonance divided by the 

square root of two. The damping ratios evaluated at the half power point frequencies 

will be used to compare the predicted results of the fluid model. 

Magnitude 

fl fl 
frequency 

Figure 6.1. Influence of Dynamic Properties on the Response of a Structure 

The single degree of freedom model developed in Chapter 2 provides a means to investigate 

the effects the electric field has on the dynamic stiffness of the structure, and to represent the 

damping capacity of the structure. However, it is best to evaluate the damping capacity of the ER 
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test module at resonance, since in practical application ER damping would be employed to 

influence resonant behavior. The results of this comparison are shown in Table 6.1. The difference 

at resonance between the fluid model predictions and the experimental measurements is at a 

maximum of five percent. 

Electric 
Field (kV/mm) 

DATA 
Half Power 
Point 

MODEL 
Fluid 
Dynamic 

%A 

0.0 0.123 0.120 2.4 

0.4 0.157 0.164 4.5 

0.8 0.158 0.166 5.0 

1.2 0.166 0.168 1.2 

1.6 0.210 0.206 1.9 

Table 6.1. Comparison of Predicted Damping Ratio to Measured 

Outside the damping region of influence (refer to Figure 6.1), the predictions from the fluid 

model compared to the single degree of freedom model developed in Chapter 2 will diverge. This 

divergence is expected since the fluid model is purely a dissipation model, whereas, the single 

degree of freedom model includes the dynamic stiffness effects on the ER test module. However, 

the single degree of freedom model could not be used as a design tool for determining values of 

ER fluid rheological properties required to obtain damping at resonance. 

The influence of the radial velocity component on the damping ratio predicted by the fluid 

model is significant. A test case was run for the 1.6 kV/mm data set in which the damping ratio 

was evaluated setting the radial velocities equal to zero. The resulting damping ratio calculated 

was seventy-six percent in error compared to the experiments from Chapter 2. This stresses the 

two dimensional nature of the fluid motion in the ER test module. 

The final chapter will discuss how this viscous fluid model can be used to determine the 

rheological parameters of an ER fluid based on performance requirements. A program listing, 

DAMP, of the damping evaluation is given in Appendix D. 
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Summary 

The damping characteristics of the ER fluid are derived based on the calculation of the energy 

dissipation due to the viscous forces. The dissipation of energy by the viscous forces is evaluated 

for an ideal Bingham fluid. The damping capacity of the ER fluid is found to be the ratio of the 

dissipated energy to the total strain energy in the flexible cylinder. 

The damping ratio calculated by the ideal Bingham fluid model is compared to the damping 

ratio measured in the attenuation experiments of Chapter 2. The damping ratios evaluated from 

the half power point frequencies are used to compare to the predicted results of the fluid model. 

The comparison of the fluid model to the experiments of Chapter 2 produced differences of up to 

five percent. 

Chapter 7: Conclusions and Future Work 

Conclusions 

The dissipation of longitudinal vibrational energy was experimentally measured and 

theoretically predicted for an ER fluid annulus contained by a flexible cylinder. The attenuation 

experiments (Chapter 2) illustrated the electric field dependence of the dynamic damping 

coefficient and the dynamic stiffness of the ER test module. The results of these attenuation 

experiments are that the resonant frequencies have been shifted as a function of applied electric 

field, the amplitude of the oscillation has been decreased, and the dynamic damping ratio has been 

increased by a factor of 1.75 due to an applied electric field of 1.6 kV/mm. The new mechanism of 

damping exploited in these experiments is the action of the shearing forces within the ER fluid. 

Previous researchers have relied on the interaction of a dash-pot type plunger mechanism for the 

damping applications of ER fluids. 

In Chapter 3, the electric field strength is evaluated from Jacobian elliptic functions. This 

closed form solution to the electric field is used in Chapter 4 to derive the rheological parameters 

of the ER fluid. The Bingham rheological parameters were evaluated for the corn starch and 

mineral oil ER fluid used in the experiments described in Chapter 2. The relationship between the 

yield shear stress and the applied electric field is included in this discussion of the Bingham 

rheological parameters. 

Once the ER fluid rheological properties were evaluated, a creeping, Bingham fluid model 

was developed in Chapter 5. This model predicts the radial and the axial velocity components in 
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the fluid resulting from the harmonic excitation. The axial velocity component was modeled as 

one-dimensional in the axial direction. The radial velocity component was modeled as two- 

dimensional in the radial and axial directions. These velocity profiles were used to formulate the 

Bingham viscous energy dissipation and the total strain energy for the flexible cylinder containing 

the fluid. The two-dimensional solution of the radial velocity component and the calculation of 

the energy dissipation by the viscous forces are new to this work. Additionally, the flexible hose 

boundary to the viscid internal ER fluid is a new contribution to the analysis of ER fluid 

applications. 

The evaluation of the damping ratio based on the dissipated energy of the viscous forces and 

the total strain energy of the ER test module has not been found in the current literature. This 

evaluation of the damping ratio was made in Chapter 6. The Bingham fluid model predictions 

were within five percent of the measured damping ratios from Chapter 2. 

The theoretical and experimental investigation of the dissipation of longitudinal vibrational 

energy in an ER fluid filled annulus by the action of shearing forces within the fluid has been 

presented in the dissertation. The deviation between the theoretical model prediction and the 

experimental measurements are within five percent. This successful mathematical formulation 

describing the damping contribution of an ER fluid will provide a manner of determining the 

necessary values of ER fluid parameters for various applications. An outline discussing the use of 

the developed Bingham fluid model for the application of the ER phenomenon is developed in the 

following section on Future Work. 

Future Work 

This numerical simulation of the developed theoretical model provides the ability to predict 

the required rheological properties of future ER fluids and system configurations. The prediction 

of the rheological properties could be accomplished as illustrated in the flow chart in Figure 7.1, 

which maps the logical progression of the numerical solution algorithm. The Bingham fluid 

motion program, developed in this dissertation, could be configured to solve the vibrational 

energy dissipation problem in reverse order. An attenuation would be specified as input to this 

reconfigured program and its output would be required values of ER fluid parameters. From the 

definition of the damping ratio, equation (6-1), the required amount of dissipated energy could be 

estimated to obtain the specified attenuation. Based on the amount of the dissipated energy, the 

magnitude of the viscous forces will define the two rheological parameters as defined by the 
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Bingham constitutive relationship, namely, the yield stress and the absolute 

viscosity. 

Attenuation 
Required 

Determine Loss Factor 

Determine Magnitude 
of Viscous Forces 

ER Fluid 
Envelope 

Determine 
Rheological 
Parameters 

F2^^^ ^ ^ 

Figure 7.1. Proposed ER Rheological Parameter Estimation Algorithm 

This technique will provide an electric field dependent parameter envelop. This parameter 

envelop, such as shown in Figure 4.6, will define the operational limitations of the required ER 

fluid. The parameter specification can be displayed as the ideal flow curve (x - y) for the 

candidate ER fluid which satisfies the boundary conditions. 

The parameter estimation model, based on the Bingham fluid model developed in this 

dissertation, will provide ER fluid manufacturers with a tool for designing a fluid to achieve a 

specific damping performance. 

72 



TR 11,023 

Bibliography 

Abramowitz, M., Stegun, I.E., eds, (1970) Handbook of mathematical functions with formulas, 
graphs, and mathematical tables, Dover Publications, New York, New York. 

Ames, W.F., (1977) Numerical Methods for Partial Differential Equations, Second Edition, 
Academic Press, Inc., New York, NY. 

Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., (1984) Computational Fluid Mechanics and 
Heat Transfer, McGraw-hill Book Company, New York, NY. 

Atkin, R.J., Shi, X., Bullough, W.A., (1991) Solutions of the constitutive equations for the flow of 
an electrorheological fluid in radial configurations, /. Rheology 35,1441-1461. 

Binns, K.J., Lawrenson, P.J., (1963) Analysis and Computation of Electric and Magnetic Field 
Problems, Pergamon Press Limited, Oxford, England. 

Bird, R.B., Stewart, W.E., Lightfoot, E.N., (1960) Transport Phenomena, John Wiley & Sons, 
New York, NY. 

Bird, R.B., (1957) The equations of change and the macroscopic mass, momentum, and energy 
balances, Chemical Engineering Science 6,123-131. 

Block, H., Kelly, J., (1988) Electro-rheology, /. Phys D: Appl. Phys. 21,1661-1677. 

Bonnecaze, R.T., Brady, J.F., (1992) Yield stresses in electrorheological fluids, J. Rheology 36, 
73-114. 

Brooks, D.A., Goodwin, J., Hjelm, C, Marshall, L., Zukoski, C, (1986) Visco-elastic studies on 
an electro-rheological fluid, Colloids and Surfaces 18,293-312. 

Brooks, D.A., (1989) Devices using electro-rheological fluids, Proceedings of the Second 
International Conference on ER Fluids, Edited by J.D. Carlson, A.F. Sprecher, H. Conrad, 
Technomic Publishing Co., Inc., Lancaster, PA, 371-401. 

Coulter, J.P., Duclos, T.G., Acker, D.N., (1989) The usage of electrorheological materials in 
visoelastic layer damping applications, Proceedings of DAMPING'89, CAA1-CAA17. 

73 



TR 11,023 

Coulter, J.P., Weiss, K.D., Carlson, J.D., (1992) Electrorheological materials and their usage in 
intelligent material systems and structures, part II: applications, Recent Advances in Adaptive and 
Sensory Materials and Their Applications, Edited by C.A. Rogers and R.C. Rogers, Technomic 
Publishing Co., Inc., Lancaster, PA, 507-523. 

Duclos, T.G., (1988) Designs of devices using electrorheological fluids, Society of Automotive 
Engineers Technical Paper 881134, Warrendale, PA. 

Duggins, R.K., (1972) The commencement of flow of a Bingham plastic fluid, Chem. Eng. Sei. 
27,1991-1996. 

Edwards, M.F., Nellist, D.A., Wilkinson, W.L., (1972) Unsteady laminar flows of non-Newtonian 
fluids in pipes, Chem. Eng. Sei. 27,295-306. 

Gast. A.P., Zukoski, C.F., (1989) Electrorheological fluids as colloidal suspensions, Adv. Colloid 
Interface Sei. 30, 153. 

Gradshteyn, I.S., Ryzhik, I.M., (1980) Table of integrals, series, and products, Academic Press, 
Inc., New York, NY. 

Greenhill A.G., (1959) The Application of Elliptic Functions, Dover Publications, New York, NY. 

Hull, A.J., (1994) A non-conforming approximate solution to a specially orthotropic 
axisymmetric thin shell subjected to a harmonic displacement boundary condition, /. of Sound 
and Vibration 111, 611-621. 

Jones, R.M., (1975) Mechanics of composite materials, Scripta Book Company, Washington, 
D.C. 

Jordan, T.C., Shaw, M.T., (1989) Structure in electrorheological fluids, Proceedings of the Second 
International Conference on ER Fluids, Edited by J.D. Carlson, A.F. Sprecher, H. Conrad, 
Technomic Publishing Co., Inc., Lancaster, PA, 231-251. 

Junger, M.C., Feit, D., (1986) Sound, structures, and their interaction, Second Edition, MIT 
Press, Cambridge, MA. 

Klass, D.L., Martinek, T.W, (1967) Electroviscous fluids I. Rheological properties, J. Appl. Phys. 
38, 67-74. 

74 



TR 11,023 

Klass, D.L., Martinek, T.W., (1967) Electroviscous fluids n. Electrical properties, J. Appl. Phys. 
38,75-80. 

Klingenberg, DJ., Zukoski, C.F., (1990) Studies on the steady shear behavior of 
electrorheological suspensions, Langmuir 6,15. 

Langlois, W.E., (1964) Slow viscous flow, The Macmillan Company, New York, NY. 

Lawden, D.F., (1989) Elliptic functions and applications, Springer-Verlag, New York, NY. 

Lipscomb, G.G, Denn, M.M., (1984) How of Bingham fluids in complex geometries, J. Non- 
Newtonian Fluid Mechanics 14, 337-346. 

Love, A.E.H., (1924) Some electrostatic distributions in two dimensions, London Math Soc. Proc. 
22, 337. 

Maciejewski, W., Tryon, R., (1992) Rheology of corn starch and mineral oil ER fluid, NUWC 
Memorandum. 

Margolis, D.L, Vahdati, N., (1989) The control of damping in distributed systems using ER fluids, 
Proceedings of the Second International Conference on ER Fluids, Edited by J.D. Carlson, A.F. 
Sprecher, H. Conrad, Technomic Publishing Co., Inc., Lancaster, PA, 326-348. 

Marshall, L., Goodwin, J.W., Zukoski, C.F., (1989) Effects of electric fields on the rheology of 
nonaqueous concentrated suspensions, J. Chem. Soc. Faraday 185, 2785-2795. 

Maxwell, C, (1892) Electricity and magnetism, Oxford University Press, Volume I. 

Milne-Thomson, L.M., (1932) The zeta function of Jacobi, Proc. Royal Soc. Edinburgh 52, 236- 
250. 

Milne-Thomson, L.M., (1950), Jacobian elliptic function tables, Dover Publications, Inc., New 
York, NY. 

Mitchell, J.H., (1894) A map of the complex z-function: a condenser problem, Mess, of Math. 23, 
72-78. 

75 



TR 11,023 

Moon, P, Spencer, D.E., (1953) Some coordinate systems associated with elliptic functions, /. 
Franklin Inst. 255, 531-543. 

Moon, P., Spencer, D.E., (1951) Cylindrical and rotational coordinate systems, /. Franklin Inst. 
252, 327-344. 

Moon, P., Spencer, D.E., (1988) Field theory handbook, Second Edition, Springer-Verlag, New 
York, NY. 

Moretti, G., (1964) Functions of a complex variable, Prentice-Hall, Inc., Englewood, NJ. 

Nashif, A.D., Jones, D.I.G., Henderson, J.P., (1985) Vibration damping, John Wiley & Sons, New 
York, NY. 

Schlichting, H., (1979) Boundary-layer theory, Seventh Edition, McGraw-Hill Book Company, 
New York, NY. 

Schwab, A.J., (1988) Field theory concepts, Springer-Verlag, New York, NY 

Stanway, R., Sproston, J.L., Stevens, N.G., (1987) Non-linear modelling of an electro-rheological 
vibration damper, /. of Electrostatics 20, 167-184. 

Steidel, R.E., Jr., (1979) An Introduction to Mechanical Vibrations, Second Edition, John Wiley 
and Sons, New York, NY. 

Stevens, N.G., Sproston, J.L., Stanway, R., (1984) Experimental evaluation of a simple 
electroviscous damper, /. of Electrostatics 15,275-283. 

Tao, R., Woestman, J.T., Jaggi, N.K., (1989) Electric field induced solidification, Appl. Phys. Lett. 
55, 1844-1846. 

Walton, I.C., Bittleson, S.H., (1991) The axial flow of a bingham plastic in a narrow eccentric 
annulus, /. Fluid Mech. 222, 39-60. 

Wang, K.C., McLay, R., Carey, G.F., (1989) ER fluid modeling, Proceedings of the Second 
International Conference on ER Fluids, Edited by J.D. Carlson, A.F. Sprecher, H. Conrad, 
Technomic Publishing Co., Inc., Lancaster, PA, 41-52. 

76 



TR 11,023 

White, F.M., (1974) Viscous fluid flow, McGraw-Hill Book Company, New York, NY. 

Wilkinson, W.L., (1960), Non-Newtonian fluids, Pergamon Press, New York, NY. 

Winslow, W.M., (1989) The Winslow effect, Keynote Address, Proceedings of the Second 
International Conference on ER Fluids, Edited by J.D. Carlson, A.F. Sprecher, H. Conrad, 
Technomic Publishing Co., Inc., Lancaster, PA. 

Winslow, W.M., (1949) Inducted vibration of suspensions, J. Appl. Phys. 20, 1137-1140. 

Wong, W., Shaw, M.T., (1989) Role of water in electrorheological fluids, Proceedings of the 
Second International Conference on ER Fluids, Edited by J.D. Carlson, A.F. Sprecher, H. Conrad, 
Technomic Publishing Co., Inc., Lancaster, PA, 191-195. 

77/78 
Reverse Blank 



TR 11,023 

Appendix A 

The single degree of freedom model developed in Chapter 2 was coded in FORTRAN to 

evaluate the electric field and frequency dependent dynamic stiffness and dynamic damping. This 

program also evaluates the amplitude ratio and the decay in oscillation of the amplitude. This 

model reads the experimentally measured transfer function and operates on the equations 

developed. The resulting graphics were produced using standard PLOT10 routines. The computer 

utilized was a Sun Microsystems SparcStation 1+. 

C MCK-given the M value determine a frequency dependent C and K (N*m*s*kg) 
C 
PROGRAM NEWMOD0 
C 
REAL*4 FREQ(1000)£EDA(1000),IMDA(1000) 
REALM EMAG(1000)^PHA(1000),MMAG(1000),MPHA(1000) 
REAL*4 C(1000),K(1000),M,DMPRAT(1000) 
REAL*4 XWN(2),YWN(2)£DI,IDI,NUM,DOM 
REAL*4 FMAX.MAX.NAT 
C 
COMPLEX*8 CTEMP1,CTEMP2,CTEMP3,RCTEMP 

C 
INTEGER INUM,I 

C 
OPEN(llJTLE='zstiff.daf,STATUS='OLD') 
OPEN(12JTLE='zdam.dat\STATUS='OLD') 
C******* MASS GIVEN IN UNITS OF KILOGRAMS (kg) ******** 
C 
M = 30.0 
NAT =11.0*2.0*3.141593 
XWN(1)=11.0 
XWN(2)=11.0 
YWN(l) = 0.0 
YWN(2) = 5.E6 
C 
C-Read the data 
C 
INUM = 1 
100 CONTINUE 
OPEN(10,nLE='zvolLdat\STATUS='OLD') 
READ (10,*,END=110) FREQ(INUM)JIEDA(INUM),IMDA(INUM) 
CTEMP3 = CMPLX(REDA(INUM), IMDA(INUM)) 
RCTEMP = (-l.,0.0)*CTEMP3 
REDA(INUM) = REAL(RCTEMP) 
IMDA(INUM) = IMAG(RCTEMP) 
INUM = INUM+1 
GOTO 100 
110 CONTINUE 
CLOSE (10) 
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INUM = INUM - 1 
C 
C--Get the magnitude and phase data 
C 
MAX = 0.0 

C 
DO 2001=1, INUM, 1 
EMAG(I) = SQRT ( (REDA(I)**2) + (IMDA(I)**2)) 
IF (EMAG(I).GT.MAX) THEN 
MAX = EMAG(I) 
FMAX = FREQ(I) 
END IF 
EPHA(I) = ATAN2 (IMDA(I), REDA(I)) 
EPHA(I) = (180.0 / 3.141592) * EPHA(I) 
200 CONTINUE 
WRITE(10,*)FMAX,MAX 

C 
C--Create the model by matching it to a spring, mass, damper system 
C 
DO 5001=1, INUM, 1 

C 
W = FREQ(I) * 2.0 * 3.141592 
CTEMP3 = CMPLX(REDA(I),IMDA(I)) 
RCTEMP = (1.0,0.0)/CTEMP3 
RDI = REAL(RCTEMP) 
IDI = MAG(RCTEMP) 
DOM = (RDI-1.)**2 + IDI**2 
NUM=(RDI-1.) 
K(I) = -1.0*( M * (W**2)*NUM) / DOM 
C(I) = -l.*K(I)*IDV(W*NUM) 

C 
DMPRAT(I) = C(I) / (2.0*M*NAT) 

WRITE(11 ,*)FREQ(I),K(I) 
WRITE(12,*)FREQ(I),DMPRAT(I) 

WRITE( 13 ,*)FREQ(I),EPH A(I) 
C 
500 CONTINUE 
C 
C~Plot to the screen 
C 
CALL INITT (960) 
CALL BINITT 
CALL NPTS (INUM) 
CALL CHECK (FREQ.C) 
CALL DLIMX ( 5.0, 30.0) 
CALL DLIMY (0.0,1000.0) 
CALL DSPLAY (FREQ.C) 
CALL HLABEL (400,50,1.0,'FREQUENCY (HERTZ)') 
CALL HLABEL (400,675,1.0,'DYNAMIC DAMPING 0.0kV/mm') 
CALL VLABEL (50,500,1.0,'DAMPING') 
CALL HLABEL (40,150,1.0,'N*S/M') 
CALL NPTS (2) 
CALL LINE (1) 
CALL CPLOT (XWN,YWN) 
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CALL ANMODE 
CALL HOME 

C 
C~Next plot (stop for viewing of previous plot) 
C Plot stiffness 
C 
WRITE (6,*)' ' 
WRITE (6,*)' <RETURN> for next plot' 
READ (5,*) 
C 
YWN(2) = 0.15E6 
CALL INITT (960) 
CALL BINITT 
CALLNPTS(INUM) 
CALL CHECK (FREQ.K) 
CALL DLIMX (5.0, 30.0 ) 
CALL DLIMY (0.0,2.5E5 ) 
CALL DSPLAY (FREQ,K) 
CALL HLABEL (400,50,1.0,'FREQUENCY (HERTZ)') 
CALL HLABEL (400,675,1.0,'DYNAMIC STIFFNESS 0.0kV/mm') 
CALL VLA3EL (50,500,1.0,'STIFFNESS') 
CALL HLABEL (40,200,1.0,'N/M') 
CALL NPTS (2) 
CALL LINE (1) 
CALL CPLOT (XWN.YWN) 
CALL ANMODE 
CALL HOME 

C 
C~Next plot (stop for viewing of previous plot) 
C Plot stiffness 
C 
WRITE (6,*) ' ' 
WRITE (6,*)' <RETURN> for next plot' 
READ (5,*) 
C 
YWN(2) = 10.0 
CALL DSflTT (960) 
CALL BrNITT 
CALL NPTS (INUM) 
CALL CHECK (FREQ.DMPRAT) 
CALL DLIMX (5.0,30.0) 
CALL DLIMY (.0,0.50 ) 
CALL DSPLAY (FREQ,DMPRAT) 
CALL HLABEL (400,50,1.0,'FREQUENCY (HERTZ)') 
CALL HLABEL (400,675,1.0,'DAMPING RATIO 0.0kV/mm') 
CALL VLABEL (50,500,1.0,'RATIO') 
CALL NPTS (2) 
CALL LINE (1) 
CALL CPLOT (XWN.YWN) 
CALL ANMODE 
CALL HOME 

C 
C--Next plot (stop for viewing of previous plot) 
C Plot of phase angle 
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C 
WRITE (6,*)' * 
WRITE (6,*)' <RETURN> for next plot' 
READ (5 ,*) 
C 
C--Rebuild the model to insure it matches the data 
C 
DO600I=l,INUM, 1 
W = FREQ(I) * 2.0 * 3.141592 
CTEMP2 = CMPLX ((K(I)-M*(W**2)), W*C(I)) / 
1 CMPLX (K(I),C(I)*W) 
CTEMP1 = (1.0,0.0)/CTEMP2 
MMAG(I) = SQRT ((REAL(CTEMP1))**2 + (IMAG(CTEMP1))**2) 
MPHA(I) = ATAN2 (IMAG(CTEMPl), REAL(CTEMPl)) 
MPHA(I) = (180.0/3.141592) * MPHA(I) 

600 CONTINUE 
C 
CALL INITT (960) 
CALL BINITT 
CALL RECOVR 
CALL NPTS (INUM) 
CALL DLIMX (0.0, 30.0) 
CALL DLIMY (0.0, 5.0) 
CALL DSPLAY (FREQ.EMAG) 
CALL LINE (-1) 
CALL SYMBL (4,5) 
CALL CPLOT (FREQ,MMAG) 
CALL ANMODE 
CALL HOME 

C 
C~Next plot (stop for viewing of previous plot) 
C Plot of phase angle 
C 
WRITE (6,*)' ' 
WRITE (6,*)' <RETURN> for next plot' 
READ (5,*) 
CALL INITT (960) 
CALL BINITT 
CALL RECOVR 
CALL NPTS (INUM) 
CALL DLIMX (0.0, 30.0) 
CALL DLIMY (-180.0, 180.0) 
CALL DSPLAY (FREQ.EPHA) 
CALL LINE (-1) 
CALL SYMBL (3,5) 
CALL CPLOT (FREQ,MPHA) 
CALL ANMODE 
CALL HOME 

CLOSE(ll) 
CLOSE(12) 

END 
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Appendix B 

The representation of the Jacobian zeta function and the elliptic integrals are made using the 

following identities. The Jacobian zeta function is evaluated using the definition found in Milne- 

Thomson (1932) and Moretti (1964): 

3(M) = j*dn(t)2dt-u£ (B-42) 

where dn(t) is the difference-amplitude, E is the complete elliptic integral of the second kind, and 

AT is the complete elliptic integral of the first kind. The complete elliptic integral of the second 

kind, E, can be evaluated by the following expression: 
71 

2 

E = J [ 1 - m (sin<j>)2] d<\>. (B-43) 
o 

The complete elliptic integral of the first kind can be expressed as: 
71 

r da 
K=  f 1 5-, (B-44) J

0[l-m(sin(t))2] 

The relationships used to express the elliptic integrals and the Jacobian zeta function produce 

results that are sixth place accurate compared to Milne-Thomson (1950). Equations (B-l), (B-2), 

and (B-3) are evaluated using a twelfth order Gaussian integration. The FORTRAN programs are 

found at the end of this appendix. 

The representation of the sine-amplitude, sn(), cosine-amplitude, cn(), and the difference- 

amplitude, dn(), functions are made using the series approximations found in Abramowitz & 

Stegun (1970). The computer routines to evaluate these functions are included at the end of this 

appendix. 

The differentiation of equation (3-4), on page 23, to produce the strength of the electric field is 

accomplished by using identities of the Elliptic functions. The differentiation of equation (3-4) is 

as follows: 

d£_ = 2Kdj_(S iw + nr))+JLm (B-45) 
dw        K  dw dw 
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The complex argument of the Jacobian zeta function can be expanded by the use of an identity 

found in Lawden (1989): 

3(w + /Ä")  = 3(w) - — + cs(w)dn(w) (B-46) 
m 

where cs(xv) is equal to the cosine-amplitude divided by the sine-amplitude. Applying the 

following identities: 

3(w) = E(w) -wf (B-47) 
A 

dE i 
^ = dn2 (w), (B-48) 

produces, 

dy       2Kd,, 2.   ,     E     d 
dw        K K    dw 

en (w)dn (w) 
sn (w) 

(B-49) 

Carrying out the differentiation with respect to w and using the identity, 

dn2(w) +m2sn2(w)  = 1 (B-50) 

to combine and simplify terms, the electric field strength equation given in Chapter 3 as equation 

(3-11) is produced. 

The following programs evaluate the Elliptic functions, the complete elliptic integrals of the 

first and second kind, and the Jacobian zeta function: 

The elliptic cosine-amplitude function, cn(). 

SUBROUTINE JACOBCN(CNU,U,M) 
REAL PI,C,CN,K1,K££ 1 ,B,Q,M,MR,U,V,VV,N,N 1 ,N2,CNU,CN1 

COMMON PI,K,K1,E,E1 
c ***************** COMPUTES THE JACOBIAN CN(U) FUNCTION ******************* 
C = 0.0 
CN = 0.0 
B = -1.0 * PI * (Kl/K) 
Q = EXP(B) 
V = U * PI/2./K 
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MR = SQRT(M) 
VV = 2.0 * PI/MR/K 
DON = 0.,100. 
N1=2.0*N+1.0 
N2 = N+.5 
C = ((Q**N2)/(1.+Q**N1))*C0S(N1*V) 
CN1 = C + CN 
CN = CN1 
C = 0.0 
CN1 = 0.0 
END DO 
CNU = VV*CN 
RETURN 
END 

The elliptic sine-amplitude function, sn(). 
SUBROUTINE JACOBSN(SNU,U,M) 
REALPI,S,SN3,K)Kl,B,Q,M,MR,U,V,VVJSIJ41^f2,SNU,SNl)El 
COMMON PI,K,K1,E,E1 

c ***************** COMPUTES THE JACOBIAN SN(U) FUNCTION ******************* 
S = 0.0 
SN = 0.0 
B = -1.0 * PI * (Kl/K) 
Q = EXP(B) 
V = U * PI/2./K 
MR = SQRT(M) 
VV = 2.0 * PI/MR/K 
DON = 0.,100. 

N1 = 2.0*N+1.0 
N2 = N + .5 
S = ((Q**N2)/(1.-Q**N1))*SIN(N1*V) 
SN1 = S + SN 
SN = SN1 
S = 0.0 
SN1 = 0.0 

END DO 
SNU = VV*SN 
RETURN 
END 

The Elliptic difference-amplitude function, dn(). 
SUBROUTINE JACOBDN(DNU,U) 
REAL PI,D,DN,E,E1 ,K1 ,K,B,Q,U,V VV,VG,N,N1 ,DNU,DN1 

COMMON PI,K,K1,E,E1 
c ***************** COMPUTES THE JACOBIAN DN(U) FUNCTION ******************* 

D = 0.0 
DN = 0.0 
B = -1.0 * PI * (Kl/K) 
Q = EXP(B) 
V = U * PI/2./K 
VV = 2.0 * PI/K 

VG = PI/(2.0*K) 
DON=1.,100. 
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Nl = 2.0 * N 
D = ((Q**N)/(L+Q**N1))*C0S(N1*V) 
DN1 = D + DN 
DN = DN1 
D = 0.0 
DN1 = 0.0 
END DO 
DNU = VG + VV*DN 

RETURN 
END 

The complete elliptic integral of the first kind, K. 
SUBROUTINE ELLIPK(TOT,HLM,M) 

C *********** CALCULATES THE ELLIPTIC INTEGRAL OF THE FIRST KIND (K) ********* 
REALARG,SARG,T(24),W(24),INT,HLMLLM,XX,DX,TOT,M,PI 
COMMON PI,K,K1,E,E1 
INT = 0.0 

Q************************************************************************.,,.,,.,,*.,, 

C ***** GAUSSIAN INTEGRATION TWELFTH ORDER ******** 
Q***************************************************************************** 

C ***** ABSCISSAS & WEIGHT FACTORS ******** 
C ***** p.916 Abramowitz & Stegun, Handbook of Mathematical Functions ******** 
C ***** Dover Publications, Inc., New York, (1965). ******** 
Q*************************************************** 

T(l) = 0.064056892862605 
T(2) = 0.191118867473616 
T(3) = 0.315042679696163 
T(4) = 0.433793507626045 
T(5) = 0.545421471388839 
T(6) = 0.648093651936975 

T(7) = 0.740124191578554 
T(8) = 0.820001985973902 
T(9) = 0.886415527004401 
T(10) = 0.938274552002732 
T(ll) = 0.974728555971309 
T(12) = 0.995187219997021 
T(13) = -0.064056892862605 
T(14) = -0.191118867473616 
T(15) = -0.315042679696163 
T(16) = -0.433793507626045 
T(17) = -0.545421471388839 
T(18) = -0.648093651936975 
T(19) = -0.740124191578554 
T(20) = -0.820001985973902 
T(21) = -0.886415527004401 
T(22) = -0.938274552002732 
T(23) = -0.974728555971309 
T(24) = -0.995187219997021 

W(l) = 0.127938195346752 
W(2) = 0.125837456346828 
W(3) = 0.121670472927803 
W(4) = 0.115505668053725 
W(5) = 0.107444270115965 
W(6) = 0.097618652104113 
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W(7) = 0.086190161531953 
W(8) = 0.073346481411080 
W(9) = 0.059298584915436 
W(10) = 0.044277438817419 
W(ll) = 0.028531388628933 
W(12) = 0.012341229799987 
W(13) = 0.127938195346752 
W(14) = 0.125837456346828 
W(15) = 0.121670472927803 
W(16) = 0.115505668053725 
W(17) = 0.107444270115965 
W(18) = 0.097618652104113 
W(19) = 0.086190161531953 
W(20) = 0.073346481411080 
W(21) = 0.059298584915436 
W(22) = 0.044277438817419 
W(23) = 0.028531388628933 
W(24) = 0.012341229799987 
p ***************************************************************************** 

LLM = 0.0 
DX = (HLM - LLM)/2. 
DO 1=1,24. 

XX = ((HLM-LLM)*T(I) + HLM + LLM)/2. 
ARG = 1.0 - M*((SIN(XX))**2.) 
SARG = (ARG)**-0.5 

INT = W(I)*SARG + INT 
END DO 
TOT = DX*INT 
RETURN 
END 

The complete elliptic integral of the second kind, E. 
SUBROUTINE ELLIPE(TOT,HLM,M) 

C *********** CALCULATES THE ELLIPTIC INTEGRAL OF THE SECOND KIND (E) ********* 
REALARG,SARG,T(24),W(24),INT,HLMLLM,XX,DX,TOT,MJ>I 
COMMON PI,K,K1,E,E1 
INT = 0.0 

p ***************************************************************************** 

C ***** GAUSSIAN INTEGRATION TWELFTH ORDER ******** 
P ***************************************************************************** 

C ***** ABSCISSAS & WEIGHT FACTORS ******** 
C ***** p.916 Abramowitz & Stegun, Handbook of Mathematical Functions ******** 
C ***** Dover Publications, Inc., New York, (1965). ******** 
P ***************************************************************************** 

T(l) = 0.064056892862605 
T(2) = 0.191118867473616 
T(3) = 0.315042679696163 
T(4) = 0.433793507626O45 
T(5) = 0.545421471388839 
T(6) = 0.648093651936975 

T(7) = 0.740124191578554 
T(8) = 0.820001985973902 
T(9) = 0.886415527004401 
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T(10) = 0.938274552002732 
T(ll) = 0.974728555971309 
T(12) = 0.995187219997021 
T(13) = -0.064056892862605 
T(14) =-0.191118867473616 
T(15) = -0.315042679696163 
T(16) = -0.433793507626045 
T(17) = -0.545421471388839 
T(18) = -0.648093651936975 
T(19) = -0.740124191578554 
T(20) = -0.820001985973902 
T(21) = -0.886415527004401 
T(22) = -0.938274552002732 
T(23) = -0.974728555971309 
T(24) = -0.995187219997021 

W(l) = 0.127938195346752 
W(2) = 0.125837456346828 
W(3) = 0.121670472927803 
W(4) = 0.115505668053725 
W(5) = 0.107444270115965 
W(6) = 0.097618652104113 

W(7) = 0.086190161531953 
W(8) = 0.073346481411080 
W(9) = 0.059298584915436 
W(10) = 0.044277438817419 
W(ll) = 0.028531388628933 
W(12) = 0.012341229799987 
W(13) = 0.127938195346752 
W(14) = 0.125837456346828 
W(15) = 0.121670472927803 
W(16) = 0.115505668053725 
W(17) = 0.107444270115965 
W(18) = 0.097618652104113 
W(19) = 0.086190161531953 
W(20) = 0.073346481411080 
W(21) = 0.059298584915436 
W(22) = 0.044277438817419 
W(23) = 0.028531388628933 
W(24) = 0.012341229799987 

LLM = 0.0 
DX = (HLM - LLM)/2. 
DO 1=1,24 

XX = ((HLM-LLM)*T(I) + HLM + LLM)/2. 
ARG = 1.0 - M*((SIN(XX))**2.) 
SARG = (ARG)**0.5 

INT = W(I)*SARG + INT 
END DO 
TOT = DX*INT 
RETURN 
END 

The Jacobian zeta function, 3 (w) 
SUBROUTINE ZETA(Z,U) 
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Q****************************************************************************** 

C ********** COMPUTES THE JACOBIAN ZETA FUNCTION ACCURATE TO SIX PLACES ******* 
C ********** The Jacobian ZETA Function is defined as Z(U) = E(U) - UE/K ******* 
Q ********** xhis definition is found in L. M. Milne-Thomson, Jacobian ******* 
C ********** Elliptic Function Tables, Dover (1950) pp. 31. ******* 
Q ********** -j-jjg funC(j[on E(U) is evaluated using the identity found on ******* 
Q ********** page 26 of Milne-Thomson. ******* 
/-> ****************************************************************************** 

REAL Z,U^U,E,K,K1 J>I,UUJE1 
COMMON PI,K,K1,E,E1 
UU = U 
CALL GAUSS 1(EU,U) 
Z = EU-U*E/K 
RETURN 
END 

The electric field calculation program, EFIELD. 
PROGRAM EFIELD 
COMMON PI,K,K1,E,E1 

C****************************************************************************** 

Q *********** jjjjg program calculates the electric field around two parallel *** 
Q *********** jjjgk electrodes using the transformation solution in Moon & *** 
C *********** Spencer's Field Theory Handbook page 76 & 85. *** 
Q****************************************************************************** 

REAL*8 PI,M, A,HLM,K,K1 ,A1 ,UZU,SNU,CNU,DNU,DNU2,V,V 1 ZV l.SNV 1 ,CNV 1 ,DNV 1 
REAL*8NYl,SXl,SYl,X,Y,E,El,SNV12,VV,Dl^fXl,MAG,DNV,SNV,CNV,DNR,RXlJlX2 
REAL*8 RX ,RXS,rY,IYS ,MAGS 1 .MAGS2.MAGS ,M2 
OPEN(UNIT=10J7ILE="efield.dat",ACCESS='SEQUENTIAL') 
OPEN(UNIT=llJTLE="emag2.dat",ACCESS='SEQUENTIAL') 

1    FORMAT(E12.6,2X312.6) 
PI = 3.141592654 
M = 0.5 
M2 = M**2. 
A = 2.50 
HLM = PI/2. 
CALL ELLIPK(K,HLM,M) 
CALL ELLIPE(E,HLM,M) 
IF(M.EQ.0.5) THEN 

K1=K 
E1=E 

ELSE 
Ml = 1.0 - M 
CALL ELLIPK(K1 JILM^ll) 

CALL ELLIPE(E1,HLM,M1) 
END IF 

Al = 2.*K*A/PI 
DOU=0.0,K,.l 
CALLZETA(ZU,U) 
CALL JACOBSN(SNU,U,M) 
CALL JACOBCN(CNU,U,M) 
CALL JACOBDN(DNU,U) 
DNU2 = (DNU)**2. 

DOV=0.0,K,.l 
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V1 = V + K1 
CALLZETA(ZV1,V1) 
CALL JAC0BSN(SNV1,V1,M) 
CALL JAC0BCN(CNV1,V1,M) 
CALL J ACOBDN(DNV 1, V1 ,M) 
SNV12 = (SNV1)**2. 
VV = PI*V/2./K/Kl 
D1 = 1.0-DNU2*SNV12 
NX1 = M*SNU*CNU*DNU*SNV12 
NY1 = DNU2*SNV1*CNV1*DNV1 
SX1 = ZU + NX1/D1 
SY1 = ZV1 + VV - NY1/D1 
X = A1*SX1 
Y = A1*SY1 
WRITE(10,1)X,Y 
IF(X.GT.0.0.AND.XLT.2.17) THEN 

SNV = 0.0 
CNV=1.0 
DNV = 1.0 
DNR = (CNV*CNV+M*SNU*SNU*SNV*SNV)**2. 
RX1 = K*DMJ*DNU*DNV*DNV*CNV*CNV 
RX2 = K*M2*SNU*SNU*SNV*SNV*CNU*CNU 
RX = RX1 + RX2 - E*DNR 
RXS = (RX)**2. 
IY = 2.*K*DNU*DNV*CNV*M*SNU*CNU*SNV 
IYS = (IY)**2. 
MAGS1 = (PI*DNR*RX/(2.*A*(RXS+IYS)))**2. 
MAGS2 = (P1*DNR*IY/(2.*A*(RXS+IYS)))**2. 
MAGS = MAGS 1-MAGS2 
MAG = SQRT(MAGS) 
WRITE(*,*)"THE VALUE OF X" 
WRITE(*,*)X 
WRITE(11,1)U,MAG 
END IF 

END DO 
END DO 

CLOSE(IO) 
CLOSE(ll) 
STOP 
END 

The program to calculate the magnitude of the electric field strength, EMAG. 
PROGRAM EMAG 
REALU,A,M,PI,K,E,DNU,DNU2,ZU,SNV,CNV,DNV>SNV2,SNU2 
REALSNU,CNU,CNU2J)D/IT,EU,EV,K1,SNV12,SNV1 
REALDNV2,CNV2,CNV4,CNV3,AR,AI,XR,YI,XR2,YI2^U2,EV2 
REAL MAG,X,DK,PRV1,SF,ZMAX,U1 
COMMON PI,K,K1,E,E1 
OPEN(UNIT= 10,FILE="electl .dat",ACCESS='SEQUENTIAL') 
K= 1.8540747 
K1 = K 
E= 1.3506439 
m = .5 

90 



TR 11,023 

A = 2.5 
ZMAX = 0.146872 
PI = 3.141592654 
SF = 15.875/(2.* A*K*ZMAX/PI) 
E3 = 2.*K*A/PI 
DK = 2.*K 
PP = -0.5 
V = -.10*K1 

V1 = V + K 
CALL JACOBSN(SNV,V,M) 
CALL JACOBCN(CNV,V,M) 
CALL JACOBDN(DNV,V) 
CALL JAC0BSN(SNV1,V1,M) 
SNV12 = SNV1**2. 
SNV2 = SNV**2. 
DNV2 = DNV**2. 
CNV2 = CNV**2. 
CNV4 = CNV**4. 
CNV3 = CNV**3. 

DOUl=0.0,l.l,.l 
U = (1.-U1)*K 
CALL JACOBDN(DNU.U) 
CALL JACOBSN(SNU,U,M) 
CALL JACOBCN(CNU,U,M) 
CALL ZETA(ZU,U) 
DNU2 = (DNU)**2. 
SNU2 = SNU**2. 
CNU2 = CNU**2. 
DD = 1.-DNU2*SNV12 
TT = SNU*CNU*DNU 
AR = CNV4*CNU2 + SNU2*SNV2*DNU2*DNV2*CNV2 
AI = 2.*CNV3*CNU*SNU*SNV*DNU*DNV 
XR = CNV2*SNU2*DNV2 - SNV2*CNU2*DNU2*CNV4 
YI = 2.*CNfV3*CNU*SNU*SNV*DNU*DNV 
XR2 = XR**2. 
YI2 = YI**2. 
EU = -E3*((XR*AR - AI*YI)/(XR2+YI2) + E/K) 
EU2 = EU**2. 
EV = -E3*(XR*AI+AR*YI)/(XR2+YI2) 
EV2 = EV**2. 
MAG = ((EU2 + EV2)**PP)*1000. 
X = E3*(ZU + (M*TT*SNV12/DD))*SF 
WRITE(10,*)X,MAG 

END DO 
CLOSE(IO) 
STOP 
END 
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AppendixC 

The numerical evaluation of the radial and axial velocity components is accomplished using 

the following FORTRAN program: 

PROGRAM RVEL 
COMPLEX* 16 KE,EX,BETA,ARG 1 ,ARG2,ALPHA,ALPHA2,E1 ,E2,E3,E4 
COMPLEX*16G,H,DU,DU2)G1(400,1),VW,EO,CMPRO,U(400,251) 
COMPLEX* 16 V(400,1),A1INV(400,400) A1(400,400),WORK(400,800) 
COMPLEX*16 A,B,C,D1,D2,D3,D4,D5 
REAL*8 DR,DR2,R,R2,DZ,DZ2,DZ3,Z,LEN 
REAL*8 0MEGA(251),RHOF,MU,RA,RE,M,AF,AS,RHOS 
REAL*8 PIJIHOC.VTEMP 
REAL*4OMEGA2(251),URE,UIM,lJPLOT(40),Zl(40),Rl(10) 
REAL*4VPLOT1(40),VPLOT2(40),VPLOT3(40),VPLOT4(40),VPLOT5(10) 
INTEGER ZLEN,KMIN,KMAXJCMAX2,K1,K,U^,INUM 
INTEGER ZCOUNT,N,IFLAG 
CHARACTER*11 FILE1 
C 
p******************************************************************** 
Q ****************** PROBLEM PARAMETERS ************************* 
p ****************** on _Heltaz & 9 deltr ****************************** 
p ******************************************************************** 

C 
RHOF = 994.76 
RA = 0.0375 
RE = 0.015875 
LEN= 1.257 
DR = (RA-RE)/9. 
DR2 = DR**2 
DZ = LEN/39. 
DZ2 = DZ**2 
DZ3 = DZ**3 
M = 16.3295 
EX = CMPLX ( 6.6E7 ,0.0 ) * CMPLX ( 1.0,0.27) 
EO = EX 
RHOS = 1200.0 
AF = 0.003626134 
AS = 0.001449173 
RHOC = (RHOS*AS+RHOF*AF)/(AS+AF) 
CMPRO = CMPLX (RHOC , 0.0 ) 
PI = 4.0*ATAN(1.0) 
FILE1 = "filter0.dat" 
DO K =1,40 
A1(K,K) = CMPLX( 1.0,0.0) 
G1(K,1) = CMPLX(0.0,0.0) 
END DO 
KMAX = 40 
A = CMPLX((1./(2.*DR2*DZ)),0.0) 
C = CMPLX((1./(2.*DZ3)),0.0) 
Dl = CMPLX((7./DZ3),0.0) 
D2 = CMPLX((-12./DZ3),0.0) 
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D3 = CMPLX((9./DZ3),0.0) 
D4 = CMPLX((-5./(2.*DZ3)),0.0) 
D5 = CMPLX((-3./(2.*DZ3)),0.0) 

C 
Q***************************************************************************** 

Q ************** FREQUENCY VALUES **************************************** 
Q***************************************************************************** 

C 
OPEN(UNIT=10 JTLE=FILE 1 ,STATUS='old') 
100 CONTINUE 
READ(10,*END=110) OMEGA(INUM),URE,UIM 
OMEGA2(INUM) = OMEGA(INUM) 
INUM = INUM+1 
GOTO 100 
HOCLOSE(IO) 
INUM = INUM-1 

C 
L=124 
CDOL=l,INUM 
C 
Q***************************************************************************** 

Q ************* MATRDC ASSEMBLY ******************************************* 
Q***************************************************************************** 

C 
KE = CMPLX(OMEGA(L),0.0) / (SQRT(EX/CMPRO)) 
BETA = EX*KE*CMPLX(0.0, AS/(M*OMEGA(L)**2)) 
ARG1 = BETA + CMPLX(1.0 , 0.0) 
ARG2 = BETA - CMPLX(1.0 ,0.0) 
ALPHA = KE*CMPLX(0.0 , LEN) 

C 
ZCOUNT = 0 
KMAX2 = KMAX 
DO 1=2,9 
R = REAL(I-1)*DR + RE 
R2 = R**2 
B = CMPLX((1./(R2*DZ)),0.0) 
KMIN = KMAX2 + 1 
KMAX2 = PKMAX 
ZLEN = 0 
DO K=KMIN,KMAX2 
ZLEN = ZLEN+1 
Z = REAL(ZLEN - 1)*DZ 
ALPHA2 = KE*CMPLX(0.0 , Z) 
El = EXP(CMPLX(-1.0,0.0)* ALPHA) 
E2 = EXP(ALPHA2) 
E3 = EXP(CMPLX(-1.0,0.0)* ALPHA2) 
E4 = EXP( ALPHA) 
G = (ARG1*E1)/(ARG2*E4+ARG1*E1) 
H = (ARG2*E4)/(ARG2*E4+ARG1*E1) 
DU = KE*CMPLX(0.0,1.0)*(G*E2 - H*E3) 
DU2 = -l.*(KE**2)*(G*E2 + H*E3) 
IF(K.EQ.KMIN.OR.K.EQ.KMAX2)THEN 
A1(K,K) = CMPLX(1.0,0.0) 
G1(K,1) = CMPLX(0.0,0.0) 
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GOTO 10 
END IF 
IF(K.EQ.(KMIN+1))THEN 
A1(K,K-41) = -A 
Al(K,K-39) = A 
A1(K,K-1) = CMPLX(2.0,0.0)*A + B 
A1(K,K) = D4 
A1(K,K+1) = D3 - CMPLX(2.0,0.0)*A - B 
Al(K,K+2) = D2 
Al(K,K+3) = Dl 
A1(K,K44) = D5 
Al(K,K+39) = -A 
A1(K,K+41) = A 
G1(K,1) = CMPLX( (l./R), 0.0 )*DU2 
GOTO 10 
END IF 
IF(K.EQ.(KMAX2-1))THEN 
A1(K,K-41) = -A 
Al(K,K-39) = A 
Al(K,K-4) = -D5 
Al(K,K-3) = -Dl 
Al(K,K-2) = -D2 
A1(K,K-1) = -D3 + CMPLX(2.0,0.0)*A + B 
A1(K,K) = -D4 
A1(K,K+1) = CMPLX(-2.0,0.0)*A - B 
Al(K,K+39) = -A 
A1(K,K+41) = A 
G1(K,1) = CMPLX( (l./R), 0.0 )*DU2 
GOTO 10 
END IF 
A1(K,K-41) = -A 
Al(K,K-39) = A 
Al(K,K-2) = -C 
A1(K,K-1) = CMPLX(2.0,0.0)*C + CMPLX(2.0,0.0)*A + B 
A1(K,K+1) = CMPLX(-2.0,0.0)*C - CMPLX(2.0,0.0)*A - B 
Al(K,K+2) = C 
Al(K,K+39) = -A 
A1(K,K+41) = A 
G1(K,1) = CMPLX( (1./R), 0.0 )*DU2 
10 CONTINUE 
END DO 
END DO 
C 
C 
C 
C 
ZLEN=1 
DO 1=361,400 
Z = REAL(ZLEN - 1)*DZ 
Z1(ZLEN) = Z 
A1(LI) = CMPLX(1.0,0.0) 
ALPHA2 = KE*CMPLX(0.0 , Z) 
El = EXP(CMPLX(-1.0,0.0)* ALPHA) 
E2 = EXP(ALPHA2) 
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E3 = EXP(CMPLX(-1.0,0.0)* ALPHA2) 
E4 = EXP(ALPHA) 
G = (ARG1*E1)/(ARG2*E4+ARG1*E1) 
H = (ARG2*E4)/(ARG2*E4+ARG1*E1) 
DU = KE*CMPLX(0.0,1.0)*(G*E2 - H*E3) 
VW = CMPLX(RA,0.0)*DU 
IF(I.EQ.361.OR.I.EQ.400)THEN 
G1(I,1) = CMPLX(0.0,0.0) 
ELSE 
G1(I,1) = VW 
END IF 
ZLEN = ZLEN + 1 
END DO 
ZLEN=1 
DO 1=1,40 
Z = REAL(ZLEN - 1)*DZ 
Z1(ZLEN) = Z 
A1(I,I) = CMPLX(1.0,0.0) 
ALPHA2 = KE*CMPLX(0.0 , Z) 
El = EXP(CMPLX(-1.0,0.0)* ALPHA) 
E2 = EXP(ALPHA2) 
E3 = EXP(CMPLX(-1.0,0.0)*ALPHA2) 
E4 = EXP( ALPHA) 
G = (ARG1*E1)/(ARG2*E4+ARG1*E1) 
H = (ARG2*E4)/(ARG2*E4+ARG1*E1) 
U(ZLENJL) = G*E2 + H*E3 
ZLEN = ZLEN+1 
END DO 

C 
C 
C END DO 

DO K=l,400 
DO J= 1,400 
IF (A1(KJ).NE.CMPLX(0.0,0.0))THEN 
WRITE(20,*) " ROW=",K," COLUMN="J," VALUE=",A1(K,J) 
END IF 
END DO 
END DO 
DO K=l,400 
WRITE(21(*)" ROW=",K," VALUE=",G1(K,1) 
END DO 
N = 400 
IFLAG = 0 
CALL CMINV(A1,A1INV,W0RK,N,IFLAG) 
WRITE(*,*) "IFLAG=",IFLAG, "IF ZERO THEN NON SINGULAR MATRIX" 
READ(*,*) 
1 = 400 
J = 400 
K=l 
CALL DCMMLT(V,A1INV,G1,U,K) 
DOK=201,240 
Kl = K- 200 
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VPLOTl(Kl) = ABS(V(K,1)) 
IF(VPLOT1(K1).LE.1.E-10)THEN 
VPLOTl(Kl) = 0.0 
END IF 
END DO 
DO K=l,40 
VPLOT2(K) = ABS(V(K,1)) 
IF(VPLOT2(K).LE. 1 .E- 10)THEN 
VPLOT2(K) = 0.0 
END IF 
END DO 
DO K=81,120 
Kl = K- 80 
VPLOT3(Kl) = ABS(V(K,1)) 
IF(VPLOT3(K1).LE.1.E-10)THEN 
VPLOT3(Kl) = 0.0 
END IF 
END DO 
DO K=361,400 
Kl = K - 360 
VPLOT4(Kl) = ABS(V(K,1)) 
IF(VPLOT4(K1).LE.1.E-10)THEN 
VPLOT4(Kl) = 0.0 
END IF 
END DO 
1 = 1 
DO K=3,363,40 
VPLOT5(I) = ABS(V(K,1)) 
IF(VPLOT5(K).LE. 1 £-10)THEN 
VPLOT5(K) = 0.0 
END IF 
1 = 1+1 
END DO 
DO I = 2,9 
R1(I) = REAL(I-1)*DR + RE 
END DO 
R1(1) = RE 
R1(10) = RA 
C 
DO J= 1,40 
UPLOTC0 = ABS(U(J,L)) 
END DO 
C 
DO K=l,400 
VTEMP=ABS(V(K,1)) 
WRITE(15,*) VTEMP 
END DO 

C 
C 
C Plotting Routines Follow (PLOT 10) 
C Plot of axial velocity functions at r=ra 
C 
C 
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CALL INITT (960) 
CALL BINITT 
CALL NPTS (40) 
CALL CHECK (Zl.UPLOT) 
CALL DSPLAY (Zl,UPLOT) 
CALL HLABEL (400,50,1.0,'Axial Distance (m)') 
CALL HLABEL (250,675,1.0,'Axial Velocity at the Wall') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)') 
CALL ANMODE 
CALL HOME 

C 
C 
READ(*,*) 
C 
CALL INITT (960) 
CALL BINITT 
CALL NPTS (40) 
CALL CHECK (Z1.VPLOT2) 
CALL DSPLAY (Z1.VPLOT2) 
CALL HLABEL (400,50,1.0,'Axial Distance (m)') 
CALL HLABEL (250,675,1.0,'Radial Velocity at the Electrodes') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)') 
CALL ANMODE 
CALL HOME 

C 
READ (*,*) 
C 
CALL INITT (960) 
CALL BINITT 
CALL NPTS (40) 
CALL CHECK (Z1.VPLOT1) 
CALL DLIMY (0.0,0.05) 
CALL DSPLAY (Z1.VPLOT1) 
CALL HLABEL (400,50,1.0,'Axial Distance (m)') 
CALL HLABEL (250,675,1.0,'Radial Velocity at r=2.8cm') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)') 
CALL ANMODE 
CALL HOME 

C 
READ(*,*) 
C 
CALL INITT (960) 
CALL BINITT 
CALL NPTS (40) 
CALL CHECK (Z1.VPLOT3) 
CALL DSPLAY (Zl,VPLOT3) 
CALL HLABEL (400,50,1.0,'Axial Distance (m)') 
CALL HLABEL (250,675,1.0,'Radial Velocity at r=2.07cm') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)*) 
CALL ANMODE 
CALL HOME 

C 
READ(*,*) 
C 
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CALL INTTT (960) 
CALLBINnT 
CALLNPTS(40) 
CALL CHECK (Z1.VPLOT4) 
CALL DLIMY (0.0,0.105) 
CALL DSPLAY (Z1.VPLOT4) 
CALL HLABEL (400,50,1.0,'Axial Distance (m)') 
CALL HLABEL (250,675,1.0,'Radial Velocity at the Wall') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)') 
CALL ANMODE 
CALL HOME 

C 
READ(*,*) 
C 
CALL INITT (960) 
CALL BINITT 
CALL NPTS (10) 
CALL CHECK (R1.VPLOT5) 
CALL DLIMY (0.0,0.105) 
CALL DSPLAY (R1/VPLOT5) 
CALL HLABEL (400,50,1.0,'Radial Distance (m)*) 
CALL HLABEL (250,675,1.0,'Radial Velocity at 2-Delta z') 
CALL VLABEL (50,500,1.0,' Velocity (dimless)') 
CALL ANMODE 
CALL HOME 
C 
C 
999 END 
C 
C 

C CMINV-Complex Matrix INVersion 
C 
SUBROUTINE CMINV (C,CINV,WORK,N,IFLAG) 

C 
C--Notes 
C If IFL AG = 1, the matrix is singular 
C Working precision (artificial zero) = 1E-6 
C 
C-Extemal variables 
INTEGER N.IFLAG 
COMPLEX* 16 C(N,N),CINV(N,N),WORK(N,2*N) 
C 
C~Internal variables 
INTEGER IJ JP,IROWJROWJCOL,K 
COMPLEX*16 MAXPIV,S1,C1,SWITCH 
REAL*8 BMAG.T 
C 
DOI=l,N, 1 
DOJ=l,N,l 
WORK(IJ) = C(I J) 
END DO 
END DO 
C 
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DO130I=l,N, 1 
DO120J = l,N, 1 
WORK(I,J+N) = (0.0, 0.0 ) 
IF (I.EQ.J) WORK(U+N) = (1.0, 0.0 ) 
120 CONTINUE 
130 CONTINUE 
C 
J=l 
1 = 1 
140IP=I 
MAXPIV = WORK(IJ) 

C 
DO150IROW = I+l,N, 1 
Sl = WORK(IROWJ) 
IF (ABS(Sl) .LT. ABS(MAXPIV)) GOTO 150 
IP = IROW 
MAXPIV = WORK(IROW,J) 
150 CONTINUE 
C 
IF(IP.EQ.l)GOTO170 
DO160JROW=l,2*N, 1 
SWITCH = WORK(IPJROW) 
WORK(IPJROW) = WORK(IJROW) 
WORK(I,JROW) = SWITCH 
160 CONTINUE 
C 
170 BMAG = ABS(MAXPIV) 
C 
IF (BMAG .LT. 1E-6) GOTO 900 
DO190IROW = I+l,N, 1 
DO180JROW = J+l,2*N, 1 
Cl = WORK(IROWJ)*WORK(UROW)/WORKaj) 
WORK(IROWJROW) = WORK(IROWJROW)-Cl 
180 CONTINUE 
WORK(IROWJ) = (0., 0.) 
190 CONTINUE 
1 = 1+1 
J = J+1 
C 
IF ((I.LT.N) .AND. (J.LT.N)) GOTO 140 

C 
DO210I=l,N, 1 
Cl = WORK(I,I) 
DO 200 J = 1,2*N, 1 
WORK(IJ) = WORK(I,J)/Cl 
200 CONTINUE 
210 CONTINUE 
C 
DO 240 I = N, 2,-1 
DO 230 J = 1-1,1,-1 
Cl = WORK(J,I) 
DO220JCOL = J+l,2*N, 1 
WORK(J JCOL) = WORK(J,JCOL)-Cl*WORK(IJCOL) 
220 CONTINUE 
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230 CONTINUE 
240 CONTINUE 
C 
DO260I=l,N, 1 
DO250J = l,N, 1 
CINV(I J) = WORK(U+N) 
250 CONTINUE 
260 CONTINUE 
IFLAG = 0 

C 
T = 0. 
K = 0 
CC~The norm of the matrix inversion is T 
CCDO190I = l,N, 1 
CCDO190J=l,N,l 
CC Cl = (0., 0.) 
CCDO180K=l,N,l 
CC Cl = Cl+C(I,K)*WORK(KJ) 
CC180 CONTINUE 
CCS1 = (-1.,0.)*C1 
CCIF(LEQJ)S1 = S1 + (1.,0.) 
CC T = T + (REAL(S1)**2) + (MAG(S1)**2) 
CC 190 CONTINUE 
CC T = SQRT(T) 
C 
WRnE(*,*) "IFLAG FROM SUB="JFLAG 
RETURN 
C 
900 IFLAG = 1 
RETURN 
END 
C 
C 
C DCMMLT-Double precision, Complex Matrix MuLTiplication 
C 
C-Matrix multiplication (A=BC) 
C 
SUBROUTINE DCMMLT (A,B,C,IJ,K) 

C 
C~Exteml Variables 
INTEGER IJ,K 
COMPLEX* 16 A(I,K),B(IJ),C(J,K) 
C-Intemal variables 
INTEGER L,M,N 
DO30L=l,I,l 
DO20M = l,K, 1 
A(L,M) = (0.0 ,0.0) 
DO10N=l,J,l 
A(LM) = A(LM) + B(L JsQ*C(NJM) 
10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

RETURN 
END 
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Appendix D 

The numerical evaluation of the damping contribution of the ER fluid is accomplished using 

the following FORTRAN program: 

PROGRAM DAMP 
COMPLEX* 16 KE,BETA,ARG 1 ,ARG21EX,CMPRO,G 1 
COMPLEX* 16 E0,ALPHA,ALPHA2,E1,E2,E3,E4,G)H 
COMPLEX*16 PON1.PON2 JT1,TT2,TT3,TT4 
REAL*8V(10,40),DVDR(10,40),DVDZ(10,40),EV,MSE 
REAL*8DUDZ(40),LEN,VT(400)J«J,T(40),T1,TSUM 
REAL*8DVDR2,DVDZ2,DUDZ2,GAMA,GAMA2,MAS,SUSZ2 
REAL*8PHI(10,40),MU,YIELDS,OMEGA(1),PI,COEF 
REAL*8 AF.RHOS ,RHOF,RHOCJRA,RE,DR,DZ,ADA,SUSZ(40) 
REAL*8FDVDZ(8),BDVDZ(8),FDVDR(38),R(10) 
REAL*8 FDVDZ1.BDVDZ1.DVDR1THT2 
INTEGER UJNUMJCOUNT 
CHARACTER* 13 FILE1.FILE2 
FILE1 = 'new04.txt' 
C 
Q ******************************************************************** 

Q ****************** PROBLEM PARAMETERS ************************* 
p ****************** VELOCITIES FROM PROB5 F ********************** 
Q****************** on _ Helta z & 9 delt r ****************************** 
p ******************************************************************** 

C 
PI = 4.0*ATAN(1.0) 
RHOF = 994.76 
MU = 931.0 
YIELDS = -505. 
OMEGA(l) = 68.9554 
AS = 0.001449173 
AF = 0.003626134 
RHOS = 1200. 
RHOC = (RHOS*AS+RHOF*AF)/(AS+AF) 
CMPRO = CMPLX (RHOC , 0.0) 
M = 16.3295 
EX = CMPLX ( 6.6E7 ,0.0 ) * CMPLX (1.0 ,0.27) 
EO = EX 
NU = 0.39 
Gl = EX/CMPLX( 2.*(1.+NU) , 0.0 ) 
RA = 0.0375 
RE = 0.015875 
LEN= 1.257 
DR = (RA-RE)/9. 
DZ = LEN/39. 
R(1) = RE 
R(10) = RA 
TH = 5.715E-3 
T2 = TH**2 
C 
p ********************************************************************* 
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Q ************** READ IN RADIAL VELOCITY VALUES ********************* 
Q    ********************************************************************* 

INUM = 1 
OPEN(UNIT=10JFILE=FILE1,STATUS='OLD') 
100 CONTINUE 
READ(10,*,END=110) VT(INUM) 
INUM = INUM+1 
GOTO 100 
HOCLOSE(IO) 
INUM = INUM-1 

C 
Q******************************************************************** 

C ******* CONVERT INDICES TO VELOCITY GRID LABELS *************** 
Q******************************************************************** 

c 
ICOUNT=l 
DO 1=1,10 
DO J= 1,40 
V(U) = VTflCOUNT) 
IF(V(I,J).LT.1.D-12) THEN 
V(U) = 0.0 
END IF 
ICOUNT = ICOUNT+l 
END DO 
END DO 
C 
Q*********************************************************************** 

C ************ CALCULATE THE AXIAL VELOCITY AND DUDZ *************** 
Q*********************************************************************** 

c 
KE = CMPLX(OMEGA(1),0.0) / (SQRT(EX/CMPRO)) 
BETA = EX*KE*CMPLX(0.0, AS/(M*OMEGA(l)**2)) 
ARG1 = BETA + CMPLX(1.0 ,0.0) 
ARG2 = BETA - CMPLX(1.0 ,0.0) 
ALPHA = KE*CMPLX(0.0 , LEN) 
DO 1=1,40 
Z = REAL(I - 1)*DZ 
ALPHA2 = KE*CMPLX(0.0 , Z) 
El = EXP(CMPLX(-1.0,0.0)* ALPHA) 
E2 = EXP(ALPHA2) 
E3 = EXP(CMPLX(-1.0,0.0)* ALPHA2) 
E4 = EXP(ALPHA) 
G = (ARG1*E1)/(ARG2*E4+ARG1*E1) 
H = (ARG2*E4)/(ARG2*E4+ARG1*E1) 
DUDZ(I) = ABS(KE*CMPLX(0.0,1.0)*(G*E2 - H*E3)) 
SUSZ(I) = ABS(KE**2*CMPLX(-1.,0.0)*(G*E2 + H*E3)) 
END DO 
C 
Q************************************************************************** 

Q ******************** CALCULATE DVDR AND DVDZ ************************* 
Q************************************************************************** 

C 
DO 1=2,9 
DO J=2,39 
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DVDR(U) = (V(I+U) - V(I-1J))/(2.*DR) 
DVDZ(U) = (V(I,J+1) - V(U-1))/(2.*DZ) 
FDVDR(J) = (4.*V(2J) - V(3J))/(2.*DR) 
FDVDZfl) = (4.*V(I,2) - V(I,3))/(2.*DZ) 
BDVDZ(I) = (-4.*V(I,39) + V(I,38))/(2.*DZ) 
END DO 
END DO 
C 
p************************************************************************** 

C *********** CALCULATE THE DISSIPATION FUNCTION ********************* 
Q************************************************************************** 

c 
DO 1=2,9 
R(I) = REAL(I-1)*DR + RE 
DO J=2,39 
DUDZ2 = (DUDZ(J))**2 
DVDR2 = (DVDR(IJ))**2 
DVDZ2 = (DVDZ(IJ))**2 
VOR2 = (V(U)/R(I))**2 
GAMA2 = 2.*DVDR2 + 2.*VOR2 + 2.*DUDZ2 + DVDZ2 
GAMA = SQRT(GAMA2) 
PHI(U) = YIELDS*GAMA - MU*GAMA2 
END DO 
END DO 
C 
Q ******************** ALONG THE WALL 

C 
DOJ=2,39 
DVDR1 = (l./(2.*DR))*(3.*V(10,J)-4.*V(9J)+V(8,J)) 
DVDR2 = (DVDR1)**2 
VOR2 = (V(10J)/R(10))**2 
DUDZ2 = (DUDZ(J))**2 
SUSZ2 = (SUSZ(J))**2 
GAMA2 = 2.*DVDR2 + 2.*VOR2 + 2.*DUDZ2 + SUSZ2 
GAMA = SQRT(GAMA2) 
PHI(IOJ) = YIELDS*GAMA - MU*GAMA2 
END DO 
C 
Q ******************** ^-p THE ENDS 

C 
PHI(1,1) = YIELDS*SQRT(2.)*DUDZ(1) - 2.*MU*(DUDZ(1))**2 
PHI(1,40) = YIELDS*SQRT(2.)*DUDZ(40) - 2.*MU*(DUDZ(40))**2 
FDVDZ1 = (4.*V(10,2) - V(10,3))/(2.*DZ) 
GAMA2 = 2.*(DUDZ(1))**2 + FDVDZ1**2 
GAMA = SQRT(GAMA2) 
PHI(10,1) = YIELDS*GAMA - MU*GAMA2 
BDVDZ1 = (-4.*V(10,39) + V(10,38))/(2.*DZ) 
GAMA2 = 2.*(DUDZ(40))**2 + BDVDZ1**2 
GAMA = SQRT(GAMA2) 
PHI(10,40) = YIELDS*GAMA - MU*GAMA2 
C 
Q ******************** AX ELECTRODES 

C 
DO J=2,39 
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DVDR2 = (FDVDR(J))**2 
DUDZ2 = (DUDZ(J))**2 
GAMA2 = 2.*DVDR2 + 2.*DUDZ2 
GAMA = SQRT(GAMA2) 
PHI(1,J) = YIELDS*GAMA - MU*GAMA2 
END DO 

C 
c ******************* AT FORWARD SIDE 

C 
DO 1=2,9 
DVDZ2 = (FDVDZ(I))**2 
DUDZ2 = (DUDZ(1))**2 
GAMA2 = 2.*DVDZ2 + 2.*DUDZ2 
GAMA = SQRT(GAMA2) 
PHI(I,1) = YIELDS*GAMA - MU*GAMA2 
END DO 

C 
(2 ******************* Anr ÄpT <JTT)p 

c 
DO 1=2,9 
DVDZ2 = (BDVDZ(I))**2 
DUDZ2 = (DUDZ(40))**2 
GAMA2 = 2.*DVDZ2 + 2.*DUDZ2 
GAMA = SQRT(GAMA2). 
PHI(I,40) = YIELDS*GAMA - MU*GAMA2 
END DO 

C 
Q*************************************************************************** 

Q ***************** pRjjsjj DISSIPATION FUNCTION ********************** 
Q *************************************************************************** 

C 
DO 1=1,10 
DO J= 1,40 
WRITE(3,*) I,J,PHI(I,J) 
END DO 
END DO 

C 
Q*************************************************************************** 

c ***************** CALCULATE MAXIMUM STRAIN ENERGY IN HOSE ************** 
Q*************************************************************************** 

c 
KE = CMPLX(OMEGA(1),0.0) / (SQRT(EX/CMPRO)) 
BETA = EX*KE*CMPLX(0.0, AS/(M*OMEGA(l)**2)) 
ARG1 = BETA + CMPLX(1.0 ,0.0) 
ARG2 = BETA - CMPLX(1.0 ,0.0) 
ALPHA = KE*CMPLX(0.0 , LEN) 
PON1 = CMPLX(0.0,2.*LEN)*KE 
PON2 = CMPLX(0.0,-2.0*LEN)*KE 
El = EXP(CMPLX(-1.0,0.0)* ALPHA) 
E4 = EXP( ALPHA) 
G = (ARG1*E1)/(ARG2*E4+ARG1*E1) 
H = (ARG2*E4)/(ARG2*E4+ARG1*E1) 
TT1 =CMPLX(T2*(1.+NU),0.0)*EX 
TT2=(KE*G**2)/(CMPLX(0.,2.))*(CMPLX(1.,0.0)-EXP(PON1))+ 
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!(KE*H**2)/(CMPLX(0.,2.))*(EXP(PON2)-CMPLX(1.,0.0))+ 
! CMPLX(2.*LEN,0.0)*G*H*KE**2 
TT3 = CMPLX(T2*RAD**2/2.,0.0)*G1 
TT4=(KE**3*G**2/CMPLX(0.0,2.))*(EXP(PON1)-CMPLX(1.0,0.0))+ 
! (KE**3*H**2/CMPLX(0.0,2.))*(CMPLX( 1.0,0.0)-EXP(PON2))+ 
! CMPLX(2.*LEN,0.0)*G*H*KE**4 
MSE = ABS(TT1*(TT2)+TT3*(TT4)) 
C 
p *************************************************************************** 

c *************** INTEGRATE THE DISSIPATION FUNCTION WRT R ***************** 
Q *************** USING TRAPEZOIDAL RULE ***************** 
Q*************************************************************************** 

C 
DOJ=1,40 
T(J) = (DR/2.)*(PHI(U)*R(1) + 2.*PHI(2J)*R(2) 
! + 2.*PHI(3J)*R(3) + 2.*PHI(4J)*R(4) + 
! 2.*PHI(5J)*R(5) + 2.*PHI(6J)*R(6) + 
! 2.*PHI(7 J)*R(7) + 2.*PHI(8J)*R(8) + 
! 2*PHI(9J)*R(9) + PHI(10J)*R(10)) 
END DO 
C 
p************************************************************************** 

c *************** INTEGRATE THE INTEGRAL OF PHI WRT R WRT Z **************** 
c *************** USING THE TRAPEZOIDAL RULE **************** 
p ************************************************************************** 

C 
TSUM = 0.0 
DOJ=2,39 
Tl = 2.0*T(J) 
TSUM = TSUM + Tl 
END DO 
EV = (DZ/2.)*(T(1) + TSUM + T(40)) 
C 
p ************************************************************************** 
Q ***************** CALCULATE THE LOSS TANGENT ************************* 
p ************************************************************************** 

C 
COEF = ^.0*PI*OMEGA(1) 
ADA = COEF*(EV/MSE)/(4.*PI) 
WRITE (4,*) ADA,OMEGA(l),EV,MSE 
p *************************************************************************** 
p ***************** END IT ALL ***************************************** 
p *************************************************************************** 

C 
END 
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Appendix E 

The following are transfer functions from the attenuation experiments listed as frequency, real 

component, and imaginary component: 

Zero volt data set: 

5.00936484935587, -1.10337,0.0648265 
5.04520795952135, -1.10601,0.0645547 
5.08130753504421, -1.10865,0.0642812 
5.11766541099064, -1.1113,0.0640061 
5.15428343555713, -1.11396,0.0637293 
5.19116347016442, -1.11662,0.0634508 
5.22830738955214, -1.11929,0.0631708 
5.26571708187407, -1.12108,0.0632235 
5.30339444879418, -1.12287, 0.0632762 
5.34134140558323, -1.12466,0.0633289 
5.37955988121621, -1.12645,0.0633816 
5.41805181847029, -1.12825,0.0634343 
5.4568191740237, -1.13006,0.063487 
5.49586391855509, -1.13186,0.0635398 
5.53518803684378, -1.13367,0.0635922 
5.57479352787061, -1.13964,0.0663836 
5.61468240491955, -1.14565,0.0692031 
5.65485669568011, -1.15167,0.0720507 
5.69531844235031, -1.15773,0.0749267 
5.7360697017406, -1.16381,0.0778313 
5.77711254537831, -1.16992,0.0807647 
5.81844905961304, -1.17605,0.0837271 
5.86008134572268, -1.18221,0.0867188 
5.90201152002021, -1.18536,0.0865969 
5.94424171396131, -1.18852,0.0864737 
5.98677407425269, -1.19169,0.0863493 
6.02961076296122, -1.19486, 0.0862236 
6.07275395762383, -1.19804,0.0860967 
6.11620585135821, -1.20123,0.0859685 
6.15996865297431, -1.20443,0.085839 
6.20404458708656, -1.20764,0.0857084 
6.24843589422705, -1.21365,0.088573 
6.29314483095932, -1.21968,0.0914642 
6.33817366999316, -1.22573,0.0943823 
6.38352470030007, -1.23181,0.0973276 
6.42920022722967, -1.23791,0.1003 
6.47520257262684, -1.24405,0.1033 
6.5215340749498, -1.2502,0.106328 
6.56819708938893, -1.25638,0.109383 
6.61519398798653, -1.2639,0.111838 
6.66252715975738, -1.27145,0.114317 
6.7101990108102, -1.27905,0.116823 
6.75821196446992, -1.2867,0.119355 
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6.80656846140093, -1.29438, 0.121913 
6.85527095973108, -1.30211, 0.124498 
6.9043219351767, -1.30988,0.12711 
6.95372388116837, -1.3177,0.129748 
7.00347930897777, -1.32647, 0.134464 
7.05359074784524, -1.3353,0.139237 
7.10406074510842, -1.34417,0.14407 
7.15489186633169, -1.35309, 0.148962 
7.20608669543662, -1.36205, 0.153913 
7.25764783483332, -1.37107, 0.158925 
7.30957790555269, -1.38013,0.163998 
7.36187954737972, -1.38924,0.169133 
7.41455541898761, -1.39916,0.174167 
7.46760819807296, -1.40913, 0.179267 
7.52104058149191, -1.41917, 0.184431 
7.57485528539717, -1.42926,0.189661 
7.62905504537612, -1.43942,0.194958 
7.68364261658988, -1.44964,0.200321 
7.73862077391336, -1.45992, 0.205753 
7.79399231207632, -1.47026,0.211252 
7.84976004580539, -1.4874, 0.223861 
7.90592680996723, -1.50467, 0.236744 
7.96249545971259, -1.52208, 0.249907 
8.01946887062142, -1.53962,0.263355 
8.07684993884912, -1.55728,0.27709 
8.1346415812737, -1.57508,0.291119 
8.19284673564408, -1.59301,0.305445 
8.25146836072941, -1.61106,0.320073 
8.31050943646951, -1.6322,0.351255 
8.36997296412631, -1.65318, 0.383287 
8.42986196643642, -1.67398,0.416179 
8.49017948776483, -1.69459,0.449943 
8.55092859425959, -1.715, 0.484591 
8.61211237400776, -1.73518,0.520132 
8.67373393719232, -1.75511,0.556579 
8.73579641625028, -1.77479,0.593942 
8.79830296603197, -1.78975, 0.621358 
8.86125676396132, -1.80459,0.649279 
8.92466101019748, -1.81929,0.67771 
8.98851892779739, -1.83385, 0.706655 
9.05283376287973, -1.84826,0.736121 
9.11760878478982, -1.86251,0.76611 
9.18284728626591, -1.8766,0.796628 
9.2485525836065, -1.89051, 0.827679 
9.31472801683894, -1.91431, 0.874014 
9.3813769498892, -1.93785,0.921634 
9.4485027707529, -1.96108, 0.970562 
9.51610889166751, -1.98398, 1.02082 
9.58419874928581, -2.00654,1.07242 
9.65277580485059,-2.02871, 1.1254 
9.72184354437059, -2.05047,1.17976 
9.79140547879772, -2.0718, 1.23554 
9.86146514420551, -2.08356, 1.48898 
9.9320261019689,-2.07378, 1.75815 
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10.0030919389452, -2.0398,2.04207 
10.0746662676566, -1.97895,2.33949 
10.1467527264736, -1.88847,2.64881 
10.2193549797999, -1.76561,2.96814 
10.292476718259, -1.6076,3.29521 
10.3661216588817, -1.41173,3.62739 
10.4402935452948, -1.2304,3.6703 
10.5149961479116, -1.04824, 3.70432 
10.5902332641236, -0.865664,3.72949 
10.6660087184934, -0.68311,3.74583 
10.7423263629493, -0.50099, 3.7534 
10.8191900769809, -0.319717,3.75229 
10.8966037678364, -0.139697, 3.7426 
10.9745713707213,0.0386734, 3.72444 
11.0530968489983,0.165588, 3.66589 
11.1321841943889,0.288549,3.6039 
11.2118374271761,0.407499,3.53866 
11.2920605964091,0.522387, 3.47034 
11.3728577801088,0.633171, 3.39914 
11.4542330854754,0.739816, 3.32524 
11.5361906490968,0.842292,3.24883 
11.6187346371592,0.940579,3.17008 
11.7018692456589,1.01659,3.08223 
11.7855987006152,1.08856,2.99378 
11.8699272582859,1.15656,2.90489 
11.9548592053829,1.22063,2.81566 
12.0403988592906,1.28085,2.72623 
12.1265505682853,1.33728,2.63671 
12.213318711756,1.39,2.54721 
12.3007077004275,1.43907,2.45785 
12.388721976584,1.45701,2.37815 
12.4773660142954,1.47302,2.29977 
12.5666443196444,1.48715,2.22272 
12.6565614309559,1.49948,2.147 
12.7471219190274, 1.51008,2.07264 
12.8383303873615,1.51899, 1.99962 
12.9301914723999,1.52629,1.92797 
13.022709843759,1.53203,1.85767 
13.1158902044674,1.52187,1.79827 
13.2097372912049,1.51119,1.74028 
13.3042558745432,1.50002,1.68369 
13.3994507591885,1.48839,1.62846 
13.495326784226, 1.47633,1.57458 
13.5918888233652,1.46386,1.52202 
13.6891417851884,1.451,1.47076 
13.7870906133997,1.43779,1.42077 
13.8857402870766,1.42908,1.38503 
13.985095820923,1.42017,1.34992 
14.085162265524,1.41106,1.31545 
14.1859447076028,1.40176,1.2816 
14.2874482702793,1.39229,1.24836 
14.3896781133304,1.38264,1.21573 
14.4926394334523, 1.37283, 1.18369 
14.5963374645247,1.36287,1.15224 
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14.7007774778771, 1.34796,1.11843 
14.8059647825561, 1.33301, 1.08539 
14.9119047255962,1.31805,1.05309 
15.0186026922906, 1.30307,1.02154 
15.1260641064658,1.28808,0.990703 
15.2342944307569, 1.27309,0.960578 
15.3432991668853,1.25811,0.93115 
15.4530838559385, 1.24314,0.902406 
15.5636540786517,1.22565, 0.877228 
15.6750154556914, 1.20832,0.85264 
15.7871736479413, 1.19115,0.828629 
15.9001343567899, 1.17415,0.805184 
16.0139033244205, 1.15731,0.782292 
16.128486334103,1.14065,0.759942 
16.2438892104876, 1.12415,0.738123 
16.3601178199015,1.10781,0.716824 
16.4771780706465, 1.09367,0.698965 
16.5950759132998,1.07966,0.681476 
16.7138173410163,1.06579,0.664351 
16.8334083898329,1.05204,0.647583 
16.9538551389762,1.03843,0.631165 
17.0751637111705, 1.02495, 0.615091 
17.19734027295, 1.0116,0.599354 
17.3203910349714, 0.99838,0.583949 
17.4443222523303, 0.987492, 0.568335 
17.5691402248788,0.97666,0.553029 
17.6948512975459,0.965885,0.538027 
17.8214618606598, 0.955166,0.523323 
17.9489783502729,0.944507, 0.508913 
18.0774072484893,0.933907, 0.494792 
18.2067550837937, 0.923368,0.480955 
18.3370284313835,0.912892, 0.467398 
18.4682339135033, 0.901829,0.455514 
18.6003781997812,0.890866,0.443866 
18.7334680075679,0.880004, 0.432451 
18.8675101022784,0.869241,0.421265 
19.0025112977356, 0.858578,0.410303 
19.1384784565168,0.848015, 0.399562 
19.2754184903027, 0.837551, 0.389037 
19.4133383602284,0.827187,0.378727 
19.5522450772377,0.818453, 0.368185 
19.6921457024389, 0.809769,0.357843 
19.8330473474644, 0.801135,0.347698 
19.9749571748318, 0.792551,0.337747 
20.117882398308, 0.784019,0.327987 
20.2618302832762,0.775539,0.318415 
20.4068081471048, 0.767111,0.309028 
20.5528233595198,0.758736,0.299824 
20.6998833429789,0.749574, 0.290475 
20.8479955730494,0.740486,0.281323 
20.9971675787879,0.731471,0.272365 
21.1474069431229, 0.72253,0.263597 
21.2987213032407,0.713663, 0.255015 
21.451118350973, 0.704869,0.246618 
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21.6046058331886,0.69615,0.238401 
21.7591915521865,0.687505,0.230361 
21.9148833660933,0.679203,0.223979 
22.0716891892618,0.670984,0.217723 
22.2296169926739,0.662848,0.211591 
22.3886748043459,0.654794,0.205582 
22.5488707097359,0.646822,0.199692 
22.7102128521554,0.638931,0.19392 
22.8727094331832,0.631121,0.188264 
23.0363687130822,0.62339,0.182722 
23.201199011219,0.615438,0.176317 
23.3672087064876,0.607563,0.170052 
23.5344062377343,0.599765,0.163926 
23.7028001041876,0.592043,0.157935 
23.8723988658897,0.584397,0.152078 
24.0432111441318,0.576827,0.146353 
24.2152456218924,0.569332,0.140756 
24.3885110442784,0.561912,0.135284 
24.5630162189703,0.554718,0.130574 
24.7387700166691,0.547602,0.125966 
24.9157813715477,0.540562,0.121458 
25.0940592817052,0.533598,0.117049 
25.2736128096238,0.526709,0.112736 
25.4544510826299,0.519896,0.108518 
25.636583293358,0.513157,0.104393 
25.8200187002177,0.506491,0.10036 
26.0047666278648,0.499596,0.0975242 
26.1908364676749,0.49279,0.0947482 
26.3782376782212,0.486073,0.0920305 
26.5669797857547,0.479443,0.0893701 
26.7570723846891,0.4729,0.0867658 
26.9485251380883,0.466442,0.0842167 
27.1413477781573,0.460069,0.0817217 
27.3355501067374,0.453779,0.07928 
27.5311419958041,0.449221,0.0757675 
27.7281333879691,0.444692,0.0723204 
27.9265342969857,0.440194,0.0689376 
28.1263548082579,0.435726,0.0656185 
28.3276050793527,0.431287,0.0623619 
28.5302953405171,0.426879,0.0591672 
28.7344358951974,0.422501,0.0560334 
28.9400371205638,0.418154,0.0529597 
29.1471094680369,0.414111,0.0492884 
29.3556634638199,0.410083,0.045686 
29.5657097094332,0.406072,0.0421519 
29.7772588822534,0.402077,0.0386851 
29.9903217360561,0.398098,0.0352847 

1.6kV/mm data set: 

5.00936484935587, -1.12156,0.145606 
5.04520795952135, -1.12377,0.145392 
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5.08130753504421 
5.11766541099064 
5.15428343555713 
5.19116347016442 
5.22830738955214 
5.26571708187407 
5.30339444879418 
5.34134140558323 
5.37955988121621 
5.41805181847029 
5.4568191740237, 
5.49586391855509 
5.53518803684378 
5.57479352787061 
5.61468240491955 
5.65485669568011 
5.69531844235031 
5.7360697017406, 
5.77711254537831 
5.81844905961304 
5.86008134572268 
5.90201152002021 
5.94424171396131 
5.98677407425269 
6.02961076296122 
6.07275395762383 
6.11620585135821 
6.15996865297431 
6.20404458708656 
6.24843589422705 
6.29314483095932 
6.33817366999316 
6.38352470030007 
6.42920022722967 
6.47520257262684 
6.5215340749498, 
6.56819708938893 
6.61519398798653 
6.66252715975738 
6.7101990108102, 
6.75821196446992 
6.80656846140093 
6.85527095973108 
6.9043219351767, 
6.95372388116837 
7.00347930897777 
7.05359074784524 
7.10406074510842 
7.15489186633169 
7.20608669543662 
7.25764783483332 
7.30957790555269 
7.36187954737972 
7.41455541898761 

-1.12597,0.145176 
-1.12819,0.14496 
-1.1304,0.144741 
-1.13262,0.144522 
-1:13484,0.144301 
-1.1412,0.14538 
-1.1476,0.146467 
-1.15403,0.147562 
-1.1605,0.148664 
-1.167,0.149773 
1.17354,0.150891 
-1.18012,0.152016 
-1.18673,0.15315 
-1.18822,0.157185 
-1.18971,0.161231 
-1.19118,0.165289 
-1.19264,0.169358 
1.19409,0.173439 
-1.19553,0.177531 
-1.19696,0.181634 
-1.19837,0.185748 
-1.20449,0.188217 
-1.21063,0.190707 
-1.21681,0.193217 
-1.22301,0.195748 
-1.22925,0.198301 
-1.23551,0.200874 
-1.2418,0.203469 
-1.24813,0.206086 
-1.25409,0.212327 
-1.26007,0.218627 
-1.26605, 0.224986 
-1.27203,0.231403 
-1.27803,0.237881 
-1.28403,0.244418 
1.29003,0.251016 
-1.29604,0.257675 
-1.30294,0.26137 
-1.30987,0.265098 
1.31683,0.268859 
-1.32382,0.272654 
-1.33085, 0.276481 
-1.33791,0.280343 
1.345,0.284239 
-1.35213,0.288169 
-1.36227, 0.294675 
-1.37247,0.301266 
-1.38274,0.307942 
-1.39307,0.314704 
-1.40346, 0.321553 
-1.41392,0.328489 
-1.42444,0.335515 
-1.43503,0.34263 
-1.44729, 0.357958 

114 



TR 11,023 

7.46760819807296, 
7.52104058149191 
7.57485528539717 
7.62905504537612 
7.68364261658988 
7.73862077391336 
7.79399231207632 
7.84976004580539 
7.90592680996723 
7.96249545971259 
8.01946887062142 
8.07684993884912 
8.1346415812737, 
8.19284673564408 
8.25146836072941 
8.31050943646951 
8.36997296412631 
8.42986196643642, 
8.49017948776483 
8.55092859425959 
8.61211237400776 
8.67373393719232 
8.73579641625028 
8.79830296603197 
8.86125676396132 
8.92466101019748 
8.98851892779739 
9.05283376287973 
9.11760878478982, 
9.18284728626591 
9.2485525836065, - 
9.31472801683894, 

, -1.45955,0.373547 
,-1.47181,0.3894 
, -1.48407,0.405519 
, -1.49632,0.421908 
, -1.50857,0.438569 
, -1.52082,0.455505 
, -1.53305, 0.472718 
,-1.55109,0.495428 
,-1.56916,0.518661 
, -1.58727,0.542425 
, -1.6054,0.566728 
, -1.62356,0.591579 
1.64173,0.616986 

, -1.65991,0.642957 
,-1.6781,0.669502 
, -1.69056,0.723522 
, -1.70188,0.7788 
, -1.712,0.83533 
,-1.72087,0.893104 
,-1.72844,0.952111 
, -1.73465,1.01234 
, -1.73946,1.07378 
, -1.74279,1.13642 
, -1.72345,1.23235 
, -1.69957,1.3291 
,-1.67106,1.42649 
, -1.63779,1.52433 
, -1.59966,1.62242 
, -1.55659,1.72055 
, -1.50848,1.81851 
1.45525,1.91606 
-1.40242,1.96552 

9.3813769498892, -1.34794,2.01355 
9.4485027707529, -1.29186,2.0601 
9.51610889166751, -1.23422,2.10512 
9.58419874928581, -1.17505,2.14855 
9.65277580485059, -1.1144,2.19034 
9.72184354437059, -1.05231,2.23045 
9.79140547879772, -0.988827,2.26883 
9.86146514420551, -0.891035,2.2847 
9.9320261019689, -0.793596,2.29662 
10.0030919389452, -0.69666,2.30464 
10.0746662676566, -0.600374,2.30883 
10.1467527264736, -0.504879,2.30924 
10.2193549797999, -0.410315,2.30594 
10.292476718259, -0.316815,2.29901 
10.3661216588817, -0.224512,2.28852 
10.4402935452948, -0.187982,2.25906 
10.5149961479116, -0.152403,2.22949 
10.5902332641236, -0.117764,2.19982 
10.6660087184934, -0.0840522,2.17008 
10.7423263629493, -0.0512553,2.14027 
10.8191900769809, -0.0193615,2.11041 
10.8966037678364,0.0116414,2.08051 
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10.9745713707213, 0.0417658, 2.05059 
11.0530968489983, 0.0730891, 2.04366 
11.1321841943889, 0.10421,2.03627 
11.2118374271761, 0.135122, 2.02843 
11.2920605964091,0.165819, 2.02014 
11.3728577801088, 0.196295,2.0114 
11.4542330854754,0.226543, 2.00222 
11.5361906490968,0.256558, 1.9926 
11.6187346371592, 0.286333, 1.98256 
11.7018692456589,0.329404, 1.96497 
11.7855987006152, 0.371837,1.94652 
11.8699272582859,0.413615, 1.92721 
11.9548592053829,0.454724, 1.90706 
12.0403988592906,0.495148,1.88611 
12.1265505682853,0.534873,1.86436 
12.213318711756,0.573884,1.84184 
12.3007077004275,0.612169, 1.81856 
12.388721976584,0.636575, 1.77931 
12.4773660142954,0.659878, 1.74021 
12.5666443196444,0.682097, 1.70127 
12.6565614309559,0.703252, 1.66252 
12.7471219190274,0.723363, 1.62397 
12.8383303873615,0.742449, 1.58564 
12.9301914723999,0.76053, 1.54754 
13.022709843759, 0.777626,1.50968 
13.1158902044674,0.784808, 1.47336 
13.2097372912049,0.791375, 1.43757 
13.3042558745432,0.797345, 1.40229 
13.3994507591885,0.802734, 1.36754 
13.495326784226,0.807561,1.33331 
13.5918888233652,0.811841,1.29959 
13.6891417851884,0.815592, 1.2664 
13.7870906133997,0.818827, 1.23372 
13.8857402870766,0.819807, 1.20533 
13.985095820923,0.820455, 1.17738 
14.085162265524,0.820781,1.14986 
14.1859447076028,0.820796, 1.12276 
14.2874482702793,0.820507, 1.09609 
14.3896781133304,0.819926, 1.06983 
14.4926394334523,0.819061,1.04399 
14.5963374645247,0.817921, 1.01857 
14.7007774778771, 0.816017, 0.995458 
14.8059647825561,0.813911, 0.972708 
14.9119047255962,0.81161,0.950315 
15.0186026922906, 0.80912,0.928272 
15.1260641064658, 0.806448, 0.906579 
15.2342944307569,0.803599,0.885232 
15.3432991668853, 0.80058,0.864227 
15.4530838559385, 0.797397, 0.843561 
15.5636540786517,0.791747,0.822189 
15.6750154556914,0.785996,0.801227 
15.7871736479413, 0.780151, 0.780667 
15.9001343567899, 0.774215, 0.760504 
16.0139033244205, 0.768196,0.740732 
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16.128486334103,0.762097,0.721346 
16.2438892104876,0.755924,0.70234 
16.3601178199015,0.749681,0.683708 
16.4771780706465,0.741407, 0.668098 
16.5950759132998,0.733177,0.652792 
16.7138173410163,0.724992,0.637786 
16.8334083898329,0.716853,0.623074 
16.9538551389762,0.708761, 0.60865 
17.0751637111705,0.700717,0.594511 
17.19734027295,0.692722,0.58065 
17.3203910349714,0.684777,0.567065 
17.4443222523303,0.679091,0.553622 
17.5691402248788,0.673386,0.540417 
17.6948512975459,0.667665,0.527449 
17.8214618606598,0.661928,0.514712 
17.9489783502729,0.656179,0.502204 
18.0774072484893,0.650419,0.489923 
18.2067550837937,0.644649,0.477863 
18.3370284313835,0.638874,0.466024 
18.4682339135033,0.631346,0.454746 
18.6003781997812,0.623873,0.443694 
18.7334680075679,0.616455,0.432864 
18.8675101022784,0.609092,0.422252 
19.0025112977356,0.601785,0.411855 
19.1384784565168,0.594534,0.401668 
19.2754184903027,0.58734,0.391689 
19.4133383602284,0.580202,0.381912 
19.5522450772377,0.574609,0.374684 
19.6921457024389,0.569056,0.36757 
19.8330473474644,0.563541,0.360568 
19.9749571748318,0.558065,0.353677 
20.117882398308,0.552627,0.346895 
20.2618302832762,0.547229,0.340221 
20.4068081471048,0.541869,0.333653 
20.5528233595198,0.536547,0.327189 
20.6998833429789,0.530681,0.320716 
20.8479955730494,0.524869,0.314353 
20.9971675787879,0.519108,0.308098 
21.1474069431229,0.5134,0.301949 
21.2987213032407,0.507743,0.295904 
21.451118350973,0.502139,0.289962 
21.6046058331886,0.496585,0.284121 
21.7591915521865,0.491083,0.27838 
21.9148833660933,0.487254,0.270971 
22.0716891892618,0.483414,0.263685 
22.2296169926739,0.479562,0.25652 
22.3886748043459,0.475699,0.249474 
22.5488707097359,0.471828,0.242548 
22.7102128521554,0.467949,0.235738 
22.8727094331832,0.464063,0.229043 
23.0363687130822,0.460169,0.222463 
23.201199011219,0.455076,0.216616 
23.3672087064876,0.45002,0.210881 
23.5344062377343,0.444999,0.205256 
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23.7028001041876, 0.440015,0.19974 
23.8723988658897, 0.435068, 0.19433 
24.0432111441318, 0.430158, 0.189025 
24.2152456218924,0.425284, 0.183824 
24.3885110442784, 0.420447,0.178724 
24.5630162189703, 0.415179, 0.174142 
24.7387700166691,0.409965, 0.169652 
24.9157813715477, 0.404806,0.165252 
25.0940592817052, 0.399701, 0.160941 
25.2736128096238,0.39465, 0.156716 
25.4544510826299,0.389653,0.152576 
25.636583293358,0.384708,0.14852 
25.8200187002177,0.379817,0.144546 
26.0047666278648,0.374856,0.140424 
26.1908364676749,0.369948,0.136389 
26.3782376782212, 0.365094, 0.13244 
26.5669797857547,0.360292,0.128575 
26.7570723846891,0.355542, 0.124793 
26.9485251380883,0.350844,0.121093 
27.1413477781573,0.346198,0.117471 
27.3355501067374,0.341603, 0.113929 
27.5311419958041,0.336053, 0.110949 
27.7281333879691, 0.330589,0.108036 
27.9265342969857,0.325211, 0.105191 
28.1263548082579,0.319918, 0.10241 
28.3276050793527, 0.314707,0.0996929 
28.5302953405171, 0.309579,0.0970383 
28.7344358951974,0.30453, 0.0944446 
28.9400371205638, 0.299561, 0.0919106 
29.1471094680369,0.294683,0.0892497 
29.3556634638199,0.28988, 0.0866523 
29.5657097094332, 0.285151,0.0841171 
29.7772588822534,0.280496,0.0816427 
29.9903217360561,0.275912, 0.0792279 
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Appendix F 

The application of the ER test module to isolate a vibration sensitive device from an excitation 

source is illustrated in this example. The attenuation of the longitudinal vibration utilizing the ER 

test module of Chapter 2 is shown in Figure El. In this figure, the device to be isolated is 

accomplished by the addition of the ER damper. The specification of the ER damper response is 

defined in the Attenuation Experiments in Chapter 2. The attenuation factor, defined as the 

attenuation (in decibels) per length of the damper, can be evaluated from the transmissibility 

experiments of Chapter 2. In the case of the ER test module at 1.6 kV/mm, the attenuation 

produced with respect to the zero voltage case (Figure 2.13, page 22) was 4 dB. This value is 

obtained from the difference between the magnitudes of the amplitude ratio. The resulting 

attenuation factor of the energized state of 1.6 kV/mm becomes 3.2 dB/m. 

The attenuation factor can be used as a design parameter to specify the required length of an 

ER damper to provide the desired attenuation to the vibration sensitive equipment in Figure F.l. 

The damper length is obtained by dividing the desired attenuation level (in decibels) by the 

attenuation factor. This first order specification of the damping capacity of the device is limited to 

a linear structure and harmonic excitation. The practical application of the ER damper as a "black 

box" device could be optimized by designing the resonant frequency of the damper to match the 

frequency of the maximum excitation. This technique is referred to as tuning the damper. 

Vibration 
Sensitive 
Equipment 

Excitation 
Source ER Damper 

Figure F.l. Illustration of ER Damper Application 
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