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Abstract 

This paper studies the problem of image stabilization, defined here as the process of generating a 
compensated video sequence where image motion resulting from camera motion has been partially 
or totally removed. The scheme combines various visual cues such as points and horizon lines, 
and relies on an Extended Kaiman Filter for the estimation of parameters of interest. We study 
both calibrated and uncalibrated stabilization cases. We address the issues of local versus global 
stabilization. We consider the problem of the selection of model dynamics for the estimation of 
warping parameters and illustrate the use of kinetic models for the selective removal of oscillatory 
motion. Experimental results from video sequences generated from off-road vehicle platforms show 
good performance of the stabilization schemes. 
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1    Introduction 

Image stabilization is a key preprocessing step in dynamic image analysis and deals with the removal 

of unwanted image motion in a video sequence. Depending on the final application, this unwanted 

motion may correspond to part or all of the image flow generated by the 3-D camera motion. If the 

ultimate goal is feedback control of the mechanical system, the undesired image motion corresponds 

to the high frequency oscillatory motion of the platform hosting the camera. Image stabilization 

then has a purpose similar to that of mechanical stabilization. If the task consists of detecting 

independently moving objects, the unwanted image motion is instead that motion resulting from 

camera rotation. If the goal is mosaicking and change detection [2, 8], the unwanted image motion 

corresponds to the total image flow. 

Stabilization is here principally understood as the warping of video sequences for the removal 

of image motion due to camera rotation. This procedure is important for various reasons. The 

most significant reason is that the rotational flow does not convey structural information and image 

motion due to camera translation can often be confused with flow resulting from camera rotation 

[13]. Image stabilization is therefore useful for motion analysis, structure from motion [9, 10], as 

well as the recovery of the Focus of Expansion (FOE) and other structural information (such as 

time to collision). After performing stabilization, simple and effective independent motion detection 

mechanisms can be employed [12]. In addition, it is important for visual control, as well as for other 

image exploitation tasks such as registration, object detection [20], automatic target recognition, 

autonomous vehicle navigation [6], and model-based compression [11]. 

While achieving stabilization is essential for subsequent motion analysis and recognition tasks, 

implementing stabilization electronically1 is also important for designing systems that are viable 

commercially.2 Recently a few promising approaches to image stabilization have been proposed 

[6, 9, 15]. In [9], stabilization compensates for the rotational motion using a quasi-projective 

transformation whose parameters are computed from an assumed planar patch. This operation is 

performed for subsequent motion/structure recovery. Several methods using normal flow or feature |K 

trajectories based on 2-D similarity transformations or 3-D motion models are proposed in [6]. 

In [15], image stabilization is achieved by first aligning line segments extracted from an image 

Mechanical stabilization can be done using inertial sensors and a camera mounted on an isolated platform; 
however, this results in prohibitively costly systems.   

2For example, some systems available in existing cameras use 2-D models to compensate for certain types of       0(jes 

translational image motion with low precision [14]. 
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sequence with the absolute vertical direction. Disparities between two successive frames are then 

compensated by 2-D linear translations. This paper studies the use of combined visual cues and 

dynamical models for the stabilization of calibrated or uncalibrated image sequences. 

Parameters relevant for image warping are estimated by combining information from different 

tracked tokens, namely points and horizon lines. These parameters are simply the camera rota- 

tional velocity if intrinsic camera parameters are available, or the projectivity coefficients, in the 

uncalibrated case. Image plane displacements of distant feature points may unambiguously char- 

acterize rotational motion. However, such points are sometimes difficult to detect and track, due 

to the absence of sufficient intensity gradient information. For the same reason flow-based methods 

suffer from a lack of available visual information. Horizon lines, when present, constitute on the 

other hand very strong visual cues, requiring relatively simple operations for their tracking. These 

tokens must, however, be combined so as to remove all ambiguity concerning camera motion. These 

issues are addressed in the next section. 

Image stabilization is a process closely related but not equivalent to image registration. Reg- 

istration techniques can be extended for stabilization purposes. Image stabilization is inherently 

different, however, in that it allows the use of dynamical information over long temporal windows. 

In actual applications, cameras are often rigidly mounted on platforms. The rotation of the camera 

therefore arises from the rotational movement of the host at all times. It is possible to employ 

a kinetic law which captures the rotation of the platform to model the temporal behavior of the 

parameters of interest. The study of the resulting warping parameter dynamics therefore occupies 

an important place in our analysis. 

Subsequently, we address the important issue of the selection of an appropriate dynamic model 

suitable for exploiting the temporal information in a sequence. We evaluate analytically the use of 

kinetic versus kinematic laws for the estimation of rotational motion components. We discuss the 

conditions under which the use of simpler kinematic laws yields satisfactory performance. 

When dynamic laws are available, the selective removal of high frequency oscillatory motion 

components becomes a relevant and legitimate problem, a point which has not yet received attention 

in the literature. This question is carefully examined in later sections. For instance, in applications 

such as teleoperation, it is desirable to provide steering and climbing impressions to the teleoper- 

ator, while removing non-smooth motion. By considering the kinetic law for the host, we obtain 

additional insight into this problem and show conditions under which selective stabilization may 

be achieved. 
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These analytical results are applied to the stabilization of images acquired from off-road vehicles, 

for which the rotational motion is significant. Specifically, to stabilize a sequence, horizon lines are 

first extracted from each frame and distant feature points close to the horizon are detected. Both 

types of image primitives are tracked over the sequence. The matched lines and points thereafter 

form a set of visual cues. Observations are then used along with a kinematic law to estimate the 

needed warping parameters. Based on the estimated warping parameters, a stabilized sequence is 

generated. The main contributions of this paper are summarized as follows: 

• Recovery of Warping Parameters: We study the observability of warping parameters from 

different image primitives (points and lines at infinity) in both calibrated and uncalibrated 

cases. 

• Sensitivity: We investigate the sensitivity of the warping parameters with respect to the 

intrinsic parameters in uncalibrated cases. 

• Warping Schemes: We discuss the equivalence of local and global stabilization schemes. We 

analyze the nature of the residual motion in the resulting warped sequence. 

• Dynamic Models: We compare simple kinematic versus more complex kinetic laws in describ- 

ing the behavior of the camera motion in the presence of sufficient visual information. The 

use of kinetic laws in selective stabilization, i.e. the removal of oscillatory motion components, 

is presented as well. 

• Integration of visual cues: Different visual cues are integrated for estimating the rotational 

motion in a sequence. Details are given on the implementation of the Extended Kaiman Filter 

(EKF) and on feature tracking. 

The organization of this paper is as follows. Section 2 discusses warping parameter observability 

from different visual cues. Residual motion of warped sequences is analyzed in Section 3. Section 4 

addresses selective stabilization and compares different dynamics-based estimators for the estima- 

tion of rotation. An integrated approach exploiting temporal information as well as multiple visual 

cues is presented in Section 5. Section 6 reports experimental results on real image sequences. 

Conclusions are given in Section 7. 



Figure 1: The camera motion and imaging model. 

2     Model-guided Image Warping Schemes 

This section addresses the observability of parameters used for image stabilization in both calibrated 

and uncalibrated cases. We address parameter recovery from points and horizon lines. Consider 

the scenario shown in Figure 1 where a camera undergoes rotation with instantaneous angular 

velocity u> : (ux,u>y,uz)
T, and translation with linear velocity V : (Vx, Vy, VZ)

T. Let P : (X,Y,Z) 

denote the 3-D position of a scene point with respect to the camera, and p : (x,y)T the image 

plane coordinates of the corresponding projection point. The relative motion of the scene point 

with respect to the camera is then described by 

P = -wxP-V (1) 

Assuming that the perspective projection is used as an imaging model, p is related to P as follows: 

p = P(P) + Pc (2) 

where pc is the intersection of the optical axis with the image plane and V denotes the perspective 

projection operator, i.e. 

V(P) 
Jc z 

Jc % 
(3) 



with fc the focal length. Consequently, the image motion arising from the camera movement 

satisfies (see Appendix A for derivations) 

P = ifcHP - PcHyiP ~ Pc) + ß,(p " Pc) + fc^y] + [(P " Pfoe)-] (4) 
•~- v '       v v s 

where pfoe = V(V) + pc and r = Z/Vz respectively correspond to the Focus of Expansion (FOE) 

and the time to collision to the imaged point; Slz is the 2 x 2 skew-symmetric matrix related to 

the rotational velocity component along the optical axis 

ß* 
0      uz 

-«,    0 
(5) 

and u>^  is an image vector orthogonal to the projection of the instantaneous angular velocity 

component parallel to the image plane, 

wx = 
-W„ 

W, 

(6) 

When image motion is described instantaneously, image velocities p due to 3-D rotation of the 

camera are expressed as second order polynomial functions of image positions and are independent 

of depth. For this reason, it is a well known fact that image motion resulting from rotation can be 

instantaneously compensated for. Care has to be taken, however, with regard to the interpretation 

of the resulting derotated sequence, a point addressed in the next section. On the other hand, 

unless relative depth is known, or all imaged points lie on the same 3-D plane, translational motion 

cannot be compensated for. 

Consider a distant point (i.e. let r -+ oo) and denote its position by P. As seen from (4) such 

points move relative to the camera as if only rotation were present. Therefore we may equivalently 

assume for these points that the 3-D motion simply satisfies 

-wxP (7) 

For off-road vehicle navigation, or images taken from a plane or a helicopter, horizon lines or partial 

profiles of objects lying far away constitute very strong visual cues. In Figure 2, consider an image 

horizon line denoted by £; C is uniquely characterized by W, the 3-D vector normal to the plane II 

through C and the camera center. Since the image motion of horizon lines is explained exclusively 



Figure 2: Geometric representation of a horizon line C, the plane II, the 3-D normal vector W and 
the image plane normal vector o. 

in terms of the camera rotation, it follows that the motion of the normal vector W is itself described 

by 

W = -« x W (8) 

If u is one solution, i.e. W = —u X W, then fcW + u also satisfies (8) for any k. Therefore, observing 

the image motion of one horizon line characterizes the rotational component on plane II only. There 

is indeterminacy along the direction W. Given one observation, the set of possible solutions of (8) 

describes an affine line in 3-D rotational parameter space. When only one horizon line is observed, 

rotation may be determined in the Least Square (LS) sense which corresponds to the camera motion 

with least energy that explains the image motion of that particular line. In this case rotational 

motion inducing image motion along the line feature itself (lateral motion) is not always totaUy 

compensated for (since it is assumed to be zero), and other lines or geometrical cues near the 

horizon can be used to qualify lateral motion for full stabilization. Indeterminacy exists also if only 

one distant point is observed. In this case, this indeterminacy involves the rotational component 

along a ray from the image center to this point. Quantitatively, however, lines and points carry 

equal amounts of information in the determination of rotation. If any combination of two of these 

features is observed, rotation can be fully characterized, except in some degenerate cases for which 

W x P = 0, which in practice cannot occur unless the observer possesses an unreasonably large 



Field of View (FOV). Letting w = V(W) + pc, one may solve the over-determined linear system 

Qu = D (9) 

where D = [pf,..., p^-wf, • • •, w^]T, while Q is a matrix derived from (4): 

-(/c + (&i - Xcf) (2/1 - Vc) 

-fc1(xi-xc){yi-yc)     -(xi-xc) 

Q = 

(xt - xc){yi - yc) 

(fc + fc\yi-yc)2) 

(XM ~ Xc)(yM - Vc) 

Uc + fc\yM-yc?) 

(WSI   - XC)(Wy!   - Vc) 

(fc + frH^-yc)2) 

-/c_1(2;M-a;c)(2/M-2/c) 

-(/c + K: - Xc)
2) 

■/c_1(w^i -*C)(WM -yc) 

{yu - yc) 

-(XM - Xc) 

(wyi - 9c) 

-(w^ - xc) 

(10) 

(/c + /c
_1(%-ri2)    -f^H^xN-xc)(wyN-yc)    -(wXN-xc) 

Line features can therefore be combined with other tracked tokens such as distant points for stabi- 

lization. 

We now discuss the image warping schemes. Irrespective of the particular trajectories of the 

vectors u?(t) and V(f), the positions of 3-D points at two time instants can always be described 

by an element of the Special Euclidean group SE(Z) (uniquely, if the rotation center is given), i.e., 

there exists a total rotation R : [rij],i = 1,..., 3, j = 1,.. .,3 and translation T : (Tx,Ty,Tz)
T, 

between any two frames, such that the 3-D point positions Px and P2 expressed in the camera 

frame of reference satisfy 

P2 = RPX + T (11) 

As before, for a distant point, the contribution from the translation T is negligible.   The image 

plane positions of such a point at ij and t2 are then expressed as 

P2 = (cTpi + l)-1(Ap1+b) (12) 

where 

A   =   d -l 

b    =    d -l 

fcTn + xcrzx    fcr12 + xcr32     _     an    «12 

fCT21 + yCT3l      fcT22 + J/c^32 «21     ^22 

-fcXcTn ~ fcycri2 + fcri3 ~ x2
cr31 - xcycr32 + fcxcr33 

-f0*0*21 ~ fcycT22 + fcr23 ~ xcycr31 - y2
cr32 + fcycr33 

7 

h 

b2 

(13) 

(14) 



7-1 ?"31 

^32 C2 

-Xcr3l ~ ycT32 + /c»"33 

Similarly, for a distant line feature characterized by the projected normal vector w, 

(15) 

(16) 

w2 = (cTwj + l)_1(Awa + b) (17) 

As seen from (12) and (17), for distant features, their image plane motions are described by pro- 

tective group operations. In fact, this is expected since points on the horizon fall into a plane at 

infinity and the image motion of planes is described exactly by a projectivity [1]. Consequently, if 

{r;j, i = 1,..., 3, j = 1,..., 3} in A, b and c are estimated from points and lines near the horizon, 

we can compensate for the rotation between two images using the transformation 

Pc2   =    (p2c
T-A)  1(b-p2) 

=    (6rp2 + l)-1(Äp2 + b) 

(18) 

(19) 

where pc2 represents the points on the compensated image. This is also a projective transformation 

with parameters A,b and c, as expected by virtue of the projective group property. It is shown 

later that there exists only a translation between stabilized images. Therefore, (19) forms the basis 

of our stabilization scheme for calibrated sequences. 

Note that simpler image transformations have been used in the literature for stabilization pur- 

poses: the SE(2) group of transformation and affine transformations, i.e. pc2 = Äp2 + b, are some 

examples used in works such as [6, 9];3 these are essentially appropriate in cases of parallel-frontal 

motion. 

In cases where the intrinsic parameters are unknown, we show that it is still possible to achieve 

image stabilization using both distant points and lines. For points, since p is directly measurable 

from the images, the projective transformation in (12) remains unchanged. However, due to the 

unknown pc and /c, the mapping for distant lines in (17) is no longer applicable since w is no 

longer measurable. Consider instead the measured image normal vector to a line near the horizon 

described in the image plane by 

oTp = 1 (20) 

3In [9], a second order polynomial quasi-projective transformation is assumed, pct = Cpp  d + Ap + b an affine 
transformation is then used for image warping. 



It is shown in Appendix B that o is related to the previously denned projected normal w by 

= -(l-<Pc,o>)-1/c2o + Pc (21) w 

Using the identities oif p2 = 1 and of pi = 1 along with (12) we can further show that the movement 

of o also satisfies a projective transformation whose parameters are related to the inverse projective 

transformation A, b, c in (19): 

o2 = (-bro1 + l)-1(ÄTo1-£) (22) 

Consequently, image stabilization of uncalibrated sequences can be carried out by estimating the 

eight parameters in A, b and c from distant points and lines. While this is possible in principle, 

in practice, the computation of the projectivity parameters from distant features can be unstable. 

To see this, consider the system obtained from (12), 

Gf = q (23) 

where f is the vector including the eight projectivity parameters, f = (an,.. .,c2)
T, q consists of 

the coordinates of a set of points such as p2, and G is a matrix with elements composed of the 

coordinates of pi and p2. This matrix is often ill conditioned; it can be shown that the last two 

columns of G contain second order terms in the image coordinates, while the third and sixth columns 

contain zeroth order terms. Geometrically, since the eight parameters are computed from features 

lying only on a constrained region of the image (namely close to the horizon), there exist many 

projectivities leaving the horizon invariant, some of which are not suitable. One possible solution 

to this problem is to further constrain the intrinsic parameters by assuming an approximate value 

and concentrating on estimation of the rotation. 

Indeed, there often are situations where the intrinsic parameters are approximately known.4 In 

these cases, denote the intrinsic parameters by A= (fc,xc,yc)
T, and let the nominal values be A0. 

If we further assume that the eight projective coefficients vary smoothly with respect to A then 

f(A)   «   f(Ao)+f£ (A - A0) (24) 
Ao 

=   f(Ao) + J(A0)(A-A0) (25) 

where J is the Jacobian matrix.   When the elements of J are small, the effect of the imperfect 

knowledge of the intrinsic parameters is negligible for stabilization purposes.   A small error in 

4In fact, the errors in these parameters can be moderate, as shown in the experiments later. 
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the assumed intrinsic parameters will still lead to acceptable stabilization results. For example, 

consider the sensitivity of b\ with respect to fc. Then from (14) and set (xc,yc) = (0,0), we have 

Jfc      =      ri3'r33 (26) 

7Ü      —UJy (27) 

where (27) is typically true since the rotation between two consecutive frames is small, say on the 

order of 10~3. Consequently, if the error in fc is within 100 pixels, the error in b\ will be within 

one pixel. Therefore, we can concentrate on estimating the three rotational parameters as in the 

case of calibrated sequences. It will be seen later that this assumption holds in real applications. 

3     Residual Motion Analysis 

We analyze here the nature of the resulting sequence when the image warping described in the 

previous section is applied. We further compare two types of stabilization: local stabilization and 

global stabilization. For convenience, denote the sequence of original images by <S = {IQ, h, ■ ■ ■ ? In} 

and call the compensated sequence Sc = {Jo, Ici, ■ ■ ■, hn}- To obtain a translation-only sequence «Sc, 

either a local or global stabilization scheme can be utilized. The local approach directly compensates 

for the rotation between Ik+i and Ick to generate Ick+i, while the global method computes the 

rotation between Ik+i and Ik- 

Consider first the residual motion in a sequence generated by a local stabilization scheme. Since 

every frame I^+i is directly stabilized with respect to the previous compensated image Ick-, we have 

Pcfc+i = R|+1)fcPfc+i (28) 

where R£+1 h denotes the rotation between Ick and h+i, while P^+i and Pcyt+i respectively rep- 

resent the 3-D coordinates of a scene point relative to the camera coordinate system in Ik+\ and 

Ick+i- Also, recall that the motion of P^- in the original sequence is described by 

Pk+1 = Rjk+i,*Pfc + Tfc+i,* (29) 

with Rfc+i^ and T^+i^ the rotation and translation between the camera frames of reference in Ik 

and Ifc+i. Substituting (29) into (28) and using (28) to relate P^ and Pfc, the residual motion 

between Ick+i and Ick 
can be expressed as follows: 

Pcfc+l   = Pcfc + Rjfc+l,fcTfc+l,A; (30) 
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Furthermore, R£+1 k is related to the rotation in the original sequence by 

Rfc+i,fc - RH-i,fcR/U-i 

=   Rfc+i,fcRfc,fc-i •••Ri,o (31) 

Therefore, as expected, the compensated sequence exhibits a purely translational motion. If R£+ljfc 

is known, the compensated sequence can be used for ego-motion recovery. Observe, however, 

that while the magnitude of the translation in the stabilized sequence is the same as that of the 

translation magnitude in the original sequence, the apparent translational heading (and therefore 

the FOE) now rotates with the original rotational motion. 

This local stabilization scheme, however, is not practical for real applications. As seen from 

(31), Rc
k+1 k in fact accounts for the rotation between I0 and Ik+i. For large k, the motion between 

J0 and 4+1 is likely to be large. The overlap between Ick and Ik+\ may therefore be small. The 

common features are more difficult to find and consequently, it is not easy to compute R£+1)fc 

reliably. Global stabilization, on the other hand, focuses on the estimation of the rotation between 

Ik and Ik+i; the stabilized image is created afterwards with respect to the reference frame, say J0, 

according to 

PcA+i = (Rfc+i,fcRfc,fe-i • • -R-i,o)~ Pfc+i (32) 

The sequence generated by the global stabilization scheme therefore exhibits the same residual 

motion as the sequence obtained using the local stabilization approach. However, in contrast with 

the local approach, the global stabilization scheme is more likely to provide reliable estimates of 

the parameters of interest in real applications, since the area of overlap between Ik and h+i is 

greater. This scheme is therefore employed in our work. 

4    Exploitation of Dynamics for Full or Selective Stabilization 

The next issue involves the robust estimation of the warping parameters used in the stabilization 

scheme presented above. As argued earlier, the inherent nature of stabilization implies that tempo- 

ral information present in the sequence should be exploited for image warping purposes. A relevant 

problem then becomes that of selecting suitable parameter dynamics so as to exploit this temporal 

information. We concentrate on the dynamics for the rotation parameters. The incorporation of 

the proposed dynamic laws into the estimation process is presented later in Section 5. 
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We consider here dynamic laws appropriate for capturing the evolution of rotational motion of 

the platform on which the camera is mounted. Since the movement of the platform is affected by 

the interaction between mechanical elements and the environment, the motion is best described 

by a kinetic model which emulates the behavior of the mechanical system. The use of simpler 

kinematic models is compared to that of more complete kinetic models. These ideas are studied 

for the case of a vehicle performing off-road navigation. 

Furthermore, due to the close relationship between kinetic models and mechanical stabilization, 

the possibility of employing kinetic models for the removal of oscillatory image motion, or so- 

called selective stabilization, now becomes viable. It will be shown that the needs of selective 

stabilization are different from those of total stabilization. More specifically, in order to achieve 

selective stabilization, features close to the camera, providing translational information, need to be 

considered as well. 

This section therefore starts with the description of a kinetic model of a vehicle. The presenta- 

tion of this model leads to the study of selective stabilization. Subsequently, using this model, the 

appropriateness of kinematic laws for describing the evolution of rotational parameters is evaluated. 

4.1     Kinetic Models and Selective Stabilization 

The movement of a vehicle over rough terrain, in general, can be decomposed into two components: 

the smooth motion and the oscillatory motion. The smooth motion corresponds to the behavior of 

the vehicle as if the terrain were smooth; it includes translation, as well as rotation due to steering 

and climbing. The oscillatory motion, on the other hand, refers to the residual vehicular motion; 

it characterizes the response of the vehicle to the roughness of the terrain. 

The removal of the unwanted oscillatory motion is important for many applications, and is 

referred to here as selective stabilization.5 For an active vision system, the separation of oscillatory 

motion from smooth motion is useful for achieving fixation. Another example where selective 

stabilization is important is teleoperation in which the vehicle needs to be remotely controlled. An 

image sequence unperturbed by the oscillatory motion, while still preserving smooth motion, is 

highly desirable: the teleoperator needs to fully evaluate the effects of climbing and steering. In 

addition, while an approximate selective stabilization scheme could be attempted by simple low- 

pass filtering of the computed total rotational components, a scheme which more closely resembles 

6Note that we use the term selective stabilization in a different sense than [3]. 
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Figure 3: The four-wheel vehicle model [7]. 

mechanical stabilization is of more interest. 

We proceed by employing a four-wheel vehicle model to account for the oscillatory vehicular 

movement. This model takes into account the phenomena of bounce, pitch and roll (illustrated 

in Figure 3), and has been widely used for the design and analysis of suspension systems. All 

tires are modeled by linear springs with the same stiffness coefficient KT- Mwf and Mwr represent 

the masses of unsprung elements such as the front and rear wheels and their axles. Kf,Cf,KT 

and Cr are the characteristics of the linear springs and shock absorbers modeling the suspension 

system. Assume that each tire contacts the terrain at a point at all times and the movements of 

unsprung elements {xx, ar3, x5, x7} are measurable (for example, by placing accelerometers on these 

components); then three degrees of freedom remain in this model: the bouncing displacement of 

the center of gravity of the sprung element xc, the pitch angle 9 and the roll angle </>. The high 

frequency yaw motion is usually small during driving; it can therefore be neglected. Note that 

because of the decomposition of the vehicle's movement, these oscillatory states are measured with 

respect to the equilibrium positions resulting from the smooth motion. Then the dynamics of the 

oscillatory components are expressed by [16] 

X^ic — ~P7/0X715 "T J- us^-v (33) 

where xus is the state vector consisting of the oscillatory components of interest, 

def 
xus = (xc,xc,6,9,<t>,<t>) 

13 
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while xw describes the measurable movements of the unsprung elements, 

xw = (x1,x1,x3,x3,x5,x5,x7,x7)T (35) 

$„s and Tus respectively denote constant matrices whose entries are related to system parameters 

such as the mass of the sprung element, the moment of inertia, the spring characteristics, etc. 

We now turn to the problem of selective stabilization using the oscillatory motion model given in 

(33). Assume that a camera is rigidly mounted on the vehicle, and define the stabilized coordinate 

system V(t) which describes the motion of the camera as if only smooth motion were present. 

Consider also the unstabilized coordinate system V'(t), which characterizes the total camera motion, 

or equivalently, the total vehicular motion. Then for a point in the scene, the movement due to the 

smooth motion is described by 

Pv(i,-) = Rs(i,-)[Pv(t,--i) + TS(U)] (36) 

where Pv(-) is the position with respect to the stabilized coordinate system, while Rs(2;) and Ts(2;) 

account for the rotation and translation of the stabilized coordinate system between f8-_i and i,-. 

Subsequently, due to the additional oscillatory motion, the coordinates of the point with respect 

to the unstabilized coordinate system, Pv(ii), are expressed as 

Pyft) = Rus(0,9\ ti)[Pv(ti) ~ TUS(U)} (37) 

where Rus(0, <£;2j) aligns both coordinate systems at the instant t{, and Tus(ti) represents the 

additional translation due to the bouncing motion. Substituting (36) into (37), we obtain the 

motion of the point due to the total movement of the vehicle as 

Pv(ti) = Ri,J-iPv'(^-i) + R(Ts(^) + T„s(^-i))-R«,(ö,<p;ii)Tus(i2) (38) 

where 

R    =    R„s(M;ii)Rs(*t) (40) 

The rotation R;jt_i aligns the coordinate system V'(t;_i) with V'{U) while R, aligns V(i,_i) with 

V(*0- 
Assume that the movement of the vehicle is known up to time instant t^i, i.e. Rus(0, <p] ii-i), 

Tus(ii_i), and Py/(i,_i) are known.   Then, in order to differentiate between oscillatory motion 
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and smooth movement components, the translational components TUS(U) and TS(U) need to be 

characterized. This observation points to a basic difference between selective and full stabilization. 

Different strategies therefore need to be employed for selective stabilization. More specifically, in 

this case, points close to the vehicle, whose image motions are affected by the translational platform 

movement, need to be considered. When only the motions of distant features are considered, (38) 

simplifies to 

Pv,(ti) = R^Py^-i) (41) 

showing instead that the total rotation between two instants is observable from distant features 

alone. 

4.2    Rotation Dynamics 

We turn now to the evaluation of kinetic models (as compared with simple kinematic models) to 

capture the evolution of rotational motion. The simple models are sometimes casually used without 

further examination. We will show analytically that kinetic models are superior to kinematic 

models, but that kinematic models yield acceptable performance if sufficient numbers of visual 

observations are available. 

As mentioned previously, the attitude change between two time instants is due to smooth 

rotation and oscillatory motion. Rotational motion components such as rotation due to climbing 

occur only during limited time intervals; they are therefore negligible most of the time. We will 

study the performance of a kinematic-law based estimator for the estimation of pitch and roll motion 

only. The estimator can easily be generalized to take into account all the rotational components 

(including the smooth motion components). 

Since only oscillatory rotation is being investigated here, for convenience we can rewrite $us in 

(33) as 

where <l>c, <J>cr, 3>rc and &r denote constant matrices with respective sizes 2x2,2x4,4x2 and 

4x4. Define a constant matrix G such that 

y = Gxas (43) 

with y = [0,0, (/>, <(>]T.   For simplicity, the measurements z available for the estimation of y are 
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related to y by a linear transformation C: 

z = Cy (44) 

Assuming that the oscillatory rotational motion component is exactly described by the dynamics 

of y, we compare the performance of estimators based on different dynamics when additional 

measurements are available. The kinetic-law based estimator captures the oscillatory motion using 

coefficients related to the true dynamics [5]: 

Yi = *ryi + Ki[z-Cyi] (45) 

where yi represents the resulting estimate of y, and Ki is the desired gain matrix. The kinematic- 

law based estimator, on the other hand, assumes no knowledge of the underlying mechanical system 

and therefore only employs the smooth variation dynamics 

y2 = $y2 + K2[z- Cy2] 

where y2 and K2 respectively have meanings similar to those of yi and Ki, while 

(46) 

* = 

with 0 the 2x2 zero matrix, and 

'01 

0      $oi 

0    1 

0   0 

Let us define the corresponding estimation errors as 

yi   =   y - yi 

y2   =  y - y2 

(47) 

(48) 

(49) 

(50) 

It can be shown that yi and y2 satisfy 

yi    =    ($r-KxC)yi + u 

y2    =    (#-K2C)y2 + u- A$ry2 

where u is related to x«,, xc and xc by 

U       VjJ. ysXw   -p   *t*rcX5 

(51) 

(52) 

(53) 

16 



with Kb = [xc,xc]T, while A$r is due to mismatches between the assumed and true dynamics: 

A$r = $ - $r (54) 

As seen from (51), if Kx is chosen so that the eigenvalues of $r - KiC have negative real parts, 

then yi remains bounded as long as u is bounded. Similarly, in addition to u being bounded, if 

A*y2 is also bounded, we can carefully choose K2 so that y2 is bounded. Nonetheless, y2 will 

exhibit a larger error than y i. 

In sum, kinetic-law based estimators yx outperform kinematic-law based estimators y2. The 

kinetic-law estimator, however, requires knowledge of the mechanical system parameters. These 

parameters are not always easily measurable. When the system parameters are unknown, the 

availability of sufficient numbers of visual measurements should allow for the use of the simpler 

kinematic law while still yielding good warping parameter estimates. The next section employs the 

kinematic laws for the estimation of total rotation. 

5    Parameter Estimation 

Various types of estimators can be employed to obtain the parameters used in our stabilization 

scheme. Recursive-type estimators update the estimates of the parameters whenever new infor- 

mation becomes available while batch-type estimators compute the estimates by processing all the 

information. Because of their ability to process data sequentially and their lower computational 

complexity, recursive-type estimators are preferred over batch estimators for real time processing. 

Kaiman filters make use of dynamics for their estimation. We therefore provide Extended Kaiman 

Filter (EKF) formulations for both the calibrated and uncalibrated stabilization cases. 

For both calibrated and uncalibrated sequences, the algorithm only needs to estimate three 

rotational parameters, and the state vector x is simply equal to 

x = u> (55) 

Based on the simple kinematic law justified in the previous section, we have 

x = 0 (56) 

Subsequently, 

x(ti+1) = x(*0 (57) 
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This constitutes the plant equation in our recursive estimation algorithm. We turn next to the 

observation equations. Assume that the tracked tokens are composed of M points (whose projection 

points are pi,..., PM) and N horizon lines (each one with associated normal vector wn i = 1,..., N 

for calibrated sequences, or alternatively with given o;, i — 1,..., N for uncalibrated sequences, with 

Oj defined as in (20)). The measurement vector in the calibrated case is defined by 

T   „TT TT\T 
z = (PI,---,PM>

W
I>--->

W
;V) 

From (12) and (17) we can write the measurement equations as 

(58) 

z(ti+1) - hi+i,;[x(i;+i)] + n(ti+i] (59) 

where h is a nonlinear function while n denotes the measurement noise. More specifically, in the 

calibrated case, hi+i>i[x(^+i)] is expressed as 

(crPl + lr^Ap! + b) 

h;+i,i[x(f, +i) 
(crPM + l)_1(ApM + b) 

(crwAr + l)-x(Aw^ + b) 

with A, b, and c expressed with respect to the state vector components as 

A   =    d -l 

b   =   d -l 

fcTn + xcr31    fcr12 + xcr32      __     an    a12 

UT2\ + VcTzi      />22 + VcTZ2 Ö21      «22 

-fcxcru - fcycri2 + fcri3 - x2
cr31 - xcycr32 + fcxcr33 

-fcXcr2\ - jcycT22 + fc r23 - xcycr31 - y
2

cv32 + fcycr33 b2 

=   dr 
T32 

Cl 

C2 

-xcr3\ - ycr32 + fcTzz 

The measurement vector in the uncalibrated case is instead defined by 

T   „T z = (p1,...,pM,o1,...,o^) /T\T 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 
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and the observation equation then uses 

hj+i,t[x(tj+i)] = 

(cv + lrHAp!+b) 

(C
T

PM + 1)_1(APM + b) 

(_bro1 + l)-i(Är
0l-c) 

(66) 

with Ä, b, and c derived from the identities 

Är d-1 a-22 - hC2     hC\ - 021 

biC2 - Ö12     «11 -61C1 

—c = d~l Ö22C1 - ß2lC2 

anc2 - oi2ci 

-b = d-1 ß22^1 — «12^2 

d = ana: 22 - ßl2a21 

(67) 

(68) 

(69) 

(70) 

With the plant and measurement equations given in (57) and (59), when horizon lines and 

points are tracked, the EKF scheme can be applied to recursively estimate the two-frame angular 

velocity. This consists of the following steps: 

• Step 1: State and covariance propagation 

(71) 

where x(tf) and E(i+) denote the estimates of x(i,-) and the associated covariances: they 

are obtained based on information contained in the sequence up to the ith frame, x^"^) 

and S^i), on the other hand, are the predicted estimates of x(^+i) and the predicted 

covariances respectively before the incorporation of the (i + l)th frame, while Sw(i;+i) is the 

covariance of the plant noise w(i,-+i). 
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• Step 2: State and covariance update 

K(ii+1)   =    S(ir+1)Hf+lil.[Hl-+liiS(ir+1)Hf+li,- + Sn(i,-+1)]-
1 

x(*f+1)    =    x(<r+1) + K(tt-+1){z(<f+1)-h,-+lit-[x(ir+i)]} (72) 

S(it+1)    =    [I-K(it-+i)Hi+i,,-]S(*r+1) 

where x(tf+1) is the desired estimate of x(^+i), and H(tf+1) is the associated covariance. 

K(ti+i),Sn(ij+i) and I respectively represent the gain matrix, the covariance of n(t;+i) and 

the identity matrix. Hi+i,;, on the other hand, is the linearized approximation of h;+li;, 

H,'+1'*' - dx(ti+1) 
(73) 

The algorithm is initialized by a batch process using an LS estimate of the rotational parameters 

as in 

minJT ||z(^+1) - hf+1,t-[x(ii+1)]||
2 (74) 

x(*i)   ,- 

The minimization can be solved using techniques based on gradient descent, such as conjugate 

descent. 

This concludes our discussion of parameter estimation. The next section addresses image prim- 

itive tracking. Synthetic and real experiments are reported as well. 

6    Experimental Results 

We first briefly describe approaches to the detection and tracking of horizon lines and points. 

Experimental results on two real image sequences are then presented. 

6.1     Detection/Tracking of Image Primitives 

The first set of visual cues for characterizing the rotation consists of horizon lines. There have 

been numerous approaches to tracking a set of line segments over a sequence [4, 18]. For simplicity, 

we only focus on tracking one line in our work, although using a set of lines is desirable in some 

situations. 

Assuming that the lines near the horizon appear in the form of large vertical brightness deriva- 

tives, the detection of the line of interest is achieved in three steps: 

• Step 1: Based on the histogram of the image, a binary image is generated by thresholding 

the original image. 
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• Step 2: In the binary image, the pixels with large vertical brightness derivatives most likely 

constitute points on the horizon line. A simple template matching technique is applied to 

identify pixels with large brightness derivatives. 

• Step 3: A median fit method is used to robustly group identified pixels into lines. The 

longest line is taken to be the line of interest. 

In the experiments, the above procedures are applied to each image in the sequence. The line 

extracted from each image is assumed to be near the horizon, and these lines are matched to each 

other. 

The second class of inputs to the full stabilization scheme are the image plane trajectories of 

a set of points near the horizon. A localized tracking algorithm reported in [17] is employed to 

obtain feature point trajectories. In particular, a Gabor-wavelet based feature extraction algorithm 

is initially applied to the first image. Then, according to the detection of lines near the horizon, 

feature points of interest are selected to initiate the tracking algorithm. 

For each feature point, the algorithm employs a trajectory model to exploit the temporal infor- 

mation and decomposes the sequence-tracking problem into successive two-frame tracking problems. 

Three steps are involved in finding the matching point of a tracked feature point in the following 

frame: 

• Step 1: Based on the trajectory model, the first step uses a probabilistic data association 

technique to estimate the inter-frame motion. The resulting estimates are used in the next 

step to facilitate the process of finding the corresponding point in the following frame. 

• Step 2: The second step applies a correlation-type matching algorithm to identify the cor- 

responding point. The inter-frame motion estimates are first used to compensate for the 

rotation as well as to reduce the search area for the matching point. Various criteria [19] are 

then applied to find the matching point to sub-pixel accuracy. 

• Step 3: The third step processes the temporal information contained in the new frame by 

updating the parameters in the trajectory model using a Kaiman filter. Afterwards, the 

algorithm goes back to the first step and continues to track the point in the following frame. 

Under the assumption that the tracked points exist at all times, the feature point tracking 

algorithm can identify the corresponding points over a sequence. However, in our formulation, it 
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is not required that the same set of points be used. Therefore, we only need to focus on finding 

matching points between two frames. A different set of points can be used whenever this is desirable. 

6.2    Synthetic Experiments 

This section tests the results of Section 4; we illustrate the performance of the kinematic law using 

a one-dimensional example, and show that both laws yield comparable performance when sufficient 

numbers of visual observations are present. Consider the scenario in which the vehicle travels along 

a straight path most of the time except when encountering impulse-like disturbances (bumps). Each 

bump is modeled by a half sine wave with a given height and width. (For simplicity, no smooth 

rotational motion during driving is assumed.) The excitations to the vehicle are then given by 

x0i(t) = < 
hsm[^(vt-z0)} 

0 

f < t < 

elsewhere 

zn+b„ 

with 
L L 

X02{t) = X01(t),      X03(t) = X0l(t ),      X04(t) = X02{t ] 

where zo, L, and v respectively denote the location of the bump, the vehicle's length and its forward 

speed. (Only one bump is used in this example, with ZQ = 1.345 m, bh = 0.1 m, bw = 0.2 m, L = 

2.7 m and v = 13.45 m • s-1). The nominal values of the vehicle parameters are listed in Table 1, 

and the oscillatory motion is synthesized according to (33) with only the pitching motion shown in 

Figures 4a and 4b. During driving, a sequence of images is acquired at 20 Hz from an on-board 

camera (each image has size 2.0 X 2.0 and resolution 2000 X 2000), and a set of distant points is 

tracked; the coordinates of these points with respect to the initial camera frame of reference are 

listed in Table 2. 

Table 1: Model parameters. MB- the mass of the sprung element, Iyy: the moment of inertia along 
the pitch axis, WA and WB- the distance of the center of gravity to the front and rear ends. 

MB *yy MwS Mwr KT 

1710.0kg 1031.3kg-m:i 57.5kg 75.0kg 200-OkN-m-1 

Kj KT cf (CV) WA WB 

lS.OkN-m-1 lO.OkN-m-1 l.OkN-m-i-s-1 1.4m 1.3m 

Subsequently, to compare the kinetic and and kinematic law based estimators, we design a 

recursive-type estimator similar to the one used in the real application to estimate the pitching 
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(a) (b) 

0 0.5 1 1.5 15 3 3.5 4 4.5 5 
Timc(s) 

(c) (d) 

Figure 4: Kinetic versus kinematic: (a) 0(t), (b) 9(t), (c) Bias in the estimates of 0d(t), (d) RMSE 
in the estimates of 0d(t). 

motion. The resulting bias and Root-Mean-Squared Error (RMSE) in the estimates of the attitude 

change between t and t + At, 6d(t) = 6(t) - 0{t - At), are shown in Figures 4c and 4d. As seen 

from the figures, when reliable image cues are available, the performance of the kinematic-law 

based estimator (dashed line) is very close to that of the kinetic-law based one (solid line). More 

importantly, the larger bias in the kinematic-law based estimator, due to the modeling error in the 

time evolution of the parameters, is negligible. 
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Table 2: Distant point locations. 

Point 3-D coordinates 

1 84 -84 1200 

2 160 -80 2000 

3 170 115 2300 

4 100 140 1750 

6.3    Real Imagery 

We show the results of the application of the stabilization schemes to two sequences with significant 

unstabilized components in both calibrated and uncahbrated cases. To let the reader more precisely 

judge the results yielded by this technique, we have placed MPEG movies showing the original 

sequences, the primitive tracking and the stabilized sequences at the following URL: 

http://www.cfar.umd.edu/ ~ yao/stabilization.html. 

They can easily be viewed using any web-browser (Mosaic, NetScape, etc). 

6.3.1     Martin Marietta Sequence 

The first sequence, distributed by Martin Marietta, was obtained from a vehicle performing off-road 

navigation. Figure 5 shows four frames from the sequence in which each frame has size 347 X 238. 

The motion is composed of translation (with a dominant looming component) and unstabilized 

rotation. The FOV is 40 x 30 degrees (in the horizontal and vertical directions, respectively), 

while the optical axis intersects the image plane at the center of the image. The experiments were 

first carried out for the calibrated case. In this sequence, according to the detection scheme, both 

the mountain profile and the line near the horizon are detected. Figure 6a shows the results for 

one frame. (The mountain profile is not employed by the current algorithm.) Four feature points 

close to the detected line are identified and tracked over the sequence afterwards. For display 

purposes, the resulting image plane trajectories are superimposed on the last frame of the sequence 

as shown in Figure 6b. The LS estimate of the rotation is also computed as if only the horizon line 

were available. Subsequently, stabilization from both full and LS rotation is applied; the recursive 

algorithm, in addition, uses the estimates from the batch algorithm computed from the first ten 

frames. Figures 6c and 6d respectively show the LS and full angular velocity estimates. The solid 

line, the dashed line and the dashed-dotted line respectively correspond to the pitch motion, the 
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yaw motion and the roll motion. Since the vehicle exhibits very small lateral motion and the 

sequence is densely sampled, the LS estimates are therefore close to the full estimates for this 

sequence. Finally, a stabilized sequence is obtained using the global stabilization scheme with the 

full rotational estimates. The stabilized sequence appears to undergo translation only, with the 

direction of translation varying noticeably when the rotational component in the original sequence 

is large. 
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Figure 5: Martin Marietta sequence: (a) Image 9, (b) Image 39, (c) Image 74, (d) Image 99. 

The stabilization scheme for the uncalibrated case was also applied, assuming that the intrinsic 

parameters are unknown. The sensitivity of the eight parameters with respect to the four intrinsic 

parameters, obtained using the calibrated parameters as nominal values, are first shown in Figures 7 
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Figure 6: Experimental results from the calibrated scheme for the Martin Marietta sequence: (a) 
The detected line and the mountain profile, (b) Feature point trajectories, (c) The LS estimates: 
LJX (solid line), uy (dashed line), uz (dashed-dotted line), (d) The full-stabilization estimates. 

and 8.6 (The additional parameter is due to the different focal length in either direction.) For visual 

purposes, we only illustrate the sensitivity of each parameter with respect to the focal length in the 

horizontal direction and xc. As argued earlier, these values are small and therefore a reasonable 

deviation from the nominal values of the intrinsic parameters is not critical. Consequently, we vary 

the parameters and perform different tests. For example, assume the focal length in pixels to be 

700 and 600 in the horizontal and vertical directions respectively (the real values being 480 and 

6Instead of showing the computed J, Figures 7 and 8 show the relative sensitivity, defined as J ■ A, with A a 
diagonal matrix whose elements are A0. 
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443 respectively), and the image center to be 50 pixels away from the true position, say (100, 100). 

Then using the same visual cues, Figure 9 shows the estimated angular velocity. The uncalibrated 

stabilization scheme is thereafter applied to the original sequence. It can be seen from the MPEG 

movie that the result is close to the one obtained using the calibrated scheme. The result for the 

uncalibrated sequence using unconstrained projectivity parameters, i.e. direct estimation of the 

eight parameters from the image features, leads instead very poor results, since the estimation is 

unstable. 

40 50 60 70 
frame number 

(a) (b) 

30 40 50 60 
frame number 

(c) (d) 

Figure 7: Sensitivities of A with respect to fc in the horizontal direction (solid line) and xc (dashed 
line) for the Martin Marietta sequence: (a) an, (b) ai2, (c) a2\, (d) a22. 
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(c) (d) 

Figure 8: Sensitivities of b and c with respect to fc in the horizontal direction (solid line) and xc 

(dashed line) for the Martin Marietta sequence: (a) b\, (b) 62? (c) ci7 (d) c2. 

6.3.2     NIST Sequence 

The same procedure was applied to another sequence, provided by NIST, which was also acquired 

from an off-road vehicle. Figure 10 shows four frames of the sequence in which each frame is of 

size 640 X 480. The motion is composed of a translation with steering and unstabilized motion 

components. The FOV is 70 and 60 degrees along the horizontal and vertical directions respectively, 

while the optical axis again intersects the image plane at the center of each image. One line 

and partial object profiles near the horizon are detected as displayed in Figure 11a, while the 

feature trajectories are similarly superimposed on the last frame as shown in Figure lib. The LS 
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(a) 

(b) (c) 

Figure 9: Angular velocity estimates from the uncalibrated scheme (solid line) versus calibrated 
scheme (dashed line) for the Martin Marietta sequence: (a) ux, (b) wy, (c) wz. 

and full estimates of the angular velocity are plotted in a similar fashion in Figures lie and lid 

respectively. Since the sequence exhibits some steering, the LS and full estimates are quite different. 

In addition, the steering behavior is preserved in the stabilized sequence; only the unstabilized 

motion is removed. 

We also applied the uncalibrated stabilization scheme to this sequence. Again, we choose the 

focal length in pixels to be 600 and 700 (in contrast with the true values 249 and 457), and the 

center of the image to be (250, 300). The sensitivity of the projective coefficients is shown in 

Figures 12 and 13. The angular velocity estimates are illustrated in Figure 14. The MPEG movie 
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Figure 10: NIST sequence: (a) Image 10, (b) Image 35, (c) Image 60, (d) Image 80. 

again shows good stabilization results for this sequence. 

7     Conclusion 

This paper has presented a scheme for stabilizing a sequence acquired by a moving observer. In 

particular, the algorithm exploits the temporal information in the sequence and utilizes various 

visual cues. Image warpings derived from the 3-D motion are used instead of other approximate 

2-D mappings, thereby capturing more closely the image motion resulting from the camera rotation. 

The consideration of global stabilization, in addition, makes the algorithm more suitable to real 

applications. We analyze the nature of the resulting sequence. The use of kinetidaws for estimation 

30 
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frame number 

30 40 50 
frame number 

00 (d) 

Figure 11: Experimental results from the calibrated scheme for the NIST sequence: (a) The detected 
line and partial object profiles, (b) Feature point trajectories, (c) The LS estimates: ux (solid line), 
uy (dashed line), uz (dashed-dotted line), (d) The full-stabilization estimates. 

purposes is carefully justified and tested in synthetic cases. The introduction of kinetic laws leads 

us to study the feasibility of selective stabilization schemes, or the exclusive removal of oscillatory 

motion components. Lastly, we study the removal of rotational motion from uncalibrated sequences, 

for which a scheme to alleviate the unstable estimation of the projectivity coefficients is proposed 

and tested. All results have been thoroughly tested and the resulting sequences have been made 

available to the interested reader. 
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Figure 12: Sensitivities of A with respect to fc in the horizontal direction (sohd Hne) and xc (dashed 
Hne) for the NIST sequence: (a) an, (b) a12, (c) a2i, (d) a22- 
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Appendix A 

We give the derivation of image motion in vector form in this appendix. As in Section 2, assume 

that perspective projection is used as the imaging model and the camera undergoes translation and 

rotation. Then, for a 3-D point P : (X,Y, Z)T, the image motion of the projection point p : (x, y)T 

can be obtained as follows: 

(75) 

(76) 

(77) 

\   (78) 

p 
dV 
dp 

P + Pc 

=     fc 

X 
z2 

Y 
~ z2 

1_ 
~z 

=     fc' 

fc    0    -{x - xc) 

o  fc  -(y-vc) 

fc    0    -(a; - xc) 

0   fc   -(y-yc) 

(-wxP-V) 

0       u 

—w 

U). "y 

0 

-Uy 

ux 

0 

y-Vc — 

Jcvz 

t YJL 
Jcvz 

> 

z 
^ f° 

As before, define pfoe : (fc&Jc^f + pc and r : ^ as weU as the following matrices 

nz = 

Then (78) can be rewritten as 

P = /< 
-l 
c /cl     I     "(P-Pc) 

0        Uz 

-us    0 

nz 

u> xy 

-U„ 

Uj 

(j> XJ/ 

-W xy 

P-Pc Pf< oe       fc 

/c 

Consequently, we have 

P = /C
_1(P - Pc)Vxy(P - Pc) + ß*(P - Pc) + /^ii/ - (Pfoe ~ P)~ 

(79) 

(80) 

(81) 
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Appendix B 

We derive the relationship between w, the projection of the 3-D normal vector to the plane II (see 

Figure 2), and the image plane normal o in this appendix. Consider an image horizon line denoted 

by 

£ : y = a + bx (82) 

where (x, y)T are the image plane coordinates of a 3-D point. Then the image plane vector normal 

to C, defined in (20), is 
h   1   _ 

(83) n   ( h V 0 = (-ä'ä} 

Let fc be the focal length of the camera and assume that the optical axis intersects the image plane 

at pc : (xc,yc)
T. Then 

Pi    :    (0,a + bxc-yc,fc)
T 

P2   :   (^r^,o,/c)
T 

are the coordinates of two points lying on the plane II, with respect to the camera frame of reference. 

Consequently, by taking the cross product of Pi and P2, we have 

N   d=    Pi x P2 

1 '    6' bfc        
} 

The 3-D normal vector W is then obtained by 

w is related to o by 

W = 
N 

INI 

(85) 

(86) 

(87) 

w =  :p(w) + pc 

/; c a+bxc~yc 

_f2 1  Jc a-\-bxc—y 

1- < pc,o > O + Pc 

(89) 

(90) 

38 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources. 
gathering and maintaining the data needed, and completing and reviewing the collection of information   Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate tor information Operations and Reports. 1215 Jefferson 
Davis Highway. Suite 1204. Arlington, va 22202 -4302. and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188). Washington. DC 20S03. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
July 1995 

3. REPORT TYPE  AND DATES COVERED 
Technical Report 

4. TITLE AND SUBTITLE 

3-D Model-Based Image Stabilization Using Multiple Visual Cues 

5. FUNDING NUMBERS 

DAAH04-93-G-0419 
6. AUTHOR(S) 

Y.S. Yao, P. Burlina, R. Chellappa, and T.H. Wu 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Computer Vision Laboratory 
Center for Automation Research 
University of Maryland 
College Park, MD 20742-3275 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

CAR-TR-781 
CS-TR-3506 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S.  Army Research Office 
P.O.   Box 12211 
Research Triangle Park,  NC    27709-2211 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 
The views,  opinions and/or findings contained in this report are those of the 
author(s)  and  should not be construed as an official Department  of  the Army 
position,   policy,  or decision,  unless  so designated by other documentation. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release;  distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This paper studies the problem of image stabilization, defined here as the process of generating a compensated 
video sequence where image motion resulting from camera motion has been partially or totally removed.   The 
scheme combines various visual cues such as points and horizon lines, and relies on an Extended Kaiman Filter for 
the estimation of parameters of interest. We study both calibrated and uncalibrated stabilization cases. We address 
the issues of local versus global stabilization. We consider the problem of the selection of model dynamics for the 
estimation of warping parameters and illustrate the use of kinetic models for the selective removal of oscillatory 
motion. Experimental results from video sequences generated from off-road vehicle platforms show good performance 

of the stabilization schemes. 

U. SUBJECT TERMS 

Image stabilization, motion analysis, image warping, integration of visual cues, kine- 

matic and kinetic laws 

15. NUMBER OF PAGES 
42 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev   2-89) 

Prescribed  by ANSI  Std   /39-18 
208-102 


