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THEORY AND SIMULATION OF A GATED FIELD EMITTER: 
ANALYSIS AND INCORPORATION 

INTO MACROSCOPIC DEVICE CHARACTERIZATION 

INTRODUCTION 

Recent improvements in gated field emission array (FEA) technology provide a new alternative to 
thermionic electron beam sources [1] for emission gating at frequencies above ultra high frequency 
(UHF). This new opportunity, however, is subject to the integration of FEA technology into the 
vacuum tube environment. The principal advantages of microfabricated FEAs are the negligible tip- 
to-gate transit time and the high transconductance. FEA structures can modulate the beam density at 
high frequency and with good spatial localization, thereby making possible significant improvements 
in amplifier performance [2]. They have also been successfully used in the creation of flat panel 
displays [3] and other devices. Electrons from the ultra sharp tips (radius of curvature is on the order 
of 100 Ä) can be emission modulated by applying an oscillating voltage to the gate that is coplanar 
with the emitter tips. FEAs, therefore, promise orders of magnitude improvement in frequency 
response over the thermionic cathodes (for which the gate plane is on the order of 20 u.m from the 
cathode surface) due to limitations associated with transit time effects. 

Because of this, considerable interest in developing an FEA cathode for inclusion into a twystrode 
or klystrode amplifier configuration has developed. Assumptions regarding the relation between the 
cathode current and the gate voltage are required to estimate inductive output amplifier (IOA) 
performance characteristics (e.g., gain, bandwidth, frequency of operation, efficiency) [4]. 
Consequently, the prediction of device performance has been impeded by the lack of a simple 
methodology for comparison of disparate FEA structures. Different fabrication methods produce 
widely different gate apertures, emitter heights, radii of curvature at the tip, and other geometric, as 
well as material, differences. The FEA unit cell, therefore, exhibits different current-voltage 
characteristics, transconductances, and capacitances. 

Experimental data are well characterized by the Fowler-Nordheim (FN) equation [5,6], and 
modeling efforts typically take advantage of this. However, numerous physical effects mitigate 
against simple first-principles analysis of field emission from an FEA tip, and therefore invite the 
question "Is FEA performance predictable?" Effects such as the influence of the anode voltage 
during low current operation, or space charge effects during high current operation, may be 
amenable to a first-principles analysis, and a fundamental understanding of these effects seems 
possible. Other effects, well known to fabricators, include contamination, outgassing, seasoning, 
migration, dulling, and snapback. These are influenced by manufacturing, conditioning, and 
operational history, and are difficult to interpret in terms of first principles. Typically, these effects 
are controlled or held constant by holding to a strict operational regimen. Another effect that can 
prevent first-principles analysis of emission from an FEA tip is geometric irregularity of the tips. 
Recent transmission electron microscope (TEM) photographs indicate that actual tip shapes are 
highly irregular, whereas convenient analytical models assume spherical or elliptical shapes. Certain 
data support the notion of emission from a single, or perhaps a few, sites on a tip [7], in marked 
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contrast to the idea of emission occurring continuously over a broad area. Although the actual 
quantum-mechanical process may have a classical counterpart, key ingredients, such as the electronic 
charge, remain quantized. At scales of interest, only a single electron may exist in the vicinity of the 
gate, which may alter our understanding of "space charge" in depressing surface fields. "Turn 
on," in which a seemingly dysfunctional tip under some subtly changing influence suddenly begins 
to emit, has been observed, again suggesting lack of continuity. In light of this, it appears improbable 
that a truly predictive and comprehensive theory or simulation analysis can be found. 

Statistical Models 

Discrete:  The Linear Distribution in B 

But before such pessimism is accepted, the fact remains that the Fowler-Nordheim 
characterization of experimental data is of great utility, even though the fabrication, processing, and 
even measurement, procedures vary widely. We must therefore ascertain exactly what can be inferred 
from the experimental data through a statistical analysis. Let the individual tips in a field emission 
array (FEA) individually obey a Fowler-Nordheim relation (a similar analysis has been performed by 
Levine [8] at lower emissivities for flat displays). The /th tip is characterized by (the "fn" subscript 
on A and B is suppressed): 

Il{V) = AiVJexp\-Bi/Vg), (1) 

where Vg is the gate voltage (below, the "g" subscript is suppressed).  A plot of ln(/,-/V 2) vs 1/V  is 
linear.  Below, we refer to this as "Fowler-Nordheim (FN) behavior" (see Appendix A). 

Assume that the number of tips characterized by 5, is nt.  Then the average current per tip from 
an FEA containing TV tips is: 

(/(V)) = 1 ^ /.(V) = 1 i0(V) f «,- £■ exp [(B0 - Bt) I V], (2) 

where A0 and B0 remain to be specified, and where Z ni = N. Consider the case where the ZTs are 
linearly distributed according to Bt = B0 + (i-I) AB /(NB-1), which we refer to as the "Linear 
Distribution." Further, assume that niAi - (N / Nß) A0. Because Afn increases with tip radius (as 
does Bfn), this implies that a linear distribution in B's does not entail a uniform distribution in tip 
radius:   n,- is larger for the sharper tips.  Performing the summation in Eq. (2),  </> is given by 

<7>=Ätw 

1 - exp 
NB     Aß] 

1 - exp '       1      A*V 
(3) 

As Nß^> °° (the continuum limit), </> = {VIAB) I0{V) [l-exp(AB/V)]. The continuum limit may also 
be obtained directly by introducing the ("linear") distribution function (AZJA,-/ NA0 ) =*f(B) dB = dB 
6(B-B0) 8(B0 + AB - B)/AB, and transforming the summation in Eq. (2) into an integral. f(B) is so 
defined that its integral over all B is unity. 
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For AB/V «1, we see that </> = I0(V), i.e., the tips are highly uniform. For AB/V sufficiently 
large (but small compared to Nß), </> = (V / AB) I0(V). Strictly speaking, the coefficient {VI AB) 
will cause nonlinearities in an FN plot, but the question remains, to what extent are these non- 
linearities apparent? We return to this shortly. 

Continuum 

Consider the continuum extension of Eq. (2) for which the largest and smallest 5£-'s are denoted 
by B+ and B_, respectively. Let the distribution of B's be analogous to the Gaussian distribution: 

f(B) = exp[-(5-50)2/(T2] 

L exp[-(ß-ß0)2/(T2] dB 
B 

(4) 

Because {B+ - B0) need not equal (B0 - B_), B0 will not in general correspond to the mean B nor will 
c correspond to the standard deviation. At present, they are simply parameters specifying the 
distribution of B's. In what follows, we do not let B± go to ± «> immediately. For example, consider 
the characteristics of the tips created by laser holography [12]: the radius of curvature is on the order 
of 10 to 50 Ä. We expect, given the size of individual atoms, that B_ will likewise be constrained to 
this range, although B+ need not be. Consequently, the distribution of S's for these tips is probably 
not a full Gaussian, and we therefore do not approximate the denominator of Eq. (4) by Vn a. 
Evaluating </> = ff(B) I(V) dB gives: 

(/) = /0(V)exp(»j2) 
Erf(x+ + 77)-Erf(;t_+77) 

Erf(x+)-Erf(j:_) 

(5) 

where x± = {B±-B0)/o and T] = a/{2V), and where Erf(*) = (2/Vrc){J0~ exp(-jt2) dx\ is the error 
function [11]. 

In the limit that x0 = 0 and A = (x+ - x_)/2 approaches °°, we find: 

(/) -/o(V0exp(Tl2)   1 -AAll2exp(_A2) (6) 

which corresponds to the findings of Levine: FN-like behavior will occur only if a is small, where a 
is approximately the standard deviation. Physically, there is not a preponderance of tips with the 
smallest 5-value; therefore, linearity in the FN behavior restricts the distribution of B values that may 
be present. 

Second, consider the case where A is small by comparison to x0±T] and x0, approximating the 
linear distribution of B's encountered in Eq. (3) (note that x0 need not equal BJo). It can be shown 
that 

(/) =/0(V)<r2Vl. (7) 

The combination 2x0T) = (B+ + B_- 2B0)/2V; consequently, <7>/v2 = exp(-ßm/V), where Bm = (B+ + 
B_)/2, similar to the discussion following Eq. (3). 
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Finally, consider the case where B_ = B0 and B+ = °°. This case resembles half of the Gaussian 
distribution (and is referred to as the "half-Gaussian" distribution).  The current becomes 

(/) = /o(V)exp(Ti2)[l-Erf0i)] (8) 

or 77 large, l-Erf(ri) = exp(-T]2)/ri^n , and </> = (2V/a) I0(V).   Again, a coefficient linear in V is 
obtained. 

Least-Squares Fit of </>:  FN - Linearity of a Distribution of Emitters 

Let us define y = ln(<I>/V2) and x = 1/V (which does not correspond to the x of the previous 
section). We desire to find the best polynomial approximation to y, we denote as y'. We define x0 = 
(Vmax + Vmin)WmaxVmin, and similarly, 8 = (Vmax - Vmin)/VmaxVmin, where Vmax and Vmin denote 
the range over which we desire the best fit. The polynomial approximation of order n, which is the 
best least-squares approximation, can then be given by 

Plc(x) is the Legendre polynomial of degree k, and the Q are determined by 

Ck = (k+^)j^y(x)Pk[z)dz 
(8b) 

where we have introduced z = (x-x0)/S. The Error and Coefficient of Correlation are analogous to 
the equivalent formulae in Appendix A. For a best linear fit, we truncate the summation in Eq. (8a) 
at n = 1. As shown in Appendix A, the presence of V-dependent coefficients does alter the estimates 
of the best Afn and Bfn. Consequently, the nature of the distribution of the emitters as a function of 
Bfn (or, equivalently, as a function of tip radius) can greatly affect the estimate of the array's Afn and 
Bfn parameters, as compared to those parameters for a particular FEA unit cell. In general, a 
distribution of emitters will tend to lower the estimate of Afn and raise the estimate of Bfn compared to 
the unit cell by an amount depending on the nature of the V-dependence of the coefficient of I0(V). 
The exact distribution of emitters for a given array of field emitters is not, in general, known. In the 
absence of tip-by-tip examination, it is difficult to estimate, thereby motivating our restriction of the 
cases of interest to those where an analytic solution is obtainable, namely, the linear and half-Gaussian 
distributions. 

In the absence of a tip-by-tip examination of an FEA or scaling experiments, and the nature of 
the approximations used in a statistical analysis, the linearity of experimental data appears to support 
arguments that the tips are very uniform, or that emission is due to one kind of tip or protrusion. A 
statistical analysis coupled with a comprehensive modeling of the FEA unit cell offers some hope that 
analysis of FEA tips from a Fowler-Nordheim approach may offer practical understanding of some 
aspects of their operation, and that geometric irregularity, whether it exists or not, does not prevent 
such analyses. Certainly, the one-dimensional Fowler-Nordheim equation relating current density to 
field at the surface (with modification to account for three-dimensional effects) is to a large extent 
valid, and, as we argue and show below, does not preclude (experimental) linear total current vs gate 
voltage relations for an FEA. Considerable light may be shed on this subject through electron beam 
profile characterizations of individual or small numbers of tips; this is currently underway at NRL 
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[13]. Regardless of whether high uniformity or small tip domination is responsible, the approach 
developed here addresses either situation. 

One final point to make is that, due to the behavior of the current density J{F) with respect to 
field, the total current from a tip will be dominated by those regions in which the field is largest. 
Therefore, geometric detail and variations will tend to be obscured by the sites with the sharpest 
curvature. The fact that the I(V) characteristics are dominated by the dependence on one parameter 
(V) suggests that a "peak field" is responsible for most of the emission, i.e., the emission appears to 
be independent of the precise field distribution. This observation is reinforced in subsequent 
derivations. 

APPLICATION OF 1-D TRANSPORT EQUATIONS TO 3-D GEOMETRIES 

The most widely used equation to model electron field emission is the Fowler-Nordheim 
equation.  This relates current density J to applied field F according to the relation (Appendix B) 

JFN(F) = afn(F)F2e-b^F)'F, (9) 

where the field dependence of ajn and bfn is shown explicitly, and is due to the field dependence of 
the function v(y) and t(y) (Appendix B). (For convenience, the tables are grouped at the end of the 
text.) Implicitly assumed in Eq. (9) is the field emission potential barrier, with an image charge 
contribution of the form 

V(x) = x-Fx-%, (10) 

where % = <|> + u. in the case of metals, or the electron affinity in the case of semiconductors. The use 
of the (Q/x) form of the image charge presupposes emission from a planar surface. In reality, surface 
curvature affects the form of the image charge contribution [14-16], and a careful derivation shows 
that the form of the denominator should be (x +x0) rather than merely (x) [17,18]. Furthermore, the 
form of Eq. (9) requires modification for semiconductors [19], although for present purposes we 
assume metallic parameters. 

Its limitations notwithstanding, Eq. (9) is often applied to field emission from multidimensional 
structures. This is done by making the simple replacements I = bJ and F = ßV„ (a procedure that has 
been roundly criticized [15,20], but nevertheless widely used) to "derive" current voltage relations 
amenable to experimental interpretation of data of the form 

/(Vp=AJhvJe^/V*f (11) 

where Afn and Btn are assumed to be constant. Two difficulties. First, the form of Eq. (9) does not 
ensure that Ajn and Bfn are even constant with respect to Vg. Other curves are also linear, to a good 
approximation, on an FN plot (Appendix A). Second, Ajn and Bjn are experimental parameters 
obtained from the fitting of data; they cannot be fundamentally derived using Eqs. (9) and (10) 
(especially in the absence of a statistical analysis) due to the ad hoc nature of (b) and (ß): the problem 
of "measuring" J and F has simply been deferred to "measuring" b and ß. Nevertheless, the 
comparison of FEA tips and geometries requires some figure of merit, and as will be shown, the FN A 
and B parameters extrapolated from the portion of the I(Vg) curve where the device is intended to 
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operate serves that purpose. Consequently, there is a pressing need to make some analytical or 
simulation-based estimation of Afn and Bjn. In the past, they have been estimated by using finite- 
element methods or other techniques [20-24]. But this is computationally intensive and does not 
transparently reveal the parametric dependence of, for example, the I(V) relations, on geometry and 
materials. This report provides a simple analytical model (Saturn) , explores its limitations, compares 
it with a full numerical model based on the boundary element method [25,26], and proposes a semi- 
numerical model that endeavors to overcome the limitations of the Saturn model, but nevertheless is 
computationally far less intensive than the boundary element model. The analytical techniques used 
by the Saturn model borrow heavily from earlier analytical work dealing with field emission tips in a 
diode configuration [27]. 

The simple, or Saturn, model, replaces the field emission tip with a sphere and the gate with a 
charged ring. An analytic relation then exists between the gate radius and voltage, the sphere radius, 
the field, and its angular variation on the sphere, from which the total emitted current can be derived 
analytically. For reasons to be discussed, the estimation of gate voltage is problematic in this model, 
but the utility of the model lies more in its ability to makes qualitative predictions that are borne out 
in the boundary element treatment, rather than as a precise computational tool. Finally, the 
methodology used in the simple model motivates the approximations made in the semi-numerical 
approach. The boundary element method models the tip, gate, and anode surfaces with charged 
ribbons. At present, attention is restricted to electrodes with azimuthal symmetry. The charge on each 
ribbon is determined by a matrix solution of Poisson's equation for a given tip, gate, and anode 
potential. The field and area of each ribbon is then calculated, from which the current per ribbon can 
be obtained by using Eq. (1). The semi-numerical model combines the analytic approach of the 
Saturn model with minimal input from the boundary element model, thereby using analytic current 
vs gate voltage formulae from the Saturn I(V) model. The angle-dependent field along the surface 
provided by a geometric parameterization table constructed from the boundary element method. 
The resulting simulation tool is then in a position to rapidly form estimations of Afn and Bfn, as well 
as other parameters (such as capacitance) needed in a full-scale simulation of total inductive output 
amplifier (IOA) device performance. The full-scale device simulation is a program of considerable 
activity in the FEA-RF Amplifier program at NRL because of its utility in relating device 
performance to tip parameters to affect the selection process for FEAs fabricated by widely different 
techniques   [4]. 

FIGURES OF MERIT AND THE FEA UNIT CELL 

Before delving into the theory and simulation of the unit cell, the practical objectives should be 
identified. The performance required of an FEA cathode derives from the specifications of the 
amplifier for which it is intended. In the case of an inductive output amplifier, which requires a high- 
frequency gated cathode, knowledge of the I(V) characteristic curve and the equivalent circuit of a 
unit cell is sufficient to predict the FEA's effect on the performance of the amplifier. Moreover, the 
critical information is conveyed by just four parameters: A/n and Bjn, the maximum available current 
per tip, ipic, and the net gate-to-base capacitance per unit cell (C). General guidance for optimizing 
these parameters can be obtained simply by minimizing the drive power required to gate the beam. 

The transconductance of a voltage-controlled current source is defined as the derivative of beam 
current with gate potential, i.e., gm = dIbeam/dVg. To relate FEA performance to amplifier gain, a 
power transconductance is defined as the incremental current for an increment in drive power: gp = 
3/beam/9/^r (in units of amperes per watt). In a gated FEA cathode, the gate and the emitting surface 
form a largely capacitive load on the input circuit; the power required for a voltage swing Vr/on the 
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gate is just Pc = (V2Q)coCVry2, where C is the capacitance of the array, and the voltage swing V^ is 
defined by Vg = Vdc + V^-sin(cof), in which co is the drive frequency.  Consequently, 

gp=^i>L = gm   2&   , (12a) 

where Q is the quality factor of the input circuit and to0 is the resonance frequency of the input 
circuit. (A perfect and lossless impedance match is presumed.) We proceed by calculating gm at the 
maximum of the emission; this is the most reasonable approximation for strongly modulated beams 
because the input power requirement is driven by the need to reach that maximum emission. By 
assuming that /beam is given by Eq. (11) and letting the peak value of /beam and Vg be denoted by Ipk 

and Vpk, respectively, we obtain 

;„    2y^, 2ß  (nb) 

where Ntips is the total number of unit cells, and Cadd is capacitance of the FEA over and above the 
sum over the unit cells. The rf voltage V^ can be obtained in terms of the modulation current ratio 
lavg/Ipk, by convoluting of the gate voltage signal on Eq. (11). For IaVg/Ipk < OA, the result is: 

Vrf = 1 I       Kk 

(12c) 

yielding finally: 

This relation offers several hints for the optimization of FEAs for maximum gain. The I(V) 
characteristic curve and the capacitance are the FEA characteristics that appear here; in other words, 
the FEA is effectively described by Afn, Bfn, and C, with the operating point given either by ipk or 
Vpk. The power transconductance is most sensitive to the exponential implicit in Eq. (11), and 
reducing Bfn is the most effective means of improving the FEA. The two parameters A/„ and C 
occur only as the ratio Afn / C; they can be traded-off against each other. This useful figure of merit 
for the emission gating assembly correlates closely to the gain of the amplifier. 

ANALYTIC EVALUATION OF CURRENT VS GATE VOLTAGE AND FEA PARAMETERS 

The analytical dependence of Ajn and Bfn on material and geometric parameters for simple 
geometries must be determined. (The technique is extensible to more complicated surfaces, but this 
is deferred to a future work.) The dependencies rely on the model of the triode geometry (elliptical, 
hyperbolic, sphere on post); in this section, we concentrate on features common to all models. 
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Extraction of I(V) from J(F) 

The total current from an arbitrarily shaped emitter surface is given by 

I(Vg) = jj»dS, (14) 

where J  is the current density and dS is the differential surface area.  A widely used method [20-23] 
of estimating total current from a tip is to approximate the component of the current density J 
normal to the surface by the 1-dimensional Fowler-Nordheim J(F) as given in Eq. (9) with the 
approximations for v(y) and t(y) as given in Table 1.  We are more careful than that here, in that we 
calculate v(y) and t(y) exactly. 

If we further assume rotational symmetry (the cylindrical coordinates will therefore be designated 
by (p,z)) about the z axis, then we have 

I(Vg) = 2n i+[i$2 Awty- 
(15a) 

where ze(p) describes the surface of the emitter. For an elliptical emitter (which serves as a generic tip 
configuration in that it can be matched to different models) characterized by p = ae sin(9) and z = R 
ae cos(9), where ae is the base radius of the emitter, this becomes 

/(Vg) = 2n a2
e C sjR\\-xl) + xZ J[F{X)\ dx, {l5b) 

where x = cos(0) [27].  Hyperbolic and sphere on cone models result in analogous formulae. 

Extension of the FN Equation to Semiconductor or Metallic Multidimensional Tips 

Three complications arise in the treatment of real emitters: 

• Equation (9) as given ignores temperature and variations in chemical potential, which can lead 
to errors when applied to semiconductors (although not for metals). 

• For semiconductors, or for metals treated with, e.g., cesium, the barrier height experienced by 
the tunneling electrons may be so low at high fields that the Fowler-Nordheim equation is no 
longer appropriate. 

• Curvature of the emitter surface alters the form of the image charge from Q/x to something 
that is geometry-dependent. 

• Actual tips have bumps or protrusions; in the case of semiconductor tips, the geometry can be 
pyramidal rather than conical, generating a field-enhancement effect along the pyramid edge. 

For the first two, modified Fowler-Nordheim equations can be found for both metallic and 
semiconductor parameters [19], but for low barrier heights, a different approach toward quantum 
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Table 1 — Constants and Parameters 

Symbol    Meaning Value / Equation Units 

Units 

Ä angstroms 
eV electron volts 
fi femtoseconds 
e unit charge 

e/(fs Ä2) current 

10-10 meters 
1.6X10"19 Joules 

10-15 seconds 
I.6XIO-I9 Coulombs 
1.6xl0l2 amps/cm2 

Fundamental Constants 

c 
a 
h 

mo 
ao 

velocity of light 2998.79 A/fs 
fine structure constant 1/137.04 - 
Plank's constant / 2n 0.658028 eVfs 
electron rest mass 511000 eV/c2 
Bohr radius 0.529 Ä 
Rydberg energy 13.606 eV 
permittivity of free space = : e2/47tccfic 1/180.95 eVÄ 

Statistical Models 

Ai FN parameter of rth emitter 
Bj FN parameter of ith emitter 

</> average current per tip 
N number of emitters 

Nß number of different B values 
«,• number of emitters with B = ß, 
<T Gaussian distribution parameter 

B0 reference B value 
x± scaled maximum / minimum B value 
x0 scaled reference B value 
A scaled spread 
Tj scaled Gaussian distrib. parameter 

Pk(z) Legendre polynomial 
Q Legendre polynomial coefficient 

HA/V2 

volts 
MA 

- volts 
- volts 

(B±-B0)/a - 
(x+ + x.)/2 - 
(x+ - x.)/2 - 

<T/(2V) - 
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Table 1 (Continues) — Constants and Parameters 

Fowler-Nordheim Terms 

•/FN       Fowler-Nordheim current density 
afn        JFM^) parameter (F dependent) 

bfn        if^(F) parameter (F dependent) 

v(y) function, approximated by quadratic 
vo constant 

t(y) function, approximated by constant 
F field 
<|> work function (metal) 
\i chemical potential or Fermi level (metal) 
% electron affinity (semiconductor) 
y Fowler-Nordheim variable 
Q planar image charge coefficient 

Ks dielectric constant 
Nr conversion factor 

afn p2 exP(-bfi/F) Amps/cm2 

"a Amps/cm2 

■ \6n2h^t{y)2 

f          -s\ 1/2 

n »* J v(y) eV/A 

~v0-y
2 - 

= 0.93685 - 
= 1.05657 . 

- eV/A 
- eV 
- eV 
- eV 

V(4QF)/<)> - 

ahc Ks ~ 1 eVÄ 
4   Ks+1 

°o for metals - 
1.6 x 1012 (amps/cm2) x 

{elk2 fs)"1 

FEA Device and Geometrical Factors 

KVg) current from unit cell Afr Vg
2 exp[-BfiJVg] amps 

Afn FN current parameter (constant) - amps/cm2 

Bfn current parameter (constant) - volts 
VS gate voltage - volts 
ya anode voltage - volts 

Ftip field at apex of tip F(as,0) eV/A 
I field variation factor - - 

fl(6) radius of curvature along emitter - A 
b area factor I(Vg)/J(Füp) cm2 

ß inverse temperature 11604.5/T 1/eV 
T temperature - Kelvin 
ß/ field enhancement factor - 1/Ä 
C capacitance - Coul/volts 

h peak current - amps 

'ave average current - amps 
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Table 1 (Continues) — Constants and Parameters 

Saturn Model 

Fa field coefficient due to anode 
Fg field coefficient due to gate 
Qg charge on equivalent gate ring 
r spherical coordinate 
9 spherical coordinate 
p cylindrical coordinate 
z cylindrical coordinate 

ag radius of gate 
or radius of ring of charge 
r

g radial sphere to ring separation 
radial sphere to gate separation 

ring angle 
"thickness" of gate 
radius of equivalent sphere 
distance from equivalent sphere to gate 
plane 
distance from equivalent sphere to anode 
complete elliptical integral of 1st kind 

1 g 
cos(a) 

t 
as 

h 

VaUa eV/Ä 
Qg/rgas eV/Ä 

- eVÄ 
- Ä 
- radians 

rcos0 Ä 
rsinö Ä 

_ Ä 
. Ä 

V(zg2 + ar2) Ä 

V(Zg2 + ag2) Ä 

VrS 
ar-ag Ä 

. Ä 

. Ä 

K{p) 

p K(p) parameter 
Y ring potential parameter 

rn/2 
dx 

s/l-phin2 
W 

(4pp')m /y 
Hp+p')2 + (z-z)2]m 

Ä 

Ä 
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transport may have to be used (Appendix B). With regard to the image charge, the field F and the 
barrier height % can be altered by small quantities, dependent on the radius of curvature of the emitter 
at the location where the current density J is being evaluated [27, 28]. To a very good 
approximation, % a"d F can be replaced by the quantities Fa and %a in the (modified) Fowler- 
Nordheim equation, where 

Zfl(6) = Z+    Q 

Fa(Q) = F(e) + Q- ' (16) 

2a(8) 

2fl(9)]2 

so that the barrier potential resembles %a(9) - Fa(Q) x - Qlx. In the models considered here, the 
emitter tip is approximated by a sphere, so that a(8) = asphere for the values of Q where J(F(Q)) is 
significant. Finally, with regard to surface curvature, the bumps and protrusions on axis have the 
dominant effect. Ridges, being a protrusion in a two-dimensional space, have less field enhancement 
than bumps in a three-dimensional space, and therefore, pyramidal complications are not 
immediately of concern (Appendix C). 

Fowler-Nordheim Parametrization of I(Vg) and Area Factor 

In pursuit of an analytic I(Vg), two assumptions are expeditious: Assume that the current density 
can be approximated by Eq. (9), (note that this does not imply a simple correspondence with Eq. 
(11), as v(y) and r(y) are, in general, field-dependent). Also assume, at least for small 6, the field to be 
approximated by 

F(e) = —rr^ v- (17) l+X(l-cos(9)) 

where Ftip = field on-axis and X characterizes the falloff of field along the equivalent sphere 
representing the surface, both of which are gate-voltage dependent. Inserting these approximations 
into Eq. (15b) gives 

/(Vp = 27ta2jFN(/^) ——V^~exp --£— H^' (I8) 
0 (\+xyy np 

where y = l-cos(6) and ae is the base radius of the elliptical emitter. The coefficient of 7FN(FfI- ) is 
the area factor (b). Finally, Ftip, X, C, ß, and the peak and average currents Ip and /ave are dependent 
on the geometrical factors, and are, therefore, dependent on the model of the triode we adopt. This is 
taken up next. 

THE SATURN MODEL 

Potential Distribution of Sphere and Ring, and the Electric Field 

In some sense, the simplest model of an ungated field emitter (diode) is given by the "floating 
sphere" model [24, 29], in which a sphere whose radius is equal to the tip radius of the field emitter 
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is suspended between parallel plates. The simplest modification to this model, which endeavors to 
approximate a triode, is to insert a ring of charge (not necessarily coplanar) somewhere along the 
symmetry axis. We further replace the parallel plates by a background field of the form -Fz. Let the 
origin of the coordinate system be centered on the sphere approximating the tip (Fig. 1). The 
potential anywhere is therefore the sum of three components — the anode, the gate ring (or simply 
gate), and the sphere. 

Farcos(6) 

Fig. 1 —Saturn model, showing relevant parameters 

For the anode, the potential is given by 

<t>a = - Fa r cos (8) • (19) 

where we let Fa = VJza, where Va is the potential of the anode and za is the distance from the center of 
the sphere to the anode plane. The justification for this assignment goes back to the diode calcula- 
tions in which an analogous expression was found on axis [27]. Analogously, and using the 
nomenclature introduced in Fig. 1 and Table 1, we define the gate potential to be 

p2 +(z-z„)2 + a2 -2parcos(<p) 
1/2 

(20a) 

= ^Zo f    P{co,ia))p{co^)) 

where we have introduced the integral definition, the complete elliptical integral K{p), and the 
Legendre polynomial expansion for r < rg. The value for Qg is, as yet, unspecified; note that it 
implicitly includes a factor of (l/47te0). K(p) is defined as 
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K(p) = 
nil 

dx 
V 1 -p2sin x 

(20b) 

(21) 

Finally, for the tip, the potential is given by 

k^Afi-C+D/^cosO)), 

where the Afs are to be determined. 

Determination of the Legendre Coefficients, Gate Charge, and Field on the Sphere 

On the surface of the sphere, the potential <|> = §a + tyg + tys vanishes.  This serves to specify the 

(22) 

A/'s: 

*--%frro[%i'i~<<*)-'4'n 
where 8;r is the Kronecker delta function. Next, around the gate ring, the equipotential lines are 
approximately toroidal. Let a point separated from the gate ring by a distance t = ar - a „be at the 
potential Vg. Assuming t is not large compared to other parameters, it can be taken as half of the gate 
thickness (this approximation is poor for typical FEAs since the gate thickness is not in general small 
by comparison to other terms).  Then Qg is determined by 

v =i0 EEA+F , y8     71 ^g     J0     ^ra<-g 
"'* 

o    °° I 

r„ 1 = 0 

i'+l 

vr^ 

( „ \ 

\r*J 

zA 
(23a) 

i\K l\Vr 

Note that r'g = V(zg
2 + ag

2) * ^(zg
2 + ar

2) = rg. For as « ag, only the first term of the summation 
need be retained, and we have the approximation 

^     2K(Po)        as 

(23b) 

KJo rsrg 

where p0 and y0 are p and y evaluated at p = ag and z = zg, respectively. The charge on the sphere is 
given by At for / = 0, or Qs = Qg as I rg. As expected, this result is analogous to the image charge 
solution to the problem of a conducting sphere under the influence a point charge [30]. 

Along the surface of the sphere, the force (F = -eE) on the electrons points radially outward. We 
can therefore calculate the field along the sphere by taking the radial derivative of § and evaluating it 
at r = as.  Doing so yields 
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F(fl_6) = -F(6) 

■3Facos(9)-F. Z (2/+l)M Pt (cos (a)) P, (cos (0)) (24) 

where we have introduced ,Fg = QJ(rgas). As it should, Eq. (24) naturally separates into a cathode 
and anode part. In general, Ftip * ß Vg but is something more complicated. For a distant anode 
generating a relatively weak Fa, the approximation acquires merit. The field at the tip (9 = 0°) can be 
found by replacing F;(cos(6)) with (1) in Eq. (24). Again, if we assume that the sphere radius is 
much smaller than the gate radius, then we can approximate the X factor by 

*,~3 F +F 
a*V 

1-1 

Fi+3\ 
F +F 

aszg Pto-Pg) tip (25) 
tip 

where the s subscript on X refers to Saturn. One consequence of Eq. (24) is that the field is not 
maximized for the tip of the emitter lining up with the gate plane. The emitter should be below (or 
above) the gate plane (zg > as) by an amount that maximizes F as a function of zg. This has been 
previously noted in numerical experiments [20]. Finally, note that Xs will be small if the quantity 
(asZg/rg

2) is small, as will happen in practice when real FEAs are considered for which the numerator 
is vanishing by comparison to the denominator. 

Current and Capacitance in the Saturn Model 

For the Saturn model, R = 1, for which Eq. (18) reduces to (dropping the s on X): 

ri 
I{yR) = 2na]J^Ftip) tip) 

1 

o(1 + M' 
exp 

(   bjh(0) 

F'ip 
Xy\dy, (26) 

where bfn(0) is bf„ evaluated at F = 0. A good approximation to I(Vg) is then given by 

>^2¥4^] J
Fu(Ftip) (27a) 

where Fn(kjc) is given by [27]: 

Fn(X,x) = j  {\+y)-ne-xydy (27b) 

F2(k,x) is bounded from below by l/x (small field limit) and from above by X/(l+X) (large field 
limit). For small fields at the tip, we therefore see that, in contradiction to the current density J, for 
the current /, ln(//F3) is approximately linear in 1/F. The coefficient of JFN(F) in Eq. (27a) is 
typically referred to as the "area factor." 

The capacitance in the Saturn model is given by the ratio of the charge on the sphere Qs and the 
gate voltage Vg, which is related to the charge on the ring by the A0 term in the Legendre expansion. 



16 Jensen, Zaidman, Kodis, Goplen, and Smithe 

The charge on the ring is given by Eq. (23b). An analytic expression exists for the sphere-to-gate 
capacitance that can be found in a manner analogous to that used for the boundary element model 
(described below). We note here that, depending on the geometry, Eq. (27) and the expression for C, 
may or may not be adequately approximated by the Saturn model. 

Two points worth mentioning regarding Eq. (27). First, Eq. (27a) owes its simple form to the 
approximation v(y) = v0-y2 used in Eq. (26). Two problems are that v(y) is not linear in Ftip, nor is 
v0 - y2 the best (least-squares) approximation to v(y) (Appendix B). The former problem is resolved 
by noting that for field values of interest, a linear approximation to v(y) in the field is a reasonable 
approximation. For the latter, v(y) may always be Taylor expanded about a (typical) field of interest 
in order to generate v(y) = v'0 - vj y2, thereby entailing a minor modification to Eq. (27a). Second, 
JFN(Ftip) in Eq. (27a) can be replaced by any other (superior) quantum transport model, e.g., one 
based on the Airy function solution to Schrodinger's equation [33]. This is particularly important if 
the work function becomes so low that at high fields, the Fowler-Nordheim equation is no longer a 
good approximation to J(F). We consider a case of this below when the experimental data from 
MIT-Lincoln Labs are discussed. 

Deficiencies of the Saturn Model 

For a given Ftip and X, we have found that the Saturn model, i.e., Eq. (27), is a good 
approximation to Eq. (26). The problem with the Saturn model lies with its estimate of Fti which 
ultimately depends on the estimate of Qg, and also its estimation of X. Although it is true that the 
charge density spikes near an edge [30] giving the justification for replacing the gate (a sheet of 
charge with a hole excised from it) with a ring of charge in the proximity of the edge of the hole, the 
remainder of the gate (and the charges on it) cannot be neglected. Consequently, for a given Fti the 
Saturn model tends to overestimate the value of Vg associated with it, as the result of to its neglect of 
the remainder of the gate compared to a full numerical solution. Attempting to correct this limitation 
results in the addition of more rings of greater radii with different ß's, but this is too similar to the 
actual numerical solution to merit elaboration. In summary, once a (correct) estimate between Fti 

and Vg is established, the remainder of the machinery adopted for the Saturn model can be used to 
estimate current and related quantities. 

THE BOUNDARY ELEMENT MODEL 

Geometry, Parameters, and Implementation 

A model that corresponds well to the actual geometry of the gated field emitter is expected to 
provide a more accurate comparison with the experimentally measured quantities. The axially 
symmetric unit cell model selected consists of an anode, a gate with hole, and a base plane with an 
emitter tip protruding (Fig. 2). This model is representative of several of the "vertical emitter" 
structures currently being considered in the FEA-based RF Amplifier Program at NRL. The small 
sizes characteristic of the apex of the emitter tips in comparison to the size and distances of the other 
electrodes suggest the use of a nonuniform discretization of the computational domain. The use of 
typical finite-difference formulations with uniform mesh is therefore contraindicated (as in SIMION 
and EGUN simulations). A variable-mesh finite-difference or finite-element technique could be used 
[21-23]. However, because the principal item of interest is the emission at the boundary, particularly 
in the small region near the emitter tip, a boundary-element model was chosen. 
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Vanode 

Fig. 2 — Generic FEA unit cell, showing relevant parameters 

The boundary element technique [24] discretizes the boundary into sections (in our model, 
annular ribbons). These sections are taken to be quite small in the vicinity of edges and corners and 
increase in size (quadratically, in the example to be shown later) in the smooth boundary areas. The 
list of boundary elements and their physical attributes is developed from a parameterization 
suggested by experimentally pertinent quantities. These qualities include work function, potential, tip 
radius, tip height, gate hole radius, base-gate distance, gate-anode distance, gate thickness, and type of 
tip (sphere on cone, ellipsoid, tip on post, post height). A graphical user interface allows a rapid 
analysis of the system because of integration of the boundary element generator, potential solver, 
semi-numerical post-processor, and plotting package. After the geometry is specified, the time taken 
by the program package to extract the Fowler-Nordheim Afn and Bjn, as well as CFEA, parameters is 
less than a minute on a desktop computer. 

Calculation of the Potential 

The potential anywhere can be calculated by integrating over the surface charge densities on 
electrodes: 

4>(r) = 
1 

4rce, 
^rdQ. 

a r-r 
(28a) 

where dQ. is the differential surface element. Consider the approximation in which the conducting 
boundaries are broken up into ribbons of charge, each with a constant surface charge density [25]. 
This tends to lead to a faster numerical solution than assuming that the surface charge density has a 
linear dependence [26] and reflects our eventual intent to rely on a hybrid between the Saturn model 
and the boundary element model.  Consequently, Eq. (28a) assumes the discretized form: 

N  

' P 
JPi 

K{p) dp' (28b) 
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where si+m = (z,+i - Zj)/(p,+i - P,)> Gi+m is the charge density on the ith ribbon, p = V(4pp')/y and y 
= ^[(P+p')2 + (z-z')2]. The p(- are quadratically spaced, so that the ribbons are thinner near the axis 
of symmetry or near a conductor edge. 

At the midpoint of each ribbon, <|> is specified by the potential of the conducting surface. There 
are N ribbons, and we therefore have N values of <j> denoted by [<}>],• = <J)(p,+1/2, z,+i/2), where ty is an N- 
component vector, pi+m = p,- + e,/2, zi+U2 = zt + *,+i/2e,/2, and e,. = (p,+1 - p,). We can therefore 
rewrite Eq. (28b) as (where, analogous to the potential vector, [a], = a,+1/2) 

<j) = M   3 

m^^^—^^dp' 
(29) 

where p,- and z{ are implicit in the definition of p and y. The <|>-vector is a known quantity (it is the 
value of the voltage segments on the tip, gate, and anode), and Mtj can be calculated. Eq. (29) can 
then be inverted to give the values of_the charge densities on each ribbon: a = M~x • <|>. An 
advantage of this formulation is that M need be calculated only once (being geometry, and not 
potential, dependent) and inverted once (using, for example, LU decomposition); thereafter, for a 
different voltage on the gate and anode, only the § vector needs to be altered to obtain a new 0. 

The integral in Eq. (29) is generally evaluated by using a 4-point Gaussian quadrature routine, 
except when \i-j\ < 3, in which case a 10-point Gaussian quadrature routine is used. The ring 
potential of Eq. (20a) can be derived from Eq. (28) by evaluating the integrand at the midpoint. 
When i =j, K(p) contains a logarithmic singularity of the form (1/2) ln[16/(l-p2)] asp approaches 1. 
The singular portion of the integrand can be analytically integrated. Dropping the (i+l/2) subscript 
on (s) and (p) and the (/) subscript on (e) on the right-hand side, we have: 

*P, + i 
( 

P     1   In 
T2ln 

16 
1-P' 

dp' = 
288p^ 

[[96p2-(j2 + 2)e2] 

V 

3 In 
256 p 2   \ 

(s2+ l)e^ 
+ 2 

\ 
(30) 

+ 96p^ 

The remainder, i.e., p' {K(p) - (1/2) ln[16/(l-p2)]}/y, can be integrated by Gaussian quadrature. 

Once the surface charge densities a,+1/2 are found by inverting the matrix equation (Eq. (29)), 
the field at the surface Ft and (normalized) charge per ribbon Q, can be evaluated: 

_g/+l/2 (31) 

and 

Q,- 2e, »j+l/2 V ! +Si+\I2 P/+l/2e/ (32) 

(note the distinction between the grid spacing e,- and the permittivity of free space e0). The field F is 
constant along the z'th ribbon. From the F('s, the total current from the emitter can be found by 
summing over the current contributions from each ribbon that constitute the tip: 
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N tip 

I(V.) = 2 K I sJl+s'f+l/2 pi+, /2 e,- 7(F,.) . (33) 
i = I 

Finally, if the potential away from the electrode surfaces is needed, as for field lines and trajectories 
[13], then a useful approximation is to replace each ribbon by a ring of charge located at p,+1/2, with 
a total charge Qv The potential at any point (p,z) can then be calculated by: 

N      Q 
/*2TI 

rfcp 
(34) 

VP
2
 +(z-zi+l/2)2 + P*+U2 -2pp, + 1/2cos((p) ' 

AT 

= XQif i=i 

2 *(/>,) 
Y; 

where, as before, the e0-dependent factors are implicit in the Q's.  Finally, the capacitances are found 
from the matrix equation [(t,b,g,a) refers to (tip, base, gate, anode), respectively]: 

(35) 

Qt Ctt Ctb Ctg ^ta ♦» 
Qb 

Cbt Cbb Cbb Cbb h 
Qg Cgt Cgb Cgg Cga ♦« 
Qa ^-at ^ab ^ag *-aa ♦« 

where C,-.- = C,,-, although this is not shown explicitly. To evaluate the C's, all the potentials (<(>,•) 
except one (<));) are variously set equal to 0; we then have C,y = ö/fy. The charges are found by 
summing over the ribbon charges (as in Eq. (32)), e.g., for the tip, ßtip = X,- ß,- for all {ie tip}. An 
alternate approach, which is used here, is to calculate C(Vg) = Ctg + CtVa/Vg; Ctg will then be the v- 
intercept in a plot of C vs 1/V„, and the tip-to-gate capacitance is obtained without separately 
calculating the capacitance matrix. 

THE SEMI-NUMERICAL MODEL 

In the semi-numerical model, we desire to retain the simple elegance of Eq. (27) for the /(Vg) 
relation. From the qualitatively correct behavior of Xs (Eq. (17)) and Ftip (derivable from Eq. (24)), 
we are in a position to estimate the parameters that will most dramatically affect the I(V) relations (the 
behavior becomes more quantitatively correct if the gate thickness parameter t is very small; when the 
Saturn model's charge ring location no longer matches the "mean" radius of the charge distribution 
on the gate, or when the anode influences Qg, the approximation fails). In this section, we provide a 
numerical approach for obtaining a refined estimate of the X and Ftip parameters by using results of 
a minimal set of boundary element computations, and thereby obtain the most expeditious means of 
calculating the Afn and Bfn parameters and the tip-to-gate capacitance. In particular, we require an 
algorithm to calculate Ftip(Vg) and A,(Vg) from the boundary element model for use in Eq. (27), in 
place of the values calculated by the Saturn model. From the linearity of the field vs gate voltage 
relations, it is clear that for the field, we have 

*tip(Vg> =*fVg
+Yf (36) 
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(in keeping with the field enhancement factor convention, ß is the slope). Although not so obvious 
analytically (although apparent graphically), we can also use 

HVg) = (ßx/Vg) + Yx, (37) 

where the subscripts on ß and Y refer to the l(Vg) and F(Vg) slopes and intercepts, respectively. A 
similar trick can be used to find Qs(Vg) to evaluate Ctg using the Saturn model, but this is deferred to 
a future work. 

Because of the linearity of Eqs. (36) and (37) in Vg and its inverse, only two boundary element 
calculations are required to determine the ß and Y parameters for a given geometry, likewise with the 
calculation of Ctg. A table of these values for various geometries can then be constructed from which 
any particular geometry can be extrapolated. Ideally, the Fowler-Nordheim A and B parameters 
should be evaluated by performing a linear fit of ln[I/Vg

2] vs \/Vg in the regime of interest. 
However, the semi-numerical model, in conjunction with the Saturn model, can be used to infer 
parametric dependencies of A and B on the geometry and work function. For example, assume that 
v(y) = v0-y2, and anode effects are negligible, i.e., Yf = 0.  From Eq. (27), we therefore identify 

_4       2m vo  3/2 
v    n     H (38a) 

which hearkens to the field enhancement factor typically used. An analytical approximation for Afn 

is more problematic, due to the dependence of Fn(X,x) on the gate voltage (that Atn must be VV 
dependent has been noted before [16,20]). For typical parameters, we have found that F„ satisfies 
(x+«)-y[7-exp(-/l(A:+n))] < Fn(X,x) < X/(l+X), the boundaries representing the lower and upper 
ranges of the gate voltage.  Thus, order of magnitude estimates of Afn are bounded from below by: 

2 «3 
3 Nca/ß>     r^~ 

t v0nX  V   mtP 
3   V # , 

(38b) 

for the small Vg case, and where the (/) subscript on ß has been suppressed. For the large V„ case: 
g 

1      Ncas
2V2 l6       p^n-\ 

8 yta+l)<t>h      (3   V <t>h2 j 
(38c) 

when the gate voltage approaches its upper limit. As indicated in Eq. (38b), a plot of A fn vs V„ is 
approximately linear in the low gate voltage regime. Equation (38) is given for pedagogical 
purposes and for order-of-magnitude estimates. As a means of calculating the Fowler-Nordheim fit 
parameters in Eq. (11), the voltage dependence of Afn in Eq. (38) alters the best estimates of the FN 
A and B parameters as would be obtained from a linear fit performed on Eq. (27) (Appendix A) in a 
given Vg regime; ignoring anode effects can cause differences. 

Although the Saturn model can give poor quantitative estimates of the field enhancement factor 
ß, the qualitative dependencies can be inferred. In the Saturn model, the field at the tip primarily 
varies to first order as the ratio of the charge on the gate ring with the product of the distance from 
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the tip to gate ring and the tip radius, i.e., Ftip =Qg/asrg = ßVg, where we have assumed that the tip 
radius is much smaller than the ring radius. If we assume that the tip of the emitter sphere lies 
approximately within the ring plane, that the anode is negligible, and that the asymptotic form of Eq. 
(23b) is used, we find: 

(38d) 

At this point, t is an unknown parameter that can even vary with gate voltage, although it is related in 
some sense to the gate parameters. The coefficient of Vg is the "Beta factor" (/?). The relationship 
between the field at the tip and the charge on the gate ring allows us to conclude from Eq. (38d) that 

Ctg = Pas= — 

InsV 
(38e) 

To reiterate, Eq. (38) shows the nature of the dependences of Afn, Bfn, Ftip, and Ctg on material and 
geometry-dependent parameters. Generally, neglecting the anode and complications due to finite 
gate width, tip cone angle, and so on, causes the quantitative estimates based on the above equations to 
be not reliable except for particular cases. However, as qualitative descriptions, Eqs. (38a-e) are in 
fact useful; they suggest the manner in which capacitance, field, and so on vary with geometrical 
parameters. 

NUMERICAL RESULTS 

Objectives 

In this section, we undertake six tasks: 

• use statistical analysis with boundary element computations to examine experimental data to 
develop and determine the applicability of the methodology; 

• identify where improvements can be made and under what circumstances the conditions 
requiring improvement arise; 

• demonstrate that the analytic generalizations of the statistical and Saturn sections are 
predictive; 

• define the protocol behind the application of the semi-numerical method; 
• demonstrate the utility of the boundary element method for analyses beyond current-voltage 

characterization, i.e., trajectory determinations and field lines within the unit cell; and 
• delineate the incorporation of the semi-numerical method into more extensive simulation 

programs. 

Protocol for the Comparison of Theory with Experiment 

To judge the utility of the boundary element model in correlating with experimental data, we 
compare the results of the boundary element simulation based on the geometry shown in Fig. 2 with 
experimental data from two sources: the first has been provided by the Massachusetts Institute of 
Technology Lincoln Laboratories [12] (Case 1), and the second is characteristic of the SRI "Low 
Frequency Cathode" discussed in the literature [9] (Case 2). The low gate voltage regime of the Case 
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1 experimental data was used in the least-squares fitting, (it has been argued that the high voltage 
regime is affected by space charge). 

Several effects complicate the comparison of theory with experiment: 

• the actual work function and effective tip radius can be, and are, affected by the history of 
operation of the FEA and the processing steps, e.g., "plasma cleaning," and contaminants 
present; 

• the actual FEA surface is not smooth, as implied by the theoretical procedure—there is always 
the possibility of microprotrusions. The scale of the microprotrusions, or surface non- 
uniformities, will introduce another parameter into the theory. 

• the experimental current per tip is obtained by taking the ratio of the total FEA current and the 
total number of tips in the array. 

• the shape of the gate in the FEA is more complex than assumed in the model here (although 
this can be accounted for in the future by altering the geometrical parameterization); 

• the position and potential of the "virtual anode" will not, in general, be at the same location 
and potential over a range of gate voltages, as we have assumed here (this can be accounted for 
in a more careful treatment); and 

• the distribution of emitters in all probability is more complex than the simple distributions 
examined here. 

The first two concerns are dealt with by appealing to "effective work functions" and "effective 
tip radii." Insofar as the work function of the tip is affected by contaminants, we treat it as an 
adjustable parameter (within bounds). Microprotrusions and nonspherical tips are dealt with 
analogously: the analysis here returns a length scale that is characteristic of the tips in question, not 
the actual tip radius. As there is some evidence that surface non-uniformities and conditions can 
enhance emission, we might expect that surface protrusions and conditions for FEAs made by 
different processes may nevertheless result in comparable effective tip radius estimates. 

Regarding the position and potential of the anode: In simulations of FEA performance, the 
equipotential lines at a distance of a few gate hole diameters from the gate plane are seen to be 
approximately linear. We are therefore justified in replacing one of these equipotential lines with a 
"virtual anode" held at the same potential. This approach is of great utility in the present 
simulations due to the finite size of the unit cell and the desire to keep the computational 
requirements to a minimum, that is, we desire the simulations to run on a desktop computer. 
Furthermore, it is justified insofar as the effect of the anode is overshadowed by the gate (although it 
is not insignificant). However, the position and potential of the actual anode is usually not reported, 
or is uncertain, making the potential and location of the virtual anode a problem. In Case 1, the 
actual anode was reported to have been held at 100 V at a distance of 100 u.m from the gate, from 
which we approximate that the virtual anode should be held at 0.5 V at a distance of 0.5 \im from the 
gate (the virtual anode is 3.33 gate diameters away from the gate plane). In Case 2, the potential of 
the anode was reported, but the anode was at an angle with respect to the gate plane; we therefore 
made a heuristic estimation as to the potential and distance away of the virtual anode. 

To correlate theory with experiment, we perform the following adjustments to the geometry and 
material parameters in order to obtain correlation with experiment: 

• The value of Bfn is estimated first by adjusting the tip radius until approximate agreement with 
experiment is achieved. This "agreement" should actually be below the experimentally 
observed value if we intend to augment the simulation with a statistical analyis. 
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• Depending on the statistical model used, we next endeavor to match the A/n parameter by 
adjusting the distribution of tips. Typically, the wider the distribution, the more Af„ is 
decreased, but also, the more Bfn is increased (thereby explaining why we desire to undershoot 
the Bfn estimate above). The introduction of the statistical analysis parameters primarily 
reduces the Afn value, and therefore is the primary means of accounting for the fact that the 
experimental current per tip is always smaller than the current characteristic of the unit cell 
(sometimes significantly). 

• The statistical analysis generally changes the 5/„ estimate. We therefore return to the first step, 
and, depending on circumstances, tweak the work function and the virtual anode estimates in 
addition to the tip radius, until correlation is obtained. 

This procedure will not produce a unique Afn and Bfn estimate, being ad hoc in its 
implementation. Nevertheless, we have found that for the experimental cases we have simulated, the 
allowable range of values for effective tip radius, work function, and virtual anode are rather 
constrained. For example, for the three distributions considered below, decreasing <|> to decrease Bfn 

results in Ajn being made larger. The validity of the modeling effort is enhanced by this observation, 
as well as the observations that the work function converged upon is within the range of acceptable 
values, the effective tip radii are supported by TEM studies, and the distribution estimates are not too 
dissimilar from experimental expectations. 

Finally, and importantly, note that by constraining the statistical distribution to be given by one 
parameter (% tips emitting, AS, or a), odd results may occur. For example, if a half-Gaussian 
distribution for an array for which only a subset of otherwise highly uniform tips are working is 
assumed, a large CT value will be estimated in order to lower A/n to the experimentally observed value. 
This will be compensated for by estimating a smaller unit cell B0 than actually characterizes the 
subset. In the absence of detailed knowledge of the distribution of tips, such problems are 
unavoidable. However, we note that for the experimental data considered, the width of the 
distribution of fi's for the various distributions considered are similar, arguing against such 
anomalous situations. 

Further improvement and vindication of the modeling effort will necessarily include information 
from beam diagnostics (especially with regard to the trajectory analysis), tip characterization, and 
array scaling behavior; all of these have experimental counterparts within the NRL program in 
vacuum microelectronics. 

Experimental Results vs Boundary Element Model 

Figure 3 shows the discretization of the conducting surfaces used in the boundary element (BE) 
approach for the Case 1 parameters (the Case 2 discretization would differ only in scale). Fine 
discretization occurs in those regions where the field variation is expected to be large (e.g., at the tip 
of the emitter, near gate edges, etc.). The parameters used in the BE simulation are given in Table 2, 
and correspond to the labeling in Fig. 2. The results of the simulation, and the comparison with 
experimental data, is given in Table 2 in the section "Statistical Boundary Element Simulation." 

Three distributions were used in the comparison of theory with the cases identified in Table 2: 

• Delta function distribution: tips that emitted were assumed to be identical. Consequently, only 
one value of Bfn is present in the distribution. The number of tips (or % tips emitting) was 
adjusted to achieve correlation between theory and experiment for the values of Afn once Bfn 

was identified. 
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Table 2 — FEA Unit Cell Simulation Parameters 

Case 1 Case 2 
Symbol Designation (MIT) (SRI) Units 

Parameterization 

<P work function 2.0 4.0 eV 
'A tip height 0.2 1.3 u.m 
a8 gate radius 0.075 0.6 (im 
a tan" * (base radius/tip height) 20 15 degrees 
d8 gate thickness 0.04 0.3 u.m 

dbg base to gate distance 0.195 1.15 |xm 
dag gate to anode distance 0.5 3.0 u.m 
N number of tips 975 1000 - 
va anode voltage 0.5 50 volts 

maximum gate voltage 23 78 volts 
minimum gate voltage 5 39 volts 

Statistical boundary element simulation 

Ajn(S) 
Bjn(S) 

as 

unit cell 
unit cell 
tip radius 

318.7 
93.2 
30 

2.06 
423.8 

40 

uA/V2 

volts 
Ä 

% 
Ajn(S) 
Bfn(8) 

as 

percentage tips emitting 
delta distribution 
delta distribution 
tip radius 

65.85 
356.9 
99.9 
33 

22.82 
5.6 

467.2 
46 

% 
uA/V2 

volts 
Ä 

AB 
Afn(L) 
Bfn(L) 

spread in B 
linear distribution 
linear distribution 

27 
236.5 
100.5 

300 
2.27 

466.5 

volts 
uA/V2 

volts 

a 
\fn (hG) 
BfnfhG) 

distribution parameter 
half-Gaussian distribution 
half-Gaussian distribution 

25 
231.3 
99.7 

650 
1.17 

466.0 

volts 
uA/V2 

volts 

Experimental parameterization (least-squares linear fit)* 

Afn 
Bfn 

235.0 
100.7 

1.28 
467 

|iA/V2 

volts 

Data fit used a weighted least-squares line fit on the experimental points. For Case 1 (MIT): 9 V < V_ < 15 V. 
For Case 2 (SRI): sample 53i+300-7Q was fitted [9]. 
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• Linear distribution: The ß/„'s were distributed as in Eq. (3).  The value of AB was adjusted to 
fix Afn. 

• Half-Gaussian:  The ßy„'s were distributed as in Eq. 4, where B_ = B0.  The value of a was 
adjusted to fix Afn. 

The consequences of these three distributions with regard to effective tip radius are indicated in 
Table 2. The effective tip radius was assumed to be the same for both the unit cell and the linear and 
half-Gaussian distributions. These three widely disparate assumptions appear to result in comparable 
estimates of the tip radius, and in the similarity of the AB and a estimates (the full width at half 
maximum of the half-Gaussian is (!/2) a ln(2), which is comparable to AB). Note that a larger gate 
radius for Case 2 engenders a larger spread in the B/„ values, as intuitively expected. Note also that 
the similarity of effective tip radius for both Case 1 and Case 2 is suportive of the notion of surface 
nonuniformity.  These estimates are comparible to the findings of Levine [8] and Cade et al. [34]. 

From the distribution in ß/„'s , we can infer the distribution in effective tip radius. From the 
tabulation of slopes and intercepts in the semi-numerical model as a function of tip radius, we can 
obtain a numerically empirical relation between the fly„'s and the tip radii, analogous to Eq. (38). 
For brevity, consider the results for Case 1 only. Figure 4 shows the distribution of tips entailed by 
the assumed distribution in ß's. The area under the linear and half-Gaussian curves is equal to 975 
(the number of tips). Note: the Delta distribution has been scaled by 1/12, and there is a 
preponderance of tips with smaller radii. By using the fitted linear relations Bfn = 31.23 + 2.078 as 

and Afn =-90.66 + 13.54 as, in volts, and U.A/V2, respectively, we can calculate the total current 
contribution from each group of tips characterized by a given tip radius, as shown in Fig. 5. Notice 
that the total current, given by the area under each curve, is approximately the same. Again, compare 
the findings of Cade et al., for silicon emitters [34]. 

The work function used in Figs. 4 and 5 was for a cesiated tip, and was therefore taken to be 2.0 
eV. If we assume that the geometry and distribution of tips remains identical, but we now consider 
the tips to be pure molybdenum with a work function of 4.35 eV, we can predict the performance of 
the resulting FEA (Fig. 6). On an FN plot, the 1(V) characteristics for the uncesiated case are, to a 
very good approximation, linear, and described by A/„ = 22.90 uA/V2 and Bfn = 314 V. 

The low work function in Case 1 raises an interesting issue: Is approximating J(F) in Eqs. (27) 
and (33) by JFN(F) valid? Figure 7 compares JFN(F) to the exact (Airy function solution) J(F) [33]. 
For typical molybdenum parameters (and at room temperature), the Fowler-Nordheim estimate is 
typically too low by 20% or so (the discrepancy becomes worse at low fields, hence voltages, as a 
result of JFN(F) being a zero-temperature approximation). For the cesiated case, JFN(F) significantly 
overestimates the actual current at high fields. This is because the linearized WKB expression 
estimates that the transmission coefficient is greater than unity in the region where tunneling (and 
transmission over the barrier) is important. Using the correct J(F) in the expressions for I(V) will 
result in a bending over of the FN curve at high voltages (low V'1). Consequently, as shown in Fig. 8, 
there is a small curvature downward at low (V'1) when using the exact J(F). Although the behavior of 
the experimental points in this regime is undoubtedly primarily due to space charge effects [34], 
some of it is due to the fact that nonlinearities are inherent in an FN plot of J(F) in this regime. 
Finally, note that the exact curve is somewhat higher than that using JFN(F): as a result, the estimates 
of the spread in B parameters in Table 2 are smaller than would otherwise occur. 
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Validity of the Saturn and Semi-Numerical Model Approximations as Applied to the Unit Cell 

The assumption that only the portion of the tip approximated by a sphere contributes to the total 
current, and that emission along the shank of the tip is negligible, is implicit in Eq. (27). In fact, the 
upper limit of the integral in Eq. (26) corresponds to an angle of 90°. It remains to be demonstrated 
that this approximation of the Saturn model, and hence, the semi-numerical model, is valid. 
Furthermore, the Saturn model itself cannot be used for field-on-axis estimates, as the emitter tip is 
close to the center of the gate plane (see Eq. (25) and discussions therein). Similarly, the Saturn 
estimates of A are very small, whereas for the BE calculations, A = 0.32 for a range of geometries. 
Nevertheless, the semi-numerical model works quite well. Figures 9 and 10 compare the full 
boundary element (BE) calculation for the parameters listed in Table 2 with the semi-numerical (SN) 
method, in which the linear fits shown in Eqs. (36) and (37) are used in the Saturn model equation 
for current, Eq. (27). As can be seen, the estimates are, in fact, quite close. We now explore the 
reasons for this. Note that all parameters not explicitly mentioned are assumed to be as given in 
Table 2 for the two cases considered. 

The semi-numerical method implicitly assumes that the field variation along the surface of the 
emitter is governed by Eq. (17), albeit that the Ftip and A parameter are given by the boundary 
element calculations, and are, in general, gate voltage-dependent. F(6) is extracted from the 
boundary element data by defining tan(0J = (z/pj, where 8 is the polar angle of the equivalent 
sphere, and (ps, zs) are the coordinates along the surface of the actual emitter. Figures 11 and 12 
show the F(6) and F(ps) comparisons for MIT-LL and SRI geometries, respectively, as given in Table 
2.  It is seen that for "large" angles, the deviation between the BE method and the SN method grows. 
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However, the current density falls rapidly with field, as shown in Figs. 13 and 14, and hence, the SN 
approximation is good despite the large angle behavior (in the latter, the field on axis tends to be 
mildly noisy; this noise can be diminished with proper discretization, and is in progress). The field 
along the shank of the emitter, while being non-zero, gives rise to a negligible current, and therefore 
need not be considered. 

Figures 15 and 16 show the behavior of the Bfn and inverse field enhancement factor (1/ß) as a 
function of tip and gate radius for the two cases in Table 2; as expected from Eq. (38), they are 
predominantly linear in tip radius. For small gate radii, the linearity in ln(ag) is approximate and 
degrades as the gate radius grows, but for small gate radii (where the Saturn Model is presumed to be 
a better model), the linearity predicted by Eq. (38) is roughly correct. In Figs 15(b) and 16(b), both 
(1/ß) and Bfn have the same qualitative dependence on gate radius. This indicates that Bfn is linear to 
a good approximation in (1/ß), as can be shown explicitly, and as expected from Eq. (38). 

Capacitance of FEA Unit Cell 

Figure 17 shows the behavior of the ratio of Ctg with the parallel plate approximation given by 

no1. 
Co = e0- fT' (39) 

dH~2ds 

based on the dependencies indicated in Eq. (38). The x-axes in Fig. 17(a) differ from those in Fig. 
17(b). In the former, the tip radius is varying, while in the latter, it is not. We see that the linearity 
prediced by Eq. (38) is in fact maintained in the boundary element calculations, although for varying 
gate radius, the linearity is apparent when the gate radius is small. Recall that the Saturn model, and 
hence, Eq. (38), relies on the assumption that the gate can be replaced by a ring of charge, and that 
this ring lies close to the edge of the gate. When the gate radius becomes large, the remainder of the 
gate, and the charges associated with it, cannot be as easily dismissed as we have done. 

Note that what we are examining in Fig. 17 is the tip-to-gate capacitance Ctg, not the capacitance 
of the FEA unit cell overall. Ctg can be expected to be dominated by the parallel-plate-like 
capacitance between the gate and the base if the tip-to-tip separation is large. The charge residing on 
the base is large; in fact, the percentage of the charge residing on the tip alone of the total tip+base 
charge is 3.12% for Case 1 (MIT) and 5.7% for Case 2 (SRI). Consequently, the total capacitance 
between gate and (tip+base) dominates Ctg. 

Field Distribution of FEA Unit Cell for Saturn and Boundary Element Models 

In the Saturn model, the sphere representing the tip is charged. As a result, far from the sphere, 
the field due to that charge should fall off in a 1/r2 manner. The actual charge distribution is 
responsible for higher order (multipole) terms, but these can be neglected. In the boundary element 
model, two effects come into play: (a) the charge density is highest on the emitter tip, and (b) the 
field due to a charged ring along the axis of the ring goes as the inverse square of the distance from 
the observation point to any point on the ring. From these two observations, one can surmise that 
near the emitter tip, the field fall-off is roughly as predicted by the Saturn model. 
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An expedient method for calculating both the potential and the field at any point in space not on 
a conducting surface is afforded by the ring representation of the charged surfaces, as in Eq. (34). 
On axis (p = 0), the expressions are particularly simple: 

d»(o,2) = J: f—rm 
'^((z-Zif + p}) (40) 

Z-Zi 
F(0,z) = -4-<|>(0,z) = E Qi7       ''   ,3/2 

Figure 18 shows the field fall-off as calculated by Eq. (40) for the two cases considered in Table 
2. Also shown is the Saturn approximation, which can be roughly recast as 

Fsaturn(z) = Fo^if   . (41) 

where F0 is the field at the tip, and as is the radius of the equivalent sphere.  As seen in Fig. 18, Eq. 
(41) accounts for most of the behavior near the emitter tip. 

Incorporation of Semi-Numerical Model into Larger Simulations 

The length scale characteristics associated with the unit cell FEA analysis preclude the boundary 
element method, as presented here, from being used for an entire IOA simulation, although it is 
ideally suited for modeling conditions near the tip. Conversely, techniques using a finite-element 
analysis [21-23] are ideally suited for IOA simulation, whereas the discretization required for atomic- 
dimension tips is problematic. A method of combining the methods is indicated by observing that 
the boundary element method requires only a virtual anode to model conditions near the emitter tip. 
Consequently, a method for combining boundary element with finite-element is to use the latter to 
calculate or estimate the shape and potential of the virtual anode and then use the former to 
determine emission conditions. The field conditions in the immediate vicinity of the emitter are so 
extreme that space charge may not initially hinder the implementation of this algorithm, although 
past the virtual anode, where the field falls off considerably and the characteristic length scales are 
orders of magnitude larger, this will no longer in general be true. However, in the post-virtual-anode 
region, the finite-element method is ideally suited to deal with space charge effects. In practice, a few 
iterations between a finite-element simulation and the boundary element calculation may be required 
to correctly include the effects of space charge. 

CONCLUSIONS 

We have endeavored to present a simplified model of the FEA unit cell (the Saturn model), to 
show that the analytical formulae suggested by this model are valid, and to show how this model can 
be augmented (the semi-numerical model) in order to correlate with a full numerical solution based 
on the boundary element method of the field emitter unit cell. At present, attention has been 
restricted to refractory metal emitters characterized in the literature, but the method does not preclude 
an extension to semiconductor emitters. We have identified where the assumptions in both the 
analytic and numerical treatments may be in error, and have shown how to compensate for this. 
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Agreement between the qualitative behavior of the actual quantities of interest (i.e., current-gate 
voltage relations, capacitance, Fowler-Nordheim Bfn factors, beta factors, field and potential 
calculations within the unit cell, and so on) and the Saturn model vindicates the latter's simple 
representation of the FEA and its utility in understanding FEA unit cell behavior. The semi- 
numerical method demonstrates how the quantitative agreement can be restored between Saturn and 
boundary element through the introduction of slope and intercepts for Ftip and X that are geometry 
dependent. This suggests the possibility of a library table-lookup algorithm to treat general FEAs 
without requiring a boundary element solution of the problem. Finally, we have shown how the 
statistical distribution of emitters can be examined to generalize from unit cell analysis to arrays in 
which tip non-uniformity may occur. 
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Appendix A 

Linearity of I(V) on a Fowler-Nordheim Plot 

Consider two limiting cases of the current-voltage relations characterized by Eq. (5).  The "half- 
Gaussian" or "linear" distribution results in a general <I(V)> relationship of the form: 

In(V) = V2 + nexp[A0-B0/v). (Ala) 

where n is some (not necessarily zero) integer. Note that while B0 corresponds to B^, A0 corresponds 
to \niAfa). A Fowler-Nordheim plot of In(V), in which ln^/V2) corresponds to the v-axis and XIV to 
the x-axis, will be identically linear for n = 0, with a slope of (-B0) and a y-intercept of A0, where A0 

and B0 are constants. The "full-Gaussian" distribution results in a general <I(V)> relationship of the 
form: 

/ff(V) = V2exp(A0-^ + (^)j. (Alb) 

For non-zero n and a, the question arises as to how linear ln^/V2) or XniljV1) will appear. 

Polynomial Least-Squares Fitting of General Functions 

A function y(x), continuous in a region x0 - S <x <x0 + 6, is expanded in terms of Legendre 
polynomials. Let ym(x) be that polynomial of degree m, which minimizes the L2 norm of pm(x) - 
y(x), where pm(x) is all polynomials of degree m or less [35]. We then have 

ywW= 1 CkPk[z) (A2) 
k = 0 

Ck = {*+?)[lyMPk{z)&> 

where z = (x-x0)/S. There are several advantages to this approach. First, the Legendre polynomials 
satisfy -1 <PkU) ^ L so that from a numerical standpoint, Eq. (A2) is better behaved than a power 
series expansion.  Second, Pk(z) satisfies the recursion relation 

(k+l)Pk+1(z) = (2k+l) z Pk(z) - k Pk.jfz) (A3) 

which, given PQ(Z) = 1 and P\{z) = z, allows the higher order Legendre polynomials to be easily 
evaluated for a given z. 

The coefficient of linear correlation R gives a measure of how well y(x) is approximated by 
ym(x). Let us define: 

45 
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~xn + S, 

Then R = axy / Vfcr^ ayy). 

Table Al  - Fowler-Nordheim Linear Fit Parameters 

Parameter MIT-LL SRI 

Max Vgate 23 V 78 V 

Min Vgate 5 V 39 V 

Xo 0.1217 0.01923 

5 0.0783 0.00641 

Unit Cell Afn 318.7 uA/V2 2.063 uA/V2 

Unit Cell Bfn 93.18 V 423.8 V 

(A4) 

Least-Squares Fitting of Linear or half-Gaussian y(x) 

For the particular choice y(x) = - n lnfx&J + A - B x, the Ck can be evaluated analytically.   The 
first few have been found to be 

CQ = A- BX„ + 

Cx=-B8+ 

0    28 

3n 

Cn = 
5/i 

12<53 

-x0S + [2-U)ö 

2
0-82}s-2xo8 

3xix] - S2)s + 2 Ux] - isAs 

where 

5 = In I 
x0+f 

; U=\r\ 
( 
1- 

V 

5 A 
I x0-8) 

(A5) 

(A6) 

The linearity of y(x) is indicated by how close R2 is to unity, or by the smallness of C2 by 
comparison to Co and C/. Finally, for a linear fit (« = /), in which yj(x) = A - B x, the best A and B 
are found to be 
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ln(Afn) = C0-J 

B   -     Cl 

(A7) 

Consider the two experimentally motivated cases discussed earlier, denoted MIT-LL [Al, A2] and 
SRI [A3]. Table Al shows the relevant parameters, based on a least-squares fit of the experimental 
data and its relation to the unit cell modeling previously described. Tables 2 and A3 show the results 
of the best linear fit calculations. As indicated by both the value of C2 and R, even for n large, yn(x) 
is still, to a good approximation, linear. A positive value of C2 indicates that the curve is concave-up. 

Table A2 - Fowler-Nordheim Linearity of In(V) 

n Af„ lilAN*2] Bfn [Volts] Co Cj c2 R 

Case 1 • MIT-LL Unit Cell 
-19.40 -7.293 0.000 1.0000 0 318.7 93.2 

1 1039 102.2 -19.32 -8.001 0.1698 0.9999 
2 3386 111.3 -19.24 -8.709 0.3397 0.9995 
3 1.104e+04 120.3 -19.16 -9.418 0.5095 0.9991 
4 3.597e+04 129.4 -19.08 -10.13 0.6794 0.9986 
5 1.172e+05 138.4 -19.00 -10.83 0.8492 0.9980 

Case 2 • SRI Unit Cell 
423.8 -21.24 -2.717 0.000 1.0000 0 2.063 

1 5.850 477.0 -21.22 -3.058 0.03892 1.0000 
2 16.59 530.3 -21.20 -3.399 0.07784 0.9998 
3 47.06 583.5 -21.18 -3.740 0.1168 0.9997 
4 133.5 636.7 -21.17 -4.081 0.1557 0.9996 
5 378.6 689.9 -21.15 -4.422 0.1946 0.9994 

Least-Squares Fitting of full-Gaussian y(x) 

For the particular choice y(x) = A0 — B0x + Dx2, where D = a2/4, the Q can also be evaluated 
analytically; for k> 2, the Q vanish. The remainder are given by 

C0 = AO-BOXO + ID(8
2
 + 3X

2
O) 

Cx = (rB0 + 2Dx0)8 

C2 = \D8
2
  . 

(A8) 

In contrast to Eq. (A6), non-zero a will cause Bfn to decrease; the equation for y(x) is a concave-up 
parabola. For the same parameters in Table Al, we can construct in Table A3 an analog to Table A2. 
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Table A3  - - Fowler-Nordheim Linearity of I^V) 

<J[V] Afn [uA/V*21 Bfn [Volts] Co Ci Q R 

Case 1 : MIT-LL Unit Cell 

-19.39 1.0000 .0 318.7 93.18 -7.292 .0000 
5.0 294.2 91.66 -19.29 -7.173 .0255 1.0000 

10.0 231.5 87.09 -18.97 -6.816 .1021 0.9999 
15.0 155.3 79.48 -18.45 -6.221 .2297 0.9996 
20.0 88.80 68.83 -17.71 -5.387 .4083 0.9983 
25.0 43.27 55.14 -16.76 -4.315 .6380 0.9935 

Case 2 ■ SRI Unit Cell 
423.8 -21.24 1.0000 .0 2.063 -2.717 .0000 

30.0 1.904 415.1 -21.16 -2.661 0.0061 1.0000 
60.0 1.497 389.2 -20.90 -2.495 0.0247 1.0000 
90.0 1.003 345.9 -20.46 -2.217 0.0555 0.9998 

120.0 
1 150.0 

.5724 285.3 -19.86 -1.829 0.0986 0.9991 

.2783 207.5 -19.08 -1.330 0.1541 0.9960     1 

In this case, for a given A0 and B0, the effects of a wider statistical distribution of B's as 
represented by a, results in a smaller best fit Bfn value. This is in constrast to the linear or half- 
Gaussian results. However, note that in the former case, B0 represents the smallest B value in the 
distribution, whereas in the latter, it represents the mean value. 
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Appendix B 

Chemical Potential and Temperature-Dependent Fowler-Nordheim Equation 

The chemical potential and temperature-dependent Fowler-Nordheim equation for metallic 
parameters is given by 

7FN(F,M^) =ajhF
2e-bf" 

■(CfrÄ/ß) sin i 
V J 

a^ = 
*    \6n2htyt(y)2 

bfi, = ^^2m^3v(y) 
(Bl) 

Cfh=^psllm$tiy)   • 

where v2 = 4QF/fy2. Note that ayn and btn, as defined here, are not independent of the field F. The 
functions v(v) and t(y) can be evaluated via integral definitions. Polynomials appropriate for 
numerical work are [Bl]: 

*>■> =fa* 3 {[(42982 +465)z + 40] z + 4}z-8z + 4 

v(y) = JL % ({ - [3(6652 + 94)2 + 52]2 - 20}z + 4)z 
(B2) 

It is common in the literature to take the zero temperature (T —> 0) and infinite chemical potential 
(H —> °o) limit of Eq. (Bl) (which amounts to neglecting the terms in parentheses), and approximate 
r(y) by a constant and v(y) as a linear function in y2. By Taylor-expanding v(y) about y0 and 
insisting that the coefficient of y2 be unity, it can be shown that 

t(y) = 1.05657 
v(y) = 0.93685 -y2 ' 

Equation (B3), however, is not the least-squares approximation, which can be shown to be: 

(B3) 

fly) =1.06667 

v(y) = 0.94199 -0.96969y2 

(B4) 

In spite of the fact that Eq. (B4) is closer to the actual values of v(y) and t(y), the form of Eq. (B3) is 
often used because of the simplicity of the y2 coefficient. 
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Appendix C 

Field Enhancement Effects Due To Surface Curvature 

Boss on Plane 

Consider an infinite planar conductor with a hemispherical boss of radius a on the surface. Far 
from the conductor, let the field F in the z direction be constant. Using a Legendre polynomial 
expansion method [Cl], the potential everywhere is 

V(r,d) =Vo-Frcos(0)[l-(f)3], (Cl) 

where z = r cos(Ö). The field along the surface of the boss (r = a) is then 

F(a,0) = -VV(r,0)\       =3Fcos(e). (C2) 

The field at the tip of a protrusion is therefore enhanced by a factor of 3 compared to the field far 
away from the boss. 

Two-Dimensional Hyperbolic Wedge (Diode) 

For generalized coordinates (q1.q2.q3), the gradient and the Laplacian are given by [C2] 

h? = dh + dh + dh 
\_ (C3) 

V2 = (hxh2h3)~l . .111(1 + eijk)eijk9, fe^ 9 A 

where e,^ is the Levi-Civita symbol, and (q1.q2.q3) = (x.y.z) in Cartesian coordinates. In 2- 
dimensional hyperbolic coordinates (a,ß,y) we have: 

x = ah sinh (a) sin (ß) 
y = ah cosh (a) cos (ß) (C4) 
z=y, 

where ah is the distance from the origin to the focus of the hyperbola defined by constant ß. Solving 
V2iff= 0 under the boundary conditions \ff(ß=ß0) = 0 ("wedge") and y/(ß=n/2) = V0 ("anode") is a 
straightforward problem and results in 
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-"•fcfc 

F(a,ß) = (-ß) 
(C5) 

a*(f - Po) Vsinh^(a) + sin2(y?) 

Define the radius of curvature of the wedge as dx
2 y \x=0 = Mag and the distance from the wedge 

to the anode as z0, such that tan2 ß0 = as/z0. In the limit that ß0 is small, the field at the tip goes as 
Ftip"2V0/ir/(asZoh 

Three-Dimensional Hyperbolic Tip (Diode) 

Consider a hyperbolic tip with rotational symmetry, for which 

x = ah sinh (a) sin (ß) cos (f) 
y = ah sinh (or) sin (ß) sin (# (C6) 
z = ah cosh (a) cos (j3). 

Invoking Eq. (C3), letting ys= X(a) Y(/3) Z(tf, and exploiting the independence of i^on /gives 

9„[sinh (a) 3aj -n(n + 1) sinh (a) 

dß [sin (0) fy) + n(n + 1) sin (0) 

X(a) = 0 

(C7) 

for which 

X„(a) = a Pn(cos (iar)) + a' ßn(cos (ia)) 
Yn(ß) = ft /»„(cos (0)) + ft' ßn(cos 08)), (C8) 

where />„(*) and Q„(x) are Legendre polynomials of the first and second kind, the a's and ft's are 
constants. Invoking the boundary conditions, analogous to the wedge, that the tip is at zero potential 
and the anode at V0> we find that n = 0 and 

ß0W = Iln(i±| 

v*ß)=v0 

F(a,ß) = (-ß) 

(C9) 

ß0(cos ißo)) "h sin (ß) \/sinhz(«) + sin2(y3)' 

In the limit of small ß0, the field at the tip goes as 

FUP = 
2Vn 

a5 In 14% 
(CIO) 

Note that this is a slightly weaker dependence on the tip radius than in Eq. (38d) for the triode, as the 
ln-term in Eq. (CIO) contains a factor of as.    Invoking the polar coordinate-based parametric 
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representation introduced in Eq. (17), we find that A= l/cos2(/U = 1.   Equation (27) may now be 
used to estimate the current from a hyperbolic diode. 
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